
Samhain 1.1

User Manual

Rainer Wichmann
http://la-samhna.de

November 1, 2000

Contents

1 Functional summary 1

1.1 Overview . 1

1.2 Installation Requirements & Environment 2

1.3 How to invoke . 3

1.4 Signals . 3

1.5 Options & configuration file . 4

2 Basic 4

2.1 Trusted users and trusted paths . 4

2.2 Hash function . 5

2.3 Logging – severities, clases, thresholds, and facilities 5

2.3.1 Severity levels . 5

Example . 6

2.3.2 Configuring logging facilities 7

Example . 8

2.3.3 Thresholds – Activating logging facilities 9

Example . 9

2.4 Details of logging facilities . 10

2.4.1 Console . 10

2.4.2 Syslog . 10

2.4.3 E-mail . 11

2.4.4 The log file . 12

2.4.5 The log server . 12

3 samhain – The file monitor 14

3.1 Basic usage instructions . 14

3.2 File signatures . 15

3.3 Defining which files/directories to monitor 16

3.3.1 Monitoring policies . 16

3.3.2 File/directory specification . 16

3.3.3 ’All except ...’ . 17

3.3.4 Non-existent/disappeared/new files 17

3.3.5 Recursion depth(s) . 18

3.4 Timing file checks . 18

3.5 Initializing or checking . 18

3.6 The database . 19

3.7 Monitoring login/logout events . 19

Example . 19

3.8 Modules . 20

4 yule – The log server 21

4.1 General . 21

4.2 Client registry . 22

4.3 Server status information . 23

4.4 Authentication protocol . 24

4.4.1 Challenge-response . 24

4.4.2 SRP . 24

4.5 Message transfer protocol . 25

4.6 File transfer protocol . 25

5 External Programs 27

Example . 28

6 Signed Configuration/Database File 30

7 Stealth mode 31

7.1 Packing the executable . 31

8 Deployment to remote host 33

8.1 Usage Notes . 34

9 Security Design 36

A Compilation options 37

A.1 General . 37

A.2 OpenPGP Signatures on Configuration/Database Files 38

A.3 Client/Server Connectivity . 38

A.4 Paths . 38

B Command line options 39

B.1 General . 39

B.2 samhain . 40

B.3 yule . 40

C The configuration file 40

C.1 General . 40

Example . 41

C.1.1 Conditionals . 41

Example . 41

C.2 Files to check . 42

C.3 Severity of events . 42

C.4 Logging thresholds . 42

C.5 Watching login/logout events . 43

C.6 Miscellaneous . 43

C.7 External . 44

C.8 Clients . 45

C.9 End of file . 45

Abstract

samhain is a data integrity / intrusion alert system that can be used on single hosts
as well as for large, UNIX-based networks.
samhain offers several features to support and facilitate centralized monitoring:
samhain can be used as a client/server system, with monitoring clients on indi-
vidual hosts and a central log server. Powerful conditionals allow to build a single
configuration file for all clients on the network. Clients may download the configu-
ration file and the database of file signatures from the log server.
This manual gives a detailed description of the samhain system. It is intended to
be of help for anyone wishing to use, test, or modify samhain .

1 Functional summary

samhain is a system to monitor the integrity of files. It has a number of features
that are intended to support and facilitate centralized monitoring in a network,
although it can also be used on single hosts.

In particular, samhain can optionally be used as a client/server system with moni-
toring clients on individual hosts, and a central log server that collects the messages
of all clients.

Also, the configuration and database files can be stored centrally and downloaded
by clients from the log server. The construction of a single configuration file for all
hosts on the network is facilitated by conditionals for inclusion/exclusion of parts
of the configuration file based on hostname, machine (hardware) type, operating
system, and operating system version (all with regular expresions).

The client (or standalone) part is called samhain , while the server is referred to as
yule . Both can run as daemon processes.

1.1 Overview

NOTE: This overview assumes that the database is already initialized (see Sect. 3.1).
On startup, samhain /yule will

1. Set the effective user to some compiled-in default (e.g. nobody), if it is different
from the real user.

2. Parse the command line. Options given on the command line will override
those in the configuration file.

3. Check whether the path to the configuration file is trusted (see Sect. 2.1),
determine the checksum – or verify the signature – of the configuration file,
then read in from it:

• A list of files and directories to monitor, together with the specification
of the policies that should be applied, i.e. what kind of modifications will
be allowed or not.

• Instructions regarding the logging facilities to be used.

• Settings for the monitoring of login/logout events.

• Miscellaneous other settings, as described in the appendix.

4. Obtain the local hostname, and information on the real and effective user.
Initialize according to the specified options (e.g. disconnect from the parent
process to become a daemon).

5. (samhain only): Determine the checksum – or verify the signature – of the
file database.

6. Issue a startup message including user, time, and information on checksums –
or signature keys – of configuration file and database.

7. samhain : Enter a loop to check the files specified in the configuration file
against the database at regular intervals as defined in the configuration file
(Note: file checking mode must be explicitely switched on in the configuration
file or on the command line).
yule : Enter a loop to wait for connections from clients.

8. samhain : If not running as daemon, exit after the first loop, else, exit on
SIGTERM or SIGQUIT (see Sect. 1.4).
yule : Exit on SIGTERM or SIGQUIT (see Sect. 1.4).

9. Issue an exit message including time and reason for exit.

1.2 Installation Requirements & Environment

samhain requires an ANSI C compiler and a POSIX operating system. The instal-
lation procedure uses GNU autoconfigure (all configuration options are listed in the
appendix):

./configure [options]
make

make install

The installation routine will strip executables (i.e. discard symbols), and install the
files as listed below. (On Linux, the sstrip utility (copyright 1999 by Brian Raiter,
under the GNU GPL) will be used to strip the executable even more. The GNU
gdb debugger will not work with the sstripped file – it will not even recognize it as
executable.) The last three files listed are optional, and only compiled and installed
if the --enable-network option (yule, samhain setpwd) or the --with-stealth

option (samhain stealth) has been selected:

Original Installed Purpose Mode

samhain.8 $(mandir)/man8/samhain.8 manpage 600
samhainrc.5 $(mandir)/man5/samhainrc.5 manpage 600
samhainrc $(configdir)/.samhainrc configuration 600
samhain $(bindir)/samhain executable 700
The log server:

(yule) $(bindir)/yule executable 700
Helper app (network):
(samhain setpwd) $(bindir)/samhain setpwd executable 700
Helper app (stealth):
(samhain stealth) $(bindir)/samhain stealth executable 700

The configuration file should be carefully checked before installation, especially with
respect to the (e-mail, log server, time server) addresses listed therein. Installed files
should be owned by root. The path to the configuration file must be writeable by
trusted users only (see Sect. 2.1). If the --with-stealth option is used, installed
files should be renamed to some less suspicious name. The install routine will not
do that by itself.

1.3 How to invoke

samhain can be invoked from the command line, from the cron daemon, or during
the boot procedure from a script in the appropriate location (on Linux, probably
/sbin/init.d/rc3.d/S99samhain, /etc/rc.d/rc3.d/S99samhain, or
/etc/rc3.d/S99samhain, depending on the host system).

For Linux, the distribution package includes a sample boot script, and the Makefile
includes a target make install-boot, that will try to figure out which of the above
locations is the correct one, and install to that location. If the correct location
cannot be determined, nothing will be installed. For any other system, you need to
figure out by yourself how to start samhain during the boot sequence.

By default, samhain will not become a daemon, but stay in the foreground. Daemon
mode must be set in the configuration file or on the command line.

Also by default, samhain will neither initialize its file system database nor check
the file system against it. The desired mode must be set in the configuration file or
on the command line.

A complete list of command line options is given in the appendix.

1.4 Signals

On startup, all signals will be reset to their default. Then a signal handler will be
installed for all signals that (i) can be trapped by a process and (ii) whose default
action would be to stop, abort, or terminate the process.

