
A Distributed Decentralised Information Storage and
Retrieval System

Ian Clarke
Supervisor: Dr Chris Mellish

Division of Informatics
University of Edinburgh

1999

Abstract

This report describes an algorithm which if executed by a group of intercon-
nected nodes will provide a robust key-indexed information storage and retrieval
system with no element of central control or administration. It allows informa-
tion to be made available to a large group of people in a similar manner to the
�World Wide Web�. Improvements over this existing system include:

- No central control or administration required

- Anonymous information publication and retrieval

- Dynamic duplication of popular information

- Transfer of information location depending upon demand

There is also potential for this system to be used in a modi�ed form as an
information publication system within a large organisation which may wish to
utilise unused storage space which is distributed across the organisation.

The system's reliability is not guaranteed, nor is its e�ciency, however the
intention is that the e�ciency and reliability will be su�cient to make the
system useful, and demonstrate that such a system is feasible.

This report also describes several experiments designed to measure the e�ciency
and reliability of such a network. These are performed upon a simulation of a
working network written in the Java programming language. Improvements
over the existing �World Wide Web� are also highlighted in this report. The
algorithm is considered a prototype, and areas for further study and potential
improvement are highlighted throughout this report.

Contents

1 Introduction 4

1.1 Freedom . 4

1.2 A distributed decentralised Internet 5

2 Aims 6

3 Related Work 7

3.1 The Domain Name System (DNS) 7

3.1.1 Description . 7

3.1.2 Discussion . 8

3.2 The World Wide Web . 8

3.2.1 Description . 8

3.2.2 Discussion . 10

3.3 UseNet . 11

3.3.1 Description . 11

3.3.2 Discussion . 11

3.4 The Eternity Service . 12

3.4.1 Description . 12

3.4.2 Discussion . 13

4 Initial Ideas - A redundant hierarchy 14

4.1 Description . 14

4.2 Discussion . 14

1

5 An adaptive network 16

5.1 General Description . 16

5.2 Considerations . 17

5.2.1 Criteria for information removal 17

5.2.2 The nature of keys . 18

5.3 Architecture . 19

5.3.1 Message types . 20

5.3.2 Data Request . 21

5.3.3 Data Reply . 21

5.3.4 Request Failed . 22

5.3.5 Data Insert . 22

5.3.6 Node Architecture . 23

6 A simulation 25

6.1 Design Aims . 25

6.2 Simulation Design . 25

6.2.1 Freenet.FullSim . 25

6.2.2 Freenet.FullSim.sim . 26

6.3 Extending Code for use in Prototype of Adaptive Network 28

6.3.1 Class re-implementation 28

6.3.2 Communication mechanism 29

6.3.3 Interfacing to the Adaptive Network 30

7 Experiments 31

7.1 Changes in network size . 31

7.1.1 Scenario . 31

7.1.2 Information retrieval reliability 32

7.1.3 Information retrieval time 33

7.2 Realistic Scenario Experiments 34

7.2.1 Data Movement during Network Growth 35

8 Conclusion 36

9 Areas for further investigation 37

9.1 Improvements to data insertion 37

9.2 Use of encryption to enhance security 37

9.3 Use of digital signatures to allow updating of information 37

9.4 Generalisation of Adaptive Network for data processing 38

2

10 Future Developments 39

11 Acknowledgements 40

A Glossary of Java terms 41

B Java Documentation 42

3

Chapter 1

Introduction

1.1 Freedom

�I worry about my child and the Internet all the time, even though
she's too young to have logged on yet. Here's what I worry about.
I worry that 10 or 15 years from now, she will come to me and say
'Daddy, where were you when they took freedom of the press away
from the Internet?� -Mike Godwin

At present the Internet is seen as a hot-bed of anarchy, beyond the controls of
individual governments, a system which ensures free-speech and free-thought by
its very nature. Unfortunately, while this seems true at present, it is caused more
by a lack of knowledge about the technology involved, rather than being a feature
of the technology. It is actually the case that the Internet could lead to our lives
being monitored, and our thinking manipulated and corrupted to a degree that
would go beyond the wildest imaginings of Orwell. As an example, most web
browsing software at present maintains a list of all web-sites so-far visited. That
information could easily be sent to a central location on a daily basis. It would
then be possible to build up a detailed picture of an individual without their
consent or knowledge. Furthermore, it is much easier to monitor vast amounts
of email than it is to monitor telephone or postal communications. The mention
of speci�c words of phrases could �ag an email for further investigation. This
will become yet easier as natural language interpretation systems grow more
sophisticated.

It is not just the information consumers that are at risk. Every piece of in-
formation on the Internet can be linked to the owner of the server that hosts
the information. There is an indelible electronic trail from the information to
those that are responsible for it. In many situations this trail is a restriction
upon free-speech, as fear of retribution can (and often does) serve as an e�ective
censor.

4

1.2 A distributed decentralised Internet

It is curious that most of the creations of man follow a design philosophy which
is alien to that employed in most biological organisms, including man himself.
Whereas evolution has discovered that successful systems tend to be decen-
tralised with only the minimum centralised control possible, the systems created
by man tend to have a highly centralised architecture. Computers have central
processing units, computer networks have hubs, and the operation of a car de-
pends upon that of a small fuel pump. While it could be argued that a person is
centrally controlled by the brain, if we look at each of the sub-systems within a
person, we discover a degree of redundancy. Large portions of the brain can be
removed with little signi�cant degradation in performance. Compare this with
one of man's most complex creations, the computer. Remove or damage even
a microscopic component of a computer, and in the vast majority of cases the
computer will stop working completely. There are examples where some form
of redundancy has been incorporated into a design, however in comparison to
nature's example these are clumsy and inelegant. Many people point to the
Internet as an example of a distributed, decentralised, and robust architecture.
This is not the case. Internet Protocol (IP) addresses are passed down from
a centrally controlled system. The Domain Name System (DNS) upon which
the modern Internet depends is ultimately controlled by one organisation. In
most countries there is a small number of backbones upon which that country
depends to provide access to the Internet. There are frequent failures in this
system (at the time of writing there has already been at least one signi�cant
failure in the D.N.S in 1999 alone1), and as the Internet becomes more impor-
tant these failures will become more signi�cant. Perhaps it is possible to design
a system which is decentralised, and distributed, while retaining the elegance of
natural solutions.

1On the 12th March 1999 several of the servers which store details of domain name own-
ership became corrupted and began reporting that domains such as �microsoft.com� and �ya-
hoo.com� were available for registration. At the time of writing the cause is not yet known.

5

Chapter 2

Aims

A key-indexed storage and retrieval system such as the World Wide Web, or
the system described by this report, allow anyone connected to the Internet
to retrieve information corresponding to a key. The methods and limitations
upon how information can be added to the system, and limitations upon how
the information is accessed are speci�c to individual system. The aim of this
project is to devise a key-indexed information storage and retrieval system with
the following properties:

1. The system should have no element of centralised control or administration

2. It should provide anonymity to both providers and consumers of informa-
tion

3. The system should be robust in handling hardware and software failure

4. It should adapt to changing demands and resources in an e�cient manner

5. Its performance should be comparable to that of existing mass information
distribution systems such as the �World Wide Web�

And also to evaluate the performance of this system by means of experimenta-
tion.

