
HP ACMS for OpenVMS
ADU Reference Manual
Order Number: AA-U715K-TE

January 2006

This manual contains reference information about the commands,
phrases, and clauses of the Application Definition Utility (ADU).

Revision/Update Information: This manual supersedes the HP ACMS
for OpenVMS ADU Reference Manual,
Version 4.5A

Operating System: OpenVMS Alpha Version 8.2
OpenVMS I64 Version 8.2-1

Software Version: HP ACMS for OpenVMS, Version 5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential Computer Software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation and Technical Data for Commercial Items are licenced to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warrenties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained here in.

Motif is a registered trademark of The Open Group.

Oracle is a registered US trademark of Oracle Corporation, Redwood City, California.

Oracle CODASYL DBMS, Oracle CDD/Administrator, Oracle CDD/Repository, Oracle Rdb, Oracle
SQL/Services, Oracle Trace, and Oracle Trace Collector are registered US trademarks of Oracle
Corporation, Redwood City, California.

Printed in the US

Contents

Preface . xi

1 Application Definition Utility Commands

1.1 Explanations of Reference Page Terminology . 1–1
1.2 Starting and Stopping ADU . 1–2
1.2.1 Starting ADU . 1–2
1.2.2 Stopping ADU . 1–3
1.3 Command Summary . 1–4
1.4 Common ADU Command Qualifiers . 1–7

@ (At sign) Command (ADU>) . 1–10
ATTACH (ADU>) . 1–11
BUILD (ADU>) . 1–12
COMPILE (ADU>) . 1–18
COPY (ADU>) . 1–21
CREATE (ADU>) . 1–23
DELETE (ADU>) . 1–26
DUMP (ADU>) . 1–28
EDIT (ADU>) . 1–32
EXIT Command (ADU>) . 1–34
HELP (ADU>) . 1–35
LINK (ADU>) . 1–37
LIST (ADU>) . 1–41
MODIFY (ADU>) . 1–43
REPLACE (ADU>) . 1–46
SAVE (ADU>) . 1–49
SET DEFAULT (ADU>) . 1–51
SET LOG (ADU>) . 1–53
SET VERIFY (ADU>) . 1–55
SHOW DEFAULT (ADU>) . 1–56
SHOW LOG (ADU>) . 1–57
SHOW VERSION (ADU>) . 1–58
SPAWN (ADU>) . 1–59

iii

2 %INCLUDE

%INCLUDE . 2–2

3 Task Definition Clauses

3.1 Multiple-Step Task Definitions . 3–7
3.2 Nested Blocks . 3–8
3.3 Block Step Phrases . 3–13
3.4 Block Conditional Clauses . 3–14
3.5 Exchange Step Clauses . 3–16
3.6 Processing Step Phrases and Clauses . 3–20
3.7 Step Labels . 3–23
3.8 Action Clauses . 3–23
3.9 Exception Handler Action Clauses . 3–27
3.10 Boolean Expressions . 3–27
3.10.1 Relational Expressions . 3–27
3.10.2 Types of Boolean Expressions . 3–28
3.10.3 Relational Operators . 3–28
3.10.4 Boolean Operators and Associativity . 3–29
3.10.5 Precedence . 3–30
3.10.6 Parentheses . 3–31
3.10.7 Comparisons . 3–31
3.11 I/O Restrictions for Distributed Processing . 3–32
3.12 Additional I/O Considerations . 3–33

BLOCK Clause (Block) . 3–34
CALL Clause (Processing) . 3–37
CALL TASK Clause (Processing) . 3–38
CANCEL ACTION Phrase (Block) . 3–40
CANCEL TASK Clause (Action) . 3–41
CANCELABLE Clause (Task) . 3–43
COMMIT TRANSACTION Clause (Action) . 3–44
CONTROL FIELD Clause (Block, Exchange, Processing, Action) 3–45
DATATRIEVE COMMAND Clause (Processing) . 3–52
DCL COMMAND Clause (Processing) . 3–54
DEFAULT FORM Clause (Task) . 3–56
DEFAULT REQUEST LIBRARY Clause (Task) . 3–57
DEFAULT SERVER Clause (Task) . 3–58
DELAY Clause (Task) . 3–59
EXCEPTION HANDLER Clause (Block, Exchange, Processing) 3–60
EXCHANGE Clause (Task) . 3–62
EXIT BLOCK Clause (Action) . 3–63
EXIT TASK Clause (Action) . 3–64
FORM I/O Phrase (Block) . 3–66
GET ERROR MESSAGE Clause (Action) . 3–67
GLOBAL Clause (Task) . 3–69
GOTO STEP Clause (Action) . 3–71
IF THEN ELSE Clause (Block, Exchange, Processing, Action) 3–73
IMAGE Clause (Processing) . 3–78
LOCAL Clause (Task) . 3–80

iv

MOVE Clause (Action) . 3–81
NO EXCHANGE Clause (Exchange) . 3–82
NO PROCESSING Clause (Processing) . 3–83
NO SERVER CONTEXT ACTION Clause (Action) 3–84
NO TERMINAL I/O Phrase (Block, Processing) . 3–85
NONPARTICIPATING SERVER Phrase (Processing) 3–87
PROCESSING Clause (Task) . 3–88
RAISE EXCEPTION Clause (Action) . 3–89
READ Clause (Exchange) . 3–91
RECEIVE Clause (Exchange) . 3–92
RELEASE SERVER CONTEXT Clause (Action) . 3–95
REPEAT STEP Clause (Action) . 3–97
REQUEST Clause (Exchange) . 3–98
REQUEST I/O Phrase (Block, Processing) . 3–100
RETAIN SERVER CONTEXT Clause (Action) . 3–102
ROLLBACK TRANSACTION Clause (Action) . 3–104
SELECT FIRST Clause (Block, Exchange, Processing, Action) 3–106
SEND Clause (Exchange) . 3–112
SERVER CONTEXT Phrase (Block) . 3–115
STREAM I/O Phrase (Block) . 3–119
TASK ARGUMENTS Phrase (Task) . 3–120
TERMINAL I/O Phrase (Processing) . 3–124
TRANSACTION Phrase (Block, Processing) . 3–125
TRANSCEIVE Clause (Exchange) . 3–128
USE WORKSPACES Clause (Task) . 3–132
WAIT Clause (Task) . 3–134
WHILE DO Clause (Block, Exchange, Processing) 3–135
WORKSPACES Clause (Task) . 3–139
WRITE Clause (Exchange) . 3–143

4 Task Group Definition Clauses

4.1 Task Group Clauses . 4–1
4.2 Processing Subclauses . 4–6
4.3 Server Subclauses . 4–9

ALWAYS EXECUTE TERMINATION PROCEDURE Subclause
(Server) . 4–12
CALL Subclause (Processing) . 4–13
CANCEL PROCEDURE Subclause (Server) . 4–15
DATATRIEVE COMMAND Subclause (Processing) 4–17
DCL AVAILABLE Subclause (Server) . 4–19
DCL COMMAND Subclause (Processing) . 4–20
DCL PROCESS Subclause (Server) . 4–22
DEFAULT OBJECT FILE Subclause (Server) . 4–23
DEFAULT TASK GROUP FILE Clause (Task Group) 4–24
DYNAMIC USERNAME Subclause (Server) . 4–25
FIXED USERNAME Subclause (Server) . 4–26
FORMS Clause (Task Group) . 4–27

v

IMAGE Subclause (Processing) . 4–29
INITIALIZATION PROCEDURE Subclause (Server) 4–31
MESSAGE FILES Clause (Task Group) . 4–33
PROCEDURE SERVER IMAGE Subclause (Server) 4–35
PROCEDURES Subclause (Server) . 4–36
REQUEST LIBRARIES Clause (Task Group) . 4–38
REUSABLE Subclause (Server) . 4–40
RUNDOWN ON CANCEL Subclause (Server) . 4–41
SERVERS Clause (Task Group) . 4–43
TASKS Clause (Task Group) . 4–45
TERMINATION PROCEDURE Subclause (Server) 4–48
USERNAME Subclause (Server) . 4–50
WORKSPACES Clause (Task Group) . 4–51

5 Application Definition Clauses

5.1 Application Definition Clauses . 5–4
5.2 Server Subclauses . 5–5
5.3 Task Subclauses . 5–10

ACCESS Subclause (Task) . 5–14
APPLICATION DEFAULT DIRECTORY Clause (Application) 5–16
APPLICATION LOGICALS Clause (Application) . 5–18
APPLICATION NAME TABLES Clause (Application) 5–20
APPLICATION USERNAME Clause (Application) 5–22
AUDIT Clause (Application, Server, Task) . 5–24
CANCELABLE Subclause (Task) . 5–26
CREATION DELAY Subclause (Server) . 5–27
CREATION INTERVAL Subclause (Server) . 5–28
DEFAULT APPLICATION FILE Clause (Application) 5–29
DEFAULT DIRECTORY Subclause (Server) . 5–31
DELAY Subclause (Task) . 5–32
DELETION DELAY Subclause (Server) . 5–33
DELETION INTERVAL Subclause (Server) . 5–34
DISABLE Subclause (Task) . 5–35
DYNAMIC USERNAME Subclause (Server) . 5–36
ENABLE Subclause (Task) . 5–38
FIXED USERNAME Subclause (Server) . 5–39
GLOBAL Subclause (Task) . 5–40
LOCAL Subclause (Task) . 5–41
LOGICALS Subclause (Server) . 5–42
MAXIMUM SERVER PROCESSES Clause (Application, Server) 5–45
MAXIMUM TASK INSTANCES Clause (Application) 5–47
MINIMUM SERVER PROCESSES Subclause (Server) 5–48
NAME TABLES Subclause (Server) . 5–49
PROTECTED WORKSPACES Subclause (Server) 5–51
SERVER ATTRIBUTES Clause (Application) . 5–52
SERVER DEFAULTS Clause (Application) . 5–54
SERVER MONITORING INTERVAL Clause (Application) 5–56

vi

SERVER PROCESS DUMP Subclause (Server) . 5–57
TASK ATTRIBUTES Clause (Application) . 5–58
TASK DEFAULTS Clause (Application) . 5–60
TASK GROUPS Clause (Application) . 5–62
TRANSACTION TIMEOUT Subclause (Task) . 5–64
USERNAME Subclause (Server) . 5–65
WAIT Subclause (Task) . 5–67

6 Menu Definition Clauses

6.1 Application Specifications . 6–3
6.2 Writing Menu Definitions for Distributed Applications 6–5

CONTROL TEXT Clause (Menu) . 6–7
DEFAULT APPLICATION Clause (Menu) . 6–8
DEFAULT MENU FILE Clause (Menu) . 6–10
DELAY Subclause (Optional ENTRIES) . 6–12
ENTRIES Clause (Menu) . 6–13
HEADER Clause (Menu) . 6–15
MENU Subclause (Required ENTRIES) . 6–17
REQUEST Clause (Menu) . 6–18
TASK Subclause (Required ENTRIES) . 6–19
TEXT Subclause (Optional ENTRIES) . 6–21
WAIT Subclause (Optional ENTRIES) . 6–22

7 Declining Task Definition Clauses

COMMIT Clause (Action) . 7–2
CONTINUE ON BAD STATUS Phrase (Processing) 7–4
DBMS RECOVERY Phrase (Block, Processing) . 7–6
GOTO TASK Clause (Action) . 7–10
NO RECOVERY UNIT ACTION Clause (Action) . 7–12
RDB RECOVERY Phrase (Block, Processing) . 7–13
REPEAT TASK Clause (Action) . 7–17
RETAIN RECOVERY UNIT Clause (Action) . 7–19
RMS RECOVERY Phrase (Block, Processing) . 7–21
ROLLBACK Clause (Action) . 7–25
SQL RECOVERY Phrase (Block, Processing) . 7–26

A ADU Error Messages

B Summary of ACMS System Workspaces

B.1 ACMS$PROCESSING_STATUS System Workspace B–1
B.2 ACMS$SELECTION_STRING System Workspace B–2
B.3 ACMS$TASK_INFORMATION System Workspace B–2

vii

Index

Examples

3–1 Simple Task Definition (Single-Step) . 3–5
3–2 More Complex Task Definition (Multiple-Step) 3–5
3–3 Task Definition with Nested Blocks . 3–10
4–1 Simple Task Group Definition . 4–4
4–2 Simple Task Group Definition for Multiple-Step Tasks 4–4
4–3 More Complex Task Group Definition . 4–5
5–1 Application Definition . 5–3
5–2 Example of SERVER ATTRIBUTES and SERVER DEFAULTS

Clauses . 5–9
5–3 Example of TASK ATTRIBUTES and TASK DEFAULTS Clauses 5–13
5–4 Application Definition Using Multiple TASK DEFAULTS 5–61
6–1 Sample Menu Definition . 6–3
6–2 Example of a Menu with a Remote Task . 6–6

Figures

3–1 Task Syntax . 3–3
3–2 Block Step Structure . 3–8
3–3 Nested Block Arrangement . 3–9
3–4 Structure of Block Step Syntax . 3–12
3–5 Block Step Phrases Syntax . 3–14
3–6 Block Conditional Clauses Syntax . 3–15
3–7 Block Conditional Clauses with a Nested Block 3–16
3–8 Exchange Step Clause Syntax . 3–18
3–9 Processing Step Syntax . 3–22
3–10 Action Syntax . 3–26
3–11 GOTO STEP Clauses in a Nested Blocks Structure 3–72
4–1 Task Group Syntax . 4–2
4–2 Processing Subclauses Syntax . 4–8
4–3 Server Subclauses Syntax . 4–11
5–1 Application Definition Syntax . 5–2
5–2 SERVER ATTRIBUTES Clause Syntax . 5–7
5–3 SERVER DEFAULTS Clause Syntax . 5–8
5–4 TASK ATTRIBUTES Clause Syntax . 5–11
5–5 TASK DEFAULTS Clause Syntax . 5–12
6–1 Menu Definition Syntax . 6–2

viii

Tables

1–1 Startup Qualifiers and Their Functions . 1–3
1–2 Ways to Exit from ADU . 1–3
1–3 Summary of ADU Commands . 1–4
3–1 Task Clauses . 3–2
3–2 Block Step Phrases . 3–13
3–3 Block Conditional Clauses . 3–15
3–4 Exchange Step Clauses . 3–16
3–5 Processing Step Phrases . 3–21
3–6 Processing Step Clauses . 3–21
3–7 Action Clauses . 3–24
3–8 Relational Operators . 3–28
3–9 Boolean Precedence . 3–30
3–10 I/O Attributes for Distributed Processing . 3–33
3–11 Clauses Compatible with the CONTROL FIELD Clause 3–47
3–12 Action Clauses Compatible with the CONTROL FIELD Clause 3–48
3–13 Clauses Compatible with the IF THEN ELSE Clause 3–74
3–14 Action Clauses Compatible with the IF THEN ELSE Clause 3–75
3–15 Clauses Compatible with the SELECT FIRST Clause 3–108
3–16 Action Clauses Compatible with the SELECT FIRST Clause 3–109
3–17 Default Server Context Actions . 3–115
3–18 Default Server Context Actions (Distributed Transactions) 3–115
3–19 Default Transaction Actions . 3–126
3–20 Clauses Compatible with the WHILE DO Clause 3–136
4–1 Task Group Clauses . 4–3
4–2 Processing Subclauses . 4–6
4–3 Server Subclauses . 4–9
4–4 Server Process Rundown Actions . 4–16
5–1 Application Definition Clauses . 5–4
5–2 Server Subclauses . 5–5
5–3 Task Subclauses . 5–10
6–1 Menu Definition Clauses . 6–1
7–1 Default Recovery Actions . 7–7
7–2 Default Recovery Actions . 7–14
7–3 Default Recovery Actions . 7–21
7–4 Default Recovery Actions . 7–27
B–1 Fields in ACMS$PROCESSING_STATUS . B–1
B–2 Fields in ACMS$SELECTION_STRING . B–2
B–3 Fields in ACMS$TASK_INFORMATION . B–2

ix

Preface

This manual contains reference information about the commands and clauses of
the Application Definition Utility (ADU) of HP ACMS for OpenVMS (ACMS). To
learn how to use the ADU, read HP ACMS for OpenVMS Writing Applications.

Intended Audience
This document is intended for all ACMS users.

Operating System Information
Information about the versions of the OpenVMS operating system compatible
with this version of ACMS is included in HP ACMS Version 5.0 for OpenVMS
Installation Guide.

For additional information on the compatibility of other software products with
this version of ACMS, refer to the HP ACMS for OpenVMS Software Product
Description (SPD 25.50.xx).

Document Structure
The manual consists of seven chapters and two appendixes:

Chapter 1 Describes the commands you use with ADU.

Chapter 2 Explains how to use %INCLUDE, which lets you include portions of
other definitions in a definition.

Chapter 3 Describes task and block step clauses, which define the work and
actions of a task.

Chapter 4 Describes the task group definition clauses, which name the tasks and
servers in an application.

Chapter 5 Describes application definition clauses, which name the task groups in
the application and specify control characteristics for tasks and servers
defined in the task group definition.

Chapter 6 Describes menu clauses, which define menus in standard ACMS
format.

Chapter 7 Contains reference material for task clauses and phrases whose use is
no longer recommended.

Appendix A Describes documentation for ADU error messages.

Appendix B Describes ACMS system workspaces.

xi

ACMS Help
ACMS and its components provide extensive online help.

• DCL level help

Enter HELP ACMS at the DCL prompt for complete help about the ACMS
command and qualifiers, and for other elements of ACMS for which
independent help systems do not exist. DCL level help also provides
brief help messages for elements of ACMS that contain independent help
systems (such as the ACMS utilities) and for related products used by ACMS
(such as DECforms or Oracle CDD/Repository).

• ACMS utilities help

Each of the following ACMS utilities has an online help system:

ACMS Debugger
ACMSGEN Utility
ACMS Queue Manager (ACMSQUEMGR)
Application Definition Utility (ADU)
Application Authorization Utility (AAU)
Device Definition Utility (DDU)
User Definition Utility (UDU)
Audit Trail Report Utility (ATR)
Software Event Log Utility Program (SWLUP)

The two ways to get utility-specific help are:

Run the utility and type HELP at the utility prompt.

Use the DCL HELP command. At the ‘‘Topic?’’ prompt, type @ followed by
the name of the utility. Use the ACMS prefix, even if the utility does not
have an ACMS prefix (except for SWLUP). For example:

Topic? @ACMSQUEMGR

Topic? @ACMSADU

However, do not use the ACMS prefix with SWLUP:

Topic? @SWLUP

Note that if you run the ACMS Debugger Utility and then type HELP, you
must specify a file. If you ask for help from the DCL level with @, you do not
need to specify a file.

• ACMSPARAM.COM and ACMEXCPAR.COM help

Help for the command procedures that set parameters and quotas is a subset
of the DCL level help. You have access to this help from the DCL prompt, or
from within the command procedures.

• LSE help

ACMS provides ACMS-specific help within the LSE templates that assist
in the creation of applications, tasks, task groups, and menus. The ACMS-
specific LSE help is a subset of the ADU help system. Within the LSE
templates, this help is context-sensitive. Type HELP/IND (PF1-PF2) at any
placeholder for which you want help.

xii

• Error help

ACMS and each of its utilities provide error message help. Use HELP ACMS
ERRORS from the DCL prompt for ACMS error message help. Use HELP
ERRORS from the individual utility prompts for error message help for that
utility.

• Terminal user help

At each menu within an ACMS application, ACMS provides help about
terminal user commands, special key mappings, and general information
about menus and how to select tasks from menus.

• Forms help

For complete help for HP DECforms or TDMS, use the help systems for these
products.

Related Documents
The following table lists the books in the HP ACMS for OpenVMS documentation
set.

ACMS Information Description

HP ACMS Version 5.0 for OpenVMS
Release Notes†

Information about the latest release of the software

HP ACMS Version 5.0 for OpenVMS
Installation Guide

Description of installation requirements, the installation
procedure, and postinstallation tasks.

HP ACMS for OpenVMS Getting
Started

Overview of ACMS software and documentation.
Tutorial for developing a simple ACMS application.
Description of the AVERTZ sample application.

HP ACMS for OpenVMS Concepts
and Design Guidelines

Description of how to design an ACMS application.

HP ACMS for OpenVMS Writing
Applications

Description of how to write task, task group, application, and
menu definitions using the Application Definition Utility.
Description of how to write and migrate ACMS applications on
an OpenVMS Alpha system.

HP ACMS for OpenVMS Writing
Server Procedures

Description of how to write programs to use with tasks
and how to debug tasks and programs. Description of how
ACMS works with the APPC/LU6.2 programming interface
to communicate with IBM CICS applications. Description of
how ACMS works with third-party database managers, with
Oracle used as an example.

HP ACMS for OpenVMS Systems
Interface Programming

Description of using Systems Interface (SI) Services to submit
tasks to an ACMS system.

HP ACMS for OpenVMS ADU
Reference Manual

Reference information about the ADU commands, phrases,
and clauses.

HP ACMS for OpenVMS Quick
Reference

List of ACMS syntax with brief descriptions.

HP ACMS for OpenVMS Managing
Applications

Description of authorizing, running, and managing ACMS
applications, and controlling the ACMS system.

HP ACMS for OpenVMS Remote
Systems Management Guide

Description of the features of the Remote Manager for
managing ACMS systems, how to use the features, and how to
manage the Remote Manager.

Online help† Online help about ACMS and its utilities.

†Available on line only.

xiii

For additional information on the compatibility of other software products with
this version of ACMS, refer to the HP ACMS for OpenVMS Software Product
Description (SPD 25.50.xx).

For additional information about the Open Systems Software Group (OSSG)
products and services, access the following OpenVMS World Wide Web address:

http://h71000.www7.hp.com/openvms

Reader’s Comments
HP welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following World Wide Web address for information about how to order
additional documentation:

http://www.hp.com/go/openvms/doc/

To reach the OpenVMS documentation website, click the Documentation link.

If you need help deciding which documentation best meets your needs, call
1–800–ATCOMPA.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must press and
hold the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets rather than a box.

xiv

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

In the HMTL version of this document, this text style may
appear as italics.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

bold text Bold text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

In the HMTL version of this document, this text style may
appear as italics.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE Uppercase text indicates the name of a routine, the name of a
file, the name of a file protection code, or the abbreviation for a
system privilege.

In command format descriptions, uppercase text is an optional
keyword.

UPPERCASE In command format descriptions, uppercase text that is
underlined is required. You must include it in the statement if
the clause is used.

lowercase In command format descriptions, a lowercase word indicates a
required element.

xv

<lowercase> In command format descriptions, lowercase text in angle
brackets indicates a required clause or phrase.

() In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

[| |] In command format descriptions, vertical bars within square
brackets indicate that you can choose any combination of the
enclosed options, but you can choose each option only once.

{ | | } In command format descriptions, vertical bars within braces
indicate that you must choose one of the options listed, but you
can use each option only once.

References to Products
The ACMS documentation set often refers to products by abbreviated names. The
following product abbreviations are used in this documentation set:

Abbreviation Product

ACMS HP ACMS for OpenVMS Alpha, and HP ACMS for OpenVMS I64

Ada HP Ada for OpenVMS Alpha Systems, and HP Ada for OpenVMS I64
Systems

BASIC HP BASIC for OpenVMS

C HP C for OpenVMS Alpha Systems, and HP C for OpenVMS I64 Systems

CDD Oracle CDD/Administrator, and Oracle CDD/Repository

COBOL HP COBOL for OpenVMS Alpha Systems, and HP COBOL for OpenVMS
I64 Systems

DATATRIEVE HP DATATRIEVE for OpenVMS Alpha, and HP DATATRIEVE for
OpenVMS I64

DBMS Oracle CODASYL DBMS

DECforms HP DECforms

FORTRAN HP Fortran for OpenVMS Alpha Systems, and HP Fortran for OpenVMS
I64 Systems

OpenVMS The OpenVMS Alpha operating system, and the OpenVMS I64 operating
system

Pascal HP Pascal for OpenVMS Alpha, and HP Pascal for OpenVMS I64

Rdb Oracle Rdb

SQL The SQL interface to Oracle Rdb

xvi

1
Application Definition Utility Commands

Use Application Definition Utility (ADU) commands to create or change the
definitions an ACMS application uses, or to monitor your own work or that of an
ACMS application. You can issue ADU commands interactively or in a command
file.

To create an ACMS application, you can use ADU commands to reset your Oracle
CDD default directory during a session, and write, change, copy, delete, and
compile definitions for tasks, task groups, menus, and applications. Other ADU
commands let you build or rebuild task group, menu, and application database
files.

To gather information about your work, you can use ADU commands to check
the version of ADU on your system, log an interactive session to a file in your
default directory for later reference, check if logging is active, and verify the
work a command file performs during execution. To gather information about an
ACMS application, you can use ADU commands to list the contents of task group,
application, or menu database files, so you can check the consistency of procedure
names, workspaces, and servers.

1.1 Explanations of Reference Page Terminology
The reference pages in this and in the remaining chapters contain explanations
of clauses, commands, or phrases. The following list explains the terms used in
those explanations:

Name Lists the name of the clause, command, or phrase in bold

Description Explains what the clause, command, or phrase does

Format Lists the syntax of the clause, command, or phrase, including
optional and required parts

Keywords List and explain ACMS reserved words

Parameters List and explain the parts of a clause, command, or phrase you
must supply

Default Explains what ACMS does if you omit an optional clause,
command, or phrase

Qualifiers List and explain modifiers and defaults for the commands

Notes List additional information about clauses, commands, or
phrases

Examples List and explain sample clauses, commands, or phrases

The commands and clauses are listed by alphabetical order in each chapter
or section. In the reference chapters, reference information about each clause,
command, or phrase begins at the top of a new page.

Application Definition Utility Commands 1–1

Application Definition Utility Commands
Starting and Stopping ADU

1.2 Starting and Stopping ADU
This section explains how to invoke the Application Definition Utility (ADU) and
exit from it.

1.2.1 Starting ADU
There are three ways to invoke ADU. Two methods use startup qualifiers; the
third allows you to enter the utility only in default mode. After invoking the
utility, ACMS displays the ADU> prompt.

The three ways to start ADU are:

• By using the MCR command

Start ADU by entering the following command at the DCL prompt:

$ MCR ACMSADU
ADU>

Include startup command qualifiers on the MCR ACMSADU command line.

• By defining a foreign command

Define a foreign command in your LOGIN.COM file to invoke ADU. Then,
whenever you enter that command at the DCL prompt, you are in ADU.

Before using the foreign command ADU to invoke the utility, put the following
definition in your LOGIN.COM file. Then process the LOGIN.COM by
entering @LOGIN.COM at the DCL prompt to make the foreign command
available for the current session. After the current session, the command is
automatically defined whenever you log in.

The following definition creates ADU as the foreign command to invoke the
utility:

$ ADU :== $ACMSADU

After defining the foreign command and processing the login file, enter ADU
at the DCL prompt to invoke the utility:

$ ADU
ADU>

Include startup command qualifiers on the command line by using the
command:

$ ADU /COMMAND=RESERVATIONS

• By using the RUN command

Enter the RUN command at the DCL prompt to invoke ADU:

$ RUN SYS$SYSTEM:ACMSADU
ADU>

Do not include ADU command qualifiers when invoking the utility with the
RUN command.

Table 1–1 lists the startup command qualifiers and their functions. Use these
qualifiers when invoking ADU with the MCR command or a foreign command.

1–2 Application Definition Utility Commands

Application Definition Utility Commands
Starting and Stopping ADU

Table 1–1 Startup Qualifiers and Their Functions

Qualifier Function

/COMMAND [=file-spec]
/NOCOMMAND

Tells ADU whether or not to execute a startup command
file when you invoke the utility. By default, when
you invoke ADU, it runs a command file named
ADUINI.COM, located in your default directory. To
invoke a different startup command file, include its file
specification with the /COMMAND qualifier.

When you specify the /NOCOMMAND qualifier, ACMS
starts the ADU without executing any startup command
file.

/JOURNAL
/NOJOURNAL

By default, ADU creates a journal file that contains every
keystroke made during your ADU session. The journal
file, named ADUJNL.JOU, is located in your default
directory. The journal file is saved if your ADU session is
interrupted. When you exit normally (by using the EXIT
command or entering Ctrl/Z), the journal file is not saved.

Use the /NOJOURNAL qualifier to turn off the journaling
feature.

/PATH=path-name Assigns a CDD directory. If you do not specify a path
name, ADU uses the default CDD directory.

/RECOVER
/NORECOVER

If you specify the /RECOVER qualifier, ADU runs the
journal file, ADLJNL.JOU, to restore an ADU session
that has ended abnormally. With /RECOVER in effect,
ADU replays the interrupted session to recover your work.

/NORECOVER is the default.

1.2.2 Stopping ADU
There are three methods to stop the ADU utility. Two methods result in an
orderly exit from the utility. The third method causes an abrupt exit and should
be used only when the other methods fail. Table 1–2 lists the ways to end an
ADU session.

Table 1–2 Ways to Exit from ADU

Command Meaning

EXIT Ends your ADU session and returns control to the DCL command level
without issuing any messages. Using the EXIT command produces the
same results as pressing Ctrl/Z . When you create a file of ADU commands
to automatically run a session, enter only the EXIT command in the file to
terminate the automated session.

Ctrl/Z Ends your ADU session and returns control to the DCL command level
without issuing any messages.

Ctrl/Y Abruptly ends your ADU session and returns control to the DCL command
level without displaying any messages. Using Ctrl/Y can leave your
definitions in an inconsistent state; so, use this method of exiting from
ADU only when other methods fail.

Application Definition Utility Commands 1–3

Application Definition Utility Commands
Command Summary

1.3 Command Summary
This section summarizes the ADU commands and qualifiers. Table 1–3 lists the
ADU commands and qualifiers, and describes their functions.

Table 1–3 Summary of ADU Commands

Commands and Qualifiers Function

@(At sign)

Runs a file containing utility commands
and/or clauses. The commands in the file
run as if you typed them interactively.

ATTACH

Permits you to switch control of your
terminal from your current process to
another process in your job.

BUILD
/AUDIT [=audit-list]
/NOAUDIT
/[NO]DEBUG
/LIST [=list-file-spec]
/NOLIST
/[NO]LOG
/OBJECT=(file-spec [,...])
/NOOBJECT
/[NO]PRINT
/[NO]STDL
/[NO]SYSLIB
/[NO]SYSSHR
/USERLIBRARY=(file-spec [,...])
/NOUSERLIBRARY

Creates a database file that ACMS can use
at run time.

COMPILE
/DIAGNOSTICS [=diagnostics-file-spec]
/NODIAGNOSTICS
/LIST [=list-file-spec]
/NOLIST
/[NO]LOG
/OUTPUT [=output-file-spec]
/[NO]OUTPUT
/[NO]PRINT

Checks an application, task group, menu,
or task definition for syntax errors, and
writes the compilation results to a file.

COPY
/AUDIT [=audit-list]
/NOAUDIT
/[NO]LOG

Creates a copy of an application, menu,
task, or task group definition from the
dictionary and stores it with a new name
in a new location in the dictionary.

(continued on next page)

1–4 Application Definition Utility Commands

Application Definition Utility Commands
Command Summary

Table 1–3 (Cont.) Summary of ADU Commands

Commands and Qualifiers Function

CREATE
/AUDIT [=audit-list]
/NOAUDIT
/DIAGNOSTICS [=diagnostics-file-spec]
/NODIAGNOSTICS
/LIST [=list-file-spec]
/NOLIST
/[NO]LOG
/[NO]PRINT

Checks and stores valid application, task,
or task group definitions in the dictionary.

DELETE
/[NO]CONFIRM
/[NO]LOG

Removes an application, menu, task, or
task group definition from the dictionary.

DUMP
/OUTPUT [=file-spec]
/NOOUTPUT
/[NO]PRINT

Displays the contents of an application,
menu, or task group database file.

EDIT

Recalls the last command you typed,
including any definition source, and starts
a text editor, making the command or
command and definition available for
change.

EXIT

Ends the ADU session and returns you to
the DCL prompt.

HELP
/[NO]PROMPT

Displays information about ADU
commands and clauses.

(continued on next page)

Application Definition Utility Commands 1–5

Application Definition Utility Commands
Command Summary

Table 1–3 (Cont.) Summary of ADU Commands

Commands and Qualifiers Function

LINK
/[NO]DEBUG
/LIST [=list-file-spec]
/NOLIST
/[NO]LOG
/OBJECT=[(] file-spec [,...] [)]
/NOOBJECT
/OPTION=option-file-spec
/[NO]PRINT
/REFERENCED_OBJECT_
DEFAULT=default-file-spec
/[NO]SYSLIB
/[NO]SYSSHR
/USERLIBRARY=[(] file-spec [,...] [)]
/NOUSERLIBRARY

Converts object definitions from OpenVMS
files into binary database files that ACMS
uses at run time.

LIST
/OUTPUT [=file-spec]
/NOOUTPUT
/[NO]PRINT

Displays the specified application, menu,
task, or task group definition stored in the
dictionary.

MODIFY
/AUDIT [=audit-list]
/NOAUDIT
/DIAGNOSTICS [=diagnostics-file-spec]
/NODIAGNOSTICS
/LIST [=list-file-spec]
/NOLIST
/[NO]LOG
/[NO]PRINT

Recalls an object definition from the
dictionary and runs a text editor so you
can change the definition.

REPLACE
/AUDIT [=audit-list]
/NOAUDIT
/[NO]CREATE
/DIAGNOSTICS [=diagnostics-file-spec]
/NODIAGNOSTICS
/LIST [=list-file-spec]
/NOLIST
/[NO]LOG
/[NO]PRINT

Creates a new definition and replaces the
old definition with the new one.

SAVE

Puts the last command you typed,
including any definition source, in the
file you specify.

(continued on next page)

1–6 Application Definition Utility Commands

Application Definition Utility Commands
Command Summary

Table 1–3 (Cont.) Summary of ADU Commands

Commands and Qualifiers Function

SET DEFAULT

Sets the default directory in the dictionary.

SET LOG [file-spec]
SET NOLOG

Enables or disables utility logging. Logs
information about the utility session to the
default log file or to a file you specify.

SET VERIFY
SET NOVERIFY

Enables or disables the display of
commands ADU processes from an indirect
command file.

SHOW DEFAULT

Displays your current dictionary default
directory.

SHOW LOG

Displays whether utility logging is enabled
or disabled and what the log file is.

SHOW VERSION

Displays the version number of the utility.

SPAWN
/INPUT [=file-spec]
/[NO]LOGICAL_NAMES
/OUTPUT [=file-spec]
/NOOUTPUT
/PROCESS [=subprocess-name]
/[NO]SYMBOLS
/[NO]WAIT

Creates a subprocess of the current
process. Can be used to leave ADU
temporarily to execute a DCL command
or run an OpenVMS image.

1.4 Common ADU Command Qualifiers
Several commands share common ADU qualifiers:

• The /AUDIT and /NOAUDIT command qualifiers are common to the BUILD,
COPY, CREATE, MODIFY, and REPLACE commands.

• The /LIST and /NOLIST command qualifiers are common to the BUILD,
COMPILE, CREATE, LINK, MODIFY, and REPLACE commands.

• The /[NO]LOG command qualifier is common to the BUILD, COMPILE,
COPY, CREATE, DELETE, LINK, MODIFY, and REPLACE commands.

• The /[NO]PRINT command qualifier is common to the BUILD, COMPILE,
CREATE, DUMP, LINK, LIST, MODIFY, and REPLACE commands.

Descriptions of these command qualifiers are listed here rather than under each
command in the reference pages.

Application Definition Utility Commands 1–7

Application Definition Utility Commands
Common ADU Command Qualifiers

/AUDIT [=audit-list]

/NOAUDIT
Stores audit history information about the definition you are using.

The [=audit-list] parameter specifies either the audit information or where it
comes from. The audit information can come from a default history list ADU
supplies, from either the word or string specified in the audit-list parameter itself,
or from the contents of one or several files specified in the audit-list parameter.
The audit information can also come from a combination of these items.

The following list explains the audit information you can specify as an audit-list
parameter:

• Single-word audit text:

/AUDIT=VERSION1

In this example, the audit information comes from the single word that
follows the qualifier. Quotation marks (" ") are optional because the text is
one word.

• Multiple-word audit string:

/AUDIT="This is version 1"

In this example, the audit information comes from the multiple-word string
that follows the qualifier. Quotation marks (" ") are required if the audit text
contains spaces or special characters.

• File specification:

/AUDIT="@YOURDISK:[USER2]AUDIT.TXT"

In this example, the audit information comes from the contents of a file. ADU
interprets each line of the file as an audit string. The file specification must
be introduced with an at sign (@) and enclosed in quotation marks
(" ").

• List of strings and/or file specifications:

/AUDIT=(VERSION1,"Bryan’s Version","@EXTRAUD.SRC")

In this example, the audit information comes from a single word, a string,
and a file. The entire list must be enclosed in parentheses. The items in the
list must be separated with commas.

ADU does not accept more than 64 lines, entries, or records in an audit list or in
an audit string you specify in an audit file specification.

The default history list entry that ADU supplies includes:

• Operation the command performed

• Name of the user

• User UIC and process name

• Name of the utility

• Date and time of the operation

1–8 Application Definition Utility Commands

Application Definition Utility Commands
Common ADU Command Qualifiers

The following example shows the default audit history list that accompanies an
ADU BUILD command:

Build by MORRISSEY (UIC [MORRISSEY]) in process MORRISSEY using
ACMS ADU V4.0 on 9-MAR-1994 14:19:77.94 for program ADU.

If you include an audit list with the /AUDIT qualifier, ADU supplies both the
standard history list entry and the audit list you define.

The /NOAUDIT qualifier prevents the creation of a history list entry.

/LIST [=list-file-spec]

/NOLIST
Creates a list file containing messages that occurred during a command operation
and the statistics for that operation. The file specification names the file in which
you want to store the output listing. If you do not include a file specification,
ADU derives the file specification using the full given name of the definition,
including dollar signs ($) and underscores (_), and the default file type .LIS.

The /NOLIST qualifier does not create a list file.

The default in interactive mode is /NOLIST. The default in batch mode is /LIST.

/LOG

/NOLOG (default)
Displays a message indicating whether or not the operation was successful.

The default is /NOLOG.

/PRINT

/NOPRINT (default)
Sends the list file to the SYS$PRINT queue. If you use the /PRINT qualifier
without a /LIST qualifier, ADU creates, prints, and then deletes the list file.

/NOPRINT is the default.

Application Definition Utility Commands 1–9

@ (At sign) Command (ADU>)

@ (At sign) Command (ADU>)

Executes a command file containing ADU commands and/or ACMS definitions.
Use this command to compile a definition without writing the definition
interactively in ADU.

Format

@ (At sign) command-file-spec

Parameter

command-file-spec
The name of the command file containing the commands and/or definitions you
are submitting to ADU.

Notes

By default, the ADU @ (at sign) command executes a file with a file type .COM
located in your default directory. If the file type is not .COM, you must specify
the file type when you execute the command.

If the definition contains errors, ADU displays diagnostic messages and the lines
containing the errors. ADU does not display each line of the command file as it
executes unless you use the ADU SET VERIFY command.

Example

ADU> @PERS_APPL
%ADU-I-NONODWLCR, Object ’PERS_APPL’ does not exist, creating object
ADU>

This example executes a command file, PERS_APPL.COM, that contains the
definition for the ACMS application PERS_APPL. ADU compiles the definition,
stores the object in the dictionary, and returns an informational message saying
that ADU is creating the object.

1–10 Application Definition Utility Commands

ATTACH Command (ADU>)

ATTACH (ADU>)

Transfers control from one process to another process in your job. Use this
command if you entered ADU from a subprocess and want to return to a higher
process without exiting ADU. You can also use this command to enter a lower
process without exiting from the current subprocess.

Format

ATTACH process-name

Parameter

process-name
The name of the process to which control is transferred.

Notes

The ATTACH command does not terminate the process from which you issue it.
To terminate the process and return to the next higher process in the process tree
in your job, log out.

Use the ADU ATTACH command the way you use the DCL ATTACH command.

Example

ADU> ATTACH NEILSEN_1
%DCL-S-RETURNED, control returned to process NEILSEN_1

This command returns control of your job to a previously created subprocess,
NEILSEN_1. The command does not terminate the process from which you
issued the ATTACH command.

Application Definition Utility Commands 1–11

BUILD Command (ADU>)

BUILD (ADU>)

Uses output from the CREATE command to build a database file that ACMS can
run. When used with the /STDL qualifier—first BUILD GROUP /STDL, then
BUILD APPLICATION /STDL—to translate ACMS task group information to
STDL format, first builds an intermediate-format World Wide Web (web) database
file and then, using the web database file, builds an STDL source file.

Format

BUILD

� APPLICATION
GROUP
MENU

�
path-name [database-file-spec] [/qualifiers]

Command Qualifiers Defaults

/AUDIT[=audit-list] /AUDIT=standard-audit-string
/NOAUDIT
/[NO]DEBUG /NODEBUG
/LIST[=list-file-spec] /LIST (Batch)
/NOLIST /NOLIST (Interactive)
/[NO]LOG /NOLOG
/OBJECT=(file-spec [,...])
/NOOBJECT /NOOBJECT
/[NO]PRINT /NOPRINT
/[NO]STDL /NOSTDL
/[NO]SYSLIB /SYSLIB
/[NO]SYSSHR /SYSSHR
/USERLIBRARY=(file-spec [,...])
/NOUSERLIBRARY /NOUSERLIBRARY

Keywords

APPLICATION
Builds an application database.

GROUP
Builds a task group database.

MENU
Builds a menu database.

Parameters

path-name
The CDD path name of the definition you want the BUILD command to process.
When used with the BUILD GROUP /STDL command, path-name is the task
group name; when used with the BUILD APPLICATION /STDL command,
path-name is the application name.

database-file-spec
The file specification for the database file that the BUILD command creates.
This output file is a database file that ACMS uses at run time. The BUILD
command can create an application, task group, or menu database file; a special
intermediate-format web database file; or a special application STDL file.

1–12 Application Definition Utility Commands

BUILD Command (ADU>)

If you do not name a database file when you build an application, task group, or
menu definition, ADU uses the file named in the DEFAULT FILE clause of the
definition. If the definition does not name a default database file, ACMS uses the
full given name (including dollar signs and underscores) of the given name of the
application, task group, or menu you are building.

The database produced by the BUILD command depends on the type of definition
you are building.

When you build an application definition, the BUILD command produces an
application database (.ADB) file with a default .ADB file type.

When you build a menu definition, the BUILD command produces a menu
database (.MDB) file with a default .MDB file type.

When you build a task group definition, the BUILD command produces:

• A task database file—default file type: .TDB

• One or more procedure server transfer module files—default file type: .OBJ

When you use the /STDL qualifier in two special processing stages – group_task
translation, then application_group translation—to translate ACMS task group
information to STDL format, allowing you subsequently to build a Windows NT
client interface that enables ACMS applications to be accessed by NT clients, the
BUILD command produces:

1. An intermediate-format web database file, produced by the group_task
translation initiated with BUILD GROUP /STDL, containing task, task group,
and record information and used as input in application_group translation
processing—default file type: .WDB

2. An STDL source file, produced by the application_group translation initiated
by BUILD APPLICATION /STDL, containing a task group specification and
related data type and record definitions and using as input an intermediate
web database file from group_task translation processing—default file type:
.STDL

For example:

ADU> BUILD APPLICATION PERSONNEL PERS.ADB

The default directory is your current default directory. The default device is
SYS$DISK, which must translate to a device name.

Qualifiers

/AUDIT [=audit-list]
/NOAUDIT
The /AUDIT and /NOAUDIT qualifiers are common to several ADU commands.
See Section 1.4, which describes common qualifiers.

/[NO]DEBUG
Makes the contents of workspaces available for you to examine or deposit during
a debugging session. Use this qualifier only when building a task group.

The /NODEBUG qualifier makes the contents of workspaces unavailable during a
debugging session.

The default is /NODEBUG.

Application Definition Utility Commands 1–13

BUILD Command (ADU>)

/LIST [=list-file-spec]
/NOLIST
The /LIST and /NOLIST qualifiers are common to several ADU commands. See
Section 1.4, which describes common qualifiers.

/[NO]LOG
The /[NO]LOG qualifier is common to several ADU commands. See Section 1.4
which describes common qualifiers.

/OBJECT=(file-spec [,...])
/NOOBJECT
The /OBJECT and /NOOBJECT qualifiers control whether or not object modules
are searched for global symbol resolution during build group processing. You can
use the /OBJECT qualifier to point to message files. The default is /NOOBJECT.

/[NO]PRINT
The /[NO]PRINT qualifier is common to several ADU commands. See Section 1.4
which describes common qualifiers.

/[NO]STDL
Translates an ACMS application’s task headers and task group, task, and record
definitions extracted from the CDD to an STDL task group specification, data
type definitions, STDL record definitions, and task group headers with records
as arguments. The translation takes place in two processing stages: group_task
translation, which is initiated by the BUILD GROUP /STDL command, and
application_group translation, which is initiated by the BUILD APPLICATION
/STDL command. You use the STDL output file to create the client interface that
enables Windows NT clients to access ACMS applications.

/[NO]SYSLIB
The /[NO]SYSLIB qualifier controls whether or not to search the default system
libraries SYS$LIBRARY:IMAGELIB.OLB and SYS$LIBRARY:STARLET.OLB to
resolve global symbols during build group processing. The default is /SYSLIB.
The system libraries are not searched if you use the /NOSYSLIB qualifier. If
you use both the /NOSYSLIB and /SYSSHR qualifiers, the /SYSSHR qualifier is
ignored.

/[NO]SYSSHR
The /[NO]SYSSHR qualifier controls whether or not to search
SYS$LIBRARY:IMAGELIB.OLB to resolve global symbols during build group
processing. The default is /SYSSHR.

/USERLIBRARY=(file-spec [,...])
/NOUSERLIBRARY
The /USERLIBRARY and /NOUSERLIBRARY qualifiers control whether or not to
search user-specified object libraries and shared image libraries to resolve global
symbols during build group processing. The default is /NOUSERLIBRARY. If you
use the /NOSYSLIB or /NOSYSSHR qualifier, you can specify the default system
libraries SYS$LIBRARY:IMAGELIB.OLB or SYS$LIBRARY:STARLET.OLB with
the /USERLIBRARY qualifier.

1–14 Application Definition Utility Commands

BUILD Command (ADU>)

Notes

Before you can start an application, that application’s database file must be in the
directory associated with the logical name ACMS$DIRECTORY. The two ways to
put the database file in that directory are:

• Use the DCL COPY command to copy the database file into the directory that
ACMS$DIRECTORY points to. This requires that you have write access to
ACMS$DIRECTORY.

• Use the ACMS/INSTALL operator command to put the application
database file into ACMS$DIRECTORY. You must be authorized to use
the ACMS/INSTALL command.

A menu database file can be in any directory. However, its location must match
the file specification of the user definition file (ACMSUDF.DAT) named by the
User Definition Utility /MDB qualifier. In general, keep menu database files in
the directory pointed to by ACMS$DIRECTORY. See HP ACMS for OpenVMS
Managing Applications for details about using the User Definition Utility.

A task group database file (.TDB) can be in any directory. However, its location
must match the file specification that is used in the TASK GROUPS clause of the
application definition.

The BUILD MENU command moves all subordinate menus into the menu
database, as well as the menu (top menu) that you name in the BUILD command.

When you build a task group, ADU produces one task group database. ADU
produces one procedure server object module for each procedure server named
in the task group definition. The object module for each server is named in the
DEFAULT OBJECT FILE subclause for that server. However, if you do not use
the DEFAULT OBJECT FILE subclause for a server, ADU derives the name of
the object file from the unique name of the server. ADU uses the full given name,
including dollar signs ($) and underscores (_), for the default name of the object
file.

To resolve global symbols, ACMS first searches, in order, the files specified with
the /OBJECT qualifier. If the global symbol is not found, ACMS searches,
in order, the libraries specified with the /USERLIBRARY qualifier. If the
symbol is still not found, ACMS then searches the default system libraries
SYS$LIBRARY:IMAGELIB.OLB and SYS$LIBRARY:STARLET.OLB, in that
order. Once a global symbol is found, the search stops.

The /STDL qualifier translates an ACMS application’s task headers and task
group, task, and record definitions (extracted from the CDD) to an STDL task
group specification, data type definitions, STDL record definitions, and task group
headers with records as arguments. The translation takes place in two processing
stages: group task translation, which is initiated by the BUILD GROUP /STDL
command, and application group translation, which is initiated by the BUILD
APPLICATION /STDL command. You use the STDL output file to create the
client interface that enables Windows NT® clients to access ACMS applications.

Application Definition Utility Commands 1–15

BUILD Command (ADU>)

Group Task Translation
Group task translation produces a temporary binary file containing ACMS task
and task group information. Group task translation must be performed for the
ACMS task group that comprises the application. The command syntax is:

BUILD GROUP acms_group_name [/STDL]

In this format, acms_group_name refers to the name of the ACMS task group.

The /STDL qualifier directs ADU to output task and record information that is
used for completing the translation to STDL format. The output file produced by
the /STDL qualifier has a name in the format group.WDB.

The .WDB file type indicates the intermediate-format web database file. The
BUILD GROUP command writes the file to the default directory. (See Chapter 4
for information about the ADU task-group definition clause DEFAULT TASK
GROUP FILE.)

The /NOSTDL qualifier instructs ADU not to produce the intermediate-format
file. The default qualifier is /NOSTDL.

Application Group Translation
Application group translation reads the task group name as specified in the
application and translates the intermediate-format task group file built from the
group_task translation. The command syntax is:

BUILD APPLICATION application_name [/STDL]

In this format, application_name refers to the name of an ACMS application.

The /STDL qualifier directs the translator during the processing initiated
by the ADU BUILD APPLICATION command to generate STDL code using
the intermediate-format group file that was created during the ADU BUILD
GROUP compilation. The output is a file with a name in the format application_
name.STDL.

ADU generates in the default directory an STDL source file containing a task
group specification and related data type and record definitions. You use this file
to create the client interface that enables Windows NT clients to access ACMS
applications.

1–16 Application Definition Utility Commands

BUILD Command (ADU>)

Examples

1. ADU> SET DEFAULT DISK1:[CDDPLUS]APPLICATION
ADU> BUILD APPLICATION PERSONNEL PERSONNEL.ADB /LOG
%ACMSCDU-I-BLDSRVNAM, Building server EMPLOYEE_SERVER
%ACMSCDU-I-BLDTSKNAM, Building task EMPLOYEE
%ACMSCDU-I-BLDTSKNAM, Building task DATR
%ACMSCDU-I-BLDTSKNAM, Building task EDTR
%ACMSCDU-I-BLDTSKNAM, Building task MAIL
%ACMSCDU-I-WRITEADB, Writing ADB
-ACMSCDU-I-BYTESWRIT, 1180 bytes (3 blocks)
%ACMSCDU-S-APPBUILT, Application DISK1:[CDDPLUS]APPLICATION.PERSONNEL
built into file
’EXAMPLES$:[EXAMPLES]PERSONNEL.ADB;1’
ADU>

After setting the default CDD directory to
DISK1:[CDDPLUS]APPLICATION, use the BUILD command to process
the Personnel application. The /LOG qualifier displays messages about the
build operation and returns you to the ADU> prompt. The last message
indicates that the BUILD command created the database file and put it in the
PERSONNEL.ADB file located in your current default directory.

2. ADU> BUILD MENU DISK1:[CDDPLUS]EXAMPLES.EMPLOYEE_MENU MENU.MDB /LOG
%ACMSCDU-I-PROCTASK, Processing task ’EMPLOYEE’
%ACMSCDU-I-MENUNAME, Menu named ’EMPLOYEE_MENU’
%ACMSCDU-I-LODMENNAM, Loading menu
%ACMSCDU-I-MENPTHLOD, Menu CDD object ’DISK1:[CDDPLUS]EXAMPLES.EMPLOYEE_
MENU’ loaded
%ACMSCDU-I-PROCMENU, Processing menu ’UTILITY_MENU’
%ACMSCDU-I-PROCTASK, Processing task ’DATR’
%ACMSCDU-I-PROCTASK, Processing task ’EDTR’
%ACMSCDU-I-PROCTASK, Processing task ’MAIL’
%ACMSCDU-I-WRITEMDB, Writing MDB
-ACMSCDU-I-BYTESWRIT, 1128 bytes (3 blocks)
%ACMSCDU-S-MENBUILT, Menu DISK1:[CDDPLUS]EXAMPLES.EMPLOYEE_MENU built
into file
’EXAMPLES$:[EXAMPLES]MENU.MDB;1’

The BUILD command in this example builds a menu using the menu
definition in the CDD directory EXAMPLES with the given name
EMPLOYEE_MENU. The /LOG qualifier confirms that the output database
file MENU.MDB is in your default directory and that the associated tasks
and submenus were built using the main menu definition.

3. ADU> BUILD GROUP AVERTZ_CDD_GROUP:VR_TASK_GROUP -
_ADU> AVERTZ_TDB:VR_TASK_GROUP.TDB/OBJECT=AVERTZ_OBJ:VRMSG.OBJ

The BUILD command in this example builds a task group using the task
group definition in the CDD directory AVERTZ_CDD_GROUP with the given
name VR_TASK_GROUP. The /OBJECT qualifier instructs ADU to use the
VRMSG.OBJ message file to resolve symbols during processing.

Application Definition Utility Commands 1–17

COMPILE Command (ADU>)

COMPILE (ADU>)

Checks an application, task group, menu, or task definition for syntax errors, and
writes the compilation results to a file.

Format

COMPILE

���
��

APPLICATION
GROUP
MENU
TASK

���
�	 reference-name [definition-file-spec] [/qualifiers]

Command Qualifiers Defaults

/DIAGNOSTICS[=diagnostics-file-spec]/NODIAGNOSTICS
/LIST [=list-file-spec] /NOLIST
/LOG /NOLOG
/OUTPUT [=output-file-spec] /NOOUTPUT
/PRINT /NOPRINT

Keywords

APPLICATION
Compiles an application definition.

GROUP
Compiles a task group definition.

MENU
Compiles a menu definition.

TASK
Compiles a task definition.

Parameters

reference-name
The name by which the ACMS entity to be compiled should be referenced in other
definitions.

For tasks, this name is used in the following ways:

• In a task definition when the task is called from another task (CALL TASK
<task-name>)

• In a group definition in the TASK DEFINITION IS <task-name> clause.

For menus, this name is used when a menu entry is another menu (MENU IS
<menu-name>).

definition-file-spec
The file specification of the source definition file.

1–18 Application Definition Utility Commands

COMPILE Command (ADU>)

Qualifiers

/DIAGNOSTICS [=diagnostics-file-spec]
/NODIAGNOSTICS
Tells ADU to produce a diagnostics file that LSE uses when you issue the LSE
REVIEW command. ADU places the diagnostics file in your default directory.
If you use the /DIAGNOSTICS qualifier without specifying a diagnostics file
specification, ADU creates a diagnostics file that has the entity name with a file
type .DIA.

/NODIAGNOSTICS is the default in batch or interactive mode.

/LIST [=list-file-spec]
/NOLIST
The /LIST and /NOLIST qualifiers are common to several ADU commands. See
Section 1.4, which describes common qualifiers.

/[NO]LOG
The /[NO]LOG qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

/OUTPUT [=output-file-spec]
/NOOUTPUT
The default file specification to use to determine the file in which to put the
results of the compilation. The /NOOUTPUT qualifier allows you to check for
compilation errors without producing an output file.

/[NO]PRINT
The /[NO]PRINT qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

Notes

Use the COMPILE command to submit a source definition to ADU interactively
or from a command file. ADU compiles the definition. If ADU finds no syntax
errors, it stores the compilation results in a file. ADU determines the output file
specification using several pieces of information. The defaults are as follows:

• The device defaults to the current device.

• The directory defaults to the current directory.

• The file name defaults to the name parameter.

• The file extension defaults to .ABJ for application result files, .GBJ for task
group result files, .MBJ for menu result files, and .TBJ for task result files.

Any of the components of the file specification can be overridden by supplying
them with the /OUTPUT qualifier.

Examples

1. ADU> COMPILE TASK PERSONNEL PERSONNEL.TDF
ADU>

This command processes a task source definition in the PERSONNEL.TDF
file in your current directory and puts the compilation results in the
PERSONNEL.TBJ file.

Application Definition Utility Commands 1–19

COMPILE Command (ADU>)

2. ADU> COMPILE GROUP INVENTORY_GROUP INVENTORY /OUTPUT = USERD$:[INVENTORY.OBJ]
ADU>

This command processes a task group source definition in the
INVENTORY.GDF file in your current directory and puts the compilation
results in USERD$:[INVENTORY.OBJ]INVENTORY_GROUP.GBJ.

1–20 Application Definition Utility Commands

COPY Command (ADU>)

COPY (ADU>)

Creates a copy of a definition. Use this command to copy a definition in your
own directory or in a different dictionary directory. Instead of rewriting an entire
definition, you can save time by copying a definition of source code. Then change
parts of the definition to suit your specific application.

You can also use the COPY command to convert definitions from Dictionary
Management Utility (DMU) to Common Dictionary Operator (CDO) format.

Format

COPY

���
��

APPLICATION
GROUP
MENU
TASK

���
�	 src-path-name dst-path-name [/qualifiers]

Command Qualifiers Defaults

/AUDIT[=audit-list] /AUDIT=standard-audit-string
/NOAUDIT
/[NO]LOG /NOLOG

Keywords

APPLICATION
Makes a copy of an application definition.

GROUP
Makes a copy of a task group definition.

MENU
Makes a copy of a menu definition.

TASK
Makes a copy of a task definition.

Parameters

src-path-name
The CDD path name of the definition you want to copy.

dst-path-name
The CDD path name to use for storing the definition you are copying.

Qualifiers

/AUDIT [=audit-list]
/NOAUDIT
The /AUDIT and /NOAUDIT qualifiers are common to several ADU commands.
See Section 1.4, which describes common qualifiers.

Application Definition Utility Commands 1–21

COPY Command (ADU>)

/[NO]LOG
The /[NO]LOG qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

Notes

To convert a definition from DMU format to CDO format:

1. Copy the definition to a temporary dictionary directory.

2. Delete the original source definition.

3. Copy the definition from the temporary directory back to the source directory.

4. Delete the temporary directory by deleting its contents.

You must use the temporary directory because the CDD dictionaries share name
space.

Example

ADU> SET DEFAULT DISK1:[CDDPLUS]APPLICATION
ADU> COPY APPLICATION UPDATE_ONE UPDATE_TWO/LOG
%ACMSCDU-S-APPCOPIED, Application DISK1:[CDDPLUS]APPLICATION.UPDATE_ONE
copied to DISK1:[CDDPLUS]APPLICATION.UPDATE_TWO
ADU>

This COPY command creates a copy of the dictionary definition UPDATE_ONE
in your default CDD directory. To use the new definition, set your default to
DISK1:[CDDPLUS]APPLICATION and use the given name UPDATE_TWO. The
/LOG qualifier confirms that the COPY command successfully created a new copy
of the application definition. Control returns to the ADU> prompt.

1–22 Application Definition Utility Commands

CREATE Command (ADU>)

CREATE (ADU>)

Checks an application, task group, menu, or task definition for syntax errors, and
stores valid new definitions in the dictionary. Use this command to create the
components of an ACMS application.

Format

CREATE

���
��

APPLICATION
GROUP
MENU
TASK

���
�	 path-name [file-spec] [/qualifiers]

Command Qualifiers Defaults

/AUDIT[=audit-list] /AUDIT=standard-audit-string
/NOAUDIT
/DIAGNOSTICS[=diagnostics-file-spec]
/NODIAGNOSTICS /NODIAGNOSTICS
/LIST[=list-file-spec] /LIST (Batch)
/NOLIST /NOLIST (Interactive)
/[NO]LOG /NOLOG
/[NO]PRINT /NOPRINT

Keywords

APPLICATION
Creates an application definition.

GROUP
Creates a task group definition.

MENU
Creates a menu definition.

TASK
Creates a task definition.

Parameters

path-name
The CDD path name that the CREATE command uses to store the processed
definition.

file-spec
The file specification of the source definition file.

Qualifiers

/AUDIT [=audit-list]
/NOAUDIT
The /AUDIT and /NOAUDIT qualifiers are common to several ADU commands.
See Section 1.4, which describes common qualifiers.

Application Definition Utility Commands 1–23

CREATE Command (ADU>)

/DIAGNOSTICS [=diagnostics-file-spec]
/NODIAGNOSTICS
Tells ADU to produce a diagnostics file that LSE uses when you issue the LSE
REVIEW command. ADU places the diagnostics file in your default directory.
If you use the /DIAGNOSTICS qualifier without specifying a diagnostics file
specification, ADU creates a diagnostics file that has the entity name with a file
type .DIA.

/NODIAGNOSTICS is the default in batch or interactive mode.

/LIST [=list-file-spec]
/NOLIST
The /LIST and /NOLIST qualifiers are common to several ADU commands. See
Section 1.4, which describes common qualifiers.

/[NO]LOG
The /[NO]LOG qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

/[NO]PRINT
The /[NO]PRINT qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

Notes

Use the CREATE command to submit a source definition to ADU interactively
or from a command file. ADU compiles the definition. If ADU finds no syntax
errors, it stores the new object definition in the dictionary.

When you use the CREATE command interactively, ADU displays the ADUDFN>
prompt for you to type the definition. If you make typing mistakes, use the
EDIT command at the ADU> prompt and correct your errors without retyping
the entire definition. ADU does not store a definition containing errors in the
dictionary.

If you do not include a file specification for your definition, ADU assigns the
default file type of .ADF for application source files, .GDF for task group source
files, .MDF for menu source files, and .TDF for task definition source files.

When you create a new definition, it is a good idea to use the REPLACE command
in a command file instead of the CREATE command. The REPLACE command
stores new definitions or replaces existing definitions in the dictionary. The
CREATE command processes new definitions only.

If you use the /DIAGNOSTICS qualifier, ADU creates an LSE diagnostics file
every time you issue the command. LSE uses the diagnostics file to help you
debug your definitions with the LSE REVIEW command.

If you use the /DIAGNOSTICS qualifier in a command file, ADU creates a
diagnostics file every time you run the command file. To save disk space, use the
DCL PURGE or DCL DELETE command to reduce the number of versions in
your default directory or delete unneeded diagnostics files.

1–24 Application Definition Utility Commands

CREATE Command (ADU>)

Examples

1. ADU> CREATE APPLICATION EMPLOYEE PERSONNEL.ADF
ADU>

This command processes an application source definition in the file
PERSONNEL.ADF in your default directory and puts the definition in
the dictionary.

2. ADU> SET DEFAULT DISK1:[CDDPLUS]DEPARTMENT
ADU> CREATE GROUP GROUP_ONE TSK/LOG
%ADU-S-TGPCREATE, task group GROUP_ONE created
ADU>

After setting the default to DISK1:[CDDPLUS]DEPARTMENT, you can
specify the path name with just the given name GROUP_ONE. This saves
you the trouble of specifying the entire path name each time you use the
dictionary. The keyword to use in creating a task group is GROUP. The
CREATE command finds the source definition file in TSK.GDF in your default
directory. (Because you omit the file type from the source definition file
specification, the ADU assigns a file type of .GDF.) ADU displays a message
indicating that the create operation was successful.

Application Definition Utility Commands 1–25

DELETE Command (ADU>)

DELETE (ADU>)

Removes a definition from the dictionary. Use this command when you no longer
need the components of an ACMS application.

Format

DELETE

���
��

APPLICATION
GROUP
MENU
TASK

���
�	 path-name [/qualifiers]

Command Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/[NO]LOG /NOLOG

Keywords

APPLICATION
Deletes an application definition.

GROUP
Deletes a task group definition.

MENU
Deletes a menu definition.

TASK
Deletes a task definition.

Parameter

path-name
The CDD path name of the definition to delete.

Qualifiers

/[NO]CONFIRM
Returns information about the dictionary definition you want to delete and
prompts you for confirmation before deleting the definition. The /NOCONFIRM
qualifier prevents ADU from prompting you for confirmation.

The default is /NOCONFIRM.

/[NO]LOG
The /[NO]LOG qualifier is common to several ADU commands. See Section 1.4
which describes common qualifiers.

1–26 Application Definition Utility Commands

DELETE Command (ADU>)

Examples

1. ADU> DELETE MENU MENU_ONE/LOG
%CDU-S-MENDELETE, menu DISK1:[CDDPLUS]EXAMPLE.MENU_ONE deleted
ADU>

This example deletes the dictionary menu MENU_ONE in your default
dictionary directory. The /LOG qualifier displays a message telling you the
menu definition was successfully deleted.

2. ADU> DELETE APPLICATION AFP.UPDATE_EMPLOYEE

This example deletes an application definition with the path name
AFP.UPDATE_EMPLOYEE. If you omit the /LOG qualifier, ADU does
not return a message indicating that the definition was deleted.

Application Definition Utility Commands 1–27

DUMP Command (ADU>)

DUMP (ADU>)

Displays the contents of an application, menu, or task group database file. The
DUMP command provides information about definitions that programmers use for
cross-referencing and tracking pieces to debug an ACMS application. The DUMP
command provides information in one listing, that is usually located in several
different source files.

Use this command for references to servers, workspaces, logical and given names,
step names, and other components in an ACMS application.

Format

DUMP

� APPLICATION
GROUP
MENU

�
database-file-spec [/qualifiers]

Command Qualifiers Defaults

/OUTPUT[=file-spec]
/NOOUTPUT /NOOUTPUT
/[NO]PRINT /NOPRINT

Keywords

APPLICATION
Displays the contents of an application database file.

GROUP
Displays the contents of a task group database file.

MENU
Displays the contents of a menu database file.

Parameter

database-file-spec
Names the application (.ADB), task group (.TDB), or menu (.MDB) database
file whose contents you want to see. File types default to .ADB for application
databases, .TDB for task group databases, and .MDB for menu databases. The
default device and directory are your current default device and directory.

Qualifiers

/OUTPUT [=file-spec]
/NOOUTPUT
Names the file to which ADU writes the output from the DUMP command. If
you do not use the /OUTPUT qualifier, ADU displays the dump information. If
you use /OUTPUT but do not name a file, ADU writes the dump information
to a default file in your current default directory. The default file is named
ADULIS.LIS.

The /NOOUTPUT qualifier displays dump information but does not create a file.

The default is /NOOUTPUT.

1–28 Application Definition Utility Commands

DUMP Command (ADU>)

/[NO]PRINT
The /[NO]PRINT qualifier is common to several ADU commands. See Section 1.4
which describes common qualifiers.

Notes

The DUMP command displays summary information about menus, tasks, task
groups, and applications in the database. That information includes, among other
items, the file size, number of servers, and tasks in the database. To use this
command, the application does not have to be active.

The DUMP APPLICATION command lists:

• Application user name and default directory

• Number of application and server logicals

• Given names for task group, server, and user

• Maximum number of server processes

• Maximum number of task instances

• Creation and deletion intervals and delays

• Task index and application server indexes

• Application and server logical name tables

• Task type (local or global)

• Task status (enabled or disabled)

• Server workspace mapping (workspaces protected or not protected)

• Application monitoring interval

• Transaction timeout

The DUMP GROUP command lists:

• Summary information about the group, including:

Number of each type of workspace

Number of servers and tasks

Form files

Request libraries

Message files

• Summary information about workspaces the group uses, including:

Index number

Name

Size

Owner

Type (task or group)

Initial contents (in hexadecimal and character format)

Application Definition Utility Commands 1–29

DUMP Command (ADU>)

• Summary information about servers the group uses, including:

Group server name

User name

User name attributes

Image file name, type, and index number

Whether the server is reusable or is to be run down if the task is canceled

• Summary information about tasks in the group, including:

Task name, index number, input/output type

Workspaces that the task references

Workspace index number

Block work

Cancelable status of the task

Workspaces

• Summary information about each step in a task, including:

Name and index

Attributes

Work

Action

Exception handler

Workspaces

Total workspace size

Recovery

Sequencing action

The DUMP MENU command lists summary information about menus in the
application’s menu tree, including:

• Application and task names

• Number of entries per screen

• Summary information about each entry, including:

Name

Number

Status

Type

• Menu header

• Menu node and request names

You can terminate the output from the DUMP MENU, DUMP APPLICATION,
and DUMP GROUP commands by pressing Ctrl/C .

1–30 Application Definition Utility Commands

DUMP Command (ADU>)

Example

ADU> DUMP MENU ACMS$EXAMPLES:ADSAMPLE.MDB/OUTPUT=ADSAMPLE.DMP

This command dumps the contents of the menu database file ADSAMPLE.MDB
that exists in the directory ACMS$EXAMPLES into a new file named
ADSAMPLE.DMP in the current default directory.

Application Definition Utility Commands 1–31

EDIT Command (ADU>)

EDIT (ADU>)

Invokes a text editor. Use this command to correct errors in the last command
line or source definition you submitted to ADU.

Format

EDIT

Notes

When you invoke the EDIT command, ADU writes the last command line or
definition to a temporary file in your default directory. If you enter ADU and do
not issue a command before invoking EDIT, ADU gives you an empty file.

The file name of this temporary file is derived from your OpenVMS process
identification number so each editing file has a unique name. The names of
these temporary files follow the format ADU_C<PID>.COM, where <PID> is
your OpenVMS process identification number. ADU spawns a subprocess and
translates the system logical ADU$EDIT to invoke a text editor.

By default, the EDIT command uses the EDT text editor. You can change the
default so the EDIT command invokes the LSE text editor. For more information
on changing the default editor, see HP ACMS for OpenVMS Writing Applications.

To correct an error while creating or replacing a source definition, complete the
definition and return to the ADU> prompt before issuing the EDIT command.
You cannot issue the EDIT command from the ADUDFN> prompt.

When you exit the editor after correcting a command line or definition, ADU
invokes the ADU_C<PID>.COM file containing the corrected command or
definition. If a corrected definition is free of errors, ADU creates or replaces
the new definition in the dictionary as though you typed it interactively. If a
corrected command line is free of errors, ADU executes the command line. ADU
then deletes the ADU_C<PID>.COM file.

If the command line or definition contains errors, ADU displays diagnostic
messages and deletes the ADU_C<PID>.COM file. If you leave the editor
abnormally, ADU deletes the ADU_C<PID>.COM file.

Example

ADU> REPLACE GROUP GROUP_ONE TSK.GDB/LOG
%ADU-E-ERRINP, error on input file ACMS$EXC[EXAMPLE]TSK.GDB;
-RMS-E-FNF, file not found
%ADU-E-NOTGPREP, no task group replaced

In this example, ADU finds an error when it processes the REPLACE command.
The source file should be TSK.GDF.

To edit the command line, type EDIT at the ADU> prompt:

ADU> EDIT

ADU creates the file ADU_C<PID>.COM in your default directory and places
your previous command in the file. ADU spawns a subprocess, and translates the
system logical ADU$EDIT to invoke the text editor.

1–32 Application Definition Utility Commands

EDIT Command (ADU>)

You can correct the command line in the editing file:

REPLACE GROUP GROUP_ONE TSK.GDF/LOG

*exit

When you exit the editor, the screen displays the following message:

SYS$32T:[MARTOCCHIO]ADU_C23A00284.COM;1 1 LINE

The REPLACE command now compiles correctly. ADU stores the new definition
in the dictionary, deletes the ADU_C23A00284.COM file, and displays a message
to confirm the successful operation:

%ADU-S-TGPREPLAC, task group DISK1:[CDDPLUS]EXAMPLE.GROUP_ONE replaced
ADU>

Application Definition Utility Commands 1–33

EXIT Command (ADU>)

EXIT Command (ADU>)

Ends the current ADU session and returns to the DCL prompt. Use this
command when you finish using ADU and want to leave the utility.

Format

EXIT

Note

Pressing Ctrl/Z at the ADU> prompt is equivalent to using the EXIT command.

Examples

1. ADU> EXIT
$

Typing EXIT at the ADU> prompt ends the ADU session and returns you to
the DCL prompt.

2. ADU> EX
$

This example shows that you can exit ADU by typing the first two characters
of the EXIT command.

1–34 Application Definition Utility Commands

HELP Command (ADU>)

HELP (ADU>)

Displays information about ADU commands and clauses. Use this command to
obtain instructions on the use of ADU commands, information about ADU clauses
and definitions, or error messages generated by ADU.

Format

HELP [/qualifier] [topic]

Command Qualifiers Defaults

/[NO]PROMPT /PROMPT

Parameter

topic
Names one or more topics about which you want information.

Qualifiers

/[NO]PROMPT
Prompts you for topics about which you want information. Always type the
/PROMPT qualifier immediately after the HELP keyword.

The /NOPROMPT qualifier keeps ADU from prompting you for topics. After ADU
displays the information you requested, it returns directly to the ADU> prompt
without displaying the Topic? prompt. Always type the /NOPROMPT qualifier
immediately after the HELP keyword.

The default is /PROMPT.

Notes

ADU HELP follows the same conventions as the OpenVMS HELP facility.

Press Return at the HELP prompt to move to a higher or more general level in the
HELP hierarchy.

The HELP text is in the file SYS$HELP:ACMSADU.HLB. You can modify it using
the standard OpenVMS facilities.

Example

ADU> HELP

Information available:

%INCLUDE & @ APPLICATION ATTACH BUILD
Command_Recall COPY CREATE DELETE DUMP EDIT
Errors EXIT GROUP HELP KEYPAD LIST LSE
MENU MODIFY REPLACE SAVE SET SHOW SPAWN
STEPS TASK

Topic?

In this example, the HELP command displays the ADU help that is available.
Type one of these topics at the Topic? prompt to get the information you need.

Application Definition Utility Commands 1–35

HELP Command (ADU>)

Topic? SHOW

SHOW

Specifies that you wish to choose one of the SHOW operations.

Format:

SHOW keyword

Valid keywords are DEFAULT, LOG, and VERSION.

Additional information available:

DEFAULT LOG VERSION

SHOW Subtopic?

This command displays HELP information about the SHOW command and
displays a prompt at which you can get information about the three SHOW
command keywords.

1–36 Application Definition Utility Commands

LINK Command (ADU>)

LINK (ADU>)
Converts object definitions from OpenVMS files into binary database files that
ACMS uses at run time. This LINK command is executed from within ADU. Do
not confuse it with the DCL LINK command.

Format

LINK

� APPLICATION
GROUP
MENU

�
compile-result-file-spec [database-file-spec] [/qualifiers]

Command Qualifiers Defaults

/AUDIT[=audit-list] /AUDIT=standard-audit-string
/NOAUDIT
/[NO]DEBUG /NODEBUG
/LIST[=list-file-spec] /LIST (Batch)
/NOLIST /NOLIST (Interactive)
/[NO]LOG /NOLOG
/OBJECT=(file-spec [,...])
/NOOBJECT /NOOBJECT
/[NO]PRINT /NOPRINT
/[NO]STDL /NOSTDL
/[NO]SYSLIB /SYSLIB
/[NO]SYSSHR /SYSSHR
/USERLIBRARY=(file-spec [,...])
/NOUSERLIBRARY /NOUSERLIBRARY

Keywords

APPLICATION
Builds an application database.

GROUP
Builds a task group database.

MENU
Builds a menu database.

Parameters

compile-result-file-spec
The file that contains the compilation results of the object to be linked. The file
name component of the file specification must be supplied. If the file specification
is not fully qualified, the following defaults are used: current device; current
directory; and a file type of .ABJ for applications, .GBJ for task groups, and .MBJ
for menus. When used with the LINK GROUP /STDL command, path-name is
the task group name; when used with the LINK APPLICATION /STDL command,
path-name is the application name.

database-file-spec
The file specification for the database file that the LINK command creates. This
output file is a database file that ACMS uses at run time. The LINK command
can create an application, task group, or menu database file.

Application Definition Utility Commands 1–37

LINK Command (ADU>)

If you do not name a database file when you link an application, task group, or
menu definition, ADU uses the file named in the DEFAULT APPLICATION FILE,
DEFAULT GROUP FILE, or DEFAULT MENU FILE clause in the application,
task group, or menu definition. If you do not use the DEFAULT APPLICATION
FILE, DEFAULT GROUP FILE, or DEFAULT MENU FILE clause, ADU derives
the database file specification from the given name of the application, task
group, or menu. ACMS uses the full given name, including dollar signs ($) and
underscores (_), for the default database file name.

The default file type for an application database file is .ADB, for a menu database
file it is .MDB, and for a task group database file it is .TDB.

The default directory is your current default directory. The default device is
SYS$DISK, which must translate to a device name.

Qualifiers

/[NO]DEBUG
Creates symbols for the ACMS Task Debugger. These symbols are appended to
the task group database (.TDB) file. Use this qualifier to examine workspaces in
the ACMS debugger or deposit workspaces into the debugger. You can use this
qualifier only when linking a task group.

The /NODEBUG qualifier makes the contents of workspaces unavailable during a
debugging session.

The default is /NODEBUG.

/LIST [=list-file-spec]
/NOLIST
The /LIST and /NOLIST qualifiers are common to several ADU commands. See
Section 1.4, which describes common qualifiers.

/[NO]LOG
The /[NO]LOG qualifier is common to several ADU commands. See Section 1.4
which describes common qualifiers.

/OBJECT=(file-spec [,...])
/NOOBJECT
Controls whether object modules are searched for global symbol resolution during
link group processing.

The default is /NOOBJECT.

/[NO]PRINT
The /[NO]PRINT qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

/REFERENCED_OBJECT_DEFAULT
The default file specification used to find the referenced compilation results. This
qualifier is used in the following cases:

• When linking a task group, ADU uses this qualifier to find the compilation
results for all of the tasks that are referenced by the task group being linked.

• When linking a menu, ADU uses this qualifier to find the compilation results
for all of the menus that are referenced by the menu being linked.

You cannot specify the file name with this qualifier.

1–38 Application Definition Utility Commands

LINK Command (ADU>)

/[NO]STDL
Translates an ACMS application’s record definitions extracted from the CDD
along with the .OBJ files for task headers and task group and task definitions to
an STDL task group specification, data type definitions, STDL record definitions,
and task group headers with records as arguments. The translation takes place
in two processing stages: group_task translation, which is initiated by the LINK
GROUP /STDL command, and application_group translation, which is initiated
by the LINK APPLICATION /STDL command. You use the STDL output file
to create the client interface that enables Windows NT clients to access ACMS
applications.

/[NO]SYSLIB
The /[NO]SYSLIB qualifier controls whether or not to search the default system
libraries SYS$LIBRARY:IMAGELIB.OLB and SYS$LIBRARY:STARLET.OLB to
resolve global symbols during link group processing. The default is /SYSLIB. The
system libraries are not searched if you use the /NOSYSLIB qualifier. If you use
both the /NOSYSLIB and /SYSSHR qualifiers, the /SYSSHR qualifier is ignored.

/[NO]SYSSHR
The /[NO]SYSSHR qualifier controls whether or not to search
SYS$LIBRARY:IMAGELIB.OLB to resolve global symbols during link group
processing. The default is /SYSSHR.

/USERLIBRARY=(file-spec [,...])
/NOUSERLIBRARY
The /USERLIBRARY and /NOUSERLIBRARY qualifiers control whether or not to
search user-specified object libraries and shared image libraries to resolve global
symbols during link group processing. The default is /NOUSERLIBRARY. If you
use the /NOSYSLIB or /NOSYSSHR qualifier, you can specify the default system
libraries SYS$LIBRARY:IMAGELIB.OLB or SYS$LIBRARY:STARLET.OLB with
the /USERLIBRARY qualifier.

Notes

ADU determines where to find referenced objects using several pieces of
information. The defaults are as follows:

• The device defaults to the current device.