If the operating system supports the siginfo t parameter for the signal handling
routine (see man sigaction), the origin of the signal will be checked. The signal will
be discarded if it was sent by a user; otherwise, the process will be terminated (for

SIGSEGV, SIGILL, SIGBUS, and SIGFPE, a ’fast’ termination will occur, with
only minimal cleanup that may result in a stale lock file being left).

The following signals can be sent to the process to control it:

• SIGUSR1 Switch on maximally verbose output to the console.

• SIGUSR2 Return to previous console output mode.

• SIGTERM Terminate the process.

• SIGQUIT Terminate the server process after processing all currently pending
requests from clients. Terminate the client process after finishing the current
task. (from the terminal, SIGQUIT usually is CRTL-backslash).

• SIGHUP Re-read the configuration file. Note that it is not possible to over-
ride command-line options given at startup.

• SIGABRT Unlock the log file, wait three seconds, then proceed. At the next
access, the log file will be locked again and a fresh audit trail – with a fresh
signature key – will be started. This allows log rotation without splitting an
audit trail. See Sect. 2.4.4.

Trivially, samhain will terminate on SIGKILL, and stop on SIGSTOP, because these
signals cannot be trapped by a process.

1.5 Options & configuration file

All command line options, and all settings in the configuration file, are described in
the appendix.

2 Basic

2.1 Trusted users and trusted paths

Trusted users are root and the effective user of the process. Additional trusted
users can be defined in the configuration file (see Sect. 2.3.2 for an example), or at
compile time.

A trusted path is a path with all elements writeable only by trusted users. samhain
requires the paths to the configuration and log file to be trusted paths, as well as
the path to the lock file that will be created to lock access to the log file.

Evidently, if the path to the configuration file itself is writeable by other users than
root and the effective user, these must be defined as trusted already at compile

time. This is especially the case on some systems where the root directory is owned
by the user bin.

2.2 Hash function

A hash function is a one-way function H(foo) such that it is easy to compute H(foo)
from foo, yet infeasible to compute foo from H(foo).

One common usage of a hash function is the computation of checksums of files, such
that any modification of a file can be noticed, as its checksum will change.

For computing checksums of files, and also for some other purposes, samhain uses
the TIGER hash function developed by Ross Anderson and Eli Biham. The output
of this function is 192 bits long, and the function can be implemented efficiently on
32-bit and 64-bit machines. Technical details can be found at http://www.cs.technion.ac.il/~ biham/Reports/Tiger/.

2.3 Logging – severities, clases, thresholds, and facilities

Events (e.g. unauthorized modifications of files monitored by samhain) will gener-
ate messages of some severity. These messages will be logged to all logging facilities,
whose threshold is equal to, or lower than, the severity of the message.

Events of related type are grouped into classes. For each logging facility, it is possible
to restrict logging to a subset of these classes (see Sect. 2.3.3). The available classes
are:

RUN Normal run messages (e.g. startup, exit, ...)
STAMP Timestamps and alike.
FIL Messages related to file integrity checking.
TCP Messages from the client/server subsystem.
PANIC Fatal errors, leading to program termination.
ERR Error messages (general).
ENET Error messages (network).
EINPUT Error messages (input, e.g. configuration file).

2.3.1 Severity levels

The following severity levels are defined:

none Not logged.
debug Debugging-level messages.
info Informational message.

notice Normal conditions.
warn Warning conditions.
mark Timestamps.
err Error conditions.
crit Critical conditions, including program startup/normal exit.
alert Fatal error, causing abnormal program termination.
inet Incoming messages from clients (server only).

Most events (e.g. timestamps, internal errors, program startup/exit) have fixed
severities. The following events have configurable severities:

• policy violations (for monitored files)

• access errors for files

• access errors for directories

• obscure file names (with non-printable characters)

• login/logout events (if samhain is configured to monitor them)

Severity levels for events (see Sect. 2.3.1) are set in the EventSeverity and (for
login/logout events) the Utmp sections of the configuration file.

Example In the configuration file, these can be set as follows:

[EventSeverity]

#
these are policies (see section 3.3.1)
#
SeverityReadOnly=crit
SeverityLogFiles=crit
SeverityGrowingLogs=warn
SeverityIgnoreNone=crit
SeverityIgnoreAll=info
#
these are access errors
#
SeverityFiles=err
SeverityDirs=err
#
these are obscure file names
#

SeverityNames=info
#
This is the section for login/logout monitoring
#
[Utmp]

SeverityLogin=notice
SeverityLogout=notice
multiple logins by same user
SeverityLoginMulti=err

2.3.2 Configuring logging facilities

samhain supports the following facilities for logging:

e-mail samhain uses built-in SMTP code, rather than an external mailer
program. E-mails are signed to prevent forging.

syslog The system logging utility.
console If running as daemon, /dev/console is used, otherwise stdout.
log file Entries are signed to provide tamper-resistance.
log server samhain uses TCP/IP with authentication and signed messages.
external samhain may invoke external programs for logging.

Each of these logging facilities has to be activated by setting an appropriate threshold
(see next section) on the messages to be logged by this facility.

In addition, some of these facilities require proper settings in the configuration file.
These settings are in the section Misc (see the example on next side for the proper
syntax), except for external programs invoked for logging, which are defined in the
section External (see Sect. 5 for details).

E-mail You must set:

1. the recipients address, in the format username@hostname. Up to eight
addresses are possible, each one at most 63 characters long.

2. the maximum time (in seconds) between two e-mails, and

3. the maximum maximum number of messages that are stored before e-
mailing them in a sigle e-mail. Messages of highest priority (alert) are
always sent immediately.

4. If the recipient is offsite, and your site uses a mail relay host to route
outbound e-mails, you need to specify the relay host.

5. If there are multiple recipients, whether to send a single mail with the
recipient list, or send multiple mails. If all recipients are on same domain,
a single mail may suffice, otherwise it depends on whether the mail server
supports forwarding (for security, most don’t).

Caveat: usually not all hosts in a domain are configured to receive e-mail, but
rather there is often a dedicated mail handler. The host given in the e-mail
address must be willing to handle e-mail. The host or nslookup commands
can help you to find the mail handler for a domain.

Hint: it is recommended to use numerical IP addresses instead of host names
(to avoid DNS lookups).

Log file If some element in the path to the log file is writeable by someone else
than root or the effective user of the process, you have to include that user
in the list of trusted users.

Log server The IP address of the log server must be given. It is possible to give
two different addresses, in which case the first will be the default, and the
second used as fallback.

External The path(s) to the external program(s) must be given, and several more
options can be specified. See Sect. 5 for details.

Example

[Misc]

#
E-mail receipient (offsite in this case). Up to eight addresses,
each one at most 63 characters long.
#
SetMailAddress=username@host.another domain
#
Need a relay host for outgoing mail.
#
SetMailRelay=relay.mydomain
#
Number of pending mails.
#
SetMailNum=10
#
Maximum time between e-mails.
Want a message every day, just to be sure that the
program still runs.

#
SetMailTime=86400
#
To all recipients in a single mail.
#
MailSingle=yes/no
#
The log server. Use this option (at most) twice to specify
two alternative servers. The first one will be the default.
#
SetLogServer=server.mydomain
#
A trusted user.
#
TrustedUser=username
#
Another trusted user.
#
TrustedUser=UID

2.3.3 Thresholds – Activating logging facilities

Messages are only logged to a log facility if their severity is at least as high as the
threshold of that facility.

Thresholds can be specified individually for each facility. A threshold of ’none’
switches off the respective facility.

Thresholds are set in the Log section of the configuration file. For each threshold
option FacilitySeverity there is also a corresponding option FacilityClass to limit
that facility to messages within a given set of class. The argument must be a list of
valid message classes, separated by space or comma.