6

Chapter 3

Related Work

In this section I examine several examples of distributed information storage
and retrieval systems, and use these to justify the aims of this project.

3.1 The Domain Name System (DNS)

3.1.1 Description

While most computers are referred to by their relatively user friendly �domain�
names (such as www.dcs.ed.ac.uk), the underlying routing mechanisms in the
Internet require the Internet Protocol address (IP address) of a computer before
being able to transfer messages. An IP address consists of 4 bytes, generally
represented as 4 numbers separated by full stops. The Domain Name System (or
DNS) is a world-wide database used to convert the names of computers on the
Internet (such as www.dcs.ed.ac.uk) into IP addresses (such as 192.168.134.100).
Rather than retain all of this information in a central database, di�erent or-
ganisations have been given responsibility for parts of the database, and some
have delegated sub-parts of that database further. For example, in the United
Kingdom �Nominet� has responsibility for all domain names ending with �.uk�.
It has sub-delegated all domain names ending with �.ac.uk� to the Joint Aca-
demic Network (JANet). In turn, JANet has delegated all domains ending with
�.ed.ac.uk� to the University of Edinburgh, and so on. Each organisation must
either handle administration of the database for their sub-domain (such as ad-
ditions, amendments, and deletions), or sub-delegate it to another organisation.

Given a domain name, the client obtains the corresponding IP address by �rst
querying one of several �root� nodes, these will respond with the location of
the appropriate DNS server. The query is then sent to that server which refers
the client to further DNS servers lower in the hierarchy until eventually the
computer is found (see �gure 3.1). The e�ciency of this system is improved
by means of caching. Rather than querying the root DNS servers on every
occasion, queries will �rst be directed to local DNS servers which maintain a

7

.uk

.ac.uk .co.uk.org.uk

.ed.ac.uk .cam.ac.uk

.inf.ed.ac.uk.psy.ed.ac.uk

www.inf.ed.ac.uk

Nominet

Janet

University of
Edinburgh

Division of
Informatics

Figure 3.1: Searching for information in the Domain Name System

cache of recently accessed domains. If a domain is requested that is in the cache
then the client can be referred directly to the relevant DNS server, improving
the speed of the query, and reducing the load on DNS servers higher in the
hierarchy.

3.1.2 Discussion

While the Domain Name System is distributed, it is still centrally controlled.
There is little, from a technical perspective, to prevent the owners of the root
domain name servers from reclaiming the ability to administer sub-domains of
the system, or from accidentally stopping the entire system from operating1.
Further, any of the sub-administrators who have been given control over parts
of the database have the same power over the sub-domains that they administer.
This could include charging unreasonable prices for additions or changes to the
database, or imposing some form of censorship over the system (neither the
anonymity of providers or consumers of information is protected in any way).
In many cases the methods used to allocate domain names to organisations
and individuals is causing serious problems. Most organisations charged with
administering the Domain Name System allocate domains on a �rst-come-�rst-
serve basis. This has lead to speculative registration of large numbers of domains
by companies hoping to sell on the domain names at a greatly in�ated price.
The Internet is a public utility, formed from the collective e�orts of many people
and organisations. Thus to require a small number of organisations to have
such control over the system, and to make it possible for them to pro�t greatly
through exploitation of their monopoly, reduces the overall reliability of the
Internet as a means to freely and inexpensively exchange information.

3.2 The World Wide Web

3.2.1 Description

The World Wide Web is the most visible example of a computer based key-
indexed information distribution system. It makes use of the HyperText Trans-

1(see footnote 1, page 5).

8

fer Protocol (HTTP), which in turn sits above TCP/IP2. The key used to access
a piece of information is known as a Uniform Resource Locator (URL), and as
the name suggests, it essentially represents the computer on which the informa-
tion resides, as well as the location within that computer where the information
can be found. The format of a URL is as follows:

http://www.dai.ed.ac.uk/ed/aisoc/index.html

__A__/______B________/_______C_________/

A - The protocol used (normally HTTP however FTP and FILE may also be
speci�ed)
B - The computer on which the resource is located
C - The location of the �le on the computer (a directory path)

The Domain Name System is �rst used to obtain an IP address for the computer
(see section 3.1). A TCP connection is then opened to that computer and the full
URL is sent to that machine as part of a �GET� request. That machine will then
either return an error message indicating that the requested information is not
available, or it will return the information itself. Generally information on the
world wide web is stored in HyperText Markup Language (HTML), however this
is by convention only. HTTP expects a reliable stream based communication
medium which is provided by TCP.

If someone wishes to make information available via the world wide web they
must place that information on a computer with a permanent Internet con-
nection, that is running HTTP server software. The URL required to access
that information will be determined by the domain name of the computer the
information is on, and also by the location within the �le-system on that com-
puter. In order to �nd the URL of a piece of information given the subject
of that information, there are several unreliable methods which may be em-
ployed. Firstly it could be assumed that the name of the computer on which
the information is stored is indicative of the subject of the information (as is
sometimes the case). For example, to �nd information on the Linux operat-
ing system, we could look at the URL http://www.Linux.org/. Unfortunately
due to the hap-hazard �rst-come-�rst-serve method most domain names are al-
located, this method is far from reliable. Secondly, a �search-engine� such as
Yahoo (http://www.yahoo.com/) which maintains a central index of webpages
may be used to retrieve information. This is the most common method to lo-
cate information on the Internet where a URL is not already known, however
the organisations which operate these services have an opportiunity to censor
information, and often websites which have paid a fee are given preferential
treatment. Further, the small number of these search engines create a single
point of failure that decrease the reliability of the WWW if they are depended
upon exclusively.

2TCP stands for Transport Control Protocol, IP stand for Internet Protocol. IP provides
an unreliable packet-based communication medium, TCP sits above this providing a reliable
stream-based communication medium.

9

3.2.2 Discussion

Normally each piece of information on the World Wide Web is stored once
on an individual computer on the Internet. Every time anybody wishes to
view that information a request is sent to that computer and it returns the
relevant piece of information. This model works well when there are relatively
few requests, however if a piece of information becomes increasingly popular
then the computer possessing the piece of information can become swamped by
requests, preventing many from obtaining the information. One solution is to
move the information to a more powerful connection to the Internet, however
this often necessitates a change in URL. Also, frequently the increase in demand
for the information may be short-lived3. There are several solutions to this
problem.

