
Building Dependable Systems:
The OpenVMS Approach
Order Number: AA–PV5YB–TE

March 1994

This handbook describes the principles of building dependable
computing systems. It also highlights the dependability features of
OpenVMS software, layered products software, and related hardware
components.

Revision/Update Information: This manual supersedes Building
Dependable Systems: The OpenVMS
VAX Approach, OpenVMS VAX Version
6.0.

Software Versions: OpenVMS AXP Version 6.1
OpenVMS VAX Version 6.1

Digital Equipment Corporation
Maynard, Massachusetts

March 1994

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only pursuant
to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994. All rights reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: ACMS, Alpha AXP, AXP, BI,
Bookreader, Business Recovery Server, CDA, CDD/Repository, CI, COHESION, DATATRIEVE,
DECADMIRE, DECalert, DECamds, DBMS, DECalert, DECdecision, DECdesign, DECdtm,
DECforms, DECmcc, DECnet, DECquery, DEC RALLY, DEC Rdb, DEC Reliable Transaction
Router, DECscheduler, DECset, DECstart, DECsupport, DECtalk, DECtp, DECtrace, DEC
VUIT, DECwindows, DELUA, DEMPR, DEQNA, DEUNA, Digital, HSC, HSC70, LAT, MicroVAX,
MicroVAX II, MSCP, NETplan, NETstart, OpenVMS, PATHWORKS, POLYCENTER, Performance
Solution, Q–bus, RA, SPM, TA, ULTRIX, UNIBUS, VAX, VAX–11/780, VAX 6000, VAX 9000,
VAXBI, VAXcluster, VAX FORTRAN, VAX MACRO, VAX OPS5, VAX Performance Advisor,
VAX RMS, VAXserver, VAXsim, VAXsimPLUS, VAXstation, VIDA, VMS, XUI, the AXP logo,
and the DIGITAL logo.

The following are third-party trademarks:

Adobe is a registered trademark of Adobe Systems Incorporated.

Apple and Macintosh are registered trademarks of Apple Computer, Inc.

Australian Stock Exchange is a registered trademark of Australian Stock Exchange, Ltd.

Data Phone is a registered trademark of American Telephone and Telegraph Company.

Halon is a registered trademark of Allied Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Internet is a registered trademark of Internet, Inc.

Motif and OSF/Motif are registered trademarks of Open Software Foundation, Inc.

MS, Microsoft, and MS–DOS are registered trademarks of Microsoft Corporation.

Open Software Foundation is a trademark of the Open Software Foundation, Inc.

OS/2 is a registered trademark of International Business Machines Corporation.

People Finder is a registered trademark of Motorola Corporation.

POSTSCRIPT is a registered trademark of Adobe Systems Incorporated.

SkyPager is a registered trademark of National Satellite Paging, Inc.

TARGET–>ALERT is a trademark of Target Systems Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

ZK5709

This document is available on CD–ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Send Us Your Comments
We welcome your comments on this or any other OpenVMS manual. If you have suggestions for
improving a particular section or find any errors, please indicate the title, order number, chapter,
section, and page number (if available). We also welcome more general comments. Your input is
valuable in improving future releases of our documentation.

You can send comments to us in the following ways:

• Internet electronic mail: OPENVMSDOC@ZKO.MTS.DEC.COM

• Fax: 603-881-0120 Attn: OpenVMS Documentation, ZKO3-4/U08

• A completed Reader’s Comments form (postage paid, if mailed in the United States), or a
letter, via the postal service. Two Reader’s Comments forms are located at the back of each
printed OpenVMS manual. Please send letters and forms to:

Digital Equipment Corporation
Information Design and Consulting
OpenVMS Documentation
110 Spit Brook Road, ZKO3-4/U08
Nashua, NH 03062-2698
USA

You may also use an online questionnaire to give us feedback. Print or edit the online file
SYS$HELP:OPENVMSDOC_SURVEY.TXT. Send the completed online file by electronic mail to our
Internet address, or send the completed hardcopy survey by fax or through the postal service.

Thank you.

Contents

Preface . xiii

1 Introduction to Dependable Computing

1.1 Levels of System Dependability Requirements . 1–1
1.2 How Do You Build Dependable Systems? . 1–3
1.3 Dependability Terms . 1–5
1.4 Basic Concepts of Dependability . 1–8
1.4.1 Primary Dependability Strategies . 1–10
1.4.2 Redundant Functional Units . 1–13
1.4.2.1 Manual Redundancy . 1–13
1.4.2.2 Automatic Redundancy . 1–13
1.4.2.3 Capacity-Related Redundancy . 1–14
1.4.2.4 Redundancy in Computing Systems . 1–14
1.5 How a Dependable System Supports the Business 1–14
1.6 Balance Is Critical to a Dependable System . 1–17

2 Analyzing Dependable System Requirements

2.1 Dependability Is a Journey, Not a Destination . 2–1
2.2 Determining Your Dependability Requirements . 2–4
2.2.1 Collecting Requirements . 2–5
2.2.2 Priority Requirements . 2–8
2.2.3 Analyzing the Sample Company’s Dependability Requirements 2–9
2.2.4 Generating the Sample Company’s First Steps to Dependability 2–11
2.2.5 Mapping Options to Requirements for the Sample Company 2–13

3 Dependability Options of the System Building Blocks

3.1 Analyzing Environmental Options . 3–2
3.1.1 Utilities . 3–2
3.1.2 Structures . 3–2
3.1.3 Networks . 3–3
3.2 Analyzing Hardware Options . 3–3
3.2.1 Starting with New Equipment . 3–4
3.2.2 Making Do with Currently Installed Equipment 3–4
3.2.3 Investing a Little to Gain a Lot . 3–5
3.3 Analyzing Communications Options . 3–5
3.3.1 Restricting Access to the Computer Room . 3–5
3.3.2 Providing Corporate Data to Local Personal Computers 3–5
3.3.3 Weaving a Tapestry of Computing Resources . 3–6
3.3.4 Providing a System Network . 3–7
3.4 Analyzing Software Options . 3–7
3.4.1 Writing Custom Applications . 3–8

v

3.4.2 Acquiring Software Packages . 3–10
3.4.3 Selecting a Systems Integrator . 3–11
3.5 Analyzing Operational Procedures Options . 3–12
3.5.1 Avoiding User Errors . 3–12
3.5.2 Training, Testing, and Drills . 3–12
3.5.3 Extended Hours of Operator Coverage . 3–13
3.5.4 Beepers for System Managers and Programmers 3–13
3.5.5 Lights Out Computer Facilities . 3–13
3.5.6 Policies Regarding System Privileges . 3–14
3.6 Analyzing Personnel Options . 3–15
3.6.1 Teamwork Makes the System Work . 3–15
3.6.2 Robots, We Are Not! . 3–16

4 Balancing Dependability with Other Business Considerations

4.1 Identifying Constraints to Achieving a Dependable System 4–1
4.1.1 Performance Tradeoffs . 4–3
4.1.1.1 Circuit Level Redundancy . 4–4
4.1.1.2 Subsystem Level Redundancy . 4–4
4.1.1.3 System Kernel Level Redundancy . 4–5
4.1.1.4 Independently Recoverable System Kernels 4–6
4.1.1.5 Network Level Redundancy . 4–11
4.1.1.6 Operating System Performance . 4–12
4.1.1.7 Application Software Performance . 4–13
4.1.1.8 Personnel Productivity and System Performance 4–13
4.1.2 Implementation Tradeoffs . 4–13
4.1.2.1 Feasibility Considerations . 4–14
4.1.2.2 Timing Considerations . 4–14
4.1.2.3 Learning Curve Considerations . 4–14
4.1.3 Staffing Tradeoffs and Considerations . 4–14
4.1.4 Vendor Tradeoffs . 4–15
4.1.4.1 Reliable Products . 4–15
4.1.4.2 Adequate Coverage . 4–15
4.1.4.3 Committed Response . 4–15
4.1.4.4 Location Flexibility . 4–15
4.1.4.5 Flexible Roles . 4–16
4.1.4.6 One-Stop Service . 4–16
4.1.5 Cost Tradeoffs . 4–16

5 Maintaining a Dependable Environment

5.1 Electrical Power . 5–1
5.2 Air Conditioning . 5–3
5.3 Water Supplies . 5–4
5.4 Site Security . 5–4
5.5 Desktop Environments . 5–5
5.6 Dealing with Personnel . 5–5
5.6.1 Comprehensive Training . 5–6
5.6.2 Suitable Tools . 5–6
5.6.3 Order and Neatness Contributing to Safety . 5–6
5.6.4 People-Proof Covers . 5–7
5.6.5 Operational Zones . 5–7
5.6.6 Lights Out Computing . 5–7
5.7 Coping with Disasters . 5–8

vi

5.7.1 Time Domain Considerations . 5–9
5.7.2 Hot Standby Sites . 5–11
5.7.3 Business Considerations . 5–12
5.8 Overall System Considerations . 5–12

6 Dependable Hardware Configurations

6.1 Eliminating Single Points of Failure . 6–1
6.2 Conventional AXP and VAX Systems . 6–5
6.2.1 Dependability Enhancements to a Sample Configuration 6–5
6.3 Fault Tolerant VAXft Systems (VAX Only) . 6–8
6.4 VMScluster Hardware Topologies . 6–10
6.4.1 Ethernet Interconnect (IEEE 802.3) . 6–11
6.4.2 Digital Storage Systems Interconnect (DSSI) . 6–13
6.4.3 CI Computer Interconnect . 6–15
6.4.4 Fiber Distributed Data Interface (FDDI) . 6–17
6.4.5 Mixed Interconnect VMSclusters . 6–19
6.5 Dependability Characteristics Summary . 6–20

7 Dependability Characteristics of Communications Networks

7.1 Degrees of Protections from Networking Faults . 7–2
7.2 Providing Multiple Paths to Ethernet and FDDI Segments 7–4
7.2.1 Recommendations for High Availability of Local Area VMSclusters . . . 7–5
7.2.2 Sample Local Area VMScluster Configurations with Multiadapter

Connections to LAN Segments . 7–6
7.2.3 Ethernet and FDDI Options . 7–8
7.2.4 Allowing for LAN Bridge Failover . 7–9
7.2.5 Alternate Adapter Booting for Satellite Nodes 7–9
7.2.6 Changing the LAN Address in the DECnet Database to Allow a

Cluster Satellite to Boot with Any Adapter . 7–9
7.3 Troubleshooting with the VMScluster Network Failure Analysis

Program . 7–9
7.3.1 Summary of Using the Failure Analysis Program 7–10
7.3.2 Summary of Subroutine Package . 7–11
7.4 Network Configurations Using FDDI as the VMScluster Interconnect . . . 7–12
7.5 Providing Multiple WAN Connections for VAXft Systems (VAX Only) 7–15
7.6 Using a DECnet Cluster Alias to Promote Network Application

Availability . 7–15
7.7 Using DNS to Support Network Dependability (VAX Only) 7–16
7.8 Using DFS for Transparent Network File Access (VAX Only) 7–17
7.9 Proactive Network Monitoring and Analysis Products 7–17

8 Building Dependable Software Applications

8.1 Using DEC Reliable Transaction Router for Software Fault Tolerance . . . 8–2
8.1.1 Requester and Server Processes . 8–2
8.1.2 Three Layer Model . 8–3
8.1.3 Partitioned Data Model . 8–4
8.1.4 Transaction Integrity . 8–5
8.1.5 Broadcasts . 8–6

vii

8.1.6 RTR Dependability Features . 8–6
8.1.6.1 Standby Servers . 8–6
8.1.6.2 Shadow Servers . 8–7
8.1.6.3 Router Failover . 8–7
8.1.6.4 Cooperative Transaction Recovery . 8–7
8.1.6.5 Back-End Restart Recovery . 8–7
8.1.6.6 Transaction Message Replay . 8–7
8.1.6.7 Link Failure Recovery . 8–7
8.1.7 Concurrent Servers . 8–8
8.1.8 Flexibility and Growth Provided by RTR . 8–8
8.1.9 Failure Scenarios . 8–8
8.1.9.1 Loss of a Back-End Node . 8–8
8.1.9.2 Loss of a Router . 8–9
8.1.9.3 Loss of a Communications Link . 8–9
8.1.9.4 Loss of a Front-End Node . 8–9
8.1.10 RTR Facilities . 8–9
8.1.11 Call-Out Servers . 8–9
8.1.12 Application Programming Interface and Documentation Pointers 8–10
8.2 OpenVMS Dependability Features . 8–10
8.2.1 OpenVMS Support of Redundant Functional Units 8–10
8.2.2 VMScluster Application Environment Topologies 8–13
8.2.2.1 Application Scaling Considerations . 8–13
8.2.2.2 Resource Contention Considerations . 8–14
8.2.2.3 Independent Processes Paradigm . 8–14
8.2.2.4 Distributed Arbitration Paradigm . 8–15
8.2.2.5 Client/Server Computing Paradigm . 8–16
8.2.2.6 Synchronization Techniques . 8–17
8.2.3 Availability Manager for Distributed Systems 8–17
8.2.3.1 Advantages of Using DECamds . 8–17
8.2.3.2 DECamds Functions . 8–18
8.2.4 Volume Shadowing for OpenVMS . 8–19
8.2.4.1 Repair and Recovery from Failures . 8–21
8.2.4.2 Sample Shadow Set Configurations . 8–23
8.2.5 Disk Striping and Data Parity . 8–26
8.2.6 DECdtm Services and Two-Phase Commit Protocol 8–26
8.2.7 Disk Defragmentation Applications . 8–27
8.2.8 RMS Journaling . 8–28
8.2.9 OpenVMS Queue Manager Failover Capabilities 8–28
8.3 Writing Predictable, Dependable Code . 8–29
8.3.1 Avoiding Errors During Software Specification 8–29
8.3.2 Avoiding Errors in Design and Implementation 8–30
8.3.3 Predicting Future Software Requirements . 8–30
8.3.4 Surviving External Failures . 8–30
8.3.5 Providing for Software Evolution . 8–31
8.3.6 Managing Systems Integration . 8–31
8.4 Prototyping Applications to Build in Dependability 8–31
8.5 Testing Applications to Verify Application Dependability 8–33
8.6 Dependability Features of Application Software . 8–35
8.6.1 Building Dependable Database Applications . 8–35
8.6.1.1 Database Failover in VMSclusters . 8–35
8.6.1.2 Backing Up Active DEC Rdb Databases . 8–40
8.6.1.3 DEC Rdb Use of Two-Phase Commit Protocol 8–44
8.6.1.4 Automatic Cleanup of Databases . 8–46

viii

8.6.1.5 Online Restructuring of Database Characteristics and
Definitions . 8–46

8.6.1.6 Database Security Impact on Application Dependability 8–48
8.6.1.7 Using DECtrace and RdbExpert with Database Applications 8–50
8.6.2 Dependability Aspects of Application Form and Function 8–50
8.6.3 Dependability Characteristics of Transaction Processing Monitors . . . 8–52
8.6.3.1 How TP Monitors Can Assist Dependability Goals of Production

Systems . 8–52
8.6.3.2 How VAX ACMS Can Assist the Dependability of Production

Systems . 8–53
8.7 Managing Shared Information with Software Tools 8–58
8.7.1 Using the Digital COHESION Environment . 8–58
8.7.2 Defining Symbols and Logical Names . 8–60
8.7.3 Using the DNS Namespace . 8–60

9 Dependable Data Center Techniques

9.1 Managing Complex Computing Environments . 9–1
9.2 Data Center Operations . 9–8
9.2.1 Using DCL Procedures to Minimize User Error 9–9
9.2.2 Scheduling Preventative Maintenance . 9–9
9.3 Failures and Recovery . 9–10
9.3.1 Catastrophic Failures . 9–12
9.3.2 Intermittent Failures . 9–12
9.3.3 Multiple-Cause Failures . 9–12
9.3.4 False Failures . 9–13
9.4 Upgrades and Installations . 9–13
9.4.1 Continuing Service to Users During Upgrades and Installations 9–14
9.4.2 Controlling Quotas and Privileges . 9–14
9.5 Backup Procedures . 9–14
9.6 Dependable Disk Devices . 9–16
9.6.1 Restoring Disk Devices Containing Databases 9–16
9.6.2 Defragmenting Disks to Improve I/O Performance 9–17
9.7 OpenVMS Batch and Print Recovery Techniques 9–18
9.8 Implementing the Security Policy of the Data Center 9–19
9.9 Supporting a Distributed Environment . 9–21
9.10 Supporting VMScluster System Environments . 9–22
9.10.1 VMScluster Quorum Disk . 9–22
9.10.2 VMScluster Common System Disks . 9–22
9.10.3 Multiple OpenVMS Versions (Rolling Upgrade) 9–23

10 Dependable Consulting from Digital

10.1 Application Characterization and Predictive Sizing Consulting 10–1
10.2 Capacity Planning Consulting Service . 10–2
10.3 COHESION Support Consulting . 10–2
10.4 Contingency Planning Assistance Consulting Service 10–3
10.5 Customer Training Advice Package . 10–3
10.5.1 Course Formats . 10–3
10.5.2 Purchase Options . 10–3
10.5.3 Comprehensive Training Solutions . 10–4
10.6 DECstart Consulting . 10–4
10.7 Digital Program Methodology Consulting . 10–5
10.8 DSNlink—Customer Access to Existing Knowledge Databases 10–5

ix

10.9 Enterprise Integration Centers Advice Package . 10–6
10.10 Enterprise Planning and Design Consulting . 10–7
10.11 Help Desk Consulting Service . 10–7
10.12 Migration Consulting . 10–7
10.13 Network Performance Consulting . 10–7
10.14 Packaged Application Software Solution Consulting Service 10–8
10.15 Professional Consulting Services . 10–8
10.16 Recover-All Consulting Service . 10–8
10.17 RESTART Consulting Service . 10–9
10.18 Systems Integration Advice Package . 10–9
10.19 VAX Performance and Capacity Consulting Services 10–9
10.20 OpenVMS Security Enhancement Consulting Service 10–9
10.21 OpenVMS Security Review Consulting . 10–10

11 Case Study: Lights Out Data Center

11.1 Customer Support Center Business . 11–2
11.2 Time for a Radical Change . 11–3
11.3 Customer Expectations . 11–4
11.4 Strategies for Achieving 100% Application Availability 11–5
11.4.1 Process Strategy to Meet CSC Business Needs 11–5
11.4.2 Staffing Strategy to Meet CSC Business Needs 11–6
11.4.3 Hardware Strategy to Meet CSC Business Needs 11–7
11.4.4 Software Strategy to Meet CSC Business Needs 11–7
11.4.5 Environment Strategy to Meet CSC Business Needs 11–8
11.4.6 Telecommunications Strategy to Meet CSC Business Needs 11–8
11.5 Implementing the Data Center’s Strategies . 11–9
11.5.1 Sensitive Implementation of a Refocused Staff 11–9
11.5.2 Technology Planning and Utilization . 11–10
11.5.3 Protecting Against Environmental Factors . 11–10
11.5.4 Application Development Management and Implementation 11–11
11.5.5 Overall Operations Support Implementation . 11–11
11.6 DECalert and Other Products Used to Manage CSC Data Center

Operations . 11–12
11.7 Additional Benefits of the Lights Out Environment 11–19

A Data Center Evaluation Checklists

A.1 General Planning Checklist . A–3
A.2 Environmental Management Checklist . A–5
A.3 Data Center Organization Checklist . A–8
A.4 Security Checklist . A–10
A.5 Application Software Checklist . A–18
A.6 Digital Service and Support Checklist . A–20
A.7 Compliance Summary . A–21

B Bibliography

B.1 Digital Publications . B–1
B.2 Other Publications . B–4

x

Glossary

Index

Figures

1–1 Operational Conditions Metaphor . 1–9
1–2 Characteristics of Dependable Computing Systems 1–10
1–3 Metaphor of Selected Automotive Components and Dependability

Strategies . 1–11
1–4 Building Blocks of Dependable Systems . 1–15
2–1 Continuous Improvement Process . 2–2
2–2 Worksheet for Collecting Dependability Requirements 2–6
2–3 Worksheet for Brainstorming First Steps . 2–12
4–1 A System with Independently Recoverable Kernels 4–7
4–2 Individual Kernel Capacity Versus Time: Example State

Diagrams . 4–8
4–3 Total System Capacity Versus Time: Example State Diagram 4–10
5–1 Time Domain Behavior of AXP and VAX System Configurations 5–10
6–1 System Configuration Enhancements Worksheet 6–4
6–2 Conventional System: Example Configuration 6–6
6–3 Fault Tolerant VAX System: Example Configuration 6–9
6–4 Local Area (Ethernet) VMScluster System: Example

Configuration . 6–12
6–5 DSSI VMScluster System: Example Configuration 6–14
6–6 CI VAXcluster System: Example Configuration 6–16
6–7 FDDI VMScluster System: Example Configuration 6–18
6–8 Wide Area Network: Example Configuration . 6–21
7–1 Sample Configuration for a Local Area VMScluster Connected to Two

LAN Segments . 7–6
7–2 Sample Configuration for Local Area Cluster Systems Connected to

Three LAN Segments . 7–7
7–3 FDDI in Conjunction with Ethernet in a VMScluster System 7–13
7–4 Multiple-Site Data Center VMScluster System 7–14
7–5 A DNS Namespace . 7–16
8–1 Splitting an Application into Requesters and Servers with RTR 8–3
8–2 Three Layer RTR Model . 8–3
8–3 Partitioned Data Model . 8–5
8–4 Simple Standby Configuration . 8–6
8–5 Simple Shadow Configuration . 8–7
8–6 DECamds Model . 8–19
8–7 Levels of Availability . 8–21
8–8 Configuration of a Shadow Set (Highly Available Local Area

VMScluster) . 8–24
8–9 Configuration of a Shadow Set (With Multiple Star Couplers and

Multiple HSC Controllers) . 8–25
8–10 Two-Phase Commit Protocol for a Distributed Transaction 8–27
8–11 Failover and Recovery Process for DEC Rdb Users in VMScluster . . . 8–37

xi

8–12 Coordination of Online Database Backups . 8–42
8–13 Two-Phase Commit for Funds Transfer Example 8–45
8–14 ACMS Application Failover . 8–54
8–15 ACMS Front-End Terminal Failover . 8–56
8–16 ACMS Request Capture . 8–57
11–1 CSC Data Center Operations Management . 11–13
11–2 DECalert Sensors and Alert Notifications . 11–14
11–3 DIANA Modules and DISPLAY . 11–16

Tables

1–1 Primary Strategies to Enhance Dependability 1–13
1–2 Applying Primary Dependability Strategies to Building Blocks 1–17
2–1 Dependability Requirements for the Sample Company 2–9
2–2 The Sample Company’s Proposed Enhancements 2–13
4–1 Dependability Constraints: Sample Questions 4–2
6–1 System Configuration Enhancements: Sample Worksheet 6–7
6–2 VMScluster Interconnect Characteristics Summary 6–19
6–3 Dependability Characteristics Summary . 6–22
7–1 Ethernet and FDDI Adapters . 7–5
8–1 Types of Device Failures . 8–22
9–1 Data Center Management Portfolio . 9–2
A–1 Compliance Summary . A–21

xii

Preface

Intended Audience
This manual is intended for systems analysts, application designers, system
managers, network managers, and database administrators who are responsible
for setting up and maintaining the dependable operation of computing systems
that run on the OpenVMS™ operating system.

Document Structure
This handbook, Building Dependable Systems: The OpenVMS Approach, consists
of 11 chapters, two appendixes, a glossary, and an index.

Chapter 1 defines the characteristics of dependable computing systems and
introduces key dependability terms and concepts.

Chapter 2 describes how to analyze the dependability requirements of the users
of a computing system. The chapter outlines a general approach that can be used
to reconcile those requirements with overall business goals.

Chapter 3 offers a method for examining dependability options in the system’s
environment, hardware, communications, software, personnel, and operational
procedures for determining the most effective way to provide improved
dependability characteristics.

Chapter 4 examines how to balance your dependability goals with other business
considerations.

Chapter 5 describes how the physical environment of a computing system affects
its dependability.

Chapter 6 describes how closely the dependability of a computing system is
determined by its hardware configuration. A method for analyzing a hardware
configuration is provided and several typical configurations are illustrated and
explained.

Chapter 7 describes techniques and products that can be used to build dependable
networks.

Chapter 8 describes selected Digital™ software products, as well as suggested
coding techniques, that contribute to the high availability and performance of
software applications.

Chapter 9 provides common sense rules, tools, and techniques for data center
operations and system management. The functions discussed in this chapter
describe the impact of, and recommendations for, reducing the number of errors
and failures caused as a result of system management tasks.

Chapter 10 provides brief descriptions of the services available through the
Digital Consulting organization. A summary of the Digital online service
connection, DSNlink, is also in this chapter.

xiii

Chapter 11 presents a case study of a lights out data center that provides 100%
application availability for a Digital Customer Support Center in Colorado.

Appendix A contains evaluation checklists to help you determine whether your
computing system meets the minimum requirements for an acceptable computing
environment.

Appendix B contains a bibliography of suggested readings for further study.

The Glossary contains definitions of terms used in discussions of system
dependability.

Associated Documents
This handbook is not an exhaustive discussion of the product components
described within. Therefore, as you use this handbook, you may find it helpful
to refer to the documentation sets for the products mentioned. The discussion of
most topics in this handbook includes references to specific manuals in component
product documentation sets.

Conventions
In this manual, every use of OpenVMS AXP means the OpenVMS AXP operating
system, every use of OpenVMS VAX means the OpenVMS VAX operating system,
and every use of OpenVMS means both the OpenVMS AXP operating system and
the OpenVMS VAX operating system.

The following conventions are used to identify information specific to OpenVMS
AXP or to OpenVMS VAX:

AXP
The AXP icon denotes the beginning of information
specific to OpenVMS AXP.

VAX
The VAX icon denotes the beginning of information
specific to OpenVMS VAX.

The diamond symbol denotes the end of a section of
information specific to OpenVMS AXP or to OpenVMS
VAX.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are also used in this manual:

boldface text Boldface text represents the introduction of a new term or the
name of an argument, an attribute, or a reason (user action
that triggers a callback).

Boldface text is also used to show user input in Bookreader
versions of the manual.

italic text Italic text emphasizes important information and indicates
complete titles of manuals and variables. Variables include
information that varies in system messages (Internal error
number), in command lines (/PRODUCER=name), and in
command parameters in text (where device-name contains up
to five alphanumeric characters).

xiv

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xv

1
Introduction to Dependable Computing

When your organization cannot conduct its work due to the failure of a computing
system component, the consequences can range from merely inconveniencing
certain users, to the temporary loss of productivity and revenue, to more severe
impacts like harming the organization’s long-term financial health or even
endangering public safety.

A dependable computing system is one that can be counted on to provide
services to its users when those services are needed. Beyond the ability to log
in to the system, a dependable computing system provides sufficient performance
so that users and applications can conduct their work efficiently. Building
dependable computing systems is a continuous process that involves complex
interdependencies between these components of an enterprise:

• Environment

• Hardware

• Communications

• Software

• Operational procedures

• Personnel

This chapter introduces key dependability terms and concepts and describes
different levels of dependability. Subsequent chapters in this handbook provide
the methodologies for defining and configuring the proper mix of computing
resources and services to meet the business requirements of an organization.

1.1 Levels of System Dependability Requirements
Dependability requirements for most organizations generally fall into four broad
(and sometimes overlapping) categories:

• Business functions with computing dependability requirements that can be
met by conventional computing systems. An example of a conventional
computing system is a standalone AXP™ system or a local area network
(LAN) of AXP and VAX™ systems.

• Business functions that require uninterrupted computing services, either
during essential time periods, or during most hours of the day and most days
of the week throughout the year. These dependability requirements need to
be met by highly available computing systems. An example of a highly
available computing system is an environment comprised of VMScluster™
nodes, shadowed disks, uninterruptible power systems (UPS), and database
systems that provide sufficient transactions per second (TPS) rates and allow
for backup operations when there are active users. Requirements for highly
available computing systems typically mean a goal of 24 hours a day, 365
days a year; this measurement is often shown as 24x365. However, in this

1–1

Introduction to Dependable Computing
1.1 Levels of System Dependability Requirements

category, rare exceptions can be made for minimal down time to perform
certain operations like upgrading the system’s hardware or software.

• Business functions that absolutely demand uninterrupted computing services.
Functions of this nature are sometimes called mission critical because
achieving the business’s financial goals often depends directly on how well
its computing systems support the firm’s computerized business applications.
These stringent dependability requirements need to be met by fault tolerant
computing systems, like the Digital™ fault tolerant VAX (VAXft).

• Business functions that absolutely demand uninterrupted computing services
and need to be immune from disasters like earthquakes, fires, floods,
hurricanes, power failures, vandalism, or even acts of terrorism. These
extremely stringent dependability requirements need to be met by disaster
tolerant computing systems. An example of a disaster tolerant computing
system is a single VMScluster that exists as two geographically distant lobes.
Each lobe of the single VMScluster system is connected by high-speed Fiber
Distributed Data Interface (FDDI) fiber-optic cables, with a distance of up to
40 kilometers between the two lobes. Hardware redundancy configurations
for each component of the geographically distributed VMScluster system are
in place to provide for most disasters.

Note that a system with requirements for disaster tolerance
may not necessarily also need 24x365 operation. In addition, a disaster
tolerant environment may not necessarily require a 40 kilometer geographic
distance. In situations where disaster tolerance is being considered for
computing systems, you should define a safe distance based on the
environmental factors of the region and a recognition of your business
requirements for redundancy.

The business examples in the following list may help you visualize the different
levels of dependability requirements:

• Conventional computing

A firm of tax accountants maintains client tax data on line for (up to) the
previous three years. The safety and security of their client on-disk data is
important, and a process is in place to perform disk-to-tape weekly backups
and nightly incremental backups. Backup tapes older than one week are
stored off site. The accountants and their staff typically use their computers
during regular business hours (9 a.m. to 5 p.m.). While the director of
computing services wants the computing systems to never fail, system
outages at night not affecting the integrity of data on the disks are not a
significant concern.

• Highly available computing during specific time periods

A densely populated city uses an extensive network of computers to coordinate
the flow of traffic through a grid of intersecting streets in its downtown
business district. During the early morning and late afternoon commuting
hours, thousands of motorists are aided by the city’s computers that control
the timing of the overhead traffic lights. City planners know that the traffic
flow application is critical during the rush hours. Should the computing
systems fail then, the consequences could be significant. For instance,
motorists would be inconvenienced, traffic congestion would quickly and
adversely affect air quality, and ambulances might have trouble responding to
emergencies. If the computers fail at 3 a.m. Sunday and the outage lasts for
10 minutes, the results are still undesirable but are not catastrophic.

1–2

Introduction to Dependable Computing
1.1 Levels of System Dependability Requirements

The design of computing services for this city’s traffic flow application is
modeled after the need for uninterrupted services during easily defined time
periods. During the rush hours, the dependability requirements are mission
critical. Although a level of flexibility is provided during nonpeak hours for
hardware or software upgrades and other system management chores, the
hardware and software configuration must take into account the peak hour
requirements.

• Highly available computing, 24 hours a day, 365 days a year, with minimal
exceptions

A large, international hotel corporation operates a reservation system for its
1,000 hotels worldwide. Reservations can be entered or checked 24 hours
a day, 365 days a year. The centralized database of reservations must be
backed up while multiple agents are reading existing entries or entering new
reservations. Twice a year, system management personnel schedule a limited
stretch of time for the system to be brought down for hardware and software
upgrades.

• Fault tolerant computing

At 4:23 a.m. a hospital nurse is watching monitors for patients in the
intensive care unit (ICU). The patients and their families rely on the
dependability of the monitors, and the monitors are dependent on the
computers that run them. For this scenario, a fault tolerant processor,
shadowed disks, and database management software that provides run-time
journaling, after-image journaling recovery, and online backup features might
be used.

• Disaster tolerant computing

A major banking corporation’s computer-based applications can never be
allowed to fail. Assume that the cost for each minute of down time is ¥50,000.
After exploring a number of options, the banking corporation elects to expand
and partition its 8-node VMScluster system. Some portion of the VMScluster
system will reside 40 kilometers apart, connected by FDDI fiber-optic cables.
The two portions of the single VMScluster system are mirror images of the
applications and databases that comprise all the corporation’s applications.
Should a disaster like a building fire affect one site, the other site can
continue processing. Shadowed disks provide duplicates of the system and
user data, and the VMScluster software helps to alleviate the difficulty of
system management tasks for a large and geographically distributed system.

1.2 How Do You Build Dependable Systems?
Computing service interruptions, or down time, annoy everyone involved.
Users with even conventional dependability requirements are affected by any
unexpected denial of service. System managers, database administrators,
network managers, and others responsible for the continuous and predictable
operation of computing services dread unexpected down time, of course, because
it typically results in an intense scramble to identify the cause of the outage, to
restore (where possible) lost data, and to fix the root of the problem so that it
will not occur again. Everyone, especially senior management, deplores computer
outages because they generate mistrust over the dependability of the applications.
Employees start to change their work habits, perhaps not productively, as they
wonder, ‘‘ . . . when will this system go down next?’’ For organizations that offer
their computing services as a product to clients, outages can mean that clients
will take their business elsewhere.

1–3

Introduction to Dependable Computing
1.2 How Do You Build Dependable Systems?

Everyone agrees, then, that unscheduled computing service outages are to be
avoided whenever possible. Unfortunately, doing so is not simply a matter of
installing redundant hardware. A number of proven, guiding principles exist that
have helped computer professionals successfully build dependable systems. The
key principles are described in Chapter 2. The following list briefly introduces
the principles:

• Plan ahead to prevent problems from occurring, to handle problems when
they do occur, and to mobilize additional resources if problems too big to
handle immediately occur.

• Go through a formal process of identifying the exact nature of your
organization’s dependability requirements.

• Go through a formal process of identifying the exact nature of your
applications’ dependability requirements. An appropriate configuration
for application A might be entirely wrong for application B and application C.
You may have to segregate the resources needed to support two sets of
applications that have differing needs.

• Define, test, implement, and modify as needed to reflect volatile business
requirements your strategies for fault prevention, error correction, and failure
recovery.

• Provide continuous, top-notch education and training of your computer
operations staff.

• Document the procedures and policies in your computing operation carefully
and extensively. Document the practices that failed, too, so that future
employees will not repeat mistakes. Valued employees who leave your
organization potentially take with them knowledge and wisdom about the
methods used to make things work.

• Establish a process where employees learn each other’s jobs, when possible
and appropriate. The advantage is that your organization duplicates
knowledge and employees can catch each other’s mistakes and avoid some
problems early on.

• Create a continuous cycle of testing procedures. Perform the tests with
diligence.

• Design emergency drills for the staff and run the drills on a scheduled basis,
without warnings, and often.

• Use selected vendor hardware products, software products, and services
that match your dependability requirements. Assume nothing about the
appropriateness of a vendor’s product for your business applications. Instead,
verify everything.

• Use care and sensitivity to assist those employees who have new
responsibilities or now-obsolete assignments, if improving the dependability
of your computing systems results in personnel changes. The overall morale
of the new ‘‘dependability team’’ may hinge on the fairness of management’s
decisions during the transition. For example, a staff of 35 lab operators
will be cut down to just 5 operators as a data center evolves to a paperless
environment that also performs all disk-to-disk backups. Whenever feasible,
work aggressively to help the 30 displaced employees find more productive,
rewarding jobs in your organization or another area of the company.

1–4

Introduction to Dependable Computing
1.2 How Do You Build Dependable Systems?

• Define the impact of security breaches on your dependability requirements.
If you have redundant CPUs and disks, but an intruder can physically or
electronically get into your unprotected computer lab, you have not built a
dependable system.

• Similarly, protect mission-critical applications against environmental
influences such as fires, power failures, and air conditioning equipment.
Define your requirements with the following thought in mind, ‘‘The worst
possible scenario will occur—often.’’ Prepare contingency plans, too.

• Identify your organization’s constraints (physical site, capital funding
budget for equipment and software, organizational, legal, others). Use your
knowledge about the constraints to assess the degree to which you can
guarantee dependable computing services.

The remaining chapters in this handbook describe the key dependability
principles in much more detail. Also see the data center evaluation checklists in
Appendix A or in SYS$EXAMPLES (VMS_DEPENDABILITY_CHECKLIST.PS
for PostScript® output and VMS_DEPENDABILITY_CHECKLIST.TXT for
text output1). The checklists may help you determine whether your current
computing resources meet the minimum rquirements, as suggested by Digital, for
a dependable computing environment.

1.3 Dependability Terms
Unfortunately for readers who are interested in topics about providing continuous
computing services, the definition of terms like availability, reliability, and
fault tolerance used in computer science textbooks, trade magazines, and vendor
product documentation often vary from source to source. This handbook uses
these terms as consistently as possible with the majority of sources available.

In the following list, dependability terms are explained:

• A computing component is a part of the total computing system around
which an arbitrary boundary has been defined. The boundary can be defined
at any level. Examples include:

An integrated circuit chip

An optical disk drive

A FORTRAN subroutine

A relational database management system

The Cleveland branch’s VMScluster system

An operator

The system manager

The electric power utility

• A fault is a defect in some component of a computing system. Under certain
conditions, such a state would produce an error if the computing component
were required to perform its function. Examples include:

A bad spot on a magnetic tape

A typographical mistake in the program source

1 These files are available in SYS$EXAMPLES on VAX system disks only; however, the
information applies to AXP or VAX environments.

1–5

Introduction to Dependable Computing
1.3 Dependability Terms

An unnoticed console message

A truck hitting a key utility pole

• An error is an event during the operation of a computing component that
produces incorrect results due to one or more faults. Errors are observed
as incorrect responses within a specific computing component. Examples
include:

A nonmatching checksum while reading data

Executing a faulty code path in a program

Mounting the wrong magnetic tape

The lights flickering

• A failure is the inability of a computing component to perform its function
correctly due to one or more internal faults whose effects cannot be contained.
Failures are observed by the consumers of the computing component’s services
as incorrect behavior. Examples include:

Not being able to successfully read the stored data

A program aborting when tested

Purging away (deleting) the working version of a program

An extended power outage

• Availability is the percentage or amount of scheduled time that a computing
system provides application service. System availability is only one
component of a dependable computing system. For example, the ability
to log in to an AXP node or a VAX node means that the OpenVMS™ system
is available but not necessarily meeting the needs of its users; application
availability meets that need. The following equation is one way to measure
availability:

Availability (%) = (Total usable hours / Total elapsed hours) * 100

• Reliability is the ability of a computing system to operate without failing.
Reliability commonly means the absence of errors or faults in the system’s
components such that the system is able to serve its users and applications.
Reliability can be measured by mean-time-between-failures (MTBF):

MTBF (hours) = (Total elapsed hours / (Failure count + 1))

• Fault tolerance is the ability of a computing system to withstand faults
and errors while continuing to provide the required services. A high level of
failover transparency (transparent to the system’s users and applications) is
usually implied by this term. An example of fault tolerance is a shadow set of
two disks managed by Volume Shadowing for OpenVMS. If one disk fails, I/O
processing continues to the remaining disk member of the shadow set.

• A dependable computing system is a system that can be counted on to
provide reliable services to its users when those services are needed and
do so with sufficient performance. The computing components are created
and combined in the manner necessary to provide the required level of
trustworthiness. In designing dependable computing systems, the question
to ask yourself is, ‘‘Is the system dependable enough to meet the needs of my
business?’’ Examples of dependable computing system components include:

VMScluster systems

1–6

Introduction to Dependable Computing
1.3 Dependability Terms

Fault tolerant VAXft systems

Transaction processing (TP) monitors

Database management systems

Educational and enterprise integration services

Site design and facilities management services

Uninterruptible power systems (UPS)

• Fault prevention is the process of designing and constructing computing
components to be free from faults. The goal is zero defects. Examples
include:

Using CAD/CAM tools for design and manufacture

Using structured or object-oriented methods and CASE tools for
application creation

Providing comprehensive training for operational staff

Investing in uninterruptible power systems (UPS)

• Error correction is the action necessary to isolate the effects of faults to
a specific computing component. The goal is to contain the impact of the
problem. Examples include:

Using redundant bits in memory arrays for error correction

Implementing exception routines to handle unexpected software
conditions

Producing comprehensive contingency plans for operators

Investing in excess air conditioning capacity (via additional, independent
units)

• Failure recovery is the action necessary to restore the failed computing
component to a correctly functioning condition. The goal is prompt return to
zero defects. Examples include:

Installing spare parts from the stock room

Installing the corrected application

Signaling the system manager’s beeper

Cuing the hot standby site to take over

• Fault management is the discipline used to engineer systems with
a cost-effective balance of fault prevention qualities, error correction
capabilities, and failure recovery facilities. Fault management is realized in
the implementation of a dependable computing system. It is also a philosophy
that is followed during the implementation. Examples include:

Designing the VAXft systems with redundant zones to create complete
transparency of fault tolerance. Doing so ensures that any major
subsystem of the hardware configuration can fail and the running
application is not perturbed in any way.

1–7

Introduction to Dependable Computing
1.3 Dependability Terms

Implementing robust applications by utilizing a transaction processing
(TP) monitor and a database management system. Doing so ensures
that application maintenance and database redesign can be performed
without interrupting the production environment (by using certain Digital
products, described in Chapter 8).

Cross training operators and rotating assignments periodically. Doing so
ensures that sickness and vacation do not leave important operational
functions uncovered. It also may result in broader professional
perspectives for each employee, in turn leading to better ideas and
innovations regarding the operation of computing resources.

Investing in separate main power supply feeds from more than one power
grid. Doing so ensures that local power outages do not impact continued
operation.

Please refer to Section 1.4 for conceptual information about dependability. In
particular, see Section 1.4.1 for conceptual information about the three primary
dependability strategies: fault prevention, error correction, and failure recovery.

1.4 Basic Concepts of Dependability
If you examined all the pieces of a computing system in the finest detail, you
would find that each individual component is in one of three conditions. The first
two conditions are obvious:

• Broken

A nonfunctioning or incorrectly functioning condition; for example, an RA90
disk device that is not functioning after a disk failure.

• Not broken

A correctly functioning condition; for example, a software application that is
operating without errors.

While it may appear that these two conditions are mutually exclusive, dependable
systems also make extensive use of a third condition. Upon closer examination,
this condition is actually the phenomenon of a computing component existing in
both conditions at once:

• Apparently not broken

A condition where one or more internal problems exist, but verifiably correct
outputs are being produced in spite of the problems. For example, a fault
tolerant VAX (VAXft) processor has two separate zones that serve as backups
to each other. The ‘‘apparently not broken’’ condition exists when, for
instance, zone A of the VAXft has stopped functioning due to a hardware
problem, but the redundant zone B is performing normally.

Figure 1–1 illustrates a metaphor drawn from these conditions.

1–8

Introduction to Dependable Computing
1.4 Basic Concepts of Dependability

Figure 1–1 Operational Conditions Metaphor

Suitcase closure
latch = apparently not broken
(because of safety straps)

Suitcase closure
latch = not broken

Suitcase closure
latch = broken

Flight
7 8 0

Flight
7 8 0

Flight
7 8 0

ZK−3688A−GE

In Figure 1–1, three conditions of the suitcase closure latch are depicted. The
left panel clearly shows a latch that is broken; with this metaphor, think of
the scattered contents of the suitcase as a failure. The middle panel shows a
latch that is not broken; it is working properly. The right panel represents an
‘‘apparently not broken’’ condition; the latch has opened, but backup safety straps
have prevented a failure (scattered suitcase contents) from occurring.

Other examples of dependability terms drawn from the suitcase metaphor:

• A fault could be a piece of metal on the latch bending out of shape.

• An error occurs when the latch opens.

• A failure occurs when the suitcase spills its contents.

• Fault tolerance is what results because the safety straps contain (correct)
the error.

The broken, not broken, and apparently not broken conditions are important
dependability concepts because the conditions are factors in:

• Three primary strategies for building dependable computing systems

• Three main characteristics of dependable computing systems

Figure 1–2 illustrates the main characteristics of dependable computing systems.

1–9

Introduction to Dependable Computing
1.4 Basic Concepts of Dependability

Figure 1–2 Characteristics of Dependable Computing Systems

ZK−3773A−GE

Reliability

Fault Tolerance

Recoverability

In Figure 1–2:

• The reliability characteristic indicates a component’s ability to maintain a
not broken condition, by virtue of fault prevention strategies.

• The recoverability characteristic indicates a component’s ability to return
from a broken condition to a not broken condition, by virtue of failure
recovery strategies.

• The fault tolerance characteristic indicates a component’s ability to exhibit
an apparently not broken condition, by virtue of error correction strategies.

Figure 1–2 reveals that fault tolerance is actually a level of recoverability that
is so effective that the computing component (or system) is seen as extremely
reliable. That is, it appears to never break.

The following sections explain these concepts in more detail. Section 1.4.1
provides another metaphor that may help you understand how these
dependability strategies work. Section 1.4.2 expands on the metaphor introduced
in Section 1.4.1 and discusses a concept called redundant functional units.

1.4.1 Primary Dependability Strategies
The three essential strategies for building and operating dependable computing
systems are:

• Fault prevention: ensure that the component cannot ever break.

• Error correction: when the component is broken, mask that fact.

• Failure recovery: when the component is visibly broken, return it to an
unbroken state quickly.

1–10

Introduction to Dependable Computing
1.4 Basic Concepts of Dependability

To understand these three key dependability strategies, consider the following
metaphor of an automobile’s components as shown in Figure 1–3. Some of the
automobile’s standard components, plus specialized safety features and backup
systems, combine to create a vehicle that is much more dependable than a vehicle
lacking those features.

Figure 1–3 Metaphor of Selected Automotive Components and Dependability Strategies

Air Bag

Spare Tire

Brakes

Battery

Cellular Phone

Bumper

Headlights Taillights

Windshield Wipers

ZK−3693A−GE

Seat Belts

Bumper

The identified automobile components correspond to the key dependability
strategies in three categories: fault prevention, error correction, and failure
recovery.

Under fault prevention:

• A voice-operated cellular phone: by being hands-off, there is less likelihood of
the operator losing control of the vehicle.

• A low-fuel indicator on the dashboard: much cheaper than auxiliary fuel
tanks, but this feature needs the right environment to work (plentiful service
stations).

• Warning signals that are activated automatically as a result of some
previously defined condition: examples include a recognizable beeping
signal when the operator leaves the vehicle’s headlights illuminated, ignition
keys in the ignition when the vehicle’s motor is off, or the failure to secure
seat belts.

• A well-maintained anti-lock braking system: anti-lock brakes help the
operator from losing control of the vehicle, especially during emergency
deceleration situations. An important factor in the success of this technique
for fault prevention is a proper schedule of inspections and repairs to the
brake system components.

• Windshield wipers: by keeping the operator’s view of the road clear during
rain storms, there is greater likelihood of the operator maintaining safe
control of the vehicle.

• A car radio tuned to a station that broadcasts traffic congestion reports:
alerts the operator to possible trouble areas ahead.

1–11

Introduction to Dependable Computing
1.4 Basic Concepts of Dependability

• Headlights and taillights: headlights illuminate the road ahead at night
and during inclement daytime weather, increasing the likelihood of the
operator maintaining safe control of the vehicle. Similarly, taillights help
other operators notice the vehicle, and properly functioning (brake-activated)
taillights warn operators in vehicles behind this vehicle when this vehicle is
preparing to stop.

Under error correction:

• An auxiliary fuel tank with automatic switch-over feature: when primary fuel
tank is empty, a sensor automatically corrects the error and normal operation
continues. However, the operator must be made aware that an auxiliary
device is now active because the backup system now represents a single point
of failure in the fuel system.

• Five miles per hour (MPH) bumpers: the low-impact bumpers are forgiving of
small mistakes at slow speeds made by the operator or other operators.
Following an error (for example, automobile A moving at 4 MPH and
striking with its front bumper stationary automobile B on its rear bumper),
automobile A’s bumper can absorb the shock of impact and automatically
return to its preaccident front-end condition.

• Headlights that shut off automatically when the ignition is switched off: an
inexpensive, simple relay. This feature prevents the fault of neglecting to
switch off the lights from becoming the failure of a dead battery.

• An automatic airbag that deploys from the operator’s steering wheel during a
severe accident: in the split second between the impact of the automobile and
the time when the operator’s head strikes the airbag, the automobile’s sensor
has detected the error condition (the extreme deceleration).

• Seat belts for the occupants: can often prevent severe injury during an
accident.

Under failure recovery:

• An auxiliary fuel tank with manual switch-over: the automobile’s operator
can use a backup fuel system to be activated manually in the event that the
primary fuel tank runs dry.

• An auxiliary (backup) battery with manual switch-over: similarly, if the
primary battery’s power is drained, the operator’s contingency plan is to
activate the secondary battery unit.

• A cellular telephone or a citizens’ band (CB) radio: if the automobile breaks
down, the operator is able to call for assistance.

The underlying assumption of these strategies is that systems (or components)
that are not broken can be depended upon, unlike those that are broken. Also, a
dependable computing system’s lifetime can be separated into two phases:

• Construction phase

The period of planning, implementation, training, and verification that
precedes putting the computing system into production usage.

• Operational phase

The period during which the system must justify all the investment that went
into its construction by producing tangible returns.

1–12

Introduction to Dependable Computing
1.4 Basic Concepts of Dependability

Table 1–1 introduces an approach to using the primary strategies, during the
construction phase and the operational phase, to enhance dependability.

Table 1–1 Primary Strategies to Enhance Dependability

Primary
Strategy Construction Tactic Operational Tactic

Characteristic
Enhanced

Fault
prevention

Minimize defects Minimize mistakes Reliability

Error correction Provide masking
options

Contain impacts Fault tolerance

Failure recovery Provide remedial
options

Repair components Recoverability

1.4.2 Redundant Functional Units
Functional units are those components of a system that actually do part of the
work. They may also be decorative or have some other intrinsic value but for the
purposes of this analysis, their function in the whole computing system is what
is important. When there are multiple units that can perform the same function,
the system has redundant functional units.

There are many types of redundancy. To understand this observation, the
remainder of this section continues with the automobile metaphor introduced in
Section 1.4.1.

1.4.2.1 Manual Redundancy
In Figure 1–3, the automobile’s rear storage compartment holds a spare tire. This
component’s sole purpose is to provide a measure of redundancy in the event of a
tire failure, to allow the driver to continue on the journey.

Such events are sufficiently rare that requiring the driver to manually replace
the failed tire with the spare (or call a service person to do so) is considered an
acceptable recovery strategy.

1.4.2.2 Automatic Redundancy
In Figure 1–3, there are two devices that represent key components of the brake
system; they are the master cylinders. When the brake pedal is depressed, it is
the master cylinder that causes the brake mechanisms on each wheel to engage
and to slow the vehicle. In all modern automobiles, depressing the brake pedal
actually engages two master cylinders, each of which is responsible for stopping
two of the automobile’s four wheels. The vehicle has two independent braking
units.

In an emergency situation, there is clearly no opportunity to conduct a manual
repair of the brake system to enable it to stop the automobile safely. If the
braking unit associated with one of the master cylinders fails, the other braking
unit continues to function with no action required from the driver and with no
interruption in service. Therefore, automobiles with dual master cylinder braking
systems could be described as having fault tolerant brakes.

1–13

Introduction to Dependable Computing
1.4 Basic Concepts of Dependability

1.4.2.3 Capacity-Related Redundancy
The automobile in Figure 1–3 is equipped with a four cylinder engine. The
number of cylinders was probably chosen based on power, size, and weight
requirements of the vehicle. However, because the number of cylinders in the
engine is more than one, there exists a measure of redundancy as well.

If one of the four spark plugs in the engine fails for some reason, its cylinder
would no longer provide power to the vehicle. It is likely, though, that the driver
could continue to drive to a service facility because the other three cylinders
would continue to motivate the automobile. The passengers may not be very
happy with their rate of progress up hills, but at least they are not stranded.

A similar type of capacity-related redundancy exists with headlights at the front
of the vehicle. If one headlight burned out, the driver could still have some
illumination by which to return home. However, because there are only two
headlights in the system, sustained operation at one-half illumination could be
considered irresponsible and the driver could properly be cited by a traffic officer.

1.4.2.4 Redundancy in Computing Systems
These concepts apply equally well to computing systems. A computer’s central
processing unit (CPU) is frequently referred to as the engine of the system,
because is provides the driving force for the other components. Later in this
handbook, you see how computing systems with multiple CPUs have a measure
of capacity-related redundancy. Keeping a spare video terminal in a supply room
is analogous to having a spare tire, and mirroring your system disk with volume
shadowing is equivalent to the dual master cylinder brake system.

Redundancy does not apply only to hardware components. Just as someone
needing to drive a very long distance without stopping for sleep could take along
a friend to help drive, a line printer operator could be cross-trained to handle
disks and tapes as well.

1.5 How a Dependable System Supports the Business
The following list identifies the six basic building blocks of dependable computing
systems and presents typical examples of each:

• Environment

Physical security, power supply, and air conditioning.

• Hardware

Computing machines delivered by the vendor(s).

• Communications

Data transmission over networks.

• Software

The programs that tell the hardware what to do.1

• Operational procedures

The policies set by the information systems manager and the system
managers that govern how people and applications may use the computing
resources.

• Personnel

1 Software always resides on a physical medium, which is a type of hardware device. The
medium is not the software, the arrangement of bits is the software.

1–14

Introduction to Dependable Computing
1.5 How a Dependable System Supports the Business

The people associated with the computing system, both vendor and customer
employed.

Figure 1–4 uses the metaphor of a multilevel building to illustrate the building
blocks of dependable systems, including the personnel who perform dependability
tasks.

Figure 1–4 Building Blocks of Dependable Systems

ZK−3691A−GE

Facilities
Manager

Environment

Hardware

System
Manager

Communications

Network
Manager

Software

Operational Procedures

Programming
Manager

Operations
Manager

Business
Users

In Figure 1–4:

• The environment building block forms the foundation of the dependable
system, without which nothing else could function. The facilities manager is

1–15

Introduction to Dependable Computing
1.5 How a Dependable System Supports the Business

the person responsible for providing a satisfactory environment. That person
uses both strategies for enhancing reliability, like using uninterruptible power
systems (UPS), and strategies for enabling recovery, like preparing a backup
site.

• The system manager, in this example, owns the responsibility of keeping
the hardware operational. If reliability is paramount, the system manager
could use fault tolerant hardware and hardware recovery techniques such as
volume shadowing.

• Communications has a multidisciplinary nature and fits between hardware
and software. So it is up to the network manager to make sure that the
system’s users (clients) have dependable access to all system resources
and that all major parts of the overall enterprise system can communicate
effectively with the other parts. A good reliability strategy would be the use
of shielded twisted pair (STP) cabling to the desktops, instead of unshielded
twisted pair (UTP) cabling, to reduce susceptibility to ‘‘noise.’’ Because most
communications software can adapt to line outages, configuring dual lines
between key network points is an effective recovery strategy.

• The programming manager is, in this example, a combination of those persons
who are responsible for ensuring that the software on the system (whether
operating system, database, application run-time environment, or others)
is functioning productively. Productively implies correctness with adequate
performance. By reusing proven code modules frequently, the programming
manager enhances the reliability of the system’s software. To enable the
applications to recover from internal and external faults more effectively, a
TP environment could be used.

• Operational procedures form the boundary between the technology of the
computing system and the organizational culture of the business. The
operations manager is responsible for ensuring that the computing system
is suitable for meeting the enterprise’s business needs. Even assuming
that an adequate systems analysis was performed when the applications
were designed, the operations manager must still work toward enhancing
procedural reliability (through training) and certifying recovery procedures
(through drills).

• Clearly, both customer and vendor personnel are integral to the success of
any dependable computing system. They have significant impact at all levels.
If focusing solely on the technology permits the human factor to be ignored,
reliable performance and readiness of personnel for critical recovery are likely
impaired.

Figure 1–4 shows the interdependent nature of the dependability building blocks.
It is also clear that an appropriate balance between reliability and recovery
strategies is necessary for a dependable system.

The three primary dependability strategies outlined in Section 1.4.1 can be
applied to each of the six basic building blocks. The form of that application is
different for each building block and also depends upon the phase (construction or
operational). Table 1–2 gives some examples of common techniques and practices.

1–16

Introduction to Dependable Computing
1.5 How a Dependable System Supports the Business

Table 1–2 Applying Primary Dependability Strategies to Building Blocks

Primary
Strategy Building Block

Typical Construction
Tactic Useful Operational Tactic

Fault
prevention

Environment Excess/redundant
capacities

Periodic maintenance

Hardware Simulation, CAD/CAM,
parts count reduction

Operation well within
specifications

Communications Robust shielding Professional cable installation

Software Structured or object-
oriented methods, CASE,
prototyping

Live data parallel testing

Operational
procedures

Early and plentiful user
input

Clear lines of interpersonal and intergroup
communication

Personnel Comprehensive training,
easy-to-use human
interfaces

On-the-job training and practice

Error
correction

Environment Battery backup, high
temperature shutdown

Power conditioners, uninterruptible power
systems (UPS)

Hardware Error correcting codes,
redundant recording

Instruction retries, micro head positioning

Communications Retransmit protocols,
stack unwinding

Failing over to backup communication
adapters

Software Retransmit protocols,
stack unwinding

Input editing, handling hardware faults

Operational
procedures

Designing in constant
feedback to operators

Supervisory and peer monitoring, giving
praise for disclosing and fixing mistakes

Personnel Hands-on training,
forgiving human
interfaces

Supervisory and peer monitoring, giving
praise for disclosing and fixing mistakes

Failure
recovery

Environment Media fire storage,
Halon® fire control

Backup sites

Hardware Redundant zones,
VMScluster systems,
shadow sets

Automatic failover, manual repair, system
replacement

Communications Automatic reconfiguration
of network topology

Automatic reconfiguration of network
topology

Software Powerfail-restart support Dependable transaction queues

Operational
procedures

Contingency plans Drills, updated plans

Personnel Contingency plans Drills, updated plans

1.6 Balance Is Critical to a Dependable System
This handbook discusses the various building blocks, introduced in Section 1.5,
that comprise a dependable system: environment, hardware, communications,
software, operational procedures, and personnel. While this breakdown facilitates
analysis, you should keep in mind that each of these major system components
has a number of intrinsic and behavioral characteristics. They include:

1–17

Introduction to Dependable Computing
1.6 Balance Is Critical to a Dependable System

• The performance envelope

• Initial and on-going costs

• Intrinsic reliability

• Security properties

• Ease of learning

• Ease of using

• Ease of maintaining

• Resilience against environmental hazards

• Suitability in addressing business requirements

What constitutes a proper balance of these characteristics depends on your
organization’s dependability and business goals. These goals form the unique
context in which your system must function effectively and dependably. One of
the goals of this handbook is to help you analyze your situation and synthesize a
credible strategy for addressing those sometimes contradictory goals.

1–18

2
Analyzing Dependable System Requirements

Because the system users are the ultimate judges of whether the computing
system provides an adequate level of dependability, it is not realistic or useful to
attempt to analyze your dependability requirements purely by means of charts
and statistics. For example, achieving 99.99% up time has no practical value if
the 0.01% amount of time that the system is down causes users to complain that
the computer is down again. When this is the case, you can safely assume that
there is a significant mismatch between the dependability needs of the business
and the level of dependability provided by the system.

Although building a highly dependable system should not be a higher priority
than the primary business needs of your organization, it is important to
remember that the expectations of the users of the system are also a part of your
system requirements. The purpose of the computing system is, after all, to help
solve your business problems.

As you succeed in providing a certain level of dependability, you might discover
that your users take the higher level of dependability for granted and come to
expect an even higher level. Building a system that is dependable enough to
meet the needs of its users is often a moving target.

2.1 Dependability Is a Journey, Not a Destination
You can maintain an appropriate perspective on the job of building a dependable
system if you remember that dependability is a continuous task. The job
of attaining a dependable computing system is never finished because you
must regularly analyze your dependability needs and adjust your computing
environment to respond to the changes in your business environment and
practices. Constant vigilance is required and continual adjustments may be
required.

To fully realize your system’s dependability potential, you should implement a
continuous improvement process, as illustrated in Figure 2–1.

2–1

Analyzing Dependable System Requirements
2.1 Dependability Is a Journey, Not a Destination

Figure 2–1 Continuous Improvement Process

ZK−3832A−GE

Preparation

ExperienceUnderstanding

Feedback

Planning
Phase

Operational
Phase

Analysis
Phase

Integration
Phase

The quality engineering discipline uses a process called the continuous
improvement process that provides structure to the task of improving how a
process is executed. That process could be a manufacturing process, a business
financial process, or other types of processes. This process has been adapted
for application to the process of building and running computing systems.
The following list summarizes this methodology for implementing a process to
continuously improve the dependability of your computing system:

• Planning phase

This phase focuses on preparing for the future and attempts to answer ‘‘What
if...’’ questions. In this phase, you should:

Research the dependability needs of your organization. See Section 2.2.

Identify the options available in the building blocks of your current
system including the computing environment, hardware, communications,
software, operational procedures, and personnel. See Chapter 3.

Analyze the various options and tradeoffs you could make to improve the
system dependability characteristics. See Chapter 3 and Chapter 4.

Identify the constraints that limit your options and determine how you
can work around the constraints. See Chapter 4.

Devise some concrete actions you can take to improve the situation.
Match the impact of the actions with the priority dependability
requirements of your organization. See Section 2.2.4 for an example
analysis of the sample company.

Chapter 6 through Chapter 10 describe actions you can take to provide a
higher level of dependability in your hardware and network configurations,
software applications and databases, and data center procedures.

2–2

Analyzing Dependable System Requirements
2.1 Dependability Is a Journey, Not a Destination

As Figure 2–1 shows, the preparation from the planning phase is used as
input to the operational phase.

• Operational phase

This phase focuses on innovation in the current context and attempts to
answer the question ‘‘What is happening?’’ In this phase, you should:

Roll out your planned dependability improvements and closely monitor
their impact on the operation of your system. Many of the tools listed in
Chapter 9 are useful for these monitoring and control activities.

Keep comprehensive records of events (paper and online, as well
as manual and automated) that have impacted or could impact the
dependability of your system. These records will prove to be invaluable in
the analysis phase.

Listen carefully to your users. They are the ultimate judges of the success
of your improvements.

Note

Including your users in the planning phase can prevent many complaints
in the operational phase.

As Figure 2–1 shows, the experience from the operational phase is used as
input to the analysis phase.

• Analysis phase

This phase focuses on the past to discover cause and effect relationships
and attempts to answer the question ‘‘What did happen?’’ In this phase, you
should:

Invest the time to carefully study all the various records and reports
that were produced during the operational phase. Chapter 10 provides
information on the comprehensive systems expertise available from
Digital that can help you interpret the data collected.

Sort the good news and the bad news into the six basic system building
blocks (environment, hardware, communications, software, operational
procedures, personnel) and brainstorm new improvements to enhance
each area. Section 2.2.4 is an example of this type of effort.

As Figure 2–1 shows, the understanding from the analysis phase is used as
input to the integration phase.

• Integration phase

This phase focuses on transforming learned lessons into tradition and
attempts to answer the question ‘‘What should happen?’’ In this phase, you
should:

Document the new setup or the new way of doing things in your
operational procedures document. This should reduce your exposure to
loss of the wisdom due to personnel changes.

Conduct brief postmortem reviews so that the process for significant
enhancement projects gets reviewed after being implemented for a
period of time. Then the empirical data that was reduced in the analysis
phase can be combined with the personal observations on how well your

2–3

Analyzing Dependable System Requirements
2.1 Dependability Is a Journey, Not a Destination

organizational culture adapted to the changes. Perhaps they can be made
less painfully next time.

Distill the lessons learned into a set of concise requirements or constraints
for the next planning phase. It is important to close the loop to ensure
continuous improvement.

As Figure 2–1 shows, the feedback from the integration phase is used as input
to the next planning phase.

The continuous improvement process should never stop. As the word continuous
implies, you must go through the process repeatedly, until your system is perfect
or completely constrained.

Further, the various pieces of your system will probably be in different phases at
once. You may be planning a major upgrade to the storage portion (disk farm) of
your system, while also analyzing the effects of a recent building power failure.
You may be formalizing a new system upgrade policy while also monitoring the
system’s application performance in real time.

Finally, in order to effectively implement change, an organization must be ready
to accept the consequences. Some examples:

• Proper wiring of the building may involve some troublesome construction.

• Sufficient hardware redundancy may involve operating with some excess
capacity.

• Less noisy phone lines may involve greater lease rates.

• Using a robust transaction monitor may require some changes in the user
interfaces.

• Tighter system security may require some people to relinquish their account
privileges.

• Replacing a row of line printers with many small office laser printers should
involve proactive retraining and career counseling for the printer operators.

See Chapter 4 for a more complete discussion of the tradeoffs involved in
continuously improving your system’s dependability.

See Appendix B for information about the book Out of the Crisis, which describes
the continuous improvement process methodology.

Note

Continuous improvement means constant change so it is worth repeating:
in order to effectively implement change, an organization must be ready
to accept the consequences.

2.2 Determining Your Dependability Requirements
The first step in the dependability process is to research the dependability needs
of your organization. The analysis process should prove useful even if there is
only one user on the system because the analysis will reveal the various levels
of dependability required by the business functions that rely on the computing
system.

2–4

Analyzing Dependable System Requirements
2.2 Determining Your Dependability Requirements

In general, not every user of the system has the same dependability requirements.
Some users, such as hourly employees, might find that being able to access the
system for 40 hours per week is adequate for them to perform their jobs. Others,
such as the company president or the engineering department, might have good
business reasons to require usage of the system at 3:00 a.m. on a holiday.

Similarly, not every user of a computing system has the same business priority.
Keeping the system available on Saturday nights to enable programmers to work
whenever they desire may not be as important as making sure the President of
the company can read electronic mail at any hour of the day or night. Of course,
there may also be times when the programming work should take precedence
over the President’s mail correspondence.

You must also consider how the different functions of the business might place
dependability requirements on the system. Business functions such as electronic
mail, order processing, inventory control, or manufacturing might have different
constraints on the computing system when it is recovering from a fault. Some
business functions, like batch processing, might not be affected by a momentary
system pause as long as the recovery operation is automatic and there is no
processing or data lost. Other business functions, like control systems that
rely on continuous processing, might require that applications execute without
stopping in order to prevent machine malfunction.

