
HP ACMS for OpenVMS
Systems Interface Programming
Order Number: AA–EA12J–TE

January 2006

This manual describes how to use Systems Interface (SI) programming
services to submit tasks to a HP ACMS for OpenVMS system.

Revision/Update Information: This manual supersedes the HP
ACMS for OpenVMS Systems Interface
Programming, Version 4.5A.

Operating System: OpenVMS Alpha Version 8.2
OpenVMS I64 Version 8.2-1

Software Version: HP ACMS for OpenVMS, Version 5.0

Hewlett-Packard Company
Palo Alto, California



© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors, or omissions contained herein.

Motif is a registered trademark of The Open Group.

Oracle is a registered US trademark of Oracle Corporation, Redwood City, California.

Oracle CODASYL DBMS, Oracle CDD/Administrator, Oracle CDD/Repository, Oracle Rdb, Oracle
SQL/Services, Oracle Trace, and Oracle Trace Collector are registered US trademarks of Oracle
Corporation, Redwood City, California.

Printed in the US



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Overview of the ACMS Systems Interface

1.1 The ACMS Systems Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
1.2 Systems Interface Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.3 Agent Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.3.1 Calling Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.3.2 Using Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.3.3 Using SI Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5

2 Common Features of the Systems Interface

2.1 Features Common to the SI Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.1 Service Call Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.2 Parameter Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.3 Return Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
2.1.4 Synchronous and Asynchronous Calling Formats . . . . . . . . . . . . . . . . 2–2
2.1.5 ACMS$SIGNAL and ACMS$WAIT Support Services . . . . . . . . . . . . . . 2–5
2.1.5.1 ACMS$SIGNAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.1.5.2 ACMS$WAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
2.1.6 Single-Threaded and Multithreaded Agent Programs . . . . . . . . . . . . . 2–10
2.1.7 Default Submitter Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.1.8 Running an Agent Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.1.8.1 Preparing to Use RI or User-Written Agents that Use DECforms

in Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.1.8.2 Starting an Agent Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
2.1.9 Debugging an Agent Program with ACMS$CHECK . . . . . . . . . . . . . . 2–12
2.2 Features Common to Languages that Call the Systems Interface . . . . . . . 2–13
2.2.1 BLISS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
2.2.2 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
2.2.3 FORTRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.2.4 MACRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.2.5 Pascal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.2.6 PL/I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16
2.2.7 Other Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16

iii



3 Agent Programs that Coordinate Distributed Transactions

3.1 Starting a Distributed Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.2 Rolling Back a Distributed Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
3.3 Accessing Remote Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5
3.4 Step Procedure in C that Acts as an Agent Program . . . . . . . . . . . . . . . . . 3–8

4 Agent Program Initialization and Exchange I/O Services

4.1 Authorizing an Agent Program in ACMS . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
4.2 Signing In a Task Submitter to ACMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
4.3 Specifying the Type of I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
4.4 Terminating Exchange I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
4.5 Signing Out a Task Submitter from ACMS . . . . . . . . . . . . . . . . . . . . . . . . 4–5
4.6 ACMS$INIT_EXCHANGE_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6
4.7 ACMS$SIGN_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10
4.8 ACMS$SIGN_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13
4.9 ACMS$TERM_EXCHANGE_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15

5 Submitter Services

5.1 Preparing to Call a Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
5.2 Calling a Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
5.2.1 Passing a Transaction ID (TID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
5.2.2 Supplying Workspaces to a Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–6
5.2.3 Supplying the Correct Number of Task Argument Workspaces . . . . . . 5–6
5.2.4 Accessing Task Workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7
5.3 Canceling a Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8
5.4 ACMS$CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–9
5.5 ACMS$CANCEL_CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–14
5.6 ACMS$GET_PROCEDURE_INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–16
5.7 ACMS$START_CALL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–20
5.8 ACMS$WAIT_FOR_CALL_END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–25

6 Stream Services

6.1 Overview of Stream Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
6.2 ACMS$REPLY_TO_STREAM_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–5
6.3 ACMS$WAIT_FOR_STREAM_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7

7 Sample Agent Programs

7.1 C Agent Program that Starts a Distributed Transaction . . . . . . . . . . . . . . 7–1
7.2 FORTRAN General-Purpose Agent Program . . . . . . . . . . . . . . . . . . . . . . . 7–10
7.3 C Agent Program that Performs Stream I/O or No I/O . . . . . . . . . . . . . . . 7–15
7.4 BLISS Agent Program that Uses Superseded Services . . . . . . . . . . . . . . . 7–19
7.5 Pascal Agent Program that Uses ACMS$WAIT . . . . . . . . . . . . . . . . . . . . . 7–26

iv



A Superseded Services and Parameters

A.1 ACMS$CLOSE_RR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–3
A.2 ACMS$CONNECT_STREAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–5
A.3 ACMS$CREATE_STREAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–8
A.4 ACMS$DELETE_STREAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–10
A.5 ACMS$DISCONNECT_STREAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–12
A.6 ACMS$OPEN_RR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–14
A.7 Superseded Parameters of the Task I/O Argument . . . . . . . . . . . . . . . . . . A–17
A.7.1 Argument List for a Task That Performs Request I/O . . . . . . . . . . . . . A–17
A.7.2 Argument List for a Task That Passes Only Stream I/O . . . . . . . . . . . A–17
A.7.3 Argument List with Selection String, Extended Status, and Terminal

I/O Defined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–18

Index

Examples

3–1 A Specialized User-Written Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3
3–2 Task Definition that Calls a Procedure Used as an Agent . . . . . . . . . . 3–6
3–3 Task Definition that Calls a Procedure to Update Remote Data . . . . . 3–7
3–4 Step Procedure in C that Acts as an Agent Program . . . . . . . . . . . . . . 3–8
7–1 C Agent Program that Starts a Distributed Transaction . . . . . . . . . . . 7–2
7–2 FORTRAN General-Purpose Agent Program . . . . . . . . . . . . . . . . . . . 7–10
7–3 C Agent Program that Performs Stream I/O or No I/O . . . . . . . . . . . . 7–15
7–4 BLISS Agent Program that Uses Superseded Services . . . . . . . . . . . . 7–20
7–5 Pascal Agent Program that Uses ACMS$WAIT . . . . . . . . . . . . . . . . . . 7–26

Figures

1–1 Agent Programs Submitting Tasks to ACMS . . . . . . . . . . . . . . . . . . . . 1–3
1–2 Stream Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
3–1 Using a Step Procedure as an Agent Program . . . . . . . . . . . . . . . . . . . 3–6
4–1 Signing In a Task Submitter to ACMS . . . . . . . . . . . . . . . . . . . . . . . . . 4–2
5–1 Calling a Task in ACMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
5–2 Arguments Passed for a Task Using a Full Task Argument List . . . . . 5–4
5–3 Arguments Passed for a Task Doing No I/O . . . . . . . . . . . . . . . . . . . . . 5–4
6–1 Using Stream Services to Communicate with ACMS . . . . . . . . . . . . . . 6–2
A–1 Arguments Passed for a Task Doing Request I/O . . . . . . . . . . . . . . . . . A–17
A–2 Arguments Passed for a Task Doing Stream I/O . . . . . . . . . . . . . . . . . A–18
A–3 Arguments Passed for a Task Doing Terminal I/O . . . . . . . . . . . . . . . . A–18

v



Tables

1–1 Systems Interface Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
2–1 Procedure Parameter Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
3–1 System Services Used in Distributed Transactions . . . . . . . . . . . . . . . 3–1
4–1 SI Initialization Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2
4–2 SI Exchange I/O Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2
5–1 Submitter Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
6–1 SI Stream Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
A–1 Superseded Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1

vi



Preface

The ACMS Systems Interface (SI) is a group of system services that enable a
programmer to interface a wide range of external devices and systems with the
HP ACMS for OpenVMS (ACMS) run-time environment. For example, you can
provide a new method of menu selection or an alternate terminal management
system to replace or supplement the default ACMS menu system.

This manual introduces the concept of the ACMS agent program, a program
that invokes a task that executes in an ACMS application. This manual clarifies
and complements information you gain by first reading the manuals in the
Planning and Design as well as the Development and Testing phases of the
documentation life cycle.

Intended Audience
Read this manual if you need a detailed description of and reference information
about the ACMS Systems Interface, referred to in this document as the SI. This
manual is for systems programmers, experienced users, or application designers
with a strong knowledge of ACMS, the HP OpenVMS operating system, and
programming on the OpenVMS operating system.

Document Structure
This manual contains overview information, reference information for calling the
SI services, and examples of agent programs.

Chapter 1 Introduces the SI services, gives a brief description of each, and
describes the function of agent programs.

Chapter 2 Explains the features common to all the SI services and the features
common to the various languages that can call the services.

Chapter 3 Explains the specific SI services that agent programs need to call to
start and end a distributed transaction and to access data on remote
nodes.

Chapter 4 Describes the initialization services and exchange I/O services, and
gives reference information for calling them in agent programs.

Chapter 5 Describes the submitter services and gives reference information for
calling them in agent programs.

Chapter 6 Describes the stream services and gives reference information for
calling them in agent programs.

Chapter 7 Provides a number of agent program examples.

Appendix A Describes superseded exchange I/O and stream services.

vii



Related Documents
The following table lists the books in the HP ACMS for OpenVMS documentation
set.

ACMS Information Description

HP ACMS Version 5.0 for OpenVMS
Release Notes†

Information about the latest release of the software

HP ACMS Version 5.0 for OpenVMS
Installation Guide

Description of installation requirements, the installation
procedure, and postinstallation tasks.

HP ACMS for OpenVMS Getting
Started

Overview of ACMS software and documentation.
Tutorial for developing a simple ACMS application.
Description of the AVERTZ sample application.

HP ACMS for OpenVMS Concepts
and Design Guidelines

Description of how to design an ACMS application.

HP ACMS for OpenVMS Writing
Applications

Description of how to write task, task group, application, and
menu definitions using the Application Definition Utility.
Description of how to write and migrate ACMS applications on
an OpenVMS Alpha system.

HP ACMS for OpenVMS Writing
Server Procedures

Description of how to write programs to use with tasks
and how to debug tasks and programs. Description of how
ACMS works with the APPC/LU6.2 programming interface
to communicate with IBM CICS applications. Description of
how ACMS works with third-party database managers, with
Oracle used as an example.

HP ACMS for OpenVMS Systems
Interface Programming

Description of using Systems Interface (SI) Services to submit
tasks to an ACMS system.

HP ACMS for OpenVMS ADU
Reference Manual

Reference information about the ADU commands, phrases,
and clauses.

HP ACMS for OpenVMS Quick
Reference

List of ACMS syntax with brief descriptions.

HP ACMS for OpenVMS Managing
Applications

Description of authorizing, running, and managing ACMS
applications, and controlling the ACMS system.

HP ACMS for OpenVMS Remote
Systems Management Guide

Description of the features of the Remote Manager for
managing ACMS systems, how to use the features, and how to
manage the Remote Manager.

Online help† Online help about ACMS and its utilities.

†Available on line only.

For additional information on the compatibility of other software products with
this version of ACMS, refer to the HP ACMS for OpenVMS Software Product
Description (SPD 25.50.xx).

For additional information about the Open Systems Software Group (OSSG)
products and services, access the following OpenVMS World Wide Web address:

http://h71000.www7.hp.com/openvms

viii



ACMS Help
ACMS and its components provide the following online help:

• DCL-level help

Enter HELP ACMS at the DCL prompt for complete help about the
ACMS command and qualifiers, and for other elements of ACMS for which
independent help systems do not exist. DCL-level help also provides brief
help messages for elements of ACMS that contain independent help systems
(such as the ACMS utilities) and for related products used by ACMS (such as
DECforms).

• ACMS utilities help

Each of the following ACMS utilities has an online help system:

ACMS Debugger
ACMSGEN Utility
ACMS Queue Manager (ACMSQUEMGR)
Application Definition Utility (ADU)
Application Authorization Utility (AAU)
Device Definition Utility (DDU)
User Definition Utility (UDU)
Audit Trail Report Utility (ATR)
Software Event Log Utility Program (SWLUP)

The two ways to get utility-specific help are:

Run the utility and type HELP at the utility prompt.

Use the DCL HELP command. At the ‘‘Topic?’’ prompt, type @ followed by
the name of the utility. Use the ACMS prefix, even if the utility does not
have an ACMS prefix (except for SWLUP). For example:

Topic? @ACMSQUEMGR

Topic? @ACMSADU

However, do not use the ACMS prefix with SWLUP:

Topic? @SWLUP

Note that if you run the ACMS Debugger Utility and then type HELP, you
must specify a file. If you ask for help from the DCL level with @, you do not
need to specify a file.

• ACMSPARAM.COM and ACMEXCPAR.COM help

Help for the command procedures that set parameters and quotas is a subset
of the DCL-level help. You have access to this help from the DCL prompt, or
from within the command procedures.

• LSE help

ACMS provides ACMS-specific help within the LSE templates that assist
in the creation of applications, tasks, task groups, and menus. The ACMS-
specific LSE help is a subset of the ADU help system. Within the LSE
templates, this help is context-sensitive. Type HELP/IND (PF1-PF2) at any
placeholder for which you want help.

ix



• Error help

ACMS and each of its utilities provide error message help. Use HELP ACMS
ERRORS from the DCL prompt for ACMS error message help. Use HELP
ERRORS from the individual utility prompts for error message help for that
utility.

• Terminal user help

At each menu within an ACMS application, ACMS provides help about
terminal user commands, special key mappings, and general information
about menus and how to select tasks from menus.

• Forms help

For complete help for HP DECforms or TDMS, use the help systems for these
products.

Reader’s Comments
HP welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company, L.P.
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following World Wide Web address for information about how to order
additional documentation:

http://www.hp.com/go/openvms/doc/

To reach the OpenVMS documentation website, click the Documentation link.

If you need help deciding which documentation best meets your needs, call
1–800–ATCOMPA.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must press and
hold the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets rather than a box.

x



. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

In the HMTL version of this document, this text style may
appear as italics.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

bold text Bold text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

In the HMTL version of this document, this text style may
appear as italics.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE Uppercase text indicates the name of a routine, the name of a
file, the name of a file protection code, or the abbreviation for a
system privilege.

In command format descriptions, uppercase text is an optional
keyword.

UPPERCASE In command format descriptions, uppercase text that is
underlined is required. You must include it in the statement if
the clause is used.

lowercase In command format descriptions, a lowercase word indicates a
required element.

xi



<lowercase> In command format descriptions, lowercase text in angle
brackets indicates a required clause or phrase.

( ) In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

[ | | ] In command format descriptions, vertical bars within square
brackets indicate that you can choose any combination of the
enclosed options, but you can choose each option only once.

{ | | } In command format descriptions, vertical bars within braces
indicate that you must choose one of the options listed, but you
can use each option only once.

References to Products
The ACMS documentation set to which this manual belongs often refers to certain
products by abbreviated names:

Abbreviation Product

ACMS HP ACMS for OpenVMS Alpha, and HP ACMS for OpenVMS I64

Ada HP Ada for OpenVMS Alpha Systems, and HP Ada for OpenVMS I64
Systems

BASIC HP BASIC for OpenVMS

C HP C for OpenVMS Alpha Systems, and HP C for OpenVMS I64 Systems

CDD Oracle CDD/Administrator, and Oracle CDD/Repository

COBOL HP COBOL for OpenVMS Alpha Systems, and HP COBOL for OpenVMS
I64 Systems

DATATRIEVE HP DATATRIEVE for OpenVMS Alpha, and HP DATATRIEVE for
OpenVMS I64

DBMS Oracle CODASYL DBMS

DECforms HP DECforms

FORTRAN HP Fortran for OpenVMS Alpha Systems, and HP Fortran for OpenVMS
I64 Systems

OpenVMS The OpenVMS Alpha operating system, and the OpenVMS I64 operating
system

Pascal HP Pascal for OpenVMS Alpha, and HP Pascal for OpenVMS I64

Rdb Oracle Rdb

SQL The SQL interface to Oracle Rdb

xii



1
Overview of the ACMS Systems Interface

An agent program is a program that invokes a task that executes in an ACMS
application. An agent process is an OpenVMS process in which an agent
program executes. ACMS provides a default agent program called the command
process (CP), which uses a forms interface to interact with the terminal user. The
ACMS Systems Interface (SI) provides a set of services that allow programmers
to write their own agent programs.

This chapter briefly describes SI services and tells how to call them from an
agent program.

1.1 The ACMS Systems Interface
The ACMS Systems Interface is a set of system services that you can use to
enable user-written code in an agent process to submit ACMS tasks. The default
ACMS command process (CP) is a supplied agent that handles user sign-in,
menu presentation, task submission, and exchange steps with supported forms
management systems such as DECforms.

By using the SI, you can write an agent program to replace or supplement the
default ACMS task selection method. You can also write agent programs to meet
special interfacing or user interaction requirements. Customer-written agent
programs can coexist with the default agent programs supplied by ACMS.

Some examples of SI usage include:

• Provide access to ACMS from devices not supported by DECforms (for
example, a badge reader, bar-code reader, or touch screens)

• Write a customized terminal I/O interface (as an alternative to using
DECforms)

• Provide distributed processing that is not already provided by ACMS (such as
accessing systems other than ACMS systems)

• Coordinate distributed transactions used by tasks that are called from an
agent program

Note

Although you can access ACMS from an ALL-IN-1 agent, running the
ALL-IN-1 system from within an ACMS DCL server process may have
severe negative impact on system performance.

This is only a partial list of all the extensions to ACMS that are possible using
the SI. An agent program can be very simple or very complex; it can handle
requests for a single user or multiple users.

Overview of the ACMS Systems Interface 1–1



Overview of the ACMS Systems Interface
1.1 The ACMS Systems Interface

An agent program designed to handle multiple users, however, is far more
complicated and involves developing asynchronous code. Before attempting to
implement any complex SI facilities, you must consider the commitment of time
and resources necessary to develop and support an SI program.

1.2 Systems Interface Services
The SI provides a set of callable services to sign in, access tasks, and otherwise
communicate with ACMS. Programmers must set up various data structures
using a language that supports the OpenVMS calling standard.

Table 1–1 lists the groups of SI services and gives a brief description of each
group.

HP ACMS for OpenVMS Writing Applications describes queuing and dequeuing
services.

Table 1–1 Systems Interface Services

SI Services Description

Initialization Services Provide a sign-in service to identify a task submitter to the
ACMS system and a sign-out service to remove the task
submitter from the ACMS system.

Exchange I/O Services Specify the type of exchange I/O to be performed and terminate
an agent program’s exchange I/O.

Submitter Services Submit tasks for processing by the ACMS run-time system.
The submitter services are used to call and cancel tasks.

Stream Services Implement alternate task I/O methods. The stream services
are useful if you use asynchronous processing, simultaneous
multitasking, or multithreaded agent programs. They are also
useful when exchanging large amounts of data primarily in one
direction on each exchange step, such as sending or receiving a
list of data items.

Detailed discussions of the four groups of SI services are in the following
chapters:

• Initialization Services — Chapter 4

• Exchange I/O Services — Chapter 4

• Submitter Services — Chapter 5

• Stream Services — Chapter 6

In addition, two services, ACMS$SIGNAL and ACMS$WAIT, perform error
handling and synchronization functions common to many of the SI services. A
discussion and reference material for the ACMS$SIGNAL and ACMS$WAIT
services are included in Chapter 2.

1.3 Agent Programs
A task submitter is any authorized ACMS user who selects tasks for processing,
provides input for that processing, and receives the results of that processing.
Task submitters must also be authorized OpenVMS users.

1–2 Overview of the ACMS Systems Interface



Overview of the ACMS Systems Interface
1.3 Agent Programs

An agent program uses the SI services on behalf of one or more task submitters.
You can write an agent program in any language that supports the OpenVMS
calling standard. A task submitter is associated with an OpenVMS user name
that identifies the user to the ACMS system.

The function of the agent program is much like the ACMS command process.
In fact, the ACMS command process is an agent program supplied with ACMS.
An agent program can sign in to ACMS to represent a single task submitter or
multiple task submitters, if necessary. An agent program interacts with the user
or external system and invokes tasks to perform required processing. The method
of interacting with a user can be a menu system on a terminal screen or some
other method.

By default, a task submitter is a DECforms-supported terminal such as the DEC
VT series terminals. However, an agent program can recognize almost anything
as a task submitter—from a person sitting at a terminal to a badge reader,
DECtalk, or a postage scale. Each of these external entities is supported by the
agent program.

Figure 1–1 shows the steps agent programs use to submit tasks to the ACMS
system.

Figure 1–1 Agent Programs Submitting Tasks to ACMS

TAY-0181-AD

Agent

Initialization

Submitter

2

1

3

Task

4

5
Sign Out

Sign In

Termination

Exchange I/O

Services

Exchange I/O

Figure 1–1 shows the following:

1 The SI initialization services interact with the ACMS Application Central
Controller (ACC) to sign in to ACMS.

2 Once signed in, the agent program initializes for I/O.

3 Submitter services call tasks in ACMS applications.

Overview of the ACMS Systems Interface 1–3



Overview of the ACMS Systems Interface
1.3 Agent Programs

The agent program can use task arguments to pass data that is mapped to
workspaces when the task instance begins execution. When the task instance
ends, this data can be updated and can return to the agent program.

In addition, an agent program can control the distributed transaction in
which called tasks participate.

4 The agent program terminates exchange I/O.

5 The agent program signs out.

This sequence of processing by an agent program is similar to that of the ACMS
command process. The primary work of the agent program is in the third phase,
where it calls ACMS tasks.

1.3.1 Calling Tasks
The main purpose of the SI is to allow access to an ACMS system from outside
the typical ACMS environment. Agent programs do not have access to the
standard ACMS menus and are, therefore, expected to provide their own methods
of interacting with the user or external system. If menus are required, the
agent program must support a menu system. In addition, the agent program
is free to run any initial or final tasks, as required. Using the SI services,
an agent program can also provide distributed processing functions such as
communications between an ACMS system and other systems.

Agent programs can call tasks on behalf of one or more task submitters. Several
agent programs can submit tasks at the same time; a single agent program can
submit more than one task at a time on behalf of a submitter. These tasks can be
selected in a combination of local node applications and remote node applications,
as required. While the CP limits the interactive user to a single task initiated
from the menu, you can write an agent program that allows the task submitter to
access more than one task at a time.

An agent program can pass data to a task as arguments. A task can read and
modify data stored in a task as argument workspaces. A task can also return the
modified workspace contents to the agent program. The agent program can then
use the data in subsequent task executions. See Chapter 5 for a discussion of the
services you use to call ACMS tasks and to pass data as arguments.

An agent program can use the DECdtm services to start a distributed transaction
and then call a task as part of that transaction. When the task completes, the
agent program can commit the DECdtm transaction; the agent program can thus
coordinate the database I/O performed in the agent with the I/O performed in the
task.

1.3.2 Using Streams
Agent programs can call any ACMS task, including tasks that use form I/O,
request I/O, or stream I/O. Explanations of these terms follow:

• Form I/O — method of input/output that uses DECforms

• Request I/O — method of input/output that uses TDMS

• Stream I/O — method of input/output that uses ACMS stream services

Streams are ACMS communication channels between an agent program and an
application. Stream I/O can be used to interface other systems or devices not
supported by form I/O and request I/O.

1–4 Overview of the ACMS Systems Interface



Overview of the ACMS Systems Interface
1.3 Agent Programs

Streams provide communication between ACMS tasks and agent programs.
Agent programs then communicate with devices not supported by DECforms or
TDMS.

In many instances, you can use the Request Interface (RI) to communicate with
unsupported devices (see HP ACMS for OpenVMS Writing Applications). Stream
services currently offer advantages, however, in two situations:

• When an agent program performs multithreaded or asynchronous processing

• When large amounts of data are passed in an exchange step primarily in one
direction

Figure 1–2 shows the stream connection between an agent program and an
ACMS Application Execution Controller (EXC).

Figure 1–2 Stream Connection

TAY-0123-AD

Agent EXC

Stream
Legend:

Because the agent program works on behalf of the task submitter, the agent
program creates and connects a stream between itself and the EXC. The EXC is
the interpreter of the task definition.

1.3.3 Using SI Identifiers
The SI uses a number of identifiers for communication between calls to the
various services. The IDs used are:

• Submitter

• Exchange I/O

• Procedure

• Call

• Connect

• I/O

Agent programs allocate memory for these structures and then pass the memory
address to an SI service that either fills in the information or uses the information
stored in the ID by a previous service.

Structure definitions for these IDs are currently available for BLISS, C,
FORTRAN, MACRO, Pascal, and PL/I. Chapter 2 documents the definition
and declaration files available for these languages. Other languages must define
their own structures to store these IDs.

Overview of the ACMS Systems Interface 1–5





2
Common Features of the Systems Interface

This chapter describes features common to the SI services and the various
languages that use them. The chapter also explains the reference format used
in the following chapters and describes the ACMS$SIGNAL and ACMS$WAIT
support services.

2.1 Features Common to the SI Services
All of the SI services follow the OpenVMS Calling and Condition Handling
Standards. This manual assumes you will use OpenVMS Programming
Interfaces: Calling a System Routine and the OpenVMS System Services
Reference Manual as references for these standards when using the SI services.

2.1.1 Service Call Specification
The following chapters contain reference information about the correct syntax
and parameters for calling the SI services. The explanation of each service is
divided into several parts:

Name Shows the service name in uppercase characters.

Description Gives you a brief explanation of what the service does.

Format Shows the syntax of the service.

Parameters Explains the parameters you can use with the service.

Return Status Lists each of the status values you can receive when you call
the service and when the service completes.

2.1.2 Parameter Notation
The format descriptions for the services use OpenVMS procedure parameter
notation. Each parameter can have four characteristics, represented by two
groups of symbols following the parameter. The characteristics definable for each
parameter are:

<name>.<access type><data type>.<pass mech><parameter form>

The characteristics are always listed in the preceding order. A period ( . )
separates access and data types from the passing mechanism and the parameter
form. For example:

comp_status.wq.r

In this example, comp_status is to be written by the service (w); comp_status is a
quadword (q); and comp_status is passed by reference (r).

Table 2–1 defines the symbols used for parameter characteristics in format
descriptions in this manual.

Common Features of the Systems Interface 2–1



Common Features of the Systems Interface
2.1 Features Common to the SI Services

Table 2–1 Procedure Parameter Notation

Parameter
Notation Symbol Meaning

Access type m Modify access

r Read access only

s Call without stack unwinding

w Write and read access

Data type bu Byte logical (unsigned)

l Longword integer (signed)

lc Longword return status

lu Longword logical (unsigned)

o Octaword integer (signed)

q Quadword integer (signed)

t Character-coded text string

w Word integer (signed)

x Data type by descriptor

z Unspecified

zem Procedure entry mask

Passing mechanism d By descriptor

r By reference

v By immediate value

Parameter form none Scalar (also called atomic data type)

x Class type by descriptor

2.1.3 Return Status
Each asynchronous SI service produces a status code when the service is called
and another when the service completes. The severity of these status codes can
be SUCCESS, INFORMATIONAL, WARNING, ERROR, or FATAL. If the service
returns a SUCCESS or INFORMATIONAL status code, the completion events
defined for the service occur. If the service returns a WARNING, ERROR, or
FATAL status code, the completion events do not occur.

2.1.4 Synchronous and Asynchronous Calling Formats
SI services usually have two formats: a synchronous format and an asynchronous
format. The exceptions are ACMS$SIGNAL and ACMS$WAIT, which have only a
synchronous format.

Agent programs can call asynchronous SI services from either mainline
or asynchronous system trap (AST) level. An agent program must call a
synchronous service from mainline level; synchronous services return an error
message if called from AST level.

The synchronous and asynchronous SI services perform all operations identically,
except that the asynchronous services return a status message to the caller both
when the initial call is made and when the completion events occur. Synchronous
services return a status message to the caller only after the operation has
completed.

2–2 Common Features of the Systems Interface



Common Features of the Systems Interface
2.1 Features Common to the SI Services

When a call to a synchronous SI service returns to the calling routine, the service
and all processing are finished. The service returns a completion status value
to indicate the success or failure of the service. For example, an agent program
might call ACMS$SIGN_IN to sign a task submitter in to the ACMS system.
When control returns to the calling module, the agent program checks the return
status to determine whether or not the sign-in service completed successfully.

Using the asynchronous version of the SI services allows an agent program
to perform other processing work while the ACMS system is performing the
processing associated with that service. The asynchronous services return a
status code when the initial call is made to indicate whether or not ACMS
accepted the request to perform that service. ACMS returns a success status to
the calling agent program to indicate that ACMS is now processing the request.
When the processing is complete, ACMS returns another status to the calling
agent program to indicate whether or not the processing completed successfully.

Note

Many of the services rely on asynchronous system traps (ASTs) being
delivered in order to operate. Therefore, components that use these
services should not disable ASTs for long periods of time.

If it was unable to begin processing the request, ACMS returns a failure status
when the initial call is made. For example, ACMS might return a failure status if
it could not read an argument passed to the service. If a call to an asynchronous
service fails and the service returns an error status to the calling agent program,
the service does not take place, and ACMS does not set an event flag or call an
AST completion routine.

The synchronous calling formats differ from the asynchronous calling formats
in that they do not include the trailing _A at the end of the service name. The
asynchronous SI services include four additional, optional arguments that handle
asynchronous completion. Except for these four asynchronous service parameters,
the parameter descriptions and return status messages discussed after the
service formats pertain to both synchronous and asynchronous services. These
four asynchronous service parameters are:

• comp_status.wq.r

• efn.rbu.r

• astadr.szem.r

• astprm.rz.v.

A description of each of these parameters follows:

comp_status
The final completion status of the service. This is a two longword block. The
block is set to zero when the service starts successfully, and the return status
message from the service is ACMS$_PENDING. When the service completes,
the first longword of the block contains the final status. The completion status
contains a nonzero value when the service is finished.

Common Features of the Systems Interface 2–3



Common Features of the Systems Interface
2.1 Features Common to the SI Services

efn
The event flag that is set when the service completes. When the service starts
successfully and returns the ACMS$_PENDING status, the event flag is cleared.
Because ACMS sets the event flag only when the service is done, the agent
program should check the comp_status parameter first for a nonzero value to
verify that the service really ended. See $SYNCH in OpenVMS System Services
Reference Manual.

astadr
The address of an AST routine to be called when the service completes. If the
service started successfully (the return status is ACMS$_PENDING), this AST is
delivered when the service completes.

astprm
The parameter the AST passes to the service completion routine.

To determine the success or failure of a call to an asynchronous SI service, the
agent program must supply the address of a quadword completion status block
that ACMS can use to store the status result. An agent program normally uses
an event flag or an AST completion routine to determine that an asynchronous
service has completed. The agent program might also pass an optional parameter
to the AST completion routine.