• The directory defaults to the current directory.

• The file extension defaults to .ABJ for application result files, .GBJ for task
group result files, and .MBJ for menu result files.

Any of these components of the file specification can be overridden by supplying
them in the /REFERENCED_OBJECT_ DEFAULT qualifier. ADU uses the name
of the entity that is being pulled in by the link as the file name. ADU produces
a procedure server object module for each procedure server named in the task
group definition.

ADU derives the file name from the unique name of the server (from the SERVER
IS clause).

If you do not use the DEFAULT OBJECT FILE subclause, ADU derives the name
of the server object file from the unique name of the server. ADU uses the full
given name, included dollar signs ($) and underscores (_). The file is written to
the same directory as the task group database file with a file type of .OBJ.

Application Definition Utility Commands 1–39

LINK Command (ADU>)

Examples

1. ADU> LINK GROUP employee_group

This command builds a task group database using the task group result file
from a previous COMPILE command. The task group result file is in the
current directory with the name of employee_group.GBJ. The output file from
the LINK command will have the name employee_group.TDB.

2. ADU> LINK APPL employee_appl

This command builds an application database using the application result
file from a previous COMPILE command. The application result file is in the
current directory with the name of employee_appl.ABJ. The output file from
the LINK command will have the name employee_appl.ADB.

3. ADU> LINK MENU employee_menu

This command builds an menu database using the menu result file from
a previous COMPILE command. The menu result file is in the current
directory with the name of employee_menu.MBJ. The output file from the
LINK command will have the name employee_menu.MDB.

4. ADU> LINK GROUP group_fields/STDL

This command causes ADU to output task and record information that is
used for the final translation to STDL. The output file will have the name
group_fields.WDB.

5. ADU> LINK APPL employee_appl/STDL

This command causes ADU to output STDL code using the intermediate
format group file that was created during the ACMSADU COMPILE GROUP
compilation. The output file will have the name employee_appl.STDL.

1–40 Application Definition Utility Commands

LIST Command (ADU>)

LIST (ADU>)

Displays the contents of a definition in a dictionary directory. Use this command
without a qualifier to display a definition on the screen. Use this command with
a qualifier to print a copy of a definition or to create a listing file of a definition.

Format

LIST

���
��

APPLICATION
GROUP
MENU
TASK

���
�	 path-name [/qualifiers]

Command Qualifiers Defaults

/OUTPUT[=list-file-spec]
/NOOUTPUT /NOOUTPUT
/[NO]PRINT /NOPRINT

Keywords

APPLICATION
Displays an application definition.

GROUP
Displays a task group definition.

MENU
Displays a menu definition.

TASK
Displays a task definition.

Parameter

path-name
The CDD path name of the definition that you want to list.

Qualifiers

/OUTPUT [=list-file-spec]
/NOOUTPUT
Creates a listing file for a definition. The file specification names the listing
file you want ADU to create. If you do not include a file specification, ADU
derives the name of the listing file from the full given name of the definition you
are listing, including dollar signs ($) and underscores (_). The default file type
is .LIS. The default device and directory are your current default device and
directory.

The /NOOUTPUT qualifier displays list information but does not create a listing
file.

The default is /NOOUTPUT.

/[NO]PRINT
The /[NO]PRINT qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

Application Definition Utility Commands 1–41

LIST Command (ADU>)

Examples

1. ADU> LIST TASK ADD_EMPLOYEE_TASK
Task ADD_EMPLOYEE_TASK 1-MAR-1994 13:33:09 ACMS ADU V4.0
Source listing 1-MAR-1994 13:33:09 SYS$INPUT: (1)

WORKSPACES ARE ADD_WORKSPACE, QUIT_WORKSPACE;
BLOCK WORK WITH FORM I/O
GET_EMPLOYEE_INFORMATION:
EXCHANGE

RECEIVE FORM RECORD ADD_EMPLOYEE_RECORD
RECEIVING ADD_WORKSPACE
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : EXIT TASK;

END CONTROL FIELD;

WRITE_EMPLOYEE_INFORMATION:
PROCESSING

CALL PERSADD IN PERSONNEL_SERVER
USING ADD_WORKSPACE;

CONTROL FIELD ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

END BLOCK WORK;

ACTION
REPEAT TASK;

END DEFINITION;

This command lists the source definition for the task with the path name ADD_
EMPLOYEE_TASK. Because there is no /OUTPUT or /PRINT qualifier, ADU
displays the list information on the terminal screen, supplying the date and time
of the listing.

2. ADU> LIST TASK ADD_EMPLOYEE_TASK/OUTPUT

This command creates a listing file for the task definition. Because no file
specification is supplied with the /OUTPUT qualifier, ADU derives the file
specification from the path name of the definition. In this example, the name of
the listing file created by ADU is ADD_EMPLOYEE_TASK.LIS.

3. ADU> LIST TASK ADD_EMPLOYEE_TASK/OUTPUT=ADDEMPTSK.LIS/PRINT

This LIST command creates a listing file of the dictionary definition ADD_
EMPLOYEE_TASK and queues the listing file ADDEMPTSK.LIS to the
SYS$PRINT queue.

1–42 Application Definition Utility Commands

MODIFY Command (ADU>)

MODIFY (ADU>)

Retrieves a definition from the dictionary and runs a text editor so you can
change the definition. Use MODIFY to change an object definition stored in the
dictionary. This command lets you modify and replace the definition without
retyping the entire definition.

You can also use MODIFY to convert an object definition from DMU format to
CDO format. ADU creates a CDD object and deletes the CDD object.

Format

MODIFY

���
��

APPLICATION
GROUP
MENU
TASK

���
�	 path-name [/qualifiers]

Command Qualifiers Defaults

/AUDIT[=audit-list] /AUDIT=standard-audit-string
/NOAUDIT
/DIAGNOSTICS[=diagnostics-file-spec]
/NODIAGNOSTICS /NODIAGNOSTICS
/LIST[=list-file-spec] /NOLIST (Interactive)
/NOLIST /LIST (Batch)
/[NO]LOG /NOLOG
/[NO]PRINT /NOPRINT

Keywords

APPLICATION
Changes an application definition.

GROUP
Changes a task group definition.

MENU
Changes a menu definition.

TASK
Changes a task definition.

Parameter

path-name
The CDD path name of the definition that you want to change.

Qualifiers

/AUDIT [=audit-list]
/NOAUDIT
The /AUDIT and /NOAUDIT qualifiers are common to several ADU commands.
See Section 1.4, which describes common qualifiers.

Application Definition Utility Commands 1–43

MODIFY Command (ADU>)

/DIAGNOSTICS [=diagnostics-file-spec]
/NODIAGNOSTICS
Tells ADU to produce a diagnostics file that LSE uses when you issue the LSE
REVIEW command. ADU places the diagnostics file in your default directory.
If you use the /DIAGNOSTICS qualifier without giving a diagnostics file
specification, ADU creates a diagnostics file that has the entity name with a
file type of .DIA.

The default in batch or interactive mode is /NODIAGNOSTICS.

/LIST [=list-file-spec]
/NOLIST
The /LIST and /NOLIST qualifiers are common to several ADU commands. See
Section 1.4, which describes common qualifiers.

/[NO]LOG
The /[NO]LOG qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

/[NO]PRINT
The /[NO]PRINT qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

Notes

When you use the MODIFY command, ADU writes the definition you are
changing to a temporary editing file in your default directory.

ADU creates the file for editing and derives the file name from your OpenVMS
process identification number so the name of each editing file is unique. ADU
uses ADU_C<PID>.COM as a template for the editing file name where <PID>
is your OpenVMS process identification number. ADU spawns a subprocess and
translates the system logical ADU$EDIT to invoke a text editor.

By default, the MODIFY command uses the EDT text editor. You can change the
default so the MODIFY command invokes the LSE text editor. For information
on changing the default text editor, see HP ACMS for OpenVMS Writing
Applications.

When you exit from the editor, ADU compiles the definition. If it is free of errors,
ADU replaces the definition in the dictionary and deletes the ADU_C<PID>.COM
file. If the command or definition contains errors, ADU displays diagnostic
messages and asks if you want to use the MODIFY command again. At this
point you can correct the errors and recompile the definition. If you do not use
the MODIFY command again, ADU deletes the ADU_C<PID>.COM file without
replacing the original definition that was in the dictionary.

If you leave the editor abnormally, ADU deletes the ADU_C<PID>.COM file
without replacing the original definition that was in the dictionary.

If you create a definition using a command file, and then change the definition
in the dictionary using the MODIFY command, the MODIFY command does not
update the source definition in the command file.

If you use the /DIAGNOSTICS qualifier, ADU creates a diagnostics file every time
you issue the MODIFY command. If you use the /DIAGNOSTICS qualifier in a
command file, ADU creates a diagnostics file every time you run the command
file. To save disk space, use the DCL PURGE or DELETE command to reduce the
number of versions in your default directory or delete unneeded diagnostics files.

1–44 Application Definition Utility Commands

MODIFY Command (ADU>)

Examples

1. ADU> MODIFY GROUP DEPARTMENT.ADD_DATA/LOG
SERVERS ARE

EMPLOYEE_SERVER : DCL PROCESS;
END SERVERS;
TASKS ARE

EDT : PROCESSING DCL COMMAND "$EDIT/EDT";
END TASKS;
END DEFINITION;
%ADU-S-TGPMODIFY, task group DISK1:[CDDPLUS]DEPARTMENT.ADD_DATA modified
ADU>

In this example, ADU runs your default text editor and displays the task
group definition ADD_DATA. After you change the definition and exit from
the editor, ADU replaces the old version of the definition with the new
version. The /LOG qualifier displays a message after you exit the editor,
indicating that the MODIFY command successfully replaced the old version of
the ADD_DATA task group with the new version.

2. ADU> MODIFY MENU DISK1:[CDDPLUS]SAMPLE.PERSONNEL_MENU
HEADER IS "MODIFY COMMAND EXAMPLE";
ENTRY IS

MODIFY: TASK IS MODIFY IN PERSONNEL;
END ENTRY;
END DEFINITION;
ADU>

In this example, ADU runs your default text editor and displays the menu
definition PERSONNEL_MENU. To convert the object from DMU format
to CDO format without changing the definition, exit from the editor. ADU
deletes the DMU-formatted object from the dictionary and replaces it with a
CDO version. Control returns to ADU, where you can type another command.

Application Definition Utility Commands 1–45

REPLACE Command (ADU>)

REPLACE (ADU>)

Replaces an old dictionary definition with a new one. Use this command to
change a definition that exists in the dictionary, or to compile and store a new
one.

Format

REPLACE

���
��

APPLICATION
GROUP
MENU
TASK

���
�	 path-name [file-spec] [/qualifiers]

Command Qualifiers Defaults

/AUDIT[=audit-list] /AUDIT=standard-audit-string
/NOAUDIT
/[NO]CREATE /CREATE
/DIAGNOSTICS[=diagnostics-file-spec]
/NODIAGNOSTICS /NODIAGNOSTICS
/LIST[=list-file-spec] /NOLIST (Interactive)
/NOLIST /LIST (Batch)
/[NO]LOG /NOLOG
/[NO]PRINT /NOPRINT

Keywords

APPLICATION
Replaces an old application definition with a new one.

GROUP
Replaces an old task group definition with a new one.

MENU
Replaces an old menu definition with a new one.

TASK
Replaces an old task definition with a new one.

Parameters

path-name
The CDD path name of the dictionary definition you want to replace.

file-spec
The file specification of the source definition file.

Qualifiers

/AUDIT [=audit-list]
/NOAUDIT
The /AUDIT and /NOAUDIT qualifiers are common to several ADU commands.
See Section 1.4, which describes common qualifiers.

1–46 Application Definition Utility Commands

REPLACE Command (ADU>)

/[NO]CREATE
Stores a new definition in the dictionary. If the definition does not exist, ADU
displays a warning message indicating that the REPLACE command created a
definition. The /NOCREATE qualifier ensures that a REPLACE command does
not create an object in the dictionary.

The default is /CREATE.

/DIAGNOSTICS [=diagnostics-file-spec]
/NODIAGNOSTICS
Tells ADU to produce a diagnostics file that LSE uses when you issue the LSE
REVIEW command. ADU places the diagnostics file in your default directory.
If you use the /DIAGNOSTICS qualifier without giving a diagnostics file
specification, ADU creates a diagnostics file that has the entity name with a
file type .DIA.

The default in batch or interactive mode is /NODIAGNOSTICS.

/LIST [=list-file-spec]
/NOLIST
The /LIST and /NOLIST qualifiers are common to several ADU commands. See
Section 1.4, which describes common qualifiers.

/[NO]LOG
The /[NO]LOG qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

/[NO]PRINT
The /[NO]PRINT qualifier is common to several ADU commands. See Section 1.4,
which describes common qualifiers.

Notes

ADU compiles the source definition you submit with the REPLACE command.
If ADU finds no syntax errors, it stores the object definition in the dictionary,
replacing the old one. If no object definition exists in the dictionary, ADU creates
a new one, but displays a warning message that the REPLACE command created
a new definition. If you include the /NOCREATE qualifier with the REPLACE
command, ADU does not create a new definition in the dictionary.

When you use the REPLACE command interactively, ADU displays the
ADUDFN> prompt for you to type the definition. If you make a mistake typing,
use the EDIT command at the ADU> prompt and correct your error without
retyping the entire definition. If the definition contains errors, ADU does not
replace the definition in the dictionary.

If you use the REPLACE command to create definitions and do not include the
file specification, ADU assigns the default file type of .ADF for application source
files, .GDF for task group source files, .MDF for menu source files, and .TDF for
task definition source files.

If you use the /DIAGNOSTICS qualifier, ADU creates a diagnostics file every time
you issue the REPLACE command. If you use the /DIAGNOSTICS qualifier in
a command file, ADU creates a diagnostics file every time you run the command
file. To save disk space, use the DCL PURGE or DELETE command to reduce the
number of versions in your default directory or delete unneeded diagnostics files.

Application Definition Utility Commands 1–47

REPLACE Command (ADU>)

Example

ADU> SET DEFAULT DISK1:[CDDPLUS]EXAMPLE
ADU> REPLACE GROUP GROUP_ONE TSK.GDF/LOG
%ACMSADU-S-TGPREPLAC, task group DISK1:[CDDPLUS]EXAMPLE.GROUP_ONE replaced
ADU>

This command finds the definition source file in TSK.GDF in your default
directory, processes it, and replaces the definition in the dictionary, using the
given name GROUP_ONE. Because you set the default dictionary directory to
DISK1:[CDDPLUS]EXAMPLE, you can use the given name. The /LOG qualifier
displays a message stating that the new definition replaced the original.

1–48 Application Definition Utility Commands

SAVE Command (ADU>)

SAVE (ADU>)

Puts the last command typed in a file you designate. Use this command to
store frequently used ADU commands in a command file. You can execute the
command file with the @ (at sign) command to avoid typing and syntax errors.

Format

SAVE save-file-spec

Parameter

save-file-spec
The file specification of the file in which you want to store a copy of the last
command. This parameter is required. If you omit the file specification, SAVE
prompts you for one until you type a response. The default file type is .SAV.
ADU searches your default device and directory if you do not include a device or
directory specification.

Note

If you use ADU interactively to process a definition with either the CREATE or
the REPLACE command, the definition you type in response to the ADUDFN>
prompt is also available in the saved file. The SAVE command does not store a
copy of a definition that you submit from a source definition file with the CREATE
or the REPLACE command.

Examples

1. $ ADU
ADU> SET LOG
ADU> SAVE TEXT
previous command saved to file EXAMPLES$:[EXAMPLES]TEXT.SAV;1
ADU> EXIT
$

In this example, the SAVE command stores the last command entered, SET
LOG, in the file TEXT.SAV. ADU displays a message indicating the name of
the file the command was saved in. Because you do not include a file type,
ADU assigns the file type .SAV by default. After you exit from ADU and
return to the DCL command level, you can use the DCL TYPE command to
display the contents of the file created with the SAVE command.

2. $ ADU
ADU> CREATE MENU MENU_TEN
ADUDFN> DEFAULT APPLICATION IS DEPART;
ADUDFN> ENTRIES ARE
ADUDFN> ADD : TASK IS ADD_EMPLOYEE;
ADUDFN> TEXT IS "Add Employee Information";
ADUDFN> CHANGE : TASK IS CHANGE_EMPLOYEE;
ADUDFN> TEXT IS "Change Employee Information";
ADUDFN> END ENTRIES;
ADUDFN> END DEFINITION;
ADU> SAVE MENUSAVE
%CDU-I-SAVETOFIL, previous command saved to file
EXAMPLES$:[EXAMPLES]MENUSAVE.SAV;1
ADU> EX
$ TYPE MENUSAVE.SAV

Application Definition Utility Commands 1–49

SAVE Command (ADU>)

CREATE MENU MENU_TEN
DEFAULT APPLICATION IS DEPART;
ENTRIES ARE

ADD : TASK IS ADD_EMPLOYEE;
TEXT IS "Add Employee Information";

CHANGE : TASK IS CHANGE_EMPLOYEE;
TEXT IS "Change Employee Information";

END ENTRIES;
END DEFINITION;
$

In this example, you enter the menu definition MENU_TEN interactively.
After ADU processes the menu definition and puts it in the dictionary, the
utility returns control to the ADU> prompt where you can enter the SAVE
command to save a copy of the definition in the file MENUSAVE.SAV. After
exiting from ADU, you use the DCL TYPE command to display the saved file.

1–50 Application Definition Utility Commands

SET DEFAULT Command (ADU>)

SET DEFAULT (ADU>)

Assigns your default directory in the dictionary. Use this command to change
your dictionary default setting when you need to use definitions stored in a
different dictionary directory.

Format

SET DEFAULT path-spec

Parameter

path-spec
The CDD path name of the directory to which you want to set your default.

Default

If you do not define the logical name CDD$DEFAULT, the default is CDD$TOP.

Notes

If you do not use the SET DEFAULT command to define a default directory
in the dictionary, ADU uses the directory associated with the logical name
CDD$DEFAULT, which is defined as CDD$TOP by default. If you use the /PATH
qualifier when starting the ADU, that default overrides the CDD$DEFAULT
setting. The SET DEFAULT command overrides both CDD$DEFAULT and the
assignment you make with the /PATH qualifier.

The dictionary default directory that you assign with the SET DEFAULT
command remains set only during the current ADU session, or until you reset it.

To make it easy to work with ADU, set up a default dictionary directory before
invoking ADU so that you do not have to assign it each time you run ADU. You
can do this in the following three ways:

• Include the SET DEFAULT command in your startup command file
ADUINI.COM. For more information on the startup command file, see
HP ACMS for OpenVMS Writing Applications.

• Use the DCL DEFINE command to assign the logical CDD$DEFAULT to the
directory you want to be the default.

• Use the /PATH qualifier on the MCR ACMSADU or ADU startup command.

Once you have the default set, use the SET DEFAULT command to change the
default setting for the current session if you need to.

Note

If you set default to a logical name that is defined as a search list, ADU
sets default to only the first directory in the search list. However, if
you include a search list logical name in an object’s pathname, when
processing that object ADU uses all directories included in the search list.

Application Definition Utility Commands 1–51

SET DEFAULT Command (ADU>)

Example

ADU> SET DEFAULT DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE_RMS.DEPARTMENT
ADU> SHOW DEFAULT
current CDD default path is ’DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE_
RMS.DEPARTMENT’
ADU> SET DEFAULT DISK1:[CDDPLUS]BIGGS.DEFINITION$MENU
ADU> SHOW DEFAULT
current CDD default path is ’DISK1:[CDDPLUS]BIGGS.DEFINITION$MENU’
ADU>

This command changes your dictionary default directory from
DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE_RMS.DEPARTMENT to
DISK1:[CDDPLUS]BIGGS.DEFINITION$MENU. The SHOW DEFAULT
command confirms the change.

1–52 Application Definition Utility Commands

SET LOG Command (ADU>)

SET LOG (ADU>)

Creates a log file of an interactive ADU session. The log file contains a copy of
each line you type and all responses ADU makes. Use this command to create a
record of each ADU session.

Format

SET LOG [log-file-spec]

SET NOLOG

Parameter

log-file-spec
The file specification of the file in which you want to store the logged information.
If you omit the log file specification, ADU logs to a file with the default file name
ADULOG.LOG.

The log file that SET LOG creates does not include the ADU> or ADUDFN>
prompts, only commands to and messages from ADU.

Exclamation points (!) precede any commands run from an indirect command file.

The characters !%INC> precede any definition clauses that ADU retrieves from a
%INCLUDE file.

Default

SET NOLOG is the default.

Notes

The SET LOG command is valid during the current ADU session.

ADU can resume logging to a log file specified during the same session. If you
specify a log file, for example MYLOG.LOG, ADU logs to MYLOG.LOG;1. If you
stop and resume logging without specifying a log file, ADU logs to that file with a
higher version number. For example, ADU logs to MYLOG.LOG;2.

ADU cannot resume logging to a log file specified during a previous session
unless you rename the file specification. If you rename the file specification,
ADU logs to the file specification with a higher version number. For example,
during a previous session, if you logged to a log file with a file specification
OLDLOG.LOG;1, then during the current session you issue the SET LOG
command without respecifying OLDLOG.LOG, ADU logs to the default
ADULOG.LOG. If ADULOG.LOG exists from an earlier session, ADU assigns
a higher version number. If you respecify OLDLOG.LOG, ADU logs to
OLDLOG.LOG;2.

If you use the SET LOG command often, put it in your ADU startup command file
ADUINI.COM. For more information on the startup command file, see HP ACMS
for OpenVMS Writing Applications. To save disk space, use the DCL PURGE or
DELETE command to reduce the number of versions in your default directory.

Application Definition Utility Commands 1–53

SET LOG Command (ADU>)

Examples

1. ADU> SET NOLOG
ADU> SHOW LOG
not logging to file ADULOG.LOG;1
ADU>

To stop ADU from logging this utility session, enter the SET NOLOG
command. Use the SHOW LOG command to confirm that logging is no longer
active.

2. ADU> SET LOG
ADU> SHOW LOG
logging to file ADULOG.LOG;1
ADU>

In this example, you start ADU and enter the SET LOG command. Because
you do not include a file specification with this command, ADU uses the
default log file ADULOG.LOG. The SHOW LOG command displays the name
of the file to which ADU logs information about the current ADU session.
During another ADU session, you can change the log file to a file other than
the default. When you want to return to the default file, you must name that
file.

3. ADU> SET LOG [ACMS.SAMPLE]DEFINE.LOG

In this example, ADU creates a file named DEFINE.LOG in the
ACMS.SAMPLE directory on your default device; or, if the file already
exists, ACMS creates a new version of that file.

ADU then writes to the log file all operations you perform with ADU, as well
as any messages returned by ADU.

1–54 Application Definition Utility Commands

SET VERIFY Command (ADU>)

SET VERIFY (ADU>)

Displays commands and source definitions as they are processed from a command
file you execute with the @ (at sign) command. The SET VERIFY command is
useful in showing which commands, clauses, or phrases in source files compile
with syntax errors.

The SET VERIFY command also writes batch input commands and source
definitions to the batch log. The SET NOVERIFY command suppresses the
display.

Format

SET VERIFY

SET NOVERIFY

Default

SET NOVERIFY is the default in interactive mode.
SET VERIFY is the default in batch mode.

Note

When you turn on or turn off verification, the setting stays in effect until the end
of the ADU session or until you change the setting again.

Examples

1. ADU> SET VERIFY
ADU> @CMDFILE.COM
SET LOG
SHOW LOG
logging to file EXAMPLES$:[EXAMPLES]ADULOG
ADU>

This example displays the commands that ADU runs from the indirect
command file CMDFILE.COM. ADU displays each command as it processes
the command file. As the example shows, the two commands in the
command file CMDFILE.COM were SET LOG and SHOW LOG. The log file
ADULOG.LOG is on the default device pointed to by the logical EXAMPLES$,
and in the default directory EXAMPLES. After processing the command file,
ADU returns you to the ADU> prompt.

2. ADU> SET NOVERIFY
ADU> @CMDFILE.COM
ADU>

This SET NOVERIFY command prevents the display of commands and
definition clauses that ADU processes from the CMDFILE.COM indirect
command file.

Application Definition Utility Commands 1–55

SHOW DEFAULT Command (ADU>)

SHOW DEFAULT (ADU>)

Displays your current default dictionary directory.

Format

SHOW DEFAULT

Notes

You can change the CDD default directory by using:

• ADU SET DEFAULT while you are using ADU

• DCL DEFINE in your LOGIN.COM file to set the logical CDD$DEFAULT to
the new default directory

• The /PATH qualifier with the MCR ACMSADU or ADU startup command

• ADU SET DEFAULT in your ADUINI.COM file

Examples

1. ADU> SHOW DEFAULT
current CDD default path is ’DISK1:[CDDPLUS]BIGGS’
ADU>

The SHOW DEFAULT command shows that the current default setting for
CDD$DEFAULT is DISK1:[CDDPLUS]BIGGS.

2. ADU> SET DEFAULT DISK1:[CDDPLUS]BIGGS.APPLICATION
ADU> SHOW
Show What : DEFAULT
current CDD default path is ’DISK1:[CDDPLUS]BIGGS.APPLICATION’
ADU>

This SET DEFAULT command assigns
DISK1:[CDDPLUS]BIGGS.APPLICATION as the default CDD path name.
If you press Return immediately after the SHOW command, ADU prompts
you for the command keyword. Enter DEFAULT at the prompt to check the
current dictionary default.

1–56 Application Definition Utility Commands

SHOW LOG Command (ADU>)

SHOW LOG (ADU>)

Displays information about logging, which you enable with the SET LOG
command. Use this command to see if logging is taking place and to find the
name of the file where you are logging data.

Format

SHOW LOG

Notes

If logging is not active, the SHOW LOG command displays a message about the
current file specification. The SET LOG command uses that file specification the
next time you enable logging, unless you name a new file.

Examples

1. $ ADU
ADU> SET LOG
ADU> SHOW LOG
logging to file EXAMPLES$:[EXAMPLES]ADULOG
ADU> SET LOG LOGFILE.LOG
ADU> SHOW LOG
logging to file EXAMPLES$:[EXAMPLES]LOGFILE.LOG;1
ADU>

The SET LOG command uses the default file ADULOG.LOG in your
default directory. The second SET LOG command includes a file name,
LOGFILE.LOG. This file remains the log file until you either exit ADU or
assign another file. Reassign the default log file ADULOG.LOG by naming
that file again with the SET LOG command.

2. $ ADU
ADU> SET LOG
ADU> SHOW LOG
logging to file EXAMPLES$:[EXAMPLES]ADULOG.LOG;1
ADU> SET NOLOG
ADU> SHOW LOG
not logging to file EXAMPLES$:[EXAMPLES]ADULOG.LOG;1
ADU> SET LOG
logging to file EXAMPLES$:[EXAMPLES]ADULOG.LOG;2
ADU>

This example shows that the SET LOG command increases the version
number of the default log file each time you enable logging. The SHOW LOG
command indicates when logging is active and when it is not.

Application Definition Utility Commands 1–57

SHOW VERSION Command (ADU>)

SHOW VERSION (ADU>)

Displays the current software version number of ADU.

Format

SHOW VERSION

Note

The SHOW VERSION command displays the version number in the form:

ACMS ADU Vn.n

Examples

1. $ ADU
ADU> SHOW VERSION
ACMS ADU V5.0
ADU>

In this example, the SHOW VERSION command displays the current ADU
version number and returns control to the ADU> prompt.

2. $ ADU
ADU> SHOW
Show what : VERSION
ACMS ADU V5.0
ADU>

ADU displays a prompt when you press Return immediately after you enter
the SHOW command. Enter the VERSION keyword to get a display of the
current ADU version number.

1–58 Application Definition Utility Commands

SPAWN Command (ADU>)

SPAWN (ADU>)

Creates a subprocess of the current process and transfers control of your job to
the subprocess. Use this command to leave ADU temporarily to perform other
tasks without exiting ADU.

Format

SPAWN [command] [/qualifiers]

Command Qualifiers Defaults

/INPUT [=file-spec] /INPUT=SYS$INPUT
/[NO]LOGICAL_NAMES /LOGICAL_NAMES
/OUTPUT [=file-spec] /OUTPUT=SYS$OUTPUT
/NOOUTPUT
/PROCESS [=subprocess-name]
/[NO]SYMBOLS /SYMBOLS
/[NO]WAIT /WAIT

Parameter

command
The DCL command to be executed in the subprocess that the SPAWN command
creates. After executing the DCL command, the subprocess ends and control
returns to ADU. If you do not specify a command, ADU presents you with a DCL
prompt.

Qualifiers

/INPUT [=file-spec]
Names a file containing DCL commands to be executed in the subprocess. If you
do not specify an input file with the /INPUT qualifier, the subprocess accepts
input from the terminal (SYS$INPUT).

If you specify input from both a command and a file, the subprocess executes the
command first, then the file.

/[NO]LOGICAL_NAMES
Tells ADU to copy all the logical names of the parent process to the subprocess.
It is faster to create a subprocess without copying the logical names.

The default is /LOGICAL_NAMES.

/OUTPUT [=file-spec]
/NOOUTPUT
Names the file to contain output from the subprocess that the SPAWN command
creates. If you do not use the /OUTPUT qualifier, the subprocess directs output
to the terminal (SYS$OUTPUT).

The /NOOUTPUT qualifier suppresses all output from the subprocess.

If you direct output to the terminal, specify the /NOWAIT qualifier to delay the
display of output while you are entering commands.

By default, the subprocess sends output to the terminal.

Application Definition Utility Commands 1–59

SPAWN Command (ADU>)

/PROCESS [=subprocess-name]
Specifies the name of the subprocess to be created.

USERNAME_n is the default subprocess name if you do not include the qualifier.

/[NO]SYMBOLS
Tells the system whether or not to pass DCL global and local symbols to the
subprocess.

The default is /SYMBOLS.

/[NO]WAIT
Controls whether or not the system waits until the current subprocess is
completed before allowing more commands to be issued in the parent process.

Use the /NOWAIT qualifier with the /OUTPUT qualifier so output from the
subprocess goes to a file, not your terminal. Otherwise, output from the
subprocess interrupts output from your parent process.

The default is /WAIT.

Notes

Use the SPAWN command when you need to read mail, check the contents of an
OpenVMS file, or run a different utility without exiting ADU. If you return to
your ADU session by logging out of the subprocess, the subprocess is terminated.
To return to your ADU session without terminating the subprocess, use the DCL
ATTACH command. You can then return to your subprocess from ADU with the
ADU ATTACH command.

Use the ADU SPAWN command the way you use the DCL SPAWN command.

Examples

1. ADU> SPAWN
$

The SPAWN command creates a subprocess and transfers control of your job
to that process.

1–60 Application Definition Utility Commands

SPAWN Command (ADU>)

2. ADU> SPAWN TYPE VR_RENTAL_CLASSES_WKSP.CDO
!
! VR_RENTAL_CLASSES_WKSP.CDO
!
DEFINE RECORD AVERTZ_CDD_WKSP:VR_RENTAL_CLASSES_WKSP

DESCRIPTION IS /* This workspace maps the fields in the */
/* RENTAL_CLASSES table in the VEHICLE_RENTALS */
/* database. This is a small table that is used */
/* to keep track of the 3 AVERTZ types of vehicles -- */
/* economy, mid-size, and full-size. This workspace */
/* is used to pass data between the forms and */
/* procedures. */.

AVERTZ_CDD_FIELD:COUNTRY_ID.
AVERTZ_CDD_FIELD:REQUESTED_RENTAL_CLASS_ID.
AVERTZ_CDD_FIELD:DAY_RENTAL_RATE_AMT.
AVERTZ_CDD_FIELD:WEEK_RENTAL_RATE_AMT.
AVERTZ_CDD_FIELD:MONTH_RENTAL_RATE_AMT.

END RECORD.
ADU>

In this example, ADU creates a subprocess and executes the DCL command
TYPE VR_RENTAL_CLASSES_WKSP.CDO. Because the SPAWN command
does not include the /NOWAIT qualifier, ADU waits for the command to
execute before returning control to the parent process, thus terminating the
subprocess.

3. ADU> SPAWN/NOWAIT/OUTPUT=LIST_FORM.LOG FDU LIST FORM PERSONNEL_FORM
ADU>

In this example, ADU creates a subprocess and executes the FDU command
LIST FORM PERSONNEL_FORM in that process. The /NOWAIT qualifier
allows you to issue commands to ADU without waiting for the subprocess
to complete. The /OUTPUT qualifier specifies that output from the FDU
command is written to the LIST_FORM.LOG file.

Application Definition Utility Commands 1–61

2
%INCLUDE

Many definitions share common parts. For example, suppose you always include
certain default characteristics in an application definition. Instead of rewriting
the same part of a definition many times, you can use %INCLUDE to put the
contents of a file in a source definition.

%INCLUDE 2–1

%INCLUDE

%INCLUDE

Includes the contents of a file in a source definition. The %INCLUDE directive
saves you from repeating clauses you use in many definitions; you can place the
clauses in a file and use %INCLUDE to bring them into the source definition.

Format

%INCLUDE "file-spec"

Parameter

file-spec
The name of the file containing the information you want to include in another
definition. You must enclose the file specification in quotation marks (" "). The
default file type is .COM. If you do not name a device and directory, ACMS
searches your default device and directory for the file you name.

Notes

The percent sign (%) differentiates %INCLUDE from definition keywords,
component names, and component identifiers you can use in the definition.

Text in a file that you want to include in a definition at a later time must follow
the same syntax rules as it would if it were part of the source at that point in the
definition.

The %INCLUDE directive can appear on any line before the END DEFINITION
keywords.

If you have used the SET LOG command, ADU puts the text of the include file in
the log beginning with !%INC>.

If you specify that a list file be created, ADU puts the text of the file named with
%INCLUDE and any associated error messages in the list file. It also shows that
the text originated from the included file.

Example

ADU> CREATE APPLICATION PERSONNEL
ADUDFN> %INCLUDE "PERSAPPL.COM"

In this example, ACMS uses the contents of the PERSAPPL.COM file in the
current default device and directory to create the definition for the Personnel
application.

2–2 %INCLUDE

3
Task Definition Clauses

This chapter explains the ADU clauses you use to write task definitions. You use
these clauses with the CREATE, MODIFY, REPLACE, or EDIT commands.

A task definition is made up of clauses describing the attributes of a task and
the work done when a user selects a task. Task attribute clauses can define
either the implementation characteristics or the control attributes of a task.

Task attribute clauses describe general characteristics of a task such as the
workspaces used by task steps or a default server that handles processing work.
You can override some characteristics by specifying the same clause with a
different attribute in a step definition.

The work part of a task is defined in either a processing step or a block step
made up of processing and exchange steps. You can define a single-step task or
use the BLOCK WORK clause to define multiple-step tasks.

Valid characters for task identifiers include the following:

• A through Z

• a through z

• 0 through 9

• Dollar sign ($)

• Underscore ()

If you use an invalid character in an ACMS definition, ADU terminates after
giving the following error message:

%ACMSTDU-F-TKN_INVALID, Invalid token class 1 detected by
PARSER-CMU-F-INROUTINE, error detected in routine <routine-name>

Table 3–1 lists the task clauses and gives a brief description of each.

Task Definition Clauses 3–1

Task Definition Clauses

Table 3–1 Task Clauses

Clause Description

Task Implementation Attribute Clauses

DEFAULT FORM Names a default HP DECforms form used
by the SEND, RECEIVE, and TRANSCEIVE
clauses in exchange steps of a task.

DEFAULT REQUEST LIBRARY Names a default TDMS request library used by
exchange steps in a task.

DEFAULT SERVER Names a default server to handle processing
steps and canceling actions in a task.

USE WORKSPACES Names one or more group-level workspaces the
task uses.

WORKSPACES Declares one or more workspaces used by steps
in the task.

Task Control Attribute Clauses

DELAY Causes a three-second delay before ACMS clears
the final screen the task displays.

WAIT Causes ACMS to wait for the user to press
Return before clearing the final screen a task
displays.

Task-Call-Task Attribute Clauses

GLOBAL Specifies that a task can either be selected from
a menu or called by another task.

LOCAL Specifies that a task can be called by or chained
to another task, but cannot be selected from a
menu.

CANCELABLE Specifies whether a task can be canceled by a
task submitter.

TASK ARGUMENTS Specifies the list of workspaces that are passed
to a task during a Task-Call-Task operation or
by an agent calling a task.

Task Work Clauses

BLOCK Describes, in terms of block, exchange,
processing, and action clauses, the work done in
a block step.

EXCHANGE Describes the work done to interact with the
terminal user, typically through HP DECforms
form records.

PROCESSING Describes the computation and database I/O
work that the task performs.

Figure 3–1 shows the syntax you use to define a task.

3–2 Task Definition Clauses

Task Definition Clauses

Figure 3–1 Task Syntax

[DEFAULT REQUEST LIBRARY IS request-library-name;]

[DEFAULT FORM IS form-label-name;]

[DEFAULT SERVER IS server-name ;]

[NO] DELAY ;
[NO] WAIT ;

�

LOCAL;
GLOBAL;

�
�

[NOT] CANCELABLE BY
 [TERMINAL] USER

[TASK] SUBMITTER

�
;

�

�
�����������

USE
�

WORKSPACE
WORKSPACES

�
�����
����

workspace-name�
� WITH ACCESS

�
RETRIEVAL
UPDATE [[NO] LOCK]

� �
�
�����
���	

[,...] ;

�
�����������

...

�
�����������������������

�
WORKSPACE IS
WORKSPACES ARE

�
�����������������
����������������

record-path-name�
�������������

WITH

������������
�����������

��������������

NAME unique-name

TYPE

� GROUP
TASK
USER

�

ACCESS
�

RETRIEVAL
UPDATE [[NO] LOCK]

�

��������������

������������
����������	

�
�������������

�����������������
���������������	

[,...] ;

�
�����������������������

...

(continued on next page)

Task Definition Clauses 3–3

Task Definition Clauses

Figure 3–1 (Cont.) Task Syntax

�
������������

[TASK]
�

ARGUMENT IS
ARGUMENTS ARE

�
������
�����

workspace-name�
�� WITH ACCESS

� READ
WRITE
MODIFY

� �
��
������
����	

[,...] ;

�
������������

��
���

���
��

BLOCK WORK [WITH <block-phrase> ...] IS

[<block-conditional-clause>]�����������������������
����������������������

[label:]

�������������
������������

� BLOCK WORK [WITH <block-phrase>] IS
<block-step>

�
� EXCHANGE WORK IS

<exchange-clause>

�
� PROCESSING WORK

[WITH <processing-phrase> ...] IS
<processing-clause> ...

�

�������������
�����������	

� ACTION IS <action-clause> ... � EXCEPTION HANDLER ACTION IS
<action-clause> ...

�

�����������������������
���������������������	

...

END BLOCK WORK ;

� ACTION IS <action-clause> ... � EXCEPTION HANDLER ACTION IS
<action-clause> ...

�

���
���������������������������������������	

��������
�������

PROCESSING WORK [WITH <processing-phrase> ...] IS
<processing-clause>

� ACTION IS <action-clause> ... � EXCEPTION HANDLER ACTION IS
<action-clause> ...

�

��������
������	

��
��	

3–4 Task Definition Clauses

Task Definition Clauses

If a task consists of a single processing step, you must use the PROCESSING
clause in the task definition to describe the work done by the task. However, if
the task contains multiple steps or an exchange step, you must use the BLOCK
clause to describe the work done by the task. You can use an EXCHANGE clause
only within a block step.

The following examples illustrate how to use the clauses described in this chapter
to write task definitions. Example 3–1 shows the definition for a single-step task.
The definition for the task is stored in the dictionary as DTR_TASK in the default
CDD directory.

Example 3–1 Simple Task Definition (Single-Step)

REPLACE TASK DTR_TASK
DELAY;
PROCESSING IS DCL COMMAND "MCR DTR32" IN UTILITY_SERVER;

END DEFINITION;

When a user selects this task from a menu, ACMS processes the DCL command
MCR DTR32, which runs DATATRIEVE. Because this is a DCL command, the
task must run in a DCL server. You can also define single-step tasks that use
procedure servers. The DELAY clause causes ACMS to wait 3 seconds before
clearing the final screen of the task and returning the user to a selection menu.

Note

Although you can write single-step task definitions, it is more efficient to
use multiple-step tasks. ACMS also lets you define single-step processing
tasks in the task group definition. Example 4–1 shows how to do this.

Example 3–2 shows an example of a multiple-step task definition. REVIEW_
SCHEDULE_TASK is an inquiry task that lets the terminal operator view
employees’ performance review schedules.

The task definition contains three steps grouped into a block step. The
workspaces REVIEW_SCHEDULE_WKSP and CONTROL_WKSP are available
to all the steps in the block. The default form that contains the form records used
by exchange steps in the block is DEPART_FORM. The keywords BLOCK WORK
signal the beginning of the work done in the block. FORM I/O indicates that the
exchange steps in the block use HP DECforms as the interface to the terminal
operator.

Example 3–2 More Complex Task Definition (Multiple-Step)

REPLACE TASK REVIEW_SCHEDULE_TASK

DEFAULT FORM IS DEPART_FORM;
WORKSPACES ARE REVIEW_SCHEDULE_WKSP, CONTROL_WKSP;

BLOCK
WORK WITH FORM I/O

(continued on next page)

Task Definition Clauses 3–5

Task Definition Clauses

Example 3–2 (Cont.) More Complex Task Definition (Multiple-Step)

1 GET_DEPT_NUMBER:
EXCHANGE
TRANSCEIVE FORM RECORD REVIEW_SCHEDULE_REC,

REVIEW_SCHEDULE_REC
SENDING REVIEW_SCHEDULE_WKSP
RECEIVING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL CONTROL_WKSP;

CONTROL FIELD IS CONTROL_WKSP.CTRL_KEY
" FEXT" : EXIT TASK;

END CONTROL FIELD;

2 GET_FIVE_EMPLOYEES:
PROCESSING

CALL REVIEW_SCHEDULE_GET IN DEPARTMENT_SERVER
USING REVIEW_SCHEDULE_WKSP;

CONTROL FIELD ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

3 DISPLAY_EMPLOYEES:
EXCHANGE

SEND FORM RECORD REVIEW_SCHEDULE_REC
SENDING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL CONTROL_WKSP;

CONTROL FIELD IS CONTROL_WKSP.CTRL_KEY
" FMOR" : GOTO PREVIOUS PROCESSING;
" FEXT" : EXIT TASK;

END CONTROL FIELD;

END BLOCK WORK;
ACTION

REPEAT TASK;
END DEFINITION;

The following numbered explanations correspond to the numbers in Example 3–2:

1 This exchange step uses the REVIEW_SCHEDULE_REC form record to
display a panel asking the operator for the number of the department whose
schedule of performance reviews they want to see.

2 This processing step uses the REVIEW_SCHEDULE_GET procedure to
retrieve the performance review schedules for the first five employees in the
department. The server that the step uses is defined in the task group.

3 This exchange step uses the REVIEW_SCHEDULE_REC form record to
display the performance review schedules. The operator can type a function
key to see the schedules for five more employees, or can exit the task. The
keywords END BLOCK WORK signal the end of the work done in the block.

Action clauses follow block, exchange, and processing steps and control the flow of
work within a task. The exchange and processing steps in this example use the
CONTROL FIELD action clause which tests a workspace field and directs task
flow depending on the results of the test. The block step in this example uses
the REPEAT TASK action clause which causes ACMS to repeat the task. This
particular task repeats until the CTRL_KEY field contains ‘‘ FEXT’’.

You can define tasks as local or global. Global tasks are the default and can be
chained to or called by another task or selected from a menu. Local tasks can be
chained to or called by another task, but cannot be selected from a menu.

3–6 Task Definition Clauses

Task Definition Clauses

For security reasons, you might want to define a task as local if the task
implements its own customer-specific task selection security and does not rely on
the ACMS task access control list mechanism.

3.1 Multiple-Step Task Definitions
When a task definition has multiple steps or an exchange step, you always group
those steps into a block step. A block step consists of the following five parts:

• Attributes of the block step

• A conditional to start the block step

• Work done in the block step

• Actions taken as a result of the work done in the block step

• Exception handler actions to recover from task execution errors

You use phrases and clauses to describe each of these parts. Block phrases
describe attributes of a block step. Unlike clauses and subclauses, phrases do not
end in a semicolon (;). All block phrases are optional.

The work of a block step is made up of one or more processing and exchange
steps. Use exchange and processing clauses to describe the work.

You can use block conditional clauses to make initial exchange and processing
work dependent on the values of workspace fields.

Use action clauses to describe actions you want to take at the end of a block
step, exchange step, or processing step. Action clauses are optional in all step
definitions.

Exception handler action clauses let you recover from events or errors that
would otherwise prevent the task from executing as expected. Exception handler
action clauses are optional in all step definitions.

Figure 3–2 shows the structure of a block step.

Task Definition Clauses 3–7

Task Definition Clauses
Multiple-Step Task Definitions

Figure 3–2 Block Step Structure

Block Step

Block Phrases
Block Conditional Clause

...

Exchange Clauses

Action Clauses

Action Clauses

Exchange Step

Processing Step

Processing Clauses

Exception Handler
Action Clauses

Exception Handler
Action Clauses

TAY-0095-AD

3.2 Nested Blocks
In addition to writing tasks that contain multiple exchange and processing steps
within a block step, you can write tasks that contain multiple block steps within
a block step. A block step that appears within another block step is a nested
block. Figure 3–3 shows a block step that nests three other block steps. In
this arrangement, the outer block is the root block. A block step that contains
another block step is a parent. Because you can create multiple levels of nested
blocks, a parent block is not necessarily also the root block.

A task definition cannot contain more than one root block. Therefore, to define a
task that contains multiple blocks, you must nest blocks within the root block.

ACMS also lets you use a conditional clause at the block step level to structure
your task. By using one of ADU’s four block conditional clauses (CONTROL
FIELD, IF THEN ELSE, SELECT FIRST, or WHILE DO), you can make the
flow of the task dependent on the values of workspace fields. Example 3–3 shows
an example of a task definition that uses a block conditional clause with nested
blocks to direct the task flow.

3–8 Task Definition Clauses

Task Definition Clauses
Nested Blocks

Figure 3–3 Nested Block Arrangement

TAY-0096-AD

Block Work

End Block Work

Exchange Step

Action is...

Action is...

Processing Step

Block Work

Exchange Step

Processing Step

Exchange Step

End Block Work

Action is...

Block Work

End Block Work

Exchange Step

Processing Step

Action is...

End Block Work

Block Work

Root Block

Exception Handler Action is...

Exception Handler Action is...

Exception Handler Action is...

Exception Handler Action is...

Task Definition Clauses 3–9

Task Definition Clauses
Nested Blocks

Example 3–3 Task Definition with Nested Blocks

REPLACE TASK CAR_RESERVATION_TASK

DEFAULT SERVER IS CAR_RESERVATION_SERVER;
DEFAULT FORM IS CAR_RESERVATION_FORM;
WORKSPACES ARE RENTAL_CLASSES_WKSP, CONTROL_WKSP,

RESERVATIONS_WKSP, COMPANIES_WKSP, MSG_WKSP;

BLOCK
WORK WITH FORM I/O IS

1 GET_RENTAL_INFO:
EXCHANGE
TRANSCEIVE RECORD RENTAL_CLASSES_FORM_REC,

RESERVATIONS_FORM_REC
SENDING RENTAL_CLASSES_WKSP
RECEIVING RESERVATIONS_WKSP

WITH RECEIVE CONTROL CONTROL_WKSP;
CONTROL FIELD IS CONTROL_WKSP.CTRL_KEY

" FEXT" : EXIT TASK;
END CONTROL FIELD;

2 CHECK_CAR_AVAIL:
PROCESSING

CALL VERIFY_AVAILABILITY USING RESERVATIONS_WKSP,
ACMS$PROCESSING_STATUS;

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

MOVE ACMS$T_STATUS_MESSAGE
TO MSG_WKSP.MESSAGE_PANEL;

GOTO NEXT EXCHANGE;
"G" : GOTO STEP CHECK_CORP_DISCOUNT;

END CONTROL FIELD;

3 DISPLAY_ERROR_MSG:
EXCHANGE

SEND RECORD MSG_FORM_REC
SENDING MSG_WKSP;

ACTION IS
GOTO STEP GET_RENTAL_INFO;

4 CHECK_CORP_DISCOUNT:
BLOCK WORK IS

IF (COMPANIES_WKSP.CREDIT_CHECK_FLAG = "1")
THEN

5 DISPLAY_DISCOUNT_RATE:
BLOCK WORK IS

PROCESSING
CALL RECOMPUTE_RATES USING RENTAL_CLASSES_WKSP,

ACMS$PROCESSING_STATUS;

EXCHANGE
SEND RECORD RENTAL_CLASSES_FORM_REC
SENDING RENTAL_CLASSES_WKSP

WITH RECEIVE CONTROL CONTROL_WKSP;
CONTROL FIELD IS CONTROL_WKSP.CTRL_KEY

" FEXT" : EXIT TASK;
END CONTROL FIELD;

END BLOCK WORK;

(continued on next page)

3–10 Task Definition Clauses

Task Definition Clauses
Nested Blocks

Example 3–3 (Cont.) Task Definition with Nested Blocks

ELSE
6 PROCESSING

NO PROCESSING;
ACTION

MOVE "DISCOUNT NOT APPLIED"
TO MSG_WKSP.MESSAGE_PANEL;

EXCHANGE
SEND RECORD MESSAGE_FORM_REC

SENDING MSG_WKSP;
END IF;

END BLOCK;
END BLOCK;
END DEFINITION;

CAR_RESERVATION_TASK is an example of an inquiry task that a car rental
agency might use to provide information to customers about the availability of
cars on particular dates. The task uses a block conditional clause with a nested
block to determine if the customer is eligible for a corporate discount and, if so,
what the new rate is.

The task definition contains several block steps within a root block. The
workspaces RENTAL_CLASSES_WKSP, CONTROL_WKSP, RESERVATIONS_
WKSP, COMPANIES_WKSP, and MSG_WKSP are available to all steps in the
task. The default HP DECforms form used by exchange and processing steps in
the task is CAR_RESERVATION_FORM.

1 is an exchange that uses the RENTAL_CLASSES_FORM_REC form record
to display a panel asking the terminal operator for car rental information, and
the RESERVATIONS_FORM_REC form record to map the rental data to the
RESERVATIONS_WKSP workspace.

2 is a processing step that uses the VERIFY_AVAILABILITY procedure to check
that the type of car requested is available for the date requested. The server that
the step uses is defined in the task group.

If the type of car requested is not available for the specified date, control passes
to 3 , an exchange step that displays a message to the terminal operator.

4 is a nested block that uses the IF THEN ELSE conditional clause to determine
what work to perform. If the value of the CREDIT_CHECK_FLAG field in the
COMPANIES_WKSP workspace is 1, meaning that the customer is eligible for a
corporate discount, ACMS performs the work in the DISPLAY_DISCOUNT_RATE
block step. Because the CHECK_CORP_DISCOUNT block appears within the
root block and contains other block steps, it is both a nested block and a parent
block.

The processing part of 5 calls the RECOMPUTE_RATES procedure to calculate a
corporate discount rental rate. The exchange part of 5 then sends the new rental
information to the form for display to the terminal operator.

If the value of the CREDIT_CHECK_FLAG field is not 1, ACMS performs
the work associated with the ELSE keyword. The action part of 6 moves the
message DISCOUNT NOT APPLIED to the CONTROL_WKSP workspace, and
the exchange step sends the message to the form for display to the terminal
operator.

Task Definition Clauses 3–11

Task Definition Clauses
Nested Blocks

Use the BLOCK clause in a task definition to indicate that the task contains a
block step. Figure 3–4 shows the structure of the syntax you use to define a block
step.

Figure 3–4 Structure of Block Step Syntax

BLOCK WORK [WITH <block-phrase> ...] IS

� <block-conditional-clause> �

���������������������������
��������������������������

[label:]��������������
�������������

� BLOCK WORK [WITH <block-phrase>] IS
<block-step>

�
� EXCHANGE WORK IS

<exchange-clause>

�
� PROCESSING WORK

[WITH <processing-phrase> ...] IS
<processing-clause> ...

�

��������������
������������	

 ACTION IS
<action-clause> [,...]

�
 EXCEPTION HANDLER ACTION IS

<action-clause> [,...]

�

���������������������������
�������������������������	

...

END BLOCK WORK ; ACTION IS
<action-clause> [,...]

�
 EXCEPTION HANDLER ACTION IS

<action-clause> [,...]

�

Each phrase and clause described in this chapter is identified according to its
type or types, as follows:

• Block step phrase

• Block conditional clause

• Exchange step clause

• Processing step phrase or clause

• Action clause

• Exception handler action clause

The following sections describe these phrases and clauses. The reference section
lists these phrases and clauses alphabetically, indicating in parentheses the type
of phrase or clause.

3–12 Task Definition Clauses

Task Definition Clauses
Block Step Phrases

3.3 Block Step Phrases
Use block phrases to describe attributes that apply to all the steps in a block
step. All block phrases are optional. If you use one or more block phrases, you
must precede the first one with the WITH keyword. In addition, do not use a
semicolon (;) at the end of a block phrase.

A nested block inherits the attributes that you assign to its parent block. The
only attributes that you can change on a nested block are server context and
distributed transaction. At run time, when ACMS finishes processing a nested
block and returns control to the parent block, the attributes originally assigned to
the parent block become effective again.

Table 3–2 lists the block phrases and gives a brief description of each. If you use
any of the block phrases listed in Table 3–2, you must define them at the start of
a block step before defining the work to be done.

Table 3–2 Block Step Phrases

Phrase Description

CANCEL ACTION Describes the processing done when a task cancel
occurs.

TRANSACTION Identifies the block step as a distributed transaction;
all work within the block must either complete
successfully or be rolled back.

FORM I/O Declares that exchange steps in a block use HP
DECforms to interface with the terminal.

NO TERMINAL I/O Declares that exchange steps in a block do not
interface with the terminal.

REQUEST I/O Declares that exchange steps in a block use TDMS to
interface with the terminal.

SERVER CONTEXT Specifies whether or not server process context is
retained between steps in a block step.

STREAM I/O Specifies that the exchange steps in a block step use
ACMS streams to interface with the terminal user or
other task submitter.

Figure 3–5 shows the structure of the syntax you use in defining block phrases.

Task Definition Clauses 3–13

Task Definition Clauses
Block Step Phrases

Figure 3–5 Block Step Phrases Syntax

BLOCK WORK

�
���������������

WITH

��������������
�������������

����������������

CANCEL ACTION IS <processing-clause>

DISTRIBUTED TRANSACTION���
��

NO TERMINAL USER I/O
REQUEST I/O
FORM I/O
STREAM I/O

���
�	

[NO] SERVER CONTEXT

����������������

��������������
������������	

�
���������������

IS

[<block-conditional-clause>]�������������������������������
������������������������������

[label:]

�������������������
������������������

�����
����

BLOCK WORK

�
� WITH

DISTRIBUTED TRANSACTION
[NO] SERVER CONTEXT

� �
� IS

<block-step>

�����
���	

� EXCHANGE WORK IS
<exchange-clause>

�
� PROCESSING WORK

[WITH <processing-phrase> ...] IS
<processing-clause> ...

�

�������������������
�����������������	

 ACTION IS
<action-clause> ...

�
 EXCEPTION HANDLER ACTION IS

<action-clause> ...

�

�������������������������������
�����������������������������	

...

END BLOCK WORK ;

 ACTION IS
<action-clause> ...

�
 EXCEPTION HANDLER ACTION IS

<action-clause> ...

�

3.4 Block Conditional Clauses
Block conditional clauses let you test the values of workspace fields to determine
what block, exchange, or processing steps to perform. Block conditional clauses
are optional, but they significantly increase your ability to structure ACMS task
definitions. Block conditional clauses can appear only at the top of the block step.
Table 3–3 lists the block conditional clauses and gives a brief description of each.

3–14 Task Definition Clauses

Task Definition Clauses
Block Conditional Clauses

Table 3–3 Block Conditional Clauses

Clause Description

CONTROL FIELD Names a text workspace control field that ACMS tests before
doing block, exchange, or processing work.

IF THEN ELSE Specifies a Boolean expression that ACMS tests before doing
block, exchange, or processing work.

SELECT FIRST Specifies one or more Boolean expressions that ACMS tests
before doing block, exchange, or processing work.

WHILE DO Specifies a Boolean expression that ACMS repeatedly tests. As
long as the expression evaluates to true, ACMS performs the
corresponding block, exchange, or processing work.

The CONTROL FIELD block conditional clause lets you test a value, and, based
on that value, perform a block, exchange, or processing step. The IF THEN ELSE
clause lets you branch to one of two steps, depending on the result of a Boolean
expression.

The SELECT FIRST clause can test multiple Boolean expressions. The WHILE
DO clause lets you create a loop where ACMS performs the block, exchange, or
processing work as long as the specified Boolean expression holds true.

Figure 3–6 shows the syntax you use to define block conditional clauses.

Figure 3–6 Block Conditional Clauses Syntax

BLOCK WORK [WITH <block-phrase>...] IS

�������������������������������������
������������������������������������

������
�����

CONTROL FIELD control-field

� value : <clause> [,...]
NOMATCH : <clause> ...

�
END CONTROL FIELD ;

������
����	

���
��

IF (boolean-expression)
THEN <clause> ...
[ELSE <clause> ...]

END IF;

���
�	

�������
������

SELECT FIRST TRUE OF

� (boolean-expression) : <clause> [,...]
NOMATCH : <clause> ...

�
END SELECT ;

�������
�����	

� WHILE (boolean-expression)
DO <clause> ...

END WHILE;

�

�������������������������������������
�����������������������������������	

ACMS lets you use only one type of I/O per task. Therefore, any exchange or
processing work that a block conditional clause uses must be consistent with the
forms product that the block step uses. For example, if you assign the FORM I/O

Task Definition Clauses 3–15

Task Definition Clauses
Block Conditional Clauses

attribute to a block, meaning that the block uses HP DECforms, exchange steps
within that block cannot use TDMS clauses (READ, WRITE, or REQUEST); and
processing steps cannot use REQUEST I/O.

Because ACMS lets you nest blocks, you can nest block conditional clauses
to test for multiple conditions before performing any exchange or processing
work. Figure 3–7 shows a sample structure that nests a SELECT FIRST block
conditional clause within an IF THEN ELSE block conditional clause.

Figure 3–7 Block Conditional Clauses with a Nested Block

TAY-0097-AD

If (Boolean-Expression)

End If;

Select First

Then Block Work

End Block;

End Select

(Boolean-Expression) : Exchange Work...
(Boolean-Expression) : Processing Work...
(Boolean-Expression) : Exchange Work...

End Block;

Block Work

3.5 Exchange Step Clauses
Exchange steps handle interaction with the terminal user and typically use HP
DECforms form records. The clauses you use for an exchange step describe the
work to be done in that step. There are no phrases that declare special attributes
of exchange steps as there are for processing steps.

Table 3–4 lists the exchange clauses and gives a brief description of each.

Table 3–4 Exchange Step Clauses

Clause Description

Conditional

CONTROL FIELD Names a text control field that ACMS tests before doing work
for the step.

IF THEN ELSE Specifies a Boolean expression that ACMS tests before doing
work for the step.

SELECT FIRST Specifies one or more Boolean expressions that ACMS tests
before doing work for the step.

WHILE DO Specifies a Boolean expression that ACMS repeatedly tests. As
long as the expression evaluates to true, ACMS performs the
corresponding work.

(continued on next page)

3–16 Task Definition Clauses

Task Definition Clauses
Exchange Step Clauses

Table 3–4 (Cont.) Exchange Step Clauses

Clause Description

Unconditional

NO EXCHANGE States that no output or input is done in the exchange.

READ Transfers information from the terminal exception line to a
task workspace.

RECEIVE Transfers information from HP DECforms form data items to a
task workspace.

REQUEST Names a TDMS request that handles interaction between the
user and the task.

SEND Transfers information from a task workspace to HP DECforms
form data items.

TRANSCEIVE Combines SEND and RECEIVE operations in that order.

WRITE Transfers information from a task workspace to the terminal
exception line.

RECEIVE, SEND, and TRANSCEIVE are HP DECforms clauses; READ,
REQUEST, and WRITE are TDMS clauses. ACMS lets you use only one type
of I/O per task. Therefore, if you specify FORM I/O at the block step level,
exchange steps within that block step cannot use TDMS clauses. Likewise, if you
specify REQUEST I/O at the block step level, exchange steps within that block
cannot use HP DECforms clauses. The default I/O method for exchange steps is
REQUEST I/O.

Define the work of an exchange step conditionally or unconditionally. To define
conditional work, you must include one of the following unconditional clauses in a
CONTROL FIELD, IF THEN ELSE, SELECT FIRST, or WHILE DO clause:

• NO EXCHANGE

• READ

• RECEIVE

• REQUEST

• SEND

• TRANSCEIVE

• WRITE

The CONTROL FIELD clause lets you test a text value and, based on that value,
do work in an exchange step using one of the unconditional exchange clauses.

The IF THEN ELSE clause branches to one of two unconditional clauses
depending on the result of a Boolean expression.

The SELECT FIRST clause allows you to test multiple values using Boolean
expressions. If ACMS encounters a Boolean expression that is true, it performs
work in an exchange step using one of the unconditional exchange clauses.

The WHILE DO clause lets you create a loop. As long as the specified Boolean
expression holds true, ACMS performs the corresponding unconditional exchange
clause.

Figure 3–8 shows the syntax you use to define an exchange step.

Task Definition Clauses 3–17

Task Definition Clauses
Exchange Step Clauses

Figure 3–8 Exchange Step Clause Syntax

EXCHANGE WORK IS

CONTROL FIELD control-field

value : <exchange-clause> [,...]
NOMATCH : <exchange-clause>

END CONTROL FIELD ;

IF (boolean-expression)
THEN <exchange-clause>
[ELSE <exchange-clause>]

END IF;

SELECT FIRST TRUE OF

(boolean-expression) : <exchange-clause> [,...]
NOMATCH : <exchange-clause>

END SELECT ;

WHILE (boolean-expression)
DO <exchange-clause>

END WHILE;

{ NO EXCHANGE ; }

READ read-workspace-name

prompt-workspace-name
literal-stringWITH PROMPT

REQUEST IS request-name [IN request-library]
[USING workspace-name [,...]] ;

WRITE
workspace-name
literal-string ;

;

TAY-0403-AI

(continued on next page)

3–18 Task Definition Clauses

Task Definition Clauses
Exchange Step Clauses

Figure 3–8 (Cont.) Exchange Step Clause Syntax

SEND [FORM] RECORD record-identifier [IN form-label-name]
[SENDING { send-workspace-name

[SHADOW [IS] send-shadow-workspace] } [,...]]

RECEIVE [FORM] RECORD record-identifier [IN form-label-name]
RECEIVING { receive-workspace-name

[SHADOW [IS] receive-shadow-workspace] } [,...]

[COUNT numeric-workspace-field2]

numeric-workspace-field3COUNT
send-control-count

numeric-workspace-field
seconds

WITH

RECEIVE CONTROL receive-control-workspace

SEND CONTROL send-control-workspace

TIMEOUT

[COUNT numeric-workspace-field2]

numeric-workspace-field3COUNT
send-control-count

numeric-workspace-field
seconds

WITH

RECEIVE CONTROL receive-control-workspace

SEND CONTROL send-control-workspace

TIMEOUT

TRANSCEIVE [FORM] RECORD send-record-identifier, receive-record-identifier

SENDING { send-workspace-name
[IN form-label-name]

[SHADOW [IS] send-shadow-workspace] } [,...]

[COUNT numeric-workspace-field2]

numeric-workspace-field3COUNT
send-control-count

numeric-workspace-field
seconds

WITH

RECEIVE CONTROL receive-control-workspace

SEND CONTROL send-control-workspace

TIMEOUT

RECEIVING { receive-workspace-name
[SHADOW [IS] receive-shadow-workspace] } [,...]

TAY-0403A-AI

Task Definition Clauses 3–19

Task Definition Clauses
Exchange Step Clauses

An exchange step can include only one exchange clause to do work for the step.
If the exchange step starts with a condition test, there can be only one exchange
clause for each value in the CONTROL FIELD, IF THEN ELSE, SELECT FIRST,
or WHILE DO clause that creates the condition.

The action part of the step can include action clauses that describe what action
you want ACMS to take once the work of the exchange step is done. Action
clauses are explained in Section 3.8.

A task that is to be called from a remote node must do all its I/O in exchange
steps and not in processing steps. For I/O restrictions on tasks to be accessed
remotely, see Section 3.11.

3.6 Processing Step Phrases and Clauses
Processing steps handle the processing work for a task, such as computation and
reading from or writing to a file. To do this work, a processing step uses one of
the following:

• Called subroutine in a procedure server

• Called task

• OpenVMS image

• DCL command or procedure

• DATATRIEVE command or procedure

If you use a processing step to call a task, you can pass workspaces to that task
for read, write, or modify purposes. When the called task completes, ACMS
returns control to the calling task, and execution continues with the action part
of the calling step.

A routine or called task can return a status value to a calling task. The calling
task can use this value, or the contents of a task workspace field can be modified
by the routine or called task to control subsequent task execution. The called
task and the calling task must reside in the same task group.

For more information on calling tasks from processing steps, see CALL TASK
Clause (Processing) in Section 3.12, and HP ACMS for OpenVMS Writing
Applications.

In a multiple-step task, different processing steps can use different servers
and different types of servers. However, a task can retain process context only
within one server at a time, unless the processing steps are part of a distributed
transaction.

Use processing step clauses to describe the work done in a processing step. You
can also use optional processing step phrases at the start of a processing step to
describe characteristics of the step. Processing step phrases are similar to block
step phrases.

Table 3–5 and Table 3–6 list the processing phrases and clauses and give a brief
description of each.

3–20 Task Definition Clauses

Task Definition Clauses
Processing Step Phrases and Clauses

Table 3–5 Processing Step Phrases

Phrase Description

TRANSACTION Identifies the processing step as a distributed transaction.
All work within the processing step must either complete
successfully or be rolled back.

NONPARTICIPATING
SERVER

Instructs ACMS to exempt the server from participating in a
previously declared distributed transaction.

[NO] TERMINAL I/O Declares whether or not the processing step communicates
with the terminal.

REQUEST I/O Names TDMS as the means of communication between a
processing step and the terminal.

Table 3–6 Processing Step Clauses

Clauses Description

Conditional

CONTROL FIELD Names a text field that ACMS tests before doing work for a
processing step.

IF THEN ELSE Specifies a Boolean expression that ACMS tests before doing
work for the step.

SELECT FIRST Specifies one or more Boolean expressions that ACMS tests
before doing work for the step.

WHILE DO Specifies a Boolean expression that ACMS repeatedly tests; as
long as the expression evaluates to true, ACMS performs the
corresponding work.

Unconditional

CALL [PROCEDURE] Names a procedure that ACMS uses to do work for a
processing step.

CALL TASK Names a task to be called by a processing step.

DATATRIEVE
COMMAND

Names a DATATRIEVE command to do the processing work
for a processing step.

DCL COMMAND Names a DCL command to do the processing work for a
processing step.

IMAGE Names an OpenVMS image to do the processing work for a
processing step.

NO PROCESSING States that no processing is done in a processing step.

The work you define in processing steps must be either conditional or
unconditional. Defining conditional and unconditional work is described in
Section 3.5.

Figure 3–9 shows the syntax you use to define a processing step.

Task Definition Clauses 3–21

Task Definition Clauses
Processing Step Phrases and Clauses

Figure 3–9 Processing Step Syntax

PROCESSING WORK�
�����������

WITH���������
��������

�����������

�
DISTRIBUTED TRANSACTION
NONPARTICIPATING SERVER

�
�

[NO] TERMINAL USER I/O
REQUEST I/O

�

�����������

���������
�������	

�
�����������

IS

���
��

����
���

CONTROL FIELD control-field� value : <processing-clause> [,...]
NOMATCH : <processing-clause>

�
END CONTROL FIELD ;

����
��	

���
��

IF (boolean-expression)
THEN <processing-clause>
[ELSE <processing-clause>]

END IF;

���
�	

����
���

SELECT FIRST TRUE OF� (boolean-expression) : <processing-clause> [,...]
NOMATCH : <processing-clause>

�
END SELECT ;

����
��	

� WHILE (boolean-expression)
DO <processing-clause>

END WHILE;

�

�
CALL [PROCEDURE] entry-point-name [IN server-name]

[USING workspace-name [,...]] ;

�
CALL TASK task-name [USING workspace-name [,...]] ;��
�
�

DATATRIEVE
DTR

�
COMMAND IS dtr-command-string [IN server-name] ;

��
	

DCL COMMAND IS dcl-command-string [IN server-name] ;
IMAGE IS image-file-spec [IN server-name] ;
NO PROCESSING ;

���
���	

Once you use processing phrases and clauses to define the attributes and work of
a processing step, you can use action clauses to describe the actions to take at the
end of the step. These clauses are described in Section 3.8.

3–22 Task Definition Clauses

Task Definition Clauses
Step Labels

3.7 Step Labels
You can assign a label to each step you define to help use the ACMS Task
Debugger to debug task definitions. A label is a 1- to 31-character identifier.
Separate the label from the beginning of the step definition with a colon (:).
ACMS generates a label that begins with a dollar sign ($) if you do not assign a
label to a step. To refer to a step label with the GOTO STEP clause, you must
assign your own label; you cannot use labels generated by ACMS with the GOTO
STEP clause. You cannot assign a label to a root block or root processing step. A
root processing step is the processing step in a single-step task.

When you build the task group associated with the task, ACMS assigns step
labels to those steps you did not label. ACMS generates step labels of the form
$STEP_nnn, where nnn is a decimal number that starts at 1 for the first step
and increases by 1 for each new step encountered in the task definition, whether
or not you assigned a label for that step. For example, the following could be the
labels for the steps in a task after the task group definition is built:

$STEP_1
USER_LABEL_1
$STEP_3
$STEP_4
USER_LABEL_2
$STEP_6

In this example, the steps USER_LABEL_1 and USER_LABEL_2 would be
$STEP_2 and $STEP_5, if the labels were generated by ACMS. You can display
step labels by using the DUMP GROUP command.

3.8 Action Clauses
Use action clauses to define the actions you want ACMS to take at the end of an
exchange step, a processing step, or a block step. These clauses do not make up a
separate step in a task definition; they are a part of the step you are defining.

The five types of action clauses, which each perform a different kind of function,
are:

• Conditional action

• Workspace manipulation

• Transaction action

• Server context action

• Sequencing action

Table 3–7 lists the action clauses, separated by function, and gives a brief
description of each. You cannot use the clauses followed by an asterisk (*) when
defining the action part of a root block or root processing step.

Task Definition Clauses 3–23

Task Definition Clauses
Action Clauses

Table 3–7 Action Clauses

Clause Description

Conditional Action

CONTROL FIELD Names a text field that ACMS tests before doing
work for the step.

IF THEN ELSE Specifies a Boolean expression that ACMS tests
before doing work for the step.

SELECT FIRST Specifies one or more Boolean expressions that
ACMS tests before doing work for the step.

Workspace Manipulation

GET ERROR MESSAGE (*) Translates a message number into a message string.

MOVE Specifies that a number, the numeric value of a
global symbol, a workspace field, or a quoted string,
is to be moved into another workspace field or fields.

Transaction Action

COMMIT TRANSACTION Ends the transaction, making database changes
permanent.

ROLLBACK TRANSACTION Returns all work to its state at the beginning of the
transaction and ends the transaction.

Server Context Action

NO SERVER CONTEXT ACTION Specifies that no server context is taken at the end of
a step.

RELEASE SERVER CONTEXT Discards the server context of the current step.

RETAIN SERVER CONTEXT Keeps the process context of the current step for the
next step.

Sequencing Action

CANCEL TASK Stops the task without returning control to the action
part of the definition.

EXIT BLOCK (*) Transfers control to the action part of a block step or
to the next block in the task.

EXIT TASK Causes the current task to end normally.

GOTO STEP (*) Transfers control to another exchange, processing, or
block step.

RAISE EXCEPTION Raises a step exception and passes control to the
exception handler action part of the step.

REPEAT STEP Reexecutes the current exchange, processing, or
block step.

3–24 Task Definition Clauses

Task Definition Clauses
Action Clauses

You can use the action clauses in any order. However, when the work for a step is
finished, ACMS always processes the actions in the following order:

1. Transaction actions

2. Workspace manipulation

3. Server process context actions

4. Task sequencing actions

Refer to Table 3–17 for the default server context actions.

The action you define for a step must be either unconditional (one or more of the
action clauses except CONTROL FIELD, IF THEN ELSE, and SELECT FIRST)
or conditional (one or more action clauses used with the CONTROL FIELD, IF
THEN ELSE, or SELECT FIRST clause).

The action part of a step, if conditional, can include one or both of the workspace
manipulation clauses and one of each of the other four types of action clauses.

Figure 3–10 shows the syntax you use to define actions for a step.

The ACTION keyword is optional; ACMS performs the actions described by the
action clauses if you omit it, but you might want to include it to make the task
definition easier to read.

Task Definition Clauses 3–25

Task Definition Clauses
Action Clauses

Figure 3–10 Action Syntax

ACTION IS��
���

CONTROL FIELD control-field {value : <action-clause>...}... END CONTROL FIELD ;
IF (boolean-expression) THEN <action-clause>... [ELSE <action-clause>] END IF;
SELECT FIRST TRUE OF {(boolean-expression) : <action-clause>...}... END SELECT ;���
��

GET MESSAGE

�
�� NUMBER

� message-number
workspace-field
global-symbol

� �
�� [INTO workspace-field];

MOVE

�����
����

���
��

signed-number
workspace-field
quoted-string
global-symbol

���
�	
�

INTO
TO

� � (workspace-field [,...])
workspace-field

�
�����
���	

[,...];

�
COMMIT TRANSACTION;
ROLLBACK TRANSACTION;

�
� NO SERVER CONTEXT ACTION ;

RELEASE SERVER CONTEXT [IF ACTIVE SERVER CONTEXT] ;
RETAIN SERVER CONTEXT [IF ACTIVE SERVER CONTEXT] ;

�

����������������������������������
���������������������������������

CANCEL TASK [RETURNING

� message-number
numeric-workspace-field
global-symbol

�
] ;

EXIT BLOCK ;

EXIT TASK

�
�� RETURNING

� message-number
numeric-workspace-field
global-symbol

� �
�� ;

 GO TO
GOTO

�
�����
����

STEP step-label-name�
NEXT
PREVIOUS

� � EXCHANGE
PROCESSING
STEP

�
�����
���	

;

RAISE EXCEPTION

�
��
� message-number

numeric-workspace-field
global-symbol

� �
�� ;

REPEAT STEP ;

����������������������������������
��������������������������������	

���
���	

��
��	

3–26 Task Definition Clauses

Task Definition Clauses
Exception Handler Action Clauses

3.9 Exception Handler Action Clauses
In addition to using action clauses in the action part of a step, you can use
action clauses in the exception handler action part of an exchange, processing,
or block step. The exception handler action part of a step lets you recover
from errors, known as exceptions, that prevent the task from completing
normally. Specifically, you can use the exception handler feature to recover from
a distributed transaction that aborts unexpectedly or fails to commit.

Like the action part of a step, the exception handler action part is optional.
Exception handler action clauses must follow action clauses, if present, or the
work part of the step, if there are no action clauses. You must introduce any
exception handler actions with the EXCEPTION HANDLER keywords.

At a minimum, you must include a sequencing action clause in the exception
handler action part of a step. Transaction action clauses are not allowed. You can
use conditional clauses in the same way you use them in the action part of a step.

Regardless of the order in which the exception handler action clauses appear in
the task definition, ACMS executes the clauses in the following order:

1. Workspace manipulation

2. Server process context action

3. Task sequencing actions

For more details on using exception handling, see EXCEPTION HANDLER
Clause (Block, Exchange, Processing) in Section 3.12, and HP ACMS for
OpenVMS Writing Applications.

3.10 Boolean Expressions
This section describes the Boolean expressions you use to define conditional tests
for the IF THEN ELSE, SELECT FIRST, and WHILE DO clauses.

Boolean expressions can be simple or complex. The simplest Boolean expression
consists of a single relational expression such as this one:

(FIELD = "1")

3.10.1 Relational Expressions
A relational expression consists of two values separated by a relational operator
that is used to test the value of a field. The format for a relational expression is:

(value <relational-operator> value)

The relational expression (FIELD = "1") uses the equal sign (=) as the relational
operator that separates FIELD from the literal ‘‘1’’. Be sure to create relational
expressions that ACMS can evaluate as either true or false.

The values you use in a relational expression can be workspace fields, workspaces,
global symbols, quoted strings, or signed (decimal) literals.

See Section 3.10.7 for valid data type comparisons.

Task Definition Clauses 3–27

Task Definition Clauses
Boolean Expressions

3.10.2 Types of Boolean Expressions
More complex Boolean expressions have more than one relational expression
connected by the Boolean operators NOT, AND, and OR. The following are
examples:

• NOT (FIELD = "2")

• (GO = "1") OR (STOP = "2")

• (GO = "1") AND (STOP = "2")

• NOT (FIELD = "5") AND (GO = "1") AND (STOP = "2")

When used to create Boolean expressions, relational expressions are referred to
as Boolean operands. For example, a single relational expression can be called a
Boolean operand, a Boolean expression, or a relational expression, depending on
its context, that is, on how you use it.

3.10.3 Relational Operators
Relational operators that you use to create relational expressions can be any of
the symbols listed in Table 3–8. Each relational operator can test the contents of
workspace field names, workspace names, quoted strings, or signed literals.

See Section 3.10.7 for valid data type comparisons.

When comparing values of data-type text strings, you can test values that are
either sensitive or not sensitive to case. Use operators that are not case-sensitive
when it does not matter if an uppercase ‘‘Y’’ (for example) equals the letter ‘‘y’’ in
lowercase. Use case-sensitive operators when you want to distinguish between
uppercase and lowercase letters. You can use either the case-sensitive or case-
insensitive operators when you are comparing values whose data type is not a
text string.

Table 3–8 Relational Operators

Operator Meaning Relational Operator Symbols

Case-Insensitive Case-Sensitive

Equal to

EQ
=

EQ_EXACT
= =

Not equal to

NE
<>

NE_EXACT
<<>>

Greater than

GT
>

GT_EXACT
>>

(continued on next page)

3–28 Task Definition Clauses

Task Definition Clauses
Boolean Expressions

Table 3–8 (Cont.) Relational Operators

Operator Meaning Relational Operator Symbols

Case-Insensitive Case-Sensitive

Greater than or equal to

GE
>=
=>

GE_EXACT
>>= =
= =>>

Less than

LT
<

LT_EXACT
<<

Less than or equal to

LE
<=
=<

LE_EXACT
<<= =
= =<<

3.10.4 Boolean Operators and Associativity
The NOT Boolean operator tests the negation of a relational expression. It
processes the clause associated with the expression if the negation of the
relational expression is true. Expressions of the type NOT (boolean-operand)
are right-associative, meaning that ACMS evaluates the relational expression
to the right of the NOT operator. With an expression of the type NOT (NOT
(boolean-operand)), ACMS first processes the Boolean operand in parentheses
before evaluating the entire Boolean expression.

The AND Boolean operator ties Boolean expressions together. It processes
the clause associated with the expression only if all Boolean operands in the
expression are true. Expressions of the type (boolean-operand AND boolean-
operand) are left-associative. In the following example, three Boolean operands
are connected by two AND Boolean operators:

(boolean1) AND (boolean2) AND (boolean3)

Because the AND expression is left-associative, ACMS evaluates the example as
follows:

((boolean1) AND (boolean2)) AND (boolean3)

ACMS evaluates each Boolean operand first, evaluates the combination of
boolean1 and boolean2 next, and then evaluates the result with boolean3.