Not all recovery operations (such as replacing a printer ribbon) can be
implemented in an automatic fashion. In some cases, human intervention
is necessary before production operations can resume. If one of your critical
business functions requires instantaneous recovery and is vulnerable to
interruptions by a fault or failure that requires manual steps to correct the
problem, a disaster situation might be imminent for your computing system.

The point here is to keep these various factors in mind while determining your
business dependability requirements and analyzing your system dependability
characteristics. Your goal should be to work toward providing as close a match as
practical.

2.2.1 Collecting Requirements
Generally, you specify requirements in terms of the tasks that system users
perform for different business functions. Requirements should include current
and anticipated changes in business environment and practices.

Most users whom you interview will describe the tasks that the system must
support only in terms of the way they currently perform those tasks. The users
might not be aware of impending changes in business practices. Even if users
are aware of an impending change, they may not be able to state in any detail
how the change will affect the tasks performed for their business functions.
Therefore, you should make a special effort to identify known changes that the
business plans to make and keep those changes in mind when interviewing users.
Sometimes, the need to accommodate certain business changes may be stated as
a general goal for the system before you begin your work.

You can collect dependability requirements by creating and using the worksheet
shown in Figure 2–2. The worksheet can help you record and format your user
and business dependability needs in a way that facilitates analysis. You can
construct a worksheet similar to the one illustrated in Figure 2–2 using a text
editor or decision support tool (such as DECdecision™ software).

2–5

Analyzing Dependable System Requirements
2.2 Determining Your Dependability Requirements

Figure 2–2 Worksheet for Collecting Dependability Requirements

ZK−3768A−GE

Worksheet

Availability Requirements

Saturdays SundaysUser
 Function

Business
Function

Recovery
Constraint

Strategic
Importance Shift Shift Shift

First Second Third

The following list describes what information you should supply for the columns
shown in Figure 2–2:

• User function

2–6

Analyzing Dependable System Requirements
2.2 Determining Your Dependability Requirements

Supply the name of the user or the user’s department. Examples are payroll,
manufacturing, accounting, president, or the chief executive officer. Note that
you will probably repeat some user and department names many times.

• Business function

Describe the action or operation being performed by the computing
system. Examples are electronic mail, inventory, time card processing,
and simulations. Typically, the business function category describes the
application program that accomplishes the task.

• Recovery constraint

Assign an amount of time that would be acceptable for the recovery of
the business function. Use the definitions of time in the following list to
categorize the minimum acceptable recovery time:

Continuous or microsecond reaction time—The recovery of the business
function must be invisible to both electronic and human interfaces.

Instant or subsecond reaction time—The recovery cannot be easily noticed
by system users.

Fast or subminute reaction time—The recovery must be quicker than a
person can place a phone call.

Slow or several-minute reaction time—As long as no processing or data is
lost, the recovery time can be significant.

Manual or indeterminate reaction time—Automatic recovery is not
required. Manual recovery actions are sufficient.

• Strategic importance

The strategic importance column provides a way for you to express the
dependability requirement of the entire business. The keywords high,
medium, or low describe the degree to which the success of the business
function determines the success of the business where:

• High describes a very critical business function

• Medium describes a business function of medium importance to the
company

• Low describes a low-priority business function

• Availability requirement

The availability requirement column provides a way for you to express the
dependability needs of individual business functions. List the time slots or
shifts when your company uses the computing system (for example, first
shift, second shift, third shift). As in the previous column, for each time slot,
use the keywords high, medium, or low to describe how important it is for
this business function to be available for use during that time. For example,
printing payroll checks on Sunday morning would probably be considered a
low availability requirement.

2–7

Analyzing Dependable System Requirements
2.2 Determining Your Dependability Requirements

2.2.2 Priority Requirements
As you collect dependability requirements, the amount of data will grow and the
values of the various attributes will probably change as well. The following list
presents a useful approach to analyze and prioritize the data you collected in
Section 2.2.1:

• Make sure that the information on the worksheet truly represents the major
dependability needs and priorities of your company.

• Rearrange the rows in the Strategic Importance column in order from highest
to lowest priority. If there are a large number of rows that have the same
priority, you may need to use a finer-grained notation to indicate priorities.
For example, you might use a scale from 1 to 10, where 1 is a very critical
business function (high priority) and 10 is a very low priority.

• Sort the rows in the Recovery Constraints column in order from continuous
recovery to manual recovery. Sort the recovery constraints within each
strategic importance priority that you established in the previous step.
For example, first sort the recovery constraint rows that have a strategic
importance of 1, then sort only the rows with a strategic importance of 2, and
so on. After this step, the worksheet will list your most critical dependability
challenges first.

• At this point, you should examine the characteristics of your system’s six basic
building blocks to determine what your options are for achieving a certain
level of dependability. See Chapter 3 for discussions on environmental,
hardware, communications, software, operational procedures, and personnel
options.

• Next, you must determine what trade-offs you need to make to achieve the
desired level of dependability. Besides making trade-offs that affect global
system characteristics, you may have to make trade-offs that impact some
business functions negatively. This is necessary in some cases to provide
adequately dependable service to business functions that are most critical
to the success of the business. See Chapter 4 for a discussion of making
trade-offs.

• Study your worksheet carefully to see if you can extract additional
information from the data. By analyzing the data in various ways, you
might discover that some users need their applications on Saturday but not
Sunday, while others require their applications on Sunday but not Saturday.
It is possible that some negotiation with the users could result in both sets
of users requiring the computing system on Saturdays only, leaving Sundays
free for scheduling hardware maintenance and software upgrades.

• Sort your worksheet rows again using Recovery Constraints as the primary
key and Strategic Importance as the secondary key. At this point, your
worksheet will list your most difficult dependability challenges first. It would
then highlight which functions, if any, should require:

Conventional computing systems

Highly available VMScluster systems

Fault tolerant systems

2–8

Analyzing Dependable System Requirements
2.2 Determining Your Dependability Requirements

Keeping your company’s dependability requirements and priorities in mind, you
can now begin to consider your options and weigh the trade-offs inherent with
the different options. Section 2.2.3 describes how the sample company uses
the requirements worksheet, and Section 2.2.4 proposes some steps to map the
company’s requirements to potential actions.

2.2.3 Analyzing the Sample Company’s Dependability Requirements
Table 2–1 provides sample output of a fictional company’s use of the dependability
requirements worksheet.

Table 2–1 Dependability Requirements for the Sample Company

Availability Requirement

User
Function

Business
Function

Recovery
Constraint

Strategic
Importance

First
Shift1

Second
Shift2

Third
Shift3 Saturdays Sundays

President Electronic
mail

Instant High High High High High Medium

Payroll Check
printing

Manual High Low High Low Low Low

Sales Order
processing

Fast High High High Low Low Low

Manufacturing Shock
testing

Continuous Medium High Low Low Low Low

Engineering Electronic
mail

Instant Medium High Medium Low Low Low

Manufacturing Inventory
control

Fast Medium High High Low Low Low

Engineering Simulations Slow Medium Low Low High High High

Shipping Packaging Slow Low Low High High Low Low

1Primary business hours, 9:00 a.m. to 5:00 p.m.
2Secondary business hours, 5:00 p.m. to 1:00 a.m.
3Tertiary business hours, 1:00 a.m. to 9:00 a.m.

The following list describes each row in Table 2–1:

• President

From the worksheet’s first entry, you can see that this company places a
high degree of importance on the president being able to communicate with
subordinates who may be spread around the globe. Holidays and Sundays
are the only times when there might not be a need to access the primary
application, which is electronic mail. Because the president is an important
system user, poor system responsiveness or noticeable pauses in character
echoing or editing functions are perceived as roadblocks to productivity and
are likely to generate high-level complaints.

• Payroll

Similarly, the payroll department’s ability to print checks during second shift
is also a high priority. Notice, however, that recovery of the system while
printing checks is not time-critical. The Recovery Constraint column shows
that because the data center operations staff watches this batch operation
very closely, it is not considered to be a problem to recover from system
failures manually.

2–9

Analyzing Dependable System Requirements
2.2 Determining Your Dependability Requirements

• Sales

The sales department places a high priority on the order processing business
function because this company has a reputation for being ‘‘easy to do business
with.’’ Therefore, the order clerks must have constant access to a reasonably
responsive system in order to respond to customer requests. A requirement
for fast recovery time is reflected in the Recovery Constraint column. System
pauses longer than one minute would be difficult to cover with casual phone
conversation. Because order processing clerks must respond to toll-free
phone calls from several time zones, they need dependable access to their
applications during the first and second shifts.

• Manufacturing

Manufacturing considers its shock testing to require a medium level of
dependability. Because only a certain percentage of finished units are
submitted to these tests, this sample company could continue to ship
its product for some time even if the test facility was not in operation.
However, when the shock testing is running, it is essential that the computer
monitoring the shock testing equipment recovers instantaneously. The
shock testing requires continuous recovery because even very short gaps in
the responsiveness of the system (due to recovery or other actions) would
cause test data to be lost. Because it costs the manufacturing organization
considerable expense to run these particular tests, your analysis could prove
that the shock test function would be a good candidate for a fully transparent,
fault-tolerant system. Such a system would more than meet the availability
requirements of the shock testing facility, which operates only during the first
shift.

• Engineering

Like the president, the engineers in this fictional company rely heavily on a
dependable electronic mail function. Unlike the president, the engineers are
not as likely to be accommodated if they demand exceptionally quick response
time and recovery actions because the engineers’ ability to communicate
using electronic mail is rated as only medium strategic importance. So, even
though the analysis for the engineering department shows a requirement
for instant recovery, the engineers might have to settle for fast recovery.
Additionally, notice that the engineers’ requirements specify that they
need a highly availability mail function during first shift, with their usage
diminishing during second shift. This is because the engineers do not
frequently communicate with the company’s international divisions.

• Manufacturing

The manufacturing department also has a need for dependable computing for
its inventory control function. While this function places greater demands
on the computing system during the first and second shifts, the inventory
control function does not have the same continuous processing requirement
as the shock testing function. However, the production line would move
too slowly if the system were not sufficiently responsive. So, the worksheet
categorizes the inventory control application as having a medium level of
strategic importance.

• Engineering

2–10

Analyzing Dependable System Requirements
2.2 Determining Your Dependability Requirements

Engineering depends on the computing system for more than one major
business function. To verify its product designs, the engineering department
uses sophisticated computer simulation programs. These computational
intensive batch jobs can run for several days, and quick recovery times are
not required. It is important, however, that system failures do not force
the jobs to be started over from the beginning. The ability to automatically
restart applications is also highly desirable because most of the engineering
simulation applications execute during the third shift and over the weekend
to use excess computing capacity that would otherwise be idle.

• Shipping

Finally, the system users in the shipping department who need the system
during the second and third shifts may or may not receive the level of service
they desire because the needs of some other departments might have a higher
strategic priority than those in shipping. When business is slow, the pace of
the shipping department becomes somewhat leisurely and occasional periods
of system sluggishness are seen as cues for coffee breaks.

2.2.4 Generating the Sample Company’s First Steps to Dependability
After studying the sample company’s dependability requirements (shown in
Table 2–1), a group of key members from the sample company’s staff reproduced
the worksheet shown in Figure 2–3 on a large board in a conference room.

Based on the requirements determined in Section 2.2.3, the group brainstormed
potential first steps to enhancing the dependability of their computing system.
For each user of the system, the group members suggested ways to prevent
faults that might occur for each user. Similarly, the group also recorded ways
to enhance the error correction capabilities of their configuration and designed
contingency plans for failure recovery.

The brainstorming session might have begun with concerns over the president’s
use of the system. Because the president’s actions are considered critical, the
group considered the use of both an uninterruptible power supply for fault
prevention and shadowed user and system disks for fault tolerance. Although the
group wanted to provide coverage by a system manager during second shift, the
majority felt that the additional salary expense was not justifiable only to provide
additional dependability for the president. However, the group was able to justify
the expense of another system manager when they considered that the payroll
department does their check printing during second shift.

While the group was on the topic of enhancing check printing, they considered
the possibility of having the payroll and the president’s data share a shadowed
disk. They agreed that as long as the system manager set up the security on the
user directories correctly, there should not be a problem with sharing the disk.
In addition, the group stipulated that the shared disk must not be a shadowed
system disk because performance monitor reports show that the system disk
is already too busy and the additional load of printing payroll checks would
drastically slow the system reponse time. Certainly the president would lose
patience and consider the system undependable as a result of slow response time.

The discussion might proceed to provide a contingency plan in the event that
the payroll department’s printer would break. A viable backup plan might be to
temporarily use one of the printers in the front office. The second shift system
manager could set up this type of contingency plan for an emergency.

2–11

Analyzing Dependable System Requirements
2.2 Determining Your Dependability Requirements

Figure 2–3 Worksheet for Brainstorming First Steps

ZK−3769A−GE

Worksheet

Fault
Prevention

Error
Correction

Failure
Recovery

President Electronic Mail
Payroll Checks

Sales Order Processing

Manufacturing Shock Test

Engineering Electronic Mail

Manufacturing Inventory
Control

Engineering Simulations

Shipping/Packaging

The discussions continued until the staff eventually filled the board with options.
During the brainstorming session, members of the group were careful not to judge
new ideas even though some options are radical and expensive. All ideas were
recorded on the worksheet and later evaluated for technical feasibility and cost

2–12

Analyzing Dependable System Requirements
2.2 Determining Your Dependability Requirements

effectiveness. Some options were such simple, common sense ideas that the group
wondered why they had not thought of them before.

Table 2–2 provides an example of the first steps that the sample company’s staff
proposed to begin enhancing the dependability of their computing system.

Table 2–2 The Sample Company’s Proposed Enhancements

Proposed
First Step

President
Electronic
Mail

Paycheck
Printing

Shock
Tests

Engineering
Electronic
Mail

Engineering
Simulations

Shipping
Packaging

Order
Processing

Inventory
Control

Install VAXft for
shock tests

X

Hire second
shift system
manager

X X X X X

Buy TP-based
inventory
control

X

Give remote
sites backup
modems

X X X

Checkpoint
simulation
programs

X

Shadow
president’s
disks

X

Shadow all
system disks

X X X X X X X X

Write TP-based
order process

X

Add system
kernel to
VMScluster

X X X X X X X

Shadow payroll
disks

X

Install UPS in
computer room

X X X X X X X

Train operators
on TP system

X X

2.2.5 Mapping Options to Requirements for the Sample Company
For each row under the column label Proposed First Step, an X has been placed
in each user or department column in which the proposed first step would have
a positive dependability impact. By examining the location and frequency of the
Xs, the sample company can begin to sort through and analyze the dependability
options:

• Rows that have many Xs indicate first steps that could have a wide impact.

• Rows that do not contain an X reveal first steps that would not impact any of
the system users listed in the Table 2–2. These steps might still be necessary
even though they are not important for dependability reasons.

2–13

Analyzing Dependable System Requirements
2.2 Determining Your Dependability Requirements

• The columns of the most important system users should have several Xs in
them. An important user whose dependability requirements are not being
addressed by at least one first step probably needs more attention.

• When it is necessary to cut options from the list of requirements (for example,
due to funding constraints) the sample company can search for rows in which
the Xs impact users whose functions are less important. When the sample
company must postpone enhancing the system dependability for some users
functions, it delays those requirements for users and business functions that
are not mission critical.

2–14

3
Dependability Options of the System Building

Blocks

While an important principle of building a dependable system is the prevention
of faults and failures, in your quest for a dependable system, you must:

• Assume some components of the system will fail at some time

• Ensure that when a failure occurs, it takes place at such a time or in such a
way that it does not threaten service to the business

This chapter discusses options you could consider when looking for ways to
enhance the overall dependability of your computing system. The discussions
are organized within the main categories of the six basic building blocks of your
computing system:

• Section 3.1, Analyzing Environmental Options

• Section 3.2, Analyzing Hardware Options

• Section 3.3, Analyzing Communications Options

• Section 3.4, Analyzing Software Options

• Section 3.5, Analyzing Operational Procedures Options

• Section 3.6, Analyzing Personnel Options

3–1

Dependability Options of the System Building Blocks
3.1 Analyzing Environmental Options

3.1 Analyzing Environmental Options
The computing system environment forms the foundation
of a dependable system and it makes a good place
to start examining your dependability options. Poor
environmental conditions (such as high temperatures,
humidity, or power irregularities) can lead to premature
hardware failures and chronic intermittent faults that
can cause the system to fail and not be immediately

repairable. Reliable and clean power sources (or the use of an uninterruptible
power system), freedom from environmental hazards such as weather, and
security against intentional sabotage are all areas of concern.

The optimal physical environment for your computing system is best understood
by your service vendor. The following sections discuss areas of environmental
concern that you can consider for discussion with your service vendor.

These discussions provide an overview of your environmental options. See also
Chapter 5 and Chapter 9 for more environmental considerations.

3.1.1 Utilities
Many of us take the reliable operation of our community’s utility companies for
granted. We never think about our assumption that the light will come on when
we flip the switch. Further, when the light does not come on, it is usually due to
a failed lamp or blown fuse; only rarely does the electric company deprive us of
power.

To build a dependable computing system, you cannot afford to make such
assumptions. It is not that your data center has much less reliable power than
your residence (although such is certainly possible). It is that the consequences
of even a momentary outage could be much more costly. Besides the computing
work that could be lost and would have to be restarted, there may be damage
to equipment controlled by your computing system or damage to the computer
hardware itself.

Because poor quality power has been such a common cause of premature system
failure, there are many products on the market that can effectively address that
particular environmental concern. See Chapter 5 for more information about
power conditioning units and uninterruptible power systems.

Air conditioning and water supplies must also be addressed with appropriate
contingency planning. See Chapter 5.

Another utility company that could be critical to your operation is the telephone
company (both local office and common carrier). If your computing system relies
on telecommunications to reach its users or other important systems, a phone
outage could render an otherwise perfectly functioning data center completely
useless.

3.1.2 Structures
While the need to keep snow off laser printers is obvious, most computer
equipment vendors have myriad other environmental requirements that are
more subtle.

If your computer room is constructed on the third floor of a manufacturing plant,
is there enough vibration in the floor to cause an abnormally high rate of disk
drive (head crash) failures?

3–2

Dependability Options of the System Building Blocks
3.1 Analyzing Environmental Options

Although your computer facility may provide excellent environmental
conditioning with redundant systems, if printer paper is usually carried in
through the back door, will the tape drives receive gusts of hot humid air on a
periodic basis?

Does your computer room have neat cable trays carrying all signal and power
wires, or is it a place where it would be impossible to fix one piece of equipment
without knocking loose the cables of another?

For overcrowded computer rooms, the good news is that newer equipment is
usually much smaller and produces much less heat than older equipment of
equivalent computing capacity.

3.1.3 Networks
Anything connected to your computing system can be an environmental hazard.
Other computer systems may or may not be the source of intentional harm (such
as security breakins or viruses). Even if they are not, they may cause your system
problems due to programming or operational errors and misunderstandings.

The times when it is appropriate to isolate your computer system in the back
room with the only communication being punched cards are becoming quite rare.
Therefore, you must give serious thought to how your system interacts with some
sort of network.

Are the communications programs robust enough to behave in a reasonable
fashion, even if the other end of the line sends complete nonsense?

Are fiber-optic links used between buildings to provide electrical isolation and
prevent electrical noise and possible shock hazards?

See Chapter 7 for more information about network concerns such as valid
configurations and security.

Note

Your data center cannot function unless all the components of the
environment are providing proper support. The environment sometimes
hides single points of failure of the computing system. Because the rest
of the system relies on the environment to function, an environmental
failure impacts the entire system.

3.2 Analyzing Hardware Options
Because hardware components are becoming increasingly
reliable, the set of hardware options available to you depends
on the type of equipment you already own, the funds available
to you for investing in additional or redundant hardware,
or funds for investing in fault-tolerant hardware. Many
companies have operated for relatively long periods of time
(months or even years) without any problems, not only
because of the reliability in modern computing hardware
but also for a variety of other reasons. For example, some
installations have exceptionally clean power sources and some
have well-trained and exceptionally competent service people
who can quickly diagnose and correct outages.

3–3

Dependability Options of the System Building Blocks
3.2 Analyzing Hardware Options

When you begin building a dependable computing system, you might be starting
with new hardware or using older, already installed equipment. The following
sections discuss the hardware options available to you whether or not you have
funds to invest in dependable hardware equipment.

These discussions provide an overview of your hardware options. See also
Chapter 9 for more considerations and dependability options you should examine
to achieve high dependability in the hardware area.

3.2.1 Starting with New Equipment
Most dependability experts prefer to start out with new equipment if budgetary
limitations or other constraints allow it. With new hardware, there is greater
flexibility in configuring just the right solution for the business needs. In
addition, new hardware is always more cost effective than older hardware.

From a dependability standpoint, configuring a solution from modern hardware
is very attractive because new hardware is usually more reliable than older
equipment. This is because new hardware has fewer parts and interconnections
and requires less power consumption, which results in the equipment generating
less heat. Modern hardware also includes more internal fault handling
capabilities. All of these factors result in better dependability as well as lower
service costs.

Often, the main obstacle to starting out with new equipment is budgetary
constraints. You must evaluate whether or not the lack of a dependable
system is costing you more than buying the new equipment that could help
you achieve the required level of dependability. You have a better chance of
meeting your dependability goals and configuring an optimal solution if you
weigh dependability cost issues against your company’s budgetary concerns.

3.2.2 Making Do with Currently Installed Equipment
If your currently installed hardware has not fully depreciated, there may be good
budgetary reasons for not investing in new equipment. One advantage to making
do with the hardware that you have is that you do not have to justify new capital
expenses. You also do not have to wait for new hardware to arrive and to be
installed. If you have not taken inventory of your current hardware, you should
conduct a physical inventory to:

• List your current hardware

• Draw a map that shows exactly where each piece of equipment is located

• Show how the different hardware pieces are configured together

Taking inventory can point out irregularities in your hardware. You can use the
configuration map to pinpoint areas in the total system where a mixture of old
and new equipment might result in incompatibilities. If your records indicate that
the older peripherals or CPUs are causing more than their share of down time
and they are not contributing a large amount to the total system capacity, it may
be more cost effective to retire the old hardware and replace certain pieces with
new. The old equipment might be used for business applications that do not have
high dependability requirements.

3–4

Dependability Options of the System Building Blocks
3.2 Analyzing Hardware Options

3.2.3 Investing a Little to Gain a Lot
It is common for a data center to get approval to spend only small amounts of
cash to enhance the system as long as the improvements are very noticeable.
Fortunately, it is worthwhile performing an initial inventory and analysis of
the system because in the analysis process you often uncover some high-impact,
low-cost ways to enhance dependability.

Rather than trying to justify the cost of buying all new equipment or getting
along with your current equipment, investing in a few new pieces of hardware
could result in significant dependability gains for very little cost. To justify the
cost of buying new hardware or software, it is useful to measure dependability
characteristics in two ways:

• Show the amount of dependability you have in your present hardware
configuration. Identify your current base level of dependability so that you
can more easily spot the critical places where an addition to the configuration
can make a significant impact.

• Show the amount of dependability that you can achieve with some
improvements in the configuration. Present the dependability gains in
terms of business impact that you expect to achieve by making the hardware
enhancements.

Then, when you compare the current dependability of the system with potential
gains through some configuration improvements, you can see more clearly what
is to be gained from an investment in new hardware.

3.3 Analyzing Communications Options
The primary role of the communications hardware and software
is to provide access from users’ desktops over networks known as
terminal networks to applications on the host node. Because host
nodes usually support very large numbers of terminals, they are
typically mainframe-class systems, like the DEC 10000 AXP™.
VMScluster systems are also good candidates as AXP and
VAX hosts to multiple users because of their high capacity and

high availability features. The following sections provide an overview of your
network and communications options. See also Chapter 7 for a discussion of
considerations and dependability options you should examine to achieve high
dependability in the area of communications.

3.3.1 Restricting Access to the Computer Room
You can reduce the computing system’s vulnerability to computer viruses and
other security threats by restricting communications to your computing system.
By limiting access to all vital system components and keeping the computing
system under the watchful eyes of experienced systems professionals, you can
provide a highly dependable computing system.

3.3.2 Providing Corporate Data to Local Personal Computers
As more corporate desk tops are populated with personal computers (PCs), there
is a growing trend toward linking personal computers together in networks called
local area networks. These networks allow PC users to share spreadsheets and
other common programs and data. If the local area network is also connected
to the corporation’s host node, the networks can greatly increase business
productivity with increased access to corporate data.

3–5

Dependability Options of the System Building Blocks
3.3 Analyzing Communications Options

The dependability of PCs can be enhanced by connecting them to a capable
server system. The server system can allow data center and system management
personnel the ability to provide remote control and system management support
for the PCs. A big advantage to using a server system is that PC users can
be relieved of performing system management responsibilities on their PC
systems, such as data backup, software installation, and network control.
Comprehensive server configurations, such as a Digital VAXserver™ 6000
running PATHWORKS™ software, also provide access to shared resources, such
as laser printers. If a few small laser printers are conveniently located, the
computing system can provide more dependable and functional hardcopy output
to PC users than an inexpensive matrix printer on every desktop.

One key factor in providing dependable local area networks is in the type of
communications medium that you use. While shielded twisted pair (STP) cabling
has higher reliability than unshielded twisted pair (UTP) cabling, the latter can
be qualified with special equipment used by your network vendor. Of course,
coaxial cabling (such as Ethernet) or optical cabling provides even greater signal
reliability.

Note

Have experienced professionals install and qualify computer cabling.
Electricians who have not been trained about the installation constraints
of high-bandwidth computer cabling can cause subtle network problems
later on.

3.3.3 Weaving a Tapestry of Computing Resources
If you decide to connect your widely dispersed computing systems into a wide
area network, you gain some disaster tolerance because the nodes on the network
can be geographically distant. Clearly, a network spanning a continent is not very
likely to have all of its systems disabled by the same natural disaster. However,
to enable your users to continue to use their computerized business functions, the
surviving systems must be able to service user needs.

To help ensure that critical applications and current data are available on
multiple nodes in the wide area network, you can use:

• VAX Remote System Manager (VAXrsm) software, also referred to as VAXrsm,
which ensures that remote systems have software to match the software
installed at the central sites.

• DEC Data Distributor software, also referred to as Data Distributor, which
replicates DEC Rdb™ relational databases. By making controlled copies of
data in databases, the data distributor can be used to ensure that users of
the network have access to the data, even if the central corporate site (or the
network itself) fails.

Careful planning is necessary, of course, to be sure that the timeliness of the
replicated data is suitable for the business functions using it.

The primary dependability constraints in a wide area network are the physical
links. Because wide area network links typically have much lower reliability than
local area network links, the importance of network topology is critical. In wide
area networks, providing redundancy means having multiple physical connections
between the various sites. Redundancy may be as simple as connecting the sites
in a ring and maintaining connectivity by letting pass-through routing adapt for

3–6

Dependability Options of the System Building Blocks
3.3 Analyzing Communications Options

any single link failure. Redundancy can also be as complex as interconnected
rings and trees that use multiple link technologies from several different
common carriers. The impact of technology, bandwidth, and cost on physical
link technology will be discussed in more detail in Chapter 7.

Many times, network performance both before and after failures dictates the
design of the network. Refer to Chapter 10 for information on network design
services.

3.3.4 Providing a System Network
As network technology improves, wide area networks are also improving so that
they are starting to gain many of the throughput and reliability characteristics of
local area networks. As a result, system and network managers are able to put
fully distributed applications into general production.

Fully distributed applications can often support your business in many new ways
but they may also make your business vulnerable to down time in other ways.
When implementing fully distributed application systems, you should ask yourself
the following questions to make sure the solution is sufficiently robust:

• How redundant is the underlying network topology?

• What happens to the performance characteristics if a link or a node fails?

• Can the networking software adapt automatically and transparently?

• What assumptions does the application design make about multiple nodes
being both available and reachable?

• What security precautions can be taken to ensure easy access to authorized
network users and no access to unauthorized users?

Refer to Chapter 7 and Chapter 10 for more information about designing robust
networked applications.

3.4 Analyzing Software Options
Because computer hardware has become more reliable and
software has become increasingly more complex, software has
become one of the major factors in determining the dependability
of computing systems. The dependability of the software on your
system can be complicated by whether:

• Your company has a programming staff that writes customized applications

• Your data center staff or your users are allowed to acquire software as
packages from software vendors

• The system management tasks include supporting a large collection of various
brands and versions of computer software

Typically, most companies choose a combination of software options. By reducing
the number of types and combinations of hardware and software that you need
to coordinate and to support, you may increase the dependability of your system
software. If users of incompatible software are unwilling to migrate away from
their favorite but obsolete software applications, you should explain the benefits
to them of moving their applications. For example, you could mention the value
of the data center staff being able to perform such system management functions
as nightly remote backups, network distribution of updates, and more reliable
access to the corporate databases.

3–7

Dependability Options of the System Building Blocks
3.4 Analyzing Software Options

The following sections examine the dependability of software that is custom
written by your company’s programmers or contract programmers and software
packages that you purchase from outside vendors. These sections provide
a high-level overview of your software options. See also Chapter 8 for a
thorough discussion of considerations and dependability options to achieve high
dependability in the area of software and applications.

3.4.1 Writing Custom Applications
A major advantage of writing your own custom applications is that you can
build basic reliability into the code as you write applications to solve business
problems. From a dependability standpoint, your main objective in writing
applications should be to engineer basic reliability into the software so that it
does not contain defects in the first place.

This section briefly lists several methodologies for writing reliable software. You
can research these methodologies and others more extensively by reading other
computer-industry literature. Refer to Appendix B, Bibliography for a list of some
useful titles.

The following list provides suggestions for building dependable software:

• Robust application design

Programmers should not only write application code that is free from internal
defects, but also try to predict how users, networks, and other programs will
use or access their application code. By designing the application to adapt
to widely varying conditions and to behave reasonably even under extreme
conditions, the application can continue to work and provide service to achieve
your company’s goals.

• Computer-aided software engineering (CASE) tools

There are many computer-aided software engineering (CASE) products on the
market that can help the programming staff develop more reliable programs.
By utilizing comprehensive modeling and analysis tools, software applications
can be more suitable for solving your business problems and thereby improve
the dependability characteristics of the computing system. In addition,
the increased level of automation that you gain by constructing programs
using CASE technology not only improves productivity, but greatly reduces
programming errors. The Digital CASE tools are a part of the COHESION™
environment and include the following products:

DEC Language-Sensitive Editor/Source Code Analyzer (LSE/SCA)

DEC Performance and Coverage Analyzer (PCA)

DEC Test Manager

DEC Code Management System (CMS)

DEC Module Management System (MMS)

In addition, the COHESION environment includes the CDD/Repository™ for
its implementation of a distributed, active CASE repository. The repository
allows the objects that are part of the software development life cycle to be
managed and shared in a common, consistent fashion.

See Section 8.7 for summaries about the COHESION environment products
and pointers to the individual product’s documentation sets.

• Fourth-and-fifth generation languages

3–8

Dependability Options of the System Building Blocks
3.4 Analyzing Software Options

Fourth-generation language (4GL) and fifth-generation language (5GL)
programming technologies enable programmers to develop applications that
are much easier to understand and maintain because the programmers do
less work and the computer does more. The 4GL and 5GL technologies
can make application software more robust by reducing the potential for
application programmers to introduce errors. The following list provides a
summary of many Digital 4GL and 5GL products. For complete information,
refer to the specific product documentation.

DECdecision

DECdecision is workstation-based, information management and decision
support tool composed of spreadsheet, database, and charting components.
DECdecision has a format to help you store data, access and query data,
analyze complex data, and create graphs based on that data.

DEC RALLY™

DEC RALLY is a menu-driven 4GL tool that allows you to develop
prototypes and small-to-medium sized transaction processing systems
quickly. DEC RALLY is tightly integrated with DEC Rdb, the Digital
relational database system. DEC RALLY can also access RMS files.

VAX ACMS™

VAX ACMS, also referred to as ACMS, provides a 4GL task specification
language with which programmers can write applications that
accommodate many users as well as respond to changing business
conditions in a timely, competitive manner. ACMS allows programmers to
construct applications in modules that are easy to maintain and are easy
to distribute to better meet the business needs.

VAX OPS5™

VAX OPS5 provides a very efficient language with which you can
implement expert systems. The use of VAX OPS5 to apply artificial
intelligence technology to production systems is being widely deployed
within Digital and by Digital customers.

• Transaction processing environments

One effective way to construct very robust applications is to take advantage
of a transaction processing (TP) environment. This decision has to be made
when you are designing your applications because the application code must
inform the TP environment when to begin, end, or abort transactions.
Depending on the TP product that you choose, you can easily create
highly available applications that will survive many classes of failures of
your system, your VMScluster system, or your network. Digital provides
the VAX ACMS (application control and management system) as its
robust transaction processing environment. See the complete VAX ACMS
documentation set for more information.

DECADMIRE™, which stands for Application Development: Making It Really
Easy, is an application development tool that generates high-performance,
large-scale production applications. You can use DECADMIRE to create
full client/server and TP implementations across heterogeneous systems,
standard timesharing applications or continuous fault tolerant applications,
in the OpenVMS environment. Rapid development takes place using the
prototyping, automatic screen generation, and code generation facilities.
Applications developers can use DECADMIRE to describe and define the

3–9

Dependability Options of the System Building Blocks
3.4 Analyzing Software Options

database, and manage the appearance of application screens, menus, and
reports. DECADMIRE combines applications development packages for:

ACMS, COBOL, and DECforms™

ACMS, Pascal, and DECforms

ACMS, FORTRAN, and DECforms

• CASE tools for adequate testing

Companies that have succeeded in operating extremely dependable computing
systems know that the best way to ensure that a software module functions
correctly in a production environment is to put it through extensive testing.
Testing should involve supplying the same data to the test system that you
are supplying to the production system and then comparing the results. When
both the test and production systems produce the same results, you attain
a high level of confidence that putting the new application into production
will have minimum risk. In addition, it is wise to supply data to the test
system that tests its error detection and recovery capabilities to ensure that
a worst-case scenario does not render the application useless. See Section 8.7
for information about the Digital COHESION environment products that can
assist testing efforts. Also see Section 8.4 for information about prototyping
applications and Section 8.5 for information about testing methodologies.

• Comprehensive training

Even with the best tools available, your programming staff cannot succeed
unless you also provide sufficient training. If you cannot significantly enhance
the tools available in the development environment, you can usually make
your programmers more effective with their current tools by increasing their
level of competency with them.

In addition, do not overlook adequate training for the users of your computing
system. The better trained the users are, the less likely they are to make
mistakes when using your system. See Chapter 10 for more information on
training programs and resources.

• Quality metrics and mindsets

Mature (and therefore highly reliable) development processes establish a way
of measuring the quality of the software. When you measure the effectiveness
of the application software, you automatically facilitate improvements to the
software itself. If you are able to reduce the number of times in a month
that an application needs to have software errors fixed, you probably also
reduce the number of times that the application is not available to system
users. Similarly, applications that work successfully also help reinforce good
programming practices and help your programming staff develop the mindset
to do it right the first time.

3.4.2 Acquiring Software Packages
Purchasing software packages rather than writing your own software has the
advantage of requiring far less programming staff and time to implement than
building your own applications. If you can find a software package that is suitable
to your needs and that is also affordable, purchasing ready-made applications
can be a very effective way of solving a wide range of business problems. The
following list describes several factors you need to consider before you acquire
software packages:

• Degree of fit

3–10

Dependability Options of the System Building Blocks
3.4 Analyzing Software Options

Most software packages allow you some ability to customize the application to
fit your business needs. However, be aware that if the basic characteristics
of the software package are very different from your organization’s way of
doing business, your system dependability may suffer. A software package
that does not match the system user’s style of working may indirectly cause
an abnormally high level of errors and mistakes. Because people are part
of the system, you must pay as much attention to their reliability as to the
reliability of the other system components.

• Service and maintenance arrangements

If a vendor’s software package breaks, the good news is that you do not have
to fix it. The bad news is that you usually have to wait for the vendor to fix
it. Responsiveness of the service team could become a critical factor once your
company has grown to depend upon the package’s functions.

Besides service policies, you should give consideration to the software
maintenance practices of the vendor. How often are problem-correction
releases sent proactively to customer sites? What is the scope and duration
of the job to update the package to the next revision? Must the vendor’s staff
perform the upgrade or can your own staff do it at the time most convenient
for your company’s operations?

• Vendor reputation

If your company is holding you responsible for the dependability of its
computing systems, give yourself every chance to succeed by obtaining the
highest quality products and services you can find. Your own reputation is
riding on your vendor’s reputation.

• Reference sites and support groups

Before acquiring the software package, pay a visit to other companies like
your own who are also utilizing it. This can help you determine if the
package would actually fit your company’s needs as well as it should. It is
also an excellent way to acquire first-hand information about a vendor’s real
reputation, as seen by its clients.

Locally accessible support groups for your prospective software package are
important because any complex set of programs can behave in subtle and
surprising ways. Many times, the staffs of those other sites can be a valuable
source of operational experience and wisdom, which can help you proactively
avoid problems in your own system.

3.4.3 Selecting a Systems Integrator
The main coordinator of a complex project such as building an office building or
building a dependable computing system is sometimes referred to as a ‘‘prime
contractor’’ or a ‘‘systems integrator.’’

The job of a systems integrator has many characteristics similar to those
described in Section 3.4.2 and has most of the same considerations that need
to be addressed. In a prime contractor role, however, a systems integrator
would probably deal with multiple vendors and many organizations within your
company.

One advantage of this approach is having only one party responsible for the
success of the implementation. Again, a vendor with a solid reputation for quality
is a key factor in providing a dependable computing system for your users.

3–11

Dependability Options of the System Building Blocks
3.4 Analyzing Software Options

An alternative option to hiring a systems integrator is hiring a number of contract
programmers to augment your own staff. Utilizing contract programmers is very
similar to the factors listed in Section 3.4.1 without the overhead of additional
permanent employees.

Refer to Chapter 10 for information on how Digital can assume the role of
systems integrator for your computing system.

3.5 Analyzing Operational Procedures Options

Rules
1
2
3
4

This discussion provides an overview of your data center
and operational procedures. The following sections describe
some approaches including training, automation of operation
procedures, beepers, and overall business policies that can
help system users become more dependable contributors to
the total system. See also Chapter 9 for a thorough discussion
of considerations and dependability options to achieve high
dependability in your operational procedures.

3.5.1 Avoiding User Errors
The people who interact with the computing system are an integral part of the
entire system operation. As such, the dependable operation of your system rests
as much with the capabilities of your personnel as it does with a dependable
power supply. Personnel who are trained to be competent system users can make
a positive impact on the dependability of the computing system. Your goal should
be to minimize the number of mistakes made by your personnel because user
errors are a very significant contributor to system and application down time.

The best way to avoid user errors is to automate operational procedures to make
the computing system do more and the people do less. You can minimize user
involvement by automating as many of the system monitoring and management
operational procedures as possible. When the system requires user input
or intervention, simple and concise system messages should provide clear
notification of the problem and should specify a recommended action whenever
possible.

For those times when people must be involved in the operation of the system,
you can make your personnel less error prone by raising their skill levels through
adequate training. Dependable computerized systems can help you provide a
return on your business investment. When computers are used in a competent
manner, the process of building the competency of your personnel becomes an
important topic for consideration.

3.5.2 Training, Testing, and Drills
The following sections outline some approaches to training your system users to
be a more dependable part of your total system. See also Chapter 10 for more
information about providing support and service to system users.

A dependable system user is one who has proper training to know what to do in
any situation. Competent users know how to use the system and its applications
to collect and analyze information, to make the right decisions, and to avoid
mistakes and oversights. To achieve high competence in your system users and to
reduce the occurrence of mistakes, you must emphasize training and practice.

3–12

Dependability Options of the System Building Blocks
3.5 Analyzing Operational Procedures Options

Be sure to implement a comprehensive training program for users who are
new to the system and also for all system users whenever you add new business
applications to your system. Although your applications might have well-designed
user interfaces that are tolerant of incorrect user input, even applications that
have excellent user interfaces can fail if they are abused or misused.

Plan to train personnel running the data center to ensure that they are prepared
to serve the system users in a reliable fashion. To this end, you should determine
the minimum level of competency that your data center personnel should satisfy
to meet your company’s goals for mission critical computing.

Once trained and tested, the system users are still not totally prepared because
the most important tasks your staff perform (from a dependability perspective)
are required only in extraordinary situations. The system users do not have
many chances to practice emergency recovery actions. Therefore, you need to
provide artificial practice for those tasks via ongoing drills and evaluations.

3.5.3 Extended Hours of Operator Coverage
While one goal of lights out data centers (like the one described in Chapter 11)
is to reduce costs and minimize the number of operators needed to support
computing services, some businesses may not be able to migrate to a lights out
environment anytime soon. If there is an immediate need for more hours of
system usage, the business may have to invest in the staffing to provide the
additional coverage. (It takes careful planning, aggressive management, and time
to move to a lights out environment. See Chapter 11 for more information.)

If your users require the services of your computing system after normal working
hours or even on weekends and if their applications require operator support, yet
you are not ready or willing to pursue a lights out style of computing, you may
have to schedule operational personnel to provide such support.

Some creativity may be required to work around limitations. For instance, if you
are fully staffed with two 8-hour shifts of operators but the company needs 24-
hour service and hiring another shift of operators is out of the question, perhaps
instituting two 12-hour shifts (and paying some overtime) would be a way to
make do with what you have.

3.5.4 Beepers for System Managers and Programmers
Many companies place their technical staff on call with beepers to ensure that,
in an emergency, the system problems can be diagnosed and corrected as quickly
as possible. If this represents additional responsibilities for your staff, consider
how you are going to sell this new opportunity to them. If, for instance, you gave
them a laptop PC with modem as well as a beeper, they would be able to start
diagnostic and corrective actions sooner because dialing in is much quicker than
driving in. Plus, they might be able to fix those month-end closing jobs on a
Saturday night without having to leave their after hours activity.

3.5.5 Lights Out Computer Facilities
One way to reduce the likelihood of operator mistakes while increasing the
physical security of your computer room is to turn out the lights and lock the
doors. This requires that the normal production operation of your computing
system can continue without the services of people frequently mounting magnetic
tapes and disk packs or distributing printer output.

3–13

Dependability Options of the System Building Blocks
3.5 Analyzing Operational Procedures Options

Because you would have a smaller staff of operators in such a situation, routine
operational functions such as backing up data from disks to tapes would have to
be made as automatic as possible. Peripherals such as stack-loading tape drives,
which can handle many units of tape media (and therefore back up many units of
disk media) without operator intervention are essential to such an environment.

The ability to detect remotely and to correct problems with the system becomes
very important when there is too limited access to the computer facilities.
Products such as the Digital VMScluster Console System (VCS) and Data Center
Monitor (DCM) are useful in monitoring and controlling the hardware and
software from a central location.

To help discern how your computing system can become free of constant
operator attention, continually ask yourself the questions ‘‘What could the
system (hardware, software, physical plant) do for itself?’’ and ‘‘What could
my users (including my own staff) do for themselves?’’ Placing small laser
printers in the office areas may eliminate the need for high speed, centrally
located lineprinters. Utilizing software such as the DECscheduler™ product
allows complex production runs to become computer managed. Many suppliers
of environmental conditioning units offer options that enable remote monitoring
from personal computers.

For more information, see Chapter 11 for the case history of how one of the
Digital customer support centers was able to implement a lights out data center.

3.5.6 Policies Regarding System Privileges
Because the issue of system privileges involves the allocation of power to
staff members, it is an area that requires significant management attention
beforehand. Policies that start out too loosely are extremely difficult to tighten
later, so your operation is best protected by starting with a rather restrictive
policy and allowing exceptions on a case-by-case basis.

VMScluster systems present a special concern because their design goal is to have
all the nodes function together as a single system with a single security domain. If
your VMScluster environment is typical, there is a common authorization file for
the entire environment. Therefore, if your programmers have system privileges
on the development nodes, they will also have those same privileges on the
production nodes. Such a situation may be necessary to allow the programmers
to install corrected applications in a timely fashion.

It may be advisable in some cases to raise more of a barrier between the
development environment and the production environment by giving the
programmers their own network nodes or even their own VMScluster system.
This arrangement increases the system management load on your staff, but
it prevents the problems that stem from having staff members with system
privileges using the production system for daily activities such as file and process
deletion. See Chapter 9 for more information about system security.

3–14

Dependability Options of the System Building Blocks
3.6 Analyzing Personnel Options

3.6 Analyzing Personnel Options
You and your coworkers are an integral part of a computing
system. Although this observation may seem obvious,
experience has shown that some organizations overlook the
importance of positive morale, comprehensive training, and a
high degree of involvement among a data center’s personnel
as key factors for the data center’s success. As illustrated in
Chapter 1, there are people at all levels and in all areas of a
system built with dependable building blocks. In that respect,
you cannot separate the human factor from the other aspects
of dependability because it is so closely intertwined with them
all.

3.6.1 Teamwork Makes the System Work
Perhaps because we are so used to being around other people, we take them
for granted. To ignore them in our dependability analysis would not be useful,
however, because ultimately it is people who implement dependable systems and
people who evaluate them.

Even though the facilities manager is shown in the basement of Figure 1–4,
the role is not a minor one. By providing the foundation upon which to build a
dependable system, the facilities manager shoulders an enormous responsibility
for the enterprise.

There are also few thanks for the system manager who monitors the system and
interfaces with the service vendor to ‘‘keep the hardware running.’’ Most sites
have a much broader definition of the system manager’s role, but if the hardware
(or operating system) breaks, that person takes the heat.

Straddling the boundary between the hardware and software worlds is the
network manager (who is frequently also the system manager). That is because
communication is so dependent upon both physical media characteristics and
algorithmic protocol dynamics. Computers that can be completely isolated and
still provide useful functions for the enterprise are a dying breed.

Of course, the programming manager is obligated to live at the front lines where
the users are attempting to convert the computer’s applications into productive
work for the business. Like the people mentioned previously, this professional
is dependent on the other computer systems personnel for support, and in turn,
supports others that use the system.

Perhaps the toughest job of all is performed by the operations manager. One
reason the operations manager’s job is difficult is because the board of directors
also likes to listen to the computing system’s users. The board listens not only
to the tellers or data entry clerks, but also to the managers of the business
departments who have come to depend on the computer for survival. The real
bosses, then, are the business users, upon whose success the enterprise depends.

3–15

Dependability Options of the System Building Blocks
3.6 Analyzing Personnel Options

3.6.2 Robots, We Are Not!
A key element of any dependable system is the comprehensive reporting of
problems, whether they are hardware or software defects or operator mistakes.
The promptness, completeness, and correctness of the data in a problem report
is critical in determining what went wrong and how it might be avoided in the
future.

Unfortunately, people do not like to admit their mistakes, especially if the
mistakes reflect poorly on their job evaluation. This frailty is one of the
contributing factors to a phenomenon that reliability researchers call, ‘‘the
mystery reboot.’’ When they analyze system logs to determine what caused
the down time, they can isolate hardware-related crashes, privileged software
induced crashes, and scheduled system shutdowns but there remains a large class
of outages that show up only as ‘‘system rebooted.’’ Without supporting data, the
service vendor cannot determine what is broken and therefore does not know
what to fix.

One possible way to alleviate this problem might be for management to respond
to personnel who make excessive mistakes with additional training, rather than
additional reprimands. While the dependability of a computing system is not
helped by tolerating incompetence, an atmosphere of ‘‘professional safety’’ can
promote the full disclosure of operational history that is so key to successful
problem diagnosis.

3–16

4
Balancing Dependability with Other Business

Considerations

Very likely, there are many factors limiting your freedom of action as you strive
to provide a dependable computing resource. Before you can overcome these
constraints, you need to analyze their nature, their causes, and their impact on
the dependability of your system. This chapter addresses these factors.

4.1 Identifying Constraints to Achieving a Dependable System
To begin understanding the limits of your options for enhancing the dependability
of your computing resource, write down replies to the questions in Table 4–1.
Some of the questions may not apply to your business or systems. Additionally,
the questions do not represent a complete enumeration of all possible constraints;
their purpose is to help you start thinking about these issues.

4–1

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

Table 4–1 Dependability Constraints: Sample Questions

Constraint Questions

Physical site How much space do you have for your system?
What are the power distribution and cooling capacities?
How wide are the access doors, and how are they controlled?

Equipment funding What is your budget for new equipment?
What does it cost to maintain the old equipment?
If the newer equipment costs less to maintain, could that increase the budget
for new equipment?
Is used equipment an acceptable solution to your needs?
How would your company’s finance department view leasing versus
purchasing?

Software acquisition What is your budget for software acquisition?
What operating system and hardware environments must be supported?
What levels (and localities) of support are required?
Would it be possible to acquire special equipment for new software, if
necessary?
What type of software is already familiar to the current system users?

Program development How complex of an application system could your personnel reasonably
undertake?
How would complexity impact maintenance efforts?
How effectively could computer-aided software engineering (CASE) be
introduced into the culture?
What training would that require? Would it require any additional equipment
acquisitions?
What is the availability of outside contractors and specialists to assist your
programming staff?

Staffing and training Would it be possible to hire more system staff, such as operators and system
managers?
Must you reduce your staffing levels?
What kind of training would help you get the most from your current staff?
Are there any funds for that training?
Are there alternative training options available, such as videotapes or
computer-based instruction (CBI)?

Organizational How does the culture and political structure of your company impact your
efforts to provide a dependable computing resource for your users?
What are the performance and dependability expectations of your most
important users?
Which senior managers could use the most education in the concepts and
benefits of investing in dependable computing?

(continued on next page)

4–2

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

Table 4–1 (Cont.) Dependability Constraints: Sample Questions

Constraint Questions

Legal and other
external factors

What are the performance and compliance (to industry standards) constraints
placed on your operation by government agencies?
How does your company’s competition influence the direction and rate of
change of your system?
Are there any health or safety considerations associated with the
dependability of your system?

Do not become discouraged after you have listed the constraints you have to
accommodate. The point of this exercise is not to convince you that you are in an
impossible situation. Rather, the point is to help you gain a clear vision of what
the boundaries of your path are, so you do not run into them as frequently.

As you analyze your computing system, you will be less likely to start planning
a solution that you cannot implement because the boundaries of the solution
space have been explored. Many times, what is technically feasible may not be
completely achievable in the real world due to nontechnical constraints. Failure
to consider all the factors that can constrain your path may result in a system
that seems like it should work but is instead continually problematic.

An example of this would be a dependability enhancement that relied on a
change in your company’s operational procedures. If the computing resource’s
management and the system user’s management were not both fully committed
to implementing the change in their organizations, the enhancement would fail.

If your company has given you the responsibility of providing dependable
computing services, you should understand and analyze the operational impacts
of enhancing the dependability characteristics of your system. You can then help
the general management of your company understand the business trade-offs
involved.

The following sections discuss these business considerations and their
relationship to dependability. Keep the following maxims in mind while you
evaluate your options:

• Building a dependable computing resource is not an end in itself.

• ‘‘Dependable enough’’ is determined by the business requirements you
(continuously) are attempting to meet.

4.1.1 Performance Tradeoffs
Because no physically implementable system is perfectly reliable, a dependable
system must consist of more than one independently recoverable unit (IRU).
This allows the system to continue to provide service, even if one unit fails. See
Chapter 6 for more information on how total system performance can vary over
time with IRUs. There are several ways to design IRUs. This section describes
the performance characteristics of IRUs.

After the hardware-related redundancy issues are covered, the impacts of
dependability concerns on software performance and staff productivity are
addressed.

4–3

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

4.1.1.1 Circuit Level Redundancy
Many large CPUs, like the DEC 10000 AXP and the VAX 10000, have
comprehensive internal consistency checks and sophisticated error correction
hardware and firmware. The DEC 10000 AXP and VAX 10000 console processors
monitor and control their continuous self-checking actions. Consult the CPU
systems documentation for details.

The performance impact of circuit-level redundancy is usually not measurable.
Unless really serious problems occur, such as having to disable the CPU’s high
speed cache memory, application programs (or your system’s users) cannot detect
the operation of these recovery mechanisms.

4.1.1.2 Subsystem Level Redundancy
Many systems from Digital, such as the DEC 7000 AXP and the VAX 7000, can
be configured with more than one CPU per system kernel. The CPUs share a
common main memory and each CPU performs equivalent processing functions.
These multiple CPU configurations are known as symmetric multiprocessing
(SMP) systems.

The OpenVMS operating system has the ability to continue operating in many
situations where one of the CPUs in an SMP system has failed, but at least one
remaining CPU is still functioning. This built-in redundancy of a key subsystem
is a major advantage of SMP configurations. Even in situations where a CPU
failure causes a system crash, an automatic reboot operation can restore service
more quickly than an on-site service call.

However, with one CPU out of operation, the resulting system has less processing
capacity than before. For this reason, you may want to consider configuring
an SMP node with one more CPU than is minimally required to support the
mission-critical workload. Then, if a CPU fails, your system can still achieve
its performance requirements. This class of redundancy could be called (n+1)1

because the approach is to acquire one more unit than is nominally required: to
retain nominal behavior in the presence of a single failure.

OpenVMS can also treat two or more disk drives as redundant storage devices.
This capability is provided by Volume Shadowing for OpenVMS and can make
almost any disk in a VMScluster system a redundant twin of any other same-
model disk anywhere in the same VMScluster. This class of redundancy could be
called (2*n) or (3*n) because this approach involves installing multiple units of
the disks to be shadowed. Because of the expense, many companies use volume
shadowing only on their mission-critical and system-critical disks.

Because data writes to disk must be sent to two (or more) devices, there can be
a slight performance degradation for write operations compared to nonshadowed
disks. There also can be a slight performance improvement for read operations
because one disk may locate the data before the others.

You must also consider the time domain behavior of shadowed disks during
recovery operations. If one of the shadow set members fails and is subsequently
replaced with a brand new disk, the operating system must make the new disk’s
contents exactly match the other shadow set members. This, of course, involves
overhead I/O operations that place additional loading on the disk controllers,
interconnects, and the access arms themselves.

See the Volume Shadowing for OpenVMS for more information.

1 Where ‘‘n’’ is the number of objects.

4–4

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

4.1.1.3 System Kernel Level Redundancy
A system kernel is the combination of CPU, memory, and I/O port. System
kernel redundancy is different from SMP configurations because in an SMP
cabinet, the multiple CPUs share a common memory subsystem and a common
set of I/O ports. Therefore, an SMP node counts as a single system kernel.

The following list describes several approaches to creating redundancy at the
system kernel level, each with different performance characteristics. Note that
the following discussions assume that the issue of dependable data storage is
addressed separately; the following list deals with providing multiple compute
engines:

• Tightly coupled system kernels

One way to ensure that there is no pause in service from the computing
resource, even when a major subsystem fails, is to dedicate more than one
system kernel to the same task. By keeping a primary and a secondary
kernel in lockstep1 as the kernels process instructions, the failover transition
can take place quickly. The primary performance advantage of this approach
is that continuous processing is possible. A hidden performance disadvantage
of this approach is that while multiple CPUs are required to implement this
configuration, the application executes only at the speed of one of the CPUs
(2*n redundancy). The others are used in the failure detection and recovery
operations, not for additional application performance (as would be the case
with a decomposed application executing on an SMP system). See Chapter 6
for more information on the Digital VAXft series of fault tolerant systems,
which use the tightly coupled approach.

• Active-standby system kernels

Another approach that has similar performance characteristics as tightly
coupled is the active-standby configuration. In this case, two completely
separate system kernels are dedicated to one purpose, but the CPUs are not
kept in lockstep. There is a short pause when the active kernel fails and the
standby kernel has to take over the application processing. Besides the short
failover delay (which varies according to processor), it is still the case that
more than one kernel is dedicated to one set of applications with no increase
in application performance (2*n redundancy). One advantage of this approach
is that because the CPUs are not kept in lockstep, software defects that cause
the active kernel to fail do not cause the standby kernel to fail simultaneously.
See Chapter 6 for more information on the Digital MIRA AS systems, which
use the active-standby approach.

• Loosely coupled system kernels

With loosely coupled system kernels, which access common data storage, you
can configure a dependable system that can make full use of all the kernels
all the time. The performance characteristics after a system kernel fails
depends on your configuration choices. If you have funding (or space) for
only as many system kernels as required to provide adequate application
performance, your computing resource will have to operate in a degraded
mode if a system kernel fails. Depending upon your business context, you
might have to let your system users interact with a less responsive system
or you might be able to shut down less critical applications to keep your
mission-critical applications responsive.

1 Electronic synchronization between the CPUs

4–5

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

Rather than installing the exact number of system kernels required by
the workload (n redundancy), you could install one extra system kernel
of nominal capacity (n+1 redundancy). Then, when a kernel failed, your
computing resource would still have sufficient capacity to provide adequate
performance and responsiveness. Note that this approach works best when
the system kernels in your loosely coupled system have similar capacities. If
one kernel had as much capacity as the remaining ones, losing that single
kernel could reduce your computing system’s capacity by 50 percent. See
Chapter 6 for more information on VMScluster systems, which use the loosely
coupled approach.

4.1.1.4 Independently Recoverable System Kernels
A fundamental assumption behind having multiple system kernels is that they
will not all fail simultaneously. Therefore service can continue when one of
the system kernels fails. A related dependability feature of many, but not all,
VMScluster systems and networks is the ability to recover or repair system
kernels independently. This allows the VMScluster or network to be returned
to full capacity without a total system shutdown. See Chapter 6 for more
information on which configurations support independent system kernel recovery.

Figure 4–1 illustrates a configuration with independently recoverable system
kernels.

4–6

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

Figure 4–1 A System with Independently Recoverable Kernels

ZK−3681A−GE

CI

Ethernet to terminals, printers,
networks, satellites, and InfoServer 100

VAX 6000−530

VAX 6000−530

CIXCD

CIXCD

CPU 0

CPU 1

CPU 2

CPU 0

CPU 1

CPU 2

CIXCD

CIXCD

BLUE::

RED::

GREEN::

VAX 6000−530

CPU 0

CPU 1

CPU 2

CIXCD

CIXCD

CI

CI

CI

CI

CI

VAXcluster Console System

HSC70

HSC70

HSC70

HSC70

RA60 RA81 RA81

TA90

RA90 RA90 RA90

TA90

CI = Computer Interconnect

Star Coupler

The sample configuration in Figure 4–1 is a CI-based VAXcluster system. Note
that each system kernel in the configuration has three identical CPUs. Such may
not generally be the case, but the sample configuration simplifies the capacity
calculations without obscuring the concepts.

Another simplification in this discussion is to focus solely on the CPU capacity
of the system. In a well-tuned and balanced system, there is sufficient I/O
bandwidth and memory capacity to support the workload. Keeping those factors
constant, we shall examine what happens to the overall system’s processing
capacity when a CPU or a system kernel fails.

4–7

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

Figure 4–2 shows the impact of individual CPU outages and kernel outages.

Figure 4–2 Individual Kernel Capacity Versus Time: Example State Diagrams

ZK−3686A−GE
T i m e

0 1 2 3 4 5 6 7 8

36

24

12

0

36

24

12

0

36

24

12

0

GREEN’s
CPU
Capacity
(in VUPs)

BLUE’s
CPU
Capacity
(in VUPs)

RED’s
CPU
Capacity
(in VUPs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

Figure 4–2 has three parts, and each part gives the CPU capacity of its system
kernel as a function of time. In other words, the top graph in Figure 4–2
represents the CPU capacity of the top system kernel in Figure 4–1. The middle
graph represents the middle system kernel and the bottom graph represents the
bottom system kernel’s CPU capacity. The CPU capacities are expressed in VUPs.

A VUP is a VAX unit of processing. For reference, one VUP is equivalent to the
processing power of a VAX–11/780™ . Clearly, modern VAX CPUs (and the AXP
processors) are much more powerful than the original VAX–11/780.

For simplicity, each system kernel in Figure 4–2 is identical. All three VAXcluster
nodes are 3-processor SMP VAX 6000 systems; specifically, model 530. The total
capacity of all nine CPUs in the system is about 108 times that of a VAX–11/780.

4–8

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

Following are the significant events along the time line in Figure 4–2:

• For time 0 < t < 2, full CPU capacity is available for your user’s applications.

• At time t = 2, one of the CPUs in node BLUE fails, but OpenVMS reconfigures
itself to proceed without stopping, using the remaining two CPUs. The
process that is executing on the failing CPU is deleted.

• At time t = 3, node GREEN is halted as part of a major software upgrade.

• At time t = 4, node GREEN is rebooted to finish the software upgrade.

• At time t = 6, node BLUE is powered off to allow CPU replacement.

• At time t = 7, node BLUE is rebooted after the failed CPU has been replaced.

• For time t > 7, the overall system is operating at full CPU capacity again.

Figure 4–3 shows only one graph, representing the total available CPU capacity
of all three systems at any point in time.

4–9

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

Figure 4–3 Total System Capacity Versus Time: Example State Diagram

ZK−3695A−GE

T i m e

0 1 2 3 4 5 6 7 8

36

24

12

0

48

60

70

84

96

100
108

72

Total CPU
Capacity
(in VUPs)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

In Figure 4–3, the total is calculated by finding the sum of all the CPUs that are
on line for each time period, as time progresses from 0 to 8.

If your mission-critical applications require only 60 VUPs of CPU capacity to
execute effectively, then the example system has had sufficient CPU capacity
continuously available the entire time. That is, the solid graph line never dips
below the horizontal dashed line at VUPs=60.

If those applications require 70 VUPs of CPU capacity, then time 3 < t < 4
exhibits poor performance because only 60 VUPs are available. Clearly, BLUE’s
failed CPU should be fixed as soon as possible. Or, perhaps the software upgrade
of node GREEN should be postponed until both nodes BLUE and RED are
operating at full capacity.

4–10

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

If it takes 100 VUPs of CPU capacity to service your mission-critical applications
effectively, then only time t < 2 and time t > 7 have acceptable performance
characteristics. Either more CPUs could be added to the system kernels, or
perhaps a similarly powered VAX node could be added to the VAXcluster. Also,
AXP nodes could be added to this environment, making it a VMScluster with VAX
and AXP nodes.

If it is critical that your system maintain full CPU capacity at all times,
fault tolerant systems like VAXft systems should be used, perhaps in network
configuration.

Note

The previous analysis has considered only CPU capacity requirements.
Your applications also need memory and I/O bandwidth. Be sure to
consider those areas as well when calculating how system capacity
changes after a failure.

4.1.1.5 Network Level Redundancy
On a potentially larger scale, you can connect multiple independent systems
(nodes) into a network that has pervasive capabilities. In this way, if one system
fails, your users could access the computing resources of other nodes on the
network. Adequate performance is an important characteristic of a dependable
computing resource. Whoever configures your network should also consider the
loading characteristics of the network when one or more nodes or interconnect
paths has failed.

• Failure of an interconnect path

Any properly configured wide area network (WAN) should have more than one
path between any two network nodes. However, unless care is taken during
the network design, the transmission and forwarding delays for a secondary
path may be many orders of magnitude greater than for the primary path.
This could be from routing the data through many additional nodes or from
having to send the data across slower paths or both.

The point is that even an adaptive routing network may require special failed
path design considerations to provide continuously adequate service to your
system users. See Chapter 10 for more information on Digital services that
can provide expert help in configuring your network.

• Failure of a network node

Many times, the failure of a key node can have a greater impact on a network
than the failure of any of the paths. If the node is a router for many paths,
the topology of the network is significantly altered. At least as important are
the lost capabilities that the node had provided to the network system. This
loss places a greater load on other network nodes, which must provide those
services to your system users, assuming they also have those capabilities.
There are many approaches to fully distributing your computing resources; all
of them require that you plan ahead.

For details about Network Application Support (NAS) from Digital, which
provides pervasive capabilities for many vendors’ systems, see the following
documents:

NAS Guide to Designing a Portable Programming Interface

NAS Guide to Documenting Multiplatform Products

4–11

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

NAS Guide to Developing Portable Software

NAS Guide to Using a Portable Programming Interface

NAS Overview

NAS Application Style Guide

See the DECtp Desktop for ACMS Training Guide and the DECtp Desktop
for ACMS Progamming Guide for more information on DECtp™ Desktop for
ACMS. Also called Desktop ACMS, this software product provides enhanced
transaction processing support for personal computer users.

See Using CDD/Repository on VMS Systems for information on
CDD/Repository, which provides fully distributed, coordinated data repository
functions.

4.1.1.6 Operating System Performance
Generally, a computing resource that is set up for maximum dependability
also has a well-tuned operating system. This characteristic is typically the
case because the operations involved in tuning an operating system (such
as eliminating bottlenecks) also usually enhance the system’s dependability.
Enhancing the system’s security (to avoid denial of service or data corruption)
is one exception. Higher security generally involves more overhead, which can
degrade performance in some cases.

Sometimes failures can cause the system operations to move away from the most
optimal settings. The OpenVMS operating system has several mechanisms for
providing continuous service in the presence of some failures, but at degraded
performance. Examples include:

• An SMP configuration continuing after a CPU has failed (a significant impact
unless an extra CPU was configured: n+1 redundancy)

• A CPU continuing with its high speed cache disabled (a very significant
impact, for that CPU)

• A system kernel continuing with some of its main memory disabled (the
impact depends on the resulting level of memory use)

• A single HSC™ or HSJ controller continuing to handle the full I/O load after
its twin has failed (the impact depends on the resulting I/O load on the HSC
or HSJ and its disks)

• A VMScluster continuing with one path of its dual-rail1 computer
interconnect (CI™) disabled (usually not a measurable impact on
performance)

All multiuser operating systems protect themselves from nonprivileged users and
programs (to a greater or lesser extent) and these dependability features require
a small amount of system overhead to operate. Some operating systems have
internal firewalls, which can protect the inner executive from the failures of even
other privileged subsystems. This is useful when extensive systems programming
is required of a customer’s staff for effective system use. There is, however, a
substantial overhead involved with firewalls, and they can make interapplication
communication a very complex undertaking. Systems programming is rarely
required to fully use OpenVMS so the overhead of firewalls has been avoided.

1 The CI uses 2 send cables and 2 receive cables per connection.

4–12

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

4.1.1.7 Application Software Performance
Some high availability features of Digital application software products (such as
online database redefinition or online application maintenance) generally have
minimal impact on the product’s performance. Other features, such as journaling
or online backup functions, can impose an additional I/O load on the storage
subsystems.

