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Abstract

Extensions and improvements of the programming language Java and its related execu-
tion environment (Java Virtual Machine, JVM) are the subject of a large number of research
projects and proposals. There are projects, for instance, to add parameterized types to Java,
to implement “Aspect-Oriented Programming”, and to improve the run-time performance.

Since Java classes are compiled into portable binary class files (tgfledcody it
is the most convenient and platform-independent way to implement these improvements
not by writing a new compiler or changing the JVM, but by transforming the byte code.
These transformations can either be performed after compile-time, or at load-time. Many
programmers are doing this by implementing their own specialized byte code manipulation
tools, which are, however, restricted in the range of their re-usability.

To deal with the necessary class file transformations, we introduce an API that helps
developers to conveniently implement their transformations.

1 Introduction

The Java languagé-p)S99 has become very popular and many research projects deal with fur-
ther improvements of the language or its run-time behavior. The possibility to extend a language
with new concepts is surely a desirable feature, but implementation issues should be hidden
from the user. Fortunately, the concepts of the Java Virtual Machine permit the user-transparent
implementation of such extensions with relatively little effort.

Because the target language of Java is an interpreted language with a small and easy-to-
understand set of instructions (thgte codg developers can implement and test their concepts
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in a very elegant way. One can write a plug-in replacement for the system’s class loader which is
responsible for dynamically loading class files at run-time and passing the byte code to the Virtual
Machine (see sectiof.l). Class loaders may thus be used to intercept the loading process and

transform classes before they get actually executed by the JNAUG]. While the original class

files always remain unaltered, the behavior of the class loader may be reconfigured for every
execution or instrumented dynamically.

The AVACLASS API is a toolkit for the static analysis and dynamic creation or transforma-
tion of Java class files. It enables developers to implement the desired features on a high level
of abstraction without handling all the internal details of the Java class file format and thus re-
inventing the wheel every timeava CLASS is written entirely in Java and freely available under
the terms of GNU Public License (GPL).

This report is structured as follows: We give a brief description of the Java Virtual Machine
and the class file format in sectich Section3 introduces the AVACLASS API. Section4
describes some typical application areas and example projects. The appendix contains code
examples that are to long to be presented in the main part of this report. All examples are
included in the down-loadable distribution.

1.1 Related work

There are a number of proposals and class libraries that have some similaritieswith. 4ss:
The JOIE £CK99 toolkit can be used to instrument class loaders with dynamic behavior. Sim-
ilarly, “Binary Component Adaptation”{H98] allows components to be adapted and evolved
on-the-fly. Han Lee’s “Byte-code Instrumenting Tool”498] allows the user to insert calls to
analysis methods anywhere in the byte code. The Jasmin language’] can be used to hand-
write or generate pseudo-assembler code. D-Javad and JCF [fou9q are class viewing
tools.

In contrast to these projectsyvd CLASS is intended to be a general purpose tool for “byte
code engineering”. It gives full control to the developer on a high level of abstraction and is not
restricted to any particular application area.

2 The Java Virtual Machine

Readers already familiar with the Java Virtual Machine and the Java class file format may want
to skip this section and proceed with sectin

Programs written in the Java language are compiled into a portable binary formatxd#ed
code Every class is represented by a single class file containing class related data and byte code
instructions. These files are loaded dynamically into an interpreter (Java Virtual Machine, JVM)
and executed.

Figurel illustrates the procedure of compiling and executing a Java class: The source file
(HelloWorld.java ) is compiled into a Java class filei¢lloWorld.class ), loaded by

The distribution is available &ttp://www.inf.fu-berlin.de/"dahm/JavaClass/index.htm|
including several code examples and javadoc manuals.
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the byte code interpreter and executed. In order to implement additional features, researchers
may want to transform class files (drawn with bold lines) before they get actually executed. This
application area is one of the main issues of this article.

Other classes

public class ca fe ba be
Hel | oVr | d { 08 la 42 ...
void hello() { J avac ‘
-
}
HelloWorld.java HelloWorld.class
Java language Java Virtual Machine

Figure 1: Compilation and execution of Java classes

Note that the use of the general term “Java” implies two meanings: on the one hand, Java
as a programming language is meant, on the other hand, the Java Virtual Machine, which is not
necessarily targeted by the Java language exclusively, but may be used by other languages as
well (e.g. Eiffel [CCZ97, or Ada [Taf9q). We assume the reader to be familiar with the Java
language and to have a general understanding of the Virtual Machine.

2.1 Java class file format

Giving a full overview of the design issues of the Java class file format and the associated byte
code instructions is beyond the scope of this report. We will just give a brief introduction cover-
ing the details that are necessary for understanding the rest of this paper. The format of class files
and the byte code instruction set are described in more detail in the “Java Virtual Machine Speci-
fication” [LY97] 2, and in [MD97]. Especially, we will not deal with the security constraints that
the Java Virtual Machine has to check at run-time, i.e. the byte code verifier.

Figure2 shows a simplified example of the contents of a Java class file: It starts with a header
containing a “magic number0kCAFEBABE and the version number, followed by tbenstant
pool, which can be roughly thought of as the text segment of an executabl;thss rightef
the class encoded by a bit mask, a list of interfaces implemented by the class, lists containing the
fields and methods of the class, and finally theess attributese.g. theSourceFile  attribute

2Also available online altittp://www.javasoft.com/docs/books/vmspec/index.html
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telling the name of the source file. Attributes are a way of putting additional, e.g. user-defined,

information into class file data structures. For example, a custom class loader may evaluate
such attribute data in order to perform its transformations. The JVM specification declares that
unknown, i.e. user-defined attributes must be ignored by any Virtual Machine implementation.

