
The OMNI Thread Abstraction

Tristan Richardson
AT&T Laboratories Cambridge

Revised 13 July 2000

1 Introduction

The OMNI thread abstraction is designed to provide a common set of thread oper-
ations for use in programs written in C++. Programs written using the abstraction
should be much easier to port between different architectures with different underly-
ing threads primitives.

The programming interface is designed to be similar to the C language interface
to POSIX threads (IEEE draft standard 1003.1c - previously 1003.4a, often known as
“pthreads” [POSIX94]).

Much of the abstraction consists of simple C++ object wrappers around pthread
calls. However for some features such as thread-specific data, a better interface can be
offered because of the use of C++.

Some of the more complex features of pthreads are not supported because of the
difficulty of ensuring the same features can be offered on top of other thread systems.
Such features include thread cancellation and complex scheduling control (though
simple thread priorities are supported).

The abstraction layer is currently implemented for the following architectures /
thread systems:

• Solaris 2.x using pthreads draft 10

• Solaris 2.x using solaris threads (but pthreads version is now standard)

• Alpha OSF1 using pthreads draft 4

• Windows NT using NT threads

• Linux 2.x using Linuxthread 0.5 (which is based on pthreads draft 10)

• Linux 2.x using MIT pthreads (which is based on draft 8)

• ATMos using pthreads draft 6

See the omnithread.h header file for full details of the API. The descriptions be-
low assume you have some previous knowledge of threads, mutexes, condition vari-
ables and semaphores. Also refer to other documentation ([Birrell89], [POSIX94]) for
further explanation of these ideas (particularly condition variables, the use of which
may not be particularly intuitive when first encountered).

1



2 3 THREAD OBJECT

2 Synchronisation objects

Synchronisation objects are used to synchronise threads within the same process. There
is no inter-process synchronisation provided. The synchronisation objects provided
are mutexes, condition variables and counting semaphores.

2.1 Mutex

An object of type omni mutex is used for mutual exclusion. It provides two opera-
tions, lock() and unlock() . The alternative names acquire() and release()
can be used if preferred. Behaviour is undefined when a thread attempts to lock the
same mutex again or when a mutex is locked by one thread and unlocked by a differ-
ent thread.

2.2 Condition Variable

A condition variable is represented by an omni condition and is used for signalling
between threads. A call to wait() causes a thread to wait on the condition variable.
A call to signal() wakes up at least one thread if any are waiting. A call to broad-
cast() wakes up all threads waiting on the condition variable.

When constructed, a pointer to an omni mutex must be given. A condition vari-
able wait() has an implicit mutex unlock() and lock() around it. The link be-
tween condition variable and mutex lasts for the lifetime of the condition variable
(unlike pthreads where the link is only for the duration of the wait). The same mutex
may be used with several condition variables.

A wait with a timeout can be achieved by calling timed wait() . This is given an
absolute time to wait until. The routine omni thread::get time() can be used to
turn a relative time into an absolute time. timed wait() returns ETIMEDOUTif the
time expires before the condition variable is signalled.

2.3 Counting semaphores

An omni semaphore is a counting semaphore. When created it is given an initial
unsigned integer value. When wait() is called, the value is decremented if non-
zero. If the value is zero then the thread blocks instead. When post() is called, if
any threads are blocked in wait() , exactly one thread is woken. If no threads were
blocked then the value of the semaphore is incremented.

If a thread calls try wait() , then the thread won’t block if the semaphore’s value
is 0, returning EAGAINinstead.

At present there is no way of querying the value of the semaphore.

3 Thread object

A thread is represented by an omni thread object. There are broadly two different
ways in which it can be used.



3

The first way is simply to create an omni thread object, giving a particular func-
tion which the thread should execute. This is like the POSIX (or any other) C language
interface.

The second method of use is to create a new class which inherits from omni thread .
In this case the thread will execute the run() member function of the new class. One
advantage of this scheme is that thread-specific data can be implemented simply by
having data members of the new class.

When constructed a thread is in the ”new” state and has not actually started. A
call to start() causes the thread to begin executing. A static member function cre-
ate() is provided to construct and start a thread in a single call. A thread exits by
calling exit() or by returning from the thread function.

Threads can be either detached or undetached. Detached threads are threads for
which all state will be lost upon exit. Other threads cannot determine when a detached
thread will disappear, and therefore should not attempt to access the thread object
unless some explicit synchronisation with the detached thread guarantees that it still
exists.

Undetached threads are threads for which storage is not reclaimed until another
thread waits for its termination by calling join() . An exit value can be passed from
an undetached thread to the thread which joins it.

Detached / undetached threads are distinguished on creation by the type of
function they execute. Undetached threads execute a function which has a void*
return type, whereas detached threads execute a function which has a void re-
turn type. Unfortunately C++ member functions are not allowed to be distin-
guished simply by their return type. Thus in the case of a derived class of
omni thread which needs an undetached thread, the member function executed by
the thread is called run undetached() rather than run() , and it is started by calling
start undetached() instead of start() .

The abstraction currently supports three priorities of thread, but no guarantee
is made of how this will affect underlying thread scheduling. The three priorities
are PRIORITY LOW, PRIORITY NORMALand PRIORITY HIGH. By default all threads
run at PRIORITY NORMAL. A different priority can be specified on thread creation, or
while the thread is running using set priority(). A thread’s current priority is
returned by priority() .

Other functions provided are self() which returns the calling thread’s
omni thread object, yield() which requests that other threads be allowed to run,
id() which returns an integer id for the thread for use in debugging, state() ,
sleep() and get time() .

