
HP ACMS for OpenVMS
Writing Server Procedures
Order Number: AA–N691K-TE

January 2006

This manual describes how to write programs to use with tasks and
how to debug tasks and programs. This manual also describes how HP
ACMS for OpenVMS (ACMS) transaction processing (TP) software works
with third-party database managers. It also describes how ACMS TP
software works with HP’s APPC/LU6.2 programming interface software
to communicate with an IBM CICS application on an IBM system.

Revision/Update Information: This manual supersedes HP ACMS for
OpenVMS Writing Server Procedures,
Version 4.5A.

Operating System: OpenVMS Alpha Version 8.2
OpenVMS I64 Version 8.2-1

Software Version: HP ACMS for OpenVMS, Version 5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential Computer Software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation and Technical Data for Commercial Items are licenced to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained here in.

Motif is a registered trademark of The Open Group.

Oracle is a registered US trademark of Oracle Corporation, Redwood City, California.

Oracle CODASYL DBMS, Oracle CDD/Administrator, Oracle CDD/Repository, Oracle Rdb, Oracle
SQL/Services, Oracle Trace, and Oracle Trace Collector are registered US trademarks of Oracle
Corporation, Redwood City, California.

Printed in the US

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . xiii

Part I User Information

1 Introduction to Server Procedures

1.1 Procedure Server Terminology . 1–1
1.2 Understanding Server Procedures . 1–3
1.2.1 Initialization, Termination, and Cancel Procedures 1–3
1.2.2 Step Procedures . 1–4
1.3 Naming and Structuring a Server Procedure . 1–5
1.4 Programming Services and Tools . 1–6

2 Writing Initialization, Termination, and Cancel Procedures

2.1 Writing Initialization Procedures . 2–1
2.1.1 Guidelines for Writing Initialization Procedures 2–2
2.1.2 Binding or Attaching to Databases . 2–3
2.1.3 Initialization Procedures for Rdb Databases Using SQL 2–5
2.1.3.1 Specifying the Access Mode and Relations Used by the Server . . . 2–6
2.1.3.2 Using COBOL . 2–6
2.1.4 Initialization Procedures for Rdb Databases Using RDO 2–8
2.1.5 Initialization Procedures for DBMS Databases 2–10
2.1.5.1 Using COBOL . 2–11
2.1.5.2 Using BASIC . 2–12
2.1.6 Initialization Procedures for RMS Files . 2–13
2.1.6.1 Using COBOL . 2–14
2.1.6.2 Using BASIC . 2–16
2.2 Writing Termination Procedures . 2–19
2.2.1 Termination Procedures for Rdb Databases Using SQL 2–20
2.2.2 Termination Procedures for Rdb Databases Using RDO 2–21
2.2.3 Termination Procedures for DBMS Databases 2–22
2.2.4 Termination Procedures for RMS Files . 2–22
2.2.4.1 Using COBOL . 2–23
2.2.4.2 Using BASIC . 2–24
2.3 Server Process Rundown . 2–24
2.4 Using Cancel Procedures . 2–26
2.4.1 Guidelines for Avoiding Cancel Procedures . 2–28
2.4.2 Situations in Which Using Cancel Procedures Is Unavoidable 2–29
2.4.3 Using $SETAST to Prevent Procedure Server Interruption 2–30
2.4.4 Conditions Under Which Cancel Procedures Are Called 2–31
2.4.5 Cancel Procedures in Distributed and Nondistributed Transactions . . 2–32

iii

2.4.6 Writing a Cancel Procedure . 2–32
2.4.6.1 Cancel Procedure for Rdb with RDO . 2–34
2.4.6.2 Cancel Procedure for RMS Files . 2–35

3 Writing Step Procedures

3.1 Using Workspaces with Step Procedures . 3–1
3.1.1 Using ACMS-Supplied System Workspaces . 3–2
3.1.2 Identifying Workspaces . 3–3
3.2 Using Procedures in Distributed Transactions . 3–4
3.2.1 Determining the Participation of a Procedure in a Distributed

Transaction . 3–5
3.2.2 Using Database Transactions or Recovery Units with Distributed

Transactions . 3–6
3.2.3 Obtaining the Transaction ID (TID) . 3–7
3.2.4 Retaining Server Context in Distributed Transactions 3–7
3.2.5 Migrating Existing Step Procedures to Participate in Distributed

Transactions . 3–8
3.3 Returning Status to the Task Definition . 3–8
3.3.1 Returning Status with a Status Return Facility 3–9
3.3.2 Returning Status in User-Defined Workspaces 3–10
3.3.2.1 COBOL Procedure for Returning Status in a User-Defined

Workspace . 3–11
3.3.2.2 BASIC Procedure for Returning Status in a User-Defined

Workspace . 3–12
3.4 Handling Error Conditions . 3–13
3.4.1 Processing Error Messages . 3–14
3.4.1.1 Using a Message File in the Task Definition 3–14
3.4.1.2 Using a Message File in the Step Procedure 3–15
3.4.1.3 Using Hard-Coded Messages in the Form 3–17
3.4.1.4 Using Hard-Coded Messages in the Step Procedure 3–18
3.4.2 Raising Exceptions in Step Procedures . 3–19
3.4.2.1 Raising Recoverable Exceptions in Step Procedures 3–20
3.4.2.2 Raising Nonrecoverable Exceptions in Step Procedures 3–21
3.5 Performing Terminal I/O from a Procedure Server 3–22

4 Accessing Resource Managers

4.1 Using SQL with Rdb . 4–2
4.1.1 Using Embedded SQL Statements in Step Procedures 4–3
4.1.2 Using SQL with Distributed Transactions . 4–4
4.1.2.1 Defining an SQL Context Structure . 4–5
4.1.2.2 Storing the TID in the SQL Context Structure 4–6
4.1.2.3 Passing the Context Structure to SQL . 4–6
4.1.3 Starting and Ending SQL Database Transactions 4–7
4.1.3.1 Starting an SQL Database Transaction that is Part of a

Distributed Transaction . 4–7
4.1.3.2 Starting and Ending an Independent SQL Database

Transaction . 4–8
4.1.3.3 Using Rdb Transaction Mode and Lock Mode Specifications 4–8
4.1.3.4 Using an Rdb Wait Mode Specification . 4–9
4.1.4 Reading from a Database . 4–10
4.1.5 Writing to a Database . 4–11
4.1.6 Handling Errors . 4–12

iv

4.1.7 Compiling Procedures that Use SQL . 4–15
4.1.8 COBOL Step Procedure Using SQL with Rdb 4–15
4.2 Using Precompiled RDO or RDML with Rdb . 4–20
4.2.1 Using RDO Statements in Step Procedures . 4–20
4.2.2 Starting and Ending RDO Database Transactions 4–21
4.2.2.1 Starting an RDO Database Transaction that is Part of a

Distributed Transaction . 4–21
4.2.2.2 Starting and Ending an Independent RDO Database

Transaction . 4–23
4.2.3 Reading from a Database . 4–23
4.2.4 Writing to a Database . 4–24
4.2.5 Handling Errors . 4–26
4.2.6 Compiling Rdb Procedures that Use RDO . 4–27
4.3 Using DBMS . 4–28
4.3.1 Using DBMS DML Statements in Step Procedures 4–28
4.3.2 Starting and Ending a DBMS Database Transaction 4–29
4.3.2.1 Starting a DBMS Database Transaction that Is Part of a

Distributed Transaction . 4–29
4.3.2.2 Starting and Ending an Independent DBMS Database

Transaction . 4–30
4.3.2.3 Using DBMS Access and Allow Mode Specifications 4–31
4.3.2.4 Using a DBMS Wait Mode Specification . 4–31
4.3.3 Reading from a Database . 4–32
4.3.4 Writing to a Database . 4–34
4.3.5 Handling Errors . 4–37
4.3.6 Compiling DBMS Procedures . 4–40
4.4 Using RMS . 4–41
4.4.1 Using Files Marked for RMS Recovery-Unit Journaling 4–41
4.4.2 Reading RMS Records . 4–42
4.4.3 Writing and Updating RMS Records . 4–43
4.4.4 Handling Errors . 4–46

5 Using Message Files with ACMS Tasks and Procedures

5.1 Creating Source Files of Messages . 5–1
5.1.1 Setting Up Message File Characteristics . 5–2
5.1.2 Writing Messages . 5–2
5.1.2.1 .FACILITY Statement . 5–3
5.1.2.2 .SEVERITY Statements . 5–3
5.1.2.3 Message Names and Text . 5–4
5.2 Compiling Message Files . 5–6
5.3 Displaying User-Defined Messages . 5–7

6 Building Procedure Server Images

6.1 Steps in Building a Procedure Server Image . 6–1
6.1.1 Writing the Source Code of the Procedure . 6–2
6.1.2 Compiling the Source Code into a Procedure Object Module 6–2
6.1.3 Creating, Compiling, and Linking Message Files 6–3
6.1.4 Building the Task Group . 6–3
6.1.5 Linking the Object Code of Procedures . 6–3
6.2 Using an Object Library for Procedures . 6–6

v

7 Debugging Tasks and Procedures

7.1 Using Debugging Tools . 7–1
7.2 Preparing to Use the ACMS Task Debugger . 7–2
7.2.1 Preparing Definitions . 7–2
7.2.2 Preparing Procedures . 7–3
7.2.3 Defining Logical Names . 7–5
7.2.4 Preparing to Debug DECforms Escape Routines 7–6
7.2.5 Setting Up for Debugging with Two Terminals 7–7
7.2.6 Verifying that the ACMS Task Debugger Can Be Run 7–8
7.3 Using the ACMS Task Debugger . 7–9
7.3.1 Starting the Task Debugger . 7–9
7.3.2 Using the Task Debugger ASSIGN Command 7–10
7.3.3 Starting, Stopping, and Interrupting Servers . 7–10
7.3.3.1 Starting Servers . 7–11
7.3.3.2 Stopping Servers . 7–12
7.3.3.3 Interrupting Servers . 7–13
7.3.4 Setting and Removing Breakpoints in a Task 7–14
7.3.4.1 Setting Location and Event Breakpoints . 7–15
7.3.4.2 Using a Dump File . 7–17
7.3.4.3 Debugging a Task Called by Another Task 7–20
7.3.4.4 Removing Breakpoints . 7–21
7.3.5 Running a Task in the ACMS Task Debugger 7–21
7.3.6 Checking Values in Workspaces . 7–22
7.3.6.1 Checking Initial Values . 7–22
7.3.6.2 Checking Entered Values . 7–22
7.3.6.3 Checking Values in the ACMS$PROCESSING_STATUS

Workspace . 7–23
7.3.7 Debugging Transaction Timeout Code . 7–23
7.3.8 Stopping the Task Debugger . 7–24
7.4 Using the OpenVMS Debugger . 7–24
7.5 Returning to the ACMSDBG> Prompt . 7–25
7.6 Debugging Tasks Called from a User-Written Agent Program 7–26

8 Debugging an Application in an ACMS Run-Time Environment

8.1 Moving from Debugging to a Run-Time Environment 8–1
8.2 Checking Files Needed to Run Tasks Under ACMS 8–3
8.3 Debugging Procedure Servers in the Run-Time Environment 8–3
8.3.1 Controlling Which Users Can Debug Servers . 8–3
8.3.2 Using the ACMS/DEBUG/SERVER Command 8–4
8.3.3 Replacing a Faulty Server . 8–5
8.4 Determining Why Servers Stop Unexpectedly . 8–5
8.4.1 Collecting Server Information in a Dump File 8–6
8.4.2 Analyzing Server Process Dumps . 8–7

Part II Reference Material

vi

9 ACMS Programming Services

ACMS$GET_TID . 9–3
ACMS$RAISE_NONREC_EXCEPTION . 9–5
ACMS$RAISE_STEP_EXCEPTION . 9–7
ACMS$RAISE_TRANS_EXCEPTION . 9–9

10 ACMS Task Debugger Commands

@ (At sign) Command . 10–3
ACCEPT Command . 10–4
ASSIGN Command . 10–5
CANCEL BREAK Command . 10–6
CANCEL TASK Command . 10–7
CANCEL TRANSACTION_TIMEOUT Command 10–8
DEPOSIT Command . 10–9
EXAMINE Command . 10–10
EXIT Command . 10–11
GO Command . 10–12
HELP Command . 10–13
INTERRUPT Command . 10–14
SELECT Command . 10–16
SET BREAK Command . 10–17
SET SERVER Command . 10–18
SET TRANSACTION_TIMEOUT Command . 10–19
SHOW BREAK Command . 10–20
SHOW SERVERS Command . 10–21
SHOW TRANSACTION_TIMEOUT Command . 10–22
SHOW VERSION Command . 10–23
START Command . 10–24
STEP Command . 10–26
STOP Command . 10–27

Part III Interoperability with Third-Party Databases: Oracle Case Study

11 Overview of ACMS and Oracle

11.1 Why Use HP and ACMS? . 11–1
11.2 Introduction to Developing ACMS Applications . 11–2
11.2.1 Writing ACMS Definitions . 11–3
11.2.2 Composition of ACMS Definitions . 11–4
11.3 Introduction to Using ACMS with Third-Party Databases 11–5
11.4 How Do You Use ACMS with Oracle? . 11–5

vii

12 Implementation Details of the Sample Application

12.1 Execution Flow of the Sample Task . 12–1
12.1.1 Task Definition . 12–3
12.1.2 Form Definition . 12–6
12.1.3 Read Database COBOL Step Procedure . 12–7
12.2 Application, Task Group, and Menu Definitions . 12–11
12.2.1 Application Definition . 12–11
12.2.2 Task Group Definition . 12–12
12.2.3 Menu Definition . 12–14
12.3 Additional Procedure Server Components . 12–15
12.3.1 Initialization Procedure . 12–15
12.3.2 Termination Procedure . 12–16
12.4 Field and Record Definitions . 12–17
12.5 CASE Tools . 12–19

Part IV Interoperability with IBM LU6.2 and CICS

13 Overview of ACMS and APPC/LU6.2

13.1 Why Use HP and ACMS? . 13–1
13.2 Introduction to Developing ACMS Applications . 13–1
13.2.1 Writing ACMS Definitions . 13–3
13.2.2 Composition of ACMS Definitions . 13–3
13.3 Introduction to Using the APPC/LU6.2 Programming Interface 13–5
13.4 How Do You Connect ACMS with IBM CICS Systems? 13–5

14 Implementation Details of the Sample Application

14.1 Execution Flow of the Sample Task . 14–1
14.1.1 Task Definition . 14–3
14.1.2 Prompt Form Definition . 14–4
14.1.3 Read Database COBOL Step Procedure . 14–6
14.1.4 Display Form Definition . 14–11
14.2 Application, Task Group, and Menu Definitions . 14–14
14.2.1 Application Definition . 14–14
14.2.2 Task Group Definition . 14–15
14.2.3 Menu Definition . 14–17
14.3 Additional Procedure Server Components . 14–17
14.3.1 Initialization Procedure . 14–17
14.3.2 Termination Procedure . 14–19
14.4 Field and Record Definitions . 14–20

Part V Appendixes

A Summary of ACMS System Workspaces

A.1 ACMS$PROCESSING_STATUS System Workspace A–1
A.2 ACMS$SELECTION_STRING System Workspace A–3
A.3 ACMS$TASK_INFORMATION System Workspace A–3

viii

B Libraries Included in AVERTZ Sample Procedures

B.1 VR_MESSAGES_INCLUDE.LIB . B–1
B.2 VR_LITERALS_INCLUDE.LIB . B–2
B.3 VR_SQL_STATUS_INCLUDE.LIB . B–2
B.4 VR_CONTEXT_STRUCTURE_INCLUDE.LIB . B–2

C Superseded Features

ACMSAD$REQ_CANCEL . C–2

Index

Examples

1–1 Declaration of Initialization and Termination Procedures in a Task
Group Definition . 1–4

1–2 Declaration of a Step Procedure in a Task Group Definition 1–4
1–3 Processing Step in a Task Definition . 1–5
2–1 SQL Initialization Procedure . 2–7
2–2 BASIC Initialization Procedure for Rdb Server 2–9
2–3 COBOL Initialization Procedure for DBMS . 2–12
2–4 BASIC Initialization Procedure for DBMS . 2–13
2–5 COBOL Initialization Procedure for RMS Server 2–15
2–6 BASIC Initialization Procedure for RMS Server 2–18
2–7 SQL Termination Procedure . 2–20
2–8 COBOL Termination Procedure for RMS Files 2–23
2–9 BASIC Termination Procedure for RMS Files 2–24
2–10 Pseudocode for Using $SETAST . 2–31
2–11 Server Cancel Procedure in BASIC Using Rdb with RDO 2–34
2–12 Server Cancel Procedure in COBOL for RMS Files 2–35
2–13 Server Cancel Procedure in BASIC . 2–37
3–1 Referencing a Workspace in a Task Definition 3–3
3–2 COBOL Procedure that Names a Workspace . 3–3
3–3 CDD Record Definition for VR_CUSTOMERS_WKSP Workspace 3–4
3–4 Record Description for TASK_CONTROL . 3–10
3–5 COBOL Procedure for Returning Status in a User-Defined

Workspace . 3–11
3–6 BASIC Procedure for Returning Status in a User-Defined

Workspace . 3–12
4–1 Task Definition that Calls Server Procedures Using SQL 4–3
4–2 Declaring the Database . 4–4
4–3 Lock Specification Example . 4–9
4–4 Indicator Array for Null Values . 4–10
4–5 Selecting a Value from a Table . 4–11
4–6 Writing to a Database . 4–11
4–7 COBOL Procedure Using SQL with Rdb . 4–16
4–8 Step Procedure in COBOL that Reads a DBMS Record 4–32
4–9 Step Procedure in BASIC that Reads a DBMS Record 4–34

ix

4–10 Step Procedure in COBOL that Updates a DBMS Record 4–35
4–11 Step Procedure in BASIC that Updates a DBMS Record 4–36
4–12 Step Procedure in COBOL that Reads an RMS Record 4–42
4–13 Step Procedure in BASIC that Reads an RMS Record 4–43
4–14 Step Procedure in COBOL that Writes an RMS Record 4–44
4–15 Step Procedure in BASIC that Updates an RMS Record 4–45
5–1 Source File of Messages . 5–5
6–1 LINK Command for a Procedure that Uses SQL 6–5
6–2 LINK Command for Servers Called by Tasks that Use the SQL

RECOVERY Phrase . 6–5
7–1 Task Definition with Breakpoint Symbols . 7–17
7–2 Sample Task Group Dump File . 7–18
8–1 Using the SERVER PROCESS DUMP Clause in an Application

Definition . 8–6
12–1 VR_DISPLAY_SITES_TASK Task Definition . 12–3
12–2 VR_GET_SITES_PROC COBOL Step Procedure 12–7
12–3 AVERTZ_VR_APPLICATION Application Definition 12–11
12–4 VR_TASK_GROUP Task Group Definition . 12–13
12–5 ACMS_SAMPLE_MENU Menu Definition . 12–14
12–6 VR_INIT Initialization Procedure . 12–15
12–7 VR_TERM Termination Procedure . 12–16
12–8 Field Definitions . 12–18
12–9 Record and Workspace Definitions . 12–18
12–10 Text Library Record Definition . 12–18
14–1 EMPLOYEE_INFO_READ_TASK Task Definition 14–3
14–2 EMPLOYEE_INFO_PROMPT_FORM Form Definition 14–4
14–3 READ_EMPL_INFO COBOL Step Procedure 14–6
14–4 EMPLOYEE_INFO_FORM Form Definition . 14–11
14–5 EMPLOYEE_INFO_APPL_ACMS_APPC Application Definition 14–15
14–6 EMPLOYEE_INFO_TASK_GROUP Task Group Definition 14–16
14–7 EMPLOYEE_INFO_MENU Menu Definition . 14–17
14–8 INIT_EMPL_INFO Initialization Procedure . 14–18
14–9 TERM_EMPL_INFO Termination Procedure . 14–19
14–10 Field Definitions . 14–21
14–11 Record and Workspace Definitions . 14–21

Figures

1–1 Procedure Server Terminology . 1–2
1–2 Call to a Step Procedure in a Task Definition 1–4
3–1 How ACMS Applications Use Workspaces . 3–2
4–1 Calling the Procedure VR_COMPLETE_CHECKOUT_PROC 4–2
5–1 Creating Message Files . 5–6
6–1 Creating a Procedure Server Image . 6–2
6–2 Compiling Source Code into Object Modules . 6–3
6–3 Linking Object Modules into a Procedure Server Image 6–4
7–1 Files Needed for Debugging . 7–4

x

11–1 Execution Flow of an ACMS Task Definition . 11–2
11–2 ACMS Application Components . 11–3
12–1 Execution Flow of the Sample Task . 12–2
13–1 Execution Flow of an ACMS Task Definition . 13–2
13–2 ACMS Application Components . 13–3
13–3 How ACMS and APPC/LU6.2 Connect to an IBM Machine 13–6
14–1 Execution Flow of the Sample Task . 14–2

Tables

2–1 Server Rundown . 2–26
3–1 Values for ACMS$T_STATUS_TYPE . 3–9
3–2 Values for ACMS$T_SEVERITY_LEVEL . 3–10
7–1 Files Needed for Debugging . 7–4
7–2 Control Characters for the ACMS Task Debugger 7–9
7–3 Location Breakpoint Symbols . 7–15
7–4 Event Breakpoint Symbols . 7–16
9–1 Summary of the ACMS Programming Services 9–1
9–2 Procedure Parameter Notation . 9–2
10–1 ACMS Task Debugger Commands . 10–1
12–1 Description of Code for VR_DISPLAY_SITES_TASK Task

Definition . 12–5
12–2 Description of Code for VR_GET_SITES_PROC COBOL Step

Procedure . 12–9
12–3 Description of Code for AVERTZ_VR_APPLICATION Application

Definition . 12–12
12–4 Description of Code for VR_TASK_GROUP Task Group Definition . . . 12–13
12–5 Description of Code for ACMS_SAMPLE_MENU Menu Definition . . . 12–15
12–6 Description of Code for VR_INIT Initialization Procedure 12–16
12–7 Description of Code for VR_TERM Termination Procedure 12–17
14–1 Description of Code for EMPLOYEE_INFO_READ_TASK Task

Definition . 14–3
14–2 Description of Code for READ_EMPL_INFO COBOL Step

Procedure . 14–10
14–3 Description of Code for EMPLOYEE_INFO_APPL_ACMS_APPC

Application Definition . 14–15
14–4 Description of Code for EMPLOYEE_INFO_TASK_GROUP Task

Group Definition . 14–16
14–5 Description of Code for EMPLOYEE_INFO_MENU Menu

Definition . 14–17
14–6 Description of Code for INIT_EMPL_INFO Initialization

Procedure . 14–18
14–7 Description of Code for TERM_EMPL_INFO Termination

Procedure . 14–20
A–1 Fields in the ACMS$PROCESSING_STATUS Workspace A–2
A–2 Field in the ACMS$SELECTION_STRING Workspace A–3
A–3 Fields in the ACMS$TASK_INFORMATION Workspace A–3

xi

Preface

This manual explains how to write and debug procedures for HP ACMS for
OpenVMS (ACMS) applications. It also provides reference information for the
ACMS programming services and debugger commands.