Head
eader ConstantMethodRef
. “printin”
Constant pool "(Ljava/lang/String;)V"

"javal/io/PrintStream" \

ConstantFieldref
"aVariable"
"[Ljava/lang/Object;"
"HelloWorld"

Access rights

Implemented interfaces ConstantClass

"javalio/PrintStream"

Fields ConstantString
A "Hello, world"

Methods

getstatic java. |l ang. System ou
| dc "HelTo, world"

invokevirtual [fava.io.PrintStreamprintin |

Class attributes

HelloWorld.class

Figure 2: Java class file format

Because all of the information needed to dynamically resolve the symbolic references to
classes, fields and methods at run-time is coded with string constants, the constant pool contains
in fact the largest portion of an average class file, approximately 60%¢d]. The byte code
instructions themselves just make up 12%.

The right upper box shows a “zoomed” excerpt of the constant pool, while the rounded box
below depicts some instructions that are contained within a method of the example class. These
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instructions represent the straightforward translation of the well-known statement:
System.out.printin("Hello, world");

The first instruction loads the contents of the field of clasgava.lang.System onto
the operand stack. This is an instance of the gkags.io.PrintStream . Theldc (“Load
constant”) pushes a reference to the string "Hello world” on the stack. The next instruction
invokes the instance methpdntin ~ which takes both values as parameters (Instance methods
always implicitly take an instance reference as their first argument).

Instructions, other data structures within the class file and constants themselves may refer
to constants in the constant pool. Such references are implemented via fixed indexes encoded
directly into the instructions. This is illustrated for some items of the figure emphasized with a
surrounding box.

For example, thénvokevirtual instruction refers to MethodRef constant that con-
tains information about the name of the called method, the signature (i.e. the encoded argu-
ment and return types), and to which class the method belongs. In fact, as emphasized by
the boxed value, thdethodRef constant itself just refers to other entries holding the real
data, e.g. it refers to @onstantClass  entry containing a symbolic reference to the class
java.io.PrintStream . To keep the class file compact, such constants are typically shared
by different instructions. Similarly, a field is represented Byiegldref  constant that includes
information about the name, the type and the containing class of the field.

The constant pool basically holds the following types of constants: References to methods,
fields and classes, strings, integers, floats, longs, and doubles.

2.2 Byte code instruction set

The JVM is a stack-oriented interpreter that creates a local stack frame of fixed size for every
method invocation. The size of the local stack has to be computed by the compiler. Values may
also be stored intermediately in a frame area contailoiogl variableswhich can be used like a
set of registers. These local variables are numbered from 0 to 65535, i.e. you have a maximum
of 65536 of local variables. The stack frames of caller and callee method are overlapping, i.e.
the caller pushes arguments onto the operand stack and the called method receives them in local
variables.

The byte code instruction set currently consists of 212 instructions, 44 opcodes are marked as
reserved and may be used for future extensions or intermediate optimizations within the Virtual
Machine. The instruction set can be roughly grouped as follows:

Stack operations: Constants can be pushed onto the stack either by loading them from the
constant pool with thédc instruction or with special “short-cut” instructions where the
operand is encoded into the instructions, &gnst 0 or bipush (push byte value).

Arithmetic operations: The instruction set of the Java Virtual Machine distinguishes its operand
types using different instructions to operate on values of specific type. Arithmetic opera-
tions starting with , for example, denote an integer operation. Eagld that adds two

5



integers and pushes the result back on the stack. The Javdtgean , byte ,short |,
andchar are handled as integers by the JVM.

Control flow: There are branch instructions lig@to andif _icmpeq , which compares two
integers for equality. There is alsgsax  (jump sub-routine) andet pair of instructions
that is used to implement tHmally clause oftry-catch blocks. Exceptions may
be thrown with theathrow instruction.

Branch targets are coded as offsets from the current byte code position, i.e. with an integer
number.

Load and store operations for local variables likdload andistore . There are also array
operations likeastore  which stores an integer value into an array.

Field access:The value of an instance field may be retrieved witfield and written with
putfield . For static fields, there agetstatic andputstatic counterparts.

Method invocation: Methods may either be called via static references imitbkestatic
or be bound virtually with thenvokevirtual instruction. Super class methods and
private methods are invoked withvokespecial

Object allocation: Class instances are allocated with tiew instruction, arrays of basic type
like int[]  with newarray , arrays of references likstring[][] with anewarray
or multianewarray

Conversion and type checking: For stack operands of basic type there exist casting operations
like f2i which converts a float value into an integer. The validity of a type cast may be
checked wittcheckcast and theinstanceof  operator can be directly mapped to the
equally named instruction.

Most instructions have a fixed length, but there are also some variable-length instructions: In
particular, thdookupswitch  andtableswitch instructions, which are used to implement
switch()  statements. Since the numbercakse clauses may vary, these instructions contain
a variable number of statements.

We will not list all byte code instructions here, since these are explained in detail in the JVM
specification. The opcode names are mostly self-explaining, so understanding the following code
examples should be fairly intuitive.

2.3 Method code

Non-abstract methods contain an attribl@®@de) that holds the following data: The maximum
size of the method’s stack frame, the number of local variables and an array of byte code instruc-
tions. Optionally, it may also contain information about the names of local variables and source
file line numbers that can be used by a debugger.

