

MTR

MITRE TECHNICAL REPORT

Firewall Test Tools

25 August 1997

Glenn C. Everhart

G021

U

G021

This document was prepared for authorized distribution only. It has not been approved for public release.

MITRE

Executive Summary

Many organizations use “firewall” systems to prevent attacks on their systems from outside. These systems have an “inside” and an “outside” network connection and are given a set of rules concerning what network traffic they should let through, and what they should block. Determining whether these rules are set up to do what the firewall owner wanted them to do is a task which is often overlooked. A number of tools exist which have some utility in testing firewalls to determine whether they are functioning correctly. Some are commercial, and one is an in-house MITRE tool. In addition there are some free probing tools. Of all the tools examined, only the MITRE tool has the capability of comparing test results to an expected security policy.

Section 1

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h
MITRE Firewall Test Tool

The MITRE Firewall Test Tool operates on a system with probes on either side of the firewall under test (see Figure 1) and monitors traffic at both points. It is also able to inject traffic into the system under test at the “Outside net” port and receive responses there. Traffic is directed through the firewall by this tool.

[image: image1.wmf]Firewall Tester

Firewall

System

Outside

Net

Inside

Net

[image: image2.wmf]Outside

Net

Firewall

System

ISS FWT

Inside

Net

The MITRE Firewall Test Tool (MFTT) is designed to probe a firewall and determine whether its actions agree with its stated rules. It is not designed to probe a firewall as a computer system, but to determine whether it does what it claims as a filter. The MFTT contains a rule routine which decides whether a particular packet should have been passed through the firewall based on rules fed to it. Where a packet is not passed which the tool’s rule routine claims should have been passed, or where a packet is passed through the firewall under test which the firewall test tool’s rule routine claims should have been blocked, the MFTT tool reports a discrepancy. This allows one to determine what the firewall is actually enforcing. Since firewalls of filtering type can base decisions on protocols, source addresses, or destination addresses (or more complex information), it is infeasible to generate all possible IP packets and see what is passed. Rather, the tool contains a program able to generate tests for addresses mentioned in the rules, and is being expanded to generate tests for boundaries of rules. Thus, if packets from addresses A through B using protocol P are to be blocked, the Version 2 tool will generate test packets from A-1 to A+1, and B-1 to B+1, and possibly a small number inside the range, using protocol P to test the firewall. The rule set must be input as well, so that the tool’s rule routine can distinguish correct from incorrect operation. The rule set should reflect a site’s security policy, though no formal comparison to a site policy is implemented in the MITRE tool. The MITRE tester is however unique in having the ability to select tests automatically to check a set of firewall rules.

The MITRE Firewall Test Tool has two versions. Version 1 is the currently released version, which integrates several other tools and adds a rule routine. This version generates TCP and UDP packets and runs in several phases. Version 2 is being worked on currently. This version has a more integrated packet generation and observation facility, generates a wider variety of packets, and is designed to perform correlations in real time rather than in a correlation phase.

1.1

 seq Level2 \r 0 \h

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Rule Sets / Security Policies

The MITRE Firewall Test Tool accepts a set of rules which correspond generally to rules which would exist as inputs to a commercial firewall. The purpose of a firewall is to enforce a security policy. The security policy is represented as a set of rules to the firewall. The MFTT also has the capacity to allow a user to represent a security policy as a set of rules which are input to it.

1.2

 seq Level2 \r 0 \h

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Generation

1.2.1

 seq Level4 \r 0 \h Version 1

The V1 Firewall Test Tool generates TCP and UDP packets to scan IP services. The packet generator records packets and response packets. Either generated packets or normal network traffic packets (or both) can be used. Packets are generated with source addresses in a set specified by the user, destination addresses in a set specified by the user, and IP port numbers (corresponding to net services) generated in a range. The range generated is obtained from analysis of rules input to the program or from user specifications, so that scans of TCP and UDP port ranges are generally done. Packets can also be generated for certain predefined protocols (FTP, HTTP, nntp, telnet, SMTP and a few more) to generate connections with certain protocols and observe a more extended set of traffic. These predefined packets test for certain known weaknesses in their protocols, and give the tool a chance to see the effects of the traffic on stateful packet inspecting firewalls.

The V1 test tool does not generate or check for packets with source routine or source port numbers set nonstandardly.