In addition, HP is commited to maximizing a customer’s use of existing hardware
and software by offering interoperable, flexible, and reliable software such as
ACMS, which can interoperate with third-party database products such as
Oracle, and and interconnect products such as APPC/LU6.2. In keeping with
this commitment, this manual contains guidelines for integrating HP ACMS
for OpenVMS with third-party databases such as Oracle. In addition, this
manual provides guidelines for tying together HP ACMS for OpenVMS and
IBM® systems.

Intended Audience
This document is intended for persons who will:

• Write step procedures for ACMS tasks

• Write ACMS initialization, termination, and cancellation procedures

• Debug ACMS tasks and procedures

• Integrate ACMS with a third-party database, such as Oracle

• Tie ACMS together with an IBM system

To program the ACMS system, you need a beginner’s knowledge of a
programming language that conforms to the OpenVMS Calling Standard—
COBOL or BASIC, for example. If you are using Oracle CODASYL DBMS or
Oracle Rdb, you also need a beginner’s knowledge of database programming. You
do not need extensive experience with OpenVMS programming tools or system
programming.

For Part III, this manual assumes that the reader has a working knowledge of
Oracle databases (especially readers who are programming-level personnel). This
section does not attempt to illustrate the creation or maintenance of an Oracle
database. The approach that is taken assumes that there is an existing Oracle
database on the OpenVMS system. Also, the Oracle example is for illustration
purposes only; is is not meant to be the definitive way to create an ACMS
application that accesses an Oracle database.

For Part IV, this manual assumes that the reader has a working knowledge of
LU6.2 and DECnet/SNA concepts (especially readers who are programming-
level personnel). This section does not attempt to illustrate the creation or
maintenance of an LU6.2 gateway between an OpenVMS system and an IBM
system or a CICS® application on an IBM system. The approach that is taken
in the detailed sections of the guide assumes that there is an existing CICS
application on the IBM system and an existing LU6.2 gateway between the

xiii

systems. Also, the LU6.2 example is for illustration purposes only; it is not
meant to be the definitive way to create an ACMS application that interfaces
with a CICS application.

Document Structure
This manual contains tutorial information for ACMS application programming,
followed by reference information for ACMS programming tools and debugging
commands, and guidelines for integrating ACMS with third-party databases and
IBM systems. Following the guidelines are appendixes and an index.

Part I — User Information

Chapter 1 Introduces ACMS application programming by explaining procedure
server terminology, the kinds of programs you write, the ACMS tools
you use to write and debug ACMS application programs, and the
programming tools supplied by related products.

Chapter 2 Explains how to write initialization, termination, and cancel procedures
for ACMS tasks.

Chapter 3 Presents recommendations for writing step procedures, including
naming and structuring step procedures, using workspaces, handling
errors in step procedures, and performing terminal I/O from a
procedure server.

Chapter 4 Explains how to write procedures for tasks that use Oracle Rdb
databases with SQL, Oracle Rdb with RDO, Oracle CODASYL DBMS
databases, and RMS files.

Chapter 5 Explains how to create message files for ACMS task groups.

Chapter 6 Explains how to build procedure server images.

Chapter 7 Explains how to debug tasks, including tasks called by user-written
agent programs, as well as procedures called by tasks.

Chapter 8 Provides guidelines to transition procedures so that they run in the
ACMS run-time environment.

Part II — Reference Material

Chapter 9 Provides reference material for the ACMS programming services.

Chapter 10 Provides reference material for the ACMS Task Debugger commands.

Part III — Interoperability with Third-Party Databases: Oracle Case
Study

Chapter 11 Describes key ACMS and Oracle interoperability concepts.

Chapter 12 Walks you through a sample application that uses ACMS in conjunction
with Oracle.

Part IV — Interoperability with IBM LU6.2 and CICS

Chapter 13 Describes key ACMS and APPC/LU6.2 technical concepts.

Chapter 14 Walks you through a sample program that uses ACMS and
APPC/LU6.2 products to interoperate with an IBM CICS system
and database.

Part V — Appendixes

Appendix A Describes the ACMS system workspaces.

xiv

Appendix B Lists the libraries referred to in the AVERTZ procedures that are used
as examples in the manual.

Appendix C Describes superseded features.

Related Documents
Read HP ACMS for OpenVMS Getting Started before using this guide; this
book provides an introduction to developing applications with ACMS and HP
DECforms software. It explains the basic concepts and facilities of ACMS and
other products needed for developing ACMS applications. The collection of
examples in this book shows the development of a complete ACMS application
and explains how to install and run the application. The following table lists the
documents in the ACMS documentation set.

ACMS Information Description

HP ACMS Version 5.0 for OpenVMS
Release Notes†

Information about the latest release of the software

HP ACMS Version 5.0 for OpenVMS
Installation Guide

Description of installation requirements, the installation
procedure, and postinstallation tasks.

HP ACMS for OpenVMS Getting
Started

Overview of ACMS software and documentation.
Tutorial for developing a simple ACMS application.
Description of the AVERTZ sample application.

HP ACMS for OpenVMS Concepts
and Design Guidelines

Description of how to design an ACMS application.

HP ACMS for OpenVMS Writing
Applications

Description of how to write task, task group, application, and
menu definitions using the Application Definition Utility.
Description of how to write and migrate ACMS applications on
an OpenVMS Alpha system.

HP ACMS for OpenVMS Writing
Server Procedures

Description of how to write programs to use with tasks
and how to debug tasks and programs. Description of how
ACMS works with the APPC/LU6.2 programming interface
to communicate with IBM CICS applications. Description of
how ACMS works with third-party database managers, with
Oracle used as an example.

HP ACMS for OpenVMS Systems
Interface Programming

Description of using Systems Interface (SI) Services to submit
tasks to an ACMS system.

HP ACMS for OpenVMS ADU
Reference Manual

Reference information about the ADU commands, phrases,
and clauses.

HP ACMS for OpenVMS Quick
Reference

List of ACMS syntax with brief descriptions.

HP ACMS for OpenVMS Managing
Applications

Description of authorizing, running, and managing ACMS
applications, and controlling the ACMS system.

HP ACMS for OpenVMS Remote
Systems Management Guide

Description of the features of the Remote Manager for
managing ACMS systems, how to use the features, and how to
manage the Remote Manager.

Online help† Online help about ACMS and its utilities.

†Available on line only.

The following documentation is also useful:

• DECforms Guide to Commands and Utilities

Explains how to create HP DECforms forms and design HP DECforms panels.

• Oracle CDD/Repository documentation

Describes how to store record definitions in Oracle CDD/Repository.

xv

• Oracle CODASYL DBMS documentation

Explains how to use DML statements and callable DBQ in programs using an
Oracle CODASYL DBMS database.

• Oracle Rdb documentation

Provides Oracle Rdb language elements and statements, and provides
information about using Oracle Rdb data manipulation statements in
application programs.

• Documentation for the SQL interface to Oracle Rdb

Describes the SQL interface to Oracle Rdb, including the statements and
compiler used to write ACMS application programs.

• OpenVMS Debugger Manual and VMS Message Utility Manual

Describe how to use the OpenVMS Debugger and the Message Utility.
DEC COBOL User Manual and DEC COBOL Reference Manual

Explain the COBOL statements and compiler used to write ACMS application
programs.
BASIC for OpenVMS Systems User’s Manual and BASIC for OpenVMS
Systems Reference Manual

Explain the BASIC statements and compiler used to write ACMS application
programs.

For additional information on the compatibility of other software products with
this version of ACMS, refer to the HP ACMS for OpenVMS Software Product
Description (SPD 25.50.xx).

For additional information about the Open Systems Software Group (OSSG)
products and services, access the following OpenVMS World Wide Web address:

http://h71000.www7.hp.com/openvms

Reader’s Comments
HP welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company, L.P.
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following World Wide Web address for information about how to order
additional documentation:

http://www.hp.com/go/openvms/doc/

To reach the OpenVMS documentation website, click the Documentation link.

If you need help deciding which documentation best meets your needs, call
1–800–ATCOMPA.

xvi

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must press and
hold the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

In the HMTL version of this document, this text style may
appear as italics.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

bold text Bold text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

In the HMTL version of this document, this text style may
appear as italics.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

xvii

UPPERCASE Uppercase text indicates the name of a routine, the name of a
file, the name of a file protection code, or the abbreviation for a
system privilege.

In command format descriptions, uppercase text is an optional
keyword.

UPPERCASE In command format descriptions, uppercase text that is
underlined is required. You must include it in the statement if
the clause is used.

lowercase In command format descriptions, a lowercase word indicates a
required element.

<lowercase> In command format descriptions, lowercase text in angle
brackets indicates a required clause or phrase.

() In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

[| |] In command format descriptions, vertical bars within square
brackets indicate that you can choose any combination of the
enclosed options, but you can choose each option only once.

{ | | } In command format descriptions, vertical bars within braces
indicate that you must choose one of the options listed, but you
can use each option only once.

References to Products
The ACMS documentation set often refers to products by abbreviated names. The
following product abbreviations are used in this documentation set:

Abbreviation Product

ACMS HP ACMS for OpenVMS Alpha, and HP ACMS for OpenVMS I64

Ada HP Ada for OpenVMS Alpha Systems, and HP Ada for OpenVMS I64
Systems

BASIC HP BASIC for OpenVMS

C HP C for OpenVMS Alpha Systems, and HP C for OpenVMS I64 Systems

CDD Oracle CDD/Administrator, and Oracle CDD/Repository

COBOL HP COBOL for OpenVMS Alpha Systems, and HP COBOL for OpenVMS
I64 Systems

DATATRIEVE HP DATATRIEVE for OpenVMS Alpha, and HP DATATRIEVE for
OpenVMS I64

DBMS Oracle CODASYL DBMS

DECforms HP DECforms

FORTRAN HP Fortran for OpenVMS Alpha Systems, and HP Fortran for OpenVMS
I64 Systems

OpenVMS The OpenVMS Alpha operating system, and the OpenVMS I64 operating
system

Pascal HP Pascal for OpenVMS Alpha, and HP Pascal for OpenVMS I64

Rdb Oracle Rdb

SQL The SQL interface to Oracle Rdb

xviii

Part I
User Information

Part I contains tutorial information about writing procedures and creating
message files for ACMS servers. This part also contains information about
building procedure server images, debugging tasks and server procedures, and
running tasks in the ACMS run-time environment.

1
Introduction to Server Procedures

This chapter defines procedure server terminology, including server procedures,
procedure server images, server processes, and procedure server transfer
modules. The chapter also explains the similarities and differences between the
different types of procedures used in ACMS applications:

• Step procedures

• Specialized procedures: initialization, termination, and cancel procedures

Each section in the chapter includes references to other chapters or manuals
where you can find more detailed information about these topics.

1.1 Procedure Server Terminology
A number of terms used in this chapter can be confusing because they all contain
the word server, and they are similar-sounding. Because these terms are used
throughout this and other ACMS manuals, it is important to understand the
differences among them.

A procedure server is a term used in ACMS to describe a number of the specific
concepts, which are represented in Figure 1–1.

Introduction to Server Procedures 1–1

Introduction to Server Procedures
1.1 Procedure Server Terminology

Figure 1–1 Procedure Server Terminology

Server Procedures

Image

(.OBJ)

TAY-0155-AD

Procedure Server

Server Process

Definition
(ADU)

(Programming
Languages)

(.EXE)

(SP)

Transfer Module

(Concept)

To the right of Procedure Server (Concept) in Figure 1–1 are five procedure
server-related terms:

• A procedure server definition is ADU syntax used to describe the server
procedures and the server image. A procedure server definition is a part of a
task group definition.

• Server procedures are programs or subroutines written in 3GL languages
that conform to the OpenVMS calling standard. A procedure performs
a particular kind of work for an ACMS task. The two kinds of server
procedures used in ACMS tasks are the following:

Initialization, termination, and cancel procedures

Step procedures

These two types of server procedures are explained in the next section.

• A procedure server image (.EXE) is the executable code that actually does
the work for an ACMS processing step; it is, in fact, an OpenVMS image. A
procedure server image runs in a procedure server process.

• A procedure server process (SP) is an OpenVMS process created according
to the characteristics defined for a server in ACMS task group and application
definitions. Server processes are started and stopped, as needed, by the
Application Execution Controller (EXC) process.

When the EXC starts a procedure server, it creates a server process, activates
and loads the procedure server image, and runs any initialization procedure
defined for the server.

1–2 Introduction to Server Procedures

Introduction to Server Procedures
1.1 Procedure Server Terminology

• A procedure server transfer module is an object module created for a
procedure server as a result of building an ACMS task group definition.
When you build a task group, ADU produces a procedure server transfer
module for each server defined in the task group.

Note

The two types of servers in an ACMS environment are procedure servers
and DCL servers. See HP ACMS for OpenVMS Writing Applications for
information about DCL servers.

1.2 Understanding Server Procedures
A server procedure is a program written in a 3GL programming language, such as
COBOL, that conforms to the OpenVMS calling standard. A procedure performs
a particular kind of work for an ACMS task. The two types of procedures in
ACMS are described in the next two sections.

1.2.1 Initialization, Termination, and Cancel Procedures
Initialization, termination, and cancel procedures make up one type of
server procedure. These procedures open files, bind databases, close files, and do
cleanup work when an ACMS task is canceled.

Initialization, termination, and cancel procedures do work related to a server
process rather than work related to a specific task. The Application Execution
Controller (EXC) calls each of them at various times:

• An initialization procedure is called when a server process starts.

• A termination procedure is called when a server process stops.

• A cancel procedure is called when a task is canceled.

Initialization, termination, and cancel procedures for a server are declared in
a task group definition. You can have only one initialization, termination, and
cancel procedure in each server definition.

Example 1–1 shows the task group server declaration of the initialization
procedure VR_INIT and the termination procedure VR_TERM in the AVERTZ
Vehicle Rental Task Group Definition, VR_TASK_GROUP.

Introduction to Server Procedures 1–3

Introduction to Server Procedures
1.2 Understanding Server Procedures

Example 1–1 Declaration of Initialization and Termination Procedures in a Task
Group Definition

REPLACE GROUP VR_TASK_GROUP
.
.
.
SERVER IS VR_SERVER:

INITIALIZATION PROCEDURE IS VR_INIT;
TERMINATION PROCEDURE IS VR_TERM;
PROCEDURES ARE
.
.
.

END SERVER;
END DEFINITION;

The declaration of a cancel procedure, if included in the example, would follow
the identification of the initialization and termination procedures and would be
similar to them.

Chapter 2 contains more information and examples of initialization, termination,
and cancel procedures.

1.2.2 Step Procedures
A step procedure is a second type of server procedure. A step procedure is a
subroutine that does the computational and database access work for a processing
step in an ACMS task. It is invoked by means of a call statement in a processing
step, and it returns control to the calling task when it completes.

Figure 1–2 shows a call to a step procedure in a processing step of a task
definition. The step procedure in the example is VR_GET_CUSTOMER_PROC.

Figure 1–2 Call to a Step Procedure in a Task Definition

TAY-0156-AD

REPLACE TASK VR_DISPLAY_CU_TASK
.

Computation

.

.

PROCESSING WORK...

END DEFINITION;

CALL VR_GET_CUSTOMER_PROC
.
.
. and/or Database

Access Work

The names of the step procedures called by the tasks in the task group are
declared in the PROCEDURES ARE clause of the SERVER IS statement.
Example 1–2 shows an example of the procedure VR_GET_CUSTOMER_PROC
declared in the task group VR_TASK_GROUP.

Example 1–2 Declaration of a Step Procedure in a Task Group Definition

(continued on next page)

1–4 Introduction to Server Procedures

Introduction to Server Procedures
1.2 Understanding Server Procedures

Example 1–2 (Cont.) Declaration of a Step Procedure in a Task Group
Definition

REPLACE GROUP VR_TASK_GROUP
.
.
.
SERVER IS VR_SERVER:

INITIALIZATION PROCEDURE IS VR_INIT;
TERMINATION PROCEDURE IS VR_TERM;
PROCEDURES ARE

VR_GET_CUSTOMER_PROC,
.
.
.

END SERVER;
END DEFINITION;

1.3 Naming and Structuring a Server Procedure
Two rules apply to naming and structuring a server procedure:

• Assign a unique name to a server procedure.

The name or entry point used for each procedure must be unique among all
procedures in a procedure server. You must use the same name to call the
procedure in the processing step in the task definition.

Example 1–3 shows a simplified example of a task definition with a processing
step that calls a step procedure.

Example 1–3 Processing Step in a Task Definition

REPLACE TASK VR_DISPLAY_CU_TASK
.
.
.

GET_CUSTOMERS:
PROCESSING

CALL VR_GET_CUSTOMER_PROC USING VR_CUSTOMER_WKSP,
VR_CU_ARRAY_WKSP;

.

.

.

The CALL clause shows that you want to run a procedure named VR_GET_
CUSTOMER_PROC. The USING keyword names two workspaces that the
procedure uses: VR_CUSTOMER_WKSP and VR_CU_ARRAY_WSKP. The
task definition does not change regardless of the language you use to write
the procedure.

For a more detailed explanation of the processing step, see HP ACMS for
OpenVMS Writing Applications.

Introduction to Server Procedures 1–5

Introduction to Server Procedures
1.3 Naming and Structuring a Server Procedure

• Structure a step procedure as an externally callable subprogram or function.

For example, in COBOL you write step procedures as subprograms. Like any
other COBOL subprogram, a step procedure begins with an Identification
Division that gives the 1- to 31-character name of the procedure. The name
of the procedure corresponding to the GET_CUSTOMERS processing step
definition shown in Example 1–3 is VR_GET_CUSTOMER_PROC. For
example:

IDENTIFICATION DIVISION.
PROGRAM-ID. VR_GET_CUSTOMER_PROC.

1.4 Programming Services and Tools
ACMS provides programming services and tools to assist you in writing
procedures. Chapter 3 explains how to use programming services in writing
step procedures. Chapter 9 contains reference information about all ACMS
programming services.

ACMS tools that you can use to debug tasks and server procedures include
the ACMS Task Debugger, online server debugging, and server process dumps.
Chapter 7 and Chapter 8 contain information about debugging ACMS tasks and
server procedures.

The OpenVMS operating system also provides tools used to create procedure
servers: the OpenVMS Message Facility, the OpenVMS Linker, and the
OpenVMS Debugger. Chapter 5, Chapter 6, and Chapter 7 explain the use
of these tools.

1–6 Introduction to Server Procedures

2
Writing Initialization, Termination, and Cancel

Procedures

The three types of specialized optional ACMS procedures are the following:

• Initialization procedures

Initialization procedures can open the files and bind to the databases that
step procedures in the server use.