Whenever an exception is thrown, the JVM performs exception handling by looking into a
table of exception handlers. The table marks handlers, i.e. pieces of code, to be responsible for
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exceptions of certain types that are raised within a given area of the byte code. When there is no
appropriate handler the exception is propagated back to the caller of the method.

2.4 Byte code offsets

Targets of branch instructions likgoto are encoded as relative offsets in the array of byte
codes. Exception handlers and local variables refer to absolute addresses within the byte code.
The former contains references to the start and the and afitheblock, and to the instruction
handler code. The latter marks the range in which a local variable is valid, i.e. its scope. This
makes it difficult to insert or delete code areas on this level of abstraction, since one has to
recompute the offsets every time and update the referring objects. We will see in Se8tiow

JavA CLASS remedies this restriction.

2.5 Type information

Java is a type-safe language and the information about the types of fields, local variables, and
methods is stored isignatures These are strings stored in the constant pool and encoded in a
special format. For example the argument and return types oh#ile method

public static void main(String[] argv)
are represented by the signature
(Java/lang/String;)V

Classes and arrays are internally represented by strind$dika/lang/String” , basic
types likefloat by an integer number.

2.6 Code example

The following example program prompts for a number and prints the faculty of it.r&8duck
Line() method reading from the standard input may raisé@xception and if a mis-
spelled number is passed parselnt() it throws aNumberFormatException . Thus,
the critical area of code must be encapsulatedtig-gatch block.

import java.io.*;
public class Faculty {
private static BufferedReader in = new BufferedReader(new
InputStreamReader(System.in));
public static final int fac(int n) {

return (n == 0)? 1 : n * fac(n - 1);
}
public static final int readint() {

int n = 4711;



try {
System.out.print("Please enter a number> ");

n = Integer.parselnt(in.readLine());
} catch(IOException el) { System.err.printin(el); }
catch(NumberFormatException e2) { System.err.printin(e2); }
return n;
}
public static void main(String[] argv) {
int n = readint();
System.out.printin("Faculty o f"+n+"is "+ fac(n));

1}

This code example typically compiles to the following chunks of byte code:

2.6.1 Method fac

0: iload O

1. ifne #8
4: iconst_1

5: goto #16
8. load 0O

9: iload O

10: iconst_1

11: isub

12: invokestatic Faculty.fac (I (12)
15: imul

16: ireturn

LocalVariable(start_ pc = 0, length = 16, index = 0O:int n)

The methodac has only one local variable, the argumentstored in slot 0. This variable’s scope
ranges from the start of the byte code sequence to the very end. If the valystofed in local variable
0, i.e. the value fetched wittoad _0) is not equal to O, théne instruction branches to the byte code
at offset 8, otherwise a 1 is pushed onto the operand stack and the control flow branches to the final return.
For ease of reading, the offsets of the branch instructions, which are actually relative, are displayed as
absolute addresses in these examples.

If recursion has to continue, the arguments for the multiplicatioar(dfac(n - 1) ) are evaluated
and the results pushed onto the operand stack. After the multiplication operation has been performed the
function returns the computed value from the top of the stack.

2.6.2 Method readint

0: sipush 4711

3. istore O

4: getstatic java.lang.System.out Ljava/io/PrintStream;
7. Idc "Please enter a number> "
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9: invokevirtual java.io.PrintStream.print (Ljava/lang/String;)V

12: getstatic Faculty.in Ljava/io/BufferedReader;

15: invokevirtual java.io.BufferedReader.readLine ()Ljava/lang/String;
18: invokestatic java.lang.Integer.parselnt (Ljava/lang/String;)l

21: istore_O

22: goto #44

25: astore_1

26: getstatic java.lang.System.err Ljava/io/PrintStream;
29: aload_1

30: invokevirtual java.io.PrintStream.printin (Ljava/lang/Object;)V
33: goto #44

36: astore_1

37. getstatic java.lang.System.err Ljava/io/PrintStream;
40: aload_1

41: invokevirtual java.io.PrintStream.printin (Ljava/lang/Obiject;)V
44: iload_0

45: ireturn

Exception handler(s) =

From To Handler Type
4 22 25 java.io.lOException(6)
4 22 36 NumberFormatException(10)

First the local variabl@ (in slot 0) is initialized to the value 4711. The next instructigatstatic
loads the statiSystem.out field onto the stack. Then a string is loaded and printed, a number read
from the standard input and assigneahto

If one of the called methodsdadLine()  andparselnt()  )throws an exception, the Java Virtual
Machine calls one of the declared exception handlers, depending on the type of the exceptiop. The
clause itself does not produce any code, it merely defines the range in which the following handlers
are active. In the example the specified source code area maps to a byte code area ranging from offset 4
(inclusive) to 22 (exclusive). If no exception has occurred (“normal” execution flongdb® instructions
branch behind the handler code. There the valueisfloaded and returned.

For example the handler fgava.io.|IOException starts at offset 25. It simply prints the error
and branches back to the normal execution flow, i.e. as if no exception had occurred.