Recovery operations (such as the automatic rollback of transactions after a
system failure) can temporarily impact the performance of production work, but
such overhead is usually not encountered during normal operations.

One effective way to ensure that your system’s users can always access
applications is to use one of the Digital transaction processing (TP) environments.
Because DECtp products enable the implementation of distributed TP
applications, your applications can benefit from VMScluster system or network
levels of redundancy, or both.

Because application performance is so critical to TP environments, the DECtp
products make optimal use of OpenVMS features. The result is that most
customers find that writing their applications for the TP environment generally
increases the level of performance over a non-TP environment.

For information about designing and implementing a transaction processing (TP)
system, with ACMS, data dictionary, DEC Rdb, DECforms examples, see A TP
System Case Study: Database and Application Development. For information
about the Digital relational database product, see the DEC Rdb documentation
set, including the:

• VAX Rdb/VMS Guide to Using RDO, RDBPRE, and RDML

• VAX Rdb/VMS Guide to Database Design and Definition

• VAX Rdb/VMS Guide to Database Maintenance

• VAX Rdb/VMS Guide to Database Performance and Tuning

Also see the VAX ACMS Guide to Creating Transaction Processing Applications
for details.

4.1.1.8 Personnel Productivity and System Performance
A good way to reduce the number of mistakes your personnel may make is to
reduce how much they have to do. (See Chapter 11 for a related case study.) This
improvement can be done with more automated procedures and can increase, not
only the reliability of your personnel, but their productivity as well.

The drawback of some software procedures is that they can increase system
overhead as they perform automatically all those tasks that your personnel used
to perform manually.

4.1.2 Implementation Tradeoffs
This section covers the feasibility, timing, and learning curve considerations of
implementing improvements to your computing services.

If ever there were a time to plan ahead, this is it.

4–13

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

4.1.2.1 Feasibility Considerations
Read again your listing of the constraints under which you must operate. Perhaps
conditions have changed and some constraints may be a bit more flexible than the
last time you checked. Of course, new ones may have developed as well.

If the set of dependability requirements your company places on your computing
resource cannot be properly addressed because of organizational or cultural
factors, it may be time for some creative management education.

If insurmountable constraints prevent you from making those changes in
your computing resource that are necessary to provide the required level of
dependability, you should at least make the consequences clear to the appropriate
managers and be sure that the expectations of your users are set correctly.

4.1.2.2 Timing Considerations
Funding constraints are likely to limit the rate at which you can enhance the
dependability of your computing resource.

In making choices about how to enhance your system, you will have to get to
know your users. Are they likely to complain about a system clearly in need of
more capacity but always available to them? Or will they be able to live with a
system that has good response times, except when it is unavailable?

In most situations, you cannot concentrate on only one system attribute to the
detriment of others. You may have to select the most pressing performance
improvement, with the most critical dependability enhancement, along with the
most needed programming tool, and so on.

And then next year, review and revise all your lists again when you submit your
long range plan to management for funding.

4.1.2.3 Learning Curve Considerations
The effort to improve your computing resource in all dimensions takes time.
It takes time not only to implement the actual technical changes, but for the
operational procedures to evolve accordingly. Your computing system responds to
changes in your company’s business practices. At the same time, your company’s
practices are perturbed any time you make significant changes in your system.

Besides considering your personnel’s training requirements, you should remember
that your system’s users also have a learning curve to climb. The success of your
new system depends on your personnel’s ability to use it effectively.

Finally, once your company and system users have become accustomed to their
more dependable computing resource, present them with before and after
information that demonstrates the return on their dependability investments.
This step might make it easier for you to obtain funding for improvements in the
next year.

4.1.3 Staffing Tradeoffs and Considerations
As you enhance the dependability of your computing resource, your staffing
needs will keep changing as well. Staffing considerations are intermingled
with other considerations because it is your staff that ultimately determines
how successfully your computing resource provides service to your users. The
following list contains examples of staffing considerations:

• You may opt for the simplicity of acquiring a fully fault tolerant system,
rather than hiring a consultant to craft an active-standby system from

4–14

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

existing components. See Chapter 6 for more information on Digital VAXft
fault tolerant systems.

• You may decide to hire (or train) TP programmers to implement an online
solution, rather than hire more operators and maintenance programmers to
keep the current batch-oriented solution running. See Chapter 8 for more
information on transaction processing environments. See Chapter 9 for more
information on the DECscheduler job control system.

• You may determine that hiring a database administrator and acquiring
a PC integration package would support your users’ thirst for data more
effectively than the ad hoc remedies maintained by your system managers
and programmers.

• You may discover that giving your best operator system management training
provides you with the perfect chief system monitor for the control room of
your new lights out data center. See Chapter 11 for a case history of how the
Digital Customer Support Center in Colorado implemented its lights out data
center.

4.1.4 Vendor Tradeoffs
Because high quality service can mean the difference between a minor outage
and a major disaster to your system users, effectively managing your company’s
relationships with the vendors who service your hardware and software is
critically important.

4.1.4.1 Reliable Products
Clearly, the quickest service call is the one that never happened. Just as clearly,
even the best service vendor has trouble providing satisfactory results if the
products it is servicing require frequent or major corrective actions or both.

4.1.4.2 Adequate Coverage
If your computing system must be available to your users 168 hours per week,
then your service vendor should be available to help you that number of hours as
well.

An important question is whether 24-hour support implies a telephone answering
service or a senior technical support person at your system site at any time.

4.1.4.3 Committed Response
Committed response should mean more than a maximum time for a callback.
Committed response should also imply an operational procedure to escalate the
repair effort on a predefined schedule if the complexity of the problem requires it.

Having the service person desert your (still broken) system at 5:00 p.m. is not
the best time to find out that your service contract does not include a continuous
effort clause. A continuous effort clause means that once a service call has
begun, the vendor will not cease working on the problem until it is fixed.

4.1.4.4 Location Flexibility
You should find out if your service vendor can place a field engineer in residence
at your site to respond to your most mission-critical problems. Likewise, find out
if your service vendor can accommodate your company’s remote sites, which may
be scattered around the country (or globe).

Of course, just as important as the location of service staff is the location of spare
parts that may be needed.

4–15

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

4.1.4.5 Flexible Roles
One way you can save service costs is to elect to have your own staff service the
system, if you have the expertise in-house. Determine if your service vendor can
provide appropriate training, spare parts, and backup support to help you succeed
in this type of effort.

On the other end of that spectrum, does your service vendor have the resources
and experience to provide out-sourcing services to your company? In this scenario,
the out-sourcing vendor accepts complete responsibility for the effective operation
of your company’s computing resource.

4.1.4.6 One-Stop Service
Because all the components of your system must function together to provide
service to your users, it makes sense to service them as a team. If your service
vendor has the capability to bring the many pieces of equipment in your system
into an umbrella service agreement, it eliminates the finger pointing that can
develop. For instance, sometimes two boxes on a network cannot communicate
effectively, but still appear to be functioning separately. Is it box A’s problem? Or
is it box B’s problem? Or is it a problem somewhere else in the network?

See Chapter 10 for more information on Digital services.

4.1.5 Cost Tradeoffs
Many times, the best way to enhance the recovery capabilities of a system is by
adding redundant equipment or replacing some parts of it with fault tolerant
equipment. Other times, acquiring the appropriate software products is an
effective route to a more robust system. Of course, having the right type and
number of people on your staff is key to providing dependable computing but this
also costs money.

In the final analysis, the essential bottom line consideration is the fiscal one. It
would not be rational for your company to invest in dependability enhancements
unless they were well justified. The following steps may help you justify an
appropriate level of funding:

1. Use the information you recorded in Table 4–1 and make a list of the most
important mission-critical business functions.

2. Find out, from the relevant users, just how expensive an outage is for them.
Include rework overhead, lost revenue, and the loaded labor costs of any
workers idled during an interruption.

3. Analyze your computing system (with the help of this handbook) to determine
what, if any, improvements need to be made so that its dependability
characteristics match the dependability needs of your company.

4. Compare the improvement costs over five years to the outage costs over
five years. You can use the past history of your current system to make
an estimate of the frequency and duration of production outages, given the
current system.

Few companies have such high outage costs that a blank check for
dependability enhancements can be justified. However, you can use the
previous information whenever you are requesting funds for other purposes,
such as increased capacity. There may be only a small difference in total costs
between enhancing your system in a conventional way and doing so in way
that enhances its dependability.

4–16

Balancing Dependability with Other Business Considerations
4.1 Identifying Constraints to Achieving a Dependable System

5. Consider that the best way to improve your system is by defining and securing
funding for a project dedicated to improving its dependability characteristics.

6. Keep careful records of outages, costs, and the installation of dependability
improvements. By documenting your successes and mistakes, you can track
your system’s progress and more easily demonstrate to management the
return on their investment due to fewer and shorter outages.

4–17

5
Maintaining a Dependable Environment

The physical environment should not be taken for
granted when planning computer systems. It is tempting
to assume that if the already existing computer room has
the space, the electrical power and air conditioning can
handle the new load. Even if such details are calculated
and found to be adequate, do not assume that such
critical resources would never fail or degrade.

Newer computing equipment generally requires less power, generates less heat,
and occupies less space than older equipment, assuming equivalent computing
capacity. However, the ‘‘older’’ equipment may be only a few years old and may
not be sufficiently capitalized to replace. Then the old and the new must share
site resources that may have been initially planned to support only the old
configuration.

Because your computing system is built completely on top of its environment, it
can never be more dependable than its environment. If your business requires
a level of system dependability greater than that provided by your utility
companies, you must take steps to augment the dependability of your system’s
physical environment.

This chapter discusses many key environmental factors with the goal of
facilitating your analysis process. The factors discussed are:

• Electrical Power (Section 5.1)

• Air Conditioning (Section 5.2)

• Water Supplies (Section 5.3)

• Site Security (Section 5.4)

• Desktop Environments (Section 5.5)

• Dealing with Personnel (Section 5.6)

• Coping with Disasters (Section 5.7)

• Overall System Considerations (Section 5.8)

5.1 Electrical Power
When the power supply fails, chances are good that your computing system will
fail unless you have taken extra precautions. Your main power supply must not
only be resistant to power outages, but it must also be free from ‘‘noise’’ which
causes an unwanted disturbance of data due to power fluctuations. Voltage
spikes, brown outs, and frequently missed voltage cycles can put undue electrical
and thermal stress on the circuitry in your equipment. This stress can cause
premature failure of many solid state components.

5–1

Maintaining a Dependable Environment
5.1 Electrical Power

To combat problems with power fluctuations, many vendors offer power
conditioning and distribution units, such as the following Digital products:

• H7007 TVSS (transient voltage surge suppresser)

• H7225/H7226 CVC (constant voltage conditioners)

• H7228 PCS (power conditioning and distribution)

• H7317 PDS+ (power distribution and monitoring)

• H7318 PCS+ (power conditioning, distribution and monitoring)

• HA3000, H7229 (uninterruptible power systems)

• H7310 EMS (environmental monitoring system)

• VAX REMS (remote environmental monitoring software)

Some high-end systems, such as the DEC 10000 AXP and the VAX 10000, have
built-in power conditioning units (like the PCS+).

The combination of the various H731x-family units and the OpenVMS layered
product VAX REMS provides a comprehensive environmental monitoring system.
From a single terminal, your staff could monitor over 100 sensors that would
report on and record the following environmental conditions:

• Voltage

• Current

• Temperature

• Humidity

• Smoke

• Fire alarms

• Water detectors

• Air conditioners

• Door alarms

• Security systems

• Backup diesel-fuel reserves

• Backup power systems

• Halon systems

• External electrical panels

For each environmental condition in the previous list, various automatic system
actions such as sending electronic mail could be triggered on alarm conditions.

There are also a number of ways to protect yourself from total power outages of
your utility power. For short power outages of a few minutes to several hours,
you can purchase one of the many types of uninterruptible power systems (UPS).
These units are capable of providing power for systems ranging anywhere from
a single desktop computer to several large systems in a computer room. Some
systems, including the Digital VAXft series of fault tolerant computers, use
built-in UPS units to avoid down time from power failure. Digital also offers
separate UPS products for computer rooms and offices.

5–2

Maintaining a Dependable Environment
5.1 Electrical Power

Note

It is possible for UPS units to fail precisely when they were needed. One
rather expensive way to avoid such a disaster is to install redundant
UPS units. Another effective and less expensive way to test the proper
functioning of your UPS unit is to actually bring the UPS unit on line by
performing practice drills. If you have practice drills, remember to refill
the engine’s fuel tank after each online drill.

To survive longer power outages of days or weeks, you might invest in a gas or
diesel powered engine-generator unit that could recharge the batteries of your
UPS unit. Many hospitals install these types of emergency generating facilities.

Installing an engine-generator unit is very effective for most applications but for
some applications this might not provide enough protection. For mission-critical
applications, you might consider one of these options:

• Installing a second computing site that receives power from a different power
grid.

Even though installing a second computing site is the more expensive option,
installing the second site in a geographically distant location can also provide
you with disaster tolerant capabilities (see Section 5.7). Building and staffing
a second site may not be required if the only reason for adding the remote site
is access to a second power grid. A UPS unit is a more cost effective solution
to that problem.

• Contracting with your power company to route a feed from a second grid into
your current computer site.

When one power grid fails, there is a good chance that a second, independent
power grid can still provide power to the computing system. This option can
be less expensive than building a second site.

5.2 Air Conditioning
High temperatures are the enemy of solid state circuitry. When solid state
devices operate at elevated temperatures, they are more likely to fail. Therefore,
it makes sense to acquire extra air (or water) conditioners. For the purposes
of surviving failures, it is better to achieve a total cooling capacity in several
smaller units than in one or two very large units. Then, if one unit fails, a
smaller percentage of the total cooling capacity is lost.

If you have installed multiple air conditioning units and the alarm on your
monitoring equipment signals a problem with an air conditioning unit, consider
following these procedures:

• If the air conditioners that remain working have sufficient capacity to cool the
total system, you can continue to offer full computing services while waiting
for the service vendor to repair the broken unit. You can also ensure proper
distribution of cool air throughout the computer room by using portable fans
to compensate for disabled blowers.

• You can partially shut down the computing system to reduce the amount
of heat generated and thus reduce the total amount of cooling required. Of
course, shutting down computers and peripherals is possible only when the
applications affected are not mission-critical. As you shut down equipment
and the total capacity of your computing system is diminished, you may also

5–3

Maintaining a Dependable Environment
5.2 Air Conditioning

need to shut down noncritical applications in order to achieve reasonable
performance on the critical applications.

Clearly, the order in which you shut down equipment and applications
can become controversial. Therefore, you should negotiate the shutdown
procedures before cooling problems occur. Planning ahead for an orderly
shutdown reduces the probability of losing work, data, or equipment.

Note

If your air and water conditioning equipment is operating with electricity
(and most are), it makes sense to provide UPSs for them as well.
Providing a UPS for the computing equipment and letting the cooling
equipment stop when the building power fails could require shutting
down the system anyway and could potentially waste the investment
of the UPS (unless all power failures were guaranteed to be extremely
short).

5.3 Water Supplies
Even if your computing equipment is air cooled and not water cooled, you may
still need to worry about plumbing. This is because many air conditioning units
transfer heat from their computer room blower units to their externally located
radiating units via pumped water.

Environmental monitoring systems typically have water sensors that can be
located in out-of-sight places (such as under raised computer room floors) to
alert you if water or other liquids have begun to leak there. These are good
investments because electrical wiring has a habit of shorting out when it gets wet
and damaging the equipment to which it is attached.

Note

A true story: one installation believed ‘‘the colder the better’’ should apply
to computer rooms. Therefore, it decided not to replace its very powerful
air conditioner when its high heat generating CPU was replaced with a
cooler system. Because people rarely entered the room, it was assumed
that there was no disadvantage to having the new computer in an ‘‘ice
box.’’ When all the water pipes in the room froze and burst, causing
considerable damage, the installation decided to stay within its vendor’s
recommended ranges of temperature and humidity.

5.4 Site Security
Some of the security mechanisms provided by computer operating systems rely on
adequate physical security for key hardware components, such as the Power and
Reboot switch on the CPU cabinet. To deny service to unauthorized persons, you
must control access to those pieces of equipment. Many companies offer products,
such as badge reader door locks, that provide controlled computer room access in
a flexible fashion.

5–4

Maintaining a Dependable Environment
5.4 Site Security

Note that people and objects are not the only external influences that can intrude
on your system from the external environment. Destructive programs (known as
viruses because of their ability to spread around a network) can be dangerous
to the software and data in your system. In addition, malfunctioning external
equipment can impact your computing system just as seriously as a local power
failure. See Chapter 9 for more information on system security.

It is possible, however, to carry physical site security too far.

Note

A true story: a fire detector was accidentally tripped in a highly secure
computer room. Because the room was actually an electronically
controlled vault, the operators were required to perform a 15-step
checklist to allow them to escape before the Halon fire control system
forced all the oxygen from the room.

In other words, remember that personal safety is more important than
computing system safety.

5.5 Desktop Environments
Be sure to consider computing equipment in office areas. You may succeed at
optimizing the conditions in your computer room; however, if your VMScluster
system has satellite nodes that reside on or beneath people’s desks, you must
consider temperature, power, CPU console security, and coffee spills in the office
environment as well. For example, perhaps you are already using some type
of Halon system in your computer room, but have you overlooked the option of
providing a fire extinguisher in every office with a desktop or personal computer?
You should also consider the consequences to your office equipment in case a fire
turns on the overhead sprinkler system.

Note that similar considerations apply whenever significant parts of your
computing system such as CPUs are in employee work areas. Physical
environments such as shop floors, checkout lanes, and loading docks all contain
special and unique environmental hazards. See Chapter 10 for information on
how Digital can help you address those hazards.

In addition, even if you transport special sets of full backup tapes from your
data center to a fire storage facility for safekeeping, are you sure that users
are backing up and safely storing corporate data that may reside only in their
personal computers hard disks or diskettes? See Appendix A for a checklist that
can help you identify similar areas of concern in the office environment.

5.6 Dealing with Personnel
As hardware and software reliability has improved over the years, the percentage
of down time due to those factors has decreased and the impact of operator
errors or system management mistakes has increased. Much of this increase is
the result of a very rapid growth in the power and complexity of the ‘‘average’’
computing system.

Just a few years ago, it might have been reasonable to expect one competent
systems person to manage, operate, and even sometimes program a Digital
MicroVAX II™ system that a company might put in the corner of the office. If
that MicroVAX II is replaced with a newer, cheaper, and smaller Digital VAX

5–5

Maintaining a Dependable Environment
5.6 Dealing with Personnel

4000 system or a DEC 3000 AXP system, that same systems person could be
supporting the computing needs of over 100 users instead of a dozen.

As the labor costs of competent personnel keeps rising, you need to analyze how
to make the most efficient use of your staff. The following sections outline some
techniques you may wish to investigate. See Chapter 9 for more information on
efficient operational procedures.

5.6.1 Comprehensive Training
While training cannot eliminate certain classes of human errors (such as
typographical mistakes), it should make your staff aware of the impact of
their actions (such as dismounting the quorum disk). In-depth training in how
your computer system operates has additional advantages. If your operations
personnel have sufficient knowledge about how their standard procedures
function and why they were designed that way, those people are more likely to
suggest useful improvements. Additionally, there may be crisis situations when
the maintainers of the procedures cannot be reached and the attending staff has
to implement temporary workarounds to finish the critical jobs on time.

Continuing education is a positive dependability factor for all your personnel.
System managers and application system designers need to be aware of any
new dependability features of your vendors’ computing hardware or software
to use them to maximum advantage. Applications programmers need to keep
up with the latest techniques for defect-free programming and friendly user
interfaces. Appropriate end-user training can reduce the load on your data
center’s help desk. See Chapter 10 for more information on training options
available from Digital.

5.6.2 Suitable Tools
A wise person once said, ‘‘A craftsman never complains about having the wrong
tool.’’ This is because all the proper tools are assembled before even starting the
job.

Your computing system is itself a highly complex tool. The right tools can help
your staff maintain proper control of the system and its functions. Without
system tuning tools, your staff may be installing more hardware than necessary
to maintain the required responsiveness. Without data repository tools, your staff
may be spending too much time finding and fixing subtle application defects that
are caused by using slightly different data definitions in different programs or on
different nodes. Without online documentation tools, your staff (and users) may
be interacting with the system without understanding all of the options available
to them.

See Chapter 8 and Chapter 9 for more information on tools that could enhance
your staff ’s ability to program and operate your computing system in a
dependable fashion.

5.6.3 Order and Neatness Contributing to Safety
When your computer equipment is installed in neat geometrical arrangements, it
is more than pleasing to the eye. It is also more reliable and more recoverable.
People are less likely to trip over cables or pipes when they are routed through
cable trays or under a false floor. So it is safer for them and safer for your system.

5–6

Maintaining a Dependable Environment
5.6 Dealing with Personnel

When equipment is arranged according to the specifications supplied by your
vendors, it is easier and quicker to fix. It is also generally the case that
installation specifications also consider critical reliability areas, such as proper
air or water flow and distance from electrical interference.

Note

Even tightly cramped computer rooms can have full-height (2.4m) ceilings.
If some of your equipment is half-height (1.2m) or shorter, you may be
able to save floor space by stacking cabinets with appropriate racks or
shelves.

5.6.4 People-Proof Covers
When people move around or stand in close proximity to computing equipment,
there is always a chance of bumping against a critical button or flipping the
wrong switch accidentally. Many vendors build console lock-out systems or secure
cabinets into their systems. There are also many ‘‘aftermarket’’ accessory vendors
who supply user-installable covers and latches that prevent the accidental
spinning down of the system disk or the mistaken pressing of the Reboot button.

The point of using covers and latches (even keyless ones) is to require the person
to slow down and engage in a short multistep process before any critical action
can be completed. Clearly, if the Exit button for the electric computer room door
is on the same wall as the Fire Alarm or Power Shut Off buttons, the Exit button
should not be covered but the others must be.

5.6.5 Operational Zones
If all the line printers and laser printers were set up in a different room than the
data center, the print operators would seldom have reason to enter the room with
all the critical switches and buttons. In fact, if you can restrict access to the core
part of the computing system, there would be fewer chances for human error to
impact it.

Implementing a zoned environment involves working out the roles of each person
on your staff. Some negotiation may be necessary to establish clear boundaries of
roles. After the role boundaries have been created, the decision of where to place
the physical boundary becomes straightforward. Note that role boundaries do not
preclude cross training. People might want to shift roles some day or might need
to cover for each other during sick time.

If budget or other constraints prevent the construction of actual physical
boundaries, many times rearranging the equipment in the data center can
provide the necessary virtual boundaries. The point is for people to go near only
those pieces of equipment for which they are authorized.

5.6.6 Lights Out Computing
The ultimate safe zone is a computer room with no people around. Then you
could turn the lights out because the equipment would not need it. The challenge
in lights out computing is to automate the system’s and business’ procedures to
the extent that human operators are no longer needed.

5–7

Maintaining a Dependable Environment
5.6 Dealing with Personnel

A central control room can be used to enable a small number of professionals
to monitor and control large numbers of computers. One Digital product,
VMScluster Console System (VCS), is an effective way to connect ‘‘directly’’
to the console lines of a large number of systems. When VCS is used in concert
with other Digital products such as DECalert™ and DECscheduler, your staff can
automate a large number of routine operations tasks. If a problem develops, the
responsible staff members or a predefined chain of backup persons would be the
first to know.

Note

In February 1994, Digital granted Target Systems Corporation a
nonexclusive, nontransferable license to use DECalert Version 1.2
software. Under the agreement, Target Systems may provide support
for the Digital customer base (existing and future) for the product, as well
as future development and migration of the product or its derivatives.
Target Systems named the product TARGET–>ALERT.™ Digital reserves
the right to continue to sell DECalert or its enhancements, as Digital
deems fit.

See Chapter 9 for more information on the previously mentioned products. See
Chapter 11 for a case history of one of the lights out data centers within Digital.

5.7 Coping with Disasters
The term disaster usually brings forth images of floods, fires, and similar
destruction. Such natural occurrences can prove to be disastrous for a computing
installation but they are not the only potential sources of catastrophe for your
system.

There are many hazards that can pose a threat to your computing systems.
Examples of hazards include a disgruntled employee who erases critical computer
data, a virus program introduced into your network by a naïve PC user, or a
construction worker severing the wrong cable. All these scenarios can put your
system out of commission in completely unforeseen ways.

Because it is impossible to enumerate all the potential causes of disaster, an
alternative strategy is to define broad classes of problems that could be addressed
by several general classes of contingency plans.

Note

As illustrated in Section 5.7.3, effective disaster planning is neither
inexpensive nor easily accomplished. This section is an overview of the
issues involved and is not a step-by-step guide on how to accomplish
disaster planning.

If your computing resource must be truly disaster tolerant, be sure to
consult disaster/risk management professionals. See Chapter 10 for more
information on Digital services.

5–8

Maintaining a Dependable Environment
5.7 Coping with Disasters

5.7.1 Time Domain Considerations
A key dimension of coping with disasters is timing. The questions that must be
addressed by your contingency plans include:

• When disaster strikes, what is the maximum allowable delay before service
must be restored to key applications?

Clearly, the longer you can safely wait to restore service, the more options
you have. If three or four days down time is acceptable, it might be possible
to make ad hoc arrangements with your vendors for replacement equipment
or sites. If your business cannot lose more than a few minutes of availability,
you must be prepared to sustain the additional costs of hot standby sites.

• When service is restored, how current must the files and databases be?

In other words, how much reentering of data or transactions is acceptable? A
requirement of not losing a single transaction places more severe constraints
on the final disaster tolerant solution. Therefore the solution may have to be
justified by the business costs of not meeting such a requirement.

• What level of performance degradation is acceptable when the backup system
is carrying the load?

One way to reduce the cost of maintaining a hot standby site is to limit
its capacity. The impact of that strategy may be longer response times to
interactive users, a policy of executing only critical applications, or both.

• How long would it take to assemble the staff required to bring the backup
system on line?

This issue involves a staffing decision: to maintain a full-time staff at the
backup site, to issue beepers, to telephone people at home, or to wait until
the next business day to reassign tasks. Clearly, the acceptable delay is
determined by your unique business context.

• How quickly can vendors deliver replacement equipment if required?

Some classes of disaster could be handled with prompt delivery of new
hardware and software. This assumes the physical site was not completely
destroyed or could be rebuilt quickly. Again, quickly can only be defined
in your business context. This also assumes that your vendor can provide
identical hardware and software revisions and that your applications and
data can be retrieved from secure storage.

• Do your disaster recovery procedures require an efficiency of execution
attainable by most human operators? What are the required time constraints
on your staff? Must they perform their tasks at super human rates or levels
of perfection to enable your contingency plans to succeed?

Figure 5–1 illustrates how various AXP and VAX system configurations respond
(in the time domain) to outages. See Chapter 6 for more information about the
behavior of various AXP and VAX configurations.

5–9

Maintaining a Dependable Environment
5.7 Coping with Disasters

Figure 5–1 Time Domain Behavior of AXP and VAX System Configurations

ZK−3687A−GE

VAXft

Allowable
Outage
Duration

Likelihood
of
Outage

Wide
Area

Network

FDDI
VMSclusters

Fire/FloodEarthquake Power
Failure

Hardware/Software
Component Failure

Operational
Mistake

Weeks

Days

Hours

Minutes

Seconds

Microseconds
VAXft with FDDI

with UPS

VMSclusterswith UPS

with UPS
VAX 4000, 6000, 9000

DEC 3000, 4000, 7000 AXP

VAX 6000
SMP

DEC 4000, 7000 AXP

In Figure 5–1, the horizontal axis lists various causes of system outage, mostly
of an external environment nature. It is assumed that the events listed near
the vertex of the two axes are extremely rare while those toward the right
of the vertex are progressively more commonplace. The boxes in the center
represent typical AXP and VAX systems that could not survive a power failure
unless they were connected to uninterruptible power systems (UPS). The system
configurations that are spread over a wide geographical area such as VMScluster
environments using FDDI or wide area networks (WANs) are more likely to
survive rare but catastrophic disasters.

The vertical axis in Figure 5–1 indicates how long typical recovery times are
likely to take. The symmetrical multiprocessing (SMP) AXP and VAX systems are
shown to have shorter recovery times than the non-SMP configurations because a
system with a single CPU has a critical single point of failure.

An SMP AXP system or SMP VAX system could continue in degraded mode on
its remaining CPUs (perhaps after a reboot), while a non-SMP AXP system or a
non-SMP VAX system would be inoperative until the service person could replace
the failed components.

The VAXft systems have recovery times in microseconds because of their
hardware-based fault-tolerant architecture. This capability makes them very
useful in real-time or transaction processing applications.

5–10

Maintaining a Dependable Environment
5.7 Coping with Disasters

5.7.2 Hot Standby Sites
If your computing system supports a business function that is so critical that it
must be disaster tolerant, consider using a hot standby site that can take over
production operations if your primary physical environment becomes unusable.
Typically a hot standby site is in a physically remote site.

The following list describes several options for providing emergency computing
resources for your company:

• Mutual backup processing agreements

Some companies enter into mutual backup processing agreements with other
companies that use similar hardware and software configurations. In the
event of an emergency, the site that is still operational provides computing
resources to the other company to execute critical applications. This mutual
arrangement works well between different companies as well as between
different divisions of large corporations that support division-level computing
centers.

• Duplicate computing facilities

If performance or security requirements are a high priority for your company,
it might not be possible for you to share another company’s computing system.
Instead, your company might have to incur the extra expense of installing a
redundant computing system and providing it with a data center staff. The
purpose of this duplicate computing facility is to be immediately available to
take over the processing load in the event of a disaster.

The difficulty of providing a duplicate computing facility cannot be addressed
by this handbook because very subtle issues can make or break the success
of such an endeavor. For instance, even if each physical site gets its power
from separate power grids, the system’s dependability cannot be guaranteed
if the system users connect to the computing system using phone lines. In
this scenario, a fire in the phone company’s central office could be the hidden
single point of failure that makes the entire system unavailable.

• Vendor-supplied backup sites

Many computer vendors offer you the ability to use their physical site as a
backup site on an as-needed basis. Using a vendor site can be less expensive
than building your own backup site but your company gives up a certain
amount of control to the backup site vendor. See Chapter 10 for more
information about Digital services.

• Multiple-site data center VMScluster systems

By utilizing a long distance FDDI technology, a multiple site data center
VMScluster system lets you physically separate some of your VMScluster
nodes up to a distance of 40 kilometers. This provides a measure of disaster
tolerance. In these VMScluster systems, all nodes can produce useful work
continuously until such time when a disaster at one of the sites removes one
or more nodes. At that time, the surviving nodes may continue to provide
service for system users without losing data or transactions. With any
VMScluster system, you can also address performance requirements by:

Configuring extra hardware capacity into the system

Shutting down applications that are not critical to the success of the
business

5–11

Maintaining a Dependable Environment
5.7 Coping with Disasters

Tolerating degraded application response times until all sites become
operational again

See Section 6.4.4 and Section 7.4 for summaries of FDDI VMSclusters and
the Business Recovery Server™ software product. Refer to Managing the
Business Recovery Server and Configuring the Business Recovery Server
for details about configuring, setting up, and operating FDDI VMScluster
systems using the Business Recovery Server software product.

See VMScluster Systems for OpenVMS and Guidelines for VAXcluster System
Configurations for related VMScluster configuration information.

5.7.3 Business Considerations
Once all the technical details in your disaster plan have been addressed, the
relatively easy part has been accomplished. The myriad other logistical details,
which are usually business oriented, will be the main stumbling blocks to
your computing system surviving a disaster. They are also the most difficult
to enumerate in advance. The following questions include some business
considerations:

• Does your company’s insurance cover the disaster? Even if your plans fail?

• How would operating in the recovery mode affect your company’s finances? Is
it a high-cost scenario?

• Are there any clauses in your clients’ contracts that would be violated during
emergency operations?

• How much time and expense for training and drills is allocated in your
operating plans?

• What provisions are made in your budget for the overtime that your staff
would put in during recovery operations?

• How costly will personnel mileage reimbursements be if the entire data center
staff must commute to a remote site for an extended period of time?

• Do your contingency plans cover the possibility of vendor disasters, such as
disruptions in your service vendors’ offices, central telephone office failures, or
city sewer outages that can close the entire block?

• Could your company provide some level of disaster tolerance for your clients,
such as spare personal computers or terminals to provide access to your
system, even though your client’s site was not usable?

How you address concerns such as these can mean the difference between a
successful execution of an up-to-date disaster plan or a ‘‘false sense of security’’
that evaporates when an emergency strikes.

5.8 Overall System Considerations
You might find it useful not only to look at the effect of the environment on the
computing system but also to look at the overall implications of environmental
factors on the entire business. For example, suppose the primary mission of your
computing system is to run an application that automates the manufacturing
functions in the company’s main factory. Investing in a UPS for your computer
room would have little value if a power outage would shut down the factory
equipment and the computing system would remain operational only to wait idly
for work to do.

5–12

Maintaining a Dependable Environment
5.8 Overall System Considerations

On the other hand, suppose that you have not invested in a UPS and after
the utility power resumes service, the computer’s manufacturing application
takes significantly longer to restart than it takes the factory itself to restart. In
this case, what does it cost the company if the factory has to remain idle while
it waits for the computing system to restart the manufacturing application?
From this point of view, it might be worthwhile to invest in a more robust
environment. With a dependable system in place, your company’s profitable
production could be resumed sooner because your computing system would
remain operational through the power outage and would be ready to resume
processing the manufacturing application on demand.

5–13

6
Dependable Hardware Configurations

As discussed in Chapter 2, the dependability of a computing
resource (or system) is affected not only by the hardware but
also by the software, the physical environment, and the people
who interact with it. It is usually the case, however, that
the software configuration is determined to a large degree
by the business functions to be performed by your computing
resource. Also, the way your company needs to go about
its business has a large impact on how you can respond to
dependability requirements with staffing alternatives. The
appropriate physical environment is largely determined by
the needs of your system’s hardware configuration.

These factors make the hardware configuration an independent variable that
has a dramatic effect on the dependability of your computing resource. This
characteristic is particularly true in the case of the AXP and VAX series
of computers running the OpenVMS operating system, where the software
environment can be identical regardless of the hardware configuration.

To take advantage of the enhanced dependability of a different software
technology, such as a transaction processing (TP) environment, you may need to
rewrite your application programs. However, adopting new hardware technology
to improve dependability (such as installing a fault tolerant system) can be
accomplished with AXP and VAX systems in a completely transparent fashion.

There are many levels of availability that are attainable with AXP and VAX
configurations. This chapter discusses the major types of AXP and VAX system
configurations from the hardware perspective. It addresses the following topics:

• Eliminating single points of failure. See Section 6.1.

• Conventional AXP and VAX systems. See Section 6.2.

• Fault tolerant VAXft systems. See Section 6.3.

• VMScluster hardware topologies. See Section 6.4.

• Dependability characteristics summary. See Section 6.5.

6.1 Eliminating Single Points of Failure
To eliminate single points of failure, eliminate single points. Use the methodology
in the following list to discover single points of failure in your system.

1. Sketch a complete diagram of your system’s configuration:

• Show each significant subsystem separately, such as individual CPUs,
disk drives, magtape controllers, and communications equipment.

6–1

Dependable Hardware Configurations
6.1 Eliminating Single Points of Failure

• Use your service vendors to verify the accuracy of your diagram.

2. On the completed diagram, highlight those specific components used by:

• All system users

These components are the linchpins on which the entire system depends.
Examples might include the paging and swapping disks, the main
memory, the multiport terminal server, and the CPU.

• The most important users

These components are key to the mission-critical applications of your
system. Examples might include a vector processor, the facsimile
interface, and the disks where the quality database resides.

• A multitude of users

These components are important because their failure has widespread
impact. Examples might include large disks that contain the directory
trees of many users and a laser printer for Postscript files.

• Only a few users

These components may be present in your system’s configuration
incidentally and have little current use. Examples might include letter
quality printers, printing terminals, and smaller removable disk packs.

• No known users

These components may be the result of changes in system usage during
its lifetime. Examples might include card readers, older communications
interfaces, plus even newer specialized options such as vector processors
whose users have left the system.

The point of this evaluation is to sort out the critical parts of your
configuration from the unimportant ones. One potential action you could
take as a result of this exercise is to remove the unused or rarely used
subsystems from your configuration. That would alleviate not only their
maintenance fees but also the possibility of their failure, which could impact
the rest of the system.

3. Make a five-column list of contingency actions that could address the full or
partial failure of each listed component as currently configured. Note that
this list is likely to be long.

• Order the list by first listing all users, then important users, and so on.

• See Figure 6–1 for a suggested format for your list.

4. For each contingency action listed, note the consequences of any failure (that
is, data loss, time loss, efficiency reduction, other consequences). Highlight
those failures that have secondary consequences (for example, having to
reenter transactions due to data loss).

5. With the help of your service vendors, complete the column that gives, for
each appropriate component, a potential enhancement that would:

• Prevent the failure from occurring

Examples might include battery backup for main memory and plastic
covers for device buttons.

• Tolerate the failure when it occurs

6–2

Dependable Hardware Configurations
6.1 Eliminating Single Points of Failure

Examples might include shadowing a disk drive, installing an additional
Ethernet controller, and utilizing error-correcting modems.

• Recover from the failure more effectively

Examples might include adding an extra magnetic tape controller and
drive, installing a second Postscript laser printer, and stocking critical
spare parts on site.

6. Select those potential enhancements that:

• Affect all the users

• Affect the most important users

• Alleviate serious secondary consequences

• Fit your cost and other constraints

7. List these enhancements in the worksheet shown in Figure 2–3 according
to which system users would benefit. Also list the enhancements in the
worksheet shown in Figure 6–1, according to the impact of the enhancement
on the computing system itself.

6–3

Dependable Hardware Configurations
6.1 Eliminating Single Points of Failure

Figure 6–1 System Configuration Enhancements Worksheet

Component
or Subsystem

Scope of
Component Usage

Contingency
Action

Consequences
of Failure

Potential
Enhancement

ZK−3689A−GE

Worksheet

6–4

Dependable Hardware Configurations
6.2 Conventional AXP and VAX Systems

6.2 Conventional AXP and VAX Systems
Conventional AXP and VAX systems are those system kernels that have not
been included into VMScluster configurations. They may or may not be part of
a network such as DECnet for OpenVMS or TCP/IP. Conventional also refers
to hardware that, while engineered to be reliable, does not have the extensive
built-in redundancy and instant, transparent recovery capabilities of a truly fault
tolerant system, such as a VAXft system.

However, as described in the following sections, there are many ways to configure
significant levels of redundancy into conventional AXP and VAX systems.

6.2.1 Dependability Enhancements to a Sample Configuration
The discussion in this section applies the methodologies described in Section 6.1
to the sample configuration shown in Figure 6–2. The shaded components in
Figure 6–2 represent the additional pieces of hardware selected from the list
of potential enhancements in Table 6–1. Ignoring the gray-shaded components
yields a ‘‘before picture’’ of the system. Considering the gray-shaded components
yields an ‘‘after picture’’ of the system.

6–5

Dependable Hardware Configurations
6.2 Conventional AXP and VAX Systems

Figure 6–2 Conventional System: Example Configuration

VAX 6000−520

DEMNA#0

CPU 0

TA90
Formatter

#0

Ethernet A

Ethernet B

Drive #0 Drive #1

InfoServer 100

DECserver #1

DECserver #0

ZK−3680A−GE

CPU 1 KDM70#1

KDM70#0DEMNA#1

Bridge

#3

#4

#5

#0

#1

#2

The configuration in Figure 6–2 is analyzed in Table 6–1, which lists potential
enhancements to the system configuration. Again, the shaded components in
Figure 6–2 represent the additional pieces of hardware selected from this table.

6–6

Dependable Hardware Configurations
6.2 Conventional AXP and VAX Systems

Table 6–1 System Configuration Enhancements: Sample Worksheet

Component
or Subsystem

Scope of
Component
Usage

Contingency
Action

Consequences
of Failure

Potential
Enhancement

CPU #0 All Call service;
reboot

System failure Add CPU

Memory subsystem All Call service System failure Add battery backup

XMI™ backplane All Call service System failure None possible

KDM70 #0 All Call service System failure Add KDM70

DEMNA #0 All Call service System not
accessible

Add DEMNA

Ethernet A All Call service System not
accessible

Dual-rail Ethernet

InfoServer 100 #0 Some Call service Online
documents
not accessible

Add InfoServer 100

DECserver 200 #0 Most Call service; use
console

Cannot access
system

Add DECserver 200

TA90 formatter #0 All Call service Cannot backup
data; cannot
exchange data

Add TA90 formatter

TA90 drive #0 All Call service Cannot backup
data; cannot
exchange data

Add TA90 drive

RA92 #0
(system disk)

All Call service;
restore backup

Cannot boot or
run system

Shadow system
disk

RA92 #1 & #2 (user
disks)

Some on each Call service;
restore backup

Users cannot
use system;
data may be lost

Shadow user disks

To simplify the illustration, assume that cost and other constraints are not
applicable. Consider the impact of implementing several key dependability
enhancements. The shaded areas in the diagram indicate these enhancements
(components added to the original configuration).

In Figure 6–2 when you consider the shaded components, note that many single
points of failure have been eliminated. Even if a CPU failure caused a system
crash, adding the second CPU would allow computing to immediately continue
after a reboot, rather than having to wait for your service vendor to repair the
CPU. Other failures (like the failure of the DEMNA Ethernet adapter) initiate a
system or network reconfiguration that happens automatically and transparently
to applications. Adding RA92 disk drives #3 to #5 allows both the system disk
and the user disks to be shadowed, another automatic and transparent recovery
capability. The shadow sets are not shown on the diagram but the new disks
could be paired with the existing disks as #0 and #3, #1 and #4, #2 and #5.

Some failures (like a failure of TA90 drive #0) would still require operator actions
to recover, while some failures like the memory subsystem cannot be tolerated
at all and would require your service vendor to intervene. However, some
subsystems that are single points of failure are also extremely reliable, like the
memory subsystem or the XMI system backplane. Most Ethernet installations
are also extremely reliable, but if your cables must pass through hazardous
environments (such as some manufacturing plants), it might be wise to configure

6–7

Dependable Hardware Configurations
6.2 Conventional AXP and VAX Systems

redundant Ethernet cables. That would require installing the second DEMNA
Ethernet I/O adapter as shown in Figure 6–2. Another justification for installing
a redundant Ethernet I/O adapter is if the computing system is acting as a host
to personal computers (PCs) or as a boot member to satellites on the Ethernet.
The PCs’ or satellites’ communication to their server node would then have some
built-in redundancy.

If the terminal in the diagram represents the control terminal of a mission-critical
manufacturing process, it may be worth the investment to also have redundant
terminal servers—each connecting to one of the two asynchronous ports on most
Digital terminals—or perhaps to two separate terminals at the control station.
The shaded component labeled Bridge was added when the second Ethernet
was installed. Network configuration rules required its installation between the
segments.

Just how many of these enhancements would make sense in your context depends
on your dependability requirements and other constraints.

An alternative method for achieving such a high level of redundancy is to connect
two AXP systems or two VAX systems (or both an AXP and a VAX system)
together to form a VMScluster system. This approach eliminates some key
vulnerabilities of the enhanced configuration. If the memory subsystem of one
system kernel failed, the VMScluster continues. If the operating system (or
other privileged software) caused one system kernel to fail, the VMScluster
continues. Figure 6–5, which appears later in this chapter, illustrates how such a
VMScluster is configured.

A much easier method of utilizing a system with no single points of failure is
to start with a system designed and built that way from the start. Section 6.3
discusses such fault tolerant configurations.

6.3 Fault Tolerant VAXft Systems (VAX Only)

VAX VAXft hardware configurations have no single point of failure so your
dependability analysis process is greatly simplified.

Some of the potential contingency actions (such as stocking spare parts locally)
would still be applicable so producing the list is still a useful exercise. The
appropriate actions would tend to be more software and operations oriented,
however, because contingencies related to hardware failures are transparently
carried out by the VAXft system.

See Section 9.10 for more information on software related configuration issues.
Even though your VAXft may not be part of a VAXcluster system, you can still use
many VAXcluster oriented operating system features, such as Volume Shadowing
for OpenVMS.

Figure 6–3 shows how the two redundant zones of a VAXft system work in
parallel.

6–8

Dependable Hardware Configurations
6.3 Fault Tolerant VAXft Systems (VAX Only)

Figure 6–3 Fault Tolerant VAX System: Example Configuration

Autonotify

SYNC Lines

Communications
Controller

Processor
Memory

X−Link

Console

Mass STC

Ethernet

A

Autonotify

SYNC Lines

Communications
Controller

Processor
Memory

X−Link

Mass STC

B

Ethernets

Console

Ethernet

Zone A Console Zone B Console

ZK−3685A−GE

Note that in the case of a VAXft fault tolerant configuration, the only hardware
concern is having twice as many disk drives as normally required. This allows
shadowing of all the disks.

Because the two zones of a VAXft configuration are in physically separate
cabinets (indicated by the shaded areas in Figure 6–3), your service vendor can
perform repairs or replacements of all the subsystems in one zone while the other
continues to provide service.

There is also no change in the CPU, memory, or I/O capacity of the system when
a failure occurs. The applications and users do not detect the failure, but the
system operators are notified via the error log and console terminals.

Note that the cables connecting the mass storage controller subsystems is
a special DSSI that allows the independent repair of the zones. The cables
connecting the X-Link subsystems enable the two zones to stay in lock step with
one another. This is how the surviving zone can continue processing without a
delay for catching up; it is always caught up.

If two VAXft system kernels were connected via DSSI, they would form a
VAXcluster similar to the configuration shown in Figure 6–5. Like the VAXft,
such a configuration would not suffer any loss of capacity when a hardware
subsystem failed. It also would not be vulnerable to the failure of the building
power. Not shown on the diagram are the built-in uninterruptible power systems
(UPS) in each of the VAXft cabinets. As a VAXcluster, with independent copies of
the OpenVMS operating system, the DSSI-based VAXft VAXcluster could continue
to provide service even if a defect in privileged software caused the system to fail
(or crash).

6–9

Dependable Hardware Configurations
6.3 Fault Tolerant VAXft Systems (VAX Only)

However, as a VAXcluster, each node would still momentarily pause during
VAXcluster state transitions. These short pauses of a few seconds occur during
significant configuration perturbations, such as a node entering or leaving the
VAXcluster system. This time domain behavior must be taken into consideration
for some critical applications that require fault tolerance. Of course, VAXft
systems that are not members of a VAXcluster are not vulnerable to these pauses.

The Autonotify lines enable the console subsystems to dial out on a Data Phone®
for immediate zone failure notification. ♦

6.4 VMScluster Hardware Topologies
There are thousands of ways to configure VMScluster systems. This handbook
provides a brief overview of the general types of high performance and high
availability configurations that are possible using VMScluster technology. See
VMScluster Systems for OpenVMS for more details on how to configure, to
set up, and to operate VMSclusters. Also refer to Guidelines for VAXcluster
System Configurations for more detailed discussions about high availability
configurations.

The following sections address this flexibility by focusing on the interconnect
technologies. The interconnects discussed are those that the VMScluster software
uses for Systems Communications Architecture (SCA) I/O traffic. This is different
from standard network or terminal I/O traffic (which may or may not use the
same interconnect simultaneously). A key OpenVMS subsystem that uses
SCA connections is the OpenVMS distributed lock manager. By providing
synchronizing services to the multiple copies of OpenVMS that execute on the
AXP and VAX systems, the OpenVMS distributed lock manager is the linchpin
that holds a VMScluster system together as a single, distributed computing
system with transparently coordinated data access.

Because considerable disk and tape I/O traffic also shares the SCA interconnect
with the OpenVMS distributed lock manager, the bandwidth and recovery
capabilities of that interconnect have an impact on the configuration limits of the
VMScluster system utilizing it.

Because VMScluster systems have more than one system kernel, you could apply
the analysis methodology outlined in Section 6.2 to each of the system kernels
and to the collections of disk, tape, and other peripherals that are common to all
system kernels.

Note

For a large VMScluster system, such an undertaking could produce an
exceedingly long list of components but the exercise is well worth it to
identify critical single points of failure, none of which need to exist in a
VMScluster system.

6–10

Dependable Hardware Configurations
6.4 VMScluster Hardware Topologies

6.4.1 Ethernet Interconnect (IEEE 802.3)
The Ethernet Interconnect (IEEE 802.3) is the lowest cost method of configuring
a VMScluster system. At 10 megabits per second, the Ethernet has sufficient
bandwidth for several boot members1 of significant capacity plus quite a
few satellite members.2 The practical limits on the number and size of boot
members and satellite members depend on their usage. This is a situation where
planning ahead in collaboration with your hardware and software vendors is
critical. See Chapter 10 for more information.

Besides consulting experts who are familiar with the specifications of your
Ethernet and computing equipment (and are also knowledgeable of current
technology), you should also consider the following general guidelines:

• If possible, configure small disk drives into each satellite node. By placing
local paging and swapping files on those disks, the I/O load on the Ethernet
is reduced without losing the VMScluster management of having VMScluster
common system disks.

Note

In a VMScluster, the AXP systems use an AXP system disk, while the
VAX systems use a separate VAX system disk.

• Ensure that each satellite node has sufficient memory for its intended usage.

• Only the latest Ethernet adapters can sustain the full bandwidth of the cable.
Because the adapter is frequently the bottleneck that limits the number of
satellites that can be served by a particular boot member, adding additional
adapters can alleviate the problem while providing redundancy.

• Ethernet cable redundancy can be achieved by laying two or more cables
side-by-side and connecting every AXP or VAX node to both cables. Careful
placement of Ethernet bridges and routers is required in this multirail
configuration.

• Be sure to follow the documented guidelines for setting up a local area
VMScluster. See VMScluster Systems for OpenVMS for more information on
VMScluster system management.

• Refer to Section 9.10.3 for more information on rolling upgrades in
VMSclusters with satellite nodes.

VMScluster system configurations typically use an Ethernet for network
communications and terminal and printer connections. The types of VMScluster
systems outlined in the following sections have the performance advantage of
utilizing a separate interconnect for SCA I/O (disk, tape, lock manager) traffic.

Note

You should not expect as much I/O throughput from Ethernet-only
VMScluster systems as from configurations that have separate SCA

1 AXP or VAX nodes with OpenVMS system disks that remotely ‘‘boot’’ the same-
architecture satellite nodes.

2 AXP or VAX nodes that use boot members as virtual system disks for their operation.
Satellites may or may not have locally attached disks. AXP satellites use an AXP server
to boot. VAX satellites use a VAX server to boot.

6–11

Dependable Hardware Configurations
6.4 VMScluster Hardware Topologies

interconnects.

Figure 6–4 shows a local area VMScluster configuration.

Figure 6–4 Local Area (Ethernet) VMScluster System: Example Configuration

Ethernet

AXP
Satellites

System
Disk

Local
Disks

Shared
Disks

AXP

ZK−5943A−GE

It might be advisable to shadow some key disks in this configuration, but the
critical component of the VMScluster shown in Figure 6–4 is the AXP system. As
the only boot member, if it fails, the satellites on the Ethernet also fail. You can
gain a major advantage in total system dependability by adding a second AXP or
VAX processor to form a DSSI-based VMScluster.

6–12

Dependable Hardware Configurations
6.4 VMScluster Hardware Topologies

6.4.2 Digital Storage Systems Interconnect (DSSI)
The Digital Storage Systems Interconnect (DSSI) is an interconnect that AXP
and VAX systems can use to access disk and tape peripherals. Each peripheral
is an integrated storage element (ISE) that contains its own controller and mass
storage control protocol (MSCP™) server that works in parallel with the other
ISEs on the DSSI. With a bandwidth greater than 4 megabytes (40 megabits) per
second, the interconnect also supports the direct connection of up to four systems.
When four systems are used with DSSI, no more than two AXP systems can be
part of the configuration; that is, you can have one of the following combinations:

• Four VAX systems

• Three VAX systems and one AXP system

• Two VAX systems and two AXP systems

A DSSI VMScluster system with one AXP node and one VAX node is shown in
Figure 6–5.

The combination of high throughput and common data access by the AXP and
VAX nodes provides a way to configure VMScluster systems at much lower cost
than using the CI computer interconnect and HSC controllers, but with much
greater capacity than using only the Ethernet (IEEE 802.3) Interconnect.

Because both nodes have direct access to their own system disks, DSSI
VMScluster systems can support the OpenVMS rolling upgrades. This capability
allows the version of OpenVMS to be upgraded on one node and that node to be
rebooted while the other node is still providing service.

General guidelines for DSSI VMScluster systems follow:

• Currently, no more than four nodes may be connected to DSSI.

• Multiple DSSI paths can be supported by most AXP and VAX system kernels.
This allows the total amount of storage in your system to be increased
significantly.

• Some DSSI adapters (for example: KFQSA) do not support the SCA protocol.
Therefore, those adapters can only be used to serve their disks to other nodes.

• Consult your Digital support representative for more complete and timely
configuration details on DSSI VMScluster systems.

Note

As its name Digital Storage Systems Interconnect (DSSI) implies, DSSI
has been optimized as a high bandwidth path to peripheral devices. One
feature designed into its architecture is the ability to add or remove ISEs
without disturbing normal system operation. There are configurations
where conventional AXP or VAX nodes connected to DSSI cannot be added
or removed in a likewise online fashion. This is because the termination
circuitry of DSSI cables might be removed when a system kernel is
disconnected from the cable. This means that in some cases, repairing
one system kernel in a DSSI VMScluster would require the shutting down
and rebooting of all the system kernels. Contrast with CI VMSclusters,
Section 6.4.3.

6–13

Dependable Hardware Configurations
6.4 VMScluster Hardware Topologies

However, VAXft systems use special connections between their zones
to circumvent these restrictions so the zones of a VAXft system may be
serviced independently.

Figure 6–5 shows a DSSI VAXcluster configuration.

Figure 6–5 DSSI VMScluster System: Example Configuration

ZK−3683A−GE

RF72 RF72 RF72 RF72

Ethernet

Digital Storage Systems Interconnect (DSSI)

VAX 6000−520

K
F
M
S
A

CPU 0 CPU 1

DEMNA

DEC 4000 AXP

K
F
M
S
A

CPU 0

DEMNA

To terminals,
printers, networks,
and satellite nodes

To terminals,
printers, networks,
and satellite nodes

InfoServer 100

RRD40

TF857 TF857

This DSSI-based VMScluster configuration already has few single points of
failure. It would be important to shadow the key disks, which could require
the purchase of additional drives. There are several scalar CPUs for adequate
capacity, although if adequate performance after a failure is critical, it would be
advisable to install a ‘‘spare’’ or two.

Assume that the VAX 6000 shown in Figure 6–5 already has a vector processor.
If the applications that require speed are important enough to the success of the
business, it would make sense to add a second vector processor on the VAX 6000.
(AXP systems do not support vectors.) If serving workstations or personal
computers on the Ethernet is a critical business function of the system, then
adding second Ethernet adapters (DEMNAs) to the VAX 6000 system and the
DEC 4000 AXP system would provide redundancy plus additional throughput
capacity.

6–14

Dependable Hardware Configurations
6.4 VMScluster Hardware Topologies

6.4.3 CI Computer Interconnect
The CI is a high performance, fault tolerant way to connect AXP and VAX nodes
to disk and tape storage devices and to each other. To implement its star topology,
it uses redundant coaxial cables that operate at a 70 megabit per second data
rate. Because two transmit and two receive cables form a single CI physical
connection, if one cable fails, the others continue to provide service. Star couplers
enable all VAX nodes and the HSC disk and tape controllers to communicate
directly. The star couplers operate at full cable bandwidth and are also dual
redundant (2*n - see Chapter 2).

The HSC intelligent disk and tape controllers also connect to star couplers via
the CI cables. Because the DIGITAL Storage Architecture (DSA) disk and tape
drives have dual access ports, you can configure HSCs in a redundant fashion.
By having two HSCs connected to each disk or tape, if one of the HSCs fails, the
other continues to provide service. Failover support in the OpenVMS operating
system makes this capability transparent to application programs (except for a
short pause in I/O processing during failover).

General guidelines for CI based VMScluster systems follow:

• Some AXP to CI, or VAX to CI, adapter subsystems cannot support the full
throughput of the CI cable. If your AXP node or VAX node is a very powerful
model (such as a DEC 7000 or a VAX 10000), you may need to use the latest
CI adapters (such as the CIXCD) and to install more than one CI adapter per
AXP or VAX. The latter option provides increased throughput via CI port load
sharing feature of the OpenVMS operating system and also provides some
redundancy. An AXP node or a VAX node that is fully operational except for
its CI adapter may as well be powered off because it cannot participate as
part of the VMScluster system.

• Another reason to install more than one CI adapter to an AXP node or a VAX
node in your VMScluster system is to support more than one star coupler.
Multiple star couplers may operate in a VMScluster configuration if they
each have at least one AXP or VAX node attached. The maximum number
of AXP nodes and VAX nodes in a VMScluster configuration is not increased
by having multiple star couplers. However, the maximum number of HSC or
HSJ controllers is dramatically increased, allowing much more storage to be
configured into the system.

• You should attempt to spread the VMScluster disk I/O traffic between several
drives, and if possible, spread the most active disk drives between HSC
controllers. This will reduce the peak I/O load that must be processed by
any one HSC. Note that when a disk or tape drive is connected to redundant
HSCs, at any single point in time only one of the HSCs is controlling the
device. For example, Drive 17 can receive its I/O from either HSC A or HSC
B, but not both at once. If HSC B is controlling Drive 17 and HSC B fails,
then HSC A will continue with no loss of data or context.

• You are not, however, restricted to fully utilizing one HSC or HSJ device
while the other HSC or HSJ device sits idle. From the set of disks and
tapes controlled by a redundant HSC pair or HSJ pair, you can assign
some drives to be controlled by—for example—HSC A and others to HSC
B. This will spread the I/O load between the HSCs under normal operating
conditions. See the OpenVMS I/O User’s Reference Manual for details about
the set preferred path feature of the OpenVMS I/O subsystem.

6–15

Dependable Hardware Configurations
6.4 VMScluster Hardware Topologies

Note

Look in SYS$EXAMPLES:PREFER*.* for a Macro™ programming
example that demonstrates the set preferred path feature. The
sample program is provided by the OpenVMS operating system.
(SYS$EXAMPLES on VAX systems also includes a BLISS version of
the preferred path program sample.)

• Disk drives that do not need to be cluster common (such as those with a
node’s page and swap files) can be directly attached to their AXP nodes and
VAX nodes via controllers like the Digital KDM70. This will help reduce the
total I/O traffic through the CI adapters, on the CI cables, and through the
HSC or HSJ controllers. In addition, consider direct attachment of solid state
disks (such as the Digital ESE-20) to powerful nodes as a way to alleviate I/O
bottlenecks that are caused by frequent disk head seek operations.

Figure 6–6 shows a CI VMScluster configuration.

Figure 6–6 CI VAXcluster System: Example Configuration

CI = Computer Interconnect

DEC 7000 AXP

DEC 7000 AXP

VAX 6000−560

CIXCD

CIXCD

CIXCD

CIXCD

CIXCD

ZK−3682A−GE

CI

CI

CI

CI

CI

HSC

RA60
HSC

HSJ

RA81

HSJ

RA81

TA90

RA90 RA90 RA90

TA90

Star Coupler

The primary areas to address with this fairly redundant configuration in
Figure 6–6 would be environmental. Ensuring sufficient (and spare) air
conditioning capacity and clean, preferredly uninterruptible, electric power

6–16

Dependable Hardware Configurations
6.4 VMScluster Hardware Topologies

are two immediate concerns. If sufficient disk drives are present to shadow key
disks, the next consideration is CPU capacity after a failure.

Although all three nodes in this CI-based VMScluster system are quite powerful
system kernels, the two DEC 7000 AXP systems supply most of the total
CPU capacity. If one of the DEC 7000 AXP systems should fail, would your
applications or users be able to tolerate the resulting degradation in response
times? Also note that the top DEC 7000 AXP system in Figure 6–6 has only one
CIXCD adapter. While that interface could likely handle the I/O load that the
single CPU system can generate, if it failed, that entire DEC 7000 AXP system
would become unavailable for use.

As stated in Chapter 2, you should also consider the amount of load carried by a
surviving subsystem when its twin fails.

What appears to be a single point of failure in Figure 6–6 is the star coupler that
connects all the CI lines. All AXP and VAX systems in any type of VMScluster
must have direct connections to all other nodes. The CI is a fully redundant
communications medium. Each CIXCD (or any other CI adapter) connects to four
coaxial cables. There are two for transmitting and two for receiving. The full CI
bandwidth (70 megabits per second) is available over either the A path or the
B path.

The star coupler is not a single point of failure because there are actually two star
couplers in every box: one for the A path cables and one for the B path cables.
Star couplers are also immune to power failures because they contain no powered
components but are constructed as sets of high frequency pulse transformers.
Because they do no processing or buffering, star couplers are not I/O throughput
bottlenecks. They operate at the full rated speed of the CI cables. However, in
very heavy I/O situations, it is possible to overload the CI cable/coupler system
and to require multiple star couplers.

Most configurations use multiple star couplers to increase the number of AXP,
VAX, HSC, and HSJ nodes that can be connected. The CIXCD model CI adapters
have the throughput advantage of being able to use both the A path and the
B path simultaneously when both paths are functioning, as is usually the case.

6.4.4 Fiber Distributed Data Interface (FDDI)
The Fiber Distributed Data Interface (FDDI) is an interconnect that uses
fiber-optic cables for high bandwidth over long distances. The data rate is 100
megabits per second and the range is 200 kilometers.

Because FDDI uses a token-ring topology with two counter-rotating rings, the
actual maximum distance between any two lobes of an FDDI VMScluster system
is approximately 40 kilometers. A lobe is a collection of AXP nodes, VAX nodes,
or both connected by a CI and star coupler or connected by a DSSI. Such a
collection could exist on its own as a VMScluster system, but when more than
one lobe is connected by the FDDI, it becomes one large, multiple site data center
that comprises a VMScluster system. Figure 6–7 shows how two lobes can be
connected into one VMScluster system with FDDI.

If the lobes of an FDDI VMScluster system are located in different buildings or
even different cities, the configuration exhibits a level of disaster tolerance. If
Volume Shadowing for OpenVMS is used to ensure that key files or databases
at both lobes are kept in synch, a catastrophic environmental failure at one
physical site (such as a fire) would not prevent the entire VMScluster system
from delivering continuous service.

6–17

Dependable Hardware Configurations
6.4 VMScluster Hardware Topologies

Because of the potentially long distances that must be covered by the I/O traffic
in an FDDI VMScluster system, extra care is required in the setup of OpenVMS
system parameters. Refer to Managing the Business Recovery Server and
Configuring the Business Recovery Server for details about configuring, setting
up, and operating FDDI VMScluster systems using the Business Recovery Server
software product.

See VMScluster Systems for OpenVMS and Guidelines for VAXcluster System
Configurations for related VMScluster configuration information.

Figure 6–7 shows an FDDI-based VMScluster configuration.

Figure 6–7 FDDI VMScluster System: Example Configuration

ZK−3684A−GE

HSC HSCHSC HSC

RA92

RA92

RA92

RA92

DEMFADEMFA

DEC 7000 AXP
D

DEMFADEMFA

DECconcentrator
500

DECconcentrator
500

CI

Safe
Distance

VAX 6000−520
C

VAX 6000−520
B

VAX 6000−520
A

CIXCDCIXCDCIXCDCIXCD

Star Coupler Star Coupler

FDDI Cable

FDDI

Shadow Set A

Shadow Set B

In Figure 6–7, the elliptical line connecting the two DECconcentrator 500 units
represents the dual-direction FDDI cables. Nodes VAX A and VAX B make up one
lobe of the VMScluster. Nodes VAX C and VAX D make up a second lobe. The
FDDI fiber cable connects both lobes into a single VMScluster system.

6–18

Dependable Hardware Configurations
6.4 VMScluster Hardware Topologies

Although this FDDI based VMScluster system is configured to be almost
completely immune to environmental failures (assuming an uninterruptible
power system (UPS) at each site), special care must be taken to consider all parts
of the system. If, for example, both sites were served by the same telephone
central office, the access to the computing system by remote terminal users could
be disrupted by a failure of this hidden single point of failure.

Note that Volume Shadowing for OpenVMS is used to maintain key data storage
devices in identical states (shadow sets A and B). Any sectors (on the shadowed
disks) written at one site will also be written (virtually simultaneously) at the
other site, and vice versa. Database transaction semantics provide additional
robustness to ensure that critical data items at both sites are identical on a
continuing basis.

See Chapter 5 for more information about ways to make your computing system
safe from environmental failures.

6.4.5 Mixed Interconnect VMSclusters
A mixed interconnect VMScluster is any VMScluster system that uses more
than one type of interconnect for SCA traffic. Some large configurations may use
several cable segments of the interconnect. These multisegment connections are
explained in Chapter 7. If there is only one type of interconnect, it is not a mixed
interconnect VMScluster.

Examples of mixed interconnect VMScluster configurations are:

• A CI-based VMScluster with satellite workstations on the Ethernet

• A dual-host server (DSSI VMScluster) with satellites on the Ethernet

• A CI-based VMScluster where one of the VAX nodes connects to another VAX
node via the DSSI, or one of the AXP nodes connects to another AXP node via
the DSSI

• Any FDDI based, multilobe VMScluster

Table 6–2 compares the characteristics of the different VMScluster interconnect
technologies. Note that the capability to use multiple cable segments and
multiple star couplers (together with multiple different interconnects) provides
the flexibility to configure high I/O capacity systems.

Table 6–2 VMScluster Interconnect Characteristics Summary

Interconnect
Transfer Rate
(megabits/second)

Maximum Diameter
(meters)

Ethernet (coaxial) 101 2,800

Ethernet (microwave) 10 35,600

Ethernet (fiber-optic cable) 10 60,000

DSSI 40 192

CI 703 90

FDDI 100 40,000

1Per IEEE 802.3 specification, newer adapters (such as the DEMNA) are required to achieve the full
rated bandwidth of the cable.
2This distance depends on the particular ISE and AXP or VAX models in the configuration. Consult
your Digital representative for your context.
3Per path, the CIXCD adapter can achieve even higher throughput by using both CI paths
simultaneously.