• Termination procedures

Termination procedures can perform application-specific server termination
processing, such as unmapping a global section. Note that Rdb, DBMS, and
RMS automatically release databases and close files when a process runs
down.

• Cancel procedures

Cancel procedures can perform a variety of functions with ACMS tasks, such
as freeing non-transaction-based resources and rolling back active database
transactions or recovery units. In most cases, their use is discouraged and
can be avoided by following the guidelines that are discussed in Section 2.4.1.
However, in some situations they are required; see Section 2.4.2 for more
information.

2.1 Writing Initialization Procedures
Use initialization procedures to open the files or bind to the databases that
are subsequently used by the step procedures running in the server. Files and
databases are most frequently opened by initialization procedures with shared
access so that other processes on the system, including other server processes,
can also access the data. However, it is more efficient to use exclusive access in
those cases where only a single server process needs to access a file or database.

Binding or attaching to a database in an initialization procedure has the following
advantages:

• By forcing the server to bind to the database in the initialization procedure,
you ensure that the database is accessible, that is, that the database file or
files exist and can be accessed by the application.

• The overhead of binding to a database or opening a file is incurred at
initialization time rather than at task execution time.

• Any database recovery can be performed as part of application startup.

If the application is being restarted after a system crash, the database may
need to be recovered because of that crash. By forcing the server to bind to
the database in the initialization procedure, you force the database recovery
to be performed as part of the application startup processing, rather than as
part of the first task that uses that server process.

Writing Initialization, Termination, and Cancel Procedures 2–1

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

• The initialization procedure can report any errors encountered while binding
to the database.

If the database is not accessible, or for some reason cannot be recovered after
a crash, then you can ensure that the application startup fails because the
database is unusable.

The use of an initialization procedure for a server is optional. If you do specify
an initialization procedure, ACMS calls the procedure every time it starts a new
process for the server. ACMS can start server processes when an application
is first started and also while an application is running if additional server
processes are required to handle the load placed on the application by the users.
If you do not specify an initialization procedure, ACMS starts the server process
without performing any application-specific initialization processing.

The processing that is performed in an initialization procedure depends on which
database you are using. See the database-specific sections in this chapter for
more information.

2.1.1 Guidelines for Writing Initialization Procedures
Initialization procedures do the same kind of work for server processes that use
Rdb or DBMS databases or RMS files. Follow these guidelines when writing
initialization procedure for databases and files:

• An initialization procedure must return a status value to the server process
to indicate whether the initialization procedure completed successfully.

All languages that follow the OpenVMS calling standard supply a method
of returning a status value from a subprogram or function. For example, in
COBOL, use the GIVING clause of the Procedure Division header to return
a status value to ACMS. Include the status-result definition in the Working
Storage Section and in the Procedure Division header:

WORKING-STORAGE SECTION.
01 status-result PIC S9(9) COMP.
PROCEDURE DIVISION GIVING status-result.

With BASIC, specify the data type returned with the FUNCTION statement,
and assign a value to the function name. This example shows that the status
value returned to ACMS has a longword data type:

FUNCTION LONG pers_upd_server_init_proc

If the server initialization procedure completes successfully, return a success
status indicating that the server process is ready to use. If the procedure
detects an error condition, return a failure status indicating that the server
process cannot be used. If you open more than one file or database, return
a success value only if the initialization procedure opened all the files and
databases successfully.

• In an initialization procedure, signal errors detected during initialization
processing.

When an initialization procedure signals an error, ACMS writes additional
information about the error condition to the ACMS audit trail log. Use the
following services to signal the error condition:

2–2 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

Resource manager Service used to signal error condition

Rdb with SQL SQL$SIGNAL

Rdb with RDO LIB$CALLG and LIB$SIGNAL with the Rdb
RDB$MESSAGE_VECTOR array

DBMS DBM$SIGNAL

RMS files LIB$SIGNAL with the RMS STS and STV error
codes

If the initialization procedure signals a fatal OpenVMS status, ACMS writes
the error to the audit trail log and stops the server process. However, if
the procedure signals an error or warning OpenVMS status, then ACMS
continues executing the initialization procedure after writing the error to the
audit trail log. Therefore, an initialization procedure should always return a
failure status when it detects an error, even if it signals the error condition.

• An initialization procedure cannot assign initial values to fields in group or
user workspaces.

Because ACMS does not pass workspaces to initialization procedures, there is
no way to assign initial values to fields in workspaces.

2.1.2 Binding or Attaching to Databases
In an initialization procedure, you can bind or attach to a database in three ways.
The following sections describe these methods and explain how to decide which of
them is appropriate to your application.

To bind to a database, start and end a dummy database transaction in the
initialization procedure. The examples below illustrate attaching to an Rdb
database using SQL; however, the same techniques also apply when accessing an
Rdb database using RDO and when accessing a DBMS database.

The options are:

• Bind to the database

The following COBOL code extract causes a simple bind to the database:

EXEC SQL
WHENEVER SQLERROR GO TO sql-error-handler

END-EXEC.

EXEC SQL
SET TRANSACTION READ WRITE

END-EXEC.

EXEC SQL
COMMIT

END-EXEC.

SET ret-stat TO SUCCESS.
EXIT PROGRAM.

sql-error-handler.
MOVE Rdb$LU_STATUS TO ret-stat
CALL "SQL$SIGNAL"
EXIT PROGRAM.

• Start a transaction and, additionally, reserve the relations that will be used
by the step procedures in the server.

Writing Initialization, Termination, and Cancel Procedures 2–3

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

Using this method, you also force Rdb to read in the metadata associated
with those relations, in addition to just binding to the database. Doing this at
application startup time means that this overhead is incurred once — when
the application starts — rather than each time a step procedure in a server
process first accesses a relation.

Note

If the procedures in the server perform only read-access transactions
against the database, specify READ ONLY access when you start the
transaction.

The following code extract causes the process to bind to the database and
causes the metadata for the named relations to be read in.

EXEC SQL
WHENEVER SQLERROR GO TO sql-error-handler

END-EXEC.

EXEC SQL
SET TRANSACTION READ WRITE
RESERVING

reservations, vehicles, vehicle_rental_history
FOR SHARED WRITE,

sites, regions
FOR SHARED READ

END-EXEC.

EXEC SQL
COMMIT

END-EXEC.

SET ret-stat TO SUCCESS.
EXIT PROGRAM.

sql-error-handler.
MOVE Rdb$LU_STATUS TO ret-stat
CALL "SQL$SIGNAL"
EXIT PROGRAM.

• Store a dummy record in a relation and then delete it by rolling back the
database transaction or recovery unit.

When you use this method, you force Rdb to create the recovery-unit journal
file (.RUJ) during application startup rather than as part of the first task that
uses the server process. Furthermore, if the .RUJ file cannot be created for
some reason, then the application does not start.

Note

Rdb and DBMS do not use an .RUJ file for read-only transactions.
Therefore, this step is not necessary if the procedures in the server
perform only read-access transactions against the database.

The following code extract forces Rdb to create the .RUJ file for the process:

EXEC SQL
WHENEVER SQLERROR GO TO sql-error-handler

END-EXEC.

2–4 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

EXEC SQL
SET TRANSACTION READ WRITE
RESERVING

reservations, vehicles, vehicle_rental_history
FOR SHARED WRITE,

sites, regions
FOR SHARED READ

END-EXEC.

EXEC SQL
INSERT INTO reservations

(
reservation_id

)
VALUES (

:zero_reservation_id
)

END-EXEC.

EXEC SQL
ROLLBACK

END-EXEC.

SET ret-stat TO SUCCESS.
EXIT PROGRAM.

sql-error-handler.
MOVE Rdb$LU_STATUS TO ret-stat
CALL "SQL$SIGNAL"
EXIT PROGRAM.

The following sections contain examples of initialization procedures and
explanations of how to write code for Rdb and DBMS databases and for RMS
files. See the Rdb, DBMS, and RMS documentation for further information on
accessing a database or file.

2.1.3 Initialization Procedures for Rdb Databases Using SQL
The initialization procedure for a server that uses an Rdb database attaches to
the database by starting and ending a dummy transaction. Note that to attach
fully to the database, you must start a transaction, store a dummy record, and
roll back the transaction, as explained in Section 2.1.2.

The initialization procedure for a server using an Rdb database must declare the
database accessed by the step procedures in the server. The database declaration
in the initialization procedure must be the same as the database declarations in
the step procedures in the server. To declare the database using SQL, use the
DECLARE SCHEMA statement. Always use the DECLARE SCHEMA statement
to name the database you are using before you use other statements that access
the database.

In SQL, you start a transaction using the SET TRANSACTION statement.
Section 2.1.3.1 describes how to specify the access mode and relations used by the
step procedures in the server. If the database transaction cannot be started, log
the failure in the ACMS audit trail log by calling SQL$SIGNAL, and then return
the failure status to ensure that ACMS stops the server process.

Section 2.1.3.2 illustrates an initialization procedure written in COBOL that uses
SQL. See the SQL documentation for more information about using SQL to access
Rdb databases.

Writing Initialization, Termination, and Cancel Procedures 2–5

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

2.1.3.1 Specifying the Access Mode and Relations Used by the Server
When you start the dummy transaction in the initialization procedure, specify the
access mode used by the step procedures in the server. If the procedures in the
server perform only read-access transactions against the database, specify READ
ONLY access when you start the transaction. Specify READ WRITE access if any
step procedures also write or update records in the database.

Name all the relations used by the step procedures in the server to cause Rdb
to read in the metadata for those relations when you start the transaction. For
each relation, specify READ access if the procedures only read information from
the relation. Otherwise, specify WRITE access if any of the procedures write or
update records in the relation.

The following example illustrates starting a dummy transaction in an
initialization procedure using COBOL and SQL. The step procedures used in
the server both read and write information in the database, so the transaction
is started using READ WRITE mode. The step procedures in the server access
records in the RESERVATIONS, VEHICLES, VEHICLE_RENTAL_HISTORY,
SITES, and REGIONS relations. The procedures both read and write records in
the RESERVATIONS, VEHICLES and VEHICLE_RENTAL_HISTORY relations,
so they are accessed using WRITE mode. However, the procedures only read
records in the SITES and REGIONS relations, so they are accessed using READ
mode.

EXEC SQL
SET TRANSACTION READ WRITE
RESERVING

reservations, vehicles, vehicle_rental_history
FOR SHARED WRITE,

sites, regions
FOR SHARED READ

END-EXEC.

The following example illustrates how to start the same dummy transaction using
BASIC and RDO.

&RDB& START_TRANSACTION READ_WRITE
&RDB& RESERVING
&RDB& reservations, vehicles, vehicle_rental_history
&RDB& FOR SHARED WRITE,
&RDB& sites, regions
&RDB& FOR SHARED READ

2.1.3.2 Using COBOL
Example 2–1 shows the initialization procedure for the AVERTZ Vehicle Rental
Application Update Server. The procedure names the database used by the server
using the DECLARE SCHEMA statement in the Working-Storage Section:

DATA DIVISION.
WORKING-STORAGE SECTION.

.

.
EXEC SQL
DECLARE EXTERNAL SCHEMA FILENAME AVERTZ_DATABASE:VEHICLE_RENTALS
END-EXEC.

The procedure uses the SET TRANSACTION statement to start the dummy
transaction. READ WRITE access is used because the server read, writes, and
updates records in the VEHICLE_RENTALS database. The procedure names
each relation used by the server in the RESERVING clause. A dummy record is
stored in the RESERVATIONS relation using the INSERT statement. Finally,

2–6 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

the procedure uses the ROLLBACK statement to end the dummy transaction and
delete the dummy record. If an error occurs, the procedure sets the return status
to the error status returned by Rdb, logs an error in the ACMS audit trail log by
calling SQL$SIGNAL, and then returns.

Example 2–1 SQL Initialization Procedure

IDENTIFICATION DIVISION.
**
PROGRAM-ID. VR-UPDATE-INIT.
* *
* Version: 01 *
* Edit: 00 *
* Authors: HP *
* *
**

**
* F U N C T I O N A L D E S C R I P T I O N *
* *
* This procedure is the initialization procedure for the *
* AVERTZ update server. It is used to the open the *
* vehicle rental database. *
* *
**
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
**
DATA DIVISION.
**

WORKING-STORAGE SECTION.
*
* Return status to pass to ACMS
*
01 RET-STAT PIC S9(9) COMP.
01 ZERO_RESERVATION_ID PIC S9(9) VALUE 0.
*
* Define the SQL return status
*
01 SQLCODE PIC S9(9) COMP.
01 RDB$MESSAGE_VECTOR EXTERNAL.

03 Rdb$LU_NUM_ARGUMENTS PIC S9(9) COMP.
03 Rdb$LU_STATUS PIC S9(9) COMP.
03 Rdb$ALU_ARGUMENTS OCCURS 18 TIMES.

05 Rdb$LU_ARGUMENTS PIC S9(9) COMP.

*
* Declare the database.
*
EXEC SQL
DECLARE EXTERNAL SCHEMA FILENAME AVERTZ_DATABASE:VEHICLE_RENTALS
END-EXEC.

PROCEDURE DIVISION GIVING RET-STAT.

MAIN SECTION.

000-OPEN_DB.

(continued on next page)

Writing Initialization, Termination, and Cancel Procedures 2–7

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

Example 2–1 (Cont.) SQL Initialization Procedure

*
* Start a recovery unit to force Rdb to bind to the database and read
* in the metadata for the specified relations used by this server.
*

EXEC SQL
SET TRANSACTION READ WRITE
RESERVING

RESERVATIONS, VEHICLES, VEHICLE_RENTAL_HISTORY
FOR SHARED WRITE,

SITES, REGIONS
FOR SHARED READ

END-EXEC.
IF SQLCODE < ZERO
THEN

MOVE RDB$LU_STATUS TO RET-STAT
CALL "SQL$SIGNAL"
GO TO 100-EXIT-PROGRAM

END-IF.

*
* Force Rdb to create the .RUJ file for this server by inserting a
* dummy record into the reservations relation.
*

EXEC SQL
INSERT INTO RESERVATIONS

(
RESERVATION_ID

)
VALUES (

:ZERO_RESERVATION_ID
)

END-EXEC.
IF SQLCODE < ZERO
THEN

MOVE RDB$LU_STATUS TO RET-STAT
CALL "SQL$SIGNAL"
GO TO 100-EXIT-PROGRAM

END-IF.

*
* Roll back the recovery unit, deleting the dummy record.
*

EXEC SQL
ROLLBACK

END-EXEC.
IF SQLCODE < ZERO
THEN

MOVE RDB$LU_STATUS TO RET-STAT
CALL "SQL$SIGNAL"
GO TO 100-EXIT-PROGRAM

END-IF.

SET RET-STAT TO SUCCESS.

100-EXIT-PROGRAM.
EXIT PROGRAM.

2.1.4 Initialization Procedures for Rdb Databases Using RDO
The initialization procedure for a server that uses an Rdb database attaches to
the database by starting and ending a dummy transaction. Note that to attach
fully to the database, you must start a transaction, store a dummy record, and
roll back the transaction, as explained in Section 2.1.2.

2–8 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

The initialization procedure for a server using an Rdb database must name the
database accessed by the step procedures in the server. The database declaration
in the initialization procedure must be the same as the database declarations in
the step procedures in the server. To declare the database using RDO, use the
INVOKE DATABASE statement. For example:

&RDB& INVOKE DATABASE FILENAME "avertz_database:vehicle_rentals"

Start the dummy database transaction by using the START_TRANSACTION
statement, which causes Rdb to attach to the database. See Section 2.1.3.1 for
information on how to specify the access mode and relations that are used by
the server when you start the transaction. If the step procedures in the server
write or modify records in the database, use the STORE statement to write a
dummy record to the database to force Rdb to create an .RUJ file. Finally, use
the ROLLBACK statement to end the dummy transaction and delete the dummy
record.

If an error occurs, log the failure in the ACMS audit trail log by signaling the
error information in the RDB$MESSAGE_VECTOR array using the LIB$CALLG
and LIB$SIGNAL OpenVMS RTL services; then return the failure status to
ensure that ACMS stops the server process. For more information on signaling
Rdb errors, refer to the Rdb documentation.

Example 2–2 shows the complete BASIC version of the initialization procedure
for a server that uses an Rdb database with RDO. This example also illustrates
how storing a dummy record forces RDB to create the .RUJ file for the server
process. In this case, the ROLLBACK statement is used to end the database
transaction and delete the dummy record.

Example 2–2 BASIC Initialization Procedure for Rdb Server

FUNCTION LONG vr_update_init
!+
! Update server initialization procedure.
!-

!+
! Declare database.
!-
&RDB& INVOKE DATABASE FILENAME "avertz_database:vehicle_rentals"

!+
! Declare OpenVMS RTL routines.
!-
EXTERNAL LONG FUNCTION LIB$SIGNAL, &

LIB$CALLG

!+
! Start a database transaction to force Rdb to attach to
! the database and read in the metadata for the specified
! relations used by this server.
!-

(continued on next page)

Writing Initialization, Termination, and Cancel Procedures 2–9

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

Example 2–2 (Cont.) BASIC Initialization Procedure for Rdb Server

&RDB& START_TRANSACTION READ_WRITE
&RDB& RESERVING
&RDB& reservations, vehicles, vehicle_rental_history
&RDB& FOR SHARED WRITE,
&RDB& sites, regions
&RDB& FOR SHARED READ
&RDB& ON ERROR

CALL LIB$CALLG(Rdb$MESSAGE_VECTOR, &
LOC(LIB$SIGNAL) BY VALUE)

EXIT FUNCTION Rdb$LU_STATUS
&RDB& END_ERROR

!+
! Force Rdb to create the .RUJ file for this server by
! inserting a dummy record into the RESERVATIONS relation.
!-
&RDB& STORE r IN reservations USING
&RDB& ON ERROR

CALL LIB$CALLG(Rdb$MESSAGE_VECTOR, &
LOC(LIB$SIGNAL) BY VALUE)

EXIT FUNCTION Rdb$LU_STATUS
&RDB& END_ERROR
&RDB& r.RESERVATION_ID = "00000000"
&RDB& END_STORE

!+
! Roll back the database transaction, deleting the dummy record.
!-
&RDB& ROLLBACK
&RDB& ON ERROR

CALL LIB$CALLG(Rdb$MESSAGE_VECTOR, &
LOC(LIB$SIGNAL) BY VALUE)

EXIT FUNCTION Rdb$LU_STATUS
&RDB& END_ERROR

!+
! Set return status to success and return.
!-
vr_update_init = 1%
END FUNCTION

2.1.5 Initialization Procedures for DBMS Databases
The initialization procedure for a server that uses a DBMS database binds to the
database by starting and ending a dummy transaction. Note that to bind fully to
the database, you must start a transaction, store a dummy record, and roll back
the transaction, as explained in Section 2.1.2.

The initialization procedure for a server using a DBMS database must name the
database accessed by the step procedures in the server. The database declaration
in the initialization procedure must be the same as the database declarations in
the step procedures in the server.

Start the dummy database transaction by using the READY statement, which
causes DBMS to attach to the database. If the step procedures in the server
write or modify records in the database, use the STORE statement to write a
dummy record to the database to force DBMS to create an .RUJ file. Finally, use
the ROLLBACK statement to end the dummy transaction and delete the dummy
record. If an error occurs, log the failure in the ACMS audit trail log by signaling

2–10 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

the error information using DBM$SIGNAL; then return the failure status to
ensure that ACMS stops the server process.

Note

If you create the database with the OPEN=MANUAL attribute, you
must open the database manually using the DBO/OPEN command
before a server process can access it. Opening a database manually
may also be more efficient even if you create the database with the
OPEN=AUTOMATIC attribute. For more information on the DBO/OPEN
command, refer to the DBMS documentation.

2.1.5.1 Using COBOL
The initialization procedure for a server using a DBMS database must identify
the database the server uses. You do this by naming the schema and subschema
in the database in the Data Division. For example:

DATA DIVISION.

SUB-SCHEMA SECTION.

DB DEFAULT_SUBSCHEMA
WITHIN "PERS_CDD.PERSONNEL_SCHEMA"
FOR "PERS_DB:PERSONNEL".

The subschema named—in this case, the default subschema for the PERSONNEL
database—must be the same used by the step procedures in the server. You
can use more than one database or subschema at a time. However, this manual
discusses the use of only one subschema for a server.

If any errors occur in binding to the database, trap the error in the Declaratives
section, and use the DBM$SIGNAL routine to return a fatal error status to the
server process:

WORKING-STORAGE SECTION.

01 status_result PIC S9(5) COMP.

PROCEDURE DIVISION GIVING status_result.

DECLARATIVES.
DML-FAILURE SECTION.

USE FOR DB-EXCEPTION.
010-DBM-FAILURE.

MOVE DB-CONDITION TO status_result.
CALL "DBM$SIGNAL".
EXIT PROGRAM.

END DECLARATIVES.

