
1

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 1

Intro to DCL Programming

David J. Dachtera
djesys@fsi.net

DJE Systems
http://www.djesys.com/

This presentation provides an introduction to
programming in Digital Command Language -
DCL.

DCL includes features allowing for conditional
statements, logical control, file I/O string and
numeric manipulation, and more.

In this presentation we’ll introduce some of the
more basic features of DCL as a programming
language.

2

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 2

Agenda

Basic DCL Concepts
Commands
Verbs

Symbols

IF-THEN
IF-THEN-ENDIF
IF-THEN-ELSE-ENDIF
Labels, GOTO

In this presentation, we’ll go over some DCL
basics: commands, verbs and symbols.

We’ll look at conditional statements and
conditional statement blocks.

We’ll look at logical control and how to pass
control from one section of code to another.

3

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 3

Agenda, Cont’d

GOSUB-RETURN
Common Lexical Functions

F$CVTIME

F$GETDVI

F$GETJPI
F$GETQUI

F$GETSYI

PARAMETERS
Logical Names

Then, we’ll look at some of the more modular
structures, including internal subroutines, using
the GOSUB and RETURN statements.

We’ll look at some functions built into DCL that
allow you to manipulate dates and times, get
information about devices, processes, batch and
print queues and even from the system itself.

We’ll look at passing parameters to DCL
procedures, getting information from logical
names and symbols, ...

4

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 4

Agenda, Cont’d

Batch jobs that reSUBMIT themselves
Daily Jobs
Weekly Jobs
Question & Answer

Finally, we’ll use what we’ve learned to build
batch jobs which resubmit themselves, and
change their behavior based on the day of the
week, month or year.

We’ll also have a question and answer session
to help everyone understand everything they
need to help make their job easier.

5

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 5

DCL - Programming?

DCL as a programming language?

Never thought of DCL as a programming
language?

Well, that’s even what Digital once said - but not
any more!

6

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 6

DCL Command Elements

$ verb parameter_1 parameter_2

DCL Commands consist of a verb and
one or more parameters.

To begin understanding DCL, first let’s review a
few basic concepts.

DCL Commands consist of a verb and one or
more parameters or operands.

Some commands can be as simple as:

$ SET VERIFY

or

$ LOGOUT

7

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 7

DCL Verbs

Internal commands
ASSIGN, CALL, DEFINE, GOSUB, GOTO,
IF, RETURN, SET, STOP, others…

External commands
APPEND, BACKUP, COPY, DELETE,
PRINT, RENAME, SET, SUBMIT, others...

Commands in DCL are either internal to DCL or
are executed by programs which are external to
DCL.

Here we see some examples of both internal
and external commands.

Notice that SET, STOP and other commands
can be either internal or external depending
upon the keyword after the verb.

8

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 8

DCL Verbs, Cont’d

“Foreign” Commands
$ symbol = value

Examples:
$ DIR :== DIRECTORY/SIZE=ALL/DATE

$ ZIP :== $ZIP/VMS

Commands can be added or customized using
symbols or “foreign commands”.

In the slide, the DIR symbol redefines the
behavior of the DIRECTORY command, while
the ZIP symbol provides a means to invoke the
ZIP program in such a manner that it can accept
parameters and qualifiers from the command
line.

9

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 9

Command Qualifiers
$ command/qualifier

$ command/qualifier=value

$ command/qualifier=(value,value)

$ command/qualifier=keyword=value

$ command/qualifier=-

(keyword=value,keyword=(value,value))

Command qualifiers specify additional
information or alternate behaviors of commands.

Some qualifiers accept a value or a list of
values. When specifying a single value, the
parentheses can be left out.

Some qualifiers accept a keyword or a list of
keywords. Each keyword may accept a value or
a list of values.

10

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 10

Non-positional Qualifiers

Apply to the entire command, no matter
where they appear.

$ command param1/qual param2

Example:
$ COPY A.DAT A.NEW/LOG

$ DELETE/LOG C.TMP;

Some qualifiers have the same effect no matter
where they appear on the command line. These
are called non-positional qualifiers.

The slide shows some examples. The /LOG
qualifier is usually non-positional.

11

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 11

Positional Qualifiers

Apply only to the object they qualify.