For example, the synchronous and asynchronous formats for ACMS$SIGN_IN are
the following:

Format

ACMS$SIGN_IN (submitter_id.wq.r,
[username.rt.dx],
[device.rt.dx],
[cancel_routine.zem.r],
[cancel_param.rz.v])

ACMS$SIGN_IN_A (submitter_id.wq.r,
[username.rt.dx],
[device.rt.dx],
[cancel_routine.zem.r],
[cancel_param.rz.v],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

2–4 Common Features of the Systems Interface



Common Features of the Systems Interface
2.1 Features Common to the SI Services

2.1.5 ACMS$SIGNAL and ACMS$WAIT Support Services
Following are descriptions of the ACMS$SIGNAL and ACMS$WAIT synchronous
support services, which you can use to obtain additional status information about
an error.

Common Features of the Systems Interface 2–5



ACMS$SIGNAL

2.1.5.1 ACMS$SIGNAL

When an agent program encounters an error during a call to an SI service, the
service returns a status value to the agent program. In some cases, you need
additional information about the error. To get additional error information, an
agent program can call the ACMS$SIGNAL service. This service signals the
secondary status, if any. The ACMS$SIGNAL service does not signal the primary
error status, only secondary status information. The agent program must also
call LIB$SIGNAL to signal the primary error status if all error logging is done
using a condition handler.

By writing a condition handler, an agent program can collect error messages
and write them to an error log. You can set up a condition handler in an agent
program that receives the secondary status and any FAO parameters for the
secondary status values in the signal array. See the OpenVMS Calling Standard
for a discussion of signals in the OpenVMS calling standard.

Only the SI submitter services store secondary status information. The services
store information on a per-submitter basis, and ACMS saves this secondary
status information only until the next SI service for the same task submitter
completes. For synchronous SI services, the agent program should call the
ACMS$SIGNAL service immediately after any service that returns an error
status. For asynchronous SI services, the agent program should call the
ACMS$SIGNAL service in the AST completion routine.

Calling ACMS$SIGNAL from an AST routine is necessary to prevent another
service from interrupting ACMS and possibly storing error information about
other error conditions. When a service completes, any errors saved from the last
service are deleted.

Note

Do not use event flags if your agent program calls several asynchronous
services at the same time for a single task submitter. ACMS cannot
ensure that ACMS$SIGNAL will return information on the correct service
completion because any of the services could have set the event flag.

Format

ACMS$SIGNAL (id.rq.r)

Parameters

id
The submitter ID returned on the ACMS$SIGN_IN service.

Because the ACMS$SIGNAL service requires a submitter ID as input, the agent
program must explicitly sign in task submitters using the ACMS$SIGN_IN
service, and pass the address of the submitter ID returned by the ACMS$SIGN_
IN service to ACMS$SIGNAL. For example, the ACMS$SIGNAL service might
return an error condition if the submitter ID is invalid.

2–6 Common Features of the Systems Interface



ACMS$SIGNAL

Note

Because the submitter ID is returned on successful completion of the
ACMS$SIGN_IN service, ACMS$SIGNAL fails after an unsuccessful call
to the ACMS$SIGN_IN service.

Return Status

The return status codes indicating success or failure of the call are:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion
ACMS$_NTSNIN Error Bad ID

See Chapter 7 for examples of agent programs that call the ACMS$SIGNAL
service.

Common Features of the Systems Interface 2–7



ACMS$WAIT

2.1.5.2 ACMS$WAIT

The SI asynchronous services sometimes invoke processing at mainline level
instead of AST level. An agent program can call the ACMS$WAIT service to
stall the mainline level process until an asynchronous service completes. The
ACMS$WAIT service operates in a fashion similar to the $SYNCH system
service. ACMS$WAIT checks that an event flag is set and a completion status
block contains a nonzero status value; when these conditions are met, then the
asynchronous SI service has completed and ACMS$WAIT returns to the calling
agent program.

ACMS provides the ACMS$WAIT service for times when the SI asynchronous
services need to perform processing at mainline level (instead of at AST level) to
avoid hanging the process at AST level while performing a synchronous operation.

ACMS performs synchronous operations at mainline by having the ACMS$WAIT
service process a queue of requests for these operations. This ensures that the SI
services can continue processing at AST level. Because of this, one user cannot
stop all processing in the agent program for all others while that user performs
time-consuming operations.

Use the ACMS$WAIT service to invoke processing at mainline level when an
agent program calls any of the following asynchronous submitter services:

• ACMS$CALL_A

• ACMS$START_CALL_A

• ACMS$WAIT_FOR_CALL_END_A

Note

An agent program must use the ACMS$WAIT service at mainline level
if it uses these asynchronous services. If an agent program does not use
ACMS$WAIT with these services, it is possible for the service to hang
indefinitely.

The ACMS$WAIT service uses a completion status block parameter. The
ACMS$WAIT service puts the mainline code into a wait state. The code is
resumed when the first longword of the completion status block is set to a
nonzero value and the ACMS$EFN event flag is set.

Typical uses of the ACMS$WAIT service include:

• When calling an asynchronous submitter service from mainline level, use
the ACMS$WAIT service with the completion status parameter to wait for
completion of the service.

• When you write an asynchronous multiuser agent program, you may want
to suspend the mainline level and allow all activity to occur at AST level.
Use ACMS$WAIT to suspend mainline level. Initialize the completion status
buffer to zero before calling the service; do not use the status buffer in any
other call.

You can resume the mainline level by manually setting the ACMS$EFN flag
and moving a nonzero completion status to the completion status buffer.
Mainline level is generally resumed when running down the agent program.

2–8 Common Features of the Systems Interface



ACMS$WAIT

• If an agent program selects a task that performs any exchange step using
DECforms or TDMS request I/O, you must use the ACMS$WAIT service
instead of SYS$HIBER or SYS$WAITFR. Set the completion status parameter
to a nonzero value for the equivalent of a SYS$WAKE at mainline level.

Note

You must use ACMS$WAIT in such situations even if .RLB or .FORM files
are manually cached, because ACMS checks the remote .RLB or .FORM
file to make sure that the submitter node has the latest copy.

Format

ACMS$WAIT (comp_status.rq.r)

Parameters

comp_status
The status block that waits for a nonzero value.

Note

ACMS$WAIT waits for only one event flag that is stored in a global location
called ACMS$EFN. The ACMS$EFN symbol is not the value of the event flag.
Rather it is the address of the location where the event flag number is stored.
Therefore, declare ACMS$EFN as an external longword variable, not an external
longword constant. Also, you must pass ACMS$EFN explicitly to all SI services
when you use ACMS$WAIT, because ACMS does not set the event flag implicitly.

Return Status

The first longword of the IOSB is the return status. The return status is the
completion status of the call that was waited for.

ACMS$WAIT may also return the completion status of the relevant asynchronous
service.

Common Features of the Systems Interface 2–9



Common Features of the Systems Interface
ACMS$WAIT

2.1.6 Single-Threaded and Multithreaded Agent Programs
You may want to have an agent program submit tasks for one user at a time.
Single-threaded agent programs submit tasks to ACMS for only one user
at a time. These agent programs are synchronous and are therefore easier to
write and maintain. However, because single-threaded agent programs handle
only one user, each user requires a separate OpenVMS process. This makes
single-threaded agent programs expensive in terms of computing resources.

You may want to have an agent program handle several users simultaneously.
Multithreaded agent programs submit tasks for several users at a time. For
each user, the agent program calls the ACMS$SIGN_IN service to sign the user
in to ACMS, returning a submitter ID.

Consider the following when programming a multithreaded agent program:

• Use a separate context, or thread, for each submitter. You can keep the
information for each thread in heap storage. Because the agent program
handles several threads, allocate an area of memory for each thread in the
process to store information pertinent to that thread.

• Avoid operations that can stall the process. It is best to use the SI services
and I/O operations asynchronously to avoid interrupting the execution of a
process. Prompting a terminal user for information in a synchronous format,
for example, can hold up all other threads in the process while they wait for
that user to supply a response.

• Use separate I/O channels for each thread. You can establish a separate
channel for each thread by using RMS or QIO statements in your agent
program. For example, you can use the $OPEN and $CONNECT statements
to open a channel for each thread. Then use the $GET and $PUT statements
to read and write information for that thread.

• Provide for error isolation. Do not let an error in one thread interrupt or stop
the processing of all other threads for that agent program. When an error
occurs, provide an escape for that thread, such as signing the thread out of
ACMS, rather than stopping the whole agent process.

2.1.7 Default Submitter Feature
Note

The default submitter feature continues to be supported for existing
applications of ACMS. This feature is in decline, however, and is not
recommended for new development. You cannot use the Default Submitter
Feature for agent programs that perform DECforms I/O, because they
must call ACMS$INIT_EXCHANGE_IO, which requires the submitter ID
returned from ACMS$SIGN_IN.

The ACMS$SIGN_IN service is optional for certain types of single-threaded agent
programs. If you do not use ACMS$SIGN_IN, the default submitter feature is
activated during the first call to an SI service.

If you write a single-threaded agent program that submits tasks under its own
user name and does not use a terminal, you can omit calling the ACMS$SIGN_
IN service and using the submitter ID parameter when calling subsequent SI
services.

2–10 Common Features of the Systems Interface



Common Features of the Systems Interface
ACMS$WAIT

For single-threaded agent programs that do not call the ACMS$SIGN_IN service,
the user is signed in automatically during the first call to an SI service, but a
submitter ID is not returned to the user. Thus, the agent program cannot pass a
submitter ID to any subsequent SI services.

The following restrictions apply to single-threaded agent programs that do not
call the ACMS$SIGN_IN service; these agent programs:

• Cannot call tasks that perform HP DECforms I/O

• Must submit tasks under their own user name

• Must not use SYS$INPUT

• May receive ACMS$SIGN_IN errors from the first service called

• Cannot call the ACMS$SIGNAL service

• Must not call ACMS$SIGN_IN service at any time

If an agent program calls the ACMS$SIGN_IN service, it must use the
ACMS$SIGN_IN service for each task submitter that it handles. The agent
program must also pass a submitter ID to all subsequent SI services.

2.1.8 Running an Agent Program
Once you successfully compile and link an agent program, you invoke it with
DCL commands as you do with any other program. It is important, however,
to have the ACMS system running before you start the agent program. It is
also important, if a Request Interface (RI) agent or a user-written agent uses
DECforms in ACMS tasks, to define a logical name to prepare for using the
agent.

Section 2.1.8.1 describes defining the logical name. Section 2.1.8.2 describes
starting an agent program.

2.1.8.1 Preparing to Use RI or User-Written Agents that Use DECforms in Tasks
During the initialization of a Command Process (CP) or a user-written agent,
ACMS determines the following two conditions:

• Whether CMA is in the process

• The version of HP DECforms being used

Depending on these two conditions, the ACMS agent with respect to HP
DECforms operates in either single-user mode or multi-user mode.

Single-user mode is defined as one user at a time executing an ACMS task. A
single-threaded user-written agent is an example of single-user mode.

Multi-user mode is defined as more than one user at a time executing an ACMS
task. A CP is an example of multi-user mode. If you use a multi-user user-
written agent with HP DECforms Version 2.2, the agent must be linked with
CMA.

ACMS provides the logical name ACMS$DECFORMS_IN_AGENT. Define this
logical name as a process logical name when a user-written agent uses DECforms
in ACMS tasks. The following characters are valid for defining the logical name
to a TRUE value: 1, T, t, Y, y. For example:

$ DEFINE/PROCESS ACMS$DECFORMS_IN_AGENT "Y"

Common Features of the Systems Interface 2–11



Common Features of the Systems Interface
Preparing to Use RI or User-Written Agents that Use DECforms in Tasks

HP recommends that you use settings for the logical name based on the version of DECforms
that the agent uses, as follows:

• DECforms Version 1.4 is used.

Defining the logical name ACMS$DECFORMS_IN_AGENT is not required,
but has no harmful effects. Defining the logical name causes ACMS to load
the FORMS$MANAGER forms manager during initialization, rather than
when the first DECforms call is made.

• DECforms Version 2.1B is used.

Define the logical name ACMS$DECFORMS_IN_AGENT to a TRUE value.
Doing so ensures that ACMS brings CMA into the process if CMA is not
already there.

• DECforms Version 2.2 is used.

If the agent is intended to run in single-user mode, defining the logical
name ACMS$DECFORMS_IN_AGENT has no effect, because CMA is
not in the process. Defining the logical name causes ACMS to load the
FORMS$MANAGER forms manager during initialization, rather than when
the first DECforms call is made.

Define the logical name ACMS$DECFORMS_IN_AGENT only when using
DECforms Version 2.1B or when using DECforms Version 2.2 in multi-user
mode.

2.1.8.2 Starting an Agent Program
If the agent program handles only one task submitter and receives its input from
your terminal (SYS$INPUT), you can start it with the DCL RUN command. For
example:

$ RUN MYAGENT.EXE

For multithreaded agent programs that handle several task submitters or
threads, or agent programs that receive input from a device other than a
terminal, you can invoke the agent image as a detached process. For example:

$ RUN/DETACHED/UIC=[1,4] -
_$ /INPUT=MTAINPUT.DAT -
_$ /OUTPUT=MTAOUTPUT.LOG -
_$ /PROCESS=ACMS_MYAGENT MYAGENT.EXE

This example shows that the agent program receives its input from the file
MTAINPUT.DAT and logs messages in the file MTAOUTPUT.LOG. The next
section describes some additional considerations for writing a multithreaded
agent program.

2.1.9 Debugging an Agent Program with ACMS$CHECK
When developing an agent program, you may make programming errors, such
as omitting required parameters or incorrectly ordering parameters. To improve
performance, ACMS does not check these parameters but instead returns access
violations for errors. Access violations are generic and do not describe the error or
the parameter that caused the problem. Therefore, to help debug agent programs,
the SI allows you to set the ACMS$CHECK logical name, which tells the SI to
probe parameters. If ACMS$CHECK cannot access a parameter, it returns
relevant error messages rather than access violations.

2–12 Common Features of the Systems Interface



Common Features of the Systems Interface
Starting an Agent Program

To enable parameter checking, define the logical ACMS$CHECK name using
an odd number or a string prefixed with an uppercase or lowercase T or Y. For
example:

$ DEFINE ACMS$CHECK TRUE
$ RUN DISK$:[AGENT.OBJ]PROGRAM

.

.

.
$ DEASSIGN ACMS$CHECK

You usually enable ACMS$CHECK by making the ACMS$CHECK logical name
accessible to your agent program as a process or job logical name. Defining the
ACMS$CHECK logical name affects any agent program that has access to the
logical name. For instance, defining the logical name as a system logical name
affects every agent program on the system including the ACMS command process.
The ACMS$CHECK logical name is translated when an agent program starts.
Once enabled, ACMS$CHECK remains enabled for the life of the agent program.
ACMS$CHECK cannot be enabled or disabled after an agent program starts.

Defining ACMS$CHECK as a logical name aids the debugging process. Although
it is a valuable debugging aid, using ACMS$CHECK greatly reduces the
performance of an agent program because it causes all arguments to be checked.
Therefore, be sure to disable parameter checking by deassigning ACMS$CHECK
at the end of the debugging session.

2.2 Features Common to Languages that Call the Systems
Interface

You can call the SI services from any language that follows the OpenVMS Calling
and Condition Handling Standards. All code that uses these services must
execute in user mode. The following sections describe the libraries and files that
languages can use to access the SI services. The libraries and files contain the
following information:

• Structure layouts for the various service IDs. The SI services create and pass
IDs, which are quadwords, to each other. The ID names are:

ACMS$CALL_ID

ACMS$CONNECT_ID

ACMS$EXCHANGE_IO_ID

ACMS$IO_ID

ACMS$PROCEDURE_ID

ACMS$STREAM_ID

ACMS$SUBMITTER_ID

• Length of the IDs. You can resolve these sizes at compile or link time. The
size of the IDs is 8 bytes and is given by the following constants:

ACMS$S_CALL_ID

ACMS$S_CONNECT_ID

ACMS$S_EXCHANGE_IO_ID

ACMS$S_IO_ID

ACMS$S_PROCEDURE_ID

Common Features of the Systems Interface 2–13



Common Features of the Systems Interface
2.2 Features Common to Languages that Call the Systems Interface

ACMS$S_STREAM_ID

ACMS$S_SUBMITTER_ID

• Constants other than return status values that are used in service calls
for both input and output. Examples of this type of constant are the item
codes in the item list in the ACMS$GET_PROCEDURE_INFO service. These
constants are resolved at compile time.

• Status values declared as external literals. They are resolved at link time.

Some language interface files contain entry point information. The BLISS require
file, for example, provides keyword macros for all the services.

The following sections discuss how BLISS, C, FORTRAN, MACRO, Pascal, and
PL/I access the services. The last section describes how to use the services with
other languages.

2.2.1 BLISS
The require file SYS$LIBRARY:ACMSBLI.R32 is supplied for BLISS
programmers. The system manager can compile this file into a BLISS library file.
See the BLISS-32 documentation for information on using require files, creating
library files, and using library files.

The require file:

• Contains keyword macros for all the services. The macro name is the service
name prefixed with a dollar sign ($). The keyword macro for ACMS$SIGN_
IN, for example, is $ACMS$SIGN_IN.

• Contains structure definitions for all IDs. Use these IDs in declaration
definitions. The name of the structure is the same as the name given in the
structure layouts listed in Section 2.2.

• Defines constants other than return status values.

2.2.2 C
The text library SYS$LIBRARY:ACMSCC.TLB is supplied for C programmers.
Refer to C documentation for information about using the text library files in
programs.

The text library provides the following modules for agent programs:

• ACMS$SUBMITTER

• ACMS$STREAM

These modules:

• Contain routine definitions for all the SI services as functions returning long
integers.

• Contain structure definitions for all IDs. Use these IDs in declarations. The
name of the structure is the same as that given in the structure list above.

• Define constants other than return status values. These constants are defined
by #DEFINE preprocessor definitions.

2–14 Common Features of the Systems Interface



Common Features of the Systems Interface
2.2 Features Common to Languages that Call the Systems Interface

2.2.3 FORTRAN
The text library SYS$LIBRARY:ACMSFOR.TLB is supplied for FORTRAN
programmers. See FORTRAN documentation for information on using the text
library files in programs.

The text library provides the following modules for agent programs:

• ACMS$SUBMITTER

• ACMS$STREAM

These modules:

• Contain all the services defined as EXTERNAL INTEGER*4 functions.

• Contain byte arrays for all IDs. The name of the byte array is the same as
the name given in the structure list in Section 2.2. The byte array gives the
programmer one of each of the IDs.

• Define constants other than return status values. These constants are defined
as parameters. For a method of referring to return status values, see the
sample program in Chapter 7 for an example of a FORTRAN agent program
using ACMS$_SENDER_DISCONN.

2.2.4 MACRO
The MACRO library SYS$LIBRARY:ACMSMAC.MLB is supplied for MACRO
programmers. See the MACRO documentation for information on using macro
libraries. SYS$LIBRARY:ACMSMAC.MLB contains the following interface
definition macros for agent programs:

• ACMS$SUBMITTER

• ACMS$STREAM

Use these macros to include the appropriate definitions for the services
used. These macros take one parameter, either <=> or <= =>. The parameter
determines whether the constant definitions are made locally or globally.

Each of these macros:

• Contains the size of the IDs

• Defines constants other than return status values

2.2.5 Pascal
The source file SYS$LIBRARY:ACMSPAS.PAS is supplied for Pascal
programmers. The system manager must process this file into a PASCAL
ENVIRONMENT file. See the Pascal documentation for information on creating
and using environment definitions.

The source file:

• Contains routine definitions for all the services.

• Contains record definitions for all IDs. Use these IDs in declarations. The
name of the record is the same as the name given in the structure list in
Section 2.2.

Common Features of the Systems Interface 2–15



Common Features of the Systems Interface
2.2 Features Common to Languages that Call the Systems Interface

• Defines constants other than return status values.

Note

If you use the nonpositional syntax form of parameter association, you
must use PROCEDURE_ rather than PROCEDURE as the formal
parameter name for ACMS$GET_PROCEDURE_INFO, because
PROCEDURE is a reserved word in Pascal. See VAX Pascal Reference
Manual for more information.

2.2.6 PL/I
The text library SYS$LIBRARY:ACMSPLI.TLB is supplied for PL/I programmers.
See PL/I documentation for information on using text library files in programs.

This text library provides the following modules for agent programs:

• ACMS$SUBMITTER

• ACMS$STREAM

These modules:

• Contain routine definitions for all the services.

• Contain structure definitions for all IDs as BASED variables. Use these IDs
in declarations. The name of the structure is the same as the name given in
the structure list in Section 2.2.

• Define constants other than return status values. These constants are defined
by %REPLACE preprocessor definitions.

2.2.7 Other Languages
Programmers in other languages must define:

• Services as external functions that return longword integers.

• Constants other than return status values as external longword integer
literals. These values are resolved at compile or link time.

• Return status values as external longword integer literals. These values are
resolved at link time.

2–16 Common Features of the Systems Interface



3
Agent Programs that Coordinate Distributed

Transactions

A distributed transaction is the grouping of operations on multiple recoverable
resources (such as files and databases) into a single recovery unit or logical
database transaction. Distributed transactions can include more than one type of
resource manager and have the properties of atomicity, isolation, and durability.

An agent program, which can run either under the control of ACMS or external to
ACMS, can call tasks that are executed as part of a distributed transaction. For
example, an agent program can access a database locally and then call an ACMS
task in an application on a remote node. The task can call a step procedure that
accesses a second database locally on the remote node. You can coordinate both
database accesses as part of the same distributed transaction. See Section 3.3.

An agent program uses a set of OpenVMS system services to start and end
distributed transactions. Table 3–1 contains these services.

Table 3–1 System Services Used in Distributed Transactions

System Service Use to

$START_TRANS Start transaction

$START_TRANSW Start transaction and wait

$END_TRANS End transaction

$END_TRANSW End transaction and wait

$ABORT_TRANS Roll back transaction

$ABORT_TRANSW Roll back transaction and wait

Note

The optional TRANSW (wait) system services complete synchronously;
that is, they return to the caller after the request has actually completed.

For more information on HP DECdtm services, refer to documentation for
OpenVMS Version 5.4 or higher.

For a task to execute as part of a distributed transaction started in an agent
program, the agent program and the application containing the task must
conform to a number of composability rules. Lists of these rules follow.

• For a task, the composability rules are the following:

The task’s root block step or root processing step must be a distributed
transaction action.

Agent Programs that Coordinate Distributed Transactions 3–1



Agent Programs that Coordinate Distributed Transactions

The action part of the root step must not specify an explicit distributed
transaction step.

The sequencing action in the action part of the root step must be EXIT
TASK, CANCEL TASK, or RAISE EXCEPTION.

You can use the ADU command DUMP GROUP to dump a task group to
determine whether or not a task is composable.

• For an application, the composability rules are the following:

The application must run under ACMS Version 3.2 or higher.

The application must have been rebuilt using ACMS Version 3.2 or
higher.

• For an agent program, the composability rules are the following:

The agent program must use SI services for ACMS Version 3.2 or higher.

Before it starts a task, the agent program must call the $START_TRANS
system service to start a distributed transaction and to obtain a
transaction ID (TID).

The agent program must call the task, passing the TID, by using either of
the following:

* ACMS$START_CALL and ACMS$WAIT_FOR_CALL_END

* ACMS$CALL

The task that is called joins the distributed transaction established by
the $START_TRANS service if the task is composable. If the task that is
called is not composable, it is cancelled.

When the task completes, the agent program can either end or roll back
the distributed transaction by using one of the following:

* $END_TRANS, to end the transaction

* $ABORT_TRANS, to roll back the transaction

The choice between $END_TRANS and $ABORT_TRANS depends on the
final completion status of the task. However, a call to the $END_TRANS
service can fail with an error status if the distributed transaction is rolled
back between the end of the task and the time the agent program calls
the $END_TRANS service. A transaction can roll back in this manner for
a number of reasons; for example, the network communication between
two or more participants in the distributed transaction could fail, or the
ACMS/CANCEL TASK command could be used to cancel the task while it
is still in the pending end-of-transaction state.

3.1 Starting a Distributed Transaction
When an agent program calls a task, it is important for the agent program to
control the task’s participation in an active distributed transaction. To do this,
the agent program must use the TID argument in the ACMS$START_CALL and
ACMS$CALL services in either one of two ways:

• For a task to participate in an active distributed transaction, the agent
program can either pass the TID returned by the $START_TRANS service
or omit the TID argument. By default, if you do not pass the TID and there

3–2 Agent Programs that Coordinate Distributed Transactions



Agent Programs that Coordinate Distributed Transactions
3.1 Starting a Distributed Transaction

is a default distributed transaction in the agent program, the task joins the
distributed transaction.

• For a task not to participate in an active distributed transaction, the agent
program must explicitly pass a TID consisting of zeros. If the agent process
has done a $START_TRANS in the process and the agent program does not
want this task to join the default distributed transaction, this is the only
way to ensure that the task will not participate in an active distributed
transaction.

The following services accept a TID:

ACMS$CALL
ACMS$CALL_A
ACMS$START_CALL
ACMS$START_CALL_A

The calling sequences for these services are listed in Chapter 5.

When an agent program passes a TID to one of these services, ACMS attempts
to pass the TID on to the task. If an agent program tries to pass a TID to a task
that cannot join a distributed transaction, either the ACMS$WAIT_FOR_CALL_
END or the ACMS$CALL service returns ACMS$_TASKNOTCOMP, indicating
that the task is not composable.

If ACMS attempts to pass a TID to a task in an application that does not follow
composability rules, one of the following errors is returned:

• ACMS$_NOTRANSNODE - ACMS does not support transactions on this
application node.

This error is returned when the application is running on a node that has
ACMS Version 3.1 or earlier installed.

• ACMS$_NOTRANSADB - Transactions are not supported in the ACMS
application database (ADB).

This error is returned when the application database has not been rebuilt
with ACMS Version 3.2 or higher.

Example 3–1 illustrates the logic of an agent program that processes records from
a data file and calls tasks as a single distributed transaction.

Example 3–1 A Specialized User-Written Agent

status = $OPEN ! Open a data file
status = $CONNECT ! Connect a record stream
status = $OPEN ! Open an error file
status = $CONNECT ! Connect a record stream
UNTIL <no more records to process>

BEGIN
trx_aborted = FALSE ! Assume everything will work
status = $START_TRANSW ! Start a transaction
status = $GET ! Read a record from the file
status = $ACMS$CALL ! Call a task
IF .status ! If task completed OK,
THEN ! then...

(continued on next page)

Agent Programs that Coordinate Distributed Transactions 3–3



Agent Programs that Coordinate Distributed Transactions
3.1 Starting a Distributed Transaction

Example 3–1 (Cont.) A Specialized User-Written Agent

BEGIN
status = $DELETE ! Delete the record
status = $END_TRANSW ! and end the transaction
IF NOT .status ! If transaction rolled back,
THEN ! then...

txn_aborted = TRUE ! Set the flag so we know
END

IF NOT .status ! If something went wrong (task
THEN ! failed or txn rolled back,

BEGIN ! then...
IF NOT .txn_aborted ! If txn hasn’t rolled back,
THEN ! then...

$ABORT_TRANS ! Roll back transaction
$START_TRANSW ! Start a new transaction
$GET ! Reread record from file
$PUT ! Store record in error file
$DELETE ! Delete rec. from data file
$END_TRANSW ! And end the transaction
END

$DISCONNECT ! Disconnect both
$DISCONNECT ! record streams
$CLOSE ! Close both the data
$CLOSE ! and error files

3.2 Rolling Back a Distributed Transaction
An agent program can use the $ABORT_TRANS service to roll back a transaction
and, therefore, cancel the associated task. The task is cancelled with the
OpenVMS status DDTM$_ABORTED.

If you require a more meaningful reason for the cancellation, you can use the
ACMS$CANCEL_CALL service to cancel the task. If the task is still active, the
EXC cancels the task. However, the message sent from the agent program to
cancel a task may not reach EXC before the task completes and EXC returns
the status to the agent. In this case, the agent program should check the task
completion status to determine whether or not to roll back the transaction. The
following example illustrates this condition:

status = ACMS$START_CALL
< additional processing >
IF .error_condition_detected
THEN

cancel_status = ACMS$CANCEL_CALL
task_status = ACMS$WAIT_FOR_CALL_END
IF .error_condition_detected OR NOT .task_status
THEN

IF .task_status
THEN

cancel_status = $ABORT_TRANS
< task termination processing >

An agent program that starts a distributed transaction can roll back the
transaction by a call to $ABORT_TRANS at any of the following times:

• Before calling a task

Because a task has not been called, the rollback affects only database
interactions that the agent program has performed.

3–4 Agent Programs that Coordinate Distributed Transactions



Agent Programs that Coordinate Distributed Transactions
3.2 Rolling Back a Distributed Transaction

• While a task is active

If a task is active when the agent program rolls back the transaction,
then the task and any subordinate tasks are cancelled with an OpenVMS
status of DDTM$_ABORTED. If you need a more meaningful reason for the
cancellation, use the ACMS$CANCEL_CALL service to cancel the task.

If, however, the task was in the process of completing at the time of the
cancel, then the agent process may still need to use the $ABORT_TRANS
service if the task subsequently completes with a success status, that is, if
the request to cancel the task arrives at the EXC process after the EXC has
completed the task and returned the results to the agent.

• After the task completes, but before calling $END_TRANS

If a transaction is rolled back after a called task completes (that is, the task
instance called by the agent program is in a pending state awaiting the end
of the transaction), then any database operations that were performed by the
task and the agent program as part of the transaction are undone.

• After the task completes, and after calling $END_TRANS

If the transaction has already reached the point of committing, then the
DECdtm services refuse to roll back the transaction. If the transaction has
not yet reached the point of committing, then the transaction is rolled back.

3.3 Accessing Remote Data
HP ACMS for OpenVMS Concepts and Design Guidelines discusses ways in which
you can access remote data in a distributed transaction. Two methods for an
ACMS application on one node (A) to access data on another node (B) are the
following:

• Invoke an ACMS remote task on Node B from a step procedure on Node A.

With this method, you use a step procedure as an agent program to call a
task on Node B. Figure 3–1 illustrates this method.

• Invoke a database server (Rdb, for example) on Node B from a step procedure
on Node A.

With this method, each instance of a procedure server on Node A maps to one
specific instance of a database server process on Node B and any additional
systems that Node A needs to access.

Briefly stated, the advantages of the first method over the second are that it
minimizes the following:

• Number of server processes created

• Possibility of lock contention on the remote node

• Network traffic

When you use the first method, ACMS remote access, a step procedure on Node
A acts as an agent program by using the SI system service call ACMS$CALL to
invoke a task in an application on Node B. ACMS$CALL passes the TID to the
application on Node B and forces the called task on Node B to join the distributed
transaction that starts in the calling task on Node A. The called task on Node
B executes and performs database access by calling appropriate processing step
procedures locally.

Agent Programs that Coordinate Distributed Transactions 3–5



Agent Programs that Coordinate Distributed Transactions
3.3 Accessing Remote Data

Figure 3–1 illustrates the use of a step procedure as an agent program to call a
task in an application on a remote node.