The �rst is mirroring. This is a measure that can be taken by the provider of
the information to reduce the load on their HTTP server. If it is anticipated
that there may be a high volume of requests for a particular piece of informa-
tion, then several other computers on the Internet can o�er to retain copies of
the information. People may then obtain the information from those systems
instead, reducing the load on the main server. This method is widely used, how-
ever mirrors must be set up specially, and require some organisation. If high
load is imposed on a system without warning then there may be a long delay
before suitable mirrors can be set up. Also, to an extent, this system relies on
the good-will of the user to make use of the mirrors rather than the main site.

The second method is caching. This is a measure that can be taken by the
information consumer. It involves keeping a local cache of recently accessed
documents, so that if these are re-accessed before they expire from the cache
then the HTTP server on which the information resides need not be queried.
There are several levels at which caching may be implemented. Most modern
web-browsing software maintains a local, per-person cache. Further, many or-
ganisations now maintain an organisation-wide cache of web pages. Caching
does result in an increase in web performance, and a decrease in tra�c, however
it requires signi�cant e�ort on the part of the information consumer, or the or-
ganisation through which they access the Internet. Also, there is the matter of
choosing the appropriate level at which to cache the information. Generally this
is at the level of the web-browser and the organisation, however it may be de-
sirable to do this on a wider scale. Further, with this caching mechanism, there
is the possibility that an unscrupulous organisation could supply users with
modi�ed information. There is little to prevent a time-saving web-cache from
becoming an electronic censor of information, and indeed this has happened in
countries such as China where the government openly censors information on a
wide scale.

The World Wide Web o�ers little anonymity to either producers or consumers
of information. If it is possible to retrieve a piece of information then an IP
address for the server on which the information is stored must have been found.

3This has become known as the �SlashDot� e�ect. http://slashdot.org/ is a popular news
site on the world wide web. It was discovered that when a hyperlink was placed on the
SlashDot site there would be a dramatic increase in demand for that piece of information. If
the computer that the information was stored on was not su�ciently powerful, the web server
would fail preventing access to the information.

10

If this is the case then that IP address may be matched to an organisation or
person. Even if that person did not create the information, they are responsible
for its availability, and thus could be forced to remove the information. There
are cases where intellectual property law has been used to force information to
be removed from the World Wide Web4.. Similarly, when someone connects
to a remote server to retrieve a web page, their IP address becomes known
to the remote server. This can be used with other information to determine
what country, even what organisation the user is accessing the WWW from.
Further, by correlating this information (possibly in conjunction with other
organisations) a vast amount of information could be collected about a person,
determining which web sites they visit most frequently, and thus their political
views and interests, even their sexuality, could be inferred. As usage of the
World Wide Web increases as people rely upon it more and more as a source
of news and information, concerns such as those raised here will become more
important.

3.3 UseNet

3.3.1 Description

UseNet is one of the older systems on the Internet. It is a world-wide �bulletin-
board� discussion system where people may post articles, and respond to the
postings of others. The system is divided up into many �newsgroups� each
of which contain discussions relating to a speci�c topic called �newsgroups�,
almost every conceivable subject has an associated newsgroup on Usenet. The
system is distributed across many Usenet servers worldwide. Most allow users
to post new news-items to newsgroups, and to read existing postings. At regular
intervals the newsgroups will distribute the ID numbers of new postings to their
neighbours, who will distribute them to their neighbours in the same manner,
until they have propagated over all UseNet servers (see �gure 3.2). In this way,
each Usenet server contains a reasonably up-to-date copy of all messages posted.
Most UseNet servers are con�gured to delete old messages, although the creator
of a posting can also specify an earlier date for deletion.

3.3.2 Discussion

While Usenet succeeds in being a distributed, and largely decentralised system,
it is extremely ine�cient. The requirement that every message posted to the
system must be distributed to each and every server on the system means that
each server must be capable of storing huge quantities of data (if each article is
not to expire before anyone has a chance to read it). Furthermore, the band-
width required to transfer the new messages between servers is extremely high.
There are also many security problems with Usenet. For example, if you are the

4An example is when the Church of Scientology forced the closure of a web site which
criticised them on the basis that it contained information to which they owned the copyright.
Even when an organisation is unlikely to win a court case against an information provider, if
they have su�cient resources they can keep the case going until their opponent runs out of
funds.

11

Figure 3.2: Propagation of postings between UseNet servers

author of a message, you can send a �cancel� message to a Usenet server which
will cause your message to be removed. Unfortunately it is extremely easy to
send a cancel request for someone else's article, pretending to be them. There
have been instances where this has been used to delete messages on political
grounds. Usenet is a legacy system. Were it to be completely re-implemented
today it would be done using the HTTP protocol. Already there are many dis-
cussion systems which operate over the WWW in a much more e�cient, and
much more �exible manner. It does serve as an example of one method to
achieve a distributed decentralised information distribution system, but does so
at the price of extreme ine�ciency, and lack of security. Having said that, of
all the systems described in this section, the operation of Usenet comes closest
to that of the system described in this report. See [1] for further details of the
operation of Usenet.

3.4 The Eternity Service

3.4.1 Description

The Eternity Service is a system designed with the intention of storing data
over long periods of time, and being resistant to forms of attack such as admin-
istrator bribery and legal challenge. The following is an extract from [3, node9]
describing the operation of this system:

Each hardware security server will control a number of �le servers.
When a �le is �rst loaded on to the system, it will be passed to the
local security server which will share it with a number of security
servers in other jurisdictions. These will each send an encrypted
copy to a �le server in yet another jurisdiction.

When a client requests a �le that is not in the local cache, the request
will go to the local security server which will contact remote ones
chosen at random until one with a copy under its control is located.
This copy will then be decrypted, encrypted under the requesters
public key and shipped to him.

12

3.4.2 Discussion

While the system described above does achieve the aim of securing information,
and making it extremely di�cult to remove the information from the system, or
even �nding the location of the information in the �rst place, it does not address
e�ciency issues. If there are a large number of servers employed in the system
(as there undoubtedly would be if it were a system in world-wide use) then
the mechanism described for randomly polling servers until the information is
found becomes highly ine�cient. In addition, the mechanism for expanding the
network of servers involved in the system, while maintaining the strict levels of
security, are not speci�ed, and may prove problematic.

13

Chapter 4

Initial Ideas - A redundant

hierarchy

4.1 Description

Initially, the model of a binary search tree was examined as a potential model for
the solution (see [2, chapter 13] for a description of binary search trees). These
provide an e�cient means to store and retrieve information which is referenced
by a key (such as an integer). Basic operations such as storing and retrieving
information require �(lnn) time to complete where n is the number of items
in the tree. Thus binary trees can handle large amounts of data in an e�cient
manner.

It would be relatively simple to have a group of interconnected computers behave
as a binary tree, forwarding requests on to the appropriate nodes until the
information is found, and then returning the results to the user that requested
it. Unfortunately such a system would be extremely susceptible to failure. If
a node high up in the tree were to fail, then all data stored on nodes lower
down would be inaccessible. Further, the owner of the top-most node in the
tree would essentially have control over the entire system as all requests for
information would initially go to it. Because of this problem a method was
considered whereby rather than each node in the hierarchy being an individual
computer, each node would be a group of computers which would share the
responsibilities of that node (see �gure 4.1). Nodes in the network which had
more responsibility would consist of more computers, so that the responsibility
of each individual computer was limited.