$ command param1/qual=value1 -

param2/qual=value2

Examples:
$ PRINT/COPIES=2 RPT1.LIS, RPT2.LIS

$ PRINT RPT1.LIS/COPIES=1,-
RPT2.LIS/COPIES=3

Some qualifiers can appear more than once in a
command. These are called positional qualifiers.
They qualify (or modify) the command element
to which they are immediately adjacent.

An example of this is the /COPIES qualifier of
the PRINT command. When applied to the
PRINT command, it is global to all the files in the
print job. When applied to single file
specifications in a PRINT job, it modifies only
those files which match that file specification.

12

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 12

Common Qualifiers

Many commands support a set of
common qualifiers:

/BACKUP /BEFORE /CREATED
/EXCLUDE /EXPIRED /INCLUDE
/MODIFIED /OUTPUT /PAGE /SINCE

See the on-line HELP for specifics.

The VMS run time library UTIL$SHR provides
support for a set of common qualifiers that have
been made available in many of the more
common commands.

You can find these in the HELP for the
DIRECTORY command, SEARCH, PRINT and
others.

13

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 13

DCL Statement Elements

$ vbl = value

DCL statements are typically
assignments where a variable receives
a value.

Elements of a DCL statement (as opposed to a
command) look very much like other
programming languages.

Here we have an example of an assignment
statement. A variable receives a value. The
value can be a literal expression, the name of
another symbol, the result of a function, the
result of an arithmetic or string operation, etc.

14

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 14

Assignment Statements

$ vbl = F$lexical_function(params)

Examples:
$ FSP = F$SEARCH(“*.TXT”)

$ DFLT = F$ENVIRONMENT (“DEFAULT”)

$ NODE = F$GETSYI(“NODENAME”)

Here we see a variable which receives the value
returned by a built-in (“lexical”) function. The
built-in function is part of the DCL lexicon.

The slide also shows some examples.

15

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 15

Assignment Statements

$ vbl = string_expression

Examples:
$ A = “String 1 “ + “String 2”

$ B = A - “String “ - “String “
$ C = ‘A’

Maximum string length = 255 bytes

Here are some examples of string operations.

The first operation is a string concatenation.

The second operation is string reduction.

The third operation is a symbol substitution.

What’s happening in statement three?

16

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 16

Assignment Statements

$ vbl = numeric_expression

Examples:
$ A = 1
$ B = A +1

$ C = B + A + %X7F25

$ D = %O3776

Here, we see some examples of numeric
assignments.

We have an assignment using a literal and other
assignments using numeric additions.

Note the use of hexadecimal notation in the third
example and octal notation in the fourth.

17

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 17

Assignment Statements

$ vbl[start_bit,bit_count]=numeric_exp

Examples:
$ ESC[0,8]=%X1B
$ CR[0,8]=13

$ LF[0,8]=10

$ FF[0,8]=12
$ CRLF[0,8]=13

$ CRLF[8,8]=10

These are examples of assigning values to bits
within a string. The result is always a string. This
is useful for constructing escape sequences and
binary values.

In the fifth and sixth examples, the result is a two
byte string containing a carriage-return and a
line-feed (in that order).

18

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 18

Assignment Statements

$ vbl = boolean_expression

Examples:
$ MANIA = (“TRUE” .EQS. “FALSE”)
$ TRUE = (1 .EQ. 1)

$ FALSE = (1 .EQ. 0)

$ YES = 1
$ NO = 0

Here we have examples of assignment of a
“truth value” or a boolean value.

The last two examples are ordinary numeric
literal assignments. They illustrate the defaults
for “true” (“yes”) and “false” (“no”).

19

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 19

Assignment Statements

Local Assignment:
$ vbl = value

Global Assignment:
$ vbl == value

Symbols can be either local to the current
procedure level (“depth”) and all levels deeper,
or global to all procedure levels (“depths”).

Local symbols are available to the current
procedure and any that it invokes.

Global symbols are available to the current
procedure and any that it invokes, as well as the
procedure(s) which invoked the current
procedure.

20

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 20

Assignment Statements

Quoted String:
$ vbl = “quoted string”

Case is preserved.

Examples:
$ PROMPT = “Press RETURN to continue “

$ INVRSP = “% Invalid response!”

When a quoted string is assigned to a symbol,
the case and contents of the string are
preserved intact.

21

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 21

Assignment Statements

Unquoted string:
$ vbl := unquoted string

Case is NOT preserved, becomes
uppercase. Leading/trailing spaces are
trimmed off.