The OR Boolean operator processes the clause associated with the expression
when either value in the Boolean expression is true. Expressions of the type
(boolean-operand OR boolean-operand) are left-associative and follow the same
order of evaluation as Boolean expressions connected with the AND Boolean
operator.

Task Definition Clauses 3–29

Task Definition Clauses
Boolean Expressions

3.10.5 Precedence
You can use the AND and OR Boolean operators to combine many Boolean
operands or expressions into one large Boolean expression. To decide whether
such an expression is true or false, ACMS evaluates the Boolean expression in
order. The order depends on the use of parentheses and operator precedence.
Table 3–9 shows Boolean expression precedence in descending order.

Table 3–9 Boolean Precedence

Operator Operator Example

Expressions in parentheses (A = 1)

All relational operators (FIELD = "1")

Boolean operator NOT NOT (FIELD = "1")

Boolean operator AND (FIELD = "1") AND (FIELD = "2")

Boolean operator OR (FIELD = "1") OR (FIELD = "2")

ACMS evaluates all expressions enclosed in parentheses first. Each operator has
a position in the hierarchy of operators. The operator’s position in this hierarchy
indicates when ACMS has to perform the operation called for by the operator.

Parentheses can change the order of precedence of ACMS operators. It is
important to know how ACMS processes Boolean expressions so you can use
parentheses to make sure your Boolean expressions are evaluated the way you
intend. For example, the following Boolean expression contains no parentheses
except to enclose each operand. It has three Boolean operands, two Boolean
operators, and three relational operators:

(OPERAND1 = "1") AND (OPERAND2 = "1") OR (OPERAND3 = "2")

In processing this expression, ACMS evaluates all operands with relational
operators to find their truth value. Suppose the first operand evaluates to false
and the second and third operands evaluate to true. ACMS then evaluates:

1. The first and second operands connected by the AND operator to find their
truth value. The AND operator requires that each operand in the expression
must be true to be evaluated as true, so ACMS evaluates this expression as
false (false AND true = false).

2. The first result (false) with the third operand. The OR operator evaluates
an expression as true if either of the operands in the expression is true. So,
because the first and second operand evaluate to false and the third operand
is true, ACMS evaluates the entire expression as true.

To illustrate how parentheses can change the truth value of a Boolean expression,
suppose you use parentheses in the previous example:

(OPERAND1 = "1") AND ((OPERAND2 = "1") OR (OPERAND3= "2"))

Suppose the first operand is false, the second is true, and the third is true. After
evaluating each individual operand, ACMS evaluates:

1. The second and third operands, connected with the OR operator and enclosed
in parentheses, as true (true OR true = true)

2. The first operand (false) with the result of the evaluation of the second and
third operands (true) and finds the expression to be false (false AND true =
false)

3–30 Task Definition Clauses

Task Definition Clauses
Boolean Expressions

Without parentheses, ACMS follows the rules of precedence and evaluates the
expression as true. With parentheses, it evaluates the expression as false. Using
parentheses to indicate how you want Boolean expressions evaluated ensures that
your expressions are processed as you intend.

3.10.6 Parentheses
When using parentheses, use the following rules to construct Boolean expressions:

• Enclose each Boolean expression in parentheses. For example:

SELECT FIRST TRUE OF
(FIELD1 EQ "1") : GOTO STEP_4;

END SELECT;

• Enclose the operand you include with the NOT operator in parentheses. For
example:

SELECT FIRST TRUE OF
(FIELD1 = "1") : GOTO STEP_4;
(NOT (FIELD = "1")) : GOTO STEP_5;
(NOT (NOT (FIELD = 2"))) : GOTO STEP_6;

END SELECT;

• Parentheses can change the ACMS order of precedence as described in
Section 3.10.5.

• Never enclose the NOMATCH keyword in parentheses.

3.10.7 Comparisons
ACMS makes comparisons when working with Boolean expressions in the
following ways:

• Compares only the following data types: signed longwords, text strings, and
CDD structure fields of type UNSPECIFIED.

• Compares expressions of the same data type only. For example, you can
compare signed longwords only with signed longwords, text strings only with
text strings, and so forth. You cannot compare expressions of different data
types, such as signed longwords with text strings.

• Allows comparisons involving global symbols, which ACMS resolves
to a signed longword value using the files specified on the /OBJECT,
/USERLIBRARY, /SYSLIB, and /SYSSHR qualifiers of the BUILD GROUP
command. ACMS does not resolve user-defined symbols using files specified
by the task group MESSAGE FILES clause.

• Compares text strings of unequal length by padding the shorter field with
spaces.

• Makes all comparisons between text strings using the OpenVMS run-time
library STR$COMPARE_MULTI routine. This routine can use one of several
different ordering tables. The default is the HP Multinational Character
Set. In this ordering, both uppercase and lowercase versions of a letter are
grouped together. For example, variants of A (A,a) precede variants of b
(B, b), and so forth. In the set of variants, lowercase precedes uppercase.
Thus, the order of alphanumeric characters is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a,
A, b, B, and so on. See OpenVMS RTL String Manipulation (STR$) Manual
for further information on STR$COMPARE_MULTI. See OpenVMS User’s
Manual for further information on the HP Multinational Character Set and
the multinational collating sequence.

Task Definition Clauses 3–31

Task Definition Clauses
Boolean Expressions

• Allows comparisons between composite fields and quoted strings only if the
composite field has the TEXT data type.

• Enables you to use CDD structure fields of the UNSPECIFIED type to
compare the contents of two workspaces. ACMS makes comparisons between
items of type UNSPECIFIED as unsigned byte comparisons, byte by byte,
from left to right. Unequal-length fields are compared by extending the
shorter field with null characters.

If the operand in a Boolean expression is a workspace name (rather than a
workspace field name), ACMS tests the top-level item (structure or elementary
item) of the record definition associated with the workspace.

Boolean expressions that you use with the Boolean operators AND, OR, and NOT
must be expressions that can be evaluated as either true or false. For example,
the expression (FIELD1 AND 1) is not valid.

Boolean expressions that you use with the Boolean operators AND or OR are
processed by ACMS from left to right, and Boolean expressions with the NOT
operator are processed from right to left. However, this associativity does not
have any effect on the truth value of the expression.

3.11 I/O Restrictions for Distributed Processing
Because a task that does I/O in a processing step uses a terminal for input
and output and terminals cannot be passed from one process to another over a
network, tasks that do I/O in a processing step cannot be called remotely. ACMS
cancels tasks that attempt to pass the terminal from the process running the task
on the application system to the calling process on the submitter node.

If you plan to make your tasks available to users on a remote node, you need to
take into consideration the I/O methods that can be called remotely:

• If a task does only STREAM I/O, the task can be called remotely or locally.

• If a task does only FORM I/O from exchange steps, the task can be called
remotely or locally.

• If a task does only REQUEST I/O from exchange steps, the task can be called
remotely or locally.

• If TERMINAL I/O or REQUEST I/O is specified in the processing step of a
task, the task cannot be called remotely because using an I/O option in a
processing step requires a terminal.

Table 3–10 shows the legal combinations of I/O attributes on block and processing
steps and whether or not the resulting task is available to a user on a remote
node.

3–32 Task Definition Clauses

Task Definition Clauses
I/O Restrictions for Distributed Processing

Table 3–10 I/O Attributes for Distributed Processing

Block Processing When Permitted

No BLOCK step NO I/O Local/Remote

TERMINAL I/O Local only

REQUEST I/O Local only

BLOCK WITH NO I/O NO I/O Local/Remote

TERMINAL I/O Local only

REQUEST I/O Local only

BLOCK WITH FORM I/O NO I/O Local/Remote

TERMINAL I/O Local only

BLOCK WITH REQUEST I/O NO I/O Local/Remote

TERMINAL I/O Local only

REQUEST I/O Local only

BLOCK WITH STREAM I/O NO I/O Local/Remote

3.12 Additional I/O Considerations
A called task can use a different I/O method than the task that called it. For
example, a menu task using form I/O can call tasks that use terminal I/O or
ACMS stream I/O as well as other form I/O tasks. If you want a task that uses
form I/O or terminal I/O to call a task that uses stream I/O, a user-written agent
must associate a stream ID with a submitter ID. For more information, see HP
ACMS for OpenVMS Systems Interface Programming.

Although a stream ID can be associated with a submitter ID, it is not possible
to associate a terminal device specification with a stream ID. A stream I/O task
called by an agent can call only other stream I/O tasks or tasks that do no I/O. A
stream I/O task called by an agent cannot call or chain to a task that performs
local or remote requests or that performs terminal I/O from a server.

Task Definition Clauses 3–33

BLOCK Clause (Block)

BLOCK Clause (Block)

Describes the work done in a block step in terms of block, exchange, processing,
and action clauses.

A BLOCK clause encloses a multiple-step task.

Format

BLOCK WORK [WITH <block-phrase> ...] IS

� <block-conditional-clause> �

���������������������������
��������������������������

[label:]��������������
�������������

� BLOCK WORK [WITH <block-phrase ...] IS
<block-step>

�
� EXCHANGE WORK IS

<exchange-clause>

�
� PROCESSING WORK

[WITH <processing-phrase> ...] IS
<processing-clause> ...

�

��������������
������������	

 ACTION IS
<action-clause> [,...]

�
 EXCEPTION HANDLER ACTION IS

<action-clause> [,...]

�

���������������������������
�������������������������	

...

END BLOCK WORK ; ACTION IS
<action-clause> [,...]

�
 EXCEPTION HANDLER ACTION IS

<action-clause> [,...]

�

Parameters

block-phrase
Attributes of a block step. Section 3.3 explains block phrases.

block-conditional-clause
A clause that tests the values of workspace fields to determine what block,
exchange, or processing steps to perform. Section 3.4 explains block conditional
clauses.

label
Name of a step. A label is required only if the step is referred to by another step
in the task. Labels are also useful when debugging the task definition. If you do
not use a label for a step definition, ACMS supplies a default step label in the
form of $STEP_n where n is the sequential number of the step within the block
step. You can refer to ACMS-supplied labels only when using the ACMS Task

3–34 Task Definition Clauses

BLOCK Clause (Block)

Debugger. You cannot use ACMS-supplied step labels when using the GOTO
STEP action clause.

To assign a step label, use a 1- to 31-character identifier.

block-step
A nested block. ACMS lets you nest block steps within other block steps.
Section 3.2 explains nested blocks.

exchange-clause
A clause that describes the work done in an exchange step. Section 3.5 explains
exchange step clauses.

processing-phrase
Attributes of a processing step. Section 3.6 explains processing step phrases.

processing-clause
A clause that describes the work done in a processing step. Section 3.6 explains
processing step clauses.

action-clause
A clause that describes conditional or unconditional actions you want to take
at the end of a block, exchange, or processing step. Section 3.8 explains action
clauses. Section 3.9 explains how to use action clauses in the exception handler
part of a step.

Clause Default

You must use either the BLOCK clause or the PROCESSING clause to define the
work a task does.

Example

REPLACE TASK ADD_EMPLOYEE_TASK
WORKSPACES ARE EMPLOYEE_INFO_WKSP, QUIT_WORKSPACE;
BLOCK

WORK WITH FORM I/O

EXCHANGE
RECEIVE FORM RECORD EMPLOYEE_INFO_RECORD

RECEIVING EMPLOYEE_INFO_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FQUT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING
CALL ADD_EMPL_INFO IN EMPL_SERVER

USING EMPLOYEE_INFO_WKSP
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

END BLOCK WORK;
ACTION

REPEAT STEP;
END DEFINITION;

In this example, the block phrase FORM I/O is used to indicate that the exchange
step in the block uses HP DECforms to perform I/O. The keywords BLOCK
WORK signal the start of the work part of the block step. The work for the

Task Definition Clauses 3–35

BLOCK Clause (Block)

block is done by one exchange step and one processing step. The keywords END
BLOCK WORK indicate that the work for the block is done. The action taken
when the block work is done is REPEAT STEP, which repeats the task.

3–36 Task Definition Clauses

CALL Clause (Processing)

CALL Clause (Processing)

Names a procedure in a procedure server to do the work for a processing step and
any workspaces used by that procedure.

Format

CALL PROCEDURE entry-point-name [IN server-name] [USING workspace-name [,...]];

Parameters

entry-point-name
The entry point name of the procedure in the procedure server image. The entry
point name cannot be named TASK or PROCEDURE unless the PROCEDURE
keyword is specified.

server-name
The name of the server in which ACMS runs the procedure named by the CALL
clause. When you use the CALL clause, the server you name must be a procedure
server. The server you name must be declared in the definition of the task group
containing the task you are defining. If you do not name a server, ACMS uses
the server named in the DEFAULT SERVER clause in the task part of the task
definition.

workspace-name
The given name of the workspace or workspaces the procedure uses. Use the
given name or unique name of each workspace. If you list more than one
workspace name, you must separate the names with commas. All workspace
names must be defined in the WORKSPACES or USE WORKSPACES clause of
the task definition. The order of the workspace names must be the same as the
order of the workspaces specified in the procedure parameter list. ACMS passes
workspaces to the procedure by reference.

Clause Default

If you do not use the CALL clause in a processing step, ACMS does not call a
procedure to do work for that step.

Notes

Any procedure you name with the CALL clause must exist in a procedure server.

You can name separate servers in different processing steps or for processing
clauses listed for different values of a CONTROL FIELD clause.

Example

WRITE_EMPLOYEE_RECORD:
PROCESSING

CALL PERSADD IN PERSONNEL
USING ADD_WORKSPACE, PERS_RECORD;

The WRITE_EMPLOYEE_RECORD step uses the PERSONNEL server to run
the PERSADD procedure that uses the workspaces ADD_WORKSPACE and
PERS_RECORD.

Task Definition Clauses 3–37

CALL TASK Clause (Processing)

CALL TASK Clause (Processing)

Names a task to be called by a processing step and any workspaces that can be
supplied to the called task.

Format

CALL TASK task-name [USING workspace-name [,...]] ;

Parameters

task-name
The given name of the task to be called by the processing step of a calling task.
Both the calling task and the called task must be in the same task group.

You cannot specify a task definition CDD path name or application task name.

workspace-name
The given name of the workspace or workspaces passed to the called task. Use
the given name or unique name of each workspace. If you list more than one
workspace name, you must separate the names with commas. All workspace
names must be defined in the TASK ARGUMENT phrase of the task definition of
the task being called. The order of the workspace names must be the same as the
order of the workspaces specified in the TASK ARGUMENT clause of the called
task.

ACMS passes workspaces to a called task by position. The contents of the first
workspace identified by the USING phrase in the parent task are moved into the
first workspace named in the TASK ARGUMENTS clause in the called task, and
so on, for each workspace named in the USING phrase.

You do not have to specify a workspace.

Clause Default

If you do not use the CALL TASK clause in a processing step, ACMS does not call
another task.

Notes

You can specify either a task, user, group, or system workspace as an argument
to pass to the called task. However, it is not good practice to pass system
workspaces as arguments to called tasks. If individual fields from a system
workspace in the calling task are required by a called task, pass them to the
called task in a task workspace. Data can be moved from a system workspace
into a task workspace using a MOVE clause in the task definition or within a
procedure called from a processing step.

To pass a system workspace to a called task, define the corresponding TASK
ARGUMENT workspace in the called task for READ access. This protects the
contents of the system workspace from accidental modification and performs
faster than if you define the workspace for MODIFY access.

A called task can participate in a distributed transaction started by a parent
task if the called task conforms to the following rules. The root block or root
processing step:

• Must include the DISTRIBUTED TRANSACTION phrase

3–38 Task Definition Clauses

CALL TASK Clause (Processing)

• Cannot include a sequencing action clause other than EXIT TASK, CANCEL
TASK, or RAISE EXCEPTION

• Cannot include the COMMIT TRANSACTION or ROLLBACK
TRANSACTION action clause

• Cannot include an exception handler

• Cannot include the CANCEL ACTION phrase

A task that conforms to the above rules is a composable task.

After a called task completes, execution of the calling task continues with the
action part of the calling processing step. The status fields in the processing
status workspace are updated to reflect the status returned by the called task and
can be used by the calling task to control subsequent task execution. Subsequent
execution of the calling task can be controlled using fields in task workspaces
or by using the final completion status and ACMS symbolic message code of the
called task.

If the called task is defined with the AUDIT attribute, an audit record is always
written to the Audit Trail Logger whenever a task is called or chained from an
agent or another task.

ACMS always performs a task access control list check to determine if a task can
be executed by the submitter. ACMS does not perform an access control check
when a task chains to another task using the GOTO TASK clause.

Example

PROCESSING
CALL TASK ENTER_ORDER USING ORDER_WORKSPACE;
EXCEPTION HANDLER ACTION IS

SELECT FIRST TRUE OF
(ACMS$L_STATUS = ACMS$_CALL_CANCELED):

GOTO STEP SUBMITTER_CANCEL;
(ACMS$L_STATUS = ACMS$_OPR_CANCELED):

GOTO STEP OPERATOR_CANCEL;
END SELECT;

In this example, the CALL TASK clause specifies that the processing step calls
the task ENTER_ORDER using the workspace ORDER_WORKSPACE. If the
call is not canceled, ACMS continues execution to the next step in the task. If
the ENTER_ORDER task is canceled by Ctrl/Y , control goes to the SUBMITTER_
CANCEL step. If the task is canceled by an operator using the ACMS/CANCEL
TASK operator command, control goes to the OPERATOR_CANCEL step.

Task Definition Clauses 3–39

CANCEL ACTION Phrase (Block)

CANCEL ACTION Phrase (Block)

Specifies the processing ACMS does when a task is canceled.

Format

CANCEL ACTION IS <processing-clause>

Parameter

processing-clause
A processing clause that describes the work done when a task cancel occurs.
Describe the work using a CALL, DATATRIEVE COMMAND, DCL COMMAND,
or IMAGE processing clause. Each of these clauses is described in Section 3.6.

Phrase Default

The CANCEL ACTION phrase is optional. If you do not specify a cancel action,
ACMS does not perform any task-specific work when it cancels the task.

Notes

When a task instance is canceled, ACMS performs the work specified in the
CANCEL ACTION phrase as the last step in the task cancellation sequence. If
the task is retaining context in any server process when the task is canceled,
ACMS calls the cancel procedure named in the CANCEL PROCEDURE subclause
of the server definition before performing the CANCEL ACTION work. Because
ACMS releases server context after calling a server cancel procedure, a task
should not rely on the work specified in the CANCEL ACTION phrase being
executed in a server process in which the task was retaining context.

You can use workspaces when defining the cancel action for a block step if that
cancel action uses a procedure server. ACMS keeps workspaces associated with a
task until it is finished processing the cancel action for that task.

You cannot use the CANCEL ACTION phrase on a nested block.

You cannot use the CANCEL ACTION phrase on the root block of a composable
task.

You cannot use a CALL TASK clause in a CANCEL ACTION phrase.

For an example of a cancel procedure, see HP ACMS for OpenVMS Writing Server
Procedures.

Example

BLOCK
WITH CANCEL ACTION

CALL DELETE_ORDER IN ORDER_SERVER
USING ORDER_DATA_REC

If this task is canceled, ACMS calls the DELETE_ORDER procedure in the server
named ORDER_SERVER, and passes the ORDER_DATA_REC record to the
procedure.

You do not end the CALL subclause with a semicolon (;) because it is part of the
CANCEL ACTION phrase.

3–40 Task Definition Clauses

CANCEL TASK Clause (Action)

CANCEL TASK Clause (Action)

Stops the task in the action part of the current step by canceling the current task
instance.

Format

CANCEL TASK

�
�� RETURNING

� message-number
numeric-workspace-field
global-symbol

� �
�� ;

Parameters

message-number
A literal number identifying a user-defined status value to be displayed when a
task is canceled.

numeric-workspace-field
A workspace field with a CDD signed longword data type. The contents of the
field must be the binary longword equivalent of the message symbol for the
message you want ACMS to display. ACMS uses the contents of the field to
identify a message in one of the message files that can be accessed by the task
group associated with the task. The workspace containing this field must be
named in either the WORKSPACES or USE WORKSPACES clause in the task
definition.

global-symbol
A valid global symbol identifying a status value to be displayed when a task is
canceled. The symbol is resolved to a longword value from the files specified by
the /USERLIBRARY, /OBJECT, /SYSLIB, and /SYSSHR qualifiers of the BUILD
GROUP command.

Clause Default

The CANCEL TASK clause is optional. If you do not use the CANCEL TASK
clause, ACMS does not cancel the task unless it encounters unrecoverable errors.
The default sequencing action for the last step within a block is EXIT BLOCK.
The default sequencing action for all other steps within a block is GOTO NEXT
STEP.

Notes

In the action part of a step, if you do not specify an exception code with the
CANCEL TASK clause, ACMS cancels the task with a status of ACMS$_TASK_
DEF_CANCELLED. In the exception handler part of a step, if you do not specify
an exception code with the CANCEL TASK clause, ACMS cancels the task
with the exception code associated with the current exception. If you specify an
exception code, it must be a failure status. If you specify a success status, ACMS
cancels the task and supplies a failure status after auditing the task cancellation,
including the success status code, in the ACMS audit log.

Task Definition Clauses 3–41

CANCEL TASK Clause (Action)

When you use the CANCEL TASK clause, the default transaction action for a
step that starts a distributed transaction is ROLLBACK TRANSACTION. If you
do not want ACMS to automatically roll back a distributed transaction when
processing a CANCEL TASK clause, you can specify COMMIT TRANSACTION
in the same action statement as that CANCEL TASK clause. You cannot
specify a transaction action on a step within a step that starts a distributed
transaction. Therefore, if you specify CANCEL TASK on a step within a
distributed transaction, ACMS rolls back the distributed transaction.

If you have defined a cancel procedure for any servers in which the task is
retaining context, ACMS executes the cancel procedures for those servers. If the
task is not retaining context in any servers when ACMS executes the CANCEL
TASK clause, ACMS does not call any cancel procedures.

You can specify the CANCEL ACTION clause in the action part of an exchange,
processing, nested block, root processing, or root block step.

You can use the exception handler part of a step to control the execution of a
parent task when a called task is canceled.

See HP ACMS for OpenVMS Writing Applications for information about
controlling task cancellations.

Example

PROCESSING WITH NONPARTICIPATING SERVER
CALL PROCEDURE VR_COMPUTE_BILL_PROC
IN VR_READ_SERVER
USING VR_RESERVATIONS_WKSP,

VR_RENTAL_CLASSES_WKSP;
ACTION IS

IF (ACMS$T_STATUS_TYPE = "B")
THEN

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

This processing step calls the VR_COMPUTE_BILL_PROC procedure, then
tests the ACMS$T_STATUS_TYPE field of the ACMS$PROCESSING_STATUS
workspace. If the procedure completes successfully, control passes to the next
step in the task. However, if the procedure does not complete successfully, the
action part of the processing step directs ACMS to cancel the task and return the
status from the ACMS$L_STATUS field.

3–42 Task Definition Clauses

CANCELABLE Clause (Task)

CANCELABLE Clause (Task)

Specifies whether or not a task can be canceled by a terminal user or task
submitter. You can use a CANCELABLE clause to control how a terminal user
or task submitter can exit a task. If a task is defined as NOT CANCELABLE, it
cannot be canceled by pressing Ctrl/Y or Ctrl/C .

Format

[NOT] CANCELABLE BY
 [TERMINAL] USER

[TASK] SUBMITTER

�
;

Clause Default

The CANCELABLE clause is optional.

All tasks are cancelable by default. If you do not use a CANCELABLE clause, a
task can be canceled by either a terminal user or a task submitter.

Example

REPLACE TASK MENU_TASK
NOT CANCELABLE;
WORKSPACE IS WORK_RECORD,PERS_RECORD;

BLOCK WORK
PROCESSING

CALL PROCEDURE DISPLAY IN DISPLAY_SERVER;
EXCHANGE

READ PERS_RECORD;
ACTION IS

MOVE PERS_RECORD INTO WORK_RECORD.ENTRY;
PROCESSING IS

SELECT FIRST TRUE
(WORK_RECORD.ENTRY EQ "ADD_EMPLOYEE"):

CALL TASK ADD_EMPLOYEE;
(WORK_RECORD.ENTRY EQ "REVIEW_UPDATE"):

CALL TASK REVIEW_UPDATE;
(WORK_RECORD.ENTRY EQ "GET_EMPLOYEE"):

CALL TASK GET_EMPLOYEE;
(WORK_RECORD.ENTRY EQ "EXIT"):

NO PROCESSING;
NOMATCH:

NO PROCESSING;
END SELECT ;

END BLOCK WORK;

ACTION IS
SELECT FIRST TRUE OF

(WORK_RECORD.ENTRY NE "EXIT"):
REPEAT STEP;

(WORK_RECORD.ENTRY EQ "EXIT"):
EXIT TASK;

NOMATCH:
REPEAT STEP;

END SELECT ;
END DEFINITION;

In this example, the task definition for MENU_TASK includes the NOT
CANCELABLE clause. You cannot cancel MENU_TASK by pressing Ctrl/Y or
Ctrl/C when it is executing.

Task Definition Clauses 3–43

COMMIT TRANSACTION Clause (Action)

COMMIT TRANSACTION Clause (Action)

Marks the end of a distributed transaction and makes permanent any file or
database operations performed within the transaction.

Format

COMMIT TRANSACTION;

Clause Default

The COMMIT TRANSACTION clause is optional. If you do not explicitly end a
distributed transaction by specifying COMMIT TRANSACTION or ROLLBACK
TRANSACTION, ACMS commits the transaction; however, if the action part
of the step that started the distributed transaction specifies CANCEL TASK or
RAISE EXCEPTION, ACMS rolls back the transaction.

Notes

You can specify COMMIT TRANSACTION in the action part of a root block,
nested block, root processing step, or a processing step that is part of a multiple-
step task. You can specify COMMIT TRANSACTION only in the action part of
step that starts a distributed transaction.

Because a distributed transaction must end in the action part of the step that
starts the transaction, you cannot specify COMMIT TRANSACTION on a step
within a distributed transaction.

If a distributed transaction fails to complete successfully, ACMS cancels the task.
Depending upon the reason for the failure, you might want the task to continue
to execute instead of canceling. See Section 3.9 and HP ACMS for OpenVMS
Writing Applications for information on using the EXCEPTION HANDLER
ACTION clause to recover from transaction failures.

Table 3–19 shows the default transaction actions for different situations in a task
definition.

Example

BLOCK WORK WITH DISTRIBUTED TRANSACTION
PROCESSING

CALL ENTER_ORDER IN DIST_CTR_DATABASE_UPDATE_SERVER
USING ORDER_ENTRY_RECORD, RESTOCK_RECORD;

PROCESSING
IF (ORDERED_AMOUNT > IN_STOCK_AMOUNT)
THEN CALL QUEUE_REPLENISH_INVENTORY_TASK IN QUEUE_SERVER

USING RESTOCK_RECORD;
END IF;

END BLOCK;
COMMIT TRANSACTION;

This example starts a distributed transaction on the block step, includes two
processing steps, and ends the transaction in the action part of the block step
with COMMIT TRANSACTION.

3–44 Task Definition Clauses

CONTROL FIELD Clause (Block, Exchange, Processing, Action)

CONTROL FIELD Clause (Block, Exchange, Processing, Action)

Performs a step or action based on a condition. You can use a CONTROL
FIELD clause to start a block, processing, or exchange step (thereby creating
a conditional block, processing, or exchange step), or to start an action clause
(thereby creating a conditional action clause).

The CONTROL FIELD clause names a text field in a workspace, possible values
for that field, and actions associated with each value. ACMS tests the named field
and takes the action associated with the first value that matches the contents of
that field. The NOMATCH keyword specifies an action to take if there is no
match between the field and a value.

Format

CONTROL FIELD control-field� value : <clause> [,...]
NOMATCH : <clause> [,...]

�
END CONTROL FIELD ;

Parameters

control-field
The name of a workspace field the CONTROL FIELD clause tests to determine
what action to take. The field must be a text field and can be either in a
workspace you define or in any one of the system workspaces.

When you use the control-field parameter, you can name either just the field or
the name of the workspace containing that field followed by a period (.) and the
field name.

value
Either a quoted string or the keyword NOMATCH. Different actions are taken
depending on the value in the named workspace field. If the value is a quoted
string, that string must be no longer than the length of the field named by the
control-field parameter. If the length of the quoted string is shorter than the
length of the named field, ACMS fills the extra spaces of the string with blanks.

ACMS does the processing associated with the NOMATCH keyword if none of
the other values listed matches the contents of the named field. If you use the
NOMATCH keyword, it must be the last value you list in the CONTROL FIELD
clause.

clause
One of the following, depending on the placement of your CONTROL FIELD
clause:

block

The start of a nested block with the keywords BLOCK WORK, or the start of
an exchange or processing step with the keywords EXCHANGE WORK and
PROCESSING WORK, respectively. When you use the CONTROL FIELD clause
at the block step level, you can specify multiple block, exchange, and processing
steps for each value or NOMATCH you list.

Task Definition Clauses 3–45

CONTROL FIELD Clause (Block, Exchange, Processing, Action)

At the block step level, you can use the CONTROL FIELD clause only at the top
of the block; you cannot use it between steps within the block.

exchange-clause

Any unconditional exchange clause that is compatible with the I/O method that
the block step uses. For example, if a block step uses FORM I/O, exchange steps
in that block step can use one of the HP DECforms clauses (SEND, RECEIVE,
or TRANSCEIVE) or NO EXCHANGE, but cannot use a TDMS clause (READ,
WRITE, or REQUEST). There can be only one exchange clause for each value or
NOMATCH you list in the CONTROL FIELD clause.

processing-clause

Any unconditional processing clause. There can be only one processing clause for
each value or NOMATCH you list in the CONTROL FIELD clause.

action-clause

Any unconditional action clause. ACMS provides four types of unconditional
action clauses: workspace manipulation, transaction action, server context, and
sequencing. For each value or NOMATCH you list in the CONTROL FIELD
clause, you can specify one or both of the workspace manipulation clauses and
one of each of the other three types of action clauses.

You can use action clauses at the end of a block, exchange, or processing step.

Table 3–11 and Table 3–12 summarize the clauses that you can use within the
CONTROL FIELD clause in each step.

Table 3–12 lists the action clauses you can use with the CONTROL FIELD
clause.

3–46 Task Definition Clauses

CONTROL FIELD Clause (Block, Exchange, Processing, Action)

Table 3–11 Clauses Compatible with the CONTROL FIELD Clause

At This Step You Can Specify

BLOCK Multiple of:

• BLOCK WORK

• EXCHANGE
WORK

• PROCESSING
WORK

PROCESSING One of:

• CALL
[PROCEDURE]

• CALL TASK

• DTR COMMAND

• DCL COMMAND

• IMAGE

• NO
PROCESSING

EXCHANGE If task uses FORM
I/O

If task uses
REQUEST I/O

If task uses STREAM I/O

One of: One of: One of:

• NO EXCHANGE

• RECEIVE

• SEND

• TRANSCEIVE

• NO EXCHANGE

• READ

• REQUEST

• WRITE

• NO EXCHANGE

• READ

• WRITE

Task Definition Clauses 3–47

CONTROL FIELD Clause (Block, Exchange, Processing, Action)

Table 3–12 Action Clauses Compatible with the CONTROL FIELD Clause

For each value or NOMATCH you list in the CONTROL FIELD clause, you can specify:

Workspace
Actions

Transaction
Actions Server Context Actions Sequencing Actions

Both: One of: One of: One of:

• MOVE

• GET
ERROR
MESSAGE

• COMMIT
TRANSACTION

• ROLLBACK
TRANSACTION

• NO SERVER
CONTEXT
ACTION

• RELEASE
SERVER
CONTEXT

• RETAIN SERVER
CONTEXT

• CANCEL TASK

• EXIT BLOCK

• EXIT TASK

• GOTO STEP

• RAISE EXCEPTION

• REPEAT STEP

Keyword

NOMATCH
Performs the actions in the clause if none of the values in the list matches the
contents of the field being tested. The NOMATCH keyword must be the last
value in the list. Do not enclose the NOMATCH keyword in parentheses.

Clause Default

The CONTROL FIELD clause is optional. If you do not use the CONTROL
FIELD clause or one of the other three conditional clauses, ACMS processes your
exchange, processing, or action clauses unconditionally.

General Notes

End each subclause in a CONTROL FIELD clause with a semicolon (;), and end
the CONTROL FIELD clause with END CONTROL FIELD and a semicolon (;).

The type of clause you can use within a CONTROL FIELD clause depends on
the type of step that you are defining. For example, if you are using CONTROL
FIELD to define an exchange step, you can only use exchange clauses.

If you use CONTROL FIELD at the block step level, you can only use it at the
top of the block; you cannot specify it between steps within the block.

ACMS takes the action associated with the first value that matches the contents
of the field named by the control field parameter.

Before comparing the contents of the control field and the values listed in
a CONTROL FIELD clause, ACMS converts both strings to all uppercase,
padding with blanks. For example, assume the control-field SAMPLE_FIELD
contains space for two characters. If the field contains the character A,
all of the following values are valid matches for the contents of that field:
"A", "a", "A ", "a ", "A ", "a ".

3–48 Task Definition Clauses

CONTROL FIELD Clause (Block, Exchange, Processing, Action)

Processing Clause Notes

A procedure in a processing step always returns a value to the ACMS$L_STATUS
field of the ACMS$PROCESSING_STATUS system workspace. ACMS interprets
that and stores values in the fields named ACMS$T_SEVERITY_LEVEL and
ACMS$T_STATUS_TYPE. If you are testing the ACMS$PROCESSING_STATUS
workspace, the control-field is normally either ACMS$T_SEVERITY_LEVEL or
ACMS$T_STATUS_TYPE.

The ACMS$T_SEVERITY_LEVEL field contains a single character severity level
code for the return status contained in the ACMS$L_STATUS field. These codes
are:

• S (Success)

• I (Information)

• W (Warning)

• E (Error)

• F

The ACMS$T_STATUS_TYPE field contains a single character code indicating
whether the return status is good or bad. These codes are:

• G (GOOD)

• B (BAD)

The code ‘‘G’’ indicates the low bit is set in the field ACMS$L_STATUS, denoting
an error severity level of SUCCESS or INFORMATION. The code ‘‘B’’ indicates
the low bit is clear, denoting an error severity of WARNING, ERROR, or FATAL.

See Appendix B for further information on system workspaces.

Exchange Clause Note

A common use of the CONTROL FIELD clause in exchange steps is to test
whether the terminal user wants to stop a running task. In HP DECforms, you
can define a value associated with a function key so that whenever the terminal
user presses that key, HP DECforms returns that value to a workspace field in
ACMS. You can then test the field for that value by using the CONTROL FIELD
clause in the action part of an exchange step.

Block Clause Example

1. BLOCK WORK
CONTROL FIELD PERS_WKSP.TEST_FIELD

"DISPLAY" : PROCESSING WORK
CALL ADD_EMPLOYEE IN PERSONNEL

USING WORKSPACE PERS_WKSP;
NOMATCH : PROCESSING WORK

NO PROCESSING;
EXIT BLOCK;

END CONTROL FIELD;

This CONTROL FIELD clause tests the contents of the TEST_FIELD field in the
PERS_WKSP workspace. If the value of the field is ‘‘DISPLAY’’, ACMS processes
the ADD_EMPLOYEE procedure. However, if TEST_FIELD contains any other
value, denoted by the NOMATCH keyword, ACMS performs no processing work
and exits from the block.

Task Definition Clauses 3–49

CONTROL FIELD Clause (Block, Exchange, Processing, Action)

Exchange Clause Example

1. EXCHANGE
CONTROL FIELD TEST_RECORD.TEST_FIELD

"NUMBER" : NO EXCHANGE;
NOMATCH : RECEIVE RECORD EMPLOYEE_INFO_RECORD

RECEIVING EMPLOYEE_INFO_WKSP;
END CONTROL FIELD;

ACMS tests the contents of TEST_FIELD in the TEST_RECORD workspace
being used by the task. If the value ‘‘NUMBER’’ is in that field, ACMS does not
do any input or output, but goes on to process the next step in the definition.
However, if TEST_FIELD contains any other value, denoted by the NOMATCH
keyword, ACMS processes the RECEIVE operation and then goes on to process
the next step in the definition.

Processing Clause Example

1. PROCESSING
CONTROL FIELD PERS_WKSP.TEST_FIELD

"Y" : NO PROCESSING;
NOMATCH : CALL ADD_EMPLOYEE IN PERSONNEL

USING WORKSPACE PERS_WKSP;
END CONTROL FIELD;

In this example, the CONTROL FIELD clause tests the field TEST_FIELD in
the PERS_WKSP workspace. If the value of that field is ‘‘Y’’, ACMS does not
execute a processing step, but goes on to process the next step in the definition.
If, however, TEST_FIELD contains any other value, denoted by the NOMATCH
keyword, ACMS processes the ADD_EMPLOYEE procedure.

Action Clause Examples

1. EXCHANGE
RECEIVE RECORD ADD_EMPLOYEE_RECORD

RECEIVING ADD_EMPLOYEE_WKSP
WITH RECEIVE CONTROL QUIT_RECORD;

CONTROL FIELD IS QUIT_RECORD.QUIT_KEY
" FQUT" : EXIT TASK;

END CONTROL FIELD;

In this example, if the user presses the PF1 key to exit from the task,
the form that contains the ADD_EMPLOYEE_RECORD returns the value
‘‘ FQUT’’ to the QUIT_KEY field of the QUIT_RECORD workspace. If
‘‘ FQUT’’ is in that field when ACMS processes the CONTROL FIELD clause,
ACMS exits from the task. Otherwise, ACMS goes on to process the next step
in the definition.

2. PROCESSING
CALL ADD_EMPLOYEE IN PERSONNEL

USING PERS_RECORD, ADD_WORKSPACE;
CONTROL FIELD ADD_WORKSPACE.WK_CONTROL

"ERRORS" : GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

END STEPS;

In this example, if the ADD_EMPLOYEE procedure encounters errors, it
returns the value ‘‘ERRORS’’ to the WK_CONTROL field of the workspace
ADD_WORKSPACE. The CONTROL FIELD clause tests that field. If the
WK_CONTROL field contains the value ‘‘ERRORS’’, ACMS executes the

3–50 Task Definition Clauses

CONTROL FIELD Clause (Block, Exchange, Processing, Action)

previous exchange step in the definition. Otherwise, ACMS goes on to process
the next step in the definition.

3. PROCESSING
CALL ADD_EMPLOYEE IN PERSONNEL

USING PERS_RECORD, ADD_WORKSPACE;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
GOTO PREVIOUS EXCHANGE;

"G" : GOTO NEXT STEP;
END CONTROL FIELD;

END STEPS;

In this example, the ADD_EMPLOYEE procedure returns a status value.
ACMS translates that value and stores either G or B in the ACMS$T_
STATUS_TYPE field of ACMS$PROCESSING_STATUS. If the value ‘‘B’’ is
in that field when the CONTROL FIELD clause tests it, ACMS gets an error
message from the error message file, stores that message in the
ACMS$T_STATUS_MESSAGE_LONG field, and executes the previous
exchange step in the definition. If the value ‘‘G’’ is in the field, ACMS goes on
to process the next step. GOTO NEXT STEP is the default sequencing action
for steps within a block.

Task Definition Clauses 3–51

DATATRIEVE COMMAND Clause (Processing)

DATATRIEVE COMMAND Clause (Processing)

Names a DATATRIEVE command to do work for a processing step.

Format
�

DATATRIEVE
DTR

�
COMMAND IS dtr-command-string [IN server-name] ;

Parameters

dtr-command-string
A valid DATATRIEVE command that cannot exceed 254 characters. You must
enclose the string in quotation marks.

server-name
The name of the server in which the DATATRIEVE command is executed. When
you use the DATATRIEVE COMMAND clause, the server you name must be a
DCL server and must be declared in the definition of the task group containing
the task you are defining. If you do not name a server, ACMS uses the server
named in the DEFAULT SERVER clause in the task part of the task definition.

Clause Default

The DATATRIEVE COMMAND clause is optional; if you do not use it, ACMS
does not invoke a DATATRIEVE command or procedure.

Notes

Any DATATRIEVE command you name must run in a DCL server.

You can pass the contents of a selection string to a DATATRIEVE command in
a processing step by using that string as a set of one or more parameters to the
command. The selection string provided by the terminal user can be separated
by ACMS into parameters P1 through P8. Each parameter is delimited by a
space or tab. At run time, ACMS converts any unquoted alphabetic characters
to uppercase. To include spaces or tabs in a parameter or to keep a character in
lowercase, the terminal user encloses the string with double quotation marks. To
include a double quotation mark character in the string itself, the terminal user
must enclose that character in double quotation marks. ACMS does not treat
exclamation marks or single quotation marks as special characters. Therefore,
you do not have to enclose these characters in double quotation marks.

You can use parameters P1 through P8 in the DATATRIEVE command by
including the parameter name in single quotes.

For more information on DCL command symbol substitution, see OpenVMS DCL
Dictionary.

3–52 Task Definition Clauses

DATATRIEVE COMMAND Clause (Processing)

Example

PROCESSING
DTR COMMAND IS

"DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES.DUE"
IN COMMON_UTILITY_SERVER;

This task runs a DATATRIEVE procedure named DUE. The procedure is stored
in the ACMS$EXAMPLES directory. DISK1:[CDDPLUS] is the dictionary anchor.
You must enclose the command string in quotation marks.

Task Definition Clauses 3–53

DCL COMMAND Clause (Processing)

DCL COMMAND Clause (Processing)

Names a DCL command to do work for a processing step.

Format

DCL COMMAND IS dcl-command-string [IN server-name] ;

Parameters

dcl-command-string
A valid DCL command that cannot exceed 254 characters beginning with the
dollar sign ($) character. You must enclose the command string in quotation
marks.

server-name
The name of the server in which the DCL command is executed. When you use
the DCL COMMAND clause, the server you name must be a DCL server declared
in the task group. If you do not name a server, ACMS uses the server named in
the DEFAULT SERVER clause in the task definition.

Clause Default

The DCL COMMAND clause is optional; if you do not use it, ACMS does not
execute a DCL command to do work for a processing step.

Notes

Any DCL command you name must run in a DCL server.

You can pass the contents of a selection string to a DCL command in a processing
step by using that string as a set of one or more parameters to the command.
The selection string provided by the terminal user can be separated by ACMS
into parameters P1 through P8. Each parameter is delimited by a space or
tab. At run time, ACMS converts any unquoted alphabetic characters to
uppercase. To include spaces or tabs in a parameter or to keep a character
in lowercase, the terminal user encloses the string with double quotation marks.
To include a double quotation mark character in the string itself, the terminal
user must enclose that character in double quotation marks. ACMS does not treat
exclamation points or single quotation marks as special characters. Therefore,
you do not have to enclose these characters in double quotation marks.

You can use parameters P1 through P8 in the DCL command by including the
parameter name in single quotes.

For more information on DCL command symbol substitution, see OpenVMS DCL
Dictionary.

Do not use the DCL INQUIRE command in a DCL command procedure that runs
in a DCL server. The INQUIRE command requests the interactive assignment of
a value for a local or global symbol during the execution of a command procedure.
A DCL command procedure running in a DCL server that contains an INQUIRE
command exits with an error status, and the task using the DCL server is
canceled.

3–54 Task Definition Clauses

DCL COMMAND Clause (Processing)

Instead, you can use the following command in a DCL procedure that runs in a
DCL server:

$ READ/PROMPT=<prompt-string> SYS$COMMAND <data-item>

For example:

$ READ/PROMPT="Enter dec number: " SYS$COMMAND P1

If you use SET VERIFY in a command procedure that runs in a reusable server,
make sure that the command procedure executes a SET NOVERIFY command
before exiting. Otherwise, SET VERIFY remains in effect for the next server
process user.

Example

PROCESSING
DCL COMMAND IS "$EDIT/TPU ’P1’"
IN PRIVATE_UTILITY_SERVER;

This processing step uses the server PRIVATE_UTILITY_SERVER to execute
a DCL command that invokes TPU. The command uses a parameter the user
supplies as P1.

Task Definition Clauses 3–55

DEFAULT FORM Clause (Task)

DEFAULT FORM Clause (Task)

Names a default form used by the SEND, RECEIVE, and TRANSCEIVE clauses
in exchange steps of a task.

Format

DEFAULT FORM IS form-label-name;

Parameters

form-label-name
The name assigned to the form using the WITH NAME keywords in the FORMS
clause of the task group definition. The form-label-name uniquely identifies a
form within a form file.

Clause Default

The DEFAULT FORM clause is optional. You can name, in the SEND, RECEIVE,
or TRANSCEIVE clause of an exchange step, the form used by that step. If you
do not specify the form in an exchange step and you do not use the DEFAULT
FORM clause, ACMS uses the first form declared in the task group definition.

Notes

If you name a default form for a task, you must use the DEFAULT FORM clause
before you define a block or processing step for that task.

When you use the DEFAULT FORM clause, you do not have to name a form in
individual exchange steps unless one of those steps uses a record from a different
form.

If you name a form with the DEFAULT FORM clause, ACMS passes the name of
that form to HP DECforms. If you do not use the DEFAULT FORM clause, and
the form record is not specified in the exchange step of the task, ACMS passes
the name of the first form specified in the task group definition.

You can specify a form label in the SEND, RECEIVE, or TRANSCEIVE clause of
an exchange step to override a form named by the DEFAULT FORM clause.

Example

DEFAULT FORM IS EMPLOYEE_INFO_FORM;

This names EMPLOYEE_INFO_FORM as the default form for this task. The
exchange steps in this task use records from this form unless another form is
specified in subsequent exchange steps.

3–56 Task Definition Clauses

DEFAULT REQUEST LIBRARY Clause (Task)

DEFAULT REQUEST LIBRARY Clause (Task)

Names a default request library used by REQUEST clauses in exchange steps of
a task.

Format

DEFAULT REQUEST LIBRARY IS request-library-name ;

Parameter

request-library-name
The name assigned to the request library using the WITH NAME keywords in
the REQUEST LIBRARY clause of the task group definition.

Clause Default

The DEFAULT REQUEST LIBRARY clause is optional. You can name, in the
REQUEST clause of an exchange step, the request library used by that step. If
you do not specify the request library in an exchange step, and you do not use
the DEFAULT REQUEST LIBRARY clause, ACMS uses the first request library
declared in the task group definition.

Notes

If you name a default request library for a task, you must use the DEFAULT
REQUEST LIBRARY clause before you define a block or processing step for that
task.

When you use the DEFAULT REQUEST LIBRARY clause, you do not have to
name a request library in individual exchange steps unless one of those steps
uses a request from a different request library.

If you name a request library with the DEFAULT REQUEST LIBRARY clause,
ACMS searches that library. If you do not use the DEFAULT REQUEST
LIBRARY clause, and the request library is not specified in the exchange step of
the task, ACMS searches the first library declared in the task group definition.

You can use the IN REQUEST LIBRARY keywords in the REQUEST clause of an
exchange step to override a request library named by the DEFAULT REQUEST
LIBRARY clause.

Example

DEFAULT REQUEST LIBRARY DEPART_REQUEST_LIBRARY;

This names DEPART_REQUEST_LIBRARY as the default request library for
this task. The exchange steps in the task use requests from this library unless
specified otherwise in individual exchange steps.

Task Definition Clauses 3–57

DEFAULT SERVER Clause (Task)

DEFAULT SERVER Clause (Task)

Names a default server to handle processing and canceling actions for the step or
steps in a task.

Format

DEFAULT SERVER IS server-name ;

Parameter

server-name
The name of a server defined in the task group definition. The server-name is a
1- to 31-character identifier.

Clause Default

The DEFAULT SERVER clause is optional. If you do not use the DEFAULT
SERVER clause in a task definition, you must use the IN SERVER keywords in
each processing step of the task to name the server that you want to handle the
work for that step.

Notes

If you name a default server for a task, you must use the DEFAULT SERVER
clause before you define a block or processing step for that task.

When you use the DEFAULT SERVER clause, you do not have to name a server
in individual processing steps unless one of those steps requires a different server.

You can use the IN SERVER keywords of a processing work clause in a processing
step to override a server named in the DEFAULT SERVER clause.

If a task is keeping context in a server and a step in that task names another
server, the task must release context of the first server before using the second
server.

A task can use more than one server. However, you can retain context only within
one server at a time. A task can also use both DCL and procedure servers.

Example

DEFAULT SERVER IS DEPARTMENT_SERVER;

This names DEPARTMENT_SERVER as the default server for this task. The
processing steps in the task use the DEPARTMENT_SERVER unless specified
otherwise in individual processing steps.

3–58 Task Definition Clauses

DELAY Clause (Task)

DELAY Clause (Task)

Controls whether or not ACMS pauses after a task finishes running before
clearing the screen and displaying the ACMS menu.

Format

[NO] DELAY ;

Clause Default

The ACMS-supplied default is NO DELAY. This clause is optional.

Notes

You cannot use a DELAY clause and a WAIT clause in the same definition.

The DELAY clause always delays clearing the screen for 3 seconds. You cannot
change the time of the delay.

This clause differs from the WAIT clause, which requires users to press Return to
have ACMS redisplay the menu.

The WAIT and DELAY clauses determine how quickly ACMS returns user control
to a menu when a task ends. For example, if a user runs a task that displays
the time of day with the SHOW TIME command, by default ACMS displays the
time, but then immediately clears the screen and returns the user to the menu.
Both clauses let you delay the time between when the task ends and when ACMS
returns to the selection menu.

WAIT and DELAY attributes specified in a task, task group, or application
definition are overridden by WAIT and DELAY clauses in a menu definition.

Example

DELAY;

ACMS waits 3 seconds before clearing the final screen of the task and returning
the user to a menu.

Task Definition Clauses 3–59

EXCEPTION HANDLER Clause (Block, Exchange, Processing)

EXCEPTION HANDLER Clause (Block, Exchange, Processing)

Describes the actions to be taken to recover from one or more exceptions.

Format

EXCEPTION HANDLER ACTION IS <action-clause> ... ;

Parameters

action-clause
Describes the actions taken to recover from an exception raised in the same step
or in a step within the block step. Section 3.8 explains action clauses.

Clause Default

The EXCEPTION HANDLER clause is optional. If you do not include the
EXCEPTION HANDLER clause in the task definition, and an exception is raised,
ACMS cancels the task.

Notes

If you specify the EXCEPTION HANDLER clause, it must appear after the work
part of the step and the action part of the step. The action part of the step is
optional.

You can include the following types of action clauses: workspace manipulation,
server context, and task sequencing. At a minimum, you must include a task
sequencing action clause because ACMS does not provide a default sequencing
action for the exception handler action part of a step. You cannot specify
transaction action clauses.

As in the action part of a step, you can use conditional clauses in the exception
handler action part of a step.

Regardless of the order in which you specify the action clauses, ACMS executes
them in the following order:

1. Workspace manipulation

2. Server context

3. Task sequencing

When an exception is raised, ACMS interrupts the task execution, and searches
for an exception handler on the step in which the exception was raised. If the
current step does not contain an exception handler, ACMS searches the outer
block steps, beginning with the nearest block step and heading towards the root
block step. After ACMS finds an exception handler, it stores the exception code
in the ACMS$L_STATUS field of the ACMS$PROCESSING_STATUS system
workspace.

If ACMS does not find an exception handler, it cancels the task. If ACMS finds
an exception handler, but the exception handler does not specify the particular
exception code raised, ACMS raises another step exception and searches outer
block steps for another exception handler.

For more information on exception handling, see HP ACMS for OpenVMS Writing
Applications.

3–60 Task Definition Clauses

EXCEPTION HANDLER Clause (Block, Exchange, Processing)

Example

EXCHANGE
RECEIVE ORDER_LINE_RECORD IN ORDER_FORM

RECEIVING ORDER_LINE_RECORD
WITH TIMEOUT 42;

EXCEPTION ACTION IS
IF (ACMS$L_STATUS = FORMS$_TIMEOUT)
THEN

GOTO STEP HANDLE_FORM_TIMEOUT;
ELSE

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

The exchange step specifies that the terminal operator must complete the HP
DECforms panel within 42 seconds; otherwise, HP DECforms raises a timeout
exception. The exception handler action part of the step tests for the FORMS$_
TIMEOUT exception code in the ACMS$L_STATUS workspace field. If HP
DECforms raises the timeout exception, ACMS passes control to the HANDLE_
FORM_TIMEOUT step. If any other exception is raised, ACMS cancels the task.

Task Definition Clauses 3–61

EXCHANGE Clause (Task)

EXCHANGE Clause (Task)

Describes the interaction between the application and the terminal user.

Format

EXCHANGE WORK IS

<exchange-clause>

 ACTION IS
<action-clause> [,...]

�
 EXCEPTION HANDLER ACTION IS

<action-clause> ...

�

Parameters

exchange-clause
Describes the work done in an exchange step. Section 3.5 explains exchange step
clauses.

action-clause
Describes the unconditional or conditional action to take when the exchange work
is completed. Section 3.8 explains action clauses.

Clause Default

The EXCHANGE clause is optional. However, if your task uses FORM I/O, you
must use an exchange step.

Example

DISPLAY_EMPLOYEES:
EXCHANGE

SEND FORM RECORD REVIEW_SCHEDULE_RECORD
SENDING REVIEW_SCHEDULE_WKSP;

The DISPLAY_EMPLOYEES exchange step sends the REVIEW_SCHEDULE_
WKSP workspace to a HP DECforms form.

3–62 Task Definition Clauses

EXIT BLOCK Clause (Action)

EXIT BLOCK Clause (Action)

Transfers control of the task to the action part of the block step or to the next
block in the task definition.

Format

EXIT BLOCK ;

Clause Default

The EXIT BLOCK clause is optional. The default sequencing action for a step
within a block is GOTO NEXT STEP. The default sequencing action for a block
step or a processing step in a single-step task is EXIT TASK.

Note

If you use the EXIT BLOCK clause in the action part of an exchange or processing
step, ACMS transfers control to the action part of the block. If you use the EXIT
BLOCK clause in the action part of a block step, ACMS transfers control to the
next block in the task definition.

Example

DISPLAY_EMPLOYEES:
EXCHANGE

SEND FORM RECORD REVIEW_SCHEDULE_RECORD
SENDING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL TEST_WORKSPACE;

CONTROL FIELD IS TEST_WORKSPACE.TEST_KEY
" FMOR" : GOTO PREVIOUS PROCESSING;
" FCAN" : EXIT BLOCK;

END CONTROL FIELD;
ACTION

REPEAT STEP;

In the DISPLAY_EMPLOYEES exchange step, HP DECforms uses the form
record REVIEW_SCHEDULE_RECORD to display a panel to the user. If the
user presses a key that returns a value ‘‘ FMOR’’ to the TEST_KEY field of
TEST_WORKSPACE, ACMS processes the previous processing step. If the user
presses a key that returns a value ‘‘ FCAN’’ to the TEST_KEY field, ACMS exits
the block and returns control to the action part of the block step. Because the
REPEAT STEP clause is in the action part of the block step, ACMS repeats the
task.

Task Definition Clauses 3–63

EXIT TASK Clause (Action)

EXIT TASK Clause (Action)

Ends the current task.

Format

EXIT TASK

�
�� RETURNING

� message-number
numeric-workspace-field
global-symbol

� �
�� ;

Parameters

message-number
A number identifying a user-defined status value to be displayed when a task
ends.

numeric-workspace-field
A workspace field with a CDD signed longword data type. The contents of
the field must be the binary longword equivalent of the message symbol for
the message you want ACMS to display. ACMS uses the contents of the field
to identify a message in one of the message files accessible by the task group
associated with the task. The workspace containing this field must be named
in either the WORKSPACES or the USE WORKSPACES clause in the task
definition.

global-symbol
A valid global symbol identifying a status value to be displayed when a task
ends. The symbol is resolved to a longword value from the files specified by the
/USERLIBRARY, /OBJECT, /SYSLIB, and /SYSSHR qualifiers of the BUILD
GROUP command.

Clause Default

The EXIT TASK clause is optional. The default sequencing action for a step
within a block is GOTO NEXT STEP. The default sequencing action for a block
step or a processing step in a single-step task is EXIT TASK.

Notes

When you use the EXIT TASK clause, the default recovery action is COMMIT IF
ACTIVE RECOVERY UNIT, and the default context action is RELEASE SERVER
CONTEXT IF ACTIVE SERVER CONTEXT.

Because a distributed transaction must end in the action part of the step on
which it starts, you cannot specify EXIT TASK on the action part of a step within
a distributed transaction.

If you use the EXIT TASK clause, you cannot declare the following clauses in the
same action specification:

• RETAIN RECOVERY UNIT

• RETAIN RECOVERY UNIT IF ACTIVE RECOVERY UNIT

• RETAIN SERVER CONTEXT

3–64 Task Definition Clauses

EXIT TASK Clause (Action)

• RETAIN SERVER CONTEXT IF ACTIVE SERVER CONTEXT

A task, whether called from an agent or another task, can end by exiting normally
or by canceling itself. The task can return a default ACMS task status code or
a user-specific status code. If you specify a return status with the EXIT TASK
clause, it must be a success status.

ACMS commits a distributed transaction if you do not specify an explicit
transaction action, and returns the final status value to the parent task or agent,
with the contents of any workspaces that are defined as TASK ARGUMENTS
with MODIFY or WRITE access.

Example

DISPLAY_EMPLOYEES:
EXCHANGE

SEND FORM RECORD REVIEW_SCHEDULE_RECORD
SENDING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL TEST_WORKSPACE;

CONTROL FIELD IS TEST_WORKSPACE.TEST_KEY
" FMOR" : GOTO PREVIOUS PROCESSING;
" FEXT" : EXIT TASK RETURNING ACMS$_NORMAL;

END CONTROL FIELD;

If the user presses a key that returns the value ‘‘ FCAN’’ to the TEST_KEY field
of the workspace TEST_WORKSPACE, ACMS exits the task normally without
returning control to the action part of the block step definition.

Task Definition Clauses 3–65

FORM I/O Phrase (Block)

FORM I/O Phrase (Block)

Specifies that the exchange steps in a block step use HP DECforms to interface
with the terminal user.

Format

FORM I/O

Phrase Default

The default input/output method for exchange steps in a block step is REQUEST
I/O.

Notes

If you use the FORM I/O phrase, you cannot use NO TERMINAL I/O, STREAM
I/O, or REQUEST I/O in the same block step.

If a block step uses FORM I/O, processing steps in that block step can use
TERMINAL I/O to do work. However, you cannot distribute a task that does any
I/O in a processing step.

If a block step uses FORM I/O, exchange steps in that block step cannot use the
REQUEST, READ, or WRITE clauses to do work.

Example

BLOCK WITH FORM I/O

The exchange steps in this block step use HP DECforms to interface with the
terminal user.

3–66 Task Definition Clauses

GET ERROR MESSAGE Clause (Action)

GET ERROR MESSAGE Clause (Action)

Uses the OpenVMS message facility to translate a message number into a
message and move that message from a message file to a workspace field. An
exchange step can then display this message on the terminal screen for the
terminal user. You normally use this clause to translate the return status of the
last procedure into a message.

Format

GET ERROR MESSAGE

�
�� NUMBER

� message-number
numeric-workspace-field
global-symbol

� �
��

[INTO workspace-string-field] ;

Parameters

message-number
A decimal number that references a message in one of the message files declared
in the task group definition. If you do not use the message-number parameter,
the numeric-workspace-field parameter, or the global-symbol parameter, ACMS
uses the value stored in the ACMS$PROCESSING_STATUS workspace to
retrieve an error message from a message file.

numeric-workspace-field
A workspace field with a CDD signed longword data type. The contents of
the field must be the binary longword equivalent of the message symbol for
the message you want ACMS to display. ACMS uses the contents of the field
to identify a message in one of the message files accessible by the task group
associated with the task. The workspace containing this field must be named
in either the WORKSPACES or the USE WORKSPACES clause in the task
definition.

global-symbol
A valid global symbol identifying a status value to be displayed. The symbol
is resolved to a longword value from the files specified by the /USERLIBRARY,
/OBJECT, /SYSLIB, and /SYSSHR qualifiers of the BUILD GROUP command.

A global symbol can be resolved from a task group message file only if the .OBJ
message file is specified or is part of a user-specified object library or shared
image library. The object library or shared image library must be specified on the
/OBJECT or /USERLIBRARY qualifiers of the BUILD GROUP command.

workspace-string-field
A string field where ACMS stores the error message after it is retrieved from
an error message file. If you do not use this parameter, ACMS defaults to
storing the message in the ACMS$T_STATUS_MESSAGE_LONG field of the
ACMS$PROCESSING_STATUS system workspace.

Task Definition Clauses 3–67

GET ERROR MESSAGE Clause (Action)

Clause Default

The GET ERROR MESSAGE clause is optional. If you do not use the GET
ERROR MESSAGE clause, ACMS does not move a message from a message file
to a field in a workspace.

Notes

You can use the GET ERROR MESSAGE clause only in the action sections of
steps within a block.

The message must be in one of the message files available to the task. These
message files include:

• OpenVMS error message files

• ACMS run-time error message files

• Message files named in the task group definition

To get the message number of the message you want to return to the user, get
a listing of the message file that the task uses. To get this listing, use the DCL
MESSAGE command with the /LIST qualifier:

$ MESSAGE/LIST=DEPTMSG.LIS DEPT.MSG

The file you supply with the MESSAGE/LIST command is the source message
file with an .MSG file type. You can name the file to which you want to output
the message listing file. In this example, the name of the source message file
is DEPT.MSG, and the name of the output listing file is DEPTMSG.LIS. If you
do not name a listing file, the name of that file is derived from the name of the
source message file.

Look at the listing file to find the hexadecimal code for the message you want to
return to the user. Convert the hexadecimal code for the message to a decimal
value, and use that decimal code in the GET ERROR MESSAGE clause.

Example

GET_FIVE_EMPLOYEES:
PROCESSING

CALL REVIEW_SCHEDULE_GET IN DEPARTMENT_SERVER
USING REVIEW_SCHEDULE_WKSP;

CONTROL FIELD ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

If the REVIEW_SCHEDULE returns a status code with an error severity level
of WARNING, ERROR, or FATAL, ACMS stores the value ‘‘B’’ in the ACMS$T_
STATUS_TYPE field of the ACMS$PROCESSING_STATUS workspace. In
addition, ACMS uses the returned status code to retrieve a message from a
message file. ACMS repeats the previous exchange, which should use a form that
displays the retrieved error message.

3–68 Task Definition Clauses

GLOBAL Clause (Task)

GLOBAL Clause (Task)

Specifies that a task can be selected from a menu, called by an agent, or called by
another task.

Format

GLOBAL ;

Clause Default

The GLOBAL clause is optional.

If no GLOBAL or LOCAL clause is specified in a task definition, ACMS uses the
default application definition GLOBAL or LOCAL attribute that is in effect when
the application is built. If no GLOBAL or LOCAL attribute is specified in either
the task definition or the application definition, a task is global by default and
can be selected from a menu, called by an agent, or called by another task.

Example

REPLACE TASK MENU_TASK
NOT CANCELABLE;
GLOBAL;
WORKSPACE IS WORK_RECORD, PERS_RECORD;
BLOCK WORK

PROCESSING
CALL PROCEDURE DISPLAY IN DISPLAY_SERVER;

EXCHANGE
READ WORK_RECORD;

PROCESSING
WITH CONTINUE ON BAD STATUS
IS
SELECT FIRST TRUE
(WORK_RECORD.WK_NUMBER EQ 1):

CALL TASK ADD_EMPLOYEE;
(WORK_RECORD.WK_NUMBER EQ 2):

CALL TASK REVIEW_UPDATE;
(WORK_RECORD.WK_NUMBER EQ 3):

CALL TASK GET_EMPLOYEE USING WORK_RECORD, PERS_RECORD;
(WORK_RECORD.WK_NUMBER EQ 4):

NO PROCESSING;
NOMATCH:

NO PROCESSING;
END SELECT ;

ACTION IS
MOVE RMS$_EOF INTO WORK_RECORD.WK_NUMBER,

-1 INTO WORK_RECORD.WK_NUMBER;
END BLOCK WORK;

Task Definition Clauses 3–69

GLOBAL Clause (Task)

ACTION IS
SELECT FIRST TRUE OF

(WORK_RECORD.WK_NUMBER NE 4):
REPEAT STEP;

(WORK_RECORD.WK_NUMBER EQ 4):
EXIT TASK;

NOMATCH:
REPEAT TASK;

END SELECT ;
END DEFINITION;

In this example, the task definition for MENU_TASK includes a GLOBAL clause.
Regardless of any LOCAL or GLOBAL task default in effect when an application
using MENU_TASK is built, MENU_TASK is global and can be selected from a
menu, called by an agent, or called by another task.

3–70 Task Definition Clauses

GOTO STEP Clause (Action)

GOTO STEP Clause (Action)

In the action part of a step definition, specifies which exchange, processing, or
block step to execute next.

Format

 GO TO
GOTO

�
������
�����

{ STEP step-label-name }

�
NEXT
PREVIOUS

� � EXCHANGE
PROCESSING
STEP

�
������
����	

;

Parameter

step-label-name
The name of an exchange, processing, or block step. The step-label-name is a step
label you defined in the task definition; it cannot be an ACMS-defined step label.

Keywords

NEXT EXCHANGE/PROCESSING/STEP
Runs the next exchange or processing step in the step block.

PREVIOUS EXCHANGE/PROCESSING/STEP
Runs the previous exchange or processing step in the step block. BLOCK is not
a keyword with the GOTO STEP clause. Therefore, you cannot specify NEXT or
PREVIOUS BLOCK.

Clause Default

The GOTO STEP clause is optional; the default action for steps within a block is
GOTO NEXT STEP.

Note

If you use the GOTO STEP clause within a conditional clause (CONTROL FIELD,
IF THEN ELSE, SELECT FIRST, or WHILE DO), the GOTO STEP clause cannot
point to a step that is outside the conditional clause. For example, a GOTO STEP
clause within an IF THEN ELSE conditional clause cannot point to a step that
appears before the IF keyword or after the END IF keywords.

You cannot use the GOTO STEP clause in the action part of a root block or root
processing step.

If you use the GOTO STEP clause in the action part of a nested block, it can
point to the beginning of the same block or to an exchange, processing, or block
step within the parent block.

If you use the GOTO STEP clause in the action part of an exchange or processing
step, it can point to any step within the same block step.

Figure 3–11 shows a sample nested blocks arrangement and indicates the
acceptable GOTO STEP statements for the action part of each step in the
structure.

Task Definition Clauses 3–71

GOTO STEP Clause (Action)

Example

GET_FIVE_EMPLOYEES:
PROCESSING

CALL REVIEW_SCHEDULE_GET IN DEPARTMENT_SERVER
USING REVIEW_SCHEDULE_WKSP;

CONTROL FIELD ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

If the REVIEW_SCHEDULE returns a status code with an error severity level
of WARNING, ERROR, or FATAL, ACMS stores the value ‘‘B’’ in the ACMS$T_
STATUS_TYPE field of the ACMS$PROCESSING_STATUS workspace. In
addition, ACMS uses the returned status code to retrieve a message from a
message file. ACMS repeats the previous exchange, which should use a form that
displays the retrieved error message.

Figure 3–11 GOTO STEP Clauses in a Nested Blocks Structure

TAY-0098-AD

STEP_B: Block

STEP_B: End Block

STEP_A: Block

STEP_A: End Block

STEP_B1: Processing
 Action (Can GOTO STEP B1)

STEP_A1: Processing
 Action (Can GOTO STEP A1, B, or C)

STEP_C: Block

STEP_C: End Block

STEP_C1: Exchange
 Action (Can GOTO STEP C1)

Action (Can GOTO STEP A1, B, or C)

Action (Can GOTO STEP A1, B, or C)

3–72 Task Definition Clauses

IF THEN ELSE Clause (Block, Exchange, Processing, Action)

IF THEN ELSE Clause (Block, Exchange, Processing, Action)

Takes actions based on values that you test with Boolean expressions.

You can use an IF THEN ELSE clause to start a block, exchange, or processing
step (thereby creating a conditional block, exchange, or processing step), or to
start an action clause (thereby creating a conditional action clause).

The IF THEN ELSE clause uses Boolean expressions to compare workspace
fields and takes actions based on the results of the expressions. If the expression
evaluates to true, ACMS performs the work or action associated with the THEN
keyword. If the expression evaluates to false, ACMS performs the work or action
associated with the ELSE keyword.

Format
IF (boolean-expression)

THEN <clause>
[ELSE <clause>]

END IF;

Parameters

boolean-expression
The Boolean expression must be an expression that ACMS can evaluate as
either true or false. You must enclose Boolean expressions in parentheses. See
Section 3.10 for a description of Boolean expressions.

clause
One of the following, depending on where you place the IF THEN ELSE clause:

block

The start of a nested block with the keywords BLOCK WORK, or the start of
an exchange or processing step with the keywords EXCHANGE WORK and
PROCESSING WORK, respectively. When you use the IF THEN ELSE clause
at the block step level, you can specify multiple block, exchange, and processing
steps for each Boolean expression or ELSE you list.

At the block step level, you can use the IF THEN ELSE clause only at the top of
the block; you cannot use it between steps within the block.

exchange-clause

Any unconditional exchange clause that is compatible with the I/O method that
the block step uses. For example, if a block step uses FORM I/O, exchange steps
in that block step can use one of the HP DECforms clauses (SEND, RECEIVE,
or TRANSCEIVE) or NO EXCHANGE, but cannot use a TDMS clause (READ,
WRITE, or REQUEST). There can be only one exchange clause for each Boolean
expression or ELSE you list in the IF THEN ELSE clause.

processing-clause

Any unconditional processing clause. There can be only one processing clause for
each Boolean expression or ELSE you list in the IF THEN ELSE clause.

Task Definition Clauses 3–73

IF THEN ELSE Clause (Block, Exchange, Processing, Action)

action-clause

Any unconditional action clause. ACMS provides four types of unconditional
action clauses: workspace manipulation, transaction action, server context, and
sequencing. For each Boolean expression or ELSE you list in the IF THEN ELSE
clause, you can specify one or both of the workspace manipulation clauses and
one of each of the other three types of action clauses.

You can use action clauses at the end of a block, exchange, or processing step.

Table 3–13 and Table 3–14 summarize the clauses that you can use within the IF
THEN ELSE clause in each step.

Table 3–13 Clauses Compatible with the IF THEN ELSE Clause

At This Step You Can Specify

BLOCK Multiple of:

• BLOCK WORK

• EXCHANGE
WORK

• PROCESSING
WORK

PROCESSING One of:

• CALL
[PROCEDURE]

• CALL TASK

• DTR COMMAND

• DCL COMMAND

• IMAGE

• NO
PROCESSING

EXCHANGE If task uses FORM
I/O

If task uses
REQUEST I/O

If task uses STREAM I/O

One of: One of: One of:

• NO EXCHANGE

• RECEIVE

• SEND

• TRANSCEIVE

• NO EXCHANGE

• READ

• REQUEST

• WRITE

• NO EXCHANGE

• READ

• WRITE

Table 3–14 lists the action clauses you can use with the IF THEN ELSE clause.

3–74 Task Definition Clauses

IF THEN ELSE Clause (Block, Exchange, Processing, Action)

Table 3–14 Action Clauses Compatible with the IF THEN ELSE Clause

For each Boolean expression or ELSE you list in the IF THEN ELSE clause, you can specify:

Workspace
Actions Transaction Actions Server Context Actions Sequencing Actions

Both: One of: One of: One of:

• MOVE

• GET
ERROR
MESSAGE

• COMMIT
TRANSACTION

• ROLLBACK
TRANSACTION

• NO SERVER
CONTEXT
ACTION

• RELEASE
SERVER
CONTEXT

• RETAIN SERVER
CONTEXT

• CANCEL TASK

• EXIT BLOCK

• EXIT TASK

• GOTO STEP

• RAISE EXCEPTION

• REPEAT STEP

Keywords

THEN
Identifies the action to take if the Boolean expression evaluates to true.

ELSE
Optional keyword that identifies the action to take if the Boolean expression
evaluates to false. If you do not specify ELSE and a corresponding clause, and
the Boolean expression evaluates to false, control falls through to the next step.
Refer to Table 7–1 for default recovery actions and Table 3–17 for default server
context actions.

Clause Default

The IF THEN ELSE clause is optional. If you do not use the IF THEN ELSE
clause or one of the other three conditional clauses, ACMS processes your
exchange, processing, or action clauses unconditionally.

Notes

You must end each subclause in an IF THEN ELSE clause with a semicolon (;),
and you must end the IF THEN ELSE clause with END IF and a semicolon (;).

The ELSE keyword and a corresponding clause are optional. If you do not specify
ELSE, and the expression evaluates to false, control falls through to the next
step.

The type of clause you can use within an IF THEN ELSE clause depends on the
type of step that you are defining. For example, if you are using IF THEN ELSE
to define an exchange step, you can only use exchange clauses.

If you use IF THEN ELSE at the block step level, you can only use it at the top
of the block. You cannot specify it between steps within the block.

Task Definition Clauses 3–75

IF THEN ELSE Clause (Block, Exchange, Processing, Action)

Block Clause Example

1. BLOCK WORK
IF (HIRE_STATUS == "N")
THEN

EXCHANGE
SEND FORM RECORD EMPLOYEE_INFO_RECORD

SENDING EMPLOYEE_INFO_WKSP;
ELSE

PROCESSING
CALL EMPLOYEE_INFO_PROGRAM IN EMPLOYEE_INFO_SERVER

USING EMPLOYEE_INFO_WKSP_1;
ACTION IS

EXIT TASK;
END IF;

END BLOCK;

ACMS tests the contents of the HIRE_STATUS workspace field. If the Boolean
expression evaluates to true, ACMS performs the exchange step associated with
the THEN keyword. If the expression evaluates to false, ACMS performs the
processing step associated with the ELSE keyword.

Exchange Clause Example

1. EXCHANGE
IF ((EMPLOYEE_CONTROL_KEY EQ "SKIP") OR

(OLD_WORKSPACE == NEW_WORKSPACE))
THEN

NO EXCHANGE;
ELSE

SEND FORM RECORD EMPLOYEE_INFO_RECORD
SENDING EMPLOYEE_INFO_WKSP;

END IF;

ACMS tests the contents of EMPLOYEE_CONTROL_KEY, OLD_WORKSPACE,
and NEW_WORKSPACE. If either Boolean operand in the expression evaluates to
true, ACMS does not do any exchange work. If the Boolean expression evaluates
to false, ACMS performs the SEND operation associated with the ELSE keyword.

Processing Clause Example

1. PROCESSING
IF (AGE_ENTERED >= 21)
THEN

CALL STANDARD_PROCESSING USING WAGE_HOUR_DATA;
ELSE

CALL YOUTH_PROCESSING USING WAGE_HOUR_DATA;
END IF;

This IF THEN ELSE clause tests the AGE_ENTERED workspace field; and, if
the Boolean expression evaluates to true, ACMS performs the processing work
associated with the THEN keyword. Otherwise, ACMS performs the processing
work associated with the ELSE keyword.

3–76 Task Definition Clauses

IF THEN ELSE Clause (Block, Exchange, Processing, Action)

Action Clause Example

1. ACTION
IF (EMPLOYEE_CONTROL_KEY EQ " FCAN")
THEN

CANCEL TASK;
END IF;

In this example, if the user presses the PF1 key to cancel the task, HP DECforms
returns the value ‘‘ FCAN’’ to the EMPLOYEE_CONTROL_KEY workspace field.
If ‘‘ FCAN’’ is in that field when ACMS processes the IF THEN ELSE clause,
ACMS cancels the task. Because no ELSE subclause is specified, if the expression
evaluates to false, ACMS passes control to the next step.

Task Definition Clauses 3–77

IMAGE Clause (Processing)

IMAGE Clause (Processing)

Names an OpenVMS image to do work for a processing step.

Format

IMAGE IS image-file-spec [IN server-name] ;

Parameters

image-file-spec
The file specification of the OpenVMS image you want to run. A file specification
is either an identifier or a quoted string pointing to the location of a file. The
default file type is .EXE. The default device and directory are those defined for
the server in the application definition.

server-name
The name of the server in which the image is executed. When you use the image
clause, the server you name must be a DCL server. The server you name must be
declared in the definition of the task group containing the task you are defining.
If you do not name a server, ACMS uses the server named in the DEFAULT
SERVER clause in the task part of the task definition.

Clause Default

If you do not use the IMAGE IS clause in a processing step definition, ACMS does
not run an image in that step.

Notes

Any image you name must run in a DCL server.

You can pass the contents of a selection string to an image in a processing
step by using that string as a set of one or more parameters to the procedure
call. The selection string provided by the terminal user can be separated by
ACMS into parameters P1 through P8. Each parameter is delimited by a space
or tab. At run time, ACMS converts any unquoted alphabetic characters to
uppercase. To include spaces or tabs in a parameter or to keep a character in
lowercase, the terminal user encloses the string with double quotation marks. To
include a double quotation mark character in the string itself, the terminal user
must enclose that character in double quotation marks. ACMS does not treat
exclamation points or single quotation marks as special characters. Therefore,
you do not have to enclose these characters in double quotation marks.

The image can access these symbols by using the OpenVMS Run-Time Library
routine that accesses Command Language Interpreter (CLI) symbols, LIB$GET_
SYMBOL. See OpenVMS RTL Library (LIB$) Manual for more information.

For more information on DCL command symbol substitution, see OpenVMS DCL
Dictionary.

3–78 Task Definition Clauses

IMAGE Clause (Processing)

Example

DATR:
PROCESSING

IMAGE IS "SYS$SYSTEM:DTR32"
IN COMMON_UTILITY_SERVER;

The DATR task uses the server COMMON_UTILITY_SERVER to invoke the
OpenVMS image DTR32.

Task Definition Clauses 3–79

LOCAL Clause (Task)

LOCAL Clause (Task)

Specifies that a task can be called by or chained to another task, but not selected
from a menu or called by an agent.

Format

LOCAL ;

Clause Default

The LOCAL clause is optional.

If no LOCAL or GLOBAL clause is specified in a task definition, ACMS uses the
default application definition LOCAL or GLOBAL attribute in effect when the
application is built. If no LOCAL or GLOBAL attribute is specified in either the
task definition or the application definition, a task is global by default and can be
selected from a menu, called by an agent, or called by another task.

Note

A local task can call or chain to a global task or another local task.

Example

REPLACE TASK UPDATE_ACCOUNT
LOCAL;
PROCESSING WITH RMS RECOVERY

IS
CALL TRANSFER_FUNDS IN SECURE_SERVER;

In this example, the task definition for UPDATE_ACCOUNT includes a LOCAL
clause. Regardless of any LOCAL or GLOBAL task default in effect when an
application using UPDATE_ACCOUNT is built, UPDATE_ACCOUNT is local and
can be called only by another task.

3–80 Task Definition Clauses

MOVE Clause (Action)

MOVE Clause (Action)

Specifies that a number, the numeric value of a global symbol, a workspace field,
or a quoted string, is to be moved into another workspace field or fields.

Format

MOVE

�����
����

���
��

signed-number
global-symbol
workspace-field
quoted-string

���
�	
�

INTO
TO

� � (workspace-field [,...])
workspace-field

�
�����
���	

[,...];

Parameters

signed-number
A decimal number.

global-symbol
A valid global symbol that is resolved to a longword value from the files specified
by the /USERLIBRARY, /OBJECT, /SYSLIB, or /SYSSHR qualifiers of a BUILD
GROUP command.

workspace-field
A valid workspace field.

quoted-string
A character sequence that starts and ends with a double quote (") and contains a
string of 1 to 255 characters.