6–19

Dependable Hardware Configurations
6.4 VMScluster Hardware Topologies

Note

VMScluster systems operate as single computing systems. The timing
considerations (propagation delays and bandwidths) of VMScluster
protocols (Systems Communication Architecture, or SCA) place tighter
constraints on interconnect configurations than would more general
networking protocols (DECnet for OpenVMS).

Note that some early dual-host server configurations (where there is no DSSI in
the configuration) are not mixed interconnect VMSclusters. By using only the
Ethernet for SCA, these configurations are in fact local area VMSclusters.

General guidelines for mixed interconnect VMScluster systems follow:

• All mixed interconnect VMScluster configurations require a common network
interconnect (either Ethernet or FDDI).

• Some especially large and complex mixed interconnect VMScluster
configurations may require a special service contract for the most effective
support.

• Refer to Section 9.10.3 for more information on rolling upgrades in
VMSclusters with satellite nodes.

6.5 Dependability Characteristics Summary
So far, the figures in this chapter have illustrated some example configurations
as a way to help you decide which configuration best meets your dependability
requirements. This section helps you compare different configurations with
VMScluster topologies in wide area networks (WANs). Figure 6–8 illustrates an
example configuration of a WAN.

6–20

Dependable Hardware Configurations
6.5 Dependability Characteristics Summary

Figure 6–8 Wide Area Network: Example Configuration

ZK−3694A−GE

FDDI VMScluster

CI VMScluster

in Massachusetts

in Miami, Florida

VAXft 3000− 810

DSSI VMScluster

in Chicago, Illinois

in Tulsa, Oklahoma

DEC 4000 AXP
in Atlanta, Georgia

Boston
Maynard

Figure 6–8 and the other figures in this chapter are compared in Table 6–3.
The last column in the table gives the characteristics of WANs to enable you to
compare them with VMScluster topologies. Note that the VMScluster in Tulsa
would lose contact with the rest of the network if the node in Atlanta failed. See
Chapter 7 for details on the dependability characteristics of networks.

Consider using the Table 6–3 format to identify which dependability features are
required for your particular context and to see which hardware configurations
have those capabilities. If more than one configuration meets your needs, the
final selection could be made with other factors in mind, such as cost, currently
installed equipment, and distances.

6–21

Dependable Hardware Configurations
6.5 Dependability Characteristics Summary

Table 6–3 Dependability Characteristics Summary

Dependability
Feature

Conven-
tional
VAX
or
AXP

Fault
Tolerant
VAX

Local
Area
(Ethernet)
VMScluster

DSSI
VMScluster

CI
VMScluster

FDDI
VMScluster

Mixed
Inter-
connect
VMScluster WAN4

Instantaneous
failure/recovery

X X1 X1

Single security
domain

X X X X X X X

Disaster tolerant X X X

Transparent data
access

X X X X X X X

Supports Volume
Shadowing for
OpenVMS

X X X X X X X

VMScluster
DECnet™ alias

X X X X X

Login/batch load
balancing

X X X X X

Very high I/O
bandwidth

X X X X X X

Rolling upgrades X X X X2 X2 X

Kernel repair
during production

X X X X X X

CPU capacity
unchanged by
kernel failure

X X1 X1

Survives power
failure

X X1 X1 X3 X3 X3

Managed as a
single system

X X X X X X X

More than three
system kernels

X X X X X

Survives
operating system
failure

X X X X X X

1When comprised exclusively of VAXft systems.
2Applies only to boot nodes.
3If this configuration spans independent power grids.
4Wide Area Network (WAN).

6–22

7
Dependability Characteristics of

Communications Networks

In the simplest terms, a dependable communications network
exists when your design ensures that data can be transmitted
reliably from its current location (point A) to its destination
(point B) in a timely manner, especially when that data
delivery is critical to your business. Fault-free networking
is a fundamental contributor to the success of your business
applications. Using dependable equipment and appropriate levels

of data path redundancy is an effective solution for supporting critical networking
applications. Network dependability requires sufficient performance so that
users and applications do not have to wait for service. Network dependability
also requires resilience. For wide area host-to-host communications and for local
area networks, resilience requires fault tolerance with regard to data corruption
and dynamic alternative routing in the event of line or server failures. Taking
advantage of dynamic alternative routing involves your planning in setting
up redundant paths or the ability to create a redundant path using switching
techniques.

Equipment reliability is also an important part of network dependability, as
are vendor service levels and the ability to properly manage your networking
software and hardware components. After you have eliminated all single points
of failure for the networking connections that will support mission-critical
applications, you very likely will want to use software monitoring and failure
analysis tools to quickly identify the location and name of any failed hardware
components. Even redundant networking configurations can fail, and you should
implement proactive strategies for finding and repairing failed components
promptly.

This chapter summarizes a variety of networking hardware products, redundant
configurations, and software products that enhance the dependability of your
network. You are directed to the primary Digital product documentation sets for
details about the products’ capabilities and performance considerations. This
chapter and the information presented in the referenced documents can help you
develop strategies for meeting the networking needs of your business.

Topics described in this chapter:

• The varying degrees of protection that can be implemented for networks. See
Section 7.1.

• The ability to provide multiple paths in local area networks (LANs) from an
AXP or a VAX node to Ethernet segments, Fiber Distributed Data Interface
(FDDI) fiber-optic cable, or both. See Section 7.2.

7–1

Dependability Characteristics of Communications Networks

• A local area VMScluster failure analysis program provided by OpenVMS
to support your network dependability failure recovery strategies. See
Section 7.3.

• The ability to use FDDI as a VMScluster interconnect. See Section 7.4.

• The ability to provide highly available connections from a fault tolerant
VAXft system to public and private wide area networks (WANs) and to local
synchronous devices. See Section 7.5.

• The availability impact of the DECnet cluster alias name in networking
applications that access VMScluster systems. See Section 7.6.

• VAX Distributed Name Service (DNS) software, which lets you establish
control over the way applications reference network resources. DNS provides
a consistent, network-wide set of names for distributed applications. By using
DNS, network applications are able to continue processing when the physical
location of named network resources change. See Section 7.7 for information
about DNS.

• VAX Distributed File Service (DFS) software, which provides DECnet for
OpenVMS users with transparent access to files stored on remote OpenVMS
disks as if the files were stored on local disks. See Section 7.8 for information
about DFS.

• Other products that support network dependability goals including DECalert,
NMCC/VAX ETHERnim, LAN Traffic Monitor, and NMCC/DECnet Monitor.
See Section 7.9 for introductory information about these tools. Refer to
Section 11.6 for information about a Digital Customer Support Center (CSC)
data center that invented DECalert and used the other networking tools to
meet CSC requirements for 100% application availability.

Note

In February 1994, Digital granted Target Systems Corporation a
nonexclusive, nontransferable license to use DECalert Version 1.2
software. Under the agreement, Target Systems may provide support for
the Digital customer base (existing and future) for the product, as well
as future development and migration of the product or its derivatives.
Target Systems named the product TARGET–>ALERT.™ Digital reserves
the right to continue to sell DECalert or its enhancements, as Digital
deems fit.

The software fault tolerance features provided by the Digital Reliable Transaction
Router (RTR) are described in Section 8.1. Also see Section 10.13 for information
about networking consulting services from Digital.

7.1 Degrees of Protections from Networking Faults
Networking solutions provide varying degrees of protection from faults. The
solutions can be selected according to the criticality of the application.

At the communication-line level, parity checks and overlaying protocols provide
tolerance of intermittent and soft faults for synchronous and some asynchronous
lines. Redundancy and triangulation can be used to provide alternate paths in
the event of line failure. Telecommunications companies automatically provide
this protection for leased lines. Only the line between your organizations and the
lines to any leased lines are vulnerable.

7–2

Dependability Characteristics of Communications Networks
7.1 Degrees of Protections from Networking Faults

Ethernet and Fiber Distributed Data Interface (FDDI) LANs can be configured
in a segmented manner, so that a failure in one area will not bring down the
entire network. Ethernet and FDDI LANs also can be configured in multirail
mode to provide a redundant LAN segment as protection against a failure of a
communications adapter, a LAN segment, or both.

Terminal servers, which connect terminals to a host node in a LAN, offer
enhanced availability by handling different numbers and varieties of lines.
Each terminal connected to a given server can access services on any other line
connected through that server. In a VAXcluster, terminal servers increase system
availability by providing login load balancing and automatic session failover. In
the latter case, terminals logically connected to a failed host can access other
hosts on the LAN.

Application availability is increased by the server’s ability to establish a logical
connection to any local service node that implements the LAT™ protocol. This
means that users can connect to all the services offered (rather than to the node
itself). Servers also protect the network against unauthorized disruption by
providing multiple levels of security.

Ethernet LANs can be extended by using bridges that manage traffic between two
or more local LANs. Bridges provide a substantial boost to availability through
their automatic configuring and self-initializing capabilities. Bridges can be
arranged in any topology, enabling them to be used in parallel with other bridges
to provide an automatic backup when needed. Bridges that cause loops in this
situation automatically enter a backup state, monitoring traffic and taking over
in the event of a failure to the primary bridge.

The following list presents a general approach to achieving network
dependability:

• Evaluate the proposed design and identify single points of failure. Draw an
X through any connection and consider what is affected when the network is
unavailable to the users and applications that rely on that connection.

• Eliminate single points of failure (where possible and affordable) by building
in redundant paths to the components. If providing redundant paths does not
appear to be affordable, weigh the cost of the hardware redundancy versus
the business impact (cost) of losing the users and applications that depend on
the unavailable components.

• Do everything you can to minimize risks. Identify and document any
remaining risks, and develop contingency plans to be implemented when (not
if) the risk turns into a failure.

• Set the Network Control Program (NCP) or the Network Command Language
(NCL) parameters to match the actual primary use of a line. NCP and NCL
are DECnet tools.

• For wide area network (WAN) connections established to transmit voice and
data transmissions, compare the costs of operating:

Separate voice and data networks

A combined voice and data network over T1 lines provided by a telephone
carrier

Once you approximate the relative costs, weigh each option with the
dependability requirements of the applications and of the users relying on the
connections.

7–3

Dependability Characteristics of Communications Networks
7.1 Degrees of Protections from Networking Faults

• Identify limitations in your network availability and design any distributed
applications with these limitations in mind.

• Take advantage of product features that enhance network dependability.
Examples include:

Using additional LAN adapters to an AXP or VAX node to ensure that
a network connection continues to exist in the event that one adapter
fails, one LAN segment fails, or both. OpenVMS provides support for this
capability. The additional adapters can connect the node to Ethernet LAN
segments or to FDDI LAN segments or rings. For each adapter, define a
line and circuit to make the adapter available to DECnet for OpenVMS or
LAT. See Section 7.2.

Note

When using the LAN adapters for DECnet for OpenVMS, each LAN
adapter must be connected to a separate extended LAN because DECnet
for OpenVMS changes the network address used by the LAN adapter.

Duplicating terminal servers in an Ethernet LAN environment to provide
redundancy for users on terminals with dual ports. This step secures user
access to system resources in the event that one of the Ethernet LANs
fails. Each user should have two communication lines available to each
terminal; that is, one line to each terminal server on each Ethernet LAN.

Terminal servers connect asynchronous terminals at speeds up to 19.2Kb
per second. See the Networks Buyer’s Guide for details. This Digital
publication is released every six months.

Customizing a local area VMScluster failure analysis program called
LAVC$FAILURE_ANALYSIS so that you can quickly identify faulty
components in your network by using device names and descriptions that
you provide. The source code for this Macro program is provided
by OpenVMS in your system’s SYS$EXAMPLES directory. The
LAVC$FAILURE_ANALYSIS program is summarized in Section 7.3
and detailed in VMScluster Systems for OpenVMS.

Using the higher bandwidth and length of FDDI fiber-optic cable, where
appropriate and possible.

Using the cluster alias name instead of individual node names for
remote network connections to server VMScluster systems, especially in
distributed applications.

The remainder of this chapter describes features that enhance network
dependability.

7.2 Providing Multiple Paths to Ethernet and FDDI Segments
OpenVMS supports the use of multiple communications adapters (up to four
with each VAX node, and up to two with each AXP node. This support provides
automatic failover of your network connection in the event that one adapter fails,
or one LAN segment fails, or both. For the latest configuration details, refer
to the VMScluster Software for OpenVMS Software Product Description (SPD
42.18.xx).

7–4

Dependability Characteristics of Communications Networks
7.2 Providing Multiple Paths to Ethernet and FDDI Segments

The DEC FDDIcontroller 400 communications controller (also called DEMFA)
provides the FDDI LAN interface. While Ethernet meets the requirements of
many applications, the ten-fold increased speed of FDDI fiber-optic cable may be
used to support network-intensive applications.

Table 7–1 lists the supported adapters.

Table 7–1 Ethernet and FDDI Adapters

Bus Ethernet Adapters FDDI Adapter

XMI DEMNA DEMFA

BI DEBNA, DEBNI

Q–bus DELQA, DESQA, DEQTA (DELQA-YM)

UNIBUS™ DEUNA™, DELUA™

Integral LANCE, SGEC

At boot time, all Ethernet and FDDI adapters are automatically configured for
local area VMScluster use. PEDRIVER automatically detects and creates a new
channel for each unique pair of LAN adapters between the local node and each
remote cluster node. Channel viability is continuously monitored every three
seconds at a minimum. Channel failure does not interfere with node-to-node
(virtual circuit) communications as long as there is at least one remaining
channel functioning between the nodes.

Note

An AXP or VAX node with dual communications adapters can operate
in this manner with a DECnet for OpenVMS end-node license. In
other words, it is not required that you have a full-function DECnet for
OpenVMS license to use the multiadapter feature.

7.2.1 Recommendations for High Availability of Local Area VMSclusters
Follow these general guidelines to create highly available local area VMSclusters:

• Bridge VMScluster LAN segments together to form a single extended LAN.

• Provide redundant LAN segment bridges for failover support.

• Configure LAN bridges to pass the local area VMScluster and Maintenance
Operations Protocol (MOP) multicast messages.

VMScluster Systems for OpenVMS describes the minimum requirements, plus
more detailed configuration guidelines, for local area VMScluster systems
that use multiple adapters. If you follow the guidelines, server nodes (nodes
serving disks and lock traffic) can typically use some of the additional bandwidth
provided by the added LAN adapters and increase the overall performance of the
VMScluster. However, the performance increase depends on the configuration of
your VMScluster and the applications it supports. See VMScluster Systems for
OpenVMS for details.

7–5

Dependability Characteristics of Communications Networks
7.2 Providing Multiple Paths to Ethernet and FDDI Segments

7.2.2 Sample Local Area VMScluster Configurations with Multiadapter
Connections to LAN Segments

Figure 7–1 shows a sample configuration for local area VMScluster systems
connected to two different LAN segments.

Figure 7–1 Sample Configuration for a Local Area VMScluster Connected to
Two LAN Segments

VAX

AXP

HSC

HSC

Segment 2

LAN
Segment 1

LAN

Bridge

Bridge

Satellite
NodesCritical

Satellite
Nodes

Satellite
Nodes

ZK−3828A−GE

Star
Coupler

CI

CI

DECnet and MOP

DECnet and MOP

AXPVAX

DECnet
and MOP

In Figure 7–1:

• Connecting critical nodes to multiple LAN segments provides increased
availability in the event of segment or adapter failure. The disk server nodes
in the CI VMScluster can use some of the network bandwidth provided by
the additional network connection. (CI is a computer interconnect.) Critical
satellites can boot using the other LAN adapter if one LAN adapter fails.

• Connecting noncritical satellites to only one LAN segment helps to balance
the network load by equally distributing systems among the LAN segments.
These systems communicate with satellites on the other LAN segment
through one of the bridges.

• Using redundant LAN bridges prevents the bridge from being a single point
of failure. Any single bridge can fail and all nodes in the VMScluster will
remain members of the VMScluster.

• Satellite node booting is ensured by providing a DECnet for OpenVMS
Maintenance Operations Protocol (MOP) connection to each LAN segment.
(See the DECnet for OpenVMS Networking Manual for details about MOP.)

7–6

Dependability Characteristics of Communications Networks
7.2 Providing Multiple Paths to Ethernet and FDDI Segments

Figure 7–2 shows a sample configuration for local area VMScluster systems
connected to three different LAN segments.

Figure 7–2 Sample Configuration for Local Area Cluster Systems Connected to Three LAN
Segments

VAX

HSC

HSC

LAN
Segment 1

LAN

Bridge

Satellite
NodesCritical

Satellite
Nodes

Satellite
Nodes

ZK−3829A−GE

Star
Coupler

CI

CI

Bridge

Segment 2

Segment 3LAN

Critical
Satellite

DECnet and MOP

DECnet and MOP

DECnet and MOP

AXP

Bridge
Satellite
Nodes

Bridge

VAX AXP

AXP

DECnet
and MOP

Critical
Satellite

VAX

DECnet
and MOP

In Figure 7–2:

• Connecting disk servers to two or three LAN segments can help provide
higher availability and better I/O throughput.

• Connecting critical satellites to two or more LAN segments can also increase
availability. If any of the network components fail, these satellites can use the
other LAN adapters to boot and still have access to the critical disk servers.

• Distributing noncritical satellites equally among the LAN segments can help
to balance the network load.

• Satellite node booting is ensured by providing a DECnet for OpenVMS
Maintenance Operations Protocol (MOP) connection to each LAN segment.
(See the DECnet for OpenVMS Networking Manual for details about MOP.)

7–7

Dependability Characteristics of Communications Networks
7.2 Providing Multiple Paths to Ethernet and FDDI Segments

7.2.3 Ethernet and FDDI Options
Properly configured Ethernet and FDDI connections can provide cost-effective
communications within local area networks. Ethernet is used extensively today
because it provides network managers with flexible, modular growth of networks;
you can expand computing resources while preserving the investment in existing
systems.

In evaluating new options posed by FDDI, define your goals:

If your goal is networking performance, then FDDI alone is a reasonable
choice. FDDI provides 100mb per second line speed, while Ethernet provides
10mb per second.

If your goal is availability, then you should design a highly redundant
network that will probably combine FDDI, CI, and Ethernet components.

If you currently are using Ethernet in your local area network (LAN) and
your goal is the growth of your LAN, determine by how much you expect it
to grow. If the answer is that the network will double in size over the next 5
to 10 years, then multiple Ethernet segments should be fine. That is, if the
expected growth is only two or three times the current level, then preserving
the investment in Ethernet hardware and adding some new segments and
LAN bridges should be less expensive than replacing the major network
components with FDDI hardware.

However, if the answer is that the network will increase 10-fold, then consider
FDDI. (The bandwidth of FDDI is 10 times that of Ethernet, yet the cost of
FDDI is less than 10 times that of Ethernet.)

If your only goal is to minimize cost (without a second concern for
availability), then Ethernet is probably best for your site. Note that FDDI
components are between two and five times more expensive than Ethernet
components.

If your goal is disaster tolerance, you do not necessarily have to build
geographically distant sites that span 40 kilometers (possible with FDDI
configurations using the VMScluster Business Recovery Server software
product). Some sites require disaster tolerance but on a more modest
geographic scale. For instance, an extended Ethernet LAN between two
buildings that are less than one mile apart might be adequate protection
against a fire.

Note

The actual maximum distances that are possible with Ethernet are
approximately 2 kilometers for a single Ethernet LAN and 10 kilometers
for an extended LAN through four LAN bridges. For details, see the
Networks Buyer’s Guide, which is published by Digital every six months.

7–8

Dependability Characteristics of Communications Networks
7.2 Providing Multiple Paths to Ethernet and FDDI Segments

7.2.4 Allowing for LAN Bridge Failover
To achieve high availability, Digital recommends redundant bridges between LAN
segments. If one bridge fails, another bridge can support message traffic between
the LAN segments. To help ensure that there is little delay between the failure of
one bridge and the continuing of message traffic support by another bridge, you
should make sure the local area VMScluster follows these guidelines:

• Bridge timers should be set to be faster than VMScluster timers.

• Bridge self-test times should be less than the value for the system parameter
RECNXINTERVAL.

See VMScluster Systems for OpenVMS for a detailed discussion about adjusting
the VMScluster times and the RECNXINTERVAL system parameter.

7.2.5 Alternate Adapter Booting for Satellite Nodes
OpenVMS supports booting from any LAN adapter on a local area VMScluster
satellite with multiple LAN adapters. You can boot from an alternate adapter
to work around broken adapters or network problems. You can also use this
feature to boot into different clusters, depending on the adapter you use to boot
the system.

See VMScluster Systems for OpenVMS for information about booting from an
alternate adapter.

7.2.6 Changing the LAN Address in the DECnet Database to Allow a Cluster
Satellite to Boot with Any Adapter

DECnet for OpenVMS Phase IV supports one LAN hardware address per node
definition. To allow a cluster satellite with multiple LAN adapters to use any
LAN adapter to boot into the cluster, use one of the following methods:

• Define a synonym node with a different DECnet address.

• Create and maintain different DECnet databases on the different boot nodes
within the VMScluster.

VMScluster Systems for OpenVMS explains your options in more detail.

7.3 Troubleshooting with the VMScluster Network Failure Analysis
Program

In network design, providing a backup mechanism such as a second LAN adapter
for a VAX node helps to ensure that a single point of failure has been eliminated.
However, when the primary component fails and the backup component takes
over the communications work, your network is again vulnerable to a single point
of failure. For this reason, it is critical that you use tools that can quickly identify
the precise name and location of failed components.

For local area VMScluster environments, OpenVMS provides the Macro source
file of a failure analysis program. This program, LAVC$FAILURE_ANALYSIS, is
available in your SYS$EXAMPLES directory.

You must tailor the LAVC$FAILURE_ANALYSIS.MAR file so that it includes a
physical depiction of the local area VMScluster physical layout, plus information
about each component. You then assemble and link the program and execute
it on one or more VMScluster system(s) that will perform the failure analysis.
When the program executes, it provides the physical description of your cluster
communications network to the set of routines that perform the failure analysis.

7–9

Dependability Characteristics of Communications Networks
7.3 Troubleshooting with the VMScluster Network Failure Analysis Program

Using the network failure analysis program can help reduce the time necessary
for detecting and isolating a failing network component, therefore providing a
significant increase in local area VMScluster availability. LAVC$FAILURE_
ANALYSIS groups together channels that fail and compares them with the
physical description of the VMScluster network. The program then develops a
list of nonworking network components related to the failed channels and uses
OPCOM messages to display the names of components that have a probability
of causing one or more channel failures. If the network failure analysis cannot
verify that a portion of a path (containing multiple components) works, the
program calls out the first component in the path as the primary suspect. Other
components are listed as secondary or additional suspects.

Sections 7.3.1 and 7.3.2 summarize the LAVC$FAILURE_ANALYSIS program
and a related subroutine package for additional functions. See VMScluster
Systems for OpenVMS for details on the local area VMScluster failure analysis
program and the related subroutine package.

7.3.1 Summary of Using the Failure Analysis Program
Copy the LAVC$FAILURE_ANALYSIS.MAR source file from SYS$EXAMPLES
to a private directory. With a text editor, create a diagram of your VMScluster
communications network. When you edit LAVC$FAILURE_ANALYSIS.MAR,
include this drawing in the program’s source file. Your drawing should show the
physical layout of the VMScluster and include the following components:

• LAN segments or rings

• LAN bridges

• Wiring concentrators, DELNI devices, or DEMPR™ devices

• LAN adapters

• VAX systems

For large clusters, it may be necessary to verify the configuration by tracing the
cables.

Note

VMScluster Systems for OpenVMS includes a detailed example of how you
could illustrate a sample network configuration. The example shows how
the illustration is used by the LAVC$FAILURE_ANALYSIS program.

Give each component on the drawing a unique label. If your VMScluster contains
a large number of nodes, you may want to replace each node name with a shorter
abbreviation. For example, you can replace the node name ASTRA with A and
call node ASTRA’s two LAN adapters A1 and A2.

List the following information for each component:

• Unique label.

• Type [SYSTEM, LAN_ADP, DELNI].

• Location (the physical location of the component).

• LAN address or addresses (if applicable). (Devices such as DELNI devices,
DEMPR devices, and cables do not have LAN addresses.)

7–10

Dependability Characteristics of Communications Networks
7.3 Troubleshooting with the VMScluster Network Failure Analysis Program

Next, classify each component into one of the following categories:

• Node: VAX system in the VMScluster configuration.

• Adapter

A LAN adapter on the VAX system that is normally used for VMScluster
communications.

• Component

A generic component in the network. Components in this category can
usually be shown to be working if at least one path through them is working.
Wiring concentrators, DELNI devices, DEMPR devices, LAN bridges, and
LAN segments and rings typically fall into this category.

• Cloud

A generic component in the network. Components in this category cannot
be shown to be working even if one or more paths are shown to be working.
This type of component is necessary only when multiple paths exist between
two points within the network. An example is redundant bridging between
LAN segments. At a high level, multiple paths can exist; however, during
operation, this bridge configuration allows only one path to exist at one time.
In general this bridge example is probably better handled by representing the
active bridge in the description as a COMPONENT and ignoring the standby
bridge. You can identify the active bridge with such network monitoring
software as Remote Bridge Management System (RBMS) or Digital Extended
LAN Management Software (DECelms). With the default bridge parameters,
failure of the active bridge will be called out.

Use the component labels to describe each of the connections in the VMScluster
communications network.

Finally, choose a node or group of nodes to run the network failure analysis
program. You should run the network failure analysis program only on a node
that you included in the physical description when you edited LAVC$FAILURE_
ANALYSIS.MAR. The network failure analysis program on one node operates
independently from other systems in the VMScluster. So, for executing the
network failure analysis program, you should choose systems that are not
normally shut down. Other good candidates for running the program are systems
with the following characteristics:

• Faster CPU speed

• Larger amounts of memory

• More LAN adapters (running local area VMScluster protocol)

See VMScluster Systems for OpenVMS for detailed information about how to edit
and use LAVC$FAILURE_ANALYSIS.MAR.

7.3.2 Summary of Subroutine Package
In addition to the LAVC$FAILURE_ANALYSIS program, OpenVMS places in the
SYS$EXAMPLES directory:

• Two programs called LAVC$START_BUS.MAR and LAVC$STOP_BUS.MAR
to start and stop the local area VMScluster protocol on a specified LAN
adapter.

7–11

Dependability Characteristics of Communications Networks
7.3 Troubleshooting with the VMScluster Network Failure Analysis Program

• A subroutine package to extend control the local area VMScluster
programs LAVC$FAILURE_ANALYSIS.MAR, LAVC$START_BUS.MAR,
and LAVC$STOP_BUS.MAR.

The subroutine package includes function calls to control the network failure
analysis program:

SYS$LAVC_DEFINE_NET_COMPONENT—Creates a representation of a
physical network component

SYS$LAVC_DEFINE_NET_PATH—Creates a directed list of network
components between two network nodes

SYS$LAVC_ENABLE_ANALYSIS—Enables the network failure analysis
so that the future channel failures are analyzed

SYS$LAVC_DISABLE_ANALYSIS—Stops the network failure analysis
and deallocates the memory used for the physical network description

See VMScluster Systems for OpenVMS for details about the programs and the
subroutine package.

7.4 Network Configurations Using FDDI as the VMScluster
Interconnect

Fiber Distributed Data Interface (FDDI) fiber-optic cable can provide distinct
advantages for networked client/server applications. Desktop environments can
be integrated into VMScluster systems by using FDDI’s higher bandwidth (ten-
fold speed improvement over Ethernet) and FDDI’s ability to connect computing
resources that are located up to 40 kilometers away.

Before FDDI, VAXcluster systems that were used for desktop integration typically
had several large VAX processors acting as boot and disk servers, plus many
satellite nodes (clients) taking advantage of the served resources. Ethernet is
used in this configuration to connect the satellites to the servers. Typically,
satellites (workstations) on multiple Ethernet segments are bridged (using
multiple LAN Bridge 200 devices, also called DEBAM devices) into a DELNI
Ethernet wiring concentrator. From the DELNI, connections are made to the boot
and disk server nodes of the CI VMScluster.

VMScluster systems that have heavily used Ethernet segments can replace
the Ethernet backbone with FDDI to eliminate the Ethernet as a performance
bottleneck. As shown in Figure 7–3, FDDI can replace the Ethernet from
the bridges to the server CPU nodes. This configuration can increase overall
throughput.

7–12

Dependability Characteristics of Communications Networks
7.4 Network Configurations Using FDDI as the VMScluster Interconnect

Figure 7–3 FDDI in Conjunction with Ethernet in a VMScluster System

10/100

10/100

10/100

Satellite Nodes

Ethernet
FDDI

Ethernet to
FDDI Bridges

FDDI Wiring
Concentrator

AXP VAX

HSC HSC

CI CI

ZK−3830A−GE

CI

The longer distances provided by FDDI might permit you to create new
VMScluster systems in your computing environment. For example, another
way of looking at Figure 7–3 is that this VMScluster system is new. The large
nodes on the right could have replaced server nodes that previously existed on
the individual Ethernet segments.

Currently there are no storage controllers that connect directly to FDDI. Nodes
connected to FDDI must have local storage or access to storage over another
interconnect. In Figure 7–3 the AXP and VAX systems have CI connections for
storage. If a VMScluster system has more than one FDDI-connected node, then
those CPU nodes will probably use CI or DSSI connections for storage. The
CI-connected AXP and VAX systems in Figure 7–3 are considered a lobe of the
VMScluster system. A lobe is a set of CPUs that are connected together by one
or more VMScluster interconnects. A lobe must have its own system disk(s), used
by all CPUs in that lobe. A single CPU with a local system disk can be a lobe.
Not all CPUs are part of a lobe, however. For example, a set of workstations is
not a lobe.

For data center consolidation, FDDI can expand your data center to include
additional resources while retaining a single system management domain.
Computing resources and their associated storage that are today physically
located outside your data center can now be tied in with FDDI; these resources
could include standalone systems or another VMScluster system. When
connecting two or more existing VMScluster systems with FDDI, you must
create a single new VMScluster system. The previously independent VMScluster
systems can remain physically separated within a building or in several buildings.
But the systems now logically form a single operating environment, as depicted
in Figure 7–4.

7–13

Dependability Characteristics of Communications Networks
7.4 Network Configurations Using FDDI as the VMScluster Interconnect

Figure 7–4 Multiple-Site Data Center VMScluster System

10/100

10/100

10/100

Satellite Nodes

Ethernet
FDDI

Ethernet to
FDDI Bridges

ZK−3831A−GE

FDDI Wiring
Concentrator

AXP VAX

HSC HSC

CI CI

FDDI Wiring
Concentrator

VAX VAX

HSC HSC

CI CI

Location A Location B

Shadow Set

CI

Figure 7–4 shows a multilobe VMScluster configuration. It builds on Figure 7–3
where one CI based VMScluster system was serving a large number of satellites.
The AXP and VAX processors at location A and their CI connected storage have
been identified as one lobe. If more compute power or storage resources are
required, additional systems can be connected in through FDDI. At location B,
the AXP and VAX processors and their CI connected storage comprise a second
lobe. A lobe can also be a DSSI-connected VMScluster system or a single CPU
node with a local system disk. The satellite nodes can now use the resources at
location A (as they did before) plus the newly available resources at location B.

Refer to Managing the Business Recovery Server and Configuring the Business
Recovery Server for details about configuring, setting up, and operating FDDI
VMScluster systems using the Business Recovery Server software product. Also
consult the Networks Buyer’s Guide for configuration guidelines about FDDI
networks. VMScluster Systems for OpenVMS and Guidelines for VAXcluster
System Configurations cover related VMScluster information.

Note

Your Digital representative can obtain for you the current Business
Recovery Server Software Product Description (SPD 35.05.xx) and
VMScluster Software for OpenVMS Software Product Description (SPD
42.18.xx).

7–14

Dependability Characteristics of Communications Networks
7.5 Providing Multiple WAN Connections for VAXft Systems (VAX Only)

7.5 Providing Multiple WAN Connections for VAXft Systems (VAX
Only)

VAX The DEC WANcontroller 620 (DFS32) is a synchronous communications controller
that provides highly available connections to public and private wide area
networks (WANs) and to local synchronous devices. A fault tolerant VAXft system
consists of two fully redundant processing zones, as described in Section 6.3 and
as illustrated in Figure 6–3. Each zone of a VAXft system can support up to
four DEC WANcontroller 620 communications controllers, with each controller
supporting two synchronous lines.

This controller supports standard layered communications software for DECnet,
VAX P.S.I., BISYNC, and OpenVMS SNA applications. The two lines are
independently managed and operated, allowing different protocols to be run
simultaneously. Each controller supports redundant connections to a single
synchronous line; this feature maintains communications integrity during VAXft
zone servicing and failover due to a faulty controller. ♦

7.6 Using a DECnet Cluster Alias to Promote Network Application
Availability

The VMScluster manager should define a cluster alias name for the VMScluster.
Programmers of client network applications that use the services of a VMScluster
should use the alias name. Doing so ensures that the remote access will be
successful when at least one VMScluster member is available to process the client
program’s requests. Networked requests of client programs that use an individual
VMScluster node name will fail whenever that particular VMScluster node is
unavailable.

Because a VMScluster can be used as a single computing system, the DECnet for
OpenVMS networking software can be configured to take special action in that
context. When enabled, the DECnet cluster alias makes all the VMScluster nodes
appear to be one node, from the point of view of the rest of the network. This
helps other nodes establish communications to your VMScluster system more
reliably because the connection is not dependent upon a particular node being
reachable as long as a single node in the VMScluster is reachable.

The nodes in a VMScluster do not require DECnet for OpenVMS routing to be
enabled for the VMScluster to operate. But, if you choose to use a VMScluster
DECnet cluster alias, you must enable routing on at least one of your nodes. For
greater dependability of the alias function in your VMScluster, more than one
node should enable routing and set up the alias. Then, the DECnet cluster alias
will not disappear if the routing node becomes unreachable.

Currently, the DECnet for OpenVMS software cannot perform the alias function
for more than 63 nodes in a VMScluster configuration. Refer to VMScluster
Systems for OpenVMS for information on setting up a VMScluster DECnet cluster
alias.

7–15

Dependability Characteristics of Communications Networks
7.7 Using DNS to Support Network Dependability (VAX Only)

7.7 Using DNS to Support Network Dependability (VAX Only)

VAX VAX Distributed Name Service (DNS) lets you assign unique names to network
resources. Once a network application has named a resource using DNS, the
name is available for all users of the application. Users can move from one
system to the next and refer to application resources by the same name. This
characteristic is significant because over the lifetime of a network application, it
is likely that some or many resources will be moved to a different location. The
dependability goals of network applications that use DNS are enhanced because
the applications are better able to withstand changes in the location of resources.

The collection of names in the DNS database is called a namespace, as depicted
in Figure 7–5.

Figure 7–5 A DNS Namespace

Root

MARKETING

COMMUNICATIONS

ENGINEERING

 RESEARCH DEVELOPMENT NEW_YORK ATLANTA

SALES

ZK−0959A−GE

dev_disk
tools_disk

node_client
Objects

A namespace is located on OpenVMS nodes where the DNS server software
is installed. At the top of the hierarchy is the root directory. Below the root
directory are levels of subdirectories. The namespace administrator establishes
the directory structure of the namespace and, in some cases, assigns names to
directories. While the organization of the namespace is similar to the OpenVMS
directory structure, namespace directories are completely separate from the
OpenVMS file system’s directory structure.

The DNS software refers to the named resources in the namespace as objects.
Each object refers to a specific entry. Associated with each object is a set of
attributes describing properties about the object. An application reads object
attributes for information such as a network node address or object status.

The DNS clerk, which is located on every OpenVMS VAX system, receives
application requests from the DNS clerk system service. This system service lets
an application register a resource in the namespace and then access the resource
from any point in the network by a single name. All applications designed to take
advantage of the DNS software must use either the DNS clerk system service or

7–16

Dependability Characteristics of Communications Networks
7.7 Using DNS to Support Network Dependability (VAX Only)

the DNS run-time routines to register, modify, or find information in the DNS
database.

See the VAX Distributed Name Service Management manual for details about
using DNS in network applications. ♦

7.8 Using DFS for Transparent Network File Access (VAX Only)

VAX VAX Distributed File Service (DFS) provides DECnet for OpenVMS users with
transparent access to files stored on remote OpenVMS disks as if they were on
local disks. DFS assists network dependability goals because it provide users
with high-performance file access while using fewer CPU resources than standard
DECnet for OpenVMS remote file access.

The DFS software supports applications that use virtual I/O and do not require
write sharing. By using DFS, directory structures and files can be made available
to other DFS nodes. These directory structures are given names that are
registered in a DNS namespace (see Section 7.7).

Users on DFS nodes who want to access distributed directory structures specify
the name of the directory structure, using the DFS MOUNT command. DFS can
be used in any DECnet environment, including local area networks and wide
area networks. File security is provided through the standard OpenVMS proxy
mechanism. DFS also calculates end-to-end checksums to guard against network
faults. ♦

7.9 Proactive Network Monitoring and Analysis Products
As a network manager or system manager, you need tools to monitor and
report on error conditions so that network component faults do not interfere
with requirements for 24x365 communications. The following list summarizes
some of the networking products and tools available from Digital. Your Digital
account representative can supply software product descriptions (SPDs) for these
products. See also the network management solutions chapter in the Networks
Buyer’s Guide for detailed descriptions of the products.

• LAVC$FAILURE_ANALYSIS, provided by the OpenVMS operating system in
your SYS$EXAMPLES directory. This Macro program isolates and identifies
failed components in local area VAXclusters. See Section 7.3 for summary
information and VMScluster Systems for OpenVMS for details.

• DECalert consolidates and distributes system and user alarms to appropriate
personnel through a variety of alerting technologies such as pagers, electronic
mail, telephone calls using DECtalk™, and graphics on workstations. As part
of a high availability platform, DECalert manages, tracks, and escalates all
alert notifications and support staff acknowledgements. DECAlert includes
network sensors called server node watch, LAT node watch, and DECnet
node watch. To form an early detection system, DECalert works with a
variety of other Digital products, including VAXsimPLUS™, VMScluster
Console System (VCS), NMCC/DECnet Monitor, LAN Traffic Monitor, NMCC
/VAX ETHERnim, and DECtalk. You can use DECalert to create customized
sensor modules for networking and other system management tasks.

Note

See Section 11.6 for information about how the data center staff of
a Digital Customer Support Center (CSC) used DECalert and other

7–17

Dependability Characteristics of Communications Networks
7.9 Proactive Network Monitoring and Analysis Products

products listed in this section to support CSC business requirements for
100% application availability.

• Ethernet Network Integrity Monitor (ETHERnim) software is a network
management product that aids in fault isolation and configuration
management of extended LANs. ETHERnim is a OpenVMS layered product
that monitors a network and builds a database and graphic topology map of
the extended LAN.

• LAN Traffic Monitor (LTM) provides information needed to maximize network
performance and plan network growth. LTM is a tool used to analyze the use
of an extended LAN. This product provides network use graphs that show
the network manager the performance of the various LAN segments. LTM
gathers traffic statistics from any device connected to the LAN and provides
data based on nodes, addresses, and protocol types.

• DECnet Monitor is a software product for the observation and control of
complex, corporate backbone networks. DECnet Monitor responds to English-
like commands and graphically presents network conditions on a color (or
monochrome) network topology map. DECnet Monitor features include the
following:

Nodes can be instructed to send selected DECnet events to DECnet
Monitor, helping (along with DECalert) to avoid major problems and
minimize node down time because it enables a network manager to detect
problems early.

Relational database capabilitites that provide for active or passive
collection of statistics.

Visual displays of network configuration and performance information
that simplify interpretation of data and highlight conditions requiring
attention. The network topology is displayed as a logical map for
recognition of network elements and potential trouble areas.

Histograms and bar charts that display historical information to help
data center staff analyze trends and plan for growth and change.

Real-time event logging with predetermined polling parameters that
enable data center staff to detect problems early.

• The VMScluster Console System (VCS) software product consolidates network
and system management functions by replacing multiple hardcopy console
terminals with a single VCS system. When VCS is linked to each device,
all console messages are sent to a single console. VCS time-stamps all data
received from each node and records it in a central disk file. This information
can be retrieved at specific time intervals for display or printout by any
terminal connected to the VCS.

Using VCS reduces space constraints and cuts overhead. Without VCS,
system managers and operators typically look for error messages (on reams of
paper near each node) about conditions that might adversely affect system or
network performance and reliability.

• DEC Extended LAN Management Software (DECelms) lets you, from a host
VAX node, configure, manage, and monitor any LAN bridge and FDDI wiring
concentrator in the extended LAN and FDDI network environment. DECelms
resides on a VAX host. Corresponding management firmware resides in

7–18

Dependability Characteristics of Communications Networks
7.9 Proactive Network Monitoring and Analysis Products

the LAN bridges and FDDI DECconcentrators. The management protocol
is used to communicate between the VAX host and the target LAN bridges
and FDDI DECconcentrators. DECelms provides additional functionality
to support the control and observation of the target LAN bridges and FDDI
DECconcentrators. Features include the ability to:

Display and modify devices, lines, physical ports, and forwarding database
characteristics

Enable and disable lines and physical ports

Build automatically a host registry of all reachable FDDI
DECconcentrators and LAN bridges within the extended LAN and
FDDI environment

Poll (automatically or manually) the devices stored in the host registry for
faults, errors, and changed information

Display errors to the alarms window of the user’s display while more
detailed information is being recorded in the error log file

Process the log file keying off time or type of faults

Display data-link counters, status, and characteristics

Modify parameters such as operational state, forwarding database, and
spanning tree characteristics

• DEC Management Control Center (DECmcc™) is a multivendor network
management platform that coordinates interactions among various network
modules. Using DECmcc, several network systems (including those from
computer vendors other than Digital) can be monitored simultaneously.
Other products, including DECalert, interface with the Digital Enterprise
Management Architecture (EMA) compliant version of DECmcc via the
DECmcc ALARMS functional module. (See Chapter 11 for details about how
DECalert is used at the Digital Customer Support Center in Colorado.)

DECmcc is a package of network management products. DECmcc Site
Management Station provides configuration, fault, and performance
management for multivendor LANs; it also provides centralized server
and bridge management. DECmcc Site Management Station is based
on four network management products: NMCC/VAX ETHERnim, LAN
Traffic Monitor (LTM), Terminal Server Manager (TSM), and Remote Bridge
Management Software (RBMS). The DECmcc Enterprise Management Station
is a network management product for WANs. It uses the
NMCC/DECnet Monitor product and creates a multifunction graphic display
of the network topology.

See the DECmcc documentation for details.

7–19

8
Building Dependable Software Applications

This chapter describes the software component of dependable
computing systems. Clearly, building dependable computing
systems is not simply a matter of using redundant hardware
components. Software product or application compatibility
with hardware components and other software products
or applications is essential to dependability. Software

incompatibility with a specific revision of hardware, the operating system,
preexisting applications, or databases is a significant cause of down time and
intermittent failures.

Topics covered in this chapter are:

• Using DEC Reliable Transaction Router™ for software application fault
tolerance. See Section 8.1.

• Understanding and using OpenVMS features that support dependable
computing systems. These features include OpenVMS software support for:

VMSclusters

Volume Shadowing for OpenVMS

Disk striping and data parity

DECamds™, an availability manager for distributed systems

DECdtm™, a component of OpenVMS that provides a two-phase commit
protocol

See Section 8.2 for details.

• Writing predictable, dependable code. See Section 8.3.

• Prototyping applications to build in dependability. See Section 8.4.

• Testing applications to verify their dependability. See Section 8.5.

• Understanding and using system software products that support application
dependability goals, including DEC Rdb, DECforms, and VAX ACMS. See
Section 8.6.

• Understanding and using Digital COHESION environment software products
that manage shared information. These products include CDD/Repository
for the control of data repositories that are shared by many application
development organizations. See Section 8.7.

8–1

Building Dependable Software Applications
8.1 Using DEC Reliable Transaction Router for Software Fault Tolerance

8.1 Using DEC Reliable Transaction Router for Software Fault
Tolerance

People who design critical client/server applications, which often demand high
availability and operate in wide area networks (WANs), face a tough challenge.
How can these applications remain reliable when there are many potential failure
points in the overall system? Most failures do not occur at the client or server
nodes; most failures occur between the client and server nodes.

DEC Reliable Transaction Router (RTR) is a software fault tolerant platform
used for the implementation of reliable and distributed systems. RTR uses a
three-layer software model that guarantees the delivery of a transaction message
from clients to servers across a network. The network can be a local area network
(LAN) or a wide area network (WAN). Clients send messages to routers, which
route the message to the appropriate server for execution. Reliability is provided
by software fault tolerance through redundant paths and multiple systems if
necessary.

The scalable three-layer model enables flexible growth of the client/server
system in response to changing business requirements, with no application code
changes. Applications can be developed with common 3GLs, including C++, or
DECADMIRE for rapid application development. Client and server support is
provided for OpenVMS AXP, OpenVMS VAX, and DEC OSF/1, with client-only
support for Microsoft DOS, Microsoft Windows, and ULTRIX.

RTR is suitable for:

• Applications with multiple geographic locations

• The need to integrate distributed applications

• Requirements for high levels of reliability, availability, fault tolerance, and
high-performance throughput

RTR allows applications to be written in a simple manner, and in terms of the
business objectives the applications must achieve.

8.1.1 Requester and Server Processes
The main function of any transaction processing (TP) system is to provide a
link between the users of the system and a database. A typical example is an
airline reservation system. The travel agent (that is, the user) makes airplane
seat and hotel room reservations. The database is queried to find seat and room
availability, and then reservations are recorded in the database.

An application has to perform the following major tasks:

• Managing the internal data store (a database)

• Interfacing with the outside world (the end users)

This characteristic suggests a division of application function in TP systems into:

• Requester applications to interface with the end users

• Server applications to manage the data

Figure 8–1 shows how RTR allows you to split your application into requesters
and servers and distribute them around the network, without burdening your
applications with extra code to:

• Decide where to send messages

8–2

Building Dependable Software Applications
8.1 Using DEC Reliable Transaction Router for Software Fault Tolerance

• Cope with network or node failures

Figure 8–1 Splitting an Application into Requesters and Servers with RTR

ZK−6760A−GE

Requester

Application

RTR

Database

RTR

Application

Terminal
I/O

Database
I/O

Server

This feature lets you place elements of the application where they work best.

8.1.2 Three Layer Model
RTR is based on a three layer model consisting of front-end nodes, back-end nodes
and router nodes as shown in Figure 8–2.

Figure 8–2 Three Layer RTR Model

Back−Ends

Requester
Process

Requester
Process

Requester
Process

Requester
Process

Routers

Front−Ends

Requester
Process

Requester
Process

Routers

Server
Processes

Server
Processes

Server
Processes

Database

ZK−6762A−GE

8–3

Building Dependable Software Applications
8.1 Using DEC Reliable Transaction Router for Software Fault Tolerance

The requester processes run on the front-end nodes. This layer allows computing
power to be provided locally at the end-user site for transaction acquisition and
presentation.

The server processes run on the back-end nodes. This layer:

• Allows the database to be distributed geographically

• Permits fault tolerant systems to be constructed which can cope with either
node or site failures

• Allows sufficient computer resources to be deployed to meet performance
requirements

• Allows performance or geographic expansion while protecting the investments
made in existing hardware and application software

The router layer normally does not contain application software. This layer
reduces the number of logical network links required on front-end and back-end
nodes. It also decouples the back-end layer from the front-end layer so that
configuration changes in the (often rapidly changing) user environment have little
influence on the transaction processing and database (back end) environment.

Although RTR is based on the three layer model shown in Figure 8–2, it is not
necessary for the three layers to be physically present. For a system with few
front ends, the router and front-end layers can, for example, be combined. During
application development and testing, all three layers can even be combined in
one node. The physical locations of the front-end, router, and back-end nodes are
specified using RTR configuration commands. RTR application code is completely
location and configuration independent.

8.1.3 Partitioned Data Model
A key element of designing for high transaction throughput is reducing the time
that users must wait for shared resources.

Many of the elements of a TP system can be duplicated; however, one resource
that must be shared is the database. A shared database makes users compete in
three ways:

• For the use of the disk

• For locks on database records

• for the CPU resources needed to access the database

These problems can be alleviated by spreading the database across a number of
back-end nodes, each node being responsible for a range of values for a particular
key.

RTR is designed to allow you to implement this kind of partitioned data model,
as shown in Figure 8–3.

8–4

Building Dependable Software Applications
8.1 Using DEC Reliable Transaction Router for Software Fault Tolerance

Figure 8–3 Partitioned Data Model

Back−Ends

Requester
Process

Requester
Process

Requester
Process

Requester
Process

Routers

Front−Ends

Requester
Process

Requester
Process

Routers

Server
Processes

Server
Processes

Server
Processes

Database

ZK−6758A−GE

In this example, the database is split into three partitions, on the basis of some
key.

8.1.4 Transaction Integrity
By using RTR, the design and coding of distributed applications is greatly
simplified. This is because database actions can be bundled together into
transactions. A requester indicates the start of a transaction by calling the
$START_TX system service and indicates the end of the transaction by calling
the $COMMIT_TX system service.

This scheme ensures that:

• If any hardware or software component fails while a transaction is active,
the requester application does not need to cancel the effect of RTR system
services already issued for the current transaction.

• If any hardware or software component fails after the requester has
committed a transaction, the database will be updated during a subsequent
restart. Transactions that were committed are stored and automatically
replayed by RTR.

The $ABORT_TX system service allows the application to invoke the clean-up
capabilities of RTR and thus avoid the need to cope with complex clean-up within
an application program.

Many transactions can be initiated by the same or different applications within
an RTR network: all transactions are independently handled.

8–5

Building Dependable Software Applications
8.1 Using DEC Reliable Transaction Router for Software Fault Tolerance

8.1.5 Broadcasts
The previous RTR sections discussed how requesters and servers communicate
to execute transactions. In addition, there is often a need to send unsolicited
messages from a server to some or all of the requesters in the system.

An example is a commodity trading system, where the requesters are submitting
orders to trade and also need to be kept informed of the latest price changes.

The RTR broadcast feature provides this capability. Requesters tell RTR which
classes of broadcasts they want to receive. When a server broadcasts a message
in a certain class, all the interested requesters receive the message.

It also is possible for requesters to broadcast messages to some or all of the
servers using the broadcast mechanism.

8.1.6 RTR Dependability Features
This section describes the dependability features provided by RTR.

8.1.6.1 Standby Servers
Standby servers are spare servers that automatically take over from the main
back-end if it fails. This takeover is transparent to the application.

Figure 8–4 shows a simple standby configuration. The two back-end nodes are
members of a VMScluster and are both able to access the database.

Figure 8–4 Simple Standby Configuration

Front−Ends Back−Ends Database

Requester
Process

Requester
Process

Requester
Process

Requester
Process

Routers

Main

Standby

Server

Server

ZK−6761A−GE

VMScluster

For any one key-range, the main server runs on one node while the standby
server runs on the other node. The standby server process is active, but RTR
does not pass any transactions to it. Should the first node fail, RTR starts
passing transactions to the standby server. Note that it is possible for a single
node to contain the primary servers for one key-range and standby servers for
another key-range. This allows the nodes of a VMScluster to act as standby for
other nodes without having idle hardware.

8–6

Building Dependable Software Applications
8.1 Using DEC Reliable Transaction Router for Software Fault Tolerance

8.1.6.2 Shadow Servers
Shadow servers are servers on separate back ends that handle the same
transactions in parallel on identical copies of the database. The databases are
mirrors. Figure 8–5 shows a simple shadow configuration. The main server at
site 1 and the shadow server at site 2 both receive every transaction for the key-
range that they have requested. If site 1 fails, site 2 continues to operate and the
service is uninterrupted.

Figure 8–5 Simple Shadow Configuration

Front−Ends Back−Ends Databases

Requester
Process

Requester
Process

Requester
Process

Requester
Process

Routers

Main
Server

Shadow
Server

Site 1

Site 2

ZK−6759A−GE

8.1.6.3 Router Failover
Front-end nodes automatically find another router if the one being used fails.
This reconnection is transparent to the application. Front ends may also be
configured to choose routers with the least loading.

8.1.6.4 Cooperative Transaction Recovery
If the original router coordinating a transaction fails, back-end nodes select
another router that can ensure correct transaction completion.

8.1.6.5 Back-End Restart Recovery
Transactions that had not been committed by the servers at the time of a back-
end failure are replayed to the servers from a disk journal when the failed back
end restarts.

8.1.6.6 Transaction Message Replay
Transaction messages that are lost in transit are resent when possible. The front-
end and back-end nodes keep an in-memory copy of all active messages for this
purpose.

8.1.6.7 Link Failure Recovery
In the event of a communications failure, RTR tries to reconnect the link (or
links) until it succeeds.

8–7

Building Dependable Software Applications
8.1 Using DEC Reliable Transaction Router for Software Fault Tolerance

8.1.7 Concurrent Servers
Concurrent servers are server processes running on the same node that handle
the same key-range. This is useful for increasing throughput, especially when the
database only allows one active transaction per process. The types of concurrent
servers are summarized in the following list:

• Concurrent servers handle similar transactions and run in the same node.

• Shadow servers handle the same transactions and run in different nodes.

• Standby servers do not handle any transactions unless a main node fails.

• Call-out servers run on back ends or routers. They only vote, as explained in
Section 8.1.11.

8.1.8 Flexibility and Growth Provided by RTR
RTR lets you cope easily with changes in:

• Network demand

• How users access the data

• The volume of data

Because an RTR-based system can be built using multiple processors in each
functional layer, your system can grow incrementally and you can avoid unused
capacity at each stage. With your system still up and running, you can:

• Create and delete concurrent server processes

• Add or remove nodes (front end, router or back end)

• Change the key-ranges used to route transactions to the servers

By providing these features, you may not need to make such accurate long-range
capacity forecasts.

RTR provides a comprehensive set of tools that lets you monitor the volume
of traffic passing through the system. You can react quickly to unexpected
load-changes by making dynamic changes to the system configuration.

8.1.9 Failure Scenarios
This section describes how RTR recovers from a number of different types of
hardware and software failure.

8.1.9.1 Loss of a Back-End Node
If standby or shadow servers are available on another back-end node, operation
of the rest of the system will continue without interruption, using the standby or
shadow servers.

If a back-end node is lost, any transactions in progress are recovered when the
back end restarts, or are recovered by a standby if one is present. This means
that the distributed database will be brought back to a transaction-consistent
state.

8–8

Building Dependable Software Applications
8.1 Using DEC Reliable Transaction Router for Software Fault Tolerance

8.1.9.2 Loss of a Router
If a router fails and any other router node is available, all in-progress
transactions are transparently rerouted via another router. System operation
will continue without interruption using the available routers.

If no other router nodes are available, the back ends wait till any router node
recovers, and then complete all in-progress transactions.

8.1.9.3 Loss of a Communications Link
If a communications link is lost, then:

• RTR continually tries to establish the failed link.

• Database recovery is performed when the link is established again.

8.1.9.4 Loss of a Front-End Node
If a front-end node is lost, then:

• All transactions committed but not completed on the front-end node at the
time of failure will be completed.

• All transactions started but not committed on the front-end node at the time
of failure will be aborted.

• Failure to deliver a transaction completion message to the requester on the
front end causes RTR to write an error-log entry on a back end or router node.

8.1.10 RTR Facilities
Many applications can use RTR at the same time without interfering with one
another.

This is achieved by defining a separate facility for each application. A facility can
be thought of as being an application’s own named invocation of RTR.

When an application calls the $DCL_TX_PRC system service to declare itself as a
requester or server, it specifies the name of the facility it wants to use. The use of
facilities allows the creation of massively parallel networked systems supporting
a number of independent applications.

8.1.11 Call-Out Servers
RTR has a call-out server capability that allows security checks to be carried
out on all requests in a given facility. This is particularly appropriate in systems
where the organization providing the back-end nodes wants to protect itself
against potentially hostile front-end nodes not under its direct control.

Call-out servers can run on back-end or router nodes. The call-out servers receive
a copy of every transaction that is delivered to or passing through the node.
Because call-out servers are also asked to vote on the outcome of the transactions
they receive, they can effectively veto any transaction that does not pass the
security checks.

Such security checks can also be included in the conventional database update
servers but call-out servers offer the following advantages:

• The security check can run in parallel to the database updates thus improving
response times

• The security check can run on the router hardware if there is a physically
separate routing layer

8–9

Building Dependable Software Applications
8.1 Using DEC Reliable Transaction Router for Software Fault Tolerance

• The security checking code is completely separated from other application
code

Because this technique relies on backing out unauthorized transactions, it is
less suitable when a large proportion of the transactions are expected to fail the
security check.

8.1.12 Application Programming Interface and Documentation Pointers
The RTR application programming interface is available in two forms:

• System services that are described in DEC Reliable Transaction Router for
OpenVMS Application Programmer’s Reference Manual.

• A DCL interface that lets you write simple RTR applications for the purposes
of configuration testing. It is described in the DEC Reliable Transaction
Router for OpenVMS System Manager’s Manual.

8.2 OpenVMS Dependability Features
The OpenVMS dependability features include:

• Operating system support of redundant functional units. See Section 8.2.1.

• Support of VMScluster application environment topologies. See Section 8.2.2.

• The Digital Availablility Manager for Distributed Systems (DECamds). See
Section 8.2.3.

• Volume Shadowing for OpenVMS. See Section 8.2.4.

• Disk striping and parity. See Section 8.2.5.

• Digital Distributed Transaction Manager (DECdtm), an OpenVMS component
that provides support for the two-phase commit protocol. The protocol
ensures the atomic nature of a distributed transaction that spans multiple
files, databases, or both. See Section 8.2.6.

• DEC File Optimizer for OpenVMS, a disk file defragmentation product, and
an OpenVMS subfunction called movefile that lets programmers create their
own disk defragmentation applications. Section 8.2.7 introduces DEC File
Optimizer for OpenVMS and movefile . Section 9.6.2 provides more details.

• RMS journaling. See Section 8.2.8.

• An OpenVMS batch and print queuing system that provides, in a VMScluster
environment, failover of batch and print jobs that were active at the time the
local node failed. Section 8.2.9 introduces the clusterwide batch and print
queuing and failover feature, and Section 9.7 provides more details.

8.2.1 OpenVMS Support of Redundant Functional Units
OpenVMS controls the hardware in most AXP and VAX configurations. As
discussed in Chapter 1, given that hardware components will eventually fail,
the way to provide dependable configurations is by using appropriate levels of
redundancy. The following list outlines the various methods that OpenVMS uses
to recover from hardware failures and to provide dependable service to your
users:

• Central processing units (CPUs)

8–10

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

When a system kernel is configured with more than one CPU (that is, a
symmetrical multiprocessing (SMP) configuration), OpenVMS first attempts
to recover in real time. Certain types of CPU failures at specific times can
be tolerated by OpenVMS without crashing. Then, only the currently active
process on the failed CPU is lost. Usually, however, a failing CPU (unless
part of a VAXft system) causes OpenVMS to crash. An immediate reboot
utilizing the surviving CPU(s) would then be possible with an SMP system.
Figure 6–2 depicts an SMP system kernel with two CPUs.

• Main memory subsystems

Many AXP and VAX memory subsystems use an error correcting code (ECC)
technology to transparently correct single-bit errors (and detect double-bit
errors) that might occur. The least expensive memory subsystems typically
use parity error detecting schemes that notify OpenVMS of a problem. In
either case, if an uncorrectable error occurs on a memory page, OpenVMS
attempts to isolate the problem by placing the page on a bad page list. Doing
so prevents its reuse (the process using the page must be deleted). If the bad
page happens to be one assigned to a critical part of the OpenVMS executive,
the error will cause OpenVMS to crash immediately. This fail-stop behavior
protects the integrity of your data by preventing a flawed OpenVMS executive
from proceeding. OpenVMS also performs a memory subsystem test each
time it initializes itself.

• Computer interconnect I/O adapters

If you install more than one CI adapter in a system kernel, OpenVMS will
spread the I/O load over the total set of adapters. Further, if one of the
adapters should fail, the transfers are reexecuted on the surviving adapter(s).
All of the hardware failures described in this section are recorded in the
OpenVMS error log file for later analysis.

• Network I/O adapters

Many AXP and VAX configurations use their Ethernet adapters as their
only network adapter. In the future, a growing percentage of AXP and VAX
systems will use multiple Ethernet and Fiber Distributed Data Interface
(FDDI) adapters for network (or VMScluster) connections. The DECnet for
OpenVMS software supports multiple adapters on a system and multiple
lines between nodes, and balances the network traffic across them. In the
event of a line failure, the surviving lines would continue to carry network
I/O traffic without loss of data. Multiple synchronous lines would operate in
the same redundant fashion.

Refer to Section 7.2 for information about local area VMScluster support for
multiple LAN adapters to Ethernet and FDDI cable.

• Disk controller modules

In AXP and VAX system kernels that allow multiple controllers, OpenVMS
supports multiple paths to dual-ported disk drives. In this way, if a controller
module that is connected to port A of a key disk fails, OpenVMS can continue
to use the controller module that is connected to port B of the disk drive.
Figure 6–6 illustrates disk drives with connections to both ports. In that
diagram, however, the disk drives are not connected to disk controller
modules but to hierarchical storage controllers (HSCs).

• HSCs

8–11

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

These disk and tape controllers, by virtue of their being CI nodes, are
connected to every AXP or VAX host on that CI star coupler. They are very
frequently installed in redundant pairs because OpenVMS supports the
automatic failover from a failed HSC to the surviving one. If each disk drive
has one of its ports connected to an HSC, then all the nodes have redundant
paths to those disk drives. Figure 6–6 depicts HSC units connected in this
dual configuration.

Note

The I/O protocol used with HSCs and Volume Shadowing for OpenVMS
controller modules ensures that no data is lost because of HSC or
controller failover.

• Disk drives

Volume Shadowing for OpenVMS is used for maintaining multiple disk drives
with the same contents. Any disk writes are written to all members of the
shadow set while disk reads take the most efficient path to only one member
of the shadow set. Figure 6–7 depicts two independent shadow sets that each
have shadow members in different cities.

The key advantage to using volume shadowing is the ability to survive a
crash or other catastrophic failure and increase data availability. Depending
on the configuration, volume shadowing can keep the data available in the
event of failure of the media, any part of the drive itself, cables, the controller,
the network, the interconnect, or some subset of the nodes of the VMScluster.
No data or processing is lost because the failover is virtually transparent
to application programs (except for a slight pause in I/O). With Volume
Shadowing for OpenVMS, when a replacement disk is added as a shadow
set member the overhead I/O operations necessary to update this disk are
transparent.

See Section 8.2.4 for more details.

The mass storage control protocol (MSCP) server also contributes to the
data availability of OpenVMS disks. MSCP supports a wide variety of
configurations and enables disk drives that are not connected to HSC units
to be mounted on all nodes of a VMScluster. Two AXP or VAX nodes can
be connected to the two ports of a disk drive that use Volume Shadowing
for OpenVMS and can make the data on the disk available to the other
VMScluster nodes in a fashion similar to dual HSC units. A disk drive could
also have one port connected to an HSC while the other was connected to a
node directly, assuming the controller is connected correctly.

• Terminal servers

These servers provide the primary access to OpenVMS for most terminal
users. They provide redundancy in the following ways. When first logging
in to the system, a terminal user who connects to a VMScluster via a Digital
terminal server would be automatically connected to the AXP or VAX node
with most available resources. Once connected, the terminal user could press
the break (the keyboard label) key and set up additional sessions on the
same node or other nodes. Then, if the AXP or VAX node that is being used
happens to fail, the terminal server attempts to fail over the terminal to
another session on a surviving node.

8–12

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

The Digital VT300-series and VT400-series terminals have two
communications jacks. The dual jacks let a single terminal physically
connect to two terminal server ports simultaneously, which may or may not
be on the same terminal server. This capability enables the terminal user
to continue work even if one of the Ethernets, terminal servers, or Ethernet
adapters had failed. Figure 6–2 depicts a terminal (with attached printer)
that is connected to two different terminal servers. The terminal servers
happen to be connected to two different Ethernet segments.

• VMScluster console systems

In many of the hardware configurations in Chapter 6, a VMScluster Console
System (VCS) software product could be used to provide efficient control of all
the nodes in the VMScluster. The VCS need not be a single point of failure
because twin VCS systems could be connected to all the nodes and set up so
that the secondary VCS would automatically take over if the primary VCS
failed. Figure 4–1 depicts a CI-based VMScluster with one VCS connected to
the VAX consoles. HSC and other consoles (other than VAX consoles) could be
connected as well.

8.2.2 VMScluster Application Environment Topologies
Almost every feature of VMScluster systems, including transparent access
to common data storage with record-level locking, incremental growth while
protecting current capital investments, and the ability for the system to
continue providing service in the face of many kinds of failures is available
to your applications without special design or coding considerations. OpenVMS
applications that function correctly on single node AXP or VAX systems (fault
tolerant or not) will continue to function correctly on the various types of
VMScluster systems, without recoding, recompiling, or relinking.

However, applications can be optimized for their environment. Some techniques
are described briefly in this section. See Chapter 10 for information about how
Digital can help you optimize your applications.

8.2.2.1 Application Scaling Considerations
Your staff must exercise good design practices and algorithms when creating your
application system. A program’s ability to grow in scale efficiently is particularly
important.

Growth in scale occurs when the number of simultaneous users of a program
increases. This can happen when a more powerful system kernel is installed or
when additional system kernels are added to your VMScluster system. In some
cases, previously undetected performance bottlenecks in the application design
may surface at the higher level of loading. An example would be the practice of
storing the next free invoice number in the first record of the master file. While
the disk containing such a frequently accessed record may be able to sustain
the throughput to handle 20 or 30 simultaneous users, 200 or 300 users might
overload the same disk with I/O requests.

One alternative to application redesign might be the installation of a faster disk,
such as the Digital ESE-20 Solid State Disk, or a memory resident disk, such
as the DECram for OpenVMS Device Driver (MDDRIVER) software. Because
it provides non-volatile storage, the Digital ESE-20 is optimized for both read-
intensive and write-intensive applications. By utilizing main memory for storage,
DECram software is optimized for read-intensive or scratch file applications.

8–13

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

Another dimension of scaling is database size. Use care with the data file
and database access practices of the application system. Sequential scanning
techniques that may provide acceptable performance on files with 1000 records
might cause excessive delays if attempted on files with 100,000,000 records.