3 The JavaClass API

The hvA CLASS API abstracts from the concrete circumstances of the Java Virtual Machine and how to
read and write binary Java class files. The APl mainly consists of three parts:

1. A component that gives a “static” view upon class files, i.e. it is not intended for byte code mod-
ifications. It may be used to read and write class files from or to a file. This is useful especially
for analyzing Java classes without having the source files at hand. The main data structure is called
JavaClass which gives the whole API its name.
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2. A package to dynamically generate or modlgwvaClass objects. It may be used e.g. to insert
analysis code, to strip unnecessary information from class files, or to implement the code generator
back-end of a Java compiler.

3. Various code examples and utilities like a class file viewer, a tool to convert class files into HTML,
and a converter from class files to the Jasmin assembly langli&ge/].

Classes of the generic API may be converted into their static counterparts and vice versa.

3.1 JavaClass

The “static” component of thewa CLASS APl resides in the packagke.fub.bytecode.classfile
and represents class files. All of the binary components and data structures declared in the JVM specifi-
cation [LY97] and described in sectichare mapped to classes. Figidshows an UML diagram of the
hierarchy of classes of thevh CLASS API. Figure8in the appendix also shows a detailed diagram of the
ConstantPool components.

The top-level data structure #avaClass , which in most cases is created byCéassParser
object that is capable of parsing binary class filesJakaClass object basically consists of fields,
methods, symbolic references to the super class and to the implemented interfaces of the represented
class.

The constant pool serves as some kind of central repository and is thus of outstanding importance for
all components.ConstantPool  objects contain an array of fixed size ©@bnstant entries, which
may be retrieved via thgetConstant() method taking an integer index as argument. Indexes to the
constant pool may be contained in instructions as well as in other components of a class file and in constant
pool entries themselves.

Methods and fields contain a signature, symbolically defining their types. Access flapshike
static final occur in several places and are encoded by an integer bit masguble: static
final matches to the Java expression

int access_flags = ACC_PUBLIC | ACC_STATIC | ACC_FINAL;

As mentioned in sectioB.1already, several components may contdinibute objects: classes, fields,
methods, an€ode objects (introduced in sectidhd). The latter is an attribute itself that contains the ac-
tual byte code array, the maximum stack size, the number of local variables, a table of handled exceptions,
and some optional debugging information codetlimeNumberTable andLocalVariableTable
attributes. Attributes are specific to some data structure, i.e. no two components share the same kind of
attribute. In the figure thAttribute classes are marked with the component they belong to.

3.2 Class repository
Using the providedRepository  class, reading class files intaJavaClass object is quite simple:
JavaClass clazz = Repository.lookupClass(“java.lang.String");

The repository also contains methods providing the dynamic equivalent ofstesnceof  opera-
tor, and other useful routines:

if(Repository.instanceOf(clazz, super_class) {

}
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3.2.1 Accessing class file data

Information within the class file components may be accessed via an intuitive set/get interface. All of
them also define B String() method so that implementing a simple class viewer is very easy. In fact
all of the examples used here have been produced this way:

System.out.printin(clazz);
printCode(clazz.getMethods());

public static void printCode(Method[] methods) {
for(int i=0; i < methods.length; i++) {
System.out.printin(methodsli]);

Code code = methods][i].getCode();
if(code != null) // Non-abstract method
System.out.printin(code);

3.2.2 Analyzing class data

Last but not least,AVA CLASS supports theVisitor design patternGHJV99, so one can write visitor
objects to traverse and analyze the contents of a class file. Included in the distribution islastaiss
Visitor  that converts class files into the Jasmin assembler langiiédge .

3.3 ClassGen

This part of the API supplies an abstraction level for creating or transforming class files dynamically. It
makes the static constraints of Java class files like the hard-coded byte code addresses generic. The generic
constant pool, for example, is implemented by the c@dgastantPoolGen  which offers methods for

adding different types of constants. AccordingBlassGen offers an interface to add methods, fields,

and attributes. Figuré gives an overview of the CASSGEN API.

3.3.1 Types

We abstract from the concrete details of the type signature syntaf.8dwy introducing thelype class,

which is used, for example, by methods to define their return and argument types. Concrete sub-classes
areBasicType ,ObjectType ,andArrayType which consists of the element type and the number of
dimensions. For basic types the class offers some predefined constants. For example the method signature
of themain method as shown in sectiéh5is represented by:

Type return_type
Type[] arg_types

Type.VOID;
new Type[] { new ArrayType(Type.STRING, 1) };

Type objects can be converted to textual signatures gaitSignature()
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3.3.2 Generic fields and methods

Fields are represented IByeldGen objects. If they have the access rigktatic final ,l.e. are
constants, they may optionally have an initializing value.

Generic methods contain methods to add local variables, exceptions the method may throw, and excep-
tion handlers. Because exception handlers and local variables contain references to byte code addresses,
they also take the role of anstruction targeteiin our terminology. Instruction targeters contain a method
updateTarget() to redirect a reference. Generic (non-abstract) methods refiesttaction liststhat
consist of instruction objects. References to byte code addresses are implemented by handles to instruction
objects. This is explained in more detail in the following sections.

3.3.3 Instruction lists

Modeling instructions as objects may look somewhat odd at first sight, but in fact enables programmers
to obtain a high-level view upon control flow without handling details like concrete byte code offsets.
Instructions consist of a tag, i.e. an opcode, their length and an offset (or index) within the byte code.

Instructions are grouped via sub-classing, the type hierarchy of instruction classes is illustrated by
figure 9 in the appendix. The most important family of instructions are lifench instructions e.g.
goto , that branch to targets somewhere within the byte code. Obviously, this makes them candidates for
playing aninstructionTargeter role, too.