Note

This clause requires the keyword INTO or TO. If the source is a global symbol,
the data type of the target workspace field must be signed longword.

You cannot move signed numbers to variables with data types other than
longword.

Although you can specify only one MOVE clause in the action part of a step, you
can include multiple move operations within a single MOVE clause.

Example

ACTION IS
MOVE 2 INTO WKSP.RECORD_NUMBER,
RMS$_EOF TO WKSP.END_STATUS;

This MOVE clause moves the signed number 2 into the workspace RECORD_
NUMBER, and moves the global symbol RMS$_EOF into the workspace END_
STATUS.

Task Definition Clauses 3–81

NO EXCHANGE Clause (Exchange)

NO EXCHANGE Clause (Exchange)

Specifies that an exchange step does not do any work.

Format

NO EXCHANGE ;

Clause Default

The NO EXCHANGE clause is required if you do not want an exchange step to
do any work. If you do not use the NO EXCHANGE clause, you must use one of
the other exchange step clauses in an exchange step definition.

Note

You typically use the NO EXCHANGE clause if an exchange step uses a
CONTROL FIELD, IF THEN ELSE, SELECT FIRST, or WHILE DO clause
to do work conditionally. In addition, the NO EXCHANGE clause is useful as a
documentation tool in a definition.

Example

EXCHANGE
CONTROL FIELD PERS_RECORD.TEST_FIELD

"Y" : NO EXCHANGE;
NOMATCH : SEND FORM RECORD EMPLOYEE_INFO_RECORD;

END CONTROL FIELD;

ACMS tests TEST_FIELD in the PERS_RECORD workspace. If the value ‘‘Y’’
is in that field, ACMS does not process an exchange step. However, if any other
value is in the field, ACMS processes the SEND operation.

3–82 Task Definition Clauses

NO PROCESSING Clause (Processing)

NO PROCESSING Clause (Processing)

Specifies that the step does not do any processing work.

Format

NO PROCESSING ;

Clause Default

The NO PROCESSING clause is required if you do not want any processing
performed in a processing step. If you do not use the NO PROCESSING clause,
you must use one of the other processing clauses in a processing step definition.

Notes

You typically use the NO PROCESSING clause if a processing step uses a
CONTROL FIELD, IF THEN ELSE, SELECT FIRST, or WHILE DO clause to
do work conditionally. This clause is also useful as a documentation tool in a
definition.

If you use any RECOVERY phrase and the NO PROCESSING clause in the same
processing step, ACMS cancels the task.

Example

CONTROL FIELD PERS_RECORD.TEST_FIELD
"Y" : NO PROCESSING;
NOMATCH : CALL ADD_EMPLOYEE IN PERSONNEL

USING WORKSPACE PERS_RECORD;
END CONTROL FIELD;

ACMS tests the field TEST_FIELD in the PERS_RECORD workspace. If the
value of that field is ‘‘Y’’, ACMS does not execute a processing step and goes on
to process the next step in the definition. However, if TEST_FIELD contains any
other value, denoted by the NOMATCH keyword, ACMS processes the ADD_
EMPLOYEE procedure.

Task Definition Clauses 3–83

NO SERVER CONTEXT ACTION Clause (Action)

NO SERVER CONTEXT ACTION Clause (Action)

Maintains the current state of any server context associated with the task.

Format

NO SERVER CONTEXT ACTION ;

Clause Default

The NO SERVER CONTEXT ACTION clause is optional. Table 3–17 shows the
default context actions associated with different cases of a task definition.

Note

If there is active server context and you use the NO SERVER CONTEXT
ACTION clause, ACMS retains that context. If there is no active server context
and you use the NO SERVER CONTEXT ACTION clause, ACMS takes no action
regarding server context.

Example

BLOCK WITH
FORM I/O
SERVER CONTEXT
GET_DEPT_NUMBER:

EXCHANGE
RECEIVE FORM RECORD REVIEW_SCHEDULE
RECEIVING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;
CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY

" FCAN" : CANCEL TASK;
END CONTROL FIELD;

GET_FIVE_EMPLOYEES:
PROCESSING

CALL REVIEW_SCHEDULE_GET IN DEPARTMENT_SERVER
USING REVIEW_SCHEDULE_WKSP;

CONTROL FIELD ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

RELEASE SERVER CONTEXT;
GOTO PREVIOUS EXCHANGE;

"G" : NO CONTEXT ACTION;
GOTO NEXT STEP;

END CONTROL FIELD;

If the REVIEW_SCHEDULE_GET procedure is successful in retrieving review
schedule information for a department, ACMS returns the value ‘‘G’’ to the
ACMS$T_STATUS_TYPE field of the ACMS$PROCESSING_STATUS system
workspace. To maintain file pointers, use the NO CONTEXT ACTION clause to
maintain the current state of server context.

3–84 Task Definition Clauses

NO TERMINAL I/O Phrase (Block, Processing)

NO TERMINAL I/O Phrase (Block, Processing)

States that the block or processing step does no terminal I/O.

Format

NO TERMINAL USER I/O

Phrase Default

The NO TERMINAL I/O phrase is optional.

The default communication method for a block step is REQUEST I/O.

If you are defining a single-step task that uses a processing step, the default
communication method for that task is TERMINAL I/O. If you are defining a task
that includes a block step, the default communication method for all processing
steps in that task is NO TERMINAL I/O even if the block includes only one
processing step.

Notes

If you use the NO TERMINAL I/O phrase in a block step definition, the only
clause you can use in any exchange steps in that block is the NO EXCHANGE
clause. If you use the NO TERMINAL I/O phrase in a block step clause, you
cannot use the FORM I/O, REQUEST I/O, or STREAM I/O phrase in the same
block step clause.

You cannot use the NO TERMINAL I/O phrase with a nested block.

You can use the TERMINAL I/O phrase in a processing step to override the NO
TERMINAL I/O phrase for that block step.

If you use the NO TERMINAL I/O phrase in a processing step, you cannot use
the REQUEST I/O, STREAM I/O, or TERMINAL I/O phrase in the same step.
If you use NO TERMINAL I/O, the processing step cannot perform any terminal
input or output.

If you use the NO TERMINAL I/O phrase in a processing step that uses a DCL
server, ACMS assigns SYS$OUTPUT and SYS$ERROR to the null device.

For I/O restrictions on tasks to be accessed remotely, see Section 3.11.

Block Step Example

1. BLOCK WORK WITH NO TERMINAL I/O

This block step does no terminal I/O.

Task Definition Clauses 3–85

NO TERMINAL I/O Phrase (Block, Processing)

Processing Step Example

1. WRITE_EMPLOYEE_RECORD:
PROCESSING WITH NO TERMINAL I/O

CALL PERSADD IN PERSONNEL
USING ADD_WORKSPACE, PERS_RECORD;

CONTROL FIELD ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

The WRITE_EMPLOYEE_RECORD step uses the PERSONNEL procedure server
to run the PERSADD procedure. There is no communication with the terminal
user in the step.

3–86 Task Definition Clauses

NONPARTICIPATING SERVER Phrase (Processing)

NONPARTICIPATING SERVER Phrase (Processing)

Excludes a processing step from participating in an existing distributed
transaction.

Format

NONPARTICIPATING SERVER

Phrase Default

The NONPARTICIPATING SERVER phrase is optional. If you do not specify
NONPARTICIPATING SERVER on a processing step within a distributed
transaction, the processing step participates in the transaction, and any database
or file updates performed by the processing step will be committed or rolled back.

Notes

You can specify the NONPARTICIPATING SERVER phrase only on a processing
step within a previously-started distributed transaction.

You cannot specify the NONPARTICIPATING SERVER and TRANSACTION
phrases on the same processing step.

Because a task can only retain context in multiple servers if each server
participates in a single distributed transaction, ACMS automatically releases
server context for a processing step that specifies NONPARTICIPATING
SERVER. You cannot specify the RETAIN SERVER CONTEXT or NO
SERVER CONTEXT clause in the action part of a processing step that specifies
NONPARTICIPATING SERVER.

You must specify the NONPARTICIPATING SERVER phrase on steps that
perform DCL processing within a distributed transaction.

Example

BLOCK WORK WITH DISTRIBUTED TRANSACTION
PROCESSING WITH NONPARTICIPATING SERVER

CALL WRITE_EMPLOYEE_MODIFIED_RECORD IN SECURITY_LOG_SERVER
USING EMPLOYEE_ID_RECORD, ACMS$TASK_INFORMATION;

PROCESSING
CALL MODIFY_EMPLOYEE_INFO IN EMPLOYEE_DB_SERVER
USING EMPLOYEE_INFO_RECORD;

PROCESSING
CALL MODIFY_EMPLOYEE_INFO IN ACCOUNT_DB_SERVER
USING EMPLOYEE_INFO_RECORD;

END BLOCK;

This example starts a distributed transaction on the block step and performs
three processing steps. The first processing step calls a procedure to write
information to a security log. Because it is important for the information written
to the security log to survive even if the transaction is rolled back, the processing
step includes the NONPARTICIPATING SERVER phrase to exclude it from the
distributed transaction.

Task Definition Clauses 3–87

PROCESSING Clause (Task)

PROCESSING Clause (Task)

Describes work done in a single-step processing task.

Format

PROCESSING WORK [WITH <processing-phrase> [,...] IS

<processing-clause>

 ACTION IS
<action-clause> [,...]

�
 EXCEPTION HANDLER ACTION IS

<action-clause> ...

�

Parameters

processing-phrase
Describes an attribute of a processing step. If you use one or more processing
phrases, you must define them before defining the processing clause for the task.
Section 3.6 explains processing phrases.

processing-clause
Describes the work done in a processing step. Section 3.6 explains processing
clauses.

action-clause
Describes the unconditional or conditional action to take when the processing
work is completed. Section 3.8 explains action clauses.

Clause Default

You must use either the PROCESSING clause or the BLOCK clause to define the
work a task does.

Example

PROCESSING WITH TERMINAL I/O
DCL COMMAND IS "$EDIT/TPU ’P1’"

IN PRIVATE_UTILITY_SERVER;
END TASK;

This task uses a DCL command to run TPU. The processing work uses the
TERMINAL I/O processing phrase. This phrase indicates that the task, consisting
of a single processing step, interacts with the terminal user.

3–88 Task Definition Clauses

RAISE EXCEPTION Clause (Action)

RAISE EXCEPTION Clause (Action)

Raises a step exception and passes control to the exception handler action part of
the step.

Format

RAISE EXCEPTION

�
��
� message-number

numeric-workspace-field
global-symbol

� �
�� ;

Parameters

message-number
A literal number identifying a user-defined status value to be stored in the
ACMS$L_STATUS field of the ACMS$PROCESSING_STATUS system workspace.

numeric-workspace-field
A workspace field with a CDD signed longword data type. The contents of the
field must be the binary longword equivalent of the message symbol for the
message you want ACMS to display. ACMS uses the contents of the field to
identify a message in one of the message files that can be accessed by the task
group associated with the task. The workspace containing this field must be
named in either the WORKSPACES or USE WORKSPACES clause in the task
definition.

global-symbol
A valid global symbol identifying a status value to be stored in the ACMS$L_
STATUS workspace field. The symbol is resolved to a longword value from
the files specified by the /USERLIBRARY, /OBJECT, /SYSLIB, and /SYSSHR
qualifiers of the BUILD GROUP command.

Clause Default

The RAISE EXCEPTION action clause is optional. If you do not use the RAISE
EXCEPTION clause, and an exception is not raised from another source, ACMS
does not pass control to the exception handler action part of the step.

Notes

When you raise a step exception, ACMS interrupts task execution and searches
for an exception handler on the step that raised the exception. If the current
step does not contain an exception handler, ACMS searches outer block steps,
beginning with the nearest block step and heading towards the root block step.

When ACMS finds an exception handler, it stores the exception code in the
ACMS$L_STATUS field of the ACMS$PROCESSING_STATUS workspace. ACMS
then evaluates the conditional clause, if present, and performs the action clauses.

If ACMS does not find an exception handler, it raises a nonrecoverable exception
and cancels the task.

Task Definition Clauses 3–89

RAISE EXCEPTION Clause (Action)

You do not have to specify an exception code with the RAISE EXCEPTION
clause. If you do include an exception code, it must be a failure status. If you
specify a success status, ACMS cancels the task with a status of ACMSEXC-E-
INVSTPEXCPTNCODE. If you do not specify an exception code, ACMS provides
a default exception code of ACMS$_EXCPTN_TASKACTN.

Example

PROCESSING
CALL ENTER_ORDER IN DIST_CTR_DATABASE_UPDATE_SERVER

USING ORDER_ENTRY_RECORD, RESTOCK_RECORD, STATUS_RECORD;
ACTION IS

IF (DATA_IS_VALID <> "Y")
THEN

RAISE EXCEPTION APPL_INVALID_DATA
END IF;

EXCEPTION ACTION IS
IF (ACMS$L_STATUS = APPL_INVALID_DATA)
THEN

GOTO STEP REENTER_DATA;
END IF;

This example includes a processing step that calls a procedure to update a
database. If the ENTER_ORDER procedure is unable to perform the update, it
returns a failure status in the DATA_IS_VALID workspace field. ACMS raises
a step exception and stores the APPL_INVALID_DATA exception code in the
ACMS$L_STATUS system workspace field. ACMS then performs the GOTO
STEP action clause in the exception handler action part of the step.

3–90 Task Definition Clauses

READ Clause (Exchange)

READ Clause (Exchange)

If the block step uses STREAM I/O, the READ clause reads from an ACMS
stream into a workspace. If the block step uses REQUEST I/O, the READ clause
passes information from the exception line (line 24) on the terminal screen to a
workspace.

Format

READ read-workspace-name

�
WITH PROMPT

� prompt-workspace-name
literal-string

� �
;

Parameters

read-workspace-name
The given name of the workspace into which you want to read information.

prompt-workspace-name
The given name of the workspace containing the prompt to be displayed on the
screen (for a block step using REQUEST I/O) or passed to the stream (for a block
step using STREAM I/O). The name you use must correspond to a workspace
declared in the task definition by the WORKSPACES or the USE WORKSPACES
clause. The length of the workspace must not exceed the width of the terminal
screen. If the I/O method is STREAM I/O, there is no length restriction.

literal-string
The prompt that displays on the terminal screen (for a block step using
REQUEST I/O) or is passed to the stream (for a block step using STREAM
I/O). You must enclose the string in quotation marks. The length of the literal
string must be less than the width of the terminal screen. If the I/O method is
STREAM I/O, there is no length restriction.

Clause Default

The READ clause is optional. If you do not use the READ clause, ACMS does
not pass information from the terminal exception line to a workspace or from a
stream to a workspace.

Example

READ PERS_TEXT_NUMBER

WITH PROMPT "What is the next employee number?";

In this example, the quoted string displays on the terminal, and the user’s
response is passed as input to the PERS_TEXT_NUMBER workspace.

Task Definition Clauses 3–91

RECEIVE Clause (Exchange)

RECEIVE Clause (Exchange)

Transfers information from form data to your task workspace.

Format ������������������������
�����������������������

RECEIVE [FORM] RECORD record-identifier [IN form-label-name]
RECEIVING { receive-workspace-name

[SHADOW [IS] receive-shadow-workspace] } [,...]�
���������������

WITH

���������������
��������������

�����������������

RECEIVE CONTROL receive-control-workspace
[COUNT numeric-workspace-field2]

SEND CONTROL send-control-workspace�
COUNT

� numeric-workspace-field3
send-control-count

� �

TIMEOUT
� numeric-workspace-field

seconds

�

�����������������

���������������
�������������	

�
���������������

������������������������
����������������������	

Parameters

record-identifier
The name of the form record that defines how data is transferred between form
data items and your task workspace. The record identifier can also name a form
record list.

form-label-name
The name of the form that contains the record named by the record identifier.
This is the name assigned to the form by using the WITH NAME keywords in the
FORMS clause of the task group definition.

receive-workspace-name
The given name of the task workspace that receives data from the form.

receive-shadow-workspace
The given name of the workspace that contains indicators about which fields in
the receive workspace have changed as a result of the exchange with the form.
The first field in the workspace must be a one-character field into which HP
DECforms can store a value indicating whether or not the receive workspace has
changed at all.

receive-control-workspace
The given name of the workspace that contains status information about the
completed RECEIVE operation. HP DECforms returns status information in the
form of receive-control text items. Each receive-control text item is five characters
long.

numeric-workspace-field2
The name of a workspace field that contains the number of receive control text
items in the receive control workspace. This number indicates the number of
receive control text items returned by HP DECforms. Each item is five bytes
in length. The data type of the workspace field must be signed or unsigned

3–92 Task Definition Clauses

RECEIVE Clause (Exchange)

longword. The value of the field is set after the HP DECforms request is
completed.

send-control-workspace
The given name of the workspace that contains up to five send-control text items
to be passed to the HP DECforms. For each send-control text item, you must
define a corresponding control-text response within the form.

numeric-workspace-field3
The name of a workspace field that contains the number of send control text
items in the send control workspace. You specify the number of control text items
in the send control workspace. The data type of the workspace field must be
signed or unsigned longword. The value of the field must be set before the HP
DECforms request is executed.

send-control-count
The number of send control text items in the send control workspace. You specify
the number of control text items in the send control workspace.

numeric-workspace-field
The given name of the workspace field that identifies the maximum time allowed
between operator entries. To specify a time limit, either create a workspace field
that contains the number of seconds, or hardcode the number of seconds in the
exchange step clause.

The workspace field is in the workspace that you name in the task definition
with the WORKSPACES clause. If you name more than one workspace with
the WORKSPACES clause, you must name the workspace and the field in the
TIMEOUT argument.

HP DECforms allows you to specify an infinite number of seconds as a timeout
value for a panel or icon by specifying a zero or negative value with the HP
DECforms TIMEOUT subclause. As an alternative, ACMS allows you to specify
an infinite timeout value with a negative value for numeric-workspace-field in the
TIMEOUT subclause.

seconds
The maximum number of seconds that can elapse between operator entries. To
specify a time limit, either create a workspace field that contains the number of
seconds, or hardcode the number of seconds in the exchange step clause.

HP DECforms allows you to specify an infinite number of seconds as a timeout
value for a panel or icon by specifying a zero or negative value with the HP
DECforms TIMEOUT subclause. As an alternative, ACMS allows you to specify
an infinite timeout value by giving a zero value of seconds. A negative value of
seconds produces the following error:

%ACMSTDU-E-SYNTAXERR: Found ’-’ when expecting ’;’

Clause Default

The RECEIVE clause is optional.

Task Definition Clauses 3–93

RECEIVE Clause (Exchange)

Notes

If you do not specify the form in the RECEIVE clause, and you do not name a
default form in the task definition, ACMS uses the first form named in the task
group definition.

If the operator does not make an entry within the TIMEOUT limit, ACMS cancels
the task. If you omit the TIMEOUT argument or if you specify zero seconds, the
operator has unlimited time between entries.

To use the control text COUNT clauses at run time, both the submitter node
and application node must have ACMS Version 3.3 or higher installed. If the
application node has ACMS Version 3.3 or higher, and the submitter node has
a previous version of ACMS, then ACMS cannot pass the control text count
values between the application node and the submitter node. In this case, a step
exception is raised in the task with the TPS$_NOCNTRLCNTSUB error status.

If the application node has a version of ACMS lower than Version 3.3, then the
control text COUNT clause is ignored at run time, and cannot be updated.

Examples

1. RECEIVE FORM RECORD EMPLOYEE_INFO_RECORD IN EMPLOYEE_INFO_LABEL
RECEIVING EMPLOYEE_INFO_WKSP SHADOW IS EMPLOYEE_INFO_SHADOW

WITH TIMEOUT 30;

This step uses the form record EMPLOYEE_INFO_RECORD to move data
from form data items stored in the form EMPLOYEE_INFO_LABEL to the
task workspace EMPLOYEE_INFO_WKSP. EMPLOYEE_INFO_SHADOW is
the receive shadow workspace that identifies which fields in EMPLOYEE_
INFO_WKSP have changed as a result of the exchange with the form.

The TIMEOUT argument establishes 30 seconds as the maximum time that
can elapse between operator entries.

2. EXCHANGE
RECEIVE RECORD MY_RECORD

RECEIVING MY_RECORD
WITH RECEIVE CONTROL RECV_CNTRL COUNT CNTRL_COUNTS.RECV_COUNT;

When this request completes, HP DECforms returns the control text items
into the RECV_CNTRL workspace, and returns the number of control
items into the CNTRL_COUNTS.RECV_COUNT field. For instance, if HP
DECforms returns two control text items, which are " F001" and " F002", the
contents of the workspace RECV_CNTRL become " F001 F002", and the field
CNTRL_COUNTS.RECV_COUNT equals 2.

3–94 Task Definition Clauses

RELEASE SERVER CONTEXT Clause (Action)

RELEASE SERVER CONTEXT Clause (Action)

Releases the server process allocated for a task.

Format

RELEASE SERVER CONTEXT [IF ACTIVE SERVER CONTEXT] ;

Keywords

IF ACTIVE SERVER CONTEXT
Releases server context only if there is active server context. If you use the
RELEASE SERVER CONTEXT clause without the IF ACTIVE SERVER
CONTEXT keywords and there is no active server context, ACMS cancels
the task.

Clause Default

The RELEASE SERVER CONTEXT clause is optional. Table 3–17 shows the
default context actions taken in a task definition.

Notes

When you use the RELEASE SERVER CONTEXT clause or RELEASE SERVER
CONTEXT IF ACTIVE SERVER CONTEXT clause on a step that does not start
or participate in a distributed transaction, the default recovery action is COMMIT
IF ACTIVE RECOVERY UNIT.

The default transaction action for a step that starts a distributed transaction is
COMMIT TRANSACTION.

See HP ACMS for OpenVMS Concepts and Design Guidelines for a discussion of
the performance advantages of releasing server context.

Task Definition Clauses 3–95

RELEASE SERVER CONTEXT Clause (Action)

Example

BLOCK WITH
FORM I/O
SERVER CONTEXT
GET_DEPT_NUMBER:

EXCHANGE
RECEIVE FORM RECORD REVIEW_SCHEDULE

RECEIVING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FCAN" : CANCEL TASK;

END CONTROL FIELD;
GET_FIVE_EMPLOYEES:

PROCESSING
CALL REVIEW_SCHEDULE_GET IN DEPARTMENT_SERVER

USING REVIEW_SCHEDULE_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
RELEASE SERVER CONTEXT;
GOTO PREVIOUS EXCHANGE;

"G" : NO CONTEXT ACTION;
GOTO NEXT STEP;

END CONTROL FIELD;

If the REVIEW_SCHEDULE_GET procedure is unsuccessful in reading review
schedule information for a department, ACMS returns the value ‘‘B’’ to the
ACMS$T_STATUS_TYPE field of the ACMS$PROCESSING_STATUS workspace.
In this task, if the procedure is successful, the user can choose to see the next
records in the file. Therefore, you must normally retain file pointers, a part
of server context, to keep track of the user’s file location. However, when the
procedure is unsuccessful, you do not need to retain these pointers and can,
therefore, release server context.

3–96 Task Definition Clauses

REPEAT STEP Clause (Action)

REPEAT STEP Clause (Action)

Repeats the current exchange, processing, or block step.

Format

REPEAT STEP ;

Clause Default

The REPEAT STEP clause is optional. The default sequencing action for a step
within a root block is GOTO NEXT STEP. The default sequencing action for a
root block or a processing step in a single-step task is EXIT TASK.

Note

If you specify the REPEAT STEP clause in the action part of a root block, that
task cannot be called by a parent task to participate in a distributed transaction.

Example

EXCHANGE
SEND FORM RECORD DISPLAY_DEPARTMENT_RECORD

SENDING DISPLAY_DEPARTMENT_WKSP
WITH RECEIVE CONTROL TEST_WORKSPACE;

CONTROL FIELD IS TEST_WORKSPACE.TEST_KEY
" FMOR" : REPEAT STEP;
" FCAN" : CANCEL TASK;

END CONTROL FIELD;

In this example, HP DECforms uses the DISPLAY_DEPARTMENT_RECORD
form record to display a panel to the user. If the user presses a function key to
see more information, ACMS repeats the exchange step.

Task Definition Clauses 3–97

REQUEST Clause (Exchange)

REQUEST Clause (Exchange)

Names a TDMS request that does input and output for an exchange step. The
REQUEST clause also names any workspaces the request uses.

Format

REQUEST IS request-name [IN request-library] [USING {workspace-name} [,...]] ;

Parameters

request-name
The name by which the TDMS request is known in the request library referenced
by the REQUEST LIBRARY clause in the task definition. If you are using the
Request Interface, it is the name of the user request procedure in the shared
image file. The request name is the run-time name of the request or user request
procedure, not a CDD path name.

request-library
The name, as defined in the task group definition, of the request library
containing the request named in the REQUEST clause. The request library you
name overrides the request library named in the DEFAULT REQUEST LIBRARY
clause for the task. You can name different request libraries in different exchange
steps or in exchange clauses listed for different values of a CONTROL FIELD
clause.

workspace-name
The name of the workspace you want to pass to the request. Use the unique
name of each workspace. If you list more than one workspace name, you must
separate the names with commas. All workspace names must be defined by the
WORKSPACES clause in the task group definition or task definition.

The order of the workspaces you name with the USING keyword must correspond
to the order in which the equivalent buffers are listed in the RECORD IS clauses
of the request definition. The record names used in the request definition and
the workspaces named in the task definition need not be the same; the CDD
descriptions for the records should, however, be the same.

You must include the USING keyword and all the records named in the request
definition even if the request is not using all of the records in a given exchange
step.

Clause Default

The REQUEST clause is optional. If you do not name a request in an exchange
step, ACMS does not process a request for that step.

Note

If you do not name a request library in the REQUEST clause, and you do not
name a default request library in the task definition, ACMS uses the first request
library named in the task group definition.

3–98 Task Definition Clauses

REQUEST Clause (Exchange)

Examples

1. EXCHANGE
REQUEST IS ADD_EMPLOYEE_REQUEST USING PERS_RECORD;

This exchange step uses the request ADD_EMPLOYEE_REQUEST. The
request uses the workspace with the given name PERS_RECORD.

2. WORKSPACES ARE ADD_WORKSPACE,PERS_RECORD;
BLOCK

EXCHANGE

REQUEST IS ADD_EMPLOYEE_REQUEST
USING ACMS$PROCESSING_STATUS,

ADD_WORKSPACE, PERS_RECORD;
CONTROL FIELD PROGRAM_REQUEST_KEY
"CANCEL" : CANCEL TASK;

END CONTROL FIELD;

In this step, ADD_EMPLOYEE_REQUEST displays a form. If the user
presses a program request key to cancel the task, ADD_EMPLOYEE_
REQUEST returns the value ‘‘CANCEL’’ to the PROGRAM_REQUEST_KEY
field in ADD_WORKSPACE.

Task Definition Clauses 3–99

REQUEST I/O Phrase (Block, Processing)

REQUEST I/O Phrase (Block, Processing)

Specifies that you use TDMS to communicate with the terminal user. You can
specify the REQUEST I/O phrase at the block or processing step level.

Format

REQUEST I/O

Phrase Default

The default input/output method for exchange steps in a block step is REQUEST
I/O.

If you are defining a single-step task that uses a processing step, the default
communication method for that step is TERMINAL I/O. If you are defining a task
that includes a block step, the default communication method for processing steps
in that task is NO TERMINAL I/O, even if the block includes only one processing
step.

Notes

If you use the REQUEST I/O phrase in a block or processing step, you cannot use
the FORM I/O, NO TERMINAL I/O, or STREAM I/O phrase in the same step.

You cannot chain from a task using TERMINAL or REQUEST I/O to a task using
STREAM I/O, or from a task using STREAM I/O to a task using TERMINAL or
REQUEST I/O. If you do, the task is canceled and one of the following messages
is displayed:

• ‘‘Cancel resulted from tt not passed to processing step as expected’’— if a
stream task chains to a task with a processing step that does TERMINAL
I/O.

• ‘‘Cancel results from a TDMS error’’— if a stream task chains to a task using
REQUEST I/O.

• ‘‘Cancel results from an ACMS internal logic error in Task Processing’’— if a
task using REQUEST I/O chains to a task using STREAM I/O.

You cannot distribute a task that does any I/O in a processing step. For further
information on I/O restrictions on tasks to be accessed remotely, see Section 3.11.

You cannot specify the REQUEST I/O phrase on a nested block.

You can use the REQUEST I/O phrase only in processing steps that use a
procedure server.

Block Step Example

1. BLOCK WITH REQUEST I/O

The exchange steps in this block step use TDMS requests to communicate with
the terminal user.

3–100 Task Definition Clauses

REQUEST I/O Phrase (Block, Processing)

Processing Step Example

1. PROCESSING
WITH REQUEST I/O
CALL ADD_EMPLOYEE IN PERSONNEL;

This processing step uses TDMS to communicate with the terminal user.

Task Definition Clauses 3–101

RETAIN SERVER CONTEXT Clause (Action)

RETAIN SERVER CONTEXT Clause (Action)

Retains server context within the current server.

Format

RETAIN SERVER CONTEXT [IF ACTIVE SERVER CONTEXT] ;

Keywords

IF ACTIVE SERVER CONTEXT
Retains server context only if there is active process context. If you use the
RETAIN SERVER CONTEXT clause without the IF ACTIVE SERVER CONTEXT
keywords, and there is no active server context, ACMS cancels the task.

Clause Default

The RETAIN SERVER CONTEXT clause is optional. Table 3–17 shows the
default context actions for a task.

Notes

When you retain server context between processing steps that are not within a
distributed transaction, those processing steps must use the same server. The
server can be either a reusable procedure server or a reusable DCL server. The
server cannot be nonreusable. You can use the RETAIN SERVER CONTEXT
clause only in the action specifications of steps within a block.

See HP ACMS for OpenVMS Concepts and Design Guidelines for a discussion of
the performance advantages of retaining server context.

Example

BLOCK
WORK WITH FORM I/O
GET_DEPT_NUMBER:

EXCHANGE
RECEIVE FORM RECORD REVIEW_SCHEDULE

RECEIVING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FCAN" : CANCEL TASK;

END CONTROL FIELD;
GET_FIVE_EMPLOYEES:

PROCESSING
CALL REVIEW_SCHEDULE_GET IN DEPARTMENT_SERVER

USING REVIEW_SCHEDULE_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
RELEASE SERVER CONTEXT;
GOTO PREVIOUS EXCHANGE;

"G" : RETAIN CONTEXT;
GOTO NEXT STEP;

END CONTROL FIELD;

If the REVIEW_SCHEDULE_GET procedure is unsuccessful in reading review
schedule information for a department, ACMS returns the value ‘‘B’’ to the
ACMS$T_STATUS_TYPE field of the ACMS$PROCESSING_STATUS workspace.
In this task, if the procedure is successful, the user can choose to see the next

3–102 Task Definition Clauses

RETAIN SERVER CONTEXT Clause (Action)

five records in the file. Therefore, you must normally retain file pointers, a part
of server context, to keep track of the user’s file location. You use the RETAIN
SERVER CONTEXT clause to retain these pointers.

Task Definition Clauses 3–103

ROLLBACK TRANSACTION Clause (Action)

ROLLBACK TRANSACTION Clause (Action)

Signals the end of a distributed transaction and returns any files and databases
within the transaction to the state they were in before the transaction started.

Format

ROLLBACK TRANSACTION ;

Clause Default

The ROLLBACK TRANSACTION clause is optional. If you do not explicitly end
a distributed transaction by specifying COMMIT TRANSACTION or ROLLBACK
TRANSACTION, ACMS commits the transaction. However, if the action part
of the step that started the transaction specifies CANCEL TASK or RAISE
EXCEPTION, ACMS rolls back the transaction.

Notes

You can specify ROLLBACK TRANSACTION in the action part of a root block,
nested block, root processing step, or a processing step that is part of a multiple-
step task.

Because a distributed transaction must end in the action part of the step that
starts the transaction, you cannot specify ROLLBACK TRANSACTION in a step
within a distributed transaction.

Table 3–19 shows the default transaction actions for different situations in a task
definition.

Example

BLOCK WORK WITH FORMS I/O
EXCHANGE

RECEIVE FORM RECORD ORDER_ENTRY_RECORD IN ORDER_ENTRY_FORM
RECEIVING ORDER_ENTRY_RECORD;

BLOCK WORK WITH DISTRIBUTED TRANSACTION
PROCESSING

CALL ENTER_ORDER IN DIST_CTR_DATABASE_UPDATE_SERVER
USING ORDER_ENTRY_RECORD, RESTOCK_RECORD;

PROCESSING
SELECT FIRST TRUE OF

((PRIORITY_ORDER = "Y") AND
(ORDERED_AMOUNT > IN_STOCK_AMOUNT)):

CALL PRIORITY_ORDER IN MASTER_DATABASE_SERVER
USING ORDER_ENTRY_RECORD, RESTOCK_RECORD,

STATUS_RECORD;
(ORDERED_AMOUNT > IN_STOCK_AMOUNT):

CALL QUEUE_REPLENISH_INVENTORY_TASK IN QUEUE_SERVER
USING RESTOCK_RECORD;

END SELECT;
END BLOCK WORK;

ACTION IS
IF (ORDER_SATISFIED = "Y")
THEN

COMMIT TRANSACTION;
EXIT TASK;

ELSE
ROLLBACK TRANSACTION;

3–104 Task Definition Clauses

ROLLBACK TRANSACTION Clause (Action)

END IF;
END BLOCK WORK;

In this example, the Order Entry task starts a distributed transaction on
the nested block. The processing step calls a procedure to write an order
record to the distribution center’s database. If the distribution center cannot
immediately satisfy the order, the processing step checks to see if the order is
a priority order. If it is a priority order, the processing step checks the master
database to see if the manufacturing plant can satisfy the order. If it is not a
priority order, the processing step inserts a queued task into a queue file. If the
order is handled successfully, the action part of the nested block commits the
transaction. Otherwise, it ends the transaction by rolling back any database
updates performed within the transaction.

Task Definition Clauses 3–105

SELECT FIRST Clause (Block, Exchange, Processing, Action)

SELECT FIRST Clause (Block, Exchange, Processing, Action)

Takes action based on values that you test with Boolean expressions.

You can use a SELECT FIRST clause to start a block, exchange, or processing
step (thereby creating a conditional block, processing, or exchange step), or to
start an action clause (thereby creating a conditional action clause).

The SELECT FIRST clause compares workspace fields using Boolean expressions
and takes actions based on the results of the expressions. The first expression
to evaluate to true is the one that determines which action to take. Use the
NOMATCH keyword to specify an action to take if no expression evaluates to
true.

Format

SELECT FIRST TRUE OF

� (boolean-expression) : <clause> [,...]
NOMATCH : <clause> [,...]

�
END SELECT ;

Parameters

boolean-expression
Either a Boolean expression in parentheses or the keyword NOMATCH.

See Section 3.10 for a description of Boolean expressions.

The Boolean expression must be an expression that ACMS can evaluate as either
true or false. If the Boolean expression is true, ACMS does the work or action
defined by the associated clause. If the expression is false, ACMS evaluates the
next Boolean expression until it either finds a true expression or reaches the end
of the Boolean expression list. If ACMS does not find any true expressions, it
performs the work or action associated with the NOMATCH keyword. If ACMS
does not find any true expressions, and you did not specify the NOMATCH
keyword, it performs the default work or action.

clause
One of the following, depending on the placement of your SELECT FIRST clause:

block

The start of a nested block with the keywords, BLOCK WORK, or the start
of an exchange or processing step with the keywords, EXCHANGE WORK or
PROCESSING WORK, respectively. When you use the SELECT FIRST clause
at the block step level, you can specify multiple block, exchange, and processing
steps for each Boolean expression or NOMATCH you list.

At the block step level, you can use the SELECT FIRST clause only at the top of
the block; you cannot use it between steps within the block.

3–106 Task Definition Clauses

SELECT FIRST Clause (Block, Exchange, Processing, Action)

exchange-clause

Any unconditional exchange clause compatible with the I/O method the block
step uses. For example, if a block step uses FORM I/O, exchange steps in that
block step can use one of the HP DECforms clauses (SEND, RECEIVE, or
TRANSCEIVE) or NO EXCHANGE, but cannot use a TDMS clause (READ,
WRITE, or REQUEST). There can be only one exchange clause for each Boolean
expression or NOMATCH you list in the SELECT FIRST clause.

processing-clause

Any unconditional processing clause. There can be only one processing clause for
each Boolean expression or NOMATCH you list in the SELECT FIRST clause.

action-clause

Any unconditional action clause. ACMS provides four types of unconditional
action clauses: workspace manipulation, transaction action, server context,
and task sequencing. For each Boolean expression or NOMATCH you list
in the SELECT FIRST clause, you can specify one or both of the workspace
manipulation clauses, and one of each of the other three types of action clauses.

You can use action clauses at the end of a block, exchange, or processing step.

Table 3–15 and Table 3–16 summarize the clauses that you can use within the
SELECT FIRST clause at each step.

Table 3–16 lists the action clauses you can use with the SELECT FIRST clause.

Task Definition Clauses 3–107

SELECT FIRST Clause (Block, Exchange, Processing, Action)

Table 3–15 Clauses Compatible with the SELECT FIRST Clause

At This Step You Can Specify

BLOCK Multiple of:

• BLOCK WORK

• EXCHANGE
WORK

• PROCESSING
WORK

PROCESSING One of:

• CALL
[PROCEDURE]

• CALL TASK

• DTR COMMAND

• DCL COMMAND

• IMAGE

• NO
PROCESSING

EXCHANGE If task uses FORM
I/O

If task uses
REQUEST I/O

If task uses STREAM I/O

One of: One of: One of:

• NO EXCHANGE

• RECEIVE

• SEND

• TRANSCEIVE

• NO EXCHANGE

• READ

• REQUEST

• WRITE

• NO EXCHANGE

• READ

• WRITE

3–108 Task Definition Clauses

SELECT FIRST Clause (Block, Exchange, Processing, Action)

Table 3–16 Action Clauses Compatible with the SELECT FIRST Clause

For each Boolean expression or NOMATCH you list in the SELECT FIRST clause, you can specify:

Workspace
Actions Transaction Actions Server Context Actions Sequencing Actions

Both: One of: One of: One of:

• MOVE

• GET
ERROR
MESSAGE

• COMMIT
TRANSACTION

• ROLLBACK
TRANSACTION

• NO SERVER
CONTEXT
ACTION

• RELEASE
SERVER
CONTEXT

• RETAIN SERVER
CONTEXT

• CANCEL TASK

• EXIT BLOCK

• EXIT TASK

• GOTO STEP

• RAISE EXCEPTION

• REPEAT STEP

Keyword

NOMATCH
Does the processing associated with the NOMATCH keyword if no Boolean
expression is true. The NOMATCH keyword must be the last value you list in the
SELECT FIRST clause. Do not enclose the NOMATCH keyword in parentheses.

Clause Default

The SELECT FIRST clause is optional. If you do not use the SELECT FIRST
clause or one of the other three conditional clauses, ACMS processes your
exchange, processing, or action work unconditionally.

Notes

You must end each subclause in a SELECT FIRST clause with a semicolon
(;), and you must end the SELECT FIRST clause with END SELECT and a
semicolon (;).

The type of clause you can use within a SELECT FIRST clause depends on the
type of step that you are defining. For example, if you are using SELECT FIRST
to define an exchange step, you can only use exchange clauses.

If you use SELECT FIRST at the block step level, you can only use it at the top
of the block; you cannot specify it between steps within the block.

ACMS takes the action associated with the first Boolean expression that
evaluates to true.

Task Definition Clauses 3–109

SELECT FIRST Clause (Block, Exchange, Processing, Action)

Block Clause Example

1. BLOCK WORK
SELECT FIRST TRUE OF

(RENTAL_STATUS = "N") : EXCHANGE
SEND RECORD RESERVE

SENDING RESERVE_WKSP;
(RENTAL_STATUS = "Y") : PROCESSING

CALL BILL_CALC
USING RATE_DATA_WKSP;

ACTION IS
REPEAT STEP;

END SELECT;

ACMS tests the RENTAL_STATUS workspace field. If the first Boolean
expression evaluates to true, ACMS performs the corresponding exchange
step. If the second Boolean expression is true, ACMS performs the processing
step. Otherwise, ACMS passes control to the next clause in the definition.

Exchange Clause Example

1. EXCHANGE
SELECT FIRST TRUE OF

((TEST_FIELD EQ "SKIP") OR
(OLD_WORKSPACE == NEW_WORKSPACE)) : NO EXCHANGE;

(OLD_WORKSPACE <<>> NEW_WORKSPACE) : SEND RECORD CONFIRM_CHANGES
SENDING NEW_WORKSPACE;

END SELECT;
ACTION IS

EXIT TASK;

ACMS tests the contents of TEST_FIELD, OLD_WORKSPACE, and NEW_
WORKSPACE. If either Boolean operand in the first expression is true, ACMS
does not do any input or output. If neither operand is true, ACMS evaluates the
second expression. If the second expression is true, ACMS performs the exchange
step associated with that expression. Otherwise, it drops through to the next
clause in the definition.

Processing Clause Example

1. PROCESSING
SELECT FIRST
(AGE_ENTERED >= 21 AND EMP_STATUS = "Y"

AND NOT (PAY GT BASE_PAY OR HOURS_WORKED GT 44))
: CALL STANDARD_PROCESSING

USING WAGE_HOUR_DATA;
(AGE_ENTERED < 21) : CALL YOUTH_PROCESSING

USING WAGE_HOUR_DATA;
(EMP_STATUS = "Y" AND

HOURS_WORKED GT 44) : CALL OT_PROCESSING
USING WAGE_HOUR_DATA;

(EMP_STATUS = "N" AND
PAY GT BASE_PAY) : CALL SECURITY_ALERT

USING WAGE_HOUR_DATA;
END SELECT;

This SELECT FIRST clause uses four Boolean expressions to test the contents
of workspaces. When ACMS can evaluate an expression as true, it performs
the processing step associated with that expression. If ACMS finds a Boolean
expression is false, it evaluates the next expression until it finds a true expression
or reaches the end of the list.

3–110 Task Definition Clauses

SELECT FIRST Clause (Block, Exchange, Processing, Action)

Action Clause Example

1. ACTION
SELECT FIRST TRUE OF

(RESERVE_WKSP.FUNC_KEY EQ " FCAN") : CANCEL TASK;
(WK_MARITAL EQ "Y" OR WK_DEPENDENT EQ "Y")

: GOTO STEP GET_FAMILY_INPUT2
(WK_DEPENDENT EQ "N") : GOTO STEP GET_WK_FAMILY_FLAG;

END SELECT;

In this example, if the user presses PF1 to cancel the task, HP DECforms returns
the value ‘‘ FCAN’’ to the FUNC_KEY field in the RESERVE_WKSP workspace.
If ‘‘ FCAN’’ is in that field when ACMS processes the SELECT FIRST clause,
ACMS cancels the task. Otherwise, ACMS processes the next Boolean expression
until it evaluates an expression as true or reaches the end of the expressions to
evaluate.

Task Definition Clauses 3–111

SEND Clause (Exchange)

SEND Clause (Exchange)

Transfers information from your task workspace to form data items.

Format �������������������������
������������������������

SEND [FORM] RECORD record-identifier [IN form-label-name]�
���������������������

[SENDING { send-workspace-name
[SHADOW [IS] send-shadow-workspace] } [,...]]�

���������������

WITH

���������������
��������������

�����������������

RECEIVE CONTROL receive-control-workspace
[COUNT numeric-workspace-field2]

SEND CONTROL send-control-workspace�
COUNT

� numeric-workspace-field3
send-control-count

� �

TIMEOUT
� numeric-workspace-field

seconds

�

�����������������

���������������
�������������	

�
���������������

�
���������������������

�������������������������
�����������������������	

Parameters

record-identifier
The name of the form record that defines how data is transferred between your
task workspace and form data items. The record identifier can also name a form
record list.

form-label-name
The name of the form that contains the record named by the record identifier.
This is the name assigned to the form by using the WITH NAME keywords in the
FORMS clause of the task group definition.

send-workspace-name
The given name of the workspace that contains the information you want to
transfer to the form.

send-shadow-workspace
The given name of the workspace that can contain a one-character indicator that
instructs the HP DECforms whether or not to update last-known values of form
data items.

receive-control-workspace
The given name of the workspace that contains status information about the
completed SEND operation. HP DECforms returns status information in the
form of receive-control text items. Each receive-control text item is five characters
long.

numeric-workspace-field2
The name of a workspace field that contains the number of receive control text
items in the receive control workspace. This number indicates the number of
receive control text items returned by HP DECforms. Each item is 5 bytes
in length. The data type of the workspace field must be signed or unsigned

3–112 Task Definition Clauses

SEND Clause (Exchange)

longword. The value of the field is set after the HP DECforms request is
completed.

send-control-workspace
The given name of the workspace that contains up to five send-control text items
to be passed to HP DECforms. For each send-control text item, you must define a
corresponding control text response within the form.

numeric-workspace-field3
The name of a workspace field that contains the number of send control text
items in the send control workspace. You specify the number of control text items
in the send control workspace. The data type of the workspace field must be
signed or unsigned longword. The value of the field must be set before the HP
DECforms request is executed.

send-control-count
The number of send control text items in the send control workspace. You specify
the number of control text items in the send control workspace.

numeric-workspace-field
The given name of the workspace field that identifies the maximum time allowed
between operator entries. To specify a time limit, you can either create a
workspace field that contains the number of seconds, or you can hardcode the
number of seconds in the exchange step clause.

The workspace field is in the workspace that you name in the task definition
with the WORKSPACES clause. If you name more than one workspace with
the WORKSPACES clause, you must name the workspace and the field in the
TIMEOUT argument.

HP DECforms allows you to specify an infinite number of seconds as a timeout
value for a panel or icon by specifying a zero or negative value with the HP
DECforms TIMEOUT subclause. As an alternative, ACMS allows you to specify
an infinite timeout value with a negative value for numeric-workspace-field in the
TIMEOUT subclause.

seconds
The maximum number of seconds that can elapse between operator entries. To
specify a time limit, you can either create a workspace field that contains the
number of seconds, or you can hardcode the number of seconds in the exchange
step clause.

HP DECforms allows you to specify an infinite number of seconds as a timeout
value for a panel or icon by specifying a zero or negative value with the HP
DECforms TIMEOUT subclause. As an alternative, ACMS allows you to specify
an infinite timeout value by giving a zero value of seconds. A negative value of
seconds produces the following error:

%ACMSTDU-E-SYNTAXERR: Found ’-’ when expecting ’;’

Clause Default

The SEND clause is optional.

Task Definition Clauses 3–113

SEND Clause (Exchange)

Notes

If you do not specify the form in the SEND clause, and you do not name a default
form in the task definition, ACMS uses the first form named in the task group
definition.

If the operator does not make an entry within the TIMEOUT limit, ACMS cancels
the task. If you omit the TIMEOUT argument or if you specify zero seconds, the
operator has unlimited time between entries.

HP DECforms allows you to specify an infinite number of seconds as a timeout
value for a panel or icon by specifying a zero or negative value with the
TIMEOUT subclause. As an alternative, ACMS allows you to specify an infinite
timeout value in one of the following ways:

• You can code a zero value in the TIMEOUT subclause. A negative value is
not valid in the TIMEOUT subclause and produces the following error:

%ACMSTDU-E-SYNTAXERR: Found ’-’ when expecting ’;’

• Place a negative value in numeric-workspace-field.

To use the control text COUNT clauses at run time, both the submitter node
and application node must have ACMS Version 3.3 or higher installed. If the
application node has ACMS Version 3.3 or higher, and the submitter node has
a previous version of ACMS, then ACMS cannot pass the control text count
values between the application node and the submitter node. In this case, a step
exception is raised in the task with the TPS$_NOCNTRLCNTSUB error status.

If the application node has a version of ACMS lower than Version 3.3, then the
control text COUNT clause is ignored at run time, and cannot be updated.

Examples

1. SEND FORM RECORD EMPLOYEE_INFO_RECORD IN EMPLOYEE_INFO_LABEL
SENDING EMPLOYEE_INFO_WKSP SHADOW IS EMPLOYEE_INFO_SHADOW

This step uses the form record EMPLOYEE_INFO_RECORD to move
data from the task workspace EMPLOYEE_INFO_WKSP to the form data
items stored in the form EMPLOYEE_INFO_LABEL. EMPLOYEE_INFO_
SHADOW is the send-shadow workspace that instructs HP DECforms
whether or not to update last-known values of form data items.

2. EXCHANGE
SEND RECORD my_record

WITH SEND CONTROL send_cntrl COUNT 2
RECEIVE CONTROL recv_cntrl ;

In this example, two items are sent with the record my_record.

3–114 Task Definition Clauses

SERVER CONTEXT Phrase (Block)

SERVER CONTEXT Phrase (Block)

Specifies whether or not server context is retained by default between steps in a
block step.

Format

[NO] SERVER CONTEXT

Phrase Default

The SERVER CONTEXT phrase is optional; if you do not use the SERVER
CONTEXT phrase, ACMS does not keep server context between the steps in a
block step, unless the block step started a distributed transaction.

The default server context action for the action part of a processing or block
step is different for steps that start or are within a distributed transaction.
Table 3–17 shows the default server context actions for steps that do not start
or appear within a distributed transaction. Table 3–18 shows the default server
context actions for steps that start or are within a distributed transaction.

Table 3–17 Default Server Context Actions

Block Step Attribute

Action Clause With Server Context With No Server Context

CANCEL TASK

NO SERVER CONTEXT
ACTION

NO SERVER CONTEXT
ACTION

EXIT TASK,
GOTO TASK, or
REPEAT TASK

RELEASE SERVER
CONTEXT IF ACTIVE
SERVER CONTEXT

RELEASE SERVER
CONTEXT IF ACTIVE
SERVER CONTEXT

OTHER

RETAIN SERVER
CONTEXT IF ACTIVE
SERVER CONTEXT

RELEASE SERVER
CONTEXT IF ACTIVE
SERVER CONTEXT

Table 3–18 Default Server Context Actions (Distributed Transactions)

Step Attribute Default Server Context Action

DISTRIBUTED
TRANSACTION

RELEASE SERVER CONTEXT IF ACTIVE
SERVER CONTEXT

Step is within a distributed
transaction

RETAIN SERVER CONTEXT IF ACTIVE
SERVER CONTEXT

(continued on next page)

Task Definition Clauses 3–115

SERVER CONTEXT Phrase (Block)

Table 3–18 (Cont.) Default Server Context Actions (Distributed Transactions)

Step Attribute Default Server Context Action

NONPARTICIPATING
SERVER

RELEASE SERVER CONTEXT IF ACTIVE
SERVER CONTEXT

Note

You cannot specify NO SERVER CONTEXT on a block step that starts a
distributed transaction or on a nested block step within a distributed transaction.

See HP ACMS for OpenVMS Concepts and Design Guidelines for a discussion of
the performance advantages of releasing server context.

Examples

1. BLOCK WITH NO SERVER CONTEXT

ACMS does not retain process context between steps in the step block.

2. REPLACE TASK REVIEW_SCHEDULE_TASK
DEFAULT SERVER IS DEPARTMENT_SERVER;
WORKSPACES ARE QUIT_WORKSPACE, REVIEW_SCHEDULE_WKSP;

BLOCK
WORK WITH FORM I/O

SERVER CONTEXT
DBMS RECOVERY "READY DEPART ADMIN CONCURRENT RETRIEVAL"

GET_DEPT_NUMBER:
EXCHANGE

RECEIVE FORM RECORD REVIEW_SCHEDULE_INPUT_RECORD
RECEIVING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : EXIT TASK;

END CONTROL FIELD;
GET_FIVE_EMPLOYEES:

PROCESSING
CALL REVIEW_SCHEDULE_GET

USING REVIEW_SCHEDULE_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

DISPLAY_EMPLOYEES:
EXCHANGE

SEND FORM RECORD REVIEW_SCHEDULE_OUTPUT_RECORD
SENDING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FMOR" : GOTO PREVIOUS PROCESSING;
" FEXT" : EXIT TASK;

END CONTROL FIELD;
END BLOCK WORK;
ACTION

REPEAT STEP;
END DEFINITION;

In the REVIEW_SCHEDULE_TASK, the user can look at the review schedule
information for a department. The user looks at five records at a time and
can then indicate whether or not to see more records. To keep track of the
user’s location in the file, you must retain file pointers. Because file pointers

3–116 Task Definition Clauses

SERVER CONTEXT Phrase (Block)

are part of the context associated with a server process, you retain server
context for the block.

3. REPLACE TASK REVIEW_UPDATE_TASK /LIST=RVSCHED.LIS
WORKSPACES ARE EMPLOYEE_INFO_WKSP, HISTORY_WKSP, DEPT_WKSP, QUIT_
WORKSPACE;
DEFAULT SERVER IS DEPARTMENT_SERVER;
BLOCK

WORK WITH NO SERVER CONTEXT
FORM I/O

GET_EMPLOYEE:
EXCHANGE

RECEIVE FORM RECORD REVIEW_UPDATE_INPUT_RECORD
RECEIVING EMPLOYEE_INFO_WKSP, HISTORY_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
! Message - No updates made to database

" FCAN" : CANCEL TASK RETURNING 136085514;
END CONTROL FIELD;

PROCESSING WITH
DBMS RECOVERY "READY DEPART ADMIN CONCURRENT UPDATE"
CALL REVIEW_UPDATE_GET

USING EMPLOYEE_INFO_WKSP, HISTORY_WKSP, DEPT_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

UPDATE_EMPLOYEE:
EXCHANGE

SEND FORM RECORD REVIEW_UPDATE_OUTPUT_RECORD
SENDING HISTORY_WKSP, DEPT_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
! Message - No updates made to database

" FCAN" : CANCEL TASK RETURNING 136085514;
END CONTROL FIELD;

PROCESSING WITH
DBMS RECOVERY "READY DEPART ADMIN CONCURRENT UPDATE"
CALL REVIEW_UPDATE_PUT

USING DEPT_WKSP, HISTORY_WKSP;
CONTROL FIELD ACMS$T_SEVERITY_LEVEL

! Message - Record deleted,
! no update made to database

"F" : CANCEL TASK RETURNING 136085513;
"E" : GET ERROR MESSAGE;

ROLLBACK;
GOTO PREVIOUS EXCHANGE;

NOMATCH : EXIT BLOCK;
END CONTROL FIELD;

END BLOCK WORK;
ACTION

REPEAT STEP;
END DEFINITION;

In this example, REVIEW_UPDATE_TASK allows the user to retrieve, view,
and update an employee’s personnel record from the PERSONNEL DBMS
database. Note that REVIEW_UPDATE_TASK does not retain server context.

Task Definition Clauses 3–117

SERVER CONTEXT Phrase (Block)

The DBMS RECOVERY phrase automatically starts a recovery unit in
the first processing step. If the status returned from the step procedure
REVIEW_UPDATE_GET is bad, the recovery unit is rolled back, and the
task returns to the previous exchange step for another employee number.
If the status returned is good, the default recovery action is to commit the
recovery unit. Thus, server context is not retained over the exchange step
UPDATE_EMPLOYEE.

The next processing step starts a second recovery unit, again using the DBMS
RECOVERY phrase. At the end of this processing step, the severity of the
status returned by the REVIEW_UPDATE_PUT procedure is tested. If the
severity level is F, the error is not recoverable and the task is canceled. If the
severity level is E, indicating a recoverable error, the recovery unit is rolled
back, and the user returns to the previous exchange to try the update again.
If the severity level is neither F nor E, indicating success, the task exits,
committing the recovery unit by default.

3–118 Task Definition Clauses

STREAM I/O Phrase (Block)

STREAM I/O Phrase (Block)

Specifies that the exchange steps in a block step use ACMS streams to
communicate with the terminal user or other task submitter.

Format

STREAM I/O

Phrase Default

The default input/output method for exchange steps in a block step is REQUEST
I/O.

Notes

You can use the STREAM I/O phrase to execute tasks on devices not supported
by TDMS or HP DECforms.

If you use the STREAM I/O phrase, you cannot use the FORM I/O, NO
TERMINAL I/O, or REQUEST I/O phrase in the same block step.

If a block step uses STREAM I/O, exchange steps in that block step cannot use
HP DECforms clauses or the TDMS REQUEST clause to do work.

If a block step uses STREAM I/O, NO TERMINAL I/O is the only input/output
method you can define for processing steps in that block step.

You cannot specify STREAM I/O on a nested block.

You cannot chain from a task using TERMINAL or REQUEST I/O to a task using
STREAM I/O, or from a task using STREAM I/O to a task using TERMINAL or
REQUEST I/O. If you do, the task is canceled and one of the following messages
is displayed:

• ‘‘Cancel resulted from tt not passed to processing step as expected’’ – if a
stream task chains to a task with a processing step that does TERMINAL
I/O.

• ‘‘Cancel results from a TDMS error’’— if a stream task chains to a task using
REQUEST I/O.

• ‘‘Cancel results from an ACMS internal logic error in Task Processing’’ – if a
task using REQUEST I/O chains to a task using STREAM I/O.

For I/O restrictions on tasks accessed remotely, see Section 3.11.

Example

BLOCK WITH STREAM I/O

The exchange steps in this block step use ACMS streams when doing prompted
reads and writes.

Task Definition Clauses 3–119

TASK ARGUMENTS Phrase (Task)

TASK ARGUMENTS Phrase (Task)

Identifies the names and the order of the task workspace arguments that can be
supplied to a called task by an agent or by another task.

Format

TASK
�

ARGUMENT IS
ARGUMENTS ARE

�
����
��� workspace-name

�
�� WITH ACCESS

� READ
WRITE
MODIFY

� �
��

����
��	 [,...] ;

Parameter

workspace-name
The given name or assigned name of the workspace declared in the
WORKSPACES clause of the task or task group definition. It is not a CDD
path name. Use commas to separate workspaces you declare. The workspace
must be of type TASK.

Keywords

ACCESS
Identifies the access characteristics of a workspace. The types of access you can
define are READ, WRITE, and MODIFY.

READ
A workspace argument defined for READ access is initialized with data supplied
by an agent or calling task or with its default contents or zeros. The contents
of the workspace are not returned to the agent or calling task when the task
completes. The task can modify the contents of the workspace during execution,
but any modifications are lost when the task ends.

WRITE
A workspace argument defined for WRITE access is initialized with its default
contents or zeros. ACMS does not pass data stored in a workspace argument
defined for WRITE access when calling a task from an agent or another task.
The task can modify the contents of the workspace during execution, and any
modifications are returned to the agent or calling task when the called task
completes.

MODIFY
A workspace argument defined for MODIFY access is initialized with the data
supplied by an agent or calling task or, if not supplied on the task call, with its
default contents or with zeros. The task can modify the contents of the workspace
during execution, and any modifications are returned to the agent or calling task
when the called task completes.

3–120 Task Definition Clauses

TASK ARGUMENTS Phrase (Task)

Clause Default

The TASK ARGUMENT clause is optional. If a workspace identified as a TASK
ARGUMENT is not supplied by a calling task or agent, ACMS initializes it with
its default contents from the task group database or with zeros.

MODIFY is the default access for TASK ARGUMENT workspaces.

Notes

ACMS allows a task to accept arguments into task workspaces. You cannot pass
arguments into group, user, or system workspaces.

Specifying READ access provides performance benefits for tasks that call other
tasks because ACMS does not have to update the workspace in the calling task
when the called task completes. Specifying READ or WRITE access provides
performance benefits for agents that call tasks. ACMS does not send data in
workspaces defined for WRITE access from an agent to a task, or send data in
workspaces defined for READ access from a task back to the agent.

The USE WORKSPACES or WORKSPACES clauses must precede a TASK
ARGUMENTS phrase in a task definition.

If a task that accepts data into workspaces defined as task arguments chains
to another task, the workspaces with MODIFY or WRITE access are updated
according to whether or not these workspaces are passed to the new task.

If a workspace defined in the original task is passed to a chained task, any
changes made to the workspace by the new task are returned to the calling
task or agent when the task completes. If a workspace defined as a TASK
ARGUMENT in the original task is not passed to the chained task, the contents
of the workspace at the time of a GOTO TASK operation are returned to the
calling task or agent.

The data in task argument workspaces can be passed to new task instances using
the PASSING phrase of the REPEAT TASK clause. If a task argument workspace
is not passed using the PASSING phrase, the contents of the workspace at
the end of the current task are saved and later returned to the calling task or
agent. The workspaces in the repeated task instance are initialized to the initial
contents as defined in the dictionary.

If any chained tasks or repeated tasks are canceled or fail, the contents of any
task argument workspaces are not updated in the parent task or agent. However,
user and group workspaces are updated each time a GOTO TASK action clause
is processed. For example, if a task updates a workspace and is then chained to
another task, and the second task is canceled, the master copy of the workspace
reflects the state at the end of the first task. Any workspaces supplied as a task
argument are not updated in the calling task or agent.

Note

ADU does not recognize if you incorectly specify the same workspace-
name twice. For example, the following statement should produce a
syntax error, but does not:

Task Definition Clauses 3–121

TASK ARGUMENTS Phrase (Task)

TASK ARGUMENTS ARE EMPLOYEE_REC WITH ACCESS READ,
EMPLOYEE_REC;

If you select this task, it is cancelled, and the Software Event Logger
includes the message "End of task-referenced workspace table" in the
Audit Trail record of the task.

If you attempt to dump a task group that contains this task, ADU gives
an ACCVIO error.

3–122 Task Definition Clauses

TASK ARGUMENTS Phrase (Task)

Example

REPLACE TASK GET_EMPLOYEE
CANCELABLE;
WORKSPACE IS WORK_RECORD WITH NAME WORK,

PERS_RECORD WITH NAME PERSONNEL,
DEPT_WORKSPACE;

TASK ARGUMENTS ARE WORK,DEPT_WORKSPACE,PERSONNEL;
PROCESSING IS CALL DISPLAY IN DISPLAY_SERVER

USING WORK,DEPT_WORKSPACE,PERSONNEL;
END DEFINITION;

In this example, the TASK ARGUMENTS phrase specifies that the three
workspace arguments in the task definition for GET_EMPLOYEE can be supplied
to a task. You must supply the workspace arguments in the specified order.

Task Definition Clauses 3–123

TERMINAL I/O Phrase (Processing)

TERMINAL I/O Phrase (Processing)

Specifies that a processing step communicates directly with the terminal by
means of programming statements, OpenVMS services, or TDMS requests.

Format

TERMINAL I/O

Phrase Default

If you are defining a single-step task that consists of a processing step, the default
for that step is TERMINAL I/O. If you are defining a task that includes a block
step, the default communication method for all processing steps in that task is
NO TERMINAL I/O, even if the block includes only one processing step.

Notes

If you use the TERMINAL I/O phrase in a processing step, you cannot use the
REQUEST I/O, STREAM I/O, and NO TERMINAL I/O phrases in the same step.

You cannot distribute a task that does any I/O in a processing step.

If you use the TERMINAL I/O phrase in a processing step that runs in a
procedure server, the procedure named by the CALL clause in that step must
open and close the terminal channels needed by the step. The opening and
closing of channels must be done by some method other than with COBOL
ACCEPT and DISPLAY statements, and BASIC INPUT and PRINT statements,
or with the RTL LIB$GET_INPUT service, the LIB$PUT_OUTPUT service, and
screen procedures. Open a channel to the terminal using SYS$INPUT as a file
name and perform I/O over the channel.

You cannot use the STREAM I/O phrase in a processing step.

You can use the TERMINAL I/O phrase in processing steps that use either
procedure or DCL servers.

When you use the TERMINAL I/O phrase in a processing step, ACMS assigns the
terminal to SYS$INPUT, SYS$COMMAND, SYS$OUTPUT, and SYS$ERROR.

You cannot chain from a task using TERMINAL or REQUEST I/O to a task using
STREAM I/O, or from a task using STREAM I/O to a task using TERMINAL or
REQUEST I/O. If you do, the task is canceled.

Example

PROCESSING WITH TERMINAL I/O
DCL COMMAND IS "$EDIT/TPU ’P1’"
IN PRIVATE_UTILITY_SERVER;

This processing step uses the server PRIVATE_UTILITY_SERVER to execute
a DCL command that invokes TPU. The command uses a parameter the user
supplies as P1. Because PRIVATE_UTILITY_SERVER is a DCL server, the
processing step does input and output with the terminal.

3–124 Task Definition Clauses

TRANSACTION Phrase (Block, Processing)

TRANSACTION Phrase (Block, Processing)

Identifies the block or processing step as a transaction; all work within the step
must complete successfully or be rolled back.

Format

DISTRIBUTED TRANSACTION

Phrase Default

The TRANSACTION phrase is optional. If you do not include it, ACMS does not
process the step as a transaction.

Notes

You can start a distributed transaction on a root block, nested block, root
processing step, or a processing step that is part of a multiple-step task. A
distributed transaction must end in the action part of the step that started the
transaction. Use the COMMIT TRANSACTION clause to make permanent the
file or database operations performed within the distributed transaction. Use the
ROLLBACK TRANSACTION clause to return files and databases to the state
they were in before the start of the distributed transaction.

If you do not specify COMMIT TRANSACTION or ROLLBACK TRANSACTION
in the action part of a step that starts a distributed transaction, ACMS commits
the distributed transaction. However, if the action part of the step specifies
CANCEL TASK or RAISE EXCEPTION, ACMS rolls back the distributed
transaction.

If a distributed transaction fails to complete successfully, ACMS cancels the task.
Depending upon the reason for the failure, you might want the task to continue
to execute instead of canceling. See EXCEPTION HANDLER Clause (Block,
Exchange, Processing) and HP ACMS for OpenVMS Writing Applications for
information on using the EXCEPTION HANDLER ACTION clause to recover
from transaction failures.

You can include a called task within a distributed transaction started by
the parent task. For a called task to be able to participate in a distributed
transaction, it must conform to the following rules:

• The root block or root processing step must specify the TRANSACTION
phrase.

• The action part of the root block or root processing step cannot specify any
sequencing action clauses other than EXIT TASK, CANCEL TASK, or RAISE
EXCEPTION.

• The action part of the root block or root processing step cannot specify
COMMIT TRANSACTION or ROLLBACK TRANSACTION.

• The root block or root processing step cannot contain an EXCEPTION
HANDLER ACTION component.

• The root block or root processing step cannot specify the CANCEL ACTION
phrase.

A task that conforms to the above rules is a composable task.

Task Definition Clauses 3–125

TRANSACTION Phrase (Block, Processing)

Because a distributed transaction must end in the action part of the step on
which it started, you cannot specify EXIT TASK, GOTO TASK, or REPEAT TASK
on a step within a distributed transaction.

You cannot conditionalize a processing step that starts a distributed transaction
by using the WHILE DO clause. Instead, you can either include a loop in the
processing step’s procedure, or specify WHILE DO on a block step that includes
the processing step.

You cannot declare an RMS file or a database recovery unit within a distributed
transaction by specifying RMS RECOVERY, DBMS RECOVERY, RDB
RECOVERY, or SQL RECOVERY in the task definition. You can, however,
declare a recovery unit in the procedure.

ACMS automatically retains server context between steps within a distributed
transaction. Therefore, you cannot specify the RELEASE SERVER CONTEXT
action clause within a distributed transaction. When a transaction ends, ACMS
automatically releases server context. You cannot specify the RETAIN SERVER
CONTEXT or NO SERVER CONTEXT ACTION clause in the action part of the
step that started a distributed transaction.

Within a distributed transaction, you can exclude a processing step from
participating in the transaction by specifying the NONPARTICIPATING SERVER
phrase. See NONPARTICIPATING SERVER Phrase (Processing) for information
on how to use this phrase.

You can choose to start and end a distributed transaction in a procedure, rather
than in the task definition, by using the $START_TRANS, $END_TRANS, and
$ABORT_TRANS system services.

Table 3–19 shows the default transaction actions for different situations in a task
definition.

Table 3–19 Default Transaction Actions

Default Transaction Action

Action Clause
If you started the distributed
transaction in the current step

If you did not start the
distributed transaction in
the current step

CANCEL TASK,
RAISE EXCEPTION

ROLLBACK TRANSACTION No transaction action

OTHER COMMIT TRANSACTION No transaction action

3–126 Task Definition Clauses

TRANSACTION Phrase (Block, Processing)

Example

BLOCK WORK WITH FORMS I/O
EXCHANGE

RECEIVE FORM RECORD ORDER_ENTRY_RECORD IN ORDER_ENTRY_FORM
RECEIVING ORDER_ENTRY_RECORD;

BLOCK WORK WITH DISTRIBUTED TRANSACTION
PROCESSING

SELECT FIRST TRUE OF
((PRIORITY_ORDER = "Y") AND

(ORDERED_AMOUNT > IN_STOCK_AMOUNT)):
CALL PRIORITY_ORDER IN MASTER_DATABASE_SERVER

USING ORDER_ENTRY_RECORD, RESTOCK_RECORD,
STATUS_RECORD;

(ORDERED_AMOUNT > IN_STOCK_AMOUNT):
CALL QUEUE_REPLENISH_INVENTORY_TASK IN QUEUE_SERVER

USING RESTOCK_RECORD;
END SELECT;

END BLOCK WORK;
ACTION IS

IF (ORDER_SATISFIED = "Y")
THEN COMMIT TRANSACTION;

EXIT TASK;
ELSE ROLLBACK TRANSACTION;

END IF;
END BLOCK WORK;

In this example, the Order Entry task starts a distributed transaction on
the nested block. The processing step calls a procedure to write an order
record to the distribution center’s database. If the distribution center cannot
immediately satisfy the order, the processing step inserts a queued task into
a queue file. However, if it is a priority order, the processing step checks the
master database to see if the manufacturing plant can satisfy the order. If the
order is handled successfully, the action part of the nested block commits the
transaction. Otherwise, it ends the transaction by rolling back any database
updates performed within the transaction.

Task Definition Clauses 3–127

TRANSCEIVE Clause (Exchange)

TRANSCEIVE Clause (Exchange)

Combines the SEND and RECEIVE operations. First, HP DECforms sends
information from your task workspace to form data items. Then, it moves data
from the form to your task workspace.

Format ������������������������������
�����������������������������

TRANSCEIVE [FORM] RECORD send-record-identifier, receive-record-identifier
[IN form-label-name]

SENDING { send-workspace-name
[SHADOW [IS] send-shadow-workspace] } [,...]

RECEIVING { receive-workspace-name
[SHADOW [IS] receive-shadow-workspace] } [,...]�

���������������

WITH

���������������
��������������

�����������������

RECEIVE CONTROL receive-control-workspace
[COUNT numeric-workspace-field2]

SEND CONTROL send-control-workspace�
COUNT

� numeric-workspace-field3
send-control-count

� �

TIMEOUT
� numeric-workspace-field

seconds

�

�����������������

���������������
�������������	

�
���������������

������������������������������
����������������������������	

Parameters

send-record-identifier
The name of the form record that defines how data is sent from your task
workspace to form data items. The record identifier can also name a form record
list.

receive-record-identifier
The name of the form record that defines how your task workspace receives data
from form data items. The record identifier can also name a form record list.

form-label-name
The name of the form that contains the records named by the record identifiers.
This is the name assigned to the form by using the WITH NAME keywords in the
FORMS clause of the task group definition.

send-workspace-name
The given name of the workspace that contains the information you want to
transfer to the form.

send-shadow-workspace
The given name of the workspace that can contain an indicator that instructs the
HP DECforms whether or not to update last-known values of form data items.

receive-workspace-name
The given name of the task workspace that receives data from the form.

3–128 Task Definition Clauses

TRANSCEIVE Clause (Exchange)

receive-shadow-workspace
The given name of the workspace that contains indicators about which fields in
the receive workspace have changed as a result of the exchange with the form.
The first field in the workspace must be a one-character field into which HP
DECforms can store a value indicating whether or not the receive workspace has
changed.

receive-control-workspace
The given name of the workspace that contains status information about the
completed TRANSCEIVE operation. HP DECforms returns status information
in the form of receive control text items. Each receive control text item is five
characters long.

numeric-workspace-field2
The name of a workspace field that contains the number of receive control text
items in the receive control workspace. This number indicates the number of
receive control text items returned by HP DECforms. Each item is five bytes
in length. The data type of the workspace field must be signed or unsigned
longword. The value of the field is set after the HP DECforms request is
completed.

send-control-workspace
The given name of the workspace that contains up to five send control text items
to be passed to HP DECforms. For each send control text item, you must define a
corresponding control text response within the form.

numeric-workspace-field3
The name of a workspace field that contains the number of send control text
items in the send control workspace. You specify the number of control text items
in the send control workspace. The data type of the workspace field must be
signed or unsigned longword. The value of the field must be set before the HP
DECforms request is executed.

send-control-count
The number of send control text items in the send control workspace. You specify
the number of control text items in the send control workspace.

numeric-workspace-field
The given name of the workspace field that identifies the maximum time allowed
between operator entries. To specify a time limit, you can either create a
workspace field that contains the number of seconds, or you can hardcode the
number of seconds in the exchange step clause.

The workspace field is in the workspace that you name in the task definition
with the WORKSPACES clause. If you name more than one workspace with
the WORKSPACES clause, you must name the workspace and the field in the
TIMEOUT argument.

HP DECforms allows you to specify an infinite number of seconds as a timeout
value for a panel or icon by specifying a zero or negative value with the HP
DECforms TIMEOUT subclause. As an alternative, ACMS allows you to specify
an infinite timeout value with a negative value for numeric-workspace-field in the
TIMEOUT subclause.

Task Definition Clauses 3–129

TRANSCEIVE Clause (Exchange)

seconds
The maximum number of seconds that can elapse between operator entries. To
specify a time limit, you can either create a workspace field that contains the
number of seconds, or you can hardcode the number of seconds in the exchange
step clause.

Hp DECforms allows you to specify an infinite number of seconds as a timeout
value for a panel or icon by specifying a zero or negative value with the HP
DECforms TIMEOUT subclause. As an alternative, ACMS allows you to specify
an infinite timeout value by giving a zero value of seconds. A negative value of
seconds produces the following error:

%ACMSTDU-E-SYNTAXERR: Found ’-’ when expecting ’;’

Clause Default

The TRANSCEIVE clause is optional.

Notes

If you do not specify the form in the TRANSCEIVE clause, and you do not name
a default form in the task definition, ACMS uses the first form named in the task
group definition.

If the operator does not make an entry within the TIMEOUT limit, ACMS cancels
the task. If you omit the TIMEOUT argument or if you specify zero seconds, the
operator has unlimited time between entries.

To use the control text COUNT clauses at run time, both the submitter node
and application node must have ACMS Version 3.3 or higher installed. If the
application node has ACMS Version 3.3 or higher, and the submitter node has
a previous version of ACMS, then ACMS cannot pass the control text count
values between the application node and the submitter node. In this case, a step
exception is raised in the task with the TPS$_NOCNTRLCNTSUB error status.

If the application node has a version of ACMS lower than Version 3.3, then the
control text COUNT clause is ignored at run time, and cannot be updated.

Examples

1. TRANSCEIVE FORM RECORD EMPLOYEE_INFO_RECORD, EMPLOYEE_INFO_RECORD
IN EMPLOYEE_INFO_LABEL

SENDING EMPLOYEE_INFO_WKSP SHADOW IS SEND_EMPLOYEE_INFO_SHADOW
RECEIVING EMPLOYEE_INFO_WKSP SHADOW IS REC_EMPLOYEE_INFO_SHADOW

WITH TIMEOUT 30;

The SEND part of this step uses the form record EMPLOYEE_INFO_
RECORD to move data from the task workspace EMPLOYEE_INFO_WKSP
to the form data items stored in the form EMPLOYEE_INFO_LABEL. SEND_
EMPLOYEE_INFO_SHADOW is the send-shadow-workspace that instructs
HP DECforms whether or not to update last-known values of form data items.

The RECEIVE part of this step uses the form record EMPLOYEE_INFO_
RECORD to move data from form data items stored in the form EMPLOYEE_
INFO_LABEL to the task workspace EMPLOYEE_INFO_WKSP. REC_
EMPLOYEE_INFO_SHADOW is the receive-shadow-workspace that identifies
which fields in EMPLOYEE_INFO_WKSP have changed because of the
exchange with the form.

3–130 Task Definition Clauses

TRANSCEIVE Clause (Exchange)

The TIMEOUT argument establishes 30 seconds as the maximum time that
can elapse between operator entries.

You can use a TRANSCEIVE clause that sends and receives the same form
record and task workspace to let the operator display and then update form
data items.

2. EXCHANGE
TRANSCEIVE RECORD MY_RECORD, MY_RECORD

SENDING MY_RECORD
RECEIVING MY_RECORD
WITH SEND CONTROL SEND_CNTRL COUNT CNTRL_COUNTS.SEND_COUNT

RECEIVE CONTROL RECV_CNTRL COUNT CNTRL_COUNTS.RECV_COUNT;

When this request completes, HP DECforms returns the control text items
into the RECV_CNTRL workspace, and returns the number of control
items into the CNTRL_COUNTS.RECV_COUNT field. For instance, if HP
DECforms returns two control text items, which are " F001" and " F002", the
contents of the workspace RECV_CNTRL become " F001 F002", and the field
CNTRL_COUNTS.RECV_COUNT equals 2.

Task Definition Clauses 3–131

USE WORKSPACES Clause (Task)

USE WORKSPACES Clause (Task)

Names one or more workspaces, declared in the task group, to which a task needs
access.

Format

USE
�

WORKSPACE
WORKSPACES

�
���
�� workspace-name

�
� WITH ACCESS

�
RETRIEVAL
UPDATE [[NO] LOCK]

� �
�

���
�	 [,...] ;

Parameter

workspace-name
The given name or assigned name of the workspace declared in the
WORKSPACES clause of the task group definition. It is not a CDD path name.
Use commas to separate workspaces you declare. Any workspaces you declare
must be named in a WORKSPACES clause of the task group definition.

Keywords

ACCESS
Identifies the access characteristics of a workspace. The types of access you can
define are RETRIEVAL and UPDATE. You can only define access characteristics
for GROUP and USER type workspaces. The default access type is specified in
the WORKSPACES clause in the task group definition. If you do not specify an
access type in the WORKSPACES clause, the default access type is RETRIEVAL.

LOCK
Indicates that a task instance can lock the workspace from use by other tasks
when the task starts and can unlock it when the task stops or is canceled. If you
do not use the LOCK keyword, the workspace is not locked. The keyword applies
only to GROUP and USER workspaces defined to have UPDATE access.

RETRIEVAL
Indicates that a task can use and make changes to the contents of the workspace.
However, when the task finishes, ACMS does not copy changes into the master
copy of the workspace. RETRIEVAL is the default access for GROUP and USER
workspaces.

UPDATE
Indicates that the task can make changes to the contents of the workspace.
When the task finishes, ACMS copies these changes to the master copy of
the workspace. Unless you use the LOCK keyword, ACMS does not lock the
workspace against updates by other tasks or users.

3–132 Task Definition Clauses

USE WORKSPACES Clause (Task)

Clause Default

The USE WORKSPACES clause is optional. If you do not use the USE
WORKSPACES clause, workspaces declared in the task group are not available
to the task.

Notes

You can use the USE WORKSPACES clause multiple times in a single task
definition.

ADU lets you use the LOCK keyword when defining a TASK workspace. However,
this keyword has no effect at run time.

You cannot declare a workspace type for workspaces you name in a USE
WORKSPACES clause.

Do not name the ACMS system workspaces in the USE WORKSPACES clause.
ACMS system workspaces are available to each task by default.