4.2 Discussion

The redundant hierarchy solution to the problem raised many questions about
how the system would operate. Among them were:

� How would new computers be added to the system in a fair manner?

14

Figure 4.1: A �Redundant Hierarchy�

� How would the computers be organised within each node in a distributed
manner?

� How would the system adapt to changing demands on information?

� How would the system deal with the merging of two networks into one?

It was decided that rather than attempting to answer these questions, the abun-
dance of issues raised suggested that an alternative approach was required.

15

Chapter 5

An adaptive network

5.1 General Description

Navigation in prehistoric society was used as inspiration for the location of infor-
mation in an adaptive network. In such a society, there is no central government,
and no maps, yet is was possible for people to navigate long distances even with-
out these guidelines by relying on the advice of those they encountered. It was
reasonable to assume that while people would have detailed information on how
to reach locations close to them, say, they would have less detailed information
about locations further away, and only vague details of distant locations such
as the general direction to travel and a very approximate distance. By starting
at a location, asking advice about where another place is, and following that
advice, you are likely to �nd yourself somewhere closer to your destination. You
can then obtain more detailed advice, and eventually you will arrive at your
destination.

It is this principle that is exploited in an adaptive network, however rather than
�nding a location by getting closer and closer to it geographically, we get closer
and closer to a piece of information1. In an adaptive network each computer
or node that participates in the network stores some information locally, but
also contains information about other nodes in the network. If a node receives
a request for a piece of information that it does not have locally, it will forward
the request to whichever node is most likely to have the information according
to its information. When the information is found, it is passed back through
the nodes that originally forward on the message, and each is updated with the
knowledge of where the information was stored. In addition, the information
that has been retrieved will also be cached on the node locally for a short time
so that future requests for it may be answered immediately without forwarding
on the request. Nodes are more likely to receive requests for information that
is similar to the information they possess - just as people who live near a given
location are more likely to be asked directions to it than people who live further
away. Because of this, and the fact that nodes are updated with information

1For a more detailed discussion of what it means for two keys to be �close� see section
5.2.2.

16

about the location of information when they forward on requests, nodes that
are (or contain information that is) close to other nodes are more likely to
contain information about what they store. This means that a request for a
piece of information will get closer and closer to the information sought, just
as the prehistoric traveler will get closer to, and eventually reach their eventual
destination.

The local caching of information on nodes also has a variety of e�ects. Firstly,
if there is high demand for a piece of information among a certain group of
nodes, then that information is likely to be cached on one or more nodes at or
near that location. As this information is locally cached few of the requests will
reach the original source of the information, and consequently this information
may be removed from that node due to lack of requests (see section 5.2.1 for
a discussion of information removal from the system). By this mechanism,
information can move to a part of the network where it is in demand. So, for
example, a piece of information, originally on a node in America, but popular in
Japan, will eventually move to Japan reducing the need for cross-Paci�c Internet
tra�c. The second e�ect of local caching is that a piece of information that
suddenly becomes extremely popular will be duplicated over surrounding nodes.
This duplication will continue until requests for that information are su�ciently
dispersed that were there to be any further dispersion, the information would
start being removed from nodes (in which case the concentration of requests
would increase once more).

5.2 Considerations

5.2.1 Criteria for information removal

It is essential that there is some method by which information may be removed
or �culled� from the network to prevent all available space on the network from
being �lled with potentially useless information. The criteria for information
removal must be selected with caution to avoid the possibility that whatever
mechanism is used can be employed as a form of censorship, it must also follow
the principles of simplicity and decentralisation that we hope to embody in the
system as a whole. As such, each node must make an individual decision as to
what information should be removed.

The information removal criteria that has been decided upon is one of informa-
tion popularity. If it becomes necessary to delete a piece of information on a
node then the least-recently-accessed piece of information is deleted. This has
the following advantages:

� This is a simple transparent procedure that can be implemented easily
(see section 5.3.6)

� Information that nobody is interested in will be removed from the sys-
tem, preventing seldom-accessed information from taking up space on the
system in place of information of interest to a wider audience

17

� When combined with the �caching� e�ect of the adaptive network, it al-
lows for information to move to parts of the Adaptive Network where
it is accessed more frequently, eventually being deleted from its original
location

The fact that the network judges the �worth� of information purely in terms
of how many requests there are for it does raise some interesting questions.
Using the World Wide Web as an example, one of the most popular types
of information downloaded from the web is pornography. By the mechanism
employed by this system, this material would be considered more valuable than,
for example, an academic paper. While this may initially seem a disadvantage,
it does mean that the systems priorities will re�ect the interests of the users of
the system as a whole.

It may seem here that information of minority interest risks being swamped
by information of greater public interest, however this is not the case. Con-
sider a situation where a small organisation (such as a university department)
has placed information into the system which is primarily of interest to people
within the department. Given that this information will not be requested very
frequently relative to information of interest to the wider public, it might be
imagined that it would be removed from the system, however this is not the case.
While there are few requests for the information, they would all originate from a
small number of nodes, and thus the information will be of greater importance
to those nodes. The result is that the information is likely to be cached on
nodes within the department where it will remain available to those who wish
to view it. An issue does however remain, that information of interest only to a
geographically dispersed minority may be dropped from the system. It should
be remembered that the system is designed to serve the needs of the public as
a whole, and as in any such system, the interests of very small minorities must
take second place. It should also be noted that due to the speed at which storage
capacity is increasing (by some estimates, it is more than doubling every year)
the total information output of humanity is not growing at this rate in the long
term, and thus it is possible that information removal from the system will be
an infrequent event that e�ects only data that is virtually never accessed.

5.2.2 The nature of keys

The system requires a mechanism by which given a key, either the corresponding
data, or the address of another node which may contain the data, can be found.
To achieve this we must place some limitations on the nature of the keys we
use. The �rst obvious property is that we can decide whether two keys are
equal, in the case of strings, integers, and virtually any conceivable key that me
might choose, this will be the case. The second property is that we must be
able to establish a notion of �closeness� for keys. These two requirements are
summarised by the functions:

Returns True if and only if a is closer to c than b:

boolean compare(Key a, Key b, Key c)

18

Simple equality test, returns true if a is equal to b:

boolean equals(Key a, Key b)

Unlike equality, the notion of closeness is not easily de�ned. To illustrate this,
let us imagine that we have 4 keys, call them A, B, C, and D. We should be
able to say �A is closer to B than D is�. But what exactly do we mean by this
3-way relationship �is closer to�? There is a wide variety of ways in which the
'closeness' of two keys to each other can be decided. If we are dealing with, say,
64 bit integers, A, B, and C, where Xval is the integer value of a key X, we
could use the test Aval � Cval < Bval � Cval.