Examples:
$ SAY := Write Sys$Output

$ SYSMAN :== $SYSMAN ! Comment

In the case of an unquoted string (uses the
“colon-equal[-equal]” sequence), all text
becomes upper case, and leading and trailing
spaces and TABs are trimmed off. If the
unquoted string contains an embedded quoted
string, the case and content of the quoted
portion of the string will be preserved.

Comment delimiters are observed as usual. The
comment is not considered part of the unquoted
string.

22

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 22

Foreign Commands

$ vbl := $filespec[param[param[…]]]

“filespec” defaults to SYS$SYSTEM:.EXE

Maximum string length is 510 bytes.

A “foreign command” is special case where a
symbol can be interpreted by DCL as verb. The
value of the symbol can include qualifiers and/or
parameters in addition to the file specification of
the executable file.

If necessary, foreign commands can be defined
using quoted strings if, for example, the case of
an argument or embedded spaces within an
argument needs to be preserved.

Using symbol substitution, strings of up to 1024
bytes can be constructed.

23

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 23

Conditional Expressions

$ IF condition THEN statement

Variations:
$ IF condition THEN $ statement
$ IF condition THEN -
$ statement

Conditional expressions provide logical control
based on conditions you specify.

In this form, the IF-THEN structure can be stated
on a single line or it can be continued across two
or more lines.

In either case, the “$” after THEN is optional.

24

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 24

Conditional Expressions

$ IF condition
$ THEN
$ statement(s)
$ ENDIF

Another variation is the IF-THEN[-ELSE]-ENDIF
structure.

This variant allows multiple statements (or no
statements) to be included in the THEN or ELSE
clause.

Although it is not required, it is recommended
that the THEN or ELSE statement appear on a
line by itself.

25

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 25

Conditional Expressions

$ IF condition
$ THEN
$ IF condition
$ THEN
$ statement(s)
$ ENDIF
$ ENDIF

The IF-THEN[-ELSE]-ENDIF structure allows IF-
THEN[-ELSE]-ENDIF structures to be nested.

26

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 26

Conditional Expressions

$ IF condition
$ THEN
$ IF condition
$ THEN
$ statement(s)
$ ENDIF
$ statement(s)
$ ENDIF

Other statements can be included either before
or after a nested IF-THEN[-ELSE]-ENDIF
structure.

27

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 27

Conditional Expressions

$ IF condition
$ THEN
$ statement(s)
$ IF condition
$ THEN
$ statement(s)
$ ENDIF
$ ENDIF

If one or more statements are included before a
nested IF-THEN[-ELSE]-ENDIF structure, it is
recommended that the preceding THEN or
ELSE statement appear on a line by itself. In
some older versions of VMS, this is a
requirement.

For current and future versions of VMS, it is
recommended that this guideline be observed to
prevent your procedures from “breaking” due to
a VMS upgrade, or due to being used on an
older VMS version.

28

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 28

Conditional Expressions

$ IF condition
$ THEN statement(s)
$ IF condition
$ THEN
$ statement(s)
$ ENDIF
$ ENDIF
This may not work in pre-V6 VMS!

Here’s an example of some code that might not
work in some older versions of OpenVMS.

Notice that the THEN clause includes a DCL
statement, instead of being on a line by itself.

29

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 29

Conditional Expressions

$ IF condition
$ THEN
$ statement(s)
$ ELSE
$ statement(s)
$ ENDIF

Here is an example of an IF-THEN-ELSE-ENDIF
block.

As we discussed earlier, the THEN and ELSE
statements are recommended to be on lines by
themselves.

Either the THEN or ELSE portions may contain
nested IFs of any kind.

30

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 30

Labels, GOTO

$ GOTO label_1
.
.
.

$label_1:

The GOTO statement provides for logical control
within your procedures.

Combined with IF, GOTO provides for powerful
logical control within your procedures.

Labels are defined by including the label name
on a line followed immediately by a colon.

Any statement can follow a label on a line;
however, this is recommended only for he
SUBROUTINE statement. Otherwise, place the
label on a line by itself for readability.

31

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 31

GOSUB, RETURN

$ GOSUB label_1
.
.
.

$label_1:
$ statement(s)
$ RETURN

The GOSUB and RETURN statements let you
create internal subroutines.

All symbols local to the current procedure level
are available, as are all global symbols.