Figure 3–1 Using a Step Procedure as an Agent Program

TAY-0248-AD

NODE A NODE B

�

TASK_1
block work

processing with trans
call step_procedure_1
commit trans

end block

Step_Procedure_1
ACMS$GET_TID
update local branch
update local teller
ACMS$CALL_TASK_2
return

TASK_2

block work with trans
call step_procedure_2

end block

Step_Procedure_2
ACMS$GET_TID
update local account
insert local history
return

Example 3–2 contains the task definition that calls the procedure BANKING_
SAMPLE_TXN. The processing step in the task definition starts a distributed
transaction.

Example 3–2 Task Definition that Calls a Procedure Used as an Agent

REPLACE TASK BANKING_SAMPLE_TSK /DIAGNOSTIC
DEFAULT FORM IS BANKING_SAMPLE_FORM;
WORKSPACE IS BANKING_SAMPLE_WORKSPACE WITH TYPE TASK;

BLOCK WORK WITH FORM I/O

INPUT_REQUEST:
EXCHANGE

TRANSCEIVE RECORD BANKING_SAMPLE_REC, BANKING_SAMPLE_REC
IN BANKING_SAMPLE_FORM

SENDING BANKING_SAMPLE_WORKSPACE
RECEIVING BANKING_SAMPLE_WORKSPACE;

BANKING_SAMPLE_PROCESSING:

PROCESSING WITH DISTRIBUTED TRANSACTION
CALL BANKING_SAMPLE_TXN IN BANKING_SAMPLE_SERVER
USING BANKING_SAMPLE_WORKSPACE;

!+
! Check the return status in the field ACMS$L_STATUS.
! This field contains 1 is success, -913 if deadlock.
! If deadlock, try again. Otherwise, cancel task.
!-

(continued on next page)

3–6 Agent Programs that Coordinate Distributed Transactions



Agent Programs that Coordinate Distributed Transactions
3.3 Accessing Remote Data

Example 3–2 (Cont.) Task Definition that Calls a Procedure Used as an Agent

ACTION IS
SELECT FIRST TRUE OF
(ACMS$L_STATUS = 1): COMMIT TRANSACTION;
(ACMS$L_STATUS = -913): ROLLBACK TRANSACTION;

GOTO STEP BANKING_SAMPLE_PROCESSING;
NOMATCH: ROLLBACK TRANSACTION;

CANCEL TASK;
END SELECT;

EXCEPTION ACTION IS
CANCEL TASK;

OUTPUT_REQUEST:

EXCHANGE
TRANSCEIVE RECORD BANKING_SAMPLE_REC, BANKING_SAMPLE_REC

IN BANKING_SAMPLE_FORM
SENDING BANKING_SAMPLE_WORKSPACE
RECEIVING BANKING_SAMPLE_WORKSPACE;

!+
! Examine the control field. If the request returns Y,
! then leave the task; else, repeat the task.
!-

ACTION IS
IF (BANKING_SAMPLE_WORKSPACE.WORKSPACE_EXIT_SWITCH = "Y") THEN

EXIT TASK;
ELSE

GOTO STEP BANKING_SAMPLE_PROCESSING;
END IF;

END BLOCK WORK;

END DEFINITION;

The agent program BANKING_SAMPLE_TXN, shown in Example 3–4, performs
local updates of branch and teller data. It then invokes a remote task to update
an account on a remote node. The remote task, BANKING_SAMPLE_ACTUPD_
TSK, joins in the distributed transaction by declaring WITH DISTRIBUTED
TRANSACTION on a block step in the task definition. The remote task calls a
procedure on the remote node, BANKING_SAMPLE_ACTUPD_TXN, to update
the database locally on the remote node.

Example 3–3 contains the task definition in the application on the remote node.

Example 3–3 Task Definition that Calls a Procedure to Update Remote Data

REPLACE TASK BANKING_SAMPLE_ACTUPD_TSK /DIAGNOSTIC
WORKSPACE IS BANKING_SAMPLE_WORKSPACE WITH TYPE TASK;
TASK ARGUMENT IS BANKING_SAMPLE_WORKSPACE WITH ACCESS MODIFY;

BLOCK WORK WITH DISTRIBUTED TRANSACTION NO I/O

(continued on next page)

Agent Programs that Coordinate Distributed Transactions 3–7



Agent Programs that Coordinate Distributed Transactions
3.3 Accessing Remote Data

Example 3–3 (Cont.) Task Definition that Calls a Procedure to Update Remote
Data

BANKING_SAMPLE_PROCESSING:

PROCESSING
CALL BANKING_SAMPLE_ACTUPD_TXN IN BANKING_SAMPLE_ACTUPD_SERVER
USING BANKING_SAMPLE_WORKSPACE;

END BLOCK WORK;

ACTION IS
IF (ACMS$L_STATUS <> 1) THEN

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

END DEFINITION;

3.4 Step Procedure in C that Acts as an Agent Program
Following is the flow of events in the agent program shown in Example 3–4. The
numbers coincide with those in the sample program.

1 Declare tid_structure used to retrieve TID from ACMS.

2 Set up SQL context structure for local updates.

3 Set up interface to SI services.

4 Pull in workspace definitions from CDD.

5 Retrieve TID from ACMS.

6 Call initialization routine in preparation for call to remote task.

7 Call remote task passing submitter ID, task information, workspace, and TID.

8 Check return status of call to remote task; log error message if failure.

9 Check for SQL errors.

Note

Steps 10 through 13 are actually substeps within step 6.

1 0 Specify task name and application name; note that the application is running
on a remote node.

1 1 Sign in to ACMS.

1 2 Prepare and get remote procedure information.

1 3 Pass workspace from agent program to remote task.

Example 3–4 Step Procedure in C that Acts as an Agent Program

(continued on next page)

3–8 Agent Programs that Coordinate Distributed Transactions



Agent Programs that Coordinate Distributed Transactions
3.4 Step Procedure in C that Acts as an Agent Program

Example 3–4 (Cont.) Step Procedure in C that Acts as an Agent Program

/*************************************************************************/
/* */
/* Sample Banking Application */
/* Branch/Teller Update Transaction */
/* -------------------------------- */
/* */
/* This is the server procedure called by the BANKING_SAMPLE_TSK task */
/* to perform local update of branch and teller data and invoke the */
/* remote task, BANKING_SAMPLE_ACTUPD_TASK, for update of an account */
/* on a remote node. */
/*************************************************************************/

#include ssdef
#include stdio
#include descrip
#include string
#include ACMS$SUBMITTER

/* DECdtm transaction ID structure */
struct tid_structure 1

{
long int field_1;
long int field_2;
short int field_3;
short int field_4;
long int field_5;
} tid;

/* SQL Transaction context structure */
struct context_structure 2

{
long int version;
long int type;
long int length;
struct tid_structure in_tid;
long int end;
};

char txn_time[9],txn_date[7];
$DESCRIPTOR(date_time_dscrptr,"dd-mmm-yyyy hh:mm:ss.hh");

/* Data Structure for ACMS/SI */ 3
struct ACMS$SUBMITTER_ID submitter_id;
struct ACMS$PROCEDURE_ID procedure_id;
struct dsc$descriptor wksp_dscrptr;
struct dsc$descriptor tsk_dscrptr;
struct dsc$descriptor appl_dscrptr;
char appl_name[32];

struct single_item_list_structure {
short int proc_bufsize;
short int proc_itmcode;
char *proc_bufaddr;
char *proc_retlen;
int item_last;

} single_item_list;

struct arg_list_struct {
long int count;
char *sel_str;
char *ext_sts;
char *tsk_io;
char *ws_1;

} arg_list;

(continued on next page)

Agent Programs that Coordinate Distributed Transactions 3–9



Agent Programs that Coordinate Distributed Transactions
3.4 Step Procedure in C that Acts as an Agent Program

Example 3–4 (Cont.) Step Procedure in C that Acts as an Agent Program

/* SQL and Database Declaration */
EXEC SQL INCLUDE SQLCA;
EXEC SQL DECLARE SCHEMA FOR FILENAME BANK_SAMPLE;
EXEC SQL INCLUDE FROM DICTIONARY BANKING_SAMPLE_WORKSPACE; 4

/*********************************************************/
/* Banking Sample Transaction. */
/*********************************************************/
banking_sample_txn(workspace_area)
struct banking_workspace *workspace_area;
{

struct banking_workspace WSBuff;
char ActBranchBuff[5],ActAccountBuff[7];
static struct context_structure context={1,1,16,{0,0,0,0,0},0};
char ErrMsgText[300];
int ErrMsgLength;
int status;
$DESCRIPTOR(ErrMsgBuffDsc,"");

/* Copy some data values from workspace to local buffers due */
/* to the lack of pointer support in Embedded SQL for C. */

WSBuff.workspace_branch = workspace_area->workspace_branch;
WSBuff.workspace_teller = workspace_area->workspace_teller;
strncpy(ActBranchBuff,
workspace_area->workspace_account.workspace_acc_branch,

4);
strncpy(ActAccountBuff,

workspace_area->workspace_account.workspace_acc_account,
6);

WSBuff.workspace_delta = workspace_area->workspace_delta;

/* Get TID from ACMS and store into SQL context structure */
status = ACMS$GET_TID(&tid); 5
if (!(status & SS$_NORMAL)) return(status);
context.in_tid = tid;

EXEC SQL WHENEVER SQLERROR GOTO sql_error_check;

/* Initialization in preparation for ACMS RPC call. */
status = InitializeACMSRPC(); 6
if (!(status & SS$_NORMAL))

return(status);

transaction_restart:
/***********************************************/
/* Modify Branch. */
/***********************************************/

/* Perform update on the MONEY field for
appropriate branch in BRANCH relation. */

EXEC SQL USING CONTEXT :context
UPDATE BRANCH B

SET B.BR_MONEY_FIELD =
B.BR_MONEY_FIELD + :WSBuff.workspace_delta

WHERE B.BR_BRANCH = :WSBuff.workspace_branch;

(continued on next page)

3–10 Agent Programs that Coordinate Distributed Transactions



Agent Programs that Coordinate Distributed Transactions
3.4 Step Procedure in C that Acts as an Agent Program

Example 3–4 (Cont.) Step Procedure in C that Acts as an Agent Program

/***********************************************/
/* Modify Teller. */
/***********************************************/

/* Perform update on MONEY field for appropriate
teller in the TELLER relation. */

EXEC SQL USING CONTEXT :context
UPDATE TELLER T

SET T.TEL_MONEY_FIELD =
T.TEL_MONEY_FIELD + :WSBuff.workspace_delta

WHERE (T.TEL_BRANCH = :WSBuff.workspace_branch)
AND (T.TEL_TELLER = :WSBuff.workspace_teller);

/**********************************************/
/* Invoke remote task to update Account and */ 7
/* store History records via ACMS$CALL. */
/**********************************************/
wksp_dscrptr.dsc$a_pointer = workspace_area;
wksp_dscrptr.dsc$w_length = sizeof(*workspace_area);
status = ACMS$CALL (&submitter_id,

&procedure_id,
&arg_list,
&tid);

/* Check return status code - if failure, log error msg */ 8

if (!(status & SS$_NORMAL)) {
error_logging("ACMS$CALL error.",

status,
WSBuff.workspace_branch,
WSBuff.workspace_teller,
ActBranchBuff,
ActAccountBuff,
WSBuff.workspace_delta);

return(status);
}

/* End of Transaction. */
workspace_area->workspace_delta = 0;
status = SS$_NORMAL;
return(status);

/* Log error message if SQL error. */ 9
sql_error_check:

ErrMsgBuffDsc.dsc$a_pointer = ErrMsgText;
SQL$GET_ERROR_TEXT(&ErrMsgBuffDsc,&ErrMsgLength);
ErrMsgText[ErrMsgLength] = ’\0’;
error_logging(ErrMsgText,

SQLCA.SQLCODE,
WSBuff.workspace_branch,
WSBuff.workspace_teller,
ActBranchBuff,
ActAccountBuff,
WSBuff.workspace_delta);

return(SQLCA.SQLCODE);
}

(continued on next page)

Agent Programs that Coordinate Distributed Transactions 3–11



Agent Programs that Coordinate Distributed Transactions
3.4 Step Procedure in C that Acts as an Agent Program

Example 3–4 (Cont.) Step Procedure in C that Acts as an Agent Program

InitializeACMSRPC()
{

int status;

/* initialize ACMS RPC data structure */
tsk_dscrptr.dsc$a_pointer = "BANKING_SAMPLE_ACTUPD_TSK"; 1 0
tsk_dscrptr.dsc$w_length = 25;

strcpy(&appl_name[0],"SLVSTR::BANK_SAMPLE_APP");
appl_dscrptr.dsc$a_pointer = &appl_name[0];
appl_dscrptr.dsc$w_length = strlen(&appl_name[0]);

/* Sign-in to ACMS as a task submitter. */
status = ACMS$SIGN_IN(&submitter_id,0,0,0,0); 1 1
if (!(status & SS$_NORMAL)) {

error_logging("ACMS sign-in error.",status,0,0," "," ",0);
return(status);
}

/* Prepare ACMS$GET_PROCEDURE_INFO item list for remote task */ 1 2
single_item_list.proc_bufsize = ACMS$S_PROCEDURE_ID;
single_item_list.proc_itmcode = ACMS$K_PROC_PROCEDURE_ID;
single_item_list.proc_retlen = 0;
single_item_list.item_last = 0;

/* Get remote procedure information */
single_item_list.proc_bufaddr = &procedure_id;
status = ACMS$GET_PROCEDURE_INFO (&submitter_id,

&tsk_dscrptr,
&appl_dscrptr,
&single_item_list);

if (!(status & SS$_NORMAL))
{
error_logging("ACMS GET_PROCEDURE_INFO error.",status,

0,0," "," ",0);
return(status);

}

/* Prepare ACMS$CALL() argument list for remote task */
arg_list.count = 4;
arg_list.sel_str = 0;
arg_list.ext_sts = 0;
arg_list.tsk_io = 0;
arg_list.ws_1 = &wksp_dscrptr; 1 3

return(1);
}

3–12 Agent Programs that Coordinate Distributed Transactions



4
Agent Program Initialization and Exchange I/O

Services

This chapter discusses the following topics:

• Authorizing an agent program

• Signing an agent program in to ACMS

• Initializing an agent program to perform specified exchange I/O

• Terminating exchange I/O

• Signing an agent program out of ACMS

This chapter also provides reference material in alphabetical order for calling SI
services in agent programs.

Before an agent program can call any ACMS tasks, it must identify one or more
task submitters to ACMS. The SI provides a service to sign the task submitter in
to ACMS.

After the ACMS Central Controller (ACC) checks the identity of the task
submitter, the agent program must indicate the types of exchange I/O to be
performed. The SI provides a service that allows the agent program to declare the
types of exchange I/O to be performed, setting up the necessary data structures
to support the I/O methods selected. If TDMS exchange I/O is declared, the SI
services open a TDMS channel.

When the submitter is finished performing exchange I/O, an agent program calls
an SI service to finish any I/O that has been initialized, and frees any resources
used by the task submitter.

After exchange I/O is terminated and the resources are freed, the agent program
can then sign out one or more task submitters. The SI provides services to
sign the task submitter out of ACMS. Figure 4–1 shows how an agent program
interacts with ACMS components to sign a task submitter in to ACMS.

The ACC verifies the user name and device name against the ACMSUDF.DAT
user definition file, the ACMSDDF.DAT device definition file, and the
SYSUAF.DAT file.

Table 4–1 shows the SI initialization services.

Agent Program Initialization and Exchange I/O Services 4–1



Agent Program Initialization and Exchange I/O Services

Figure 4–1 Signing In a Task Submitter to ACMS

ACMS

ACC

Task

ACMSUDF.DAT

ACMSDDF.DAT

SYSUAF.DAT

TAY-0124-AD

Agent

Initialization
Exchange I/O

Submitter
Services

Sign In

Termination
Exchange I/O

Sign Out

Table 4–1 SI Initialization Services

Service Name Description

ACMS$SIGN_IN Identifies a task submitter to ACMS and returns a
SUBMITTER_ID.

ACMS$SIGN_OUT Removes a task submitter from ACMS.

Only users authorized with the ACMS User Definition Utility (UDU) can gain
access to ACMS. Also, if the task uses a terminal or other device for I/O, the
terminal or device must be authorized with the ACMS Device Definition Utility
(DDU). See HP ACMS for OpenVMS Managing Applications for more information
about authorizing users and devices with UDU and DDU.

Table 4–2 shows the SI exchange I/O services. You must use these services for
any task that uses DECforms (FORM I/O).

Table 4–2 SI Exchange I/O Services

Service Name Description

ACMS$INIT_EXCHANGE_IO Readies the agent program to perform various types of
exchange I/O. Specifies the type of I/O to be performed
and returns an exchange I/O ID.

ACMS$TERM_EXCHANGE_IO Cleans up after the agent program is finished
performing exchange I/O for tasks. Allows an
agent program to finish any I/O initialized by the
ACMS$INIT_EXCHANGE_IO services, freeing any
resources being used by the submitter.

The exchange I/O services and reference material for calling them in agent
programs are discussed in Section 4.3 and Section 4.4.

4–2 Agent Program Initialization and Exchange I/O Services



Agent Program Initialization and Exchange I/O Services
4.1 Authorizing an Agent Program in ACMS

4.1 Authorizing an Agent Program in ACMS
An agent program can submit tasks under its own OpenVMS user name or under
other user names:

• If the agent program submits tasks under its own user name, the agent
program’s OpenVMS user name does not need to be defined as a privileged
ACMS agent program; no special qualifiers are necessary when authorizing a
user with the ACMS User Definition Utility.

• If the agent program submits tasks under other user names, the system
manager must define the user name under which the agent program executes
as an authorized ACMS agent program. The system manager authorizes an
agent program by using the /AGENT qualifier when running the ACMS User
Definition Utility to add the agent program user name. For example:

UDU> ADD user-name/AGENT

The /AGENT qualifier marks this user name as an agent program.
Authorizing a user name as an agent program is like using the OpenVMS
DETACH privilege because it allows the agent program to use any OpenVMS
user name.

ACMS assumes that privileged agent programs verify their task submitters and
any devices they use. For example, an agent program might verify a terminal
user by asking for a name and password and checking them against a database
maintained by the agent program.

If the agent program submits tasks that use terminal I/O, the agent program
must pass the terminal’s device name to ACMS when it signs in the task
submitter. Unless the agent program has been authorized with the OpenVMS
SHARE privilege, ACMS also checks that the agent program owns the terminal.

If the agent program submits tasks that do no I/O or that do stream I/O, the
agent program can either omit the device name parameter or pass the value NL:
for the device name. If the agent program omits the device name, it defaults to
NL:.

4.2 Signing In a Task Submitter to ACMS
An agent program uses the ACMS$SIGN_IN service to identify a task submitter’s
user name and device name (if I/O is to be performed on a terminal) to ACMS
during sign-in. After ACMS verifies the user name and device, the agent program
can submit tasks to ACMS.

The ACMS$SIGN_IN service assigns a submitter ID, which is passed to other SI
services that the agent program calls for this task submitter. The sign-in service
also provides an optional cancel routine that notifies the agent program if the
submitter ID is forced out of the ACMS system because the system stopped or
because an operator canceled the submitter.

If an agent program attempts to sign a user in to ACMS when the ACMS system
is not started, two results can occur:

• If the agent program signs in a user name that is different from the user
name of the agent process, the ACMS$SIGN_IN service fails and returns the
message:

ACMS$_NOSYSTEM, The ACMS system was not available

Agent Program Initialization and Exchange I/O Services 4–3



Agent Program Initialization and Exchange I/O Services
4.2 Signing In a Task Submitter to ACMS

• If the agent program signs in under its own user name or without passing a
user name, the ACMS$SIGN_IN service completes successfully and returns
the message:

ACMS$_SIGNIN_NOAUTH, Sign in completed successfully without
authentication.

Although this user name is signed in to ACMS, the user cannot select tasks
from any ACMS application until the ACMS system is started.

The following pseudocode shows how an agent program can handle both
situations:

Signin_status = ACMS$SIGN_IN

if signin_status eql ACMS$_SIGNIN_NOAUTH
then

sign_out the submitter

if signin_status eql ACMS$_SIGNIN_NOAUTH or ACMS$_NOSYSTEM
then

[exit the agent
or

retry "n" times]

Note

An agent program must sign a user in to ACMS with a "username"
argument to ACMS$SIGN_IN in capital letters.

If a user-generated character string descriptor is used, the length field of
the string must be exactly the same as the length of the character string
that describes the user name. If either of these conditions is not met, the
ACMS$SIGN_IN service returns the following message:

ACMS$_BADUSER - The user is either not in the user definition
file or not in SYSUAF.

4.3 Specifying the Type of I/O
The agent program calls ACMS$INIT_EXCHANGE_IO to specify the type of I/O
to be performed. The service returns an exchange I/O ID. This ID keeps track of
the types of I/O the submitter can perform. The exchange I/O ID is passed to the
call or start call service as the third argument in the task argument list.

You must supply the exchange I/O parameter. This value is returned upon
successful completion of the call.

Exchange I/O for a task is performed by either the application execution controller
or the ACMS code running in the agent program. Exchange I/O takes place in
the agent process for:

• All tasks that use HP DECforms in exchange steps

• All tasks that perform stream I/O in exchange steps

• All tasks on remote nodes that use TDMS in exchange steps

The Application Execution Controller (EXC) performs exchange I/O for local
TDMS tasks only.

4–4 Agent Program Initialization and Exchange I/O Services



Agent Program Initialization and Exchange I/O Services
4.3 Specifying the Type of I/O

To perform terminal I/O from a DCL or a procedure server, call ACMS$INIT_
EXCHANGE_IO. ACMS$SIGN_IN provides the device name. That device name
is passed to the DCL or procedure server.

4.4 Terminating Exchange I/O
The ACMS$TERM_EXCHANGE_IO service allows an agent program to finish any
I/O initialized with ACMS$INIT_EXCHANGE_IO. ACMS$TERM_EXCHANGE_
IO frees any resources being used by the submitter. For example, DECforms
sessions or TDMS channels are freed by ACMS$TERM_EXCHANGE_IO.

4.5 Signing Out a Task Submitter from ACMS
The agent program uses the ACMS$SIGN_OUT service to remove a task
submitter from ACMS. The sign-out service identifies the task submitter by its
submitter ID. The sign-out service provides an optional parameter to cancel all
calls still active when the sign-out service executes. If this parameter is omitted
and calls are still active, the sign-out service fails and returns a status code to
the agent program indicating there are still active calls for this submitter.

The rest of this chapter contains reference material for using ACMS$INIT_
EXCHANGE_IO, ACMS$SIGN_IN, ACMS$SIGN_OUT, and ACMS$TERM_
EXCHANGE_IO in an agent program.

Agent Program Initialization and Exchange I/O Services 4–5



ACMS$INIT_EXCHANGE_IO

4.6 ACMS$INIT_EXCHANGE_IO

Specifies the type of I/O the agent program or device can perform. ACMS$INIT_
EXCHANGE_IO is called by the agent program and returns an exchange I/O ID.

For submitters that enable TDMS, a call to ACMS$INIT_EXCHANGE_IO opens
a TDMS channel.

Note

If an agent program enables stream I/O and associates it with a
submitter, the agent program must call ACMS$WAIT_FOR_STREAM_IO
for all tasks (except tasks that do no terminal I/O), whether or not the
task performs stream I/O.

Format

ACMS$INIT_EXCHANGE_IO
(submitter_id.rq.r,
exchange_io_id.wq.r,
[io_enable_flags.rl.r],
[item_list.rx.r],
[io_capabilities_flags.wl.r])

ACMS$INIT_EXCHANGE_IO_A
(submitter_id.rq.r,
exchange_io_id.wq.r,
[io_enable_flags.rl.r],
[item_list.rx.r],
[io_capabilities_flags.wl.r],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

submitter_id
The submitter ID corresponding to a signed-in submitter (user). This ID is
returned by the ACMS$SIGN_IN service. No default submitter ID is allowed.

exchange_io_id
This ID keeps track of the type of I/O the submitter is performing. This ID is
passed to the call or start call service as the third argument in the task argument
list.

The exchange_io_id parameter must be supplied. This value is returned upon
successful completion of the call.

io_enable_flags
These flags indicate which type of I/O the agent program wishes to perform.
If this flag is not supplied, the agent program can call a task that performs
DECforms and TDMS I/O, but it cannot use the Request Interface.

4–6 Agent Program Initialization and Exchange I/O Services



ACMS$INIT_EXCHANGE_IO

To use TDMS, the default value of the io_enable_flags argument initializes the
agent program. If it is certain that tasks will never use TDMS I/O, disable TDMS
to conserve resources. If the ACMS$V_IO_DISABLE_TDMS flag is set on the
call to ACMS$INIT_EXCHANGE_IO, TDMS is disabled for the agent process.
Because TDMS is completely disabled in the agent process, if a task that uses
TDMS for I/O is selected, it is canceled.

To use DECforms, the default value of the io_enable_flags argument initializes
the agent program. If you are certain that you will never use DECforms, it is
advisable to disable DECforms in order to conserve resources. If the ACMS$V_
IO_DISABLE_DECFORMS flag is set on the call to ACMS$INIT_EXCHANGE_
IO, HP DECforms is disabled for the agent process. Because HP DECforms is
completely disabled in the agent process, if a task that uses HP DECforms for I/O
is selected, it is canceled.

To use the Request Interface (RI), you must set the ACMS$V_IO_ENABLE_
SYNC_RI flag on the call to ACMS$INIT_EXCHANGE_IO. In some cases, it may
be desirable to disable HP DECforms and TDMS. For example, if the device is
not supported by HP DECforms or TDMS, disabling HP DECforms and TDMS
can conserve resources. Further information regarding the RI is in HP ACMS for
OpenVMS Writing Applications.

Stream I/O is implicitly enabled by passing a connect ID in the item list.

item_list
This is the address of an item list describing the information requested. An
item list is an OpenVMS data type that is used to pass information to and from
a service. Item lists are made up of one or more item descriptors. The list of
item descriptors must be terminated by an item code of 0. Detailed information
regarding item lists is in OpenVMS Programming Interfaces: Calling a System
Routine.

Possible item codes are:

• ACMS$K_TDMS_CHANNEL

To obtain TDMS channel codes, set up an item list with an entry whose item
code is ACMS$K_TDMS_CHANNEL. The buffer is a longword that receives
the channel number.

• ACMS$K_CONNECT_ID

If you wish to use stream I/O in the agent program, you need to provide an
entry in the item list. The buffer is a quadword that receives the connect ID.
The connect ID returned by the service is used to wait for and reply to stream
I/O operations. See Chapter 6 for further details regarding stream I/O.

io_capabilities_flags
This flag is a longword containing bits indicating which I/O methods are
successfully initialized. The following bits are defined:

• ACMS$V_DECFORMS_AVAILABLE

This bit is set if HP DECforms is successfully initialized. If DECforms is not
installed on the system, or was disabled, the bit is clear.

• ACMS$V_TDMS_AVAILABLE

This bit is set if TDMS is successfully initialized. If TDMS is not installed on
the system, or was disabled, the bit is clear.

Agent Program Initialization and Exchange I/O Services 4–7



ACMS$INIT_EXCHANGE_IO

• ACMS$V_STREAM_AVAILABLE

This bit is set if the stream services are successfully initialized.

• ACMS$V_RI_AVAILABLE

This bit is set if ACMS has successfully enabled the RI.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Return Status

The following list summarizes each error returned by ACMS$INIT_EXCHANGE_
IO.

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful
completion.

ACMS$_SOME_IO_NOT_
AVAILABLE

Success Some of the requested I/O
methods have not been
initialized.

ACMS$_PENDING Informational Successful operation pending
asynchronous completion.
The final status is in the
completion status block.

ACMS$_USERMODE Error The user mode was invalid.
ACMS$_INVSUB Error The submitter ID was

invalid.
ACMS$_NTSNIN Error The submitter was not

signed in.
ACMS$_INVEXCHIOID Error The exchange I/O ID was

invalid.
ACMS$_INVDEV Error The device name was

invalid.
ACMS$_INVFLAGS Error Invalid flags word.
ACMS$_INVENBRI Error Invalid ENABLE RI flags.
ACMS$_INVITEMDESC Error Invalid item list.
ACMS$_INVITEMCODE Error Invalid item code.
ACMS$_INVBUFSIZ Error Invalid buffer size.
ACMS$_INVBUFADR Error Invalid buffer address.
ACMS$_INVRETLEN Error Invalid return length.
ACMS$_INVIOCAPFLAG Error Invalid I/O capabilities flag.
ACMS$_INVCMPSTS Error Invalid completion status.

4–8 Agent Program Initialization and Exchange I/O Services



ACMS$INIT_EXCHANGE_IO

Status Severity Level Description

ACMS$_INVEFN Error Invalid event flag number.
ACMS$_INVASTADR Error Invalid AST routine address.
ACMS$_INV_SIGNOUT_
ACTIVE

Error Submitter is in process of
sign-out.

ACMS$_INTERNAL Error ACMS internal error.

ACMS$INIT_EXCHANGE_IO can also return invalid status messages associated
with the following services, among others:

• LIB$GET_VM

• $CLREF

• $DCLAST

• ACMS$OPEN_RR_A

• ACMS$CREATE_STREAM_A

• ACMS$CONNECT_STREAM_A

• TSS$OPEN

Agent Program Initialization and Exchange I/O Services 4–9



ACMS$SIGN_IN

4.7 ACMS$SIGN_IN

Signs a task submitter in to ACMS.

Format

ACMS$SIGN_IN (submitter_id.wq.r,
[username.rt.dx],
[device.rt.dx],
[cancel_routine.zem.r],
[cancel_param.rz.v])

ACMS$SIGN_IN_A (submitter_id.wq.r,
[username.rt.dx],
[device.rt.dx],
[cancel_routine.zem.r],
[cancel_param.rz.v],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

submitter_id
The submitter identification that is output by the ACMS$SIGN_IN service.

username
The OpenVMS user name of the submitter signing in. The default is the agent
program’s user name. The ACMS Central Controller (ACC) makes sure that the
user name exists in ACMSUDF.DAT. If the user name specified is different from
the agent program’s user name, ACC verifies that the agent program’s user name
is privileged by checking the agent program definition in the ACMSUDF.DAT
database file.

Note

An agent program must sign a user in to ACMS with a capitalized
"username" argument to ACMS$SIGN_IN.

If a user-generated character string descriptor is used, the length field of the
string must be exactly the same as the length of the character string that
describes the user name.

device
The terminal device name that you supply if the task performs I/O to the
terminal. The device name can be a physical device name or a logical name.
The default is NL:. ACC makes sure that the device name exists in the
ACMSDDU.DAT database file.

cancel_routine
The routine called (at AST level) when the submitter is canceled. If this
parameter is omitted, the agent program receives no notification when the
submitter is canceled. Any further operations by this submitter fail. When this

4–10 Agent Program Initialization and Exchange I/O Services



ACMS$SIGN_IN

parameter is used, the agent program receives notification when the submitter is
canceled, after which the following parameters are passed to the cancel routine:

• cancel_param

The cancel user parameter that was passed with ACMS$SIGN_IN. This is
passed by value, rather than by reference.