However, we could chose to split each key into 2 32 bit integers - so that each
key has two integer �elds, xval and yval - and treat each as a coordinate in
Cartesian space. We would then use the test:
p
(Axval � Cxval)2 + (Ayval � Cyval)2 <

p
(Bxval � Cxval)2 + (Byval � Cyval)2

Of course, we need not stop here, we could treat each key as 3, 4, or more
integers, and measure distance between them in the appropriate dimensional
space. Yet we need not limit ourselves to keys in Cartesian space, we could treat
them as polar coordinates, or something completely non-geometrical. Instead of
using integer keys, we could use strings, or even binary trees. So what common
thread runs through all of these to de�ne what closeness is?

For our purposes we can de�ne closeness in terms of the following two axioms2:

� �If A is closer to B than D is, and E is closer to B than A is, then E is
closer to B than D is� and

� �If A equals B and D does not equal B, then A is closer to B than D is�

The �rst axiom is similar to the concept of �transitivity�, however rather than
it being a relation between two objects, it is a relation between three. The �rst
axiom is nescessary so that given a list of keys, we can identify which is the
closest to another �target� key without comparing every pair of keys (which, for
a list of keys of length n would require n2 time). Rather, we can pass through
the list once maintaining a �best so far� value, so that if a key is compared
to this �best� value, and found to be closer to our target key, then it can be
assumed that it is closer to the target key than any node previously compared to
it, it would then become the new �best� key for subsequent comparisons. This
requires only n time to �nd the closest key. The second axiom is required to link
the concept of closeness to the concept of equality (otherwise there would be no
destinction between �closeness�, and its opposite - �far-away-ness� as de�ned by
the �rst axiom).

5.3 Architecture

An Adaptive Network has the following properties:

2The use of the term �axiom� in this context is drawn from the �Extended ML� language
which, in addition to specifying the inputs and outputs to functions, allows the relationship
between them to be expressed in mathematical terms.

19

� Each node in the network is identical in terms of authority and capability

� Each node need not use identical algorithms provided that they behave in
the speci�ed manner on receiving each type of message

� The system robustly handles incorrect or lost messages

� Information will be duplicated and moved around the network to optimise
information retrieval

This design in split into two parts. Firstly there is the speci�cation of the 4
di�erent message types, what each means, and what behaviour will be expected
of nodes on receiving each particular message. Secondly, there is the algorithms
used to achieve this behaviour within each node. Variations in the algorithms
used, and even the details of their operation, are possible, without changes to
the message types. This means that di�erent nodes in the network may have
slightly di�erent behaviours (possibly due to user preferences), but through
conformance to a common, �exibly speci�ed, message interface, they may all
cooperate.

5.3.1 Message types

Any computer on the Internet may send a message to any other computer on
the Internet3 provided that they know the IP address of that computer. In an
Adaptive Network, there are four types of message that can be sent between
nodes in the network:

� Data Request

� Data Reply

� Request Failed

� Data Insert

Each message has an ID which should be unique to each operation (such as a
data request, or a data insertion) and a �time to live� (T.T.L) which indicates
how many times the message should be passed on. This value is decremented
every time a node passes on a message. If a node receives a message with a
T.T.L of 0 then it should generate a Request Failed message and return this to
the sender of the message (obviously this message should not inherit the T.T.L
of the message that initiated it!). In addition each message records who sent
the message (but not who initiated the request), and who the recipient is. At
this point the di�erence between the initiator of a request, and the sender of
a message should be made clear. A node that initiates a request decides what
the ID of the message and initial T.T.L should be. It then sends the request
to another node, and thus they are the �rst sender, however if the recipient of

3An exception to this is if a computer is behind a ��rewall�, a security measure sometimes
employed to protect a network from malicious tampering from elsewhere on the Internet.
Firewalls must be con�gured to allow particular types of message through.

20

DataRequestMessage

Search Key: Key

Message

Id: Integer
Source: Node Address
Dest: Node Address
TTL: Integer

DataReplyMessage

Data: Object

RequestFailedMessage

Location: Node Address
Reason: String

DataInsertMessage

InsertKey: Key
Data: Object

Figure 5.1: Field inheritance of di�erent message types

that message forwards it to another node then they become the sender. The
identity of the initiator of a request is not contained in a message. Even in the
case of the �rst message there is no way to know that that computer that sent
the request was not merely forwarding it from another source. This allows the
initiator of a request to remain anonymous.

Figure 5.1 shows the various �elds transmitted within each message type. As
can be seen, the generic Message contains ID, TTL, source and destination
�elds, and these are inherited by all message types (but are not shown in the
�gure).

5.3.2 Data Request

The �rst message type is a request for the data corresponding to a particular
key. If the node receiving the message has the requested data, then it should
create a Data Reply message containing the desired data (this message should
inherit the ID and T.T.L of the Data Request message). If the node does not
have the data then it should forward the Data Request on to another node
which is more likely to possess the data. A node should also store the ID of
this data request and several other details for the purposes of handling received
Data Reply and Request Failed messages. If a Data Request is received with an
ID that has been seen before, then a �backtracking�4 Request Failed message
should be returned to the sender of the message.

5.3.3 Data Reply

A Data Reply message is a response to a Data Request which returns the re-
quested data to the node that initiated the request. A node should only receive
a Data Reply corresponding to a Data Request that they have forwarded pre-
viously, any other Data Reply messages are ignored. The Data Reply should
be forwarded to the node that the original Data Request was received from
(thus the Data Reply will eventually return to the node that initiated the data

4See section 5.3.4.

21

= Data Request

= Data Reply

= Request Failed

start

data

2
3

5

8

9

10

4

1

11

12

6 7

This request failed

because a node will

refuse a Data Request

that it has already

seen

a b

c

d

e

f

Figure 5.2: Messages sent once node a receives a request for information stored
on node d

request). The node should retain a local copy of the data which has been for-
warded so that future requests for that data may be answered immediately.
Additionally, the node should periodically store a reference to the node that the
DataReply is forwarded to.

5.3.4 Request Failed

A Request Failed message should only be received by a node that has forwarded
on a corresponding Data Request message. Broadly there are two types of
Request Failed messages, those that should �backtrack� and those that don't. A
Request Failed message generated as a result of a message timing out it should
simply be forwarded to the node that sent the original Data Request to this
node. If a backtracking Request Failed message is received then a Data Request
message should be sent to the �next best� node (this message should inherit the
ID and T.T.L of the Request Failed message). If all nodes have been explored
in this way then a Request Failed message should be sent back to the node
that sent the Data Request. Generally, all Request Failed messages other than
a time-out will be backtracking requests. A request failed message will also
contain a description of the reason for the failure.