For debugging purposes it may even make sense to “invent” your own instructions. In a sophisticated
code generator like the one used as a backend of the Barat framew®¥#k] [one often has to insert
temporarynop (No operation) instructions. When examining the produced code it may be very difficult
to track back where theop was actually inserted. One could think of a derivexp2 instruction that
contains additional debugging information. When the instruction list is dumped to byte code, the extra
data is simply dropped.

One could also think of new byte code instructions operating on complex numbers that are replaced
by normal byte code upon load-time or are recognized by a new JVM.

An instruction listis implemented by a list dfhstruction handlesencapsulating instruction objects.
References to instructions in the list are thus not implemented by direct pointers to instructions but by
pointers to instructiofandles This makes appending, inserting and deleting areas of code very simple.
Since we use symbolic references, computation of concrete byte code offsets does not need to occur until
finalization, i.e. until the user has finished the process of generating or transforming code. We will use the
term instruction handle and instruction synonymously throughout the rest of the report.

Appending. One can append instructions or other instruction lists anywhere to an existing list. The
instructions are appended after the given instruction handle. All append methods return a new instruction
handle which may then be used as the target of a branch instruction, e.g.. For some simple instructions
there also exist predefined constants which may be used to reduce memory usage.

InstructionList il = new InstructionList();

GOTO g = new GOTO(null);
il.append(g);

InstructionHandle ih = il.append(InstructionConstants. ACONST_NULL);
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g.setTarget(ih);

Inserting. Instructions may be inserted anywhere into an existing list. They are inserted before the
given instruction handle. All insert methods return a new instruction handle which may then be used as
the start address of an exception handler, for example.

InstructionHandle start = il.insert(insertion_point,
InstructionConstants.NOP);

mg.addExceptionHandler(start, end, handler, "java.io.lOException™);

Deleting. Deletion of instructions is also very straightforward, all instruction handles and the contained
instructions within a given range are removed from the instruction list and disposeddeldte()

method may throw & argetLostException when there are instruction targeters still referencing
one of the deleted instructions. The user is forced to handle such exceptiotrg-cesch block and
redirect these references elsewhere. Peep holeoptimizer described in sectiof.3 gives a detailed
example for this.

try {
il.delete(first, last);

} catch(TargetLostException e) {
InstructionHandle[] targets = e.getTargets();
for(int i=0; i < targets.length; i++) {
InstructionTargeter[] targeters = targets[i].getTargeters();
for(int j=0; j < targeters.length; j++)
targeters[j].updateTarget(targets[i], new_target);
}
}

Finalizing. When the instruction list is ready to be dumped to pure byte code, all symbolic references
must be mapped to real byte code offsets. This is done bygdtigyteCode() = method which is called

by default byMethodGen.getMethod() . Afterwards you can optionally catlispose() so that

the instruction handles can be reused internally. This helps to reduce memory usage.

ClassGen cg = new ClassGen("HelloWorld", "java.lang.Object",
"<generated>", ACC_PUBLIC | ACC_SUPER,
null);
MethodGen mg = new MethodGen(ACC_STATIC | ACC_PUBLIC,
Type.VOID, new Type[] {
new ArrayType(Type.STRING, 1)
}, new String[] { "argv" },
"main”, "HelloWorld", il, cp);

cg.addMethod(mg.getMethod());
il.dispose(); // Reuse instruction handles of list
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3.3.4 Code example revisited

Using instruction lists gives us a generic view upon the code: In Figwe again present the code chunk

of thereadInt() method of the faculty example in secti@r6. The local variables andel both hold

two references to instructions, defining their scope. There argosm s branching to thdoad at the

end of the method. One of the exception handlers is displayed, too: it references the start and the end of
thetry block and also the exception handler code.

si push ; )
(istore ; )
(_get st ati cA
int n 3 i
. v
(ist OH?b ; J=—— Exception handler 1 F
(_goto
!
astore
| CException el i }
(_getstati c4\ )
(_al oad ;
i nvokevi rtual
P 1t
(_goto
0
_ v
i | oad
1
ireturn )

Figure 5: Instruction list foreadInt() method

3.3.5 Compound instructions

When producing byte code, some patterns typically occur very frequently, for instance the compilation
of arithmetic or comparison expressions. You certainly do not want to rewrite the code that translates
such expressions into byte code in every place they may appear. Instead you want to use something like
an instructionFactory [GHJV9Y. In order to support this, the BssSGEN API includes acompound
instruction (an interface with a singlgetinstructionList() method). Instances of this class may

be used in any place where normal instructions would occur, particularly in append operations.

Example: Pushing constants. Pushing constants onto the operand stack may be coded in different
ways. As explained in sectidh2there are some “short-cut” instructions that can be used to make the pro-
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duced byte code more compact. The smallest instruction to push a %iogi® the stack isconst _1,
other possibilities arbipush (can be used to push values between -128 and Eg)sh (between
-32768 and 32767), ddc (load constant from constant pool).

Instead of repeatedly selecting the most compact instruction in, say, a switch, one can use the com-
poundPUSHinstruction whenever pushing a constant number or string. It will produce the appropriate
byte code instruction and insert entries into to constant pool if necessary.