• submitter_id

The address of the two-longword identification of the submitter being
canceled. This is the address of the submitter_id passed by ACMS$SIGN_IN.

• reason

The longword indicating the reason for the user cancellation. The possible
reasons are:

ACMS$_ACMS_GONE—the ACMS system has stopped

ACMS$_SUB_CANCELED—the submitter was canceled by an operator
request

This is passed by value, rather than by reference.

cancel_param
The value to be passed to the cancel routine.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Return Status

The return status codes indicating the success or failure of the call are:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion
ACMS$_PENDING Informational Successful operation pending

asynchronous completion. The final
status is in the completion status block.

ACMS$_
BADAGENT

Error The agent is not a valid ACMS agent
program.

ACMS$_
BADDEVICE

Error The device is not defined in the device
definition file.

ACMS$_BADUSER Error The user is either not in the user
definition file or not in SYSUAF.

ACMS$_INSUFPRM Error Not enough arguments were passed to
this service.

ACMS$_INTERNAL Error Internal error.
ACMS$_
INVASTADR

Error The AST address was invalid.

ACMS$_
INVCANAST

Error The cancel user routine was invalid.

Agent Program Initialization and Exchange I/O Services 4–11



ACMS$SIGN_IN

Status Severity Level Description

ACMS$_
INVCMPSTS

Error The completion status block was invalid.

ACMS$_INVDEV Error The device name was invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVLOGIN Error Invalid login attempt.
ACMS$_INVSUB Error The submitter ID was invalid.
ACMS$_INVUSER Error The user name was invalid.
ACMS$_
NODEVACC

Error No access to specified device.

ACMS$_
SYNASTLVL

Error Synchronous services may not be called
from AST level.

ACMS$_
USERMODE

Error This service must be called from user
mode.

Note

Special situations exist if an agent program attempts to sign a submitter
in when the ACMS system is not started. See Section 4.2 for guidelines
on handling these situations.

4–12 Agent Program Initialization and Exchange I/O Services



ACMS$SIGN_OUT

4.8 ACMS$SIGN_OUT

Removes a task submitter from the ACMS system.

Format

ACMS$SIGN_OUT (submitter_id.rq.r,
[cancel_flag.rlu.r])

ACMS$SIGN_OUT_A (submitter_id.rq.r,
[cancel_flag.rlu.r],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

submitter_id
The identification of the task submitter signing out. This ID is assigned in the
ACMS$SIGN_IN service.

cancel_flag
The address of the flag that specifies whether or not to cancel active calls. If
the low bit of this flag is set, active calls are canceled and the sign-out routine
completes successfully. If this flag is not set or is not passed and there are calls
active, the sign-out routine fails.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for discussion of these
parameters.

Return Status

The return status codes indicating the success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion. The
final status is in the completion
status block.

ACMS$_ACTIVE_CALL Error Calls are still active for this
submitter.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INTERNAL Error Internal error.
ACMS$_INVASTADR Error The AST address was invalid.
ACMS$_INVCANFLG Error The cancel flag parameter was

invalid.

Agent Program Initialization and Exchange I/O Services 4–13



ACMS$SIGN_OUT

Status Severity Level Description

ACMS$_INVCMPSTS Error The completion status block
was invalid.

ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVSUB Error The submitter ID was invalid.
ACMS$_NODEVACC Error No access to specified device.
ACMS$_NTSNIN Error Submitter was not signed in.
ACMS$_SIGNOUT_ACTIVE Error A sign-out is active.
ACMS$_SYNASTLVL Error Synchronous services may not

be called from AST level.
ACMS$_USERMODE Error This service must be called

from user mode.

4–14 Agent Program Initialization and Exchange I/O Services



ACMS$TERM_EXCHANGE_IO

4.9 ACMS$TERM_EXCHANGE_IO

Terminates any I/O initialized during the ACMS$INIT_EXCHANGE_IO services.
ACMS$TERM_EXCHANGE_IO frees any resources being used by the submitter,
for example, DECforms sessions or TDMS channels.

Format

ACMS$TERM_EXCHANGE_IO (exchange_io_id.rq.r)

ACMS$TERM_EXCHANGE_IO_A (exchange_io_id.rq.r,
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

exchange_io_id
The ID returned from an ACMS$INIT_EXCHANGE_IO call. You must supply
this parameter.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Return Status

The following list summarizes each error returned by this service. The return
status codes indicating success or failure of the call are:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
(Synchronous calls only.)

ACMS$_PENDING Informational Successful operation pending
asynchronous completion. The
final status is in the completion
status block.

ACMS$_USERMODE Error Invalid user mode.
ACMS$_INVEXCHIOID Error Invalid exchange I/O ID.
ACMS$_INVCMPSTS Error Invalid completion status.
ACMS$_INVEFN Error Invalid event flag number.
ACMS$_INVASTADR Error Invalid AST routine address.
ACMS$_SIGNOUT_ACTIVE Error Submitter is in process of

sign-out.
ACMS$_INTERNAL Error Internal error.

ACMS$TERM_EXCHANGE_IO can also return invalid status messages
associated with the following services, among others:

• LIB$GET_VM

Agent Program Initialization and Exchange I/O Services 4–15



ACMS$TERM_EXCHANGE_IO

• $CLREF

• $DCLAST

• ACMS$CLOSE_RR_A

• ACMS$DELETE_STREAM_A

• ACMS$DISCONNECT_STREAM_A

• TSS$CLOSE

• FORMS$DISABLE

4–16 Agent Program Initialization and Exchange I/O Services



5
Submitter Services

This chapter describes how an agent program calls the submitter services to
submit ACMS tasks. The chapter also provides reference material for using these
services. The calls are listed in alphabetical order in the reference section of the
chapter.

Once a task submitter is signed in, an agent program can use the submitter
services to call an ACMS task on behalf of the task submitter. The submitter
services allow the agent program to:

• Find the information necessary to call a task

• Start a task

• Cancel a task, if necessary

• Wait for a task to complete

Figure 5–1 shows an agent program calling a task in ACMS. Using the submitter
services to invoke the task, the agent program can work on behalf of one or more
task submitters.

Submitter Services 5–1



Submitter Services

Figure 5–1 Calling a Task in ACMS

Agent

Initialization

Submitter

Task

Sign Out

Sign In

Termination

ACMS

TAY-0125-AD

EXC

Servers

.ADBs

.TDBs

Exchange I/O

Services

Exchange I/O

Table 5–1 lists the submitter services in the order in which you might use them
and gives a brief description of each. (Reference material in this chapter lists
these services in alphabetical order.)

Table 5–1 Submitter Services

Service Name Description

ACMS$GET_PROCEDURE_INFO Finds the procedure ID, the I/O method, and
the number of workspaces for the task.

ACMS$CALL Calls a task and ends when the task
completes.

ACMS$START_CALL Calls a task and returns when the task has
been submitted to ACMS. Use this service
with ACMS$WAIT_FOR_CALL_END.

This service returns a CALL_ID, which
you use with ACMS$CANCEL_CALL and
ACMS$WAIT_FOR CALL_END to identify the
task instance.

ACMS$CANCEL_CALL Cancels a task before the end of the task.
This service cancels tasks started with
ACMS$START_CALL.

ACMS$WAIT_FOR_CALL_END Waits for a task to complete. Use this service
to wait for tasks started with ACMS$START_
CALL.

5–2 Submitter Services



Submitter Services
5.1 Preparing to Call a Task

5.1 Preparing to Call a Task
The first time an agent program calls a task, the agent program must use
the ACMS$GET_PROCEDURE_INFO service to get the procedure ID for that
task. An agent program also must use ACMS$GET_PROCEDURE_INFO to get
the new procedure ID for an active task whose procedure ID has changed. A
procedure ID can change when:

• An application stops and restarts, or is reprocessed

An agent program must call ACMS$GET_PROCEDURE_INFO to get the
information associated with the new application.

• All task submitters that have selected tasks in the application have signed
out

The agent program only keeps track of applications that its submitters are
currently using.

If a call to ACMS$START_CALL or ACMS$CALL returns ACMS$_NOSUCH_
PKG or ACMS$_INVPROCID, then the application has been stopped or
reprocessed since the call to ACMS$GET_PROCEDURE_INFO was performed.
In this case, it is necessary to call ACMS$GET_PROCEDURE_INFO again to
attempt to get a new, valid procedure ID. If this call fails with ACMS$_NOSUCH_
PKG, then the application has been stopped.

In addition, an agent can pass a DECdtm distributed transaction ID (TID) to a
task by using one of the services that accept a TID: ACMS$CALL, ACMS$CALL_
A, ACMS$START_CALL, and ACMS$START_CALL_A.

An agent program can supply a selection string, extended status,and I/O
information. If a task is written to accept task workspace arguments passed
when the task begins, the agent program can supply the list of workspace
arguments the agent program passes to the ACMS task. This information is
passed in an argument list when the agent program starts the task by calling the
ACMS$CALL or ACMS$START_CALL services.

The arguments are passed in the following order:

1. Selection string

You pass data to the ACMS$SELECTION_STRING system workspace in a
task using the selection string argument. The selection string argument is
optional.

2. Extended status

You can provide an extended status argument in which ACMS can return a
status message when the task completes. The extended status argument is
optional. This string is filled in with the translation of the task’s status when
the task completes.

3. I/O argument

You use this parameter to pass the exchange I/O ID returned from
ACMS$INIT_EXCHANGE_IO.

If a task does not perform I/O, the task I/O parameter is optional. If the task
I/O parameter is supplied and the task does not perform I/O, the task I/O
parameter will be ignored.

4. List of workspace arguments

Submitter Services 5–3



Submitter Services
5.1 Preparing to Call a Task

You supply workspaces to tasks in the fourth and subsequent arguments of
the argument list. The fourth argument is used to initialize the first task
argument workspace defined in the task definition. The fifth argument is
used to initialize the second workspace defined as a task argument, and so on.
Workspace arguments are optional. If a task is written to accept workspaces,
the agent program can pass them in the argument list.

Figure 5–2 shows an argument list for an agent program that supplies all of
the arguments. This figure assumes that the agent program supplies two task
workspace arguments.

Figure 5–2 Arguments Passed for a Task Using a Full Task Argument List

5

Selection String

Extended Status

Workspace Argument 1

Workspace Argument 2

TAY-0126-AD

Exchange I/O ID

Figure 5–3 is an example of an argument list for a task that does not perform I/O
and supplies two task argument workspaces to a task.

Figure 5–3 Arguments Passed for a Task Doing No I/O

5

Selection String

Extended Status

Task Argument 1

Task Argument 2

TAY-0128-AD

0

Detailed information about the ACMS$CALL, ACMS$START_CALL,
ACMS$GET_PROCEDURE_INFO services, and their parameters is available in
the reference sections in this chapter, which begin with Section 5.4.

5–4 Submitter Services



Submitter Services
5.2 Calling a Task

5.2 Calling a Task
An agent program can call ACMS tasks using either the ACMS$CALL or the
ACMS$START_CALL service. If the agent program may need to cancel the task
(for example, if a terminal user types Ctrl/C ), the agent program should use the
ACMS$START_CALL service. Both of these services accept the passing of a
transaction ID (TID). See Section 5.2.1.

If you do not foresee any reason for an agent program to cancel a task, then the
agent program can use the ACMS$CALL service. This service calls a task and
completes when the task completes; the ACMS task causes the service to end.

Do not use ACMS$WAIT if the agent uses stream I/O. If an agent program
creates a stream and associates it with a submitter, the agent program must call
ACMS$WAIT_FOR_STREAM_IO for all tasks, whether or not the called task
performs stream I/O.

The ACMS$START_CALL service calls a task and returns a call ID. Because this
service completes as soon as the task is submitted to ACMS, the agent program
must use the ACMS$WAIT_FOR_CALL_END service to wait for the task to
complete.

The ACMS$WAIT_FOR_CALL_END service waits for the task to complete and
returns any errors in its completion status block.

An agent program must also use the ACMS$WAIT service when it calls the
ACMS$CALL_A, ACMS$START_CALL_A, or ACMS$WAIT_FOR_CALL_END_
A asynchronous submitter services. See Chapter 2 for an explanation of the
ACMS$WAIT service.

If application reprocessing is necessary, precede all calls to ACMS$CALL with
ACMS$GET_PROCEDURE_INFO.

5.2.1 Passing a Transaction ID (TID)
To participate in a distributed transaction, the agent program must call the
$START_TRANS service before starting a task. The $START_TRANS service
starts a distributed transaction and obtains a TID. The agent program then does
that task call by calling one of the following:

• ACMS$START_CALL and ACMS$WAIT_FOR_CALL_END

• ACMS$CALL

Both ACMS$START_CALL and ACMS$CALL accept the passing of a TID. By
default, the task joins the distributed transaction established by the $START_
TRANS service if a TID is not passed.

Note

The TID parameter does not exist in versions prior to ACMS Version
3.2. In versions of ACMS prior to Version 3.2, the position of the TID
parameter was reserved to HP. If you used this parameter for customer
code in the past, the code behaves unpredictably with ACMS Versions 3.2
and higher.

Submitter Services 5–5



Submitter Services
5.2 Calling a Task

When an agent program passes a TID to one of these services, ACMS attempts
to pass the TID on to the task. A TID can be passed to a task only if the task
is composable. Chapter 2 discusses passing a TID to a composable task in more
detail.

5.2.2 Supplying Workspaces to a Task
An agent program can supply workspaces to and receive workspaces from an
ACMS task. An agent program can supply workspaces to a task when it calls the
task using either the ACMS$CALL or ACMS$START_CALL service. The task
can use the data in the workspace supplied by the agent program. When the task
completes with a successful status, ACMS returns the contents of all MODIFY
and WRITE access workspaces to the agent program.

If a task fails, the contents of all WRITE access workspaces are considered to be
undefined.

The agent program supplies workspaces as arguments in an argument list in the
ACMS$CALL or ACMS$START_CALL services. The agent program defines one
argument for each workspace it intends to pass to the ACMS task. The agent
program must supply the arguments to the task in the same order that they are
listed in the TASK ARGUMENTS clause in the ACMS task definition.

5.2.3 Supplying the Correct Number of Task Argument Workspaces
The ACMS task definition defines the number of task argument workspaces the
task expects to receive and the order in which the agent program must supply
them to the task. Although the ACMS task definition specifies the workspace
names and the order of the task workspace arguments that the agent program
can supply, the agent program has the option of omitting one or more of the
workspaces defined as TASK ARGUMENTS in the ACMS task definition.

If the agent program does not supply all the workspaces, ACMS initializes
each missing workspace with the default value defined for it in the task group
database (.TDB). (Default values are defined with the CDD INITIAL CONTENTS
clause and included in the .TDB when you build the task group database.) If
there is no default value defined, ACMS fills the workspace with zeros.

If an agent program attempts to supply more workspace arguments to a task than
there are task argument workspaces defined for that task, then the ACMS$CALL
and ACMS$START_CALL services complete and return the following error
status:

%ACMS-F-ERRREADARG, Error during task initialization: cannot read an
argument in argument list

If the agent program also calls the ACMS$SIGNAL service (see Chapter 2), it
returns the following additional information:

%ACMSPKG-E-ARGNUMMATCH, Argument number mismatch between received data
and expected data

To avoid receiving these errors, the agent program can use the ACMS$GET_
PROCEDURE_INFO service to determine the number of task argument
workspaces defined for a task. See the discussion of the ACMS$GET_
PROCEDURE_INFO service in Section 5.1 and in the reference section for
more information.

5–6 Submitter Services



Submitter Services
5.2 Calling a Task

The agent program can also receive the %ACMSPKG-E-ARGNUMMATCH error
if you increase the number of task argument workspaces defined in the task
definition and rebuild the task group, but you do not rebuild the application
definition. ACMS stores the number of task argument workspaces in the
application database (.ADB) as well as the task group database (.TDB).

If you increase the number of task argument workspaces from three to four
and rebuild the task group, then the .TDB file describes the correct number of
task workspace arguments. However, unless you also rebuild the application to
produce a new .ADB file, the old version still describes the task as having only
three task workspace arguments. ACMS uses the .ADB file when formatting the
message that it sends from the agent program to the application to start the task.

5.2.4 Accessing Task Workspaces
ACMS allows the task to accept workspace arguments into task workspaces. The
task can use and modify the data in these workspaces. The task cannot accept the
arguments into group workspaces, user workspaces, or system workspaces. When
the task completes successfully, ACMS returns the contents of all workspaces
with modify or write access to the agent program. You specify the modify, read, or
write access method in the TASK ARGUMENTS clause of the task definition:

• Modify access

Modify is the default access method for the TASK ARGUMENTS clause. You
define a task workspace with modify access if the ACMS task needs to update
one or more fields in that workspace. A workspace argument defined with
modify access is initialized with data supplied by the agent program.

If the workspace data is not supplied by the agent program, the workspace
is initialized with data supplied on the task call (default values are defined
with the CDD INITIAL CONTENTS clause and included in the .TDB when
you build the task group database). If there is no default value defined,
ACMS fills the workspace with zeros. The task can modify the contents of
this workspace during execution, and ACMS returns the modifications to the
agent program when the task completes.

• Read access

You define a task workspace with read access if the ACMS task does not need
to return any data in the fields of the workspace back to the agent program.
A workspace argument defined for read access is initialized with the data
supplied by the agent program.

If the workspace data is not supplied by the agent program, the workspace
is initialized with data supplied on the task call (default values are defined
with the CDD INITIAL CONTENTS clause and included in the .TDB when
you build the task group database). If data is not supplied on the task call,
the workspace is initialized with zeros. The task can modify the contents of
the workspace during execution, but the modifications are lost when the task
ends.

• Write access

You define a task workspace with write access if the task needs to return
data in one or more fields of the workspace back to the agent program. A
workspace argument defined with write access is initialized with the default
contents defined in the .TDB. (Default values are defined with the CDD
INITIAL CONTENTS clause and included in the .TDB when you build the
task group database.)

Submitter Services 5–7



Submitter Services
5.2 Calling a Task

If there is no default value defined, ACMS fills the workspace with zeros.
The task can modify the contents of this workspace, and ACMS returns the
modifications to the agent program when the task completes executing.

You can optimize the performance of ACMS and the agent program by specifying
the read and write access instead of modify access whenever possible. Specifying
read access for the task workspace can provide performance gains if ACMS does
not need to return updated data to the agent program when the task completes.
Specifying write access for the task workspace provides performance gains if the
agent program does not need to send data from the agent program to the task in
the application.

The modify access type is the default for the TASK ARGUMENTS clause.
Although modify access is less efficient in terms of performance when passing
large records, it may be the best option if you are passing small workspaces
and are interested in ease of use. Defining the task workspace with modify
access allows data to be passed back and forth in a single workspace. In general,
using modify access is more efficient for small database records; as record size
increases, performance decreases.

The ACMS$CALL and ACMS$START_CALL services pass workspaces by
descriptor. The application execution controller checks the length of the
workspace when starting the task.

See HP ACMS for OpenVMS Writing Applications and HP ACMS for OpenVMS
ADU Reference Manual for more information on defining tasks that can
accept workspace arguments from an agent program. See the syntax for
the ACMS$CALL and ACMS$START_CALL services later in this chapter for
information on providing argument lists to tasks in an ACMS application.

5.3 Canceling a Task
An agent program can use the ACMS$CANCEL_CALL service to cancel tasks.
The ACMS$CANCEL_CALL service can be used only to cancel tasks that are
started with the ACMS$START_CALL service. ACMS$START_CALL returns a
call ID that can be used with the ACMS$CANCEL_CALL service to stop a task
prematurely.

For example, use ACMS$CANCEL_CALL to cancel tasks when a terminal user
presses Ctrl/Y . ACMS expects a task to be canceled when the terminal user
presses Ctrl/Y (or Ctrl/C , if the server is not running a task that enables a Ctrl/C

handler). If an agent program does not use ACMS$CANCEL_CALL to cancel any
active tasks when a user presses Ctrl/Y , then Ctrl/Y cancels are ignored and the
tasks will run to completion.

You can use the ACMS$CANCEL_CALL service to send multiple cancel requests
to a single task instance. For example, consider the case where an agent program
starts a menu task for a user. During the day, the user selects tasks from the
menu task to perform the user’s business transactions. Because the user might
need to press Ctrl/C to cancel more than one task called by the menu task, ACMS
allows the agent program to call the ACMS$CANCEL_CALL service many times.
See HP ACMS for OpenVMS Writing Applications for more information on how
ACMS processes task cancellation requests for tasks called by other tasks.

5–8 Submitter Services



ACMS$CALL

5.4 ACMS$CALL

Submits an ACMS task. This service completes when the task ends. If you
use the asynchronous ACMS$CALL_A service, it is also necessary to call the
ACMS$WAIT service. See Chapter 2 for an explanation of the ACMS$WAIT
service.

If application reprocessing is required, the agent program must use the
ACMS$GET_PROCEDURE_INFO service before calling ACMS$CALL.

Format

ACMS$CALL ([submitter_id.rq.r],
procedure_id.rq.r,
[arguments.rz.r],
[tid.ro.r])

ACMS$CALL_A ([submitter_id.rq.r],
procedure_id.rq.r,
[arguments.rz.r],
[tid.ro.r],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

submitter_id
The submitter ID corresponding to a signed-in submitter. The submitter ID is
returned on the ACMS$SIGN_IN service.

This parameter is optional for agent programs that do not use ACMS$SIGN_IN.
Use of the default submitter feature, however, is not recommended for new
development. See Section 2.1.6 and Section 2.1.7 for a discussion of this point.

procedure_id
The procedure ID of the task to call. You obtain this procedure ID by calling the
ACMS$GET_PROCEDURE_INFO service.

arguments
The list of arguments to pass, if any. (See Section 5.1 for more information about
using the argument list.)

This is a standard OpenVMS argument list that contains:

• selection_string.rt.dx

An agent program passes data to the ACMS$SELECTION_STRING system
workspace in a task using the selection string argument. Initialize the
selection string argument in the argument list with the address of an
OpenVMS string descriptor that references the selection string data.

The selection string argument is optional. If the agent program does not
pass any information to the ACMS$SELECTION_STRING workspace,
the agent program must set this argument to zero. When an agent
program does not supply a selection string argument, ACMS initializes
the ACMS$SELECTION_STRING workspaces with spaces.

Submitter Services 5–9



ACMS$CALL

• extended_status.wt.dx

When ACMS ends a task, it returns the message text associated with the
task’s final completion status back to the agent program. To access the
message text after a task has completed, initialize the extended status
argument with the address of an OpenVMS string descriptor into which
ACMS can store the data.

The extended status argument is optional. If the agent program does not
need to access the task’s completion status message text, set this argument to
zero. If you do not supply the address of a string descriptor in this argument,
ACMS does not return the message text from the application to the agent
program.

Note

The extended status string cannot be filled if the application execution
controller (EXC) cannot start a task (for example, if the EXC terminates
abnormally, if a DECnet link terminates, or if EXC runs out of virtual
memory). The extended status string also cannot be filled if the submitter
services detect an error — for example, if the submitter services receive
an invalid procedure argument list, there is an internal error, or a task
ends because the EXC terminated abnormally before completing the task.

• I/O argument

There are several ways to pass I/O information to a task. The preferred
method is to pass the exchange I/O ID as the I/O argument. ACMS supports
the use of the other methods for compatibility with previously-developed
agent programs.

The methods of passing I/O information to the task are:

exchange_io_id.rq.r

The I/O argument can be an exchange I/O ID returned from the
ACMS$INIT_EXCHANGE_IO service.

terminal_name.rt.dx

The I/O argument can also be a terminal specification for tasks that
perform request I/O or terminal I/O.

stream_id.rq.r

For stream I/O tasks, you can initialize this argument with the address of
the stream ID.

For tasks that do not perform I/O, you can set this argument to zero. If
the agent program does not pass any workspaces to the task, it can omit
this argument.

• workspaces

You supply workspaces to tasks in the fourth and successive arguments of
the task’s argument list. The workspace supplied in the fourth argument
is used to initialize the first task argument workspace defined in the TASK
ARGUMENTS clause in the task definition. The fifth argument is used to
initialize the second workspace defined as a task argument in the TASK
ARGUMENTS clause, and so on. Workspaces are passed to the task by
descriptor. Therefore, initialize each workspace argument with the address
of an OpenVMS string descriptor that references the workspace data. The

5–10 Submitter Services



ACMS$CALL

read, write, or modify access to each workspace is determined by the TASK
ARGUMENTS clause in the task:

workspace_n.rt.dx

workspace_n.wt.dx

workspace_n.mt.dx

Workspace arguments are optional. If you do not want to supply one or more
workspaces to a task, initialize the corresponding arguments in the task’s
argument list to zero. If you do not supply data to a workspace defined in
a task as a TASK ARGUMENT, ACMS initializes that workspace with the
default contents from the .TDB or with zeros.

See Section 5.1 and Section 5.2 for detailed information on how to pass a
workspace to a task. See the VR_AGENT.C program and the VR_FAST_
CHECKIN_TASK.TDF task definition in the ACMS$EXAMPLES directory for
an example of an agent program calling a task.

tid
The transaction ID (TID) that the $START_TRANS service returns.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Note

If an agent program attempts to supply more workspace arguments to a task
than there are TASK ARGUMENT workspaces defined for that task, then
the ACMS$CALL and ACMS$START_CALL services complete and return
the ‘‘%ACMS-F-ERRREADARG, Error during task initialization: cannot
read an argument in argument list’’ error. The agent program can use the
ACMS$GET_PROCEDURE _INFO service to determine the correct number of
TASK ARGUMENT workspaces defined for the task.

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion. The
final status is in the completion
status block.

ACMS$_CALL_CANCELLED Error Task was cancelled by task
submitter.

ACMS$_ERRREADARG Error Error during task initialization;
cannot read an argument in the
argument list.

ACMS$_EXCPTN_
STEPACTN

Error Exception results from a step
action in the task definition.

Submitter Services 5–11



ACMS$CALL

Status Severity Level Description

ACMS$_NEED_DEVICE Error Task requires a device; none
provided.

ACMS$_NEED_DEVORRR Error Task requires a device name or
RR server.

ACMS$_NEED_IOID Error Task is defined with I/O.
ACMS$_INSUFPRM Error Not enough arguments were

passed to this service.
ACMS$_INTERNAL Error Internal error.
ACMS$_INVARGLST Error The argument list is invalid.
ACMS$_INVASTADR Error The AST address was invalid.
ACMS$_INVCMPSTS Error The completion status block

was invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVPROCID Error The procedure ID was invalid.
ACMS$_INVSUB Error The submitter ID was invalid.
ACMS$_INVTID Error Returned if ACMS does not

have access to the Transaction
ID (TID). The symbol is not
defined as a universal symbol
and will result in a link error
if declared and accessed as a
global symbol. This symbol has
not been defined since ACMS
Version 3.3b.

ACMS$_NOSUCH_PROC Error There is no such procedure in
the package.

ACMS$_NOSUCH_PKG Error There is no such application
defined.

ACMS$_NOTAVAIL Error The feature is not yet available.
ACMS$_NOTRANSADB Error No transaction support in

the application database file
(.ADB).

ACMS$_NOTRANSNODE Error ACMS does not support
transactions on the application
node.

ACMS$_NTSNIN Error Submitter was not signed in.
ACMS$_OPR_CANCELLED Error Task canceled by system

operator.
ACMS$_SRVDEAD Error The server or EXC stopped

unexpectedly.
ACMS$_SRVNOTFOUND Error The server was not found.
ACMS$_SIGNOUT_ACTIVE Error A sign-out is active.

5–12 Submitter Services



ACMS$CALL

Status Severity Level Description

ACMS$_SYNASTLVL Error Synchronous services may not
be called from AST level.

ACMS$_TASKNOTCOMP Error Task is not composable.
ACMS$_TRANSTIMEDOUT Error Transaction did not complete

within specified time limit.
ACMS$_USERMODE Error This service must be called

from user mode.

Submitter Services 5–13



ACMS$CANCEL_CALL

5.5 ACMS$CANCEL_CALL

Cancels a task that was started by the task submitting agent program. This
service only cancels tasks that were started with ACMS$START_CALL. The
agent program must also use the ACMS$WAIT_FOR_CALL_END service with
this service to get notification of the call canceling.

Use ACMS$CANCEL_CALL to cancel tasks when a terminal user presses Ctrl/Y .
ACMS expects a task to be canceled when the terminal user presses Ctrl/Y (or
Ctrl/C , if the server is not running a task that enables a Ctrl/C handler). If an
agent program does not cancel any active tasks when Ctrl/Y is pressed, then Ctrl/Y

cancels are disabled and the tasks run to completion.

Note

The effect of this call might not be immediate or successful, due to the
asynchronous nature of ACMS.

Format

ACMS$CANCEL_CALL ([submitter_id.rq.r],
call_id.rq.r,
[reason_code.rlu.r])

ACMS$CANCEL_CALL_A ([submitter_id.rq.r],
call_id.rq.r,
[reason_code.rlu.r],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

submitter_id
The identification of the task submitter calling the task. The ACMS$SIGN_IN
service returns this ID. This parameter is optional for agent programs that
do not use ACMS$SIGN_IN. Use of the default submitter feature, however, is
not recommended for new development. See Section 2.1.6 and Section 2.1.7 for
discussions of this point.

call_id
The identification returned by ACMS$START_CALL. The call must be started by
the same submitter as the one using the ACMS$CANCEL_CALL service.

reason_code
The reason code contains the reason for the cancel request. The parameter is
passed to the application execution controller. The default is the following:

ACMS$_CALL_CANCELLED: the task was canceled by the task
submitter.

The reason code is the extended status of the call and the completion status
returned on the ACMS$WAIT_FOR_CALL_END service.

5–14 Submitter Services



ACMS$CANCEL_CALL

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion.
The final status is in the
completion status block.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INTERNAL Error Internal error.
ACMS$_INVASTADR Error The AST address was invalid.
ACMS$_INVCALLID Error The call ID was invalid.
ACMS$_INVCMPSTS Error The completion status block

was invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVREACOD Error The reason code parameter

was invalid.
ACMS$_INVSUB Error The submitter ID was invalid.
ACMS$_NTSNIN Error Submitter was not signed in.
ACMS$_OBSCALLID Error The call ID is obsolete.
ACMS$_SIGNOUT_ACTIVE Error A sign-out is active.
ACMS$_SYNASTLVL Error Synchronous services may not

be called from AST level.
ACMS$_USERMODE Error This service must be called

from user mode.

Submitter Services 5–15



ACMS$GET_PROCEDURE_INFO

5.6 ACMS$GET_PROCEDURE_INFO

Finds and returns the procedure ID for the task, the number of workspace
arguments the agent program can pass to a task in an ACMS application, and
the I/O method (forms, terminal, request, stream, or none).

If application reprocessing is necessary, use ACMS$GET_PROCEDURE_
INFO before using ACMS$CALL, ACMS$CALL_A, ACMS$START_CALL, or
ACMS$START_CALL_A.