5.3.5 Data Insert

A Data Insert message is used to add some data to the network. On receiving
a Data Insert message, a node should store the key and data contained in the
message, and forward the message on to whichever other node is most likely to
have similar keys to the one in the Data Insert message. Data Insert messages
will not travel inde�nitely through the network as their time to live counters will
eventually reach 0, upon which a Request Failed5 message indicating a timeout
will be returned to the initiating node. The initial T.T.L of a Data Insert
message should be low, if a node is asked to pass on a Data Insert message
with a high T.T.L it can simply reduce the T.T.L to a more reasonable level

5Of course, in this case the Request Failed message does not actually indicate a failure, it
is inevitable that a Data Insert message will result in a timeout.

22

before forwarding the message. This allows the prevention of exploitation of
the system. If a node receives a Data Insert message that it has seen before,
it should send a non-backtracking Request Failed message to the sender, this
prevents Data Insert messages getting into pointless loops6.

5.3.6 Node Architecture

In the descriptions given in section 5.3.1 the tasks that should be carried out
by each node on receiving a particular message were described in general terms,
in this section these tasks are described in more detail, along with how they
may be achieved. Section ?? will describe a reference implementation of the
architecture described here.

The �rst issue is how the keys, and their corresponding data and/or references
to other nodes are stored. As new data is constantly being added to the system,
a stack mechanism is employed that allows data that is not frequently accessed
to be removed from the system. New key/data pairs are added at the top of the
stack, and old data is removed from the bottom. The stack is divided into two
sections. The upper section stores keys, a reference to the node from where the
key/data originated, and the data itself. In the lower section only the keys and
the references are retained. As items move down the stack they move from the
�rst section into the second section, and the data stored with them is deleted
(see �gure 5.3). Note that in both cases where we might add data to the stack,
we will have a key, a reference, and data to add. The �rst case is where we are
forwarding a Data Reply message, in which case we push the key, it's associated
data, and a reference to the node where the data originated, onto the stack.
The second case is where we receive a Data Insert message. Here we push the
key and data onto the top of the stack, and give the source of the message as
the reference7.

A second consideration is how the system is to handle incoming messages re-
sulting from a Data Request, or Data Insert that we have previously forwarded.
The method chosen is to employ a callback system, where, on receiving a Data
Request or Data Insert message, a 'callback' object is placed in a stack along
with the ID of the message. When a message is received this stack is checked
for any callback objects corresponding the ID of the received message, and if so
the message is handled by that callback object, rather than the default message
handling code. It is possible that a message that we forwarded will get lost,
and not be returned. The system should not allow such callbacks to persist
inde�nitely, and thus a �culling� system is employed, not unlike that described
in the previous paragraph. The maximum number of callback permitted can be
speci�ed, and if that number is exceeded then the oldest callbacks are removed
from the system.

6It should be noted that there is room for improvment in the behaviour of nodes on
receiving Data Insert messages, see section 9.1 for further details.

7It may be desirable to use the node that the message is forwarded to as the reference
instead. This decision could be made on a node by node basis. See section 9.1 for further
details.

23

Key Ref Data

abba 152 asjdv
abcb 153 sdfg
abda 524 asdfg
adef 125 5aasd
alof 143 jdfgh
anad 852 dfjbh
apal 573 dfasd
qual 432 asdrg
datl 981 fiesa
pall 345 fkdnv

anon 342
abon 347
acon 542
aton 543
amao 523
anon 434
aron 584
aram 376
srsa 543
nota 543

New Data

Data
Deleted

Key and
Ref deleted

Figure 5.3: Data storage stack within a node

24

Chapter 6

A simulation

6.1 Design Aims

In the design of the full simulation I hoped to achieve the following:

� Reusable code
Code in the simulation should be easily transferred into a full working
prototype of the network.

� Modular
The design should allow easy migration between di�erent network types
and con�gurations, for example the type of keys and the methods by which
they are compared should be easily changed. Java's object orientated
nature helps to achieve this aim.

� Self documenting
The self documenting features of Java should be fully exploited to aid in
any e�ort to extend the simulation.

� Supports multiple experiments
The simulation should support a wide variety of possible experiments, and
be as �exible as possible in terms of data-measurement.

6.2 Simulation Design

The modules that make up the simulation software are divided into three pack-
ages, Freenet.FullSim, Freenet.FullSim.sim, and Freenet.FullSim.util.
See �gure 6.1 for a diagram of class dependencies between the Freenet.FullSim
and Freenet.FullSim.sim packages.

6.2.1 Freenet.FullSim

The classes de�ned in this package are all su�ciently generic to be used, un-
changed, in a �nal prototype of an Adaptive Network.

25

6.2.1.1 NetworkInterface

This interface handles interaction between a Node and other nodes in the adap-
tive network. It de�nes a method sendMsg which allows a node to transmit a
Message to another node in the adaptive network.

6.2.1.2 Key

This abstract class represents a Key that may be used to locate information.

6.2.1.3 Message

This class represents a Message that can be sent from one node to another via a
NetworkInterface. Speci�c message types such as DataRequestMessage and
RequestFailedMessage are subclasses of this class.

6.2.1.4 Node

This class represents an individual node in the network. Nodes handle messages
passed to them by a NetworkInterface, and send messages back via that inter-
face. Each Node has a DataStore in which it stores keys, data, and references
to other nodes. Each node remembers what messages it has forwarded so that
it can handle them appropriately if it sees a message with the same ID again.

6.2.1.5 AddressInterface

This interface is the location of a node on a network, for example an IP address.
Using a subclass of AddressInterface a message can be sent to any node on the
network. Each node has one AddressInterface associated with it.

6.2.1.6 DataStore

A DataStore object handles the storage of keys, data, and references to other
nodes. It handles addition of new keys, and automatically handles deletion of
data and references (see �gure 5.3). Figure 6.2 is a diagram of how objects
interact within the simulation.

6.2.2 Freenet.FullSim.sim

This package contains classes that are speci�c to simulating an Adaptive Net-
work.

26

Node Message Key

DataRequestMessage DataReplyMessage

DataInsertMessage RequestFailedMessage

Address

Freenet.FullSim

Freenet.FullSim.sim

SimNetwork SimAddressIntKey

NetworkInterface

= Depends on...

= Subclass of...

Figure 6.1: Dependencies Between Classes in Freenet.FullSim and
Freenet.FullSim.sim packages

6.2.2.1 SimNetwork

The SimNetwork class implements a NetworkInterface (see section 6.2.1.1). A
SimNetwork contains several nodes and handles message passing between those
nodes. It also allows a user to send messages to any of the nodes, and has
facilities for monitoring the behaviour of the simulated Adaptive Network. It
works by having an internal FIFO queue of messages, new messages that are
sent by nodes are added to the bottom of this queue, and messages are taken
from the top of the queue to be sent to nodes. This means that initially several
requests could be placed into the network, and then these requests would be
carried out in parallel.

6.2.2.2 SimAddress

The SimAddress class extends the Address class (see section 6.2.1.5). A SimAd-
dress is the location of a node within a SimNetwork.

6.2.2.3 IntKey and StringKey

These are subclasses of the Key abstract class which allow the use of integers
and strings respectively as keys within an Adaptive Network.