Combined with IF, GOSUB and RETURN
provide for powerful logical control within your
procedures.

Labels are defined by including the label name
on a line followed immediately by a colon.

32

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 32

SUBROUTINE - ENDSUB...

$ CALL label_1[param[param[…]]
.
.
.

$label_1: SUBROUTINE
$ statement(s)
$ END SUBROUTINE

Another form of subroutine is enclosed within
the SUBROUTINE and ENDSUBROUTINE
statements. This form of subroutine is similar to
invoking an external procedure.

Use the CALL statement to invoke this form of
internal subroutine. Optionally, parameters to be
passed to the subroutine can be included on the
CALL statement.

We’ll discuss this further in the Intermediate
DCL Programming Session.

33

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 33

Common Lexical Functions
$ vbl = F$CVTIME(string[, keyword[, keyword]])

“string” = Absolute time expression

“keyword” = (1st instance) is one of

“ABSOLUTE”, “COMPARISION”, “DELTA”

“keyword” = (2nd instance) is one of “DATE”,
“DATETIME”, “DAY”, “MONTH”, “YEAR”,
“HOUR”, “MINUTE”, “SECOND”,
“HUNDREDTH”, “WEEKDAY”

The DCL lexicon includes a number of built-in
functions. Let’s look at a few of the more useful
ones…

F$CVTIME() can be used to develop routines to
get and compare elements of the system
date/time.

This can be useful for procedures that need to
change their behavior based on the day, date
and/or time of day.

34

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 34

Common Lexical Functions
F$CVTIME(), Continued…

Defaults:

$ vbl = F$CVTIME(string, -

”COMPARISON”, -
”DATETIME”)

This slide shows the default behavior of
F$CVTIME() if no arguments are provided.

The default value for “string” is the current date
and time.

35

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 35

Common Lexical Functions
F$CVTIME(), Continued…

Date Formats:

Comparison

YYYY-MM-DD HH:MM:SS.CC
Absolute

DD-MMM-YYYY HH:MM:SS.CC

Delta

+/-DDDDD HH:MM:SS.CC

This slide illustrates the date/time formats used
and returned by F$CVTIME().

36

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 36

Common Lexical Functions

$ vbl = F$GETDVI(dev_name, keyword)
“dev_name” is a valid device name
“keyword” is a quoted string

Examples:
$ FBLK = F$GETDVI(“DUA0”,”FREEBLOCKS”)
$ MNTD = F$GETDVI(“DKA500”,”MNT”)

$ DVNM := DUA0:

$ VLNM := VOLNAM
$ VNAM = F$GETDVI(DVNM, VLNM)

The F$GETDVI() function is useful for retrieving
information about system devices and disk/tape
volumes.

The examples show some of the information that
can be returned by F$GETDVI(). Notice that
either literal strings or symbols can be used as
arguments to DCL lexical functions.

37

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 37

Common Lexical Functions

$ vbl = F$QETQUI(-
function,-
item,-
value,-
keyword(s))

See the on-line help for descriptions.

F$GETQUI() is a useful, if rather complex lexical
function.

We won’t go into great detail about it in this
session. Later in this session, we will show how
a batch job can use F$GETQUI() to get
information about itself.

See the on-line HELP and the DCL Dictionary
for further information about F$GETQUI().

38

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 38

Common Lexical Functions

$ VBL = F$GETJPI(pid, keyword)

Examples:
$ USN = F$GETJPI(0, “USERNAME”)
$ MOD = F$GETJPI(0, “MODE”)

F$GETJPI() can be used to get information
about your own process or about any other
process to which you have access. Normal rules
of OpenVMS privilege apply.

For information about the current process,
specify the PID argument as a zero(0) as shown
in the examples, or as a null string.

39

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 39

Common Lexical Functions

$ vbl = F$GETSYI(item[, nodename])

Examples:
$ NODE = F$GETSYI(“NODENAME”)
$ FGP = F$GETSYI(“FREE_GBLPAGES”)

$ FGS = F$GETSYI(“FREE_GBLSECTS”)

F$GETSYI() can be used to retrieve information
about the running system. In some cases, it can
also be used to get information about other
members of an OpenVMS cluster.

40

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 40

Parameters

$ @procedure_name p1 p2 p3 … p8

Notes:
• Only eight(8) parameters are passed from

the command line, P1 through P8
• Parameters with embedded spaces must

be quoted strings.
• Parameters are separated by a space.