Example

[Log]

#
Threshold for E-mails (none = switched off)
#
MailSeverity=none
#
Threshold for log file
#

LogSeverity=err
LogClass=RUN FIL STAMP
#
Threshold for console
#
PrintSeverity=info
#
Threshold for syslog (none = switched off)
#
SyslogSeverity=none
#
Threshold for forwarding to the log server
#
ExportSeverity=crit
#
Threshold for invoking an external program
#
ExternalSeverity=crit

2.4 Details of logging facilities

This section discusses some details of the logging facilities offered by samhain Con-
figuring logging facilities (if required) is explained in section 2.3.2. Activating logging
facilities (by setting an appropriate threshold) is explained in section 2.3.3 .

2.4.1 Console

If running as daemon, samhain will use /dev/console for output, otherwise stdout.
On Linux, PATH CONSOLE will be used instead of /dev/console, if it is defined
in the file paths.h.

2.4.2 Syslog

samhain will translate its own severities into syslog priorities as follows:

debug LOG DEBUG
info LOG INFO
notice LOG NOTICE
warn LOG WARNING
mark LOG ERR

err LOG ERR
crit LOG CRIT
alert LOG ALERT

Messages will be truncated to 1023 chars. samhain will use the identity ’samhain’,
the syslog facility LOG AUTHPRIV, and will log its PID (process identification
number) in addition to the message.

2.4.3 E-mail

E-mails are sent (using built-in SMTP code) to one recipient only. The subject line
contains timestamp and local hostname, which are repeated in the message body.

During temporary connection failures, messages are stored in a FIFO queue. The
maximum number of stored messages is 128. samhain will re-try to mail every
hour for at most 48 hours. In conformance with RFC 821, samhain will keep the
responsibility for the message delivery until the recipient’s mail server has confirmed
receipt of the e-mail (except that, as noted above, after 48 hours it will assume a
permanent connection failure).

The body of the mail may consist of several messages that were pending on the
internal queue (see sect. 2.3.2), followed by a signature that is computed from the
message and a key. The key is initialized with a random number, and for each e-mail
iterated by a hash chain.

The initial key is revealed in the first email sent (obviously, you have to believe that
this first e-mail is authentical). This initial key is not transmitted in cleartext, but
encrypted with a one-time pad. The one-time pad is generated by hashing a base (a
compiled-in key) with a salt (the message itself). This way, different one-time pads
can be generated from the same base.

The signature is followed by a unique identification string. This is used to identify
seperate audit trails (here, a trail is a sequence of e-mails from the same run of
samhain), and to enumerate individual e-mails within a trail.

The mail thus looks like:

<--- MESSAGE ---->

first message
second message
...
<--- SIGNATURE ---->

signature
ID TRAIL ID:hostname
<--- END ---->

To verify the integrity of an e-mail audit trail, a convenience function is provided:

samhain -M path to mailbox file

The mailbox file may contain multiple and/or overlapping audit trails from different
runs of samhain and/or different clients (hosts) – that’s what the unique identifier
is for.

2.4.4 The log file

The log file is named .samhain log by default, and placed into
/usr/local/var/log by default (name and location can be configured at compile
time).

The log file is created if it does not exist, and locked by creating a lock file. By
default, the lock file is named .samhain lock and placed in
/usr/local/var/log (name and location can be configured at compile time). The
lock file contains the PID of the process that created it. Upon normal program
termination, the lock file is removed. Stale lock files are removed at startup if there
is no process with that PID.

The directory where the log and its lock file are located must be writeable only by
trusted users (see sect. 2.3.2). This requirement refers to the complete path, i.e. all
directories therein. By default, only root and the effective user of the process are
trusted.

Audit trails (sequences of messages from individual runs of samhain) in the log file
start with a [SOF] marker. Each message is followed by a signature, that is formed
by hashing the message with a key.

The first key is generated at random, and sent by e-mail, encrypted with a one-time
pad as described in the previous section on e-mail. Further keys are generated by a
hash chain (i.e. the key is hashed to generate the next key). Thus, only by knowing
the initial key the integrity of the log file can be assured.

To verify the log file’s integrity, a convenience function is provided:

samhain -L path to log file

2.4.5 The log server

Details of the transmission protocols can be found in section 4. Configuring samhain

for logging to the log server is explained in section 2.3.2 (setting the IP address of the
server) and section 2.3.3 (activating the facility by setting an appropriate threshold).

During temporary connection failures, messages are stored in a FIFO queue. The
maximum number of stored messages is 128. After a connection failure, samhain
will not try to connect for the next 10 minutes. A re-connection attempt is actually
only made for the next message after that 10 minute deadtime – you should send
timestamps (i.e. set the threshold to mark to ensure re-connection attempts for
failed connections.

It is possible to specify two log servers in the client configuration file. The first
one will be used by default (primary), and the second one as fallback in case of a
connection failure with the primary log server.

3 samhain – The file monitor

The samhain monitor checks the integrity of files by comparing them against a
database of file signatures, and notify the user of inconsistencies. The level of
logging is configurable, and several facilities are provided: output to the console, to
a log file, to syslog, sending e-mail, and/or forwarding messages by TCP/IP to a log
server.

The samhain monitor can be used as a client that forwards messages to the server
part (yule) of the samhain system, or as a standalone program (for single hosts).
To reduce resource usage, for the latter mode one may compile a standalone version
without any TCP/IP code included.

The samhain monitor can be run as a background process (i.e. a daemon), or it
can be started at regular intervals by cron. It is recommended to run samhain as
daemon and start it up immediately at system boot. Using it with cron opens up
a security hole, because in that case the samhain program might be modified or
replaced by a rogue program between two consecutive invocations.

3.1 Basic usage instructions

To use samhain , the following steps must be followed:

1. The configuration file must be prepared (see Sect. 3.3, 2.3, and 3.7 for details).

• All files and directories that you want to monitor must be listed.

• The policies for monitoring them (i.e. which modifications are allowed
and which not) must be chosen.

• The severity of a policy violation must be selected.

• The threshold level of logging must be defined.

• The logging facilities must be chosen.

• Eventually, the address of the e-mail recepient and/or the IP address of
the log server must be given.

2. The database must be initialized.

• If it already exists, it should be deleted (samhain will not overwrite, but
append).

• samhain must be run with the command line option
samhain -t init

3. (Only relevant if samhain is used in client/server mode) The client must be
registered with the server.

(a) Choose a password (16 chars hexadecimal, i.e. only 0 – 9, a – f, A – F
allowed. You may use:

yule –gen-password

(b) Use the program samhain setpwd to reset the password in the compiled
binary to the one you have chosen. Running samhain setpwd without
arguments will print out exhaustive usage information.

(c) Use the server’s convenience function to create a registration entry:
yule -P password

(d) The output will look like: Client=HOSTNAME@salt@verifier
You now have to replace HOSTNAME with the fully qualified domain
name of the host on which the client should run.

(e) Put the registration entry into the servers’s configuration file, under the
section heading Clients (see Sect. 4.2). You need to send SIGHUP to
the server for the new entry to take effect.

(f) Repeat steps (a) – (e) for any number of clients you need (actually, you
need a registration entry for each client’s host, but you don’t neccesarily
need different passwords for each client. I.e. you may skip steps (a) –
(c)).

4. Now start samhain in check mode. Either select this mode in the configuration
file, or use the command line option

samhain -t check [more options]

To run samhain as a background process, use the command line option
samhain -D [more options]

3.2 File signatures

samhain works by generating a database of file signatures, and later comparing file
against that database to recognize file modifications and/or added/deleted files.

File signatures include:

• a 192-bit cryptographic checksum computed using the TIGER hash algorithm,

• the inode of the file,

• the type of the file,

• owner and group,

• access permissions,

• on Linux only: flags of the ext2 file system (see man chattr),

• the timestamps of the file,

• the file size,

• the number of hard links,

• and the name of the linked file (if the file is a symbolic link).