1.2.2

 seq Level4 \r 0 \h Version 2

The Firewall Test Tool (V2) contains (in addition to the abilities in V1) its own packet generator which can generate packets with any desired contents to be used for probes. The packets generated are chosen by analysis of the set of firewall rules the firewall under test claims to be using and generates test cases to see whether the boundary conditions are satisfied. (The chosen traffic can be added to by the user as well.) Also, a number of predefined traffic scripts which use UDP based services are being added to the tool The generator however is generally used in its mode of providing traffic for a large number of known protocols. Packets to and from selectable addresses, with selectable port numbers (which correspond to protocol numbers) can be generated. Addresses produced by the rule based generator test addresses mentioned in the rules, as well as covering boundary cases of protocol numbers.

The test case generation cannot handle wildcard addresses currently. This is because the wildcarding does not carry information about what addresses exist either within the firewall, or on the tester machine outside, and there was a desire not to make any unauthorized attacks on machines at sites where the firewall was tested. Therefore it is necessary to manually specify addresses which are within the wildcard ranges and acceptable to use for test in order to complete the setup of the packet generation function. (Nevertheless, it is planned to expand the tool to add the ability to generate boundary tests for “wildcard” ranges of addresses or protocols.)

It is planned that the V2 test tool will be able to generate and use source routed packets (which must go through particular IP addresses, and are thus useful in various breakin techniques) and to generate packets with unusual source port numbers (used in some cases to spoof protocols).

1.3 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Observation

1.3.1

 seq Level4 \r 0 \h Version 1

The Version 1 MFTT observes traffic actively, passively, or both. Its passive observation can be done at one side of the firewall only (relying on reply packets from the other side of the firewall to signal what got through) or at both sides. If desired, MFTT can observe existing traffic, yet still flag apparent violation of firewall filtering rules. MFTT also can use active observation in which it receives packets it has generated. The more extensive tests built into MFTT’s generation routines for nntp, SMTP, etc., receive their replies directly, rather than via passive probes. Typically MFTT is configured to look at a firewall from the “outside in”. The ability MFTT has to observe packets on both sides of the firewall means that it can achieve more precise tests than any single observation point tester could. If for example a packet for port 302 is sent in to the firewall and nothing inside is listening for that packet, it may be that no reply will be seen at the outside of the firewall. This is indistinguishable from the situation where the firewall blocks packets to port 302 until a probe at the inside of the firewall is added. Then it can be seen that the packet is getting through the firewall, but is not being responded to from inside. This capability is present in only a few other testers.

The Version 1 observation records traffic into files and allows comparison at any time afterwards.

1.3.2

 seq Level4 \r 0 \h Version 2

The MITRE Firewall test tool Version 2 will retain all the capabilities of Version 1, but will add to them the ability to read packets from both sides of a firewall as they are passed and to determine during the traffic whether anything undesirable is happening. It will also be able to keep better track of what packets are and are not being replied to, to facilitate more extensive probes of firewalls with both TCP and UDP packets.

(Considering that firewalls are evolving toward more stateful packet inspection and filtering this added capacity is necessary.)

1.4 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Correlation with Policy

The MITRE Firewall test tool reports where anomalies are found in what got through the firewall. These can mean either that the firewall is not functioning as specified, or that the specifications of the firewall rules have not been correctly entered. If no anomalies are found, it means that the firewall’s actual rules agree with those found via the tests.

The anomalies are not currently summarized; one is given instead information about what did or did not get through the firewall by being shown the packet information. Thus, for example, if DNS traffic is able to reach within the firewall, the display shows many DNS packets passing into the firewall as anomalies, and tells you that they appear to violate this or that rule. Users are told which rule or rules were violated by each anomaly. The Version 2 software will attempt to generalize these cases. The object is to give a summary of what is not happening as expected, but details have yet to be worked out.

1.5 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Other Features

The MITRE Firewall test tool offers a graphical interface which makes it easier to use than command line driven tools. It does not attempt generic tests of a firewall save the tests mentioned of checking that the policy given (as embodied in the rules given the test tool) is being enforced accurately. The MITRE Firewall test tool is able to check previously collected data against a rule set also, so that discrepancies between rules input to it and rules the firewall was running can be investigated without re-running data collection. Also, the MITRE tool is able to perform its tests based on purely passive sniffing, so that checks that a firewall is operating correctly can be made without introducing network traffic which can cause alarms or even legal problems.