8.2.2.2 Resource Contention Considerations
Any large computing system, whether a mainframe such as a DEC 10000 AXP
system or a fault tolerant system such as a VAXft 3000-810, can be constrained
by resource contention problems. OpenVMS uses sophisticated algorithms to
allocate system memory and CPU time to multiple users (or programs) with a
minimum of contention. However, the application programs themselves have a
large amount of control over some common system resources, such as data files
and databases.

To maintain data integrity in a multiprogramming, multiuser environment,
Digital database products like DEC Rdb that use the OpenVMS distributed lock
manager employ record-level locking. While record-level locking allows greater
concurrency (and therefore less contention) than file-level locking, the potential
for lock conflicts (contention) still exists, particularly with large numbers of
users. Some programming practices are particularly prone to causing contention
problems.

If a program reads several records for update (which usually causes the system
to lock them) and then waits for user input before rewriting the records (which
would unlock them), there is a possibility that a second user’s program may
attempt to read one of the locked records during that period. The second user’s
program would typically wait until the first user’s program released the records.
If the first user decided to go to lunch before finishing the transaction, the second
user (and other users attempting to access those records) would continue to wait,
unless the program were sophisticated enough to detect the problem and inform
the user.

A better approach to preventing such record contention would be for the program
to read its records and unlock them. When the user has finished updating the
information, the application should read the records again to see if they have
changed in the interim, and take appropriate action if warranted.

The following sections outline methods for addressing contention, scaling, and
synchronization issues.

8.2.2.3 Independent Processes Paradigm
A common application system paradigm in a multiprogramming, multiuser
operating system like OpenVMS is that of independent user processes. In this
scenario, each application program is designed as if it had the entire computing
system to itself. The operating system’s job is to mask the fact that other users
are, in fact, using the system as well. Common examples of this techniques
include:

• Overlap of one user’s I/O with another user’s processing

• Separate process address spaces

• Automatic record locking and unlocking

The individual invocations of each such application program usually share
only their common data files and databases. Because data storage is normally
transparently accessible from all nodes in a VMScluster system, programs can
execute on any node in the same fashion as they would on an AXP or VAX system
that was not part of a VMScluster.

8–14

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

Note

In some cases, an application program may have a dependency on certain
nodes in a VMScluster system. Those programs that expect the presence
of a vector processor would perform adequately only on those system
kernels in the VMScluster with such hardware.

Some programs may take advantage of operating system features that
are present in one version of OpenVMS but not present in an earlier
version. Those programs may need to be restricted to certain nodes if the
VMScluster is operating with multiple versions of OpenVMS.

Applications written with this paradigm have the advantage of not needing to
know whether they are executing in a VMScluster environment. However, they
still require careful analysis and design to prevent the previously mentioned
contention and scaling problems.

Another implication of this application system paradigm is the loss of some
production work if one of the VMScluster nodes fails. While the Digital file and
database subsystems are engineered to protect data integrity in the face of such a
failure, the user processes that were executing on the failing node are lost. Batch
jobs can be written to restart at defined points in the middle to avoid redoing
already completed processing steps, but interactive users must log in again to the
VMScluster. Digital terminal servers can alleviate this problem by allowing users
to initially log in to more than one VMScluster node and then by automatically
switching the user’s terminal to a surviving node when necessary.

See the OpenVMS System Manager’s Manual for more information on restarting
batch jobs. See the Networks Buyers Guide for more information on Digital
terminal servers.

8.2.2.4 Distributed Arbitration Paradigm
Some application systems may require an invocation of a program to be aware of
the operation of other invocations of the same program. Designs that bypass the
automatic record locking of OpenVMS would need to control their own access to
shared resources.

A noncomputer example of distributed arbitration would be automobiles queuing
up at an intersection with stop signs for all directions. By convention, the drivers
wait their turn to cross the intersection. Clearly, this protocol works only if all
drivers share a common understanding of the dynamic state of the intersection.
If all the drivers do not watch carefully to note the order in which automobiles
arrive at the intersection, there could be two drivers who simultaneously
concluded that it was their turn to proceed.

This paradigm has the advantage of not relying on a sole arbiter (such as a
traffic officer) that would be a single point of failure. However, a high level of
sophistication is required to implement such a paradigm with high levels of
efficiency.

8–15

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

8.2.2.5 Client/Server Computing Paradigm
In the client/server environment, the applications are client programs that make
interprocess calls to one or more dedicated server processes that provide key
functions such as database access or numerical computations. The success
of this approach depends on highly efficient interprocess communications
mechanisms and robust process control primatives in the operating system.
For more information on how Digital provides these features, see the Network
Application Support (NAS) documentation from Digital. Start off by reading the
NAS Overview.

One major advantage of this paradigm is the reduction in contention. If a
database is accessed by five server processes (each serving 20 clients), the
locking contention is much less than if the same database was being accessed
simultaneously by all 100 programs. Performance benchmarks have shown that
the aggregate transaction throughput is higher in the former scenario. Additional
data access efficiencies are gained because a single server process can make
more effective use of large buffer caches and use techniques like bundling several
update operations into larger but fewer write I/Os.

Compute servers are another potential use of this paradigm. If your VMScluster
system has only one node with vector processors installed (such as a VAX 9000
Model 420VP), the best way to use that investment may be to create a few
compute server processes that execute only on that node. They would provide
high performance computations (such as matrix inversions) for the entire
VMScluster and the portions of the client programs that cannot use vectors would
continue to execute on their local node. See the VAX FORTRAN™ documentation
for information about the high performance option of the VAX FORTRAN
compiler.

A disadvantage of the client/server approach is the level of sophistication required
to engineer multiuser, multithreaded servers with high levels of efficiency and
robustness. In particular, to prevent servers from becoming single points of
failure in a VMScluster system, provisions must be made for automatically and
quickly recreating those processes (in recovery mode) on surviving nodes, when
necessary. The synchronization techniques in the following section can be useful
for these situations.

Besides offering Network Application Services (NAS) to facilitate the creation
of client server applications, Digital also supports a very robust client server
paradigm with its online transaction processing environment, DECtp. Most of
the complexity of the client server environment is handled transparently by the
environment, letting your programming staff concentrate on solving the business
problem at hand.

The creation and management of multiuser server processes are handled by
the environment, as is the automatic failover to surviving VMScluster nodes
in the event of failures. Transaction queuing is used to ensure no loss of
committed transactions and the environment is fully integrated with Digital
file and database subsystems. Like NAS, within the DECtp environment, robust
applications are not limited to the boundaries of a VMScluster, but may be
distributed across the local area or wide area network. See the VAX ACMS
Guide to Creating Transaction Processing Applications and the DECtp Desktop for
ACMS Progamming Guide for information about ACMS and Desktop ACMS.

8–16

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

8.2.2.6 Synchronization Techniques
If your application system is to gain optimal advantage of the VMScluster
environment, your programs may need to access information about the
current state of the VMScluster at any time. The system information services,
SYS$GETSYI, F$GETSYI, and LIB$GETSYI provide a wide variety of system
and VMScluster state information. For instance, one item of information is the
CLUSTER_MEMBER parameter, which is either true or false, depending on the
node’s current status.

See the OpenVMS Programming Concepts Manual and the OpenVMS System
Services Reference Manual for more information on calling the SYS$GETSYI
system service. See the OpenVMS DCL Dictionary for more information on
calling the F$GETSYI lexical function in DCL. See the OpenVMS RTL Library
(LIB$) Manual for more information on calling the LIB$GETSYI run-time library
routine.

If the distributed parts of your application do not need to synchronize with one
another very often, it may be feasible to pass synchronization control and data
through a shared disk file. Data storage is commonly accessible from all nodes in
the VMScluster. However, it can suffer from the same frequently accessed record
performance bottleneck as seen in Section 8.2.2.1.

A much more efficient method of passing synchronization control and data
between VMScluster members is the OpenVMS distributed lock manager. This
subsystem is used by many other parts of the OpenVMS operating system that
require serialization of access to common resources (such as files), or notification
of events (such as another program attempting to lock a resource that is currently
locked), and sometimes the fast delivery of small amounts of data between nodes.

Because of the event notification mechanisms built into the OpenVMS distributed
lock manager, application systems can use the client server topology with
the security of quickly knowing when a VMScluster node has failed. Prompt
notification is necessary if server restart and recovery operations are to be
performed on a surviving node with a minimum of application down time. See
the OpenVMS System Manager’s Manual for more information on the OpenVMS
distributed lock manager.

8.2.3 Availability Manager for Distributed Systems
Digital’s Availability Manager for Distributed Systems (DECamds) is a real-
time monitoring, diagnostic, and correction tool used by system managers to
improve availability. DECamds collects and analyzes data from multiple nodes
simultaneously, directing all output to a centralized DECwindows display. The
analysis detects resource availability problems and suggests corrective actions.

8.2.3.1 Advantages of Using DECamds
DECamds helps system managers improve system availability and offers the
following features:

• Alerts users to resource availability problems, suggests paths for further
investigation, and recommends actions to improve availability

• Centralizes management of remote nodes within an extended local area
network (LAN)

• Allows real-time intervention, including adjustment of node and process
parameters, even when remote nodes are hung

• Adjusts to site-specific requirements via customization options

8–17

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

Anyone responsible for managing or monitoring OpenVMS systems can use
DECamds. It can be used in two different modes:

• Observation mode: To continuously watch resource usage and fine-tune
system availability.

• Reaction mode: For a specific problem, to quickly identify the problem and,
when possible, to fix it.

8.2.3.2 DECamds Functions
DECamds has two parts:

• The driver

The driver runs on remote nodes to gather data and implement fixes. The
driver is a pseudo device driver image, running at a high interrupt priority
level (IPL), so it functions even when a remote node is hung.

Note

Collecting data at an elevated IPL, however, prevents DECamds from
collecting nonmemory resident data, restricting some data collection in
process space.

You install, load, and start the driver on all nodes you will monitor.

• The console

The console runs on the local node and directs one or more remote drivers
to gather system and process data and return it to the console. The console
analyzes the data and displays the results on a DECwindows device. The
console also directs the driver to implement fixes at your request.

After you install and start the console and driver, you use the console to
observe and troubleshoot availability problems.

The DECamds console and driver communicate over a private Ethernet protocol.

Figure 8–6 illustrates the model used by DECamds.

8–18

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

Figure 8–6 DECamds Model

Request for data

Response with requested dataExtended local area network (LAN)

Multicast
hello
messages

VAX node

DECamds console

VAXstation nodeVAX nodeAXP node

DECamds driver DECamds driverDECamds driver

Multicast
hello
messages

Multicast
hello
messages

ZK−6004A−GE

The console displays two primary windows to help you navigate through the data:

• The Event Log window—Lists resource availability problems, called events.
For each event, you can follow a path to investigate the underlying problem.
For certain events you can also fix the problem.

• The System Overview window—Graphically displays summary data about
CPU, memory, and process I/O usage for the systems DECamds monitors.
This window lets you view data and find problem areas.

Using either the Event Log or System Overview window, you can:

• Collect additional data at the Group, Node, or Process level.

• Display data and refine the analysis by changing how data is sorted and
filtered.

• Implement fixes to correct resource availability problems.

Using the DECamds console, you can direct the DECamds driver to implement
corrective actions to remedy problems such as a runaway process or lock
contention without rebooting. In extreme circumstances, you can implement
a fix to intentionally crash a node.

8.2.4 Volume Shadowing for OpenVMS
A key component of overall computing system dependability is availability or
accessibility of data. Volume Shadowing for OpenVMS provides high levels of
data availability by allowing shadow sets to be configured on a single-node system
or on a VMScluster system, so that continued access to data is possible despite
failures in the disk media, disk drive, or disk controller. For shadow sets whose
members are local to different VMScluster nodes, if one node serving a shadow
set member shuts down, the data is still accessible through an alternate node.

8–19

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

Although you can create a shadow set that consists of only one disk, you must
mount two or more volumes in order to shadow or to maintain multiple copies
of the same data. This configuration prevents failure of a single disk drive or
deterioration of a single volume.

For example, if one member fails out of a shadow set, the remaining member can
be used as a source disk whose data can be accessed by applications at the same
time the data is being copied to a newly mounted target disk. Once the data is
copied, both disks contain identical information and the target disk becomes a
complete source member of the shadow set.

Using two controllers provides a further guarantee of data availability in the
event of a single-controller failure. When setting up a system with volume
shadowing, you should connect each disk drive to a different controller I/O
channel whenever possible. Separate connections help protect against either
failure of a single controller or of the communication path used to access it.

Using a VMScluster system (as opposed to a single-node environment) and
multiple controllers provides the greatest data availability. Shadow sets can
comprise either member units on different controllers or MSCP servers.

Figure 8–7 provides a qualitative, high-level classification of how you can achieve
low to high levels of physical data availability in different types of configurations.

8–20

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

Figure 8–7 Levels of Availability

ZK−9663−GE

Highest Availability

Lowest Availability

CONTROLLER
LEVEL

SYSTEM

LEVEL

DISK VOLUME

LEVEL

Maintains data availability
despite AXP or VAX system
crashes and failures

despite disk controller errors

Maintains data availability
despite media (disk volume)
and disk drive errors

Maintains data availability

VMScluster

Shadowed disks ported to
multiple contollers

Shadowed disks each ported
to the same controller

Unshadowed disks

Section 8.2.4.1 describes how you can configure your shadowed system to achieve
high data availability despite physical failures.

8.2.4.1 Repair and Recovery from Failures
A common failure that makes data unavailable is a communication failure.
Communication errors fall into the categories shown in Table 8–1. A host node
can detect communication failures any time data is transferred between the host
computer and a controller. Table 8–1 describes the types of failures and the
actions the volume shadowing software takes to repair or recover from the error.

8–21

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

Table 8–1 Types of Device Failures

Type Description

Controller error Results from a failure in the controller. If the failure is
recoverable, processing continues and data availability is not
impacted. If the failure is nonrecoverable, shadow set members
connected to the controller are removed from the shadow set,
and processing continues with the remaining members. In
configurations where disks are dual-pathed between two
controllers, and one controller fails, the shadow set members
fail over to the remaining controller and processing continues.

Unit or drive error Signifies that the mechanics or electronics in the device failed.
If the failure is recoverable, processing continues. If the failure
is nonrecoverable, the node that detects the error removes the
device or unit from the shadow set.

Data errors Results when a device detects corrupt data. Data errors
usually result from media defects that do not cause the device
to be removed from a shadow set. Depending on the severity
of the data error (or the degree of media deterioration), the
controller:

• Corrects the error and continues

• Corrects the data and revectors it to a new logical block
number (LBN)

In situations where read data is not correctable by the
controller, volume shadowing replaces the lost data by
retrieving it from another shadow set member and writing
the data to the revectored LBN on the original shadow set
member.

When a failure occurs, the first node to detect the failure must decide how
to recover from a failure in a manner least likely to affect the availability or
consistency of the data. The node that discovers the failure determines its course
of action as follows:

• If no members of a shadow set can be accessed by the node, that node does
not attempt to make any adjustments to the shadow set membership. Rather,
it assumes that another node, which does have access to the shadow set, will
make appropriate corrections.

• Provided that at least one member of the shadow set is accessible by the node
that detected the error, that node will attempt to recover from the failure. The
node repeatedly attempts to access the failed shadow set member within the
period of time specified by the system parameter SHADOW_MBR_TIMEOUT.
If access to the failed disk is not established within the time specified by
SHADOW_MBR_TIMEOUT, the disk is removed from the shadow set.

Handling of shadow set recovery and repair differs depending on the type of
failure that occurred and the hardware configuration. In general, devices that
are inaccessible are failed over to other controllers whenever possible or are
removed from the shadow set. Errors that occur as a result of media defects or
data corruption can often be repaired by revectoring the bad block and copying
good data from other shadow members.

8–22

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

8.2.4.2 Sample Shadow Set Configurations
This section illustrates only a few levels of data availability obtainable through
Volume Shadowing for OpenVMS. The sample systems, while intended to
be representative, are hypothetical; they should be used only for general
observations about availability and not as a suggestion for any specific
configurations or products.

Refer to Volume Shadowing for OpenVMS for details.

Figure 8–8 presents a VMScluster system with two AXP processors connected to
multiple RF disks on a DSSI interconnect. The DSA1 and DSA2 virtual units
represent the two shadow sets and are accessible through either processor. This
configuration offers both an availability and a performance advantage. The
shadowed disks in this configuration are highly available because the satellite
nodes have access through either of the DEC 4000 systems. Thus, if one DEC
4000 member fails, the satellites can access the shadowed disks through the
remaining DEC 4000 system. In addition, this configuration offers a performance
advantage by utilizing an interconnect separate from the Ethernet for I/O traffic.
In general, you can expect better I/O throughput from this type of configuration
than from an Ethernet-only VMScluster system.

8–23

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

Figure 8–8 Configuration of a Shadow Set (Highly Available Local Area
VMScluster)

ZK−9662−GE

Virtual Unit DSA1:

RF35 RF35
7DIA7: 7DIA8:

Virtual Unit DSA2:

RF73
7DIA2:

RF73
7DIA5:

DIGITAL Small Systems Interconnect
(DSSI)

Workstation

Ethernet

DEC 4000 AXP

DSA1:

DEC 4000 AXP

DSA2:DSA1: DSA2:

DSA1:
DSA2:

VAXstation VAXstation Workstation

DSA1:
DSA2:

DSA1:
DSA2:

DSA1:
DSA2:

8–24

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

Figure 8–9 illustrates how shadowed disks can be located anywhere throughout
a VAXcluster system. The figure presents a VAXcluster system with three VAX
processors, multiple HSC controllers, and multiple shadow set members that are
accessible by any processor. The shadow sets are accessible with three processors,
with two processors, and, in some cases, with only one processor operating. The
exception is if the VAX 9000 and the VAX 6000 processors fail, leaving only the
VAX 8600 running. In this case, access to the secondary star coupler is lost,
preventing access to the DSA1 and DSA2 shadow sets. Note that Figure 8–9 also
configures shadow set members on different star couplers.

Figure 8–9 Configuration of a Shadow Set (With Multiple Star Couplers and Multiple HSC
Controllers)

Virtual Unit
DSA2:

RA71

RA71

Virtual Unit
DSA1:

RA72

RA72

RA72

Star Coupler

ZK−9658−GE

Virtual Unit
DSA3:

RA72 RA90

Virtual Unit
DSA4:

RA90RA72

Virtual Unit
DSA5:

RA71RA71

Virtual Unit
DSA6:

RA90

RA72

Star Coupler

CI

CI

CI

CI

CI

HSC

HSC

HSC

HSC

HSC

HSC

CI = computer interconnect

UDA
50

VAX 8600

DSA1:
DSA2:
DSA3:

DSA4:
DSA5:
DSA6:

VAX 9000−210

DSA1:
DSA2:
DSA3:

DSA4:
DSA5:
DSA6:

VAX 6000−410

DSA1:
DSA2:
DSA3:

DSA4:
DSA5:
DSA6:

CI

CI

CI

CI

CI

CI

8–25

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

8.2.5 Disk Striping and Data Parity
OpenVMS supports disk striping and data parity on disks connected to AXP and
VAX systems. Digital offers these performance and dependability features in a
variety of hardware and software based products. Ask your Digital representative
to supply you with the latest product descriptions and options. The most recent
version of The Digital Guide to RAID Storage Technology is a useful document to
read, and can be obtained from your Digital representative or by calling 1-800-
344-4825 (1-800-DIGITAL). Also request the latest Software Product Description
(SPD) document for StorageWorks RAID Software for OpenVMS.

Disk striping enhances performance by spreading data across multiple drives.
User data is broken into segments called chunks. The relationship between
chunk size and average request size determines whether striping maximizes
performance for request rate or data rate. The system manager sets chunk
size based on application requirements. If chunk size is set large relative to
average request size, all of the drives may be able to execute different requests
simultaneously. This load balancing is especially beneficial in applications in
which there are large numbers of requests.

If chunk size is smaller than the average request size, multiple drives in a stripe
set can participate in each request, thereby increasing data rate. This is valuable
with large request sizes because data transfer time is a significant portion of total
data access time.

Load balancing is an automatic outcome of striping. Without striping,
frequently accessed data may be concentrated on a single drive, and that drive
can become an I/O bottleneck. When striping spreads data among several drives,
the I/O workload is balanced across several drives and total system performance
benefits.

Disk striping alone does not provide data availability features and in fact makes
data more vulnerable to outages. With disk striping alone, the loss of one disk
drive in the stripe set can result in the unavailability of data across all the
disks that comprise the stripe set. You can shadow striped disks to provide data
availability, and you can stripe data in an existing shadow set.

A second way to provide data redundancy is with data parity features, which
allow for the reconstruction of the original data if a drive fails. Stored in an
array, this information makes it possible to lose a physical drive without losing
access to the data stored on it.

Disk striping features can be combined with data parity features.

Compared to shadowing, parity reduces the cost of data redundancy at the
price of reduced subssystem performance if a drive fails. Parity allows data
reconstruction, but the speed of reconstruction depends on the system workload
and the reconstruction algorithm used.

8.2.6 DECdtm Services and Two-Phase Commit Protocol
An efficient synchronization mechanism built into OpenVMS is the set of DECdtm
services. By enabling your programmers to construct distributed applications that
communicate via a two-phase commit protocol, the DECdtm services provide a
high degree of robustness.

8–26

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

Managers of distributed applications need automated confirmations that a single
transaction spanning multiple RMS files or databases in local or remote locations
is guaranteed to complete as a single unit or not at all. A two-phase commit
protocol is needed to ensure that all identified data resources affected by the
work of the transaction are accessible and operational. Successful return calls
must be received by the originator (program) from all the resources before the
transaction commit sequence is considered valid; otherwise, the transaction is
declared incomplete and the entire work of the transaction is rolled back.

DECdtm services, part of OpenVMS, provide system services that demarcate and
coordinate distributed transactions. By using a two-phase commit protocol, these
services ensure consistent execution of distributed transaction on the OpenVMS
operating system. Figure 8–10 illustrates the two-phase commit protocol.

Figure 8–10 Two-Phase Commit Protocol for a Distributed Transaction

Commit

Roll back

Can all
participants

complete the
transaction?

ZK−1772A−GE

Initiates two−phase commit protocol

Application Program

Yes

No

Starts distributed transaction
...

8.2.7 Disk Defragmentation Applications
OpenVMS provides a movefile subfunction that allows application developers
to create their own disk defragmentation applications. Also, Digital provides a
product called the DEC File Optimizer for OpenVMS, which uses the OpenVMS
movefile subfunction to defragment files on a disk. Refer to Section 9.6.2 in this
handbook for summary information about the movefile subfunction and the DEC
File Optimizer for OpenVMS product. See the DEC File Optimizer for OpenVMS
Guide to Operations for detailed information about this product.

8–27

Building Dependable Software Applications
8.2 OpenVMS Dependability Features

8.2.8 RMS Journaling
RMS journaling is a data integrity tool that can help to protect your data in RMS
files from being lost or becoming inconsistent. There are three types of RMS
journaling that you can use. Each protects against a different type of potential
problem:

• After-image journaling lets you redo the modifications that were applied to
an RMS data file. After-image journaling protects against hardware failures
such as a disk head crash. It also allows you to recover RMS files that are
inadvertently lost or deleted.

• Before-image journaling lets you undo modifications that were applied to
an RMS data file. Before-image journaling protects against bad or erroneous
data (that might be caused by communications line noise or a data entry
operator’s error) by allowing you to return an RMS data file to a previous
state, before the bad or erroneous data was introduced.

• Recovery unit journaling lets you define one or more sets of RMS
operations within an application that must either be done in their entirety
or not at all. Recovery unit journaling protects against data becoming
inconsistent due to an interruption (for example, a system crash) during the
execution of an application or due to an error detected by an application.

You can use one, two, or all three journaling types in your RMS application. RMS
journaling can be used for any RMS file that is updated. Note that journaling is
not applicable to non-RMS file operations, nor is it applicable to RMS files that
are rewritten (with a new version number such as text files that are modified
by a text editor) rather than updated in place. For example, RMS journaling
would be appropriate for the data file SALES.DAT;1 which, after an update by
an application program, continues to have the file specification SALES.DAT;1.
The use of RMS journaling would not, however, be appropriate to the text file
REPORT.TXT;1 which, after an update by a text editor, would have the file
specification REPORT.TXT;2.

Journaling is applied on a file-by-file basis not on an application basis. For any
RMS file, you can designate (or mark) the file for after-image, before-image,
recovery unit journaling, or any combination of them. When a file is marked for
journaling, journaling is performed every time the file is updated. Within any
application, you can use any combination of files that are marked for different
types of journaling along with files that have not been marked for journaling.

See the RMS Journaling for OpenVMS Manual for detailed information about
using the RMS journaling feature to protect the integrity of your applications
using RMS files.

8.2.9 OpenVMS Queue Manager Failover Capabilities
OpenVMS provides a single queue manager process that acts as a clusterwide
server, accessing the queue database for all processes in a VMScluster
environment. The centralized design enables the queue manager process to
fail over to another node if the node on which it is running leaves the VMScluster.
In terms of dependability, the most visible benefit of this design feature is that
your users’ batch and print jobs can survive node crashes when the users operate
in a VMScluster environment.

See Section 9.7 for more information.

8–28

Building Dependable Software Applications
8.3 Writing Predictable, Dependable Code

8.3 Writing Predictable, Dependable Code
Software problems differ from hardware problems in that the software does
not consist of physical parts that degrade or deteriorate with time. However,
hardware problems can cause corruptions to data that is under the control of the
software and can cause changes to the environment in which the software is used.

You can judge the dependability of software by its ability to:

• Continue to produce correct end results while correcting for software errors

• Recover or restore application data and resume processing

• Allow fixes and upgrades for timely repair and maintainance of the software

• Minimize the impact of software faults on other applications or on the
operating system

• Allow easy installation and, once installed, allow adjustments to the
installation to make the software more suitable for its particular environment

Software maintenance accounts for a large percentage of the lifecycle cost
and manpower effort. Repair and maintenance of software components can
be complicated if there are many people involved such as your service vendor,
the software supplier, your own staff, and perhaps contract programmers as
well. Efficient maintenance relies on the documentation that you keep during
the development and evolution of your software. Comprehensive records help
facilitate problem analysis when software maintenance is required. The following
sections discuss potential software failures and their impact on the dependability
of your computing system.

8.3.1 Avoiding Errors During Software Specification
Errors made while specifying the software design are probably the most abstract
reasons for software failures. During software specification, errors are often made
due to erroneous assumptions, erroneous deductions, and communication errors.
In some cases, software mismatches can result when the software design does
not account for the fact that various departmental ‘‘cultures’’ within the same
organization have different ways of doing business.

Because errors made during software specification affect the suitability of the
software to your organization, the specification process is an important part of
dependability. The system users may not only come to depend on the computing
resources and expect that the resources are always available to them, but also
require that the computing resources perform the job in a familiar manner.

The way to avoid errors during software specification is through comprehensive
business analysis and requirements gathering (see Chapter 2), as well as
techniques such as providing prototypes and application walkthroughs. These
techniques enable your computer users to give early feedback on application
function and user interface specification decisions.

In addition, there is no substitute for program testing by users who are
representative of those who will use the software in a production environment.
Whenever possible, have the test programs use live data in parallel with
programs in production and compare the results between the two environments.

8–29

Building Dependable Software Applications
8.3 Writing Predictable, Dependable Code

8.3.2 Avoiding Errors in Design and Implementation
Design and implementation errors result from typing mistakes or having
incomplete (or incorrect) knowledge of the applicable software environment.
Many times, poor software design results when the business problem’s complexity
exceeds the abilities or experience levels of the programmers. Most programmers
consider that doing an excellent job in software design and implementation is
all that is necessary for high quality software. However, for truly dependable
software, you must also design the software for future growth, for robustness
necessary to survive disasters, to survive frequent modification, and to work
reliably with other software components in the system.

Your development process has the greatest impact on the ability to produce
applications free of defects. A wide variety of computer industry literature is
available on the topic of building a reliable software development process. See
Appendix B for information about The Digital Guide to Software Development,
Managing the Software Process, and other references.

8.3.3 Predicting Future Software Requirements
As the business requirements grow, the software must be able to expand in
order to meet the increasing computing demands. How well the software is
able to adapt to future business needs is known as its scalability. Although
the software designer must do his or her best to foretell the computing needs
of the future, even the most experienced programmers fail to predict the future
precisely. A truism of computing is that system usage always expands. If the
workload on a particular system kernel becomes too great, most sites either
acquire a more powerful kernel or add more kernels. Either way, the scale of
the business solution has grown and it can soon exceed even the designer’s most
radical predictions.

When the software fails to scale gracefully, the most-noticeable symptoms usually
are in the area of performance problems. Examples of poor scalability include:

• Frequently accessed disk records become areas of contention

• Linear table searches become compute-bound

• An application control program becomes unwieldy when it must control many
more objects than its user interface was designed to handle

• Insufficient capacity of communication paths

8.3.4 Surviving External Failures
Although you could say that the inability of software to survive external failures
is both a specification error and a design error, in the context of this discussion,
the lack of robust software results from inadequate goals.

There is a great deal of existing software that conforms very well to specifications.
Such software is well-designed, does the right job, and executes its tasks
efficiently. However, even well-designed software can be more vulnerable to
external events than necessary. Software should be able to withstand adverse
events whether or not the events are outside the control of the software.

For example, long-running programs can be made robust enough to survive
system outages without losing their entire investment in processing. Programs
can be coded to journal their internal processing state out to disk storage at
regular intervals, and in the event of a failure to include a mechanism to restart
processing from the last checkpoint. Electronic circuit (or weather) simulation
programs are obvious candidates for this technique.

8–30

Building Dependable Software Applications
8.3 Writing Predictable, Dependable Code

Batch jobs that have multiple steps (DCL commands) can be designed to
automatically restart, at points other than the beginning of the job after a
system failure. See Section 9.7 for details.

A wide variety of applications can gain higher levels of dependability by utilizing
transaction processing monitors. You can protect applications from many types
of system kernel, network, or data storage failures through the use of queuing
and failover capabilities. You can build these features into your application code
or have your programs execute within a Digital transaction processing (DECtp)
environment. DECtp products, including VAX ACMS, protect their applications
from a large number of external failures. See the DECtp documentation for more
information on Digital transaction processing environments.

8.3.5 Providing for Software Evolution
One way to reduce the need for frequent modifications to your applications is
to design them with flexibility. For example, if your staff is always changing
and expanding the set of printers that are connected to your system, having
to change source code to support the new printer setup would be a constant
headache. If you design the software programs to provide access to any printer
configured (with perhaps a user-customizable subset), then your personnel could
have greater flexibility with lower risk.

8.3.6 Managing Systems Integration
Besides software concerns, systems integration combines hardware, personnel,
cultural factors, and other factors. However, it is the conflict between mismatched
pieces of software that very often prevents a computing resource from providing
adequate service.

Unless your company has delegated the total responsibility for your computing
system to a service vendor, you or someone on your staff must assume the role of
systems integrator. This involves tracking the software configuration (product,
version, date, and other factors) of your system and implementing sufficient
testing (under load) to verify that your particular set of software components
works together reliably. Your systems integration job is made more difficult if you
must merge software that originated from your hardware vendor with software
that your programming staff wrote, as well as other vendor’s software.

Because of different interpretations of interfaces, specifications and protocols, and
different assumptions about behavioral characteristics, even if all the components
are themselves free of defects, there is still the potential for integration problems.
Therefore, it is very important for you to acquire only very high quality software
to make the validation process manageable.

Likewise, because of the multiple sources of code, good record keeping practices
(on software configurations and on problem tracking) can be invaluable in
connecting system perturbations with the onset of problems. The data might not
provide the final diagnosis but it would provide a place for the analysis to start.

8.4 Prototyping Applications to Build in Dependability
You develop applications based on the requirements collected from the users
of the application. Some users know what they want and can communicate
their needs accurately to a designer or analyst. Other users are not sure what
they want or are unable to communicate their needs. To check your application
analysis, you might protoype some key applications.

8–31

Building Dependable Software Applications
8.4 Prototyping Applications to Build in Dependability

Walk a user through the prototype version of the application to see if you have
correctly understood the way the user carries on a business task. Based on the
user’s reactions, you might need to change the application design. It is much
easier to correct an error based on misinformation at this early stage, however,
than when the system is already in production.

Several good prototyping products are available:

• DEC Visual User Interface Tool (VUIT) software

DEC VUIT™ is an interactive WYSIWYG-style (What-You-See-Is-What-
You-Get) editor for building Motif® application interfaces. It is intended
for developers experienced in constructing interfaces using Motif or similar
windowing systems.

DEC VUIT provides an environment that supports rapid development of
graphic user interfaces that are compliant with OSF/Motif®. Prototype
interfaces can be tested, quickly modified based on end-user input, and
fed directly into the development stream. Because DEC VUIT generates
industry-standard OSF/Motif UIL, not a proprietary presentation description
language, the interface built using DEC VUIT is portable to any other
platform that supports the OSF/Motif environment.

DEC VUIT enables developers to build the interface visually instead of
writing code. During editing, it uses inherent knowledge of widget properties
and parent-child relationships to reduce run-time errors.

• DECforms software

DECforms offers application developers a set of software development tools
and a run-time environment for implementing powerful yet user-friendly
human interfaces. DECforms supports the full range of VT100, VT200™,
VT300™ , and VT420™ series terminals and compatible terminal emulators
on PCs and workstations. DECforms integrates with VAX ACMS to provide
forms processing capabilities in transaction processing environments.

• VAX DATATRIEVE™ software

You can use VAX DATATRIEVE to define a record, a domain, Rdb databases,
DBMS databases, and RMS files using ADT, a dialog-driven interface
for data definitions. Then, develop interactive procedures using the
VAX DATATRIEVE data manipulation facility. See the DEC DATATRIEVE
User’s Guide for more information.

• DEC RALLY software

Use DEC RALLY to prototype applications that use DEC Rdb or RMS files
and check the logical design of your database. DEC RALLY includes menu-
driven tools that let you quickly develop an application prototype, including a
form interface for data entry. An advantage of using DEC RALLY is that its
prototype can be enhanced to become the final application, with the forms and
data access combined into one. See the Developing DEC RALLY Applications
for more information.

• DECquery™ software

DECquery is a personal computer (PC) or Macintosh® based data retrieval
system that accesses DEC Rdb databases.

• DECdecision software

8–32

Building Dependable Software Applications
8.4 Prototyping Applications to Build in Dependability

DECdecision is an intergrated spreadsheet, database query and update
interface, and graph creation package that is CDA™ compliant. DECdecision
allows people who are not programmers to create database applications.

You can also prototype the logical design of your database using interactive
utilities: SQL for DEC Rdb databases, and DBQ for DEC DBMS databases.
Although these interactive utilities do not model data entry, they can present
output data for user verification. If you implement your production database
using DEC Rdb, the SQL statements in your prototype are very close to the
statements programmers need to specify in application source code. Use DBQ to
prototype transactions if you use DEC DBMS as your database manager.

8.5 Testing Applications to Verify Application Dependability
Each time you create or modify an application, it is possible that the application
will run differently than expected. These unexpected changes are impossible to
predict and often difficult to uncover.

The best method for detecting such changes is to catch them as soon as they
occur so that you can identify which modification caused the change. Testing
should also adequately check the application’s dependability when it is stressed
by an unusually heavy transaction load. The following list provides guidelines for
testing applications for dependability:

• Plan to test applications as part of the development process.

To detect defects efficiently, you need to continuously test the application and
to compare its actions against expected or past results. Only by carefully
planning and testing the system modifications can you ensure that your
application modules are stable and dependable. Be prepared to allocate test
system design and implementation time, as well as system resources, in order
to conduct adequate tests for dependability and performance.

• Keep the test environment separate from the production environment.

For accurate test results, test the application software in the same or a
similar environment as the one where you intend to run the application.
For example, you might use two identical system roots and system logicals
on both systems and run actual production I/O data on both the test and
production systems.

Note that the test system should be a strictly remote test system so that
any failures that might occur do not affect the production system. If it is not
possible to use actual production data to test the application, use the DEC
Test Manager to simulate users entering data into applications and printers
to simulate the recipients of outgoing I/O. Through these types of elaborate
test environments, test results can be compared with actual run-time results
to validate the dependability of the new or changed software.

• Use both reasonable and unreasonable test data.

Using actual production data is, obviously, critical as you verify application
logic and system reliability. You should also throw in data that is
unacceptable to the application so that you can catch software errors in the
application that would show up only when users or other system components
behave in unpredictable ways. That is, you should include thorough testing of
boundary conditions. Problems that are exhibited at the limits of the data set
size or input values are common.

8–33

Building Dependable Software Applications
8.5 Testing Applications to Verify Application Dependability

The goal is to discover if the application will respond in an acceptable manner
to all possible input, however unlikely. Usually, extra effort spent trying
to break the system during testing is paid back many times over from the
absence of problems during real production.

• Manage your configurations carefully during the testing phase.

Practice good experimental design practices, such as controlling as many
variables as possible and changing them only after much deliberation for each
test. The hardware and software configuration of your system represents
a very large collection of variables that could change. If you also consider
network topology and status, you further add to the number of outside
influences that could affect test results.

If you strictly control and record all the details of your system’s complete
configuration during testing, it will be easier to diagnose problems in the
code.

• Document the test results completely.

Efficient testing relies on the documentation that you keep during the
development and evolution of your software. Adding comprehensive testing
records to that documentation helps facilitate problem analysis when software
maintenance is required. The benefit of maintaining detailed documentation
on an ongoing basis is that much of the system management wisdom acquired
in the testing and maintenance process is naturally integrated into the
computing system on an ongoing basis.

• Provide the ability to quickly restore the production system to its preupgrade
status.

If possible, avoid upgrading any software modules without having a procedure
in place to immediately restore the system to its prior, stable operating state.
Should a problem arise with the newly installed application software, you can
immediately restore the computing system to its previous dependable state.

When it is not feasible to restore the production environment to its original
stable condition, the importance of exhaustively testing the new software on
production-like testbeds becomes even more critical.

Finally, there are many useful products for testing your application software.
Although the following list is not all inclusive, it suggests several products useful
for application testing:

• The OpenVMS debugger

• DEC Test Manager

• DEC Performance and Coverage Analyzer (DEC PCA)

• VAX Performance Advisor™

• POLYCENTER Performance Solution

• DECtrace™

• RdbExpert

8–34

Building Dependable Software Applications
8.6 Dependability Features of Application Software

8.6 Dependability Features of Application Software
This section describes the dependability features of:

• Database applications; specifically, DEC Rdb. Also, related products like
RdbExpert and DECtrace. See Section 8.6.1.

• Products that define the application form; specifically, DECforms, a Digital
implementation of a proposed ANSI and ISO standard for a Form Interface
Management System (FIMS). See Section 8.6.2.

• Transaction processing (TP) monitors; specifically, VAX ACMS. See
Section 8.6.3.

8.6.1 Building Dependable Database Applications
In the OpenVMS based environment, DEC Rdb provides features that contribute
to the continuous processing of business functions. These features include:

• Failover in VMScluster environments. See Section 8.6.1.1.

• Full and incremental backups of selected portions of a database or of an
entire database, while there are active users running update transactions and
modifying data. See Section 8.6.1.2.

• Data integrity and data consistency when a single transaction works
with multiple Rdb databases, using a two-phase commit protocol. See
Section 8.6.1.3.

• Automatic cleanup of Rdb databases. See Section 8.6.1.4.

• Modification of certain physical database components while there are active
users working with the database. See Section 8.6.1.5.

• Security management commands. See Section 8.6.1.6.

• Support for using DECtrace and RdbExpert with Rdb applications. See
Section 8.6.1.7.

For details about the DEC Rdb dependability features described in the following
sections, refer to the DEC Rdb documentation set. In particular, see the VAX
Rdb/VMS Guide to Database Maintenance and VAX Rdb/VMS Guide to Database
Performance and Tuning.

8.6.1.1 Database Failover in VMSclusters
DEC Rdb in a VMScluster environment allows access to a database from many
concurrent users on multiple nodes. DEC Rdb automatically recovers your
database if an AXP node or VAX node in your VMScluster system fails. It also
provides optional after-image journaling to further protect the integrity of your
database.

In a properly configured VMScluster environment, DEC Rdb can give you almost
constant availability to your database.

How DEC Rdb Databases Work in VMSclusters
The OpenVMS distributed lock manager provides synchronization of resources
across the VMScluster. DEC Rdb uses the OpenVMS distributed lock manager to
synchronize clusterwide updates to the database files, to initiate the automatic
recovery process when an AXP or VAX node fails, and to coordinate concurrent
updates to the same database from processes running on different AXP or VAX
nodes in the VMScluster.

8–35

Building Dependable Software Applications
8.6 Dependability Features of Application Software

Along with the increased availability of data residing in DEC Rdb databases
in VMScluster environments comes increased database administrator (DBA)
planning tasks and responsibilities. In a VMScluster environment, the versions
of DEC Rdb on all AXP nodes or VAX nodes in the cluster must be the same and
all database files must be on devices accessible to all AXP nodes or VAX nodes
that share the database.

In particular, the recovery-unit journal (RUJ) files must be accessible for
automatic recovery to take place if one of the nodes fails. Each process accessing
a DEC Rdb database in READ_WRITE transaction mode has an RUJ file,
which contains records from the database as they appeared before update
operations started by the current transaction. Automatic database recovery
operations return the preupdate records from each RUJ file of processes that were
interrupted by a resource failure (before the processes with active transactions
had a chance to commit). This ensures that incomplete transactions do not
remain in the database.

In a VMScluster environment, an RDMS_MONITOR monitor process must be
running on each node from which users will access any DEC Rdb database.
Communication between the DEC Rdb monitor process on each node is handled
through the OpenVMS distributed lock manager. The monitors on each AXP or
VAX node use locks synchronized by the OpenVMS distributed lock manager to
signal between processes that a significant event has occurred. A significant
event in a VMScluster is when a process has terminated abnormally or a node in
the VMScluster has failed.

When an AXP or VAX node fails in a VMScluster environment, the OpenVMS
distributed lock manager alerts DEC Rdb monitor processes on other nodes on
which there are users of the same database. One of these monitor processes then
initiates the DEC Rdb recovery procedure to roll back the transactions that were
in progress for users on the failed node.

Figure 8–11 illustrates a VMScluster configuration in which there are eight active
DEC Rdb users of the PAYROLL database when VAX001 fails.

8–36

Building Dependable Software Applications
8.6 Dependability Features of Application Software

Figure 8–11 Failover and Recovery Process for DEC Rdb Users in VMScluster

ZK−3811A−GE

HSC70

VAX

User A User B User C

Ethernet

AXP VAX AXP VAX
Satellite
Nodes

VAX 001

CIXCD

VAX 002

CIXCD

AXP 003

CIXCD

AXP 004

CIXCD

CI CI CI CI

HSC70

RA90

RA90

RA90

Boot
Nodes

User F
User G
User H

User D
User E

PAYROLL

Database
DEC Rdb

In Figure 8–11, when the VAX001 node fails:

1. The active database transactions of User D and User E are interrupted and
a software bit is set in the database that the work performed by these two
users needs to be rolled back.

2. A DEC Rdb monitoring process on one of the surviving nodes will trigger the
recovery operations in recovery processes on behalf of User D and User E.

3. In the recovery operation separate DEC Rdb recovery processes read from
the separate, process-specific RUJ files of User D and User E and use this
data to reconstruct the preupdate versions of records affected by User D’s and
User E’s transactions.

During this recovery operation, Users A, B, C, F, G, and H on the other
VMScluster nodes may perceive a pause in their database activity. However,
their transactions to the same PAYROLL database remain active and viable.
When the recovery operation completes, the users resume their transactions
without any ill effects on the data integrity or continuity.

8–37

Building Dependable Software Applications
8.6 Dependability Features of Application Software

4. After DEC Rdb recovers the PAYROLL database, users who were on a failed
VAX node can log in to another AXP or VAX node in the VMScluster and
continue using the database. Therefore, you should ensure that users have
accounts on surviving nodes or that your VMScluster configuration uses a
common SYSUAF.DAT file. All VMScluster nodes that access the same DEC
Rdb database should use the same, or coordinated, SYSUAF and Rights
database. The DEC Rdb protection scheme is tied to the AXP or VAX system
on which the database was created.

Where to Place DEC Rdb Files in VMSclusters
The following guidelines can help you decide where to place the database files:

• Database root (RDB), storage area (RDA), and snapshot (SNP) files

The database root, storage area, and snapshot files must be accessible from
every node that intends to access the database. DEC Rdb must be able to
create and to maintain VMScluster distributed root file access.

• Recovery-unit journal (RUJ) files

DEC Rdb must be able to complete its automatic recovery procedure should a
node fail. Recovery can complete only if all RUJ files are accessible from every
node that accesses the database. To ensure that all RUJ files are accessible,
follow these rules:

Define the logical name RDMS$RUJ to point to a directory on a device
that has clusterwide accessibility and has more than one access path, if
possible. The logical may be defined in the system table of each process.

Make sure that there is no version limit on the directory. Also, set and
test the protection on the directory so that everyone who needs to access
the directory can indeed access it.

Make certain that if you permit RUJ files to reside in the default directory
named [RDM$RUJ] (on the device where the user’s SYS$LOGIN is
defined), the [RDM$RUJ] directory’s device is on a cluster-accessible disk.

Do not place a user’s RUJ file on a disk on a remote node of a local area
VMScluster.

To ensure good performance, place journal files on a device other than
the ones on which the root file (.RDB) and storage area files (.RDA) are
located.

• After-image journal (AIJ) file

The after-image journal (AIJ) file contains all updated records by all users of
the database. The beginning and ending time period of each AIJ file is defined
by the DBA. The AIJ file must be accessible from every node that accesses
the database. This ensures that all processes that access the database will be
able to write to the AIJ file. Never place the AIJ file on the same disk as the
one(s) holding the root file (.RDB) or storage area files (.RDA). In the event
of a disk failure affecting the .RDB or .RDA files, you will want to apply the
surviving .AIJ file to a backup copy of the database.

Also note that while having an AIJ for a database is optional, it is highly
recommended for critical applications. The decision to use or not use AIJ with
a particular database depends on the value placed on the data and the ability
to recover lost work since the last backup.

8–38

Building Dependable Software Applications
8.6 Dependability Features of Application Software

With DEC Rdb multifile databases, use the RMU/SHOW STATISTICS command
and the MONITOR DISK command during normal and peak database activity
periods to evaluate the I/O rates on each disk. Use the RMU/MOVE_AREA
command to relocate any storage area files that currently reside on disks with
excessive I/O rates.

Note

Never place journal files on the same disk as the database or RMS file
they are protecting.

Also note that if your organization uses the CDD/Repository software, the data
repository files should be placed on a shareable cluster disk that is always
accessible to users from any node in the VMScluster configuration.

Minimizing Impact of Component Failure on Database Access
To ensure continuous database access by surviving nodes when a node in the
VMScluster configuration fails, do not place any DEC Rdb files on disk devices
that are cluster-mounted on single-ported, MSCP-served disks. If you place
any DEC Rdb files on single-ported, MSCP-served disks, and the AXP or VAX
processor to which the disks are connected fails, the DEC Rdb recovery procedure
cannot access those files. Activity on the database ceases until the failed AXP or
VAX processor can be restarted.

To reduce the chances of losing access to your database due to a system
component failure, consider the following facts:

• If you place your files on disks connected to a pair of HSC or HSJ devices,
you lose access to your database files only when both HSCs or HSJs fail at
the same time. When one HSC or HSJ fails, access to the disks continues
through the alternate path. (Remember to use the common allocation class
name when you define your database files, as explained in the VAX Rdb/VMS
Guide to Database Maintenance and VAX Rdb/VMS Guide to Database
Performance and Tuning.

• If you place your files on dual-pathed MSCP-served disks, you lose access to
your database only when both nodes fail at the same time.

• If you place your files on a single-pathed HSC or HSJ disk, you lose access to
your database when that HSC or HSJ fails.

• If you place your files on a single-pathed disk that is not an HSC or HSJ, you
lose access to your database when that node fails.

• In a local area VMScluster configuration, if one of the boot nodes fails, cluster
operations will be suspended until the failed node rejoins the VMScluster.
This condition is normal and ensures the integrity of shared VMScluster
resources.

Refer to the VAX Rdb/VMS Guide to Database Maintenance and VAX Rdb/VMS
Guide to Database Performance and Tuning for details about the operation of
DEC Rdb databases in VMScluster environments. See VMScluster Systems for
OpenVMS for information about the different types of VMScluster configurations.
Section 8.2.2 summarizes the VMScluster and application environment topologies
as they relate to system dependability.

8–39

Building Dependable Software Applications
8.6 Dependability Features of Application Software

8.6.1.2 Backing Up Active DEC Rdb Databases
One reason for using a database management system like DEC Rdb is to protect
data from hardware failures, software failures, and human errors. Two types of
operations are necessary to protect the data in the database:

• Saving copies of the database at regular intervals

• Making copies of completed update transactions in an AIJ file

When you use both methods of protection, you can rebuild lost or corrupted
databases. If anything happens to your database and you have maintained a
regular schedule of backups, you can restore it to the state it was in when you
last backed it up. If you keep an AIJ file for the database, you can apply AIJ
entries to the restored database. The AIJ process reapplies database updates that
occurred since the last backup operation and before the database corruption or
loss.

DEC Rdb provides its own specialized backup tool that is based on the structure
of a database (use of snapshot files) to achieve a high degree of availability of the
database application during this type of maintenance operation.

Note

Do not use OpenVMS Backup utility with DEC Rdb files. Relying on
OpenVMS Backup may compromise the reliability and availability of
the database. Digital recommends using the RMU/BACKUP and RMU
/RESTORE commands with DEC Rdb databases. See the VAX Rdb/VMS
Guide to Database Maintenance and VAX Rdb/VMS Guide to Database
Performance and Tuning for details.

The DEC Rdb backup mechanism provides a number of features for DBAs and
system managers who are supporting applications that require concurrent access
to shared, critical data in continuous processing environments:

• Backup operations can occur while the database is open to active
users (transactions). Special synchronization occurs with active update
transactions. This feature is called online backup.

• You can perform incremental or full backups. Incremental backups reduce
backup time and ease maintenance by reducing the amount of data that needs
to be backed up. A full RMU/BACKUP command backs up the RDB file and
all RDA files in all the storage areas into a single database backup (RBF)
file. An incremental backup backs up the RDB file and all database pages
that have been changed since the most recent full backup into a single RBF
file. Full backups and incremental backups do not copy empty database pages
or SPAM pages, thereby saving space in the backup file and minimizing the
elapsed time of the RMU backup and restore operations.

• A DEC Rdb database can be divided into physical data portions, defined by
the DBA, called storage area files. DEC Rdb lets you specify which storage
area files you want to back up.

• You can run multiple magnetic tape drives concurrently during the backup
operation in a feature called multithreaded backup. This feature can
significantly decrease the amount of time needed to back up large databases.
When the sum of the peak data rates of the tape drives exceeds the computer
interconnect (CI) port bandwidth, drive performance drops significantly.
Digital recommends that the DBA experiment with the number of concurrent

8–40

Building Dependable Software Applications
8.6 Dependability Features of Application Software

tape drives that can be used during a multithreaded backup operation and
that can result in a faster backup elapsed time (before overwhelming the CI
port bandwidth). Note that the CI port bandwidth is improved with newer or
additional CI ports.

Online Database Backup Operation
You can perform a full or incremental backup of your database on line, without
closing the database or denying access to users. When the online backup
command is entered by the DBA, DEC Rdb requests a ‘‘quiet point’’ lock and
waits for all active READ_WRITE transactions to complete. The online RMU
backup will proceed when the database reaches a quiet point; that is, a moment
when there are no active READ_WRITE transactions.

Once the online DEC Rdb operation has started, subsequent READ_WRITE
users can invoke (attach to) the database. DEC Rdb will wait until the online
backup operation releases its quiet point lock before actually allowing these
subsequent READ_WRITE transactions to start their updating activity. This
technique ensures that the data backed up represents a consistent view of the
database at the moment of the online backup operation. Through the use of
internal transaction sequence numbers (TSNs), transactions that performed work
after the online backup requested its quiet point lock will be captured in the next
backup operation.

The time line in Figure 8–12 shows how DEC Rdb performs the online backup
operation when there are active users.

8–41

Building Dependable Software Applications
8.6 Dependability Features of Application Software

Figure 8–12 Coordination of Online Database Backups

T i m e

....Wait....Wait....

2

Update Transaction

Read−Only
Transaction

Backup
Operation Backup

Completed

Update Transaction Commit

3
Commit

4

Commit
1

Commit
5

Commit
6

Update Transaction

ZK−3806A−GE

$RMU/BACKUP/ONLINE

Update Transaction

....Wait....Wait....Start

Quiet Point
Lock

Request Acquire
Quiet Point

Lock

Release
Quiet Point

Lock

Start
Online
Backup

Transaction

The numbers in Figure 8–12 correspond to the numbered explanations in the
following list. The following transactions occur for the same DEC Rdb database
that is being accessed by five users and, at one point, a concurrent DEC Rdb
online backup operation:

1 An update transaction starts. For example, this could be a
READ_WRITE ... FOR PROTECTED READ transaction.

2 An update transaction starts. For example, this could be a
READ_WRITE ... FOR EXCLUSIVE WRITE transaction.

3 A READ_ONLY transaction starts. The quiet point has no effect on
READ_ONLY transactions, which have no effect on the online backup
operation.

4 The DBA enters an online backup command, $ RMU/BACKUP/ONLINE
[parameters]. RMU immediately requests a quiet point lock in EXCLUSIVE
mode and then waits until all currently executing READ_WRITE transactions
(numbers 1 and 2) complete (COMMIT or ROLLBACK). When transaction 1
completes, the online backup operation still must wait because transaction 2
is active. When transaction 2 completes, the backup operation acquires its
quiet point lock.

8–42

Building Dependable Software Applications
8.6 Dependability Features of Application Software

Note

You can specify a LOCK_TIMEOUT option for the RMU online backup
so that RMU will ‘‘give up’’ if it has not acquired the quiet point lock in
a reasonable time (specified by the DBA). The LOCK_TIMEOUT option
ensures that the culprit READ_WRITE transaction that is not completing
within the defined reasonable time can be identified and dealt with by the
DBA. Once the culprit READ_WRITE transaction is handled, the DBA
can restart the online backup operation with hopefully less impact on
cooperative READ_WRITE transactions.

5 At this point during the online backup operation’s waiting period, a new
READ_WRITE transaction ‘‘begins.’’ For example, this could be a READ_
WRITE...FOR SHARED WRITE transaction. However, because the internal
transaction sequence number (TSN) of this new transaction will be greater
than the TSN of the (still waiting) RMU/BACKUP/ONLINE transaction,
transaction 5 will wait until the online backup operation releases its quiet
point lock.

Any updates made by transaction 5 will not be reflected in this online backup
operation. This behavior ensures the integrity of the backed up data; the
next incremental or full backup operation will include any updates made by
transaction 5.

Note that shortly after transaction 5 started, transaction 2 completed. When
the final READ_WRITE transaction completed, the online backup operation
acquires its requested quiet point lock.

Note

When the RMU online backup operation acquires the quiet point lock,
RMU holds the lock for a very short time (typically, just seconds) while
it acquires the database state and other database locks. None of these
operations have longer than typical I/O delays associated with them.

When RMU releases the quiet point lock, the online backup operation
actually begins.

Once the online backup operation releases its quiet point lock, transaction 5
no longer waits; transaction 5 proceeds as long as it does not take out any
exclusive locks on data currently being backed up.

6 A READ_WRITE transaction starts after the online backup operation.
For example, this could be a READ_WRITE...FOR PROTECTED WRITE
transaction. This transaction 6 can proceed during the online backup
operation, which has released its quiet point lock, as long as transaction 6
does not require any exclusive locks on data currently being backup up.

Again, any transactions that started after the quiet point lock was established by
DEC Rdb will be captured (by means of an internally recorded TSN) in the next
incremental or full backup operation, in the optional AIJ file, or both.

8–43

Building Dependable Software Applications
8.6 Dependability Features of Application Software

Large Database Backup Strategies
For large databases that require no interruptions or minimal interruptions,
carefully plan your backup strategies and be conservative. With the DEC Rdb
features, considerable time and resource savings are possible by carefully
modifying your backup strategy to take advantage of the /INCLUDE and
/EXCLUDE qualifiers in the RMU/BACKUP command.

This observation is especially true for large to very large databases and for
databases that are mostly read-only. Explicit use of the /INCLUDE and
/EXCLUDE qualifier results in a partial backup. This backup may be either
full or incremental in the sense that either all the storage area pages or only
those pages modified since the last complete full backup may be incorporated into
the backup file. Because a backup file may be a partial backup, it is necessary to
ensure that all storage areas of a database are restored and recovered when using
the RMU/BACKUP and RMU/RESTORE commands to duplicate a database.
That is, the synchronization of backups is essential when backup by storage area
is performed.

It is absolutely critical that you develop a regular, frequent database backup
schedule that meets the failure recovery requirements of your business. It is
also critical that you develop, in advance of a data disaster, comprehensive
restore strategies. To appreciate the impact on your business of lost data, try to
estimate the cost on a time basis. If a disk failed today, what is the cost of losing
one minute, one hour, one day, one week (and so on) of database transactions?
Defining your requirements today may indeed save you from painful experiences
in the future.

Refer to the RMU backup chapters in the VAX Rdb/VMS Guide to Database
Maintenance and VAX Rdb/VMS Guide to Database Performance and Tuning for
detailed information on your backup and restore strategy options.

8.6.1.3 DEC Rdb Use of Two-Phase Commit Protocol
Some applications need to exist in a distributed environment to match business
requirements. A distributed environment typically consists of many nodes that
are geographically distant and connected by networking components. When an
application program runs a single transaction that accesses multiple resources
such as multiple DEC Rdb databases, RMS files, or both, the program needs
assurances and confirmation that all updates can be made successfully to all the
resources. If for any reason the updates cannot be made to all the resources, then
assurances are necessary that no updates will be made to any of the resources.

To solve this technical problem, a two-phase commit protocol was defined. The
two-phase commit protocol is a procedure where:

1. All the participants in a distributed transaction first agree to commit

2. On a signal from a coordinator, all the participants then commit or none of
the participants commit

Figure 8–10 illustrates the two-phase commit protocol. The important point is
that all of the participants will do the same thing. Either they all will commit or
they all will abort (roll back).

DEC Rdb supports the two-phase commit protocol that is provided and
coordinated by DECdtm services, which is part of OpenVMS.

8–44

Building Dependable Software Applications
8.6 Dependability Features of Application Software

Note

Refer to the VAX Rdb/VMS Guide to Distributed Transactions for
information about using distributed transactions with DEC Rdb
databases. See the DECdtm chapter in the OpenVMS Programming
Concepts Manual for DECdtm programming information.

Transactions can span multiple DEC Rdb databases, DEC DBMS
databases, or RMS files (not just DEC Rdb databases).

Using the two-phase commit protocol, you can divide a large DEC Rdb database
into several smaller databases. Or you can create applications that access several
different databases without compromising the integrity or consistency of your
data.

For example, assume that the FUNDS_TRANSFER application shown in
Figure 8–13 needs to withdraw $1,000.00 from the ABC Bank’s DEC Rdb
database in London and deposit the money in the XYZ Bank’s DEC Rdb database
in New York.

Figure 8–13 Two-Phase Commit for Funds Transfer Example

New York

London

Satellite

VAX

FUNDS_
TRANSFER.EXE

Database

ABC_FUNDS_DB.RDB

ZK−3807A−GE

Database

XYZ_FUNDS_DB.RDB

AXP

In Figure 8–13, the ABC Bank customer’s beginning account balance is $4500.00.
From London, the FUNDS_TRANSFER application:

1. Attaches to the ABC_FUNDS_DB and the XZY_FUNDS_DB databases.

8–45

Building Dependable Software Applications
8.6 Dependability Features of Application Software

2. Starts a single update transaction that is declared to work with both
databases.

3. Withdraws $1000.00 from the ABC customer’s account. The account balance
is changed to $3500.00. The single update transaction is still active.

4. Starts the update to deposit $1000.00 into the specified XYZ account.

Assume that at this point, the network connection from London to New York
fails. The $3500.00 balance in the ABC Bank customer’s account is invalid
because it cannot be immediately determined whether the electronic transfer
completed to the XYZ Bank customer’s account.

5. Detects the error in attempting to reach the New York XYZ Bank. Even
though the update (withdrawal) to the ABC Bank was successful, the
entire work of the transaction was not successful. A directive to roll back
all changes is made, restoring the ABC Bank customer’s account balance to
$4500.00. The roll back ends the transaction. The application could continue
attempts to perform the funds transfer and will commit safely only when it
can be determined that the work with all resources was successful.

Note

When multiple resources are involved, the application must include
code to respond reasonably to complex failure scenarios. The two-phase
commit protocol will ensure the integrity of the data, but the application
must ensure that the user’s task is eventually completed.

8.6.1.4 Automatic Cleanup of Databases
DEC Rdb software can perform the following automatic cleanup tasks while users
are attached to a database:

• Creation, extension, or deletion of a user’s recovery-unit journal (RUJ) file as
required

• Recovery of any aborted transactions

• Use of freed space in database storage area files and snapshot files

• Extension of any storage area files, as required

• Extension of after-image journal (AIJ) file, as required

• Change in lock granularity of a user’s transaction, as required

• Detection of deadlock situations between contending users for common
resources

• Updates to approximate cardinality of tables and indexes, as appropriate

8.6.1.5 Online Restructuring of Database Characteristics and Definitions
Database administrators (DBAs) typically must manually adjust a database’s
physical and logical definitions as demands on the database change over its
lifecycle. In addition, a number of database administration tasks must be
performed frequently to maintain the health of the database and the applications
that depend on the database; for instance, performing incremental or full backup
operations. In many database products, changing database characteristics and
definitions and performing DBA maintenance tasks requires the DBA to shut
down the database to its users while the offline database is serviced. These tasks
disrupt business functions and often must be scheduled well in advance.

8–46

Building Dependable Software Applications
8.6 Dependability Features of Application Software

DEC Rdb permits DBAs to alter many database characteristics and definitions
while there are active users bound to the database. The following list summarizes
the online changes that are permitted with DEC Rdb databases:

• Performing online backup of the database, either full backup or incremental

• Performing online spooling of the AIJ file (that is, truncating and backing up
contents of the AIJ file)

• Creating an online copy of a database

• Monitoring and recording performance statistics

• Displaying the contents of a database storage area (header, indexes, data
areas)

• Changing the OPEN MODE of database

• Starting an RMU/VERIFY check of database integrity (this operation must
wait for exclusive and batch-update transactions to complete)

• Updating metadata (definitions of data), including:

Creating, altering, or dropping collating sequences

Creating or dropping constraints

Creating, altering, or dropping domains, indexes, and tables

Granting or revoking protection

Creating or dropping trigger definitions

Creating, altering, or dropping storage maps (pointers to the file(s) in
which particular data will be stored and the format the data will be
stored)

Creating or dropping views (ad hoc logical representations of database
tables)

The availability features in the previous list help the DBA maintain the database
and tune the database’s characteristics to improve performance. This degree of
flexibility makes it easier for the DBA to change the database to match changing
business needs. For the many functions listed in the previous list, it saves the
DBA the trouble of having to:

• Schedule time for the database shutdown

• Provide adequate advance notice for all users (or software applications) of the
database(s)

• Back up each database just prior to the change

• Close the database with an RMU command

• Perform the changes

• Verify and test the changes

• Open the database and announce its accessibility

At the same time, it is important for the DBA to be aware of the database
administration functions that do require closing a DEC Rdb database. DEC Rdb
database functions that must be performed off line (when there are no users
attached to the database and the database is closed) include:

• Creating, altering, or dropping a database or a storage area

8–47

Building Dependable Software Applications
8.6 Dependability Features of Application Software

• Changing the following database characteristics:

The maximum number of database users

The maximum number of VMScluster nodes that can access the database

Space allocation characteristics such as extension values of the database

Note

The database can dynamically extend as required, but the default value of
the size to extend can be altered by the DBA.

Database locking characteristics (whether automatic locking granularity
is enabled or disabled)

The default number of database buffers per user

The default number of database recovery buffers

After-image journaling (change the file name used or the enable/disable
option)

Usage of snapshot files (enabled or disabled; if enabled, whether
immediate or deferred)

Allocation characteristics for the AIJ file

Allocation characteristics for a snapshot file

The requirement for a repository (CDD/Repository) to be used when
metadata is changed

• Moving a storage area

Refer to the VAX Rdb/VMS Guide to Database Maintenance and VAX Rdb/VMS
Guide to Database Performance and Tuning for details about the online and
offline DBA functions performed with DEC Rdb databases.

8.6.1.6 Database Security Impact on Application Dependability
Just as with an AXP node or a VAX node’s physical and electronic security, a
database is dependable only to the extent that its security requirements can be
met. An application that can never fail can be protected by such measures as
shadowed disks, journaling, online backups, and node failovers in a VMScluster
environment. But if those steps are taken and yet the database is left unprotected
against accidental and malicious attacks, then the application may be vulnerable
and, consequently, may not be dependable enough.

DEC Rdb includes security features that comply with the U.S. Department of
Defense Class C2 Security. C2 Security, as defined in the Department of Defense
‘‘Orange Book,’’ provides controlled access protection. The security features in
DEC Rdb are auditing capabilities and parameters that control access to database
components.

8–48

Building Dependable Software Applications
8.6 Dependability Features of Application Software

DEC Rdb Access Control for C2 Security
Tables created with DEC Rdb have a default PUBLIC access of NONE. Default
PUBLIC access to the database itself will be NONE also. You can modify this
default by providing a DATABASE identifier of DEFAULT. The access given to
this identifier will then be assigned to any newly created tables. You cannot
attach to the database unless you have either the SELECT privilege (SQL) or
READ privilege (RDO). You can assign the privilege using the GRANT statement
in either SQL or RDO.

Note

Any user with BYPASS or SYSPRV privilege can circumvent database
protection parameters defined by DEC Rdb users. Therefore, it is
extremely important that your organization heed the documented
warnings (including those in Chapter 9) and establish strict controls
around the use of OpenVMS privileges.