Depending on the policy chosen for a particular file, only a subset of these may be
checked for modifications (see sect. 3.3.1).

3.3 Defining which files/directories to monitor

This section explains how to specify in the configuration file, which files or directories
should be monitored, and which monitoring policy should be used.

3.3.1 Monitoring policies

samhain offers several pre-defined monitoring policies. Each of these policies has
its own section in the configuration file. Placing a file in one of these sections will
select the respective policy for that file.

The available policies (section headings) are:

ReadOnly All modifications except access times will be reported for these files.

LogFiles Modifications of timestamps, file size, and signature will be ignored.

GrowingLogFiles Modifications of timestamps, and signature will be ignored.
Modification of the file size will only be ignored if the file size has increased.

Attributes Only modifications of ownership and access permissions will be checked.

IgnoreAll No modifications will be reported. However, the existence of that file/directory
will still be checked.

IgnoreNone All modifications, including access time, will be reported.

3.3.2 File/directory specification

Entries for files have the following syntax:

file=/full/path/to/the/file

Entries for directories have the following syntax:

dir=[recursion depth]/full/path/to/the/directory

The specification of a recursion depth is optional (see 3.3.5). (Note: Do not put the
recursion depth in brackets – they just indicate that this is an optional argument
...).

3.3.3 ’All except ...’

To exclude individual files from a directory, place them under the policy IgnoreAll.
Note that the existence of such files will still be checked (see next section).

To exclude subdirectories from a directory, place them under the policy IgnoreAll

with an individual recursion depth of -1 (see Sect. 3.3.5).

Note that any change in a directory will also modify the directory itself (i.e. the
special file that holds the directory information). If you want to check all but a
few files in a directory (say, /etc), and you expect some of the excluded files to get
modified, you should use a setup like:

[ReadOnly]

#
dir=/etc

#
[Attributes]

#
less restrictive policy for the directory file itself
#
file=/etc

#
[IgnoreAll]

#
exclude this file
#
file=/etc/resolv.conf.save

#

3.3.4 Non-existent/disappeared/new files

If files specified in the configuration file are non-existent already when the database
is initialized, you will get an error message (for file access) only at initialization,
while later, on file checking, only a message of severity info is generated.

If files disappear after initialization, you will get an error message with the severity
specified for file access errors (except if the file is placed under the IgnoreAll policy,

in which case a message of SeverityIgnoreAll – see Sect. 2.3.1 – is generated).

If new files appear in a monitored directory after initialization, you will get an error
message with the severity specified for that directory’s file policy (except if the file is
placed under the IgnoreAll policy, in which case a message of SeverityIgnoreAll
– see Sect. 2.3.1 – is generated).

The special treatment of files under the IgnoreAll policy allows to handle cases
where a file might be deleted and/or recreated by the system sometimes.

3.3.5 Recursion depth(s)

Directories can be monitored up to a maximum recursion depth of 99 (i.e. 99 levels
of subdirectories. The recursion depth actually used is defined in the following order
of priority:

1. The recursion depth specified for that individual directory (see 3.3). As a
special case, for directories with the policy IgnoreAll, the recursion depth
should be set to 0, if you want to monitor (the existence of) the files within that
directory, but to -1, if you do not want samhain to look into that directory.

2. The global default recursion depth specified in the configuration file. This is
done in the configuration file section Misc with the entry
SetRecursionLevel=number

3. The default recursion depth, which is zero.

3.4 Timing file checks

In the Misc section of the configuration file, you can set the interval (in seconds)
between succesive file checks:

SetFilecheckTime=value

3.5 Initializing or checking

In the Misc section of the configuration file, you can choose between initializing the
database or checking the files against the existing database:

ChecksumTest=init—check—none

If you use the mode none, you should specify on the command line one of init or
check:

samhain -t check

3.6 The database

The database file is named .samhain file by default, and placed into
/usr/local/var/log by default (name and location can be configured at compile
time).

The database is a binary file. For security reasons, it is recommended to store a
backup copy of the database on read-only media, otherwise you will not be able
to recognize file modifications after its deletion (by accident or by some malicious
person).

samhain will not keep the content of the database in memory, but will compute the
checksum of the database at startup and verify it at each access. samhain will first
open() the database, compute the checksum, rewind the file, and then read it. Thus
it is not possible to modify the file between checksumming and reading.

3.7 Monitoring login/logout events

samhain can be compiled to monitor login/logout events of system users.

For initialization, the system utmp file is searched for users currently logged in. To
recognize changes (i.e. logouts or logins), the system wtmp file is then used.

This facility is configured in the Utmp section of the configuration file.

Example

[Utmp]

#
activate (0 for switching off)
#
LoginCheckActive=1
#
interval between checks (in seconds)
#
LoginCheckInterval=600
#
these are policies (see section 3.3.1)
#
SeverityLogin=info
SeverityLogout=info
#
multiple logins by same user
#
SeverityLoginMulti=crit

This facility is implemented using the module interface of samhain (see nect sec-
tion).

3.8 Modules

samhain has a programming interface that allows to add modules written in C.
Basically, for each module a structure of type struct mod type, as defined in
sh modules.h, must be added to the list in sh modules.c.

This structure contains pointers to initialization, timing, checking, and cleanup func-
tions, as well as information for parsing the configuration file.

For details, in the source code distribution check the files sh modules.h, sh modules.c,
as well as utmp.c, utmp.h, which implement a module to monitor login/logout
events.

4 yule – The log server

yule is the log server within the samhain file integrity monitoring system. yule

is part of the distribution package. It is only required if you intend to use the
client/server capability of the samhain system for centralized logging to yule .

4.1 General

yule is a non-forking server. Intead of forking a new process for each incoming
logging request, it multiplexes connections internally.

Each potential client must be registered with yule to make a connection (see
Sect. 3.1 and the example below). On the first connection made by a client, an
authentication protocol is performed. This protocol provides mutual authentication
of client and server, as well as a fresh session key.

By default, all messages are encrypted using ¡i¿Rijndael¡/i¿ (one of the five Advanced
Encryption Standard finalist algorithms). The 192-bit key version of the algorithm is
used. There is a compile-time option to switch off encryption, if your local lawmakes
don’t allow to use it (see Appendix).

yule keeps track of all clients and their session keys. As connections are dropped
after successful completion of message delivery, there is no limit on the total number
of clients. There is, however, a limit on the maximum number of simultaneous
connections. This limit depends on the operating system, but may be of order 103.

Session key expire after two hours. If its session key is expired, the client is forced
to repeat the authentication protocol to set up a fresh session key.

Incoming messages are signed by the client. On receipt, yule will:

1. check the signature,

2. accept the message if the signature can be verified, otherwise discard it and
issue an error message,

3. discard the clients signature,

4. log the message, and the client’s hostname, to the console and the log file, and

5. add its own signature to the log file entry.

It is possible to set a time limit for the maximum time between two consecutive
messages of a client (option SetClientTimeLimit in the configuration file). If the
time limit is exceeded without a message from the client, the server will issue a
warning. The default is 86400 seconds (one day); specifying a value of 0 will switch
off this option.

By default, client messages are have the severity inet, and are logged only to the
console and the log file (and to external, if threshold is properly set). It is possible
to override this behavior by setting the option UseClientSeverity=yes in the con-
figuration file. In that case, the client message severity is used, and client messages
are treated just like local messages (i.e. like those from the server itself).

4.2 Client registry

As noted above, clients must be registered with yule to make a connection. The
respective section in the configuration file looks like:

[Clients]

#
A client
#
Client=HOSTNAME CLIENT1@salt1@verifier1
#
another one
#
Client=HOSTNAME CLIENT2@salt2@verifier2
#

The entries have to be computed in the following way:

1. Choose a password (16 chars hexadecimal, i.e. only 0 – 9, a – f, A – F allowed.
You may use:

yule –gen-password

2. Use the program samhain setpwd to reset the password in the compiled binary
to the one you have chosen. Running samhain setpwd without arguments will
print out exhaustive usage information.