Section 2

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h
ISS Firewall Scanner

2.1

 seq Level2 \r 0 \h

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Tool Description

The ISS Internet Scanner system (of which the ISS Firewall Scanner is a part) started out as a system scanner, and is still available in a free form able to test systems for a set of known vulnerabilities. A commercial version (discussed here) is now available from Internet Security Systems, Inc. (at www.iss.net on the Internet) which adds more tests, including some which apply to firewalls. The ISS Internet Scanner system runs on Unix systems. It deals with vulnerabilities visible from the outside of the systems such as problems with weak authentication protocols, but would not, for example, test for improper group permissions within a host. The ISS Firewall Scanner is licensed to be able to communicate with a finite number of IP addresses from some single machine. ISS Internet Scanner is heavily focussed on finding and pointing out system vulnerabilities, which it can do for Unix, VMS, or Windows NT.

The ISS Firewall Scanner is connected typically outside of firewall and tests the firewall and systems behind it for their security properties. It observes responses at its attachment point (and only there). Figure 2 shows the ISS Firewall Scanner architecture.

[image: image3.wmf]Outside

Firewall

System

Chisel

Inside

Net

Figure 2. ISS Firewall Scanner Architecture

2.1

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Rule Sets / Firewall Security Policy

The ISS Firewall Scanner contains nothing to read or use any sets of firewall rules. No provision is apparent for input of any such rules nor for its output.

2.2

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Generation

The ISS Firewall Scanner generates packets that contain the source address that of the machine on which it operates and the destination address of one or more of the licensed IP addresses. It generates probes for known problems in a variety of applications, and can send packets with illegal source routing or source port numbers through a firewall. When the ISS Firewall Scanner is testing a firewall-protected configuration, it expects to be on a machine outside the firewall sending traffic in through the firewall. It relies on IP replies or rejects (and timeouts) sent from within for the necessary replies to this traffic. Packet generation depends on the user list of ports to be probed, plus the built-in vulnerability tests in the product The ISS Firewall Scanner generates probes of network services, with or without making full TCP connections, and it sets source routing and source ports (IP options) to attempt to bypass firewall restrictions. (Setting source port numbers is a way to attempt to fool a firewall about what protocol is being passed. Source routing tells the network to route a packet through a particular node, but it may be used to allow a spurious node to capture replies, or even fool a firewall into believing that a packet was from an internal source.) In addition to scanning services (by scanning IP ports), ISS is able to perform more extensive tests of FTP, SMTP (email) , and HTTP protocols to test for problems, and it can perform some “brute force” tests against systems checking login names, and backwards names, for example. The ISS Firewall Scanner also has facilities to exercise protocols through firewall types using applications proxies, including those running the SOCKS suite of programs.

2.3

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Observation

The ISS Internet Scanner generally (and thus its ISS Firewall Scanner component) relies on IP replies, rejects, and timeouts, since it has no provision for passive packet observation (sniffing) inside a firewall. It uses various tricks for probing a system (including partial TCP setups) to find active ports, within the limits of what one machine can do. Thus it uses low level IP information for discovering packets. It can indicate when different services can be seen, and it can list vulnerabilities of given hosts. The ISS Internet Scanner can use the trick of partially setting up a TCP connection to see whether an internal system will respond. Such partial connections may not be logged in some firewall audit trails, permitting probes for vulnerable services to be done as a “stealth scan”. Even this “stealth scan” requires some kind of reply, or a timeout, from the inside of a firewall.

2.4

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Correlation With Policy

To test ISS Firewall Scanner packet correlation with the rules of firewall security policy, the user must arrange for the ISS Firewall Scanner to generate traffic which might violate a firewall’s rules. The user must then examine the ISS Firewall Scanner reports to deduce manually whether such rules are being enforced. A few tests (the stealth scan and IP spoofing tests for example) which would be reported as vulnerabilities may violate firewall rules directly, but these are reported as host vulnerabilities.