InstructionList il = new InstructionList();

il.append(new PUSH(cp, "Hello, world™));
il.append(new PUSH(cp, 4711));

3.3.6 Code patterns using regular expressions

When transforming code, for instance during optimization or when inserting analysis method calls, one
typically searches for certain patterns of code to perform the transformation at. To simplify handling
such situations CASSGEN introduces a special feature: One can search for given code patterns within an
instruction list usingregular expressionsin such expressions, instructions are represented by symbolic
names, e.qg.'IfInstruction’ ”. Meta characters like-, * , and(..|..) have their usual meanings.
Thus, the expression

"“NOP’+('ILOAD__'|'ALOAD__")*"

represents a piece of code consisting of at leastNf@Pfollowed by a possibly empty sequence of
ILOAD andALOADinstructions.

Thesearch() method of clasgindPattern  gets an instruction list and a regular expression as
arguments and returns an array describing the area of matched instructions. Additional constraints to the
matching area of instructions, which can not be implemented via regular expressions, may be expressed
via code constraints

3.3.7 Example: Optimizing boolean expressions.

In Java, boolean values are mapped to 1 and to O, respectively. Thus, the simplest way to evaluate boolean
expressions is to push a 1 or a 0 onto the operand stack depending on the truth value of the expression. But
this way, the subsequent combination of boolean expressions &&itke.g) yields long chunks of code
that push lots of 1s and Os onto the stack.

When the code has been finalized these chunks can be optimized petbpaholealgorithm: An
Iflnstruction (e.g. the comparison of two integer$: _icmpeq ) that either produces a 1 ora 0
on the stack and is followed by ame instruction (branch if stack valug 0) may be replaced by the
Ifinstruction with its branch target replaced by the target ofifne instruction:

InstructionList il = new InstructionList();
CodeConstraint constraint = new CodeConstraint() {

public boolean checkCode(InstructionHandle[] match) {
Ifinstruction if1 = (Iflnstruction)match[0].getInstruction();

17



GOTO g = (GOTO)match[2].getInstruction();
return (ifl.getTarget() == match[3]) &&
(g.getTarget() == match[4]);

}
h
FindPattern f = new FindPattern(il);
String pat = "IfInstruction” ICONST_0"GOTO"ICONST_1" +

"“NOP'('IFEQ’|'IFNE")";
InstructionHandle[] match;
for(InstructionHandle ih = f.search(pat, constraint);
ih !'= null; ih = f.search(pat, match[0], constraint)) {
match = f.getMatch(); // Constraint already checked

match[0].setTarget(match[5].getTarget()); / Update target
try {
il.delete(match[1], match[5]);

} catch(TargetLostException €) { ... }
}

The applied code constraint object ensures that the matched code really corresponds to the targeted
expression pattern. Subsequent application of this algorithm removes all unnecessary stack operations
and branch instructions from the byte code. If any of the deleted instructions is still referenced by an
InstructionTargeter object, the reference has to be updated incthteh -clause.

Code examplé\.1 gives a verbose example of how to create a class file, while exatmplshows
how to implement a simple peephole optimizer and how to deal TatigetLost  exceptions.

Example application: The expression

if(@ == null) || (i < 2))
System.out.printin("Ooops");

can be mapped to both of the chunks of byte code shown in fi§@& The left column represents
the unoptimized code while the right column displays the same code after an aggressively optimizing peep
hole algorithm has been applied:

4 Application areas

There are many possible application areas fMaLLLASS ranging from class browsers, profilers, byte
code optimizers, and compilers to sophisticated run-time analysis tools and extensions to the Java language
[AFM97, MBL97].

Compilers like the Barat compileB[E9d use Ava CLASS to implement a byte code generating back
end. Other possible application areas are the static analysis of bytel¢g@d pr examining the run-time
behavior of classes by inserting calls to profiling methods into the code. Further examples are extending
Java with Eiffel-like assertions-[M 98], automated delegatioriCps99, or with the concepts of “Aspect-
Oriented Programming™{L.\M ~97].
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aload 0O
ifnull #13
iconst_0

. goto #14
. iconst_1

. nop

. ifne #36
:iload_1

. iconst_2

. if_icmplt #27

. iconst_0O

. goto #28
. iconst_1

: nop

. ifne #36
. iconst_0

. goto #37
. iconst_1

: nop

. ifeq #52
. getstatic System.out
(o[ "Ooops"
. invokevirtual printin
. return

10:
11:
14.
15:
16:
19:
22:
24.
27:

aload 0O

ifnull #19
iload_1

iconst_2

if_icmpge #27
getstatic System.out
Idc "Ooops"
invokevirtual printin

return

Figure 6: Optimizing boolean expressions
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4.1 Class loaders

Class loaders are responsible for loading class files from the file system or other resources and passing
the byte code to the Virtual Machine98]. A customClassLoader object may be used to intercept
the standard procedure of loading a class, i.e. the system class loader, and perform some transformations
before actually passing the byte code to the JVM.

A possible scenario is described in figuteDuring run-time the Virtual Machine requests a custom
class loader to load a given class. But before the JVM actually sees the byte code, the class loader makes
a “side-step” and performs some transformation to the class. To make sure that the modified byte code is
still valid and does not violate any of the JVM's rules it is checked by the verifier before the JVM finally
executes it.

Java class file - Class loader W ( Byte code verifier - Interpreter/JIT

Javad ass

Byte code transformations

Figure 7: Class loaders

Using class loaders is an elegant way of extending the Java Virtual Machine with new features without
actually modifying it. This concept enables developers tdasa-time reflectionio implement their ideas
as opposed to the static reflection supported by the Java Reflection&APK]| Load-time transforma-
tions supply the user with a new level of abstraction. He is not strictly tied to the static constraints of
the original authors of the classes but may customize the applications with third-party code in order to
benefit from new features. Such transformations may be executed on demand and neither interfere with
other users, nor alter the original byte code. In fact, class loaders may even createatddssesithout
loading a file at all.