3. Use the server’s convenience function to create a registration entry:
yule -P password

4. The output will look like: Client=HOSTNAME@salt@verifier
You now have to replace HOSTNAME with the fully qualified domain name
of the host on which the client should run.

5. Put the registration entry into the servers’s configuration file, under the section
heading Clients (see Sect. 4.2). You need to send SIGHUP to the server for
the new entry to take effect.

6. Repeat steps (a) – (e) for any number of clients you need (actually, you need a
registration entry for each client’s host, but you don’t neccesarily need different
passwords for each client. I.e. you may skip steps (a) – (c)).

4.3 Server status information

yule writes the current status to a HTML file. The default name of this file is
.samhain.html, and by default it is placed in /usr/local/var/log.

The file contains a header with the current status of the server (starting time,
current time, open connections, total connections since start), and a table that lists
the status of all registered clients.

There are a number of pre-defined events that may occur for a client:

Inactive The client has not connected since server startup.
Started The client has started.

This message may be missing if the client was
already running at server startup.

Exited The client has exited.
Message The client has sent a message.
File transfer The client has fetched a file from the server.
ILLEGAL Startup without prior exit.

May indicate a preceding abnormal termination.
PANIC The client has encountered a fatal error condition.
FAILED An unsuccessful attempt to set up a session key

or transfer a message.
POLICY The client has discovered a policy violation.

For each client, the latest event of each given type is listed. Events are sorted by
time. Events that have not occurred (yet) are not listed.

It is possible to specify templates for (i) the file header, (ii) a single table entry, and
(iii) the file end. Templates must be named head.html, entry.html, and foot.html,
respectively, and must be located in the $dataroot directory (see Sect. A.4). The
distribution package includes two sample files head.html and foot.html.

The following replacements will be made in the head template:

%T Current time.
%S Startup time.
%L Time of last connection.
%O Open connections.
%A Total connections since startup.

%M Maximum simultaneous connections.

The following replacements will be made in the entry template:

%H Host name.
%S Event.
%T Time of event.

NOTE: A literal ’%’ in the HTML output must be represented by a ’% ’ (’%’ followed
by space) in the template.

4.4 Authentication protocol

Depending in the option selected at compile time, either a challenge-response pro-
tocol or the Secure Remote Password (SRP) protocol will be used for mutual au-
thentication and exchange of a session key.

4.4.1 Challenge-response

1. The client requests a random nonce from the server.

2. The server generates a random nonce v and sends H(v:password)v to the client.
(H is a one-way hash function.)

3. The client generates a random nonce u and sends H(H(u:v)password)u.

4. The session key is H(v:password:u)

4.4.2 SRP

The protocol is described in detail in the following paper (available at
http://srp.stanford.edu/srp):
T. Wu, The Secure Remote Password Protocol, in Proceedings of the 1998 Internet
Society Network and Distributed System Security Symposium, San Diego, CA, Mar
1998, pp. 97-111.

Some of the advantages of SRP are:

1. No useful information about the password is revealed.

2. No useful information about the session key is revealed to an eavesdropper.

3. A compromise of a session key does not help to determine the password.

4. A compromise of the password does not allow to determine the session key for
past sessions.

5. A man-in-the-middle may at worst cause the authentication to fail.

4.5 Message transfer protocol

To submit a message to yule , the following protocol is used:

1. The client request a random nonce from the server.

2. The server generates a random nonce u and sends it to the client.

3. The client send the message, followed by a signature. The signature is com-
puted as H(message:u:session key). (H is a one-way hash function.)

4. On receipt of the message, the server verifies the signature, and discards mes-
sage on failure.

5. The server confirms successful receipt by sending H(message:session key:u)
(i.e. reverse order of u and session key in the hash).

6. The client verifies the server’s confirmation.

Message transfer is relieable in the sense that the client assumes responsibility for
the message until it has verified the server’s confirmation of the receipt.

4.6 File transfer protocol

Caveat: Obviously, retrieving the configuration file from the log server requires
that the IP address of the log server is compiled in.

If the compiled-in path to the configuration file begins the special value “REQ FROM SERVER”,
the client will request to download the configuration file from yule . If “REQ FROM SERVER”
is followed by a path, the server will use that path as the path to its configuration
file (basically, this feature allows to use the same configuration options for client
and server). If the client is initializing the database (rather than checking), and
“REQ FROM SERVER” is followed by a path, the client will use that path as the
path to a local configuration file.

Likewise, if the compiled-in path to the database file begins with the special value
“REQ FROM SERVER”, the client will request to download the database file from
yule for reading. If “REQ FROM SERVER” is followed by a path, that path will

be used for writing the database file when initializing (the client cannot upload the
database file to the server, as this would open a security hole).

For file transmission, the following protocol is used:

1. The client announces that it requests a file from the server.

2. The server generates and sends a random nonce u.

3. The client generates and sends a random nonce v, together with a request for
either the configuration or database file.

4. The server sends the file in chunks of 8000 bytes, each preceded by a checksum
computed as H(H(u:v:session key)H(data)).

5. The client verifies the checksum, and discards data on failure.

6. The server ends the file transmission with an EOF marker signed by H(H(u:v:session
key)H(client hostname)).

7. The client verifies the EOF marker, and discards the file on failure.

The server will search for the configuration file to send in the following order of
priority (dataroot is the data directory, see Sect. A.4; clientname is the hostname
of the client’s host):

1. $dataroot/rc.clientname

2. $dataroot/rc

3. The server’s own configuration file

The server will search for the database file to send in the following order of priority:

1. $dataroot/file.clientname

2. $dataroot/file

The transferred data are written to a temporary file that is created in the home
directory of the effective user. The filename is chosen at random, the file is opened
for writing after checking that it does not exist already, and immediately thereafter
unlinked.
Thus the name of the file will be deleted from the filesystem, but the file itself will
remain in existence until the file descriptor referring it is closed (see man unlink),
or the process exits (on exit, all open file descriptors belonging to the process are
closed).

5 External Programs

samhain may invoke external programs or scripts. This section provides an overview
of this capability.

External programs/scripts invoked for logging will receive the formatted log message
on stdin. The program should expect that stdout and stderr are redirected to
/dev/null.

Each external program must be defined in the configuration file, in a section starting
with the header [External].

Each program definition starts with the line
OpenCommand=/full/path

Options for the program may follow. The definition of an external program is ended
when the section ends, or when another OpenCommand=/full/path line for the next
command is encountered.

• There are several places in samhain where external programs may be called.
Each such place is identified by a type. Currently, valid types are:

log An external logging facility, which is handled like other logging facilities.
The program will receive the logged message on stdin, followed by a
newline, followed by [EOF] and another newline.

srv Executed by the server, whenever the status of a client, as displayed in
the HTML status table, has changed. The program will receive the client
hostname, the timestamp, and the new status, followed by a newline,
followed by [EOF] and another newline.

• Any number of external programs may be defined in the configuration file.
Each external program has a type, which is log by default. Whenever external
programs are called, all programs of the appropriate type are executed. The
type can be set with

SetType=type

• External programs must be on a trusted path (see Sect. 2.1), i.e. must not be
writeable by untrusted users.

• For enhanced security, the (192-bit TIGER) checksum of the external pro-
gram/script may be specified in the configuration file:

SetChecksum=checksum (one string, no blanks in checksum)

• Command line arguments and environment variables for each external pro-
gram are configurable (the default is no command line arguments, and only
the timezone in the environment):

SetCommandline=full command line (starting with the name of the pro-
gram)

Setenviron=KEY=value

• The user whose credentials shall be used, can be specified:
SetCredentials=username

• Some filters are available to make the execution of an external program de-
pendent on the message content:

SetFilterNot=list If any word in list matches a word in the message,
the program is not executed, else

SetFilterAnd=list if any word in list is missing in the message, the pro-
gram is not executed, else

SetFilterOr=list if none of the words in list is in the message, the pro-
gram is not executed.
Any filter not defined is not evaluated.