Start the dummy database transaction by using the READY statement, which
causes DBMS to bind to the database. If the step procedures in the server write
or modify records in the database, use the STORE statement to write a dummy
record to the database to force DBMS to create an .RUJ file. Finally, use the
ROLLBACK statement to end the dummy transaction and delete the dummy
record. For example:

Writing Initialization, Termination, and Cancel Procedures 2–11

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

MAIN SECTION.

000-start.
SET status_result TO SUCCESS.

READY CONCURRENT UPDATE.
MOVE "000000" TO emp_badge_number.
STORE employee_record.
ROLLBACK.

If you do not end the database transaction in the initialization procedure, the first
procedure that uses this server fails with a DBM$_ALLREADY error.

Example 2–3 shows the complete COBOL version of the initialization procedure
for a server that accesses a DBMS database. This example also illustrates how
storing a dummy record forces DBMS to create the .RUJ file for the server
process. In this case, the ROLLBACK statement is used to end the database
transaction and delete the dummy record.

Example 2–3 COBOL Initialization Procedure for DBMS

IDENTIFICATION DIVISION.
PROGRAM-ID. pers_upd_server_init_proc.

ENVIRONMENT DIVISION.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB DEFAULT_SUBSCHEMA
WITHIN "PERS_CDD.PERSONNEL_SCHEMA"
FOR "PERS_DB:PERSONNEL".

WORKING-STORAGE SECTION.

01 status_result PIC S9(5) COMP.

PROCEDURE DIVISION GIVING status_result.

DECLARATIVES.
DML-FAILURE SECTION.

USE FOR DB-EXCEPTION.
010-DBM-FAILURE.

MOVE DB-CONDITION TO status_result.
CALL "DBM$SIGNAL".
EXIT PROGRAM.

END DECLARATIVES.

MAIN SECTION.

000-start.
SET status_result TO SUCCESS.

READY CONCURRENT UPDATE.
MOVE "000000" TO emp_badge_number.
STORE employee_record.
ROLLBACK.

999-end.
EXIT PROGRAM.

2.1.5.2 Using BASIC
The initialization procedure for a server using a database using DBMS DML
must identify the database the server uses. You do this by naming the schema
and subschema in the database using the INVOKE statement. For example:

2–12 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

INVOKE DEFAULT_SUBSCHEMA -
WITHIN PERS_CDD.PERSONNEL_SCHEMA -
FOR PERS_DB:PERSONNEL -
(RECORDS)

Start the dummy transaction using the READY statement. Use the STORE
statement to write a dummy record to the database, and then end the transaction
using a ROLLBACK statement to delete the dummy record. For example:

READY CONCURRENT UPDATE
employee_record::emp_badge_number = "000000"
STORE employee_record
ROLLBACK

Example 2–4 illustrates a complete BASIC initialization procedure for a server
that accesses a DBMS database. No error handling is necessary in this procedure
because DBMS DML always signals a fatal OpenVMS error status when it detects
an error condition.

Example 2–4 BASIC Initialization Procedure for DBMS

FUNCTION LONG pers_upd_server_init_proc

%INCLUDE "pers_files:pers_common_defns"

INVOKE DEFAULT_SUBSCHEMA -
WITHIN PERS_CDD.PERSONNEL_SCHEMA -
FOR PERS_DB:PERSONNEL -
(RECORDS)

pers_upd_server_init_proc = persmsg_success

READY CONCURRENT UPDATE
employee_record::emp_badge_number = "000000"
STORE employee_record
ROLLBACK

END FUNCTION

2.1.6 Initialization Procedures for RMS Files
An initialization procedure for a server process using RMS opens the files used
by the step procedures in the server. The file definitions used in the initialization
procedure must be the same as the definitions used in other procedures using
those files. If you use a language that assigns channels, the channel number
must also be the same in the initialization and step procedures.

If the step procedures in the server require only read access to a file, then open
the file for read access only. If the step procedures in the server write to a file,
then open the file for read/write access. Specify shared access if more than one
server process needs access to the file.

If your step procedures need to lock multiple records in a single record stream or
retain record locks after writing or updating a record, you must specify explicit
lock control when you open a file.

Writing Initialization, Termination, and Cancel Procedures 2–13

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

2.1.6.1 Using COBOL
You name the files used by the procedures in the server in the Environment and
Data Divisions. For example, the procedures that run in server PERS_UPD_
SERVER use the Employee and History files:

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT emp_file

ORGANIZATION INDEXED
ACCESS RANDOM
ASSIGN TO "emp_file:employee.dat".

SELECT hist_file
ORGANIZATION INDEXED
ACCESS RANDOM
ASSIGN TO "hist_file:history.dat".

I-O-CONTROL.
APPLY LOCK-HOLDING ON emp_file,

hist_file.

DATA DIVISION.

FILE SECTION.
FD emp_file

EXTERNAL
DATA RECORD IS employee_record
RECORD KEY emp_badge_number OF employee_record.

COPY "pers_cdd.employee_record" FROM DICTIONARY.

FD hist_file
EXTERNAL
DATA RECORD IS history_record
RECORD KEY hist_badge_number OF history_record.

COPY "pers_cdd.history_record" FROM DICTIONARY.

The step procedures in the server PERS_UPD_SERVER use explicit record
locking; therefore, the initialization procedure specifies the LOCK-HOLDING
statement:

I-O-CONTROL.
APPLY LOCK-HOLDING ON emp_file,

hist_file.

If you declare a file-status variable using the FILE-STAT clause in the SELECT
statement, define the variable in the Working-Storage Section. For example:

WORKING-STORAGE SECTION.
01 file-status PIC XX IS EXTERNAL.

In the following example, the GIVING clause of the Procedure Division header
specifies STATUS_RESULT as the procedure’s return-status variable. If the
initialization procedure traps any errors while trying to open the Employee and
History files, it signals the RMS STS and STV error codes, moves the RMS error
status into the STATUS_RESULT variable, and exits.

WORKING-STORAGE SECTION.

01 status_result PIC S9(5) COMP.

PROCEDURE DIVISION GIVING status_result.

2–14 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

DECLARATIVES.
employee_file SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON emp_file.
employee_file_handler.

CALL "LIB$SIGNAL" USING BY VALUE RMS-STS OF emp_file,
BY VALUE RMS-STV OF emp_file.

MOVE RMS-STS OF emp_file TO status_result.
EXIT PROGRAM.

history_file SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON hist_file.

history_file_handler.
CALL "LIB$SIGNAL" USING BY VALUE RMS-STS OF hist_file,

BY VALUE RMS-STV OF hist_file.
MOVE RMS-STS OF hist_file TO status_result.
EXIT PROGRAM.

END DECLARATIVES.

The initialization procedure initializes the STATUS_RESULT variable to success,
and then opens the Employee and History files. Because other processes need to
access the files, the procedure specifies the ALLOWING ALL clause.

MAIN SECTION.

000-start.
SET status_result TO SUCCESS.

OPEN I-O emp_file ALLOWING ALL.
OPEN I-O hist_file ALLOWING ALL.

999-end.
EXIT PROGRAM.

See the COBOL documentation for more information on using RMS files with
COBOL.

Example 2–5 shows the complete COBOL initialization procedure.

Example 2–5 COBOL Initialization Procedure for RMS Server

IDENTIFICATION DIVISION.
PROGRAM-ID. pers_upd_server_init_proc.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT emp_file

ORGANIZATION INDEXED
ACCESS RANDOM
ASSIGN TO "emp_file:employee.dat".

SELECT hist_file
ORGANIZATION INDEXED
ACCESS RANDOM
ASSIGN TO "hist_file:history.dat".

(continued on next page)

Writing Initialization, Termination, and Cancel Procedures 2–15

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

Example 2–5 (Cont.) COBOL Initialization Procedure for RMS Server

I-O-CONTROL.
APPLY LOCK-HOLDING ON emp_file,

hist_file.

DATA DIVISION.

FILE SECTION.
FD emp_file

EXTERNAL
DATA RECORD IS employee_record
RECORD KEY emp_badge_number OF employee_record.

COPY "pers_cdd.employee_record" FROM DICTIONARY.

FD hist_file
EXTERNAL
DATA RECORD IS history_record
RECORD KEY hist_badge_number OF history_record.

COPY "pers_cdd.history_record" FROM DICTIONARY.

WORKING-STORAGE SECTION.

01 status_result PIC S9(5) COMP.

PROCEDURE DIVISION GIVING status_result.

DECLARATIVES.
employee_file SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON emp_file.
employee_file_handler.

CALL "LIB$SIGNAL" USING BY VALUE RMS-STS OF emp_file,
BY VALUE RMS-STV OF emp_file.

MOVE RMS-STS OF emp_file TO status_result.
EXIT PROGRAM.

history_file SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON hist_file.

history_file_handler.
CALL "LIB$SIGNAL" USING BY VALUE RMS-STS OF hist_file,

BY VALUE RMS-STV OF hist_file.
MOVE RMS-STS OF hist_file TO status_result.
EXIT PROGRAM.

END DECLARATIVES.

MAIN SECTION.

000-start.
SET status_result TO SUCCESS.

OPEN I-O emp_file ALLOWING ALL.
OPEN I-O hist_file ALLOWING ALL.

999-end.
EXIT PROGRAM.

2.1.6.2 Using BASIC
The examples in this section show a BASIC initialization procedure that opens an
Employee file and a History file.

The procedure PERS_UPD_SERVER_INIT_PROC first includes some common
definitions used by the Personnel application and the record layouts for the
Employee and History files:

2–16 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

%INCLUDE "pers_files:pers_common_defns"
%INCLUDE %FROM %CDD "pers_cdd.employee_record"
%INCLUDE %FROM %CDD "pers_cdd.history_record"

The PERS_COMMON_DEFNS.BAS file includes definitions for the channel
numbers used for the Employee and History files, together with frequently used
BASIC errors, error message symbols, system services, and ACMS, OpenVMS,
and RMS errors:

!+
! Common definitions for the PERSONNEL application.
!-

!+
! Channel numbers.
!-
DECLARE LONG CONSTANT emp_file = 1%
DECLARE LONG CONSTANT hist_file = 2%

!+
! Frequently used BASIC error codes.
!-
DECLARE LONG CONSTANT basicerr_wait_exhausted = 15%
DECLARE LONG CONSTANT basicerr_duplicate_key = 134%
DECLARE LONG CONSTANT basicerr_record_locked = 154%
DECLARE LONG CONSTANT basicerr_record_not_found = 155%
DECLARE LONG CONSTANT basicerr_deadlock = 193%

!+
! Personnel application messages
!-
EXTERNAL LONG CONSTANT persmsg_success
EXTERNAL LONG CONSTANT persmsg_empexists
EXTERNAL LONG CONSTANT persmsg_empnotfound
EXTERNAL LONG CONSTANT persmsg_emplocked
EXTERNAL LONG CONSTANT persmsg_empchanged
EXTERNAL LONG CONSTANT persmsg_empdeleted

!+
! Frequently used system services
!-
EXTERNAL LONG FUNCTION SYS$GETTIM

!+
! ACMS, OpenVMS system and RMS status codes
!-
EXTERNAL LONG CONSTANT ACMS$_TRANSTIMEDOUT
EXTERNAL LONG CONSTANT RMS$_NRU
EXTERNAL LONG CONSTANT RMS$_DDTM_ERR

The initialization procedure then specifies the MAP statements for the Employee
and History files:

MAP (emp_map) employee_record emp_rec
MAP (hist_map) history_record hist_rec

Next, using an error handler, the procedure initializes the return status to success
and opens the Employee and History files. If both files are opened successfully,
the procedure returns the success status, indicating that the server process is
now ready for use. If an error occurs, the error handler sets the return status
to the RMS error status, indicating that the initialization processing failed. The
EXIT HANDLER statement causes BASIC to resignal the error, which ACMS
then writes to the ACMS audit trail log. Note that the built-in RMSSTATUS
function can be used only after BASIC has successfully opened a file.

Writing Initialization, Termination, and Cancel Procedures 2–17

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

WHEN ERROR IN
pers_upd_server_init_proc = persmsg_success
OPEN "emp_file:employee.dat" &

FOR INPUT AS FILE # emp_file, &
ORGANIZATION INDEXED FIXED, &
ALLOW MODIFY, &
ACCESS MODIFY, &
UNLOCK EXPLICIT, &
MAP emp_map, &
PRIMARY KEY emp_rec::emp_badge_number

OPEN "hist_file:history.dat" &
FOR INPUT AS FILE # hist_file, &
ORGANIZATION INDEXED FIXED, &
ALLOW MODIFY, &
ACCESS MODIFY, &
UNLOCK EXPLICIT, &
MAP hist_map, &
PRIMARY KEY hist_rec::hist_badge_number

USE
pers_upd_server_init_proc = VMSSTATUS
EXIT HANDLER

END WHEN

The procedures that run in PERS_UPD_SERVER use explicit lock control to
handle record locks to ensure the consistency of the Employee and History files.
For this reason, the OPEN statement contains an UNLOCK EXPLICIT clause.
Any record accessed by any procedure in the task group remains locked until it is
explicitly unlocked with an UNLOCK or FREE statement.

Example 2–6 contains a complete BASIC initialization procedure.

Example 2–6 BASIC Initialization Procedure for RMS Server

FUNCTION LONG pers_upd_server_init_proc

%INCLUDE "pers_files:pers_common_defns"
%INCLUDE %FROM %CDD "pers_cdd.employee_record"
%INCLUDE %FROM %CDD "pers_cdd.history_record"

MAP (emp_map) employee_record emp_rec
MAP (hist_map) history_record hist_rec

WHEN ERROR IN
pers_upd_server_init_proc = persmsg_success
OPEN "emp_file:employee.dat" &

FOR INPUT AS FILE # emp_file, &
ORGANIZATION INDEXED FIXED, &
ALLOW MODIFY, &
ACCESS MODIFY, &
UNLOCK EXPLICIT, &
MAP emp_map, &
PRIMARY KEY emp_rec::emp_badge_number

(continued on next page)

2–18 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.1 Writing Initialization Procedures

Example 2–6 (Cont.) BASIC Initialization Procedure for RMS Server

OPEN "hist_file:history.dat" &
FOR INPUT AS FILE # hist_file, &
ORGANIZATION INDEXED FIXED, &
ALLOW MODIFY, &
ACCESS MODIFY, &
UNLOCK EXPLICIT, &
MAP hist_map, &
PRIMARY KEY hist_rec::hist_badge_number

USE
pers_upd_server_init_proc = VMSSTATUS
EXIT HANDLER

END WHEN

END FUNCTION

2.2 Writing Termination Procedures
Termination procedures perform application-specific cleanup work for a server
process. Note that Rdb, DBMS, and RMS automatically release databases and
close files when a process runs down.

The use of a termination procedure for a server is optional. If you do specify
a termination procedure for a server, ACMS calls the termination procedure
whenever a server process runs down. The only exception is when a server
process is forced to run down as the result of a task cancellation; in that case, by
default, ACMS does not call the termination procedure. However, by using the
ALWAYS EXECUTE TERMINATION PROCEDURE ON CANCEL clause when
you define the server in the task group definition, you can force ACMS to call the
termination procedure when a server is run down due to a task cancellation. If
you do not specify a termination procedure, ACMS runs down the server process
without performing any application-specific termination processing.

ACMS runs down server processes when an application is stopped and when more
processes than the minimum defined for the server have been started and the
extra processes are not needed to handle users’ demands. As with initialization
procedures, have termination procedures do work specific to the server process
rather than task-related work. Termination procedures do the same kind of work
for server processes that use Rdb and DBMS databases and RMS files.

Follow these guidelines when writing a termination procedure for files and
databases:

• Have termination procedures return a status value to the server process to
indicate whether the termination procedure completed successfully.

If you do not return a status value, the termination continues, but a message
that the termination routine has failed is logged in the audit trail log.

• A termination procedure cannot assign values to fields in group or user
workspaces.

Because ACMS does not pass workspaces to termination procedures, there is
no way to move data to fields in workspaces.

The following sections contain examples of termination procedures. They describe
how to write code for Rdb and DBMS databases, and for RMS files.

Writing Initialization, Termination, and Cancel Procedures 2–19

Writing Initialization, Termination, and Cancel Procedures
2.2 Writing Termination Procedures

2.2.1 Termination Procedures for Rdb Databases Using SQL
You do not need to write a termination procedure for a server that uses an Rdb
database. When a server process stops, Rdb automatically releases the database
used by the process, rolling back a database transaction if one is still active.

If you decide that you need a termination procedure to perform application-
specific processing when the server stops, you must be careful. If you explicitly
include a FINISH statement in a server termination procedure, Rdb commits
an outstanding database transaction. However, typically you do not want to
commit an outstanding transaction in a termination procedure. For example, you
normally want to roll back an existing database transaction if:

• An incorrectly coded step procedure does not perform all necessary updates
and does not commit a database transaction.

• There is an outstanding database transaction when a task is canceled and
you specify that termination procedures be called for cancels.

In general, if there is a chance that your termination procedure will be called
when there is an outstanding database transaction and you are going to use the
FINISH verb, include a ROLLBACK verb before the FINISH verb.

Because a transaction is not usually active when the termination procedure
runs, the termination procedure should ignore any error from the ROLLBACK
verb. Any error returned by the FINISH verb is used as the return status of the
termination procedure.

Example 2–7 shows a sample termination procedure for a fictional database.

Example 2–7 SQL Termination Procedure

IDENTIFICATION DIVISION.
**
PROGRAM-ID. PERS-TERM-PROC.
**
* F U N C T I O N A L D E S C R I P T I O N *
* *
* This procedure is used to close the PERSONNEL database. *
* *
**
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
**
DATA DIVISION.
**

WORKING-STORAGE SECTION.
*
* return status
*
01 RET-STAT PIC S9(9) COMP.
*
* Define the SQL return status
*
01 SQLCODE PIC S9(9) COMP.
*
EXEC SQL
DECLARE EXTERNAL SCHEMA FILENAME personnel_database:employees
END-EXEC.

(continued on next page)

2–20 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.2 Writing Termination Procedures

Example 2–7 (Cont.) SQL Termination Procedure

**
PROCEDURE DIVISION GIVING RET-STAT.
**
MAIN SECTION.

000-CLOSE_DB.

SET RET-STAT TO SUCCESS.
*
* <<<<Insert application-specific cleanup here>>>>
*

EXEC SQL ROLLBACK END-EXEC.
EXEC SQL FINISH END-EXEC.
IF SQLCODE < ZERO
THEN

MOVE RDB$LU_STATUS TO RET-STAT
CALL "SQL$SIGNAL"

END-IF.

100-EXIT-PROGRAM.
EXIT PROGRAM.

For more information about SQL, refer to the SQL documentation.

2.2.2 Termination Procedures for Rdb Databases Using RDO
You do not need to write a termination procedure for a server that uses an Rdb
database. When a server process stops, Rdb automatically releases the database
used by the process, rolling back a database transaction if one is still active.

If you decide that you need a termination procedure to perform application-
specific processing when the server stops, you must be careful. If you explicitly
include a FINISH statement in a server termination procedure, Rdb commits
an outstanding database transaction. However, typically you do not want to
commit an outstanding transaction in a termination procedure. For example, you
normally want to roll back an existing database transaction if:

• An incorrectly coded step procedure does not perform all necessary updates
and does not commit a database transaction.

• There is an outstanding database transaction when a task is canceled and
you specify that termination procedures be called for cancellations.

In general, if there is a chance that your termination procedure will be called
when there is an outstanding database transaction, and you are going to use the
FINISH verb, include a ROLLBACK verb before the FINISH verb.

Because a transaction is usually not active when the termination procedure
runs, any error from the ROLLBACK verb is ignored. Any error returned by
the FINISH verb is used as the return status of the termination procedure. For
example:

Writing Initialization, Termination, and Cancel Procedures 2–21

Writing Initialization, Termination, and Cancel Procedures
2.2 Writing Termination Procedures

!
! <<<<Insert application-specific cleanup here>>>>
!
&RDB& ROLLBACK
&RDB& ON ERROR

personnel_term_proc = persmsg_success
&RDB& END_ERROR

&RDB& FINISH
&RDB& ON ERROR

personnel_term_proc = RDB$LU_STATUS
&RDB& END_ERROR

2.2.3 Termination Procedures for DBMS Databases
You do not need to write a termination procedure for a server that uses a
DBMS database. When a server process stops, DBMS automatically unbinds
the database used by the process, rolling back a database transaction if one is
still active. This section illustrates how to unbind from a DBMS database using
the DBMS UNBIND embedded DML statement. Note that there is no UNBIND
statement in the COBOL language.

The following example illustrates a termination procedure for a DBMS database
written in BASIC:

FUNCTION LONG pers_upd_server_term_proc

%INCLUDE "pers_files:pers_common_defns"

!
! <<<<Insert application-specific cleanup here>>>>
!
INVOKE DEFAULT_SUBSCHEMA -

WITHIN PERS_CDD.PERSONNEL_SCHEMA -
FOR PERS_DB:PERSONNEL -
(RECORDS)

ROLLBACK (TRAP ERROR)
UNBIND

pers_upd_server_term_proc = persmsg_success

END FUNCTION

If a database transaction is active when a step procedure explicitly unbinds from
a database, DBMS returns an error. Therefore, use the ROLLBACK statement to
roll back an outstanding transaction. Because there is not usually a transaction
active when a termination procedure is executed, ignore any error returned by
the ROLLBACK statement. Finally, use the UNBIND statement to unbind from
the database.

