
Playing hide and seek with stored keys

Adi Shamir* and Nicko van Someren†

September 22, 1998

Abstract

In this paper we consider the problem of efficiently locating
cryptographic keys hidden in gigabytes of data, such as the
complete file system of a typical PC. We describe efficient al-
gebraic attacks which can locate secret RSA keys in long bit
strings, and more general statistical attacks which can find
arbitrary cryptographic keys embedded in large programs.
These techniques can be used to apply lunchtime attacks on
signature keys used by financial institutes, or to defeat au-
thenticode type mechanisms in software packages.

Keywords: Cryptanalysis, lunchtime attacks, RSA, authen-
ticode, key hiding.

1 Introduction

In this paper we consider the problem of efficiently locating cryptographic
keys in large amounts of data. As a motivating example, consider a financial
institute which uses the manager’s PC to digitally sign wire transfers. In our
lunchtime attack scenario, the attacker (who can be a secretary, technician,
customer, etc.) can sneak into the manager’s office for a few minutes while
he or she is away for lunch. We assume that the PC is off line, and cannot be
directly used to sign unauthorized wire transfers. The goal of the attacker is
to quickly scan the gigabytes of data on the hard disk in order to find the se-
cret signature key. This key may be kept as a separate data file on the PC
(due to overconfidence), or permanently embedded in the cryptographic ap-
plication itself (due to poor design). Even worse, the key may be stored on
the PC unintentionally and without the knowledge of its security conscious

*. Applied Math Dept., The Weizmann Institute of Science, Rehovot 76100, Israel.
Email: shamir@wisdom.weizmann.ac.il.

†. nCipher Corporation Limited, Cambridge, England.
Email: nicko@ncipher.com.
1

user. For example, the key may appear in a Windows swap file which con-
tains the intermediate state of a previous signing session, or it may appear
in a backup file created automatically by the operating system at fixed in-
tervals, or it may appear on the disk in a damaged sector which is not con-
sidered part of the file system. We assume that the attacker can use a dis-
kette to bring in a short program and to bring out the discovered key, but he
does not have enough storage to copy the whole contents of the hard disk,
and does not have enough time to try each subsequence of bits from the hard
disk as a possible signature generation key.

Another example in which an attacker may wish to locate cryptographic
keys in large files is in "authenticode" type applications. In many systems a
software producer wishes to exercise some control over what code is run on
a user’s computer. There are many reasons for wanting to do this. A vendor
might want to ensure that files have not been corrupted when being used in
a mission critical system or that vendor might want to limit third party add-
ons to ones it has authorised. If the application is a security sensitive one
then it might be necessary to ensure that none of the security features have
been subverted. If the application allows cryptographic extensions to be
added, a government might insist that any extensions are authorised before
they can be used. Clearly there are a number of reasons, both good and bad,
for wanting code authentication.

As well as reasons for authenticating code there are also reasons, both
good and bad, for wanting to bypass the authentication. A third party
software producer might want to try to break the monopoly of the original
author by providing add-ons that have not been authorised, or they may
want to develop cryptographic extensions for use when they might not
otherwise be available. A hacker might maliciously want to subvert the
security of a secure system or damage the code in a safety critical system.

2 Finding Secret RSA Keys

In this section we assume that the attacker knows the public key n and e of
an RSA[2] scheme used by his victim, and has temporary access to a long
string of u bits (representing the full contents of the hard disk) which is
known to contain the corresponding secret key d as a contiguous substring
of v bits. A typical value of u can be 1010, while a typical value of v can be 103.

The simplest solution to the problem (which is applicable to any
cryptosystem) is to obtain a cleartext/ciphertext pair, and then to scan the
long bit string and perform trial decryption with each subsequence of length
v as a possible key. Rare false alarms can be discarded by trying additional
2

pairs. Ciphertext only attacks are also possible, but typically require more
decryptions with each candidate key to identify the expected cleartext
statistics. In public key cryptosystems, it suffices to know the victim s public
key, since the attacker can generate by himself the required cleartext/
ciphertext pairs.