4.1.1 Example: Poor Man’s Generictity

The “Poor Man’s Genericity” projectdD98] that extends Java with parameterized classes, for example,
uses AvA CLASS in two places to generate instances of parameterized classes: During compile-time (the
standardavac with some slightly changed classes) and at run-time using a custom class loader. The
compiler puts some additional type information into class files which is evaluated at load-time by the
class loader. The class loader performs some transformations on the loaded class and passes them to the
VM. The following algorithm illustrates how the load method of the class loader fulfills the request for a
parameterized class, e §tack<String>

1. Search for clasStack , load it, and check for a certain class attribute containing additional type
information. l.e. the attribute defines the “real” name of the classStack<A> .

2. Replace all occurences and references to the formal Aypéth references to the actual type
String . For example the method
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void push(A obj) { ... }
becomes
void push(String obj) { ... }

3. Return the resulting class to the Virtual Machine.

5 Conclusions and future work

In this report we presented thevd CLASS API that is intended to be a general purpose tool for byte code
engineering. It helps developers to implement analysis tools or byte code transformations conveniently. It
has proved to be useful in several projects and is not restricted to a special kind of application area.

We found two issues of the API that may be considered as drawbacks: The generic constant pool is
a “Write-only” data structure, i.e. constant pool entries can be added and retrieved but not be removed
directly. They are referenced via integer indexes and not some kind of virtual handle. We think that
the removal of entries from the constant pool is rarely an issue and that implementing the access to it via
handles would cause too much overhead. One would rather write a supplementary tool to strip unnecessary
entries from classes. The second issue may be not to encapsulate instructions into instruction handles
anymore but to put the necessary code directly into the instructions. Yet we feel that this would not give
us such a clear and elegant level of abstraction as it does now.

We are currently developing an API that makes the development of Java extensions with class load-
ers more comfortable and offers new possibilities: It will allow to make class loader transformations
composablei.e. the class loader is not restricted to perform a single transformation but may execute a
dynamically configurable sequence of transformations.
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A Code examples for the ClassGen API
A.1 HelloWorldBuilder.java

The following Java program reads a name from the standard input and prints a friendly “Hello”. Since the
readLine() = method may throw afOException itis enclosed by #&ry-catch  block.

import java.io.*;

public class HelloWorld {
public static void main(String[] argv) {
BufferedReader in = new BufferedReader(hew
InputStreamReader(System.in));
String name = null;

try {
System.out.print("Please enter your name> ");
name = in.readLine();

} catch(lOException e) { return; }

System.out.printin("Hello, " + name);
}
}

A.2 HelloWorldBuilder.java

We will sketch here how the above Java class can be created from the scratch using3ssB&EN API.
For ease of reading we will use textual signatures and not create them dynamically. For example, the
signature

"(Ljaval/lang/String;)Ljava/lang/StringBuffer;"
would actually be created with

Type.getMethodSignature(Type.STRINGBUFFER, new Type[] { Type.STRING });

A.2.1 Initialization:

First we create an empty class and an instruction list:

ClassGen cg = new ClassGen("Helloworld", "java.lang.Object",
"<generated>", ACC_PUBLIC | ACC_SUPER,
null);
ConstantPoolGen cp = cg.getConstantPool(); // cg creates constant pool
InstructionList il = new InstructionList();



We then create the main method, supplying the method’s name and the symbolic type signature en-
coded withType objects.

MethodGen mg = new MethodGen(ACC_STATIC | ACC_PUBLIC,// access flags
Type.VOID, /I return type
new Type[] { /[l argument types

new ArrayType(Type.STRING, 1) },
new String[] { "argv" }, // arg names
"main”, "HelloWorld", /I method, class

il, cp);
We add some often used constants to the constant pool:

int br_index = cp.addClass("java.io.BufferedReader");

int ir_index = cp.addClass("java.io.InputStreamReader");

int system_out = cp.addFieldref("java.lang.System"”, "out", // System.out
"Ljava/io/PrintStream;");

int system_in = cp.addFieldref("java.lang.System", "in", /[ System.in
"Ljava/io/InputStream;");

A.2.2 Create variables in and name:

We call the constructors, i.e. execlBefferedReader(InputStreamReader(System.in)) .
The reference to th8ufferedReader  object stays on top of the stack and is stored in the newly
allocatedin variable.

il.append(new NEW(br_index)); // create BufferedReader reference
il.append(InstructionConstants.DUP); // duplicate reference
il.append(new NEW(ir_index)); // same for InputStreamReader
il.append(InstructionConstants.DUP); // reuse predefined constant
il.append(new GETSTATIC(system_in));
il.append(new INVOKESPECIAL(cp.addMethodref("java.io.InputStreamReader",
"<init>",
"(Ljavalio/InputStream;)V")));
il.append(new INVOKESPECIAL(cp.addMethodref("java.io.BufferedReader"”,
"<init>",
"(Ljaval/io/Reader;)V")));
LocalVariableGen Ig = mg.addLocalVariable("in",
new ObjectType(
"java.io.BufferedReader"),
null, null);
int in = lg.getindex();
lg.setStart(il.append(new ASTORE(in))); // ‘in’ valid from here