2.5

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Other Features

ISS has a very large suite of known vulnerabilities and probes for them…probably the largest of the tools evaluated. It can probe a firewall as another system with great thoroughness, and also probe systems behind a firewall for a rather large set of possible security holes. A firewall built on a general purpose machine needs to have this kind of probing done, since someone breaking into a firewall might be able to disable its filtering capabilities completely, even though the filtering engine were working perfectly. This is however a somewhat different problem from verifying that a firewall is following its rules accurately. ISS does not claim to test this. It does generate port scans, proxy tests, tests for loose source routes, and many other tests of other areas of a firewall’s function.

Section 3

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h
Chisel\

3.1

 seq Level2 \r 0 \h

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Tool Description

Chisel is a tool from Network Tools, Inc. (networktools.com) whose primary use is to generate heavy network loads in order to validate that network servers can handle them properly. It can measure response times. Nevertheless, Chisel’s load generator can generate traffic through a firewall that appears to come from a variety of places and to generate stress tests, particularly of a few known and common protocols (SMTP (email), FTP, or HTTP (web) traffic).

It must be added that as of this writing, Chisel is not yet on the market, and its evaluation has been done using literature and a demonstration movie furnished by the vendor.

 Chisel is attached to a network at one point, typically just outside a firewall, and generates traffic to test various aspects of the system from its one attachment point. Figure 3 shows the Chisel architecture.

[image: image4.wmf]Outside

Net

Firewall

System

Inside

Net

Ballista

Figure 3. Chisel Architecture

3.1

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Rule Sets / Firewall Security Policy

Chisel has no provision for reading or using any firewall rule sets or security policies.

3.2

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Generation

Chisel can generate large amounts of traffic from the machine on which it runs, making packets appear to be sent from a variety of places and permitting tests of several application ports at a time. By generating simulated traffic as though it were coming from actual (multiple) users, Chisel can exercise many of the high level features of HTTP, email, and FTP. In this way, Chisel can (and does) claim to test all OSI layers, though only for these protocols. Chisel can be used to test multiple machines (apparently one at a time), but test generation to test firewall rules must be manual. There is however no automated way to select traffic patterns based on firewall rules.

3.3

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Observation

Chisel runs on a single machine, relying only on replies, rejects, or timeouts for its return information. It must infer from these when a server on the other side of the firewall has done anything. Chisel has apparently no provision for trying any spoofing attacks such as using IP source routing, different source and destination port numbers, or the like, and is not fully general in its ability to control packet formats. A variety of reports on what traffic was received exist, so that systems not responding and services not responding or responding incorrectly can be identified.

3.4

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Correlation with Policy

Users must correlate Chisel observations with firewall policy by hand. There are no tools to assist in this. Rather, Chisel’s focus is to ensure that a firewall doesn’t disrupt the services it knows how to test (email, HTTP, and FTP) under heavy load, leaving it to the user to ensure that services are blocked where they “should be”.

3.5

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Other Features

Chisel is unique in that it alone generates heavy mixed loads to test network functions. These might find problems other scanners would miss (as for example the others might not see a case where a firewall stops filtering all of some traffic when it is overloaded and just lets it by). It is limited in what services it tests, though, and makes no pretense of scanning for host security holes, nor of validating firewall rules in any formal way. Chisel runs on Windows NT.

Section 4

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h
Ballista

Ballista is attached to a network in one or two places. For firewall testing it generally is connected both outside and inside the firewall and injects and observes traffic to test the firewall system and systems inside the firewall. Traffic of almost any type can be generated via its programmable generator. See Figure 4.

[image: image5.wmf]Outside Net

Firewall

System

Inside

Net

Satan

netcat

Argus

tcpdump

Figure 4. Ballista Architecture

Ballista is a combined system and network scanner from Secure Networks, Inc. (secnet.com) which can generate almost any packet contents to be sent through a firewall. It is able to monitor what gets through, as well as run tests for a large number of system security vulnerabilities. Ballista is a very complete tool for generation and monitoring of many types of packets, with sufficient options to allow almost any desired tests to be conducted. It is the closest in features to the MITRE Firewall Test Tool of any tool reviewed here.

4.1

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Rule Sets / Security Policy

Ballista has no provision for reading or using any sets of rules for firewall control.