The main problem in applying this technique to the RSA scheme is that
each modular exponentiation is very expensive, and its time complexity
grows cubically with the size v of the modulus. If we have to try about u
possible substrings as candidate values for the decryption exponent d, we
get a total complexity of O(uv3), which is polynomial but impractical (about
1019 for the typical parameters mentioned above).

A faster algorithm is based on the observation that consecutive
candidates for d have a huge overlap. When we move a window of size v over
a string of size u, the contents of two consecutive windows can differ only in
their first and last bits, and in the fact that their other bits are shifted by
one bit position. When the contents of the two windows are interpreted as
binary integers d’ and d", we can relate them via:

d" = 2d’ + c1 - c2 2v

where c1 and c2 are either 0 or 1. Given a value of the form md’(mod n),
we can compute the value of md"(mod n) by performing one modular
squaring, and 0, 1, or 2 additional modular multiplications with
precomputed numbers. Since the complexity of each modular multiplication
is O(v2), the total complexity drops from O(uv3) to O(uv2), or about 1016 in
our typical scenario.

Our next observation is that when the public exponent e is small, this
result can be greatly improved. Small e such as 3 and 216+1 are very common
in software implementations of RSA, since they make the encryption and
signature verification operations 2-3 orders of magnitude faster than full
size exponents.

Consider the case of e=3. The secret exponent d is known to satisfy
3d=1(mod φ(n)), where φ(n)=(p-1)(q-1)=n-(p+q-1). We can thus conclude that
3d=1+cn-c(p+q-1) where c is either 1 or 2. The value of (p+q-1) is unknown,
but it contains only half as many bits as n. We can thus perform
approximate division by 3, and get for each one of the two choices of c a
candidate value for the top half of d. For the typical parameters, this implies
that we can easily compute two candidate values for the top 500 bits of d.
Such a large number of random bits makes it extremely unlikely that we will
encounter false alarms, and thus we can use a straightforward string
matching algorithm to search for the known half of d, and recover the other
3

half from any successful match. The time complexity of such an attack is just
O(u), and for all practical purposes it is only limited by the maximal data
transfer rate of the hard disk.

This technique can be used for larger values of e, but its efficiency drops
rapidly since the number of candidate values for the top half of d grows
exponentially in the size of e. We now describe an alternative technique,
which remains reasonably efficient for values of e whose binary size is
smaller than half the size of n. The basic idea is to compute for each
candidate substring d the value of d e-1. For the correct value d, the result
is zero modulo φ(n). In other words, it is equal to c.φ(n) in which the
multiplier c is smaller than half the size of n. When we reduce d e-1 modulo
the known n instead of modulo the unknown φ(n), we get zero minus an error
term which is somewhat smaller than n, i.e., a small negative value.

To use this observation, we consider two windows of length v in the given
bit string of length u, which are shifted by a single bit position with respect
to each other. Denote their numeric values by d’ and d", which are related
by d"=2d +c1-c2 2v. Assume that we have already computed d’e-1(mod n),
and would like to compute d"e-1(mod n). Since c1 and c2 are single bit
quantities, we need a constant number of additions/subtractions to carry out
this computation. The algorithm can thus scan the whole bit string in time
O(vu), and announce any location which makes the computed result a small
negative number, a candidate value for d. If e is sufficiently small (compared
to half the size of n), there are likely to be no false alarms. This technique
can be optimized further in a variety of ways, such as updating only the most
significant bits of de-1(mod n) during the scan, and recomputing its precise
value only infrequently in order to prevent excessive buildup of
computational errors.

A completely different approach is to look for the secret primes p and q
whose product is the known value of n. The signature generation procedure
does not have to know these values in order to compute md(mod n), but in
almost all the practical implementations of the RSA scheme the signature
generation process uses these factors to speed up the computation by a
factor of 4 by using the Chinese Remainder Theorem.

We make the reasonable assumption that p and q occur next to each other
on the long bit string, and thus the distance between their least significant
bits is about v/2. We can thus try to multiply any pair of substrings of length
v/2 in which the second substring is shifted with respect to the first by v/2+i
bits for i=0,32,64, and compare the result to n. The total complexity of this
approach is O(uv2). However, it can be reduced to just O(u) by performing
the test modulo 232, i.e., by multiplying the least significant words of p and
4

q, and comparing the bottom half of the result to the least significant word
of n. Since multiplication of 32 bit numbers on a PC is a very fast basic
operation, and the probability of false alarm is sufficiently small, the
algorithm is quite practical.