This slide shows how to pass parameters when
invoking a DCL procedure either interactively or
within another DCL procedure.

Only eight(8) parameters can be passed from
the command line. These parameters can
contain lists of items. We’ll discuss that further in
the Intermediate DCL Programming session.

41

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 41

Parameters, Cont’d

$ @procedure_name p1 p2 p3 … p8

Notes, Cont’d:
• Reference parameters via the variable

names P1 through P8.
• No built-in “shift” function. If you need it,

write it as a GOSUB.

Within a procedure, you reference parameters
using the symbols names P1 through P8. These
symbols are local to the current procedure level.

There is no built-in “SHIFT” function that can be
used to exhaust the list of parameters, as there
is in UN*X and DOS. If you need this
functionality, write it as a GOSUB.

42

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 42

Logical Names

Created using ASSIGN and DEFINE.
$ ASSIGN DUA0:[MY_DIR] MY_DIR

$ DEFINE MY_DIR DUA0:[MY_DIR]

Deleted using DEASSIGN.
$ DEASSIGN MY_DIR

Logical names are another kind of variable.
These values can be global to a process, a job
(processes owned by a parent process), a UIC
group, all processes on the system, or any
process which has access to the logical name
table in which the logical name is defined.

The ASSIGN and DEFINE statements are
similar, except for the order of their arguments.

The DEASSIGN statement is used to delete
logical names.

43

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 43

Logical Names

Specifying a logical name table:
$ ASSIGN/TABLE=table_name
$ DEFINE/TABLE=table_name

Examples:
$ DEFINE/TABLE=LNM$PROCESS
$ DEFINE/PROCESS
$ DEFINE/TABLE=LNM$JOB
$ DEFINE/JOB
$ DEFINE/TABLE=LNM$GROUP ! These require
$ DEFINE/GROUP ! GRPNAM privile ge.
$ DEFINE/TABLE=LNM$SYSTEM ! These require
$ DEFINE/SYSTEM ! SYSNAM privile ge.

Logical names can be created in any logical
name table to which the process has access.

The examples here show some of the
convenience qualifiers available for certain
logical name tables.

Notice that privileges are required to modify
certain logical name tables.

44

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 44

Logical Names

Specifying a mode:
$ ASSIGN/USER
$ ASSIGN/SUPERVISOR
$ ASSIGN/EXECUTIVE ! Requires CMEXECprivilege
$ DEFINE/USER
$ DEFINE/SUPERVISOR
$ DEFINE/EXECUTIVE ! Requires CMEXECprivilege

There is no /KERNEL qualifier. Kernel mode logicals
must be created by privileged programs (requires
CMKRNL privilege).

Access modes of logical names specify
additional levels of privilege or supercession.

45

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 45

Logical Names

“Rooted” Logicals -
Specifying Translation Attributes
$ DEFINE/TRANSLATION_ATTRIBUTES=-

(CONCEALED)

Note:

 /TRANSLATION_ATTRIBUTES is a
positional qualifier.

Rooted logical names provide a means of
specifying a root level from which additional
paths can be specified.

Positional qualifiers were discussed earlier in
this session.

The next slide show examples of rooted logicals.

46

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 46

Logical Names

“Rooted” Logicals, Cont’d -

Example:
$ DEFINE/TRANS=(CONC) SRC_DIR DKA0:[SRC.]
$ DIRECTORY SRC_DIR:[000000]
$ DIRECTORY SRC_DIR:[MKISOFS]

$ DEFINE SRC_AP SRC_DIR:[AP]
$ DIRECTORY SRC_AP

$ DEFINE SRC_GL SRC_DIR:[GL]
$ DIRECTORY SRC_GL

This slide illustrates how to DEFINE a rooted
logical and how to use rooted logicals to
DEFINE other logical names.

47

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 47

Recurring Batch Jobs

Jobs can reSUBMIT themselves - use
the F$GETQUI lexical function to obtain
the needed information:

$ vbl = F$GETQUI(“DISPLAY_JOB”, -
item,, “THIS JOB”)

Useful items:

QUEUE_NAME, FILE_SPECIFICATION,
AFTER_TIME, others.

Here’s where we start to discuss batch jobs that
can reSUBMIT themselves.

Information that the job may need, such as the
queue name, the job name, the procedure
name, etc. can either be hard-coded or it can be
retrieved using the F$GETQUI() lexical function
by specifying “THIS_JOB” as the fourth
parameter.