2.2.4 Termination Procedures for RMS Files
You do not need to write a termination procedure for a server that uses RMS files.
When a server process stops, RMS automatically closes any files that the process
has opened. A termination procedure for an RMS server simply closes each open
file used by the server, returning a failure status if an error is detected.

2–22 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.2 Writing Termination Procedures

2.2.4.1 Using COBOL
The termination procedure in Example 2–8 closes the Employee and History files.
Any error is signaled and returned as the procedure’s return status.

Example 2–8 COBOL Termination Procedure for RMS Files

IDENTIFICATION DIVISION.
PROGRAM-ID. pers_upd_server_term_proc.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT emp_file

ORGANIZATION INDEXED
ACCESS RANDOM
ASSIGN TO "emp_file:employee.dat".

SELECT hist_file
ORGANIZATION INDEXED
ACCESS RANDOM
ASSIGN TO "hist_file:history.dat".

I-O-CONTROL.
APPLY LOCK-HOLDING ON emp_file,

hist_file.

DATA DIVISION.

FILE SECTION.
FD emp_file

EXTERNAL
DATA RECORD IS employee_record
RECORD KEY emp_badge_number OF employee_record.

COPY "pers_cdd.employee_record" FROM DICTIONARY.

FD hist_file
EXTERNAL
DATA RECORD IS history_record
RECORD KEY hist_badge_number OF history_record.

COPY "pers_cdd.history_record" FROM DICTIONARY.

WORKING-STORAGE SECTION.

01 status_result PIC S9(5) COMP.
PROCEDURE DIVISION GIVING status_result.
DECLARATIVES.
employee_file SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON emp_file.
employee_file_handler.

CALL "LIB$SIGNAL" USING BY VALUE RMS-STS OF emp_file,
BY VALUE RMS-STV OF emp_file.

MOVE RMS-STS OF emp_file TO status_result.
history_file SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON hist_file.
history_file_handler.

CALL "LIB$SIGNAL" USING BY VALUE RMS-STS OF hist_file,
BY VALUE RMS-STV OF hist_file.

MOVE RMS-STS OF hist_file TO status_result.
END DECLARATIVES.

(continued on next page)

Writing Initialization, Termination, and Cancel Procedures 2–23

Writing Initialization, Termination, and Cancel Procedures
2.2 Writing Termination Procedures

Example 2–8 (Cont.) COBOL Termination Procedure for RMS Files

MAIN SECTION.

000-start.
SET status_result TO SUCCESS.

*
* <<<<Insert application-specific cleanup here>>>>
*

CLOSE emp_file.
CLOSE hist_file.

999-end.
EXIT PROGRAM.

2.2.4.2 Using BASIC
The termination procedure in Example 2–9 closes the Employee and History files.
Any error is signaled and returned as the procedure’s return status.

Example 2–9 BASIC Termination Procedure for RMS Files

FUNCTION LONG pers_upd_server_term_proc

%INCLUDE "pers_files:pers_common_defns"

!
! <<<<Insert application-specific cleanup here>>>>
!
WHEN ERROR IN

pers_upd_server_term_proc = persmsg_success
CLOSE # emp_file
CLOSE # hist_file

USE
pers_upd_server_term_proc = VMSSTATUS
EXIT HANDLER

END WHEN

END FUNCTION

2.3 Server Process Rundown
One way to achieve high system performance is to avoid stopping and restarting
servers. In addition to the overhead of OpenVMS process creation, starting a
server also involves running the server initialization procedure that binds to
databases and opens files. Perform these operations as infrequently as possible.

On the other hand, if your server is interrupted and left in an unpredictable state
as a result of a task cancellation, it is best to run down the server process and
start a new one.

In order to balance these two needs, ACMS allows you to control whether a server
process is run down when the execution of a server procedure is interrupted due
to a task cancel. ACMS provides the following three options:

• Run down on cancel only if the cancel caused the server to be interrupted

2–24 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.3 Server Process Rundown

With this option, ACMS runs down the server process only if the execution of
a server procedure was interrupted due to the task cancellation. For example,
if a task is retaining context in a server, but the server is not actually
executing a procedure at the time of the cancel, ACMS does not run down the
server.

• Always run down on cancel

With this option, ACMS always runs down the server process if the task is
canceled while it has context in the server. This option can cause unnecessary
server process rundowns. For example, if a task is retaining context in a
server when it is canceled, ACMS always runs down the server process, even
if the task was not actually executing a server procedure at the time of the
cancel. Running down a server in this situation is not necessary because a
server procedure was not actually interrupted; therefore, the server is in a
predictable state.

• Do not run down on cancel

With this option, under normal conditions ACMS never runs down the server
process if the task is canceled while it has context in the server. However,
note that under certain conditions, such as when a server procedure generates
a fatal OpenVMS exception, ACMS always runs down a server process. Use
this option only when you can guarantee that all context in the server can be
cleaned up. Failure to clean up all server context can result in the failure of
a subsequent task that uses the server process.

In most cases, the recommended option is to run down down on cancel only if
the cancel caused a server procedure to be interrupted. This option balances
the need for good performance with the need to run down servers that are in an
unpredictable state.

You can specify the rundown option for your servers in the following ways:

• Define the rundown option as a server subclause in your task group definition.
The choices of syntax are:

RUNDOWN ON CANCEL IF INTERRUPTED
RUNDOWN ON CANCEL
NO RUNDOWN ON CANCEL

If you do not specify a rundown attribute, the default is RUNDOWN ON
CANCEL.

• Override the rundown attribute that you specified in your task group
definition by returning a status from a cancel procedure. In two instances,
ACMS overrides the option that you specify. If a fatal error is generated
in procedure code, or if a channel is left open to a device when a procedure
finishes, ACMS always runs down the server process. See Section 2.4 for
more information on writing server cancel procedures.

Table 2–1 shows whether or not ACMS runs down a server during a cancel
operation. The table assumes that a task has context in the server at the time
the cancellation occurs. In cancel processing, ACMS never runs down a server if
the task does not have context in any servers when the cancellation occurs.

Writing Initialization, Termination, and Cancel Procedures 2–25

Writing Initialization, Termination, and Cancel Procedures
2.3 Server Process Rundown

Table 2–1 Server Rundown

Rundown Characteristic
RUNDOWN

ON CANCEL

RUNDOWN ON
CANCEL IF

INTERRUPTED NO RUNDOWN ON CANCEL

Server executing during cancel? No Yes No Yes No Yes

ACMS$RAISE_..._EXCEPTION N/A1 Run
down

N/A1 Not run
down

N/A1 Not run down

ACMSAD$REQ_CANCEL N/A1 Run
down

N/A1 Run
down

N/A1 Not run down

Retain context and cancel task
in action step

Run
down

N/A1 Not run
down

N/A1 Not run
down

N/A1

Fatal error generated in
procedure code

N/A1 Run
down

N/A1 Run
down

N/A1 Run down

Channel open to device error
created from procedure

N/A1 Run
down

N/A1 Run
down

N/A1 Run down

All other cancels Run
down

Run
down

Not run
down

Run
down

Not run
down

Not run down

1N/A = Not applicable.

2.4 Using Cancel Procedures
This section first discusses the traditional reasons for using cancel procedures.
The section then provides guidelines for writing procedures to avoid using cancel
procedures, describes situations in which cancel procedures are unavoidable, and
explains how to use the $SETAST system service to avoid canceling a task during
critical portions of a procedure. This section also describes the conditions under
which cancel procedures are called and explains how to write a cancel procedure.

The traditional reasons for using cancel procedures are:

• Cleaning up procedure execution

This might involve closing a channel that was opened to a terminal or to a
temporary work file.

• Freeing non-transaction-based resources

Any transaction-based resources, such as record locks, that a procedure
acquires are automatically freed when a transaction ends, whether the
transaction commits or aborts. However, if a procedure acquires resources
outside a distributed transaction, then the server process must release those
resources if the server is to remain active (and not run down) following an
exception. Following are examples of situations in which you need to release
resources:

Releasing locks

For example, if a step procedure takes out a lock on a resource by calling
the OpenVMS $ENQ lock manager service directly, then that lock must
subsequently be released by a call to the $DEQ service. If a task executes
to completion normally, then the step procedure that acquired the lock can
release it; if the task retains context in the server, another step procedure
called later can release the lock. However, if the task is canceled, then
the server cancel procedure must free the lock if the server process is to
remain active and if other task instances need to acquire the lock.

2–26 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

Freeing memory

Another example is when a step procedure calls LIB$GET_VM to allocate
memory for a task instance. Because the memory is required to execute
only the current task instance, it must subsequently be freed by a call to
LIB$FREE_VM. If a task executes to completion normally, then the step
procedure that allocated memory can free memory; if the task retains
context in the server, another step procedure called later on can free the
allocated memory. However, if the task is canceled, then the server cancel
procedure must free memory if the server process is to remain active.
Failure to free memory eventually results in the server running out of
virtual memory.

Closing channels

As a third example, you might need to open a channel to a terminal in a
step procedure. Although generally not recommended, some applications
require a procedure running in a procedure server to perform terminal
I/O. However, if the task is canceled while the procedure has a channel
open to the terminal, ACMS cannot close the channel. For this reason,
if a task uses a processing step that does terminal I/O from a procedure
server, ACMS always runs down the server process if the task is canceled
and the server still has channels open to the terminal device.

To avoid ACMS running down the server, you can use a cancel procedure
to close the channel to the terminal. Note that if any channels are left
open to the terminal, then ACMS overrides both the return status of the
cancel procedure and the NO RUNDOWN clause of the server definition.
ACMS also cancels the task and runs down the server if a step procedure
ends normally but leaves a channel still open to the terminal.

• Rolling back an active database transaction or a recovery unit

A cancel procedure is needed to roll back active database transactions or
recovery units under the following conditions:

If the step procedures in the server directly control Rdb or DBMS
database transactions or RMS recovery units

If the database transactions or recovery units do not participate in a
distributed transaction controlled from the task definition

If a task is canceled while retaining context in the server between
processing steps

If the server is not run down as a result of the task being canceled

A cancel procedure is not necessary if the server is run down as a result of
the task being canceled. This is because the database transaction or recovery
unit is automatically rolled back as a result of the server process running
down. However, it is more efficient to allow a server to remain active if a task
is canceled while retaining context but not executing in the server. In this
case, it is advantageous to use a cancel procedure to roll back the database
transaction or recovery unit so that the server can then be used by another
task instance. Note that the recommended option is to allow a server process
to run down if ACMS is forced to interrupt a step procedure in order to
process a task cancellation.

Writing Initialization, Termination, and Cancel Procedures 2–27

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

2.4.1 Guidelines for Avoiding Cancel Procedures
There are two important reasons for avoiding cancel procedures. First, cancel
procedures can adversely affect application performance. Also, it is often difficult
to write a cancel procedure that performs the necessary cleanup operations,
chiefly because an exception can be raised at any time while a task is executing.
Therefore, it is recommended that wherever possible you avoid designing and
writing tasks and step procedures that require server cancel procedures to clean
up server processes following an exception.

To avoid writing cancel procedures, keep the following guidelines in mind as you
design and write tasks and step procedures:

• Control database transactions and recovery units with transaction steps in
the task definition.

Resource managers automatically roll back active database transactions and
recovery units participating in a distributed transaction if that transaction
rolls back. Therefore, you do not need to write a cancel procedure to do this
if all database transactions and recovery units participate in distributed
transactions that are controlled by the task definition.

Note

When using Rdb with RDO, or RMS, you must use a cancel procedure if
you allow a server process to remain active after a task cancellation. See
Section 2.4.2 for more information.

• Allow server processes to run down following an exception.

In most cases, if an exception requires ACMS to interrupt a step procedure
while it is executing, allowing the server process to run down as part of the
exception-handling sequence has the advantage that OpenVMS automatically
performs most, if not all, of the necessary cleanup operations. For example,
when a process is run down, OpenVMS automatically closes any channels
that are still open. Also, any locks currently owned by the process are freed.

• Avoid operations that require cleanup.

For example, if you use task workspaces to store data rather than allocate
memory using LIB$GET_VM, then you do not need a cancel procedure to free
memory allocated in this way.

However, some applications may require that a step procedure acquire a
nondistributed-transaction-based resource. For example, a step procedure
may need to acquire an OpenVMS lock using the $ENQ service before
performing a critical operation. Using the $DEQ service, the step procedure
releases the lock as soon as the operation has been completed.

When an exception is raised, ACMS immediately interrupts a server process.
If the code is interrupted during the time that the server process has acquired
the lock, the server may not have the opportunity to call the $DEQ service.
Since the server is using an OpenVMS lock, OpenVMS automatically releases
the lock when the server process runs down. However, if the server is using
an application-specific mechanism to maintain locks on resources, then
running down a server process on an exception does not solve the problem;
the resource is still locked.

2–28 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

Section 2.4.3, discusses how to prevent the interruption of a procedure server
while it is executing. Section 2.3 explains the conditions under which a procedure
is run down.

2.4.2 Situations in Which Using Cancel Procedures Is Unavoidable
As mentioned earlier, whenever possible avoid designing and writing step
procedures that require server cancel procedures. However, in certain
circumstances, using a cancel procedure is unavoidable.

If you are using RDO in a distributed transaction, use a cancel procedure to
roll back the default database transaction that Rdb starts automatically if
the distributed transaction aborts between two RDO verbs. For example, the
following segment of a BASIC step procedure reads and updates a control record
in a database. If the distributed transaction times out and aborts immediately
after the GET statement, then Rdb starts a default read-only transaction when
it executes the next RDO statement (in this case, the MODIFY statement). See
Chapter 4 for information on accessing an Rdb database using RDO statements.

&RDB& START_TRANSACTION
&RDB& DISTRIBUTED_TRANSACTION DISTRIBUTED_TID dist_tid
&RDB& READ_WRITE RESERVING cust_control FOR SHARED WRITE

&RDB& FOR FIRST 1% c IN cust_control
&RDB& GET
&RDB& cust_num = c.next_cust_num
&RDB& END_GET

next_cust_num = cust_num + 1%
&RDB& MODIFY c USING
&RDB& c.next_cust_num = next_cust_num
&RDB& END_MODIFY
&RDB& END_FOR

If you are using RMS in a distributed transaction, use a cancel procedure to
unlock any records that a step procedure locks after the distributed transaction
aborts. For example, the following segment of a BASIC step procedure reads
and updates a control record in a file. If the distributed transaction times out
and aborts immediately before the GET statement, then RMS is able to read the
record successfully but returns an error when the step procedure executes the
UPDATE operation. See Chapter 4 for information on accessing RMS files in
distributed transactions.

GET # emp_file, &
KEY # 0 EQ emp_wksp::emp_badge_number, &
ALLOW NONE

MOVE TO # emp_file, emp_wksp
UPDATE # emp_file

You must write a cancel procedure in other situations as well. If you are not
using distributed transactions and you allow a server to remain active when a
task is canceled between two processing steps while retaining context in a server,
then:

• If the first processing step starts a database transaction or a recovery unit
that is ended in the second processing step, you must write a cancel procedure
to roll back the database transaction or recovery unit before the server can be
used by another task.

Writing Initialization, Termination, and Cancel Procedures 2–29

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

• If the first processing step locks records in an RMS file outside a recovery
unit and those records are unlocked by the second processing step, you must
write a cancel procedure to unlock the records before the server can be used
by another task.

See Section 2.4.6 for information on writing server cancel procedures.

2.4.3 Using $SETAST to Prevent Procedure Server Interruption
At times, procedures perform operations that, if interrupted, require cleanup.
One way to avoid interrupting procedures (and avoid using cancel procedures)
is to prevent ACMS from interrupting a step procedure during a critical section
of code. To do this, you can use the $SETAST system service to disable delivery
of asynchronous system traps (ASTs) at the beginning of the critical code. You
can then reenable the delivery of ASTs at the end of the critical code. By using
$SETAST, you can set a window in which ACMS cannot interrupt the step
procedure if an exception is raised in the task.

Note

If you call the $SETAST system service to disable AST delivery in order to
prevent ACMS from interrupting a step procedure, then you must ensure
that you call the $SETAST system service to reenable AST delivery before
the end of the step procedure. If you leave AST delivery disabled after the
end of a step procedure, the server process can hang.

However, setting this window does not guarantee that an event such as a system
crash does not interrupt the critical code. Also, this solution does not apply to
programs running in DCL servers because the DCL server process handles all
cancel requests in supervisor mode.

You must also be careful to avoid creating a situation in which a task cannot be
canceled unless the server process is deleted. For example, if a step procedure
disables AST delivery before acquiring an OpenVMS lock using the $ENQ service,
ACMS cannot cancel the task until all of the following conditions are met:

• A lock is granted to the server process.

• The step procedure completes the critical operation.

• The $DEQ service releases the lock.

• AST delivery is reenabled.

In this example, if the process is never able to acquire the lock, then the task
cancellation sequence can never complete because ACMS can never interrupt the
server process. The only way to complete the task cancellation sequence is to
delete the server process manually using the DCL STOP command.

To solve the problem of task cancellation, design the code in the step procedure
carefully so that the procedure cannot stall indefinitely. You can, for example, use
a timer to control how long the step procedure waits for the OpenVMS lock, as
shown in Example 2–10.

2–30 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

Example 2–10 Pseudocode for Using $SETAST

Disable AST delivery
Call $ENQ service in order to acquire an OpenVMS lock using an
event flag and using an IOSB.
If $ENQ returns SS$_NORMAL (we are waiting for the lock to be granted),
then

Call the $SETIMR service to set a timer. Pass the same event
flag that was passed to the $ENQ service.

Call the $WAITFR service to wait for the event flag passed to
the two services. When this service finishes, it means that
either the $ENQ service has completed or the timer has expired.
To determine which has occurred, check the IOSB passed to the
$ENQ service. If the status in the IOSB is non-zero, the $ENQ
service completed.

If $ENQ service completed
then

Cancel the timer
else

Cancel lock request by calling $DEQ

Enable ASTs
Call ACMS$RAISE_NONREC_EXCEPTION to cancel the task

If the $ENQ service completed unsuccessfully,
then

Enable ASTs

Call ACMS$RAISE_NONREC_EXCEPTION to cancel the task

else

Execute the critical code

Release the locking by calling the $DEQ service

Enable ASTs

2.4.4 Conditions Under Which Cancel Procedures Are Called
Stated simply, ACMS calls the cancel procedure defined for each server in which
a task is retaining context if either a transaction exception or a nonrecoverable
exception is raised while a task is executing. ACMS does not call a server cancel
procedure if a step exception is raised while a task is executing and the task
handles the exception. If, however, a task does not handle a step exception, and a
transaction exception or a nonrecoverable exception is raised as a result, ACMS
calls a server cancel procedure, as stated. HP ACMS for OpenVMS Writing
Applications, in its discussion of these conditions as they affect ADU syntax,
includes specific examples of task definition syntax.

ACMS cancels procedures under the following conditions:

• A step exception is raised that is not handled by the task.

ACMS does not call cancel procedures if a step exception is raised while a task
is executing and the exception is handled by the task. However, if the step
exception is not handled by the task, then a transaction or nonrecoverable
exception is raised, and ACMS calls server cancel procedures.

• A task is canceled from an action clause in a task definition.

ACMS conditionally calls cancel procedures if a nonrecoverable exception is
raised due to a task executing a CANCEL TASK clause. ACMS calls cancel
procedures only if the task is maintaining context in one or more server
processes when the nonrecoverable exception is raised.

Writing Initialization, Termination, and Cancel Procedures 2–31

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

ACMS processes the server context action before it processes the CANCEL
TASK clause. Therefore, if the server context action in the action clause
is RELEASE SERVER CONTEXT [IF ACTIVE SERVER CONTEXT], the
task will no longer have context in the server, so ACMS does not call server
cancel procedures. However, if the server context action is RETAIN SERVER
CONTEXT [IF ACTIVE SERVER CONTEXT] or NO SERVER CONTEXT
ACTION, and the task has context in one or more servers, then ACMS calls
cancel procedures.

• A distributed transaction fails to prepare successfully.

This transaction exception can occur only while a task is executing a
COMMIT TRANSACTION clause. Because the server context action of
a transaction step must be RELEASE SERVER CONTEXT [IF ACTIVE
SERVER CONTEXT], ACMS does not call cancel procedures in this case.

• Other transaction or nonrecoverable exceptions are raised.