• It is possible to set a ’deadtime’. Within that ’deadtime’, the respective ex-
ternal program will be executed only once (if triggered).

Example

[External]

#
start definition of first external program
#
OpenCommand=/usr/local/bin/warn me
SetType=log
#
arguments
#
SetCommandline=warn me -v
#
environment
#
SetEnviron=HOME=/home/moses
SetEnviron=PATH=/bin:/usr/bin:/usr/local/bin
#
checksum
#
SetChecksum=4CA372D66F9C909B8A974E27A43EAC51D68F11FE0B30E08A
#
credentials
#

SetCredentials=moses
#
filter
#
SetFilterOr=POLICY

6 Signed Configuration/Database File

Both the configuration file (Sect. C.1) and the database of file signatures (Sect.
3.6) may be cleartext signed by GnuGP (gpg) or PGP (pgp). If compiled without
support for signatures, samhain will ignore them (the signatures then may still be
useful for manual verification.)

If compiled with support, samhain will invoke gpg or pgp to verify the signature.
Before calling the program, samhain will check that the path to the executable is
writeable only by trusted users. The programm will be called without using the
shell, with its full path (that must be compiled in), and with an environment that
is limited to the $HOME variable, which is set to the home directory of the effective
user (as determined from /etc/passwd).

The $HOME environment variable determines where gpg/pgp will look for the public
key to verify the signatures (subdirectories $HOME/.gnupg/$HOME/.pgp).

As signatures on files are only useful as long as you can trust the gpg/pgp executables
and the file holding the public key, you may consider using the following options:

• it is possible to compile in the TIGER checksum of the gpg/pgp executable,
which then will be verified before calling the program.
Note that gpg supports TIGER: you can compute TIGER checksums with

gpg --load-extension tiger --print-md TIGER filename

• it is possible to compile in the key fingerprint of the signature key, which then
will be verified after checking the signature itself.

samhain will report the signature key owner and the key fingerprint as obtained
from gpg/pgp. If both files are present and checked (i.e. when checking files against
the database), both must be signed with the same key. If the verification is suc-
cessful, samhain will only report the signature on the configuration file. If the
verification fails, or the key for the configuration file is different from that of the
database file, an error message will result.

7 Stealth mode

samhain may be compiled with support for a stealth mode of operation, meaning
that the program can be run without any obvious trace of its presence on disk. The
supplied facilities are simple - they are more sophisticated than just running the
program under a different name, and might thwart efforts using ’standard’ Unix
commands, but they will not resist a search using dedicated utilities.

Stealth mode must be selected at compile time. There are two levels available
(--with-stealth=xor val, --with-micro-stealth=xor val). Stealth mode provides
the following measures:

1. All embedded strings are obfuscated by XORing them with some value xor val
chosen at compile time. The allowed range for xor val is 128 to 255.

2. The messages in the log file are obfuscated by XORing them with xor val. The
built-in routine for validating the log file will handle this transparently.

3. Paths in the database file are obfuscated by XORing them with xor val.

4. The configuration file must be steganographically hidden in a postscript image
file (the image data must be uncompressed). To create such a file from an
existing image, you may use e.g. the program convert, which is part of the
ImageMagick package, such as:
convert +compress ima.jpg ima.ps.

To hide/extract the configuration data within/from the postscript file, a utility
program samhain stealth is provided. Use it without options to get help.

The option --with-micro-stealth=xor val uses a ’normal’ configuration file (not
hidden steganographically).

For additional stealthyness, an option --with-nocl[=ARG] is provided, which dis-
ables command line parsing. The optional argument is a ’magic’ word that will
enable reading command-line arguments from stdin. If the first command-line ar-
gument is not the ’magic’ word, all command line arguments will be ignored. This
allows to start the program with completely arbitrary command-line arguments.

7.1 Packing the executable

For even more stealthyness, it is possible to pack and encrypt the samhain ex-
ecutable. The packer is just moderately effective, but portable. Note that the
encryption key of course must be present in the packed executable, thus this is no
secure encryption, but rather is intended for obfuscation of the executable. There

is a make target for packing:

make samhain.pk

On execution, samhain.pk will unpack into a temporary file and execute this, pass-
ing along all command line arguments. The temporary file is created in /tmp, if the
sticky bit is set on this directory, and in /usr/bin otherwise. The filename is chosen
at random, and the file is only opened if it does not exist already (otherwise a new
random filename will be tried). The file permission is set to 700.

The directory entry for the unpacked executable will be deleted after executing it,
but on systems with a /proc filesystem, the deleted entry may show up there. In
particular, this is the case for Linux. You should be aware that this may raise
suspicion.

On Linux, the /proc filesystem is used to call the unpacked executable without a
race condition, by executing /proc/self/fd/NN, where NN is the file descriptor to
which the unpacked executable has been written. On other systems, the filename of
the unpacked executable must be used, which creates a race condition (the file may
be modified between creation and execution).

The packed executable will not honour the SUID bit.

8 Deployment to remote host

samhain includes a system to facilitate deployment of the client to remote hosts.
There are two major parts of this system:

• A library of profiles depending on the remote system type (the subdirectories
profiles/type/ in the source tree) that includes three files for each system
type:

1. configopts holds the build configure options, i.e. the options given to
configure when building the samhain executable on the remote host,

2. samhainrc holds the configuration file for the samhain executable, and

3. bootscript is a script that modifies the remote host configuration to
make samhain start when booting.

• A script deploy.sh (created by configure from deploy.sh.in) that, on ex-
ecution, will:

1. create a mini-distribution samhain-deploy.tar.gz,

2. copy it to the remote host,

3. compile (if needed) and install the samhain client,

4. initialize and retrieve the database (and the compiled binary), delete the
database on the remote host, and

5. store the client’s credentials in a file yulerc. If this file does not exist
already, it is copied from yulerc.template.

The compiled client is retrieved and saved in the profiles/type/ directory.
For deployment to another host of the same type, this compiled client will be
used, instead of recompiling it.

deploy.sh takes the following arguments (order is relevant):

[-v|–verbose] verbose output
[-f|–force] force recompilation, even if compiled binary available
[-p|–pack] pack the executable

host remote hostname
type system type of remote host (profiles/type/)
[password] client/server password (autogenerated by default)

In addition, the following environment variables are recognized:

SH PREFIX Install directory prefix on the remote host (set by configure).
SH NAME The name of the executable (default=samhain).
SH SRCDIR The top source directory (default=.).
SH BUILDDIR The build directory on the remote host (default=/).
SH REMOTE USER The remote host username for compiling (default=root).
SH REMOTE ROOT The remote host superuser name (default=root).
SH LOCALHOST The local hostname (FQDN). Will use ’hostname’, if available.
SH NOCL CODE The ’magic’ value to enable CL parsing (default=quark).
SH XOR CODE The XOR value to obfuscate strings (set by configure).
SH BASE1 The ’B1’ in –with-base=B1,B2 (set by configure).
SH BASE2 The ’B2’ in –with-base=B1,B2 (set by configure).

8.1 Usage Notes

• You must run configure first, and compile the server (yule), before using
deploy.sh.

• yule must be in your path, if deploy.sh is not used from the top source
directory. It is not necessary to have the server running, though.

• deploy.sh uses ssh/scp. You need to have the sshd daemon running on the
remote host. It is helpful if RSA-based authentication is possible for root,
otherwise you have to type in your password quite a few times.
Note: if you use RSA-based authentication, it is recommended:

– not to store an unencrypted private RSA key (in .ssh/identity) on a
remote host that may be accessible to an intruder (very dangerous – the
private RSA key can be used to login as root on other machines).