If you declare a workspace with ACCESS UPDATE (either LOCK or NOLOCK),
any other task can use the workspace with ACCESS RETRIEVAL. However, if
you declare a workspace with ACCESS UPDATE (either LOCK or NOLOCK),
ACMS cancels, at the beginning of the task instance, any other task or instance of
the same task that attempts to use the same workspace with ACCESS UPDATE
(either LOCK or NOLOCK).

The sum of the sizes of all workspaces referenced in a task definition must not
exceed 65,535 bytes.

Examples

1. USE WORKSPACE DEPT_WORKSPACE WITH RETRIEVAL;

In this example, the name of the workspace in the task group definition is
DEPT_WORKSPACE. The task can only read and use the contents of this
workspace. It cannot make changes to the contents.

2. USE WORKSPACE DEPT_WORKSPACE WITH UPDATE LOCK;

In this example, the task has update access to the DEPT_WORKSPACE
workspace and locks the workspace from access by other tasks.

Task Definition Clauses 3–133

WAIT Clause (Task)

WAIT Clause (Task)

Controls whether or not ACMS displays a message prompting users to press
Return . Pressing Return clears the terminal screen and displays the previous
ACMS menu.

Format

[NO] WAIT ;

Clause Default

The ACMS-supplied default is NO WAIT. This clause is optional.

Notes

If you use the WAIT clause in a task definition, you must include it before the
processing or block step for that definition.

You cannot use the WAIT clause and the DELAY clause in the same definition.

The WAIT and DELAY clauses determine how quickly ACMS returns user control
to a menu when a task ends. If a user runs a task that displays the time of
day, for example, with the SHOW TIME command, by default ACMS displays
the time, but then immediately clears the screen and returns to the menu. Both
clauses let you delay the time between the end of a task and the return to the
selection menu.

If you do not specify a WAIT clause or set the wait attribute in an application
definition TASK ATTRIBUTES clause, ACMS uses the setting you assign in the
task group definition. If you do not make an assignment there, ACMS uses the
NO WAIT default.

WAIT and DELAY clauses in a menu definition override attributes specified in a
task, task group, or application definition.

Example

WAIT;

ACMS waits for the user to press Return before clearing the final screen of the
task and returning the user to a menu.

3–134 Task Definition Clauses

WHILE DO Clause (Block, Exchange, Processing)

WHILE DO Clause (Block, Exchange, Processing)

Performs work as long as a specified Boolean expression evaluates to true.

You can use a WHILE DO clause to start a block, exchange, or processing step
(thereby creating a conditional block, exchange, or processing step). The WHILE
DO clause uses a Boolean expression to compare workspace fields and takes
actions based on the result of the expression. As long as the expression evaluates
to true, ACMS performs the action associated with the DO keyword. When the
expression evaluates to false, control falls through to the next step.

Format
WHILE (boolean-expression)

DO <clause>
END WHILE;

Parameters

boolean-expression
The Boolean expression must be an expression that ACMS can evaluate as either
true or false. As long as the Boolean expression is true, ACMS does the work
defined by the corresponding clause. When the expression evaluates to false,
control falls through to the next step. You must enclose Boolean expressions in
parentheses.

See Section 3.10 for a description of Boolean expressions.

clause
One of the following, depending on where you place the WHILE DO clause:

block

The start of a nested block with the keywords BLOCK WORK or the start
of an exchange or processing step with the keywords EXCHANGE WORK or
PROCESSING WORK, respectively. When you use the WHILE DO clause at the
block step level, you can specify multiple block, exchange, and processing steps to
correspond with the Boolean expression.

At the block step level, you can use the WHILE DO clause only at the top of the
block; you cannot use it between steps within the block.

exchange-clause

Any unconditional exchange clause that is compatible with the I/O method the
block step uses. For example, if a block step uses FORM I/O, exchange steps
in that block step can use one of the HP DECforms clauses (SEND, RECEIVE,
or TRANSCEIVE) or NO EXCHANGE, but cannot use a TDMS clause (READ,
WRITE, or REQUEST). There can be only one exchange clause for the Boolean
expression that you specify.

processing-clause

Any unconditional processing clause. There can be only one processing clause for
the Boolean expression that you specify.

Task Definition Clauses 3–135

WHILE DO Clause (Block, Exchange, Processing)

Table 3–20 summarizes the clauses you can use within the WHILE DO clause at
each step.

Table 3–20 Clauses Compatible with the WHILE DO Clause

At This Step You Can Specify

BLOCK Multiple of:

• BLOCK WORK

• EXCHANGE
WORK

• PROCESSING
WORK

PROCESSING One of:

• CALL
[PROCEDURE]

• CALL TASK

• DTR COMMAND

• DCL COMMAND

• IMAGE

• NO
PROCESSING

EXCHANGE If task uses FORM
I/O, one of:

If task uses
REQUEST I/O, one of:

If task uses STREAM I/O,
one of:

• NO EXCHANGE

• RECEIVE

• SEND

• TRANSCEIVE

• NO EXCHANGE

• READ

• REQUEST

• WRITE

• NO EXCHANGE

• READ

• WRITE

Keywords

DO
Identifies the work to perform as long as the Boolean expression evaluates to
true.

Clause Default

The WHILE DO clause is optional. If you do not use the WHILE DO clause or
one of the other three conditional clauses, ACMS processes your block, exchange,
or processing work unconditionally.

3–136 Task Definition Clauses

WHILE DO Clause (Block, Exchange, Processing)

Notes

You must end each subclause in a WHILE DO clause with a semicolon (;), and
you must end the WHILE DO clause with END WHILE and a semicolon (;).

The type of clause you can use within a WHILE DO clause depends on the type
of step that you are defining. For example, if you are using WHILE DO to define
an exchange step, you can only use exchange clauses.

If you use WHILE DO at the block step level, you can only use it at the top of the
block; you cannot specify it between steps within the block.

You cannot conditionalize a processing step that starts a distributed transaction
by using the WHILE DO clause. Instead, you can either include a loop in the
processing step’s procedure, or specify WHILE DO on a block step that includes
the processing step.

Block Clause Example

1. BLOCK WORK
WHILE (OLD_WORKSPACE NE NEW_WORKSPACE)
DO

EXCHANGE
SEND FORM RECORD EMPLOYEE_INFO_RECORD

SENDING EMPLOYEE_INFO_WKSP;
PROCESSING

CALL EMPLOYEE_UPDATE IN PERSONNEL
USING PERS_RECORD, UPDATE_WORKSPACE;

ACTION IS
MOVE 1 INTO NUMBER_WORKSPACE;

END WHILE;
END BLOCK;

ACMS tests the contents of OLD_WORKSPACE and NEW_WORKSPACE. As
long as the Boolean expression evaluates to true, ACMS performs the exchange
and processing steps associated with the DO keyword. If the expression evaluates
to false, control falls through to the next step.

Exchange Clause Example

1. EXCHANGE
WHILE (EMP_CNTRL_WKSP.STATUS_FIELD EQ "INVAL")
DO

TRANSCEIVE RECORD EMPLOYEE_INFO_RECORD, EMPLOYEE_INFO_RECORD
SENDING EMPLOYEE_INFO_WKSP
RECEIVING EMPLOYEE_INFO_WKSP

END WHILE;
ACTION IS EXIT TASK;

ACMS tests the value of the STATUS_FIELD in the EMP_CNTRL_WKSP
workspace. As long as the value of that field is ‘‘INVAL’’, ACMS performs the
TRANSCEIVE operation associated with the DO keyword. However, if the value
of STATUS_FIELD does not equal ‘‘INVAL’’, ACMS passes control to the action
part of the step and exits the task.

Task Definition Clauses 3–137

WHILE DO Clause (Block, Exchange, Processing)

Processing Clause Example

1. PROCESSING
WHILE (AGE_ENTERED >= 21)
DO

CALL STANDARD_PROCESSING USING WAGE_HOUR_DATA;

END WHILE;
ACTION IS

GO TO STEP FIVE;

This WHILE DO clause tests the AGE_ENTERED workspace; and, if the Boolean
expression evaluates to true, ACMS performs the processing work associated with
the DO keyword. Otherwise, ACMS passes control to the action part of the step
and goes to STEP FIVE.

3–138 Task Definition Clauses

WORKSPACES Clause (Task)

WORKSPACES Clause (Task)

Names one or more workspaces used by steps in a task. When you use the
WORKSPACES clause in a task definition, the workspaces you name are
available only to instances of that task.

Format
�

WORKSPACE IS
WORKSPACES ARE

�
�����������������
����������������

record-path-name�
�������������

WITH

������������
�����������

��������������

NAME unique-name

TYPE

� GROUP
TASK
USER

�

ACCESS
�

RETRIEVAL
UPDATE [[NO] LOCK]

�

��������������

������������
����������	

�
�������������

�����������������
���������������	

[,...] ;

Parameters

record-path-name
The CDD path name of the record description for the workspace. You must use
the full CDD record path name unless you have set your CDD default to the
directory where the record definition is stored. In that case, you can use just the
given name of the workspace.

If you name more than one workspace, separate the record path names with
commas.

unique-name
The unique name of a workspace. The given name of each workspace must be
unique within the workspace declarations for the task group. If two or more given
names are identical, you use the unique-name parameter to define a different
name to the workspace. If you do not use the unique-name parameter, the default
name of the workspace is the given name of the workspace.

Keywords

ACCESS
Identifies the access characteristics of a workspace. The types of access
you can define are RETRIEVAL and UPDATE. You can only define access
characteristics for GROUP and USER type workspaces. The default type of
access is RETRIEVAL.

GROUP
Identifies the workspace as a GROUP type workspace. The contents of a GROUP
workspace can be used by many instances of the same task. ACMS maintains
these contents from application startup to application shutdown.

Task Definition Clauses 3–139

WORKSPACES Clause (Task)

LOCK
Indicates that a task instance can lock the workspace from use by other tasks
when the task starts and can unlock it when the task stops or is canceled. If you
do not use the LOCK keyword, the workspace is not locked. The keyword applies
only to GROUP and USER workspaces defined for UPDATE access.

RETRIEVAL
Indicates that a task can use and make changes to the contents of the workspace.
However, when the task finishes, ACMS does not copy changes into the master
copy of the workspace. RETRIEVAL is the default access for GROUP and USER
workspaces.

TASK
Identifies the workspace as a TASK workspace. The contents of a TASK
workspace are kept for just one instance of a task. TASK is the default type
of workspace.

TYPE
Identifies the type of workspace being used by the task. The workspace types you
can define are: TASK, GROUP, and USER.

UPDATE
Indicates that the task can make changes to the contents of the workspace. When
the task instance finishes with an EXIT TASK, GOTO TASK, or REPEAT TASK
clause, ACMS copies these changes to the master copy of the workspace. Unless
you use the LOCK keyword, ACMS does not lock the workspace against updates
from other tasks or users.

USER
Indicates the workspace is a USER workspace. The contents of a USER
workspace can be used by a single user for many instances of the same or
different tasks. A user’s copy of a USER workspace exists from the time the user
first requires the workspace until that user logs out of ACMS.

Clause Default

The WORKSPACES clause is optional. The default workspaces available to
the task are the ACMS system workspaces ACMS$PROCESSING_STATUS
(contains processing status information), ACMS$SELECTION_STRING (contains
a string submitted at task selection time), and ACMS$TASK_INFORMATION
(contains task information). You cannot name the system workspaces in the
WORKSPACES clause. System workspaces are always used by a task and are
always implicitly declared.

For a discussion of system workspaces, see Appendix B.

Notes

The unique name of a workspace can be different from the name of the record
description for that workspace. For example, suppose you assign a unique name
to WORK_RECORD:

WORKSPACE IS WORK_RECORD WITH NAME EXAMPLE1;

3–140 Task Definition Clauses

WORKSPACES Clause (Task)

The record description for WORK_RECORD can be as follows:

DEFINE RECORD WORK_RECORD.
SAMPLE STRUCTURE.

A.
B.

END SAMPLE STRUCTURE.
END WORK_RECORD.

The name of the record description, WORK_RECORD, simply indicates the
location of the record in the dictionary. The unique name of the workspace,
EXAMPLE1, does not have to be the same as the name of the record description
or the structure, and is only used within the task definition.

In a task definition, to refer to the A field in the EXAMPLE1 workspace, you can
use: EXAMPLE1.SAMPLE.A, SAMPLE.A, A, or EXAMPLE1.A.

Suppose you now add another field A to the workspace. Now the record definition
looks like this:

DEFINE RECORD WORK_RECORD.
SAMPLE STRUCTURE.

A.
B.
X STRUCTURE.

A.
END X STRUCTURE.

END SAMPLE STRUCTURE.
END WORK_RECORD.

You encounter an ambiguous field reference when using the following field names
in a definition: A, or EXAMPLE1.A. The reference EXAMPLE1.SAMPLE.A is
still valid.

Because TASK is the default workspace type and the ACCESS keyword is valid
only for GROUP and USER workspaces, you must include the TYPE keyword if
you use the ACCESS keyword.

ADU lets you use the LOCK keyword when defining a TASK workspace. However,
this keyword has no effect at run time.

Do not name the ACMS system workspaces in the WORKSPACES clause.

You can include more than one WORKSPACES clause in a task definition.

If you declare a workspace with ACCESS UPDATE (either LOCK or NOLOCK),
any other task can use the workspace with ACCESS RETRIEVAL. However, if
you declare a workspace with ACCESS UPDATE (either LOCK or NOLOCK),
ACMS cancels, at the beginning of the task instance, any other task or instance of
the same task that attempts to use the same workspace with ACCESS UPDATE
(either LOCK or NOLOCK).

The sum of the sizes of workspaces referenced in a task definition must not
exceed 65,535 bytes.

The ADU does not support CDD objects containing branch information. When the
ADU attempts to access a CDD object (for example, an ACMS task) containing
branch information, the ADU generates errors similar to the following and aborts:

%ADU-E-ESTFETNEXT, Unexpected CDD Error
%CDD-W-ILLBRANCH, TSK1(1:V1:1) contains branch information

Task Definition Clauses 3–141

WORKSPACES Clause (Task)

Examples

1. WORKSPACES ARE DEPT_WORKSPACE, HIST_RECORD, PERS_RECORD;

This example assumes that CDD$DEFAULT has been set to the correct
directory. The given names of the workspaces being used by the task are
DEPT_WORKSPACE, HIST_RECORD, and PERS_RECORD.

2. WORKSPACES ARE
ADD_WORKSPACE,LABOR_REPORT_WORKSPACE TYPE GROUP RETRIEVAL;

The given names of these workspaces are ADD_WORKSPACE and LABOR_
REPORT_WORKSPACE. ADD_WORKSPACE is a TASK workspace with
default UPDATE access. LABOR_REPORT_WORKSPACE is a group
workspace, and the task definition using this workspace clause has retrieval
access.

3–142 Task Definition Clauses

WRITE Clause (Exchange)

WRITE Clause (Exchange)

If the block step uses STREAM I/O, the WRITE clause writes the contents of a
workspace field to a stream. If the block step uses REQUEST I/O, the WRITE
clause passes a literal string or the contents of a workspace to the exception line
(line 24) on the terminal screen.

Format

WRITE
� workspace-name

literal-string

�
;

Parameters

workspace-name
The given name of the workspace that contains the text to be displayed on the
exception line of the terminal screen (for block steps using REQUEST I/O) or
to be written to a stream (for block steps using STREAM I/O). The workspace
name must correspond to a workspace declared by the WORKSPACES or USE
WORKSPACES clause in the task definition, or must be a system workspace.

literal-string
The text you want to display on the exception line of the terminal screen (for the
block steps using REQUEST I/O) or to pass to a stream (for the block steps using
STREAM I/O). You must enclose the string in quotation marks. The length of
the literal string must be less than the width of the terminal screen. There is no
length restriction when you use STREAM I/O.

Clause Default

The WRITE clause is optional. If you do not use the WRITE clause, ACMS does
not pass a literal string or the contents of a workspace to the exception line on
the terminal screen or to a stream.

Notes

When using REQUEST I/O, the maximum size of the information you pass is the
length of a single line on the terminal screen, either 80 or 132 characters. There
is no length restriction when you use STREAM I/O.

The sum of the sizes of all workspaces referenced in a task definition must not
exceed 65,535 bytes.

Examples

1. WRITE PERS_MESSAGE;

ACMS writes the contents of the PERS_MESSAGE workspace to the
exception line on the terminal screen.

2. WRITE "Processing done";

ACMS writes the literal string ‘‘Processing done’’ on the exception line of the
terminal screen.

Task Definition Clauses 3–143

4
Task Group Definition Clauses

A task group is a set of tasks that share resources and are built into a single
database file. This chapter explains the ADU clauses you use to define task
groups. You use these clauses with the CREATE, MODIFY, REPLACE, or EDIT
commands.

4.1 Task Group Clauses
Use task group clauses to define:

• Characteristics applying to all the tasks in the group

• Servers that handle the processing for the tasks in the group

Also use task group clauses to name the tasks belonging to the group and to
define some tasks directly in the task group definition. You can define a task
directly in a task group definition if that task:

• Consists of a single unconditional processing step

• Defines no step actions or exception handler actions

• Defines no default server or default request library

• Uses no workspaces other than the ACMS system workspaces

If a task does not follow these rules, name it in the task group definition, but
define it separately using the task and block clauses described in Chapter 3.
Figure 4–1 shows the syntax you use to define a task group. Table 4–1 lists the
task group clauses and gives a brief description of each.

Task Group Definition Clauses 4–1

Task Group Definition Clauses
Task Group Clauses

Figure 4–1 Task Group Syntax

[DEFAULT TASK GROUP FILE IS task-group-database-file ;]�
MESSAGE

 FILE IS
FILES ARE

�
message-file-spec [,...] ;

�
...

�
�� REQUEST

�
LIBRARY IS
LIBRARIES ARE

�
{ request-library-file-spec [WITH NAME library-name] } [,...] ;

�
�� ...

�
��
�

FORM IS
FORMS ARE

�
form-name IN form-file-spec WITH NAME form-label-name [,...] ;

�
�� ...

������
�����

�
SERVER IS
SERVERS ARE

�
{ server-name : <server-subclause> ... } ...

END
 SERVER

SERVERS

�
;

������
����	

...

���������������������������������
��������������������������������

�
TASK IS
TASKS ARE

�
��������������������
�������������������

task-name:�����������������
����������������

��������������
�������������

[NO] DELAY;
[NO] WAIT;

�

LOCAL;
GLOBAL;

�

[NOT] CANCELABLE BY
 [TERMINAL] USER

[TASK] SUBMITTER

�
;

PROCESSING IS <processing-subclause>

��������������
������������	

TASK DEFINITION IS task-path;

�����������������
���������������	

��������������������
������������������	

...

END
 TASK

TASKS

�
;

���������������������������������
�������������������������������	

...

(continued on next page)

4–2 Task Group Definition Clauses

Task Group Definition Clauses
Task Group Clauses

Figure 4–1 (Cont.) Task Group Syntax

�
�����������������������

�
WORKSPACE IS
WORKSPACES ARE

�
�����������������
����������������

record-path-name�
�������������

WITH

������������
�����������

��������������

NAME unique-name

TYPE

� GROUP
TASK
USER

�

ACCESS
�

RETRIEVAL
UPDATE [[NO] LOCK]

�

��������������

������������
����������	

�
�������������

�����������������
���������������	

[,...] ;

�
�����������������������

...

Table 4–1 Task Group Clauses

Clause Description

DEFAULT TASK GROUP
FILE

Names the default file specification of the task group
database.

FORMS Names the HP DECforms forms used by the tasks in a
task group.

MESSAGE FILES Names the message files used by the tasks in a task
group.

REQUEST LIBRARIES Names the request libraries used by the tasks in a task
group.

SERVERS Defines the servers used by the tasks in a task group.

TASKS Names the tasks in a task group.

WORKSPACES Names the workspaces available to tasks in a task group.

You can use two kinds of subclauses with task group clauses: processing
subclauses and server subclauses. If a task consists of a single processing step,
you can include the definition for the task directly in the task group definition.
The task group clauses you use to define a task directly in a task group definition
are called processing subclauses. Section 4.2 explains these subclauses.

When you define a server in a task group definition, you use subclauses to
describe characteristics for that server. Section 4.3 explains these server
subclauses.

The examples that follow and their explanations do not show how to define a task
group. Their purpose is to help you understand how the clauses in this chapter
fit together to form task group definitions.

Example 4–1 shows an example of a simple task group definition.

Task Group Definition Clauses 4–3

Task Group Definition Clauses
Task Group Clauses

Example 4–1 Simple Task Group Definition

CREATE GROUP PERSONNEL_GROUP
SERVER IS

UTILITY_SERVER: DCL PROCESS;
DYNAMIC USERNAME;

END SERVER;
TASK IS

DATR: DELAY;
PROCESSING IS DCL COMMAND "$MCR DTR32"

IN UTILITY_SERVER;
END TASK;

END DEFINITION;

The task group with the given name PERSONNEL_GROUP contains just one
task, DATR. When a user selects the DATR task from a menu, ACMS processes
the DCL command MCR DTR32. ACMS runs this task in the server UTILITY_
SERVER. This server must be a DCL server to handle the processing of a DCL
command.

You must use the keywords END SERVER to end the SERVER clause, END
TASK to end the TASK clause, and END DEFINITION to end the task group
definition.

Example 4–2 shows an example of another simple task group definition.

Example 4–2 Simple Task Group Definition for Multiple-Step Tasks

CREATE GROUP PERSONNEL_GROUP
DEFAULT TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
MESSAGE FILE IS "SYS$SAMPLE:PERSMSG.EXE";
FORM IS "SYS$SAMPLE:PERS_FORM" WITH NAME PERS_LABEL;
SERVER IS

PERSONNEL_SERVER:
PROCEDURE SERVER IMAGE IS "PERSGRP.EXE";
INITIALIZATION PROCEDURE IS PERS_START;
TERMINATION PROCEDURE IS PERS_STOP;
PROCEDURE IS PERSADD;

END SERVER;
TASK IS

ADD_EMPLOYEE: TASK IS ADD_EMPLOYEE_TASK;
END TASK;

END DEFINITION;

This definition of the task group PERSONNEL_GROUP contains just one task,
ADD_EMPLOYEE. ADD_EMPLOYEE_TASK is the given name of the task, and
its definition is stored in the dictionary. In this example, ADD_EMPLOYEE is a
multiple-step task, and the processing step in the task uses a call to a subroutine.
The processing work for ADD_EMPLOYEE must be handled by a procedure
server.

The PERSONNEL_GROUP task group definition specifies a task group database,
a HP DECforms form, and a message file. The task group definition specifies that
the file SYS$SAMPLE:PERSONNEL.TDB is the name of the default task group
database; the file SYS$SAMPLE:PERS_FORM contains the HP DECforms form;
and the file SYS$SAMPLE:PERSMSG.EXE contains the message library. The
tasks in the task group refer to the form by the name PERS_LABEL. If you do
not name the task group database when you build the task group, ACMS uses
the one specified with the DEFAULT TASK GROUP FILE clause.

4–4 Task Group Definition Clauses

Task Group Definition Clauses
Task Group Clauses

The PERSONNEL_GROUP task group uses one procedure server, named
PERSONNEL_SERVER. When the task group is built, ACMS creates an object
module for the server. Linking this object module with other modules associated
with the server and with the object module of the procedure used in ADD_
EMPLOYEE produces the procedure server image in the file PERSGRP.EXE.

Because ADD_EMPLOYEE has just one processing step that uses a step
procedure, PERSONNEL_SERVER includes that procedure, PERSADD, in
addition to the initialization and termination procedures, PERS_START and
PERS_STOP.

Example 4–3 shows an example of a more complex task group definition.

Example 4–3 More Complex Task Group Definition

CREATE GROUP PERSONNEL_GROUP
DEFAULT TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
MESSAGE FILE IS "SYS$SAMPLE:PERSMSG.EXE";
FORM IS "SYS$SAMPLE:PERS_FORM"

WITH NAME PERS_LABEL;
WORKSPACES ARE

PERSONNEL_USER_WORKSPACE
WITH TYPE USER ACCESS UPDATE LOCK,

PERSONNEL_GROUP_WORKSPACE
WITH TYPE GROUP ACCESS RETRIEVAL;

SERVERS ARE
PERSONNEL_SERVER:

PROCEDURE IMAGE IS "PERSGRP.EXE";
INITIALIZATION PROCEDURE IS PERS_START;
TERMINATION PROCEDURE IS PERS_STOP;
PROCEDURE IS PERSADD;
DEFAULT OBJECT FILE IS "PERSERV.OBJ";
NO RUNDOWN ON CANCEL;
CANCEL PROCEDURE PERSCANCEL;

UTILITY_SERVER:
DCL PROCESS;
DYNAMIC USERNAME;

END SERVERS;
TASKS ARE

ADD_EMPLOYEE: TASK IS ADD_EMPLOYEE_TASK;
DATR : DELAY;

PROCESSING IS DCL COMMAND "MCR DTR32"
IN UTILITY_SERVER;

END TASKS;
END DEFINITION;

The task group definition for PERSONNEL_GROUP specifies that
SYS$SAMPLE:PERSONNEL.TDB is the name of the default task group
database; the file SYS$SAMPLE:PERS_FORM contains the HP DECforms form;
and the file SYS$SAMPLE:PERSMSG.EXE contains the message library. The
tasks in the task group refer to the form by the name PERS_LABEL.

The task group definition makes two workspaces available to all the tasks in
the group: PERSONNEL_USER_WORKSPACE and PERSONNEL_GROUP_
WORKSPACE. Because PERSONNEL_USER_WORKSPACE is a user workspace,
each user using tasks in the group gets a separate copy of that workspace. A
user can use a copy of the workspace for many instances of the same or different
tasks. In addition, each user can lock the workspace for update.

Task Group Definition Clauses 4–5

Task Group Definition Clauses
Task Group Clauses

Because PERSONNEL_GROUP_WORKSPACE is a group workspace defined for
RETRIEVAL ACCESS, all the tasks in the group can use the contents of the
workspace, but none can update those contents.

The task group uses two servers to handle the processing work for the tasks
in the group, PERSONNEL_SERVER and UTILITY_SERVER. When the task
group is built, ACMS creates an object module for PERSONNEL_SERVER and
stores it in the file PERSERV.OBJ. When the PERSONNEL_SERVER procedure
server starts, ACMS runs the initialization procedure whose entry point in the
procedure server image is PERS_START. When the server stops, ACMS runs the
termination procedure whose entry point in the procedure server image is PERS_
STOP. If a cancel occurs while a task is doing processing, ACMS runs the cancel
procedure whose entry point in the procedure server image is PERSCANCEL.
However, ACMS does not stop and then restart the server when a cancel occurs.

The UTILITY_SERVER server is a reusable DCL server. The user name of
UTILITY_SERVER changes to match the user name of the terminal user every
time the server process is used.

The two tasks in the PERSONNEL task group are ADD_EMPLOYEE and
DATR. The ADD_EMPLOYEE task has a definition whose CDD path name
is ADD_EMPLOYEE_TASK. However, the DATR task contains just a single
processing step, and the definition for the task is included directly in the task
group definition. The DATR task runs the DCL command MCR DTR32. Because
two servers are named in the task group definition, you must define which server
you want the task to run in.

You must use the END DEFINITION keywords at the end of a task group
definition.

4.2 Processing Subclauses
You can include the definition for a task directly in the task group definition
when the task:

• Consists of a single unconditional processing step

• Has no step actions or exception handler actions

• Uses no workspaces other than the ACMS system workspaces

• Does not name a default server or default request library

To define a task in a task group, you use a processing subclause within the
TASKS clause of the task group definition.

Table 4–2 lists the processing subclauses and gives a brief description of each.

Table 4–2 Processing Subclauses

Clause Description

CALL [PROCEDURE] Names a procedure that ACMS runs.

CALL TASK Names a task to be called.

DATATRIEVE COMMAND Names a DATATRIEVE command to do the processing
work for the step.

(continued on next page)

4–6 Task Group Definition Clauses

Task Group Definition Clauses
Processing Subclauses

Table 4–2 (Cont.) Processing Subclauses

Clause Description

DCL COMMAND Names a DCL command to do the processing work for the
step.

IMAGE Names an OpenVMS image to do the processing work for
the step.

Use only one processing subclause to describe the work the task does.

When you define a task within the TASKS clause in a task group definition,
you can use the WAIT, DELAY, LOCAL, GLOBAL, or CANCELABLE keywords
to define attributes for the task. These keywords must precede the processing
subclause.

You must use the END TASKS keywords to signal the end of the tasks you are
defining within a TASKS clause. Figure 4–2 shows the syntax of the processing
subclauses in the TASKS clause.

Task Group Definition Clauses 4–7

Task Group Definition Clauses
Processing Subclauses

Figure 4–2 Processing Subclauses Syntax

��
���

�
TASK IS
TASKS ARE

�
���
��

task-name:

[NO] DELAY;
[NO] WAIT;

�

LOCAL;
GLOBAL;

�
�

[NOT] CANCELABLE BY
 [TERMINAL] USER

[TASK] SUBMITTER

�
;

�

PROCESSING IS���������������������
��������������������

�
CALL [PROCEDURE] entry-point-name [IN server-name]

[USING workspace-name [,...]] ;

�

� CALL TASK task-name [USING {workspace-name} [,...]] ; ����
��
�

DATATRIEVE
DTR

�
COMMAND IS dtr-command-string [IN server-name] ;

���
�	

� DCL COMMAND IS dcl-command-string [IN server-name] ; �

� IMAGE IS image-file-spec [IN server-name] ; �

���������������������
�������������������	

���
���	

...

END
 TASK

TASKS

�
;

��
��	

...

4–8 Task Group Definition Clauses

Task Group Definition Clauses
Server Subclauses

4.3 Server Subclauses
Use the SERVERS clause to name the servers in a task group and to define the
following:

• Server type

• Implementation characteristics of the server

• Default control characteristics of the server

Use server subclauses in the SERVERS clause to define each server you name.

If you define a server to be a DCL server, the only additional subclauses you
can use to describe that server are the USERNAME subclause, the REUSABLE
subclause, and the DYNAMIC USERNAME or FIXED USERNAME subclause.
However, if you define a server to be a procedure server, you can use any of the
clauses listed in Table 4–3 except DCL PROCESS.

You must use the END SERVERS keywords to signal the end of the servers you
are defining within a SERVERS clause. Table 4–3 lists the server subclauses and
gives a brief description of each.

Table 4–3 Server Subclauses

Clause Description

Server Type Subclauses

DCL PROCESS1 Identifies a server that does work for processing
steps that use DCL commands, OpenVMS images,
or DATATRIEVE commands.

PROCEDURE SERVER IMAGE2 Specifies the file name of the procedure server
image and identifies the server as a procedure
server.

Server Implementation Subclauses

ALWAYS EXECUTE TERMINATION
PROCEDURE2

Instructs ACMS to always process the server’s
termination procedure when the server process is
run down.

CANCEL PROCEDURE2 Names a procedure ACMS runs in the server
when a task using the server is canceled.

DCL AVAILABLE2 Specifies the loading of DCL into a procedure
server process.

DEFAULT OBJECT FILE2 Specifies a file name for the object module
produced for a procedure server by the BUILD
GROUP command.

INITIALIZATION PROCEDURE2 Names a procedure to run when a procedure
server image is started.

PROCEDURES2 Names the procedures that run in a procedure
server.

1You can use this clause when defining DCL servers.
2You can use this clause when defining procedure servers.

(continued on next page)

Task Group Definition Clauses 4–9

Task Group Definition Clauses
Server Subclauses

Table 4–3 (Cont.) Server Subclauses

Clause Description

Server Implementation Subclauses

REUSABLE1�2 Identifies a server as being able to process more
than one processing step for one or more tasks
before being restarted.

RUNDOWN ON CANCEL2 Specifies whether ACMS should stop a procedure
server when a task cancel occurs.

TERMINATION PROCEDURE2 Names a procedure to run when a procedure
server image is stopped.

Server Default Control Attributes

DYNAMIC USERNAME1 Specifies that the user name, UIC, and default
directory of a server change to match that of the
user each time the server process is used.

FIXED USERNAME1 Specifies that the user name, UIC, and default
directory of the server are those associated with
the user name under which the server starts.

USERNAME1�2 Assigns the user name of the terminal user to the
server process.

1You can use this clause when defining DCL servers.
2You can use this clause when defining procedure servers.

Figure 4–3 shows the syntax for server subclauses in the SERVERS ARE clause.

4–10 Task Group Definition Clauses

Task Group Definition Clauses
Server Subclauses

Figure 4–3 Server Subclauses Syntax

�
SERVER IS
SERVERS ARE

�
���
��

server-name :��
���

{ DCL PROCESS ; }���
��

PROCEDURE SERVER IMAGE IS procedure-image-file-spec ;���������������������������������������
��������������������������������������

��

ALWAYS EXECUTE TERMINATION PROCEDURE ON RUNDOWN;
CANCEL PROCEDURE IS cancel-entry-name ;

DEFAULT OBJECT FILE IS object-file-spec ;���
��
�

INITIALIZATION
INITIAL

�
PROCEDURE

IS initial-procedure-entry-name ;

���
�	

���
��
�

PROCEDURE IS
PROCEDURES ARE

�
{ entry-name } [,...] ;

���
�	 ...

RUNDOWN ON CANCEL [IF INTERRUPTED];
NO RUNDOWN ON CANCEL;

�
���
��
�

TERMINATION
TERMINAL

�
PROCEDURE

IS terminal-procedure-entry-name ;

���
�	

[NO] DCL AVAILABLE ;

��

���������������������������������������
�������������������������������������	

���
���	

��
��	

�������
������

���������

[USERNAME IS USERNAME OF TERMINAL USER ;]
[NOT] REUSABLE ;

[DYNAMIC USERNAME ;]
[FIXED USERNAME ;]

�
���������

�������
�����	

���
���	

...

END
 SERVER

SERVERS

�
;

Task Group Definition Clauses 4–11

ALWAYS EXECUTE TERMINATION PROCEDURE Subclause (Server)

ALWAYS EXECUTE TERMINATION PROCEDURE Subclause (Server)

Specifies that ACMS should always process the server’s termination procedure
when the server process is run down.

Format

ALWAYS EXECUTE TERMINATION PROCEDURE ON RUNDOWN;

Clause Default

The ALWAYS EXECUTE TERMINATION PROCEDURE subclause is optional. If
you do not specify this subclause, ACMS does not process the server’s termination
procedure if the server process runs down because the task is canceled.

Notes

Use the ALWAYS EXECUTE TERMINATION PROCEDURE subclause only when
defining a procedure server.

By default, ACMS processes a server’s termination procedure when the server
process is run down, unless the server process is being run down because the task
was canceled. There might be times when you want to override this default by
specifying the ALWAYS EXECUTE TERMINATION PROCEDURE subclause. For
example, a server that uses global sections might need to clean up information in
the global sections when the server process is run down.

Example

SERVER IS
DEPARTMENT_SERVER:

PROCEDURE IMAGE IS "ACMS$EXAMPLES:DEPARTGRP.EXE";
INITIALIZATION PROCEDURE IS DEPART_STARTUP;
ALWAYS EXECUTE TERMINATION PROCEDURE;
TERMINATION PROCEDURE IS DEPART_SHUTDOWN;
PROCEDURES ARE

REVIEW_HISTORY_GET, REVIEW_SCHEDULE_GET, REVIEW_UPDATE_GET;
END SERVER;

In this example, when DEPARTMENT_SERVER is run down, ACMS runs the
DEPART_SHUTDOWN termination procedure, even if the server process is being
run down because the task was canceled.

4–12 Task Group Definition Clauses

CALL Subclause (Processing)

CALL Subclause (Processing)

Names a procedure in a procedure server to do the work for a processing step.

Format

CALL PROCEDURE entry-point-name [IN server-name] [USING workspace-name [,...]];

Parameters

entry-point-name
The entry point name of the procedure called in the procedure server image.

server-name
The name of the server in which ACMS runs the procedure named by the CALL
subclause. When you use the CALL subclause, the server you name must be
a procedure server and must be declared in the definition of the task group
containing the task you are defining. If you do not name a server, ACMS uses the
last server named in the immediately preceding SERVERS clause.

workspace-name
The name of the workspace used by the procedure. You can name only the ACMS
system workspaces when using the CALL subclause to define a task in a task
group definition.

Clause Default

If you do not use a CALL subclause, ACMS does not call a procedure in a
procedure server.

The CALL subclause is optional. If you are defining a task in a task group
definition, you must include a CALL, DATATRIEVE COMMAND, DCL
COMMAND, or IMAGE processing subclause within the TASKS clause.

The PROCEDURE command keyword is required if ‘‘task’’ or ‘‘procedure’’ is the
procedure entry point name.

Note

Any procedure you name with the CALL subclause must run in a procedure
server.

Examples

1. TASK IS
ADDEMP: PROCESSING CALL PERSADD IN PERSONNEL_SERVER;

END TASK;

The ADDEMP task uses the PERSADD procedure in the PERSONNEL_
SERVER.

Task Group Definition Clauses 4–13

CALL Subclause (Processing)

2. CREATE GROUP PERSONNEL_GROUP
MESSAGE FILE IS "SYS$SAMPLE:PERSMSG.EXE";

FORM IS "SYS$SAMPLE:PERS_FORM" WITH NAME PERS_LABEL;
SERVER IS

PERSONNEL_SERVER:
PROCEDURE SERVER IMAGE IS "PERSGRP.EXE";
INITIALIZATION PROCEDURE IS PERS_START;
TERMINATION PROCEDURE IS PERS_STOP;
PROCEDURE IS PERSADD;

END SERVER;
TASK IS

ADD_EMPLOYEE: PROCESSING CALL PERSADD;
END TASK;

END DEFINITION;

This task group definition names one task, ADD_EMPLOYEE. The definition
for the task contains a single processing step that calls the PERSADD
procedure. The CALL subclause does not name the server in which the
procedure runs. By default, ACMS uses the last server defined in the task
group, PERSONNEL_SERVER.

4–14 Task Group Definition Clauses

CANCEL PROCEDURE Subclause (Server)

CANCEL PROCEDURE Subclause (Server)

Names a procedure that runs when a task instance is canceled while that task is
executing a step procedure in the server or is maintaining server context in the
server.

Format

CANCEL PROCEDURE IS cancel-entry-name ;

Parameter

cancel-entry-name
The entry point of the cancel procedure in the procedure server image. Do not
enclose this name in quotation marks.

Clause Default

The CANCEL PROCEDURE subclause is optional. If you do not name a cancel
procedure for a procedure server, ACMS does not run a cancel procedure for that
server.

Notes

Use server cancel procedures to perform server process cleanup work to avoid
having to run down a server process when a task is canceled while it retains
context in the server. This cleanup work might include aborting a distributed
transaction started by a step procedure; closing temporary files opened for a
specific task instance; and closing terminal channels opened by a step procedure.

ACMS does not pass workspaces to server cancel procedures. Therefore, if you
need information from workspaces to perform task cleanup work after a cancel,
use the CANCEL ACTION phrase to call a step procedure.

Use the CANCEL PROCEDURE subclause only when defining a procedure server.

When a task instance is canceled while that task is executing a step procedure in
a server or is maintaining context in a server, ACMS runs the cancel procedure
named in the CANCEL PROCEDURE subclause of the server definition for any
servers assigned to that task instance. ACMS then either frees up the server to
be used by another task instance or runs down the server process.

Because a distributed transaction can be aborted at any time, a server cancel
procedure can be called before or after a distributed transaction has been aborted.
Therefore, server cancel procedures should not rely on the state of a distributed
transaction.

If a server has a cancel procedure, ACMS uses the status returned by the cancel
procedure to determine whether or not to run down the server process. Table 4–4
shows the actions ACMS takes for each return status.

Task Group Definition Clauses 4–15

CANCEL PROCEDURE Subclause (Server)

Table 4–4 Server Process Rundown Actions

Return Status Action taken by ACMS

ACMS$_RNDWN Always run down server process.

ACMS$_RNDWNIFINT Run down server process only if ACMS interrupts
execution of a step procedure to cancel the task.

ACMS$_NRNDWN
Other

Do not run down server process unless absolutely
necessary. For example, if a step procedure leaves
channels open to a terminal, or if a fatal exception,
such as an access violation, occurs, ACMS runs down
the server process.

The cancel procedure must be linked into the procedure server image with all
other procedures required by the server.

Name the cancel procedure for a server in the CANCEL PROCEDURE subclause.
If you use the cancel procedure as a step procedure, you must also specify the
name of the procedure in the PROCEDURES subclause.

Example

SERVERS ARE
PERSONNEL_SERVER: PROCEDURE IMAGE IS "PERSGRP.EXE";

PROCEDURE IS PERSADD;
CANCEL PROCEDURE PERSCANCEL;

UTILITY_SERVER: DCL PROCESS;
DYNAMIC USERNAME;

END SERVERS;

PERSCANCEL is the name of the entry point of the cancel procedure in the
PERSONNEL_SERVER procedure server image.

4–16 Task Group Definition Clauses

DATATRIEVE COMMAND Subclause (Processing)

DATATRIEVE COMMAND Subclause (Processing)

Runs a DATATRIEVE command to do work for a processing step.

Format
�

DATATRIEVE
DTR

�
COMMAND IS dtr-command-string [IN server-name] ;

Parameters

dtr-command-string
A valid DATATRIEVE command not exceeding 254 characters. Enclose the
command string in quotation marks.

server-name
The name of the server in which the DATATRIEVE command is executed. When
you use the DATATRIEVE COMMAND subclause, the server you name must be
a DCL server and must be declared in the definition of the task group containing
the task you are defining. If you do not name a server, ACMS uses the last server
named in the immediately preceding SERVERS clause.

Clause Default

The DATATRIEVE COMMAND processing subclause is optional; if you do not
use it, ACMS does not run a DATATRIEVE command or procedure. However,
if you are defining a task directly in a task group definition, you must include
the CALL, DATATRIEVE COMMAND, DCL COMMAND, or IMAGE processing
subclause within the TASKS clause.

Notes

Any DATATRIEVE command you name must run in a DCL server.

You can pass the contents of a selection string to a DATATRIEVE command in
a processing step by using that string as a set of one or more parameters to the
command.

The selection string provided by the terminal user can be separated by ACMS
into parameters P1 through P8. Each parameter is delimited by a space or
tab. At run time, ACMS converts any unquoted alphabetic characters to
uppercase. To include spaces or tabs in a parameter or to keep a character
in lowercase, the terminal user encloses the string with double quotation marks.
To include a double quotation mark character in the string itself, the terminal
user must enclose that character in double quotation marks. ACMS does not treat
exclamation points or single quotation marks as special characters. Therefore,
you do not have to enclose these characters in double quotation marks.

You can use parameters P1 through P8 in the DATATRIEVE command by
including the parameter name in single quotes.

For more information on DCL command symbol substitution, see OpenVMS
User’s Manual.

If you want to invoke DATATRIEVE using a command other than MCR DTR32,
define a logical using the LOGICALS clause in the server definition.

Task Group Definition Clauses 4–17

DATATRIEVE COMMAND Subclause (Processing)

Example

TASK IS DUE: PROCESSING
DTR COMMAND IS "DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES.DUE"

IN COMMON_UTILITY_SERVER;
END TASK;

The DUE task runs a DATATRIEVE procedure named DUE. The procedure is
stored in the ACMS$EXAMPLES directory pointed to by the dictionary anchor,
DISK1:[CDDPLUS]. Enclose the command string in quotation marks. The server
named COMMON_UTILITY_SERVER is a DCL server.

4–18 Task Group Definition Clauses

DCL AVAILABLE Subclause (Server)

DCL AVAILABLE Subclause (Server)

Allows procedure servers to use the DIGITAL Command Language (DCL). DCL
AVAILABLE allows you to specify the loading of DCL into a procedure server
process.

Format

[NO] DCL AVAILABLE;

Clause Default

The DCL AVAILABLE subclause is optional. NO DCL AVAILABLE is the default.
This means that DCL is, by default, not mapped into the procedure server
process.

Notes

The DCL AVAILABLE subclause allows other software products, such as VIDA for
DB2, to use DCL from within a procedure server. VIDA for DB2 is client/server
software that makes IBM DB2 databases readable from OpenVMS systems.

This DCL AVAILABLE subclause applies to procedure servers only. It is not valid
for DCL servers.

Note that mapping DCL into a procedure server process might have some effects
on process quotas and the length of time that it takes to start the process.

The DCL AVAILABLE subclause is not supported when you use the ACMS
debugger to debug a server image that is linked with PCA. If you fail to observe
this restriction, the ACMS debugger displays a message similar to the following:

SERVER <server-name> stopped unexpectedly

Example

SERVER IS
DEPARTMENT_SERVER:

PROCEDURE SERVER IMAGE IS "ACMS$EXAMPLES:DEPREMSCOB.EXE";
DCL AVAILABLE;

.

.

.
END SERVER;

In this example, the DCL AVAILABLE subclause maps DCL to the procedure
server process created for the procedure server DEPARTMENT_SERVER.

Task Group Definition Clauses 4–19

DCL COMMAND Subclause (Processing)

DCL COMMAND Subclause (Processing)

Uses a DCL command to process a task.

Format

DCL COMMAND [IS] dcl-command-string [IN server-name] ;

Parameters

dcl-command-string
A valid DCL command not exceeding 254 characters beginning with the dollar
sign ($) character. Enclose the string in quotation marks.

server-name
The name of the server in which the DCL command is executed. When you use
the DCL COMMAND subclause, the server you name must be a DCL server and
must be declared in the definition of the task group containing the task you are
defining. If you do not name a server, ACMS uses the last server named in the
immediately preceding SERVERS clause.

Clause Default

The DCL COMMAND processing subclause is optional; if you do not use it,
ACMS does not run a DCL command or command procedure. However, if
you are defining a task directly in a task group definition, include the CALL,
DATATRIEVE COMMAND, DCL COMMAND, or IMAGE processing subclause
within the TASKS clause.

Notes

Any DCL command you name must run in a DCL server.

You can pass the contents of a selection string to a DCL command in a processing
step by using that string as a set of one or more parameters to the command.

The selection string provided by the terminal user can be separated by ACMS
into parameters P1 through P8. Each parameter is delimited by a space or tab.
At run time, ACMS converts any unquoted alphabetic characters to uppercase.

To include spaces or tabs in a parameter or to keep a character in lowercase,
the terminal user encloses the string with double quotation marks. To include
a double quotation character in the string itself, the terminal user must enclose
that character in double quotation marks.

ACMS does not treat exclamation marks or single quotation marks as special
characters. Therefore, you do not have to enclose these characters in double
quotation marks. You can use parameters P1 through P8 in the DCL command
by including the parameter name in single quotes.

For more information on DCL command symbol substitution, see OpenVMS
User’s Manual.

4–20 Task Group Definition Clauses

DCL COMMAND Subclause (Processing)

Examples

1. TASK IS EDT: PROCESSING DCL COMMAND IS "$EDIT/EDT ’P1’"
IN PRIVATE_UTILITY_SERVER;

END TASK;

This task uses the server PRIVATE_UTILITY_SERVER to execute a DCL
command that invokes EDT. The command uses, as P1, a parameter the user
supplies as a selection string.

2. TASK IS COPY: PROCESSING
DCL COMMAND IS "$COPY ’P1’.TXT ’P2’.TXT"

IN PRIVATE_UTILITY_SERVER;
END TASK;

This task invokes the DCL COPY command. In this example, the name of the
task on the menu is COPY. Suppose the user selects the task and types the
following in response to the ‘‘Selection:’’ prompt:

Selection:COPY NAME1 NAME2

The command processed by the COPY task is:

COPY NAME1.TXT NAME2.TXT

Task Group Definition Clauses 4–21

DCL PROCESS Subclause (Server)

DCL PROCESS Subclause (Server)

Indicates that a server processes tasks that use DCL commands or command
procedures, DATATRIEVE commands or procedures, or OpenVMS images.

Format

DCL PROCESS ;

Clause Default

You must identify a server type as either a DCL PROCESS or a PROCEDURE
SERVER IMAGE.

Notes

A DCL server can be reusable.

All processing work done in a DCL server must be done by a DCL command or
command procedure, a DATATRIEVE command or procedure, or an OpenVMS
image.

If a task is processing in a DCL server, the DCL server always runs down when
the task is canceled.

Example

SERVERS ARE
PRIVATE_UTILITY_SERVER: DCL PROCESS;

DYNAMIC USERNAME;
COMMON_UTILITY_SERVER: DCL PROCESS;

END SERVERS;

Both the PRIVATE_UTILITY_SERVER and COMMON_UTILITY_SERVER
are DCL servers; they handle the work done by DCL commands or command
procedures, DATATRIEVE commands or procedures, or OpenVMS images.

4–22 Task Group Definition Clauses

DEFAULT OBJECT FILE Subclause (Server)

DEFAULT OBJECT FILE Subclause (Server)

Specifies a file name for the object module produced for a procedure server when
you build the task group containing that server.

Format

DEFAULT OBJECT FILE IS object-file-spec ;

Parameter

object-file-spec
The file specification of the object file created for the server by the BUILD
GROUP command. This object file contains the main entry point in the procedure
server. The object file specification is either an identifier or a quoted string. The
default file type is .OBJ. The default device and directory are your default device
and directory when you build the task group.

Clause Default

The DEFAULT OBJECT FILE subclause is optional. If you do not name an object
file, ACMS derives the name of the object file from the full given name of the
server, including dollar signs ($) and underscores (_).

Note

You can use the DEFAULT OBJECT FILE clause only when defining a procedure
server.

Example

SERVER IS
PERSONNEL_SERVER: PROCEDURE IMAGE IS "PERSGRP.EXE";

PROCEDURE IS PERSADD;
DEFAULT OBJECT FILE IS "PERSERVER.OBJ";

END SERVER;

When you build the task group containing this server, ACMS produces the object
file PERSERVER.OBJ for the procedure server PERSONNEL_SERVER.

Task Group Definition Clauses 4–23

DEFAULT TASK GROUP FILE Clause (Task Group)

DEFAULT TASK GROUP FILE Clause (Task Group)

Names the default file specification of the task group database.

Format

DEFAULT TASK GROUP FILE IS task-group-database-file ;

Parameter

task-group-database-file
The file specification of the task group database file. When you build a task
group definition, ACMS produces a database for that group. The file specification
for that database can be either an identifier or a quoted string. The default file
type is .TDB. The default device and directory is your current default device and
directory.

Clause Default

The DEFAULT TASK GROUP FILE clause is optional. If you name a task group
database file when you build a task group, ACMS uses that name to override
any task group database file you name with the DEFAULT TASK GROUP FILE
clause.

If you do not name a task group database file when you build a task group, and
you do not name a database file with the DEFAULT TASK GROUP FILE clause,
ACMS derives the default database file specification from the full given name of
the task group, including dollar signs ($) and underscores (_).

Note

If you include a database file name when you build the task group, ACMS uses
that name and overrides any file you name in the DEFAULT TASK GROUP FILE
clause.

Examples

1. DEFAULT TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";

The task group database file is PERSONNEL.TDB in the directory associated
with the logical name SYS$SAMPLE. The file specification in this example
includes a colon (:) and a period (.). These characters are not valid for an
identifier. Therefore, you must enclose the file specification in quotation
marks.

2. GROUP FILE IS PERSONNEL;

The task group database file is PERSONNEL with a default .TDB file type.
The device and directory default to the current default device and directory.
PERSONNEL is a valid identifier; you do not need to enclose it in quotation
marks.

4–24 Task Group Definition Clauses

DYNAMIC USERNAME Subclause (Server)

DYNAMIC USERNAME Subclause (Server)

Specifies that the user name, UIC, and default directory of a server change to
match those of the task submitter each time the server process is used.

Format

DYNAMIC USERNAME ;

Clause Default

The DYNAMIC USERNAME subclause is optional. The default is the control
attribute defined for the server in the application definition.

Notes

If you define a server to have a dynamic user name, ACMS changes the user
name, UIC, and default directory to those of the task submitter. In addition, the
logical names SYS$LOGIN and SYS$SCRATCH are defined to be the full default
directory.

The DYNAMIC USERNAME clause is not valid for procedure servers. If you use
the clause with a procedure server, ADU accepts the clause. However, the user
name is not changed at run time when users select tasks that run in that server.
Instead, the server keeps the user name under which it was started.

If you do not assign a specific user name to the server in the application
definition, but use the APPLICATION USERNAME clause, ACMS assigns
the user name of the application to the server when it starts up. If you assign a
specific user name to the server with the USERNAME clause in the application
definition, ACMS assigns that name to the server when it starts up. In both
these cases, the user name changes if you define the server to have a dynamic
user name.

You cannot combine the USERNAME OF TERMINAL USER and DYNAMIC
USERNAME subclauses.

When a server process is created, it uses the group logical name table for the UIC
that corresponds to the user name with which the server is created. This group
logical name table remains in use for the life of the server process. For servers
with dynamic user names, the group logical name table does not change if the
user name changes and the corresponding UIC is in a different group.

Servers defined with the DYNAMIC USERNAME subclause do not restore the
initial user name before running down. Therefore, the OpenVMS accounting
facility will charge the resources used by the server to the last user who selected
a task in that server instance. However, the correct ACCOUNT field is used
because ACMS does not modify that field in the process header.

Example

SERVER IS
PERSONNEL_SERVER: DCL PROCESS;

REUSABLE;
DYNAMIC USERNAME;

END SERVER;

PERSONNEL_SERVER is a reusable DCL server with a dynamic user name.

Task Group Definition Clauses 4–25

FIXED USERNAME Subclause (Server)

FIXED USERNAME Subclause (Server)

Specifies that the user name, UIC, and default directory of the server are those
associated with the user name under which the server starts.

Format

FIXED USERNAME ;

Clause Default

The FIXED USERNAME clause is optional. The default is the control attribute
defined for the server in the application definition.

Note

If you define a server to have a fixed user name, the server always keeps the
same user name, UIC, and default directory under which it started.

Example

SERVER IS
PERSONNEL_SERVER: DCL PROCESS;

REUSABLE;
FIXED USERNAME;

END SERVER;

PERSONNEL_SERVER is a reusable DCL server with a fixed user name.

4–26 Task Group Definition Clauses

FORMS Clause (Task Group)

FORMS Clause (Task Group)

Names the forms the task group uses.

Format
�

FORM IS
FORMS ARE

�
form-name IN form-file-spec WITH NAME form-label-name [,...] ;

Parameters

form-name
The name of the form that the tasks within the task group use. You can store
multiple forms in a form file.

form-file-spec
An identifier or quoted string pointing to the location of a HP DECforms form
file or shared image file. The default device and directory are those defined
with the application-level DEFAULT DIRECTORY clause in the definition of the
application containing the task group. The default file type is .FORM for a HP
DECforms form file and .EXE for a shared image file.

form-label-name
A 1- to 31-character identifier you assign to the form with the WITH NAME
keywords. Tasks in the task group refer to a form by its form label name. You
must assign a form label name to each form.

If you do not name a form or a default form in a task definition, ACMS uses the
first form named in the task group definition containing that task.

Clause Default

The FORMS clause is required if any of the tasks in the task group use HP
DECforms forms called by exchange steps. If you do not name any forms, ACMS
does not make any forms available to the task group.

Notes

You can use the FORMS clause more than once in a single task group definition.

The forms you name with the FORMS clause must be available at run time.
If the task group contains tasks that are accessed remotely, the UIC-based file
protection on the form files you name with the FORMS clause must grant world
read access.

The form-file-spec parameter cannot be a search list.

Task Group Definition Clauses 4–27

FORMS Clause (Task Group)

Example

FORMS ARE
EMPLOYEE_INFO IN "UNODE::UDEVICE:[UNAME.NEW_PERS]EMPLOYEE_INFO"

WITH NAME EMPLOYEE_INFO_LABEL,
JOB_SALARY_INFO IN "UNODE::UDEVICE:[UNAME.NEW_PERS]EMPLOYEE_INFO"

WITH NAME JOB_SALARY_LABEL;

Each task in the task group uses a form label name to refer to the form it uses.
In this example, the unique form label names are EMPLOYEE_INFO_LABEL
and JOB_SALARY_LABEL.

4–28 Task Group Definition Clauses

IMAGE Subclause (Processing)

IMAGE Subclause (Processing)

Names the OpenVMS image that ACMS runs when users select an image task.

Format

IMAGE IS image-file-spec [IN server-name];

Parameters

image-file-spec
The file specification of the OpenVMS image you want to run. A file specification
is either an identifier or a quoted string pointing to the location of the file. The
default file type is .EXE. The default device and directory are those defined for
the server as control attributes in the application definition.

server-name
The name of the server in which the image is executed. When you use the
IMAGE subclause, the server you name must be a DCL server and must be
declared in the definition of the task group containing the task you are defining.
If you do not name a server, ACMS uses the last server named in the immediately
preceding SERVERS clause.

Clause Default

The IMAGE processing subclause is optional; if you do not use it, ACMS does not
run an OpenVMS image. However, if you are defining a task directly in a task
group definition, you must include the CALL, DATATRIEVE COMMAND, DCL
COMMAND, or IMAGE processing subclause within the TASKS clause.

Notes

Any image you name must run in a DCL server.

You can pass the contents of a selection string to an image in a processing step by
using that string as a set of one or more parameters to the command.

The selection string provided by the terminal user can be separated by ACMS
into parameters P1 through P8. Each parameter is delimited by a space or tab.

At run time, ACMS converts any unquoted alphabetic characters to uppercase.
To include spaces or tabs in a parameter or to keep a character in lowercase, the
terminal user encloses the string with double quotation marks. To include
a double quotation mark character in the string itself, the terminal user
must enclose that character in double quotation marks. ACMS does not treat
exclamation points or single quotation marks as special characters. Therefore,
you do not have to enclose these characters in double quotation marks.

The image can access parameters P1 through P8 by using the OpenVMS Run-
Time Library routine that accesses DCL symbols. This routine is LIB$GET_
SYMBOL. See OpenVMS RTL Library (LIB$) Manual for more information.

For more information on DCL command symbol substitution, see OpenVMS
User’s Manual.

Task Group Definition Clauses 4–29

IMAGE Subclause (Processing)

Example

TASK IS DATR: PROCESSING
IMAGE IS "SYS$SYSTEM:DTR32"

IN COMMON_UTILITY_SERVER;
END TASK;

The DATR task uses the server COMMON_UTILITY_SERVER to invoke an
OpenVMS image that runs DTR32.

4–30 Task Group Definition Clauses

INITIALIZATION PROCEDURE Subclause (Server)

INITIALIZATION PROCEDURE Subclause (Server)

Names a procedure that runs when a procedure server image is started. An
initialization procedure performs such activities as opening files used by the
procedures handled by a server.

Format
�

INITIALIZATION
INITIAL

�
PROCEDURE IS initial-procedure-entry-name ;

Parameter

initial-procedure-entry-name
The entry point name of the initialization procedure called in the procedure
server image.

Clause Default

The INITIALIZATION PROCEDURE subclause is optional. If you do not name
an initialization procedure, ACMS does not run any procedures when the
procedure server image is started.

Notes

You can use the INITIALIZATION PROCEDURE subclause only when defining a
procedure server.

The initialization procedure for a server runs only when the server process is
started; it does not run when each task using the server runs or when each
processing step using the server runs. However, servers can be started at any
time while the application is starting or is started, depending on the processing
load of the application.

When you name an initialization procedure for a procedure server, you normally
also name a termination procedure for that server.

You can name only one initialization procedure for each server you define.

You can name the initialization procedure for a server in the PROCEDURES
subclause for that server. However, you must also name the procedure with the
INITIALIZATION PROCEDURE subclause.

Example

SERVER IS
DEPARTMENT_SERVER:

PROCEDURE IMAGE IS "ACMS$EXAMPLES:DEPARTGRP.EXE";
INITIALIZATION PROCEDURE IS DEPART_STARTUP;
TERMINATION PROCEDURE IS DEPART_SHUTDOWN;
PROCEDURES ARE

REVIEW_HISTORY_GET,REVIEW_SCHEDULE_GET, REVIEW_UPDATE_GET;
END SERVER;

Task Group Definition Clauses 4–31

INITIALIZATION PROCEDURE Subclause (Server)

When DEPARTMENT_SERVER is started, ACMS runs the initialization
procedure whose entry point in the procedure server image is DEPART_
STARTUP.

4–32 Task Group Definition Clauses

MESSAGE FILES Clause (Task Group)

MESSAGE FILES Clause (Task Group)

Names the message files used by the GET ERROR MESSAGE clause in the
definitions of tasks in a task group.

Format

MESSAGE
 FILE IS

FILES ARE

�
message-file-spec [,...] ;

Parameter

message-file-spec
An identifier or quoted string pointing to the location of a message file with
an .EXE file type. The default device and directory are those defined with
the application-level DEFAULT DIRECTORY clause in the definition of the
application containing the task group. The default file type is .EXE. If you name
more than one message file, use commas to separate the file specifications.

Clause Default

The MESSAGE FILES clause is optional. However, if your application uses
user-defined error message files and uses the GET ERROR MESSAGE clause in
task definition, you must name the message files used by those tasks. If you do
not name any error message files, ACMS uses only the OpenVMS system message
file.

Notes

Because the application execution controller loads all the message files for an
application, message codes for different task groups must not conflict.

The message files you name with the MESSAGE FILES clause must be available
at run time.

You can use the MESSAGE FILES clause more than once in a single task group
definition.

Do not confuse task group message files with global symbols used in a task
definition GET ERROR MESSAGE clause. ACMS cannot resolve these global
symbols to task group message files unless the message files are part of an object
module or user-specified object library, or a shared image library. The symbols
are then resolved by the /OBJECT or /USERLIBRARY qualifiers of the BUILD
GROUP command.

See HP ACMS for OpenVMS Writing Server Procedures for information on
creating message files for ACMS applications.

Examples

1. MESSAGE FILE IS "ACMS$EXAMPLES:DEPARTMSG.EXE";

The name of the message file is DEPARTMSG.EXE. The file is in the directory
associated with the logical name ACMS$EXAMPLES.

Task Group Definition Clauses 4–33

MESSAGE FILES Clause (Task Group)

2. MESSAGE FILE IS DEPARTMSG;

This example defines the error message file as the file associated with
the DEPARTMSG logical name. DEPARTMSG is an identifier and does
not require quotation marks. However, because all the characters in
DEPARTMSG are valid for an OpenVMS file specification, DEPARTMSG
can be a file name.

4–34 Task Group Definition Clauses

PROCEDURE SERVER IMAGE Subclause (Server)

PROCEDURE SERVER IMAGE Subclause (Server)

Identifies a server as a procedure server and names the procedure server image
that does processing work for one or more tasks.

Format

PROCEDURE SERVER IMAGE IS procedure-image-file-spec;

Parameter

procedure-image-file-spec
The file specification of the .EXE file created by linking the following modules:

• Object module created as a result of building the task group containing that
server

• Object modules of the procedures handled by that server including step
procedures, cancel procedures, and initialization and termination procedures

• Object modules for message files named in the task group definition

The procedure image file can be either a file specification enclosed in quotation
marks or an identifier. The default file type is .EXE. The default device and
directory are those of the server.

Clause Default

You must identify a server type as either a DCL PROCESS or a PROCEDURE
SERVER IMAGE.

Notes

Use the PROCEDURE SERVER IMAGE subclause only to define a procedure
server.

All processing work done in a procedure server must be done using the CALL
clause or subclause.

Any procedure server images you name with the PROCEDURE SERVER IMAGE
subclause must be available at run time. In addition, any files used by those
images must be available.

Example

SERVER IS
DEPARTMENT_SERVER

PROCEDURE IMAGE IS "ACMS$EXAMPLES:DEPARTGRP.EXE";
INITIALIZATION PROCEDURE IS DEPART_START;
TERMINATION PROCEDURE IS DEPART_STOP;
PROCEDURES ARE

REVIEW_HISTORY_GET,REVIEW_SCHEDULE_GET,REVIEW_UPDATE_GET;
END SERVER;

The name of the file containing the executable image associated with
DEPARTMENT_SERVER is DEPARTGRP.EXE. The file is in the directory
associated with the logical name ACMS$EXAMPLES.

Task Group Definition Clauses 4–35

PROCEDURES Subclause (Server)

PROCEDURES Subclause (Server)

Names the step procedures that can run in a procedure server.

Format
�

PROCEDURE IS
PROCEDURES ARE

�
entry-name [,...] ;

Parameter

entry-name
The entry point of a procedure in the procedure server image. If you name more
than one procedure, separate the entry names with commas.

Clause Default

The PROCEDURES subclause is required for each procedure server you name in
a task group. You must name at least one procedure for each procedure server.

Notes

Use the PROCEDURES subclause only when defining a procedure server.

Each procedure named in a CALL processing clause or subclause must be named
in the PROCEDURES subclause for a procedure server.

You can include the name of any cancel procedure, initialization procedure, or
termination procedure you define for the server in the PROCEDURES subclause
for that server. If you have a large number of procedures in a procedure server,
you can include more than one PROCEDURES subclause in the procedure server
definition. All entry points are included in the server definition that ADU creates.

Examples

1. SERVER IS
DEPARTMENT_SERVER

PROCEDURE IMAGE IS "ACMS$EXAMPLES:DEPARTGRP.EXE";
INITIALIZATION PROCEDURE IS DEPART_START;
TERMINATION PROCEDURE IS DEPART_STOP;
PROCEDURES ARE

REVIEW_HISTORY_GET,REVIEW_SCHEDULE_GET,REVIEW_UPDATE_GET;
END SERVER;

Three procedures can be used in DEPARTMENT_SERVER.
The entry points of these procedures in the procedure server image are
REVIEW_HISTORY_GET, REVIEW_SCHEDULE_GET, and
REVIEW_UPDATE_GET.

4–36 Task Group Definition Clauses

PROCEDURES Subclause (Server)

2. SERVERS ARE
DIMS_SERVER:

INITIALIZATION PROCEDURE IS DIMS_UPDATE_STARTUP;
TERMINATION PROCEDURE IS DIMS_UPDATE_STOP;
CANCEL PROCEDURE IS UPDATE_CANCEL;
PROCEDURES ARE

CHECK_BOM, CHECK_BOM_KIT, CHECK_COMP_PART_NUM, CHECK_DELETE,
CHECK_KIT_PART_NUM, CHECK_PCS_PART_NUM, CHECK_USED_ON_COMP,
CHECK_USED_ON_KITS, CLEAR_BOM_RECORDS, CLEAR_DELETE_RECORDS,
CLEAR_KIT_RECORDS, CLEAR_PCS_RECORDS, CLEAR_PROMPT_STRING;

PROCEDURES ARE
CLEAR_RECORDS, CLEAR_REVIEW_RECORDS, CLEAR_SUS_LINK_REV_RECORDS,
CLEAR_USED_ON_RECORDS, DELETE_RECORD, GET_BOM, GET_USED_ON,
LOAD_BOM, LOAD_USED_ON_KITS, READ_SUS_LINK_FILE, READ_SUSPENSE_FILE,
REWRITE_SUSPENSE_FILE, REWRITE_SUS_LINK_REC, REWRITE_SUSPENSE_REC;

PROCEDURES ARE
START_SUSPENSE_FILE, START_SUSPENSE_LINKAGE_FILE,
WRITE_SUSPENSE_FILE, WRITE_KIT_SUSPENSE_FILE, WRITE_LINK_SUS,
WRITE_MODIFIED_BOM, WRITE_MODIFIED_KIT, WRITE_MODIFIED_PCS,
WRITE_PCS_SUSPENSE_FILE, WRITE_USED_ON_LINK_SUS;

END SERVER;

Thirty-seven procedures can be used in DIMS_SERVER. The entry points of
these procedures in the procedure server image are listed in three separate
PROCEDURES subclauses.

Task Group Definition Clauses 4–37

REQUEST LIBRARIES Clause (Task Group)

REQUEST LIBRARIES Clause (Task Group)

Names the request libraries the task group uses.

Format

REQUEST
�

LIBRARY IS
LIBRARIES ARE

�
request-library-file-spec [WITH NAME library-name] [,...] ;

Parameters

request-library-file-spec
An identifier or quoted string pointing to the location of a TDMS request library
or Request Interface user request procedure shared image file. The default device
and directory are those defined with the application-level DEFAULT DIRECTORY
clause in the definition of the application containing the task group. The default
file type is .RLB for a TDMS request library and .EXE for a Request Interface
user request procedure shared image file.

library-name
A 1- to 31-character identifier you assign to the request library with the WITH
NAME keywords. Tasks in the task group refer to a request library by its library
name. If you name more than one request library in a task group definition,
you must assign a library name to each library. However, if you name only
one request library, you do not have to assign a library name to that library.
In this case, the default name of the request library is the request library file
specification.

If you do not name a request library in a task definition, the request library
defaults to the first request library named in the task group definition containing
that task.

Clause Default

The REQUEST LIBRARIES clause is required if any of the tasks in the task
group use TDMS requests called by exchange steps. If you do not name any
request libraries, ACMS does not make any request libraries available to the task
group.

Notes

You can use the REQUEST LIBRARIES clause more than once in a single task
group definition.

The request libraries you name with the REQUEST LIBRARIES clause must be
available at run time. If the task group contains tasks that are accessed remotely,
the UIC-based file protection on the request library files you name with the
REQUEST LIBRARIES clause must grant world read access.

The request-library-file-spec parameter cannot be a search list.

4–38 Task Group Definition Clauses

REQUEST LIBRARIES Clause (Task Group)

Examples

1. REQUEST LIBRARY IS "ACMS$EXAMPLES:DEPART.RLB";

In this example, the file name of the request library is DEPART.RLB. The file
is in the directory associated with the logical name ACMS$EXAMPLES.

2. REQUEST LIBRARIES ARE
"ACMS$EXAMPLES:DEPART.RLB" WITH NAME DEPARTREQ,
"ACMS$EXAMPLES:PERSREQ.RLB" WITH NAME PERSREQ;

When you name more than one request library for a task group, you must
use the WITH NAME keywords to assign names to each library. Each task in
the task group uses a library name to refer to the request library it uses. In
this example, the unique names of the request libraries are DEPARTREQ and
PERSREQ.

Task Group Definition Clauses 4–39

REUSABLE Subclause (Server)

REUSABLE Subclause (Server)

Identifies a server process as able to process more than one processing step
for more than one task without being restarted. Server processes that are not
reusable must be started each time they are needed.

Format

[NOT] REUSABLE ;

Clause Default

The REUSABLE subclause is optional. DCL servers and procedure servers are
reusable by default.

Notes

When a server is reusable, ACMS can delete the server process only when server
context is released or at the end of a task instance. Except for servers with
USERNAME OF TERMINAL USER, ACMS keeps the server process active for
multiple processing steps. When a server is not reusable, ACMS deletes the
server process at the end of each processing step.

Only servers that are reusable can retain server context between processing steps
of a task.

If a server has the USERNAME OF TERMINAL USER subclause, that server
cannot be used by more than one task instance, whether it is reusable or not.
ACMS runs down the server when server context is released.

Nonreusable procedure servers are designed for use where a step procedure opens
channels to the task submitter’s terminal, but does not close the channels before
completing.

You can use a nonreusable procedure server to avoid ACMS canceling the task
when a step procedure does not close all open channels to a task submitter’s
terminal. For optimal performance, nonreusable procedure servers should include
only step procedures that do not close all open channels to a task submitter’s
terminal.

Nonreusable procedure servers cannot participate in distributed transactions.
ADU does not build the task group, if a task that starts or participates in a
distributed transaction contains a procedure call to a procedure server defined
with the NOT REUSABLE clause.

Example

SERVER IS
PERSONNEL_SERVER: DCL PROCESS;

REUSABLE;
DYNAMIC USERNAME;

END SERVER;

PERSONNEL_SERVER is a reusable DCL server with a dynamic user name.

4–40 Task Group Definition Clauses

RUNDOWN ON CANCEL Subclause (Server)

RUNDOWN ON CANCEL Subclause (Server)

Causes a procedure server to exit when a task cancel occurs while the task is
keeping context in that server. When the server exits, ACMS releases server
context.

Format

RUNDOWN ON CANCEL [IF INTERRUPTED] ;
NO RUNDOWN ON CANCEL ;

Clause Default

The RUNDOWN ON CANCEL subclause is optional. The default characteristic is
RUNDOWN ON CANCEL.

Notes

If you use the RUNDOWN ON CANCEL subclause and a task instance has active
server context when the task is canceled, ACMS releases that context and stops
that server process.

If you specify the RUNDOWN ON CANCEL IF INTERRUPTED subclause, ACMS
runs down the server process only if ACMS interrupts the execution of a step
procedure due to an exception. For example, ACMS does not run down the server
process if the task was simply retaining server context. Use the RUNDOWN ON
CANCEL IF INTERRUPTED subclause to avoid unnecessary process deletions
and creations.

When you use the NO RUNDOWN ON CANCEL subclause, ACMS does not
release context or exit the server image. This can provide you with performance
gains.

If you use the NO RUNDOWN ON CANCEL subclause, you must make sure
that active recovery units are ended and all locks are released when the task is
canceled. You can use a cancel procedure to release locks.

Use the NO RUNDOWN ON CANCEL subclause only when defining a procedure
server.

Example

SERVER IS
VR_READ_SERVER:

PROCEDURE SERVER IMAGE IS "AVERTZ_DEFAULT:VR_READ_SERVER.EXE";
INITIALIZATION PROCEDURE IS VR_READ_INIT;
TERMINATION PROCEDURE IS VR_TERM;
ALWAYS EXECUTE TERMINATION PROCEDURE ON RUNDOWN;
RUNDOWN ON CANCEL IF INTERRUPTED;
PROCEDURE ARE

VR_COMPUTE_BILL_PROC,
VR_FIND_CU_PROC,
VR_FIND_SI_PROC;

END SERVER;

Task Group Definition Clauses 4–41

RUNDOWN ON CANCEL Subclause (Server)

In this example, ACMS runs down the VR_READ_SERVER process only if an
exception occurs which forces ACMS to interrupt the execution of one of the step
procedures.

4–42 Task Group Definition Clauses

SERVERS Clause (Task Group)

SERVERS Clause (Task Group)

Defines the servers that handle the processing work for the tasks in a task group.

Format
�

SERVER IS
SERVERS ARE

�
{ server-name : <server-subclause> [,...] } ...

END
 SERVER

SERVERS

�
;

Parameters

server-name
A 1- to 31-character unique name. Use this name to refer to the server from
other clauses in the task group definition and from the application definition.

server-subclause
Defines the characteristics of a server. Section 4.3 explains each of these
subclauses.

Clause Default

The SERVERS clause is required. You must name at least one server for each
task group you define.

Notes

You can use the SERVERS ARE clause more than once in a single task group
definition.

You can define two types of servers: DCL servers and procedure servers. When
you define a procedure server, you create an executable image file that contains
subroutines you call from task processing steps.

Use the SERVER subclauses to define DCL and procedure server attributes.

Examples

1. SERVER IS
PERSONNEL: DCL PROCESS;

FIXED USERNAME;
END SERVER;

The PERSONNEL server is a DCL server; it does the processing work for
DCL commands or procedures, DATATRIEVE commands or procedures, or
OpenVMS images. The user name assigned to the server is the user name
under which the server starts.

Task Group Definition Clauses 4–43

SERVERS Clause (Task Group)

2. SERVER IS
DEPARTMENT_SERVER:

PROCEDURE IMAGE IS "ACMS$EXAMPLES:DEPARTGRP.EXE";
INITIALIZATION PROCEDURE IS DEPART_STARTUP;
TERMINATION PROCEDURE IS DEPART_SHUTDOWN;
PROCEDURES ARE REVIEW_HISTORY_GET,

REVIEW_SCHEDULE_GET, REVIEW_UPDATE_GET;
END SERVER;

DEPARTMENT_SERVER is a procedure server: it handles the work of
processing steps that include calls to subroutines. The procedure server
image is in the file DEPARTGRP.EXE, which is in the directory associated
with the logical name ACMS$EXAMPLES. The entry points in this image of
the procedures that run when the image is started and stopped are DEPART_
STARTUP and DEPART_SHUTDOWN. In addition, the entry points in the
procedure server image of the procedures handled by the DEPARTMENT_
SERVER are:

• REVIEW_HISTORY_GET

• REVIEW_SCHEDULE_GET

• REVIEW_UPDATE_GET

4–44 Task Group Definition Clauses

TASKS Clause (Task Group)

TASKS Clause (Task Group)

Identifies the tasks belonging to the task group you are defining.

Format
�

TASK IS
TASKS ARE

�
�����������������������
����������������������

task-name:

������������������
�����������������

���������������
��������������

[NO] DELAY;
[NO] WAIT;

�

LOCAL;
GLOBAL;

�

[NOT] CANCELABLE BY

TERMINAL USER
TASK SUBMITTER

�
;

PROCESSING IS <processing-subclause>

���������������
�������������	

TASK DEFINITION IS task-path;

������������������
����������������	

�����������������������
���������������������	

...

END
 TASK

TASKS

�
;

Parameters

task-name
A unique name you create to identify a task. You can use as many as 31
characters to define a task name. You must assign a unique task name to each
task you define in the task group.

processing-subclause
A subclause you use to define a task directly in a task group definition. You can
define a task directly in a task group definition if that task:

• Consists of a single unconditional processing step

• Specifies no step actions

• Specifies no default server or default request library

• Uses no workspaces other than the ACMS system workspaces

If a task definition does not follow these rules, name the task in the task group
definition, but define it separately and refer to it by its CDD task path.

A processing subclause describes the processing work for a task. The four
processing subclauses are: CALL, CALL TASK, DATATRIEVE COMMAND, DCL
COMMAND, and IMAGE. Section 4.2 explains these subclauses.

Task Group Definition Clauses 4–45

TASKS Clause (Task Group)

task-path
The CDD path name of a task definition. Use the task-path parameter to specify
the location in the dictionary of task definitions not included in the task group
definition. You must use the full CDD path name of each task unless you set your
CDD default to the appropriate directory.

Keywords

[NO] DELAY
Allows three seconds before ACMS clears the last screen of a task when that task
ends. If you use the DELAY keyword, you cannot use the WAIT keyword in the
same task definition. When you use the DELAY keyword, ACMS supplies it as a
default value for the control definition of the task in the application. If you use
the DELAY keyword, it must precede the processing subclause for the task.

[NO] WAIT
When a task ends, the WAIT keyword causes the terminal to display a message
requesting the user to press Return when finished looking at the information on
the screen. If you do not use the WAIT keyword, ACMS returns the user to the
menu when a task ends. When you use the WAIT keyword, you cannot use the
DELAY keyword in the same task definition. If you use the WAIT keyword, it
must precede the processing subclause for the task.

GLOBAL
Specifies that a task can be selected from a menu, can be called by an agent, or
can be called by another task. GLOBAL is the default task attribute.

LOCAL
Specifies that a task can be called only by another task.

CANCELABLE
Specifies whether or not a task can be canceled by a task submitter.

Clause Default

The TASKS clause is required. You must name at least one task for each task
group you define.

Notes

Every task must have a unique name.

You can use the TASKS clause more than once in a single task group definition.

If a task contains a block step, you cannot include the definition for that task in
the task group definition.

You can, in a single task group definition, name tasks whose definitions are
included in the task group definition, as well as tasks that are defined separately
and referenced by the task group definition.

If you do not use the IN SERVER keywords with a processing subclause, ACMS
uses the last server named in the immediately preceding SERVERS clause.

If you use neither the DELAY nor the WAIT keywords, ACMS returns the user to
the menu when the task ends, unless the application definition specifies WAIT or
DELAY for the task.