Excluding the exception conditions already described, ACMS always calls
cancel procedures when a transaction or nonrecoverable exception is raised.
For example, ACMS calls cancel procedures in any server in which the task is
maintaining context:

If the transaction timeout specified for a task expires before a distributed
transaction completes and a step procedure does not complete before
ACMS interrupts it

If a user presses Ctrl/Y to cancel a task

If an operator uses the ACMS/CANCEL TASK command to cancel the
task

2.4.5 Cancel Procedures in Distributed and Nondistributed Transactions
ACMS calls server cancel procedures in a different order depending on whether
a task uses distributed transactions, or a task uses either independent database
transactions or RMS recovery units, or both.

• In nondistributed transactions

The server cancel procedure defined for the server is called before executing
a database transaction or recovery-unit action, such as COMMIT or
ROLLBACK, as specified in the task definition.

• In distributed transactions

Due to the asynchronous nature of transaction aborts, you cannot predict
when cancel procedures are called.

Section 2.3 discusses the conditions under which ACMS runs down a server
process.

2.4.6 Writing a Cancel Procedure
You declare a cancel procedure for a server in the ACMS procedure server
definition within a task group. For example:

2–32 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

.

.

.
SERVER IS
pers_upd_server:

.

.
CANCEL PROCEDURE IS pers_upd_server_can_proc;
.
.
.

END SERVER;

ACMS calls the cancel procedure PERS_UPD_SERVER_CAN_PROC under the
conditions discussed in Section 2.4.4.

The RUNDOWN ON CANCEL, RUNDOWN ON CANCEL IF INTERRUPTED, or
NO RUNDOWN ON CANCEL clause in a server definition determines whether
ACMS runs down the server process if a task is canceled while it has context
in the server process. The default is RUNDOWN ON CANCEL. If a server
definition declares RUNDOWN ON CANCEL, a cancel procedure is usually not
necessary. However, if a server definition declares NO RUNDOWN ON CANCEL,
then it is often necessary to use a cancel procedure. A cancel procedure may
also be necessary if a server definition declares RUNDOWN ON CANCEL IF
INTERRUPTED. For example:

CANCEL PROCEDURE IS pers_upd_server_can_proc;
NO RUNDOWN ON CANCEL;

The server definition initially determines whether or not the server process is
run down on cancels. However, the return status of a cancel procedure overrides
the server definition. ACMS provides three symbols that a cancel procedure can
return:

• ACMS$_RNDWN

If the cancel procedure returns ACMS$_RNDWN, ACMS runs down the
server process even if the server definition declared NO RUNDOWN. If a
cancel procedure cannot release the resources allocated to the server, it can
return ACMS$_RNDWN to ensure that ACMS runs down the process and
releases the resources.

• ACMS$_NRNDWN

If the cancel procedure returns ACMS$_NRNDWN, under normal conditions
ACMS does not run down a server, regardless of whether or not the task is
executing in the server process at the time an exception is raised. However,
ACMS always runs down a server process if a step procedure signals a fatal
OpenVMS exception or leaves channels open to a terminal device.

• ACMS$_RNDWNIFINT

If a cancel procedure returns ACMS$_RNDWNIFINT, ACMS runs down the
server process only if the task is executing in the server process at the time
an exception is raised. If the task is only maintaining context in the server at
the time an exception is raised, then the server process remains active.

Cancel procedures do not have access to workspaces. Store any information
that might be needed by the cancel procedure in global variables while a step
procedure is executing. The information is then available to the cancel procedure
when it executes.

Writing Initialization, Termination, and Cancel Procedures 2–33

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

The following sections illustrate cancel procedures for a server accessing an Rdb
database using RDO and for a server accessing an RMS file.

2.4.6.1 Cancel Procedure for Rdb with RDO
Write a server cancel procedure when you use Rdb with RDO in the following
situations:

• If you access an Rdb database using RDO in a distributed transaction

If you allow the server to remain active when a task is canceled, you must
use a cancel procedure to roll back the default database transaction that Rdb
starts if a step procedure accesses the database after a distributed transaction
aborts.

• If you write a task that retains context in a server between two processing
steps

If you allow the server to remain active when a task is canceled between two
processing steps, you must use a cancel procedure to roll back the database
transaction started in the first processing step.

In Example 2–11, the procedure uses the ROLLBACK statement to roll back
an active database transaction. Because there might not be a database
transaction active every time the cancel procedure is called, the procedure
ignores a transaction-not-active (RDB$_BAD_TRANS_HANDLE) error from
the ROLLBACK statement. If any other error occurs, the procedure logs the error
in the ACMS audit trail log by calling LIB$SIGNAL and returns the ACMS$_
RNDWN status to force ACMS to run down the server process. If no errors are
detected, the procedure returns the ACMS$_RNDWNIFINT status; in this case,
ACMS runs down the server process only if the execution of a step procedure was
interrupted due to the cancel.

Example 2–11 Server Cancel Procedure in BASIC Using Rdb with RDO

FUNCTION LONG vr_update_cancel
!+
! Invoke database.
!-
&RDB& INVOKE DATABASE FILENAME "avertz_database:vehicle_rentals"

!+
! Cancel procedure return status.
!-
EXTERNAL LONG CONSTANT ACMS$_RNDWNIFINT
EXTERNAL LONG CONSTANT ACMS$_RNDWN

!+
! Rdb error ROLLBACK status code.
!-
EXTERNAL LONG CONSTANT RDB$_BAD_TRANS_HANDLE

!+
! Error logging routines
!-
EXTERNAL LONG FUNCTION LIB$SIGNAL
EXTERNAL LONG FUNCTION LIB$CALLG

!+
! Assume success.
!-
vr_update_cancel = ACMS$_RNDWNIFINT

(continued on next page)

2–34 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

Example 2–11 (Cont.) Server Cancel Procedure in BASIC Using Rdb with RDO

!+
! ROLLBACK an outstanding database transaction. Ignore a
! transaction-not-active error. For all other errors, log
! the error and return ACMS$_RNDWN to ensure the server
! runs down.
!-
&RDB& ROLLBACK
&RDB& ON ERROR

IF Rdb$LU_STATUS <> RDB$_BAD_TRANS_HANDLE
THEN

CALL LIB$CALLG(Rdb$MESSAGE_VECTOR, &
LOC(LIB$SIGNAL) BY VALUE)

vr_update_cancel = ACMS$_RNDWN
END IF

&RDB& END_ERROR

END FUNCTION

2.4.6.2 Cancel Procedure for RMS Files
Write a server cancel procedure when you use RMS in the following situations:

• If you access an RMS file in a distributed transaction

If you allow the server to remain active when a task is canceled, you must
use a cancel procedure to unlock any records that a step procedure locks after
a distributed transaction aborts.

• If you write a task that retains context in a server between two processing
steps

If you allow the server to remain active when a task is canceled between
two processing steps, you must use a cancel procedure to unlock any records
locked by the first processing step.

Example 2–12 illustrates a server cancel procedure written in COBOL that uses
the UNLOCK statement to release any records locked in the Employee and
History files. If an error occurs, the procedure logs the error in the ACMS audit
trail log by calling LIB$SIGNAL and returns the ACMS$_RNDWN status to force
ACMS to run down the server process. If no errors are detected, the procedure
returns the ACMS$_RNDWNIFINT status; in this case, ACMS runs down the
server process only if the execution of a step procedure was interrupted due to the
cancel.

Example 2–12 Server Cancel Procedure in COBOL for RMS Files

IDENTIFICATION DIVISION.
PROGRAM-ID. pers_upd_server_can_proc.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT emp_file

ORGANIZATION INDEXED
ACCESS RANDOM
ASSIGN TO "emp_file:employee_file.dat".

(continued on next page)

Writing Initialization, Termination, and Cancel Procedures 2–35

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

Example 2–12 (Cont.) Server Cancel Procedure in COBOL for RMS Files

SELECT hist_file
ORGANIZATION INDEXED
ACCESS RANDOM
ASSIGN TO "hist_file:history_file.dat".

I-O-CONTROL.
APPLY LOCK-HOLDING ON emp_file,

hist_file.

DATA DIVISION.

FILE SECTION.
FD emp_file

EXTERNAL
DATA RECORD IS employee_record
RECORD KEY emp_badge_number OF employee_record.

COPY "pers_cdd.employee_record" FROM DICTIONARY.

FD hist_file
EXTERNAL
DATA RECORD IS history_record
RECORD KEY hist_badge_number OF history_record.

COPY "pers_cdd.history_record" FROM DICTIONARY.

WORKING-STORAGE SECTION.

01 status_result PIC S9(5) COMP.

01 ACMS$_RNDWNIFINT PIC S9(5) COMP
VALUE IS EXTERNAL ACMS$_RNDWNIFINT.

01 ACMS$_RNDWN PIC S9(5) COMP
VALUE IS EXTERNAL ACMS$_RNDWN.

PROCEDURE DIVISION GIVING status_result.

DECLARATIVES.
employee_file SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON emp_file.
employee_file_handler.

CALL "LIB$SIGNAL" USING BY VALUE RMS-STS OF emp_file,
BY VALUE RMS-STV OF emp_file

MOVE ACMS$_RNDWN TO status_result.
EXIT PROGRAM.

history_file SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON hist_file.

history_file_handler.
CALL "LIB$SIGNAL" USING BY VALUE RMS-STS OF hist_file,

BY VALUE RMS-STV OF hist_file
MOVE ACMS$_RNDWN TO status_result.
EXIT PROGRAM.

END DECLARATIVES.

(continued on next page)

2–36 Writing Initialization, Termination, and Cancel Procedures

Writing Initialization, Termination, and Cancel Procedures
2.4 Using Cancel Procedures

Example 2–12 (Cont.) Server Cancel Procedure in COBOL for RMS Files

MAIN SECTION.

000-start.
UNLOCK emp_file ALL RECORDS.
UNLOCK hist_file ALL RECORDS.
MOVE ACMS$_RNDWNIFINT TO status_result.

999-end.
EXIT PROGRAM.

Example 2–13 illustrates a server cancel procedure written in BASIC that uses
the FREE statement to release any records locked in the Employee and History
files. If an error occurs, the procedure returns the ACMS$_RNDWN status to
force ACMS to run down the server process. The EXIT HANDLER statement
is used to resignal the error so that ACMS writes it to the audit trail log. If no
errors are detected, the procedure returns the ACMS$_RNDWNIFINT status;
in this case, ACMS runs down the server process only if the execution of a step
procedure was interrupted due to the cancel.

Example 2–13 Server Cancel Procedure in BASIC

FUNCTION LONG pers_upd_server_can_proc

%INCLUDE "pers_files:pers_common_defns"

EXTERNAL LONG CONSTANT ACMS$_RNDWNIFINT
EXTERNAL LONG CONSTANT ACMS$_RNDWN

WHEN ERROR IN
FREE # emp_file
FREE # hist_file
pers_upd_server_can_proc = ACMS$_RNDWNIFINT

USE
pers_upd_server_can_proc = ACMS$_RNDWN
EXIT HANDLER

END WHEN

END FUNCTION

Writing Initialization, Termination, and Cancel Procedures 2–37

3
Writing Step Procedures

This chapter discusses writing step procedures for ACMS tasks. The suggestions
in this chapter apply to users of all languages and all data management systems.
The material in this chapter provides a basis for Chapter 4, which contains
information and examples specific to Rdb software using SQL, Rdb using RDO,
DBMS software, and RMS software.

This chapter discusses the following topics:

• Using workspaces with step procedures

Explains how tasks use workspaces to pass data between processing steps
and exchange steps, and describes the ACMS-supplied system workspaces.

• Using procedures in distributed transactions

Tells how to write new step procedures and how to migrate existing
procedures to participate in distributed transactions.

• Returning status to the task definition

Discusses how to return status to the task definition using a status return
facility or a user-defined workspace.

• Handling error conditions

Discusses how step procedures handle error conditions by processing error
messages and raising recoverable and nonrecoverable exceptions.

• Performing terminal I/O from a procedure server

Explains how programs that run in procedure servers can perform I/O
directly to a terminal, which is useful for preexisting programs that you
convert to single-step tasks.

3.1 Using Workspaces with Step Procedures
An ACMS task uses workspaces to pass information between the task definition
and step procedures and HP DECforms forms. Workspaces are temporary data
storage areas, which are passed to step procedures as parameters. Workspaces
are passed by reference (that is, the address is passed), with write access.

Figure 3–1 illustrates the way a task uses workspaces to pass data between a
form and a step procedure. Once a workspace and its fields have been declared
(in CDD, for example), you can use a form to input data and store it in workspace
fields. You can then pass that data to a database or RMS file for storage.

Writing Step Procedures 3–1

Writing Step Procedures
3.1 Using Workspaces with Step Procedures

Figure 3–1 How ACMS Applications Use Workspaces

Database

Jane Smith
Nashua, NH

Data Entry Form

Name:
Address:

Workspace

Name X(10)
Address X(20)

Server
Procedure

DECforms

Task

TAY-0157-AD

3.1.1 Using ACMS-Supplied System Workspaces
ACMS provides special-purpose task workspaces, called system workspaces,
which contain information about the state of a task. This information might be
useful to the step procedures called by the task.

ACMS supplies the following system workspaces:

• ACMS$SELECTION_STRING

This workspace makes information from an ACMS menu available to the
task, forms, and step procedures. You can also use this workspace to pass
parameters to DCL command procedures.

Appendix A and HP ACMS for OpenVMS Writing Applications contain more
information about this workspace.

• ACMS$PROCESSING_STATUS

A task can use the fields of this workspace to determine the completion status
of a step procedure. In addition, ACMS stores information about exceptions
in this workspace.

Section 3.3, Chapter 5, and Appendix A contain more information about using
this workspace.

• ACMS$TASK_INFORMATION

ACMS stores task execution information such as task ID, sequence number,
and task name in this workspace. You can use this workspace, for example,
to determine the name of the device from which a task was submitted (for
security reasons) or to ascertain whether the task was submitted from a
remote node.

Appendix A contains reference information about this workspace.

System workspaces are always available to ACMS tasks. ACMS gives each task
its own copy of all three workspaces and initializes each workspace when a task
is selected.

Note

Step procedures must not modify the contents of the
ACMS$PROCESSING_STATUS or ACMS$TASK_INFORMATION
workspaces. Step procedures can, however, modify the contents of
the ACMS$SELECTION_STRING workspace.

3–2 Writing Step Procedures

Writing Step Procedures
3.1 Using Workspaces with Step Procedures

3.1.2 Identifying Workspaces
You must define record definitions for all the workspaces used by your task.
A step procedure reads from or writes to the workspaces using the record
names and field names from the record definitions. ACMS takes its workspace
definitions from CDD record definitions.

Note

If the programming language you use does not support CDD, you must
also define the workspace records in the step procedure.

Example 3–1 shows part of a task definition that declares the VR_CUSTOMERS_
WKSP in the USE WORKSPACES clause and passes it to the procedure VR_
GET_CUSTOMER_PROC in the CALL statement.

Example 3–1 Referencing a Workspace in a Task Definition

REPLACE TASK VR_DISPLAY_CU_TASK

USE WORKSPACES VR_CUSTOMERS_WKSP,

.

.

.
BLOCK WORK WITH FORM I/O IS

GET_CUSTOMERS:
PROCESSING

CALL VR_GET_CUSTOMER_PROC USING VR_CUSTOMERS_WKSP,
.
.
.

END DEFINITION;

To receive the contents of the workspace named in the task definition, the
programming language you use must be able to receive parameters from
the calling program. For example, in COBOL, the parameters used to pass
information are defined in the Linkage Section and are named in the Procedure
Division header.

Example 3–2 shows part of a COBOL procedure that also refers to VR_
CUSTOMERS_WKSP.

Example 3–2 COBOL Procedure that Names a Workspace

IDENTIFICATION DIVISION.

PROGRAM-ID. VR-GET-CUSTOMER-PROC IS INITIAL.
.
.
.

LINKAGE SECTION.
*
* Copy CUSTOMERS record from the CDD
*

(continued on next page)

Writing Step Procedures 3–3

Writing Step Procedures
3.1 Using Workspaces with Step Procedures

Example 3–2 (Cont.) COBOL Procedure that Names a Workspace

EXEC SQL INCLUDE FROM DICTIONARY
’AVERTZ_CDD_WKSP:VR_CUSTOMERS_WKSP’

END-EXEC.
.
.
.

PROCEDURE DIVISION USING VR_CUSTOMERS_WKSP,
.
.
.

GIVING RET-STAT.

Example 3–3 shows part of the CDD record definition of VR_CUSTOMERS_
WKSP.

Example 3–3 CDD Record Definition for VR_CUSTOMERS_WKSP Workspace

DEFINE RECORD VR_CUSTOMERS_WKSP.
.
.
.
CUSTOMER_ID.
CU_LAST_NAME.
CU_FIRST_NAME.
CU_MIDDLE_INITIAL.
CU_FIRST_ADDRESS_LINE.
.
.
.
END RECORD.

Assign an initial value to any non-binary fields for testing in DECforms. For
example, set the initial value of each character field in the record definition to
blanks, as shown in this CDD field definition:

DEFINE FIELD CU_LAST NAME DATATYPE TEXT SIZE IS 20
INITIAL VALUE IS " ".

See the CDD documentation for additional information on assigning initial
values.

3.2 Using Procedures in Distributed Transactions
This section discusses the considerations to keep in mind when you write a
procedure that accesses a resource manager in a distributed transaction.

A resource manager controls shared access to a set of recoverable resources on
behalf of application programs. A resource is a set of one or more data items in
a database or an RMS file. The term recoverable means that all updates to the
resources either can be made permanent or can be undone, and that the integrity
of the resources can be recovered after a failure such as a system crash.

The following sections discuss:

• Participation of a procedure in a distributed transaction

• Use of database transactions or recovery units with distributed transactions

3–4 Writing Step Procedures

Writing Step Procedures
3.2 Using Procedures in Distributed Transactions

• Obtaining the Transaction ID

• Retaining context in distributed transactions

• Migrating existing step procedures to participate in distributed transactions

3.2.1 Determining the Participation of a Procedure in a Distributed Transaction
The following rules determine the participation of a procedure in a distributed
transaction:

• When a processing step that executes within a block delimiting a distributed
transaction calls a procedure, that procedure automatically participates in the
distributed transaction. For example:

BLOCK WITH TRANSACTION
PROCESSING

CALL vr_store_cu_proc
IN vr_cu_update_server
USING vr_control_wksp,

vr_customers_wksp,
vr_trans_wksp;

.

.

.
END BLOCK WORK;

.

.

.

Because the processing step executes within the bounds of a distributed
transaction, the server automatically participates in the distributed
transaction.

• When a processing step that delimits a distributed transaction calls a
procedure, that procedure automatically participates in the distributed
transaction. For example:

PROCESSING WITH TRANSACTION
CALL vr_store_cu_proc
IN vr_cu_update_server
USING vr_control_wksp,

vr_customers_wksp,
vr_trans_wksp;

.

.

.

Use this method if a single step procedure needs to update multiple resources.
For example, you might choose this method for a procedure that updates an
RMS file as well as an Rdb database. You can also use this method if a task
has only one step, which is a processing step.

• You can explicitly exclude a procedure server from a distributed transaction
by using the WITH NONPARTICIPATING SERVER phrase on the processing
step of a task definition:

PROCESSING WITH NONPARTICIPATING SERVER

See HP ACMS for OpenVMS Writing Applications for more information on writing
definitions of tasks that use distributed transactions.

Writing Step Procedures 3–5

Writing Step Procedures
3.2 Using Procedures in Distributed Transactions

In ACMS, you can start a distributed transaction in either an agent program,
a task, or a step procedure. HP ACMS for OpenVMS Concepts and Design
Guidelines explains the relative advantages and disadvantages of starting a
distributed transaction in each of these locations.

You can also start a distributed transaction in a task and, from that task, call a
procedure that acts as an agent. The agent program can call a task on a remote
node, and the called task can access databases locally on that node, thus reducing
network traffic and increasing the efficiency of the application.

See HP ACMS for OpenVMS Concepts and Design Guidelines for more
information about using a task to update a remote database. See HP ACMS
for OpenVMS Systems Interface Programming for detailed information about
using a step procedure as an agent program.

Note

Do not call the $START_TRANS, $END_TRANS, or $ABORT_TRANS
system services from a step procedure that is participating in a
distributed transaction started by a task or an agent program. If you
do call these services under these conditions, they either return an error
status or hang until the task is canceled by the terminal user or system
operator.

3.2.2 Using Database Transactions or Recovery Units with Distributed
Transactions

The unit of interaction with a database that begins with a start-transaction
statement is called a database transaction. The Rdb and DBMS documentation
refer to this unit as a transaction. A set of RMS recoverable operations is referred
to as a recovery unit. To avoid possible confusion with the term distributed
transactions, this manual uses the term database transaction when referring
to this unit for Rdb and DBMS database products and recovery unit when
referring to this unit for RMS files. The term database transaction is used
whether transactions are distributed or nondistributed.

Depending on the database you are using, you start a database transaction with
one of the following statements:

Database product Statement that starts a distributed transaction

Rdb using SQL SET TRANSACTION

Rdb using RDO START_TRANSACTION

DBMS READY

Instructions for starting database transactions are in Chapter 4.