Also, management of the database may require SYSPRV for the DBA.
The database protections are stored within the database. If the database
is inaccessible, the protections cannot be checked. An example of this
is database AIJ recovery. If the database needs recovery, the database
privileges cannot be assumed to be valid and thus SYSPRV is required of
the DBA who will start the AIJ recovery operation.

DEC Rdb also provides role-oriented privileges, DBADM, OPERATOR, and
SECURITY. Users with these privileges can override ACLs for some objects to
perform certain system-level operations. DEC Rdb role-oriented privileges are
limited to the database definition in which they are granted, whereas OpenVMS
role-oriented privileges span all definitions on the system. These three privileges
cannot override each other. For example, the DBADM privilege does not override
the SECURITY privilege. For details on these privileges, see the DEC Rdb SQL
Reference Manual.

DEC Rdb Auditing Capabilities
Auditing a database is done to identify attempts to compromise security. When
you invoke the DEC Rdb security auditing feature, you can monitor and collect
security audit records on many specific operations performed on a database. You
can also send alarms to specified operator’s terminals. This information can then
be used to decide if and what further steps are necessary to make the database
more secure.

DEC Rdb security auditing is modeled after the OpenVMS auditing model.
Auditing can be done on a per database basis. Following are some examples of
the commands that make up the DEC Rdb security auditing model:

• The RMU/SET AUDIT command enables DEC Rdb security auditing. When
security auditing is enabled, DEC Rdb sends security alarm messages to
terminals that have been enabled as security operators and makes entries
in the database security audit journal whenever specified audit events are
detected.

• The RMU/SHOW AUDIT command displays the set of security auditing
characteristics that have been established with the RMU/SET AUDIT
command.

8–49

Building Dependable Software Applications
8.6 Dependability Features of Application Software

• The RMU/LOAD AUDIT command allows you to load records from a DEC
Rdb audit journal into a DEC Rdb table.

You can obtain information about the audit characteristics of a particular
database by displaying the header of the database root file (.RDB).

8.6.1.7 Using DECtrace and RdbExpert with Database Applications
DECtrace collects and reports on event-based data gathered from DEC Rdb
database applications. You can use DECtrace to collect detailed information
about applications that use DEC Rdb. When you select a workload option in
DECtrace, you can gather workload data from DEC Rdb database applications.
This data can be imported into RdbExpert for use in generating an optimized
physical design for your database. (DECtrace also can gather workload data for
DEC DBMS databases and VAX ACMS applications.)

DEC Rdb has many predefined events that occur during run time. An event can
have a start and an end, or it can simply occur. DECtrace allows events within
DEC Rdb to be defined and data items to be associated with each event. These
data items can be standard resource use items or items specific to applications
using DEC Rdb.

DECtrace records several different pieces of information, called items, for each
event. Items can be information about the event itself, such as the name of the
event or the procedure where the event is occurring. Items can also include
process statistics and performance information, such as the working set size at
the time the event occurs.

For details on using DECtrace and RdbExpert with DEC Rdb applications, see
the chapters in the VAX Rdb/VMS Guide to Database Maintenance and VAX
Rdb/VMS Guide to Database Performance and Tuning about using database
statistics features to evaluate performance. For information about DECtrace, see
the DECtrace for OpenVMS User’s Guide. Consult the DEC RdbExpert for VMS
User’s Guide for details about RdbExpert.

8.6.2 Dependability Aspects of Application Form and Function
Users interact with the computing system in the course of using applications
to accomplish their duties and, as a result, exert a major influence on the
dependability of the system. How users enter application data should be a
priority consideration in your list of error-reduction and fault-tolerant techniques.
Planning application forms and functions with the intent of reducing the number
of user errors requires a large commitment by developers and programmers
during the application design stage. Because prudent application designers do
not regard users as the default error-handling mechanisms, they plan to use
automated systems operation tools during the application design.

Users assess dependability by how well the computing system helps them
accomplish their work. Typically, users accomplish work through screen forms,
command line interfaces, menu-driven interfaces, or others. Harmonizing data
entry forms and interfaces with the user’s work style is an important aspect of
dependability. User forms and interfaces should be consistent so that operators
are less apt to make input errors. If a data entry form is awkward or difficult
to use, then the application is not completely dependable. This problem of
enhancing system dependability through user interfaces is twofold:

• To implement a form or other user interface so that it is easy to use, the
application software must minimize user frustration during data entry.

8–50

Building Dependable Software Applications
8.6 Dependability Features of Application Software

• To enhance user productivity with the application form or interface, express
application training and documentation in a way that is familiar to the
system users and customize the learning aids toward the particular needs of
the users.

It is important that application forms and user interfaces are similar for all
applications on the system. For example, if users are accustomed to overwriting
form data to correct input errors, user interfaces should not implement a delete-
and-enter method for users to correct their errors. You might also demotivate
users if you introduce a new menu-driven interface to those who are accustomed
to a command-line interface. Similarly, an inability to do an online retrieval for
certain types of system messages severely degrades the productivity of the user
who must instead manually reenter the information from hardcopy messages
source code.

Because user errors typically involve the complexities of human personalities
and behaviors, input errors can be difficult to predict and prevent. For
applications and databases that spend a large amount of time sending and
receiving information to and from terminal forms, you might consider using a
forms product such as DECforms. DECforms lets you integrate text and simple
graphics into forms. Application programs use these forms as user interfaces.
DECforms is a Digital implementation of a proposed ANSI and ISO standard for
a Form Interface Management System (FIMS).

Purchasing a forms interface product such as DECforms provides several
advantages over programming your own menu or other user interfaces that
can result in quicker, more accurate forms creation. The advantages include:

• Creating forms with a forms software tool results in simpler programming
and more maintainable applications. Most forms products provide easy-to-use
interfaces for designing and implementing a form with applications. The
program is concerned only about the data to be displayed or collected. The
program does not need to know where or in what format that data is placed
on the screen.

• Detailed interaction with the user can be handled by the form. In most
cases, the form can trap data entry errors before they are returned to the
application or the database.

• A forms interface separates data entry from the functions the application
must perform to process the data. The separation makes your application
program device-independent, which allows easier distribution of your
application. There is no down time due to reprogramming to accept new
devices because the application remains unaware of the device with which it
is dealing.

• Most forms interfaces allow you to quickly prototype an application to
discover user requirements without having to code the entire application. The
application will be available for use more quickly, and the ability of the user
to test the forms early in the design process results in a form that is more
suitable to user requirements.

• In some cases, a separate form interface provides the ability for front-end
terminals in a VMScluster system to fail over automatically from one front-
end processor to another. See ACMS Provides Automatic Front-End Terminal
Failover for more information.

8–51

Building Dependable Software Applications
8.6 Dependability Features of Application Software

DECforms is particularly effective because it allows applications to support new
devices without having to rewrite the application interface. For more information
about DECforms, see the DECforms Guide to Commands and Utilities.

8.6.3 Dependability Characteristics of Transaction Processing Monitors
Because transaction processing (TP) applications are typically described as
mission-critical or ‘‘bet your business’’ applications, they need the highest
degree of availability, security, and integrity. The following sections describe the
dependability features inherent in TP monitors and specifically in the VAX ACMS
TP monitor.

8.6.3.1 How TP Monitors Can Assist Dependability Goals of Production Systems
A TP monitor is a collection of components bundled together in a tightly
integrated package to facilitate application development and provide high
performance and dependability in the production environment. TP monitors
have inherent features that enhance performance and dependability, including
any number of the features in the following list:

• Queue management

• Load balancing and scheduling

• Application scheduling

• Deferred transaction scheduling

• Transaction routing

• Administration utilities such as terminal server management and utilization
management

• Security

• Menu subsystems

• Interfaces to nonstandard or other-vendor devices

• Message recovery

• Debugging support

The VAX ACMS product is a highly reliable TP system that includes these
specialized features to keep applications up and running at optimal efficiency,
recoverability, and durability. ACMS is also fully integrated with DEC Rdb,
DEC DBMS, DECdtm services, DECforms, and the CDD/Repository. This
group of products is part of the Digital COHESION environment for providing
development, run-time, and management features for transaction processing
applications. The high availability features inherent in these software products
combine to provide smooth transitions when problems occur, even when handling
a broad range of system failures.

ACMS takes full advantage of the DECdtm services provided with the VMS
operating system to ensure consistent transaction commits, aborts, and recoveries
even when failures occur. The DECdtm services use a two-phase commit
transaction protocol to coordinate the flow of transaction requests and make
sure that all the operations of a transaction are performed or none of them are
performed. If all the operations are completed, then the transaction is committed
and the database or databases are all in a consistent state.

8–52

Building Dependable Software Applications
8.6 Dependability Features of Application Software

It is important to note that ACMS and the DECdtm services deal only with
application recovery, which includes recovery actions on or by the database,
the ACMS TP monitor, the application program, and the application users.
Thus, it is important to make sure that you also provide for system recovery.
The VAX ACMS TP monitor, for example, supports the full range of VAX
processors from VAXstations to the VAX 9000 and the fault-tolerant VAXft series
of processors so that you can customize the configuration with full hardware
redundancy, fault tolerance, or both to meet your needs.

8.6.3.2 How VAX ACMS Can Assist the Dependability of Production Systems
Combining VAX ACMS with DEC Rdb database management enhances your
computing system’s ability to resist most failures. For example, when the back
end of an ACMS system fails, the ACMS TP monitor uses a search list to find
and establish a link between the front-end processor and an alternate back-end
processor where it can continue to perform online database processing. If you
implement queuing on the ACMS system, transactions are queued in a queue
repository until ACMS can process the transactions on the alternate back-end
processor. The DEC Rdb database handles all aspects of database recovery.

The following sections discuss the main areas of VAX ACMS that provide
fault management or recovery from failures that can occur during run time.
The discussions provide a description of how each feature can be used and its
implementation. See the VAX ACMS documentation set for more information.

ACMS Balances Process Pools
ACMS implements online and queued transaction requests using VMS processes.
The ACMS TP monitor intelligently balances application user needs by
automatically creating and removing processes as the work required of the
system increases and decreases. Balancing process pools is an effective technique
for providing increased application availability because when one process fails,
there are other processes still available to provide service.

ACMS uses the minimum number of processes necessary to accomplish its work.
As users sign in to ACMS, the TP monitor automatically balances the load by
creating additional ACMS command processes to handle the additional terminals.
Similarly, when enough users select a particular task so that the server processes
that do the work for the task are overloaded, ACMS dynamically creates more
server processes as necessary to avoid having to wait for tasks to be completed.

ACMS can also delete processes (from the process pools) when the work load
is small. ACMS automatically maintains the pool even in the face of run-time
errors that cause unnecessary process deletion. ACMS can dynamically regulate
processes creation and deletion because it is capable of detecting the deletion
of one of the pool processes and can take action to recreate another process if
necessary.

If the failed process is a permanent process, then the system might run
without its full configuration of processes. You control the minimum and
maximum number of processes in the process pools and the intervals within
which the ACMS TP monitor creates or deletes the processes with the ACMS
application definition language (ADU) and the ACMS management utilites. For
complete details of how ACMS performs load balancing in process pools, consult
VAX ACMS Managing Applications.

8–53

Building Dependable Software Applications
8.6 Dependability Features of Application Software

ACMS Fails Over Applications
ACMS automatically routes new task requests to a secondary application
instance if the primary application instance becomes unavailable. The secondary
application must be started on another node. When the application fails, an
application node fails, or the link between the submitter node and the application
node is severed for some reason, ACMS cancels all active tasks on the submitter
node that are associated with the failed application, node, or link.

When a user selects a task in the failed application, ACMS attempts to locate a
functioning instance of the application. Once an available node or application is
found, all subsequent task selections are redirected to the available application
and terminal users are once again able to select tasks. Figure 8–14 shows how
ACMS application failover works.

Figure 8–14 ACMS Application Failover

VAX

VAX
Front−End

AXP

Back−End Cluster

A

B

ZK−3770A−GE

Task reqests
after failure

Task requests
before failure

Database

SPEXC

SPEXC

CP

CP−−ACMS Command Process that is the submitter client.
EXC−−ACMS Execution Controller that is the task server.
SP−−ACMS Server Process that is the procedure server.

The context of the application is lost during the failover to the new node. Thus,
all work in progress at the time of the failure is canceled and the work must be
resubmitted to the ACMS application. (See ACMS Uses Queues to Capture User
Requests for information about saving work in progress at the time of a failure.)
Terminal users receive an error message when the application failover situation
occurs. Note that transactions that have already been committed to the database
are not considered work in progress and as such as not affected by the application
failure.

For this type of failover to work correctly, the back-end node that executes the
multiple instances of the application must have access to the same database
as the original node. Figure 8–14 illustrates how to configure the back end
as a VMScluster system. When a node fails in a VMScluster system, DEC
Rdb automatically rolls back unfinished transactions that were active on the
failed node. The roll back occurs on another node in the VMScluster. Users
cannot update the database until the database roll backs are complete. For more

8–54

Building Dependable Software Applications
8.6 Dependability Features of Application Software

information on database roll back, consult the VAX Rdb/VMS Guide to Database
Maintenance and VAX Rdb/VMS Guide to Database Performance and Tuning.

You achieve application failover using OpenVMS search lists and an ACMS
service. You can define an application as a search list; that is, a list where
each element in the list is another separate instance of the application. Thus,
the application INVENTORY can be defined in the search list as the list
A::INVENTORY, B::INVENTORY. The list indicates that the INVENTORY
application can be found on nodes A and B. A search list can contain more
than two elements. ACMS provides a service that you use to locate a functioning
application instance in the VMScluster. The service acts as a name server and
an application finder. (See the VAX ACMS Systems Interface Programming for
information about the ACMS Systems Interface services.)

ACMS Provides Automatic Front-End Terminal Failover
ACMS provides the ability for a terminal in a VMScluster system to fail over
automatically from one front end to another when the device is a LAT terminal
that is controlled by ACMS. (See VAX ACMS Managing Applications for more
information about ACMS-controlled LAT terminals.) When a front-end node fails,
the user is unlikely to see any warning message at the time of the failure. All
information and work on the terminal screen is lost. ACMS cancels tasks that
are executing on the back end and rolls back uncommitted transactions. When
the failover is complete, the user must sign in to ACMS again and reenter the
last incomplete transaction.

Figure 8–15 shows how terminal failover works.

8–55

Building Dependable Software Applications
8.6 Dependability Features of Application Software

Figure 8–15 ACMS Front-End Terminal Failover

Front−End

A

B

ZK−3771A−GE

Terminal control
after failure

Terminal control
before failure

CP−−ACMS Command Process that is the submitter client.
EXC−−ACMS Execution Controller that is the task server.
SP−−ACMS Server Process that is the procedure server.

DECserver

VAX

CP

CP

AXP

When the ACMS system starts up, both front-end nodes try to control the
terminals but only one of the front-end nodes can succeed. The other node
requests control of the terminals so that when node A fails and loses the
connection to the terminals, node B is automatically connected to and controls the
terminals.

Implementing effective load balancing and terminal failover on the front-end
machines can require extra work during configuration. For example, assume that
you want to connect 100 terminals to two front-end nodes. For load balancing,
connect 50 terminals to each front-end node. For availability, however, you must
provide a way for the terminals to fail over to the other node. One way to achieve
failover is to:

• Configure terminals 1–50 as ACMS LAT-controlled terminals on node A and
terminals 51–100 on node B.

• Start the ACMS terminal subsystems on both front ends. The configuration
will cause each front end to control half of the terminals.

• Add terminals 51–100 to the configuration file on node A and terminals 1–50
to node B.

8–56

Building Dependable Software Applications
8.6 Dependability Features of Application Software

• Issue the command ACMS/RESET terminals on each front-end node. This
command causes ACMS to reread the configuration file. Each front-end node
will continue to control its original terminals while also seeking to control the
terminals on the other node.

When a failover occurs, the terminals on the failing node automatically fail over
to the remaining front-end node. Note that the performance of the surviving
front-end might suffer when the failover occurs.

ACMS Uses Queues to Capture User Requests
ACMS queuing allows users to submit work even when an application is not
available. When a failure occurs, it is possible to store user task requests in
queues until the application or an alternate application becomes available. When
the application becomes available, the stored requests are removed from the
queue and the application executes the requests against the database.

Figure 8–16 shows a possible solution for capturing user requests in queues.

Figure 8–16 ACMS Request Capture

VAX

Front−End

ZK−3772A−GE

AXP

CP

EXC SP

EXC

Back−End

Requests
after failure

DatabaseQueue File

CP−−ACMS Command Process that is the submitter client.
EXC−−ACMS Execution Controller that is the task server.
SP−−ACMS Server Process that is the procedure server.

before failure
Requests

SP

Normally, the application executes on the back-end processor and ACMS captures
user requests on the front-end processor and routes them to the back end. When
the back-end processor fails the application fails over to another application
on the front-end processor, which captures user data and stores user requests
in a queue repository. Note that there are two distinct ACMS applications in
this solution: the application on the back end that ACMS uses under normal
circumstances and the application on the front end that ACMS uses to capture
requests and to queue them when the back-end processor is unavailable. ACMS
switching between the two applications occurs automatically using the application
failover mechanism described in ACMS Fails Over Applications .

You include ACMS queuing by including calls to ACMS queuing services in
your application programs. See the VAX ACMS Writing Applications manual for
information about programming requirements for ACMS queuing.

8–57

Building Dependable Software Applications
8.6 Dependability Features of Application Software

Another alternative is the DECtp Desktop for ACMS (Desktop ACMS) software
product. Desktop ACMS lets you retain the robustness of ACMS applications on
the back end while providing flexible and familiar graphical user interfaces from
your own desktop programs. You can write your desktop programs to fail over
to alternate ACMS nodes if the primary ACMS node fails. Refer to the DECtp
Desktop for ACMS Progamming Guide manual for information about Desktop
ACMS.

8.7 Managing Shared Information with Software Tools
You can enhance the dependability of your software when you facilitate central
control of the development tools, program modules, and shared data for a
distributed application development environment. You should create an
environment that makes data available to all users that need to share that
information. The following sections explain how to create and manage shared
data using the Digital COHESION environment, OpenVMS logical names, and
DCL command procedures.

8.7.1 Using the Digital COHESION Environment
The Digital COHESION environment addresses the need to develop and manage
software and data that will run on a variety of platforms, and create applications
with functions that can be distributed across VMScluster systems and multiple-
vendor platforms. By providing a shared development environment, COHESION
provides high levels of system availability, security, and data integrity in
computing systems.

The COHESION environment provides several DECset™ software tools to help
you share and manage application objects and data on the VMS operating system,
including:

• DEC Language-Sensitive Editor/Source Code Analyzer (DEC LSE/SCA)

Use DEC LSE/SCA to develop and debug source code modules for
applications. DEC LSE/SCA provides a development environment that
includes templates and online help about specific commands or clauses. DEC
LSE/SCA assists you in creating and navigating in program source code and
modules by providing special LSE key definitions to get language-specific help
and to fill in incomplete keywords and structures. See the VAX Language-
Sensitive Editor and VAX Source Code Analyzer User Manual documentation
for more information.

• DEC Code Management System

DEC CMS builds dependability into your software development environment
by tracking everything that happens to project files during development.
DEC CMS is an automated file librarian that tracks revisions of source
code, documentation, data files, test files, system build descriptions, and
requirements documents. As a result of DEC CMS recording every change
when it was made and by whom, developers are always working with the
most up-to-date files and can reconstruct any phase in the code development
process. The more complicated the project, the more important managing
the application source code becomes. See the Guide to VAX DEC/Code
Management System documentation for more information.

• DEC Test Manager

8–58

Building Dependable Software Applications
8.7 Managing Shared Information with Software Tools

DEC Test Manager is a tool for creating, organizing, and performing tests
of software applications. There are three main components to a DEC Test
Manager test system:

The DEC Test Manager library stores information about tests.

The DEC Test Manager test descriptions describes an individual test and
how it is run.

The DEC Test Manager collection identifies a collection of tests to be run
as a group.

The main repository for information about DEC Test Manager is the DEC
Test Manager library. It is much like the DEC CMS library and is created in
the same manner. See the Guide to VAX DEC/Test Manager documentation
for more information.

• DEC Module Management System

DEC MMS makes applications available quickly by automatically rebuilding
the system after programmers make changes to application code. DEC MMS
saves significant processing time because it has the intelligence to recompile
and to link only the modules that have changed since the last system build.
See the Guide to VAX DEC/Module Management System documentation for
more information.

• DEC Performance and Coverage Analyzer

Unfortunately, even if you design the application correctly, it might not
always run as expected. The major areas you need to look at include the
user interface, the application source code, the system components, and the
database. You can use DEC PCA to identify possible performance problems
in your application. DEC PCA is also useful for identifying and checking
logic in the code that might not have been executed during testing. See the
Guide to VAX Performance and Coverage Analyzer documentation for more
information.

The DECset products manage centralized or distributed application data through
the CDD/Repository. By using the CDD/Repository, you provide a single point of
control for defining and sharing access to software development information and
gain several advantages in regards to data availability. By defining data once in
the repository, you improve the availability of the data by:

• Avoiding the redundancy of having to define the data in every application.
Without a repository, you have to define the data in every piece of an
application, leading to redundacy of and possible inconsistency in data
definitions. With the CDD/Repository, you can copy the definition from the
repository into every piece of the application that uses the data. If the data
changes, change only one view of the definition in the repository and rebuild
the application. The change is automatically reflected and the application is
quickly available for use.

• Creating and compiling the actual data values available in any of several
ways: for example, with a database management system such as VAX ACMS,
DEC Rdb (with SQL) or DEC DBMS, RMS files, DECdesign, DEC RALLY,
VIDA with DB2, and integration with most of the Digital languages and
several other-vendor languages. When you create software information, it can
be automatically stored in the repository. For example, when the database
designer compiles an SQL schema definition that specifies a repository
path name, DEC Rdb inserts record definitions in the CDD/Repository.

8–59

Building Dependable Software Applications
8.7 Managing Shared Information with Software Tools

When application source code needs to specify parameters that correspond
to database tables, the code can then refer to matching records in the
CDD/Repository.

• Ensuring the repository is accessible across a VMScluster. The definitions
in the repository are highly available because you can store the dictionary
redundantly on several nodes in a cluster. The CDD/Repository maintains
consistency across the dictionaries on the VMScluster.

You do not need to know how the software information is stored in the
CDD/Repository. However, you need to know where the information is stored
and how to access it from high-level language programs. For more information
on using the CDD/Repository, see the Using CDD/Repository on VMS Systems
manual.

8.7.2 Defining Symbols and Logical Names
In addition to using the COHESION environment to provide a common view
of source files and data definitions, you need to effectively manage several
OpenVMS directories for other shared information. Application availability
depends on how effectively programmers use common symbols and logical names
to locate application modules. It is best to use logical names rather than specific
OpenVMS device and directory names, both in the development environment and
more importantly in the application itself. For instance, if all programmers use
their own directories to store object modules, it is extremely difficult to find the
latest versions when it comes time to link the entire application.

Logical names are easier to remember and can identify the type of files the
directories contain. As an example, imagine how programmers could glance at
the logical name PAYROLL_OBJ to know that the directory contains .OBJ files for
the payroll application or that the PAYROLL_SRC directory contains the source
files. In addition, logical names that include a disk specification in addition to the
directory path can prevent later problems when you move applications from the
development environment to the production environment.

Thus, when the application moves to a new disk or to another VMS system, all
you need to do is change the definitions for the logical names. No changes need to
be made to the application source code or to any command procedures that build
the application. Using logical names can save many last-minute changes and can
avoid the resulting delays in application dependability on the production system
for which it is designed.

You define logical names using the DCL command DEFINE. To make sure
everyone working on the application uses the same definitions, write a single
command procedure containing the logical name definitions and invoke it from
within either individual LOGIN.COM files or the system login command file,
SYS$MANAGER:SYLOGIN. See the OpenVMS System Manager’s Manual:
Essentials for more information.

8.7.3 Using the DNS Namespace
VAX Distributed Name Service (DNS) is a software product that provides a
network-wide registry of shareable resources. DNS keeps track of the location of
file resources to which the Digital Distributed File Service (DFS) manages access.
Using DNS allows users on one node to access files or libraries on a remote node.
DNS manages this access without the users being aware of the location of the
files. Users access the remote files in the same manner that they access local
files.

8–60

Building Dependable Software Applications
8.7 Managing Shared Information with Software Tools

In a large development environment where many programmers must share
source files or data, DNS allows each programmer to check out a particular
source file, edit it on his or her own system, and return it. When the programmer
also uses VAX DEC/CMS to maintain a history of changes to the source files
and all programmers work from the same VAX DEC/CMS libraries, the code is
centralized such that it remains on one system in the network.

See Section 7.7 for summary information about how DNS can help you establish
control over the naming of your shared nework resources. See the VAX
Distributed Name Service Management manual for details about DNS.

8–61

9
Dependable Data Center Techniques

Rules
1
2
3
4

The need for efficient and controlled system and data center
management has become more urgent as computing systems
grow in physical size, capacity, and complexity. In the
beginning, computer operations were typically managed by
full-time computer operators behind the glass walls of an
air-conditioned, raised-floor data center. Security was often
a matter of putting a lock on the door to restrict access to
the data center. With the advent of minicomputers, personal
computers, and desktop workstations, computers are being

located wherever they are needed. Network and system managers are responsible
for a dynamic, unpredictable environment consisting of large numbers of
diverse systems and used by large numbers of people performing varied tasks.
Centralized data centers are being augmented and sometimes replaced with a
distributed environment that can include a number of network technologies and
in many cases multiple vendors, operating systems, or both. The geographically
and organizationally distributed locations of the equipment complicate all aspects
of data center operations and system management, especially the area of system
security.

9.1 Managing Complex Computing Environments
Managing complex computing environments often involves the use of multiple
products and services. Table 9–1 relates a wide range of system management
tasks to the tools and utilities that can help you perform the tasks.

9–1

Dependable Data Center Techniques
9.1 Managing Complex Computing Environments

Table 9–1 Data Center Management Portfolio

Software Products and Features Dependability Impact

Accounting

OpenVMS ACCOUNTING Facilitates user control

POLYCENTER Performance
Solution

Provides basic user accounting and chargeback reports

Application Management

ALL–IN–1™ Controls user activity

VAX ACMS and DECtp Desktop
for ACMS

Provide recoverable applications using a transaction
processing (TP) monitor

DECdecision Offers a method of collecting and categorizing data

DEC RALLY Provides user-friendly interface for TP

VAX TEAMDATA Allows data collection and analysis

LMCP (Log Management Control
Program)

Maintains transaction logs

Application and System Debugging

VMS Debugger Facilitates application reliability

DEC Performance and Coverage
Analyzer (DEC PCA)

Tunes and checks applications

ANALYZE/AUDIT command Invokes the Audit Analysis Utility to selectively
extract information from the system security audit log
file

ANALYZE/CRASH_DUMP
command

Enables Digital service personnel to determine cause
of failure

ANALYZE/DISK_STRUCTURE
command

Checks and repairs on-disk file system

ANALYZE/ERROR_LOG
command

Formats log of device history (aid during servicing)

ANALYZE/IMAGE command Enables programmer to examine inner workings of
executable images

ANALYZE/MEDIA command Checks non-MSCP disks, diskettes, and tape cartridges
for bad blocks

ANALYZE/OBJECT command Enables programmer to examine object modules

ANALYZE/PROCESS_DUMP
command

Facilitates application reliability

ANALYZE/RMS_FILE command Facilitates file I/O tuning

ANALYZE/SYSTEM command Enables the system manager to examine inner
workings of the running system

Archiving

VAX Storage Library System
(SLS)

Protects user data on other media

(continued on next page)

9–2

Dependable Data Center Techniques
9.1 Managing Complex Computing Environments

Table 9–1 (Cont.) Data Center Management Portfolio

Software Products and Features Dependability Impact

Data Caching

RMS caching (local and global
buffers)

Alleviates I/O bottlenecks

Data in Memory

DECram (in-memory disk/device) Alleviates I/O bottlenecks

Interactive Services

Command procedures or
F$LEXICAL functions

Automate routine system management tasks

DIGITAL Command Language
(DCL)

Provides a consistent user interface

DCL Command Procedures Provide a full programming language for operator and
user interfaces

DEC TPU, EVE, and other
editors

Include editing interface with full session journaling

OpenVMS Mail Utility Offers notification services using a callable interface

Capacity Planning

VAX Performance Advisor Prevents bottlenecks proactively

POLYCENTER Performance
Solution

Provides a capacity planning function to help
the system manager analyze how changes in the
configuration affect users performance

Event Messages

OPCOM message routing Provides event notification

VMScluster Console System
(VCS)

Consolidates system consoles and analyzes console
messages for events

DECalert Manages sophisticated event notification; please see
the note that appears at the end of this table

Data Center Management
(DCM)

Detects and reports events on running OpenVMS
systems polled using DECnet

(continued on next page)

9–3

Dependable Data Center Techniques
9.1 Managing Complex Computing Environments

Table 9–1 (Cont.) Data Center Management Portfolio

Software Products and Features Dependability Impact

Data Access

DEC DBMS Offers a CODASYL-compliant database with
journaling, online backup, online database
reconfiguration, and TP support

VAX RMS™ Provides a highly tuneable file access with write-
through caching

RMS Journaling Provides data recovery and TP support

DEC Rdb Offers a relational database with journaling, online
backup, selected online database reconfiguration, and
TP support

File Operations

BACKUP Utility Saves and restores user data on other media

CONVERT Utility Maintains optimal ISAM file performance

COPY command Moves files around for I/O tuning

DELETE/ERASE command Provides extra privacy

DUMP command Displays actual file contents to facilitate application
debugging

PURGE command Facilitates disk space reclamation

RESTORE command Applies RMS journals to recover RMS files

SET FILE command Manipulates file characters

TYPE command Displays batch log files during their execution

Disk Striping

VAX Disk Striping Driver Spreads I/O load over multiple disk drives

Encryption

VAX Encryption Provides added security/privacy with data encryption
services

DESNC LAN Encryption Device Provides D.E.S. (data encryption services) encrypted
Ethernet messages

Forms Management

DECforms Separates form input from application management

Job Scheduling

DECscheduler Schedules batch and print jobs

Generic queues Uses VMScluster queues to feed node-specific queues
across the VMScluster

Execution queues (batch and
print)

See the Queue Management category

(continued on next page)

9–4

Dependable Data Center Techniques
9.1 Managing Complex Computing Environments

Table 9–1 (Cont.) Data Center Management Portfolio

Software Products and Features Dependability Impact

Use Up to 6 Processors per System Kernel

Symmetrical multiprocessing
(SMP)

Helps system survive CPU failure

Mirrored Disks

Volume Shadowing for OpenVMS Helps system survive disk failure

Disk Defragmentation

DEC File Optimizer for
OpenVMS

Defragments disks by using the OpenVMS movefile
subfunction

Multiple-Vendor File Operations

KERMIT Facilitates personal computer file transfer

PATHWORKS Provides personal computer integration (OS/2®,
MS–DOS®, Macintosh)

ULTRIX™ Connection Product Allows NFS access from UNIX® (TCP/IP)

VAXlink Allows VSAM and IMS data access

VIDA Provides DB2 real-time access

SNA Gateway access routines Facilitates LUG.2 communication with IBM®
programs

Online System Configuration

SYSGEN (System Generation
utility)

On VAX systems, configures all connected devices on a
system boot

SYSMAN (System Management
utility)

On AXP systems, configures all connected devices on a
system boot; also enables device and processor control
commands to take effect across a VMScluster

Remote Bridge Management
System (RBMS)

Maintains a database of the setup of a system’s
complement of network servers, and facilitates
automatic loading of the servers upon system
initialization

Terminal Server Manager (TSM) Maintains a database of the setup of a system’s
complement of terminal servers, and facilitates
automatic loading of the servers upon system
initialization

VAXsimPLUS Monitors device status and alerts the system manager
of impending failure

(continued on next page)

9–5

Dependable Data Center Techniques
9.1 Managing Complex Computing Environments

Table 9–1 (Cont.) Data Center Management Portfolio

Software Products and Features Dependability Impact

Performance Management

DECamds Precisely identifies, in realtime, causes of problems
in computing components on the local area network
(LAN).

AUTOGEN command procedure Optimizes system parameter settings based on usage

POLYCENTER Performance
Solution

Historical data that captures bottlenecks over a user-
specified period of time and recommends ways to fix
problems

VAX Performance Advisor Provides detailed performance data and graphs

VAX Software Performance
Monitor (SPM)

Provides detailed performance data and graphs

OpenVMS Monitor Utility Provides basic performance data

Queue Management

DELETE/QUEUE command Deletes a print or batch queue and all the jobs in the
queue

INITIALIZE/QUEUE command Creates or initializes queus and assigns names and
attributes to the queues

START/QUEUE command Starts or restarts the specified queue after it has been
initialized

STOP/QUEUE command Pauses the specified queue and suspends all the jobs
currently executing on the queue

SET QUEUE command Changes the attributes of the queue

SHOW QUEUE command Displays information about queues and the jobs
currently in queues

SHOW ENTRY command Displays information about a user’s batch and print
jobs or about specific job entries

SUBMIT command Queues one or more batch jobs to a batch queue

PRINT command Queues one or more files for printing to an output
queue

Remote System Management

DECmcc Performs industry standard network and system
management system functions

VAXrsm (Remote System
Manager)

Provides remote management of OpenVMS or ULTRIX
nodes

SYSMAN Utility Performs system management commands across nodes
in a VMScluster

(continued on next page)

9–6

Dependable Data Center Techniques
9.1 Managing Complex Computing Environments

Table 9–1 (Cont.) Data Center Management Portfolio

Software Products and Features Dependability Impact

Security

AUTHORIZE (Authorize utility) Modifies user profiles

OpenVMS C2 features OpenVMS on AXP and VAX systems provides C2 level
of security, as defined by the U.S. government. The C2
features provide object protection and auditing.

OpenVMS Security
Enhancement Service (B1
services)

Offers consulting and software to implement ‘‘B1’’ level
of security

SET ACL command for Access
Control Lists (ACLs)

Sets complex protection on many system objects

SET AUDIT command for
security auditing

Facilitates tracking of sensitive system objects

SET SECURITY command [tbs]

SHOW SECURITY command [tbs]

Shared Disk Storage

See the Data Access category in this table for record
level locking

Software Installation

POLYCENTER Software
Installation utility

Provides features that let you perform rapid
installations and deinstallations, and manage
information about already installed products.

VMSINSTAL Provides semi-automatic software installation

LMF utility Manages software licenses

System Configuration

INITIALIZE command Creates an on-media file system

MOUNT command Makes a volume known to the system

SET DEVICE command Manipulates device characteristics

SET CPU command Starts or stops CPUs in an SMP kernel

SET MAGTAPE command Manipulates magnetic tape characteristics

SET PRINTER command Manipulates printer characteristics

Remote Bridge Management
System (RBMS)

Maintains a database of the setup of a system’s
complement of network servers, and facilitates
automatic loading of the servers upon system
initialization

Terminal Server Manager (TSM) Maintains a database of the setup of a system’s
complement of terminal servers, and facilitates
automatic loading of the servers upon system
initialization

Note

In February 1994, Digital granted Target Systems Corporation a
nonexclusive, nontransferable license to use DECalert Version 1.2
software. Under the agreement, Target Systems may provide support for

9–7

Dependable Data Center Techniques
9.1 Managing Complex Computing Environments

the Digital customer base (existing and future) for the product, as well
as future development and migration of the product or its derivatives.
Target Systems named the product TARGET–>ALERT.™ Digital reserves
the right to continue to sell DECalert or its enhancements, as Digital
deems fit.

System management and operational complexity alone can become a significant
source of unavailability. Add to this the need to provide better performance and
overall dependability and you quickly realize the huge responsibility involved in
data center operations.

9.2 Data Center Operations
Many data center operations are the same whether the environment is:

• Small with one or two CPUs

• Large with several nodes

• Distributed VMScluster systems

• Networked

Common data center operations include:

• Managing the diverse activities of hardware and software installations

• Setting up and authorizing user accounts

• Monitoring system behavior and performance

• Monitoring batch and print queues

• Performing backups

• Scheduling and performing preventative maintenance tasks

• Attending to physical operational needs such as:

Mounting tapes

Servicing printers

Responding to user requests

Some of these operations represent work that you can schedule during times
when system outages are allowable; that is, when the system components
necessary to accomplish the work of the business do not need to be 100%
available.

Contrast scheduled outages with unscheduled system outages such as sudden
power outages, natural disasters, and sudden hardware failures. These outages
can be devastating because they typically occur at a time and for a length of time
that impacts business. Scheduled outages, while less disastrous, can still become
significant when they become commonplace.

Ideally, your goal should be to perform data center operations in an unattended,
self-managing data center environment. However, the reality is that most data
center operations are done manually. In fact, for highly dependable systems, the
additional availability you gain through redundant components (for example:
volume shadow sets, additional CPUs, redundant networking) can sometimes
require additional system management.

9–8

Dependable Data Center Techniques
9.2 Data Center Operations

The following sections point out techniques that reduce failures related to system
management activities and prevent them from rendering the system unavailable.
In addition, you can refer to the following Digital documentation for more detailed
assistance with system management tasks:

• VMScluster Systems for OpenVMS

• OpenVMS System Manager’s Manual: Essentials and OpenVMS System
Manager’s Manual: Tuning, Monitoring, and Complex Systems

• The Guide to Data Center Management

9.2.1 Using DCL Procedures to Minimize User Error
Data center personnel typically devote a lot of time to manually running
production jobs. This is not only expensive in terms of salary and time, but
it is also prone to errors and consequently, system unavailability. It is possible
to reduce errors, to reduce data center costs, and to increase productivity and
availability by automating the execution of repetitive jobs. You can automate the
execution of repetitive production tasks by writing DCL command procedures or
using a production scheduler. For more information about writing DCL command
procedures, see the OpenVMS System Manager’s Manual and the OpenVMS DCL
Dictionary.

Production schedulers usually include the ability to schedule time and job
dependencies, VMScluster system load balancing, and a windowed user interface
for real-time job monitoring and control. Setting up production schedules with
one of these tools can take significant planning but the benefits usually outweigh
the investment effort. Digital offers DECscheduler for production scheduling. See
the DECscheduler documentation for more information.

9.2.2 Scheduling Preventative Maintenance
For many components, you can lessen the frequency of failures that impact
dependability by a regular program of preventative maintenance and symptom
directed diagnosis. By scheduling time for the tasks such as the ones suggested
in the following list, you can allow regular maintenance chores to take place
without interrupting applications:

• Hardware—repairs, cleaning, adjustments, upgrades, installations. Hardware
failures repaired or prevented through this approach can thereby extend the
apparent reliability of the hardware.

• Software—upgrades, maintenance releases, patch installations, disk
defragmentation, cleaning up error logs, verifying status and operation
of fault management tools, and collecting data to analyze your needs
for additional maintenance might also be done during this preventative
maintenance time.

Maintenance tasks such as capacity and performance planning, configuration
management, security evaluation, storage management, system tuning, data
backup, and archiving often need some access to computer resources. By
scheduling maintenance servicing for times when the business demands on
the computing system are reduced, you can minimize or eliminate potential
impact on dependability. Scheduled maintenance includes not only deferring
remedial maintenance to an appointed time but also planning for hardware and
software upgrades and value-added services.

9–9

Dependable Data Center Techniques
9.2 Data Center Operations

For businesses with 24x365 requirements, a combination of fault tolerance and
redundancy, failover capability, and online repair capability might be the best
approach for continuous operation. For businesses requiring high availability
during an 8-hour shift using fault tolerant hardware and avoiding common faults
by deferring service coverage and maintenance to off-hours works best.

Configuring redundant components not only provides failover capability, but also
allows some preventative maintenance (such as tape head cleaning) to occur on
some devices while others remain in use.

9.3 Failures and Recovery
Hardware failures differ from software failures in that hardware failures are
guaranteed to occur eventually. In the hardware world, mechanical devices
eventually break down. The impact of hardware or software failures on system
dependability is obvious and immediate. When someone says the computer is
broken, this generally means the hardware is inoperative. Even when you have
installed the best hardware available, failures can arise as the hardware ages.

Although more than one hardware component might fail at the same time,
hardware failures usually occur independently of one another. A failure can occur
when something wears out, is abused, suffers from design flaws, or is subjected to
unusual environmental conditions such as high temperatures, humidity, or power
failures. In addition, a severe software error could lead to an OpenVMS fatal
bugcheck error and a computer shutdown.

A node failure might be detected in any of the following ways:

• By terminal users when normal processing stops

• By operators through data center monitoring products and alerting
technologies such as DECalert

• In a VMScluster environment, where the VMScluster software can detect that
a machine failed

• In a nonclustered environment, where DECnet learns of the node failure

• When terminal servers try to connect to a service and fail

• When a front-end node that has outstanding connections with a back-end
application is notified (usually by means of a network connection error) of a
back-end node failure

The typical data center response to node failure is to perform the following tasks:

• Reboot OpenVMS

• Start DECnet

• Mount user disks

• Install images

• Start batch and printer queues

• Start layered products

• Define systemwide logical names

• Start applications

9–10

Dependable Data Center Techniques
9.3 Failures and Recovery

For serious problems that require repair, the cause of the failure determines the
type of repair that is necessary and the amount of time it takes to accomplish
that repair:

• Hardware failures might require a call to Digital service personnel to replace
a hardware module.

• Environmental failures require that you restore the computing environment
to its proper specification.

• Software failures or system configuration errors might require disabling
offending software, resetting parameters, and reconfiguring the system.

Not all hardware failures result in the system being unavailable. Failures in
a single component might not have any impact on your business if the failure
is made invisible (through either high-level fault management or hardware
redundancy) or if the failure occurs at a time when the component is not critical
to your business application.

For example, if a system that does not use Volume Shadowing for OpenVMS
has a disk device that fails (thus rendering all media on the device unreadable
and unusable), OpenVMS pauses all processes that are attempting to access the
device while it attempts mount verification. If the device does not come back on
line within a specified time (the amount of time that is specified by the system
parameter MVTIMEOUT), then the OPCOM facility sends mount verification
messages. These messages state that the disk is off line to the operator terminals
and all the queued I/O requests complete with errors.

Note

Avoid running the OPCOM facility on every node in the cluster to reduce
the amount of data transfer across the network. Be selective about the
nodes on which OPCOM runs. However, monitor the facility to ensure
that it runs on at least one node.

By following a regular backup procedure, using redundancy, and scheduling
preventative maintenance with your service vendor, you can actively safeguard
your system before problems cause an operational failure. In addition, by using
products like Data Center Monitor (DCM), DECalert, VMScluster Console System
(VCS), VAXsimPLUS, and the PASS service, you can help alert an operator of
device failure. See the product-specific documentation on these products for more
information.

Note

Do not hard wire operator consoles to VCS. If the console connection is
broken, you also lose the connection to VCS. It is better to create a virtual
terminal on which you can connect any VCS.

9–11

Dependable Data Center Techniques
9.3 Failures and Recovery

9.3.1 Catastrophic Failures
Catastrophic failures are usually easy to find and to repair. Examples of this type
of failure include power supply burnout, disk head crashes, severed cables, and
nonfunctioning logic on a circuit board. A severe software error could lead to an
OpenVMS fatal bugcheck and a computer shutdown. The best way to prevent
these types of failures from impacting the system users and applications is to
build redundancy into your system at key points. Then, when a component or
subsystem fails catastrophically, the surviving hardware can continue to provide
service.

Pay careful attention to the actual effects of catastrophic failures even if the
system remains operational. For instance, if the OpenVMS operating system
detects a failed section of main memory in a user’s process, it will prevent that
memory from being used again until the problem is fixed. However, the particular
user process that occupied the bad memory has to be deleted, even though the
other users may not be impacted. The Digital VAXft systems are not vulnerable
to this type of situation because the fault tolerant systems use fully redundant
memory subsystems.

9.3.2 Intermittent Failures
Intermittent failures are usually more irritating than catastrophic failures
because they play hide-and-seek with the service personnel. Examples of
intermittent failures include the ability to read some magnetic tapes but not
others, spots on disk media that require many retries to retrieve the data, and
video displays that lose synchronization until you tap the side of the display
monitor.

You can minimize the impact of intermittent failures on your system. The
VAXsimPLUS product, for example, monitors soft or correctable error rates.
When the error rate crosses a defined threshold, VAXsimPLUS notifies you
to initiate corrective action before the failures become catastrophic. See the
VAXsimPLUS documentation set for more information about capabilities of the
product.

The most effective way you can help your service vendor isolate and fix
intermittent failures is to have your data center personnel keep comprehensive
written records on the conditions and actions surrounding the failures. Being able
to duplicate the problem is the first step to diagnosing its cause. The necessary
conditions for failure might include ambient temperature, electrostatic buildup,
vibration from an external source, certain sequences of system, and actions by
personnel.

9.3.3 Multiple-Cause Failures
Multiple-cause failures are the toughest problems to find because replacing a
suspected component does not cure the problem. It merely changes the symptoms.
Some examples of multiple-cause failures can include a faulty communications
controller with a bad cable, a bad tape cartridge inserted into a faulty tape drive,
or failed board-level voltage regulators plus an erratic power supply.

Sometimes, such as in the case of voltage regulators, the multiple causes of
the failures are related. For example, an erratic power supply may cause the
board-level voltage regulators to fail. Similarly, if the parameters of the main
power source exceed the boundaries described in the hardware specification, the
real cause could have been poor utility power.

9–12

Dependable Data Center Techniques
9.3 Failures and Recovery

A classic example of failures causing other failures occurs when you receive fatal
disk errors and respond inappropriately. When you attempt to logically mount
a removable disk pack that has been inserted in a disk drive and receive fatal
disk error messages, the natural response is to physically move the disk pack to
another drive and issue the MOUNT command for the new drive. Unfortunately,
the act of moving a bad disk pack to a good drive could very likely cause the disk
heads on the good drive to be damaged. Thus, you now have two disk drives that
in turn could likely damage any good disk packs that are subsequently mounted
on either disk drive. Obviously, this scenario can quickly produce many bad disk
packs and damaged disk drives.

9.3.4 False Failures
Some hardware failures are actually caused by software defects or operator
mistakes. Examples of false failures might include specifying the wrong label
when attempting to mount a magnetic tape or missing the transmission of a
message because insufficient buffering was allocated.

The best procedure for detecting and correcting this class of errors is, again,
comprehensive recording of behavior and conditions. The documentation and
practical knowledge that you gain from recording these events can help your
service vendor redirect the search for the failure as quickly as possible.

Incompatibilities between hardware and software components can also cause
intermittent faults that are difficult to diagnose. For example, as system
configurations are becoming more open and hardware from multiple vendors
is mixed, it is more difficult to track incompatibilities. Thus, it is essential that
you take great care during the installation of new hardware and software to avoid
all known incompatibilities.

9.4 Upgrades and Installations
The ease and accuracy of installing hardware, hardware options, or software
can significantly impact the dependability of both the operating system and
applications. Installations can take anywhere from minutes to days. The
installation of additional equipment can require loss of system usage for a period
of time. As you plan for a product upgrade or installation, keep in mind the
following advice:

• Test the software installations on a separate test system before installing the
software on the production system. Perform load tests for some time using
realistic data. See Section 9.4.1.

• Preplan the installation to avoid having to back out of a partial installation.
Backing out of a partial installation can be difficult and lead to lengthy down
time.

• Ensure compatibility with other hardware and software on the system by
performing upgrades to separate units, changing application or operating
system parameters, or altering operating procedures. See also Section 9.4.2.

• Verify a product’s installation by running the verification procedure to ensure
that the installation was successful.

9–13

Dependable Data Center Techniques
9.4 Upgrades and Installations

9.4.1 Continuing Service to Users During Upgrades and Installations
There is less disruption in service if, when you do system upgrades and
installations, you thoroughly test the new software and integrate it with layered
or other-vendor products on a nonproduction system first. The benefits outweigh
the disadvantages of temporarily supporting two software versions. Although
you must use the older version of the software for production work while the
new version is being tested, this method allows you to find and to fix product or
program incompatibilities without loss of production system availability.

9.4.2 Controlling Quotas and Privileges
To add applications and users and to configure OpenVMS for use, you must also
adjust numerous system parameters. The minimum value for a parameter may
be sufficient for the installation or operation of an application, but may not be
the correct value for optimum use or performance. When critical parameters
are set to inappropriate values, the result can be system or application crashes.
Determine the appropriate parameter values by:

• Reading the operating system and applications documentation

• Running AUTOGEN periodically

• Using POLYCENTER Performance Solution

• Consulting with your service vendors

Because applications software introduces additional complexity, you must adjust
system parameters and quotas just to perform the installation as well as to
address interaction and compatibility issues.

Follow the guidelines and adjust the parameters and quotas as recommended in
the product’s release notes and installation guides. Because of the complexity
that additional applications software introduces, consult with your software
specialist to help you adjust system parameters and quotas and address different
software interaction and compatibility issues.

Because the installation of one software product can interfere with other
previously installed products or can require those products be upgraded, you
must reevaluate parameter settings each time you add to or make a change to
the software running on a system.

9.5 Backup Procedures
Backing up file and system data reduces the availability of your system and
data because you may need to shut down some applications to perform the
backup. However, as part of the regular data center procedures, operators should
copy operating system files, application software files, and associated files to an
alternate device using the OpenVMS Backup utility (BACKUP).

Note

Back up DEC DBMS and DEC Rdb database files with the DBO/BACKUP
and RMU/BACKUP commands, respectively. Do not use BACKUP with
DEC DBMS and DEC Rdb database files. See Section 8.6.1.2, the VAX
Rdb/VMS Guide to Database Maintenance, and the VAX Rdb/VMS Guide
to Database Performance and Tuning for more information.

9–14

Dependable Data Center Techniques
9.5 Backup Procedures

Backups are not the most exciting data center job, but they are an essential first
step toward recovering from a future disk or node failure, or from user error that
results in the deletion of essential files. It is important to develop and implement
backup procedures that include:

• Backup process for the operating system or systems, including a schedule of
the backup frequency and a location for the backup media.

• Backup process for data files, including a schedule of backup frequency and a
location for the backup media.

• Backup process for application software, including a schedule of backup
frequency and a location for the backup media.

• Off-site storage for:

A backup copy of the operating system or systems

Duplicate computer programs

Duplicate software and program documentation

Duplicate data files

Software documentation should be available off site to describe the recovery
purposes.

• Plans for regularly scheduled:

Daily incremental backups

Weekly full backups

Full backups for off-site storage

The backup processes must be consistent with application and user needs. This
may require creative scheduling so that you can coordinate backups with times
when user and application system requirements are low.

Ideally, the backup procedure should copy the data to a large disk that has a
large amount of contiguous empty disk space. It is to your advantage to check
the backup disk or to write a DCL command procedure that can automatically
spin through your backup disks to see which disks have enough room to store the
backup data.

Because the backup process might involve shutting down some applications, you
must be able to schedule backups for times when system unavailability will not
cripple the business. If you cannot afford to shut down the system regularly
for the time it takes to do a full backup, it is possible to use shadowed disks to
obtain backup copies of data with only brief interruptions of system and data
availability. Because shadowed disks are identical copies of each other, you can
use one of the shadow set members as a backup disk. (Note that using shadow
set members cannot protect against accidental deletion of files.)

You can add a disk to an existing shadow set to produce a copy of the data on the
shadow set. Once the copy operation completes, dismount the entire shadow set;
at this point, each disk is identical to the other disks of the former shadow set.
Even though this means taking the shadow set off line temporarily, dismounting
the shadow set is the recommended method for producing an identical copy on a
backup disk.

9–15

Dependable Data Center Techniques
9.5 Backup Procedures

See the Volume Shadowing for OpenVMS manual for more information about
using volume shadowing to perform backup operations on a shadow set.

Note

Do not dismount a member of a shadow set to back up a DEC DBMS or
a DEC Rdb database. Instead use the DBO/BACKUP or RMU/BACKUP
commands. See Section 8.6.1.2 for more information.

Archiving backup data can be accomplished by executing archiving procedures
written inhouse or by using the VAX Storage Library System (SLS). SLS is an
OpenVMS layered software product that provides the ability to manage data
archiving and OpenVMS backup activities. SLS manages the resulting media,
the media’s location, and the devices associated with the archive activities and
backup activities. Using SLS is advantageous from a dependability standpoint
because you can quickly retrieve all information about backups or archived
media. See the SLS documentation for details.

Finally, a good backup procedure is useless unless you are able to quickly locate
and restore the lost data. Before you have an equipment failure, test and
evaluate your data center personnel’s ability to restart the system and recover
data from backup media to an alternate disk volume.

9.6 Dependable Disk Devices
When a device fails and is repaired, it can require additional effort to make it
available for use. Disks in particular require initialization and restoration of
backup data. The disks are not available during restore and recovery operations.

Another problem with disk dependability is disk fragmentation, where data file
extents are so scattered across a disk that I/O access performance diminishes to
the point where the disk might appear to be unavailable.

9.6.1 Restoring Disk Devices Containing Databases
Recovery from a failure of a disk that contains DEC Rdb database files must
begin before the failure occurs. As part of regular database maintenance, the
operator copies the database to an alternate media with the RMU/BACKUP
command. After the failure occurs, the database or certain areas of the database
are restored to the replacement device using the RMU/RESTORE command.
This returns the database to a consistent, preexisting condition. The database is
rolled forward to the current state by applying the changes stored in the after-
image journal (AIJ). The database AIJ file is created during normal processing
and contains a complete record of all the changes that have been made to the
database since the last RMU/BACKUP operation. The RMU/RECOVER command
is used to perform the roll forward operation.

See the VAX Rdb/VMS Guide to Database Maintenance and VAX Rdb/VMS
Guide to Database Performance and Tuning for details about database backup
and recovery operations.

9–16

Dependable Data Center Techniques
9.6 Dependable Disk Devices

9.6.2 Defragmenting Disks to Improve I/O Performance
Over time, the process of adding, modifying, extending, and deleting files on
a disk device can lead to file fragmentation. Fragmented files may hinder
overall I/O performance because the applications must wait while the pieces of
fragmented files are located across the disk and brought into memory. A full
OpenVMS image backup and restore operation will alleviate most fragmentation
problems on a disk. However, 24 hours per day, 365 days per year (24x365) data
center environments typically cannot afford to close entire applications to perform
full image backup and restore operations.

A Digital layered software product, DEC File Optimizer for OpenVMS, lets you
reduce file fragmentation on a disk while that disk remains on line. DEC File
Optimizer for OpenVMS uses an OpenVMS subfunction called movefile. The
product performs defragmentation activity across the disk on a file-by-file basis.
Data integrity rules ensure that the movefile subfunction repairs a fragmented
file only when that file is not being accessed. Repairing a fragmented file consists
of moving the file fragments to a new location on the same disk such that the file
resides contiguously.

DEC File Optimizer for OpenVMS:

• Reduces file fragmentation.

• Enables you to select or to exclude files based on:

User choice

How badly the files are fragmented

Whether the file has placement pointers

Whether the files are indexed

• Provides for scheduling of defragmentation jobs.

• Enables you to classify files as either frequently or infrequently accessed
and to have them placed accordingly. For instance, frequently accessed files
can be placed near the file system’s index file so that the physical movement
necessary for the disk’s read/write head to travel from the index file to the
actual file is decreased. In addition, depending on the application, certain
files that are frequently accessed can be clustered near one another if the
same application uses them in an intermixed fashion. Infrequently accessed
files can be placed near the high logical block number (LBN), near the end
of the disk, or clustered near other files that are infrequently accessed.

• Operates in AXP and VAX environments.

OpenVMS provides the ACP-QIO movefile subfunction that moves the contents
of a file, or part of the contents of a file, to a new disk location. You can use this
subfunction to build your own disk defragmentation application.

A program can invoke a movefile subfunction by issuing a QIO request using the
function code IO$_MODIFY and the function modifier IO$M_MOVEFILE. The
movefile subfunction moves a file, or specified consecutive virtual blocks within
a file, to a new location. This subfunction applies only to disk volumes.

A program can perform a movefile operation on a file if the following conditions
are met:

• The program has write access to the file.

• The file is closed.

9–17

Dependable Data Center Techniques
9.6 Dependable Disk Devices

• Movefile operations are not disabled on the file.

Movefile operations are automatically disabled on critical system files.
You can disable movefile operations on specific user files by specifying the
/NOMOVE qualifier with the SET FILE command.

• The movefile operation is not interrupted.

If the movefile operation is interrupted by any other operation, such as a
read or write operation, the movefile operation aborts and the file remains
in its original position. This safeguard protects the integrity of your on-disk
data and lets you safely attempt regular disk defragmentation operations
without the burden of shutting down all access to a fragmented disk.

• The source and target locations are on the same disk.

You cannot transfer blocks from one disk to another and you cannot move
blocks spanning more than one disk.

See the DEC File Optimizer for OpenVMS Guide to Operations for details about
DEC File Optimizer for OpenVMS. Refer to the OpenVMS I/O User’s Reference
Manual for information about the movefile programming interface.

9.7 OpenVMS Batch and Print Recovery Techniques
The OpenVMS batch and print queuing system allows the queue manager and
the job controller to function separately. This design provides the following
distinct dependability advantages:

• Automatic queue manager failover in VMSclusters

A single queue manager process acts as a clusterwide server, accessing the
queue database for all processes in a VMScluster. Job controllers, user
processes, and symbionts all communicate directly with the centralized queue
manager through a shared IPC link.

The START/QUEUE/MANAGER command is a clusterwide command that
starts up a single queue manager process that provides queuing services
for all nodes in a VMScluster. By default, any node in the cluster is eligible
to run the queue manager process. That is, if a node on which the queue
manager is running leaves the cluster, the queue manager can fail over to
the next available node. You can specify a node list in the START/QUEUE
/MANAGER command and, if desired, limit the nodes to which the queue
manager can fail over.

During a queue manager failover, queues are not stopped. All requests to the
queuing system complete as expected.

• Execution queue failover with autostart queues

To increase the availability of queues in a VMScluster, you can specify a list of
nodes (for batch queues) or nodes and devices (for print queues) on which an
execution queue can run. You can use the ENABLE AUTOSTART/QUEUES
command to provide the ability for the queue to fail over to another node
if the node on which it is running leaves the cluster. You should use the
autostart command on all nodes with queues that must be highly available.

Using the autostart features does not guarantee that jobs will survive
system crashes. For example, if an autostart queue fails over, the job that
was executing in the queue is requeued only if it is restartable. Print jobs
are restartable by default, but batch jobs are restartable only if they are
submitted with the /RESTART qualifier.

9–18

Dependable Data Center Techniques
9.7 OpenVMS Batch and Print Recovery Techniques

When a node reboots, autostart is disabled until you enter the ENABLE
AUTOSTART command. You can also add the ENABLE AUTOSTART
/QUEUES command to your system startup procedure directly after the
startup commands that configure printer devices and mount important disks.

• Restarting batch jobs

If the system fails while your batch job is executing, your job does not
complete. When the system recovers and the queue is restarted, your job is
aborted and the next job in the queue is executed. However, by specifying
the /RESTART qualifier when you submit a job, you indicate that the system
should reexecute the job if the system crashes before the job completes.

By default, a batch job is restarted beginning with the first line. It is possible
to specify alternate starting points within a procedure so that you do not
reexecute parts of the job that have completed successfully. Instructions
for specifying different starting points in a batch job are discussed in the
OpenVMS System Manager’s Manual: Essentials and the OpenVMS System
Manager’s Manual: Tuning, Monitoring, and Complex Systems.

In addition to restarting a job after a system crash, you can also restart a job
after you explicitly stop the job. To stop a job and then restart it on the same
or on a different queue, use the STOP/QUEUE/REQUEUE/ENTRY command.
For example, a batch job number 212 is stopped and restarted using the
STOP/QUEUE/REQUEUE/ENTRY=212 SYS$BATCH command.

Refer to the OpenVMS System Manager’s Manual: Essentials and OpenVMS
System Manager’s Manual: Tuning, Monitoring, and Complex Systems for
details about the system management tasks and commands associated with the
centralized queue manager and its failover capabilities. See OpenVMS System
Services Reference Manual for programming information related to this feature.

9.8 Implementing the Security Policy of the Data Center
The terms dependability, reliability, and fault tolerance take on new meanings
when the faults mights be caused maliciously. Security policies can have an
impact on the dependability and the viability of a business depending on how
easy it is to get around the security that is built into the operating system, the
data files and the database systems. Any security breach, even one as simple
as a user unintentionally deleting a key file, can result in system or application
unavailability.

There is a broad spectrum of security breaches. The breaches range from
not allowing anyone to accidentally or maliciously take down your system, to
providing a proper password policy that controls access to the system, to limiting
the allocation of resources so that users do not unintentionally ‘‘give’’ the system
to unauthorized users. It is best to establish a security policy that outlines
potential security problems and security rules. Then follow the guidelines you
defined when you assign new user accounts, passwords, default file protection,
and user access.

Generally, implementing a security policy is the responsibility of the system
manager because providing a secure system requires a knowledge of the business
applications and a thorough understanding of how to control accounts, passwords,
privileges, and quotas to keep the data center secure. Once security policies are
established, operators and terminal users must implement proper procedures for
handling data to ensure integrity and security. Even when security is not a major
concern, you should establish some security policies to prevent innocent operator
or user mistakes from unintentionally impacting the security of the data center.

9–19

Dependable Data Center Techniques
9.8 Implementing the Security Policy of the Data Center

OpenVMS provides a C2 level of security. OpenVMS VAX Version 6.0 and later
releases are certified by the U.S. government as C2 compliant. OpenVMS AXP
Version 6.1 contains the same C2 security features as the formally certified
OpenVMS VAX, although OpenVMS AXP Version 6.1 is not certified at this time.

OpenVMS security resists invalid access through:

• A user entry and password system that includes these login enhancements:

Forced hangups on multiple login failures

Break-in detection and disabling of accounts for a period of time after
detection of a break-in attempt.

Automatic account expiration

Account restrictions based on time of day and day of week.

Restrictions on type of login, for example, allowing only local logins and
disabling dial-up or network access.

Password vulnerability that can be minimized by establishing a minimum
password length and specifying a password expiration period. You can
also use a random password generator, which creates lists of nonsense
words from which users can choose a password.

• An operations log that includes provisions for alerting security staff of
ongoing security breaches.

• An encryption system that provides a high level of security for sensitive files.
VAX Encryption is an OpenVMS layered product that performs encryption
and decryption of disk-resident files.

• Discretionary access control lists (ACLs) and user identification codes (UICs)
that permit individually named users to be either included or excluded from
accessing a file or achieving certain forms of access (that is: READ, WRITE,
EXECUTE, DELETE, CONTROL).

• A reference monitor that uses access control lists (ACLs) to protect files and
other objects.

• Overwriting disk space before reassigning it to another user in order to
prevent one user from obtaining disk space that contains another user’s data.

• Notifying data center personnel or security officers of security events, and
maintaining an audit trail of such events.

The security features can work, however, only if data center personnel use them
and follow security procedure guidelines to enforce the proper constraints on user
accounts and system account passwords. User account privileges, quotas, and
access rights must be established to prevent users from taking actions that could
impact the system integrity.

After you set up a security policy, you should enforce it using some form of
auditing. You can audit by writing procedures and submitting them as batch
jobs that regulary check for unusual system activity. You can also set up and use
auditing tools to log events that are security related. Auditing is an important
aspect of security. By regularly analyzing activity on the system, you ensure that
security measures are not broken.

9–20

Dependable Data Center Techniques
9.8 Implementing the Security Policy of the Data Center

Network security is more challenging than security on a standalone system. One
reason for this is because OpenVMS runs on all AXP or VAX systems from one
generation of technology to the next. That is, network security is more complex
because the compatibility between AXP or VAX systems increases the operational
complexity at the same time it decentralizes system control thereby subjecting
data to interception across the network.

Network security is of particular concern in the area of creation and management
of the overall authorization database. An advantage of the AXP, VAX, and
OpenVMS system compatibility is that you can implement security features
across a network of AXP and VAX systems.

Through the use of Ethernet security features, proxy accounts, data encryption,
the security modems such as DECmodem and PATHWORKS products for security
of personal computer (PC) files, the OpenVMS operating system can afford a high
degree of security on distributed systems.

The OpenVMS Guide to System Security contains detailed information about
evaluating your security requirements and custom tailoring a security policy for
your system and network. The guide also discusses using the DCL command
SET AUDIT, which allows you to manage the audit server and the Audit Analysis
utility (ANALYZE/AUDIT command) to help you analyze audit log files.

For help from security consultants, Digital offers the OpenVMS Security Review
Service (VMS SRS) and the OpenVMS Security Enhancement Service (VMS SES).
These services may help you evaluate and improve your current level of system
security (see Chapter 10).

9.9 Supporting a Distributed Environment
Creating the necessary support system for controlling the data center is a major
concern in an environment with distributed workstations and personal computers.
When you put a workstation on a network or in a VMScluster, the potential exists
for the naive users to impact the reliability of the entire data center.

The system manager can use SYSMAN (the System Management utility) or the
DECnet System Services (DSS) to execute commands on a stand-alone node or
across nodes and clusters. Using a utility such as SYSMAN helps centralize
system management so that remote system management chores (such as the
installation of software, backup, or account management on workstations) are not
left to workstation users.

Consolidating system management so that the system manager can have a
clusterwide view of the system from his or her terminal leaves less chance
that the users will introduce unnecessary system problems. For example, a
workstation user might upgrade to the latest version of some application and
cause incompatibilities in a common database. Because the workstation user’s
actions might not be obvious, attempts at solving the problem could lead to
extensive down time and unnecessary repairs.

Distributed system support services are also available through DECnet System
Services. These services include the VAX Distributed File Service (DFS), the VAX
Distributed Name Service (DNS), the VAX Distributed Queue Service (VAXdqs),
and the Remote System Manager (VAXrsm).

9–21

Dependable Data Center Techniques
9.10 Supporting VMScluster System Environments

9.10 Supporting VMScluster System Environments
Using the OpenVMS operating system in a VMScluster system environment is,
for the most part, the same as using the OpenVMS operating system in a single
node or networked environment. The following sections address some additional
areas that you should consider for optimal system operation. Refer to Section 7.6
for related information about the VMScluster DECnet alias.