3 Finding public keys

In the previous section we looked at finding the secret keys in the context of
some sort of "lunchtime attack" . In this section we look at finding public
keys (usually signature verification keys) with a view to subverting a public
key infrastructure.

Consider the case of an "authenticode" system. While it is usually
possible to completely disable all signature checking on code, it is rarely
desirable to do so. If all checking is removed it may leave a system wide open
to naïve attacks. A better method of bypassing code signature checking is to
replace the signature verification key with a key of your own choosing. Of
course if you can do this, someone else can too, but it can protect against a
less able attacker.

The usual process for locating anything is to try to identify some
characteristic of what is being located and then to look for that
characteristic. One characteristic of cryptographic keys is that they are
usually chosen at random. Most code and data is not chosen at random and
it turns out that this differentiation is significant. When data is random it
has higher entropy than patterned information that is not random. This
means that we should be able to locate cryptographic keys among other data
by locating sections with unusually high entropy.

During our work we considered one particular system which we knew to
contain an RSA signature verification key. The system is a modular
cryptographic application programming interface produced by a major
software vendor and it is widely used in commercial applications. The file we
suspected of holding the key was approximately 300 kilobytes and we had
no information as to where the key might be.

3.1 Visual identification of high entropy regions

The human eye and human brain between them are very good at picking up
on patterns. Since the majority of the data in programs have some structure,
while we expect to see very little structure in key data we can pick out the
location of the keys simply by looking at the data in some suitable represen-
tation. Figure 1 is a one bit per pixel image from part of the program data in
5

the code authentication system. The middle section of the image contains
the signature verification key and it is visibly more noisy than the surround-
ing data.

While visual inspection of the program data allows us to locate the keys
in a body of data, it is rather slow and labour intensive. We can achieve the
same result by more mechanical means.

3.2 Identifying keys by measuring entropy

Since we know that key data has more entropy than non-key data, one way
to locate a key is to divide the data into small sections, measure the entropy
of each section and display the locations where there is particularly high en-
tropy.

While getting a true measure of entropy is a complex task, in practice the
entropy of most program code is so low that a true measure is not needed. In
our experiments we found that examining a sliding window of 64 bytes of
data and counting how many unique byte values were used gave a good
enough measure of entropy. Throughout the first body of code we worked on
the average window of data contained just under 30 unique values (with a
standard deviation of close to 10). The windows which covered the key data
averaged 60 unique byte values; a full 3 deviations from the mean. In a body
of 300 kilobytes of data only 23 windows had a ‘score’ greater than 50 and of
these 20 were consecutive and corresponded to the location of the key data.

In the general case, where we are faced with locating a key of length v bits
in a body of code made up of u bits we can find the areas of highest entropy
with a complexity of order u, since our method does not depend on the key
and can be performed using only linear passes of the data. Clearly the
success of this statistical method depends on the nature of the program
concerned.

Figure 1 Key information (in the middle of the figure) looks more noisy than the rest of the
data
6

4 Better methods of hiding keys

In the specific case of hiding RSA private keys, there are many countermeas-
ures which can be used to make the described attacks less likely to succeed.
The most obvious technique is to keep all the cryptographic keys on a de-
tachable device such as a smart card, or to keep them encrypted under a
strong memorized password on the hard disk. However, such a key must be
used by the application in decrypted form during the signature generation
process, and thus may be left in such a state somewhere in the PC’s file sys-
tem, as described in the introduction.

A simple example of one such countermeasure when e is small is to
replace the standard decryption exponent d by an equivalent exponent of the
form d’ =d+cφ(n) for a moderately large c with several dozen bits. The user
can directly use d’ instead of d in his modular exponentiation operations,
and its complexity grows by a negligible amount. The advantage of such a d’
is that the attacker can no longer predict some of the bits of the decryption
exponent just from the fact that the encryption exponent is small. However,
it does not prevent the other attacks described in this paper.