Format

ACMS$GET_PROCEDURE_INFO ([submitter_id.rq.r],
procedure.rt.dx,
package.rt.dx,
item_list.rx.r)

ACMS$GET_PROCEDURE_INFO_A ([submitter_id.rq.r],
procedure.rt.dx,
package.rt.dx,
item_list.rx.r,
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

submitter_id
The identification of the task submitter that the ACMS$SIGN_IN service returns.

This parameter is optional for agent programs that do not use ACMS$SIGN_IN.
Use of the default submitter feature, however, is not recommended for new
development. See Section 2.1.6 and Section 2.1.7 for discussions of this point.

procedure
The name of the task for which you want to find information. The name passed
must be in capital letters, but can include trailing blanks.

package
The name of the application from which you want to select the task. The name
passed must be in capital letters, but can include trailing blanks. However, if the
package parameter is a logical name, then the equivalence name or names cannot
contain trailing blanks.

item_list
The list of one or more item descriptors that describe the task I/O method,
WAIT/DELAY information, or procedure ID. An item descriptor has the following
format:

TAY-0210-AD�

Item Code      Buffer Length�

Buffer Address�

Return Length Address�

31� 0�

Item descriptors have the following characteristics:

5–16 Submitter Services



ACMS$GET_PROCEDURE_INFO

• Buffer length

The length of the buffer pointed to by the buffer address.

• Item code

The symbolic name defining the requested information.

• Buffer address

The address of a buffer to receive the requested information.

• Return length address

The address of the word to receive the length of the information returned. If
you specify this address as zero, no length is returned.

The possible item codes are:

• ACMS$K_PROC_PROCEDURE_ID

The quadword procedure ID associated with the input task name and
application name. The buffer to receive the information returned by
ACMS$K_PROCEDURE_ID is equal in length to ACMS$S_PROCEDURE_ID,
eight bytes. The agent program uses the procedure ID to identify a task when
the agent program calls the task using the ACMS$CALL or ACMS$START_
CALL service. The procedure ID becomes invalid when either the application
stops or all the task submitters who selected tasks in the application sign out.

If the ACMS$CALL or ACMS$START_CALL services use a procedure ID
that has changed, they receive the ACMS$_NOSUCH_PKG error message.
When an agent program receives this error, it can call the ACMS$GET_
PROCEDURE_INFO service to get the new procedure ID for the task.

• ACMS$K_PROC_IO_METHOD

The I/O method used by the task. ACMS$K_PROC_IO_METHOD returns a
longword. This value can be one of the following symbols:

ACMS$K_IO_TERMINAL

The task uses the terminal directly. The task cannot be selected remotely.

ACMS$K_IO_DECFORMS

The task performs HP DECforms request I/O in exchange steps. The task
can be selected remotely.

ACMS$K_IO_REQUEST

The task either performs TDMS request I/O in exchange steps or uses the
RI. The task can be selected remotely.

ACMS$K_IO_STREAM

The task uses ACMS stream I/O. The agent program may have to do I/O
work for this task. The task can be selected remotely.

ACMS$K_IO_NONE

The task does not do any I/O. The agent program does not do I/O work for
this task. The task can be selected remotely.

• ACMS$K_PROC_WAIT_DELAY_ACTION

The wait/delay action defined for this task. ACMS$K_PROC_WAIT_DELAY_
ACTION returns a longword. The value can be one of the following symbols:

ACMS$K_WAIT

Submitter Services 5–17



ACMS$GET_PROCEDURE_INFO

The WAIT clause controls whether or not ACMS displays a message
prompting users to press Return . (Pressing Return clears the terminal
screen and displays the previous ACMS menu.)

ACMS$K_DELAY

The DELAY clause controls whether or not ACMS pauses after a task
finishes running before clearing the screen and displaying the ACMS
menu.

ACMS$K_NO_ACTION

• ACMS$K_PROC_WORKSPACE_COUNT

The number of workspaces the agent program passes when it calls a task in
an ACMS application. ACMS$K_PROC_WORKSPACE_COUNT returns a
longword.

You must end the list with an item descriptor that has an item code of zero.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful
completion.

ACMS$_PENDING Informational Successful operation pending
asynchronous completion.
The final status is in the
completion status block.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INTERNAL Error Internal error.
ACMS$_INVASTADR Error The AST address was

invalid.
ACMS$_INVBUFADR Error The buffer address in an

item descriptor was invalid.
ACMS$_INVCMPSTS Error The completion status block

was invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVITEMCODE Error The item code in an item

descriptor was invalid.
ACMS$_INVITEMDESC Error An item descriptor in the

item list was invalid.
ACMS$_INVITEMLIST Error The item list was invalid.
ACMS$_INVPACKAGE Error The application name was

invalid.

5–18 Submitter Services



ACMS$GET_PROCEDURE_INFO

Status Severity Level Description

ACMS$_INVPROCEDURE Error The procedure name was
invalid.

ACMS$_INVRETLEN Error The return length in an item
descriptor was invalid.

ACMS$_INVSUB Error The submitter ID was
invalid.

ACMS$_NOSUCH_PKG Error There is no such application
defined.

ACMS$_NOSUCH_PROC Error There is no such procedure
defined.

ACMS$_NTSNIN Error Submitter was not signed in.
ACMS$_SIGNOUT_ACTIVE Error A sign-out is active.
ACMS$_SYNASTLVL Error Synchronous services may

not be called from AST level.
ACMS$_USERMODE Error This service must be called

from user mode.

Submitter Services 5–19



ACMS$START_CALL

5.7 ACMS$START_CALL

Submits an ACMS task. This service completes when the task has been
submitted. It returns a call ID to the agent program.

Before using ACMS$START_CALL or ACMS$START_CALL_A, the agent
program must use the ACMS$GET_PROCEDURE_INFO service to get the
task procedure ID and the task I/O method. Because ACMS$START_CALL only
starts the task, you must use it with the ACMS$WAIT_FOR_CALL_END service,
which waits for the task to end.

If the task being called performs stream I/O, the agent program must create a
stream using the ACMS$INIT_EXCHANGE_IO service before calling the task.
This service creates the stream, connects to it, and returns a connect ID to the
agent program. See Chapter 6 for details regarding stream creation.

An agent program must also call the ACMS$WAIT service when it uses the
asynchronous service ACMS$START_CALL_A. See Chapter 2 for a complete
explanation of the ACMS$WAIT service.

Format

ACMS$START_CALL ([submitter_id.rq.r],
procedure_id.rq.r,
call_id.wq.r,
[arguments.rz.r],
[tid.ro.r])

ACMS$START_CALL_A ([submitter_id.rq.r],
procedure_id.rq.r,
call_id.wq.r,
[arguments.rz.r],
[tid.ro.r ],
[comp_status.wq.r ],
[efn.rbu.r ],
[astadr.szem.r ],
[astprm.rz.v ] )

Parameters

submitter_id
The identification of the task submitter calling the task. The ACMS$SIGN_IN
service returns this ID.

This parameter is optional for agent programs that do not use ACMS$SIGN_IN.
Use of the default submitter feature, however, is not recommended for new
development. See Section 2.1.6 and Section 2.1.7 for discussions of this point.

procedure_id
The identification of the procedure to call. The agent program obtains the
procedure ID by calling the ACMS$GET_PROCEDURE_INFO service.

call_id
The identification that is produced by this service. The ACMS$WAIT_FOR_
CALL_END and the ACMS$CANCEL_CALL services use this ID later.

5–20 Submitter Services



ACMS$START_CALL

arguments
The list of arguments to pass. (See Section 5.1 for more information about using
the argument list.)

This is a standard OpenVMS argument list that contains:

• selection_string.rt.dx

An agent program passes data to the ACMS$SELECTION_STRING system
workspace in a task using the selection string argument. Initialize the
selection string argument in the argument list with the address of an
OpenVMS string descriptor that references the selection string data.

The selection string argument is optional. If the agent program does not
pass any information to the ACMS$SELECTION_STRING workspace,
the agent program must set this argument to zero. When an agent
program does not supply a selection string argument, ACMS initializes
the ACMS$SELECTION_STRING workspaces with spaces.

• extended_status.wt.dx

When ACMS ends a task, it returns the message text associated with the
task’s final completion status back to the agent program. To access the
message text after a task has completed, initialize the extended status
argument with the address of an OpenVMS string descriptor into which
ACMS can store the data.

The extended status argument is optional. If the agent program does not
need to access the task’s completion status message text, set this argument to
zero. If you do not supply the address of a string descriptor in this argument,
ACMS does not return the message text from the application to the agent
program.

Note

The extended status string cannot be filled if the application execution
controller (EXC) cannot start a task — for example, if the EXC terminates
abnormally, if the DECnet link terminates, or if EXC runs out of virtual
memory. The extended status string also cannot be filled if the submitter
services detect an error — for example, if the submitter services receive
an invalid procedure argument list, there is an internal error, or a task
ends because the EXC terminated abnormally before completing the task.

• I/O argument

There are several ways to pass I/O information to a task. The preferred
method is to pass the exchange I/O ID as the I/O argument. ACMS supports
the use of the other methods for compatibility with previously-developed
agent programs.

The methods of passing I/O information to the task are:

exchange_io_id.rq.r

The I/O argument can be an exchange I/O ID returned from the
ACMS$INIT_EXCHANGE_IO service.

terminal_name.rt.dx

The I/O argument can also be a terminal specification for tasks that
perform request I/O or terminal I/O.

Submitter Services 5–21



ACMS$START_CALL

stream_id.rq.r

For stream I/O tasks, you can initialize this argument with the address of
the stream ID.

For tasks that do not perform I/O, you can set this argument to zero. If
the agent program does not pass any workspaces to the task, it can omit
this argument.

• workspaces

You supply workspaces to tasks in the fourth and successive arguments of
the task’s argument list. The workspace supplied in the fourth argument
initializes the first task argument workspace defined in the TASK
ARGUMENTS clause of the task definition. The fifth argument initializes the
second workspace defined as a task argument in the TASK ARGUMENTS
clause, and so on. Workspaces are passed to the task by descriptor. Therefore,
initialize each workspace argument with the address of an OpenVMS string
descriptor that references the workspace data. The read, write, or modify
access to each workspace is determined by the TASK ARGUMENTS clause in
the task:

workspace_n.rt.dx

workspace_n.wt.dx

workspace_n.mt.dx

Workspace arguments are optional. If you do not want to supply one or more
workspaces to a task, initialize the corresponding arguments in the task’s
argument list to zero. If you do not supply data to a workspace defined in a
task as a task argument, ACMS initializes that workspace with the default
contents from the .TDB or with zeros.

See Section 5.1 and Section 5.2 for detailed information on how to pass a
workspace to a task. See the VR_AGENT.C program and the VR_FAST_
CHECKIN_TASK.TDF task definition in the ACMS$EXAMPLES directory for
an example of an agent program calling a task.

tid
The transaction ID (TID) that the $START_TRANS service returns.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Note

If an agent program attempts to supply more workspace arguments to a task
than there are TASK ARGUMENT workspaces defined for that task, then
the ACMS$CALL and ACMS$START_CALL services complete and return
the ‘‘%ACMS-F-ERRREADARG, Error during task initialization: cannot
read an argument in argument list’’ error. The agent program can use the
ACMS$GET_PROCEDURE _INFO service to determine the correct number of
TASK ARGUMENT workspaces defined for the task.

5–22 Submitter Services



ACMS$START_CALL

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion.
The final status is in the
completion status block.

ACMS$_ERRREADARG Error Error during task
initialization; cannot read
an argument in the argument
list.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INTERNAL Error Internal error.
ACMS$_INVARGLST Error The argument list is invalid.
ACMS$_INVASTADR Error The AST address was invalid.
ACMS$_INVCALLID Error The call ID was invalid.
ACMS$_INVCANAST Error The cancel user routine was

invalid.
ACMS$_INVCMPSTS Error The completion status block

was invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVEXTCANSTS Error The extended cancel status

was invalid.
ACMS$_INVPROCID Error The procedure ID was invalid.
ACMS$_INVSELSTR Error The selection string was

invalid.
ACMS$_INVSUB Error The submitter ID was invalid.
ACMS$_INVTID Error Returned if ACMS does not

have access to the Transaction
ID (TID). The symbol is not
defined as a universal symbol
and will result in a link error
if declared and accessed as a
global symbol. This symbol
has not been defined since
ACMS Version 3.3b.

ACMS$_NOSUCH_PKG Error There is no such application
defined.

ACMS$_NOTAVAIL Error The feature is not yet
available.

ACMS$_NOTRANSADB Error No transaction support in
the application database file
(ADB).

Submitter Services 5–23



ACMS$START_CALL

Status Severity Level Description

ACMS$_NOTRANSNODE Error ACMS does not support
transactions on the
application node.

ACMS$_NTSNIN Error Submitter was not signed in.
ACMS$_SRVDEAD Error The server died unexpectedly.
ACMS$_SRVNOTFOUND Error The server was not found.
ACMS$_SIGNOUT_ACTIVE Error A sign-out is active.
ACMS$_SYNASTLVL Error Synchronous services may not

be called from AST level.
ACMS$_TASKNOTCOMP Error Task is not composable.
ACMS$_USERMODE Error This service must be called

from user mode.

5–24 Submitter Services



ACMS$WAIT_FOR_CALL_END

5.8 ACMS$WAIT_FOR_CALL_END

Waits for a task to complete. This service waits only for tasks that were started
with ACMS$START_CALL. This service also reports access errors that occurred
after the task was submitted.

When using the asynchronous ACMS$WAIT_FOR_CALL_END_A service, an
agent program must also use the ACMS$WAIT service. See Chapter 2 for a
complete explanation of the ACMS$WAIT service.

Note

Access control list (ACL) checking for ACMS tasks is done after the task
has been submitted. Access errors are reported in the completion status
returned in the ACMS$WAIT_FOR_CALL_END service.

Format

ACMS$WAIT_FOR_CALL_END ([submitter_id.rq.r],
call_id.rq.r )

ACMS$WAIT_FOR_CALL_END_A ([submitter_id.rq.r],
call_id.rq.r,
[ comp_status.wq.r ],
[ efn.rbu.r ],
[ astadr.szem.r ],
[ astprm.rz.v ] )

Parameters

submitter_id
The identification of the task submitter calling the task. This ID is returned on
the ACMS$SIGN_IN service.

This parameter is optional for agent programs that do not use ACMS$SIGN_IN.
Use of the default submitter feature, however, is not recommended for new
development. See Section 2.1.6 and Section 2.1.7 for discussions of this point.

call_id
The call ID for which this service is waiting. The ACMS$START_CALL service
returns this ID.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Submitter Services 5–25



ACMS$WAIT_FOR_CALL_END

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_CANCELD Informational The task was cancelled.
ACMS$_PENDING Informational Successful operation

pending asynchronous
completion. The
final status is in the
completion status block.

ACMS$_WAIT_PROG Warning Wait-for-call-end is
already in progress for
this call.

ACMS$_APPL_NOT_STARTED Error Cannot run task until
application is started.

ACMS$_CALL_CANCELLED Error Task was canceled by the
task submitter.

ACMS$_EXCPTN_STEPACTN Error Exception results from
a step action in the task
definition.

ACMS$_INSUFPRM Error Not enough arguments
were passed to this
service.

ACMS$_INVASTADR Error The AST address was
invalid.

ACMS$_INVCALLID Error The call ID was invalid.
ACMS$_INVCMPSTS Error The completion status

block was invalid.
ACMS$_INVEFN Error The event flag was

invalid.
ACMS$_INVSUB Error The submitter ID was

invalid.
ACMS$_MAX_TASKS Error Error during task

initialization; application
maximum task instances
exceeded.

ACMS$_NEED_DEVICE Error Task requires a device;
none provided.

ACMS$_NEED_DEVORR Error Task requires a device
name or RR server.

ACMS$_NEED_IOID Error Task is defined with I/O.
ACMS$_NTSNIN Error Submitter was not signed

in.
ACMS$_OBSCALLID Error The call ID is obsolete.
ACMS$_OPR_CANCELED Error Task canceled by system

operator.

5–26 Submitter Services



ACMS$WAIT_FOR_CALL_END

Status Severity Level Description

ACMS$_SECURITY_CHECK_
FAILED

Error Error during task
initialization; security
check failed.

ACMS$_SIGNOUT_ACTIVE Error A sign-out is active.
ACMS$_SRVDEAD Error The server stopped

unexpectedly.
ACMS$_SRVNOTFOUND Error The server was not found.
ACMS$_SUB_CANCELED Error The submitter was

canceled via an operator
request.

ACMS$_SYNASTLVL Error Synchronous services
may not be called from
AST level.

ACMS$_TASK_ABORT Error The task completed
abnormally.

ACMS$_TASK_SP_DIED Error Cancel results from the
server process dying.

ACMS$_TRANSTIMEDOUT Error Transaction did not
complete within specified
time limit.

ACMS$_TSS$_ILLDEVCHAR Error Cancel results from a
TDMS error; illegal
device characteristics.

ACMS$_USERMODE Error This service must be
called from user mode.

Submitter Services 5–27





6
Stream Services

This chapter discusses how to use streams between ACMS and an agent program.
This chapter also provides reference material for calling the stream services in
agent programs.

Streams are ACMS communication channels that permit ACMS to communicate
with devices not supported by HP DECforms or TDMS. In most instances, you
can now use the Request Interface (RI) to communicate with unsupported devices.
Stream services are still useful, however, if:

• You have multithreaded agents and asynchronous processing

• You send large amounts of data in one direction only

Note

Stream services are supported but will not be developed further in
subsequent versions of ACMS.

ACMS can use streams to communicate with agents. Agents can communicate
with unsupported devices.

You use ACMS$INIT_EXCHANGE_IO to create and connect a stream. See
Section 4.6 for details regarding ACMS$INIT_EXCHANGE_IO.

You use ACMS$TERM_EXCHANGE_IO to disconnect a stream and delete a
stream. See Section 4.9 for details regarding ACMS$TERM_EXCHANGE_IO.

You use ACMS$WAIT_FOR_STREAM_IO and ACMS$REPLY_TO_STREAM_IO
to wait for and reply to messages from the EXC.

Note

If an agent program enables stream I/O and associates it with a
submitter, the agent program must call ACMS$WAIT_FOR_STREAM_IO
for all tasks (except tasks that do no terminal I/O), whether or not the
task performs stream I/O.

Figure 6–1 shows an agent program using a stream to communicate with ACMS.

Stream Services 6–1



Stream Services

Figure 6–1 Using Stream Services to Communicate with ACMS

Agent

Initialization

Submitter

Task

Sign Out

Sign In

Termination

ACMS

TAY-0131-AD

EXC

Servers

.ADBs

.TDBs

Stream
Legend:

Stream

Exchange I/O

Services

Services

Exchange I/O

6.1 Overview of Stream Services
Table 6–1 lists the services for stream communication and gives a brief
description of each. (Reference material in this chapter lists these services
in alphabetical order.)

6–2 Stream Services



Stream Services
6.1 Overview of Stream Services

Table 6–1 SI Stream Services

Service Name Description

ACMS$WAIT_FOR_STREAM_IO Waits for a message on the stream. Use
the ACMS$REPLY_TO_STREAM_IO after
processing any information to acknowledge the
exchange.

If an agent program enables stream I/O and
associates it with a submitter, the agent
program must call ACMS$WAIT_FOR_
STREAM_IO for all tasks (except tasks that
do no terminal I/O), whether or not the task
performs stream I/O.

ACMS$REPLY_TO_STREAM_IO Acknowledges completion of a stream exchange
step that was detected using ACMS$WAIT_
FOR_STREAM_IO. The task instance then
resumes execution.

Use this service in combination with
ACMS$WAIT_FOR_STREAM_IO.

When a task performs stream I/O, the block step for that task must use the
WITH STREAM I/O phrase. Also, if the task performs stream I/O, the agent
program must call the task using either the ACMS$START_CALL service or the
asynchronous ACMS$CALL_A service. The EXC performs stream I/O for a task
when it encounters the READ, READ WITH PROMPT, and WRITE clauses in the
exchange step of a task definition. For example:

BLOCK WORK
WITH STREAM I/O

task1_exchange1:

EXCHANGE IS
READ ACMS$DATA_WORKSPACE;
task1_process1:

PROCESSING IS
CALL procedure-name USING ACMS$DATA_WORKSPACE;
task1_exchange2:

EXCHANGE IS
WRITE ACMS$DATA_WORKSPACE;

END BLOCK;

The EXC is the active end of the stream because it interprets the task definition
and sends and requests information from the agent program. The agent program
is the passive end of the stream because it does not initiate any communication,
but waits for and reacts to requests from the EXC.

The agent program calls the ACMS$WAIT_FOR_STREAM_IO service to wait for
a request from the EXC. After processing the information, the agent program
calls the ACMS$REPLY_TO_STREAM_IO service to respond to the request.

Before any communication can begin, however, the agent program must initialize
a stream. Earlier versions of ACMS used four other stream services. These
earlier services have been superseded. The superseded services are:

• ACMS$CONNECT_STREAM

• ACMS$CREATE_STREAM

• ACMS$DELETE_STREAM

Stream Services 6–3



Stream Services
6.1 Overview of Stream Services

• ACMS$DISCONNECT_STREAM

ACMS supports these services for agent programs that have already been
developed. In new agent programs, however, use ACMS$INIT_EXCHANGE_IO
and ACMS_TERM_EXCHANGE_IO. Whenever practical, replace superseded
services with ACMS$INIT_EXCHANGE_IO and ACMS_TERM_EXCHANGE_IO.

Superseded services are discussed in Appendix A.

6–4 Stream Services



ACMS$REPLY_TO_STREAM_IO

6.2 ACMS$REPLY_TO_STREAM_IO

This service responds to I/O requests on the stream. If an input string is
provided, the agent program must gather information for the ACMS$WAIT_FOR_
STREAM_IO input string and fill the string before calling this service.

Format

ACMS$REPLY_TO_STREAM_IO (connect_id.rq.r,
io_id.wq.r,
[io_status.rl.r])

ACMS$REPLY_TO_STREAM_IO_A (connect_id.rq.r,
io_id.wq.r,
[io_status.rl.r],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

connect_id
The identification of the stream you are replying to. The ACMS$INIT_
EXCHANGE_IO service returns this connect ID.

io_id
The identification of the message you are replying to. The ACMS$WAIT_FOR_
STREAM_IO service returns this ID.

io_status
The agent program must provide a success value if it wishes to complete the
exchange and allow the task to continue. The agent program must provide a
failure value if the agent program has detected an error and wishes to cancel the
exchange and cancel the task.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Stream Services 6–5



ACMS$REPLY_TO_STREAM_IO

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful
completion.

ACMS$_PENDING Informational Successful operation pending
asynchronous completion.
The final status is in the
completion status block.

ACMS$_BADCONID Error The connect ID is not
correct; either the stream is
not connected, the stream is
disconnected, or the connect
ID is corrupt.

ACMS$_BADIOID Error The I/O ID is not correct;
either there is no such I/O
request, the I/O request has
already been replied to, or
the I/O ID is corrupt.

ACMS$_CANOTDOIO Error Cannot perform stream I/O
on this connection. The
stream is not yet connected.

ACMS$_IONOTACT Error The specified I/O request
was not active.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INVASTADR Error The AST address was
invalid.

ACMS$_INVASTPRM Error The AST routine parameter
was invalid.

ACMS$_INVCMPSTS Error The completion status block
was invalid.

ACMS$_INVCONID Error The connect ID was invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVIOID Error The I/O ID was invalid.
ACMS$_STRMMSGTOOBIG Error The size of the objects,

including stream overhead,
is too large to send over the
stream.

ACMS$_SYNASTLVL Error You cannot call synchronous
services from AST level.

ACMS$_WRONGCON Error The specified I/O request
was not on this connection.

ACMS$_BADACTREC Fatal Bad record format in active
response message.

6–6 Stream Services



ACMS$WAIT_FOR_STREAM_IO

6.3 ACMS$WAIT_FOR_STREAM_IO

Waits for I/O messages. This service completes when the Application Execution
Controller (EXC) executes a READ or WRITE clause in the task definition. If an
agent program enables stream I/O and associates it with a submitter, the agent
program must call ACMS$WAIT_FOR_STREAM_IO for all tasks (except tasks
that do no terminal I/O), whether or not the task performs stream I/O.

When ACMS$WAIT_FOR_STREAM_IO returns the status code ACMS$_
SENDER_DISCONN, the EXC has disconnected from the stream. The agent
program then calls ACMS$WAIT_FOR_CALL_END to wait for the end of the
task.

Format

ACMS$WAIT_FOR_STREAM_IO (connect_id.rq.r,
output_object.wz.r,
input_object.wz.r,
io_id.wq.r,
[cancel_routine.zem.r],
[cancel_param.rz.v])

ACMS$WAIT_FOR_STREAM_IO_A (connect_id.rq.r,
output_object.wz.r,
input_object.wz.r,
io_id.wq.r,
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v],
[cancel_routine.zem.r],
[cancel_param.rz.v])

Parameters

connect_id
The identification of the stream on which you are waiting for data requests. The
ACMS$INIT_EXCHANGE_IO service returns this connect ID.

output_object
The message sent over the stream from the Application Execution Controller
(EXC) to the agent program.

This is a pointer to a string descriptor containing either a prompt or output
information from the EXC. The agent program can use this output as a terminal
prompt (if the task uses a terminal) or, for example, as a key to get a record from
a file. If there is no output, the parameter contains a zero; otherwise, it contains
the address of the string descriptor.

input_object
The address of the message to send over the stream from the agent program to
the EXC.

Stream Services 6–7



ACMS$WAIT_FOR_STREAM_IO

This is a pointer to an empty string descriptor reserved for reply information
from the agent. The agent program gathers input and puts it into this descriptor
before calling the ACMS$REPLY_TO_STREAM_IO service. If there is no input,
the parameter contains a zero; otherwise, it contains the address of the string
descriptor.

The agent program truncates the strings or blank fills them to the right as
necessary.

io_id
The identification that this service returns. ACMS$REPLY_TO_STREAM_IO
later uses this ID to distinguish which I/O request to reply to.

cancel_routine
When you use the cancel_routine parameter in an agent, the agent program is
notified if the ACMS EXC requests to cancel the current stream I/O operation. If
the cancel_routine parameter is omitted, the agent program is not notified of the
EXC request to cancel the stream I/O. The cancel_routine executes at AST level
and is passed the following parameters:

• cancel_param

The cancel parameter that was passed with the ACMS$WAIT_FOR_
STREAM_IO service.

• connect_id

The address of the two-longword identification of the current stream
connection. ACMS$INIT_EXCHANGE_IO passes this ID.

• io_id

The address of the two-longword identification of the stream I/O request to
cancel.

After receiving cancel notification, the agent program responds to the cancellation
by calling ACMS$REPLY_TO_STREAM_IO. Until the agent program calls
ACMS$REPLY_TO_STREAM_IO, ACMS cannot cancel the task.

cancel_param
The value to be passed to the cancel routine.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

6–8 Stream Services



ACMS$WAIT_FOR_STREAM_IO

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful
completion.

ACMS$_PENDING Informational Successful operation pending
asynchronous completion.
The final status is in the
completion status block.

ACMS$_DISC_PURGE Warning A disconnect purged the I/O
request.

ACMS$_SENDER_DISCONN Warning The sender has disconnected
from the stream.

ACMS$_BADCONID Error The connect ID is not
correct; either the stream is
not connected, the stream is
disconnected, or the connect
ID is corrupt.

ACMS$_CANOTDOIO Error Cannot perform stream I/O
on this connection. The
stream is not yet connected.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INVASTADR Error The AST address was
invalid.

ACMS$_INVASTPRM Error The AST routine parameter
was invalid.

ACMS$_INVCMPSTS Error The completion status block
was invalid.

ACMS$_INVCONID Error The connect ID was invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVINOBJ Error The input object was invalid.
ACMS$_INVIOID Error The I/O ID was invalid.
ACMS$_INVOUTOBJ Error The output object was

invalid.
ACMS$_IO_ACTIVE Error An I/O request is already

active on this connect; only
one I/O request is allowed at
a time.

ACMS$_SYNASTLVL Error You cannot call synchronous
services from AST level.

Stream Services 6–9





7
Sample Agent Programs

This chapter includes examples of agent programs written in C, FORTRAN,
BLISS, and Pascal:

• The first example is a user-written agent program in C that starts a
distributed transaction.

• The second example is a FORTRAN general-purpose agent program that
handles all types of exchange I/O except stream I/O and Request Interface
I/O.

• The third example is a C agent program that submits tasks performing
stream I/O or no I/O.

• The fourth example is a BLISS agent program that shows the use of
superseded exchange I/O services. This example is provided for the
convenience of programmers who must maintain agent programs written for
earlier versions of ACMS. Do not use the techniques shown in this example
when developing new agents.

• The fifth example is a Pascal agent program that shows the use of the
ACMS$WAIT service.

7.1 C Agent Program that Starts a Distributed Transaction
Example 7–1 is a user-written agent program in C that starts a distributed
transaction. The agent program uses the $START_TRANSW system service to
start the distributed transaction.

The flow of events in the agent program is as follows (the numbers correspond to
those in the sample program):

1 Get reservation information from the terminal operator.

2 Start a distributed transaction.

3 Call the task VR_FAST_CHECKIN_TASK.

4 Commit the distributed transaction if the called task completes successfully.

5 Roll back the distributed transaction if the called task fails.

Sample Agent Programs 7–1



Sample Agent Programs
7.1 C Agent Program that Starts a Distributed Transaction

HP ACMS for OpenVMS Writing Applications contains additional information
about this program.