– not to use ssh’s own scheme of encrypting the private key with a passphrase
(very inconvenient – you would need to type in the passphrase for every
ssh/scp command).

– but instead to use GnuPG or PGP to encrypt the private RSA key (in
.ssh/identity), and store it on a trusted machine or removeable media
only. Only store the public RSA key (in .ssh/authorized keys) on remote
hosts. Only decrypt the private RSA key if you need to login to (a)
remote host(s), and delete the decrypted key if not needed anymore.

• SH XOR CODE, SH BASE1, SH BASE2 are needed for consistency across
multiple runs of configure. This is not important for client/server interaction,
but for verification of e-mails/log files written by the client (if you make use
of these additional logging facilities).

• The deployed client is compiled to retrieve the database and the configuration
file from the server. It will not work (except for initialization of the database)
with database/configuration files stored on the client side. When invoked for
file system checking, the deployed client will expect the server running on the
host specified in the environment variable SH LOCALHOST, which by default
is set to the local host on which deploy.sh is executed (surprise, surprise ...).

• To add support for another system type, just create a subdirectory named
profiles/type/ in the source tree, and figure out appropriate files configopts,
samhainrc, and bootscript.

• To add credentials of new clients at runtime to yule , copy the file yulerc (or
the new client credentials therein) to the server’s configuration file, and send
a SIGUSR1 signal to yule to reconfigure.

9 Security Design

Obviously, a security application should not open up security holes by itself. There-
fore, an inportant aspect in the development of samhain has been the security of
the program itself. While samhain comes with no warranty (see the license), much
effort has been invested to identify security problems and avoid them.

To avoid buffer overflows, only secure string handling functions are used to limit the
amount of data copied into a buffer to the size of the respective buffer (unless it is
known in advance that the data will fit into the buffer).

On startup, the timezone is saved, and all environment variables are set to zero
thereafter. Signal handlers, timers, and file creation mask are reset, and the core
dump size is set to zero. If started as daemon, all file descriptors are closed, and the
first three streams are opened to /dev/null.

If external programs are used (in the entropy gatherer, if /dev/random is not avail-
able), they are invoked directly (without using the shell), with the full path, and
with a limited environment (by default only the timezone). Privileged credentials
are dropped before calling the external program.

With respect to its own files (configuration, database, the log file, and its lock), on
access samhain checks the complete path for write access by untrusted users. Some
care has been taken to avoid race conditions on file access as far as possible.

samhain requires root privileges to monitor files with privileged access. If set SUID
root, samhain will run with the credentials of a compiled-in user, which by default
is nobody. In that case, root privileges will only be used if neccessary.

Critical information, including session keys and data read from files for computing
checksums, is kept in memory for which paging is disabled (if the operating system
supports this). This way it is avoided that such information is transfered to a
persistent swap store medium, where it might be accessible to unauthorized users.

Random numbers are generated from a pseudo-random number generator (PRNG)
with a period of 288 (actually by mixing the output from three instances of the
PRNG). The internal state of the PRNG is seeded from a strong entropy source (if
available, /dev/random is used, else lots of system statistics is pooled and mixed
with a hash function). The PRNG is re-seeded from the entropy source at regular
intervals (one hour).

Numbers generated from a PRNG can be predicted, if the internal state of the
PRNG can be inferred. To avoid this, the internal state of the PRNG is hidden by
hashing the output with a hash function.

A Compilation options

A.1 General

–enable-login-watch Compile in the module to watch for login/logout events.

–with-identity=USER The username to use when dropping root privileges (de-
fault nobody).

–with-sender=SENDER The username of the sender for e-mail (default is daemon).

–with-recipient=ADDR The recepient for e-mail. You can set this in the config-
uration file as well. An address in the configuration file will take precedence.

–with-trusted=UID Trusted users (must be a comma-separated list of numerical
UIDs). Only required if the configuration file must be on a path writeable by
others than root and the effective user.

–with-timeserver=HOST Set host address for time server (default is literal “NULL”
- use own clock). You can set this in the configuration file as well. An address
in the configuration file will take precedence.

–with-stealth=XOR VAL Enable stealth mode, and set XOR VAL. XOR VAL
must be decimal, in the range 127 – 255, and will be used to obfuscate literal
strings.

–with-micro-stealth=XOR VAL As –with-stealth, but without steganographic
hidden configuration file.

–with-nocl=PW Command line parsing is enabled only if the first command line
argument is PW. PW=”” (empty string) will disable command line parsing
completely. This may be used as addition to –with(-micro)-stealth to prevent
interactive enforcement of telltale output.

–with-base=B1,B2 Set base key for one-time pads. Must be ONE string (no
space) made of TWO comma-separated integers in the range 0 – 2147483647.
Caveat: If this option is not used, a random value will be chosen at compile
time (by the configuration script). Binaries compiled with different values
cannot verify the audit trail(s) of each other.

–enable-debug Enable debugging. Will slow down things, increase resource usage,
and may leak information that should be kept secure.

–enable-ptrace During program initialization, use ptrace() to find out whether
runing under a debugger. Only takes effect if –enable-debug is not used.

A.2 OpenPGP Signatures on Configuration/Database Files

–with-gpg=PATH Use GnuPG to verify database/configuration file. The public
key of the effective user (in /.gnupg/pubring.gpg) will be used.

–with-pgp=PATH Use PPG to verify database/configuration file. The public key
of the effective user (in /.pgp/pubring.pgp) will be used.

–with-checksum=CHECKSUM Compile in TIGER checksum of the gpg/pgp
binary. CHECKSUM must be the full line output by samhain or gpg when
computing the checksum (pgp has no support for the TIGER algorithm).

–with-fp=FINGERPRINT Compile in the fingerprint of the key used to sign
the configuration/database files. FINGERPRINT must be without spaces. If
used, samhain will verify the fingerprint, but still report on the used public
key.

A.3 Client/Server Connectivity

–enable-network Compile with client/server support.

–disable-encrypt Disable encryption for client/server communication.

–enable-srp Use SRP protocol to authenticate to log server, rather than the default
challenge-response protocol (which is faster, but less secure than SRP).

–with-port=PORT The port on which the server will listen (default is 49777).
Only needed if this port is already used by some other application. Port
numbers below 1024 require root privileges for the server.

–with-logserver=HOST The host address of the log server. This can be set in
the configuration file. A compiled-in address is only required if you want to
fetch the configuration file from the log server. An address in the configuration
file will take precedence.

A.4 Paths

Compiled-in paths may be as long as 255 chars. If the --with-stealth option is
used, the limit is 127 chars.

–prefix=PREFIX The root install directory (default is /usr/local).

–with-config-file=FILE The full path of the configuration file (default is $PRE-
FIX/etc/.samhainrc).

–with-dataroot-prefix=PFX The dataroot directory (default is $PREFIX/var/log).

–with-log-file=FILE The path of the log file (default is $PFX/.samhain log).

–with-lock-file=FILE The path of the lock file (default is $PFX/.samhain lock).

–with-data-file=FILE The path of the database file written by samhain (default
is $PFX/.samhain file).

–with-html-file=FILE The path of the html report file written by yule (default
is $PFX/.samhain.html).

B Command line options

B.1 General

-D, –deamon Run as daemon.

-s <arg>, –set-syslog-severity=<arg> Set the severity threshold for syslog. arg
may be one of none, debug, info, notice, warn, mark, err, crit, alert.

-l <arg>, –set-log-severity=<arg> Set the severity threshold for logfile. arg
may be one of none, debug, info, notice, warn, mark, err, crit, alert.

-m <arg>, –set-mail-severity=<arg> Set the severity threshold for e-mail. arg
may be one of none, debug, info, notice, warn, mark, err, crit, alert.