27

Message

SimNetwork

NetworkInterface

Address

Node

Address

NodeAddress Node

DataStore DataStore DataStore

Figure 6.2: Interaction of objects within simulated Adaptive Network

6.2.2.4 Freenet.FullSim.util

This package contains general utility classes.

6.2.2.5 BinaryTree

A binary tree that can be used to rapidly store and retrieve integer-indexed
information.

6.2.2.6 LimitedBinaryTree

This class implements a binary tree with limited size. If data is inserted into
the tree when it is full, then the oldest data will be deleted. It is used to store
callbacks for messages by Node.

6.2.2.7 Fifo

This is a standard First-In-First-Out queue (used to store pending messages by
SimNetwork)

6.3 Extending Code for use in Prototype of Adap-
tive Network

6.3.1 Class re-implementation

The various classes that constitute the simulation have been written to allow a
signi�cant amount of code reuse. All simulation speci�c classes have been placed
in the Freenet.FullSim.sim package, where as classes in the Freenet.FullSim and
Freenet.FullSim.util packages are also usable in an actual implementation of an
Adaptive Network client.

28

Network

Node

Address

Network

Node

Address

Internet

Figure 6.3: Architecture of Adaptive Network prototype

To create a prototype would require re-implementation of the NetworkInterface,
and Address classes. In the simulation the NetworkInterface was the medium
through which all nodes communicated, in a working prototype it would merely
serve as an interface to the Internet for a single node, handling message transmis-
sion and reception. An Address class must also be created which can represent
the address of another node on the Internet. This could consist of a 4 byte IP
address, along with a 1 word port number indicating which TCP port the client
software is listening to1. Such a network interface could be extended to cope
with future versions of IP (which have much longer IP addresses).

6.3.2 Communication mechanism

Creation of a prototype would require determination of how messages are trans-
mitted from one client to another. In the previous paragraph use of TCP port
numbers is mentioned, implying that the stream-based Transpost Control Pro-
tocol would be used to transmit messages between nodes. The alternative is
using the unreliable, but fast, packet orientated Uniform Datagram Protocol or
UDP. Usage of this protocol would require the incorporation of error handling
facilities into the client. Usage of the TCP stream based protocol also allows
concurrant forwarding of long messages. Rather than a node waiting until a
DataReplyMessage and the potentially lengthly data it carries being transferred
completely to a node prior to it being forwarded, a node could �feed� the in-
coming DataReplyMessage into an outgoing message as it arrives. Through this
method, the eventual node receiving a DataReplyMessage could begin to receive
it before the node on which the data was found has �nished transmitting the
message, this would lead to signi�cant improvment in e�ciency.

1This would allow multiple clients to operate on an individual computer, and also a�ords
more �exibility to the user who may be limited as to what TCP ports they have access to.

29

6.3.3 Interfacing to the Adaptive Network

It is essential that a convenient method of retrieving data from the Adaptive
Network is available if it is to become widely adopted (as would be required
for such a system to be useful). One such possibility is to incorporate a HTTP
�conduit� into the client. This would allow a standard web-browser to be used
to retrieve information. For example, if the HTTP conduit was set to listen
to port 8080 retrieving the URL http://localhost:8080/key=abcdefg from
the computer on which the conduit was running2 would cause the data with key
�abcdefg� to be retrieved from the Adaptive Network. Such a mechanism would
even allow information stored on the World Wide Web to refer to information
stored in an Adaptive Network, allowing the two information publication mecha-
nisms to be seemlessly integrated. One potential danger with this facility is that
such a system may encourage the creation of HTTP �portals� into the Adaptive
Network, these would then become high-risk points of potential failure, under-
mining the purpose of the Adaptive Network. This could be discouraged by
making these HTTP conduits refuse connections from any other IP address but
their own.

2By convention, �localhost� on a Unix computer refers to the IP address of the computer
itself

30

Chapter 7

Experiments

7.1 Changes in network size

7.1.1 Scenario

A network was constructed where integer keys were initially assigned to nodes
(each of which was numbered) in ascending order. 10 items of data were assigned
to each node, such that node 0 contained data items 0-9, node 1 contained data
items 10-19, and so on. In addition, each node is given a reference to the
lowest key stored by the node at either side, so for example, node 4 would be
given a reference for key 30 to node 3, and key 50 on node 5. The intention
is to examine the networks performance once it has adapted, to accelerate this
process the network is arranged to ensure that even initially requests will reach
destination nodes in a reasonable amount of time. The data associated with
each key was an integer equal to the key value squared (although the key-data
mapping would have no bearing upon the experiments), see �gure 7.1. Each
node could store up to 40 data items, and 10 references to other nodes1.

1While this is a very low amount of information that can be stored by each node, limitations
on the processing speed and memory of the available hardware imposed these restrictions.
These resultsshould be considered a lower-bound as to network performance.

Node 1

 10: 100
 11: 121
 ...
 19: 361

 0: ->
 20: ->

Node 2

 20: 400
 21: 441
 ...
 29: 841

 10: ->
 30: ->

Node 3

 30: 900
 31: 961
 ...
 39:1521

 20: ->
 40: ->

Figure 7.1: Initial network con�guration for changes in network size experiments

31

7.1.2 Information retrieval reliability

Preliminary investigations revealed that if a network was created with data
distributed over the nodes in the network, and where each node had minimal
knowledge of surrounding nodes, initially most requests did not succeed due to a
request timeout. However, as the network adapted the number of requests which
succeeded rapidly approached 100%. These experiments are designed to evaluate
the e�ects of di�erent network sizes on an adaptive network's performance.

7.1.2.1 Aims

To determine how network size in�uences a networks ability to improve the
percentage of successful retrievals.

7.1.2.2 Method

Several networks were constructed as described in section 7.1.1 of various sizes.
Queries for random keys were sent to random nodes in the network. Every 50
queries the percentage of these queries that successfully returned the data was
sampled, each batch of these 50 queries was executed in parallel2. A total of 20
such samples were taken.

7.1.2.3 Results

The percentage of successful requests are graphed against the total number of
requests since the network was initialised. The results for several di�erent sizes
of network are shown (the key for the di�erent network sizes are at the top right
of the graph).

2See section 6.2.2.1

32

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400

R
eq

ue
st

s

Queries

500
600
700
800
900

7.1.2.4 Observations

In the case of all network sizes tested performance rapidly improved until over
95% of requests were successful. Unfortunately due to hardware limitations
nodes of comparable storage capacity to those which would be available in an
actual implementation of an Adaptive Network could not be simulated, how-
ever even these extremely limited simulated nodes retrieved information with
reasonable reliability, and this serves as a lower-bound for the performance of
an actual Adaptive Network deployed in a real world setting.

7.1.3 Information retrieval time

7.1.3.1 Aims

To determine whether the number of requests required to retrieve information
decreases as the network adapts to a random distribution of requests.