Example 7–1 C Agent Program that Starts a Distributed Transaction

/**************************************************************/
/* */
/* Version: 01 */
/* Authors: HP */
/* */
/**************************************************************/
/**************************************************************/
/* F U N C T I O N A L D E S C R I P T I O N */
/* */
/* */
/* VR_AGENT is an ACMS agent program that acts like an ATM */
/* where you type in your reservation number and odometer */
/* reading, drop the keys in a slot, and walk away. The */
/* system bills you later for the amount you owe. The */
/* agent uses QIOs to get the data, starts a distributed */
/* transaction, then calls a task to do the work. The task */
/* consists of a nonparticipating step that validates the */
/* reservation number, a step that queues a task to do the */
/* actual checkin work, and a step that writes a history */
/* record. If the task succeeds, the agent commits the */
/* transaction. If the task fails, the agent aborts the */
/* the transaction and notifies the user of the problem. */
/* The agent is also responsible for handling errors, such */
/* as transaction timeouts. */
/* */
/**************************************************************/

/*************************************************/
/* */
/* Include’s / Define’s / Macros Required */
/* */
/*************************************************/

#include descrip
#include iodef
#include rmsdef
#include ssdef
#include stdio
#include stsdef

#include ACMS$SUBMITTER
#include ACMS$STREAM

#define MAX_RESERVATION 10
#define MAX_ODOMETER 6
#define MAX_RETRY 5

#define TRUE 1
#define FALSE 0
#define CANCEL ’C’

#define check_status(stat) if (!(stat & 1)) LIB$STOP(stat)

(continued on next page)

7–2 Sample Agent Programs



Sample Agent Programs
7.1 C Agent Program that Starts a Distributed Transaction

Example 7–1 (Cont.) C Agent Program that Starts a Distributed Transaction

/*****************************/
/* */
/* Declare Global Data */
/* */
/*****************************/

globalvalue ACMS$_NOSUCH_PKG;
globalvalue ACMS$_SRVDEAD;
globalvalue ACMS$_TRANSTIMEDOUT;

globalvalue RDB$_DEADLOCK;
globalvalue RDB$_LOCK_CONFLICT;
globalvalue RDMS$_DEADLOCK;
globalvalue RDMS$_LCKCNFLCT;
globalvalue RDMS$_TIMEOUT;

typedef struct {
short int bufsize;
short int itmcode;
int bufadr;
int retlen;

} item;

typedef int quadword[2];

struct fast_check_in_blk {
int reservation_id;
int return_odometer_reading;
quadword actual_return_date;

} fast_check_in_wksp;

struct io_stat_blk {
short int status ;

short int msg_len ;
int unused;

} iosb;

struct {
item pr_id;

int terminator;
} task_info_list;

int status, *tid[ 4 ], argument_list[ 5 ];

short chan;

char task_status[ 80 ];

$DESCRIPTOR(task_status_desc, task_status);

$DESCRIPTOR(task_name_desc, "VR_FAST_CHECKIN_TASK");
$DESCRIPTOR(appl_name_desc, "VR_APPL");

struct dsc$descriptor_s fast_check_in_wksp_desc;

struct ACMS$SUBMITTER_ID submitter_id;
struct ACMS$PROCEDURE_ID procedure_id;
struct ACMS$CALL_ID call_id;

(continued on next page)

Sample Agent Programs 7–3



Sample Agent Programs
7.1 C Agent Program that Starts a Distributed Transaction

Example 7–1 (Cont.) C Agent Program that Starts a Distributed Transaction

main ()

/**************************************************************************/
/* */
/* Get procedure information to see if the application is running. */
/* */
/* While the application is up and running, prompt user for */
/* reservation ID and odometer reading. */
/* */
/* If the user enters the data, process the fast checkin transaction. */
/* */
/* If the user aborts, then notify the user that the transaction was */
/* not processed. */
/* */
/**************************************************************************/
{

for (;;)
{

status = initialization ();

check_status(status);

status = ACMS$GET_PROCEDURE_INFO(&submitter_id,
&task_name_desc,
&appl_name_desc,
&task_info_list);

while (status & STS$M_SUCCESS)
{

status = get_data (); 1

if (status & STS$M_SUCCESS)
status = process_this_transaction();

else if (status == RMS$_EOF)
status = report_user_abort();

check_status(status);

status = ACMS$GET_PROCEDURE_INFO(&submitter_id,
&task_name_desc,
&appl_name_desc,
&task_info_list);

}

if (status == ACMS$_NOSUCH_PKG)
status = application_not_running();

check_status(status);

status = termination ();

check_status(status);

}

}

(continued on next page)

7–4 Sample Agent Programs



Sample Agent Programs
7.1 C Agent Program that Starts a Distributed Transaction

Example 7–1 (Cont.) C Agent Program that Starts a Distributed Transaction

initialization ()

/************************************************/
/* */
/* Assign channel and sign user in to ACMS. */
/* Set up descriptors, task info list, and */
/* argument lists for later processing */
/* */
/************************************************/

{
$DESCRIPTOR(terminal, "SYS$COMMAND");

status = SYS$ASSIGN (&terminal, &chan,0,0);

if (status & STS$M_SUCCESS)
status = ACMS$SIGN_IN(&submitter_id, 0, 0);

if (status & STS$M_SUCCESS)
{

fast_check_in_wksp_desc.dsc$w_length = sizeof(fast_check_in_wksp);
fast_check_in_wksp_desc.dsc$a_pointer = &fast_check_in_wksp;
fast_check_in_wksp_desc.dsc$b_dtype = DSC$K_DTYPE_T;
fast_check_in_wksp_desc.dsc$b_class = DSC$K_CLASS_S;

task_info_list.pr_id.bufsize = ACMS$S_PROCEDURE_ID;
task_info_list.pr_id.itmcode = ACMS$K_PROC_PROCEDURE_ID;
task_info_list.pr_id.bufadr = &procedure_id;
task_info_list.pr_id.retlen = 0;
task_info_list.terminator = 0;

argument_list[ 0 ] = 4;
argument_list[ 1 ] = 0;
argument_list[ 2 ] = &task_status_desc;
argument_list[ 3 ] = 0;
argument_list[ 4 ] = &fast_check_in_wksp_desc;

}

return status;
}

get_data ()

/*********************************************************/
/* */
/* Prompt for reservation ID and odometer reading. */
/* */
/* For the purpose of this example, it is expected */
/* that input will consist of numeric characters & */
/* that the user will enter leading zeroes. */
/* */
/* e.g., Reservation ID 000123456 */
/* Odometer Reading 05575 */
/* */
/* Validation will be done to ensure this; the */
/* user can abort by entering "Cancel." */
/* */
/*********************************************************/

(continued on next page)

Sample Agent Programs 7–5



Sample Agent Programs
7.1 C Agent Program that Starts a Distributed Transaction

Example 7–1 (Cont.) C Agent Program that Starts a Distributed Transaction

{
short input_complete;

char reservation[ MAX_RESERVATION ];
char odometer[ MAX_ODOMETER ];

$DESCRIPTOR(reservation_desc, reservation);
$DESCRIPTOR(odometer_desc, odometer);

$DESCRIPTOR(input_reservation_id, "Input Reseveration Id ’Cancel’ to Exit: ");
$DESCRIPTOR(input_odometer, "Input Odometer Reading ’Cancel’ to Exit: ");

input_complete = FALSE;

while (input_complete == FALSE)
{

printf("\n");
status = SYS$QIOW (0,

chan,
IO$_READPROMPT|IO$M_CVTLOW,
&iosb,
0, 0,
&reservation,
reservation_desc.dsc$w_length,
0, 0,
input_reservation_id.dsc$a_pointer,
input_reservation_id.dsc$w_length);

if (status & STS$M_SUCCESS)
status = iosb.status;

if ((status & STS$M_SUCCESS) && (reservation[0] == CANCEL))
status = RMS$_EOF;

if (status & STS$M_SUCCESS)
status = OTS$CVT_TU_L(&reservation_desc,

&fast_check_in_wksp.reservation_id,
4,0);

if ((status & STS$M_SUCCESS) || (status == RMS$_EOF))
input_complete = TRUE;

}

if (status & STS$M_SUCCESS)
{

input_complete = FALSE;

while (input_complete == FALSE)
{

printf("\n");
status = SYS$QIOW (0,

chan,
IO$_READPROMPT|IO$M_CVTLOW,
&iosb,
0, 0,
&odometer,
odometer_desc.dsc$w_length,
0, 0,
input_odometer.dsc$a_pointer,
input_odometer.dsc$w_length);

if (status & STS$M_SUCCESS)
status = iosb.status;

if ((status & STS$M_SUCCESS) && (odometer[0] == CANCEL))
status = RMS$_EOF;

(continued on next page)

7–6 Sample Agent Programs



Sample Agent Programs
7.1 C Agent Program that Starts a Distributed Transaction

Example 7–1 (Cont.) C Agent Program that Starts a Distributed Transaction

if (status & STS$M_SUCCESS)
status = OTS$CVT_TU_L(&odometer_desc,

&fast_check_in_wksp.return_odometer_reading,
4,0);

if ((status & STS$M_SUCCESS) || (status == RMS$_EOF))
input_complete = TRUE;

}
}

if (status & STS$M_SUCCESS)
status = SYS$GETTIM (&fast_check_in_wksp.actual_return_date);

return status;

}

process_this_transaction()

/********************************************************************/
/* */
/* Start transaction. Call the task. Commit if successful. */
/* Abort if failure. Retry if timed out. Notify user whether */
/* transaction succeeded or failed. */
/* */
/********************************************************************/

{
short retry, trans_completed;
retry = 0;
trans_completed = FALSE;

while ((trans_completed == FALSE) && (retry < MAX_RETRY))
{

status = SYS$START_TRANSW (0,0,&iosb,0,0,tid); 2

if (status & STS$M_SUCCESS)
status = iosb.status;

check_status(status);

status = call_return_task(); 3

if (status & STS$M_SUCCESS)
{

status = SYS$END_TRANSW (0,0,&iosb,0,0,tid); 4

if (status & STS$M_SUCCESS)
status = iosb.status;

check_status(status);

trans_completed = TRUE;
}
else
{

if ((status == ACMS$_TRANSTIMEDOUT) ||
(status == ACMS$_SRVDEAD) ||
(status == RDB$_DEADLOCK) ||
(status == RDMS$_DEADLOCK) ||
(status == RDB$_LOCK_CONFLICT) ||
(status == RDMS$_LCKCNFLCT) ||
(status == RDMS$_TIMEOUT))
++retry;

else
retry = MAX_RETRY;

(continued on next page)

Sample Agent Programs 7–7



Sample Agent Programs
7.1 C Agent Program that Starts a Distributed Transaction

Example 7–1 (Cont.) C Agent Program that Starts a Distributed Transaction

status = SYS$ABORT_TRANSW (0,0,&iosb,0,0,tid); 5

if (status & STS$M_SUCCESS)
status = iosb.status;

check_status(status);
}

}

if (trans_completed == FALSE)
status = notify_failure();

else
status = notify_success();

return status;
}

call_return_task()

/******************************************************************/
/* */
/* Call the task. Error handling will be done by the calling */
/* task. */
/* */
/******************************************************************/

{
status = ACMS$START_CALL (&submitter_id,

&procedure_id,
&call_id,
argument_list,
tid);

if (status & STS$M_SUCCESS)
status = ACMS$WAIT_FOR_CALL_END (&submitter_id,

&call_id);

return status;
}

notify_failure ()

/*******************************************************************/
/* */
/* Failure returned from called task is displayed to the user. */
/* */
/*******************************************************************/

{
printf("\n");
status = SYS$QIOW (0,

chan,
IO$_WRITEVBLK,
&iosb,
0, 0,
task_status_desc.dsc$a_pointer,
task_status_desc.dsc$w_length,
0, 0, 0, 0);

return status;
}

(continued on next page)

7–8 Sample Agent Programs



Sample Agent Programs
7.1 C Agent Program that Starts a Distributed Transaction

Example 7–1 (Cont.) C Agent Program that Starts a Distributed Transaction

application_not_running()

/*************************************************************/
/* */
/* Display application not running and wait 60 seconds. */
/* */
/*************************************************************/

{
float wait_time = 10.0;

$DESCRIPTOR(appl_not_up_msg, "Application not Available at this time" );

printf("\n");
status = SYS$QIOW (0,

chan,
IO$_WRITEVBLK,
&iosb,
0, 0,
appl_not_up_msg.dsc$a_pointer,
appl_not_up_msg.dsc$w_length,
0, 0, 0, 0);

if (status & STS$M_SUCCESS)
status = iosb.status;

if (status & STS$M_SUCCESS)
status = LIB$WAIT(&wait_time);

return status;
}

notify_success()

/*************************************************************/
/* */
/* Display transaction has been successfully completed. */
/* */
/*************************************************************/

{
$DESCRIPTOR(success_queued_msg, "Transaction Successfully Queued ");

printf("\n");
status = SYS$QIOW (0,

chan,
IO$_WRITEVBLK,
&iosb,
0, 0,
success_queued_msg.dsc$a_pointer,
success_queued_msg.dsc$w_length,
0, 0, 0, 0);

if (status & STS$M_SUCCESS)
status = iosb.status;

return status;
}

report_user_abort()

/******************************************************/
/* */
/* Display operation canceled at user’s request. */
/* */
/******************************************************/

(continued on next page)

Sample Agent Programs 7–9



Sample Agent Programs
7.1 C Agent Program that Starts a Distributed Transaction

Example 7–1 (Cont.) C Agent Program that Starts a Distributed Transaction

{
$DESCRIPTOR(user_abort_msg, "Fast Checkin Has Been Canceled by user ");

printf("\n");
status = SYS$QIOW (0,

chan,
IO$_WRITEVBLK,
&iosb,
0, 0,
user_abort_msg.dsc$a_pointer,
user_abort_msg.dsc$w_length,
0, 0, 0, 0);

if (status & STS$M_SUCCESS)
status = iosb.status;

return status;
}

termination ()

/****************************************************/
/* */
/* Deassign channel and sign user out of ACMS */
/* */
/****************************************************/

{
status = SYS$DASSGN(chan);

if (status & STS$M_SUCCESS)
status = ACMS$SIGN_OUT(&submitter_id);

return status;

}

7.2 FORTRAN General-Purpose Agent Program
The FORTRAN program in Example 7–2 is a general-purpose agent program that
handles all types of exchange I/O except stream I/O and Request Interface I/O.

Example 7–2 FORTRAN General-Purpose Agent Program

PROGRAM fortran_agent
C
C This agent program allows the user to select tasks of all exchange I/O
C methods except stream I/O or I/O involving the ACMS Request Interface
C (RI).
C

IMPLICIT NONE
C
INCLUDE ’SYS$LIBRARY:ACMSFOR (ACMS$SUBMITTER)/LIST’

RECORD / ACMS$SUBMITTER_ID / submitter_id
RECORD / ACMS$EXCHANGE_IO_ID / exchange_io_id
RECORD / ACMS$PROCEDURE_ID / procedure_id
RECORD / ACMS$CALL_ID / call_id

(continued on next page)

7–10 Sample Agent Programs



Sample Agent Programs
7.2 FORTRAN General-Purpose Agent Program

Example 7–2 (Cont.) FORTRAN General-Purpose Agent Program

INTEGER*4 status
INTEGER*4 LIB$SYS_TRNLOG, LIB$GET_INPUT, LIB$PUT_OUTPUT

C
C Variable declarations for ACMS$SIGN_IN
C
CHARACTER*10 terminal_name
INTEGER*4 terminal_name_desc (2)

C
C Variable declarations for ACMS$GET_PROCEDURE_INFO
C
LOGICAL select_task
LOGICAL need_task_info

C
INTEGER*4 io_method
CHARACTER*31 application_name
CHARACTER*31 task_name
INTEGER*4 task_name_desc (2)
INTEGER*4 task_name_len

C
INTEGER*2 task_info_list (14)

EQUIVALENCE ( task_info_list (1), itm_io_bufsize )
INTEGER*2 itm_io_bufsize
EQUIVALENCE ( task_info_list (2), itm_io_itmcode )
INTEGER*2 itm_io_itmcode
EQUIVALENCE ( task_info_list (3), itm_io_bufadr )
INTEGER*4 itm_io_bufadr
EQUIVALENCE ( task_info_list (5), itm_io_retlen )
INTEGER*4 itm_io_retlen

C
EQUIVALENCE ( task_info_list (7), itm_proc_bufsize )
INTEGER*2 itm_proc_bufsize
EQUIVALENCE ( task_info_list (8), itm_proc_itmcode )
INTEGER*2 itm_proc_itmcode
EQUIVALENCE ( task_info_list (9), itm_proc_bufadr )
INTEGER*4 itm_proc_bufadr
EQUIVALENCE ( task_info_list (11), itm_proc_retlen )
INTEGER*4 itm_proc_retlen

C
EQUIVALENCE ( task_info_list (13), itm_last )
INTEGER*4 itm_last

C
C Variable declarations for ACMS$START_CALL
C
INTEGER*4 argument_list (4)

CHARACTER*255 selection_string
CHARACTER*80 status_string

INTEGER*4 selection_string_desc (2)
INTEGER*4 status_string_desc (2)

C***************************************************************************

C
C Sign in to ACMS, including terminal so that tasks ACMS can authenticate
C the terminal and the submitter can select tasks that use the terminal.
C
status = LIB$SYS_TRNLOG (’TT’, , terminal_name)
IF (.NOT. status) THEN

CALL LIB$SIGNAL (%VAL (status) )
END IF

(continued on next page)

Sample Agent Programs 7–11



Sample Agent Programs
7.2 FORTRAN General-Purpose Agent Program

Example 7–2 (Cont.) FORTRAN General-Purpose Agent Program

status = ACMS$SIGN_IN ( submitter_id,
1 ,
2 terminal_name )

IF (.NOT. status) THEN
CALL LIB$SIGNAL (%VAL (status) )

END IF

C
C Initialize the submitter to do exchange I/O on behalf of the tasks that it
C selects. This submitter is written to do any kind of exchange I/O except
C stream I/O or I/O involving the ACMS Request Interface (RI).
C

status = ACMS$INIT_EXCHANGE_IO ( submitter_id, exchange_io_id )
IF (.NOT. status) THEN

CALL LIB$SIGNAL (%VAL (status) )
END IF

C
C Construct the item list to get information about the task
C

itm_io_bufsize = 4
itm_io_itmcode = ACMS$K_PROC_IO_METHOD
itm_io_bufadr = %LOC (io_method )
itm_io_retlen = 0

itm_proc_bufsize = ACMS$S_PROCEDURE_ID
itm_proc_itmcode = ACMS$K_PROC_PROCEDURE_ID
itm_proc_bufadr = %LOC ( procedure_id )
itm_proc_retlen = 0

C
itm_last = 0

C
C Loop for task selections, until user types EXIT instead of application name
C
select_task = .TRUE.
DO WHILE (select_task)

C
C Loop until we get a good application/task name.
C

need_task_info = .TRUE.
DO WHILE (need_task_info)

C
C Ask for application name and task name.
C
status = LIB$GET_INPUT (application_name, ’Application name: ’)
IF (.NOT. status) THEN

CALL LIB$SIGNAL ( %VAL (status) )
ELSE

IF (application_name .EQ. ’EXIT’) THEN
select_task = .FALSE.

GO TO 2000
END IF

END IF

(continued on next page)

7–12 Sample Agent Programs



Sample Agent Programs
7.2 FORTRAN General-Purpose Agent Program

Example 7–2 (Cont.) FORTRAN General-Purpose Agent Program

status = LIB$GET_INPUT (task_name, ’Task name: ’, task_name_len)
IF (.NOT. status) THEN

CALL LIB$SIGNAL ( %VAL (status) )
END IF

task_name_desc (1) = task_name_len
task_name_desc (2) = %LOC (task_name)

C
C Get the procedure ID for the task.
C If we have a good application/task name, continue. Otherwise,
C print error message and try again.
C

status = ACMS$GET_PROCEDURE_INFO ( submitter_id,
1 task_name_desc,

2 application_name,
3 task_info_list )

IF (.NOT. status) THEN
CALL LIB$SIGNAL (%VAL( status ) )

ELSE
need_task_info = .FALSE.

END IF
END DO

C
C Get the selection string, if any.
C

status = LIB$GET_INPUT (selection_string, ’Selection string: ’)
IF (.NOT. status) THEN

CALL LIB$SIGNAL (%VAL (status) )
END IF

C
C Set up argument list for the task.
C
C - Selection string descriptor
C - Extended status descriptor
C - Exchange I/O ID
C

argument_list (1) = 3

selection_string_desc (1)= LEN (selection_string)
selection_string_desc (2)= %LOC (selection_string)
argument_list (2) = %LOC (selection_string_desc)

C
status_string_desc (1) = LEN (status_string)

status_string_desc (2) = %LOC (status_string)
argument_list (3) = %LOC (status_string_desc)

C
argument_list (4) = %LOC (exchange_io_id)

C
C Now start the task.
C

status = ACMS$START_CALL ( submitter_id,
1 procedure_id,
2 call_id,
3 argument_list )
IF (.NOT. status) THEN
CALL LIB$SIGNAL (%VAL (status) )

END IF

(continued on next page)

Sample Agent Programs 7–13



Sample Agent Programs
7.2 FORTRAN General-Purpose Agent Program

Example 7–2 (Cont.) FORTRAN General-Purpose Agent Program

C
C Wait for task to complete.
C

status = ACMS$WAIT_FOR_CALL_END (submitter_id,
1 call_id)
IF (.NOT. status) THEN

CALL LIB$SIGNAL (%VAL (status) )
END IF

C Display final status for task.
C
IF ((status_string .NE. ’ ’) .AND.
1 (status_string .NE. ’Task completed normally’)) THEN

CALL LIB$PUT_OUTPUT (status_string)
END IF

C
C We come here when the user wishes to exit the agent program.
C
2000 END DO

C
C Sign the submitter out.
C

status = ACMS$SIGN_OUT ( submitter_id )
IF (.NOT. status) THEN

CALL LIB$SIGNAL (%VAL (status) )
END IF

C
END

7–14 Sample Agent Programs



Sample Agent Programs
7.3 C Agent Program that Performs Stream I/O or No I/O

7.3 C Agent Program that Performs Stream I/O or No I/O
The C agent program in Example 7–3 submits tasks that perform stream I/O or
no I/O. The agent program disables the use of DECforms and TDMS in exchange
steps.

Example 7–3 C Agent Program that Performs Stream I/O or No I/O

/*
* This agent program is a special-case agent that only handles tasks
* that do stream I/O in exchange steps.
*/

/** include descriptor declarations **/
#include "sys$library:descrip.h"

/** include ACMS definition files (from sys$library:acmscc.tlb) **/
#include acms$submitter
#include acms$stream

#define SUCCESS 1
#define TRUE 1
#define FALSE 0
#define NULL 0

/** define structure for item list **/
struct item {

short int bufsize;
short int itmcode;
char *bufadr;
int retlen;

};

main()
{

/*
* External routines
*/

int LIB$GET_INPUT();
int LIB$PUT_OUTPUT();

/*
* Variables for ACMS IDs
*/

struct ACMS$SUBMITTER_ID submitter_id;
struct ACMS$EXCHANGE_IO_ID exchange_io_id;
struct ACMS$CONNECT_ID connect_id;
struct ACMS$PROCEDURE_ID procedure_id;
struct ACMS$IO_ID io_id;

/*
* Variables for ACMS$INIT_EXCHANGE_IO
*/

struct item init_exch_io_list[2] =
{ ACMS$S_CONNECT_ID, ACMS$K_CONNECT_ID, &connect_id, 0,

0, 0 }; /* zero the last longword (2 words) for list termination */
int io_enable_flags;

(continued on next page)

Sample Agent Programs 7–15



Sample Agent Programs
7.3 C Agent Program that Performs Stream I/O or No I/O

Example 7–3 (Cont.) C Agent Program that Performs Stream I/O or No I/O

/*
* Variable declarations for ACMS$GET_PROCEDURE_INFO
*/

int io_method;

char task_name_string[39], appl_name_string[255];
$DESCRIPTOR(task_name_desc,task_name_string);
$DESCRIPTOR (appl_name_desc,appl_name_string);
$DESCRIPTOR (appl_prompt_desc,"Application name: ");
$DESCRIPTOR (task_prompt_desc,"Task name: ");

/*
* Item list structure to be used in ACMS$GET_PROCEDURE_INFO
*
* There are 2 elements specified in this item list:
* 1) 4 bytes of data for ACMS$K_PROC_IO_METHOD, to be
* returned in variable io_method.
* 2) 8 bytes data for ACMS$K_PROC_PROCEDURE_ID, to be
* returned in variable procedure_id.
* (This code omits the return length variable address, which
* could be specified to receive the actual length of data
* returned for each item.)
* Other possible items include:
* - ACMS$K_PROC_WORKSPACE_COUNT to receive count of TASK ARGUMENTS
* which the task could accept from the agent program
* - ACMS$K_PROC_WAIT_DELAY_ACTION to receive the wait/delay
* action specified in the task definition
*/

struct item task_info_list[3] =
{ 4, ACMS$K_PROC_IO_METHOD, &io_method, 0,

ACMS$S_PROCEDURE_ID, ACMS$K_PROC_PROCEDURE_ID, &procedure_id, 0,
0, 0 }; /* zero the last longword (2 words) for list termination */

/*
* Variable declarations for ACMS$START_CALL
*/

struct ACMS$CALL_ID call_id;
int argument_list[4];
char selection_string[255], status_string[80];
$DESCRIPTOR(selection_string_desc,selection_string);
$DESCRIPTOR(status_string_desc,status_string);

/*
* Variable declarations for ACMS$WAIT_FOR_STREAM_IO
*/

globalvalue int ACMS$_SENDER_DISCONN;
int sender_disconn;
short int processing_io;
char *input_string_addr, *output_string_addr;

/*
* Miscellaneous variables
*/

int status;
short int i, all_spaces;

/**************************************************************/

/*
* Sign in to ACMS, no terminal IO, only stream IO
*/

status = ACMS$SIGN_IN (&submitter_id);
if ((status & 1) != SUCCESS) LIB$SIGNAL (status);

(continued on next page)

7–16 Sample Agent Programs



Sample Agent Programs
7.3 C Agent Program that Performs Stream I/O or No I/O

Example 7–3 (Cont.) C Agent Program that Performs Stream I/O or No I/O

/*
* Set up the agent program to do only stream I/O in exchange steps.
*/

io_enable_flags = ACMS$M_IO_DISABLE_TDMS + ACMS$M_IO_DISABLE_DECFORMS;

status = ACMS$INIT_EXCHANGE_IO ( &submitter_id,
&exchange_io_id,
&io_enable_flags,
&init_exch_io_list );

if ((status & 1) != SUCCESS) LIB$SIGNAL (status);

/*
* Get the procedure ID for the task
* - prompt the user for the task name
* - prompt the user for application logical name
* (These strings should be entered in upper case
* or converted to upper case.)
* - then call ACMS$GET_PROCEDURE_INFO
*/

status = LIB$GET_INPUT ( &task_name_desc, &task_prompt_desc );
if ((status & 1) != SUCCESS) LIB$SIGNAL (status);

status = LIB$GET_INPUT ( &appl_name_desc, &appl_prompt_desc );
if ((status & 1) != SUCCESS) LIB$SIGNAL (status);

status = ACMS$GET_PROCEDURE_INFO (&submitter_id,
&task_name_desc,
&appl_name_desc,
task_info_list);

if ((status & 1) != SUCCESS) LIB$SIGNAL (status);

/*
* Set up the argument list for the task
*/

argument_list[0] = 3;
argument_list[1] = &selection_string_desc;
argument_list[2] = &status_string_desc;
argument_list[3] = &exchange_io_id;

/*
* Now start the task. This agent program does not supply TASK
* ARGUMENTS. If TASK ARGUMENTS were used, they would require
* the task_info_list structure to be expanded to include the item
* ACMS$K_PROC_WORKSPACE_COUNT, which returns the number of TASK
* ARGUMENTS (if any) declared in the task definition. This agent
* program would then build descriptors pointing to C variables
* corresponding to the number of arguments to be supplied. Then
* argument_list[4] would be supplied the address of the
* first argument descriptor, argument_list[5] the address of the
* second argument descriptor. argument_list[0] would be amended to
* reflect the total argument count = 3 + NUMBER_OF_TASK_ARGUMENTS
* supplied to the task by the agent program.
*/

(continued on next page)

Sample Agent Programs 7–17



Sample Agent Programs
7.3 C Agent Program that Performs Stream I/O or No I/O

Example 7–3 (Cont.) C Agent Program that Performs Stream I/O or No I/O

status = ACMS$START_CALL (&submitter_id,
&procedure_id,
&call_id,
argument_list);

if ((status & 1) != SUCCESS) LIB$SIGNAL (status);

/*
* This agent program handles only tasks that do no exchange I/O and
* tasks that do stream I/O. If it is a NO I/O task, skip the stream
* processing.
*/

if (io_method == ACMS$K_IO_NONE)
processing_io = FALSE;

else
{
processing_io = TRUE;
sender_disconn = ACMS$_SENDER_DISCONN;
}

/*
* Process the stream task with the following algorithm:
*
* - wait for notification to begin the I/O (WAIT_FOR_STREAM_IO
* completes)
* - do the I/O
* - reply that the I/O is finished (REPLY_TO_STREAM_IO)
* - wait for more notification - if there is no more I/O, the
* sender will disconnect and we will be finished
*/

while (processing_io)
{
status = ACMS$WAIT_FOR_STREAM_IO (&connect_id,

&output_string_addr,
&input_string_addr,
&io_id);

if ((status & 1) != SUCCESS)
{

processing_io = FALSE;
if (status != sender_disconn)

LIB$SIGNAL (status);
}
else

{
/*
* We have been notified to do the I/O - do it
*/

if ((output_string_addr != NULL) && (input_string_addr == NULL))
{

status = LIB$PUT_OUTPUT (output_string_addr);

if ((status & 1) != SUCCESS) LIB$SIGNAL (status);
}

if (input_string_addr != NULL)
{

if (output_string_addr == NULL)
status = LIB$GET_INPUT (input_string_addr);

else
status = LIB$GET_INPUT (input_string_addr,

output_string_addr);
if ((status & 1) != SUCCESS) LIB$SIGNAL (status);

}

(continued on next page)

7–18 Sample Agent Programs



Sample Agent Programs
7.3 C Agent Program that Performs Stream I/O or No I/O

Example 7–3 (Cont.) C Agent Program that Performs Stream I/O or No I/O

/*
* Tell the application that we are done with
* the I/O
*/

status = ACMS$REPLY_TO_STREAM_IO (&connect_id,
&io_id);

if ((status & 1) != SUCCESS) LIB$SIGNAL (status);

} /* end of successful WAIT_FOR_STREAM_IO */

} /* end while loop */

/*
* Wait for the task to complete
*/

status = ACMS$WAIT_FOR_CALL_END (&submitter_id, &call_id);
if ((status & 1) != SUCCESS) LIB$SIGNAL (status);

/*
* Terminate the exchange I/O for the submitter
*/

status = ACMS$TERM_EXCHANGE_IO (&exchange_io_id);

/*
* Sign the submitter out
*/

status = ACMS$SIGN_OUT (&submitter_id);
if ((status & 1) != SUCCESS) LIB$SIGNAL (status);

/*
* Display the final status
*/

all_spaces = TRUE;
for (i = 0; (i < 80) && (status_string[i] != NULL) && all_spaces; i++)
if (status_string[i] != ’ ’)
all_spaces = FALSE;

if (!all_spaces)
LIB$PUT_OUTPUT (status_string);

}

7.4 BLISS Agent Program that Uses Superseded Services
Example 7–4 contains a BLISS agent program that uses superseded exchange I/O
services and the method of constructing argument lists used in ACMS versions
earlier than Version 3.1.

Note

Example 7–4 is provided for the convenience of programmers who need
to maintain agent programs written for earlier versions of ACMS. Do not
use the techniques shown in this example when developing new agent
programs.