See the DCL Dictionary or the on-line HELP for
more items that can be retrieved.

48

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 48

Daily Batch Jobs

Daily Jobs
Get the /AFTER time:
$ AFTER = F$GETQUI(“DISPLAY_JOB”,-
 “AFTER_TIME”,,-
 “THIS_JOB”)

Add one day to it:
$ NEXT = F$CVTIME(“’’AFTER’+1-”,-
 “ABSOLUTE”,)

Here’s an illustration of one method for getting
some of the information needed to allow a batch
job to SUBMIT itself for the next day.

49

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 49

Weekly Batch Jobs

Weekly Jobs
Get the /AFTER time:
$ AFTER = F$GETQUI(“DISPLAY_JOB”,-
 “AFTER_TIME”,,-
 “THIS_JOB”)

Add seven days to it:
$ NEXT = F$CVTIME(“’’AFTER’+7-”,-
 “ABSOLUTE”,)

Here’s an illustration of one method for getting
some of the information needed to allow a batch
job to SUBMIT itself for next week.

50

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 50

Select Tasks by Day

Get the current day name,
look for tasks for that day.

$ TODAY = F$CVTIME(,, “WEEKDAY”)
$ PRC_NAME := [.‘TODAY’]WEEKLY.COM
$ FSP = F$SEARCH(PRC_NAME)
$ IF FSP .NES. “” THEN -
$ @ &FSP

Example Path
[.SUNDAY]WEEKLY.COM

Here’s an illustration of one method for finding
tasks to be performed on a specific day.

Notice that the day name is used as the name of
the subdirectory where the tasks (procedures)
for that day will be found.

The symbol substitution methods used in the
example will be discussed in more detail in the
Intermediate DCL Programming session.

51

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 51

Select Monthly Tasks by Day

Get the current day number,
look for tasks for that day.

$ TODAY = F$CVTIME(,, “DAY”)
$ PRC_NAME := [.‘TODAY’]MONTHLY.COM
$ FSP = F$SEARCH(PRC_NAME)
$ IF FSP .NES. “” THEN -
$ @ &FSP

Example Path
[.01]MONTHLY.COM

Here’s an illustration of one method for finding
tasks to be performed on a specific day of the
month.

In this case, the day number is used as the
name of the subdirectory where the tasks
(procedures) for that day will be found.
Specifically, the tasks for the first day of the
month will be run.

The symbol substitution methods used in the
example will be discussed in more detail in the
Intermediate DCL Programming session.

52

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 52

Select Last Day of the Month

Get the current day number +1, see if it’s
 the first of the month.

$ TOMORROW = F$CVTIME(“+1-”,, “DAY”)
$ IF TOMORROW .EQ. 1 THEN -
$ statement

Here’s an illustration of one method for
determining whether the current day is the last
day of the month.

53

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 53

Select Yearly Tasks by Date
Get the current day and numbers,
look for tasks for that day.

$ TODAY = F$CVTIME(,, “MONTH”) + -
F$CVTIME(,, “DAY”) ! String values!

$ PRC_NAME := [.‘TODAY’]YEARLY.COM
$ FSP = F$SEARCH(PRC_NAME)
$ IF FSP .NES. “” THEN -
$ @ &FSP

Example Paths:
[.0101]YEARLY.COM
[.0731]YEARLY.COM

Here’s an illustration of one method for finding
tasks to be performed annually.

In this case, both the month number and the day
number are used as the name of the
subdirectory where the tasks (procedures) for
that day will be found. Specifically, the tasks for
the first day of the first month and the 31st day
of the seventh month will be run.

The symbol substitution methods used in the
example will be discussed in more detail in the
Intermediate DCL Programming session.

54

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 54

Q / A

Speak now or forever
hold your peas.

Please step to the microphone to ask your
question.

One question per person, please. If you have
another question, please step to the end of the
line and await another turn.

55

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

10/09/1999

DJE Systems ©1999 All Rights Reserved Introduction to DCL Programming

DECUS Symposium - Fall 1999 San Diego Slide 55

Thank You !

Remember to fill out the evaluation forms!

…and stay tuned for
Intermediate DCL Programming!

If evaluation forms are available, please
remember to fill them out and return them to the
presenter.

The Intermediate DCL Programming session will
follow immediately after a short break.