4 Using OMNI threads in your program

Obviously you need to include the omnithread.h header file in your source code,
and link in the omnithread library with your executable. Because there is a single
omnithread.h for all platforms, certain preprocessor defines must be given as com-
piler options. The easiest way to do this is to study the makefiles given in the exam-
ples provided with this distribution. If you are to include OMNI threads in your own
development environment, these are the necessary preprocessor defines:



4 5 THREADED I/O SHUTDOWN FOR UNIX

Platform Preprocessor Defines
Sun Solaris 2.x -D__sunos__ -D__sparc__ -D__OSVERSION__=5 -DSVR4

-DUsePthread -D_REENTRANT
Digital Unix 3.2 -D__osf1__ -D__alpha__ -D__OSVERSION__=3

-D_REENTRANT
x86 Linux 2.0 -D__linux__ -D__i86__ -D__OSVERSION__=2
with linuxthreads 0.5 -D_REENTRANT
Windows NT -D__NT__ -MD

5 Threaded I/O shutdown for Unix

or, how one thread should tell another thread to shut down when it might be doing a
blocking call on a socket.

Unfortunately there doesn’t seem to be a standard way of doing this which works
across all Unix systems. I have investigated the behaviour of our two main Unix
platforms, Solaris 2.5 and Digital Unix 3.2. On Digital Unix everything is fine, as
the obvious method using shutdown() seems to work OK. Unfortunately on Solaris
shutdown can only be used on a connected socket, so we need devious means to get
around this limitation. The details are summarised below:

5.1 read()

Thread A is in a loop, doing read(sock), processing the data, then going back into the
read.

Thread B comes along and wants to shut it down - it can’t cancel thread A since (i)
working out how to clean up according to where A is in its loop is a nightmare, and
(ii) this isn’t available in omnithread anyway.

On Solaris 2.5 and Digital Unix 3.2 the following strategy works:
Thread B does shutdown(sock,2).
At this point thread A is either blocked inside read(sock), or is elsewhere in the

loop. If the former then read will return 0, indicating that the socket is closed. If the
latter then eventually thread A will call read(sock) and then this will return 0. Thread
A should close(sock), do any other tidying up, and exit.

If there is another point in the loop that thread A can block then obviously thread
B needs to be aware of this and be able to wake it up in the appropriate way from that
point.

5.2 accept()

Again thread A is in a loop, this time doing an accept on listenSock, dealing with a
new connection and going back into accept. Thread B wants to cancel it.

On Digital Unix 3.2 the strategy is identical to that for read:
Thread B does shutdown(listenSock,2). Wherever thread A is in the loop, eventu-

ally it will return ECONNABORTED from the accept call. It should close(listenSock),
tidy up as necessary and exit.



5.3 write() 5

On Solaris 2.5 thread B can’t do shutdown(listenSock,2) - this returns ENOT-
CONN. Instead the following strategy can be used:

First thread B sets some sort of ”shutdown flag” associated with listenSock. Then
it does getsockaddr(listenSock) to find out which port listenSock is on (or knows al-
ready), sets up a socket dummySock, does connect(dummySock, this host, port) and
finally does close(dummySock).

Now wherever thread A is in the loop, eventually it will call accept(listenSock).
This will return successfully with a new socket, say connSock. Thread A then checks
to see if the ”shutdown flag” is set. If not, then it’s a normal connection. If it is set,
then thread A closes listenSock and connSock, tidies up and exits.

5.3 write()

Thread A may be blocked in write, or about to go in to a potentially-blocking write.
Thread B wants to shut it down.

On Solaris 2.5:
Thread B does shutdown(sock,2).
If thread A is already in write(sock) then it will return with ENXIO. If thread A

calls write after thread B calls shutdown this will return EIO.
On Digital Unix 3.2:
Thread B does shutdown(sock,2).
If thread A is already in write(sock) then it will return the number of bytes written

before it became blocked. A subsequent call to write will then generate SIGPIPE (or
EPIPE will be returned if SIGPIPE is ignored by the thread).

5.4 connect()

Thread A may be blocked in connect, or about to go in to a potentially-blocking con-
nect. Thread B wants to shut it down.

On Digital Unix 3.2:
Thread B does shutdown(sock,2).
If thread A is already in connect(sock) then it will return a successful connection.

Subsequent reading or writing will show that the socket has been shut down (i.e. read
returns 0, write generates SIGPIPE or returns EPIPE). If thread A calls connect after
thread B calls shutdown this will return EINVAL.

On Solaris 2.5:
There is no way to wake up a thread which is blocked in connect. Instead Solaris

forces us through a ridiculous procedure whichever way we try it. One way is this:
First thread A creates a pipe in addition to the socket. Instead of shutting down

the socket, thread B simply writes a byte to the pipe.
Thread A meanwhile sets the socket non-blocking using fcntl(sock, F SETFL,

O NONBLOCK). Then it calls connect on the socket - this will return EINPROGRESS.
Then it must call select, waiting for either sock to become writable or for the pipe to
become readable. If select returns that just sock is writable then the connection has
succeeded. It then needs to set the socket back to blocking mode using fcntl(sock,
F SETFL, 0). If instead select returns that the pipe is readable, thread A closes the
socket, tidies up and exits.



6 REFERENCES

An alternative method is similar but to use polling instead of the pipe. Thread B
justs sets a flag and thread A calls select with a timeout, periodically waking up to see
if the flag has been set.

References

[POSIX94] Portable Operating System Interface (POSIX) Threads Extension, P1003.1c
Draft 10, IEEE, September 1994.

[Birrell89] An Introduction to Programming with Threads, Research Report 35, DEC Sys-
tems Research Center, Palo Alto, CA, January 1989.