4–46 Task Group Definition Clauses

TASKS Clause (Task Group)

Examples

1. TASKS ARE
EDITOR: DELAY;

PROCESSING IS DCL COMMAND IS "$EDIT/TPU ’P1’"
IN PRIVATE_UTILITY_SERVER;

MAIL : PROCESSING IS
DCL COMMAND IS "$MAIL"
IN PRIVATE_UTILITY_SERVER;

END TASKS;

The two tasks named by this TASKS clause are: EDITOR and MAIL. The
EDITOR task executes the DCL command EDIT/TPU, using a parameter the
user supplies as a selection string. The server PRIVATE_UTILITY_SERVER
handles this processing work. Because the task definition includes a DELAY
clause, ACMS waits three seconds before clearing the last screen of the task
and returning the user to a menu.

The MAIL task executes the DCL command MAIL within the DCL server
PRIVATE_UTILITY_SERVER.

2. TASKS ARE
NEW_EMPLOYEE: TASK DEFINITION IS NEW_EMPLOYEE_TASK;
CHANGE_PROFILE: TASK DEFINITION IS CHANGE_PROFILE_TASK;

END TASKS;

In this example, the TASKS clause names the tasks NEW_EMPLOYEE and
CHANGE_PROFILE associated with a task group. Both these tasks have
task definitions stored in the dictionary. In this example, the default directory
is DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES. Therefore, you need
use only the given names of the task definitions, rather than their full CDD
path names.

Task Group Definition Clauses 4–47

TERMINATION PROCEDURE Subclause (Server)

TERMINATION PROCEDURE Subclause (Server)

Names a procedure that runs when a procedure server image is stopped.

Format
�

TERMINATION
TERMINAL

�
PROCEDURE IS terminal-procedure-entry-name ;

Parameter

terminal-procedure-entry-name
The entry point of the termination procedure in the procedure server image.

Clause Default

The TERMINATION PROCEDURE subclause is optional. If you do not name a
termination procedure, ACMS does not run any procedures when the procedure
server is stopped.

Notes

Use the TERMINATION PROCEDURE subclause only when defining a procedure
server.

A termination procedure you name for a server runs only when the server
is stopped; it does not run when each task using the server stops or when a
processing step using the server stops. However, servers can be stopped at any
time while the application is running, depending on the processing load of the
application.

When you name a termination procedure for a procedure server, you normally
also name an initialization procedure for that server.

You can name only one termination procedure for each server you define.

A termination procedure performs such activities as closing files used by the
tasks handled by a server.

You can name a termination procedure for a server in the PROCEDURES
subclause for that server. However, you must also name the procedure in the
TERMINATION PROCEDURE subclause.

By default, if a procedure server process runs down because of a task cancel,
ACMS does not process the termination procedure. To override this default, use
the ALWAYS EXECUTE TERMINATION PROCEDURE server subclause.

4–48 Task Group Definition Clauses

TERMINATION PROCEDURE Subclause (Server)

Example

SERVER IS
DEPARTMENT_SERVER:

PROCEDURE IMAGE IS "ACMS$EXAMPLES:DEPARTGRP.EXE";
INITIALIZATION PROCEDURE IS DEPART_STARTUP;
TERMINATION PROCEDURE IS DEPART_SHUTDOWN;
PROCEDURES ARE

REVIEW_HISTORY_GET,REVIEW_SCHEDULE_GET,REVIEW_UPDATE_GET;
END SERVER;

When DEPARTMENT_SERVER is stopped, ACMS runs a termination procedure.
The entry point of this procedure in the procedure server image is DEPART_
SHUTDOWN.

Task Group Definition Clauses 4–49

USERNAME Subclause (Server)

USERNAME Subclause (Server)

Indicates that the server process runs under the OpenVMS user name of the
terminal user, using the UIC and default directory of that user.

Format

USERNAME IS USERNAME OF TERMINAL USER ;

Clause Default

ACMS assigns to the server process the user name you give to the execution
controller in the application definition.

Notes

The USERNAME subclause is overridden by any user name specified for the
server in the application definition.

If you define a server to have the user name of the terminal user, that server
cannot be reusable and cannot have a dynamic user name.

The REUSABLE server subclause in the task group definition is the default for
both DCL and procedure servers. However, using the clause USERNAME OF
TERMINAL USER in application or task group definitions overrides this default
and creates servers that are not reusable. Every time a terminal user selects
a task running a server defined with the USERNAME OF TERMINAL USER
clause, a separate server process is created for that user. For best performance,
your application should run as few servers as needed to perform the application.

Example

SERVER IS
PRIVATE_UTILITY_SERVER: DCL PROCESS;

USERNAME OF USER;
NOT REUSABLE;

END SERVER;

The user name of PRIVATE_UTILITY_SERVER is the same as the user name of
the terminal user.

4–50 Task Group Definition Clauses

WORKSPACES Clause (Task Group)

WORKSPACES Clause (Task Group)

Declares one or more workspaces used by the tasks in a task group.

Format
�

WORKSPACE IS
WORKSPACES ARE

�
�����������������
����������������

record-path-name�
�������������

WITH

������������
�����������

��������������

NAME unique-name

TYPE

� GROUP
TASK
USER

�

ACCESS
�

RETRIEVAL
UPDATE [[NO] LOCK]

�

��������������

������������
����������	

�
�������������

�����������������
���������������	

[,...] ;

Parameters

record-path-name
The CDD path name of the record description for the workspace. You must use
the full CDD record path name unless you have set your CDD default to the
directory where the record definition is stored. In that case, you can use only the
given name of the workspace.

If you name more than one workspace, separate the record path names with
commas.

unique-name
A unique name for a workspace. The name of each workspace must be unique
within the workspace declarations for the task group. If two or more given names
of record path names are identical, you use the unique name parameter to define
a different name for the workspace. If you do not use the unique-name parameter,
the default name of the workspace is the given name of the workspace.

Keywords

ACCESS
Identifies the access characteristics of a workspace. The types of access you can
define are RETRIEVAL and UPDATE. Because TASK workspaces always have
update access, define access characteristics only for GROUP and USER type
workspaces. The default access type is RETRIEVAL.

GROUP
Identifies the workspace as a GROUP workspace. The contents of a GROUP
workspace can be used by many instances of the same or different tasks. ACMS
maintains these contents from application startup to application shutdown.

Task Group Definition Clauses 4–51

WORKSPACES Clause (Task Group)

LOCK
Indicates that a task instance can lock the workspace from use by other tasks
when the task starts, and unlock it when the task stops or is canceled. If you do
not use the LOCK keyword, the workspace is not locked. The keyword applies
only to GROUP and USER workspaces defined for UPDATE access.

RETRIEVAL
Indicates that a task can use and make changes to the contents of the workspace.
However, when the task finishes, ACMS does not copy changes into the master
copy of the workspace. RETRIEVAL is the default access type for GROUP and
USER workspaces.

TASK
Identifies the workspace as a TASK workspace. The contents of a TASK
workspace are kept for just one instance of a task. TASK is the default type
of workspace.

TYPE
Identifies the type of workspace being used by the task. The workspace types you
can define are: GROUP, TASK, and USER.

UPDATE
Indicates that the task can make changes to the contents of the workspace.
When the task finishes, ACMS copies these changes to the master copy of
the workspace. Unless you use the LOCK keyword, ACMS does not lock the
workspace against updates from other tasks or users.

USER
Indicates the workspace is a USER workspace. The contents of a USER
workspace can be used by a single user for many instances of the same or
different tasks. A user’s copy of a USER workspace exists from the time the user
first requires the workspace until that user logs out of ACMS.

Clause Default

The WORKSPACES clause is optional. If you do not name workspaces in a task
group definition, tasks in that group can use only workspaces declared in task
definitions.

In addition, ACMS provides a set of system workspaces that are available by
default. The system workspaces are:

• ACMS$PROCESSING_STATUS

Contains processing status handling information

• ACMS$SELECTION_STRING

Contains a string submitted at task selection time

• ACMS$TASK_INFORMATION

Contains task information

You cannot name the system workspaces in the WORKSPACES clause. System
workspaces are always used by the tasks in a task group and are always
implicitly declared. For a discussion of the system workspaces, see Appendix B.

4–52 Task Group Definition Clauses

WORKSPACES Clause (Task Group)

Notes

Use the USE WORKSPACES task clause to have a task access a workspace
defined in the task group definition. When you use the USE WORKSPACES
clause in a task definition, you can override access restrictions defined for a
workspace in the task group.

Because TASK is the default workspace type and the ACCESS keyword is valid
only for GROUP and USER workspaces, you must include the TYPE keyword if
you use the ACCESS keyword.

When you want to specify the version of a workspace that has the highest version
number, use a semicolon after the workspace name, followed by a zero. Using a
semicolon alone causes an error.

ADU lets you use the LOCK keyword when defining a TASK workspace. However,
this keyword has no effect at run time.

Do not name the ACMS system workspaces in the WORKSPACES clause.

You can use the WORKSPACES clause more than once in a task group definition.

The unique name of a workspace can be different from the name of the record
description for that workspace. For example, suppose you assign a unique name
to SAMPLE_WORKSPACE:

WORKSPACE IS SAMPLE_WORKSPACE WITH NAME EXAMPLE1;

The record description for SAMPLE_WORKSPACE can be as follows:

DEFINE RECORD SAMPLE_WORKSPACE.
SAMPLE STRUCTURE.

A.
B.

END SAMPLE STRUCTURE.
END SAMPLE_WORKSPACE RECORD.

The name of the record description SAMPLE_WORKSPACE indicates the location
of the record in the dictionary. The unique name of the workspace, EXAMPLE1,
does not have to be the same as the name of the record description or the
structure, and is used only within the task group definition.

In a task definition, to refer to the A field in the EXAMPLE1 workspace, you can
use: EXAMPLE1.SAMPLE.A, SAMPLE.A, A, or EXAMPLE1.A.

If you add another field A to the workspace, the record definition looks like this:

DEFINE RECORD SAMPLE_WORKSPACE.
SAMPLE STRUCTURE.

A.
B.
X STRUCTURE.

A.
END X STRUCTURE.

END SAMPLE STRUCTURE.
END SAMPLE_WORKSPACE.

You encounter an ambiguous field reference when using the following field names
in a definition: A or EXAMPLE1.A. The reference EXAMPLE1.SAMPLE.A is still
valid.

Task Group Definition Clauses 4–53

WORKSPACES Clause (Task Group)

The ADU does not support CDD objects containing branch information. When the
ADU attempts to access a CDD object (for example, an ACMS task) containing
branch information, the ADU generates errors similar to the following and aborts:

%ADU-E-ESTFETNEXT, Unexpected CDD Error
%CDD-W-ILLBRANCH, TSK1(1:V1:1) contains branch information

Examples

1. WORKSPACE IS
DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS.DEPT_WORKSPACE;

This example declares a workspace that can be used by the tasks in the
DEPARTMENT task group. The given name of the workspace is DEPT_
WORKSPACE. The default workspace type is TASK.

2. WORKSPACE IS DEPT_WORKSPACE WITH TYPE GROUP ACCESS UPDATE LOCK;

This example also declares a workspace that can be used by the tasks in the
DEPARTMENT task group. However, in this example, CDD$DEFAULT is set
to DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS. Therefore, you
use only the given name of the workspace in the WORKSPACES clause.

Because DEPT_WORKSPACE is a group workspace, all the tasks in the group
can use the contents of the workspace and can lock the workspace from use by
other tasks. In addition, each task can update the contents of the workspace.

4–54 Task Group Definition Clauses

5
Application Definition Clauses

An application definition consists of a set of clauses that define control attributes
for tasks, servers, and the application execution controller that manages the
server processes in which tasks run.

Two application definition clauses are required. The TASK GROUPS clause
names the task group or groups that define the tasks of an application. The
APPLICATION USERNAME clause defines the user name with which the
execution controller runs. The other clauses in the application definition are
optional.

Four application definition clauses use two sets of keywords, one set beginning
the clause and the other set ending it. These four clauses are: SERVER
ATTRIBUTES, SERVER DEFAULTS, TASK ATTRIBUTES, and TASK
DEFAULTS. Between the keywords, you put subclauses that define the control
characteristics of servers or tasks:

SERVER ATTRIBUTES ARE
<server-subclauses>

END SERVER ATTRIBUTES;

When ADU begins processing an application definition, it assigns default
values to all characteristics of tasks and servers. You can change these default
values by assigning different task characteristics to the tasks of an application
with the TASK ATTRIBUTES or TASK DEFAULTS clause, and by assigning
different server characteristics to the servers of an application with the SERVER
ATTRIBUTES or SERVER DEFAULTS clause. Figure 5–1 shows the full syntax
of the application definition.

Application Definition Clauses 5–1

Application Definition Clauses

Figure 5–1 Application Definition Syntax

�
� APPLICATION DEFAULT DIRECTORY IS

�
default-directory
USERNAME DEFAULT DIRECTORY

�
;

�
�

�
� APPLICATION NAME

�
TABLE IS
TABLES ARE

� � logical-name-table
quoted-string

�
[,...] ;

�
� ...

�
�������

APPLICATION
�

LOGICAL
LOGICALS

� NAME IS
NAMES ARE

�
� � logical-name

logical-string

�
=
� equivalence-name

equivalence-string

� �
[,...] ;

�
�������

...

� APPLICATION USERNAME IS user-name ; �

� [NO] AUDIT; �

� DEFAULT APPLICATION FILE IS application-database-file ; ��
� �

MAXIMUM
MAX

�
SERVER

�
PROCESS
PROCESSES

�
IS
�

high-number
UNLIMITED

�
;

�
�

�
� �

MAXIMUM
MAX

�
TASK

�
INSTANCE
INSTANCES

�
IS
�

high-number
UNLIMITED

�
;

�
�

�
������������

SERVER CONTROL
�

ATTRIBUTE IS
ATTRIBUTES ARE

�
� server-given-name:

[SERVER group-server-name] [IN task-group-name] ;
[<server-subclause> ...]

�
...

END SERVER CONTROL
 ATTRIBUTE

ATTRIBUTES

�
;

�
������������

...

(continued on next page)

5–2 Application Definition Clauses

Application Definition Clauses

Figure 5–1 (Cont.) Application Definition Syntax

�
�����

SERVER
�

DEFAULT IS
DEFAULTS ARE

�
<server-subclause> ...

END SERVER
 DEFAULT

DEFAULTS

�
;

�
����� ...

� SERVER MONITORING INTERVAL IS seconds ; �

�
������������

TASK CONTROL
�

ATTRIBUTE IS
ATTRIBUTES ARE

�
� task-given-name:

[TASK group-task-name] [IN task-group-name] ;
[<task-subclause> ...] ;

�
...

END TASK CONTROL
 ATTRIBUTE

ATTRIBUTES

�
;

�
������������

...

�
�����

TASK
�

DEFAULT IS
DEFAULTS ARE

�
<task-subclause> ...

END TASK
 DEFAULT

DEFAULTS

�
;

�
����� ...

������������
�����������

TASK
�

GROUP IS
GROUPS ARE

�
�

task-group-given-name:
TASK GROUP FILE IS task-group-file ;

�
...

END TASK
 GROUP

GROUPS

�
;

������������
����������	

...

Example 5–1 shows an example of a complete application definition.

Example 5–1 Application Definition

USERNAME IS PERSONNEL;

SERVER DEFAULTS ARE
DEFAULT DIRECTORY IS SYS$SAMPLE;
MAXIMUM SERVER PROCESSES IS 10;
MINIMUM SERVER PROCESSES IS 1;

END SERVER DEFAULTS;

TASK DEFAULTS ARE
ACCESS CONTROL IS (ID=ACCOUNTING, ACCESS=NONE);

END TASK DEFAULTS;

(continued on next page)

Application Definition Clauses 5–3

Application Definition Clauses

Example 5–1 (Cont.) Application Definition

TASK GROUP IS
PERSONNEL_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";

END TASK GROUP;

TASK ATTRIBUTES ARE
ADD_EMPLOYEE : TASK ADD_EMPLOYEE IN PERSONNEL_GROUP;

ACCESS IS (ID=PERSONNEL, ACCESS=EXECUTE);
DATR : TASK DATR IN PERSONNEL_GROUP;

ACCESS IS (ID=PERSONNEL, ACCESS=EXECUTE);
END TASK ATTRIBUTES;

SERVER DEFAULTS ARE
MINIMUM SERVER PROCESSES IS 2;

END SERVER DEFAULTS;

SERVER ATTRIBUTES ARE
PERSONNEL_SERVER : SERVER PERSONNEL_SERVER IN PERSONNEL_GROUP;

USERNAME IS PERSONNEL;
DYNAMIC USERNAME;

UTILITY_SERVER : SERVER UTILITY_SERVER IN PERSONNEL_GROUP;
DYNAMIC USERNAME;
USERNAME IS DEPART;

END SERVER ATTRIBUTES;

END DEFINITION;

5.1 Application Definition Clauses
Table 5–1 describes the application clauses you use to write application
definitions.

Table 5–1 Application Definition Clauses

Clause Meaning

APPLICATION DEFAULT DIRECTORY Assigns a default device and directory that
the application execution controller uses.

APPLICATION NAME TABLES Specifies which logical name tables the
application execution controller can use.

APPLICATION LOGICALS Defines one or more process logical names
for the process in which an application
execution controller runs.

APPLICATION USERNAME Assigns an OpenVMS user name under
which the application execution controller
runs.

AUDIT Keeps a record of application level events.

DEFAULT APPLICATION FILE Defines the default application database
file (.ADB) ADU uses when you do not
include a file specification with the BUILD
APPLICATION command.

MAXIMUM SERVER PROCESSES Sets the upper limit on the number of
server processes that the application can
have active at one time.

(continued on next page)

5–4 Application Definition Clauses

Application Definition Clauses
Application Definition Clauses

Table 5–1 (Cont.) Application Definition Clauses

Clause Meaning

MAXIMUM TASK INSTANCES Assigns the largest number of task
instances that can be active at one time for
an application.

SERVER ATTRIBUTES Assigns values for one or more control
attributes to one or more servers.

SERVER DEFAULTS Sets the current default value for one or
more control attributes of a set of servers.

SERVER MONITORING INTERVAL Controls how often queues are checked to
determine whether to create or delete new
server processes.

TASK ATTRIBUTES Assigns values for one or more task control
attributes of one or more tasks defined in a
task group definition.

TASK DEFAULTS Sets the current default value for one or
more task control attributes.

TASK GROUPS Names the task group or groups in the
application.

5.2 Server Subclauses
The SERVER ATTRIBUTES and SERVER DEFAULTS clauses use the same
subordinate clauses to define one or more application servers. The SERVER
ATTRIBUTES clause defines the processing characteristics of a single server,
while SERVER DEFAULTS can affect a group of servers. Table 5–2 contains a
brief description of these subclauses.

Table 5–2 Server Subclauses

Clause Meaning

AUDIT Determines whether or not ACMS keeps a record of
server events.

CREATION DELAY Controls how long ACMS waits before beginning to
create new server processes when tasks are waiting for
a server process.

CREATION INTERVAL Controls the intervals at which ACMS creates new
server processes.

DEFAULT DIRECTORY Assigns the default disk and directory for the server
processes.

DELETION DELAY Controls how long ACMS waits before deleting inactive
server processes.

DELETION INTERVAL Controls the intervals at which ACMS deletes inactive
server processes.

DYNAMIC USERNAME Specifies that the user name, UIC, and default
directory of a server process change to match those
of the terminal user each time the server process is
allocated to a task.

(continued on next page)

Application Definition Clauses 5–5

Application Definition Clauses
Server Subclauses

Table 5–2 (Cont.) Server Subclauses

Clause Meaning

FIXED USERNAME Sets the user name, UIC, and default directory of
the server process to the user name under which the
server process starts.

LOGICALS Defines a set of process logical names for the server.
Every server process associated with this server has
these logicals set when the process starts.

MAXIMUM PROCESSES Sets the largest number of server processes that the
server can use at one time.

MINIMUM PROCESSES Sets the number of server processes to the smallest
number that you want ACMS to start when it starts
the application.

NAME TABLES Specifies which logical name tables the server process
can use.

PROTECTED WORKSPACES Enables a workspace mapping option that maps the
entire task instance workspace pool during the first
procedure call to a task server.

SERVER PROCESS DUMP Specifies whether or not an OpenVMS process dump is
generated for a server process if the process terminates
abnormally.

USERNAME Assigns a user name to the server.

Figure 5–2 shows the syntax for the SERVER ATTRIBUTES clause.

5–6 Application Definition Clauses

Application Definition Clauses
Server Subclauses

Figure 5–2 SERVER ATTRIBUTES Clause Syntax

SERVER CONTROL
�

ATTRIBUTE IS
ATTRIBUTES ARE

�

��
���

server-name:���
��

���

[NO] AUDIT;

[NO]
�

PROTECTED
PROTECT

� �
WORKSPACE
WORKSPACES

�
;

CREATION DELAY IS seconds;
CREATION INTERVAL IS seconds;

�

DEFAULT DIRECTORY IS
�

default-directory
USERNAME DEFAULT DIRECTORY

�
;

DELETION DELAY IS seconds;
DELETION INTERVAL IS seconds;

�

[DYNAMIC USERNAME ;]
[FIXED USERNAME ;]

�

[NAME]
�

TABLE IS
TABLES ARE

� � logical-name-table
quoted-string

�
[,...] ;

�
LOGICAL
LOGICALS

� NAME IS
NAMES ARE

�
� logical-name

logical-string

�
=
� equivalence-name

equivalence-string

�
[,...] ;

�
MAXIMUM
MAX

�
SERVER

�
PROCESS
PROCESSES

�
IS
�

high-number
UNLIMITED

�
;

�
MINIMUM
MIN

�
SERVER

�
PROCESS
PROCESSES

�
IS low-number ;

[NO] [SERVER] PROCESS
�

DUMP
DUMPS

�
;

USERNAME IS

��
�

username

USERNAME OF
�

TERMINAL USER
APPLICATION

� ��
	 ;

���

���
���	

END SERVER CONTROL
 ATTRIBUTE

ATTRIBUTES

�
;

��
��	

...

Application Definition Clauses 5–7

Application Definition Clauses
Server Subclauses

Figure 5–3 shows the syntax for the SERVER DEFAULTS clause.

Figure 5–3 SERVER DEFAULTS Clause Syntax

SERVER
�

DEFAULT IS
DEFAULTS ARE

�

� [NO] AUDIT; ��
� [NO]

�
PROTECTED
PROTECT

� �
WORKSPACE
WORKSPACES

�
;

�
�

CREATION DELAY IS seconds;
CREATION INTERVAL IS seconds;

�
�
� DEFAULT DIRECTORY IS

�
default-directory
USERNAME DEFAULT DIRECTORY

�
;

�
�

DELETION DELAY IS seconds;
DELETION INTERVAL IS seconds;

�

[DYNAMIC USERNAME ;]
[FIXED USERNAME ;]

�
�
� [NAME]

�
TABLE IS
TABLES ARE

� � logical-name-table
quoted-string

�
[,...] ;

�
� ...

�
�������

�
LOGICAL
LOGICALS

� NAME IS
NAMES ARE

�
� � logical-name

logical-string

�
=
� equivalence-name

equivalence-string

� �
[,...] ;

�
�������

...

(continued on next page)

5–8 Application Definition Clauses

Application Definition Clauses
Server Subclauses

Figure 5–3 (Cont.) SERVER DEFAULTS Clause Syntax

�
� �

MAXIMUM
MAX

�
SERVER

�
PROCESS
PROCESSES

�
IS
�

high-number
UNLIMITED

�
;

�
�

�
� �

MINIMUM
MIN

�
SERVER

�
PROCESS
PROCESSES

�
IS low-number ;

�
�

�
� [NO] [SERVER] PROCESS

�
DUMP
DUMPS

�
;

�
�

�
��� USERNAME IS

��
�

username

USERNAME OF
�

TERMINAL USER
APPLICATION

� ��
	 ;

�
���

END SERVER
 DEFAULT

DEFAULTS

�
;

Example 5–2 shows an example of how to use the SERVER ATTRIBUTES and
SERVER DEFAULTS clauses.

Example 5–2 Example of SERVER ATTRIBUTES and SERVER DEFAULTS
Clauses

USERNAME IS DEPART;
SERVER DEFAULTS ARE

DEFAULT DIRECTORY IS SYS$SAMPLE;
MAXIMUM SERVER PROCESSES IS 10;
MINIMUM SERVER PROCESSES IS 1;

END SERVER DEFAULTS;
TASK GROUP IS

PERSONNEL_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
END TASK GROUP;
SERVER ATTRIBUTES ARE

PERSONNEL_SERVER : SERVER PERSONNEL_SERVER;
USERNAME IS PERSONNEL;

UTILITY_SERVER : SERVER UTILITY_SERVER;
DYNAMIC USERNAME;

END SERVER ATTRIBUTES;
END DEFINITION;

Application Definition Clauses 5–9

Application Definition Clauses
Task Subclauses

5.3 Task Subclauses
Table 5–3 contains brief descriptions of the subclauses you use to define TASK
ATTRIBUTES and TASK DEFAULTS clauses.

Table 5–3 Task Subclauses

Clause Meaning

ACCESS Gives or denies users access to a single task or group of tasks.

AUDIT Keeps a record of task events, such as any cancellations by users.

CANCELABLE Specifies whether or not a task can be canceled by a task submitter.

DELAY Specifies that a brief period of time will elapse when a task ends before
a menu is redisplayed.

WAIT Sends a message to the terminal screen indicating that the user must
press Return to have ACMS clear the screen and then redisplay the
menu.

GLOBAL The default task-call-task attribute specifies that a task can be selected
from a menu, can be called by an agent, or can be called by another
task.

LOCAL Specifies that a task can be called only by another task.

ENABLE Specifies that a task is available for selection by task submitters.

DISABLE Specifies that a task is not available for selection by task submitters.

TRANSACTION
TIMEOUT

Specifies that a distributed transaction must end within a certain
number of seconds.

5–10 Application Definition Clauses

Application Definition Clauses
Task Subclauses

Figure 5–4 shows the syntax for the TASK ATTRIBUTES clause.

Figure 5–4 TASK ATTRIBUTES Clause Syntax

TASK CONTROL
�

ATTRIBUTE IS
ATTRIBUTES ARE

�
���
��

task-name: [TASK group-task-name] [IN task-group-name] ;��
���

��

���������
��������

ACCESS CONTROL LIST IS

(
�

IDENTIFIER
ID

�
= acl-identifier [+...],

ACCESS =
�

EXECUTE
NONE

�
) [,...]

���������
�������	

...

[NO] AUDIT ;
[NO] TRANSACTION TIMEOUT IS seconds ;

[NOT] CANCELABLE BY
 [TERMINAL] USER

[TASK] SUBMITTER

�
;

[NO] DELAY ;
[NO] WAIT ;

�

LOCAL;
GLOBAL;

�
�
������

�
DISABLE
DISABLED

�
;

�
ENABLE
ENABLED

�
;

�
������

��

��
��	

���
���	

...

END TASK CONTROL
 ATTRIBUTE

ATTRIBUTES

�
;

Application Definition Clauses 5–11

Application Definition Clauses
Task Subclauses

Figure 5–5 shows the syntax for the TASK DEFAULTS clause.

Figure 5–5 TASK DEFAULTS Clause Syntax

TASK
�

DEFAULT IS
DEFAULTS ARE

�
��
���

��

���������
��������

ACCESS CONTROL LIST IS

(
�

IDENTIFIER
ID

�
= acl-identifier [+...],

ACCESS =
�

EXECUTE
NONE

�
) [,...]

���������
�������	

...

[NO] AUDIT ;
[NO] TRANSACTION TIMEOUT IS seconds;

[NOT] CANCELABLE BY
 [TERMINAL] USER

[TASK] SUBMITTER

�
;

[NO] DELAY ;
[NO] WAIT ;

�

LOCAL;
GLOBAL;

�
�
������

�
DISABLE
DISABLED

�
;

�
ENABLE
ENABLED

�
;

�
������

��

��
��	

END TASK
 DEFAULT

DEFAULTS

�
;

5–12 Application Definition Clauses

Application Definition Clauses
Task Subclauses

Example 5–3 shows an example of using the TASK DEFAULTS and TASK
ATTRIBUTES clauses.

Example 5–3 Example of TASK ATTRIBUTES and TASK DEFAULTS Clauses

TASK DEFAULT IS
ACCESS CONTROL IS (ID=[INVENTORY,*], ACCESS=EXECUTE);

END TASK DEFAULT;
TASK GROUP IS

WORK_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:WORK.TDB";
END TASK GROUP;
TASK ATTRIBUTES ARE

UPDATE_INVENTORY : TASK UPDATE_INVENTORY IN WORK_GROUP;
AUDIT;

DATR : TASK DATR IN WORK_GROUP;
ACCESS CONTROL IS (ID=[INVENTORY,SMITH], ACCESS=EXECUTE);

END TASK ATTRIBUTES;

Application Definition Clauses 5–13

ACCESS Subclause (Task)

ACCESS Subclause (Task)

Defines who can and who cannot select a task.

Format

ACCESS CONTROL LIST IS

(
�

IDENTIFIER
ID

�
= acl-identifier [+...], ACCESS =

�
EXECUTE
NONE

�
) [,...]

Keywords

EXECUTE
Lets users select and run a task.

NONE
Prevents users from selecting and running a task.

Parameter

acl-identifier
A legal OpenVMS User Identification Code (UIC) or OpenVMS identifier.

You can use the following:

• Alphanumeric UIC identifiers, numeric UICs, general identifiers, and system
identifiers, or a combination of any of these.

• Wildcards for both group and member elements of a numeric or alphanumeric
UIC. You can also enclose a UIC identifier in square ([]) or angle (< >)
brackets.

• General and system identifiers set up by your system manager. Do not
enclose general and system identifiers in brackets.

Clause Default

The ACMS-supplied default is ACCESS CONTROL IS (ID=[*,*],
ACCESS=EXECUTE), which means any user who can log in to ACMS can
run tasks. This subclause is optional.

Notes

The ACCESS subclause creates an ordered list of one or more identifier entries.
Each identifier entry is called an access control list entry (ACE), and the list of
all entries is called an access control list (ACL). You can specify multiple ACEs in
a single ACCESS subclause, and you can specify multiple ACCESS subclauses.

ACMS uses ACEs and ACLs the way the OpenVMS operating system uses them.
See OpenVMS DCL Dictionary for further information on identifiers, ACEs, and
ACLs.

ACMS searches an ACL from the first to the last ACE and stops searching at the
first match between an identifier on the list and an identifier on a process’s rights
list. A process’s rights list includes a UIC, system-defined identifiers, and any
general identifiers assigned to that user by the system manager.

5–14 Application Definition Clauses

ACCESS Subclause (Task)

You can use the DCL command SET RIGHTS_LIST to dynamically modify
a process or system rights list. This means that you can dynamically allow
and deny access to tasks, without making users log out and log back in. See
OpenVMS DCL Dictionary for further information on the SET RIGHTS_LIST
command.

User rights lists are maintained in the rights database using the Authorize
Utility. See OpenVMS System Manager’s Manual for further information on the
rights database and the Authorize Utility. The rights database is an optional
feature of the OpenVMS operating system designed to increase the scope and
flexibility of operating system object security.

Multiple ACCESS clauses in a TASK ATTRIBUTES task entry or in a TASK
DEFAULTS clause are matched in the order that they appear. If ACMS does not
find a match before it reaches the end of an access control list, it denies access to
the task.

If one task chains to another, ACMS does not check the access control list for the
second task before starting the second task.

Examples

1. ACCESS CONTROL IS (ID=[PERSONNEL,JONES], ACCESS=EXECUTE);

A user with UIC [PERSONNEL,JONES] can access this task or set of tasks.

2. ACCESS CONTROL IS (ID=[PERSONNEL,*], ACCESS=EXECUTE);

Any users in group PERSONNEL have access to this task or set of tasks.

3. ACCESS ID [300,*] ACCESS NONE;

No users in group 300 can access this task or group of tasks.

4. ACCESS CONTROL IS (ID=ACCOUNTING, ACCESS=EXECUTE);

Users who have the general identifier ACCOUNTING on their rights lists can
access this task or group of tasks.

5. ACCESS CONTROL IS (ID=[300,*]+ACCOUNTING, ACCESS=EXECUTE);

Users who have the general identifier ACCOUNTING on their rights lists and
who belong to group 300 can access this task or group of tasks.

6. ACCESS CONTROL IS ((ID=[350,11], ACCESS=NONE),
(ID=ACCOUNTING, ACCESS=EXECUTE),
(ID=[PERSONNEL,JONES], ACCESS=EXECUTE),
(ID=[PERSONNEL,*], ACCESS=NONE));

This example specifies that:

• Any user with a UIC of [350,11] cannot access the task.

• All users who hold the ACCOUNTING general identifier can access the
task.

• Any user with a UIC of [PERSONNEL,JONES] can access the task, but
all other users in the PERSONNEL group cannot access the task.

Application Definition Clauses 5–15

APPLICATION DEFAULT DIRECTORY Clause (Application)

APPLICATION DEFAULT DIRECTORY Clause (Application)

Assigns a default device and directory for the process in which an application
execution controller runs.

Format

APPLICATION DEFAULT DIRECTORY IS
�

default-directory
USERNAME DEFAULT DIRECTORY

�
;

Keyword

USERNAME DEFAULT DIRECTORY
Assigns to an application execution controller the default directory of the user
name under which the application runs. ACMS derives the default directory for
the execution controller from the SYSUAF entry of the application user name.

Parameter

default-directory
The disk and directory you want ACMS to use as the default for the execution
controller. Include an OpenVMS file specification or assign a logical name. If you
use a file specification or a logical name longer than 31 characters, enclose it in
quotation marks (" ").

Clause Default

The clause APPLICATION DEFAULT DIRECTORY IS USERNAME DEFAULT
DIRECTORY is the default. When the default is in effect, ACMS assigns to the
application execution controller the default directory it finds in the SYSUAF
entry for the application user name. This clause is optional.

Notes

If you are using a logical name, ACMS checks and translates the logical name
only when the application is run, not when you are creating the definition or
building the application.

Use the DCL DEFINE or DCL ASSIGN command, or the APPLICATION
LOGICALS clause to create any logical names that you assign with the
APPLICATION DEFAULT DIRECTORY clause. If you use DEFINE or ASSIGN,
the logical names must be either system logicals or group logicals in the same
group as the application execution controller. You can also use the APPLICATION
LOGICALS clause, in which case they are process logicals.

The APPLICATION DEFAULT DIRECTORY clause applies to the default
directory of the application execution controller. The application execution
controller uses this default directory if device and directory are not named for
these files: task group database files (.TDB) named in the application definition,
request libraries (.RLB), HP DECforms form files (.FORM and.EXE), and message
files (.EXE) named in the task group definitions for that application.

5–16 Application Definition Clauses

APPLICATION DEFAULT DIRECTORY Clause (Application)

Examples

1. DEFAULT DIRECTORY IS SYS$SAMPLE;
USERNAME IS PERSONNEL;
TASK GROUP IS

PERSONNEL_GROUP : TASK GROUP IS "SYS$SAMPLE:PERSONNEL.TDB";
END TASK GROUP;
END DEFINITION;

This application definition uses the logical name SYS$SAMPLE for the
default device and directory that ACMS uses for the application execution
controller process. When you use a logical name such as SYS$SAMPLE, be
sure to use the DCL ASSIGN or DCL DEFINE command to define the logical
name. Also, make sure you set up a system or group logical name.

2. DEFAULT DIRECTORY IS "DBA2:[ACMS.EMPLOYEE]";
USERNAME IS EMPLOYEE;
TASK GROUP IS

EMPLOYEE_GROUP : TASK GROUP IS "SYS$SAMPLE:EMPLOYEE.TDB";
END TASK GROUP;
END DEFINITION;

In this example, the DEFAULT DIRECTORY clause assigns the physical
device DBA2 and the directory ACMS.EMPLOYEE to the application
execution controller process.

Application Definition Clauses 5–17

APPLICATION LOGICALS Clause (Application)

APPLICATION LOGICALS Clause (Application)

Defines one or more process logical names for the process in which an application
execution controller runs.

Format

APPLICATION
�

LOGICAL
LOGICALS

� NAME IS
NAMES ARE

�
� � logical-name

logical-string

�
=
� equivalence-name

equivalence-string

� �
[,...] ;

Parameters

logical-name
A 1- to 255-character logical name. If the logical name contains nonalphabetic
characters or more than 31 characters, enclose the string in quotation marks
(" "). You can substitute a logical name for all or part of a file specification.

equivalence-name
The 1- to 255-character equivalence name for the logical name in the logical name
table.

If the name contains nonalphabetic characters or more than 31 characters,
enclose it in quotation marks (" ").

logical-string
A 1- to 255-character logical string.

equivalence-string
The 1- to 255-character equivalence string for the logical name in the logical
name table.

Clause Default

ACMS defines SYS$DISK, SYS$LOGIN, SYS$SCRATCH from the default
directory. This clause is optional.

Notes

Setting up logical names for an application execution controller keeps the device
and directory assignments for an application execution controller independent of
physical file specifications.

ACMS sets up process logical names when the application execution controller is
started.

You can include more than one APPLICATION LOGICALS clause in an
application definition. You can also include more than one logical name
assignment in a single APPLICATION LOGICALS clause.

If a logical name is defined as a system logical, or as a group logical for the user
name under which the application execution controller runs, you do not need to
define the name in an APPLICATION LOGICALS clause.

5–18 Application Definition Clauses

APPLICATION LOGICALS Clause (Application)

The logical names you assign with the APPLICATION LOGICALS clause are
available only to the application execution controller, not to any server processes.

ACMS uses the APPLICATION LOGICALS clause to find task group database
files (.TDB) named in the application definition, request libraries (.RLB), HP
DECforms form files (.FORM and.EXE), and message files (.EXE) named in the
task group definitions for that application.

The APPLICATION LOGICALS clause does not support logical search lists.

Example

APPLICATION LOGICAL NAMES ARE
EMPLOYEE = "ACMS$SAMPLE:EMPLOYEE.ADF"
ACMS$EXC_WSC_POOLSIZE = 50
ACMS$EXC_WS_POOLSIZE = 500
ACMS$EXC_TWSC_POOLSIZE = "ACMS$EXC_<appl_name>_TWSC_SIZE"
ACMS$EXC_TSC_POOLSIZE = "ACMS$EXC_<appl_name>_TWS_SIZE";

APPLICATION LOGICAL NAME IS EMPLOYEE = "ACMS$SAMPLE:EMPLOYEE.ADF";
APPLICATION USERNAME IS DIAL;
TASK GROUPS ARE

TERMINAL_GROUP : TASK GROUP IS "SYS$ACMS:TERM.TDB";
DATAENTRY_GROUP : TASK GROUP IS "SYS$ACMS:DATA.TDB";

END TASK GROUPS;
END DEFINITION;

This example redefines ACMS$SAMPLE:EMPLOYEE.ADF so you can use the
logical name EMPLOYEE in its place, and defines workspace pool size logical
names. In this example, <appl_name> is the name of the application. See HP
ACMS for OpenVMS Managing Applications for information about defining the
logical names for sizing workspace pools.

Application Definition Clauses 5–19

APPLICATION NAME TABLES Clause (Application)

APPLICATION NAME TABLES Clause (Application)

Specifies one or more logical name tables the application execution controller can
use.

Format

APPLICATION NAME
�

TABLE IS
TABLES ARE

� � logical-name-table
quoted-string

�
[,...] ;

Parameters

logical-name-table
An identifier that is a valid OpenVMS logical name table.

quoted-string
A character sequence that begins and ends with a double quote (") and contains a
string of 1 to 255 characters.

Clause Default

If the APPLICATION NAME TABLES clause is not specified, the default is the
definition of LNM$FILE_DEV in the system logical name directory table. This
clause is optional.

Notes

ACMS uses the APPLICATION NAME TABLES clause to define the process
logical name LNM$FILE_DEV, the logical name which translates to a search
list of logical name tables used whenever file specifications or device names are
translated by RMS or the I/O services. This name must translate to a search list
of one or more logical name tables. You must specify the order in which they are
to be searched when files specifications are translated. The application execution
controller defines LNM$FILE_DEV in its process logical name directory table.

The application execution controller searches these tables at run time for logicals
in the order specified, and returns the first match found, if any.

The order in which you specify the logical name tables is used to define a
search list. If you specify this clause, you must also specify the LNM$PROCESS,
LNM$JOB, and LNM$SYSTEM logical name tables that the application execution
controller can use. Logical names within these tables can be dynamically
changed.

See HP ACMS for OpenVMS Managing Applications for further information
about translating and retranslating logical name tables on a distributed ACMS
system, and OpenVMS documentation for more information on logical names and
logical name tables.

5–20 Application Definition Clauses

APPLICATION NAME TABLES Clause (Application)

Example

REPLACE APPL UPDATE_APPL
USERNAME IS JONES;
APPLICATION NAME TABLES ARE

LNM$PROCESS,
LNM$GROUP,
APPL$LOG_TABLE,
LNM$SYSTEM;

The APPLICATION NAME TABLES clause in this example specifies that the
application execution controller for the application UPDATE_APPL can use the
logical name tables LNM$PROCESS, LNM$GROUP, APPL$LOG_TABLE, and
LNM$SYSTEM.

Application Definition Clauses 5–21

APPLICATION USERNAME Clause (Application)

APPLICATION USERNAME Clause (Application)

Assigns an OpenVMS user name under which the application execution controller
runs.

Format

APPLICATION USERNAME IS user-name ;

Parameter

user-name
A valid OpenVMS user name that ACMS assigns to the process in which
the application execution controller runs. The user name can have up to 12
alphanumeric characters, including underscores (_).

Clause Default

This clause is required.

Notes

The user whose user name you include with USERNAME must also be an
authorized OpenVMS user.

Special privileges or quotas are required for an application execution controller.
Assign them to the user name under which the application is running. See HP
ACMS for OpenVMS Managing Applications for information on these privileges
and quotas.

If the ACMS/INSTALL command is used to move an application database file
to ACMS$DIRECTORY, the application user name in that application database
must match the one defined in the application authorization file, ACMSAAF.DAT.
For information on the Application Authorization Utility, see HP ACMS for
OpenVMS Managing Applications.

Examples

1. APPLICATION USERNAME IS ACMS_MANAGER;
TASK GROUPS ARE

ADD_GROUP : TASK GROUP IS "SYS$ACMS:ADD.TDB";
DELETE_GROUP : TASK GROUP IS "SYS$ACMS:DELETE.TDB";

END TASK GROUPS;
END DEFINITION;

This application definition assigns the OpenVMS user name ACMS_
MANAGER to the process in which the application execution controller
runs. The user name contains 12 characters, including an underscore.
Include the APPLICATION USERNAME clause in each application definition.

5–22 Application Definition Clauses

APPLICATION USERNAME Clause (Application)

2. USERNAME RESOURCES_21;
TASK GROUPS ARE

TERMINAL_GROUP : TASK GROUP IS "SYS$ACMS:TERM.TDB";
DATAENTRY_GROUP : TASK GROUP IS "SYS$ACMS:DATA.TDB";

END TASK GROUPS;
END DEFINITION;

An application user name you assign to the application execution controller
can contain numbers, letters, and underscore characters. This example
assigns the OpenVMS user name RESOURCES_21 to the process under
which the applications execution controller runs. The clause omits the
optional keywords APPLICATION IS.

Application Definition Clauses 5–23

AUDIT Clause (Application, Server, Task)

AUDIT Clause (Application, Server, Task)

Writes application, server, and task events to the ACMS Audit Trail Log.

Format

[NO] AUDIT ;

Clause Default

The NO AUDIT clause is the default. This clause is optional.

Notes

You can audit application, server, and task events in any combination. You can
audit task events without auditing either application or server events. Similarly,
you can audit server or application events without auditing task events.

Because auditing can take up large amounts of disk space, you may want to
restrict use of the Audit Trail Log by auditing individual servers or tasks.

For more information about the Audit Trail, read HP ACMS for OpenVMS
Managing Applications.

Application Clause Example

1. AUDIT;
APPLICATION USERNAME IS PERSONNEL;
TASK GROUPS ARE

PERSONNEL_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
DEPARTMENT_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:DEPART.TDB";

END TASK GROUPS;
END DEFINITION;

By default, ACMS does not audit the events of an application. You must include
the AUDIT clause in the application definition for the Audit Trail to audit
information about application events.

In this example, ACMS audits application events but does not audit task or
server events unless auditing is explicitly specified at the task and server levels,
as in the following examples.

Server Subclause Examples

1. USERNAME IS DEPARTMENT;
SERVER DEFAULT IS

AUDIT;
END SERVER DEFAULT;
TASK GROUP IS

DEPARTMENT_GROUP : TASK GROUP IS "SYS$SAMPLE:DEPART.TDB";
END TASK GROUP;
END DEFINITION;

By default, ACMS does not audit the activities of servers. To audit all
servers defined in a task group, include the AUDIT subclause in a SERVER
DEFAULTS clause as in this example. Use of the AUDIT subclause in a
SERVER DEFAULTS clause changes the ACMS default from NO AUDIT to
AUDIT. When you use the SERVER DEFAULTS clause, put the clause before
the TASK GROUPS clause with which you want the new defaults associated.

5–24 Application Definition Clauses

AUDIT Clause (Application, Server, Task)

2. USERNAME IS DEPARTMENT;
SERVER DEFAULT IS

AUDIT;
END SERVER DEFAULT;
TASK GROUP IS

DEPARTMENT_GROUP : TASK GROUP IS "SYS$SAMPLE:DEPART.TDB";
END TASK GROUP;
SERVER ATTRIBUTE IS

DEPART_SERVER : SERVER DEPART_SERVER IN DEPARTMENT_GROUP;
NO AUDIT;

END SERVER ATTRIBUTE;
END DEFINITION;

You can use the AUDIT and NO AUDIT clauses in the SERVER DEFAULTS
clause to change defaults for all servers defined in a task group. You can
also define AUDIT and NO AUDIT with the SERVER ATTRIBUTES clause
to change defaults on a server-by-server basis. This example first uses
the SERVER DEFAULTS clause to change the ACMS default from NO
AUDIT to AUDIT for all of the servers in the DEPARTMENT_GROUP task
group. Second, because you do not want to audit one of the servers, namely
DEPART_SERVER, in the DEPARTMENT_GROUP task group, define the
NO AUDIT subclause for that server in the SERVER ATTRIBUTES clause.

Task Subclause Example

1. APPLICATION USERNAME IS PERSONNEL;
TASK DEFAULT IS

AUDIT;
END TASK DEFAULT;
TASK GROUPS ARE

PERSONNEL_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
DEPARTMENT_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:DEPART.TDB";

END TASK GROUPS;
END DEFINITION;

By default, ACMS does not audit the events of tasks. In this example, you change
the default from NO AUDIT to AUDIT for all tasks in both the task groups,
PERSONNEL_GROUP and DEPARTMENT_GROUP.

Application Definition Clauses 5–25

CANCELABLE Subclause (Task)

CANCELABLE Subclause (Task)

Specifies whether or not a task can be canceled by a terminal user or task
submitter while the task is executing. Use a CANCELABLE subclause to control
how a terminal user or task submitter can exit a task. If a task is defined as NOT
CANCELABLE, it cannot be canceled with a Ctrl/Y or Ctrl/C while it is executing.

Format

[NOT] CANCELABLE BY
 [TERMINAL] USER

[TASK] SUBMITTER

�
;

Clause Default

The CANCELABLE subclause is optional.

All tasks can be canceled by default. If you do not specify a cancelable attribute
or default in either the task or the application definition, a task can be canceled
by a task submitter.

Notes

When a task calls another task using the task-call-task feature, the cancelable
attribute of the currently executing task determines whether the tasks can be
canceled.

If a task that cannot be canceled calls a task that can be canceled, both tasks are
canceled if you press Ctrl/Y or Ctrl/C while the cancelable task is executing. If a
cancelable task calls a task that cannot be canceled, neither task is canceled if
you press Ctrl/Y or Ctrl/C while the task that cannot be canceled is executing.

Example

TASK DEFAULTS ARE
CANCELABLE;
LOCAL;

END DEFAULTS;

This TASK DEFAULTS clause specifies that tasks in the application can be
canceled unless they are explicitly specified as not cancelable in their task
definitions or in a TASK ATTRIBUTES clause.

5–26 Application Definition Clauses

CREATION DELAY Subclause (Server)

CREATION DELAY Subclause (Server)

Controls how long ACMS waits before beginning to create new server processes
when tasks are waiting for a server process.

Format

CREATION DELAY IS seconds ;

Parameter

seconds
The number of seconds ACMS waits before beginning to create new server
processes. The minimum value is 0 seconds.

Clause Default

If the CREATION DELAY clause is not specified, ACMS uses the default creation
delay value of 10 seconds.

Notes

If there are tasks waiting for server processes and fewer than the maximum
number of server processes are running, ACMS waits a certain time and then
begins to create server processes to satisfy the need.

ACMS does not monitor the queue of waiting tasks continuously; there is a
monitoring interval that is set with the SERVER MONITORING INTERVAL
application clause. The actual range of the creation delay at run time includes
the monitoring interval. For example, if the definition specifies a creation delay of
10 seconds, and the monitoring interval is 5 seconds, the actual delay is between
10 and 15 seconds.

If you use a CREATION DELAY parameter of 0 seconds, ACMS creates a server
process whenever it detects a waiting task.

Example

SERVER DEFAULTS ARE
NO AUDIT;
MAXIMUM SERVER PROCESSES ARE 5;
MINIMUM SERVER PROCESS IS 5;
CREATION DELAY IS 15;
CREATION INTERVAL IS 0;

END SERVER DEFAULTS;

In this example, the CREATION DELAY subclause is used in the SERVER
DEFAULTS clause; all servers defined in the task use the CREATION DELAY
value of 15 seconds. ACMS waits 15 seconds before beginning to create new
server processes.

Application Definition Clauses 5–27

CREATION INTERVAL Subclause (Server)

CREATION INTERVAL Subclause (Server)

Controls the intervals at which ACMS creates new server processes.

Format

CREATION INTERVAL IS seconds ;

Parameter

seconds
The number of seconds ACMS waits between new server process creations. The
minimum value is 0 seconds.

Clause Default

If the CREATION INTERVAL clause is not specified, ACMS uses the default
creation interval value of 10 seconds.

Notes

If tasks are waiting for server processes and fewer than the maximum number
of server processes are running, ACMS creates server processes one by one until
either of the following occurs:

• No tasks are waiting

• The maximum number of server processes is reached

ACMS does not monitor the queue of waiting tasks continuously; a monitoring
interval is set with the SERVER MONITORING INTERVAL application clause.
The actual range of the time between server process creations at run time
includes the monitoring interval. For example, if the definition specifies a
creation interval of 10 seconds, and the monitoring interval is 5 seconds, the
actual interval is between 10 and 15 seconds.

If you specify a creation interval of 0 seconds, ACMS creates as many servers
as are needed to serve all tasks waiting, up to the maximum, at the instant it
discovers servers are needed.

Example

SERVER ATTRIBUTES ARE
PERSONNEL_SERVER: CREATION DELAY IS 15;

CREATION INTERVAL IS 5;
MAXIMUM SERVER PROCESSES IS 4;

END SERVER ATTRIBUTES;

In this example, the CREATION INTERVAL subclause is used in the SERVER
ATTRIBUTES clause; PERSONNEL_SERVER uses the CREATION INTERVAL
value of 5 seconds. ACMS creates new instances of PERSONNEL_SERVER every
5 seconds until either no tasks are waiting for server processes, or the number
of instances of PERSONNEL_SERVER reaches the maximum server processes
value.

5–28 Application Definition Clauses

DEFAULT APPLICATION FILE Clause (Application)

DEFAULT APPLICATION FILE Clause (Application)

Defines the application database file (.ADB) that ACMS uses when you do not
name an application database file with the BUILD command.

Format

DEFAULT APPLICATION FILE IS application-database-file;

Parameter

application-database-file
The file specification of the file that the BUILD command uses for the application
database. You can define a full file specification, an identifier, or a logical name.
Enclose a full file specification or a logical name that exceeds 31 characters in
quotation marks (" "). The default file type is .ADB. If you do not include a device
or directory, ADU uses your default device and directory when you build the
application.

Clause Default

If you name an application database file on the BUILD command when you build
an application, ACMS uses that name instead of an application database file you
name with the DEFAULT APPLICATION FILE clause. This clause is optional.

If you do not name an application database file on the BUILD command when
you build an application, and you do not name a database file with the DEFAULT
APPLICATION FILE clause, ACMS uses the full given name, including dollar
signs ($) and underscores (_), for the default database file name.

Note

Do not include more than one DEFAULT APPLICATION FILE clause in an
application definition.

Examples

1. DEFAULT APPLICATION FILE IS "EMPLOYEE.ADB";
USERNAME IS EMPLOYEE;
TASK GROUP IS

PERSONNEL_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
END TASK GROUP;
END DEFINITION;

By naming the application database file EMPLOYEE.ADB, you do not have
to include the output file specification for the application database file when
you build the application. If you include the file type, you must enclose the
file specification in quotation marks (" ").

Application Definition Clauses 5–29

DEFAULT APPLICATION FILE Clause (Application)

2. APPLICATION FILE DEPART;
USERNAME IS DEPART;
TASK GROUP IS

DEPARTMENT_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:DEPART.TDB";
END TASK GROUP;
END DEFINITION;

This example is similar to the first example, except here you shorten
the DEFAULT APPLICATION FILE clause by leaving out the keywords
DEFAULT IS. They are optional keywords. Also, DEPART is a valid identifier,
which means you do not need to enclose it in quotation marks.

5–30 Application Definition Clauses

DEFAULT DIRECTORY Subclause (Server)

DEFAULT DIRECTORY Subclause (Server)

Assigns a default device and directory for each of the server processes that are
associated with a server.

Format

DEFAULT DIRECTORY IS
�

default-directory
USERNAME DEFAULT DIRECTORY

�
;

Keyword

USERNAME DEFAULT DIRECTORY
Assigns the default directory associated with the user name under which server
processes run.

Parameter

default-directory
The disk and directory names you want ACMS to use as defaults for the server
processes of an application. You can include an OpenVMS file specification or
assign a logical. If you use a file specification or a logical name longer than 31
characters, enclose it in quotation marks (" "). See OpenVMS DCL Dictionary for
information about creating valid directory names.

Clause Default

The ACMS-supplied default is DEFAULT DIRECTORY IS USERNAME
DEFAULT DIRECTORY. When ACMS takes this default, it uses the default
directory it finds in the SYSUAF entry for the user name of the server. This
subclause is optional.

Notes

If you are using a logical name, ACMS checks and translates the logical only
when the server process is started, not when you create the definition or build the
application.

When you use the DYNAMIC USERNAME subclause and ACMS runs a
processing step in a server, ACMS redefines any default directory previously
defined.

Example

USERNAME IS DATA;
SERVER DEFAULT IS

DEFAULT DIRECTORY IS SYS$SAMPLE;
END SERVER DEFAULT;
TASK GROUP IS

DATA_GROUP : TASK GROUP IS "SYS$SAMPLE:DATA.TDB";
END TASK GROUP;
END DEFINITION;

In this example, the default disk and directory for the servers in this application
are identified by the logical name SYS$SAMPLE.

Application Definition Clauses 5–31

DELAY Subclause (Task)

DELAY Subclause (Task)

Controls whether or not ACMS waits 3 seconds after a task finishes running
before clearing the screen and displaying the ACMS menu.

Format

[NO] DELAY ;

Clause Default

The ACMS-supplied default is NO DELAY. This subclause is optional.

Notes

When you use the WAIT subclause, you cannot use the DELAY subclause in the
same definition.

If you do not set the delay attribute in the TASK ATTRIBUTES clause, ACMS
uses the setting you assign in the task group definition. If you do not make an
assignment there, ACMS uses the NO DELAY default.

The DELAY subclause always delays clearing the screen for 3 seconds. You
cannot change the time of the delay.

This clause differs from the WAIT subclause, which requires users to press Return

to have ACMS redisplay the menu.

The WAIT and DELAY subclauses determine how quickly ACMS returns user
control to a menu when a task ends. If a user runs a task that displays the time
of day, for example with the SHOW TIME command, by default ACMS displays
the time but then immediately clears the screen and returns the user to the
menu. Both subclauses let you delay the time between the end of a task and the
return to the selection menu.

WAIT and DELAY subclauses specified for a task in a task, task group, or
application definition are overridden by menu definition WAIT and DELAY
clauses.

Examples

1. DELAY;

You can have ACMS clear the screen and then redisplay a menu by including
the DELAY subclause in your application definition.

2. NO DELAY;

Because the NO DELAY subclause is the default, you do not need to include
the clause in your application definition, unless you changed the default.

5–32 Application Definition Clauses

DELETION DELAY Subclause (Server)

DELETION DELAY Subclause (Server)

Controls how long ACMS waits before deleting inactive server processes.

Format

DELETION DELAY IS seconds ;

Parameter

seconds
The number of seconds ACMS waits before beginning to delete inactive server
processes. The minimum value is 0 seconds.

Clause Default

If the DELETION DELAY subclause is not specified, ACMS uses the default
deletion delay value of 30 seconds.

Notes

If there are inactive server processes and more than the minimum number
of server processes are running, ACMS waits for the time specified as the
DELETION DELAY and then begins to delete server processes.

ACMS does not monitor the queue of waiting tasks continuously; there is a
monitoring interval that is set with the SERVER MONITORING INTERVAL
application clause. The actual range of the deletion delay at run time includes
the monitoring interval. For example, if the definition specifies a deletion delay of
10 seconds and the monitoring interval is 5 seconds, the actual delay is between
10 and 15 seconds.

Example

SERVER DEFAULTS ARE
NO AUDIT;
MAXIMUM SERVER PROCESSES ARE 5;
MINIMUM SERVER PROCESSES ARE 5;
DELETION DELAY IS 15;
DELETION INTERVAL IS 5;

END SERVER DEFAULTS;

In this example, the DELETION DELAY subclause is used in the SERVER
DEFAULTS clause; all servers defined in the task use the DELETION DELAY
value of 15 seconds. ACMS waits 15 seconds before beginning to delete inactive
server processes.

Application Definition Clauses 5–33

DELETION INTERVAL Subclause (Server)

DELETION INTERVAL Subclause (Server)

Controls the intervals at which ACMS deletes inactive server processes.

Format

DELETION INTERVAL IS seconds ;

Parameter

seconds
The number of seconds ACMS waits between server process deletions. The
minimum value is 5 seconds.

Clause Default

If the DELETION INTERVAL clause is not specified, ACMS uses the default
deletion interval value of 15 seconds.

Notes

If more than the minimum number of server processes are running, but not all
are active, ACMS deletes server processes one by one until one of the following
occurs:

• All server processes are active

• The minimum number of server processes is reached

ACMS does not monitor the queue of waiting tasks continuously; there is a
monitoring interval that is set with the SERVER MONITORING INTERVAL
application clause. The actual range of time between server process deletions at
run time includes the monitoring interval. For example, if the definition specifies
a deletion interval of 10 seconds and the monitoring interval is 5 seconds, the
actual interval is between 10 and 15 seconds.

Example

SERVER ATTRIBUTES ARE
PERSONNEL_SERVER: CREATION DELAY IS 15;

CREATION INTERVAL IS 5;
DELETION DELAY IS 30;
DELETION INTERVAL IS 10;
MAXIMUM SERVER PROCESSES IS 4;
MINIMUM SERVER PROCESSES IS 0;

END SERVER ATTRIBUTES;

In this example, the DELETION INTERVAL subclause is used in the SERVER
ATTRIBUTES clause; PERSONNEL_SERVER uses the DELETION INTERVAL
value of 10 seconds. When instances of PERSONNEL_SERVER are inactive,
ACMS deletes instances of PERSONNEL_SERVER every 10 seconds until either
no servers are inactive or it has reached the MINIMUM SERVER PROCESSES
value of 0.

5–34 Application Definition Clauses

DISABLE Subclause (Task)

DISABLE Subclause (Task)

Specifies that a task is not available for selection by task submitters.

Format �
DISABLE
DISABLED

�
;

Clause Default

The DISABLE subclause is optional. Tasks are enabled by default and can be
selected by task submitters.

Notes

You can modify the DISABLE attribute by using the ACMS/MODIFY
APPLICATION command. See HP ACMS for OpenVMS Managing Applications
for information about modifying active applications.

Example

TASK ATTRIBUTES
ADD_EMPLOYEE:

ENABLE;
TASK ADD_EMPLOYEE;
LOCAL;

REVIEW_UPDATE:
TASK REVIEW_UPDATE;
DISABLED;

END ATTRIBUTE;

This TASK ATTRIBUTES clause specifies that ADD_EMPLOYEE is enabled and
available for selection by task submitters, but REVIEW_UPDATE is disabled and
not available for selection by task submitters.

Application Definition Clauses 5–35

DYNAMIC USERNAME Subclause (Server)

DYNAMIC USERNAME Subclause (Server)

Specifies that the user name, UIC, and default directory of a server change to
match those of the user each time the server process is allocated for a task.

Format

DYNAMIC USERNAME ;

Clause Default

The ACMS-supplied default is FIXED USERNAME. This subclause is optional.

Notes

The DYNAMIC USERNAME clause is not valid for procedure servers. If you use
the clause with a procedure server, ADU accepts the clause. However, the user
name is not changed at run time when users select tasks that run in that server.
Instead, the server keeps the user name under which the server was started.

If you do not set the dynamic/fixed attribute in the SERVER ATTRIBUTES
clause, ACMS uses the setting you assign in the task group definition. If you do
not make an assignment there, ACMS uses the FIXED USERNAME subclause as
the default.

If you define a server to have a dynamic user name, ACMS changes the user
name, UIC, and default directory to those of the user who selected the task. In
addition, the logical name SYS$LOGIN is defined to be the default directory and
the logical name SYS$SCRATCH is defined to be the default directory.

Servers defined with the DYNAMIC USERNAME subclause do not restore the
initial user name before running down. Therefore, the OpenVMS accounting
facility charges the resources used by the server to the last terminal user who
selected a task in that server instance. However, the correct ACCOUNT field is
used because ACMS does not modify that field in the process header.

If you do not assign a user name to the server in the application definition, but
use the APPLICATION USERNAME clause, ACMS assigns the user name of the
application to each server process when it starts up. If you assign a user name
to the server with the USERNAME clause in the application definition, ACMS
assigns that user name to each server process when it starts up. In both of these
cases, the user name changes when the server process is allocated to a task if you
define the server to have a dynamic user name.

When a server process is created, it uses the group logical name table for the UIC
that corresponds to the user name with which the server is created. This group
logical name table remains in use for the life of the server process. For servers
with dynamic user names, the group logical name table does not change if the
user name changes and the corresponding UIC is in a different group.

If you use the ACMS/INSTALL command to move an application database file
to ACMS$DIRECTORY, the server user names in the application database must
match the ones authorized for the application in the application authorization
file, ACMSAAF.DAT. The /DYNAMIC_USERNAME qualifier in the Application
Authorization Utility (AAU) authorizes both dynamic user names and user names
of terminal users. For information on the AAU, see HP ACMS for OpenVMS
Managing Applications.

5–36 Application Definition Clauses

DYNAMIC USERNAME Subclause (Server)

Example

SERVER ATTRIBUTE IS
PERSONNEL_SERVER: IN UTILITY_GROUP;

DYNAMIC USERNAME;
END SERVER ATTRIBUTE;

In this example, the server given name PERSONNEL_SERVER is defined to have
a dynamic user name.

Application Definition Clauses 5–37

ENABLE Subclause (Task)

ENABLE Subclause (Task)

Specifies that a task is available for selection by task submitters.

Format �
ENABLE
ENABLED

�
;

Clause Default

The ENABLE subclause is optional. Tasks are enabled by default.

Notes

You can modify the ENABLE attribute by using the ACMS/MODIFY
APPLICATION command. See HP ACMS for OpenVMS Managing Applications
for information about modifying active applications.

Example

TASK ATTRIBUTES
ADD_EMPLOYEE:

ENABLE;
TASK ADD_EMPLOYEE;
LOCAL;

REVIEW_UPDATE:
TASK REVIEW_UPDATE;
DISABLED;

END ATTRIBUTE;

This TASK ATTRIBUTES clause specifies that ADD_EMPLOYEE is enabled and
available for selection by task submitters, but REVIEW_UPDATE is disabled and
not available for selection by task submitters.

5–38 Application Definition Clauses

FIXED USERNAME Subclause (Server)

FIXED USERNAME Subclause (Server)

Specifies that the user name, UIC, and default directory of the server are those
associated with the user name under which the server process starts.

Format

FIXED USERNAME ;

Clause Default

The ACMS-supplied default is FIXED USERNAME. This subclause is optional.

Notes

If you do not set the DYNAMIC/FIXED USERNAME attribute in the SERVER
ATTRIBUTES clause, ACMS uses the setting you assign in the task group
definition. If you do not make an assignment there, ACMS uses FIXED
USERNAME as the default.

If you define a server to have a fixed user name, the server always keeps the user
name, UIC, and default directory under which it starts.

Example

SERVER ATTRIBUTE IS
PERSONNEL_SERVER: FIXED USERNAME;

END SERVER ATTRIBUTE;

In this example, PERSONNEL_SERVER is a server with a fixed user name.

Application Definition Clauses 5–39

GLOBAL Subclause (Task)

GLOBAL Subclause (Task)

Specifies that you can select a task from a menu, call it from an agent, or call it
from another task.

Format

GLOBAL ;

Clause Default

The GLOBAL subclause is optional. If no GLOBAL or LOCAL attribute is
specified in either the task definition or the application definition, a task is global
by default. You can select the task from a menu, call it from an agent, or call it
from another task.

Example

TASK ATTRIBUTES
ADD_EMPLOYEE:

ENABLE;
TASK ADD_EMPLOYEE;
LOCAL;

REVIEW_UPDATE:
DISABLED;
TASK REVIEW_UPDATE;
GLOBAL;

END ATTRIBUTE;

In this example, the TASK ATTRIBUTES clause specifies that REVIEW_
UPDATE is global and can be selected from a menu, called by an agent, or called
by another task, but ADD_EMPLOYEE is local and can be called by another task,
but not selected from a menu or called from an agent.

5–40 Application Definition Clauses

LOCAL Subclause (Task)

LOCAL Subclause (Task)

Specifies that a task can be called by or chained to another task, but not selected
from a menu or called by an agent.

Format

LOCAL ;

Clause Default

The LOCAL subclause is optional. If no GLOBAL or LOCAL attribute is specified
in either the task definition or the application definition, a task is global by
default and can be selected from a menu, called by an agent, or called by another
task.

Note

A local task can call or chain to another local task or global task.

Example

TASK ATTRIBUTES
ADD_EMPLOYEE:

ENABLE;
TASK ADD_EMPLOYEE;
LOCAL;

REVIEW_UPDATE:
DISABLED;
TASK REVIEW_UPDATE;
GLOBAL;

END ATTRIBUTE;

In this example, the TASK ATTRIBUTES clause specifies that REVIEW_
UPDATE is global and can be selected from a menu, called by an agent, or called
by another task, but ADD_EMPLOYEE is local and can be called by another task,
but not selected from a menu or called from an agent.

Application Definition Clauses 5–41

LOGICALS Subclause (Server)

LOGICALS Subclause (Server)

Defines a set of process logical names for one or more server processes.

Format
�

LOGICAL
LOGICALS

� NAME IS
NAMES ARE

�
� � logical-name

logical-string

�
=
� equivalence-name

equivalence-string

� �
[,...] ;

Parameters

logical-name
A 1- to 255-character logical name. If it contains nonalphabetic characters or
exceeds 31 characters, enclose the string in quotation marks (" ").

equivalence-name
The 1- to 255-character equivalence name for the logical name in the logical name
table. If it contains nonalphabetic characters or exceeds 31 characters, enclose
this parameter in quotation marks (" ").

logical-string
A 1- to 255-character logical string.

equivalence-string
The 1- to 255-character equivalence string for the logical name in the logical
name table.

Clause Default

This subclause is optional. ACMS does not set up any server process logical
names by default, other than the standard ones. The following logicals are
always defined unless the job logical name table LNM$JOB is excluded in the
SERVER NAME TABLES clause in the application definition:

• SYS$LOGIN

• SYS$SCRATCH

SYS$DISK is always defined.

ACMS automatically assigns a set of logical names for the DCL servers you
define:

• SYS$INPUT

• SYS$OUTPUT

• SYS$ERROR

• SYS$COMMAND

• TT

However, if you define NO TERMINAL I/O for a DCL server, you must redefine
the above logicals for that server.

5–42 Application Definition Clauses

LOGICALS Subclause (Server)

For procedure servers, if the processing step uses a terminal, ACMS defines:

• SYS$INPUT

• SYS$OUTPUT

• SYS$ERROR

• SYS$COMMAND

• TT

Notes

ACMS sets up the process logical names when each server process is started.

The logical names are available only to the server for which they are defined.

You can include more than one LOGICALS subclause in a definition. ADU
assigns all the logicals you name.

If an ACMS user wants a permutation of DATATRIEVE to run an ACMS DTR
procedure, a server logical must be assigned that equates DTR32 to the new
image DTR32xx.EXE, where xx represents the letters you choose to make the file
name unique.

For example:

SERVER ATTRIBUTE IS
SAMPLE_SERVER:

LOGICAL NAME IS DTR32 = "SYS$SYSTEM:DTR32FM.EXE";
END SERVER ATTRIBUTE;

After debugging your server, you can improve the speed at which it maps the
workspaces it uses by defining the ACMS$PROTECT_WORKSPACES logical
name. For example:

SERVER ATTRIBUTE IS
UPDATE_SERVER:

LOGICAL NAME IS ACMS$PROTECT_WORKSPACES = "NO";
END SERVER ATTRIBUTE;

When this logical name is defined as ‘‘NO’’, ACMS maps the entire task instance
workspace pool during the first procedure call to the server. The workspaces
then stay mapped until the server runs down. Use this option carefully. Since it
maps the entire task instance workspace pool for the task group, a procedure in
one task can accidentally write over workspaces belonging to another task in the
same group.

The default definition of ACMS$PROTECT_WORKSPACES is ‘‘YES’’, which
causes ACMS to map only the portion of the task instance workspace pool used
by the current task. The portion is mapped at the start of each processing step
and unmapped at the end of each step. This ensures that one task’s workspaces
are protected from accidental corruption by another task, but requires additional
processing overhead.

Application Definition Clauses 5–43

LOGICALS Subclause (Server)

Note

You can achieve the same functionality as the ACMS$PROTECT_
WORKSPACES logical by using the PROTECTED WORKSPACES
subclause. In general, it is more efficient to use the PROTECTED
WORKSPACES subclause than the ACMS$PROTECT_WORKSPACES
logical.

Examples

1. LOGICAL NAME IS A_EMPLOYEE = "ACMS$SAMPLE:EMPLOYEE.ADF";

This example defines A_EMPLOYEE so you can use it in place of the
equivalent name ACMS$SAMPLE:EMPLOYEE.ADF.

2. LOGICAL A_EMPLOYEE = "ACMS$SAMPLE:EMPLOYEE.ADF",
G_EMPLOYEE = "ACMS$SAMPLE:EMPLOYEE.GDF";

This example defines the application and task group definition files so they
are easier to use. The LOGICALS subclause allows more than one entry.
Place a comma (,) at the end of each entry and a semicolon (;) at the end of
the clause. The keywords NAME IS are optional.

5–44 Application Definition Clauses

MAXIMUM SERVER PROCESSES Clause (Application, Server)

MAXIMUM SERVER PROCESSES Clause (Application, Server)

Sets the maximum number of OpenVMS processes that can be created for an
application or for a particular server within an application. This number cannot
exceed the maximum number of processes that can be created for any given
system (determined by the SYSGEN parameter MAXPROCESSCNT).

Format
�

MAXIMUM
MAX

�
SERVER

�
PROCESS
PROCESSES

�
IS
�

high-number
UNLIMITED

�
;

Keyword

UNLIMITED
Sets no limit on the number of OpenVMS processes that can be created for the
application or server.

Parameter

high-number
The largest number of server processes that you want the application execution
controller to assign at one time. The value you use must be a decimal number in
the range 0 to 65535.

Clause Default

The default is MAXIMUM SERVER PROCESSES IS UNLIMITED. This clause is
optional.

Notes

The maximum limit that ACMS uses for server processes depends on:

1. The value your system manager sets for the maximum number of processes
OpenVMS can create (MAXPROCESSCNT)

2. The value you define for the MAXIMUM SERVER PROCESSES clause at the
application level

3. The sum of the values you define for all MAXIMUM SERVER PROCESSES
subclauses for all servers you name at the server level

ACMS uses the smallest of these three values to determine the limit on maximum
server processes.

In calculating the final value, ACMS determines first whether the value you set
at the application level is less than or greater than the sum of the values you set
for all servers in the application. At run time, ACMS compares the smaller of
these two values with the maximum number of OpenVMS processes that can be
created on the system (MAXPROCESSCNT). It selects the lower number as the
maximum server processes limit.

The sum of the values you define in all MINIMUM SERVER PROCESSES
subclauses for the servers in an application must be less than the value you
assign in the MAXIMUM SERVER PROCESSES clause at the application level.

Application Definition Clauses 5–45

MAXIMUM SERVER PROCESSES Clause (Application, Server)

Application Clause Examples

1. MAXIMUM SERVER PROCESSES IS 25;

This clause lets the execution controller for this application create up to 25
server processes to run tasks.

2. MAX PROCESSES 50;

In this example, the maximum number of server processes that you want
available for the application is 50. You can abbreviate MAXIMUM. The
keywords SERVER IS are optional.

Server Subclause Example

1. MAXIMUM SERVER PROCESSES IS 5;

ACMS creates a maximum of five server processes to do the work for the tasks
associated with this server or set of servers.

5–46 Application Definition Clauses

MAXIMUM TASK INSTANCES Clause (Application)

MAXIMUM TASK INSTANCES Clause (Application)

Sets the largest number of task instances that can be active at one time for an
application.

Format
�

MAXIMUM
MAX

�
TASK

�
INSTANCE
INSTANCES

�
IS
�

high-number
UNLIMITED

�
;

Keyword

UNLIMITED
Sets no limit on the number of task instances ACMS permits for an application.

Parameter

high-number
The largest number of task instances that you want active at one time. You can
assign a decimal integer in the range 0 to 65535.

Clause Default

The default is MAXIMUM TASK INSTANCES IS UNLIMITED. This clause is
optional.

Notes

Increasing the value for the MAXIMUM TASK INSTANCES clause increases
the amount of file limit, AST limit, and other quotas required for an application
execution controller. See HP ACMS for OpenVMS Managing Applications for
information on the quotas and privileges required for ACMS application execution
controllers.

Examples

1. MAXIMUM TASK INSTANCES IS 25;

The application to which you assign this clause allows up to 25 task instances
at one time. This means that up to 25 separate tasks, 25 instances of the
same task, or a combination can be active simultaneously.

2. MAX INSTANCES UNLIMITED;

This example sets no ceiling on the number of simultaneously active task
instances. If the tasks in the application you are defining use very few
resources, you might decide to set no ceiling on the number of simultaneously
active task instances. This setting is the default.

Application Definition Clauses 5–47

MINIMUM SERVER PROCESSES Subclause (Server)

MINIMUM SERVER PROCESSES Subclause (Server)

Sets the minimum number of server processes that you want ACMS to have
available for a server at one time.

Format
�

MINIMUM
MIN

�
SERVER

�
PROCESS
PROCESSES

�
IS low-number ;

Parameter

low-number
The smallest number of server processes allocated to the server when the
application is started and running.

Clause Default

The ACMS-supplied default is zero. This subclause is optional.

Notes

The sum of the values assigned in all MINIMUM SERVER PROCESSES
subclauses for all servers in the application must not exceed the value assigned
in the MAXIMUM SERVER PROCESSES clause for the application.

Do not specify nonzero values for the MINIMUM SERVER PROCESS subclause
of servers with USERNAME OF USER. If you do, the application execution
controller cannot start the application; the application execution controller
cannot allocate the server process until it has the user name under which the
server runs. The error reported by the ACMS /START APPLICATION command
is ‘‘Servers using the Username of Submitter must have no minimum server
processes’’.

Examples

1. MINIMUM SERVER PROCESSES IS 5;

When the application is started, ACMS creates five processes for this server.

2. MINIMUM PROCESSES 2;

When the application is started, ACMS creates two processes for this server.
The keywords SERVER IS are optional.

5–48 Application Definition Clauses

NAME TABLES Subclause (Server)

NAME TABLES Subclause (Server)

Specifies one or more logical name tables the server process can use.

Format

[NAME]
�

TABLE IS
TABLES ARE

� � logical-name-table
quoted-string

�
[,...] ;

Parameters

logical-name-table
An identifier that is a valid OpenVMS logical name table.

quoted-string
A character sequence that begins and ends with a double quote (") and contains a
string of 1 to 255 characters.

Clause Default

If the NAME TABLES clause is not specified, the default is the definition of
LNM$FILE_DEV in the system logical name directory table. This clause is
optional.

Notes

ACMS uses the NAME TABLES clause to define the process logical name
LNM$FILE_DEV. This is the logical name which translates to a search list
of logical name tables used whenever file specifications or device names are
translated by RMS or the I/O services. This name must translate to a search
list of one or more logical name tables and the order they are searched when file
specifications are translated. The logical name LNM$FILE_DEV is defined in the
server process logical name directory table.

The server searches these tables at run time for logicals in the order specified,
and returns the first match found, if any.

The order in which you specify the logical name tables is used to define a search
list. If you specify this clause, you must also specify the system and group tables
that the server can use. Logical names within these tables can be dynamically
changed.

See HP ACMS for OpenVMS Managing Applications for further information
about translating and retranslating logical name tables on a distributed ACMS
system, and OpenVMS documentation for more information on logical names and
logical name tables.

Application Definition Clauses 5–49

NAME TABLES Subclause (Server)

Example

SERVER DEFAULTS
NAME TABLES ARE

LNM$PROCESS,
LNM$GROUP,
ACMS$LOG_TABLE,
LNM$SYSTEM;

PROTECT WORKSPACES;
PROCESS DUMP;

END SERVER DEFAULTS;

The SERVER DEFAULTS clause in this example specifies that the server process
can use the logical name tables LNM$PROCESS, LNM$GROUP, ACMS$LOG_
TABLE, and LNM$SYSTEM.

5–50 Application Definition Clauses

PROTECTED WORKSPACES Subclause (Server)

PROTECTED WORKSPACES Subclause (Server)

Enables a workspace mapping option that maps the entire task instance
workspace pool during the first procedure call to a task server. The workspaces
stay mapped until the server runs down.

Format

[NO]
�

PROTECTED
PROTECT

� �
WORKSPACE
WORKSPACES

�
;

Clause Default

The default is PROTECTED WORKSPACES. The default action is for the server
to map only the portion of the task instance workspace pool used by the current
task. This portion is mapped at the start of a processing step and unmapped at
the end of the step, ensuring that one task cannot access the workspaces of any
other task in the group.

Notes

The NO PROTECTED WORKSPACES clause saves workspace mapping time.
However, use it carefully, since it maps the entire task instance workspace pool
for a task group. It is possible for a procedure in one task to inadvertently write
over workspaces for another task in the same group because the procedure server
has access to all workspaces for all active tasks in the group.

Do not use the NO PROTECTED WORKSPACES clause until you have
thoroughly debugged your procedure server and are certain that task procedures
will not accidentally write over workspaces belonging to another task.

Use the NO PROTECTED WORKSPACES clause to improve performance when
executing processing step procedures.