-p <arg>, –set-print-severity=<arg> Set the severity threshold for terminal/console.
arg may be one of none, debug, info, notice, warn, mark, err, crit,

alert.

-x <arg>, –set-extern-severity=<arg> Set the severity threshold for external
program(s). arg may be one of none, debug, info, notice, warn, mark,

err, crit, alert.

-L <arg>, –verify-log=<arg> Verify the integrity of the log file (arg is the path
of the log file).

-M <arg>, –verify-mail=<arg> Verify the integrity of e-mailed messages (arg
is the path of the mail box).

-H <arg>, –hash-string=<arg> Print the hash of a string / the checksum of a
file, and exit. If arg starts with a ’/’, it is assumed to be a file, otherwise a
string. This function is useful to test the hash algorithm.

-c, –copyright Print copyright information and exit.

-h, –help Print a short help on command line options and exit.

B.2 samhain

-t <arg>, –set-checksum-test=<arg> Set file checking to init or check. Use
init to create the database, check to check files against the database.

-e <arg>, –set-export-severity=<arg> Set the severity threshold for forward-
ing messages to the log server. arg may be one of none, debug, info,

notice, warn, mark, err, crit, alert.

-r <arg>, –recursion=<arg> Set the default recursion level for directories (0 –
99).

B.3 yule

-S, –server Run as server. Only required if the binary is dual-purpose.

-q, –qualified Log received messages with the fully qualified name of client host.

-G <arg>, –gen-password Generate a random password suitable for use in the
following option (16 hexadecimal digits).

-P <arg>, –password=<arg> Compute a client registry entry. arg is the chosen
password (16 hexadecimal digits).

C The configuration file

C.1 General

The configuration file for samhain is named .samhainrc by default. Also by default,
it is placed in /usr/local/etc. (Name and location is configurable at compile time).
The distribution package comes with a commented sample configuration file.

This section introduces the general structure of the configuration file. Details on
individual entries in the configuration files are discussed in Sect. 3.3 (which files
to monitor), Sect. 2.3 (what should be logged, which logging facilities should be
used, and how these facilities are properly configured), and Sect. 3.7 (monitoring
login/logout events).

The configuration file contains several sections, indicated by headings in square
brackets. Each section may hold zero or more key=value pairs. Keys are not case
sensitive, and space around the ’=’ is allowed. Blank lines and lines starting with
’#’ are comments. Everything before the first section and after an [EOF] is ignored.
The [EOF] end-of-file marker is optional. Keys are not case sensitive, and space
around the ’=’ is allowed. The file thus looks like:

Example

this is a comment
[Section heading]

key1=value
key2=value

[Another section]

key3=value
key4=value

C.1.1 Conditionals

Conditional inclusion of entries for some host(s) is supported via any number of
@hostname/@end directives. @hostname and @end must each be on separate lines.
Lines in between will only be read if hostname (which may be a regular expression)
matches the local host.

Likewise, conditional inclusion of entries based on system type is supported via any
number of $sysname:release:machine/$end directives.
sysname:release:machine for the local host can be determined using the command
uname -srm and may be a regular expression.

A ’!’ in front of the ’@’/’$’ will invert its meaning. Conditionals may be nested
up to 15 levels.

Example

@hostname
only read if hostname matches local host
@end
!@hostname
not read if hostname matches local host
@end
#
$sysname:release:machine
only read if sysname:release:machine matches local host
$end
!$sysname:release:machine
not read if sysname:release:machine matches local host
$end

C.2 Files to check

Allowed section headings (see Sect. 3.3.1 for more details) are:

[Attributes]

[LogFiles]

[GrowingLogFiles]

[IgnoreAll]

[IgnoreNone]

[ReadOnly]

Placing an entry under one of these headings will select the respective policy for
that entry (see Sect. 3.3.1). Entries under the above section headings must be of
the form:

dir=[optional numerical recursion depth]path
file=path

C.3 Severity of events

Section heading (see Sect. 2.3.1 for more details):

[EventSeverity]

Entries:

SeverityReadOnly=severity
SeverityLogFiles=severity
SeverityGrowingLogs=severity
SeverityIgnoreNone=severity
SeverityIgnoreAll=severity
SeverityAttributes=severity

SeverityFiles=severity
SeverityDirs=severity
SeverityNames=severity

severity may be one of none, debug, info, notice, warn, mark, err, crit,

alert.

C.4 Logging thresholds

Section heading (see Sect. 2.3.3 for more details):

[Log]

Entries:

MailSeverity=[optional specifier]threshold
PrintSeverity=[optional specifier]threshold
LogSeverity=[optional specifier]threshold
SyslogSeverity=[optional specifier]threshold
ExportSeverity=[optional specifier]threshold
ExternalSeverity=[optional specifier]threshold

threshold may be one of none, debug, info, notice, warn, mark, err, crit,

alert.

The optional specifier may be one of ’ !’, ’*’, or ’=’, which are interpreted as ’all’,
’all but’, and ’only’, respectively.

C.5 Watching login/logout events

Section heading:

[Utmp]

Entries:

LoginCheckActive=1/0 ’1’ to switch on, ’0’ to switch off.
LoginCheckInterval=seconds Interval between checks.
SeverityLogin=severity Severity for login events.
SeverityLoginMulti=severity Severity for logout events.
SeverityLogout=severity Severity for multiple logins by same user.

C.6 Miscellaneous

Section heading:

[Misc]

Entries:

Daemon=yes—no Whether to become a daemon (default: no)

SetLoopTime=seconds Interval between timestamp messages.
SetFilecheckTime=seconds Interval between file checks.
ChecksumTest=none/init/check The default action.

SetMailTime=seconds Maximum time interval between mail messages.

SetMailNum=0 – 127 Maximum number of pending mails on internal queue.
SetMailAddress=recepient The recepients e-mail address.
SetMailRelay=IP address The mail relay (for offsite mail).

SamhainPath=path The path of the process image.

SetLogServer=IP address The log server.

SetTimeServer=IP address The time server.

TrustedUser=username(,username,..). List of additional trusted users.

UseClientSeverity=yes/no Use severity of client message.
SetClientTimeLimit=seconds Time limit until next client message (server-only).

MessageHeader=”%S %T %F %L %C” Specify custom format for message header.
ReportFullDetail=yes/no Report in full detail on modified files.

Remarks: (i) root and the effective user are always trusted.
(ii) If no time server is given, the local host clock is used.
(iii) If the path of the process image is given, the process image will be checksummed
at startup and exit, and both checksums compared.

C.7 External

Definition of an arbitrary number of external programs/scripts (see Sect. 5). Section
heading:

[External]

Entries:

OpenCommand=/full/path/to/program Starts new command definition.
SetType=log—srv Type/purpose of the program.
SetCommandline=list The command line.
SetEnviron=KEY=value Environment variable (can be repeated).
SetChecksum=TIGER checksum Checksum of the program.
SetCredentials=username User whose credentials shall be used.
SetFilterNot=list Words not allowed in message.
SetFilterAnd=list Words required (ALL) in message.
SetFilterOr=list Words required (at least one) in message.
SetDeadtime=seconds Deadtime between consecutive calls.

C.8 Clients

This section is relevant for yule only. Section heading:

[Clients]

Entries must be of the form:

Client=hostname@salt@verifier

See Sect. 4.2 on how to compute a valid entry.

The hostname must be the same name that the client retrieves from the host on
which it runs. Usually, this will be a fully qualified hostname, no numerical address.
However, there is no method that guarantees to yield the fully qualified hostname
(it is not even guaranteed that a host has one ...).
The only way to know for sure is to set up the client, and check whether the con-
nection is refused by the server with a message like

Connection attempt from unregistered host hostname
In that case, hostname is what you should use.

C.9 End of file

[EOF] Not required, unless there is junk beyond.