Note that RMS files that are marked for recovery participate automatically in a
distributed transaction; in other words, no special syntax is necessary.

The DML verbs COMMIT or ROLLBACK commit or roll back an independent
database transaction or a recovery unit that is not participating in a distributed
transaction. However, a database transaction that participates in a distributed
transaction is automatically committed or rolled back when the distributed
transaction ends. Therefore, you cannot use the COMMIT or ROLLBACK DML
verbs to end a database transaction that participates in a distributed transaction.

3–6 Writing Step Procedures

Writing Step Procedures
3.2 Using Procedures in Distributed Transactions

The COMMIT and ROLLBACK verbs fail and return an error if you try to
use them to end a database transaction that is participating in a distributed
transaction.

If a processing step participates in a distributed transaction, you must start
the database transaction in the step procedure. You cannot use database-
specific or RMS-specific recovery declarations in task definitions in conjunction
with distributed transactions. ADU does not allow the use of the WITH
SQL/RDB/DBMS/RMS RECOVERY phrase in the definition of a task that is
within the bounds of a distributed transaction. These phrases are declining
functionality.

Important

Always specify a lock timeout interval when you use Rdb or DBMS in a
distributed transaction. This ensures that ACMS can successfully cancel
a task that is waiting for a database lock. By specifying a lock timeout
interval, you ensure that the task is canceled as soon as the timeout
interval expires. If you do not specify a lock timeout interval, ACMS
cannot cancel the task until the lock is granted. See Chapter 4 for more
information on specifying a lock timeout interval.

3.2.3 Obtaining the Transaction ID (TID)
ACMS automatically obtains a transaction ID (TID) when you start a distributed
transaction. Whenever a step procedure is called as part of a distributed
transaction, ACMS establishes the TID as the default TID of the server process.

For an Rdb or DBMS database transaction to participate in a distributed
transaction, you must explicitly pass the TID to Rdb or DBMS when you start
the database transaction. In contrast, RMS automatically accesses the TID for
files that are marked for recovery-unit journaling. Therefore, no special action
is necessary; a step procedure does not need to obtain the TID when using RMS
with distributed transactions.

ACMS provides a service, called ACMS$GET_TID, that a step procedure can call
to obtain the TID before using the database. For example:

CALL "ACMS$GET_TID" USING CS-TID GIVING RET_STAT.

See Chapter 9 for full details on the ACMS$GET_TID service. See Chapter 4 for
information on how to pass the TID to Rdb and DBMS.

3.2.4 Retaining Server Context in Distributed Transactions
The following rules apply to retaining server context in a distributed transaction:

• Context must be retained in a server that participates in a distributed
transaction until the end of the transaction. At the end of the distributed
transaction, the task must release context in all the servers that participated
in the transaction. ADU automatically supplies default server context actions
for transaction steps and steps that participate in distributed transactions.
(See HP ACMS for OpenVMS Writing Applications for more information about
server context.)

Writing Step Procedures 3–7

Writing Step Procedures
3.2 Using Procedures in Distributed Transactions

• A task definition can contain multiple processing steps that call one or more
server procedures in the same server within a single distributed transaction.
Within a single task, a single server process is used for all the processing
steps that call step procedures in the same server. In this case, the first
step procedure called within a distributed transaction must ready a database
for the current procedure and any subsequent step procedures called by the
task. For example, if the first step procedure accesses an Rdb database,
the procedure must reserve those relations that are required by the current
procedure as well as those relations that are required by subsequent step
procedures.

A different situation occurs when a task calls another task as part of a
distributed transaction. The called task does not share server context with
the parent task; the parent and called tasks use different server processes.
Therefore, the first procedure called by the called task must ready a database
for the current and any subsequent server procedures used by the called task.

• Both the Rdb and DBMS database products support only a single active
database transaction in one process at a time. Therefore, once a server
participates in a distributed transaction, the server must remain reserved
to the distributed transaction until the transaction ends. See HP ACMS for
OpenVMS Writing Applications for more information about retaining server
context.

3.2.5 Migrating Existing Step Procedures to Participate in Distributed
Transactions

If you modify existing step procedures to participate in distributed transactions
that start in calling tasks, you must:

• Pass the TID to Rdb or DBMS when you access the database.

• Remove any COMMIT or ROLLBACK syntax in the step procedure.

The distributed transaction must start and end in the same place, that is, in
the action clause of the task step that starts the distributed transaction.

If you perform neither of the above steps, the task appears to execute correctly;
however, the end of the distributed transaction is not coordinated with the end of
the database transaction. This occurs because Rdb or DBMS does not know that
you want the database operation to participate in the transaction if you do not
pass the TID. Therefore, the database transaction starts and ends as it did before
the task was changed to use distributed transactions.

If you perform the first step but not the second, the COMMIT or ROLLBACK
statement returns an error. By specifying the TID, you include your database
operation in the distributed transaction. You cannot use the COMMIT or
ROLLBACK verbs to end a database transaction that is participating in a
distributed transaction.

3.3 Returning Status to the Task Definition
In most situations, a task needs to know whether or not the work done in a
processing step is successful so that it can determine what to do next. This
means that the step procedure must pass this information back to the task. You
can pass this information back to the task in one of two ways:

• Use the status return facility provided for subprograms or functions in the
language used. This is the most common method.

3–8 Writing Step Procedures

Writing Step Procedures
3.3 Returning Status to the Task Definition

• Place status information directly in a user-defined workspace that is passed
as a parameter to the procedure.

The following sections describe these methods.

Note

ACMS requires initialization, termination, and cancel procedures to
return a status. If they do not return status, results are unpredictable.

3.3.1 Returning Status with a Status Return Facility
All OpenVMS programming languages that follow the OpenVMS calling standard
supply a mechanism for returning status from a subprogram or function. For
example, in COBOL you can return status by specifying a variable in the
GIVING clause of a Procedure Division statement and assigning a status value to
this variable:

PROCEDURE DIVISION GIVING status-result.

The return status from the subprogram or function is automatically returned
to the task in the system workspace ACMS$PROCESSING_STATUS. ACMS
moves the return status value to the ACMS$L_STATUS field, which is one of four
fields in the ACMS$PROCESSING_STATUS workspace. The four fields are the
following:

ACMS$L_STATUS
ACMS$T_SEVERITY_LEVEL
ACMS$T_STATUS_TYPE
ACMS$T_STATUS_MESSAGE

ACMS then sets the values of the fields ACMS$T_SEVERITY_LEVEL and
ACMS$T_STATUS_TYPE to correspond to the return status value in ACMS$L_
STATUS.

Table 3–1 show the values of the ACMS$T_STATUS_TYPE field. The binary
value in the table refers to the value of the low-order bit in ACMS$L_STATUS.

Table 3–1 Values for ACMS$T_STATUS_TYPE

Status Type Binary Value Meaning

G 1 GOOD
Represents successful completion of a step procedure.

B 0 BAD
Represents the failure of a step procedure.

Table 3–2 lists the values for the ACMS$T_SEVERITY_LEVEL field. The binary
value in the table refers to the value of the three low-order bits in ACMS$L_
STATUS.

Writing Step Procedures 3–9

Writing Step Procedures
3.3 Returning Status to the Task Definition

Table 3–2 Values for ACMS$T_SEVERITY_LEVEL

Severity
Level Binary Value Meaning

S 001 SUCCESS

I 011 INFORMATION

W 000 WARNING

E 010 ERROR

F 100 FATAL

? Other Invalid severity level

A task can check the ACMS$T_STATUS_TYPE or the ACMS$T_SEVERITY_
LEVEL field to determine what action to take.

ACMS sets initial values for the fields in the ACMS$PROCESSING_STATUS
workspace as follows:

Field Initial value

ACMS$L_STATUS 1 (normal successful completion)

ACMS$T_SEVERITY_LEVEL S (SUCCESS)

ACMS$T_STATUS_TYPE G (GOOD)

ACMS$T_STATUS_MESSAGE Spaces

Note

ACMS puts information into the ACMS$PROCESSING_STATUS
workspace whether or not your procedure explicitly returns a status.
You must be careful to use this workspace in a task definition only when
your procedure returns a status. Otherwise, the results are unpredictable.

3.3.2 Returning Status in User-Defined Workspaces
Returning status to a task in a user-defined workspace is useful if you return a
value to HP DECforms that determines what message HP DECforms displays.

To return status from a step procedure to a task in a user-defined workspace,
define a status field in a workspace used by the task. Example 3–4 shows the
CDD definition for a workspace called TASK_CONTROL.

Example 3–4 Record Description for TASK_CONTROL

CDO> SHOW RECORD pers_cdd.task_control/FULL
Definition of record TASK_CONTROL
| Contains field STEP_STATUS
| | Datatype text size is 8 characters

.

.

.

In Example 3–4, STEP_STATUS is an 8-character text field into which the step
procedure writes a character string indicating whether or not it has completed
successfully. The task uses the step status field to determine the completion

3–10 Writing Step Procedures

Writing Step Procedures
3.3 Returning Status to the Task Definition

status of the step procedure. The task uses the contents of the workspace field to
determine what to do next.

Example 3–5 and Example 3–6 illustrate how to return status in a user-defined
workspace. The step procedure first initializes the status field to SUCCESS; it
then writes a new record to an employee master file. If a record with the same
key already exists, the procedure stores the error text DUPLICAT in the status
field. The task uses the contents of the status field to determine if the step
procedure successfully stored the new employee record.

Note

ACMS does not initialize workspaces every time it begins a step
procedure. Therefore, you must ensure that a step procedure stores
the correct status before it completes. For example, the step procedure
illustrated in Example 3–5 always initializes the status to SUCCESS
at the beginning. This is necessary if a user incorrectly enters a badge
number that is already on file for an employee. After the user corrects
the mistake, the step procedure is called again, and the WRITE operation
succeeds. In this case, the step procedure must return a success status
to ensure that the task continues normally when the step procedure
completes.

3.3.2.1 COBOL Procedure for Returning Status in a User-Defined Workspace
Example 3–5 illustrates a complete step procedure for a simple data entry task.
In this example, the step procedure first initializes the STEP_STATUS field
to SUCCESS. If the write operation fails with a duplicate-key error, the step
procedure stores DUPLICAT in the STEP_STATUS field using the INVALID KEY
clause.

Example 3–5 COBOL Procedure for Returning Status in a User-Defined
Workspace

IDENTIFICATION DIVISION.
PROGRAM-ID. pers_add_employee_proc.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT emp_file

ORGANIZATION INDEXED
ACCESS RANDOM
ASSIGN TO "emp_file:employee.dat".

I-O-CONTROL.
APPLY LOCK-HOLDING ON emp_file.

DATA DIVISION.

FILE SECTION.
FD emp_file

EXTERNAL
DATA RECORD IS employee_record
RECORD KEY emp_badge_number OF employee_record.

COPY "pers_cdd.employee_record" FROM DICTIONARY.
WORKING-STORAGE SECTION.

(continued on next page)

Writing Step Procedures 3–11

Writing Step Procedures
3.3 Returning Status to the Task Definition

Example 3–5 (Cont.) COBOL Procedure for Returning Status in a User-Defined
Workspace

LINKAGE SECTION.
COPY "pers_cdd.task_control" FROM DICTIONARY.
COPY "pers_cdd.employee_record" FROM DICTIONARY

REPLACING ==employee_record== BY ==emp_wksp_record==.

PROCEDURE DIVISION USING task_control, emp_wksp_record.
MAIN SECTION.

000-start.
MOVE "SUCCESS" TO step_status OF task_control.
WRITE employee_record FROM emp_wksp_record

ALLOWING NO OTHERS
INVALID KEY

MOVE "DUPLICAT" TO step_status OF task_control
NOT INVALID KEY

UNLOCK emp_file ALL RECORDS
END-WRITE.

999-end.
EXIT PROGRAM.

3.3.2.2 BASIC Procedure for Returning Status in a User-Defined Workspace
Example 3–6 illustrates a complete step procedure for a simple data entry task.
In this example, the step procedure first initializes the STEP_STATUS field
to SUCCESS. If the write operation fails with a duplicate-key error, the step
procedure uses an error handler to store DUPLICAT in the STEP_STATUS field.

Example 3–6 BASIC Procedure for Returning Status in a User-Defined
Workspace

FUNCTION LONG pers_add_employee_proc(&
task_control task_ctrl_wksp, &
employee_record emp_wksp)

%INCLUDE "pers_files:pers_common_defns"

%INCLUDE %FROM %CDD "pers_cdd.employee_record"
%INCLUDE %FROM %CDD "pers_cdd.task_control"

MAP (emp_map) employee_record emp_rec

WHEN ERROR IN
task_ctrl_wksp::step_status = "SUCCESS"
MOVE TO # emp_file, emp_wksp
PUT # emp_file
UNLOCK # emp_file

USE
SELECT ERR

CASE basicerr_duplicate_key
task_ctrl_wksp::step_status = "DUPLICAT"

CASE ELSE
CALL ACMS$RAISE_NONREC_EXCEPTION(RMSSTATUS(emp_file))
EXIT HANDLER

END SELECT
END WHEN

END FUNCTION

3–12 Writing Step Procedures

Writing Step Procedures
3.4 Handling Error Conditions

3.4 Handling Error Conditions
When you design a task and its components, include logic that checks the status
of steps for their successful completion. For example, a task definition for an
employee update task includes these steps:

1. Display a form that asks the user for an employee number.

2. Call a procedure to read the data for that employee.

The step procedure reads the record; it then checks the status of the read
operation and performs one of the following:

• If the read operation succeeds, returns a success status.

• If a recoverable error occurs, returns a failure status.

• If a nonrecoverable error occurs, cancels the task.

3. Check the status from the step procedure:

• If the step procedure succeeds, execute the next exchange step.

• If the step procedure fails, repeat the first exchange step.

4. Display a form that shows the employee’s record and asks the user for
changes to the record information.

5. Call a procedure to rewrite the changed employee information.

The step procedure rewrites the record; it then checks the status of the
rewrite operation and performs one of the following:

• If the rewrite operation succeeds, returns a success status.

• If a recoverable error occurs, returns a failure status.

• If a nonrecoverable error occurs, cancels the task.

6. Check the status from step procedure:

• If the step procedure succeeds, exit the task with a success status.

• If the step procedure fails, repeat the second exchange step.

See HP ACMS for OpenVMS Writing Applications for information about how to
write task definitions.

A step procedure can use a number of alternative methods for returning
information about recoverable error conditions to the task:

• For recoverable errors that are handled by the action part of the processing
step, return a failure status using a status return facility or a status field in
a user-defined workspace. See Section 3.3.1 and Section 3.3.2 for information
on returning status from a step procedure to a task.

• For recoverable errors that are handled by the exception handler part of the
processing step or an outer-block step in the task, raise a transaction or step
exception.

• For recoverable transaction errors that are handled by an exception handler
on the transaction step or an outer-block step in the task, raise a transaction
exception.

The following sections discuss processing error messages in step procedures and
raising exceptions in step procedures.

Writing Step Procedures 3–13

Writing Step Procedures
3.4 Handling Error Conditions

3.4.1 Processing Error Messages
If a step procedure detects a recoverable error, you must inform users of the
problem. With this information, they can then decide how to continue.

In ACMS, you can choose among several methods of returning error messages to
users. These methods are distinguished by where the message text is obtained
and processed:

• In the task

• In the form

• In the step procedure

3.4.1.1 Using a Message File in the Task Definition
Using this method, you retrieve the error message text from a message file in
the task definition based on the OpenVMS return status from the step procedure.
You use a return status facility to return the status from the step procedure to
the task, as discussed in section Section 3.3.1.

ACMS stores the return status in the ACMS$PROCESSING_STATUS workspace,
which the task can check and then retrieve error message text from the message
file, as explained in Chapter 5. This is the most common method for returning
information about a recoverable error condition from the step procedure to the
task.

The advantages of this method are that it is simple to use in both the step
procedure and the task definition, and you can change messages without
recompiling the procedure. A disadvantage of this method is that you cannot
use more informative error messages containing additional information; you can
use only simple literal error messages. For example, you cannot include a specific
employee number in this message:

"Employee ID already exists on file"

To use a message file in a task definition, follow these steps:

1. In the step procedure, return the failure status associated with the error
condition.

For example, in COBOL:

MOVE persmsg_empexists TO return_status.
GO TO 999-end.

For example, in BASIC:

EXIT FUNCTION persmsg_empexists

2. In the task definition, check the return status from the procedure in the
ACMS$PROCESSING_STATUS workspace.

If the step procedure returns an error status, retrieve the error message text
based on the return status and go to an exchange step that displays the error
message on the form. For example:

3–14 Writing Step Procedures

Writing Step Procedures
3.4 Handling Error Conditions

PROCESSING
WORK IS

CALL pers_add_employee_proc USING
task_control,
employee_record

ACTION IS
IF (ACMS$T_STATUS_TYPE = "B")
THEN

GET ERROR MESSAGE;
GOTO STEP get_new_employee_data;

END IF;

3.4.1.2 Using a Message File in the Step Procedure
Using this method, you retrieve the error message text from a message file in the
step procedure.

Use OpenVMS system services or run-time library (RTL) routines to retrieve
and process the error message text in the step procedure. See OpenVMS System
Services Reference Manual and OpenVMS RTL Library (LIB$) Manual for more
information on using the OpenVMS Formatted ASCII Output (FAO) facility.

An advantage to this method is that you can return more informative error
messages to the user by including additional information in the error message
text. For example:

"Employee ID: 123456, last name: SMITH, already exists on file"

A disadvantage of this method is that you might have to modify a step procedure
if you need to change the error message text. If the order of FAO arguments does
not change when you modify the error message, then you do not need to modify
the step procedure. However, if the order of the FAO arguments does change,
then you must modify and recompile the step procedure, and relink the procedure
server image.

To use a message file in a step procedure, follow these steps:

1. Define a field in a user-defined workspace to hold the error message text. For
example:

task_status_msg DATATYPE TEXT 80.

2. In the step procedure, use the SYS$GETMSG and SYS$FAO system services,
or the LIB$SYS_GETMSG and LIB$SYS_FAO RTL routines to obtain and
process the error message text.

For example, in COBOL:

.

.

.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 persmsg_empexists PIC S9(5) COMP
VALUE IS EXTERNAL persmsg_empexists.

01 msg_format_string PIC X(80).
01 text_only_flag PIC S9(5) COMP

VALUE IS 1.
01 sts PIC S9(5) COMP.
01 return_status PIC S9(5) COMP.

.

.

.

Writing Step Procedures 3–15

Writing Step Procedures
3.4 Handling Error Conditions

PROCEDURE DIVISION ... GIVING return_status.
.
.
.

*
* Call LIB$SYS_GETMSG to get error message text associated with
* the ’employee already exists’ error. Note that we use 1 as the
* message text flag since we want only the message text, not the
* facility code or severity level.
*

CALL "LIB$SYS_GETMSG" USING
BY REFERENCE persmsg_empexists
OMITTED,
BY DESCRIPTOR msg_format_string,
BY REFERENCE text_only_flag

GIVING sts.
IF sts IS FAILURE
THEN

CALL "LIB$STOP" USING BY VALUE sts
END-IF.

*
* Call LIB$SYS_FAO to format the ’employee already exists’ error
* message text to include the employee’s badge number and last
* name, using the message text as the FAO control string.
*

CALL "LIB$SYS_FAO" USING
BY DESCRIPTOR msg_format_string,
OMITTED,
BY DESCRIPTOR task_status_msg,
BY DESCRIPTOR emp_badge_number,
BY DESCRIPTOR emp_last_name

GIVING sts.
IF sts IS FAILURE
THEN

CALL "LIB$STOP" USING BY VALUE sts
END-IF.

*
* Return failure status to task. Note that the task simply uses
* the return status as a success/failure indicator; it does not
* use the value of the return status to process the message text.
*

MOVE persmsg_empexists TO return_status.
GO TO 999-end.

For example, in BASIC:

.

.

.
EXTERNAL LONG FUNCTION LIB$SYS_GETMSG, &

LIB$SYS_FAO

EXTERNAL LONG CONSTANT persmsg_empexists
DECLARE STRING msg_format_string, &

LONG sts
.
.
.