Example

SERVER DEFAULTS
NAME TABLES ARE

LNM$PROCESS,
LNM$GROUP,
ACMS$LOG_TABLE,
LNM$SYSTEM;

PROTECT WORKSPACES;
PROCESS DUMP;

END SERVER DEFAULTS;

In this example, the SERVER DEFAULTS clause specifies that the protected
workspaces mapping option is enabled while the server is active.

Application Definition Clauses 5–51

SERVER ATTRIBUTES Clause (Application)

SERVER ATTRIBUTES Clause (Application)

Defines the control attributes for individual servers. Both the SERVER
ATTRIBUTES and SERVER DEFAULTS clauses use the same subclauses
described in Section 5.2.

Format

SERVER CONTROL
�

ATTRIBUTE IS
ATTRIBUTES ARE

�
� server-given-name: [SERVER group-server-name] [IN task-group-name] ;

[<server-subclause> ...]

�
...

END SERVER CONTROL
 ATTRIBUTE

ATTRIBUTES

�
;

Parameters

server-given-name
A valid ACMS identifier that names the server in the application. The server
given name must be unique in the application definition.

group-server-name
An identifier that is the name of a server defined in a task group definition
associated with the application you are defining. This name defaults to the server
given name.

task-group-name
An identifier that is the name of a task group associated with the application
you are defining. This task group name defaults to the last task group name in
the immediately preceding TASK GROUPS clause. If you have not yet defined
a TASK GROUPS clause in the application source file, you must include this
parameter.

server-subclauses
A set of subordinate clauses that let you define the control attributes for a single
server. Refer to Section 5.2 for a list of these subclauses.

Clause Default

See the Notes section to learn about the defaults ACMS assigns to server control
attributes. This clause is optional.

Notes

You can include many servers in one SERVER ATTRIBUTES clause.

You can include many SERVER ATTRIBUTES clauses in one application
definition.

If you do not include a server in a SERVER ATTRIBUTES clause, its default
name is the one you give it in the task group definition.

You must include at least one subclause for each server you name.

5–52 Application Definition Clauses

SERVER ATTRIBUTES Clause (Application)

When you build an application, ADU determines the attributes for each server,
and it always assigns a value for each attribute. As with task control attributes,
ADU looks at the following places to determine what value to assign for each
server control attribute:

1. SERVER ATTRIBUTES clause in the application definition

If a server attribute is explicitly defined in a SERVER ATTRIBUTES clause,
ADU always takes that attribute value for that server. The subclauses used
in a SERVER ATTRIBUTES clause apply only to one server.

2. SERVERS clause in the task group definition

If a server attribute is not explicitly defined for a server in a SERVER
ATTRIBUTES clause, and if the attribute is one that could be assigned in
a task group definition, ADU looks in the task group database that defines
implementation for that server. The two control attributes that can be defined
in a task group (rather than application) definition are USERNAME OF
TERMINAL USER and DYNAMIC/FIXED USERNAME.

3. SERVER DEFAULTS clause in the application definition

For any attribute not explicitly defined in the application or the task group
definition of the server, ADU uses the defaults that are in effect when the
server is defined in the application.

4. ACMS-supplied defaults

ADU uses the default value supplied by ACMS only if a value is not assigned
to that attribute in the application definition SERVER ATTRIBUTES clause,
task group definition SERVERS clause, or application definition SERVER
DEFAULTS clause that applies to that server.

Example

USERNAME IS PERSONNEL;
TASK GROUP IS

PERSONNEL_GROUP: TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
END TASK GROUP;
SERVER ATTRIBUTES ARE

PERSONNEL_SERVER : SERVER PERSONNEL_SERVER IN PERSONNEL_GROUP;
USERNAME IS DEPART;
LOGICAL NAMES ARE

PERS$FILE = "SYS$SAMPLE:PERSONNEL.DAT";
MAXIMUM SERVER PROCESSES IS 10;

UTILITY_SERVER : SERVER UTILITY_SERVER IN PERSONNEL_GROUP;
DYNAMIC USERNAME;
DEFAULT DIRECTORY IS USERNAME DEFAULT DIRECTORY;
MAXIMUM SERVER PROCESSES IS 20;

END SERVER ATTRIBUTES;
END DEFINITION;

This SERVER ATTRIBUTES clause defines control attributes for two application
servers, PERSONNEL_SERVER and UTILITY_SERVER. Both servers belong
to the task group PERSONNEL_GROUP named in the TASK GROUPS clause.
PERSONNEL_GROUP is a name you create to identify the task group in
the application. This given name associates the task group with the task
group database file. Because you use the IN PERSONNEL_GROUP phrase for
both servers, placement of the SERVER ATTRIBUTES clause after the TASK
GROUPS clause is not critical. If you do not name the task group in the SERVER
ATTRIBUTES clause, you must put the clause immediately after the TASK
GROUPS clause for which the SERVER ATTRIBUTES clause sets the defaults.

Application Definition Clauses 5–53

SERVER DEFAULTS Clause (Application)

SERVER DEFAULTS Clause (Application)

Changes one or more current default settings for one or more server control
attributes. The changes you make with the SERVER DEFAULTS clause affect all
servers defined explicitly or implicitly after the SERVER DEFAULTS clause.

Format

SERVER
�

DEFAULT IS
DEFAULTS ARE

�
<server-subclause> ...

END SERVER
 DEFAULT

DEFAULTS

�
;

Parameter

server-subclauses
A set of subordinate clauses that let you change the current default settings for
all servers in a task group. Section 5.2 lists these subclauses and the defaults
that you can change with them.

Clause Default

ACMS has a default for each server control attribute that you can change with
the SERVER DEFAULTS clause. This clause is optional.

Notes

Any server attribute defaults that you do not change in a SERVER DEFAULTS
clause retain the previous default settings.

Any defaults you change with the SERVER DEFAULTS clause can be overridden
on a server-by-server basis with a SERVER ATTRIBUTES clause. For any
attribute not explicitly defined in the application or the task group definition
of the server, ADU uses the defaults in effect when the server is defined in the
application. For servers named in a SERVER ATTRIBUTES clause, the definition
is explicit and ADU uses the defaults that are in effect when that ATTRIBUTES
clause appears in the application definition. Otherwise, ADU uses the defaults
that are in effect when it processes the TASK GROUPS clause for the task group
containing the server.

5–54 Application Definition Clauses

SERVER DEFAULTS Clause (Application)

Example

USERNAME IS PERSONNEL;
SERVER DEFAULTS ARE

USERNAME USER1;
LOGICALS DISK1 = USER_DISK1;
MAXIMUM PROCESSES 10;
MINIMUM PROCESSES 1;

END SERVER DEFAULTS;
TASK GROUP IS

PERSONNEL_GROUP: TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
END TASK GROUP;
END DEFINITION;

This SERVER DEFAULTS clause assigns the user name USER1 to the servers
that you define in the PERSONNEL_GROUP task group. It defines a logical
name and assigns limits for server processes.

Application Definition Clauses 5–55

SERVER MONITORING INTERVAL Clause (Application)

SERVER MONITORING INTERVAL Clause (Application)

Controls how often queues are checked to determine whether or not to create or
delete new server processes.

Format

SERVER MONITORING INTERVAL IS seconds ;

Parameter

seconds
The number of seconds ACMS waits between queue reviews. The minimum is
one second.

Clause Default

The clause is optional. If SERVER MONITORING INTERVAL is not specified,
ACMS waits five seconds between queue reviews.

Notes

Setting this value too low can adversely affect performance, because ACMS will
spend all its resources monitoring its own queues.

ACMS reviews the queue of tasks waiting for server processes to determine
whether or not to create new server processes. It also reviews inactive server
processes to determine whether or not to delete them.

Server subclauses that determine when to create or delete server processes
are CREATION DELAY, CREATION INTERVAL, DELETION DELAY, and
DELETION INTERVAL.

Application clauses that determine how many server processes can be created
or deleted are MAXIMUM SERVER PROCESSES and MINIMUM SERVER
PROCESSES.

Example

APPLICATION LOGICAL NAME IS EMPLOYEE = "ACMS$SAMPLE:EMPLOYEE.ADF";
DEFAULT DIRECTORY IS "DBA2:[ACMS.EMPLOYEE]";
SERVER MONITORING INTERVAL IS 10;

In this example, the server monitoring interval is set to 10 seconds. Every
10 seconds ACMS checks the queues of tasks waiting for a server process to
determine whether or not to create a new server process. At the same time,
ACMS checks inactive server processes to determine whether or not to delete
them.

5–56 Application Definition Clauses

SERVER PROCESS DUMP Subclause (Server)

SERVER PROCESS DUMP Subclause (Server)

Specifies whether or not an OpenVMS process dump is generated for a server
process if the process terminates abnormally.

Format

[NO] [SERVER] PROCESS
�

DUMP
DUMPS

�
;

Clause Default

The ACMS-supplied default is NO SERVER PROCESS DUMP.

Notes

An OpenVMS process dump is written to the server’s default directory. The file
name is the name of the server image with a .DMP file extension.

See HP ACMS for OpenVMS Writing Server Procedures for more information
about obtaining and analyzing server process dumps.

Example

SERVER DEFAULTS
NAME TABLES ARE

LNM$PROCESS,
LNM$GROUP,
ACMS$LOG_TABLE,
LNM$SYSTEM;

PROTECT WORKSPACES;
PROCESS DUMP;

END SERVER DEFAULTS;

In this example, the SERVER DEFAULTS clause specifies that an OpenVMS
process dump is generated for the server process if it terminates abnormally.

Application Definition Clauses 5–57

TASK ATTRIBUTES Clause (Application)

TASK ATTRIBUTES Clause (Application)

Defines one or more task control attributes on a task-by-task basis.

Format

TASK CONTROL
�

ATTRIBUTE IS
ATTRIBUTES ARE

�
� task-given-name: [TASK group-task-name] [IN task-group-name] ;

[<task-subclause> ...]

�
...

END TASK CONTROL
 ATTRIBUTE

ATTRIBUTES

�
;

Parameters

task-given-name
The name you create for the task in the application definition and in any menu
definitions pointing to the task. For each task you describe, you must include its
given name. The task given name must be a valid ACMS identifier and must be
unique in the application definition.

group-task-name
The name of the task as defined in the task group. ADU uses the task given
name as the default.

task-group-name
The name of a task group associated with the application you are defining. This
name must correspond to the unique name assigned to the task group in the
TASK GROUPS clause of the application definition. It is not a CDD path name
or task group database file name. This task group name defaults to the last task
group name in the immediately preceding TASK GROUPS clause. If you have
not yet defined a TASK GROUPS clause in the application source file, you must
include this parameter.

task-subclause
The subclauses that describe the tasks of a task group. Refer to Section 5.3 for
information about the subclauses in this group.

Clause Default

See the Notes section to learn about the defaults ACMS assigns. This clause is
optional.

Notes

You can define many tasks in one TASK ATTRIBUTES clause.

You can include many TASK ATTRIBUTES clauses in one application definition.

You must include at least one subclause for each task you name.

If you do not include a task in a TASK ATTRIBUTES clause, its default name is
the one you give it in the task group definition.

5–58 Application Definition Clauses

TASK ATTRIBUTES Clause (Application)

Sometimes two or more tasks from different task groups have the same task
name. For this reason, the task given name in the application definition must be
unique.

When deciding what value to assign for each task control attribute for each task,
ADU looks at the following:

1. TASK ATTRIBUTES clause in the application definition

If a task attribute is explicitly defined for a task in a TASK ATTRIBUTES
clause, ADU always takes that value for the attribute for that task. The
subclauses used in a TASK ATTRIBUTES clause apply only to one task.

2. TASKS clause in the task group definition

If a task attribute is not explicitly defined for a task in a TASK ATTRIBUTES
clause, and if the attribute is one that can be assigned in a task group
definition, ADU looks in the task group database that defines implementation
attributes for that task. The control attributes that can be defined in a task
group definition (as well as an application definition) are DELAY, WAIT,
LOCAL, GLOBAL, and CANCELABLE.

3. TASK DEFAULTS clause in the application definition

For any attribute not explicitly defined in the application or the task group
definition of the task, ADU uses the defaults that are in effect when the task
is defined in the application.

4. ACMS-supplied defaults

ADU uses the default value supplied by ACMS only if a value is not
assigned to that attribute in the application definition TASK ATTRIBUTES
clause, task group definition TASKS clause, or application definition TASK
DEFAULTS clause that applies to that task.

Example

USERNAME IS PERSONNEL;
TASK GROUP IS

PERSONNEL_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
END TASK GROUP;
TASK ATTRIBUTES ARE

EMPLOYEE: TASK TASK_EMPLOYEE;
ACCESS CONTROL IS (ID=[PERSONNEL,*], ACCESS=EXECUTE);
WAIT;

RESTORE: TASK TASK_RESTORE;
ACCESS CONTROL IS (ID=[PERSONNEL,*], ACCESS=EXECUTE);
DELAY;

END TASK ATTRIBUTES;
END DEFINITION;

This TASK ATTRIBUTES clause changes attributes for two tasks in the
PERSONNEL_GROUP task group. See Section 5.3 for a list of the subclauses
you use with the TASK ATTRIBUTES clause.

Application Definition Clauses 5–59

TASK DEFAULTS Clause (Application)

TASK DEFAULTS Clause (Application)

Changes the default values for one or more task control attributes in an
application definition.

Format

TASK
�

DEFAULT IS
DEFAULTS ARE

�
<task-subclause> ...

END TASK
 DEFAULT

DEFAULTS

�
;

Parameter

task-subclause
A set of subclauses. These subclauses let you change defaults for one or more
task control attributes. See Section 5.3 for a list of these task subclauses.

Clause Default

ACMS assigns a default to each task control attribute you can define with the
TASK DEFAULTS clause. This clause is optional.

Notes

The TASK DEFAULTS clause applies to any task or task groups named after this
clause in the definition. You can include more than one TASK DEFAULTS clause
in a definition. If you do, each TASK DEFAULTS clause uses the default values
assigned in previous TASK DEFAULTS clauses, changing only those defaults
that it explicitly names. A TASK DEFAULTS clause does not discard all previous
TASK DEFAULTS clauses in the definition.

Any defaults you change with the TASK DEFAULTS clause can be overridden
on a task-by-task basis with a TASK ATTRIBUTES clause. If an attribute is not
explicitly defined in the application or the task group definition of the task, ADU
uses the defaults that are in effect when the task is defined in the application.

If a task is named in a TASK ATTRIBUTES clause, the definition is explicit and
ADU uses the defaults that are in effect when that ATTRIBUTES clause appears
in the application definition. Otherwise, ADU uses the defaults in effect when it
processes the TASK GROUPS clause for the task group containing the task.

5–60 Application Definition Clauses

TASK DEFAULTS Clause (Application)

Example

TASK DEFAULTS ARE
ACCESS CONTROL IS ((ID=[PERSONNEL,JONES], ACCESS=NONE),

(ID=[PERSONNEL,*], ACCESS=EXECUTE));
DELAY;

END TASKS DEFAULTS;
TASK GROUP IS

PERSONNEL_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
END TASK GROUP;
END DEFINITION;

This clause changes the default access rights to tasks in the task group
PERSONNEL_GROUP. The defaults you set in the TASK DEFAULTS clause
apply to any task groups that you define after it. This rule applies if you do not
define another TASK DEFAULTS clause, changing the same control attributes
you changed in previous TASK DEFAULTS clauses.

Example 5–4 shows how to include multiple TASK DEFAULTS clauses in your
application definition.

Example 5–4 Application Definition Using Multiple TASK DEFAULTS

REPLACE APPLICATION PERSONNEL_APPLICATION
USERNAME IS PERSONNEL;
TASK DEFAULTS ARE

ACCESS CONTROL LIST
IDENTIFIER [100,*] ACCESS EXECUTE,
IDENTIFIER [200,*] ACCESS EXECUTE;

AUDIT;
END TASK DEFAULTS;
TASK GROUP IS

DEPARTMENT_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:DEPRMSCOB.TDB";

END TASK GROUP;

TASK DEFAULTS ARE
ACCESS CONTROL LIST IDENTIFIER [200,*] ACCESS EXECUTE;

END TASK DEFAULTS;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:ADMRMSCOB.TDB";
END TASK GROUP;
END DEFINITION;

The first TASK DEFAULTS clause defines a default access control list. ADU
assigns this access control list to all the tasks in the department group. The
second TASK DEFAULTS clause changes that default access control list. ADU
assigns the second access control list to all the tasks in the administration group.
The only users who can run the tasks in the administration task group are those
who have a group UIC of 200.

Application Definition Clauses 5–61

TASK GROUPS Clause (Application)

TASK GROUPS Clause (Application)

Names the task groups containing the tasks associated with an application. You
must include at least one TASK GROUPS clause in each application definition.

Format

TASK
�

GROUP IS
GROUPS ARE

�

� task-group-given-name: TASK GROUP FILE IS task-group-file ; � ...

END TASK
 GROUP

GROUPS

�
;

Parameters

task-group-given-name
A valid ACMS identifier that names the task group in the application. You must
include a name for each task group in an application. This name serves as a
link between the attributes you set in the SERVER ATTRIBUTES and TASK
ATTRIBUTES clauses and the task group for which you are assigning attributes.
Include the name in the SERVER ATTRIBUTES and the TASK ATTRIBUTES
clauses to identify the task group for the task or server you are defining.

task-group-file
A file specification that points to a task group database file that you produce
when you build a task group definition. For each task group name, you must
include the name of the task group database file. The default file type for a task
group database file is .TDB.

Clause Default

You must include at least one TASK GROUPS clause in each application
definition. This clause is required.

Notes

You can include more than one TASK GROUPS clause in an application
definition.

The location of the TASK GROUPS clause can affect the attributes you assign to
the tasks and servers in a task group. You must put the TASK DEFAULTS and
SERVER DEFAULTS clauses before the TASK GROUPS clause with which you
want to associate task and server defaults.

ACMS uses this clause when you build the application and when you start the
application to find the name of the task group file.

5–62 Application Definition Clauses

TASK GROUPS Clause (Application)

Examples

1. USERNAME IS PERSONNEL;
TASK GROUPS ARE

PERSONNEL_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
WORK_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:WORK.TDB";

END TASK GROUPS;
END DEFINITION;

You must include at least one TASK GROUPS clause in each application
definition. For each task group, you must create a task group given name.
The name must be unique in the application definition. The names created
in this application are PERSONNEL_GROUP and WORK_GROUP. A task
group given name lets you use the TASK ATTRIBUTES and SERVER
ATTRIBUTES clauses to assign defaults to the task group. The TASK
GROUP FILE clause defines the binary file that results from building the
task group definition with the BUILD command. End the TASK GROUPS
clause with the keywords END TASK GROUPS.

2. USERNAME IS PERSONNEL;
TASK GROUPS ARE

PERSONNEL_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:PERSONNEL.TDB";
WORK_GROUP : TASK GROUP FILE IS "SYS$SAMPLE:WORK.TDB";

END TASK GROUPS;
TASK ATTRIBUTE IS
ADD_EMPLOYEE : TASK ADD_EMPL IN PERSONNEL_GROUP;

ACCESS CONTROL IS (ID=[PERSONNEL,*], ACCESS=EXECUTE);
END TASK ATTRIBUTE;
END DEFINITION;

In this example, you use the task group given name in the TASK
ATTRIBUTES clause. The task group given name, PERSONNEL_GROUP,
identifies the task group containing the task for which you are setting control
attributes. If you do not include the task group given name in the TASK
ATTRIBUTES clause, ADU uses as the default task group the last task group
in the TASK GROUPS clause just preceding the TASK ATTRIBUTES clause.
In this case, the default task group is WORK_GROUP. Include the task group
given name each time you use the TASK ATTRIBUTES clause.

Application Definition Clauses 5–63

TRANSACTION TIMEOUT Subclause (Task)

TRANSACTION TIMEOUT Subclause (Task)

Places a limit on how long a distributed transaction can remain active.

Format

[NO] TRANSACTION TIMEOUT IS seconds;

Clause Default

The TRANSACTION TIMEOUT subclause is optional. If you do not specify
TRANSACTION TIMEOUT, ACMS does not abort a distributed transaction
because of a timeout error.

Parameter

seconds
The number of seconds a distributed transaction can remain active before ACMS
aborts it.

Notes

Use the TRANSACTION TIMEOUT subclause to place a limit on how long
a distributed transaction can remain active. It is possible that a distributed
transaction cannot complete because a server deadlock or database deadlock
problem has occurred. You can use the TRANSACTION TIMEOUT subclause to
resolve the deadlock.

When a distributed transaction exceeds the specified timeout limit, ACMS aborts
the distributed transaction, raises a transaction exception, searches for an
exception handler, and stores the ACMS$_TRANSTIMEDOUT exception code
in the ACMS$L_STATUS field of the ACMS$PROCESSING_STATUS system
workspace. If the task does not handle the timeout exception in an exception
handler, ACMS cancels the task.

The maximum timeout value you can specify is 65535 seconds.

Example

TASK DEFAULT IS
TRANSACTION TIMEOUT IS 60

END DEFAULT;

This example places a 1-minute limit on the length of a distributed transaction.

5–64 Application Definition Clauses

USERNAME Subclause (Server)

USERNAME Subclause (Server)

Defines the user name under which the server process runs.

Format

USERNAME IS

��
�

username

USERNAME OF
�

TERMINAL USER
APPLICATION

� ��
	 ;

Keywords

TERMINAL USER
Assigns to a server process the user name of the terminal user.

APPLICATION
Assigns to the server processes the OpenVMS user name under which the
application runs. Assign an OpenVMS user name to the application with the
APPLICATION USERNAME clause.

Parameter

username
A valid OpenVMS user name consisting of 1 to 12 alphanumeric characters and
underscores (_). This parameter identifies the user name under which a server
process runs.

Clause Default

The ACMS-supplied default is USERNAME OF APPLICATION. If you do not
assign a user name in the task group definition, USERNAME OF APPLICATION
is the default. However, if you assign a user name in the task group definition,
ACMS uses that assignment. This subclause is optional.

Notes

If you use the USERNAME subclause with the SERVER ATTRIBUTES clause,
you override any user name defined with the SERVERS clause of the task group
definition.

If you define a server to have the user name of the terminal user, that server
cannot have a dynamic user name. Also, the user must be an authorized
OpenVMS user.

A system manager can set up a special account with special quotas and privileges
required for a task. The system manager can assign the server handling the
processing for that task to the user name of that account using the USERNAME
server subclause.

If you use the ACMS/INSTALL command to move an application database file to
ACMS$DIRECTORY, the server user names in that application database must
match the ones authorized for the application in the application authorization file
ACMSAAF.DAT. Using the /DYNAMIC_USERNAME qualifier in the Application
Authorization Utility (AAU) authorizes both the user names of terminal users

Application Definition Clauses 5–65

USERNAME Subclause (Server)

and dynamic user names. For more information on AAU, see the HP ACMS for
OpenVMS Managing Applications.

The REUSABLE server subclause in the task group definition is the default for
both DCL and procedure servers. However, using the clause USERNAME OF
TERMINAL USER in application or task group definitions overrides this default
and creates servers that are not reusable. Every time a new terminal user logs
in, a separate server process is created for that user. For best performance, your
application should run as few servers as needed to do the work of the application.

Example

SERVER ATTRIBUTE IS
PRIVATE_SERVER: USERNAME OF USER;

END SERVER ATTRIBUTE;

The user name of PRIVATE_SERVER is the same as the user name of the
terminal user.

5–66 Application Definition Clauses

WAIT Subclause (Task)

WAIT Subclause (Task)

Controls whether or not ACMS displays a message prompting users to press
Return . Pressing Return clears the terminal screen and displays the previously
displayed ACMS menu.

Format

[NO] WAIT ;

Clause Default

The ACMS-supplied default is NO WAIT. This subclause is optional.

Notes

If you do not set the wait attribute in the TASK ATTRIBUTES clause, ACMS
uses the setting you assign in the task group definition. If you do not make an
assignment there, ACMS uses the NO WAIT default.

You cannot use the WAIT subclause and the DELAY subclause in the same
definition.

You can define WAIT and DELAY in the application definition and in the TASKS
clause of the task group definition. WAIT and DELAY are the only task control
attributes that you can define in task group definitions as well as application
definitions.

The WAIT and DELAY subclauses determine how quickly ACMS returns user
control to a menu when a task ends. For example, if a user runs a task that
displays the time of day with the SHOW TIME command, ACMS displays the
time but immediately clears the screen and returns the user to the menu. Both
subclauses let you delay the time interval between the task ending and the
selection menu redisplay.

WAIT and DELAY subclauses specified for a task in a task, task group, or
application definition are overridden by menu definition WAIT and DELAY
clauses.

Examples

1. USERNAME IS FRIDAY;
TASK DEFAULT IS

WAIT;
END TASK DEFAULT;
TASK GROUP IS

PERSONNEL_GROUP : TASK GROUP IS "SYS$SAMPLE:PERSONNEL.TDB";
END TASK GROUP;
END DEFINITION;

The WAIT subclause in this TASK DEFAULTS clause changes the ACMS
default from NO WAIT to WAIT. This example changes the default for the
tasks defined in the PERSONNEL_GROUP task group. After processing for
each of these tasks stops, ACMS prints a message telling the user to press
Return to have ACMS return control to the menu.

Application Definition Clauses 5–67

WAIT Subclause (Task)

2. USERNAME IS FRIDAY;
TASK DEFAULT IS

WAIT;
END TASK DEFAULT;
TASK GROUP IS

PERSONNEL_GROUP : TASK GROUP IS "SYS$SAMPLE:PERSONNEL.TDB";
END TASK GROUP;
TASK ATTRIBUTE IS

ADD_EMPLOYEE : TASK ADD_EMPLOYEE IN PERSONNEL_GROUP;
NO WAIT;

END TASK ATTRIBUTE;
END DEFINITION;

In this example the default changes from NO WAIT to WAIT. The default also
changes for the ADD_EMPLOYEE task back to NO WAIT. For all tasks in
the PERSONNEL_GROUP task group except the ADD_EMPLOYEE task, the
default is WAIT. Any default you set with the TASK ATTRIBUTES clause
overrides any you set either in the task group definition or in the application
definition with the TASK DEFAULTS clause.

5–68 Application Definition Clauses

6
Menu Definition Clauses

Menu definitions describe the contents of ACMS menus, which are screen
displays of entries that users can select. Users can select task entries that do the
work of an application, or menu entries that display other menus with their own
entries. You can create a menu hierarchy similar to the directory structure on
your OpenVMS system.

This chapter explains the clauses you use to write menu definitions. A menu
definition describes the menu title and the names and descriptions of menu
entries. Table 6–1 names and briefly describes each of these clauses.

Table 6–1 Menu Definition Clauses

Clause Meaning

CONTROL TEXT Names up to five control text items that instruct
HP DECforms how to modify the HP DECforms
menu.

DEFAULT APPLICATION Names the application ADU uses if you do not
include one with each task entry you define.

DEFAULT MENU FILE Names the default menu database file ACMS builds
if the menu is used as the top menu in a BUILD
MENU file. You can override the file specification
when you use the BUILD command.

HEADER Defines the title for a menu.

REQUEST Names a TDMS request that ACMS uses to display
a menu.

ENTRIES Defines task and menu entries.

The ENTRIES clause is the only required menu clause. It includes a required
subclause specifying whether an entry is a task or menu entry. It can also
include optional subclauses for displaying descriptive text and controlling screen
display characteristics. Figure 6–1 shows the menu definition syntax.

Menu Definition Clauses 6–1

Menu Definition Clauses

Figure 6–1 Menu Definition Syntax

[DEFAULT APPLICATION IS application-spec ;]

[DEFAULT MENU FILE IS menu-database-file ;]

[HEADER IS string [,string] ;]

�
������

{ REQUEST IS request-name [WITH number ENTRIES PER SCREEN] ; }

��
� [SEND] CONTROL TEXT [IS]

� string
quoted-string

�
[WITH number ENTRIES per screen];

��
	

�
������

�����������������������������
����������������������������

��
�
�

ENTRY IS
ENTRIES ARE

� ��
	

��������������
�������������

entry-name:�����������
����������

�
MENU IS menu-path-name ;
TASK IS task-name [IN application-spec] ;

�

� TEXT IS description-string ; �

[NO] DELAY
[NO] WAIT

�

�����������
���������	

��������������
������������	

...

END
 ENTRY

ENTRIES

�
;

�����������������������������
���������������������������	

...

END DEFINITION ;

6–2 Menu Definition Clauses

Menu Definition Clauses

Example 6–1 shows a sample menu definition.

Example 6–1 Sample Menu Definition

HEADER IS " EXAMPLE OF",
" ACMS MENU DEFINITION";

DEFAULT APPLICATION IS PERSONNEL;
ENTRIES ARE

ADD : TASK IS ADD_EMPLOYEE;
TEXT IS "Add New Employee Record";

CHANGE : TASK IS CHANGE_EMPLOYEE;
TEXT IS "Change Employee Record";

DISPLAY : MENU IS DISPLAY_MENU;
TEXT IS "Menu of Tasks to Display Information";

END ENTRIES;
END DEFINITION;

This menu defines three entries. ADD and CHANGE are task entries. When
selected, they run the tasks identified by the task names ADD_EMPLOYEE and
CHANGE_EMPLOYEE. You must define these names in a task group definition.
DISPLAY is a menu entry that displays another menu selected by a user.
DISPLAY_MENU is the CDD path name of the menu definition that describes
the menu you want to display. Each entry includes descriptive text.

ENTRIES clauses define each entry in a menu definition. You begin a set
of ENTRIES clauses with the keywords ENTRIES ARE and end it with the
keywords END ENTRIES. ENTRIES subclauses define the characteristics of each
entry.

To define the characteristics of a set of entries, specify each entry name, a colon
(:), and the entry’s subclauses. The ENTRIES clause includes the following types
of subclauses:

• Required subclauses define whether the entry displays a menu (MENU
subclause) or runs a task (TASK subclause) when a terminal user selects the
entry. Specify only one of these subclauses for each entry.

• Optional subclauses define descriptive text (TEXT subclause) and WAIT or
DELAY screen display characteristics.

6.1 Application Specifications
Several ADU clauses include an application specification parameter. For
example, in the DEFAULT APPLICATION clause, you must specify the name of
the application to be the default when the terminal user logs on to ACMS.

The syntax for the application specification parameter is:

["]

�����
����

� � node-name
logical-node-name

�
::

�
file-name

logical-appl-name

�����
���	

["]

Menu Definition Clauses 6–3

Menu Definition Clauses
Application Specifications

The elements of the application specification parameter are:

• File-name

The name of the application database file created by the BUILD
APPLICATION command. The file must have .ADB as the file type. You
cannot specify the file type or version number. You also cannot specify a
device or directory name. The .ADB file must be located on the device and
directory pointed to by the logical ACMS$DIRECTORY.

File names can have up to 39 characters, including letters, digits, hyphens
(-), underscores (_), and dollar signs ($). If you have more than 31 characters
in the file name, you must enclose the application specification in quotation
marks, either single (’) or double (").

• Node-name

The name of a valid DECnet node. The node name cannot include an access
control string.

• Logical-node-name

A logical name whose equivalence string is the name of a valid DECnet node.
The logical node name cannot include an access control string. ACMS follows
the OpenVMS conventions for translating logical names, including use of
interative translation and search lists.

A logical name can have up to 255 characters. If the logical name exceeds
31 characters, enclose the application specification in quotation marks, either
single (’) or double (").

• Logical-appl-name

A logical name whose equivalence string consists of either of the following:

The name of an application database (.ADB) file.

A valid DECnet node name, followed by two colons (::), followed by the
name of an application database file, for example, NODE1::PAYROLL.

The file name that the logical application name points to must conform to the
rules listed previously for application file names.

A logical name can have up to 255 characters. If the logical name exceeds
31 characters, enclose the application specification in quotation marks, either
single (’) or double (").

Logical names must be accessible to the ACMS command process (CP), so define
them as system logical names. See OpenVMS DCL Dictionary for information on
logical names and file names.

The application you specify can be located on the same node as the terminal
user, or on a remote node with the terminal user located on a separate front-
end processor. When the application exists on the same node as the user,
the application specification consists of the name of the application database
file. That file must be located in the directory pointed to by the logical
ACMS$DIRECTORY. The logical definition for ACMS$DIRECTORY includes
both a device name and a directory name.

For a distributed application, where the application is located on a remote node,
specify both the application database file name and the name of the remote node.
The device and directory names are taken from the ACMS$DIRECTORY logical
on the remote node.

6–4 Menu Definition Clauses

Menu Definition Clauses
Application Specifications

Use logical application names whenever possible to specify the application
database file. If the application is moved to another node, you only need to
change the logical name definition to reflect the new configuration. For example,
if the file name is hardcoded in the menu definition, the menu database must be
rebuilt whenever the node changes.

Frequently, sites develop and test applications on a single node system. Then,
when they put the application into production, they distribute the front-end
processing to one node and place the application on a more powerful system.
Using a logical application specification means only one change to the code is
required when a new configuration is set up.

The following are examples of application specifications:

• PAYROLL

The application database file is PAYROLL.ADB. The node where the
application resides is the same node where terminal users log on to access the
application.

• ‘‘HOURLY_PAYROLL_MAPLE_VALLEY_BRANCH’’

HOURLY_PAYROLL_MAPLE_VALLEY_BRANCH.ADB is the application
database file. Quotation marks are required because the file name exceeds 31
characters.

• SANFRN::PAYROLL

The application database file is PAYROLL.ADB. The application is located on
node SANFRN.

• SAN_FRANCISCO::PAYROLL

The application database file is PAYROLL.ADB. The node where the
application resides is defined by the logical name SAN_FRANCISCO.

• SAN_FRANCISCO_SALARIED_PAYROLL

SAN_FRANCISCO_SALARIED_PAYROLL is a logical application name that
points to the application database file SF_SAL_PAYROLL.ADB. The node
where the application resides is included in the logical name definition.

• ‘‘SAN_FRANCISCO_BAY_AREA_SALARIED_PAYROLL’’

SAN_FRANCISCO_BAY_AREA_SALARIED_PAYROLL is a logical
application name that points to the application database file SFBA_SAL_
PAYROLL.ADB. The node where the application resides is included in the
logical name definition. Quotation marks are required because the logical
name exceeds 31 characters.

6.2 Writing Menu Definitions for Distributed Applications
ACMS supports applications distributed across a network. A menu can include
a task running in an application on another node in a distributed environment,
whether that environment is a local area network, wide area network, or
OpenVMS Cluster.

For example, suppose the ACMS Sample Applications Personnel and Employee
run on an OpenVMS Cluster with two nodes, RAVEN and MAGPIE. The
Personnel application runs on the node RAVEN; Employee runs on MAGPIE.
Some tasks from the Employee application on MAGPIE are needed by users on
RAVEN. Rather than duplicate tasks from the Employee application for users on

Menu Definition Clauses 6–5

Menu Definition Clauses
Writing Menu Definitions for Distributed Applications

RAVEN, you can provide remote access to Personnel tasks on RAVEN for users
on MAGPIE.

One way to distribute a task remotely is to include the name of the remote node
in the application specification in the menu definition. Example 6–2 provides an
example of a menu entry for a task of a remote node.

Example 6–2 Example of a Menu with a Remote Task

HEADER IS " EMPLOYEE MENU";
ENTRIES ARE

SCHEDULE : TASK IS REVIEW_SCHEDULE IN RAVEN::PERSONNEL;
EMPLOYEE : TASK IS EMPLOYEE IN EMPLOYEE;

END ENTRIES;
END DEFINITION;

The EMPLOYEE menu definition is on node MAGPIE. The HEADER clause
lists the descriptive text at the top of the menu. The ENTRIES clause lists the
choices displayed on the menu. The first entry, SCHEDULE, is a task named
REVIEW_SCHEDULE in the Personnel application running on node RAVEN. The
EMPLOYEE entry is the task named EMPLOYEE in the Employee application
on node MAGPIE. The SCHEDULE entry provides remote access to the task
named REVIEW_SCHEDULE in the Personnel application on RAVEN.

Example 6–2 hardcoded a node name in a menu definition. See Section 6.1 for
information about other methods of accessing remote applications that are more
flexible than hardcoding.

6–6 Menu Definition Clauses

CONTROL TEXT Clause (Menu)

CONTROL TEXT Clause (Menu)

Lets you customize your HP DECforms menu by sending up to five control text
items to the form.

Format �
� [SEND] CONTROL TEXT [IS]

� string
quoted-string

�
[WITH number ENTRIES PER SCREEN];

�
�

Parameters

string
A 5- to 25-character identifier that the ACMS command process passes to HP
DECforms, instructing HP DECforms to execute corresponding control text
responses. You can specify up to five control text items; each item must be five
characters long. If you send multiple control text items, do not separate them
with spaces or commas.

quoted-string
A 5- to 25-character identifier, within quotation marks, that instructs the HP
DECforms to execute corresponding control text responses. Use a quoted string if
your string contains any nonalphanumeric characters.

number
Identifies the number of entries that appear on the terminal screen.

Clause Default

The CONTROL TEXT clause is optional. If you do not use it in your menu
definition, and your application uses HP DECforms, your menu appears in the
standard HP DECforms format with 16 entries for each screen.

Notes

You can use the CONTROL TEXT clause to change menu attributes such as
background color, highlighted fields, and blinking fields. For each control text
item that you name, define a corresponding control text response in your IFDL
(Independent Form Description Language) source file in the form.

You cannot specify both CONTROL TEXT and REQUEST clauses in the same
menu definition.

Example

SEND CONTROL TEXT IS COLORLIGHT
WITH 10 ENTRIES PER SCREEN;

This example passes two control text items, COLOR and LIGHT, to HP DECforms
where two corresponding control text responses define the menu’s background
color and highlighted fields. This example also changes the number of entries for
each screen from the default of 16 to 10.

Menu Definition Clauses 6–7

DEFAULT APPLICATION Clause (Menu)

DEFAULT APPLICATION Clause (Menu)

Defines the application specification that ACMS uses as the default for TASK
entries, unless you name a different application database file with the TASK
subclause.

Format

DEFAULT APPLICATION IS application-spec ;

Parameter

application-spec
See Section 6.1 for information about application specifications.

Clause Default

If you omit the DEFAULT APPLICATION clause, you must specify the
application in each TASK subclause in the menu definition. This clause is
optional.

Notes

Include the application specification in the DEFAULT APPLICATION clause
rather than in TASK subclauses. Changing the application specification in the
DEFAULT APPLICATION clause is easier than changing each entry that uses
that application specification.

The application specification that you assign in a TASK subclause overrides the
one you assign with the DEFAULT APPLICATION clause.

Examples

1. DEFAULT APPLICATION IS EMPLOYEE;
ENTRIES ARE

ADD : TASK IS ADD_EMPLOYEE;
TEXT IS "Add Employee Information";

CHANGE : TASK IS CHANGE_EMPLOYEE;
TEXT IS "Change Employee Information";

END ENTRIES;
END DEFINITION;

In this example, the default application is EMPLOYEE. You do not need to
include the application for each entry in the ENTRIES clause. Only if a task
entry belongs to another application do you need to name another application
name with the TASK subclause.

The application specification EMPLOYEE in the DEFAULT APPLICATION
clause includes no node name, indicating that the application EMPLOYEE is
resident on the same node as the menu definition. This is the default.

6–8 Menu Definition Clauses

DEFAULT APPLICATION Clause (Menu)

2. DEFAULT APPLICATION IS RAVEN::DEPART;
ENTRIES ARE

ADD : TASK IS ADD_EMPLOYEE;
TEXT IS "Add Employee Information";

CHANGE : TASK IS CHANGE_EMPLOYEE IN EMPLOYEE;
TEXT IS "Change Employee Information";

END ENTRIES;
END DEFINITION;

In this example, the default application database DEPART runs on the remote
node RAVEN, so the application specification includes the node name followed
by two colons followed by the application file name. Because the ADD task
entry includes no application name, ADD takes the default application. The
CHANGE task, however, belongs to a different application, Employee, in the
database file EMPLOYEE.ADB on the same node as the menu definition. The
assignment you make for the CHANGE task overrides the default for that
task.

3. DEFAULT APPLICATION IS
"LONG_LOGICAL_NAME_FOR_APPLICATION_NODE::EMPLOYEE";

ENTRIES ARE
ADD : TASK IS ADD_EMPLOYEE;

TEXT IS "Add Employee Information";
CHANGE : TASK IS CHANGE_EMPLOYEE;

TEXT IS "Change Employee Information";
END ENTRIES;
END DEFINITION;

In this example, the default application database file is:

LONG_LOGICAL_NAME_FOR_APPLICATION_NODE::EMPLOYEE.

LONG_LOGICAL_NAME_FOR_APPLICATION_NODE is defined as RAVEN,
so OpenVMS translates the application specification as RAVEN::EMPLOYEE.
Because the logical name is longer than 31 characters, the application
specification is enclosed in quotation marks.

Menu Definition Clauses 6–9

DEFAULT MENU FILE Clause (Menu)

DEFAULT MENU FILE Clause (Menu)

Defines the menu database file that ACMS uses as the default when it builds a
menu tree. ACMS builds the menu tree when you use the BUILD command and
includes the specified menu as the top menu in the tree.

Format

DEFAULT MENU FILE IS menu-database-file ;

Parameter

menu-database-file
The file specification of the menu database file that you create when you build
a menu definition. It can be either an identifier or a quoted string. If the menu
database file specification contains any characters not allowed for an identifier,
or the file specification exceeds 31 characters, enclose the file specification in
quotation marks (" "). ADU assigns the default file type .MDB. If you do not
include a device or directory with the menu database file specification, ADU
searches your current default device and directory by default.

Clause Default

This clause is optional. Any menu database file assignment you make in the
BUILD command overrides any you make with the DEFAULT MENU FILE
clause in a menu definition. When you do not include the DEFAULT MENU
FILE clause in a menu definition, ADU uses the file specification you include
with the BUILD command for the menu database file. If you do not name a menu
database file when you build a menu, and you do not name a database file with
the DEFAULT MENU FILE clause, ADU derives the database file specification
from the given name of the menu. It uses the full given name, including dollar
signs ($) and underscores (_), for the default database file name.

Examples

1. DEFAULT MENU FILE IS "DISPLAY.MDB";
DEFAULT APPLICATION IS DEPART;
ENTRIES ARE

ADD : TASK IS ADD_EMPLOYEE;
TEXT IS "Add Employee Information";

CHANGE : TASK IS CHANGE_EMPLOYEE IN EMPLOYEE;
TEXT IS "Change Employee Information";

END ENTRIES;
END DEFINITION;

ADU uses the menu database file that you name with the DEFAULT MENU
FILE clause to store the binary version of a CDD menu definition. If you
include a device designation, a directory specification, or a file type, you must
enclose the file specification in quotation marks (" ").

6–10 Menu Definition Clauses

DEFAULT MENU FILE Clause (Menu)

2. MENU FILE DISPLAY;
DEFAULT APPLICATION IS DEPART;
ENTRIES ARE

ADD : TASK IS ADD_EMPLOYEE;
TEXT IS "Add Employee Information";

CHANGE : TASK IS CHANGE_EMPLOYEE;
TEXT IS "Change Employee Information";

END ENTRIES;
END DEFINITION;

ACMS assigns the default file type .MDB if you omit the file type in your
file specification. When you include only the file name, you do not need to
use quotation marks (" "). To shorten the clause, leave out the keywords
DEFAULT and IS.

Menu Definition Clauses 6–11

DELAY Subclause (Optional ENTRIES)

DELAY Subclause (Optional ENTRIES)

Controls whether or not ACMS waits 3 seconds after a task entry stops running
before clearing the screen and displaying the ACMS menu.

Format

[NO] DELAY ;

Clause Default

If you do not set the delay attribute in an ENTRIES clause, ACMS uses the
setting you assign in the application or task group definition. If you do not make
an assignment there, ACMS uses the NO DELAY default. This subclause is
optional.

Notes

DELAY and WAIT subclauses are valid for task entries only.

When you use the WAIT subclause, you cannot specify a DELAY subclause for the
same task entry.

The DELAY subclause always delays clearing the screen for 3 seconds. You
cannot change the time of the delay.

This subclause differs from the WAIT subclause, which requires users to press
Return to have ACMS redisplay the menu.

The WAIT and DELAY subclauses determine how quickly ACMS returns user
control to a menu when a task ends. For example, if a user runs a task that
displays the time of day with the SHOW TIME command, by default ACMS
displays the time, but then immediately clears the screen and returns the user
to the menu. Both subclauses let you delay the time interval between the task
ending and the selection menu redisplay.

WAIT and DELAY subclauses specified for a task in a task, task group, or
application definition are overridden by menu definition WAIT and DELAY
clauses.

Example

ENTRIES ARE
EMPLOYEE : TASK IS EMPLOYEE IN EMPYAPP;

TEXT IS "Create Employee Database";
DELAY;

END ENTRIES;
END DEFINITION;

The EMPLOYEE task entry in this example uses a DELAY subclause. When
the entry finishes running, ACMS waits 3 seconds before clearing the screen and
displaying the ACMS menu.

6–12 Menu Definition Clauses

ENTRIES Clause (Menu)

ENTRIES Clause (Menu)

Defines an entry as a menu entry or a task entry. A menu entry displays a menu
when users select the entry. A task entry runs a task.

Format ��������������
�������������

�
ENTRY IS
ENTRIES ARE

�

�
entry-name:

<required-subclause>
<optional-subclause> ...

�
...

END
 ENTRY

ENTRIES

�
;

��������������
������������	

...

Parameters

entry-name
The name that ADU puts on the left side of the menu to identify the entry. You
must create an entry name for each entry in a menu. Each entry name can be
up to 10 characters long, including letters and numbers. The entry name must
begin with a letter. A colon (:) separates an entry name from the subclauses that
describe it.

You can put entry names in quotation marks (" ") to display the entry name as
you typed it, with uppercase letters displayed in uppercase, and lowercase letters
in lowercase. Do not include embedded spaces, periods, or tab characters in an
entry name contained in quotation marks.

If you do not put an entry in quotation marks (" "), ACMS displays the entry
name in uppercase letters. Typing the entry name in either uppercase or
lowercase letters does not affect the way ACMS displays an entry name not
contained in quotation marks.

required-subclause
Defines an entry as a menu (MENU subclause) or as a task (TASK subclause).
You must include either the MENU or the TASK subclause for each entry you
define with the ENTRIES clause.

optional-subclause
Allows you to include descriptive text in menus, and control WAIT and DELAY
screen display characteristics for task entries:

• TEXT is the optional subclause you use to describe characteristics for entries
in a menu definition.

• DELAY specifies that 3 seconds will elapse when a task ends before a menu
is redisplayed.

• WAIT sends a message to the terminal screen indicating that the user must
press Return to have ACMS clear the screen and redisplay the menu.

DELAY and WAIT subclauses are valid for task entries only.

Menu Definition Clauses 6–13

ENTRIES Clause (Menu)

Clause Default

You must include at least one ENTRIES clause and define at least one entry in
every menu definition. This clause is required.

Notes

Insert a colon between the entry name and the first subclause for the task. The
colon separates the entry name from the subclauses that describe it.

After putting all the subclauses for an entry in your definition file, begin the
description of the next entry by typing another entry name. Follow the entry
name with a colon and the subclauses for that entry.

The order of entry names in the menu definition is the order in which ACMS
displays them on the menu.

You can use more than one ENTRIES clause in the same menu definition.
If necessary, ACMS separates the menus into many screens for each menu
definition.

You can use an entry name only once for each menu.

Example

ENTRIES ARE
ADD : TASK EMPLOYEE IN PERSONNEL;

TEXT IS "Add New Employee";
DELAY;

EDITOR : TASK EDIT IN PERSONNEL;
TEXT IS "Edit Memos";
WAIT;

END ENTRIES;
END DEFINITION;

The entry names in this example are ADD and EDITOR. Both begin with a letter
and contain fewer than 10 characters. Follow each entry name with a colon and
the subclauses for that entry. The keywords END DEFINITION complete the
menu definition.

6–14 Menu Definition Clauses

HEADER Clause (Menu)

HEADER Clause (Menu)

Defines the title of a menu.

Format

HEADER IS string [,string] ;

Parameter

string
The text of the menu title. The title can have up to two lines of text. If you
include only one line for the header, enclose the text in quotation marks (" ") and
end the line with a semicolon (;). If you have a two-line title, enclose the text for
the first line in quotation marks (" ") and end it with a comma (,). Put quotation
marks (" ") around the second line of the two-line title and end it with a semicolon
(;).

Clause Default

ADU leaves the title lines blank. This clause is optional.

Notes

You do not need to fill spaces to the right of a header line.

Center a title by including spaces before the text of the title. Put the spaces and
the title in quotation marks.

Do not use tabs or other nonprinting characters.

Examples

1. HEADER " ACMS EMPLOYEE SAMPLE APPLICATION";
DEFAULT APPLICATION IS DEPART;
ENTRIES ARE

ADD : TASK IS ADD_EMPLOYEE;
TEXT IS "Add Employee Information";

CHANGE : TASK IS CHANGE_EMPLOYEE;
TEXT IS "Change Employee Information";

END ENTRIES;
END DEFINITION;

In this example, the single-line title is in quotation marks (" "). The clause
ends with a semicolon. The keyword IS is optional.

2. HEADER IS " A C M S",
" EMPLOYEE SAMPLE APPLICATION";

DEFAULT APPLICATION IS DEPART;
ENTRIES ARE

ADD : TASK IS ADD_EMPLOYEE;
TEXT IS "Add Employee Information";

CHANGE : TASK IS CHANGE_EMPLOYEE IN EMPLOYEE;
TEXT IS "Change Employee Information";

END ENTRIES;
END DEFINITION;

Menu Definition Clauses 6–15

HEADER Clause (Menu)

This example has a two-line header. Put both lines of the title in quotation
marks (" "). The first line ends with a comma, and the second line ends with
a semicolon.

6–16 Menu Definition Clauses

MENU Subclause (Required ENTRIES)

MENU Subclause (Required ENTRIES)

Defines an entry as a menu and points to the CDD location of the definition for
that menu.

Format

MENU IS menu-path-name ;

Parameter

menu-path-name
The CDD path name of a menu definition. This definition describes the menu
ACMS displays when users select the entry.

Clause Default

You must include this subclause or the TASK subclause for each menu entry you
define.

Note

Do not name a menu that has been used higher in the same menu tree. If you do,
the BUILD command goes into an infinite loop.

Examples

1. ENTRIES ARE
ADMIN :

MENU IS DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE.ACMS_ADMIN_MENU;
TEXT IS "Administrative Application Menu";

DEPART :
MENU IS DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE.ACMS_DEPART_MENU;
TEXT IS "Department Application Menu";

END ENTRIES;
END DEFINITION;

Each entry in this example points to a menu located in the dictionary. A
menu path name defines the location of the menu definitions that display the
menu when users select the entry. Both MENU subclauses include complete
path names.

2. ENTRIES ARE
ADMIN : MENU IS ACMS_ADMIN_MENU;

TEXT IS "Administrative Application Menu";
DEPART : MENU IS ACMS_DEPART_MENU;

TEXT IS "Department Application Menu";
END ENTRIES;
END DEFINITION;

If you use the ADU SET DEFAULT command or the DCL DEFINE command
to assign the logical CDD$DEFAULT to the default directory
DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE, you can use just the relative
path names ACMS_ADMIN_MENU and ACMS_DEPART_MENU instead of
the full CDD path names.

Menu Definition Clauses 6–17

REQUEST Clause (Menu)

REQUEST Clause (Menu)

Identifies the TDMS request that defines the menu layout.

Format

REQUEST IS request-name [WITH number ENTRIES PER SCREEN] ;

Parameters

request-name
The given name of the TDMS request that supplies the menu ACMS displays.
This is the name of the request in the request library definition. It is not a CDD
path name.

number
Identifies the number of entries the TDMS request contains.

Clause Default

ACMS supplies the default menu request MENU_REQUEST. If you omit the
WITH number ENTRIES PER SCREEN portion of the REQUEST clause, the
default is WITH 16 ENTRIES PER SCREEN. This clause is optional.

Note

Use the REQUEST clause to specify that TDMS is to be used to display a menu.

HP ACMS for OpenVMS Writing Applications has information about using the
REQUEST clause.

Example

REQUEST IS MENU_REQUEST;

In this example, the TDMS request that supplies the menus for the application is
MENU_REQUEST.

6–18 Menu Definition Clauses

TASK Subclause (Required ENTRIES)

TASK Subclause (Required ENTRIES)

Names the task ACMS runs when a user selects the entry from a menu.

Format

TASK IS task-name [IN application-spec] ;

Parameters

task-name
The name of the task in the application database. If the task is defined with the
TASK ATTRIBUTES clause in the application definition, the task name must be
the one used in that definition. If the task is not defined in an application, the
task name must be the one used in the task group definition. The task name can
be up to 31 characters, consisting of letters, numbers, and underscores. Begin the
task name with any of these characters except a number. Do not put the task
name in quotation marks (" ").

application-spec
See Section 6.1 for information about application specifications.

Clause Default

You must include this subclause or the MENU subclause for each menu entry you
define.

Notes

If you include the application specification in the DEFAULT APPLICATION
clause, you do not have to include it with the TASK subclause.

In the TASK subclause, you can include an application specification that is
different from the one you used in the DEFAULT APPLICATION clause. If you
do, the assignment you make with the TASK subclause overrides the application
specification you include with the DEFAULT APPLICATION clause.

Examples

1. ENTRY IS
EMPLOYEE : TASK IS EMPLOYEE IN EMPLYAPP;

TEXT IS "Create Employee Database";
END ENTRY;
END DEFINITION;

This example defines the task entry EMPLOYEE and includes the application
name EMPLYAPP.

2. DEFAULT APPLICATION IS ACPERSON;
ENTRY IS

UTILITY : TASK IS UTILITY;
TEXT IS "Display Utility Menu";

END ENTRY;
END DEFINITION;

This example uses the DEFAULT APPLICATION clause to name the
application ACPERSON. You then can omit the reference to the application
name from the TASK subclause.

Menu Definition Clauses 6–19

TASK Subclause (Required ENTRIES)

3. HEADER IS " EMPLOYEE MENU";
ENTRIES ARE

SCHEDULE : TASK IS REVIEW_SCHEDULE IN RAVEN::PERSONNEL;
EMPLOYEE : TASK IS LIST_EMPLOYEE IN EMPLOYEE;

END ENTRIES;
END DEFINITION;

This example shows a menu definition including a remote task from the
EMPLOYEE menu definition on node MAGPIE. The SCHEDULE entry is a
task named REVIEW_SCHEDULE in the Personnel application running on
the node RAVEN. The EMPLOYEE entry is a task named EMPLOYEE in the
Employee application running on the same node as the menu definition.

4. HEADER IS " EMPLOYEE MENU";
ENTRIES ARE

SCHEDULE : TASK IS REVIEW_SCHEDULE
IN "REALLY_LONG_APPLICATION_LOGICAL_NAME::PERSONNEL";

EMPLOYEE : TASK IS LIST_EMPLOYEE IN EMPLOYEE;
END ENTRIES;
END DEFINITION;

This example shows the use of logical names in a menu definition, including a
remote task, from the EMPLOYEE menu definition on the node MAGPIE. The
SCHEDULE entry is a task named REVIEW_SCHEDULE in the Personnel
application running on the node defined by the logical name
REALLY_LONG_APPLICATION_LOGICAL_NAME. OpenVMS translates
this logical name as RAVEN. Because the logical name is longer than 31
characters, the entire application specification is enclosed in quotation
marks. The EMPLOYEE entry is a task named EMPLOYEE in the Employee
application running on the same node as the menu definition.

6–20 Menu Definition Clauses

TEXT Subclause (Optional ENTRIES)

TEXT Subclause (Optional ENTRIES)

Provides descriptive text that ACMS displays with a menu or task entry.

Format

TEXT IS description-string ;

Parameter

description-string
The text describing the entry. You can use up to 50 characters in this description.
Enclose the text in quotation marks (" ").

Clause Default

ACMS leaves the text field to the right of the entry name blank. This subclause
is optional.

Note

Do not use tabs in a text string.

Examples

1. ENTRIES ARE
ADMIN :

MENU IS DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE.ACMS_ADMIN_MENU;
TEXT IS "Administrative Application Menu";

DEPART :
MENU IS DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE.ACMS_DEPART_MENU;
TEXT IS "Department Application Menu";

END ENTRIES;
END DEFINITION;

Both entries in this example use the TEXT subclause. The descriptive
information is in quotation marks (" "). Each TEXT subclause ends with a
semicolon.

2. ENTRIES ARE
ADMIN : MENU IS ACMS$SAMPLE.ACMS_ADMIN_MENU;
DEPART : MENU IS ACMS$SAMPLE.ACMS_DEPART_MENU;

TEXT IS "Department Application Menu";
END ENTRIES;
END DEFINITION;

By default, ADU leaves the field next to the ADMIN menu entry blank. Only
the DEPART menu entry has an entry description.

Menu Definition Clauses 6–21

WAIT Subclause (Optional ENTRIES)

WAIT Subclause (Optional ENTRIES)

Controls whether or not ACMS prompts a terminal user to press Return after a
task entry completes and before clearing the screen and displaying the ACMS
menu.

Format

[NO] WAIT ;

Clause Default

If you do not set the WAIT attribute in the ENTRIES clause, ACMS uses the
setting you assign in the application or task group definition. If you do not
make an assignment there, ACMS uses the NO WAIT default. This subclause is
optional.

Notes

DELAY and WAIT subclauses are valid for task entries only.

When you use the WAIT subclause, you cannot specify a DELAY subclause for the
same menu entry.

This subclause differs from the DELAY subclause, which controls whether or not
ACMS waits 3 seconds before redisplaying the menu.

The WAIT and DELAY subclauses determine how quickly ACMS returns user
control to a menu when a task ends. For example, if a user runs a task that
displays the time of day with the SHOW TIME command, by default ACMS
displays the time, but then immediately clears the screen and returns the user
to the menu. Both subclauses let you delay the time interval between the task
ending and the selection menu redisplay.

WAIT and DELAY subclauses specified for a task in a task, task group, or
application definition are overridden by WAIT and DELAY clauses specified in a
menu definition.

Example

ENTRIES ARE
EMPLOYEE : TASK IS EMPLOYEE IN EMPYAPP;

TEXT IS "Create Employee Database";
WAIT;

END ENTRIES;
END DEFINITION;

The EMPLOYEE task entry in this example uses a WAIT subclause. When
the entry finishes running, ACMS displays a message on the terminal screen
prompting users to press Return to clear the terminal and display the previous
menu.

6–22 Menu Definition Clauses

7
Declining Task Definition Clauses

The task clauses and phrases in this chapter are considered to be declining
features in the task definition language. It is recommended that you use
distributed transaction syntax to control file and database transactions. Most
of the clauses and phrases in this chapter are for declaring file and database
recovery units in the task definition.

In addition to clauses and phrases related to file and database recovery units,
this chapter contains the CONTINUE ON BAD STATUS phrase and the GOTO
TASK and REPEAT TASK clauses. It is recommended that you use the RAISE
EXCEPTION and EXCEPTION HANDLER clauses instead of CONTINUE ON
BAD STATUS; the CALL TASK clause instead of GOTO TASK; and REPEAT
STEP instead of REPEAT TASK.

Existing applications that use the clauses and phrases in this chapter can run
under ACMS Version 4.0 or higher.

Declining Task Definition Clauses 7–1

COMMIT Clause (Action)

COMMIT Clause (Action)

Signals the end of the current transaction in steps you define using DBMS, SQL,
Rdb, or RMS recovery units, and causes any changes made since the start of the
transaction to be written to the database.

Format

COMMIT [RETAINING RECOVERY UNIT] [IF ACTIVE RECOVERY UNIT] ;

Keywords

RETAINING RECOVERY UNIT
Performs the equivalent of a DBMS COMMIT RETAINING. These keywords are
valid only with DBMS.

IF ACTIVE RECOVERY UNIT
Commits the recovery unit only if there is a recovery unit active. If you use the
IF ACTIVE RECOVERY UNIT keywords with the COMMIT clause, and there is
no active recovery unit, ACMS does not attempt to COMMIT the recovery unit.

If you do not use the IF ACTIVE RECOVERY UNIT keywords, and there is no
active recovery unit when you use the COMMIT clause with the RETAINING
RECOVERY UNIT keywords, ACMS returns a fatal error.

Clause Default

The COMMIT clause is optional. If you do not use the ROLLBACK, COMMIT,
or RETAIN RECOVERY UNIT clause, and the step started a unit, the default
recovery action is COMMIT IF ACTIVE RECOVERY UNIT.

Table 7–1 shows the default recovery actions for different cases in a task
definition.

Notes

Use the RETAINING RECOVERY UNIT keywords only if you are using the
COMMIT clause in the action specification for a step within a block.

Use the COMMIT clause with the CANCEL TASK clause to commit a recovery
unit while still canceling the task.

If the server process does not receive a cancel, ACMS does not take any recovery
actions specified with the CANCEL TASK clause. Instead, the procedure server
image is run down. This rundown causes a rollback of any active recovery units.
Therefore, you must be careful when using the CANCEL TASK and COMMIT
clauses in the same action specification.

7–2 Declining Task Definition Clauses

COMMIT Clause (Action)

Example

PROCESSING WITH DBMS RECOVERY "READY CONCURRENT UPDATE"
CALL PERSADD USING PERS_RECORD;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

NOMATCH : COMMIT;
END CONTROL FIELD;

If the PERSADD procedure returns a status code with an error severity level
of WARNING, ERROR, or FATAL, ACMS stores the value B in the ACMS$T_
STATUS_TYPE field of the ACMS$PROCESSING_STATUS workspace. When
ACMS processes the CONTROL FIELD clause and B is in the ACMS$T_
STATUS_TYPE field, ACMS returns to the previous exchange step and restores
the database to the state it was in at the start of the recovery unit. However,
if any other value is in the ACMS$T_STATUS_TYPE field, denoted by the
NOMATCH keyword, ACMS commits all changes made since the start of the
recovery unit.

Declining Task Definition Clauses 7–3

CONTINUE ON BAD STATUS Phrase (Processing)

CONTINUE ON BAD STATUS Phrase (Processing)

Instructs ACMS to continue task execution if a task called by a processing step
returns a failure status.

Format

CONTINUE ON BAD STATUS

Clause Default

The CONTINUE ON BAD STATUS phrase is optional.

If you do not use the CONTINUE ON BAD STATUS phrase, the calling task is
canceled if the called task returns a bad status.

Notes

The CONTINUE ON BAD STATUS phrase is ignored if it is specified in a
processing step that also uses a CALL PROCEDURE clause.

Example

REPLACE TASK MENU_TASK
GLOBAL;
NOT CANCELABLE;
WORKSPACE IS WORK_RECORD,PERS_RECORD;

BLOCK WORK
PROCESSING

CALL PROCEDURE DISPLAY IN DISPLAY_SERVER;
EXCHANGE

READ PERS_RECORD;
ACTION IS

MOVE PERS_RECORD INTO WORK_RECORD.ENTRY;
PROCESSING WITH CONTINUE ON BAD STATUS

IS
SELECT FIRST TRUE
(WORK_RECORD.ENTRY EQ "ADD_EMPLOYEE"):

CALL TASK ADD_EMPLOYEE;
(WORK_RECORD.ENTRY EQ "REVIEW_UPDATE"):

CALL TASK REVIEW_UPDATE;
(WORK_RECORD.ENTRY EQ "GET_EMPLOYEE"):

CALL TASK GET_EMPLOYEE;
(WORK_RECORD.ENTRY EQ "EXIT"):

NO PROCESSING;
NOMATCH:

NO PROCESSING;
END SELECT ;

END BLOCK WORK;

7–4 Declining Task Definition Clauses

CONTINUE ON BAD STATUS Phrase (Processing)

ACTION IS
SELECT FIRST TRUE OF

(WORK_RECORD.ENTRY NE "EXIT"):
REPEAT TASK;

(WORK_RECORD.ENTRY EQ "EXIT"):
EXIT TASK;

NOMATCH:
REPEAT TASK;

END SELECT ;
END DEFINITION;

In this example, the processing step in the task definition for MENU_TASK
includes a CONTINUE ON BAD STATUS phrase. If a task called by the
processing step returns a bad status, MENU_TASK continues to execute.

Declining Task Definition Clauses 7–5

DBMS RECOVERY Phrase (Block, Processing)

DBMS RECOVERY Phrase (Block, Processing)

The DBMS RECOVERY phrase readies a DBMS database at the start of a
block or processing step. If you use the DBMS RECOVERY phrase to start your
transaction, you must end your transaction with a COMMIT or ROLLBACK
clause.

Format

DBMS RECOVERY dml-string [,...]

Parameter

dml-string
The Data Manipulation Language (DML) string is the DML statement with
which you ready the DBMS database. The DML string can contain any legal
READY statement syntax, including realm name or names and access and allow
characteristics. You can specify multiple READY statements by separating them
with commas. Refer to the DBMS documentation for further information on the
DML READY statement.

Specifying realms and their usage characteristics is optional. The two kinds of
usage characteristics you can define for a realm are:

• Allow characteristics

• Access characteristics

An allow characteristic describes how other users can use the realm or realms
you are readying. Use one of four keywords to define this characteristic:
CONCURRENT, PROTECTED, EXCLUSIVE, or BATCH.

An access characteristic describes how the task can use the realm or realms
you are readying. Use the keyword UPDATE or RETRIEVAL to define this
characteristic.

The default usage characteristics are PROTECTED RETRIEVAL. Use BATCH
RETRIEVAL to start a snapshot transaction.

READY is the only DML statement allowed in a DML string. If you omit the
realm name, ACMS readies all realms in the subschema used by the server in
which the processing step is running. You can include multiple DML strings to
ready different realms with different usage characteristics.

ADU supports DML strings up to a length of 255 characters.

When you enter strings longer than 255 characters into ADU, ACMS issues a
warning, and the string is truncated. To overcome this restriction, put DBMS
RECOVERY statements in procedure servers rather than in task definitions.

Phrase Default

The DBMS RECOVERY phrase is optional. If you do not include it, ACMS does
not ready the DBMS database in the block or processing step.

7–6 Declining Task Definition Clauses

DBMS RECOVERY Phrase (Block, Processing)

Notes

ACMS calls DBQ$INTERPRET to execute each DML statement that you supply
with the DBMS RECOVERY phrase to specify database allow and access
characteristics. Readying the database for UPDATE access starts a recovery
unit. To use the DBMS RECOVERY phrase, you must bind the database in the
server initialization procedure.

Use the DBMS RECOVERY phrase only when defining a processing step or
block step. When you use the DBMS RECOVERY phrase at the start of a
processing step or block step, ACMS sets the default recovery action for that step
to COMMIT IF ACTIVE RECOVERY. You cannot use the DBMS RECOVERY
phrase when defining a nested block.

You cannot use the DBMS RECOVERY phrase in a processing step that runs in a
DCL server.

If you use the DBMS RECOVERY phrase and the NO PROCESSING clause in
the same processing step, ACMS cancels the task.

You must use separate servers for DBMS, Rdb, RMS, and SQL if you are using
recovery units with more than one of these products in the same application.
Only one type of recovery unit can be used for each server or step. You cannot
specify more than one RECOVERY statement (RDB, DBMS, RMS, or SQL) for
the same block or processing step. Table 7–1 shows the default recovery actions
for different situations in a task definition.

Table 7–1 Default Recovery Actions

Default Recovery Action

Action Clause

If you started the
recovery unit in the
current step

If you did not start the recovery
unit in the current step

CANCEL TASK
RAISE EXCEPTION

ROLLBACK IF
ACTIVE RECOVERY
UNIT

ROLLBACK IF ACTIVE
RECOVERY UNIT

EXIT TASK,
GOTO TASK,
REPEAT TASK,

RELEASE CONTEXT,
RELEASE CONTEXT
IF ACTIVE
RECOVERY UNIT

COMMIT IF ACTIVE
RECOVERY UNIT

COMMIT IF ACTIVE
RECOVERY UNIT

OTHER COMMIT IF ACTIVE
RECOVERY UNIT

NO RECOVERY UNIT
ACTION

Block Phrase Examples

1. BLOCK WITH DBMS RECOVERY "READY PERSONNEL CONCURRENT UPDATE"

ACMS starts a recovery unit, readying the PERSONNEL realm for concurrent
update. You do not use a semicolon after the DML string because DBMS
RECOVERY is a phrase rather than a clause.

Declining Task Definition Clauses 7–7

DBMS RECOVERY Phrase (Block, Processing)

2. BLOCK WITH DBMS RECOVERY "READY PERSONNEL CONCURRENT UPDATE",
"READY CUSTOMER CONCURRENT RETRIEVAL"

ACMS starts a recovery unit, readying the PERSONNEL realm for concurrent
update. ACMS also readies the CUSTOMER realm for concurrent retrieval.
You do not use a semicolon after the DML string because DBMS RECOVERY
is a phrase rather than a clause.

3. REPLACE TASK REVIEW_SCHEDULE_TASK
DEFAULT SERVER IS DEPARTMENT_SERVER;
WORKSPACES ARE REVIEW_SCHEDULE_WKSP, QUIT_WORKSPACE;

BLOCK
WORK WITH FORM I/O

SERVER CONTEXT
DBMS RECOVERY "READY DEPART ADMIN CONCURRENT RETRIEVAL"

GET_DEPT_NUMBER:
EXCHANGE

RECEIVE FORM RECORD REVIEW_SCHEDULE_INPUT_RECORD
RECEIVING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : EXIT TASK;

END CONTROL FIELD;
GET_FIVE_EMPLOYEES:

PROCESSING
CALL REVIEW_SCHEDULE_GET

USING REVIEW_SCHEDULE_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;
DISPLAY_EMPLOYEES:

EXCHANGE
SEND FORM RECORD REVIEW_SCHEDULE_OUTPUT_RECORD

SENDING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FMOR" : GOTO PREVIOUS PROCESSING;
" FEXT" : EXIT TASK;

END CONTROL FIELD;
END BLOCK WORK;
ACTION

REPEAT TASK;
END DEFINITION;

In the REVIEW_SCHEDULE_TASK, a user can look at the review schedule
information for a department. The user looks at five records at a time and can
then indicate whether or not to see more records. To keep track of the user’s
location in the file, you must retain currency indicators. A recovery unit is not
created for this transaction because it is a RETRIEVAL transaction. Server
context is maintained for the task to preserve database currency indicators
across retrievals.

Processing Phrase Examples

1. PROCESSING WITH DBMS RECOVERY "READY PERSONNEL"

ACMS readies the PERSONNEL realm. The default ready access and allow
characteristics are PROTECTED RETRIEVAL.

7–8 Declining Task Definition Clauses

DBMS RECOVERY Phrase (Block, Processing)

2. PROCESSING WITH DBMS RECOVERY "READY PERSONNEL CONCURRENT RETRIEVAL",
"READY CUSTOMER CONCURRENT UPDATE"

ACMS readies the PERSONNEL realm for concurrent retrieval and the
CUSTOMER realm for concurrent update.

3. PROCESSING WITH DBMS RECOVERY "READY CONCURRENT UPDATE"
CALL REVIEW_UPDATE_GET IN DEPARTMENT_SERVER

USING PERS_RECORD,HIST_RECORD,PERS_RECORD;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

ACMS starts a recovery unit for the processing step, readying all the realms
in the subschema for concurrent update. In this step, if the procedure named
REVIEW_UPDATE_GET procedure is unsuccessful, ACMS returns the value
‘‘B’’ to the ACMS$T_STATUS_TYPE of the ACMS$PROCESSING_STATUS
system workspace. ACMS then retrieves an error message and performs a
ROLLBACK, returning the database to the state it was in at the beginning of
the processing step.

Declining Task Definition Clauses 7–9

GOTO TASK Clause (Action)

GOTO TASK Clause (Action)

Ends the current task and starts a new task without requiring the terminal user
to make a task selection.

Format
 GO TO

GOTO

�
TASK task-name � PASSING workspace-name [,...] � ;

Parameters

task-name
The name of a task in the same task group. This name is the name assigned to
the task in the TASKS clause of the task group definition.

workspace-name
The name of the workspace or workspaces you want to pass from the current
task to the new task. The workspace names in the current task must match
those in the new task. They do not, however, need to be in the same order in the
WORKSPACES clause of the new task.

Clause Default

The GOTO TASK clause is optional. The default sequencing action for a step
within a block is GOTO NEXT STEP. The default sequencing action for a block
step or a processing step in a single-step task is EXIT TASK.

When you chain from one task to another with the GOTO TASK clause, ACMS
always passes the ACMS system workspaces.

When one task chains to another, ACMS does not check the access control list for
the second task before starting the second task.

If there are workspaces that you do not pass from one task to another but that
appear in the definition of the task being chained to, ACMS initializes those
workspaces with the initial contents defined for their record descriptions in the
dictionary.

Notes

Because a distributed transaction must end in the action part of the step on
which it starts, you cannot specify GOTO TASK in the action part of a step
within a distributed transaction. If you specify GOTO TASK in the action part
of a root block, that task cannot be called by a parent task to participate in a
distributed transaction.

When you use the GOTO TASK clause in a step that does not start a distributed
transaction, the default recovery action is COMMIT IF ACTIVE RECOVERY
UNIT, and the default context action is RELEASE SERVER CONTEXT IF
ACTIVE SERVER CONTEXT.

If you use the GOTO TASK clause, you cannot declare the following clauses in
the same action specification:

7–10 Declining Task Definition Clauses

GOTO TASK Clause (Action)

• RETAIN RECOVERY UNIT

• RETAIN RECOVERY UNIT IF ACTIVE RECOVERY UNIT

• RETAIN SERVER CONTEXT

• RETAIN SERVER CONTEXT IF ACTIVE SERVER CONTEXT

If the task passes workspaces with the GOTO TASK clause, the task being
chained to must declare all the workspaces named in the GOTO TASK clause in a
WORKSPACE or USE clause. Also, the task you are chaining to must use all the
workspaces passed in a GOTO TASK clause in an exchange or processing step.

Example

ACTION
GOTO TASK DISPLAY_BASIC PASSING DISPLAY_WORKSPACE;

This example unconditionally ends the current task and starts a new task named
DISPLAY_BASIC. The workspace DISPLAY_BASIC is passed to the new task.

Declining Task Definition Clauses 7–11

NO RECOVERY UNIT ACTION Clause (Action)

NO RECOVERY UNIT ACTION Clause (Action)

Specifies that there is no action taken on any active recovery unit.

Format

NO RECOVERY UNIT ACTION ;

Clause Default

The NO RECOVERY UNIT ACTION clause is optional. Table 7–2 shows the
default recovery actions for different cases of a task definition.

Notes

If there is an active recovery unit and you use the NO RECOVERY UNIT
ACTION clause, ACMS retains the recovery unit. If there is no active recovery
unit and you use the NO RECOVERY UNIT ACTION clause, ACMS takes no
recovery actions.

If you use the NO RECOVERY UNIT ACTION clause and release server context,
either explicitly or by default, while there is an active recovery unit, ACMS
cancels the task.

Example

BLOCK WITH
FORM I/O
SERVER CONTEXT
DBMS RECOVERY "READY CONCURRENT UPDATE"

GET_DEPT_NUMBER:
EXCHANGE

RECEIVE FORM RECORD REVIEW_SCHEDULE
RECEIVING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FCAN" : CANCEL TASK;

END CONTROL FIELD;
GET_FIVE_EMPLOYEES:

PROCESSING
CALL REVIEW_SCHEDULE_GET IN DEPARTMENT_SERVER

USING REVIEW_SCHEDULE_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
GOTO PREVIOUS EXCHANGE;

"G" : NO RECOVERY ACTION;
NO CONTEXT ACTION;
GOTO NEXT STEP;

END CONTROL FIELD;

If the REVIEW_SCHEDULE_GET procedure is successful in retrieving review
schedule information for a department, ACMS returns the value ‘‘G’’ to the
ACMS$T_STATUS_TYPE field of the ACMS$PROCESSING_STATUS system
workspace. In this task, the user can choose to look at the next record in the
file. Therefore, you want to retain currency indicators to maintain the user’s
file location. Because the recovery unit was started at the block level, there is
already an active recovery unit for the processing step. Use the NO RECOVERY
UNIT ACTION clause to maintain that recovery unit.

7–12 Declining Task Definition Clauses

RDB RECOVERY Phrase (Block, Processing)

RDB RECOVERY Phrase (Block, Processing)

Starts an Rdb database transaction at the beginning of a block or processing step.
If you use the RDB RECOVERY phrase to start your transaction, you must end
your transaction with a COMMIT or ROLLBACK clause.

Format

RDB RECOVERY dml-string [,...]

Parameter

dml-string
The Data Manipulation Language (DML) string is a DML statement with which
you start an Rdb database transaction at the block or processing step level. The
DML string can contain any legal START_TRANSACTION syntax, including the
characteristics you want to apply to the transaction. Use the DML RESERVING
clause to apply different characteristics to different relations.

ADU supports DML strings up to a length of 255 characters.

When you enter strings longer than 255 characters into ADU, ACMS issues a
warning, and the string is truncated. To overcome this restriction, put RDB
RECOVERY statements in procedure servers rather than in task definitions.

For more information on DML strings, refer to the Rdb documentation.

Phrase Default

The RDB RECOVERY phrase is optional. If you do not include it or the SQL
RECOVERY phrase, ACMS does not start an RDB database transaction.

Notes

ACMS calls RDB$INTERPRET to execute the DML statement that you supply to
start the database transaction. Starting an update transaction creates a recovery
unit. To use the RDB RECOVERY phrase, you must bind the database in the
server initialization procedure.

Use the RDB RECOVERY phrase only when defining a processing step or block
step. When you use the RDB RECOVERY phrase at the start of a processing step
or block step, ACMS sets the default recovery action for that step to COMMIT IF
ACTIVE RECOVERY.

You cannot use the RDB RECOVERY phrase in a processing step that runs in a
DCL server.

You cannot use the RDB RECOVERY phrase with a nested block.

If you use the RDB RECOVERY phrase and the NO PROCESSING clause in the
same processing step, ACMS cancels the task.

You must use separate servers for DBMS, Rdb, RMS, and SQL procedures if
you are using recovery units with more than one of these products in the same
application. Only one type of recovery unit can be used per server or step. You
cannot specify more than one recovery statement (RDB, DBMS, RMS, or SQL) for
the same block or processing step. Table 7–2 shows the default recovery actions
for different situations in a task definition.

Declining Task Definition Clauses 7–13

RDB RECOVERY Phrase (Block, Processing)

Table 7–2 Default Recovery Actions

Default Recovery Action

Action Clause

If you started the
recovery unit in the
current step

If you did not start the recovery
unit in the current step

CANCEL TASK
RAISE EXCEPTION

ROLLBACK IF
ACTIVE RECOVERY
UNIT

ROLLBACK IF ACTIVE
RECOVERY UNIT

EXIT TASK,
GOTO TASK,
REPEAT TASK,

RELEASE CONTEXT,
RELEASE CONTEXT
IF ACTIVE
RECOVERY UNIT

COMMIT IF ACTIVE
RECOVERY UNIT

COMMIT IF ACTIVE
RECOVERY UNIT

OTHER COMMIT IF ACTIVE
RECOVERY UNIT

NO RECOVERY UNIT
ACTION

Block Phrase Examples

1. BLOCK WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES FOR SHARED WRITE"

ACMS starts an Rdb transaction that can store, modify, and erase data in the
EMPLOYEES relation. SHARED specifies that other users can work with the
EMPLOYEES relation while you are working with it, and WRITE specifies
that you can store, modify, or erase data in the relation. You do not use a
semicolon (;) after the database string because RDB RECOVERY is a phrase
rather than a clause.