4.2

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Generation

Ballista’s packet generator interprets a packet generating language called Cape which gives control over basically all IP packet fields. Thus, it can generate packets with any desired addresses (source or destination), protocol types, or other contents, and comes with a number of template scripts to do this. The scripts do things like “test whether IP encapsulation gets through the firewall”. One must select these scripts to test for particular packet type filtering questions. The claimed intent of Cape is to “perform complex protocol level spoofing and attack simulations with relative ease” and with little programming knowledge.

Ballista is also able to generate application type tests (it “knows” FTP, mail, RPC, NFS, telnet, rlogin, rexec, popd, and HTTP protocols), in which longer sequences of packets are generated and results monitored from the far end of a firewall. These are useful in that they closely approximate real traffic and thus provide more realistic tests of the behavior of these protocols as seen through a firewall. Ballista also is able to attempt password guessing attacks on these protocols as well.

4.3

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Observation

Ballista is able to observe the packets generated by Cape and its other wired-in tests via a snooping interface which promiscuously reads ("“sniffs"”) the net on the far side of the firewall, so it can obtain clear indications what is or is not passed. Also, application tests have normal replies which Ballista can parse to see whether things are functioning correctly. A variety of reports of what is handled are available, but again there is no automatic correlation with what a firewall rule set might predict. It is able to correlate packets it observes with what it generated.

4.4

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Correlation With Policy

Ballista has no features to relate packets seen with firewall rules. This must be done by hand. There is no provision for feeding in firewall rules, so the presumption is that you run tests “knowing” what a firewall “ought” to let through. While the tool can exercise some common protocols well, it must be driven by someone sufficiently expert to understand what a firewall does. Such a person must design what packets will be generated via Cape scripts and analyze the results, comparing traffic which gets through with what firewall rules would lead him to expect by hand. The effort for a skilled person might be minimal, as claimed, but the understanding of firewall operation and of protocols must still be there.

4.5

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Other Features

Ballista is primarily a network tester and system tester, not a firewall test tool, and while it can be used to test firewalls, this use requires some expertise. Ballista runs on Unix or Linux. As a network tester, Ballista most closely approximates what the MITRE Firewall Test Tool does, and adds considerable ability in testing system and network holes. Were it able to relate its test cases to firewall rules, it would be a complete superset of the MITRE tool.

Section 5

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h
Free Utilities

Free utilities exist which can be connected to firewall systems both inside and outside firewalls, many with rather sophisticated suites of system tests. (See Figure 5.) These tests must be correlated by hand between tools to achieve wide coverage of possible system issues.

Figure 5. Free Tools Analysis / Testing Layout

There are a number of free utilities whose functions also overlap in the firewall testing area when taken in combination. It seems appropriate to mention a few of them in order to make the “added value” other tools have (or lack thereof) clear. The tools I will mention are netcat (a program which can generate almost arbitrary IP packets), SATAN (which generates many variants of IP packets and protocols in scanning a system), Argus (a packet logger), and tcpdump (a general purpose promiscuous mode packet dumper which can dump packets from an Ethernet port and display them). There are many others.

5.1

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Generation

The netcat program can generate pretty well any IP packet anyone would want, including packets that spoof addresses or ports. It is command line driven and usable inside scripts, but requires some skill to use. (It has been argued that it does however significantly reduce the skill level needed to mount spoofing or fragmentation attacks.) Netcat is able to listen for TCP responses or a large class of UDP responses as well. Also, the SATAN tool has a number of protocols it knows. SATAN was designed as a network scanning program able to find system vulnerabilities of various kinds to network attacks, and as such can exercise some of the higher level protocols like mail and FTP and look for replies to what it generates.

Between the two, a skilled individual can generate a rather comprehensive set of attacks, though again there is nothing to assist in deciding what attacks to generate to test a firewall.

5.2

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Observation

It is possible to use SATAN to observe what it generates (the SATAN engine running from one side of a firewall only, so it must count on what machines inside reply to or reject). That is built into SATAN. For other packets, the tcpdump program can observe what comes through an ethernet and write it to a file so that it can be compared later. This sniffing ability is therefore not suited for real time comparisons (as the MITRE tester is being enhanced to do) but can be made to display what is seen. Filtering its output into a more manageable amount of data requires some post filtering (perhaps via a Unix pipe filter). There exist other programs (e.g. Argus) which capture a smaller, filtered subset of data, but they lose parts of packets which can be important for some protocols. Thus, filtering tools exist, but require considerable skill to use or even select. Netcat can also observe (and log to a journal file if desired) many responses to TCP or UDP packets it sends. (The UDP case presumes the same port is used in the response.) Also it should be noted that the Argus program also observes raw packets on a net interface and records a small amount of information about them. Query programs which are part of the tool can then access the modest amount of data collected and yet answer questions later about what protocols and connections were made to/from where.