9.10.1 VMScluster Quorum Disk
One of the mechanisms used by VMScluster software to ensure that access to data
on common devices is correctly coordinated is called quorum. By requiring that
more than one-half of the (nonsatellite) nodes in a VMScluster configuration have
established proper SCA communications before any node is allowed to continue, a
pathological condition called a partitioned cluster is avoided. In a partitioned
cluster, one group of nodes ‘‘thinks’’ it is the cluster while another group thinks
the same thing but neither group is aware of the other group. However, each
group is writing on commonly accessible disks. Refer to VMScluster Systems
for OpenVMS for details on how to set up your VMScluster quorum-related
parameters properly to prevent partitioning.

In the case of a two-node VMScluster configuration, the quorum calculation
becomes problematic. If each AXP or VAX node had one vote (as recommended),
and one node failed, quorum would be lost and the VMScluster would hang (to
protect data integrity) until quorum is restored (that is, a vote count greater than
one-half the total). To circumvent this situation, the VMScluster software can
be configured to recognize a file on a commonly accessible disk as having a vote
of one. Therefore, in the case of a two-node VMScluster, the total vote becomes
three, with quorum equal to two votes. When one node fails, two votes still
remain (one for the CPU node and one for the quorum disk) and the surviving
node can continue to provide service.

The VMScluster quorum disk cannot be a member of a shadow set. OpenVMS
Volume Shadowing cannot operate unless the OpenVMS distributed lock manager
is available. The OpenVMS distributed lock manager cannot execute if quorum
has not been established, and therefore it is impossible to make the VMScluster
quorum disk a member of a shadow set. An OpenVMS system disk can be
shadowed but the quorum disk cannot.

The VMScluster software uses only a particular file on a quorum disk. Thus, that
disk may also be used for other purposes.

Because VMScluster configurations with three or more nodes do not require
a VMScluster quorum disk, one valid option in the context of a dual-host
configuration is to set up a VMScluster quorum node. By giving a third AXP
or VAX node a vote, the quorum calculation works out without the need for a
quorum disk. You must boot the third node from its own system disk, not from
the boot members’ disks. In this way, the quorum node can boot independently to
maintain or to restore quorum as necessary.

9.10.2 VMScluster Common System Disks
With the appropriate definition of logical names, the VMScluster can use a single
copy of most system files and images. This rule is per architecture; that is, all the
AXP nodes use operating system files on an AXP system disk, while all the VAX
nodes use operating system files on a separate VAX system disk.

9–22

Dependable Data Center Techniques
9.10 Supporting VMScluster System Environments

The various VMScluster member nodes can each load the COPY.EXE image
from the same directory on the same commonly accessible disk. This can save
considerable disk space (especially for VMSclusters with many nodes) and is
easier to manage consistently than completely separate system disks for each
node. Refer to VMScluster Systems for OpenVMS for information on how to
set up your VMScluster system to use cluster-common system disks (one per
architecture).

The disadvantage of using cluster-common system disks is that the I/O traffic on
the VMScluster system’s common system disk may become too great to handle
with a single drive. It also becomes even more important to shadow the system
disk to avoid a single critical point of failure in the VMScluster system.

9.10.3 Multiple OpenVMS Versions (Rolling Upgrade)
The OpenVMS operating system allows a VMScluster system to continue to
provide service while the system software is being upgraded to the next release.
This process is called a rolling upgrade because each node is upgraded and
rebooted in turn, until all the nodes have been upgraded.

During the period when two versions of OpenVMS are running on the
VMScluster, there are at least two system disks (or at least two system directory
trees on a disk). Each has its own version of OpenVMS and each node has booted
OpenVMS from one of those system directories. The existence of system disks
with different versions of OpenVMS requires special consideration for VMScluster
configurations with satellite nodes.

When a satellite loads its copy of OpenVMS from a boot member, a special
network program called a load assist agent is used to facilitate the process.
Because this program controls the booting protocol, its version should match the
version of OpenVMS being loaded into the satellite.

In a VMScluster where the boot members are running different versions of
OpenVMS (for example, when the VMScluster is in the middle of rolling forward),
you may have some satellites that are running the old version of OpenVMS
and some that are running the new version. Once all the boot members have
been upgraded to the new version, however, you may not have a problem. If the
booting protocol has not been changed between OpenVMS versions, the satellites
that want to load the old version may continue to do so, as long as you keep their
old system disks accessible to the boot members.

If the booting protocol has in fact changed between the old and the new versions
of OpenVMS, the load assist agent (running as part of the boot member’s
OpenVMS system) may not properly handle the loading of the old version of
OpenVMS to a requesting satellite. Remember that all the boot members have
been upgraded to the new version of OpenVMS at this point. This situation
requires that you change the boot sources of the satellites to load the new version
of OpenVMS.

Because it is not possible to predict the technical reasons for changing the boot
protocol, the safest approach is to assume that it has changed. Therefore, the
suggested practice is to plan for all satellites to load the new version of OpenVMS
by the time the last boot member has been upgraded to that new version.

9–23

10
Dependable Consulting from Digital

In the final analysis, it is people who build dependable
systems. You and your staff do not have to do it alone. This
chapter describes a variety of Digital consulting services. You
may elect to use these services to help you build dependable
OpenVMS based computing systems when you do not have
the expertise, time, or resources to do it alone. See the
bibliography in Appendix B for information about a Digital
consulting reference guide that your Digital representative
can order for you. The guide describes in detail the services
outlined in this chapter.

10.1 Application Characterization and Predictive Sizing Consulting
The application characterization and predictive sizing (ACPS) consulting services
can assist you in analyzing computer resource requirements of your business
applications. These services provide a methodology that allows you to relate
specific business units of work with hardware requirements for the purpose of
sizing and capacity planning. Your applications need not be currently executing
on a Digital system for characterization. Prior to any coding of new applications
or migration or porting of current applications, the ACPS services can provide
capacity predictions that will improve your chances of successful implementation
of your new system.

The following consulting services are available:

• Business applications needs analysis

• Predictive sizing

• Application characterization

• Application level capacity planning

Various Digital service tools, such as First Approximation Sizing Technique
(FAST), Application Characterization and Evaluation (ACE), FAST-Q, and
Estimator for System Performance (ESP) are used in the delivery of these
services to provide comprehensive information on which the Digital consultant
may base conclusions.

10–1

Dependable Consulting from Digital
10.2 Capacity Planning Consulting Service

10.2 Capacity Planning Consulting Service
Capacity planning is the prediction of system resources required to support the
future computing needs of the business. It provides means to decision makers for
the timely acquisition and provision of system resources capacity.

The capacity planning consulting service covers the following:

• Assessment of current performance and service levels.

• Analysis of workload and service level requirements.

• Saturation analysis and workload balancing.

• Modeling of alternative AXP and/or VAX configuration options to support
scenarios as defined by the customer.

• Evaluation of AXP and/or VAX configuration(s) and future growth path(s).

• Presentation of the results. The executive summary of the report (written for
a nontechnical audience) is the basis for a presentation and discussion with
the customer’s management.

10.3 COHESION Support Consulting
COHESION is the name for the Digital complete computer-aided software
engineering (CASE) environment. There are several services available to help
you take advantage of the COHESION environment.

CASE program services that support COHESION:

• Visionary planning

Digital management consultants establish the management framework for
guiding the entire COHESION implementation process.

• Critical success factors

A management workshop to help ascertain those factors that are critical to
the successful achievement of your strategic objectives.

• Software assessment

A formal look at your development organization’s strengths and weaknesses
using a methodology called SEI Software Process Assessment Consulting
Service. Digital has been certified by Carnegie-Mellon’s Software Engineering
Institute to perform this service.

• Implementation planning

Identifying the proper set of activities and tasks necessary for a successful
project implementation.

• CASE environment design and planning

Digital consultants help design the S/W Development Life Cycle (SDLC),
which becomes the framework for designing an integrated COHESION
environment.

• CASE technology selection

Establishes business justified selection criteria for determining which CASE
tools make sense.

• Concept education

10–2

Dependable Consulting from Digital
10.3 COHESION Support Consulting

Classroom, seminar, and video format training in Basic Software Engineering
Principles, as a prerequisite to implementing a CASE program.

• CASE tools training

A wide variety of training classes on CASE tools. If desired, a customized
training program can be designed and implemented.

• CASE tools consulting

Digital consultants help your organization raise the experience curve in
advanced usage of CASE tools.

• DECstart™ for DECset

Installation and customization help for the CASE tools.

• Implementation reviews

Digital consultants provide ongoing monitoring of the implementation and
recommend ways to stay in tune with business goals.

10.4 Contingency Planning Assistance Consulting Service
This service identifies organizational risks associated with loss of information
systems due to catastrophic incidents or other unplanned extended outages.
Recommendations address disaster recovery strategies to protect your business
investments.

10.5 Customer Training Advice Package
This section covers the customer training advice package.

10.5.1 Course Formats
Digital provides a variety of course formats that allow customers to choose where
they learn, when they learn, and how they learn. Customers can choose self-
paced courses, hands on classroom training with practice labs, lecture with case
study, and so on. Formats for customer training include:

• Lecture/lab

• Seminars

• On-site training

• Digital Press documents

• Cooperative training program

10.5.2 Purchase Options
Digital offers several packaged training programs to discount and simplify the
training purchase. All of the packages include telephone or in-person consultation
for determining what courses should be taken.

Packaged training programs include:

• Unlimited training subscription

• Eduplan training subscription

• DECplan™ training account

• REDuplan training subscription

10–3

Dependable Consulting from Digital
10.5 Customer Training Advice Package

• Complementary solutions through training

10.5.3 Comprehensive Training Solutions
The Comprehensive Training Solutions (CTS) group creates customized solutions
to meet the needs of an organization’s unique work environment, the current
capabilities of its employees, and the skill and knowledge requirements of their
new jobs. For example, customers choose CTS when they need custom training
on an application, job-specific training delivered to the job site, computer room-
to-desktop training coordination, training on technologies and applications
from vendors other than Digital, management and business skills training, and
turn-key training management and administration.

CTS services include:

• Enterprise human resource consulting

• Strategic assessments

• Training needs analysis

• Project management

• Courseware maintenance

• Computer-based instruction

• Print and online job aids

• Manuals and documentation

• Multimedia courses

• Introductory videotapes

• Computer-based interactive video

• Classroom instruction and workbooks

• Customer online documentation screens

CTS enables customers to adapt to changes in their business. CTS can design
comprehensive training solutions that make work simple for employees and that
make enterprises successful.

10.6 DECstart Consulting
DECstart services deliver a defined set of tasks at the customer’s site, structured
to ensure an efficient startup of the system. DECstart familiarizes you with the
software and provides orientation and hands-on experience for your staff. There
are DECstart services for several major software products, including:

• ALL–IN–1 DESKtop for DOS

• ALL–IN–1

• ALL–IN–1 Version 2.3 Upgrade

• DECnet for OpenVMS

• Local area VAXcluster

• Digital NMCC/DECnet Monitor

• PATHWORKS for Macintosh

• PC packaged installation service

10–4

Dependable Consulting from Digital
10.6 DECstart Consulting

• PCSA (PATHWORKS for MS–DOS)

• ULTRIX (VAX and RISC)

• VAXcluster (VAX only)

• VMScluster (AXP only, or AXP and VAX)

• DECset (DEC LSE/SCA, VAX DEC/CMS, VAX DEC/MMS, DEC Test Manager,
DEC PCA)

• VAX SPM™

• OpenVMS Version 6.n upgrade

• OpenVMS

10.7 Digital Program Methodology Consulting
These programming methodology services involve a phased approach to
understanding requirements and to carrying out the appropriate development
activities to satisfy your programming needs.

There are several ways that Digital programming methodology services can work
collaboratively with your staff:

• Conversion services

• Custom application modification

• Custom project service

• Custom service package

• Custom software application

• Design phase service

• Functional specification service

• Requirement specification service

• NETplan™ application design service

• NETstart™ application development service

• NETplan design analysis service

• NETplan protocol design service

• NETstart protocol development service

• NETplan requirements analysis

10.8 DSNlink—Customer Access to Existing Knowledge Databases
DSNlink is an OpenVMS based software tool that allows on-demand computer-
to-computer communication between customers and Digital Customer Support
Centers. DSNlink is being offered to OpenVMS customers who currently receive
telephone support.

DSNlink is free of charge to contract service customers. In order to use the
software, you are required to sign and return a software license. Receipt of
the license agreement will trigger the distribution of DSNlink media and
documentation and an authorization code.

10–5

Dependable Consulting from Digital
10.8 DSNlink—Customer Access to Existing Knowledge Databases

You will need an additional telephone line and a 2400 baud modem in order to
use DSNlink. Digital pays for the phone line connection to the Customer Support
Center but not for the line itself.

Substantial improvements have been made to the symptom and solution
database. More than 40,000 technical articles are contained in the database with
more articles being added daily.

Bu using advanced techniques in data compression, DSNlink can provide
outstanding throughput–twice the throughput of the rated modem speed.
DSNlink ensures the security of both the system and the data passing over
the service network by employing the latest security features such as system
authentication and an allocated OpenVMS port.

The following applications are now available to contract customers who install
the software and have a phone line and a modem:

• Consulting Service request submission

• Remote database search

• File transfer facility

• Flash message facility

10.9 Enterprise Integration Centers Advice Package
In addition to the standard Digital products that the Enterprise Integration
Centers (EIC) provide through the various product families, EIC provides custom
hardware and software engineering, production and integration capabilities.
Custom hardware design ranges from modification to Digital or other products to
complete custom product design. Custom systems include custom configurations
that meet special customer requirements for space or environment.

EIC will also procure, integrate, and test third-party equipment as part of the
overall system to meet the customer’s application needs.

The technology areas in which EIC has expertise are as follows:

• Remote terminal connections

• High performance communication interfaces

• High availability systems

• Real time systems

• Factor floor hardware

• Impact line printers

• Tape and disk systems

• Image products

• Voice products and systems

10–6

Dependable Consulting from Digital
10.10 Enterprise Planning and Design Consulting

10.10 Enterprise Planning and Design Consulting
These services are intended to assist you in formulating high-level business
system strategies, design, and architectures. They can be formulated to have a
business, information technology, and human factors focus.

Enterprise planning and design planning services include:

• Strategic planning

• Strategic design

• Information architecture

• Solution architecture

10.11 Help Desk Consulting Service
The help desk service offers you a range of service for the design, implementation,
and management of computer help desk operations. The service is designed to
cover multivendor environments and address your entire computing environment,
regardless of which vendors’ hardware or software you use.

There are three primary modules in this service:

• Evaluation and design

• Implementation and operation

• Problem resolution coordination and management reporting

10.12 Migration Consulting
These services are designed to minimize the cost, risks, and work needed to
successfully complete any migration project and to ensure an unlimited growth
path for the future. These services include:

• Migration planning, design, estimation, implementation, and project
management

• Specification and application design and documentation development

• Customization of software conversion tools

• Support for third-party products and conversion tools

• Help for establishing parallel system runs

• Development and assistance with acceptance testing and implementation

• Integration of existing equipment

• System performance analysis, tuning, and capacity planning

10.13 Network Performance Consulting
Network performance consulting provides you with an evaluation of your network
design. The consultants provide tools, methodologies, and expertise in network
performance to address your long-term network usage needs. Networks ranging
from medium-sized local area networks to geographically disperse Ethernet
networks can be analyzed.

10–7

Dependable Consulting from Digital
10.13 Network Performance Consulting

There are three types of network performance consulting:

• Network performance analysis

• Network performance optimization

• Network performance management

10.14 Packaged Application Software Solution Consulting Service
Packaged application software solution service includes the applicable packaged
application software and consulting services necessary for the installation and
operation of the packaged application software. Packaged application software
solution service is provided in accordance with the provisions of Digital standard
terms and conditions.

10.15 Professional Consulting Services
Professional services are intended to provide you with professional resources to
carry you through periods when you need or cannot find the appropriate talent to
hire.

There are several types of professionals whose services you may acquire:

• Acquiring services and support

• Administrative support

• Consultant I, II

• Programmer

• Program manager

• Network consultant

• Network systems engineer

• Senior consultant

• Senior systems engineer

• Software engineer

• Senior consultant I, II, III, IV

• Systems engineer

10.16 Recover-All Consulting Service
The recover-all service supplements the Digital on-site maintenance agreements
and provides priority repair or replacement of your Digital and multivendor
equipment damaged in an accident or disaster. It includes reimbursement for
many expenses associated with getting your computer operation functioning
at full capacity, including a temporary data processing location, removal of
equipment, and replacement of certain software. No deductible or depreciation is
applied to your equipment.

Recover-all service covers damage caused by:

• Power failure

• Air-conditioning malfunction

• Fire

10–8

Dependable Consulting from Digital
10.16 Recover-All Consulting Service

• Earthquakes, flood, and other natural disasters

• Theft

• Vandalism

• Accidental damage from beverage spills and other accidents

• Sprinkler leakage, sewer backup, and plumbing accidents

10.17 RESTART Consulting Service
The RESTART service provides two alternate computing centers that let your
business operations continue to function during a disaster or other extended
outage. Eleven business recovery centers in the U.S. extend access to hot standby
sites by providing secured office facilities for recovery staff during a disaster.

10.18 Systems Integration Advice Package
Under the systems integration advice package, Digital will serve as a single point
of contact for planning, designing, implementing, or managing your computing
system. The service provides for integrating hardware, software, and services to
address your business needs and organizational requirements. The computing
systems can be from Digital, other vendors, or both.

Relying on a systems integrator to manage information technology efforts lets you
focus your resources (staff, skills, dollars) on your primary business.

10.19 VAX Performance and Capacity Consulting Services
The VAX performance and capacity services (VPCS) provide a methodology for
planning strategic system growth. VPCS brings Digital tools, expertise, and
methodologies to help you plan system capacity growth.

There are three different services in VPCS:

• Performance analysis service

• Performance optimization service

• Performance management service

10.20 OpenVMS Security Enhancement Consulting Service
The OpenVMS security enhancement service (OpenVMS SES) provides
mandatory (nondiscretionary) access controls and security auditing features
for OpenVMS. It is designed for the customer who must maintain a secure data
processing environment involving multiple levels and categories of classified data
and users with varying security clearances. This service provides the system
manager or system security officer with a toolset to devise a system-wide security
policy that safeguards users, data, software, and hardware from security threats.

OpenVMS SES augments the numerous security features already present in the
OpenVMS operating system. It provides additional features to meet the rigorous
security needs of government agencies, national defense organizations, prime
contractors and other customers that must label and protect classified information
processed on OpenVMS systems. It also provides a means to evaluate the effects
of mandatory access controls on application design and system management.

10–9

Dependable Consulting from Digital
10.20 OpenVMS Security Enhancement Consulting Service

OpenVMS SES consists of two components: a set of tasks to be performed by
Digital at the customer’s facility and packaged software to be installed by Digital
on the customer’s computer.

10.21 OpenVMS Security Review Consulting
The OpenVMS Security Review Consulting Service is an evaluation of the
customer’s established security controls. The key component of the OpenVMS
Security Review Consulting Service is the consulting service provided by Digital.
This service provides the system manager or system security manager with a list
of findings along with recommendations, if appropriate, that can be implemented
to improve the system security.

10–10

11
Case Study: Lights Out Data Center

ON

OFF

This case study describes the implementation of a highly
dependable data center at the Digital Customer Support
Center (CSC) in Colorado Springs. The CSC’s business is
to solve technical software and hardware problem reports
submitted by customers. The service is provided for those
customers who have a support contract with Digital and
is available 24 hours a day, 365 days a year (24x365).
Starting in 1984, the CSC data center personnel launched
an aggressive plan to meet CSC’s business requirement for

uninterrupted computing services. The result, which continues today, is a highly
automated style of computing operations called a lights out data center.1

In a lights out environment, computing functions and components are so well
automated and monitored that minimal operator or system manager intervention
is needed. In theory, no human operators are needed in the physical data center
to maintain operations. Thus, the concept developed of being able to turn off
the data center’s lights while the computing equipment operated unattended.
In practice, most lights out data centers require occasional maintenance by
human operators. However, a carefully designed and tested lights out data center
truly does require far fewer operators and typically experiences far less system
down time. Of course, the issue of whether the lights are literally on or off is not
important. The significant feature of lights out computing is that it allows for a
separation of data center staff from the computing system hardware.

The lights out computing style can cut down on the cost of operating large,
critical labs. When an early stage of a computing problem is detected, software
alarms initiate corrective action. If the problem cannot be fixed automatically, the
monitoring software notifies the appropriate person via predefined mechanisms.
Examples of automated notifications include activating pagers (or beepers) worn
by selected personnel, starting recorded DECtalk announcements on the facility’s
loud speaker system, and sending electronic mail messages to the VAXcluster
manager.

The following sections explain how the CSC data center personnel:

• Changed their own perception about the work they performed and about the
people and jobs their computing services supported.

• Worked closely with members of their staff who were affected by a decision to
eliminate costly and menial computing operation tasks.

• Eliminated most tasks that depended on manual intervention by a large staff
of operators who had worked three shifts.

1 Digital operates other lights out data centers. This case study focuses on a specific
implementation at the CSC data center in Colorado.

11–1

Case Study: Lights Out Data Center

• Developed an effective partnership with the staff of the building facilities
organization.

• Developed an unofficial but still effective partnership with city and utility
planners to ensure that redundant power, telephone, and water systems were
available.

• Evaluated the products and tools available to the CSC data center at the time
(starting in 1984) and selected technologies that were flexible and could grow
with industry improvements to software and hardware components.

• Built their own sophisticated alarm system that detected when computing
problems were about to occur or were occurring. The software system
automatically activated defined sets of preventative or remedial steps. The
CSC data center’s alarm system evolved to become a product called DECalert.

Note

In February 1994, Digital granted Target Systems Corporation a
nonexclusive, nontransferable license to use DECalert Version 1.2
software. Under the agreement, Target Systems may provide support for
the Digital customer base (existing and future) for the product, as well
as future development and migration of the product or its derivatives.
Target Systems named the product TARGET–>ALERT.™ Digital reserves
the right to continue to sell DECalert or its enhancements, as Digital
deems fit.

• Ultimately, achieved 100% application availability and the confidence of the
data center’s users.

As members of the CSC data center’s staff would say:

• ‘‘We are like all other data centers.’’

• ‘‘We are like some other data centers.’’

• ‘‘We are like no other data center.’’

Keep these quotations in mind as you read this case study. The steps taken
by the Digital CSC data center group in Colorado Springs to ensure 100%
application availability are appropriate for their buildings, geographical
surroundings, applications, communications needs, and personnel. You probably
will recognize many or some of the problems that were resolved by the CSC data
center staff. At the same time, your business is unique and the CSC’s solutions
may be inappropriate at your facilities.

Use the CSC data center’s experiences as background information. This
knowledge may be helpful as you improve the data center at your site to meet
your business requirements.

11.1 Customer Support Center Business
The Customer Support Center (CSC) data center provides computing services to
the CSC business, which solves technical problem reports submitted by customers
of Digital. The CSC business used the computing resources for a variety of
functions. A few examples include:

• Recording, tracking, and resolving software performance reports submitted by
customers

11–2

Case Study: Lights Out Data Center
11.1 Customer Support Center Business

• Communicating with Digital engineering organizations via a worldwide,
company-wide data network

• Reproducing the combination of software product(s) and hardware equipment
that resulted in an error, as reported by customers of Digital

11.2 Time for a Radical Change
In 1984, the computing services staff for the Customer Support Center (CSC) in
Colorado Springs knew that they had to solve a very difficult problem. The CSC
business needed to operate in 24x365 mode to meet Digital customer needs for
continuous telephone technical support. Between 1979 and 1984, the computing
services that had been provided for the rapidly growing CSC were best described
as unpredictable and chaotic. A few examples include:

• Systems were shut down with little advance notice to the user community.

• Software products were not tested adequately prior to installations or
upgrades to determine their potential impact on existing applications.

• Carefully-planned fault prevention strategies did not exist.

• Error correction strategies were haphazard.

• Failure recovery plans were not well organized.

• Protections against and contingency plans for the impact of environmental
factors (like power outages in Colorado Springs) at the facilities either did not
exist or were not adequately developed.

The pre-1984 environment of the computing services data center was later
characterized as ‘‘...a traditional MIS shop’’. The staff of 62 persons seemed to
be very busy but their activities were almost constantly in reaction to problems
as they occurred (react mode). Many staff members at the pre-1984 data
center worked hard and had the best of intentions to deliver quality computing
services but there never seemed to be enough time to evolve into a proactive,
well-designed, dependable data center.

By 1984, CSC business demands and exceptional leadership forced changes at
the CSC data center. Several leaders stepped forward and declared, in effect, ‘‘We
need a new vision.’’ The leaders assessed their current (1984) organization and
noted the following:

• They had 62 persons working at the data center.

• The cost of operating the data center (equipment, personnel, rent, utilities,
plus other factors) was a significant part of the overall CSC budget.

• Staff members generally worked in just one of four highly specialized fields:

Operations

Application development

System management

Application support

Members of each functional organization knew practically nothing about the
jobs, strategies, and technologies of fellow employees within the three other
CSC data center functions.

• There were multiple data centers supporting Digital facilities across Colorado
Springs.

11–3

Case Study: Lights Out Data Center
11.2 Time for a Radical Change

• There were multiple standalone hardware configurations.

• There were multiple operating systems.

• Supporting the data centers was people intensive. That is, when problems
occurred, staff members were detached to isolate and fix it. Preventative,
diagnostic, and remedial tools (software and hardware) did not exist.

• The data center had difficulty responding to changing business requirements
of the CSC business.

To further understand how the CSC data center operations might be improved,
one of the leaders of the data center’s availability project changed hours. This
system manager switched from the first shift1 to the third shift2. Most of the
existing operator’s tasks, like nightly backup operations, occurred on the third
shift. The system manager spent three months on the third shift and developed
ideas about lowering staffing costs and changing the mindset, in a positive way,
of the people who performed the operator functions.

11.3 Customer Expectations
The Digital Customer Support Center (CSC) data center staff leaders conducted
surveys, interviews, and meetings with the people who used the computing
services to learn about their expectations. The effective communication between
the data center and the CSC business was an immediate and highly visible
change in the way the CSC data center performed its business. Also, the data
center decided to deliberately refer to their users as ‘‘customers.’’ This change
was meant to convey an understanding by the CSC data center staff that their
jobs depended on the satisfaction of the people who used their services.

CSC customer expectations recorded during this early (1984) phase included:

• Lower costs.

• 100% application availability. Note that CSC personnel did not focus simply
on hardware availability. For instance, if a CPU board failed but the data
center computing systems were configured in a way that allowed CSC’s
applications to continue, then the CSC business could continue operating
without interruption.

• Support growing user and application base.

• Be highly responsive in terms of application response time, problem
resolution, and enhancements.

• Be flexible to changing CSC business needs and individual needs.

• Maintain security.

To meet the expectations of the CSC people who used their computing systems,
the CSC data center leaders worked together to formulate the strategies described
in Section 11.4.

1 Generally, 9 a.m. to 5 p.m.
2 Generally, 1 a.m. to 9 a.m.

11–4

Case Study: Lights Out Data Center
11.4 Strategies for Achieving 100% Application Availability

11.4 Strategies for Achieving 100% Application Availability
To achieve 100% application availability, the data center leaders decided to
develop strategies for six key components of the data center:

• Process

• People

• Hardware

• Software

• Environment

• Telecommunications

This section outlines the strategies the data center staff defined for these
components. Section 11.5 describes how the staff implemented the strategies to
achieve 100% application availability.

In this section and Section 11.5, the discussions are not exhaustive because:

• Refinements occur constantly, which allow the CSC Lights Out Data Center
to maintain their advantage with current technology. As this handbook
emphasizes, dependability is a journey, not a destination.

• Certain Digital proprietary technical details are intentionally omitted from
this case study to protect the Digital investment in its 24x365 telephone
support business.

11.4.1 Process Strategy to Meet CSC Business Needs

Rules
1
2
3
4

To support the CSC business requirements outlined in
Section 11.3, the CSC data center staff decided that their
process strategy must include the items in the following list:

• Automated backups (primarily disk-to-disk).

• A paperless environment in the main computing labs.

• Automated hardware monitoring and alerts.

• Automated software monitoring and alerts.

• Automated performance improvements.

• Automated system management.

• Automated utilities management.

• Automated layout (hardware configuration) management.

• Contingency plans for every imaginable event that could possibly interrupt
service. For instance, Colorado Springs experiences snow blizzards that can
last for days. Despite the severe weather conditions, customers of Digital who
rely on the 800-number technical support still require 24x365 service.

• Documentation tools to assist in easier reporting of defined availability
compliance rules.

11–5

Case Study: Lights Out Data Center
11.4 Strategies for Achieving 100% Application Availability

• Project management software tools.

• Proactive response to computing system problems.

• As nearly as possible, a paperless environment in office areas.

• A new service request mechanism.

• A helpline or Help Desk with a call management system.

• Flexibility to meet changing business needs.

11.4.2 Staffing Strategy to Meet CSC Business Needs
The strategy for enhancing the data center’s staff so that it
could contribute to CSC’s requirements for 100% application
availability, as outlined in Section 11.3, were the items in the
following list:

• Develop and encourage a cross-training policy

Instead of each person knowing about only one specialized field (operations,
application development, system management, or application support),
implement cross training so that the CSC data center team would consist
of senior-level generalists. Combine hardware, software, and applications
expertise within the VAX and VMS environment. Each person remains an
expert in one or several particular disciplines; however, their knowledge is
broadened so that they are aware of the full impact their actions have on
other processes and computing functions. Support this effort through funding
and flexibility so that employees can receive the training and practical
experience they need.

• Create support teams to improving responsiveness and flexibility

The CSC data center staff should build support teams that address the
immediate and longer-term needs of the following CSC areas:

• Systems

• Applications

• Customers (CSC personnel)

• Developers

• Eliminate unnecessary tasks and jobs, limit menial tasks through automation,
and help displaced employees find more rewarding jobs in the company

The CSC data center’s staff realized early on that there was ‘‘more to life
than mounting magnetic tapes (for nightly disk-to-tape backups), fixing paper
printers, and sorting line printer output.’’ In the pre-1984 CSC data center
environment, these tasks occupied a large percentage of the operators’ time.

11–6

Case Study: Lights Out Data Center
11.4 Strategies for Achieving 100% Application Availability

After working openly with its staff about its goal to lower operating costs, the
CSC data center reduced its headcount from 62 to 38 persons in one month.
Instead of dismissing the 24 displaced employees (11 of them were operators),
the data center management counseled the displaced employees and helped
them to consider more rewarding career opportunities, to pay for any training
that they needed, and to start jobs in other Digital organizations.

The sensitive way in which the transition was handled by the CSC data
center management led to positive feelings among the people who remained
in the data center. Remaining people felt that their management not only had
worthy and exciting goals of building a highly available computing service but
it had treated their friends with dignity and care. The psychological benefits
that derive from a fair, sensible policy like the one in this case study are
significant.

11.4.3 Hardware Strategy to Meet CSC Business Needs
To support the CSC business requirements outlined in
Section 11.3, the CSC data center staff decided that their
hardware strategy must include the items in the following
list:

• VAXcluster technology to eliminate single points of failure at the node and
disk level

• Remote management capabilities

• Predictive maintenance

• End node and routing networking capabilities

• Fault tolerance

• Capital-intensive characteristics rather than people-intensive characteristics

• Equipment that is secure

• Support from Digital Customer Services (for repair of hardware equipment)

• Flexibility in hardware configurations and capabilities to match changing
business needs

11.4.4 Software Strategy to Meet CSC Business Needs
To support the CSC business requirements outlined in
Section 11.3, the CSC data center staff decided that their
software strategy must include the items in the following list:

• VMS operating system as the standard

• Automated fault notification software tools

11–7

Case Study: Lights Out Data Center
11.4 Strategies for Achieving 100% Application Availability

• Flexibility for changing business needs

• Software products that monitor security breaches

• Extensive online documentation of coding standards

11.4.5 Environment Strategy to Meet CSC Business Needs
To support the CSC business requirements outlined in
Section 11.3, the CSC data center staff decided that
their environment strategy must include the items in the
following list:

• Uninterrupted service, protecting against events like power outages, fires,
floods, snow and ice storms, and telephone vendor work interruptions (strikes)

• Cost effectiveness and flexibility for changing business needs

• Secure equipment and processes

• Remote access support

11.4.6 Telecommunications Strategy to Meet CSC Business Needs
To support the CSC business requirements outlined in
Section 11.3, the CSC data center staff decided that their
telecommunications strategy must include the items in the
following list:

• Centralized monitoring and management of:

Hardware network components (stations)

Network operations like connections within local area network (LANs)
and between the extended LAN and the wide area network (WAN)

Applications using the network

Security

Outage management

LAN and wide area network (WAN) management

Management escalation processes

Having the authority to escalate data center issues to CSC management
when an issue was not being addressed in the time frames set for a
particular event.

• A video distribution system

• Ethernet and DECnet for LAN and WAN connections

• Remote access capability

• Performance, or throughput, adequate to satisfy the business functions of
customers (CSC staff)

• Flexibility in the growth and dynamic changes to the network topology, to
match changing CSC business needs

11–8

Case Study: Lights Out Data Center
11.5 Implementing the Data Center’s Strategies

11.5 Implementing the Data Center’s Strategies
This section describes how the strategies discussed in Section 11.4 were
implemented by the Customer Support Center (CSC) data center staff. Note
that the strategy to fix problems in one area usually impacted one or several
area(s). Achieving 100% application availability at the CSC data center did not
happen by fixing the problems in category #1, people, and then moving onto
category #2, hardware, and so on. Instead, the refocused CSC data center
team worked to understand the dependencies within and between the six major
components of dependable systems. They arrived at tentative solutions, carefully
tested the effectiveness of each attempted solution, and remained flexible enough
to consider alternative approaches at any point in their efforts to significantly
improve the reliability, recoverability, and fault tolerance of their data center.

The Customer Support Center (CSC) lights out computing success is the result
of integrating data center and application development processes with hardware
and software configurations. Additionally, CSC made use of technologies that
can monitor applications and data center operations. The strategies outlined in
Section 11.4 translated into implementation tactics that can be categorized as
follows:

• Human factors planning and management. See Section 11.5.1.

• Technology planning and utilization. See Section 11.5.2.

• Environmental support, which consisted of a new close partnership between
the data center staff and the facilities staff to protect CSC against possibilities
like power outages and other factors. See Section 11.5.3.

• Application development’s management and implementation. See
Section 11.5.4.

• Overall operations support. See Section 11.5.5.

11.5.1 Sensitive Implementation of a Refocused Staff
Human factors planning and management played a key role in developing the
CSC’s lights out environment. Staffing requirements were reduced and shifted
away from computer operators and system managers to operational planning and
generalist support personnel.

Responsibilities for the new generalist function included overall management of
developers of applications, hardware low- to no-impact maintenance, support of
the operating system, all applications, new and changing technology, the process,
customer satisfaction, and capacity planning. In addition, there was an increased
reliance on service vendors and organizations typically outside of data processing.

In the CSC’s online environment, the pressures of running a daily business plus
migrating to a different computing strategy required maximum productivity,
efficiency, and cooperation from all staff members. By developing and
implementing a high-quality human factors management plan, the risk of
staff interruptions was greatly reduced.

Early in the planning process, the data center found it very important
to communicate the computing strategy vision to data center employees,
CSC customers, and CSC executive management. In addition, executive
management made clear to individuals their support concerning the shifts in
job responsibilities and staffing levels so that they could remain confident in
the company’s commitment to them. This was accomplished through career
counseling and skills retraining.

11–9

Case Study: Lights Out Data Center
11.5 Implementing the Data Center’s Strategies

During the planning or design process, plans for the continued computing
migration strategy were communicated to the organization’s employees. Feedback
processes were established to solicit creative ideas and to identify potential
problem areas. This expanded the information base that could be used as input
to further refine business requirements. Project plans were one of the many
business control processes used to implement and communicate change in the
environment whether it was an application, system, telecommunication, service,
or contingency.

11.5.2 Technology Planning and Utilization
The CSC data center staff found that technology planning and utilization was
critical to a successful lights out implementation. Hardware technology had to
support automatic, unattended system and network failover as well as remote
fault monitoring and isolation techniques.

Digital VAXcluster configurations, which operated in a networked environment
and were supported by appropriately planned OpenVMS operating systems with
DECnet for OpenVMS, were the CSC’s primary platform for lights out operations.

Additionally, several Digital technologies were used, including (what evolved to
become) DECalert, VMScluster Console System (VCS), Remote System Manager
(RSM), VAX Storage Library System (SLS), and DSNlink. These technologies
perform many functions, including the monitoring of system, network, security,
and application events. The events can trigger predetermined operational
decisions or notify responsible personnel. See Section 11.6 for details about the
CSC data center personnel’s use of these products.

Hardware options such as printers, removable disks, and tapes were excluded
in the CSC’s lights out architecture. In place of these, distributed, customer-
requested printing over the network, customer-requested report distribution,
fixed media, high density disk units with required volume shadowing and off-site
write once, read many (WORM) optical archiving were used. (This is an on-going
implementation for some of the tape areas.)

11.5.3 Protecting Against Environmental Factors
An integral part of the CSC’s planning process focused on the physical design
and layouts of the facility, environment, and utility support. Electrical and
HVAC support requirements were designed to deliver uninterrupted and properly
conditioned service.

The process, which continues today, included a five-quarter forecast for facility
modifications, systems, and telecommunications based on the business needs of
the Customer Support Center. All electrical conditioning and HVAC equipment
were designed to have automatic failover and remote monitoring/fault isolation
capabilities.

The CSC’s lights out data center was physically located away from high traffic
areas and areas of the building that frequently undergo modification. Its
location in the building optimized the availability of telecommunication and
environmental utility support.

The layout on the data center also supported the expansion of existing clustered
systems and minimized impacts to other production systems, maintenance of
equipment, and cabling required for inter-system and network connections.

The design of the data center met all local and Digital construction and fire
codes as well as Digital security standards. In addition, the design used remote
environmental monitoring equipment.

11–10

Case Study: Lights Out Data Center
11.5 Implementing the Data Center’s Strategies

11.5.4 Application Development Management and Implementation
In the CSC’s lights out environment, applications running in the data center were
not bound to any one system or site. Applications run across a VAXcluster and
take advantage of dynamic load balancing and automatic failover capabilities,
or run across sites. To develop these applications, phases from inception to
production were used. Each one of these phases was supported by an internal
operational support group.

During development, application developers were encouraged to establish
standards that optimized operational management routines inherent within VMS,
VAXclusters, clients, and DECnet. This process ensured that the application
would be properly serviced in the lights out environment.

In the benchmark phase, data was gathered from the application in order to
make evaluations and decisions on load balancing, VAXcluster capacity, and
network access. During testing, the application was run in a live environment
to determine if additional modifications to the application, system, cluster, or
environment would be required. During the acceptance and implementation
planning phases, changes were communicated to the customers and the
application was transitioned to production environment. Concurrent with this
phase, DECalert tables were loaded with information regarding predetermined
application decisions, notification routines, and responsible personnel.

Thus, a partnership was developed between the application development group
and personnel responsible for planning, upgrading, and managing the lights out
operating environment.

11.5.5 Overall Operations Support Implementation
In planning for a lights out computing environment, the CSC data center
developed and implemented an operational support strategy encompassing the
entire data center. The support strategy focused on:

• Management and implementation of established processes and procedures for
application development and implementation.

• Management and staffing of a data center and centralized help line for
system, application, facility, security, and critical event support.

• Enhancing and upgrading VMS, VAXcluster, and environmental operating
systems with Digital proprietary software programs specific to a lights out
operating environment.

• Remote fault isolation, resolution, and repair of hardware, system, and
software products in addition to network components and telecommunication
services.

• Remote fault isolation, resolution, and repair of electrical, HVAC, and data
center support equipment.

These services required an experienced maintenance management organization
with skills and expertise in maintenance planning, security, operational
support delivery, and project management, in a multivendor, multitechnology
environment.

One of the applications developed by the data center personnel that performed
fault management tasks became a Digital product called DECalert. See
Section 11.6 for details.

11–11

Case Study: Lights Out Data Center
11.6 DECalert and Other Products Used to Manage CSC Data Center Operations

11.6 DECalert and Other Products Used to Manage CSC Data
Center Operations

In order to ensure the dependability of CSC computing services and to improve
the quality of their own personal lives, CSC data center personnel built an
internal application that performed fault management tasks. The data center
personnel had several goals in designing their system and selecting (or building
their own) data center tools:

• To meet CSC’s business requirement for 100% application availability.

• To keep operational costs down by minimizing the size of the staff necessary
to manage the data center.

• To build sensors and alarms so that the computing systems can be monitored
automatically. Over time, to enhance this high degree of fault management
as new scenarios for potential problems are realized.

• To allow the remaining data center staff to enjoy their assignments by
concentrating on implementing always changing data center technologies (as
opposed to mounting backup magnetic tapes from 10 p.m. to 2 a.m.).

By 1991 the fault management alerting application had evolved into a Digital
product called DECalert and the data center had developed a comprehensive set
of customized sensors to detect potential problem situations.

Note

In February 1994, Digital granted Target Systems Corporation a
nonexclusive, nontransferable license to use DECalert Version 1.2
software. Under the agreement, Target Systems may provide support for
the Digital customer base (existing and future) for the product, as well
as future development and migration of the product or its derivatives.
Target Systems named the product TARGET–>ALERT.™ Digital reserves
the right to continue to sell DECalert or its enhancements, as Digital
deems fit.

Figure 11–1 illustrates DECalert and other products used to manage the CSC
data center operations.

11–12

Case Study: Lights Out Data Center
11.6 DECalert and Other Products Used to Manage CSC Data Center Operations

Figure 11–1 CSC Data Center Operations Management

DECalertNetwork
Management

Operations
Management

LAN
Traffic

Monitor
ETHERnlm

Network
Tools

DECnet
Monitor

RUDEM

Network
Sensors

DECnet
Node
Watch

LAT
Node
Watch

Server
Node
Watch

VAX
Console
System

VAXsim
Plus

User
Sensor
Modules

Database

Threshhold

DIANA
Server and Service

.

.

.

.
Event Log
Topology

.

DIANADISPLAY

ZK−3808A−GE

As the central component, or heart of the CSC data center operations, DECalert
helped the data center staff:

• To improve system availability by avoiding potential problems through early
detection

• To save costs by allowing the data center to better use their personnel and
to minimize the need for additional staff to support expanding computing
systems at CSC

As an alerting technology for data centers, DECalert is designed to consolidate
and distribute system and user events to the appropriate personnel. As a data
center support application, DECalert monitors systems and network components
such as DECnet Phase IV nodes, LAT service nodes, and terminal servers.
DECalert provides:

• Consolidation and distribution of data center alarms

• Support of custom-written sensors

• Self-monitoring features for high reliability

• Alerting options to set a required response or no required response

• Event logging and filtering

• Automatic escalation procedures if an alert that requires a response within a
given time period is not being answered

• Report generation

• A playback feature that allows for review of all reported events

11–13

Case Study: Lights Out Data Center
11.6 DECalert and Other Products Used to Manage CSC Data Center Operations

DECalert helps the CSC computing services team anticipate data center problems
through early detection. One of the fundamental standards in data center
management is fault prevention, which is the focal point of DECalert. DECalert
uses four aspects of fault prevention:

• Detection

• Notification (main concentration of DECalert)

• Isolation

• Correction

Figure 11–2 depicts the DECalert sensors and alert notifications.

Figure 11–2 DECalert Sensors and Alert Notifications

Alert Notification

Prewritten
(DECalert)
Sensors

Corporate
Sensors

Custom or
User−Written

Sensors

Online
Graphics

Operation
Center

Loud Speakers

Electronic
Mail

Messages

Telephones
and

Pagers

Sensors

DECalert
Hub

ZK−3809A−GE

In Figure 11–2:

• Prewritten DECalert sensors are DECalert product-specific sensor modules
provided with the DECalert software kit. RUDEM, shown in Figure 11–1, is
the module that enables you to write the custom-sensor applications.

• Corporate sensors are Digital software products that detect significant
events. DECalert augments the event notification capability inherent in these
products with additional alert notification features. The associated Digital
products include Data Center Monitor (DCM), DEC Management Control
Center (DECmcc), VAXsimPLUS, VMScluster Console System (VCS), and
DECscheduler. These products are summarized later in this section.

11–14

Case Study: Lights Out Data Center
11.6 DECalert and Other Products Used to Manage CSC Data Center Operations

• Custom-sensor applications are those that you can write to suit the needs of
your systems and networks. You define the conditions and necessary alerting
of personnel about potential problems. You can write the applications as DCL
command procedures, programs, or both.

In addition, Figure 11–2 shows how DECalert performs event notification
through:

• Online graphics

A hierarchical display highlights all entities with outstanding alert conditions.

• Electronic mail messages

The OpenVMS Mail Utility notifies designated personnel.

• Operation center loud speakers

Loud speakers use synthesized DECtalk voice announcements that detail
alert conditions.

• Telephone messages and pagers

Local or remote notifications can occur over telephones, voice pagers, and
display pagers. DECalert provides support for paging systems that require
pager identification numbers. Thus, DECalert can page using services such
as SkyPager® and People Finder®.

The main DECalert processes, or core software, are:

• ALERT, which accepts alert messages from software sensors.

• DIANA, which performs all forms of notifications except for graphical
displays. DIANA is an acronym for DECtalk Interface and Network Analysis.

• DISPLAY, which searches specific DECalert databases for information about
the physical location of the device for which the alert message was generated.

Figure 11–3 shows the DECalert modules that perform notifications and
displays.

11–15

Case Study: Lights Out Data Center
11.6 DECalert and Other Products Used to Manage CSC Data Center Operations

Figure 11–3 DIANA Modules and DISPLAY

DIANA_VIC

.......

DECtalk

DIANA
CALL_IN

Cellular
Touch Tone

Phone

DIANA PAGER_MANAGER

Pager

DTC03−AA

DISPLAY

ZK−3810A−GE

Character−cell
Terminal

DIANA
Mail

In Figure 11–3:

• DIANA_VIC, or DIANA Verbal Information Center, coordinates all voice
announcements

• DIANA CALL_IN lets you call in to the DECalert system to retrieve messages
posted with the pager

• DIANA Mail provides for VAX mail notifications of DECalert alert conditions

• DIANA PAGER_MANAGER communicates changes in the monitored
environment to the support personnel by paging with displays, voice pagers,
paging services, cellular telephones, and touch-tone telephones

Related products used to manage the CSC data center operations:

• NMCC/Ethernet Network Integrity Monitor (ETHERnim) is a network
management tool that aids in fault isolation and configuration management
of extended LANs. ETHERnim is an OpenVMS layered product that listens
to a network and builds a database and graphic topology map of the extended
LAN. ETHERnim recognizes Digital devices and other vendor devices on
the LAN or extended LAN and includes them in the database and topology
map. ETHERnim is designed to test the communications path through the
Ethernet protocol and DECnet.

11–16

Case Study: Lights Out Data Center
11.6 DECalert and Other Products Used to Manage CSC Data Center Operations

With ETHERnim, the network managers at the CSC data center can
reference a large amount of information about each node via a database that
can be edited. ETHERnim can determine the processor type for OpenVMS
DECnet nodes on the Ethernet. Refer to the Telecommunications and
Networks Buyer’s Guide and the ETHERnim documentation set for details
about ETHERnim.

• LAN Traffic Monitor (LTM) provides information needed to maximize network
performance and plan network growth. LTM analyzes the use of an extended
LAN. This product provides network use graphs that show the network
manager the performance of the various LAN segments. LTM gathers traffic
statistics from any device connected to the LAN and provides data based on
nodes, addresses, and protocol types. Refer to the Telecommunications and
Networks Buyer’s Guide and the LAN Traffic Monitor documentation set for
details about LTM.

• DECnet Monitor is a software tool for the observation and control of complex,
corporate backbone networks, such as the one that exists between Digital
engineering and support organizations, including the three U.S. CSC sites in
Colorado, Georgia, and Massachusetts.

DECnet Monitor responds to English-like commands and graphically presents
network conditions on a color (or monochrome) network topology map.
DECnet Monitor features include:

Nodes that can be instructed to send selected DECnet events to DECnet
Monitor, helping (along with DECalert) to avoid major problems and
minimize node down time because it enables a manager to detect
problems early.

Relational database capabilitites that provide for active or passive
collection of statistics.

Visual displays of network configuration and performance information
that simplify interpretation of data and highlight conditions requiring
attention. The network topology is displayed as a logical map for
recognition of network elements and potential trouble areas.

Histograms and bar charts that display historical information to help
data center staff analyze trends and plan for growth and change.

Real-time event logging with predetermined polling parameters that
enable data center staff to detect problems early.

• Data Center Monitor (DCM) checks system and application processes and
printer and batch queues, reporting abnormal events via a screen display,
VAX electronic mail, or DECtalk. DCM eliminates the need for system
support staff to continuously monitor operations of the data center by
providing notification the moment an abnormal event occurs. DCM currently
includes about 30 defined events. Three examples of DCM events that could
be used by the CSC data center personnel:

• A disk is approaching a defined threshold of remaining free blocks

• A shadow set is losing a member disk

• A queue is stopped

DECalert interfaces with DCM and provides sophisticated notification
technology. DCM provides built-in event coverage that is not available with
DECalert (unless the user creates the event sensing code).

11–17

Case Study: Lights Out Data Center
11.6 DECalert and Other Products Used to Manage CSC Data Center Operations

• DEC Management Control Center (DECmcc) is a multivendor network
management platform that coordinates interactions among various network
modules. With DECmcc, several network systems (including those from
computer vendors other than Digital) can be monitored simultaneously.

DECalert interfaces with the Digital Enterprise Management Architecture
(EMA) compliant version of DECmcc via the DECmcc ALARMS functional
module.

• The VMScluster Console System (VCS) helps the data center staff to
consolidate system management functions by replacing multiple hardcopy
console terminals with a single VCS. When VCS is linked to each device,
all console messages are sent to a single console. VCS time-stamps all data
received from each node and records it in a central disk file. This information
can be retrieved at specific time intervals for display or printout by any
terminal connected to the VCS.

Using VCS reduced space constraints and cut overhead. Before VCS, system
managers and operators looked for error messages (on reams of paper near
each node) about conditions that might adversely affect system performance
and reliability. The benefits of VCS include:

Better console and system management

Improved operator and manager productivity

Increased floor space in labs (where hardcopy consoles formerly resided at
each VAX node)

Reduced clutter, noise, and maintenance costs

Improved ability to plan changes to the installation configurations

The CSC data center staff uses VCS to capture system error messages on a
centralized console. The CSC data center personnel uses VCS for its console
consolidation capability and to handle events that are reported via the
console. When possible, events are forwarded to DECalert.

As noted elsewhere in this handbook, part of achieving system availability
and dependability is fast recovery. VCS console consolidation lets an operator
connect to the console ports of (up to) 32 systems (AXP nodes, VAX nodes,
HSC devices, others) from a single workstation. This feature enables an
operator to reboot a system from the control room while still having access to
other information being reported by DECalert, DCM, and other products.

• VAXsimPLUS works with the RUDEM component of DECalert to reduce
down time by continuously monitoring system performance. VAXsimPLUS
identifies intermittent problems, predicts failures, and (in the case of RA*
disks) initiates corrective action.

With RA™ Winchester disks, the early warning capability of VAXsimPLUS
enables its autocopy feature to automatically invoke Volume Shadowing for
OpenVMS when a drive is in the warning condition. VAXsimPLUS identifies
the problem while making a backup copy of the suspect drive onto the spare
drive. This dynamic disk substitution ensures that data availability and
integrity are maintained. Users continue to run their applications from the
spare drive while the original drive is taken off line and serviced. Once the
drive has been repaired, the data is restored to the original drive, returning
the backup drive to its original shadow set for future autocopy needs.

11–18

Case Study: Lights Out Data Center
11.6 DECalert and Other Products Used to Manage CSC Data Center Operations

• The data center uses VAX Storage Library System (SLS) to manage their
removable tape media. SLS manages most VMS-supported removable-media
storage devices include reel-to-reel magnetic tape drives, cartridge tape
drives, the RV20 optical drive, and the RV64 optical tape drive. The data
center uses SLS primarily to support the automated TA90 cartridge loader,
select a group of scratch tapes, and to place them in the loader for unattended
backups. As each tape is loaded, SLS verifies that it is a scratch tape
(and not a data tape loaded by mistake) before writing on it. SLS reports
inconsistencies with tape labels to the operator. SLS can also track media
movement between data center and off-site storage and notifies system users
if media are unavailable or in remote storage.

In general, SLS features also allow operators to read and write both ANSI
and IBM tapes. It translates EBCDIC (IBM) to ASCII (most other vendors)
code and vice versa. This capability lets you use nine-track or TA90 cartridge
tapes to move data back and forth between Digital and IBM systems. SLS
can also validate, read, and write ANSI tapes. The software can read (but not
validate) IBM labels, and it can write unlabeled IBM tapes.

11.7 Additional Benefits of the Lights Out Environment
The transition to a lights out computing strategy provided CSC with a significant
opportunity to realize additional organizational benefits. They included:

• Reducing long term operating costs

• Moving directly to an advanced high performance organization

• Molding contingencies directly into strategies

• Increasing security measures, controls, and awareness

• Providing optimum advantages in state-of-the-art technology

• Increasing flexibility

• Developing proactive data center management

• Increasing awareness of their business

11–19

A
Data Center Evaluation Checklists

This appendix contains data center evaluation checklists that you can use
to determine whether your current computing resources meet the minimum
suggested requirements for a dependable computing environment. The checklists
are useful for identifying the elements that you must manage to achieve a
dependable computing environment.

The questions are structured so that the correct answer is Yes. If, after
completing the checklists, you find that you have answered a majority of the
questions with a No, you should take steps to remedy the particular inadequacy.
If you need professional help, contact your local Digital support representative
or call 1-800-DIGITAL (1-800-344-4825) for inquiries about consulting services; a
Digital consultant can help you analyze areas that need improvement and define
a schedule for implementing changes to create a more dependable computing
environment.

Note

The checklists are available on line in SYS$EXAMPLES1 Print
VMS_DEPENDABILITY_CHECKLIST.PS if you have a PostScript
printer and wish to complete one or more copies of the checklist
in paper form. Print VMS_DEPENDABILITY_CHECKLIST.TXT
if you do not have a PostScript printer. A third option is to copy
VMS_DEPENDABILITY_CHECKLIST.TXT from SYS$EXAMPLES to a
private directory, invoke a text editor, and complete the checklist on line.

1 VAX systems only; the information in the checklists is relevant, however, for data
centers using AXP systems, VAX systems, or both.

A–1

Data Center Evaluation Checklists

The evaluation checklists are organized into the following categories:

• General planning (see Section A.1.)

Comprehensive, well-documented plans are essential to a data center. The
general planning checklist evaluates your data center’s general planning
strategy.

• Environment management (see Section A.2.)

Effective management of your data center’s management is critical.
The environment management checklist evaluates your data center’s
environmental management strategy.

• Data center organization (see Section A.3.)

The data center organization checklist evaluates your overall strategy.

• Security (see Section A.4.)

Strict security strategies must be implemented to protect your data center
from intruders. The security checklist evaluates your data center’s security
strategy.

Caution

Use discretion in selecting which options to enable. Extensive use of
security auditing can consume significant system resources.

• Application software (see Section A.5.)

Vendor-supplied application software and your group’s application software
must be evaluated and tested extensively before it can qualify to be installed
on production systems in your data center. The application software checklist
evaluates your data center’s application software strategy.

• Digital service and support (see Section A.6.)

Digital specialists can help you plan strategies for building a data center. The
Digital service and support checklist evaluates your data center’s support
strategy.

Section A.7 contains a compliance summary table so that you can determine
how well your data center complies with suggested techniques for achieving a
dependable computing environment.

A–2

Data Center Evaluation Checklists
A.1 General Planning Checklist

A.1 General Planning Checklist

General Planning

o Are the computing system tools and techniques used
 in conformance with architectures and strategies
 approved by Digital?

o Is Digital aware of the your group’s telecommunications
 needs and desires?

o Regarding long−range business, technology, and service
 plans:

 − Is there a current, published mission or charter
 statement for the data center group?

 − Is there a current organization chart for the data
 center group?

 − Do current plans for the data center group include
 the following:

 * Capacity planning?

 * Hardware planning?

 * System software planning?

 * Technology planning?

 * Project planning?

 * Human resource planning?

 * Business planning?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Continued

ZK−3835A−GE

Page 1 of 2

A–3

Data Center Evaluation Checklists
A.1 General Planning Checklist

 − Are the plans updated annually?

o Is there sufficient capacity and bandwidth in the
 network to meet future requirements?

o Does the data center group have a long−range plan and
 is it consistent with the business long−range plan?

o Are planned deliverables associated with resource
 projections?

Yes No

Yes No

Yes No

Yes No

General Planning (Cont.)

ZK−3836A−GE

Page 2 of 2

A–4

Data Center Evaluation Checklists
A.2 Environmental Management Checklist

A.2 Environmental Management Checklist

Environmental Management

o Regarding the construction and location of the computer
 room:

 − Are the computer room walls away from outside walls?

 − Are the computer room walls not sharing walls with
 public areas such as a cafeteria?

 − Are there floor−to−ceiling walls?

 − Is the computer room protected by self−lock doors
 that are not affected by air pressure?

 − Is an emergency power shutoff located at each door
 and away from light switches?

 − Are there adequate emergency exits available and
 clear of obstruction?

 − Is emergency lighting available in computer room?

 − Are cables (if not under raised floor) secure so
 as to avoid tripping or injury?

 − Is there an intrusion detection system with
 monitoring?

o Are the procedures and equipment in place for fire
 protection?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Continued

ZK−3837A−GE

Yes No

Page 1 of 3

A–5

Data Center Evaluation Checklists
A.2 Environmental Management Checklist

Environmental Management (Cont.)

Continued

o Have all tests of procedures and equipment been
 documented?

o Have you taken the following precautions:

 − Smoking forbidden in computer room?

 − Eating and drinking forbidden in the computer room?

 − Adequate humidity, air−conditioning, and temperature
 controls in place and regularly tested?

 − Flammable materials not stored in computer room?

 − Sprinkler systems designed to minimize damage to
 equipment?

 − Fire evacuation plan in place?

 − Smoke detectors and heat−sensitive alarms installed?

 − Halon gas fire extinguishers available?

 − Fire detection and alarm systems linked to main
 system for the building?

 − Link to fire department established?

 − Fire extinguishing systems and hand−held
 extinguishers accessible from every location
 in computer room?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

ZK−3838A−GE

Page 2 of 3

A–6

Data Center Evaluation Checklists
A.2 Environmental Management Checklist

Environmental Management (Cont.)

 − Fire extinguishers tested periodically and up to
 date?

o Is the media library separated from the computer room?

 − Is it constructed with similiar precautions as

 − Does it have the same types of physical security
 controls?

o Are records kept for:

 − Terminals connected to systems?

 − Nodes connected to networks?

 − List of system users?

o Is there a documented layout of all hardware?

o Is the facility wiring well documented?

o Is there a facility−wide wire labeling standard?

o Are all wires and cables labeled?

o Is the data switch well documented?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

ZK−3839A−GE

Page 3 of 3

the computer room?

A–7

Data Center Evaluation Checklists
A.3 Data Center Organization Checklist

A.3 Data Center Organization Checklist

Data Center Organization

o Regarding human resource plans and implementations:

 − Is the delegation of duties supported by current job
 descriptions?

Are there full job descriptions for all data center
 personnel outlining their duties and responsibilities?

 − Are there current and signed (manager and employee)
 job plans?

 − Is there on file a documented training and
 development schedule for all personnel within the
 data center group?

 − Is the plan being implemented on schedule?

o Is the number of nondesktop computer systems managed
 per system manager (or data center operations support
 person) less than four (managed means substantial
 system support is provided)?

o Is the number of desktop computer systems and other
 computing devices for each support person less than 50?

 − Are floppy disks stored in a dust−free,
 magnetic−free area?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Continued

ZK−3840A−GE

Page 1 of 2

A–8

Data Center Evaluation Checklists
A.3 Data Center Organization Checklist

 − Is there a formalized backup procedure for floppy
 disks and evidence that the procedure is being
 followed on a routine schedule?

o Is the percent of printers in the computing environment
 less than 60% of all printers at the site?

o Is the percent of data being backed up less than 60% of
 all data on disk or tape?

o Are backup and archiving retrieval process and
 measurements planned and implemented?

Yes No

Yes No

Yes No

Yes No

Data Center Organization (Cont.)

ZK−3841A−GE

Page 2 of 2

A–9

Data Center Evaluation Checklists
A.4 Security Checklist

A.4 Security Checklist

Security

o Is there a documented process for requiring password
 changes on a regularly scheduled basis?

o Is there a process to control passwords?

 Does this include password minimum length checks and
 password expirations so that passwords are difficult to
 guess?

o Are computer system and network passwords changed at
 least every 3 months and other passwords changed every
 6 months?

o Have you published a system security and internal
 control training and awareness schedule for all data
 center personnel?

o Is there documented evidence that the schedule is being
 implemented?

o Is there a documented procedure to grant accounts on
 computer systems?

 Does this procedure include:

 − Statement of need?

 − Signatures of requester, requester’s manager, system
 manager, and person setting up the account?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Continued

ZK−3842A−GE

Page 1 of 8

A–10

Data Center Evaluation Checklists
A.4 Security Checklist

Security (Cont.)

Continued

 − Time periods for access and an expiration date?

o Does each user have his or her own account?

o Are account privileges strictly controlled?

o Do privileged users have nonprivileged accounts for
 normal access (consider whether additional password
 controls are required, such as password minimum length
 checks, password expirations, and using only
 system−generated passwords)?

o Are accounts that have been inactive for long periods
 of time verified as being current (for example, to
 check for employees transferred or terminated)?

o Are approved computer security tools and processes
 implemented for all computer systems?

o Have you enabled notification for:

 − World−readable files?

 − Passwords shorter than minimum length?

 − Expired passwords?

 − Privileged access and modifications to critical
 system files?

 − Login or file access failures?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

ZK−3843A−GE

Page 2 of 8

A–11

Data Center Evaluation Checklists
A.4 Security Checklist

Security (Cont.)

Continued

o Do all computer systems ensure maximum security?

o Are all accounts authenticated at least once every 6 to
 12 months?

o Are computer system accounts that are not used on a
 regular basis deactivated until actually required?

o Is there a procedure to periodically check the user
 authorization file (UAF) for unauthorized access?

o Is physical access to the computer room controlled in
 these ways:

 − Is there a written list of authorized personnel?

 − Is the reason for access included?

 − Is one person responsible for keeping this list
 current?

 − Has the list been updated within the last 3 months?

 − Is there a visitors’ log?

 − Is the visitors’ log kept in a secure area?

 − Are access doors locked?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

ZK−3844A−GE

Page 3 of 8

A–12

Data Center Evaluation Checklists
A.4 Security Checklist

Security (Cont.)

Continued

 − Is there a documented procedure for assigning keys,
 key cards, and combinations?

 − Are access controls changed periodically and on
 transfer or termination of employees?

 − Are there clear procedures written for users
 and visitors to the computer room to outline
 the process?

o Regarding security for terminals and personal computers
 located outside the computer room:

 − Is there a program running on the computer systems
 that will log out terminals that have not been used
 for a given period of time?

 − Are user terminals logged off when unattended?

 − Is there a security awareness program for the
 organization (outside of the data center operations
 group)?

 − Do you have software approved by Digital on your
 systems?

 − Are desktops clear of the hardcopy information
 relating to computer system, network passwords,
 and other system account information?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

ZK−3845A−GE

Page 4 of 8

A–13

Data Center Evaluation Checklists
A.4 Security Checklist

Security (Cont.)

Continued

 − Are the desks and file cabinets locked?

 − Are floppy disks inaccessible in or near
 workstations?

 − Are keys kept out of open view?

o Regarding additional controls applied to guest accounts
 of the computer systems:

 − Are activities reviewed and timely adjustments made
 to changes in status?

 − Is a special default guest account established?

o Regarding controls for dial−in numbers:

 − List of authorized users?

 − Periodic changing of numbers?

 − Procedures to notify users of number changes?

 − A policy to minimize publishing dial−in numbers?

 − Long−range plans for dial−back equipment?

 − Policy about changing passwords when employees with
 access are terminated?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

ZK−3846A−GE

Page 5 of 8

A–14

Data Center Evaluation Checklists
A.4 Security Checklist

Security (Cont.)

Continued

o Is there documentation available and in place about:

 − A dial−back system?

 − Details about the network?

 − Terminal equipment installed?

 − Terminal switching systems?

 − Details about all terminal devices connected to the
 network?

 − Details about all dial−in equipment?

o Are fault logs maintained to record problems?

o Is the transmission of sensitive information closely
 monitored?

o Are there contingency arrangements for network
 failures?

o Regarding controls to manage internal network
 connections and monitor usage:

 − Documentation showing wide area network (WAN)
 circuits and business reasons?

 − Documentation showing network links?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

ZK−3847A−GE

Page 6 of 8

A–15

Data Center Evaluation Checklists
A.4 Security Checklist

Security (Cont.)

Continued

 − Network registration include written approval the
 manager, statement of need to connect, and

 statement of security controls implemented on
 node?

o Are controls in place to conform to international
 regulations if networks are used to pass information
 over national boundaries?

o Are the wide area network (WAN) and local area network
 (LAN) availability and performance measurements
 consistent with the service agreement?

o Computer systems remotely monitored or managed:

 − Are services evaluated for potential out−sourcing to
 other internal or external groups?

 − Is the percent of computer systems remotely
 monitored or managed greater than 40% of all remote
 computer systems?

 − Is the percent of managed computer systems remotely
 diagnosed or maintained greater than 60% of all
 computer systems managed?

 − Are system management tools and techniques in
 conformance with Digital architectures?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

ZK−3848A−GE

Page 7 of 8

A–16

Data Center Evaluation Checklists
A.4 Security Checklist

Security (Cont.)
o Is the tool set planned or implemented?

o Is the percent of costs for backup and archiving less
 than 16% of total support costs?

o Is a program to reduce backup and archiving volumes and
 costs planned or implemented?

o Is the number of monthly failures fewer than 5 (failure
 means user access or activity is delayed for more than
 30 minutes)?

o Is the mail menu response time less than 4 seconds
 (average, measured in seconds)?

o Are system capacity and utilization criteria and
 measurements planned or implemented?

o Is migration to the latest hardware and released
 software upgrades planned and implemented when
 justified?

o Is there involvement in product improvement through
 participation in field tests or other feedback to
 Digital engineering?

o Are data center policies and operating instructions
 regularly maintained and made available to employees
 responsible for planning or maintaining the computing
 environment?

o Is the coverage of the Digital service contracts
 sufficient to ensure minimum down time for critical
 systems and time periods (fiscal closings, development
 schedules, and so on)?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

ZK−3849A−GE

Page 8 of 8

A–17

Data Center Evaluation Checklists
A.5 Application Software Checklist

A.5 Application Software Checklist

Application Software

o Regarding operations involvement in life−cycle process
 for all mission−critical applications:

 − Is there active participation in a formal process
 to review application development proposals and
 projects to ensure that the application is making
 the best use of technical advances and automation to
 reduce data center staffing requirements?