2. BLOCK WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING " &

"EMPLOYEES FOR SHARED READ, " &
"SALARY_HISTORY FOR SHARED WRITE, " &
"JOBS FOR EXCLUSIVE WRITE"

ACMS starts an Rdb transaction that can read data in the EMPLOYEES
relation, and that can store, modify, and erase data in the SALARY_HISTORY
and JOBS relations. EXCLUSIVE specifies that no other users can access a
relation while you are working with it; SHARED specifies that other users
can work with a relation while you are working with it; READ specifies that
you can only read data in a relation; and WRITE specifies that you can store,
modify, or erase data in a relation. You do not use a semicolon (;) after the
DML string because RDB RECOVERY is a phrase rather than a clause.

7–14 Declining Task Definition Clauses

RDB RECOVERY Phrase (Block, Processing)

3. GET_EMPLOYEE_ID_TASK
DEFAULT SERVER IS EMPLOYEE_SERVER;
BLOCK WORK WITH FORM I/O

RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES FOR

PROTECTED WRITE"
EXCHANGE

RECEIVE FORM RECORD GET_EMPLOYEE_ID_RECORD
RECEIVING EMPLOYEE_ID_WKSP;

PROCESSING
CALL GET_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"G" : RETAIN SERVER CONTEXT;
RETAIN RECOVERY UNIT;
GOTO NEXT STEP;

"B" : ROLLBACK;
CANCEL TASK;

END CONTROL FIELD;

EXCHANGE
SEND FORM RECORD GET_EMPLOYEE_ID_RECORD

SENDING EMPLOYEE_ID_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : ROLLBACK;

EXIT TASK;
END CONTROL FIELD;

PROCESSING
CALL WRITE_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"G" : COMMIT;
"B" : ROLLBACK;

CANCEL TASK;
END CONTROL FIELD;

END BLOCK;
END DEFINITION;

In this example definition, the user retrieves and modifies information
about an employee. The Rdb transaction is specified on the block step. If
the operation fails (either in retrieving or updating the information), the
transaction is rolled back; otherwise, the updates are committed. Note that
server context and the recovery unit are retained after the first processing
step.

Processing Phrase Examples

1. PROCESSING WITH
RDB RECOVERY "START_TRANSACTION READ_WRITE RESERVING " &

"DEPART FOR SHARED READ, ADMIN FOR PROTECTED WRITE"

This DML string starts a read-write database transaction, allowing read-
only access to the DEPART relation and protected write access to the ADMIN
relation. No other relations are available for access.

Declining Task Definition Clauses 7–15

RDB RECOVERY Phrase (Block, Processing)

2. PROCESSING WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES

FOR SHARED WRITE"

ACMS starts a recovery unit for a transaction that can store, modify, and
erase data in the EMPLOYEES relation. SHARED specifies that other users
can work with the EMPLOYEES relation while you are working with it, and
WRITE specifies that you can store, modify, or erase data in the relation. You
do not use a semicolon (;) after the database string because RDB RECOVERY
is a phrase rather than a clause.

3. GET_EMPLOYEE_ID_TASK
DEFAULT SERVER IS EMPLOYEE_SERVER;
BLOCK WORK WITH FORM I/O

EXCHANGE
RECEIVE FORM RECORD GET_EMPLOYEE_ID_RECORD

RECEIVING EMPLOYEE_ID_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RDB RECOVERY
"START_TRANSACTION READ_WRITE RESERVING EMPLOYEES

FOR SHARED WRITE"
CALL GET_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE
"G" : RETAIN SERVER CONTEXT;

RETAIN RECOVERY UNIT;
GOTO NEXT STEP;

"B" : ROLLBACK;
GOTO PREVIOUS TASK;

END CONTROL FIELD;

EXCHANGE
SEND FORM RECORD GET_EMPLOYEE_ID_RECORD

SENDING EMPLOYEE_ID_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : ROLLBACK;

CANCEL TASK;
END CONTROL FIELD;

PROCESSING
CALL WRITE_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE
"G" : COMMIT;
"B" : ROLLBACK;

CANCEL TASK;
END CONTROL FIELD;

END BLOCK;
END DEFINITION;

In this example, the user retrieves and modifies information about an
employee. The Rdb transaction is specified on the first processing step. If the
information about the employee cannot be retrieved, the transaction is rolled
back and the initial exchange is repeated. If the update fails, the transaction
is rolled back and the task is canceled. Note that server context and the
recovery unit are retained after the first processing step.

7–16 Declining Task Definition Clauses

REPEAT TASK Clause (Action)

REPEAT TASK Clause (Action)

Ends the current task instance and restarts the task without requiring the
terminal user to select the task from a menu.

Format

REPEAT TASK [PASSING workspace-name [,...]] ;

Parameter

workspace-name
The name of the workspace you want to pass from the current task instance to
the new task instance.

Clause Default

If you do not use the REPEAT TASK clause, ACMS does not repeat the task. The
default sequencing action for a step within a root block is GOTO NEXT STEP.
The default sequencing action for a root block or a processing step in a single-step
task is EXIT TASK.

Notes

You cannot specify the REPEAT TASK clause in the action part of a step within a
distributed transaction. If you specify REPEAT TASK on a root block, that task
cannot be called by a parent task to participate in a distributed transaction.

When you use the REPEAT TASK clause in a step that does not start a
distributed transaction, the default recovery action is COMMIT IF ACTIVE
RECOVERY UNIT and the default context action is RELEASE SERVER
CONTEXT IF ACTIVE SERVER CONTEXT.

If you use the REPEAT TASK clause, you cannot declare the following clauses in
the same action specification:

• RETAIN RECOVERY UNIT

• RETAIN RECOVERY UNIT IF ACTIVE RECOVERY UNIT

• RETAIN SERVER CONTEXT

• RETAIN SERVER CONTEXT IF ACTIVE SERVER CONTEXT

When you chain from one task to another, ACMS reinitializes any task
workspaces not passed.

Declining Task Definition Clauses 7–17

REPEAT TASK Clause (Action)

Example

WORKSPACES ARE ADD_EMPLOYEE_WKSP, QUIT_WORKSPACE;
BLOCK WITH FORM I/O

EXCHANGE
RECEIVE FORM RECORD ADD_EMPLOYEE_RECORD

RECEIVING ADD_EMPLOYEE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FCAN" : CANCEL TASK;

END CONTROL FIELD;
PROCESSING

CALL PERSADD IN PERSONNEL USING ADD_EMPLOYEE_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;
END BLOCK WORK;
REPEAT TASK;

END DEFINITION;

This data entry task adds a new employee record to a file. Because this is a task
a user would like to repeat without having to reselect the task from a menu, you
include the REPEAT TASK clause in the action part of the block step definition.

7–18 Declining Task Definition Clauses

RETAIN RECOVERY UNIT Clause (Action)

RETAIN RECOVERY UNIT Clause (Action)

Maintains the recovery unit within the current server.

Format

RETAIN RECOVERY UNIT [IF ACTIVE RECOVERY UNIT] ;

Keyword

IF ACTIVE RECOVERY UNIT
Retains the recovery unit only if there is an active recovery unit. If you use
the IF ACTIVE RECOVERY UNIT keywords, and there is no active recovery
unit, ACMS does not attempt to retain a recovery unit. If you do not use the IF
ACTIVE RECOVERY UNIT keywords, and there is no active recovery unit when
you use the RETAIN RECOVERY UNIT clause, ACMS cancels the task.

Clause Default

The RETAIN RECOVERY UNIT clause is optional.

Table 7–3 shows the default recovery actions for a task.

Notes

You can use the RETAIN RECOVERY UNIT clause only in the action
specifications of steps within a block.

Example

BLOCK
WORK WITH FORM I/O
GET_DEPT_NUMBER:

EXCHANGE
RECEIVE FORM RECORD REVIEW_SCHEDULE

RECEIVING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FCAN" : CANCEL TASK;

END CONTROL FIELD;

GET_FIVE_EMPLOYEES:
PROCESSING WITH

DBMS RECOVERY "READY ADMIN DEPART CONCURRENT RETRIEVAL"
CALL REVIEW_SCHEDULE_GET IN DEPARTMENT_SERVER

USING REVIEW_SCHEDULE_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
GOTO PREVIOUS EXCHANGE;

"G" : RETAIN RECOVERY UNIT;
RETAIN SERVER CONTEXT;
GOTO NEXT STEP;

END CONTROL FIELD;

If the REVIEW_SCHEDULE_GET procedure is successful in retrieving review
schedule information for a department, ACMS returns the value ‘‘G’’ to the
ACMS$T_STATUS_TYPE field of the ACMS$PROCESSING_STATUS system
workspace. In this task, the user can choose to look at the next five records in the
file. Therefore, you want to retain currency indicators to maintain the user’s file

Declining Task Definition Clauses 7–19

RETAIN RECOVERY UNIT Clause (Action)

location. Use the RETAIN RECOVERY UNIT clause to maintain that recovery
unit.

7–20 Declining Task Definition Clauses

RMS RECOVERY Phrase (Block, Processing)

RMS RECOVERY Phrase (Block, Processing)

Starts an RMS recovery unit for a block or processing step.

Format

RMS RECOVERY

Phrase Default

The RMS RECOVERY phrase is optional. If you do not include it, ACMS does not
start an RMS recovery unit.

Notes

You can use the RMS RECOVERY phrase only when defining a processing step
or block step. When you use the RMS RECOVERY phrase at the start of a
processing step or block step, ACMS sets the default recovery action for that step
to COMMIT IF ACTIVE RECOVERY.

You cannot use the RMS RECOVERY phrase in a processing step that runs in a
DCL server.

If you use the RMS RECOVERY phrase and the NO PROCESSING clause in the
same processing step, ACMS cancels the task.

You must use separate servers for DBMS, Rdb, RMS, and SQL procedures if
you are using recovery units with more than one of these products in the same
application. Only one type of recovery unit can be used for each server or step.

You cannot specify the RMS RECOVERY phrase on a nested block.

You cannot specify more than one recovery statement (RDB, DBMS, RMS, or
SQL) for the same block or processing step.

Table 7–3 shows the default recovery actions for different situations in a task
definition. \

Table 7–3 Default Recovery Actions

Default Recovery Action

Action Clause

If you started the
recovery unit in the
current step

If you did not start the recovery
unit in the current step

CANCEL TASK
RAISE EXCEPTION

ROLLBACK IF
ACTIVE RECOVERY
UNIT

ROLLBACK IF ACTIVE
RECOVERY UNIT

(continued on next page)

Declining Task Definition Clauses 7–21

RMS RECOVERY Phrase (Block, Processing)

Table 7–3 (Cont.) Default Recovery Actions

Default Recovery Action

Action Clause

If you started the
recovery unit in the
current step

If you did not start the recovery
unit in the current step

EXIT TASK,
GOTO TASK,
REPEAT TASK,

RELEASE CONTEXT,
RELEASE CONTEXT
IF ACTIVE
RECOVERY UNIT

COMMIT IF ACTIVE
RECOVERY UNIT

COMMIT IF ACTIVE
RECOVERY UNIT

OTHER COMMIT IF ACTIVE
RECOVERY UNIT

NO RECOVERY UNIT
ACTION

Block Phrase Examples

1. BLOCK WITH RMS RECOVERY

ACMS starts an RMS recovery unit for the transaction. You do not use a
semicolon (;) because RMS RECOVERY is a phrase, not a clause.

2. GET_EMPLOYEE_ID_TASK
DEFAULT SERVER IS EMPLOYEE_SERVER;

BLOCK WORK WITH FORM I/O
RMS RECOVERY

EXCHANGE
RECEIVE FORM RECORD GET_EMPLOYEE_ID_RECORD

RECEIVING EMPLOYEE_ID_WKSP;

PROCESSING
CALL GET_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"G" : RETAIN SERVER CONTEXT;
RETAIN RECOVERY UNIT;
GOTO NEXT STEP;

"B" : ROLLBACK;
CANCEL TASK;

END CONTROL FIELD;

EXCHANGE
SEND FORM RECORD GET_EMPLOYEE_ID_RECORD

SENDING EMPLOYEE_ID_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : ROLLBACK;

EXIT TASK;
END CONTROL FIELD;

7–22 Declining Task Definition Clauses

RMS RECOVERY Phrase (Block, Processing)

PROCESSING
CALL WRITE_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"G" : COMMIT;
"B" : ROLLBACK;

CANCEL TASK;
END CONTROL FIELD;

END BLOCK;
END DEFINITION;

In this example definition, the user retrieves and modifies information
about an employee. The RMS transaction is specified in the block step. If
the operation fails (either in retrieving or updating the information), the
transaction is rolled back; otherwise, the updates are committed.

Note that server context and the recovery unit are retained after the first
processing step.

Processing Phrase Examples

1. PROCESSING WITH RMS RECOVERY

ACMS starts a recovery unit for the transaction. You do not use a semicolon
(;) because RMS RECOVERY is a phrase rather than a clause.

2. GET_EMPLOYEE_ID_TASK
DEFAULT SERVER IS EMPLOYEE_SERVER;
BLOCK WORK WITH FORM I/O

EXCHANGE
RECEIVE FORM RECORD GET_EMPLOYEE_ID_RECORD

RECEIVING EMPLOYEE_ID_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH RMS RECOVERY
CALL GET_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE
"G" : RETAIN SERVER CONTEXT;

RETAIN RECOVERY UNIT;
GOTO NEXT STEP;

"B" : ROLLBACK;
GOTO PREVIOUS TASK;

END CONTROL FIELD;

EXCHANGE
SEND FORM RECORD GET_EMPLOYEE_ID_RECORD

SENDING EMPLOYEE_ID_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : ROLLBACK;

CANCEL TASK;
END CONTROL FIELD;

Declining Task Definition Clauses 7–23

RMS RECOVERY Phrase (Block, Processing)

PROCESSING
CALL WRITE_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE
"G" : COMMIT;
"B" : ROLLBACK;

CANCEL TASK;
END CONTROL FIELD;

END BLOCK;
END DEFINITION;

In this example definition, the user retrieves and modifies information about
an employee. The RMS transaction is specified in the first processing step.
If the information about the employee cannot be retrieved, the transaction
is rolled back and the initial exchange is repeated. If the update fails, the
transaction is rolled back and the task is canceled.

Note that server context and the recovery unit are retained after the first
processing step.

7–24 Declining Task Definition Clauses

ROLLBACK Clause (Action)

ROLLBACK Clause (Action)

Signals the end of a recovery unit, returning (rolling back) all recoverable objects
to the state they were in at the beginning of the current recovery unit.

Format

ROLLBACK [IF ACTIVE RECOVERY UNIT] ;

Keywords

IF ACTIVE RECOVERY UNIT
Performs a ROLLBACK only if there is an active recovery unit. If you use the
IF ACTIVE RECOVERY UNIT keywords, and there is no active recovery unit,
ACMS does not attempt to roll back a database transaction. If you do not use
the IF ACTIVE RECOVERY UNIT keywords, and there is no active recovery unit
when you use the ROLLBACK clause, ACMS cancels the task.

Clause Default

The ROLLBACK clause is optional.

Table 7–3 shows the default recovery actions for a task.

Example

BLOCK WITH FORM I/O
GET_DEPT_NUMBER:

EXCHANGE
RECEIVE FORM RECORD REVIEW_SCHEDULE

RECEIVING REVIEW_SCHEDULE_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FCAN" : CANCEL TASK;

END CONTROL FIELD;

GET_FIVE_EMPLOYEES:
PROCESSING WITH

DBMS RECOVERY "READY CONCURRENT UPDATE"
CALL REVIEW_SCHEDULE_GET IN DEPARTMENT_SERVER

USING REVIEW_SCHEDULE_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"B" : GET ERROR MESSAGE;
ROLLBACK;
RELEASE SERVER CONTEXT;
GOTO PREVIOUS EXCHANGE;

"G" : RETAIN RECOVERY UNIT;
NO CONTEXT ACTION;
GOTO NEXT STEP;

END CONTROL FIELD;

If the REVIEW_SCHEDULE_GET procedure is successful in retrieving review
schedule information for a department, ACMS returns the value ‘‘G’’ to the
ACMS$T_STATUS_TYPE field of the ACMS$PROCESSING_STATUS system
workspace. In this task, the user can choose to look at the next five records in
the file. Therefore, you want to retain currency indicators to maintain the user’s
file location. However, you do not want to retain these currency indicators if the
procedure is unsuccessful. Use the ROLLBACK clause to return the database to
the state it was in at the start of the recovery unit.

Declining Task Definition Clauses 7–25

SQL RECOVERY Phrase (Block, Processing)

SQL RECOVERY Phrase (Block, Processing)

Starts an SQL transaction with an Rdb database or a VIDA database at the
beginning of a block or processing step. If you use the SQL RECOVERY phrase
to start your transaction, you must end your transaction with a COMMIT or
ROLLBACK clause.

Format

SQL RECOVERY dml-string [,...]

Parameter

dml-string
The Data Manipulation Language (DML) string is a DML statement with
which you start an SQL transaction at the block or processing step level. The
DML string can contain any legal SET TRANSACTION syntax, including the
characteristics you want to apply to the transaction. Use the DML RESERVING
clause to apply different characteristics to different relations.

ADU supports DML strings up to a length of 255 characters.

When you enter strings longer than 255 characters into ADU, ACMS issues
a warning, and the string is truncated. To overcome this restriction, put SQL
RECOVERY statements in procedure servers rather than in task definitions.

For more information on DML strings, refer to the SQL documentation.

Phrase Default

The SQL RECOVERY phrase is optional. If you do not include it or the RDB
RECOVERY phrase, ACMS does not start an RDB database transaction.

Notes

ACMS calls SQL$INTERPRET to execute the DML statement that you supply to
start the database transaction. Starting an update transaction creates a recovery
unit. To use the SQL RECOVERY phrase, you must bind the database in the
server initialization procedure.

Use the SQL RECOVERY phrase only when defining a processing step or block
step. When you use the SQL RECOVERY phrase at the start of a processing step
or block step, ACMS sets the default recovery action for that step to COMMIT IF
ACTIVE RECOVERY.

You cannot use the SQL RECOVERY phrase in a processing step that runs in a
DCL server.

If you use the SQL RECOVERY phrase and the NO PROCESSING clause in the
same processing step, ACMS cancels the task.

You must use separate servers for DBMS, Rdb, RMS, and SQL procedures if
you are using recovery units with more than one of these products in the same
application. Only one type of recovery unit can be used for each server or step.
You cannot specify more than one recovery statement (SQL, RDB, DBMS, or
RMS) for the same block or processing step. Table 7–4 shows the default recovery
actions for different situations in a task definition.

7–26 Declining Task Definition Clauses

SQL RECOVERY Phrase (Block, Processing)

Table 7–4 Default Recovery Actions

Default Recovery Action

Action Clause

If you started the
recovery unit in the
current step

If you did not start the recovery
unit in the current step

CANCEL TASK
RAISE EXCEPTION

ROLLBACK IF
ACTIVE RECOVERY
UNIT

ROLLBACK IF ACTIVE
RECOVERY UNIT

EXIT TASK,
GOTO TASK,
REPEAT TASK,

RELEASE CONTEXT,
RELEASE CONTEXT
IF ACTIVE
RECOVERY UNIT

COMMIT IF ACTIVE
RECOVERY UNIT

COMMIT IF ACTIVE
RECOVERY UNIT

OTHER COMMIT IF ACTIVE
RECOVERY UNIT

NO RECOVERY UNIT
ACTION

Block Phrase Examples

1. BLOCK WITH SQL RECOVERY
"SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED WRITE"

ACMS starts an SQL transaction that can store, modify, and erase data in the
EMPLOYEES table. SHARED specifies that other users can work with the
EMPLOYEES relation while you are working with it, and WRITE specifies
that you can store, modify, or erase data in the table. Do not use a semicolon
(;) after the database string because SQL RECOVERY is a phrase rather than
a clause.

2. BLOCK WITH SQL RECOVERY
"SET TRANSACTION READ WRITE RESERVING " &

"EMPLOYEES FOR SHARED READ, " &
"SALARY_HISTORY FOR SHARED WRITE, " &
"JOBS FOR EXCLUSIVE WRITE"

ACMS starts an SQL transaction that can read data in the EMPLOYEES
table, and store, modify, and erase data in the SALARY_HISTORY and JOBS
tables. EXCLUSIVE specifies that no other users can access a table while
you are working with it; SHARED specifies that other users can work with a
table while you are working with it; READ specifies that you can only read
data in a table; and WRITE specifies that you can store, modify, or erase data
in a table. You do not use a semicolon (;) after the DML string because SQL
RECOVERY is a phrase rather than a clause.

Declining Task Definition Clauses 7–27

SQL RECOVERY Phrase (Block, Processing)

3. GET_EMPLOYEE_ID_TASK
DEFAULT SERVER IS EMPLOYEE_SERVER;
BLOCK WORK WITH

FORM I/O
SQL RECOVERY

"SET TRANSACTION READ WRITE
RESERVING EMPLOYEES FOR PROTECTED WRITE"

EXCHANGE
RECEIVE FORM RECORD GET_EMPLOYEE_ID_RECORD

RECEIVING EMPLOYEE_ID_WKSP;

PROCESSING
CALL GET_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"G" : RETAIN SERVER CONTEXT;
RETAIN RECOVERY UNIT;
GOTO NEXT STEP;

"B" : ROLLBACK;
CANCEL TASK;

END CONTROL FIELD;

EXCHANGE
SEND FORM RECORD GET_EMPLOYEE_ID_RECORD

SENDING EMPLOYEE_ID_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : ROLLBACK;

EXIT TASK;
END CONTROL FIELD;

PROCESSING
CALL WRITE_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE

"G" : COMMIT;
"B" : ROLLBACK;

CANCEL TASK;
END CONTROL FIELD;

END BLOCK;
END DEFINITION;

In this example definition, the user retrieves and modifies information
about an employee. The SQL transaction is specified on the block step. If
the operation fails (either in retrieving or updating the information), the
transaction is rolled back; otherwise, the updates are committed. Note that
server context and the recovery unit are retained after the first processing
step.

Processing Phrase Examples

1. PROCESSING WITH
SQL RECOVERY "SET TRANSACTION READ WRITE RESERVING " &

"DEPART FOR SHARED READ, ADMIN FOR PROTECTED WRITE"

This DML string starts a read-write transaction, allowing read-only access to
the DEPART table and protected write access to the ADMIN table. No other
tables are available for access.

7–28 Declining Task Definition Clauses

SQL RECOVERY Phrase (Block, Processing)

2. PROCESSING WITH SQL RECOVERY
"SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED WRITE"

ACMS starts a recovery unit for a transaction that can store, modify, and
erase data in the EMPLOYEES table. SHARED specifies that other users can
work with the EMPLOYEES table while you are working with it, and WRITE
specifies that you can store, modify, or erase data in the table. Do not use a
semicolon (;) after the database string because SQL RECOVERY is a phrase
rather than a clause.

3. GET_EMPLOYEE_ID_TASK
DEFAULT SERVER IS EMPLOYEE_SERVER;
BLOCK WORK WITH FORM I/O

EXCHANGE
RECEIVE FORM RECORD GET_EMPLOYEE_ID_RECORD

RECEIVING EMPLOYEE_ID_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING WITH SQL RECOVERY
"SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED WRITE"
CALL GET_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE
"G" : RETAIN SERVER CONTEXT;

RETAIN RECOVERY UNIT;
GOTO NEXT STEP;

"B" : ROLLBACK;
GOTO PREVIOUS TASK;

END CONTROL FIELD;

EXCHANGE
SEND FORM RECORD GET_EMPLOYEE_ID_RECORD

SENDING EMPLOYEE_ID_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FEXT" : ROLLBACK;

CANCEL TASK;
END CONTROL FIELD;

PROCESSING
CALL WRITE_EMPLOYEE_INFO

USING EMPLOYEE_ID_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE
"G" : COMMIT;
"B" : ROLLBACK;

CANCEL TASK;
END CONTROL FIELD;

END BLOCK;
END DEFINITION;

In this example, the user retrieves and modifies information about an
employee. The SQL transaction is specified on the first processing step. If
the information about the employee cannot be retrieved, the transaction
is rolled back and the initial exchange is repeated. If the update fails, the
transaction is rolled back and the task canceled. Note that server context and
the recovery unit are retained after the first processing step.

Declining Task Definition Clauses 7–29

A
ADU Error Messages

Error message documentation for ADU is contained in a file named
SYS$SYSROOT:[SYSHLP]ACMSADU.MEM. You can also access error
message documentation from within ADU by typing:

ADU> HELP ERRORS

You will find an explanation of the error message and suggested user action. For
example:

ERRORS Subtopic? APPLUSENAME

ERRORS

APPLUSENAME

Application user name is missing - must be defined

Explanation: You tried to create or replace an application
definition that does not include the APPLICATION USERNAME
clause.

User Action: Include the APPLICATION USERNAME clause in the
application definition. Then use the CREATE or REPLACE command
to store the definition in the CDD.

ADU Error Messages A–1

B
Summary of ACMS System Workspaces

The three ACMS system workspaces each have a different purpose. All of
the Common Data Definition Language (CDDL) record definitions for these
workspaces are stored in the CDD$TOP.ACMS$DIR.ACMS$WORKSPACES
directory in the CDD. This appendix lists these workspaces and explains the uses
of each.

B.1 ACMS$PROCESSING_STATUS System Workspace
The ACMS$PROCESSING_STATUS workspace handles processing status
information. It has four fields, each for a different part of that information.
The CDD location of the CDDL record definition for this workspace is
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS.
Table B–1 describes the fields in the ACMS$PROCESSING_STATUS workspace.

Table B–1 Fields in ACMS$PROCESSING_STATUS

ACMS$PROCESSING_STATUS Workspace

ACMS$L_STATUS

Type: Signed longword

Description: Contains the return status from the last processing step. The initial
value of the ACMS$L_STATUS field is set to 1 (SUCCESS) when a task
is started.

ACMS$T_SEVERITY_LEVEL

Type: Text

Size: 1 character

Description: Contains a single-character severity level code representing the return
status in the ACMS$L_STATUS field. The characters this field can
contain are: S (SUCCESS), I (INFORMATION), W (WARNING), E
(ERROR), F (FATAL), or ? (OTHER). The initial value of ACMS$T_
SEVERITY_LEVEL is ‘‘S’’.

ACMS$T_STATUS_TYPE

Type: Text

Size: 1 character

Description: Contains a single character indicating the severity level of the return
status in the ACMS$L_STATUS field. A ‘‘G’’ indicates the low bit in the
ACMS$L_STATUS field is set to 1. A ‘‘B’’ indicates the low bit is clear.
The initial value of the ACMS$T_STATUS_TYPE field is ‘‘G’’.

(continued on next page)

Summary of ACMS System Workspaces B–1

Summary of ACMS System Workspaces
ACMS$PROCESSING_STATUS System Workspace

Table B–1 (Cont.) Fields in ACMS$PROCESSING_STATUS

ACMS$PROCESSING_STATUS Workspace

ACMS$T_STATUS_MESSAGE/ACMS$T_STATUS_MESSAGE_LONG

Type: Text

Size: 80/132 characters

Description: ACMS$T_STATUS_MESSAGE is an 80-character variant of the 132-
character ACMS$T_STATUS_MESSAGE_LONG field. When you use the
GET ERROR MESSAGE clause, this field contains the error message
associated with the return status code in ACMS$L_STATUS. The
ACMS$T_STATUS_MESSAGE_LONG field is set initially to spaces.

B.2 ACMS$SELECTION_STRING System Workspace
The ACMS$SELECTION_STRING workspace handles strings passed by
a task submitter (terminal user) at task selection time. It has a single
field. The CDD location of the CDDL record definition for this workspace is
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$SELECTION_STRING.
Table B–2 describes the field in the ACMS$SELECTION_STRING workspace.

Table B–2 Fields in ACMS$SELECTION_STRING

ACMS$SELECTION_STRING Workspace

ACMS$T_SELECTION_STRING

Type: Text

Size: 255 characters

Description: Contains the selection string provided by a terminal user at task
selection time. If the user does not provide a selection string, ACMS
sets the field to spaces.

If the task is a queued task, the first 32 bytes of the selection string
contain the queued task element ID.

B.3 ACMS$TASK_INFORMATION System Workspace
The ACMS$TASK_INFORMATION workspace handles task execution
information. It has 10 fields, each for a different part of that information.
The CDD location of the CDDL record definition for this workspace is
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$TASK_INFORMATION.
Table B–3 describes the fields in the ACMS$TASK_INFORMATION workspace.

Table B–3 Fields in ACMS$TASK_INFORMATION

ACMS$TASK_INFORMATION Workspace

ACMS$AL_TASK_ID

Type: Signed longword array

Size: 4 longwords

(continued on next page)

B–2 Summary of ACMS System Workspaces

Summary of ACMS System Workspaces
ACMS$TASK_INFORMATION System Workspace

Table B–3 (Cont.) Fields in ACMS$TASK_INFORMATION

ACMS$TASK_INFORMATION Workspace

ACMS$AL_TASK_ID

Description: Contains the task ID in binary format for the current task instance; the
ACMS$AL_TASK_ID field is a four-element longword array.

It is possible that two task instances can have the same value, if the
tasks have been selected on two different nodes. To ensure a unique task
identifier, use both the ACMS$AL_TASK_ID field and the ACMS$T_
SUBMITTER_NODE field.

ACMS$L_TASK_SEQUENCE_NUMBER

Type: Signed longword

Description: Contains the number of the current task instance within the current
task; the content of this field is always one (1) when the task is initially
selected from a menu. ACMS increments this number each time the
user repeats the task or chains to another task, thus starting a new task
instance without returning to the menu.

ACMS$T_TASK_NAME

TYPE: Text

Size: 31 characters

Description: Contains the task name as defined in the application under which the
task is running. ACMS does not update this field when a task chains to
another task.

ACMS$T_TASK_IO_DEVICE

Type: Text

Size: 8 characters

Description: Contains the device name for the task submitter. For remote users, the
device name is always NL. For local request I/O or terminal I/O users,
this field includes the terminal device name. For stream I/O or no I/O,
this field is set to spaces.

If this field contains a device name (not spaces or NL), then the device
can be used by the task to perform I/O from a processing step.

ACMS$AL_TASK_SUBMITTER_ID

Type: Signed longword array

Size: 4 longwords

Description: Contains the current terminal user’s identification code for the user who
started the current task instance. This field is a four-element longword
array.

(continued on next page)

Summary of ACMS System Workspaces B–3

Summary of ACMS System Workspaces
ACMS$TASK_INFORMATION System Workspace

Table B–3 (Cont.) Fields in ACMS$TASK_INFORMATION

ACMS$TASK_INFORMATION Workspace

ACMS$T_TASK_USERNAME

Type: Text

Size: 12 characters

Description: Contains the OpenVMS user name for the terminal user who started the
current task instance. For remote tasks, this is the name of the proxy.

ACMS$T_SUBMITTER_NODE_NAME

Type: Text

Size: 15 characters

Description: Contains the DECnet node name for the task submitter.

ACMS$L_CALL_SEQUENCE_NUMBER

Type: Signed longword

Description: Contains the call sequence number of the currently called task. ACMS
increments this number each time a task calls another task.

ACMS$T_SIGN_IN_USERNAME

Type: Text

Size: 12 characters

Description: Contains the OpenVMS user name of the user on the submitter node.

If a submitter selects a remote task, then the user name under which
that task runs may be different from the user name under which they
signed in. The contents of the ACMS$T_TASK_USERNAME is based on
the proxy lookup and user name defaulting mechanism, and may differ
from the ACMS$T_SIGN_IN_USERNAME field.

If a submitter selects a local task, the ACMS$T_SIGN_IN_USERNAME
field is the same as the ACMS$T_TASK_USERNAME field.

To distinguish between users that have the same name but reside on
different nodes, use the ACMS$T_SIGN_IN_USERNAME field with the
ACMS$T_SUBMITTER_NODE_NAME field to log the user name and
the node location.

(continued on next page)

B–4 Summary of ACMS System Workspaces

Summary of ACMS System Workspaces
ACMS$TASK_INFORMATION System Workspace

Table B–3 (Cont.) Fields in ACMS$TASK_INFORMATION

ACMS$TASK_INFORMATION Workspace

ACMS$T_SIGN_IN_DEVICE

Type: Text

Size: 8 characters

Description: Contains the name of the device that was supplied to ACMS when the
submitter signed in.

For applications using the ACMS command process, this field contains a
terminal device name.

For applications using a user-written command process (agent), this field
can contain a terminal device name, the name of a nonterminal device
that the agent is handling, or the NL device specification.

Use the ACMS$T_SIGN_IN_DEVICE field with the ACMS$T_
SUBMITTER_NODE_NAME field to log the device name and its
node location. It is necessary to use both of these fields if you wish
to distinguish between devices that have the same name but are residing
on different nodes.

Summary of ACMS System Workspaces B–5

Index

@ (At sign)
See At sign (@), command, ADU

A
ACCESS

subclause
ADU, 5–14

Access characteristics of workspaces
defining, 3–132, 3–139
RETRIEVAL, 3–132, 3–140, 4–52
UPDATE, 3–132, 3–140, 4–52

ACMS$PROCESSING_STATUS, B–1
fields in, B–2

ACMS$PROCESSING_STATUS workspace
used by conditional action steps, 3–51

ACMS$SELECTION_STRING, B–2
ACMS$TASK_INFORMATION, B–2
Action

conditional, 3–51
recovery, 3–25
sequencing, 3–25
server context, 3–25
summary of clauses for, 3–24
types of, 3–25
unconditional, 3–51
work, 3–73, 3–106
workspace manipulation, 3–25

Action clauses (ADU)
CANCEL TASK, 3–41
COMMIT, 7–2
COMMIT TRANSACTION, 3–44
CONTROL FIELD, 3–45
EXIT BLOCK, 3–63
EXIT TASK, 3–64
GET ERROR MESSAGE, 3–67
GOTO STEP, 3–71
GOTO TASK, 7–10
IF THEN ELSE, 3–73
MOVE, 3–81
NO RECOVERY UNIT ACTION, 7–12
NO SERVER CONTEXT ACTION, 3–84
RAISE EXCEPTION, 3–89
RELEASE SERVER CONTEXT, 3–95
REPEAT STEP, 3–97
REPEAT TASK, 7–17
RETAIN RECOVERY UNIT, 7–19

Action clauses (ADU) (cont’d)
RETAIN SERVER CONTEXT, 3–102
ROLLBACK, 7–25
ROLLBACK TRANSACTION, 3–104
SELECT FIRST, 3–106
summary of, 3–24
syntax of, 3–25

ADUINI.COM
command file

assigning CDD defaults, 1–51
logging ADU session, 1–53

ALWAYS EXECUTE TERMINATION
PROCEDURE

subclause
ADU, 4–12

Application
See also Application node
auditing, 5–24
defining server defaults, 5–52, 5–54
defining task defaults, 5–58, 5–60
defining task groups in, 5–62
definition syntax, 5–1
limiting server processes, 5–45
limiting task instances in, 5–47
sample definitions, 5–3
tuning performance, 5–27, 5–28, 5–33, 5–34

Application clauses (ADU), 5–1
APPLICATION DEFAULT DIRECTORY, 5–16
APPLICATION LOGICALS, 5–18
APPLICATION NAME TABLES, 5–20
APPLICATION USERNAME, 5–22
AUDIT, 5–24
DEFAULT APPLICATION FILE, 5–29
MAXIMUM SERVER PROCESSES, 5–45
MAXIMUM TASK INSTANCES, 5–47
SERVER ATTRIBUTES, 5–52
SERVER DEFAULTS, 5–54
SERVER MONITORING INTERVAL, 5–56
summary of, 5–4
TASK ATTRIBUTES, 5–58
TASK DEFAULTS, 5–60
TASK GROUPS, 5–62

Application database
defining defaults, 5–29

APPLICATION DEFAULT DIRECTORY
clause

ADU, 5–16

Index–1

Application definitions
assigning defaults, 5–1
clauses of, 5–1, 5–4
multiple TASK DEFAULTS clauses in, 5–61
sample of, 5–3
syntax of, 5–1

Application Definition Utility
action clauses

CANCEL TASK clause, 3–41
CONTROL FIELD clause, 3–45
EXIT BLOCK clause, 3–63
EXIT TASK clause, 3–64
GET ERROR MESSAGE clause, 3–67
GOTO STEP clause, 3–71
IF THEN ELSE clause, 3–73
NO SERVER CONTEXT ACTION clause,

3–84
RELEASE SERVER CONTEXT clause,

3–95
REPEAT STEP clause, 3–97
RETAIN SERVER CONTEXT clause,

3–102
SELECT FIRST clause, 3–106

block step clauses, 3–13
COMMIT clause, 7–2
EXCHANGE clause, 3–62
FORM I/O phrase, 3–66
GOTO TASK clause, 7–10
IF THEN ELSE clause, 3–73
NO TERMINAL I/O phrase, 3–85
RECEIVE clause, 3–92
REPEAT TASK clause, 7–17
SEND clause, 3–112
TRANSCEIVE clause, 3–128
WHILE DO clause, 3–135

clause syntax
NOT REUSABLE, 4–40

exchange step clauses
CONTROL FIELD clause, 3–45
IF THEN ELSE clause, 3–73
NO EXCHANGE clause, 3–82
READ clause, 3–91
RECEIVE clause, 3–92
REQUEST clause, 3–98
SELECT FIRST clause, 3–106
SEND clause, 3–112
TRANSCEIVE clause, 3–128
WHILE DO clause, 3–135
WRITE clause, 3–143

menu definition clauses, 6–1
CONTROL TEXT, 6–7
DEFAULT APPLICATION, 6–8
DEFAULT MENU FILE, 6–10
DELAY subclause, 6–12
ENTRIES, 6–3, 6–13
HEADER, 6–15
MENU subclause, 6–17
REQUEST, 6–18

Application Definition Utility
menu definition clauses (cont’d)

TASK subclause, 6–19
TEXT subclause, 6–21
WAIT subclause, 6–22

processing step clauses
CALL clause, 3–37
CALL TASK clause, 3–38
CONTROL FIELD clause, 3–45
DATATRIEVE COMMAND clause, 3–52
DCL COMMAND clause, 3–54
IF THEN ELSE clause, 3–73
IMAGE clause, 3–78
NO PROCESSING clause, 3–83
SELECT FIRST clause, 3–106
WHILE DO clause, 3–135

showing version, 1–58
starting, 1–2
startup qualifiers, 1–2
stopping qualifiers, 1–3
task group clauses, 4–1

Application Execution Controller
allocating server processes, 5–48
assigning default directory, 5–16
assigning user names, 5–22
defining logical names, 5–18

APPLICATION LOGICALS
clause

ADU, 5–18
APPLICATION NAME TABLES

clause
ADU, 5–20

Application node, 6–3
Application specification

use in distributed application definitions, 6–3,
6–5, 6–6, 6–8, 6–19

APPLICATION USERNAME
clause

ADU, 5–22
At sign

command
ADU, 1–8, 1–10

ATTACH
command

ADU, 1–11
AUDIT

clause
ADU, 5–24

qualifier, 1–7
subclause

ADU, 5–24
Audit Trail Log

recording task selections, 5–24

Index–2

B
BLOCK

clause
ADU, 3–34

Block clauses
conditional clauses, 3–8, 3–14

BLOCK, 3–34
CONTROL FIELD, 3–45
IF THEN ELSE, 3–73
SELECT FIRST, 3–106
starting exchange and processing steps

with, 3–7
syntax of, 3–15
WHILE DO, 3–135

Block phrases (ADU), 3–13
CANCEL ACTION, 3–40
DBMS RECOVERY, 7–6
FORM I/O, 3–66
NO TERMINAL I/O, 3–85
RDB RECOVERY, 7–13
REQUEST I/O, 3–100
RMS RECOVERY, 7–21
SERVER CONTEXT, 3–115
SQL RECOVERY, 7–26
STREAM I/O, 3–119
summary of, 3–13
syntax of, 3–14

Block steps
See also Nested blocks
actions, 3–7
attributes of, 3–7, 3–13, 3–34, 3–40
block conditional clauses, 3–14
defining attributes for, 7–6, 7–13, 7–21, 7–26
ending work in, 3–63
exchange steps in, 3–16
I/O for, 3–66, 3–85, 3–100, 3–119
processing steps in, 3–20
starting recovery units in, 7–6, 7–13, 7–21,

7–26
structure of, 3–7
structure of syntax for, 3–12
summary of exchange clauses, 3–16
syntax of, 3–14
work, 3–7, 3–34

Boolean expressions
comparisons, 3–31
in action steps, 3–106
in exchange steps, 3–106
in processing steps, 3–106
precedence of Boolean operators, 3–30
relational expressions, 3–27
relational operators, 3–28
types of, 3–28
use of parentheses, 3–31

BUILD
command

ADU, 1–12

C
CALL

clause
ADU, 3–37

subclause
ADU, 4–13

CALL TASK
clause

ADU, 3–38
CANCELABLE

clause
ADU, 3–43

subclause
ADU, 5–26

CANCEL ACTION
phrase

ADU, 3–40
Canceling tasks

CANCEL ACTION
phrase, 3–40

CANCEL TASK
clause, 3–41

CANCEL PROCEDURE
subclause

ADU, 4–15
Cancel procedures

default actions for, 4–15
work done by, 4–16

CANCEL TASK
clause

ADU, 3–41
CDD

changing default directory, 1–56
default directories, 1–51
displaying defaults, 1–56

Clauses (ADU)
APPLICATION DEFAULT DIRECTORY, 5–16
application definition, 5–4
APPLICATION LOGICALS, 5–18
APPLICATION NAME TABLES, 5–20
APPLICATION USERNAME, 5–22
AUDIT, 5–24
BLOCK, 3–34
block step, 3–7
CALL, 3–37
CALL TASK, 3–38
CANCELABLE, 3–43
CANCEL TASK, 3–41
COMMIT, 7–2
COMMIT TRANSACTION, 3–44
CONTROL FIELD, 3–45
CONTROL TEXT, 6–7
DATATRIEVE COMMAND, 3–52

Index–3

Clauses (ADU) (cont’d)
DCL COMMAND, 3–54
DEFAULT APPLICATION, 6–8
DEFAULT APPLICATION FILE, 5–29
DEFAULT FORM, 3–56
DEFAULT MENU FILE, 6–10
DEFAULT REQUEST LIBRARY, 3–57
DEFAULT SERVER, 3–58
DEFAULT TASK GROUP FILE, 4–24
DELAY, 3–59
ENTRIES, 6–13
EXCEPTION HANDLER, 3–60
EXCHANGE, 3–62
EXIT BLOCK, 3–63
EXIT TASK, 3–64
FORMS, 4–27
GET ERROR MESSAGE, 3–67
GLOBAL, 3–69
GOTO STEP, 3–71
GOTO TASK, 7–10
HEADER, 6–15
help information on, 1–35
IF THEN ELSE, 3–73
IMAGE, 3–78
LOCAL, 3–80
MAXIMUM SERVER PROCESSES, 5–45
MAXIMUM TASK INSTANCES, 5–47
menu definition, 6–1
MESSAGE FILES, 4–33
MOVE, 3–81
NO EXCHANGE, 3–82
NO PROCESSING, 3–83
NO RECOVERY UNIT ACTION, 7–12
NO SERVER CONTEXT ACTION, 3–84
PROCESSING, 3–88
RAISE EXCEPTION, 3–89
READ, 3–91
RECEIVE, 3–92
RELEASE SERVER CONTEXT, 3–95
REPEAT STEP, 3–97
REPEAT TASK, 7–17
REQUEST, 3–98, 6–18
REQUEST LIBRARIES, 4–38
RETAIN RECOVERY UNIT, 7–19
RETAIN SERVER CONTEXT, 3–102
ROLLBACK, 7–25
ROLLBACK TRANSACTION, 3–104
SELECT FIRST, 3–106
SEND, 3–112
SERVER ATTRIBUTES, 5–52
SERVER DEFAULTS, 5–54
SERVER MONITORING INTERVAL, 5–56
SERVERS, 4–43
TASK ATTRIBUTES, 5–58
TASK DEFAULTS, 5–60
task definition, 3–1
task group, 4–1
TASK GROUPS, 5–62

Clauses (ADU) (cont’d)
TASKS, 4–45
TRANSCEIVE, 3–128
USE WORKSPACES, 3–132
WAIT, 3–134
WHILE DO, 3–135
WORKSPACES, 3–139, 4–51
WRITE, 3–143

Closing files, 4–48
Command files

ADUINI.COM, 1–51, 1–53
displaying contents of, 1–55
LOGIN.COM, 1–2

Commands (ADU)
@ (At sign), 1–10
ATTACH, 1–11
BUILD, 1–12
COMPILE, 1–18
COPY, 1–21
CREATE, 1–23
DELETE, 1–26
DUMP, 1–28
EDIT, 1–32
EXIT, 1–3, 1–34
HELP, 1–35
LINK, 1–37
LIST, 1–41
MODIFY, 1–43
REPLACE, 1–46
SAVE, 1–49
SET DEFAULT, 1–51
SET LOG, 1–53
SET VERIFY, 1–55
SHOW DEFAULT, 1–56
SHOW LOG, 1–57
SHOW VERSION, 1–58
SPAWN, 1–59
summary of, 1–4

Commands (DCL)
DEFINE, 1–56
MCR, 1–2
RUN, 1–2

COMMIT
clause

ADU, 7–2
COMMIT TRANSACTION

clause
ADU, 3–44

COMPILE
command

ADU, 1–18
Composable task, 3–39
Conditional

action, 3–45, 3–73, 3–106
work

complex conditional statements, 3–73,
3–106, 3–135

Index–4

Conditional
work (cont’d)

in exchange steps, 3–45, 3–73, 3–82,
3–106, 3–135

in processing steps, 3–45, 3–73, 3–83,
3–106, 3–135

recovery unit action, 7–12
server context action, 3–84

Context actions
NO SERVER CONTEXT ACTION clause, 3–84
RELEASE SERVER CONTEXT clause, 3–95
RETAIN SERVER CONTEXT clause, 3–102

CONTINUE ON BAD STATUS
phrase

ADU, 7–4
CONTROL FIELD

clause
ADU, 3–45

Controlling
servers

defining server control attributes, 5–52,
5–54

tasks
defining task control attributes, 5–58, 5–60

CONTROL TEXT
clause

ADU, 6–7
Control text COUNT clause

RECEIVE clause syntax, 3–92
SEND clause syntax, 3–112
TRANSCEIVE clause syntax, 3–128

COPY
command

ADU, 1–21
CREATE

command
ADU, 1–23

CREATION DELAY
subclause

ADU, 5–27
CREATION INTERVAL

subclause
ADU, 5–28

Ctrl/Y
stopping ADU, 1–3

Ctrl/Z
stopping ADU, 1–3

D
Databases

binding, 4–31
creating, 1–12, 1–37
default menu database, 6–10
displaying, 1–28
file specifications for, 1–12, 1–37, 4–24, 5–29,

6–10
finishing, 4–48

Databases (cont’d)
location of, 1–15
naming, 4–24
overriding defaults for, 4–24, 5–29, 6–10

Database transaction
See Recovery actions
See Recovery units

DATATRIEVE COMMAND
clause

ADU, 3–52
subclause

ADU, 4–17
DBMS RECOVERY

phrase
ADU, 7–6

DCL
access to procedure servers, 4–19

DCL AVAILABLE
subclause

ADU, 4–19
DCL COMMAND

clause
ADU, 3–54

subclause
ADU, 4–20

DCL PROCESS
subclause

ADU, 4–22
Debugging tasks

workspace modules for, 1–13, 1–38
DECforms

declaring forms
for task groups, 4–27

form record
in task definitions, 3–5

using forms for terminal I/O, 3–66
Default

application database file, 5–29
application specification for menu task entries,

6–8
directory

for application execution controller, 5–16
menu database file name, 6–10
overriding default control attributes for tasks

See Overriding, defaults
overriding default server user name

See Overriding, defaults
overriding default task group database file

See Overriding, defaults
server control attributes, 5–54
server device and directory, 5–31
task control attributes, 5–60

DEFAULT APPLICATION
clause

ADU, 6–8

Index–5

DEFAULT APPLICATION FILE
clause

ADU, 5–29
DEFAULT DIRECTORY

subclause
ADU, 5–31

DEFAULT FORM
clause

ADU, 3–56
DEFAULT MENU FILE

clause
ADU, 6–10

DEFAULT OBJECT FILE
subclause

ADU, 4–23
DEFAULT REQUEST LIBRARY

clause
ADU, 3–57

Defaults
See Overriding defaults

DEFAULT SERVER
clause

ADU, 3–58
DEFAULT TASK GROUP FILE

clause
ADU, 4–24

Definitions
application clauses, 5–1, 5–4
building run-time versions of, 1–12, 1–37
compiling, 1–18
converting to CDO format, 1–21, 1–43
copying, 1–21
creating, 1–23
deleting, 1–26
editing, 1–32
example of menu definition, 6–3
example of task definition, 3–5, 3–6e
examples of task group definition, 4–4, 4–5
exchange clauses, 3–16
for distributed applications, 6–5
%INCLUDE, 2–2
menu clauses, 6–1
modifying, 1–41, 1–43
multiple-step tasks, 3–7
processing phrases and clauses, 3–20
replacing, 1–46
saving, 1–49
summary of task definition block steps, 3–13
task clauses, 3–1
task definition block step syntax, 3–12
task definition exchange clause syntax, 3–20
task group clauses, 4–1, 4–3
task group definition syntax, 4–3
task syntax, 3–5

DELAY
clause

ADU, 3–59
subclause

DELAY
subclause (cont’d)

ADU, 5–32, 6–12
DELETE

command
ADU, 1–26

DELETION DELAY
subclause

ADU, 5–33
DELETION INTERVAL

subclause
ADU, 5–34

Directories
assigning defaults

CDD, 1–51
for execution controller, 5–16

DISABLE
subclause

ADU, 5–35
Distributed application

application node, 6–3
application specifications, 6–5, 6–6, 6–8, 6–19
example of menu definition, 6–6
I/O restrictions, 3–32, 3–33
menu definitions, 6–5
specifications, 6–3
submitter node, 6–3

DML strings
access characteristics in, 7–6
allow characteristics in, 7–6
default, 7–6, 7–13, 7–26
in DBMS RECOVERY phrases, 7–6
in RDB RECOVERY phrases, 7–13
in SQL RECOVERY phrases, 7–26

DUMP
command

ADU, 1–28
DYNAMIC USERNAME

subclause
ADU, 4–25, 5–36

E
EDIT

command
ADU, 1–32

ENABLE
subclause

ADU, 5–38
ENTRIES

clause
ADU, 6–3, 6–13

DELAY subclause, 6–12
MENU subclause, 6–17
optional subclauses, 6–3
required subclauses, 6–3, 6–13, 6–19
subclauses, 6–1
TASK subclause, 6–19

Index–6

ENTRIES
clause

ADU (cont’d)
TEXT subclause, 6–21
WAIT subclause, 6–22

Entry point names
of procedures, 3–37, 4–13

Errors
handling

canceling task, 3–40, 3–41
GET ERROR MESSAGE clause, 3–67
naming cancel procedure for task group,

4–15, 4–41
EXC

See Application Execution Controller
EXCEPTION HANDLER

clause
ADU, 3–60

Exception handling, 3–27
Exceptions

control text COUNT clause, 3–94, 3–114, 3–130
EXCHANGE

clause
ADU, 3–62

Exchange clauses (ADU)
CONTROL FIELD, 3–45
IF THEN ELSE, 3–73
NO EXCHANGE, 3–82
READ, 3–91
RECEIVE, 3–92
REQUEST, 3–98
SELECT FIRST, 3–106
SEND, 3–112
summary of, 3–16
syntax of, 3–20
TRANSCEIVE, 3–128
WHILE DO, 3–135
WRITE, 3–143

Exchange steps
conditional work, 3–45, 3–73, 3–106, 3–135
flow control done in, 3–82
READ clause, 3–91
RECEIVE clause, 3–92
requests used in, 3–98
SEND clause, 3–112
TRANSCEIVE clause, 3–128
WRITE clause, 3–143

Execution Controller
See Application Execution Controller

EXIT
command

ADU, 1–3, 1–34
EXIT BLOCK

clause
ADU, 3–63

EXIT TASK
clause

ADU, 3–64

Expressions
Boolean, 3–106

F
Fields

See also Workspaces
workspace

in ACMS$PROCESSING_STATUS
workspace, 3–51

Files
closing, 4–48
opening, 4–31

File specifications
application databases, 5–29
log files, 1–53
menu databases, 6–10
message files, 4–33
naming

in IMAGE clause, 3–78
OpenVMS images, 3–78
request libraries, 4–38
source definition files, 1–18, 1–23, 1–46
task group databases, 4–24
workspace debug modules, 1–13, 1–38

FIXED USERNAME
subclause

ADU, 4–26, 5–39
Flow control

complex conditional statements, 3–73, 3–106,
3–135

conditional work, 3–45
CONTROL FIELD clause, 3–45
EXIT BLOCK clause, 3–63
EXIT TASK clause, 3–64
GOTO STEP clause, 3–71
GOTO TASK clause, 7–10
IF THEN ELSE clause, 3–73
in exchange steps, 3–82
in processing steps, 3–83
REPEAT STEP clause, 3–97
REPEAT TASK clause, 7–17
SELECT FIRST clause, 3–106
WHILE DO clause, 3–135

FORM I/O
phrase

ADU, 3–66
Forms

declaring for task groups, 4–27
default, 3–56
receiving data in application from, 3–92, 3–128
sending data to, 3–112, 3–128

FORMS
clause

ADU, 4–27

Index–7

G
GET ERROR MESSAGE

clause
ADU, 3–67

naming message files, 4–33
GLOBAL

clause
ADU, 3–69

subclause
ADU, 5–40

GOTO STEP
clause

ADU, 3–71
using with nested blocks, 3–71

GOTO TASK
clause

ADU, 7–10

H
Handling errors

See also Errors, handling
GET ERROR MESSAGE clause, 3–67
naming message files, 4–33

HEADER
clause

ADU, 6–15
HELP

command
ADU, 1–35

HP DECforms
changing menu format, 6–7
declaring forms

for tasks, 3–56

I
I/O

attributes for distributed processing, 3–33
block steps, 3–66, 3–85, 3–100, 3–119
characteristics of block or step

FORM I/O, 3–66
NO TERMINAL I/O, 3–85
REQUEST I/O, 3–100
STREAM I/O, 3–119
TERMINAL I/O, 3–124

FORM, 3–66
multiple-step tasks, 3–124
NO TERMINAL I/O phrase, 3–85
processing steps, 3–124
REQUEST, 3–100
restrictions for distributed applications, 3–32
single-step tasks, 3–124
STREAM, 3–119
TERMINAL, 3–124

IBM DB2 database, 4–19
IF THEN ELSE

clause
ADU, 3–73

IMAGE
clause

ADU, 3–78
subclause

ADU, 4–29
%INCLUDE, 2–2
INITIALIZATION PROCEDURE

subclause
ADU, 4–31

L
Labels

step
assigned in task definitions, 3–23, 3–34

LINK
command

ADU, 1–37
LIST

command
ADU, 1–41

LOCAL
clause

ADU, 3–80
subclause

ADU, 5–41
Logging

COPY command (ADU), 1–22
CREATE command (ADU), 1–19, 1–24
displaying information about, 1–57
MODIFY command (ADU), 1–44
REPLACE command (ADU), 1–47
SET LOG command (ADU), 1–53

Logical names
CDD$DEFAULT, 1–51
defining

execution controller defaults, 5–16
server process defaults, 5–42

defining application process defaults, 5–18
LOGICALS

subclause
ADU, 5–42

LOG qualifier
explanation of, 1–9

M
MAXIMUM SERVER PROCESSES

clause
ADU, 5–45

subclause
ADU, 5–45

Index–8

MAXIMUM TASK INSTANCES
clause

ADU, 5–47
MCR ACMSADU command, 1–2
Menu

changing
format of HP DECforms, 6–7
format of TDMS, 6–18

default layouts
of HP DECforms, 6–7
of TDMS, 6–18

defining
title, 6–15

definitions
clauses, 6–1
complete syntax for, 6–2
defining characteristics of menu entries,

6–3
defining menu title, 6–15
example, 6–3
for distributed applications, 6–5
HEADER clause (ADU), 6–15
naming default menu databases, 6–10
naming menu entries in, 6–3, 6–13, 6–17
naming task entries in, 6–3, 6–13, 6–19
subclauses, 6–3

descriptive text for
HEADER clause, 6–15
TEXT subclause, 6–21

naming
task entries, 6–3

naming menu entries, 6–3
path names, 6–17
redisplaying, 5–32, 5–67
screen display characteristics

DELAY subclause, 6–12
WAIT subclause, 6–22

subclauses, 6–3
MENU

subclause
ADU, 6–17

define menu entries, 6–3
Message files

declaring, 4–33
GET ERROR MESSAGE clause, 3–67
returning, 3–67
specifications for, 4–33
used by ACMS, 3–68

MESSAGE FILES
clause

ADU, 4–33
MINIMUM SERVER PROCESSES

subclause
ADU, 5–48

MODIFY
command

ADU, 1–43

Monitoring
events, 5–24

MOVE
clause

ADU, 3–81
Multiple-step tasks

action steps, 3–24
BLOCK clause, 3–34
block phrase syntax, 3–14
block steps, 3–7, 3–13

syntax, 3–12
defining, 3–7
example of, 3–10
exchange steps, 3–16
I/O for, 3–124
nested blocks, 3–8
processing steps, 3–20
structure of block steps, 3–7
summary of block step phrases, 3–13

N
Name tables

application, 5–20
server, 5–49

NAME TABLES
subclause

ADU, 5–49
Nested blocks, 3–8

attributes for, 3–13
BLOCK clause, 3–34
example of, 3–10
parent block, 3–8
root block, 3–8
with block conditional clauses, 3–16

NOAUDIT
qualifier, 1–7

NO EXCHANGE
clause

ADU, 3–82
NONPARTICIPATING SERVER

phrase
ADU, 3–87

NO PROCESSING
clause

ADU, 3–83
NO RECOVERY UNIT ACTION

clause
ADU, 7–12

NO SERVER CONTEXT ACTION
clause

ADU, 3–84
NO TERMINAL I/O

phrase
ADU, 3–85

Index–9

O
Object modules

for procedure servers, 1–15
for servers, 4–23

Opening files, 4–31
OpenVMS

commands
running DCL commands in tasks, 3–54,

4–20
images

running from tasks, 3–78, 4–29
DATATRIEVE, 3–52

Overriding
defaults

application database file, 5–29
application in menu definitions, 6–8
changing format of HP DECforms menu,

6–7
changing format of TDMS menu, 6–18
creating server processes, 5–27, 5–28
deletion of server processes, 5–33, 5–34
forms, 3–56
menu database file name, 6–10
monitoring server processes, 5–56
request libraries, 3–57
server control attributes, 5–54
server device and directory, 5–31
servers for tasks, 3–58
server user name, 4–25, 4–26, 4–50
task control attributes, 5–58, 5–60
task group database file, 4–24

P
Performance

releasing server context, 3–95, 3–102, 3–115,
7–19

reusable servers, 4–40, 4–41, 4–50, 5–65
tuning

creation of server processes, 5–27, 5–28
deletion of server processes, 5–33, 5–34
server monitoring, 5–56

Phrases (ADU)
block, 3–13, 3–34
CANCEL ACTION, 3–40
CONTINUE ON BAD STATUS, 7–4
DBMS RECOVERY, 7–6
FORM I/O, 3–66
NONPARTICIPATING SERVER, 3–87
NO TERMINAL I/O, 3–85
processing, 3–88
processing step phrases, 3–20
RDB RECOVERY, 7–13
REQUEST I/O, 3–100
RMS RECOVERY, 7–21
SERVER CONTEXT, 3–115

Phrases (ADU) (cont’d)
SQL RECOVERY, 7–26
STREAM I/O, 3–119
summary of block, 3–13
TASK ARGUMENTS, 3–120
task definition, 3–14
TERMINAL I/O, 3–124
TRANSACTION, 3–125

Precedence
Boolean operators, 3–30

Procedures
entry point names of, 3–37
naming with CALL subclause, 4–13

PROCEDURES
subclause

ADU, 4–36
PROCEDURE SERVER IMAGE

subclause
ADU, 4–35

Procedure servers
DCL availability, 4–19
object modules for, 1–15
starting, 4–31
stopping, 4–48

PROCESSING
clause

ADU, 3–88
Processing clauses (ADU)

CALL, 3–37
CALL TASK, 3–38
CONTROL FIELD, 3–45
DATATRIEVE COMMAND, 3–52
DCL COMMAND, 3–54
IF THEN ELSE, 3–73
IMAGE, 3–78
NO PROCESSING, 3–83
SELECT FIRST, 3–106
summary of, 3–20
WHILE DO, 3–135

Processing phrases (ADU)
CONTINUE ON BAD STATUS, 7–4
DBMS RECOVERY, 7–6
FORM I/O, 3–66
RDB RECOVERY, 7–13
REQUEST I/O, 3–100
RMS RECOVERY, 7–21
SQL RECOVERY, 7–26
summary of, 3–20
TERMINAL I/O, 3–124

Processing steps
attributes of, 3–20, 3–124, 7–6
calling procedures, 3–20, 3–37
conditional work, 3–45, 3–73, 3–106, 3–135
DATATRIEVE commands in, 3–20
DCL commands in, 3–20
defining attributes for, 7–13, 7–21, 7–26
flow control done in, 3–83
I/O for, 3–124

Index–10

Processing steps (cont’d)
images in, 3–20
naming procedures in servers, 4–36
naming server image, 4–35
running

DATATRIEVE commands, 3–52, 4–17
DCL commands, 3–54, 4–20
images, 3–78, 4–29
procedures, 3–37, 4–13

servers to run commands or images, 4–22
servers used by, 3–37
starting recovery units in, 7–6, 7–13, 7–21,

7–26
syntax of, 3–22
work, 3–20

CALL clause, 3–37
DATATRIEVE COMMAND, 3–52
DCL COMMAND, 3–54
IMAGE, 3–78

Processing subclauses (ADU), 4–6
CALL, 4–13
DATATRIEVE COMMAND, 4–17
DCL COMMAND, 4–20
IMAGE, 4–29
summary of, 4–6
syntax of, 4–7

PROTECTED WORKSPACES
subclause

ADU, 5–51

Q
Qualifiers, 1–7

startup, 1–3, 1–51

R
RAISE EXCEPTION

clause
ADU, 3–89

RDB RECOVERY
phrase

ADU, 7–13
READ

clause
ADU, 3–91

RECEIVE clause
ADU, 3–92

Recording application events, 5–24
Records

See also Workspaces
form

in task definitions, 3–5
Recovery

actions
COMMIT clause, 7–2
default, 7–7, 7–13, 7–21, 7–26

Recovery
actions (cont’d)

NO RECOVERY UNIT ACTION clause,
7–12

RETAIN RECOVERY UNIT clause, 7–19
ROLLBACK clause, 7–25

units
committing, 7–2
ending, 7–2, 7–25
retaining, 7–2, 7–19
starting, 7–6, 7–13, 7–21, 7–26

Redisplaying menus, 3–59, 3–134, 5–32, 5–67
Relational expressions, 3–27
Relational operators, 3–28
RELEASE SERVER CONTEXT

clause
ADU, 3–95

Remote
tasks

See also Distributed application
example of, 6–6e

REPEAT STEP
clause

ADU, 3–97
REPEAT TASK

clause
ADU, 7–17

REPLACE
command

ADU, 1–46
REQUEST

clause
ADU, 3–98, 6–18

naming requests in, 3–98
naming workspaces, 3–98

REQUEST I/O
phrase

ADU, 3–100
reading data from stream, 3–91

Request libraries
declaring for task groups, 4–38
default, 3–57
file specifications for, 4–38
naming, 3–57, 4–38
REQUEST clause, 3–98

REQUEST LIBRARIES
clause

ADU, 4–38
Requests

changing menu formats with, 6–18
default menu layouts, 6–18
naming, 3–98

Restrictions
on terminal I/O for distributed applications,

3–32
RETAIN RECOVERY UNIT

clause
ADU, 7–19

Index–11

RETAIN SERVER CONTEXT
clause

ADU, 3–102
REUSABLE

subclause
ADU, 4–40

RMS RECOVERY
phrase

ADU, 7–21
ROLLBACK

clause
ADU, 7–25

ROLLBACK TRANSACTION
clause

ADU, 3–104
RUN

command
DCL, 1–2

RUNDOWN ON CANCEL
subclause

ADU, 4–41
Running

DATATRIEVE commands, 4–17
DCL commands, 4–20

S
SAVE

command
ADU, 1–49

Screen
display characteristics, 6–12, 6–22

Security
defining access for workspaces, 3–132, 3–139
defining access to tasks, 5–14

SELECT FIRST
clause

ADU, 3–106
Boolean precedence, 3–30
relational operators, 3–28

Selection strings
passing to a DATATRIEVE command, 3–52,

4–17
passing to a DCL command, 3–54, 4–20
passing to an OpenVMS image, 3–78, 4–29

SEND clause
ADU, 3–112

Sequencing
actions

CANCEL TASK clause, 3–41
EXIT BLOCK clause, 3–63
EXIT TASK clause, 3–64
GOTO STEP, 3–71
GOTO TASK clause, 7–10
REPEAT STEP clause, 3–97
REPEAT TASK clause, 7–17

complex conditional statements, 3–73, 3–106,
3–135

Sequencing (cont’d)
conditional work, 3–45
IF THEN ELSE clause, 3–73
in exchange steps, 3–82
in processing steps, 3–83
SELECT FIRST clause, 3–106
WHILE DO clause, 3–135

SERVER ATTRIBUTES
clause

ADU, 5–52
CREATION DELAY, 5–27
CREATION INTERVAL, 5–28
DEFAULT DIRECTORY, 5–31
DELETION DELAY, 5–33
DELETION INTERVAL, 5–34
DYNAMIC USERNAME, 5–36
example of, 5–9e
FIXED USERNAME, 5–39
LOGICALS, 5–42
MAXIMUM SERVER PROCESSES,

5–45
MINIMUM SERVER PROCESSES,

5–48
NAME TABLES, 5–49
PROTECTED WORKSPACES, 5–51
SERVER PROCESS DUMP, 5–57
subclauses, 5–52
summary of subclauses, 5–5, 5–6
syntax of, 5–6
USERNAME, 5–65

SERVER CONTEXT
phrase

ADU, 3–115
SERVER DEFAULTS

clause
ADU, 5–54

CREATION DELAY, 5–27
CREATION INTERVAL, 5–28
DEFAULT DIRECTORY, 5–31
DELETION DELAY, 5–33
DELETION INTERVAL, 5–34
DYNAMIC USERNAME, 5–36
example of, 5–9e
FIXED USERNAME, 5–39
LOGICALS, 5–42
MAXIMUM SERVER PROCESSES,

5–45
MINIMUM SERVER PROCESSES,

5–48
NAME TABLES, 5–49
PROTECTED WORKSPACES, 5–51
SERVER PROCESS DUMP, 5–57
summary of subclauses, 5–5, 5–8
syntax, 5–8
USERNAME, 5–65

SERVER MONITORING INTERVAL
clause

ADU, 5–56

Index–12

SERVER PROCESS DUMP
subclause

ADU, 5–57
Servers

cancel procedures, 4–15
changing defaults for, 5–54
characteristics of, 4–43
context

action, 3–84
block steps using, 3–115
default actions, 3–115
in a server, 3–95
releasing, 3–95, 3–115
retaining, 3–102

context for, 3–115
DCL, 4–19
declaring in task groups, 4–43
default

limits for processes, 5–45, 5–48
user names, 5–65

default directories, 5–31
defining

EXC process logical names, 5–18
processing for, 5–5, 5–52
server process logical names, 5–42

exiting on cancel, 4–41
images

naming procedure server image, 4–35
limiting processes, 5–45
naming

in CALL clause, 3–37
in DATATRIEVE COMMAND clause, 3–52
in DCL COMMAND clause, 3–54

naming in IMAGE clause, 3–78
object modules for, 4–23
procedure, 4–19, 4–35
running, 3–37
step procedures running in, 4–36
subclauses (ADU), 4–9

ALWAYS EXECUTE TERMINATION
PROCEDURE, 4–12

AUDIT, 5–24
CANCEL PROCEDURE, 4–15
CREATION DELAY, 5–27
CREATION INTERVAL, 5–28
DCL AVAILABLE, 4–19
DCL PROCESS, 4–22
DEFAULT DIRECTORY, 5–31
DEFAULT OBJECT FILE, 4–23
DELETION DELAY, 5–33
DELETION INTERVAL, 5–34
DYNAMIC USERNAME, 4–25, 5–36
FIXED USERNAME, 4–26, 5–39
INITIALIZATION PROCEDURE, 4–31
LOGICALS, 5–42
MAXIMUM SERVER PROCESSES, 5–45
MINIMUM SERVER PROCESSES, 5–48
NAME TABLES, 5–49

Servers
subclauses (ADU) (cont’d)

PROCEDURES, 4–36
PROCEDURE SERVER IMAGE, 4–35
PROTECTED WORKSPACES, 5–51
REUSABLE, 4–40
RUNDOWN ON CANCEL, 4–41
SERVER PROCESS DUMP, 5–57
summary of, 4–9, 5–5
syntax of

with SERVER ATTRIBUTES clause,
5–6

with SERVER DEFAULTS clause, 5–8
with SERVERS clause, 4–10

TERMINATION PROCEDURE, 4–48
USERNAME, 4–50, 5–65

types, 4–22, 4–35
used by tasks, 3–58
user names, 5–36, 5–39

SERVERS
clause

ADU, 4–43
subclauses in, 4–9
using NOT REUSABLE subclause,

4–40
SET DEFAULT

command
ADU, 1–51

SET LOG
command

ADU, 1–53
SET VERIFY

command
ADU, 1–55

Shadow workspaces
using

in RECEIVE clause, 3–92
in SEND clause, 3–112
in TRANSCEIVE clause, 3–128

SHOW DEFAULT
command

ADU, 1–56
SHOW LOG

command
ADU, 1–57

SHOW VERSION
command

ADU, 1–58
Single-step tasks

See also Steps
attributes, 3–88
default communication method, 3–85, 3–100,

3–124
default sequencing action

for block or processing steps, 3–41
for steps in blocks, 3–41

example of, 3–5e
I/O for, 3–124

Index–13

Single-step tasks (cont’d)
PROCESSING clause in, 3–88

SPAWN
command

ADU, 1–59
SQL RECOVERY

phrase
ADU, 7–26

Starting
ADU

MCR command, 1–2
RUN command, 1–2

qualifiers (ADU), 1–2
Status

values
returned by procedures, 3–51
returned to ACMS$L_STATUS, 3–51

Step procedures
running, 4–13

Steps
See also Block steps
See also Exchange steps
See also Labels, step
See also Multiple-step tasks
See also Processing steps
See also Single-step tasks
naming, 3–34
repeating, 3–97

STREAM I/O
phrase

ADU, 3–119
reading data from stream, 3–91

Strings
DATATRIEVE command, 3–52
DCL command, 3–54
DML strings, 7–6, 7–13, 7–26

Subclauses (ADU), 5–1
See also Menu
See also Processing subclauses
See also Servers
See also Tasks
ACCESS, 5–14
AUDIT, 5–24
CANCELABLE, 5–26
DELAY, 5–32, 6–12
DISABLE, 5–35
ENABLE, 5–38
GLOBAL, 5–40
LOCAL, 5–41
menu, 6–13
MENU, 6–3, 6–17
processing, 4–6, 4–45
server, 4–9, 5–5
task, 5–10
TASK, 6–3, 6–19
TASK ATTRIBUTES, 5–10
TASK DEFAULTS, 5–10

Subclauses (ADU) (cont’d)
TEXT, 6–21
TRANSACTION TIMEOUT, 5–64
WAIT, 5–67, 6–22
with ENTRIES clause, 6–1, 6–3, 6–13
with SERVERS clause, 4–43, 5–5

Submitter
node, 6–3

Syntax
application definitions, 5–1
menu definition, 6–2
multiple-step task block steps, 3–12
task definition, 3–5

action steps, 3–25
block phrases, 3–14
exception handler action steps, 3–27
exchange steps, 3–20
processing steps, 3–22

task group definition, 4–3
processing subclauses, 4–7
server subclauses syntax, 4–10

System
workspaces, B–1

See also Workspaces

T
TASK

subclause
ADU, 6–19

define task entries, 6–3
TASK ARGUMENTS

phrase
ADU, 3–120

TASK ATTRIBUTES
clause

ADU, 5–58
ACCESS, 5–14
AUDIT, 5–24
CANCELABLE, 5–26
DELAY, 5–32
DISABLE, 5–35
ENABLE, 5–38
GLOBAL, 5–40
LOCAL, 5–41
summary of, 5–10
syntax of, 5–11
TRANSACTION TIMEOUT, 5–64
WAIT, 5–67

Task-call-task
clauses (ADU)

CALL TASK, 3–38
Task clauses (ADU), 3–1

BLOCK, 3–34
CANCELABLE, 3–43
DEFAULT FORM, 3–56
DEFAULT REQUEST LIBRARY, 3–57
DEFAULT SERVER, 3–58

Index–14

Task clauses (ADU) (cont’d)
DELAY, 3–59
EXCEPTION HANDLER, 3–60
GLOBAL, 3–69
LOCAL, 3–80
PROCESSING, 3–88
summary of, 3–1
syntax of, 3–5
TASK ARGUMENTS, 3–120
USE WORKSPACES, 3–132
WAIT, 3–134
WORKSPACES, 3–139

TASK DEFAULTS
clause

ADU, 5–60
ACCESS, 5–14
AUDIT, 5–24
CANCELABLE, 5–26
DELAY, 5–32
DISABLE, 5–35
ENABLE, 5–38
examples, 5–61e
GLOBAL, 5–40
LOCAL, 5–41
summary of, 5–10
syntax of, 5–12
TRANSACTION TIMEOUT, 5–64
WAIT, 5–67

Task groups
assigning defaults, 5–62
clauses (ADU), 4–1

DEFAULT TASK GROUP FILE, 4–24
FORMS, 4–27
MESSAGE FILES, 4–33
REQUEST LIBRARIES, 4–38
SERVERS, 4–43
summary of, 4–3
task group definition syntax, 4–3
TASKS, 4–45
WORKSPACES, 4–51

declaring tasks, 4–45
definitions

clauses, 4–3
examples of, 4–4e, 4–5e
processing subclauses (ADU), 4–6

summary, 4–6
syntax of, 4–7

server subclauses (ADU), 4–9
summary of, 4–9

server subclause syntax, 4–10
task group definition syntax, 4–3

examples of, 4–4e, 4–5e
naming

request libraries, 4–38
servers, 4–43
workspaces, 4–51

naming forms, 4–27
naming in applications, 5–62

Task groups (cont’d)
naming message files, 4–33
types of servers in, 4–22, 4–35

TASK GROUPS
clause

ADU, 5–62
placement in application definition,

5–62
Task phrases (ADU)

NONPARTICIPATING SERVER, 3–87
TRANSACTION, 3–125

Tasks
canceling, 3–41
controlling processing, 5–60
defining

access to, 5–14
defaults for, 5–58
entries on menus, 6–13, 6–19
work for, 4–45

definitions
action step syntax, 3–25
block phrase syntax, 3–14
block steps, 3–13
block step syntax, 3–12
clauses for processing steps, 3–24
examples of, 3–5e, 3–6e
exception handler action step syntax, 3–27
exchange clauses, 3–16
exchange step syntax, 3–20
multiple-step tasks, 3–7
processing step phrases and clauses, 3–20
processing step syntax, 3–22
sample definition, 5–13
structure of block steps, 3–7
summary of block step phrases, 3–13
summary of clauses, 3–1
syntax, 3–5

ending, 3–64
examples of, 3–5e, 3–6e
limiting task instances, 5–47
monitoring, 5–24
multiple-step, 3–34
naming

in task groups, 4–45
naming workspaces for, 3–132, 3–139
processing work in, 3–20, 3–37, 3–52, 3–54,

3–78
repeating, 7–17
sample definition, 5–13
servers used by, 3–58
single-step

PROCESSING clause in, 3–88
subclauses (ADU)

ACCESS, 5–14
AUDIT, 5–24
CANCELABLE, 5–26
DELAY, 5–32
DISABLE, 5–35

Index–15

Tasks
subclauses (ADU) (cont’d)

ENABLE, 5–38
GLOBAL, 5–40
LOCAL, 5–41
summary of, 5–10
syntax of

with TASK ATTRIBUTES clause, 5–11
with TASK DEFAULTS clause, 5–12

TRANSACTION TIMEOUT, 5–64
WAIT, 5–67

submitters
communicating with, 3–66, 3–85, 3–100,

3–119, 3–124
work

defining, 4–45
work done in block step, 3–34
work done in single-step processing, 3–88

TASKS
clause

ADU, 4–45
subclauses in, 4–6

TDMS
See Terminal Data Management System

Terminal Data Management System
changing menu format, 6–18
communicating with non-TDMS supported

devices, 3–119
declaring request libraries, 3–57

for task groups, 4–38
requests in exchange steps, 3–98
using requests for terminal I/O, 3–100

TERMINAL I/O
phrase

ADU, 3–124
TERMINATION PROCEDURE

subclause
ADU, 4–48

TEXT
subclause

ADU, 6–21
TPS$_NOCNTRLCNTSUB error status, 3–94,

3–114, 3–130
TRANSACTION

phrase
ADU, 3–125

Transactions
See also Recovery actions
See also Recovery units
ending, 7–25
recovery unit action clauses, 7–12
retaining recovery unit, 7–19
starting database transaction, 7–6

TRANSACTION TIMEOUT
subclause

ADU, 5–64

TRANSCEIVE clause
ADU, 3–128

Tuning
server processes

limiting, 5–45, 5–48
timing

of creation, 5–27, 5–28
of deletion, 5–34
of deletion of server processes, 5–33
of monitoring, 5–56

task instances, 5–47

U
Unconditional

action, 3–45
work

in exchange steps, 3–45
in processing steps, 3–45

USERNAME
subclause

ADU, 4–50, 5–65
User names

assigning
for execution controller, 5–22

DYNAMIC USERNAME subclause (ADU),
4–25, 5–36

FIXED USERNAME subclause, 4–26
FIXED USERNAME subclause (ADU), 5–39

USE WORKSPACES
clause

ADU, 3–132
ACCESS keyword, 3–132

V
VIDA for DB2 software, 4–19

W
WAIT

clause
ADU, 3–134

subclause
ADU, 5–67, 6–22

WHILE DO
clause

ADU, 3–135
Workspaces

ACMS$PROCESSING_STATUS, B–1
ACMS$SELECTION_STRING, B–2
ACMS$TASK_INFORMATION, B–2
ACMS system, 3–51, 3–140, 4–52
CONTROL FIELD clause, 3–51
debug modules

naming, 1–13, 1–38
producing, 1–13, 1–38

declaring for tasks, 3–132, 3–139

Index–16

Workspaces (cont’d)
defining

access for, 3–132, 3–139, 4–51
fields in, 3–51
GET ERROR MESSAGE clause, 3–67
group, 3–139, 4–51
locking, 3–132, 3–140, 4–52
manipulation actions

GET ERROR MESSAGE clause, 3–67
naming

in CALL clause, 3–37
in task groups, 4–51

passing

with GOTO TASK clause, 7–10
shadow, 3–92, 3–112, 3–128
system, B–1

location in the CDD, B–1
task, 3–140, 4–52
types of, 3–139, 3–140, 4–51, 4–52
user, 3–140, 4–52

WORKSPACES
clause

ADU, 3–139, 4–51
WRITE

clause
ADU, 3–143

Index–17