7.1.3.2 Method

Several networks were constructed as described in section 7.1.1 of various sizes.
Queries for random keys were sent to random nodes in the network. Every 50
queries the number of messages transmitted (a value that would approximate
the time required to retrieve a piece of information) was sampled, each batch
of these 50 queries was executed in parallel. A total of 20 such samples were
taken.

33

7.1.3.3 Results

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400

R
eq

ue
st

s

Queries

500
600
700
800
900

7.1.3.4 Observations

This experiment demonstrates that as the network adapts its ability to retrieve
information improves. One interesting feature of this graph is that once the
network has stablised (after about 800 queries) information in retrieved within
approximately 10 requests regardless of the size of network. This suggests that
the number of requests required to retrieve information from a network grows
very slowly in proportion to the size of the network, meaning that the system
scales extremely well.

7.2 Realistic Scenario Experiments

The experiments described in this section are designed to model the behaviour of
an adaptive network in a realistic usage scenario. Initially the network consists
of one node, but its size is increased gradually to simulate the natural growth
of an adaptive network as new computers are added. After each new node
is added new information is added to the network using DataStoreMessages
which are sent to random nodes in the network. This information is added
in ascending order. A set of requests are then sent to random nodes in the
network. To simulate the fact that more recent information placed in a network
is more likely to be popular, only the most recent 25% of data to be added to
the network will be requested (ie. if the most recent key to be inserted was 400
then only keys 300 to 400 are liable to be requested).

34

7.2.1 Data Movement during Network Growth

7.2.1.1 Aims

This experiment is designed to show how information is stored within the net-
work, and how rapidly the network removes information that is no-longer re-
quested.

7.2.1.2 Method

The network was started with one node, and the size was increased as described
in section 7.2 up to a size of �fty nodes. After each node was added to the
network, 10 items of data were inserted at random nodes, then 50 requests were
sent to random nodes in the network (for recently added data - see 7.2).

7.2.1.3 Results

After 10 nodes were added the nodes in the network were scanned to count the
number of times the data for each key was stored. This is graphed here for the
various sizes of network.

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400

F
re

qu
en

cy

Data

10 Nodes
20 Nodes
30 Nodes
40 Nodes

35

Chapter 8

Conclusion

The original aims of the project have been achieved. The Adaptive Network has
no element of centralised control or administration. Through merely de�ning
a minimal protocol for communication between nodes, along with reccomenda-
tions as to the behaviour of nodes on receiving particular messages, the individ-
ual user is free to implement the speci�cs of how their computer participates in
the Adaptive Network. I have created a simple implementation of a node form-
ing part of an Adaptive Network, and demonstrated through experimentation
that even this simple implementation is capable of performing reasonably well,
and that the assumptions upon which the Adaptive Network depends are valid.
It is important to note that due to the wide scope of this project there remains
many areas to investigate, and there is much potential for improvment in the
operation of individual nodes in the network.

36

Chapter 9

Areas for further investigation

9.1 Improvements to data insertion

The example implementation handles DataStoreMessages in a simplistic man-
ner, to which many improvements may be made. Firstly, backtracking could be
introduced as this would more closely mirror the behaviour of DataRequestMes-
sages as they search for information. Further, rather than depositing a copy of
the data at every node, the DataStoreMessage could search the network before
selecting a single node where the data could be stored.

9.2 Use of encryption to enhance security

Through use of an encryption system the security of this system could be fur-
ther improved. For example, rather than using descriptive strings as keys to
information, some form of trap-door function which would allow the conversion
of a descriptive string into a key. This would make it more di�cult to determine
what kind of information is being retrieved by various nodes.

9.3 Use of digital signatures to allow updating of
information

One shortcoming of the system described at the moment is that there is no
option to update information in the network, other than by waiting for it to be
removed from the network (which may never happen if it is popular) and re-
inserting an updated version. One possibility for allowing information updates
is to create a public/private key pair when a message is created and include
the public key with the message. Any updates may then be �signed� using the
private key, and sent using some form of backtracking search method to the
cluster of nodes that store the information. Each node may individually use
their public keys to verify that the update is valid before changing their data.

37

Unfortunately, there is no guarantee that all copies of the data can be updated
in this way, however through intelligent design of the update message it should
be possible to achieve reasonable performance.

9.4 Generalisation of Adaptive Network for data
processing

A longer term, and more ambitious goal would be to determine whether a dis-
tributed, decentralised, data processing system could be constructed using the
information-distribution Adaptive Network as a starting point. Such a develop-
ment would allow the creation of a complete distributed decentralised computer

38

Chapter 10

Future Developments

It is the author's intention to create a fully operational Adaptive Network using
the simulation described in this documentation as a starting-point. The client
will be written in the Java programming language, and will be developed in an
open manner with the cooperation of interested parties on the Internet. It will
be released under the GNU Public Licence1.

1GNU stands for Gnu's Not Unix. The GNU Public Licence, when applied to source code,
is designed to make it as useful as possible to the public by ensuring that the source code will
always be freely available, and can be modi�ed by any person for whatever purpose, provided
that the resulting program is also placed under the GNU public licence.

39

Chapter 11

Acknowledgements

� Dr. Chris Mellish - Supervisor, for his help and guidance during the course
of this project.

� Various sta� and students in the Division of Informatics for their con-
structive criticism that allowed me to clarify many of my early ideas

� Numerous people from all over the world for their enouragement and com-
ments on hearing of this project, many of whom have undertaken to assist
me in realising an actual working Adaptive Network on the Internet.

40

Appendix A

Glossary of Java terms

� Class

A Class is a template for an object, in a similar manner to how, in C, a 'int'
type is a template for an integer variable.

� Superclass and Subclass

A subclass is a class which embodies the properties of the �superclass�, but adds
more speci�c proerties of its own. Fruit might be a subclass of Food, and Apple
might be a subclass of Fruit. Food is then a superclass of Fruit, and Fruit is a
superclass of Apple.

� Abstract Class and Interface

Interfaces and Abstract classes may not exist in their own right, but may act as
superclasses for other classes. For example, a Fruit cannot exist without being
an Apple, an Orange, etc etc. We cannot simply have a �fruit�, and thus it can
be considered an Interface or Abstract Class.

41

Appendix B

Java Documentation

Java has facilities for automatically generating API documentation for source
code. The API documentation for the simulation used for experimentation in
this report may be found in HTML format on the world wide web at :

http://www.dcs.ed.ac.uk/�iic/4yp/javadocs/packages.html.

42

Bibliography

[1] �How the Usenet News Protocol Worlds�, Jacob Palme-
http://www.dsv.su.se/�jpalme/e-mail-book/usenet-news.html

[2] �Introduction to Algorithms�, Thomas H Cormen, Charles E Leiserson, and
Ronald L Rivest, MIT Press 1990

[3] �The Eternity Service�, Dr Ross Anderson -
http://www.cl.cam.ac.uk/users/rja14/eternity/eternity.html

[4] �The Java Programming Language Second Edition�, Ken Arnold, James
Gosling, Addison-Wesley 1998

43