Create local variableaame and initialize it tonull



lg = mg.addLocalVariable("name”, Type.STRING, null, null);

int name = lg.getindex();

il.append(InstructionConstants. ACONST_NULL); // save memory by using constant
lg.setStart(il.append(new ASTORE(name))); // ‘name’ valid from here

A.2.3 Create try-catch block

We remember the start of the block, read a line from the standard input and store it into the veamable

InstructionHandle try_start = il.append(new GETSTATIC(system_out));
il.append(new PUSH(cp, "Please enter your name> "));
il.append(new INVOKEVIRTUAL(cp.addMethodref("java.io.PrintStream",
"print",
"(Ljava/lang/String;)V"));
il.append(new ALOAD(in));
il.append(new INVOKEVIRTUAL(cp.addMethodref("java.io.BufferedReader",
"readLine",
"(Ljava/lang/String;™));
il.append(new ASTORE(name));

Upon normal execution we jump behind exception handler, the target address is not known yet.

GOTO g = new GOTO(null);
InstructionHandle try_end = il.append(g);

We add the exception handler which simply returns from the method.

InstructionHandle handler = il.append(new RETURN());
mg.addExceptionHandler(try_start, try_end, handler, "java.io.lOException™);

“Normal” code continues, now we can set the branch target of the GOTO.

InstructionHandle ih = il.append(new GETSTATIC(system_out));
g.setTarget(ih);

A.2.4 Printing "Hello”

String concatenation compiles &tringBuffer operations.

il.append(new NEW(cp.addClass("java.lang.StringBuffer")));

il.append(InstructionConstants.DUP);

il.append(new PUSH(cp, "Hello, "));

il.append(new INVOKESPECIAL(cp.addMethodref("java.lang.StringBuffer"”,
"<init>",
"(Ljava/lang/String;)V"));

il.append(new ALOAD(name));

il.append(new INVOKEVIRTUAL(cp.addMethodref("java.lang.StringBuffer",



"append",
"(Ljava/lang/String;)" +
“Ljava/lang/StringBuffer;")));

il.append(new INVOKEVIRTUAL(cp.addMethodref("java.lang.StringBuffer”,
"toString",
"(Ljava/lang/String;"));

il.append(new INVOKEVIRTUAL(cp.addMethodref("java.io.PrintStream”,
"printin",

"(Ljaval/lang/String;)V")));
il.appendinstructionConstants.RETURN);

A.2.5 Finalization

Finally, we have to set the stack size, which normally would be computed on the fly and add a default
constructor method to the class, which is empty in this case.

mg.setMaxStack(5);
cg.addMethod(mg.getMethod());
cg.addEmptyConstructor(ACC_PUBLIC);

Last but not least we dump tilavaClass object to a file.

try {
cg.getJavaClass().dump("HelloWorld.class");
} catch(java.io.lOException e) { System.err.printin(e); }

A.3 Peephole.java

This class implements a simple peephole optimizer that removes any NOP instructions from the given
class.

import java.io.*;

import de.fub.bytecode.classfile.*;
import de.fub.bytecode.generic.*;
import de.fub.bytecode.ClassPath;

public class Peephole {
public static void main(String[] argv) {

try {
/* Load the class from CLASSPATH.
*/
ClassPath class_path = new ClassPath();
InputStream is = class_path.getinputStream(argv[0]);

ClassParser parser = new ClassParser(is, argv[0]);



parser.parse();

clazz.getMethods();

new ConstantPoolGen(clazz.
getConstantPool());

JavaClass clazz
Method]] methods
ConstantPoolGen cp

for(int i=0; i < methods.length; i++) {
MethodGen mg = new MethodGen(methods]i],
clazz.getClassName(), cp);
Method stripped = removeNOPs(mg);

if(stripped !'= null) /I Any NOPs stripped?
methods[i] = stripped; // Overwrite with stripped method

}

/* Dump the class to <class name>_.class
*/
clazz.setConstantPool(cp.getFinalConstantPool());
clazz.dump(clazz.getClassName() + " _.class");
} catch(Exception e) { e.printStackTrace(); }

}

private static final Method removeNOPs(MethodGen mg) {
InstructionList il = mg.getinstructionList();
FindPattern f = new FindPattern(il);
String pat = "('NOP)+"; // Find at least one NOP
InstructionHandle next = null;
int count = O;

for(InstructionHandle ih = f.search(pat);
ih 1= null;
ih = f.search(pat, next)) {

InstructionHandle[] match = f.getMatch();
InstructionHandle  first = match[0];
InstructionHandle  last = match[match.length - 1];

[* Some nasty Java compilers may add NOP at end of method.
*/
if((next = last.getNext()) == null)

break;

count += match.length;

/* Delete NOPs and redirect any references to them to the following
* (non-nop) instruction.



*/
try {
il.delete(first, last);
} catch(TargetLostException e) {
InstructionHandle[] targets = e.getTargets();
for(int i=0; i < targets.length; i++) {
InstructionTargeter[] targeters = targets|i].getTargeters();

for(int j=0; j < targeters.length; j++)
targeters[j].updateTarget(targets[i], next);
}
}
}

if(count > 0) {
System.out.printin("Removed " + count + " NOP instructions from method " +
mg.getMethodName());
return mg.getMethod();
}
else
return null;
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Figure 8: UML diagram for the ConstantPool API
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