 − Do you make sure, prior to online implementation,
 that new systems or modifications have been
 authorized by computer operations personnel and
 system management?

 − Is there a formalized review and approval process
 prior to publication and distribution of all
 computer operations and applications documentation?

 − Is operational support of third−party software
 consistent?

o Regarding the application acceptance process in
 partnership with developers and users and the
 procedures to monitor and control installation
 capacity:

 − Are there established performance criteria for each
 application?

Yes No

Yes No

Yes No

Yes No

Yes No

Continued

ZK−3850A−GE

Page 1 of 2

A–18

Data Center Evaluation Checklists
A.5 Application Software Checklist

 current system utilization?

Application Software (Cont.)

 − Are application development and enhancement
 projects reviewed for capacity impacts?

o Does a controlled test environment exist?

 Does formal testing take place before production use of
 system and application software?

o Are Digital software applications as well as new
 versions of VMS tested before they are installed?

o Is there a formal process implemented for installing
 system and application software?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

 − Is there an ongoing process in place to evaluate

ZK−3851A−GE

Page 2 of 2

A–19

Data Center Evaluation Checklists
A.6 Digital Service and Support Checklist

A.6 Digital Service and Support Checklist

o Regarding a service portfolio and delivery plan:

 − Is a formal process implemented for updating
 operating systems?

 Are upgrade notifications published?

 − Is there a current listing of all software
 applications being used?

 − Is there a current listing of all software,
 hardware, and services that Digital is chartered
 to support?

 − Are there on file appropriately signed, current, and
 published agreements and contracts supporting the
 portfolio?

 − Is there documented evidence that terms and
 conditions of the service agreements and contracts
 are reviewed on a periodic basis for compliance and
 that revisions are being identified and completed?

o Are production problems monitored and noted?

 Is corrective action taken?

o Is there a system management council or steering
 committee where data center personnel meet with Digital
 to assess activity and prioritize future requirements?

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Digital Service and Support

ZK−3852A−GE

A–20

Data Center Evaluation Checklists
A.7 Compliance Summary

A.7 Compliance Summary
Table A–1 provides a method for you to compile the results of the evaluation
checklists. The table helps you to compare the number of times that you
answered Yes to the total number possible. By examining areas where you are
deficient, you can define what traits are lacking from your computing system and
plan a strategy for achieving a desirable level of dependability.

Table A–1 Compliance Summary

Category

Total
Possible
Compliance Yes Answers % Compliant

General planning 15

Environmental
management

34

Data center organization 12

Security 78

Application software 11

Digital service and
support

9

Total compliance 159

A–21

B
Bibliography

This bibliography lists suggested readings for further study of topics related to
system dependability. It is organized into two sections:

• Publications from Digital

• Publications from other sources

B.1 Digital Publications
The following Digital publications may be ordered by contacting DECdirect at
1-800-DIGITAL (1-800-344-4825):

Computer Engineering
A DEC View of Hardware Systems Design
C. Gordon Bell—J. Craig Mudge—John E. McNamara
Digital Press, Bedford MA
ISBN 0-932376-00-2
A course in understanding computer hardware through classic examples.

Computer Programming and Architecture
The VAX
Henry M. Levy—Richard H. Eckhouse Jr.
Digital Press, Bedford MA
A comprehensive study of VAX hardware architecture and OpenVMS
operating system internals.

The Digital Guide to Software Development
Corporate User Publications Group
Digital Press, Bedford MA
An overview of Digital’s standard methodology.

B–1

Bibliography
B.1 Digital Publications

The Human Factor
Designing Computer Systems for People
Richard Rubinstein—Harry M. Hersh—Henry Ledgard
Digital Press, Bedford MA
Helps you look at your system from the end-user’s viewpoint.

Introduction to VAXcluster Application Design
Order Number: AA-JP32B-TE, with binder
Digital Equipment Corporation, Maynard, MA
For system designers and programmers who want to learn by example the
techniques of building robust VAXcluster applications.

VAX/VMS Writing Real Programs in DCL
Paul C. Anagnostopoulos
Digital Press, Bedford MA
ISBN 1-55558-023-8
A style guide for implementing robust command procedures.

Version 5.4 VAXcluster Principles Update
Order Number: EK-VAXCP-UP-001
Digital Equipment Corporation, Maynard, MA
Describes how VAX VMS implements the distributed operating system called
a VAXcluster.

B–2

Bibliography
B.1 Digital Publications

Digital Technical Journal articles
Digital Equipment Corporation, Maynard MA
In-depth technical discussions by the responsible project engineers.

Availability in VAXcluster Systems and
Network Performance and Adapters, EY-H890E-DP

Compound Document Architecture, EY-C196E-DP

CVAX-based Systems, EY-6742E-DP

DECwindows™ Program, EY-E756E-DP

Distributed Systems, EY-C179E-DP

Fiber Distributed Data Interface, EY-H876E-DP

Software Productivity Tools, EY-8259E-DP

Storage Technology, EY-C166E-DP

Transaction Processing, Databases, and Fault-tolerant Systems, EY-
F588E-DP

VAX 6000 Model 400 System, EY-C197E-DP

VAXcluster Systems, EY-8258E-DP

The following document is available but may be ordered only through your Digital
representative:

The Digital Services Reference Guide
Order number: EC-G1726-76
Corporate Services Communications
Digital Equipment Corporation, Maynard, MA
A comprehensive handbook covering Digital’s U.S. consulting services.

B–3

Bibliography
B.2 Other Publications

B.2 Other Publications
The following publications are available from sources other than Digital:

Out of the Crisis
W. Edwards Deming
MIT CAES, Cambridge
ISBN 0-911379-01-0
From one of the founding fathers of today’s Quality Revolution.

Managing the Software Process
Watts S. Humphrey
Addison-Wesley, Reading, MA
ISBN 0-201-18095-2
The definitive text on improving your software development process.

Computer Disaster Recovery Planning
Kenneth N. Meyers
Battelle Memorial Institute
To help you prepare for the worst.

The Psychology of Computer Programming
Gerald M. Weinberg
Van Nostrand Reinhold Company, NYC
ISBN 0-442-29264-3
A classic treatise on the human side of software development.

B–4

Glossary

This glossary defines terms related to the dependability of computing systems.

A 24x365 computing environment

Computing performed 24 hours a day, 365 days a year.

availability

The percentage or amount of scheduled time that a computing system provides
application service.

backup switching

An event that occurs when a second computing system or component picks up
processing in the event that the primary computing system or component fails.

Business Recovery Server

A system integration product consisting of a license, system management tools,
documentation, and installation and customization services that let you create a
multiple-site data center VMScluster system.

client

Hardware or software that obtains a specific set of services from a server.

client/server

A style of computing that uses a client and a server. See also client and server.

computing component

Part of the total computing system around which an arbitrary boundary has been
defined. The boundary can be defined at any level.

continuous improvement process

A methodology for implementing a process to continuously improve the
dependability of your computing system.

database administrator (DBA)

A person responsible for the design, creation, maintenance, and tuning of a
database.

data integrity

The ability of a system to maintain its information in a consistent state.

degraded performance

Performance in which service continues but response time is extended, the
number of users that can be served is reduced, or both.

Glossary–1

dependable computing system

A system that can be counted on to provide services to its users when those
services are needed and with sufficient performance. The computing components
are created and combined in the manner necessary to provide a required level of
trustworthiness.

disaster tolerant computing

A computing style where the systems continue to provide production work
regardless of fires, earthquakes, or other catastrophic disasters.

disk fragmentation

The state in which data file segments are so scattered across a disk that I/O
access performance diminshes to the point where the disk might appear to be
unavailable.

down time

The percentage or amount of time a computing system does not provide
application service as scheduled.

error

An event during the operation of a computing component that produces incorrect
results due to one or more faults. Errors are observed as incorrect responses
within a specific computing component.

error correction

The action necessary to isolate the effects of faults to a specific computing
component. The goal is to contain the impact of the problem.

failover

The ability of a computing system to reconfigure itself to use a working
component when a similar component fails.

failure

The inability of a computing component to perform its function correctly due
to one or more internal faults whose effects cannot be contained. Failures are
observed by the consumers of the computing component’s services as incorrect
behavior.

failure recovery

The action necessary to restore the failed computing component to a correctly
functioning condition. The goal is prompt return to zero defects.

fault

A defect in some component of a computing system.

fault management

The discipline used to engineer systems with a cost-effective balance of fault
prevention qualities, error correction capabilities, and failure recovery facilities.
Fault management is realized in the implementation of a dependable computing
system. It is also a philosophy that is followed during the implementation.

Glossary–2

fault prevention

The process of designing and constructing computing components to be free from
faults. The goal is zero defects.

fault tolerance

The ability of a computing system to withstand faults and errors while continuing
to provide the required services. See also hardware-based fault tolerance and
software-based fault tolerance.

front-end

The part of a computing system that typically handles data capture, terminal
displays, communications, and validation functions.

hardware-based fault tolerance

The ability to detect, isolate, and bypass a fault; engineered into and executed
through hardware.

hot standby

A second running computing system that is ready to pick up application
processing in the event that the primary computing system fails. That is, the
secondary system takes over the processing at the point where the original
computing system stopped and the secondary system continues the processing.

lobe

A set of CPUs that are connected together by one or more VMScluster
interconnects. A lobe must have its own system disk(s) used by all CPUs in that
lobe. A single CPU with a local system disk can be a lobe. Not all CPUs are part
of a lobe, however. For example, a set of workstations is not a lobe.

lock step

A characteristic when two or more CPUs execute exactly the same instructions
and all complete the instructions before any CPUs start their next instruction.

MDF

Multi-Datacenter Facility has been renamed Business Recovery Server. See the
Business Recovery Server definition.

mean-time-between-failures (MTBF)

The average time that passes before a computing component fails such that
remedial action is required.

MTBF

See mean-time-between-failures.

namespace

The collection of unique names in the VAX Distributed Name Service (DNS)
database. Each name refers to a particular network resource.

reconfiguring

The ability of a computing system to use different sets of components and
connections to form a new configuration.

Glossary–3

recoverability

The ability of a system to reconfigure itself and continue to (or quickly resume)
operation.

redundant component

Duplicate or extra computing components that protect a computing system from
failure.

reliability

The ability of a computing system to operate without failing. Measured by
mean-time-between-failures (MTBF).

scalability

A measure of how well the software or hardware product is able to adapt to
future business needs.

server

Hardware or software that provides a specific set of services to a client.

single points of failure

Portions of a computing system that, if they fail, cause the system to cease
providing service.

SMP

See symmetric multiprocessing (SMP).

software-based fault tolerance

The ability to detect, isolate, and bypass faults; executed through software.

symmetric multiprocessing (SMP)

A multiprocessing system configuration in which all processors have equal access
to operating system code residing in shared memory and can perform all, or
almost all, system tasks.

throughput

The number of transactions or jobs a computing system can complete in a given
period of time.

transition time

The amount of time that a failed computing system takes to reconfigure itself
following a component failure. Experienced as a gap in user response time.

transparent failover

The ability of a computing system to reconfigure itself or to switch processing to a
redundant component and to continue processing without writing any user code
or taking any corrective action.

uninterrupted service

The ability of a computing system to continue providing application service
during and after component failure without interruption or perceptible pause.

Glossary–4

Y-connector

Hardware that joins two synchronous communications lines into a single output
line.

zone

A section of a fully configured VAXft fault tolerant computing system that
contains a minimum of a CPU module, memory module, I/O module, and
associated devices. A VAXft system consists of two such zones with synchronized
processor operations. If one zone fails, processing continues uninterrupted
through automatic failover to the other zone.

Glossary–5

Index

A
ACMS

See also Desktop ACMS
application failover, 8–54
balancing process pools, 8–53
dependability features, 8–53
overview, 8–52
programming technology, 3–9
queuing, 8–57
terminal failover, 8–55

ACP-QIO interface
movefile subfunction, 9–17

Acquiring software packages, 3–10
Active-standby system kernels, 4–5
Addressing data

recovery from errors, 8–21
Air conditioning

environmental factor of dependable computing,
5–3

Allowing for LAN bridge failover, 7–9
Alternate adapter booting for satellite nodes, 7–9
Analyzing

and collecting requirements, 2–5
and prioritizing requirements, 2–8
communications options, 3–5 to 3–7
continuous improvement process, 2–1

analysis phase, 2–3
integration phase, 2–3
operational phase, 2–3
planning phase, 2–2

dependability constraints, 4–1
dependability needs, 2–1
environmental options, 3–2 to 3–3
hardware options, 3–3 to 3–5
operational procedures options, 3–12 to 3–14
personnel options, 3–15 to 3–16
software options, 3–7 to 3–12
the sample company, 2–9
user needs, 2–1
users and business functions, 2–5

Apparently not broken conditions
exhibiting, 1–10

Application Control and Management System
See ACMS

Applications
characterization consulting from Digital, 10–1
DATATRIEVE prototypes, 8–32
DBQ prototype, 8–33
DECforms prototypes, 8–32
dependability characteristics, 8–1
dependability features of application software,

8–35 to 8–58
failover, 8–54
forms interfaces, 8–50
managing shared information, 8–58 to 8–61
prototyping, 8–31 to 8–33
RALLY prototypes, 8–32
RDO prototype, 8–33
scaling considerations, 8–13
software performance, 4–13
SQL prototype, 8–33
synchronization techniques, 8–17
testing for dependability, 8–33 to 8–34
testing with DEC Test Manager, 8–58
testing with PCA, 8–59
VUIT prototypes, 8–32

Archiving backup data, 9–16
Artificial intelligence

VAX OPS5, 3–9
Autostart queues

failover, 9–18
Availability

achieved by shadow set configurations, 8–19
as a function of dependable computing, 8–58
definition, 1–6, Glossary–1
levels, 8–20f
recovery from failures, 8–21

Avoiding user errors
to support dependable computing, 3–12

B
Backup switching

definition, Glossary–1
Backups

archiving data, 9–16
DEC Rdb, online, 8–40
procedures, 9–14

Balance as a function of dependability, 1–17

Index–1

Basic concepts of dependability, 1–8
Batch and print queuing system

dependability features, 9–18
restarting, 9–19

Beepers for system managers and programmers,
3–13

Bibliography
dependability

publications from Digital, B–1
publications from other sources, B–4
suggested readings for further study, B–1

Broken conditions
returning from, 1–10

BRS (Business Recovery Server)
configuring a FDDI VAXcluster

overview of product, 5–12
configuring a FDDI VMScluster

overview of product, 6–18, 7–14
definition, Glossary–1

Building blocks, 1–1, 1–14
applying dependability strategies

error correction, 1–16
failure recovery, 1–16
fault tolerance, 1–16

communications, 1–15, 7–1
allowing for LAN bridge failover, 7–9
alternate adapter booting for satellite

nodes, 7–9
applying dependability strategies, 1–16
DECalert, 7–17
DECelms, 7–18
DECmcc, 7–19
DECnet Monitor, 7–18
degrees of protection from faults, 7–2
Ethernet and FDDI options, 7–8
ETHERnim, 7–18
LAN Traffic Monitor, 7–18
local area VMScluster failure analysis

program, 7–17
options, 3–5 to 3–7
proactive network monitoring and analysis

products, 7–17
providing multiple paths to Ethernet and

FDDI, 7–4
providing multiple WAN connections for

VAXft systems, 7–15
recommendations for VMScluster

environments, 7–5
sample multiadapter connections to LAN

segments, 7–6
sample VMScluster failure analysis

program, 7–9, 7–10
using DECnet cluster aliases, 7–15
using DFS, 7–17
using DNS, 7–16
using FDDI as VMScluster interconnect,

7–12
VCS, 7–18

Building blocks
communications (cont’d)

VMScluster satellite synonym, 7–9
dependability considerations, 3–1
environment

applying dependability strategies, 1–16
maintaining dependable environment, 5–1

environmental factors, 1–15
options, 3–2 to 3–3

hardware, 1–15
applying dependability strategies, 1–16
conventional AXP and VAX systems, 6–5
dependability characteristics summary,

6–20
eliminating single points of failure, 6–1
examples, 6–1
fault tolerant VAXft systems, 6–8
options, 3–3 to 3–5
VMScluster topologies, 6–10

operational procedures, 1–15
applying dependability strategies, 1–16
options, 3–12 to 3–14

personnel, 1–15
applying dependability strategies, 1–16
help from Digital consulting, 10–1
options, 3–15 to 3–16

software, 1–15, 8–1
application software dependability features,

8–35 to 8–58
applying dependability strategies, 1–16
managing shared information, 8–58 to

8–61
OpenVMS features, 8–10 to 8–28
options, 3–7 to 3–12
prototyping applications, 8–31 to 8–33
testing applications, 8–33 to 8–34
writing dependable code, 8–29 to 8–31

Building dependable systems, 1–1
achieving balance, 1–17
analyzing system requirements, 2–1
application software features, 8–35 to 8–58
building blocks, 1–14
characteristics, 1–9

fault tolerance, 1–10
recoverability, 1–10
reliability, 1–10

communications, 1–15
applying dependability strategies, 1–16
options, 3–5 to 3–7

considerations for applications, 8–1
construction phase, 1–12
consulting from Digital, 10–1
conventional level, 1–1

business example, 1–2
cross training personnel, 1–4
defining impact of security breaches, 1–5
designing emergency drills, 1–4
disaster tolerant level, 1–2

Index–2

Building dependable systems
disaster tolerant level (cont’d)

business example, 1–3
documenting procedures, 1–4
down sizing groups sensitively, 1–4
environment

applying dependability strategies, 1–16
environmental factors, 1–15

options, 3–2 to 3–3
fault tolerant level, 1–2
general approach, 1–3
hardware, 1–15

applying dependability strategies, 1–16
options, 3–3 to 3–5

highly available level, 1–1
business example, 1–2, 1–3

identifying application requirements, 1–4
identifying business requirements, 1–4
identifying constraints, 1–5
maintaining dependable environment, 5–1
managing shared information, 8–58 to 8–61
matching vendor products with requirements,

1–4
meeting changing requirements, 1–4
networks, 7–1

allowing for LAN bridge failover, 7–9
alternate adapter booting for satellite

nodes, 7–9
DECalert, 7–17
DECelms, 7–18
DECmcc, 7–19
DECnet Monitor, 7–18
degrees of protection from faults, 7–2
Ethernet and FDDI options, 7–8
ETHERnim, 7–18
LAN Traffic Monitor, 7–18
local area VMScluster failure analysis

program, 7–17
proactive network monitoring and analysis

products, 7–17
providing multiple paths to Ethernet and

FDDI, 7–4
providing multiple WAN connections for

VAXft systems, 7–15
recommendations for VMScluster

environments, 7–5
sample multiadapter connections to LAN

segments, 7–6
sample VMScluster failure analysis

program, 7–9, 7–10
using DECnet cluster aliases, 7–15
using DFS, 7–17
using DNS, 7–16
using FDDI as VMScluster interconnect,

7–12
VCS, 7–18
VMScluster satellite synonym, 7–9

OpenVMS features, 8–10 to 8–28

Building dependable systems (cont’d)
operational phase, 1–12
operational procedures, 1–15

applying dependability strategies, 1–16
options, 3–12 to 3–14

personnel, 1–15
applying dependability strategies, 1–16
options, 3–15 to 3–16

planning ahead, 1–4
primary strategies, 1–9

error correction, 1–10, 1–12
failure recovery, 1–10, 1–12
fault prevention, 1–10, 1–12

protecting against environmental factors, 1–5
prototyping applications, 8–31 to 8–33
redundant functional units, 1–13

automatic, 1–13
capacity related, 1–14
computing systems, 1–14
manual, 1–13

requirements levels, 1–1
software, 1–15

applying dependability strategies, 1–16
options, 3–7 to 3–12

testing applications, 8–33 to 8–34
testing procedures, 1–4
training personnel, 1–4
understanding your options, 3–1
writing dependable code, 8–29 to 8–31

Business considerations
coping with disasters, 5–12

C
C2 security

DEC Rdb compliance with, 8–48
Capacity diagrams

system kernel, 4–8
Capacity planning

service from Digital, 10–2
CASE

See also COHESION
See also DECset
DECset products, 3–8
writing custom applications, 3–8

Case studies
DEC Reliable Transaction Router, 8–2 to 8–10
lights out data center, 11–1 to 11–19

using DCM, 11–17
using DECalert, 11–12
using DECmcc, 11–18
using DECnet Monitor, 11–17
using ETHERnim, 11–16
using LAN Traffic Monitor, 11–17
using Storage Library System, 11–19
using VAXcluster Console System, 11–18
using VAXsimPLUS, 11–18

Index–3

Catastrophic failures
in hardware components, 9–12

CDD/Repository, 8–59
Central processing units

See CPUs
Characteristics of dependable systems, 1–9

fault tolerance, 1–10
recoverability, 1–10
reliability, 1–10

Checklists
evaluation of data centers

application software, A–18
compliance summary table, A–21
environmental management, A–5
general planning, A–3
in SYS$EXAMPLES, A–1
organization, A–8
security, A–10
service and support, A–20
suggested use of, A–1

CI (computer interconnect)
configurations, 6–15

Circuit level redundancy, 4–4
Client

definition, Glossary–1
Client/server

definition, Glossary–1
Client/server computing

paradigm, 8–16
Cluster aliases

See also DECnet, cluster aliases
Clusters

See VMScluster environments
CMS

tracking source code changes, 8–58
Code Management System

See CMS
COHESION

DEC CMS, 8–58
DEC LSE/SCA, 8–58
DEC MMS, 8–59
DEC PCA, 8–59
DEC Test Manager, 8–58
DECset products, 8–58
dependable software development, 8–58
support services from Digital, 10–2
writing custom applications, 3–8

Communications
analyzing options, 3–5 to 3–7
building block, 1–15

applying dependability strategies, 1–16
dependability characteristics, 7–1

allowing for LAN bridge failover, 7–9
alternate adapter booting for satellite

nodes, 7–9
DECalert, 7–17
DECelms, 7–18

Communications
dependability characteristics (cont’d)

DECmcc, 7–19
DECnet Monitor, 7–18
degrees of protection from faults, 7–2
Ethernet and FDDI options, 7–8
ETHERnim, 7–18
LAN Traffic Monitor, 7–18
local area VMScluster failure analysis

program, 7–17
proactive network monitoring and analysis

products, 7–17
providing multiple paths to Ethernet and

FDDI, 7–4
providing multiple WAN connections for

VAXft systems, 7–15
recommendations for VMScluster

environments, 7–5
sample multiadapter connections to LAN

segments, 7–6
sample VMScluster failure analysis

program, 7–9, 7–10
using DECnet cluster aliases, 7–15
using DFS, 7–17
using DNS, 7–16
using FDDI as VMScluster interconnect,

7–12
VCS, 7–18
VMScluster satellite synonym, 7–9

system network considerations, 3–7
Component failures, 9–10
Comprehensive training, 5–6
Computer interconnect

See CI
Computer-aided software engineering (CASE)

See CASE
See COHESION
See DECset

Computing components
definition, 1–5, Glossary–1
managing resources, 9–1
options of dependable system building blocks,

3–1
Concepts of dependability, 1–8
Configurations

active standby, 4–5
independently recoverable, 4–6
loosely coupled, 4–5
multiple adapters in VMSclusters, 7–5
shadow set

effect on availability, 8–19
examples, 8–23
high-availability local area VAXcluster,

8–23f
VAXcluster with multiple HSCs and star

couplers, 8–25f
SMP, 4–4

Index–4

Configurations (cont’d)
software integration, 8–31
three LAN segments in a VMScluster, 7–7
tightly coupled system kernels, 4–5
two LAN segments in a VMScluster, 7–6

Consistency
ensuring during failures, 8–22

Constraints
putting into perspective, 4–3
to achieve dependability, 4–1

Construction phase
applying dependability strategies

error correction, 1–16
failure recovery, 1–16
fault tolerance, 1–16

building dependable systems, 1–12
Consulting

See Digital consulting
Contingency planning

service from Digital, 10–3
Continuous improvement processes

definition, Glossary–1
for dependability, 2–1

analysis phase, 2–3
integration phase, 2–3
operational phase, 2–3
planning phase, 2–2

Continuous processing
multiple system kernels, 4–5

Controller errors
recovery from, 8–22t

Conventional computing
business example, 1–2
definition, 1–1

Conventional systems
AXP, 6–5
VAX, 6–5

Cooling equipment
controlling temperature and humidity, 5–3

Coping with disasters, 5–8
business considerations, 5–12
environment, 5–8
time domain considerations, 5–9

Cost tradeoffs, 4–16
CPUs (central processing units)

multiple, 4–5
SMP configurations, 4–4

Cross training personnel, 1–4
See also Comprehensive training
at CSC data center, 11–6
relationship to role boundaries, 5–7

CSC data center
lights out case study, 11–1
using DCM, 11–17
using DECalert, 11–12
using DECmcc, 11–18
using DECnet Monitor, 11–17

CSC data center (cont’d)
using ETHERnim, 11–16
using LAN Traffic Monitor, 11–17
using Storage Library System, 11–19
using VAXcluster Console System, 11–18
using VAXsimPLUS, 11–18

Customer Support Center data center
See CSC data center

Customer training
advice package from Digital, 10–3

comprehensive training solutions, 10–4
course formats, 10–3
purchase options, 10–3

D
Data Center Monitor

See DCM
Data centers

backup procedures, 9–14
evaluation checklists

application software, A–18
compliance summary table, A–21
environmental management, A–5
general planning, A–3
in SYS$EXAMPLES, A–1
organization, A–8
security, A–10
service and support, A–20
suggested use of, A–1

locking the computer, 3–5
management techniques, 9–1
operations overview, 9–8
security policies, 9–19
software environment, 9–14

Data Distributor
use in wide area networks, 3–6

Data errors
recovery from, 8–22t

Data integrity
definition, Glossary–1

Data parity
dependability features, 8–26

Database administrators
definition, Glossary–1

Databases
automatic cleanup, 8–46
dependability features, 8–35 to 8–50
failover in VMSclusters, 8–35
failover of databases in VMSclusters

minimizing impact of component failure,
8–39

placement of files, 8–38
online backup, 8–40
online restructuring of characteristics, 8–46
RDO utility as prototyping tool, 8–33
replication across wide area networks, 3–6
security, 8–48

Index–5

Databases (cont’d)
use of transaction sequence numbers in online

backup, 8–41
use of two-phase commit protocol, 8–44
using DECtrace with DEC Rdb, 8–50
using RdbExpert with DEC Rdb, 8–50

DATATRIEVE
prototyping tool, 8–32

DBQ prototyping tool, 8–33
DCM

use at CSC lights out data center, 11–17
Dealing with personnel, 5–5

environment, 5–5
DEC Data Distributor

See Data Distributor
DEC DBMS

DBQ utility as prototyping tool, 8–33
DEC File Optimizer for OpenVMS, 8–27

defragmenting disks, 9–5, 9–17
DEC Management Control Center

See DECmcc
DEC PCA

See PCA performance testing
DEC RALLY

See RALLY
DEC Rdb

automatic cleanup of databases, 8–46
database security, 8–48
dependability features, 8–35 to 8–50
failover of databases in VMSclusters, 8–35

minimizing impact of component failure,
8–39

placement of files, 8–38
online backup, 8–40
online restructuring of database characteristics,

8–46
RDO utility as prototyping tool, 8–33
replication in wide area networks, 3–6
SQL utility as prototyping tool, 8–33
use of transaction sequence numbers in online

backup, 8–41
use of two-phase commit protocol, 8–44
using DECtrace with, 8–50
using RdbExpert with, 8–50

DEC Reliable Transaction Router
providing software fault tolerance, 8–2 to 8–10

DEC RTR
See DEC Reliable Transaction Router

DEC Visual User Interface Tool
See VUIT

DECADMIRE
applications development tool, 3–9

DECalert
ALERT process, 11–15
avoiding down time, 11–12
DIANA process, 11–15
DISPLAY process, 11–15

DECalert (cont’d)
event notification

electronic mail messages, 11–15
online graphics, 11–15
operation center loud speakers, 11–15
telephone messages and pagers, 11–15

fault prevention, 11–14
introduction, 7–17
sensors and alert notifications, 11–14
use at CSC lights out data center, 11–12

DECamds
functions, 8–18
product features, 8–17
typical users, 8–18

DECdecision
4GL technology, 3–9

DECdtm services, 8–26
functions, 8–27
use with ACMS, 8–52

DECelms software
introduction, 7–18

DECforms
forms interface, 8–51
prototyping tool, 8–32

DECmcc
monitoring networks, 7–19
use at CSC lights out data center, 11–18

DECnet
cluster aliases

using to promote network application
availability, 7–15

VMScluster satellite synonym, 7–9
DECnet Monitor

introduction, 7–18
use at CSC lights out data center, 11–17

DECscheduler
production scheduler, 9–9

DECset
See also CASE
product set, 3–8
software development tools, 8–58
testing software, 3–10

DECstart
services from Digital, 10–4

DECtp Desktop for ACMS
See Desktop ACMS

DECtrace
using with database applications, 8–50

Defining impact of security breaches, 1–5
Degraded performance

definition, Glossary–1
Degrees of protection

from networking faults, 7–2
Dependability

analyzing system requirements, 2–1
application software features, 8–35 to 8–58
balance, 1–17
building blocks, 1–14

Index–6

Dependability
building blocks (cont’d)

communications, 1–15
environmental factors, 1–15
hardware, 1–15
operational procedures, 1–15
personnel, 1–15
software, 1–15

business needs analysis, 2–5
business requirements, 2–5
characteristics summary, 6–20
communications

options, 3–5 to 3–7
concepts, 1–8
constraints, 4–1
continuous improvement, 2–1

analysis phase, 2–3
integration phase, 2–3
operational phase, 2–3
planning phase, 2–2

cost tradeoffs, 4–16
determining adequacy, 2–1
Digital consulting support packages, 10–1
enhancements to a sample configuration, 6–5
environmental factors

options, 3–2 to 3–3
hardware

options, 3–3 to 3–5
identifying constraints, 4–1
maintaining dependable environment, 5–1
managing shared information, 8–58 to 8–61
meeting changing requirements, 1–4
network design, 7–1

allowing for LAN bridge failover, 7–9
alternate adapter booting for satellite

nodes, 7–9
DECalert, 7–17
DECelms, 7–18
DECmcc, 7–19
degrees of protection from faults, 7–2
Ethernet and FDDI options, 7–8
ETHERnim, 7–18
LAN Traffic Monitor, 7–18
local area VMScluster failure analysis

program, 7–17
proactive network monitoring and analysis

products, 7–17
providing multiple paths to Ethernet and

FDDI, 7–4
providing multiple WAN connections for

VAXft systems, 7–15
recommendations for VMScluster

environments, 7–5
sample multiadapter connections to LAN

segments, 7–6
sample VMScluster failure analysis

program, 7–9, 7–10
using DECnet cluster aliases, 7–15

Dependability
network design (cont’d)

using DFS, 7–17
using DNS, 7–16
using FDDI as VMScluster interconnect,

7–12
VCS, 7–18
VMScluster satellite synonym, 7–9

OpenVMS features, 8–10 to 8–28
operational conditions, 1–8
operational procedures

options, 3–12 to 3–14
personnel

options, 3–15 to 3–16
primary strategies

concepts, 1–10
principles, 2–1
prioritizing requirements, 2–8
process, 2–1
prototyping applications, 8–31 to 8–33
publications related to

See Bibliography
quality process phases, 2–1
requirements and responses, 2–4
requirements for a sample company, 2–9
selecting a systems integrator, 3–11
software

options, 3–7 to 3–12
software applications, 8–1
taking action, 2–11
terms, 1–5
testing applications, 8–33 to 8–34
testing software, 3–10
TP monitors, 8–53
tradeoffs, 4–1
understanding your options, 3–1
user requirements analysis, 2–1, 2–4
with CDD/Repository, 8–59
writing dependable code, 8–29 to 8–31

Dependability constraints
in wide area networks, 3–6

Dependability terms, 1–5
availability, 1–6, Glossary–1
backup switching, Glossary–1
client, Glossary–1
client/server, Glossary–1
computing components, 1–5, Glossary–1
continuous improvement processes, Glossary–1
data integrity, Glossary–1
database administrators, Glossary–1
degraded performance, Glossary–1
dependable computing systems, 1–6,

Glossary–1
disaster tolerant computing, Glossary–2
disk fragmentation, Glossary–2
down time, Glossary–2
error correction, 1–7, Glossary–2
errors, 1–6, Glossary–2

Index–7

Dependability terms (cont’d)
failovers, Glossary–2
failure recovery, 1–7, Glossary–2
failures, 1–6, Glossary–2
fault management, 1–7, Glossary–2
fault prevention, 1–7, Glossary–2
fault tolerance, 1–6, Glossary–3
faults, 1–5, Glossary–2
front-end, Glossary–3
hardware-based fault tolerance, Glossary–3
hot standby, Glossary–3
lobes, Glossary–3
lock steps, Glossary–3
mean-time-between-failures (MTBF),

Glossary–3
namespaces, Glossary–3
reconfiguring, Glossary–3
recoverability, Glossary–3
redundant component, Glossary–4
reliability, 1–6, Glossary–4
scalability, Glossary–4
servers, Glossary–4
single points of failure, Glossary–4
software-based fault tolerance, Glossary–4
symmetric multiprocessing, Glossary–4
throughput, Glossary–4
transition times, Glossary–4
transparent failovers, Glossary–4
uninterrupted services, Glossary–4
24x365 computing

definition, Glossary–1
Y-connectors, Glossary–4
zones, Glossary–5

Dependable computing, 1–1
analyzing system requirements, 2–1
application software features, 8–35 to 8–58
building blocks, 1–14
business examples

conventional computing, 1–2
disaster tolerant computing, 1–3
fault tolerant computing, 1–3
highly available computing, 1–2, 1–3

communications, 1–15
applying dependability strategies, 1–16
options, 3–5 to 3–7

conventional level, 1–1
definition, 1–1
Digital consulting support packages, 10–1
disaster tolerant level, 1–2
environment

applying dependability strategies, 1–16
environmental factors, 1–15

options, 3–2 to 3–3
fault tolerant level, 1–2
hardware, 1–15

applying dependability strategies, 1–16
options, 3–3 to 3–5

highly available level, 1–1

Dependable computing (cont’d)
levels of, 1–1
maintaining dependable environment, 5–1
managing shared information, 8–58 to 8–61
OpenVMS features, 8–10 to 8–28
operational procedures, 1–15

applying dependability strategies, 1–16
options, 3–12 to 3–14

personnel, 1–15
applying dependability strategies, 1–16
options, 3–15 to 3–16

prototyping applications, 8–31 to 8–33
redundant functional units, 1–13

automatic, 1–13
capacity related, 1–14
computing systems, 1–14
manual, 1–13

software, 1–15
applying dependability strategies, 1–16
options, 3–7 to 3–12

testing applications, 8–33 to 8–34
understanding your options, 3–1
writing dependable code, 8–29 to 8–31

Dependable computing systems
balancing with other business considerations,

4–1
definition, 1–6, Glossary–1

Designing dependable systems
avoiding software implementation errors, 8–30
avoiding software specification errors, 8–29
software robustness, 8–30

Designing emergency drills, 1–4
Desktop ACMS

features, 8–58
Desktop environments, 5–5
Development environments for dependable systems

defining symbols and logical names, 8–60
using CDD/Repository, 8–59
using code management system, 8–58
using DEC LSE/SCA, 8–58
using DEC Test Manager, 8–58
using DNS, 8–60
using module management system, 8–59
using performance analysis product, 8–59

Devices
recovery from controller errors, 8–22t
recovery from data errors, 8–22t
recovery from errors, 8–21t
recovery from failures, 8–21t
recovery from unit or drive errors, 8–22t

DFS
See also DNS
supporting network dependability, 7–17

Digital consulting
application characterization consulting, 10–1
capacity planning service, 10–2
COHESION support services, 10–2
contingency planning assistance, 10–3

Index–8

Digital consulting (cont’d)
customer training advice package, 10–3

comprehensive training solutions, 10–4
course formats, 10–3
purchase options, 10–3

DECstart services, 10–4
Digital program methodology, 10–5
DSNlink informational databases, 10–5
enterprise integration centers advice package,

10–6
enterprise planning and design services, 10–7
help desk service, 10–7
migration services, 10–7
network performance consulting, 10–7
OpenVMS security enhancement service, 10–9
OpenVMS security review service, 10–10
packaged application software solution, 10–8
predictive sizing consulting, 10–1
professional services, 10–8
recover-all service, 10–8
RESTART service, 10–9
supporting dependable computing systems,

10–1
systems integration advice package, 10–9
VAX performance and capacity services, 10–9

DIGITAL Extended LAN Management Software
See DECelms

Digital publications
See Bibliography

Digital Storage Systems Interconnect
See DSSI

Disaster tolerant computing
business example, 1–3
definition, 1–2, Glossary–2
duplicate computing facilities, 5–11
FDDI scenario, 1–2
hot standby sites, 5–11
mutual backup processing agreements, 5–11
vendor-supplied backup sites, 5–11

Disk defragmentations
using DEC File Optimizer for OpenVMS, 9–5,

9–17
using OpenVMS movefile subfunction, 9–17

Disk fragmentation
definition, Glossary–2

Disk striping
dependability features, 8–26

Disks
fragmentation of

correcting, 9–17
redundant devices, 4–4

Distributed arbitration paradigm, 8–15
DNS

development product, 8–60
namespaces

definition, Glossary–3
supporting network dependability, 7–16

Documentation comments, sending to Digital, iii
Documenting

data center coding standards, 11–8
failures, 9–12, 9–13
procedures, 1–4

Down sizing groups, 1–4
example from case study, 11–6

Down times, 3–4
avoiding

general approach, 1–3
avoiding in lights out environment, 11–1
avoiding through consolidated system

management, 9–21
avoiding user errors, 3–12
avoiding with DECalert and related products,

11–12
caveat about distributed applications, 3–7
definition, Glossary–2
determining permissible levels of, 5–9
impact of personnel, 5–5
in networks, 7–2, 7–18
minimizing with forms interface, 8–51
minimizing with online database backup, 8–40
minimizing with transaction processing

monitors, 8–52
minimizing with VAXft systems, 5–2
minimizing with VMScluster systems, 8–17
overall consequences, 1–1

Drills, practice for emergencies, 3–13
Drive errors

recovery from, 8–22t
DSSI hardware configurations, 6–13
Duplicate computing facilities, 5–11

E
Electrical power, 5–1
Eliminating single points of failure, 6–1
Environmental factors of dependable computing

analyzing options, 3–2 to 3–3
applying strategies, 1–16
as a building block, 1–15
comprehensive training, 5–6
coping with disasters, 5–8
desktop considerations, 5–5
fire protection, 5–5
lights out computing, 5–7
maintaining dependable environment, 5–1
multiple-site data center VMScluster system,

5–11, 6–17, 7–12
networks, 3–3
operational zones, 5–7
options for duplicate computing facilities, 5–11
options for mutual backup processing

agreements, 5–11
options for separate physical sites, 5–11
options for vendor-supplied backup sites, 5–11
order and neatness, 5–6

Index–9

Environmental factors of dependable computing
(cont’d)

people-proof covers, 5–7
personnel considerations, 5–5
power sources, 5–1
site security, 5–4
structures, 3–2
suitable tools, 5–6
system considerations, 5–12
temperature and humidity, 5–3
utilities, 3–2
water supplies, 5–4

Error correction
definition, Glossary–2

Error correction strategies
applying to building blocks, 1–16
automobile metaphor, 1–11
enhancing dependability, 1–12
examples, 1–10

Error corrections
definition, 1–7

Errors
avoiding

in implementation, 8–30
in software specifications, 8–29

definition, 1–6, Glossary–2
examples, 1–9
recovery from, 8–21

Ethernet
implementation options, 7–8
interconnect (IEEE 802.3), 6–11
maximum distances, 7–8
providing multiple paths to, 7–4

Ethernet Network Integrity Monitor
See ETHERnim

ETHERnim
introduction, 7–18
use at CSC lights out data center, 11–16

Evaluation checklists
for data centers

application software, A–18
compliance summary table, A–21
environmental management, A–5
general planning, A–3
in SYS$EXAMPLES, A–1
organization, A–8
security, A–10
service and support, A–20
suggested use of, A–1

Execution queues
failover, 9–18

Expert systems
VAX OPS5, 3–9

Extended hours of operator coverage, 3–13

F
Failovers

application, 8–54
batch and print queue, 9–18
capturing user requests, 8–57
database failover in VMSclusters, 8–35
definition, Glossary–2
queue manager’s capabilities, 8–28
strategy, 8–22
terminal, 8–51, 8–55

Failure recovery
definition, 1–7, Glossary–2

Failure recovery strategies
applying to building blocks, 1–16
automobile metaphor, 1–11
enhancing dependability, 1–12
examples, 1–10

Failures
See Recoveries
areas where they occur, 3–1
catastrophic, 9–12
definition, 1–6, Glossary–2
detecting multiple-cause, 9–13
eliminating single points, 6–1
examples, 1–9
factors, 9–10
false, 9–13
in software applications, 8–1
intermittent, 9–12
lack of software scalability, 8–30
minimizing, 9–12
multiple-cause, 9–12
of a network node, 4–11
of an interconnect path, 4–11
personnel and policy impact, 3–15
preventing catastrophic, 9–12

False failures
in hardware components, 9–13

Fault management
definition, 1–7, Glossary–2

Fault prevention strategies
applying to building blocks, 1–16
automobile metaphor, 1–11
enhancing dependability, 1–12
examples, 1–10

Fault preventions
definition, 1–7, Glossary–2

Fault tolerance
business example, 1–3
definition, 1–2, 1–6, Glossary–3
examples, 1–9
software

provided by DEC Reliable Transaction
Router, 8–2 to 8–10

VAXft systems, 6–8

Index–10

Faults
definition, 1–5, Glossary–2
examples, 1–9

FDDI (Fiber Distributed Data Interface)
business use of, 1–2
configurations, 6–17
implementation options, 7–8
providing multiple paths to, 7–4
used in VMSclusters, 6–17
using as VMScluster interconnect, 7–12

Feedback on documentation, sending to Digital, iii
Fiber Distributed Data Interface

See FDDI
File access

transparent
providing with DFS, 7–17

File optimizations
using DEC File Optimizer for OpenVMS, 9–5

Fire protection, 5–5
Forms

application interface, 8–50
DECforms, 8–51

Front-end processor failover, 8–51, 8–55
Front-ends

definition, Glossary–3
Functional units, redundant, 1–13

automatic, 1–13
capacity related, 1–14
in computing systems, 1–14
manual, 1–13

H
Hardware

analyzing options, 3–3 to 3–5
building block, 1–15

applying dependability strategies, 1–16
catastrophic failures in, 9–12
causes of multiple failures in, 9–12
conventional AXP and VAX systems, 6–5
eliminating single points of failure, 6–1
failures in, 9–10
false failures in, 9–13
fault tolerant VAXft systems, 6–8
intermittent failures in, 9–12
selecting new, 3–4
VMScluster topologies, 6–10

dependability characteristics summary,
6–20

Hardware-based fault tolerance
definition, Glossary–3

Help desk
consulting service from Digital, 10–7

Highly available computing
business example, 1–2, 1–3
definition, 1–1

Hot standbies
definition, Glossary–3
in disaster tolerant configurations, 5–11

Human factors
See also Personnel
minimizing errors, 9–9

Humidity
environmental factor of dependable computing,

5–3

I
Identifying

business requirements, 1–4, 4–1
constraints, 1–5

to achieving dependable systems, 4–1
Independent processes paradigm, 8–14
Independently recoverable system kernels, 4–6
Independently recoverable units

See IRUs
Interconnect path failures, 4–11
Interfacing with application users, 8–50
Intermittent failures

in hardware components, 9–12
Investing

in system planning, 3–5
IRUs (independently recoverable units)

circuit level redundancy, 4–4
hardware redundancy, 4–4
performance characteristics, 4–3 to 4–12
system kernel redundancy, 4–5

L
LAN segments

bridge failover, 7–9
three segments in VMScluster configurations,

7–7
two segments in VMScluster configuration, 7–6

LAN Traffic Monitor
See LTM

Language-Sensitive Editor/Source Code Analyzer
See LSE/SCA

LATs (local area transports)
ACMS terminal failover, 8–51, 8–55

LAVC$FAILURE_ANALYSIS.MAR program, 7–9
related subroutine package, 7–11
usage summary, 7–10

Levels of dependability, 1–1, 2–4
Lights out computing, 3–13, 5–7

case study, 11–1
CSC operations management, 11–12
environment, 5–7

Lobes
definition, Glossary–3
description, 7–13

Index–11

Local area networks
See LANs

Local area transports
See LATs

Lock steps
definition, Glossary–3

Logical names
defining shared information, 8–60

Loosely coupled system kernels, 4–5
LSE/SCA

COHESION development tool, 8–58
LTM (LAN Traffic Monitor)

planning network growth, 7–18
use at CSC lights out data center, 11–17

M
Maintenance

for a dependable environment, 5–1
preventative

scheduling, 9–9
Managing computing resources, 9–1
Mapping options for a sample company, 2–13
Matching vendor products with requirements, 1–4
MDF

See BRS (Business Recovery Server)
Mean-time-between-failures (MTBF)

definition, Glossary–3
Memory

CPUs share common, 4–4
Metaphors

automobile
error correction strategy, 1–11
failure recovery strategy, 1–11
fault prevention strategy, 1–11

multilevel building
dependability building blocks, 1–15

suitcase
apparently not broken condition, 1–8
broken condition, 1–8
not broken condition, 1–8

Metrics, quality, 3–10
Mirrored disks

See Volume shadowing
Mixed interconnect VMScluster environments,

6–19
MMS, building systems, 8–59
Module Management System

See MMS, building systems
Mount verification

monitoring failed devices, 9–11
Movefile subfunction

calling, 9–17
description, 9–17
used by DEC File Optimizer for OpenVMS,

9–17

Multi-datacenter facility
See BRS (Business Recovery Server)

Multiple OpenVMS versions (rolling upgrade),
9–23

Multiple-cause failures
in hardware components, 9–12

Multiple-site data center
VMScluster systems, 5–11, 6–17, 7–12

Mutual backup processing agreements, 5–11

N
Namespaces

definition, Glossary–3
example of, 7–16

Networking
See also Communications

Networks
allowing for LAN bridge failover, 7–9
alternate adapter booting for satellite nodes,

7–9
degrees of protection from faults, 7–2
dependability characteristics, 7–1
Ethernet and FDDI options, 7–8
local area VMScluster failure analysis program,

7–17
management techniques, 9–1
node failures, 4–11
performance consulting from Digital, 10–7
proactive network monitoring and analysis

products, 7–17
providing multiple paths to Ethernet and FDDI,

7–4
providing multiple WAN connections for VAXft

systems, 7–15
recommendations for VMScluster environments,

7–5
redundancy, 4–11
sample multiadapter connections to LAN

segments, 7–6
sample VMScluster failure analysis program,

7–9, 7–10
system considerations, 3–7
using DECalert, 7–17
using DECelms, 7–18
using DECmcc, 7–19
using DECnet cluster aliases, 7–15
using DECnet Monitor, 7–18
using DFS, 7–17
using DNS, 7–16
using ETHERnim, 7–18
using FDDI as VMScluster interconnect, 7–12
using LAN Traffic Monitor, 7–18
using VCS, 7–18
VMScluster satellite synonym, 7–9

Index–12

NMCC/VAX ETHERnim
See ETHERnim

NMCC/Ethernet Network Integrity Monitor
See ETHERnim

Not broken conditions
maintaining, 1–10

O
Online backups

databases, 8–40
OPCOM (Operator Communication Manager)

monitoring systems and devices, 9–11
OpenVMS operating system

See Operating systems
Operating systems

application environment topologies, 8–13
application scaling, 8–13
client/server computing, 8–16
DECdtm services, 8–26
dependability features, 8–10 to 8–28
disk defragmentation applications, 8–27, 9–17
distributed arbitration paradigm, 8–15
failover of queue manager, 9–18
independent processes paradigm, 8–14
performance, 4–12
processes

ACMS load balancing, 8–53
programmer productivity tools, 8–58
queue manager failover, 8–28, 9–18
resource contention, 8–14
RMS Journaling, 8–28
support of redundant functional units, 8–10
using multiple versions, 9–23
volume shadowing

to support dependable computing, 8–12
Operational conditions, 1–8

apparently not broken, 1–8
broken, 1–8
not broken, 1–8

Operational phase
applying dependability strategies

error correction, 1–16
failure recovery, 1–16
fault tolerance, 1–16

building dependable systems, 1–12
Operational procedures, 1–15

analyzing options, 3–12 to 3–14
applying dependability strategies, 1–16

Operational zones, 5–7
Operations

data center techniques, 9–1
OPS5 programming technology, 3–9
Optimizing files

using DEC File Optimizer for OpenVMS, 9–5

Options for dependable computing
communications, 3–5 to 3–7
environmental factors, 3–2 to 3–3
hardware, 3–3 to 3–5
operational procedures, 3–12 to 3–14
personnel, 3–15 to 3–16
software, 3–7 to 3–12

Orange Book
of U.S. Department of Defense

C2 security, 8–48
Order and neatness

factors in supporting dependable computing,
5–6

Overall system considerations, 5–12

P
Parity data

dependability features, 8–26
PCA performance testing, 8–59
PCs

See Personal computers
People-proof covers, 5–7
Performance

application software and dependable computing,
4–13

network consulting from Digital, 10–7
of system and personnel, 4–13

feasibility constraints, 4–14
implementation tradeoffs, 4–13
learning curve considerations, 4–14
timing considerations, 4–14

operating systems and dependable computing
environments, 4–12

tradeoffs
circuit level redundancy, 4–4
in dependable computing environments,

4–3
loosely coupled system kernels, 4–5
network level, 4–11
with redundant hardware, 4–4
with redundant system kernels, 4–5

Personal computers
serving corporate data to PCs, 3–5

Personnel
analyzing options, 3–15 to 3–16
building block, 1–15

applying dependability strategies, 1–16
cross training, 1–4, 5–7

at CSC data center, 11–6
Digital consulting support packages, 10–1
environment, 5–5
role boundaries, 5–7
sensitive treatment of, 3–16, 11–6, 11–9
staffing tradeoffs, 4–14
training and testing, 3–12
training programmers, 3–10

Index–13

Personnel productivity, 4–13
feasibility constraints, 4–14
implementation tradeoffs, 4–13
learning curve considerations, 4–14
timing considerations, 4–14

Planning ahead, 1–4
Planning system requirements for dependability,

2–1
Policies regarding system privileges, 3–14
Power

electrical, 5–1
sources of, 5–1

Predictive sizing
consulting from Digital, 10–1

Preventative maintenance
scheduling, 9–9

Primary dependability strategies
concepts, 1–10
enhancing, 1–12

Principles of dependable systems, 2–1
See also Rules to remember for dependable

computing
analyzing communications options, 3–5
analyzing environmental options, 3–2
analyzing hardware options, 3–3
analyzing operational procedures options, 3–12
analyzing personnel options, 3–15
analyzing software options, 3–7
continuous improvement process, 2–1
determining requirements, 2–4

Privileges
system

policies regarding, 3–14
Proactive network monitoring and analysis

products, 7–17
DECalert, 7–17
DECelms, 7–18
DECmcc, 7–19
DECnet Monitor, 7–18
ETHERnim, 7–18
LAN Traffic Monitor, 7–18
local area VAXcluster failure analysis program,

7–17
VCS, 7–18

Processes
ACMS, 8–53
for achieving dependability, 2–1
for continuous system improvement, 2–1
mapping actions to dependability requirements,

2–11
Productivity of personnel, 4–13

feasibility constraints, 4–14
implementation tradeoffs, 4–13
learning curve considerations, 4–14
timing considerations, 4–14

Programming
custom applications, 3–8
Digital methodology

services from Digital, 10–5
prototyping applications, 8–31 to 8–33
technologies

DEC RALLY, 3–9
DECdecision, 3–9
VAX ACMS, 3–9
VAX OPS5, 3–9

testing applications, 8–33 to 8–34
writing predictable code, 8–29 to 8–31

Protecting against environmental factors, 1–5
Prototyping

applications, 8–31 to 8–33
using DATATRIEVE, 8–32
using DBQ, 8–33
using DEC Visual User Interface Tool,

8–32
using DECforms, 8–32
using RALLY, 8–32
using RDO, 8–33
using SQL, 8–33

Providing multiple paths to Ethernet and FDDI,
7–4

Providing multiple WAN connections for VAXft
systems, 7–15

Publications about system dependability
See Bibliography

Putting constraints into perspective, 4–3

Q
Quality metrics and mindsets, 3–10
Queue managers

clusterwide, 8–28
failover, 9–18

Queues
automatic failover, 9–18
batch and print, 9–18
restarting batch, 9–19

Queuing ACMS, 8–57
Quorum disk

See also VMScluster environments, quorum
disk

R
RALLY

programming technology, 3–9
prototyping tool, 8–32

RdbExpert
optimizing physical database design, 8–50

RDO prototyping tool, 8–33

Index–14

Recommendations for VMScluster environments,
7–5

Reconfiguring
definition, Glossary–3

Recoverability
definition, Glossary–3

Recoveries
from controller errors, 8–22t
from data errors, 8–22t
from device failure, 8–21
from unit or drive errors, 8–22t
repair actions, 8–21t

Redundancy
circuit level, 4–4
functional units, 1–13

automatic, 1–13
capacity related, 1–14
in computing systems, 1–14
manual, 1–13
OpenVMS support, 8–10

hardware, 4–4
n, 4–6
2*n, 4–4, 4–5
3*n, 4–4
n+1, 4–4, 4–6, 4–12
network level, 4–11
system kernel level, 4–5

Redundant component
definition, Glossary–4

Reference sites and support groups, 3–11
Reliability

definition, 1–6, Glossary–4
Reliable Transaction Router

See DEC Reliable Transaction Router
Remote sites

duplicate computing facilities, 5–11
multiple-site data center VMScluster system,

5–11, 6–17, 7–12
mutual backup processing agreements, 5–11
vendor-supplied backup sites, 5–11

Requirements
business, 2–5
user, 2–4

Resource contention considerations, 8–14
Resources

managing complex environments, 9–1
RMS Journaling

as data integrity tool, 8–28
Role boundaries of personnel, 5–7
Rolling upgrades

with multiple operating system versions, 9–23
RTR

See DEC Reliable Transaction Router
Rules to remember for dependable computing

complex applications require more sophisticated
recovery strategies, 8–46

Rules to remember for dependable computing
(cont’d)

consider cable terminations when modifying
DSSI configurations, 6–14

consider memory and I/O as well as CPU
capacity, 4–11

continuous improvement means constant
change, 2–4

disaster/risk management is for professionals,
5–8

eliminating single points of failure, 6–1
environmental maintenance equipment

covered by UPS, 5–4
I/O throughput of Ethernet-only VMScluster

systems, 6–12
include users in planning phase

preventing complaints in operational phase,
2–3

location of journal files, 8–39
personal safety is more important than system

safety, 5–5
severely restrict use of BYPASS privilege, 8–49
stacking can be used to make a too small

computer room more orderly, 5–7
water in an overcooled computer room can

freeze, 5–4

S
Samples

a company’s first steps to dependability, 2–11
dependability requirements worksheet, 2–9
LAVC$FAILURE_ANALYSIS.MAR program,

7–9
related subroutine package, 7–11
usage summary, 7–10

mapping options to requirements, 2–13
multiadapter connections to LAN segments,

7–6
proposed dependability enhancements, 2–13

Satellite booting, 7–9
Scalability

definition, Glossary–4
lack of software, 8–30
predicting future software requirements, 8–30

Scheduling preventative maintenance, 9–9
Security

environmental factors, 5–4
locking the data center, 3–5
policies, 9–19
site, 5–4

Selecting a systems integrator, 3–11
Servers

definition, Glossary–4
Service and maintenance arrangements, 3–11

Index–15

Serving corporate data to local personal computers,
3–5

Shadow set members
inaccessibility because of failures, 8–21

Shadowed disks
See Volume shadowing

Shadowing
See Volume shadowing

Shared data
providing dependability, 8–58

Single points of failure
definition, Glossary–4
in configurations, 6–1
in networks, 7–1, 7–6, 7–11

Site security, 5–4
SLS

archiving backup data, 9–16
use at CSC lights out data center, 11–19

SMP
definition, Glossary–4

SMP (symmetric multiprocessing)
after CPU failure, 4–12
equivalent processing functions, 4–4
features of multiple CPUs, 5–10

Software
analyzing options, 3–7 to 3–12
application software dependability features,

8–35 to 8–58
avoiding errors in specification, 8–29
avoiding implementation errors, 8–30
building block, 1–15

applying dependability strategies, 1–16
development, 8–58
evolution, 8–31
fifth generation languages (5GL), 3–8
fourth generation languages (4GL), 3–8
managing shared information, 8–58 to 8–61
managing software information, 8–59
matching business needs, 3–10
OpenVMS dependability features, 8–10 to 8–28
prototyping applications, 8–31 to 8–33
quality metrics and mindsets, 3–10
remote access with DNS, 8–60
robust application design, 3–8
scalability, 8–30
system integration, 8–31
testing applications, 8–33 to 8–34
testing dependability, 3–10
training programmers, 3–10
transaction processing, 3–9
using CASE products, 3–8
using COHESION products, 3–8
vulnerable to external events, 8–30
writing custom applications, 3–8
writing dependable code, 8–29 to 8–31

Software fault tolerance
provided by DEC Reliable Transaction Router,

8–2 to 8–10
Software-based fault tolerance

definition, Glossary–4
Source Code Analyzer

DEC LSE/SCA, 8–58
SQL prototyping tool, 8–33
Staffing tradeoffs, 4–14
Standby active system kernels, 4–5
Storage management

database dependability features, 8–35
database failover in VMSclusters, 8–35

minimizing impact of component failure,
8–39

placement of files, 8–38
online database backups, 8–40
redundant disk devices, 4–4

Strategies
enhancing dependability, 1–12
for building dependable systems, 1–9

error correction, 1–10, 1–16
failure recovery, 1–10, 1–16
fault prevention, 1–10, 1–16

for dependability
concepts, 1–10

Striping data on disks
dependability features, 8–26

Subroutine package
for VMScluster failure analysis program, 7–11

Subsystem level redundancy, 4–4
Suitable tools, 5–6
Suitcases metaphor, 1–8
Support consulting

See Digital consulting
Symbols

defining shared information, 8–60
Symmetric multiprocessing

See SMP
Synchronization

techniques, 8–17
SYS$EXAMPLES data center evaluation

checklists, A–1
System configurations, 8–19
System management

backup procedures, 9–14
data center operations, 9–8
DCL procedures, 9–9
establishing the software environment, 9–14
minimizing human error, 9–9
production schedulers, 9–9
restarting batch jobs, 9–19
security policies, 9–19
techniques, 9–1

System parameters
MVTIMEOUT parameter, 8–22

Index–16

Systems
active standby kernels, 4–5
building blocks for dependable computing, 3–1
communications options, 3–5 to 3–7
dependable software applications, 8–1
environment, 5–1
environmental considerations, 5–12
environmental factors, 3–2, 3–3
environmental options, 3–2 to 3–3
failures and recoveries, 9–10
hardware options, 3–3 to 3–5
hot standby sites, 5–11
independently recoverable, 4–6
integration of software, 8–31
kernel capacity diagrams, 4–8
kernel level redundancy, 4–5
loosely coupled kernels, 4–5
multiple tightly coupled kernels, 4–5
multiple-site data center VMScluster, 5–11,

6–17, 7–12
network redundancy, 4–11
operational procedures options, 3–12 to 3–14
outages

surviving external failures, 8–30
performance and feasibility constraints, 4–14
performance and implementation tradeoffs,

4–13
performance and learning curve considerations,

4–14
performance and personnel productivity, 4–13
performance and timing considerations, 4–14
performance tradeoffs, 4–12
personnel options, 3–15 to 3–16
principles for creating dependability, 2–1
privileges

policies, 3–14
robust design, 3–8
software options, 3–7 to 3–12
using new equipment, 3–4

T
Teamwork, 3–15
Temperature

environmental factor of dependable computing,
5–3

Terminals
failover, 8–51, 8–55

Test Manager
testing applications, 8–58

Testing
application dependability, 8–33 to 8–34
competency of personnel, 3–13
for software dependability, 3–10
procedures, 1–4

Throughput
definition, Glossary–4

Tightly coupled system kernels, 4–5
Tools

for dependable computing, 5–6
TP monitors

See Transaction-processing monitors
Tradeoffs

application software performance, 4–13
circuit level, 4–4
constraints to achieving dependability, 4–1
cost considerations, 4–16
hardware subsystem, 4–4
implementing improvements, 4–13
independently recoverable system kernels, 4–6
networking, 4–11
operating system performance, 4–12
performance, 4–3
personnel productivity, 4–13
system kernel level, 4–5
vendor, 4–15

Training
environment for, 5–6
lights out data center, 11–6
personnel, 1–4, 3–12
software programmers, 3–10

Transaction processing
environments, 3–9
use of DECADMIRE, 3–9

Transaction sequence numbers
See TSNs

Transaction-processing monitors
assist dependability, 8–52
overview, 8–52
productivity tools, 8–52
VAX ACMS, 8–53

Transition times
definition, Glossary–4

Transparent failovers
definition, Glossary–4

Transparent network file access
providing with DFS, 7–17

TSNs (transaction sequence numbers)
used by DEC Rdb, 8–41

24x365 computing, 1–1
Two-phase commit protocol, 8–26

DECdtm services
use with ACMS, 8–52
use with DEC Rdb, 8–44

U
Uninterrupted services

definition, Glossary–4
Uninterruptible power systems

See UPS
Unit errors

recovery from, 8–22t

Index–17

UPS (uninterruptible power systems)
VAXft built-in use of, 5–2

Users
analyzing dependability needs of, 2–1
capturing user requests in queues, 8–57
interfacing through forms, 8–50

Using DECnet cluster aliases, 7–15
Using FDDI as VMScluster interconnect, 7–12

V
VAX ACMS

See ACMS
VAX Application Control and Management System

See ACMS
VAX Data Distributor

See Data Distributor
VAX DATATRIEVE

See DATATRIEVE
VAX Distributed File Service

See DFS
VAX Distributed Name Service

See DNS
VAX OPS5

See OPS5 programming technology
VAX RALLY

See RALLY
VAX Remote System Manager

See VAXrsm
VAX Storage Library System

See SLS
VAX unit of performance

See VUP
VAXcluster environments

computer interconnect, 6–15
Digital Storage Systems Interconnect (DSSI),

6–13
Ethernet interconnect, 6–11
LAN adapter support, 7–4
multiadapter support, 7–4
with fault tolerant system kernels, 6–9

VAXcluster systems
providing high data availability, 8–20f

VAXft
fault tolerant systems, 6–8
meeting requirements for fault tolerance, 1–2
providing multiple WAN connections for, 7–15
use of built-in uninterruptible power systems,

5–2
VAXrsm

use in wide area networks, 3–6
VAXsimPLUS

minimizing failures, 9–12
use at CSC lights out data center, 11–18

VCS (VMScluster Console System)
detecting operational failures, 9–11
introduction, 7–18

VCS (VMScluster Console System) (cont’d)
use at CSC lights out data center, 11–18

Vendors
backup sites supplied by, 5–11
evaluating tradeoffs, 4–15 to 4–16

adequate coverage, 4–15
committed response, 4–15
flexible roles, 4–16
location flexibility, 4–15
one-stop service, 4–16
reliable products, 4–15

reputation, 3–11
Viruses

cause of disasters, 5–8
effect on site security, 5–5

VMS operating system
See Operating systems

VMScluster Console System
See VCS

VMScluster environments
alternate adapter booting, 7–9
application environment topologies, 8–13
clusterwide queue manager, 8–28
common system disks, 9–22
configuration recommendations for

dependability, 7–5
configurations with three LAN segments, 7–7
configurations with two LAN segments, 7–6
database failover in, 8–35
FDDI adapter support, 7–5
Fiber Distributed Data Interface (FDDI), 6–17
hardware topologies, 6–10
LAN address for satellite, 7–9
mixed interconnect, 6–19
multiple-site data center, 5–11, 6–17, 7–12
network failure analysis, 7–9

related subroutine package, 7–11
usage summary, 7–10

operating system support of, 9–22
queue manager in, 8–28
quorum disk, 9–22
quorum node, 9–22
sample programs

related subroutine package, 7–11
usage summary, 7–10

sample programs for LAN environments, 7–9
satellite booting, 7–9
satellite synonym, 7–9
surviving LAN bridge failover, 7–9

Volume shadowing
providing high data availability, 8–19
recovery from device failures, 8–21t
redundant storage devices, 4–4
shadow set configurations, 8–23
to support dependable computing, 8–12

Index–18

VUIT
prototyping tool, 8–32

VUP
overview, 4–8

W
WANs (wide area networks)

comparison with VMSclusters, 6–20
dependability constraints, 3–6
providing multiple WAN connections for VAXft

systems, 7–15
Water supplies, 5–4
Wide area networks

See WANs
Worksheets

See also Checklists
evaluation of data centers

application software, A–18
compliance summary table, A–21
environmental management, A–5
general planning, A–3
in SYS$EXAMPLES, A–1
organization, A–8

security, A–10
service and support, A–20
suggested use of, A–1

sample requirements worksheet, 2–9
with fictional requirements data, 2–9

Writing predictable code, 8–29 to 8–31

X
24x365 computing

definition, Glossary–1

Y
Y-connectors

definition, Glossary–4
use on VAXft systems, 6–8

Z
Zones

definition, Glossary–5
use on VAXft systems, 6–8

Index–19