Sample Agent Programs 7–19



Sample Agent Programs
7.4 BLISS Agent Program that Uses Superseded Services

Example 7–4 BLISS Agent Program that Uses Superseded Services

MODULE bliss_agent (IDENT = ’V2.1-000’,
MAIN = agent_main,
ADDRESSING_MODE (EXTERNAL=GENERAL,

NONEXTERNAL=LONG_RELATIVE)) =
BEGIN

!
! External References
!
EXTERNAL ROUTINE

LIB$SYS_TRNLOG,
LIB$GET_EF,
LIB$FREE_EF,
LIB$GET_INPUT,
LIB$PUT_OUTPUT,
STR$UPCASE;

EXTERNAL LITERAL
ACMS$_SENDER_DISCONN,
ACMS$_NORMAL;

!
! Library Files
!
LIBRARY ’SYS$LIBRARY:STARLET’;
LIBRARY ’SYS$LIBRARY:ACMSBLI’;

ROUTINE agent_main =
!
! Agent’s main routine
!
BEGIN

LOCAL
status,
sub_id: ACMS$SUBMITTER_ID,

!
! Variable declarations for ACMS$GET_PROCEDURE_INFO_A
!
task_name: BLOCK [ DSC$K_D_BLN, BYTE],
application_name: BLOCK [ DSC$K_D_BLN, BYTE],
io_method,

task_info_list: $ITMLST_DECL ( ITEMS = 2 ),
have_task_info,

!
! Variable declarations for ACMS$START_CALL_A
!
proc_id: CMS$PROCEDURE_ID,
task_id: ACMS$CALL_ID,

argument_list: VECTOR [4,LONG],
selection_string: BLOCK [ DSC$K_D_BLN, BYTE],
status_string: BLOCK [ DSC$K_D_BLN, BYTE],
terminal_name: BLOCK [ DSC$K_D_BLN, BYTE],

!
! Variable declarations for Stream Services
!

stream_id: ACMS$STREAM_ID,
connect_id: ACMS$CONNECT_ID,

io_id: ACMS$IO_ID,
output_string_addr: REF BLOCK [4, BYTE],
input_string_addr: REF BLOCK [4, BYTE],

processing_io,

(continued on next page)

7–20 Sample Agent Programs



Sample Agent Programs
7.4 BLISS Agent Program that Uses Superseded Services

Example 7–4 (Cont.) BLISS Agent Program that Uses Superseded Services

!
! Variable declarations for asychronous service arguments
!

comp_status_block: VECTOR [ 2, LONG ],
event_flag;

LITERAL
TRUE = 1 EQL 1,
FALSE = 0 EQL 1;

BIND
comp_status = comp_status_block [ 0 ];

!
! Initialize dynamic string descriptors
!

$INIT_DYNDESC ( task_name );
$INIT_DYNDESC ( application_name );
$INIT_DYNDESC ( selection_string );
$INIT_DYNDESC ( status_string );
$INIT_DYNDESC ( terminal_name );

status = LIB$GET_EF ( event_flag );
IF NOT .status THEN SIGNAL ( .status );

status = LIB$SYS_TRNLOG ( %ASCID’TT’, 0, terminal_name );
IF .status NEQ SS$_NORMAL THEN SIGNAL ( .status );

!
! Sign in to ACMS
!

status = $ACMS$SIGN_IN_A (SUBMITTER_ID = sub_id,
DEVICE = terminal_name,
COMP_STATUS = comp_status,
EFN = event_flag );

IF NOT .status
THEN
SIGNAL (.status)

ELSE
BEGIN
$WAITFR ( EFN = .event_flag );
IF NOT .comp_status THEN SIGNAL ( .comp_status );

END;

!
! Set up item list
!

$ITMLST_INIT ( ITMLST = task_info_list,
( ITMCOD = ACMS$K_PROC_PROCEDURE_ID,

BUFSIZ = ACMS$S_PROCEDURE_ID,
BUFADR = proc_id ),

( ITMCOD = ACMS$K_PROC_IO_METHOD,
BUFSIZ = %UPVAL,
BUFADR = io_method ) );

have_task_info = FALSE;
!
! Loop until we get a good application/task name
!

DO
BEGIN

!
! Ask for application name and task name.
! Convert names to all caps for comparisons in ACMS.
!

status = LIB$GET_INPUT (application_name, %ASCID ’Application name: ’);
IF NOT .status THEN SIGNAL (.status);

(continued on next page)

Sample Agent Programs 7–21



Sample Agent Programs
7.4 BLISS Agent Program that Uses Superseded Services

Example 7–4 (Cont.) BLISS Agent Program that Uses Superseded Services

status = STR$UPCASE (application_name, application_name);
IF .status NEQ SS$_NORMAL THEN SIGNAL ( .status );

status = LIB$GET_INPUT (task_name, %ASCID ’Task name: ’);
IF NOT .status THEN SIGNAL (.status);

status = STR$UPCASE (task_name, task_name);
IF .status NEQ SS$_NORMAL THEN SIGNAL ( .status );

!
! Ask ACMS if task is known and get its ID
!
status = $ACMS$GET_PROCEDURE_INFO_A ( SUBMITTER_ID = sub_id,

PROCEDURE = task_name,
PACKAGE = application_name,
ITEM_LIST = task_info_list,

EFN = event_flag,
COMP_STATUS = comp_status );

IF NOT .status
THEN

SIGNAL ( .status )

ELSE
BEGIN
$WAITFR ( EFN = .event_flag );
IF .comp_status EQL ACMS$_NORMAL
THEN

have_task_info = TRUE
ELSE

SIGNAL ( .comp_status );
END;

END
UNTIL .have_task_info;

!
! Get the selection string
!

status = LIB$GET_INPUT (selection_string, %ASCID ’Selection string: ’);
IF NOT .status THEN SIGNAL (.status);

!
! If the I/O method is stream, then setup the stream
!

IF .io_method EQL ACMS$K_IO_STREAM
THEN

BEGIN

status = $ACMS$CREATE_STREAM_A (MODE = %REF(ACMS$K_STRM_BIDIRECTIONAL),
STREAM_ID = stream_id,
COMP_STATUS = comp_status,
EFN = event_flag );

IF NOT .status
THEN

SIGNAL (.status)
ELSE

BEGIN
$WAITFR ( EFN = .event_flag );
IF NOT .comp_status THEN SIGNAL ( .comp_status );
END;

(continued on next page)

7–22 Sample Agent Programs



Sample Agent Programs
7.4 BLISS Agent Program that Uses Superseded Services

Example 7–4 (Cont.) BLISS Agent Program that Uses Superseded Services

status = $ACMS$CONNECT_STREAM_A (STREAM_ID = stream_id,
CONNECT_ID = connect_id,

MODE = %REF(ACMS$K_STRM_PASSIVE),
COMP_STATUS = comp_status,

EFN = event_flag );
IF NOT .status
THEN

SIGNAL (.status)
ELSE

BEGIN
$WAITFR ( EFN = .event_flag );
IF NOT .comp_status THEN SIGNAL ( .comp_status );
END;

END;

!
! Set up argument list for task
!

argument_list [1] = selection_string;
argument_list [2] = status_string;

SELECTONE .io_method OF
SET
[ACMS$K_IO_NONE]:

argument_list [0] = 2;
[ACMS$K_IO_TERMINAL,
ACMS$K_IO_REQUEST]:

BEGIN
argument_list [0] = 3;
argument_list [3] = terminal_name;
END;

[ACMS$K_IO_STREAM]:
BEGIN
argument_list [0] = 3;
argument_list [3] = stream_id;
END;

[OTHERWISE]:
SIGNAL (SS$_ABORT);

TES;

!
! Now start the task
!

status = $ACMS$START_CALL_A (SUBMITTER_ID = sub_id,
PROCEDURE_ID = proc_id,

ARGUMENTS = argument_list,
CALL_ID = task_id,

COMP_STATUS = comp_status,
EFN = event_flag );

IF NOT .status
THEN
SIGNAL (.status)

ELSE
BEGIN
$WAITFR ( EFN = .event_flag );
IF NOT .comp_status THEN SIGNAL ( .comp_status );
END;

(continued on next page)

Sample Agent Programs 7–23



Sample Agent Programs
7.4 BLISS Agent Program that Uses Superseded Services

Example 7–4 (Cont.) BLISS Agent Program that Uses Superseded Services

!
! If the task I/O method is stream, process the stream I/O in the following
! loop

IF .io_method EQL ACMS$K_IO_STREAM
THEN
BEGIN
processing_io = TRUE;
WHILE .processing_io DO

BEGIN

status = $ACMS$WAIT_FOR_STREAM_IO_A
( CONNECT_ID = connect_id,

OUTPUT_OBJECT = output_string_addr,
INPUT_OBJECT = input_string_addr,

IO_ID = io_id,
COMP_STATUS = comp_status,

EFN = event_flag );
IF NOT .status

THEN
SIGNAL (.status)

ELSE
BEGIN
$WAITFR ( EFN = .event_flag );
IF .comp_status EQL ACMS$_SENDER_DISCONN

THEN
processing_io = FALSE
THEN

SIGNAL ( .comp_status )
ELSE

BEGIN

!
! See what kind of EXCHANGE was in the task defintion
!
IF .output_string_addr NEQ 0 AND .input_string_addr EQL 0
THEN

!
! Exchange step was a WRITE
!

BEGIN
status = LIB$PUT_OUTPUT (.output_string_addr);
IF NOT .status THEN SIGNAL (.status);
END;

IF .input_string_addr NEQ 0
THEN
IF .output_string_addr EQL 0
THEN

!
! Exchange step was a READ
!
BEGIN
status = LIB$GET_INPUT (.input_string_addr);
IF NOT .status THEN SIGNAL (.status);
END

ELSE
!
! Exchange step was a READ WITH PROMPT
!
BEGIN
status = LIB$GET_INPUT (.input_string_addr,

.output_string_addr );
IF NOT .status THEN SIGNAL (.status);
END;

(continued on next page)

7–24 Sample Agent Programs



Sample Agent Programs
7.4 BLISS Agent Program that Uses Superseded Services

Example 7–4 (Cont.) BLISS Agent Program that Uses Superseded Services

!
! Reply to the I/O request
!

status = $ACMS$REPLY_TO_STREAM_IO_A
(CONNECT_ID = connect_id,

IO_ID = io_id,
EFN = event_flag );

IF NOT .status
THEN

SIGNAL (.status)
ELSE
BEGIN
$WAITFR ( EFN = .event_flag );
IF NOT .comp_status THEN SIGNAL ( .comp_status );
END;

END; ! End of successful wait_for_stream_io completion

END; ! End of successful wait_for_stream_io starting

END; ! End of stream processing loop

END; ! End of stream task

!
! Wait for task to complete
!

status = $ACMS$WAIT_FOR_CALL_END_A (SUBMITTER_ID = sub_id,
CALL_ID = task_id,

COMP_STATUS = comp_status,
EFN = event_flag );

IF NOT .status
THEN
SIGNAL (.status)

ELSE
BEGIN
$WAITFR ( EFN = .event_flag );
IF NOT .comp_status THEN SIGNAL ( .comp_status );
END;

!
! If a stream was used, disconnect it and delete it
!

IF .io_method EQL ACMS$K_IO_STREAM
THEN

BEGIN

status = $ACMS$DISCONNECT_STREAM_A (CONNECT_ID = connect_id,
COMP_STATUS = comp_status,

EFN = event_flag );
IF NOT .status
THEN
SIGNAL (.status)

ELSE
BEGIN
$WAITFR ( EFN = .event_flag );
IF NOT .comp_status THEN SIGNAL ( .comp_status );
END;

(continued on next page)

Sample Agent Programs 7–25



Sample Agent Programs
7.4 BLISS Agent Program that Uses Superseded Services

Example 7–4 (Cont.) BLISS Agent Program that Uses Superseded Services

status = $ACMS$DELETE_STREAM_A (STREAM_ID = stream_id,
COMP_STATUS = comp_status,
EFN = event_flag );

IF NOT .status
THEN
SIGNAL (.status)

ELSE
BEGIN
$WAITFR ( EFN = .event_flag );
IF NOT .comp_status THEN SIGNAL ( .comp_status );
END;

END;

status = $ACMS$SIGN_OUT_A ( SUBMITTER_ID = sub_id,
COMP_STATUS = comp_status,
EFN = event_flag );

IF NOT .status
THEN
SIGNAL (.status)

ELSE
BEGIN
$WAITFR ( EFN = .event_flag );
IF NOT .comp_status THEN SIGNAL ( .comp_status );
END;

!
! Display final status
!

IF CH$NEQ (.status_string [DSC$W_LENGTH], .status_string [DSC$A_POINTER],
1, UPLIT (’ ’), %C’ ’)

THEN
LIB$PUT_OUTPUT (status_string);

status = LIB$FREE_EF ( event_flag );
IF NOT .status THEN SIGNAL ( .status );

RETURN SS$_NORMAL;

END;

END ELUDOM

7.5 Pascal Agent Program that Uses ACMS$WAIT
This Pascal agent program signs in to ACMS, gathers transactions from various
nodes, and generates a report after all transactions are complete. It shows the
use of ACMS$WAIT.

Example 7–5 Pascal Agent Program that Uses ACMS$WAIT

[INHERIT(’SYS$LIBRARY:STARLET’,’SYS$LIBRARY:ACMSPAS’)]
PROGRAM campus_transactions(INPUT,OUTPUT);

{ Program to gather transactions from various nodes.
After all transactions are complete, generate a report }

CONST
pstring_length = 32;

(continued on next page)

7–26 Sample Agent Programs



Sample Agent Programs
7.5 Pascal Agent Program that Uses ACMS$WAIT

Example 7–5 (Cont.) Pascal Agent Program that Uses ACMS$WAIT

TYPE

uword = [WORD] 0..65535; { Unsigned word }
ubyte = [BYTE] 0..255; { Unsigned byte }

pstring = PACKED ARRAY [1..pstring_length] OF CHAR;

{ descriptor datatype }
desc_type = [BYTE(8)]

RECORD
length : [POS(0)] uword;
dtype : [POS(16)] ubyte;
class : [POS(24)] ubyte;
ptr : [POS(32),UNSAFE] INTEGER;
END;

quad = PACKED ARRAY [0..1] OF [UNSAFE] INTEGER;

nodes = (eku,nku,wku,ul,cmu);

arg_list = PACKED ARRAY [0..3] OF [UNSAFE] INTEGER;

VAR
submitter_id : ACMS$SUBMITTER_ID;
exchange_io_id: ACMS$EXCHANGE_IO_ID;
status : [unsafe] INTEGER;
status_block : ARRAY[eku..cmu] OF quad;
selection_string : ARRAY[eku..cmu] of desc_type;
padded_application_name : pstring;
padded_task_name : pstring;
status_string : ARRAY[eku..cmu] of desc_type;
argument_list: ARRAY[eku..cmu] OF arg_list;
i : nodes;

{ Run-time library output routine }
[external] FUNCTION lib$put_output(%REF desc :desc_type):integer;extern;

{ Run-time library routine to signal errors }
[ASYNCHRONOUS,EXTERNAL(LIB$SIGNAL)]
PROCEDURE signal(%IMMED condition : INTEGER;

%IMMED fao_parms : [UNSAFE,LIST] INTEGER);EXTERN;

FUNCTION init_dyndesc:desc_type;
{ Function to initialize dynamic string desciptors }
VAR
temp : desc_type;

BEGIN
WITH temp DO
BEGIN

length := 0;
class := dsc$k_class_d;
dtype := dsc$k_dtype_t;
ptr := 0;

END;
init_dyndesc := temp;

END ; { function init_dyndesc}

PROCEDURE call_task( SUBMITTER_ID :ACMS$SUBMITTER_ID;
APPLICATION_NAME : pstring;
TASK_NAME : pstring;
VAR argument_list: arg_list;
VAR STATUS_BLOCK : quad);

{ Procedure to perform an $acms$_call_a for the requested task }

TYPE
uword = [WORD] 0..65535;

(continued on next page)

Sample Agent Programs 7–27



Sample Agent Programs
7.5 Pascal Agent Program that Uses ACMS$WAIT

Example 7–5 (Cont.) Pascal Agent Program that Uses ACMS$WAIT

item_type = [BYTE (12)]
RECORD

buffer_length : [POS (0)] uword;
item_code : [POS (16)] uword;
buffer_address: [POS (32),UNSAFE] INTEGER;
ret_length_adr: [POS (64),UNSAFE] INTEGER;

END ; {item_type}

list_type = [BYTE (16)]
RECORD

list : [POS (0) ] item_type;
term : [POS (96)] INTEGER;

END; {list_type}
VAR

status : [UNSAFE] INTEGER;
proc_list : list_type;
procedure_id : ACMS$PROCEDURE_ID;
ACMS$EFN : [EXTERNAL] ubyte;

BEGIN { call_task}

{ Build get procedure info list }
WITH proc_list.list DO

BEGIN
buffer_length := acms$s_procedure_id;
item_code := acms$k_proc_procedure_id;
buffer_address := iaddress(procedure_id);
ret_length_adr := 0;

END ; {with proc_list}
proc_list.term := 0;

{ Get procedure_id via acms$get_procedure_info }
status := $ACMS$GET_PROCEDURE_INFO(SUBMITTER_ID := submitter_id,

PACKAGE := application_name,
procedure_ := task_name,
item_list := proc_list);

IF not odd(status) THEN SIGNAL(status);

status := $ACMS$CALL_A(SUBMITTER_ID := submitter_id,
PROCEDURE_ID := procedure_id,
ARGUMENTS := argument_list,
EFN := ACMS$EFN,
COMP_STATUS := status_block);

IF not odd(status) THEN SIGNAL(status);

END ; { procedure call_task }

BEGIN { main }

{ Init argument list for calls }
FOR i := eku TO cmu DO
BEGIN

status_string[i] := init_dyndesc;
selection_string[i] := init_dyndesc;

argument_list[i][0] := 3; {Number of argument in list}
argument_list[i][1] := IADDRESS(selection_string[i]);
argument_list[i][2] := IADDRESS(status_string[i]);
argument_list[i][3] := IADDRESS(exchange_io_id);

END;{for}

(continued on next page)

7–28 Sample Agent Programs



Sample Agent Programs
7.5 Pascal Agent Program that Uses ACMS$WAIT

Example 7–5 (Cont.) Pascal Agent Program that Uses ACMS$WAIT

{ sign into acms }

status := $ACMS$SIGN_IN(SUBMITTER_ID := submitter_id);
IF not odd(status) THEN SIGNAL(status);

status := $ACMS$INIT_EXCHANGE_IO(SUBMITTER_ID := submitter_id,
EXCHANGE_IO_ID := exchange_io_id );

IF not odd(status) THEN SIGNAL(status);

padded_task_name := PAD ( ’ENROLLMENT_TRANSACTIONS’, ’ ’, pstring_length );

padded_application_name := PAD ( ’EKU::TRANSACTIONS’, ’ ’, pstring_length );

call_task(SUBMITTER_ID := submitter_id,
application_name := padded_application_name,
task_name := padded_task_name,
argument_list := argument_list[eku],
status_block := status_block[eku]);

padded_application_name := PAD ( ’NKU::TRANSACTIONS’, ’ ’, pstring_length );

call_task(SUBMITTER_ID := submitter_id,
application_name := padded_application_name,
task_name := padded_task_name,
argument_list := argument_list[nku],
status_block := status_block[nku]);

padded_application_name := PAD ( ’WKU::TRANSACTIONS’, ’ ’, pstring_length );

call_task(SUBMITTER_ID := submitter_id,
application_name := padded_application_name,
task_name := padded_task_name,
argument_list := argument_list[wku],
status_block := status_block[wku]);

padded_application_name := PAD ( ’UL::TRANSACTIONS’, ’ ’, pstring_length );

call_task(SUBMITTER_ID := submitter_id,
application_name := padded_application_name,
task_name := padded_task_name,
argument_list := argument_list[ul],
status_block := status_block[ul]);

{ Now wait for all the procedures to complete }

FOR i := eku to ul DO
BEGIN

status := $ACMS$WAIT(COMP_STATUS := status_block[i]);
{ Wait for routine to complete}
IF not odd(status) THEN SIGNAL(status);

IF not odd (status_block[i][0])
THEN

signal(status_block[i][0])
ELSE

{ Tell user status result of his request }
LIB$PUT_OUTPUT(status_string[i]);

END;

(continued on next page)

Sample Agent Programs 7–29



Sample Agent Programs
7.5 Pascal Agent Program that Uses ACMS$WAIT

Example 7–5 (Cont.) Pascal Agent Program that Uses ACMS$WAIT

{ Call report generating routine }

padded_task_name := PAD ( ’GENERATE_REPORTS’,’ ’, pstring_length );

padded_application_name := PAD ( ’CMU::REPORTS’, ’ ’, pstring_length );

call_task(submitter_id := submitter_id,
application_name := padded_application_name,
task_name := padded_task_name,
argument_list :=argument_list[cmu],
status_block := status_block[cmu]);

status := $ACMS$WAIT(COMP_STATUS := status_block[cmu]);
IF not odd(status) THEN SIGNAL(status);

IF not odd (status_block[cmu][0])
THEN

signal(status_block[cmu][0])
ELSE

{ Tell user status result of his request }
LIB$PUT_OUTPUT( status_string[cmu]);

status := $ACMS$TERM_EXCHANGE_IO(EXCHANGE_IO_ID := exchange_io_id);
IF not odd(status) THEN SIGNAL(status);

status := $ACMS$SIGN_OUT(SUBMITTER_ID := submitter_id);
IF not odd(status) THEN SIGNAL(status);

END. {main}

7–30 Sample Agent Programs



A
Superseded Services and Parameters

The first part of this appendix describes six services used in earlier versions
of ACMS and provides reference material for calling these services in agent
programs. These six services have been replaced by ACMS$INIT_EXCHANGE_
IO and ACMS$TERM_EXCHANGE_IO. You need to use the new services and
arguments for all agent programs that call tasks that perform DECforms I/O.

The new services simplify systems interface programming and simplify program
maintenance. Use them with TDMS, RI, and stream services as well as with HP
DECforms. For information regarding the new services, see Chapter 4.

ACMS supports the superseded services for agent programs that are already
implemented. It also supports the superseded task I/O arguments. In new agent
programs, however, use the ACMS$INIT_EXCHANGE_IO and ACMS$TERM_
EXCHANGE_IO services. Whenever practical, change the superseded services
to ACMS$INIT_EXCHANGE_IO and ACMS_TERM_EXCHANGE_IO in existing
agent programs.

Do not mix the new services and the superseded services indiscriminately. Any
attempt to use a superseded service to close a call opened with the new service
results in an invalid status message. Any attempt to use the new service to close
a call opened with a superseded service results in a status message of invalid.

The second part of the appendix describes parameters that were passed into the
task I/O argument of the ACMS$CALL and ACMS$START_CALL services in
versions of ACMS earlier than Version 3.2. Beginning with ACMS Version 3.1,
instead of passing a device name or stream ID to the task I/O argument, use the
exchange I/O ID for tasks that perform request I/O, stream I/O, or terminal I/O.

Table A–1 lists the superseded services and gives a brief description of each.

Table A–1 Superseded Services

Service Name Description

ACMS$OPEN_RR Opens a TDMS channel to a terminal and
associates it with a submitter ID. Subsequent
task selections for that submitter use the
channel.

ACMS$CLOSE_RR Closes a TDMS channel to a terminal and
disassociates it from a submitter ID.

ACMS$CREATE_STREAM Creates a stream and returns a stream ID.

(continued on next page)

Superseded Services and Parameters A–1



Superseded Services and Parameters

Table A–1 (Cont.) Superseded Services

Service Name Description

ACMS$CONNECT_STREAM Establishes a stream connection on which the
agent program and the EXC can exchange
messages. This service returns a connect ID.

ACMS$DISCONNECT_STREAM Breaks a connection to a stream and invalidates
the connect ID.

ACMS$DELETE_STREAM Deletes the stream. This service is normally
used after ACMS$DISCONNECT_STREAM.

The rest of this appendix contains reference material for using the superseded
services. The services appear in alphabetical order.

A–2 Superseded Services and Parameters



ACMS$CLOSE_RR

A.1 ACMS$CLOSE_RR

The ACMS$CLOSE_RR service closes a TDMS channel to a terminal and
disassociates it from a submitter ID. Any active TDMS call on the channel is
canceled. If the agent program uses ACMS$INIT_EXCHANGE_IO to open a
channel, it must also use ACMS$TERM_EXCHANGE_IO to close the channel. If
the agent program attempts to use a superseded service to close a channel opened
by a new service, this results in status returns of invalid.

Note

This service has been superseded. ACMS supports this service for existing
applications using TDMS. Use the ACMS$TERM_EXCHANGE_IO service
in new applications.

Format

ACMS$CLOSE_RR ([channel.rlu.r],
[nullarg])

ACMS$CLOSE_RR_A ([channel.rlu.r],
[nullarg],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

channel
The TDMS channel returned from a previous ACMS$OPEN_RR call. The agent
program must supply this parameter.

nullarg
Place-holding argument. This argument is reserved for HP’s use.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Return Status

This list summarizes each error returned by this service. Attempts to use
ACMS$CLOSE_RR to close a channel opened with ACMS$INIT_EXCHANGE_
IO result in a status message of invalid. Also, invalid status returns from
TSS$CLOSE might be returned to the agent program. See the reference section
of the VAX TDMS Reference Manual for more information on TSS$CLOSE.

The return status codes indicating success or failure of the call follow:

Superseded Services and Parameters A–3



ACMS$CLOSE_RR

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion. The
final status is in the completion
status block.

ACMS$_TDMSNOTINST Informational TDMS is not installed on the
system.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INTERNAL Error Internal error.
ACMS$_INVCHAN Error Invalid channel—channel not

known.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_SYNASTLVL Error Synchronous services may not be

called from AST level.

A–4 Superseded Services and Parameters



ACMS$CONNECT_STREAM

A.2 ACMS$CONNECT_STREAM

ACMS$CONNECT_STREAM establishes a connection to a stream and returns
a connect ID. Before using this service, it is necessary to create a stream with
ACMS$CREATE_STREAM.

If an agent program creates and connects a stream, the agent program must call
ACMS$WAIT_FOR_STREAM_IO for all tasks (except tasks that do no terminal
I/O), whether or not the task performs stream I/O.

Note

This service has been superseded. ACMS supports this service for
applications that have already been implemented. To simplify the
writing of agent programs, and to simplify program maintenance, use the
ACMS$INIT_EXCHANGE_IO service in new applications.

Format

ACMS$CONNECT_STREAM (stream_id.rq.r,
mode.rl.r,
connect_id.wq.r,
[submitter_id.rq.r])

ACMS$CONNECT_STREAM_A (stream_id.rq.r,
mode.rl.r,
connect_id.wq.r,
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v],
[submitter_id.rq.r])

Parameters

stream_id
The identification of the stream to which you want to connect. This ID is returned
by ACMS$CREATE_STREAM.

mode
The mode of this stream connection must always be set to ACMS$K_STRM_
PASSIVE.

connect_id
The identification that is returned by this service to identify this stream
connection. This ID is used later by ACMS$DISCONNECT_STREAM,
ACMS$WAIT_FOR_STREAM_IO, and ACMS$REPLY_TO_STREAM_IO.

submitter_id
This ID is used to associate the stream ID with the submitter. The submitter_id
argument is optional. You must use this parameter if the agent program calls an
ACMS task that performs DECforms, TDMS, or terminal I/O, and that task calls
another task that performs stream I/O.

Superseded Services and Parameters A–5



ACMS$CONNECT_STREAM

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion.
The final status is in the
completion status block.

ACMS$_SENDER_DISCONN Warning The sender has disconnected
from the stream.

ACMS$_BADMODE Error The mode value specified was
invalid.

ACMS$_BADSTRMID Error The stream ID is not correct;
either the stream was not
created, it was deleted, or the
stream ID was corrupt.

ACMS$_CANOTCON Error The state of the stream
does not allow for connects.
The agent program must be
connected before the EXC.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INVASTADR Error The AST address was invalid.
ACMS$_INVASTPRM Error The AST routine parameter

was invalid.
ACMS$_INVCMPSTS Error The completion status block

was invalid.
ACMS$_INVCONID Error The connect ID was invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVMODE Error The mode of the stream was

invalid.
ACMS$_INVSTRMID Error The stream ID was invalid.
ACMS$_MAXCNSCONN Error The maximum number of

agent programs have already
connected to the stream.

ACMS$_SYNASTLVL Error Synchronous services may not
be called from AST level.

A–6 Superseded Services and Parameters



ACMS$CONNECT_STREAM

Status Severity Level Description

ACMS$_UNKMODE Error The mode specified was not
understood by the stream
arbitrator.

ACMS$_BADCONNCTLMSG Fatal Invalid function code on
control message received by
connection.

Superseded Services and Parameters A–7



ACMS$CREATE_STREAM

A.3 ACMS$CREATE_STREAM

The ACMS$CREATE_STREAM service creates a stream and returns the stream
identification. It is used in conjunction with ACMS$CONNECT_STREAM. If
an agent program creates and connects a stream, the agent program must call
ACMS$WAIT_FOR_STREAM_IO for all tasks (except tasks that do no terminal
I/O), whether or not the task performs stream I/O.

Note

ACMS$CREATE_STREAM has been superseded. ACMS supports this
service for applications that have already been implemented. To simplify
the writing of agent programs and to simplify program maintenance, use
the ACMS$INIT_EXCHANGE_IO service in new applications.

Format

ACMS$CREATE_STREAM (mode.rl.r,
stream_id.wq.r)

ACMS$CREATE_STREAM_A (mode.rl.r,
stream_id.wq.r,
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

mode
The mode of the stream must always be set to ACMS$K_STRM_
BIDIRECTIONAL.

stream_id
The stream identification that is returned by this service. The ID is passed to
any task that connects to this stream.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion. The
final status is in the completion
status block.

A–8 Superseded Services and Parameters



ACMS$CREATE_STREAM

Status Severity Level Description

ACMS$_BADMODE Error The mode value specified was
invalid.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INVASTADR Error The AST address was invalid.
ACMS$_INVASTPRM Error The AST routine parameter was

invalid.
ACMS$_INVCMPSTS Error The completion status block was

invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVMODE Error The mode of the stream was

invalid.
ACMS$_INVSTRMID Error The stream ID was invalid.
ACMS$_SYNASTLVL Error Synchronous services may not be

called from AST level.

Superseded Services and Parameters A–9



ACMS$DELETE_STREAM

A.4 ACMS$DELETE_STREAM

ACMS$DELETE_STREAM deletes a stream. Use this service after
ACMS$DISCONNECT_STREAM disconnects all connect IDs to the stream.
Once deleted, a stream is not available for use by other tasks.

Note

This service has been superseded. ACMS supports this service for
applications that have already been implemented. To simplify the
writing of agent programs and to simplify program maintenance, use the
ACMS$TERM_EXCHANGE_IO service in new applications.

Format

ACMS$DELETE_STREAM (stream_id.rq.r,
[flags.rl.r])

ACMS$DELETE_STREAM_A (stream_id.rq.r,
[flags.rl.r],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

stream_id
The identification of the stream you want to delete. This is the ID returned by
ACMS$CREATE_STREAM.

flags
You can set a bit in the flag, ACMS$M_STRM_DISCONNECT, to specify what to
do on a stream deletion.