5.3

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Packet Correlation with Policy

Correlating packets with firewall policy is entirely manual using free tools. Apart from the alerts SATAN can produce, and the ability netcat has to look at TCP or UDP packets it generates, these tools won’t even tell you if packets make sense, let alone what their security implications are.

5.4

 seq Level3 \r 0 \h

 seq Level4 \r 0 \h Other Features

The major advantage of these free tools is that they are free. A person of sufficient skill and with sufficient time can find tools to test firewall actions or system security rather thoroughly, but can expect to spend significant time doing so. Also, the user interfaces of these tools are of the command line variety, requiring greater skill in operation than commercial tools.

Section 6

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h
Summary

Where one is using a firewall to provide basic system isolation, it is valuable to be able to assure oneself that the firewall works correctly. Where such testing is carried out periodically (as good practice would suggest) it should be easy and largely automatic.

For testing firewalls against their claimed rules, the MITRE tool is the only one found which relates its tests to the rules. It will show that the rules are being enforced within the limits of what a tester can do. None of the other toolsets mentioned relate tests to rules, and thus require significantly more skill and time to discover improper settings.

There are limits to what a test can do, of course. If a firewall contained a single “back door” source address, for example, it would be difficult to identify it in any test suite, by any tool, save by chance. (In sufficiently sensitive sites this might be a good argument for using two firewalls in series, perhaps with one of them a public domain tool whose source code is available.) Still, a test suite automatically designed to test all the rules a firewall is using will generally catch more holes than a manual procedure.

The commercial tools discussed offer additional tests of systems and firewalls for system security and for functions under load which are also valuable, but don’t really overlap the MITRE tool. System security tests of firewalls as separate computing systems are worth doing, to ensure that the firewall function cannot be gotten around, but they are not doing the same job as testing the firewall’s rules themselves. Both tests are needed to show that a firewall can do its job properly.

Section 7

 SEQ Level1 \r 0 \h

 SEQ Level2 \r 0 \h

 SEQ Level3 \r 0 \h
Recommendations and Futures

Where a firewall is present, it needs to be as trustworthy as the most trustworthy system on a network. This implies it should be tested periodically to ensure it is doing what it should. The kind of testing to be done depends on the skill, time, and money mix available to the testing organization. An organization with little money but someone available who can run some of the freely available tools to check the firewall as a system and to run some tests of traffic passing should certainly use those tools. If it is possible to use commercial tools, however, such tools as ISS or Ballista should certainly be run to check the firewall as a system and to check for firewall reaction to source routed packets and the like. These two tools cover similar sets of holes, so that the most sensible action is to use one or the other.

Firewall rule sets are however not always easy to set up properly, so tests with the MITRE firewall test tool should be done as well, to ensure that the rules given to a firewall are valid. This should be done even where the rules given to the vendor firewall appear clear and unambiguous; experience has shown that the MITRE tool often finds surprises even with very simple rule sets.

Finally, if it is possible to test your firewall under heavy load, this should be done also. There are cases where firewall code may behave differently under load, perhaps by skipping tests which might take too long. Chisel could be useful here, since it is designed to generate heavy loads on demand, and can report anomalous behavior for several protocols.

Future firewall test tools should combine the aspects of testing the firewall rule conformance, firewall system security tests, and load tests to make their use simpler and less costly. It is however becoming clear that firewalls can cover only a small part of what is needed to secure a network of systems. The introduction of ever more complex protocols and of wider variety in responses to packets is making it clear that the notion of blocking undesired access at the network border is not feasible without controls within. Some particularly dangerous attacks and protocols can be efficiently blocked, so firewalls will continue to be needed components in providing security. Nevertheless, systems inside the firewalls will increasingly need to be involved with protection of internal assets also. Significant opportunity exists in the area of finding ways for systems to cooperate with firewalls in identifying and tracking activities counter to site policies.

Figure 1. MITRE Firewall test tool Architecture

�

�

�

�

�

iii