Entropy based attacks to find key data can be resisted by matching the
levels of entropy in non-key and key data. In practice we are concerned with
the entropy density, not the total entropy; we must have the same amount
of information over all but having the large concentration of entropy in the
key data makes it easy to spot. We can achieve this either by trying to lower
the entropy density of the key data or by raising the entropy of the other
data.

We can lower the entropy density of the key by spreading the key out over
more of the program. There are various options here. One way we could do
this is to construct a set of values, each with relatively few bit value changes
and thus with lower entropy, such that some simple combination of these
values results in the key value we require. This works well in spreading the
information but it incurs a computation overhead to set the key up. Another
way would be to generate some code which when run results in the key value
being placed into a buffer. Again, this requires some computational
overhead but with luck this can be small compared to the computation to use
the key.

There is another option for hiding the key, which can potentially not only
do away with the computation overhead but also be more robust than other
options. Consider that the key must be known at the time that the program
is built. Given suitable tools we can present the key as a constant in the
computation which is carried out using that key and then we can optimise
7

the code given that constant. This will cause the key to be intimately
intertwined with the code which uses it. Not only will the resulting code look
very much like normal code (making the key hard to find), but it may also
make the computation run faster than if the key were placed in a separate
memory buffer. Furthermore if the optimisation process is thorough it will
likely be extremely hard to change the key without replacing the entire
section of code which uses that key.

The other class of solutions for hiding the key is to make the entropy of
the rest of the data appear higher. One way to do this is to encrypt the
program so that it decrypts itself before it runs. Work has been carried out
in this field by Intel Corporation[1] and others and it can lead to systems
which are very hard to subvert but it does so at a cost. There will always be
a computation overhead involved in decrypting the code and data before it is
used and this will slow the system down.

5 Conclusions

The problem of efficient identification of stored secret keys in lunchtime at-
tacks (as opposed to efficient computation of unknown secret keys by cryp-
tanalysis) had received almost no attention in the literature so far, even
though we believe that it poses a great threat to many enterprises with com-
mercial grade physical security (such as banks, brokers, lawyers, travel
agencies, etc.). Such attacks are particularly effective when a company
sends its computers to a repair shop or sells them as junk, since it leaves no
traces and there is no risk of detection (compared to attacks based on sneak-
ing into the manager’s room or installing a virus in his computer).

Our techniques seem to be applicable to a wide variety of other public key
schemes, in addition to the RSA scheme. For example, in the Fiat-Shamir
signature scheme, the secret key s is the square root of the public key a
modulo n. A simple scan of the long bit string which checks for each
candidate substring s’ whether s'2=a(mod n) has time complexity O(uv2). By
using the algebraic relationship between any two consecutive candidates s’
and s", we can update the value of s’2(mod n) into s"2(mod n) in a constant
number of addition/subtraction operations, and thus the total time
complexity can be reduced to O(uv). We are now in the process of developing
similar attacks on other public key cryptosystems.

The problem of keeping a "public" key secret has also received little
attention even though a great many public key infrastructures place huge
value on a small number of root public keys. If computer programs must be
operated in an hostile environment they need to have some form of
8

protection. While it is relatively easy to build tamper resistant hardware it
is much harder to protect computer software. It should be observed that re-
keying a code authentication scheme is an attack on the Public Key
Infrastructure rather than an attack on the cryptosystem. Over the years we
have seen that attacking the PKI is often by far the most efficient way to
break public key cryptosystems and this is no exception.

References

[1] David Aucsmith. Tamper resistant software. Lecture Notes in Computer
Science: Information Hiding, 1174:317{333, 1996.
[2] R.L. Rivest, A. Shamir, and L.M. Adleman. Cryptographic communica-
tions system and method. U.S. Patent, 1983. U.S. Patent no. 4,405,829.
9

	Playing hide and seek with stored keys
	Abstract
	1 Introduction
	2 Finding Secret RSA Keys
	3 Finding public keys
	3.1 Visual identification of high entropy regions
	3.2 Identifying keys by measuring entropy

	4 Better methods of hiding keys
	5 Conclusions
	References