ACMS$M_STRM_DISCONNECT disconnects all connections to this stream. If
you do not set this bit, the stream is not deleted until all connections to the
stream are disconnected.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

A–10 Superseded Services and Parameters



ACMS$DELETE_STREAM

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion. The
final status is in the completion
status block.

ACMS$_BADFLAGS Error Some or all of the flags specified
were invalid.

ACMS$_BADSTRMID Error The stream ID is not correct;
either the stream was not
created, it was deleted, or the
stream ID was corrupt.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INVASTADR Error The AST address was invalid.
ACMS$_INVASTPRM Error The AST routine parameter

was invalid.
ACMS$_INVCMPSTS Error The completion status block

was invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_INVSTRMID Error The stream ID was invalid.
ACMS$_NOTCREATED Error The stream is not yet created

or it was not created by this
process.

ACMS$_STILLCONNECTS Error There are still connections
active on the stream.

ACMS$_SYNASTLVL Error Synchronous services may not
be called from AST level.

Superseded Services and Parameters A–11



ACMS$DISCONNECT_STREAM

A.5 ACMS$DISCONNECT_STREAM

ACMS$DISCONNECT_STREAM breaks a connection to a stream. The
application execution controller (EXC) must disconnect from the stream before
the agent program can disconnect.

Note

This service has been superseded. ACMS supports this service for
applications that have already been implemented. To simplify the
writing of agent programs and to simplify program maintenance, use the
ACMS$TERM_EXCHANGE_IO service in new applications.

Format

ACMS$DISCONNECT_STREAM (connect_id.rq.r,
[flags.rl.r])

ACMS$DISCONNECT_STREAM_A (connect_id.rq.r,
[flags.rl.r],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

connect_id
The identification of the stream you want to disconnect. This is the ID returned
by the ACMS$CONNECT_STREAM service.

flags
Reserved.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Return Status

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion.
The final status is in the
completion status block.

ACMS$_SENDER_DISCONN Warning The sender has disconnected
from the stream.

A–12 Superseded Services and Parameters



ACMS$DISCONNECT_STREAM

Status Severity Level Description

ACMS$_BADCONID Error The connect ID is not correct;
either the stream is not
connected, it is disconnected,
or the connect ID is corrupt.

ACMS$_BADFLAGS Error Some or all of the flags
specified were invalid.

ACMS$_INSUFPRM Error Not enough arguments were
passed to this service.

ACMS$_INVASTADR Error The AST address was invalid.
ACMS$_INVASTPRM Error The AST routine parameter

was invalid.
ACMS$_INVCMPSTS Error The completion status block

was invalid.
ACMS$_INVCONID Error The connect ID was invalid.
ACMS$_INVEFN Error The event flag was invalid.
ACMS$_NOTCONNECTED Error The connection is not

currently connected to the
stream.

ACMS$_SENDER_CONN Error Cannot disconnect the agent
program until the EXC has
disconnected.

ACMS$_STILLREQUESTS Error There are still requests active
on the connection.

ACMS$_SYNASTLVL Error Synchronous services may not
be called from AST level.

Superseded Services and Parameters A–13



ACMS$OPEN_RR

A.6 ACMS$OPEN_RR

For previously implemented tasks that use TDMS, you call ACMS$OPEN_RR
to open a TDMS channel and associate it with a submitter ID. Subsequent task
selections for that submitter use the channel for all task request I/O, including
remote request I/O. For previously implemented tasks that use the ACMS
Request Interface (RI), you call ACMS$OPEN_RR to prepare the agent process
to do the I/O. ACMS$OPEN_RR must be closed with ACMS$CLOSE_RR. If an
attempt is made to close it with ACMS$TERM_EXCHANGE_IO, an invalid status
is returned.

Note

This service has been superseded. ACMS supports this service for
applications that have already been implemented. To simplify writing
agent programs, and to simplify program maintenance, use the
ACMS$INIT_EXCHANGE_IO service in new applications.

Format

ACMS$OPEN_RR (device.rt.dx,
channel.wlu.r,
[submitter_id.rq.r],
[flags.rl.r],
[nullarg])

ACMS$OPEN_RR_A (device.rt.dx,
channel.wlu.r,
[submitter_id.rq.r],
[flags.rl.r],
[nullarg],
[comp_status.wq.r],
[efn.rbu.r],
[astadr.szem.r],
[astprm.rz.v])

Parameters

device
The name of the terminal the channel opens.

channel
An output parameter naming the TDMS channel that is open. This parameter
can later be used as an input parameter to the ACMS$CLOSE_RR service. The
agent program can use this channel for its own TDMS calls.

submitter_id
The submitter ID corresponding to a signed-in submitter (user). This ID is
returned by the ACMS$SIGN_IN service. This parameter defaults to a quadword
that is equal to zero.

A–14 Superseded Services and Parameters



ACMS$OPEN_RR

flags
TDMS is enabled by default. The ACMS$OPEN_RR remote request service does
not enable the agent program to call tasks that use DECforms.

If agent programs use the ACMS Request Interface (RI), it is necessary to set the
ACMS$V_FORCE_AGENT_IO flag. In ACMS Version 3.0, agent programs that
did not set this flag could still use the RI in a distributed environment, though
they could not use the RI if it selected tasks from an application on the same
node. Starting with ACMS Version 3.1, agent programs without this flag do not
work in a distributed environment.

If only the RI is used, TDMS can be disabled to conserve resources. If the agent
program sets the ACMS$M_DISABLE_TDMS flag on the call to ACMS$OPEN_
RR, TDMS is disabled for the agent process, indicating that the agent program
uses only the RI. Because TDMS is completely disabled in the agent process,
TDMS is not used even if a task uses TDMS I/O and an .RLB file exists to
perform the request.

nullarg
The nullarg parameter is a place-holding argument. This argument is reserved
for HP’s use.

The parameters comp_status.wq.r, efn.rbu.r, astadr.szem.r, and astprm.rz.v
are asynchronous service arguments. See Chapter 2 for a discussion of these
parameters.

Return Status

The following list summarizes each error returned by this service. Invalid
status returns from TSS$CLOSE might be returned to the agent program. See
the reference section of VAX TDMS Reference Manual for more information on
TSS$CLOSE.

The return status codes indicating success or failure of the call follow:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion. The
final status is in the completion
status block.

ACMS$_TDMSNOTINST Informational TDMS is not installed.
ACMS$_NTSNIN Error Submitter was not signed in.
ACMS$_INSUFPRM Error Not enough arguments were

passed to this service.
ACMS$_INTERNAL Error Internal error.
ACMS$_INVDEV Error The device name was invalid.
ACMS$_INVEFN Error The event flag was invalid.

Superseded Services and Parameters A–15



ACMS$OPEN_RR

Status Severity Level Description

ACMS$_SYNASTLVL Error Synchronous services may not
be called from AST level.

ACMS$_TDMSDISABLED Error TDMS is disabled and RI
shared image library has not
been specified.

TSS$OPEN also results in invalid status returns.

A–16 Superseded Services and Parameters



Superseded Services and Parameters
A.7 Superseded Parameters of the Task I/O Argument

A.7 Superseded Parameters of the Task I/O Argument
This section contains information about parameters that were passed into the
task I/O argument in versions of ACMS earlier than Version 3.2. In each case,
while the task I/O argument is still supported, use the exchange I/O ID for tasks
that perform request I/O, stream I/O, or terminal I/O in new applications.

A.7.1 Argument List for a Task That Performs Request I/O
Figure A–1 shows an argument list for a task that performs request I/O, supplies
data to the second task argument workspace in a task, but does not supply
a selection string parameter. This example includes a zero in the first task
argument workspace because the agent program does not pass any data into that
workspace.

Note

This method has been superseded by implementation of the exchange
I/O ID feature. This figure is included for reference for agent programs
that have already been developed. Use the exchange I/O ID in new agent
programs.

Figure A–1 Arguments Passed for a Task Doing Request I/O

5

Extended Status

Task Argument 2

TAY-0127-AD

0

Terminal Name

0

A.7.2 Argument List for a Task That Passes Only Stream I/O
Figure A–2 shows an argument list that passes only a stream ID. The figure
illustrates how to set the selection string and extended status parameters to zero
when the agent program does not use these arguments.

Note

This method has been superseded by implementation of the exchange
I/O ID feature. This figure is included for reference for agent programs
that have already been developed. Use the exchange I/O ID in new agent
programs.

Superseded Services and Parameters A–17



Superseded Services and Parameters
A.7 Superseded Parameters of the Task I/O Argument

Figure A–2 Arguments Passed for a Task Doing Stream I/O

3

TAY-0129-AD

ID
Stream

0

0

A.7.3 Argument List with Selection String, Extended Status, and Terminal I/O
Defined

Figure A–3 shows an argument list that has the selection string, extended status,
and terminal I/O defined.

Note

This method has been superseded by implementation of the exchange
I/O ID feature. This figure is included for reference for agent programs
that have already been developed. Use the exchange I/O ID in new agent
programs.

Figure A–3 Arguments Passed for a Task Doing Terminal I/O

3

Selection String

Extended Status

Terminal Name

TAY-0130-AD

Detailed information about the ACMS$CALL, ACMS$START_CALL,
ACMS$GET_PROCEDURE_INFO services and their parameters is available
in Chapter 5.

A–18 Superseded Services and Parameters



Index

A
$ABORT_TASK

to roll back distributed transaction, 3–2
$ABORT_TRANS, 3–4

to roll back distributed transaction, 3–4
ACC

See ACMS Central Controller
Access control list, 5–5, 5–25
ACMS$CALL, 5–2t, 5–5

accepts TID, 3–3
agent program uses to call task, 3–2
programming format, 5–9
return status, 5–11

ACMS$CALL_A
accepts TID, 3–3
return status, 5–11

ACMS$CANCEL
return status, 5–15

ACMS$CANCEL_CALL, 3–4, 5–2t, 5–5, 5–14
programming format, 5–14

ACMS$CHECK, 2–12
deassigning, 2–13

ACMS$CLOSE_RR
programming format, A–3
return status, A–3

ACMS$CONNECT_STREAM
programming format, A–5
return status, A–6

ACMS$CREATE_STREAM, 5–3
programming format, A–8
return status, A–8

ACMS$DECFORMS_IN_AGENT
process logical name, 2–11

ACMS$DELETE_STREAM
programming format, A–10
return status, A–11

ACMS$DISCONNECT_STREAM
programming format, A–12
return status, A–12

ACMS$GET_PROCEDURE_INFO, 5–2t, 5–3
programming format, 5–16
return status, 5–18

ACMS$INIT_EXCHANGE_IO, 4–2t, 4–4
Exchange I/O ID, 4–4
programming format, 4–6
return status, 4–8

ACMS$OPEN_RR
programming format, A–14
return status, A–15

ACMS$REPLY_TO_STREAM_IO, 6–2t
programming format, 6–5
return status, 6–6

ACMS$SIGNAL, 2–6
ACMS$SIGN_IN, 4–2t, 4–3, 4–10

cancel routine, 4–3
cancel routine parameter, 4–10
parameters, 4–10
programming format, 4–10
return status, 4–11
submitter ID, 4–3, 4–10

ACMS$SIGN_OUT, 4–2t, 4–5
cancel flag parameter, 4–5
programming format, 4–13
return status, 4–13

ACMS$START_CALL, 5–2t, 5–5
accepts TID, 3–3
agent program uses to call task, 3–2
programming format, 5–20
return status, 5–23

ACMS$START_CALL_A
accepts TID, 3–3

ACMS$TERM_EXCHANGE_IO, 4–2t, 4–5
Exchange I/O ID, 4–5
programming format, 4–15
return status, 4–15

ACMS$WAIT, 2–8
Pascal agent program example, 7–26e

ACMS$WAIT_FOR_CALL_END, 5–2t, 5–5
agent program uses to call task, 3–2
programming format, 5–25
return status, 5–26
using with ACMS$START_CALL, 5–20

ACMS$WAIT_FOR_STREAM_IO, 6–2t
programming format, 6–7
return status, 6–9
use with ACMS$CREATE_STREAM, A–8

ACMS$_NOTRANSADB, 3–3
ACMS$_NOTRANSNODE, 3–3
ACMS$_TASKNOTCOMP, 3–3
ACMS Central Controller

function during sign in, 4–1
verifying device names, 4–10
verifying user names, 4–10

Index–1



ACMSDDF.DAT
See Device definition file

ACMSPKG$_INVARGTYPE, 5–3
ACMSUDF.DAT

See User definition file
Agent

multi-user, 2–11
RI

preparing to use with HP DECforms, 2–11
single-user, 2–11
user-written

preparing to use with HP DECforms, 2–11
Agent process

definition of, 1–1
Agent program

authorizing the user name of, 4–3, 4–10
BLISS agent program using superseded

services, 7–20e, 7–26e
C agent program performing stream I/O, 7–15e
calling DECdtm services, 1–4
calling tasks, 1–4, 5–1, 5–2t, 5–5, 5–9, 5–20
canceling tasks, 5–2t, 5–5, 5–14
causing ACMS malfunction, 1–4
coded in high-level languages, 2–13
connecting a stream, 1–5f, 6–1t
coordinate distributed transactions, 3–1
creating a stream, 6–1t
debugging with ACMS$CHECK, 2–12
definition of, 1–1
deleting a stream, 6–1t
disconnecting a stream, 6–1t
finding application information, 5–3, 5–16
finding task information, 5–16
FORTRAN general-purpose agent program,

7–10e
function of, 1–2
handling exchange I/O, 4–6
handling remote request I/O, A–15
I/O capabilities, 4–7
initializing a stream, 6–1t
initializing HP DECforms, 4–6
initializing with ACMS$SIGN_IN, 4–10
invoking, 2–11
item list, 4–7
multithreaded, 2–10
Pascal agent program, 7–26e
passing task information, 5–3
privileges, 4–3
processing sequence, 1–4
providing TDMS channels with superseded

services, A–3, A–14
replying to stream I/O, 6–2t, 6–5
services

ACMS$SIGN_OUT, 4–13
signing in task submitters, 4–1f, 4–10
signing out task submitters, 4–13
single-threaded, 2–10
starting, 2–12

Agent program (cont’d)
starts distributed transaction, 7–1
submitting tasks, 1–3f
supplying

exchange I/O ID, 5–21
extended status, 5–21
I/O method, 5–21
item descriptors, 5–17
selection string, 5–21
workspaces to tasks, 1–4, 5–6

terminating a stream, 6–1t
terminating HP DECforms sessions, 4–15
user name, 4–10
using

stream services, 6–1f
superseded stream services, A–1f

waiting for
stream I/O, 6–2t, 6–7
task completion, 5–2t, 5–5, 5–25

ALL-IN-1
using with ACMS, 1–1

Application
getting information for, 5–3, 5–16

Application Execution Controller
and superseded stream services, A–1
and the stream services, 6–1
function during task execution, 5–2
performing stream I/O, 6–2, 6–7

Arguments
methods for passing, 5–3
supplying workspaces to ACMS in, 5–3

AST
See Asynchronous service

Asynchronous service
AST parameters, 2–3
AST routine address, 2–4
completion status, 2–3
disabling ASTs, 2–3
event flag, 2–4
parameters, 2–3
with multithreaded agent programs, 2–10

Authorization
of agent programs, 4–3

B
BLISS

agent program using superseded services,
7–20e, 7–26e

keyword macros, 2–14
library file, 2–14
using with the SI, 2–14

Block steps
defining stream I/O in, 6–2

Buffer address
for ACMS$GET_PROCEDURE_INFO, 5–17

Index–2



Buffer length
for ACMS$GET_PROCEDURE_INFO, 5–17

Byte arrays
service ID structures in FORTRAN, 2–15

C
C

agent program in, 7–1
agent program performing stream I/O, 7–15e
text library, 2–14
using with the SI, 2–14

Call ID, 5–5, 5–14
length, 2–13
structure layout, 2–13
use with ACMS$START_CALL, 5–20
use with ACMS$WAIT_FOR_CALL_END, 5–25

Calls
to tasks, 5–9

Canceling
tasks, 5–2t, 5–5, 5–14

Cancel parameter, 4–10, 4–13
Command Process

and the SI, 1–1
similarities to agent program, 1–2
user-written, 1–1

Communication
over streams, 1–4, 6–1f

Composable task
rules for, 3–1

Connect ID
length, 2–14
structure layout, 2–13
use with ACMS$CONNECT_STREAM, A–5
use with ACMS$DISCONNECT_STREAM,

A–12
use with ACMS$INIT_EXCHANGE_IO, 6–1t
use with ACMS$REPLY_TO_STREAM_IO, 6–5
use with ACMS$WAIT_FOR_STREAM_IO, 6–7

Constants
defining for

BLISS, 2–14
C, 2–14
FORTRAN, 2–15
MACRO, 2–15
other languages, 2–16
Pascal, 2–15
PL/I, 2–16

used by services, 2–14
CP

See Command Process

D
Debugging agent program

ACMS$CHECK, 2–12
DECdtm services

used to commit a distributed transaction, 1–4
used to start a distributed transaction, 1–4

DECforms
initializing, 4–6
with RI agent, 2–11
with user-written agent, 2–11

Definitions
ACMS$CHECK logical, 2–12
for BLISS, 2–14
for C programmers, 2–14
for FORTRAN programmers, 2–15
for MACRO programmers, 2–15
for Pascal programmers, 2–15
for PL/I programmers, 2–16

Descriptors
item, 5–17
string, 6–5, 6–7

Device
access to ACMS over streams, 1–5
authorizing in ACMS, 4–3
calling tasks from, 1–4
non-DECforms, 1–1
passing I/O ID to a task, 5–3
passing terminal name to a task, 5–3
supplying name to ACMS, 4–10

Device definition
authorizing terminals in device definition file,

4–3
NL device name, 4–3

Distributed application, 1–1, 1–5
Distributed transactions

canceling, 3–4
coordinating

by SI, 1–1
from agent program, 3–1

rolling back, 3–4

E
EFN

See Event flag
$END_TASK

to end distributed transaction, 3–2
Errors

handling
ACMS$SIGNAL service (SI), 2–6

messages, 2–2
Event flag, 2–4
Exchange I/O

ID, 5–9, 5–21
supplying to a task, 5–21

Index–3



Exchange I/O (cont’d)
ID returned from ACMS$INIT_EXCHANGE_

IO, 4–4
performed by an agent program, 4–6
services, 4–5

ACMS$INIT_EXCHANGE_IO, 4–6
ACMS$INIT_EXCHANGE_IO, 4–2t, 4–4
ACMS$TERM_EXCHANGE_IO, 4–15
ACMS$TERM_EXCHANGE_IO, 4–2t, 4–5

specifying, 4–4
Exchange steps

clauses for stream I/O, 6–2
Extended status, 5–3, 5–9, 5–21

F
FORTRAN

general-purpose agent program, 7–10e
text library, 2–15
using with the SI, 2–15

H
HP DECforms

terminating sessions, 4–15

I
I/O

capabilities of an agent program, 4–7
ID

length, 2–14
passing to a task, 5–3
structure layout, 2–13
supplying to a task, 5–3
use with ACMS$REPLY_TO_STREAM_IO,

6–5
use with ACMS$WAIT_FOR_STREAM_IO,

6–7
method

finding, 5–2, 5–16
item descriptor for, 5–17
programming, 5–3
supplying to a task, 5–3, 5–21

Include file
definitions for Pascal, 2–15

Initialization services, 4–1f, 4–2t, 4–5
ACMS$SIGN_IN, 1–2t, 4–2t
ACMS$SIGN_OUT, 1–2t, 4–2t
agent programs

ACMS$SIGN_IN, 4–10
ACMS$SIGN_OUT, 4–13

superseded, A–1
Input

string descriptors, 6–7
Interfaces

menu, 1–1
non-DECforms, 1–1

Interfaces (cont’d)
to ACMS over streams, 1–5
using stream services, 1–4

Item codes
for ACMS$GET_PROCEDURE_INFO, 5–17

Item descriptors, 5–16, 5–17
Item list

I/O flag, 4–7

K
Keywords

macros, 2–14

L
Languages

using with the SI, 2–16
Logical names

for RI agents with DECforms, 2–11
for user-written agents with DECforms, 2–11

M
MACRO

library, 2–15
using with the SI, 2–15

Menu
interfacing, 1–1, 1–4

Messages
sent in string descriptors, 6–7

Modules
supplied for C, 2–14
supplied for FORTRAN, 2–15

Multithreaded agent program
context with, 2–10
error isolation, 2–10
invoking, 2–12
programming considerations, 2–10
using asynchronous services, 2–10
using separate I/O channels, 2–10

Multi-user agent, 2–11

O
Output string descriptors, 6–7

P
Parameters

notation for procedure, 2–1
Pascal

agent program using ACMS$WAIT, 7–26e
using with the SI, 2–15

PL/I
using with the SI, 2–16

Index–4



Privileges
agent program, 4–3

Procedures
ID for

finding, 5–16
use with ACMS$START_CALL, 5–20

Process
See Agent program

R
Records

definitions
for Pascal, 2–15

Remote
request

performed by an agent program, A–15
Replying to stream I/O, 6–2t, 6–5
Request I/O

defining, 1–4
Request Interface, 1–5

agent
preparing to use with HP DECforms, 2–11

I/O flag, 4–7
Require file

supplied for BLISS, 2–14
Resources

freed after submitter finishes, 4–5
Return

See also Status, return
length address

for ACMS$GET_PROCEDURE_INFO,
5–17

Return status
See Status, return

Routine definitions
for C, 2–14
for Pascal, 2–15
for PL/I, 2–16

S
Selection strings, 5–3, 5–9, 5–21
Servers

IDs
used with ACMS$START_CALL, 5–22

Services
See also Initialization services
See also Stream services
See also Submitter, services
submitter See Submitter, services
IDs

byte arrays for FORTRAN, 2–15
call ID, 5–14, 5–20, 5–25
connect ID, 6–2t, 6–5, 6–7
defining structure for PL/I IDs, 2–16
I/O ID, 6–5, 6–7
length of, 2–13

Services
IDs (cont’d)

procedure ID, 5–20
server ID, 5–22
stream ID, 6–2t
structure definitions for BLISS, 2–14
structure definitions for C, 2–14
structure layout, 2–13
submitter ID, 4–10, 4–13, 5–9, 5–14, 5–16,

5–20, 5–25
parameter notation used, 2–1

SI
See Systems Interface

Sign In/Out services
ACMS$SIGN_IN, 4–3
ACMS$SIGN_OUT, 4–5

Signing in
See also Initialization services
task submitters, 4–1f, 4–3, 4–10

Signing out
See also Initialization services
task submitters, 4–5, 4–13

Single-threaded agent program
programming considerations, 2–10

Single-user agent, 2–11
Standards

for using the SI services, 2–1
Starting

an agent program, 2–11
tasks, 5–2t

$START_TRANS
to start distributed transaction, 3–2

Status
access errors, 5–5, 5–25
ACMS$CALL, 5–11
ACMS$CALL_A, 5–11
ACMS$CANCEL, 5–15
ACMS$CLOSE_RR, A–3
ACMS$CONNECT_STREAM return status,

A–6
ACMS$CREATE_STREAM return status, A–8
ACMS$DELETE_STREAM return status, A–11
ACMS$DISCONNECT_STREAM return status,

A–12
ACMS$GET_PROCEDURE_INFO, 5–18
ACMS$INIT_EXCHANGE_IO, 4–8
ACMS$OPEN_RR, A–15
ACMS$REPLY_TO_STREAM_IO return status,

6–6
ACMS$SIGN_IN, 4–11
ACMS$SIGN_OUT, 4–13
ACMS$START_CALL, 5–23
ACMS$TERM_EXCHANGE_IO, 4–15
ACMS$WAIT_FOR_CALL_END, 5–26
ACMS$WAIT_FOR_STREAM_IO return status,

6–9
cancel message, 2–3

Index–5



Status (cont’d)
completion events, 2–3
extended, 5–3, 5–9, 5–21
return

severity levels, 2–2
returned

for asynchronous services, 2–2
on an ACMS malfunction, 1–4
on cancel routine, 4–5

Stream
I/O

C agent program example, 7–15e
defining, 1–4

Streams
See also Stream, I/O
authorizing the I/O device for, 4–3
connecting, 1–5f, 6–1t
creating, 5–3, 6–1t
defining I/O in a BLOCK step, 5–3, 6–2
deleting, 6–1t
disconnecting, 6–1t
finding the stream ID, 5–16
ID

length, 2–13
structure layout, 2–13
use with ACMS$CONNECT_STREAM,

A–5
use with ACMS$CREATE_STREAM, A–8
use with ACMS$DELETE_STREAM, A–10
use with ACMS$INIT_EXCHANGE_IO,

6–1t
item descriptor value for I/O, 5–17
main uses of, 1–4
passing the stream ID, 5–3
replying to messages on, 6–2t
supplying device name to ACMS, 4–10
terminating, 6–1
waiting for messages on, 6–2t, 6–7

Stream services, 6–1, 6–2t
ACMS$REPLY_TO_STREAM_IO, 6–2t, 6–5
ACMS$WAIT_FOR_STREAM_IO, 6–2t, 6–7,

A–8
superseded

ACMS$CONNECT_STREAM, A–5
ACMS$CREATE_STREAM, A–8

WAIT_FOR_STREAM_IO, A–5
Strings

descriptors, 6–5, 6–7
selection, 5–3, 5–21

Structure definitions
for C, 2–14
for PL/I, 2–16
for service IDs, 2–13

Submitter
ID

assigned during ACMS$SIGN_IN, 4–3
length, 2–13
structure layout, 2–13

Submitter
ID (cont’d)

use with ACMS$CALL, 5–9
use with ACMS$CANCEL_CALL, 5–14
use with ACMS$CLOSE_RR, A–3
use with ACMS$GET_PROCEDURE_INFO,

5–16
use with ACMS$INIT_EXCHANGE_IO,

4–6
use with ACMS$OPEN_RR, A–14
use with ACMS$SIGN_OUT, 4–13
use with ACMS$START_CALL, 5–20
use with ACMS$TERM_EXCHANGE_IO,

4–15
use with ACMS$WAIT_FOR_CALL_END,

5–25
use with single-threaded agent programs,

2–10
services, 5–1f, 5–2t, 5–3

ACMS$CALL, 5–2t, 5–5, 5–9
ACMS$CANCEL_CALL, 5–2t, 5–5, 5–14
ACMS$GET_PROCEDURE_INFO, 5–2t,

5–3, 5–16
ACMS$START_CALL, 5–2t, 5–5, 5–20
ACMS$WAIT_FOR_CALL_END, 5–2t,

5–5, 5–25
Superseded services, A–1

ACMS$CLOSE_RR, A–3
ACMS$OPEN_RR, A–14
BLISS agent program example, 7–20e, 7–26e

Superseded stream services
ACMS$DELETE_STREAM, A–10

Superseded task submitters
communicating with tasks, A–1

Synchronous service
completion status, 2–2
disabling ASTs, 2–3

System services
for distributed transactions, 3–1

Systems Interface
ACMS$WAIT_FOR_CALL_END, 5–25
and the command process, 1–1
asynchronous service parameters, 2–3
calling ACMS tasks, 1–4
calls

ACMS$CALL, 5–9
ACMS$CANCEL_CALL, 5–14
ACMS$CLOSE_RR, A–3
ACMS$CONNECT_STREAM, A–5
ACMS$CREATE_STREAM, A–8
ACMS$DELETE_STREAM, A–10
ACMS$DISCONNECT_STREAM, A–12
ACMS$GET_PROCEDURE_INFO, 5–16
ACMS$INIT_EXCHANGE_IO, 4–6
ACMS$OPEN_RR, A–14
ACMS$REPLY_TO_STREAM_IO, 6–5
ACMS$SIGN_IN, 4–10
ACMS$SIGN_OUT, 4–13

Index–6



Systems Interface
calls (cont’d)

ACMS$START_CALL, 5–20
ACMS$TERM_EXCHANGE_IO, 4–15
ACMS$WAIT_FOR_CALL_END, 5–25
ACMS$WAIT_FOR_STREAM_IO, 6–7
asynchronous and synchronous, 2–2
programming, 2–1

common features of the services, 2–1
creating streams, 1–4
definition of, 1–1
description of services, 1–2t
exchange I/O services, 4–5
features common to programming languages,

2–13
function of agent program, 1–2
initialization services, 4–5
length of service IDs, 2–13
main uses for, 1–1
purpose, 1–1
return status severity levels, 2–2
service call specification, 2–1
service ID structure layout, 2–13
standards for using, 2–1
stream services, 6–1
submitter services, 5–1
superseded services, A–1
synchronous services, 2–2
use with high-level languages, 2–13
using

BLISS, 2–14
C, 2–14
FORTRAN, 2–15
MACRO, 2–15
other languages, 2–16
Pascal, 2–15
PL/I, 2–16

T
Task I/O method, 5–9, 5–21
Tasks

calling, 1–3f, 4–3, 5–1, 5–2t, 5–5, 5–9, 5–20
calling with the SI, 1–1
canceling, 5–2t, 5–5, 5–14
communicating over a stream, 6–1
defined with stream I/O, 6–2
definitions

request I/O, 1–4
stream I/O, 1–4, 6–2

passing
workspaces to, 5–7

preparing to call, 5–2, 5–3, 5–16
submitters

authorizing in ACMS, 4–3
calling tasks, 1–4, 5–1
communicating with tasks, 6–1
exchange I/O, 4–6, 4–15

Tasks
submitters (cont’d)

outside the ACMS environment, 1–1
signing in to ACMS, 4–3, 4–10
signing out of ACMS, 4–5, 4–13
superseded services, A–3, A–14
terminating exchange I/O, 4–5

waiting for completion of, 5–2t, 5–5, 5–25
Terminal

DECforms sessions, 4–6
HP DECforms termination, 4–15
I/O

authorizing the I/O device, 4–3
defining, 1–4
finding the terminal name, 5–16
item descriptor symbol, 5–17
passing exchange I/O ID, 5–3
supplying device name to ACMS, 4–10

providing HP DECforms sessions to, 4–5
TDMS channels with superseded services, A–3,

A–14
Terminal Data Management System

providing channels to, with superseded services,
A–14

providing channels to with superseded services,
A–3

Terminating
a stream, 6–1t
exchange I/O, 4–5

Text library
modules

for C, 2–14
for FORTRAN, 2–15
for PL/I, 2–16

TID
agent program passing to task, 5–3
passing

using SI services, 5–5
services that accept, 3–3

Transaction ID
See TID

TRANSW
"Wait" system services (synchronous), 3–1

U
User

definition file
authorizing agent programs, 4–3

User Definition Utility
adding an agent program, 4–3

User names
authorizing for access to ACMS

as agent programs, 4–3
User-written agent

preparing to use with HP DECforms, 2–11

Index–7



W
Waiting

for stream I/O, 6–2t, 6–7
for task completion, 5–2t, 5–25

WAIT_FOR_STREAM_IO
use with ACMS$CONNECT_STREAM, A–5

Workspaces
list of arguments, 5–3
supplying

to ACMS, 5–3, 5–6
to an ACMS task, 1–4

Index–8