!+
! Call LIB$SYS_MSGMSG to error message text associated with the
! ’employee already exists" error. Note that we use 1 as the
! message text flag since we only want the message text, not the
! facility code or severity level.
!-
sts = LIB$SYS_GETMSG(persmsg_empexists, &

0% BY VALUE, &
msg_format_string, &
1%)

3–16 Writing Step Procedures

Writing Step Procedures
3.4 Handling Error Conditions

IF (sts AND 1%) = 0%
THEN

CALL LIB$STOP(sts BY VALUE)
END IF
!+
! Call LIB$SYS_FAO to format the ’employee already exists’ error
! message text to include the employee’s badge number and last
! name, using the message text as the FAO control string.
!-
sts = LIB$SYS_FAO(msg_format_string, &

0% BY VALUE, &
task_ctl_rec::task_status_msg, &
emp_rec::emp_badge_number, &
TRM$(emp_rec::emp_last_name))

IF (sts AND 1%) = 0%
THEN

CALL LIB$STOP(sts BY VALUE)
END IF
!+
! Return failure status indicator to task. Note that the task
! simply uses the return status as a success/failure indicator,
! it does not use the value of the return status to process the
! message text.
!-
EXIT FUNCTION persmsg_empexists

3. In the task definition, check the return status from the procedure in the
ACMS$PROCESSING_STATUS workspace.

If the step procedure returns a failure status, then go to an exchange step
that displays the error message from the step procedure on the form. For
example:

PROCESSING
WORK IS

CALL pers_add_employee_proc USING
task_control,
employee_record

ACTION IS
IF (ACMS$T_STATUS_TYPE = "B")
THEN

GOTO STEP get_new_employee_data;
END IF;

3.4.1.3 Using Hard-Coded Messages in the Form
Using this method, you return a status indicator that is processed by the form
in a field in a user-defined workspace. See Section 3.3.2 for more information on
returning status in a field in a user-defined workspace.

The advantage of this method is that you do not need to use message files or
OpenVMS system services or RTL routines to return error messages to users.
The disadvantage is that you must always modify the form if you need to change
the format of an error message.

To use hard-coded messages in the form, follow these steps:

1. Define a field in a user-defined workspace to hold the status indicator. For
example:

step_status DATATYPE TEXT 8.

2. In the step procedure, return a status indicator in the STEP_STATUS field in
the user-defined workspace.

Writing Step Procedures 3–17

Writing Step Procedures
3.4 Handling Error Conditions

For example, in COBOL:

MOVE "DUPLICAT" TO step_status OF task_control.
GO TO 999-end.

For example, in BASIC:

task_ctrl_wksp::step_status = "DUPLICAT"
EXIT FUNCTION

3. In the task definition, check the status indicator field in the user-defined
workspace.

If the step procedure returns a failure indicator, then go to an exchange step
that uses a form to display an error message based on the status indicator
returned by the step procedure. For example:

PROCESSING
WORK IS

CALL pers_add_employee_proc USING
task_control,
employee_record

ACTION IS
IF (task_control.step_status <> "SUCCESS")
THEN

GOTO STEP get_new_employee_data;
END IF;

3.4.1.4 Using Hard-Coded Messages in the Step Procedure
Using this method, you construct the complete error message directly in the
step procedure. You use literal message text stored in the procedure, formatting
variable error messages, if necessary.

The advantage of this method is that you do not need to use message files or
OpenVMS system services or RTL routines to return error messages to users. The
disadvantage is that you must always modify and recompile the step procedure
and relink the procedure server image if you need to change the format of an
error message.

To use hard-coded messages in a step procedure, follow these steps:

1. Define a field in a user-defined workspace to hold the error message text. For
example:

task_status_msg DATATYPE TEXT 80.

2. In the step procedure, construct the error message in the message text field.

The following example in COBOL formats an error message and then returns
a failure status to the task:

*
* Format ’Employee already exists’ error message.
*

MOVE SPACES TO task_status_msg.
STRING "Employee ID: " DELIMITED BY SIZE

emp_badge_number DELIMITED BY " "
" (last name: " DELIMITED BY SIZE
emp_last_name DELIMITED BY " "
") already exists on file" DELIMITED BY SIZE

INTO task_status_msg.
SET status-result TO FAILURE.
GO TO 999-end.

3–18 Writing Step Procedures

Writing Step Procedures
3.4 Handling Error Conditions

The following example in BASIC formats an error message and then returns
a failure status to the task:

!
! Format ’Employee already exists’ error message.
!
task_ctl_rec::task_status_msg = &

"Employee ID: " + &
emp_rec::emp_badge_number + &
" (last name: " + &
TRM$(emp_rec::emp_last_name) + &
") already exists on file"

EXIT FUNCTION 0

3. In the task definition call to the procedure, test the ACMS$PROCESSING_
STATUS workspace, and go to an exchange step that displays the error
message on the form if an error occurs. For example:

PROCESSING
WORK IS

CALL pers_add_employee_proc USING
task_control,
employee_record

ACTION IS
IF (ACMS$T_STATUS_TYPE = "B")
THEN

GOTO STEP get_new_employee_data;
END IF;

3.4.2 Raising Exceptions in Step Procedures
In some cases, rather than returning errors for the action part of a step to handle,
you can let the exception handler part of a step deal with errors. If your task is
designed in this way, you need to raise an exception from your step procedure.
ACMS supplies three services that raise different kinds of exceptions:

• ACMS$RAISE_STEP_EXCEPTION

• ACMS$RAISE_TRANS_EXCEPTION

• ACMS$RAISE_NONREC_EXCEPTION

The ACMS exception services differ in an important way from the superseded
ACMSAD$REQ_CANCEL service. Whereas the ACMSAD$REQ_CANCEL service
immediately cancels the current task and does not return control to the step
procedure, the ACMS exception services all return control to the step procedure
after setting the appropriate exception condition. This allows the step procedure
to clean up any context in the server and to complete normally.

Allowing the step procedure to complete before raising the exception in the task
means that ACMS does not have to interrupt the server process. Therefore, if
a step procedure uses one of the exception services to raise an exception, and
you have specified that your server is to be run down on cancel only if it is
interrupted, ACMS does not need to run down the server process. See Section 2.3
for details on how to specify when ACMS should run down your server.

Because step exceptions, transaction exceptions, and nonrecoverable exceptions
are not raised in the task until the step procedure completes, have the step
procedure return as soon as possible after raising an exception.

Writing Step Procedures 3–19

Writing Step Procedures
3.4 Handling Error Conditions

Note

For all servers, HP recommends specifying that ACMS run down the
server only if it is interrupted. Using this attribute does not, however,
change the effect of using the ACMSAD$REQ_CANCEL service. Because
the ACMSAD$REQ_CANCEL service causes the server to be interrupted,
ACMS runs down the server in this situation. For this reason, use
ACMS$RAISE_NONREC_EXCEPTION instead of ACMSAD$REQ_
CANCEL.

3.4.2.1 Raising Recoverable Exceptions in Step Procedures
You can handle task execution errors in the exception handler part of a step,
as explained in HP ACMS for OpenVMS Writing Applications. This manual
discusses how to raise exceptions only in step procedures.

Step procedures can raise the following recoverable exceptions:

• Step exception

• Transaction exception

Following are explanations and examples of the two ACMS services that step
procedures use to raise recoverable exceptions.

• ACMS$RAISE_STEP_EXCEPTION

A step procedure raises a step exception by calling this service. You call this
service to raise an exception that can be handled by the exception handler
part of the processing step or an outer-block step. A step procedure might
raise a step exception if, for example, a procedure called from a processing
step in a nested block detects an error condition that must be handled by the
exception handler on the outer block step.

The following example shows the COBOL code in the error-handling section
of a procedure.

CALL "ACMS$RAISE_STEP_EXCEPTION" USING BY REFERENCE RET-STAT.

• ACMS$RAISE_TRANS_EXCEPTION

A step procedure that is participating in a distributed transaction can use
the ACMS$RAISE_TRANS_EXCEPTION service to raise a transaction
exception if a resource manager returns a recoverable error—for example,
a dead-lock error condition. Note that you cannot call the ACMS$RAISE_
TRANS_EXCEPTION service in a step procedure that is not participating in
a distributed transaction.

When a step procedure raises a transaction exception, the exception falls
under the control of the exception handler part of the transaction step or
outer-block step, if one exists. The following example shows the COBOL code
in a procedure that raises a transaction exception:

3–20 Writing Step Procedures

Writing Step Procedures
3.4 Handling Error Conditions

SQL_ERROR_HANDLER.

IF (RDB$LU_STATUS = RDB$_DEADLOCK) OR
(RDB$LU_STATUS = RDMS$_DEADLOCK) OR
(RDB$LU_STATUS = RDB$_LOCK_CONFLICT) OR
(RDB$LU_STATUS = RDMS$_LCKCNFLCT) OR
(RDB$LU_STATUS = RDMS$_TIMEOUT)

THEN
CALL "ACMS$RAISE_TRANS_EXCEPTION" USING

BY REFERENCE ACMS$_TRANSTIMEDOUT
ELSE

CALL "LIB$CALLG" USING
BY REFERENCE Rdb$MESSAGE_VECTOR,
BY VALUE LIB$SIGNAL

CALL "ACMS$RAISE_NONREC_EXCEPTION" USING
BY REFERENCE RDB$LU_STATUS

END-IF.

Chapter 9 contains reference information regarding recoverable exception
services.

3.4.2.2 Raising Nonrecoverable Exceptions in Step Procedures
ACMS raises a nonrecoverable exception under the following conditions:

• A fatal OpenVMS exception condition generated by the procedure

ACMS raises a nonrecoverable exception if a step procedure generates a fatal
exception. For example, if you use the the OpenVMS RTL service LIB$STOP
to signal an error, or if an exception is raised by the hardware (perhaps as the
result of an access violation), then ACMS raises a nonrecoverable exception
and cancels the task.

Note

ACMS always runs down a server process if a step procedure generates a
fatal OpenVMS exception condition.

• A call to ACMS$RAISE_NONREC_EXCEPTION

A step procedure calls this programming service when an error occurs from
which neither the step procedure nor the task can recover. When a step
procedure calls this service, ACMS raises a nonrecoverable exception and
unconditionally cancels the current task.

You call the ACMS$RAISE_NONREC_EXCEPTION service as you do any
OpenVMS run-time service, by using a CALL statement in COBOL, for
example. No arguments are required in the call. You can, however, include an
optional argument describing the reason for the cancellation. The argument
is a read-only longword, passed by reference.

The following example shows the COBOL code in a procedure that raises a
nonrecoverable exception.

CALL "ACMS$GET_TID" USING CS-TID GIVING ret-stat.
IF ret-stat IS NOT SUCCESS
THEN

CALL "ACMS$RAISE_NONREC_EXCEPTION" USING ret-stat.
GO TO 999-end.

Chapter 9 contains reference information regarding the nonrecoverable
exception service.

Writing Step Procedures 3–21

Writing Step Procedures
3.5 Performing Terminal I/O from a Procedure Server

3.5 Performing Terminal I/O from a Procedure Server
One of the major advantages of implementing an application with ACMS is that
you can easily separate your terminal I/O from your database I/O by performing
all terminal I/O in exchange steps and all database I/O in processing steps.
Following these guidelines has many advantages; two of the major ones are better
performance and the ability to distribute tasks over multiple nodes.

Application developers find, however, that some situations require them to do
terminal I/O in a processing step—for example, if they are incorporating an
existing program into an application. Sometimes it is simpler to make an existing
program a single-step task that does terminal I/O than to convert the program
to a multiple-step task, which requires removing the terminal I/O from the
program and placing it in exchange steps. For this reason, although it is not
recommended, ACMS supports doing terminal I/O from processing steps. This
section describes the limitations and restrictions involved.

ACMS does not automatically associate a terminal channel with the server
process. If a procedure is to do terminal I/O, it must open and close the channel
it uses each time it is called. The terminal channel cannot be retained across
processing steps, even if the task retains server context. If the procedure does not
close the channel before it completes, ACMS cancels the task and runs down the
server process.

For a server process to perform terminal I/O, the task must pass the terminal
to that process. In single-step tasks, the default is to pass the terminal to the
server process. In multiple-step tasks, however, the default is not to pass the
terminal to the server process, regardless of whether the server is a DCL server
or a procedure server.

In multiple-step tasks, therefore, the task definition must use the TERMINAL I/O
phrase for any processing step that does terminal I/O. (When used as an attribute
on a processing step, TERMINAL I/O and REQUEST I/O are equivalent; however,
REQUEST I/O as a processing step attribute is a declining feature and is,
therefore, discouraged.)

Note

Because distributed tasks cannot perform terminal I/O in processing
steps, you cannot distribute a task that contains TERMINAL I/O (or
REQUEST I/O) syntax in a processing step of the task definition.

Because the procedure must open and close the terminal channel, there are
several restrictions on the kinds of statements used for terminal I/O from a
procedure server. Keep in mind the following considerations:

• A procedure that does terminal I/O must open the terminal channel it uses;
the channel cannot be opened in the initialization procedure.

• You can use any terminal I/O calls that allow you to open a terminal channel
explicitly. Two examples of these are the DECforms FORMS$ENABLE and
the TDMS TSS$OPEN services.

• Do not use programming statements such as DISPLAY and ACCEPT in
COBOL, or INPUT and PRINT in BASIC.

• Do not use the OpenVMS LIB$GET_INPUT and LIB$PUT_OUTPUT services.

3–22 Writing Step Procedures

Writing Step Procedures
3.5 Performing Terminal I/O from a Procedure Server

• Do not use the RTL screen management services.

• Provide a cancel procedure for the server handling the procedure. It is
recommended that the cancel procedure either close any open terminal
channel when the task is canceled or allow the server process to run down
when the task is canceled.

Writing Step Procedures 3–23

4
Accessing Resource Managers

This chapter explains how to write step procedures that access several of the
resource managers you can use with ACMS applications: Rdb using SQL, and
Rdb using RDO, DBMS, and RMS.

The primary example in the chapter shows how to access an Rdb database using
SQL with a procedure that participates in a distributed transaction. Examples
showing how to access other resource managers supported by ACMS with
distributed transactions are partial; they contain only syntax that is different
from the SQL example.

The COBOL step procedure that is the principal example in this chapter is
part of the AVERTZ Sample Application. The step procedure VR_COMPLETE_
CHECKOUT_PROC participates in a distributed transaction that starts and ends
in the parent task. Figure 4–1 shows where VR_COMPLETE_CHECKOUT_
PROC fits into the AVERTZ Sample Application. The figure shows the ACMS
menu, from which users can select the Reservation Task or the Checkout Task
as two of three tasks displayed on the menu. Both the Reservation Task and the
Checkout Task can call the Complete Checkout Task, which, in turn, calls the
procedure VR_COMPLETE_CHECKOUT_PROC.

See HP ACMS for OpenVMS Concepts and Design Guidelines for a description
of the AVERTZ sample application and HP ACMS for OpenVMS Writing
Applications for a description of VR_COMPLETE_CHECKOUT_TASK. For
further explanation of VR_COMPLETE_CHECKOUT_PROC. see Section 4.1.

Accessing Resource Managers 4–1

Accessing Resource Managers

Figure 4–1 Calling the Procedure VR_COMPLETE_CHECKOUT_PROC

TAY-0165-AD

ACMS Menu

Reserve

CheckinReservation Checkout

VR_COMPLETE_CHECKOUT_TASK

VR_COMPLETE_CHECKOUT_PROC

Task Task Task

Checkout
Checkin

4.1 Using SQL with Rdb
This section describes how to write step procedures using the Structured Query
Language (SQL) interface to Rdb. The techniques used with SQL are similar
to those used in developing tasks and server procedures using Relational Data
Manipulation Language (RDML), developed by HP Equipment Corporation.

See the SQL documentation for general information regarding SQL.

The main example in this chapter, shown in Example 4–7, is a COBOL step
procedure called VR_COMPLETE_CHECKOUT_PROC, which accesses an Rdb
database using SQL. The procedure is part of the AVERTZ sample application.

Example 4–1 is part of the Complete Checkout Task, which calls the procedure
VR_COMPLETE_CHECKOUT_PROC in the AVERTZ Sample Application. When
checking out a car, the customer has the option of canceling the reservation.
If the customer chooses to cancel the reservation, the task calls a procedure
to perform the cancel processing. Otherwise, the task calls a procedure to
complete the reservation. The task definition, in a simplified version, performs
the following steps, which are also numbered in the example.

1 If the customer chooses to check out the car, the task calls the procedure
VR_COMPLETE_CHECKOUT_PROC to complete the checkout process.

2 If the customer cancels the reservation, the task calls the procedure VR_
CANCEL_RS_PROC to cancel the reservation.

3 The task calls another procedure, VR_WRITE_HIST_RECORD_PROC, which
writes the completion of the checkout or the cancellation to the database.

4–2 Accessing Resource Managers

Accessing Resource Managers
4.1 Using SQL with Rdb

Example 4–1 Task Definition that Calls Server Procedures Using SQL

REPLACE TASK avertz_cdd_task:vr_complete_checkout_task

USE WORKSPACES vr_control_wksp,
.
.
.
TASK ARGUMENTS ARE vr_sendctrl_wksp WITH ACCESS READ,
.
.
.
BLOCK WORK WITH TRANSACTION

NO I/O

!
perform:
!+
!-
! Perform the checkout process or cancel the reservation depending
! on the user’s choice.
!

PROCESSING
SELECT FIRST TRUE

(vr_control_wksp.ctrl_key = "OK"):
1 CALL PROCEDURE vr_complete_checkout_proc

IN vr_update_server
USING vr_reservations_wksp,

vr_vehicles_wksp,
vr_control_wksp;

(vr_control_wksp.ctrl_key = "CANCL"):
2 CALL PROCEDURE vr_cancel_rs_proc

IN vr_update_server
USING vr_reservations_wksp,

vr_control_wksp;
END SELECT;

.

.

.
! Write to the history record to record the completion of the checkout or the
! the cancellation of the reservation.
!

PROCESSING
3 CALL PROCEDURE vr_write_hist_record_proc

IN vr_log_server
USING vr_hist_wksp,

vr_reservations_wksp;

.

.

.
!
END BLOCK;
!
END DEFINITION;

4.1.1 Using Embedded SQL Statements in Step Procedures
When using embedded SQL statements in step procedures, follow these
guidelines:

• Begin each statement with the EXEC SQL flag.

• Remember that the EXEC SQL flag can occur at the beginning of only the
first line of a multiline SQL statement. Follow the rules of the programming
language you are using to continue SQL statements from one line to the next.

Accessing Resource Managers 4–3

Accessing Resource Managers
4.1 Using SQL with Rdb

• Regardless of the rules of the language you are using for parameter names,
specify underscores rather than hyphens when entering names of database
entities.

• In COBOL, flag the end of an SQL statement with the END-EXEC keyword.
Place a period after END-EXEC if a COBOL statement in the same position
requires a period.

Example 4–2 contains examples illustrating each of these guidelines.

For other high-level languages, the rules for beginning and ending SQL
statements in step procedures vary. See the SQL documentation for more
information about beginning and ending SQL statements in step procedures.

Before you can use SQL to access a database, you must declare the database.
You do this in each server procedure that accesses the database. If you are using
COBOL, name the Rdb database in the Working-Storage Section of the Data
Division of your procedure using the DECLARE SCHEMA statement. This must
appear in the procedure before you can use other SQL statements to reference
data in the database.

Example 4–2 shows the DECLARE SCHEMA statement used in the procedure
VR_COMPLETE_CHECKOUT_PROC to declare the database. (Example 4–7
contains the complete procedure.)

Example 4–2 Declaring the Database

**
DATA DIVISION.
**
WORKING-STORAGE SECTION.
*
* Return status to pass to ACMS
*
01 RET-STAT PIC S9(9) COMP.
01 RSTAT PIC S9(9) COMP.

.

.

.
*
* Declare the database schema.
*
EXEC SQL

DECLARE EXTERNAL SCHEMA FILENAME AVERTZ_DATABASE:VEHICLE_RENTALS
END-EXEC.

4.1.2 Using SQL with Distributed Transactions
When you use SQL with a distributed transaction, you must pass the transaction
ID (TID) to SQL on each executable DML verb using an SQL context structure.

This section describes how to:

• Define an SQL context structure

• Obtain the TID and store it in the context structure

• Pass the context structure to SQL using embedded SQL and SQL module
language.

4–4 Accessing Resource Managers

Accessing Resource Managers
4.1 Using SQL with Rdb

See Example 4–7 for a complete example of using precompiled SQL in
a distributed transaction using COBOL. See the SQL documentation for
information on how to define and use an SQL context structure.

4.1.2.1 Defining an SQL Context Structure
In your procedure, you must define a context structure that holds the TID
associated with the distributed transaction.

The following code segment illustrates how to define an SQL context structure
using COBOL:

WORKING-STORAGE SECTION.
.
.
.

01 context-structure.
02 cs-version PIC S9(9) COMP VALUE 1.
02 cs-type PIC S9(9) COMP VALUE 1.
02 cs-length PIC S9(9) COMP VALUE 16.
02 cs-tid PIC X(16).
02 cs-end PIC S9(9) COMP VALUE 0.

.

.

.

Alternatively, you can use a library to hold the context structure and refer to this
library in your procedure. For example:

WORKING-STORAGE SECTION.
.
.
.

EXEC SQL
INCLUDE ’AVERTZ_SOURCE:VR_CONTEXT_STRUCTURE_INCLUDE.LIB’

END-EXEC.
.
.
.

Appendix B contains the contents of the libraries referred to in examples from the
AVERTZ sample application in this manual.

The following code segment illustrates how to define an SQL context structure
using BASIC:

RECORD sql_context_structure
LONG sqlctx_version
LONG sqlctx_type
LONG sqlctx_length
STRING sqlctx_tid = 16
LONG sqlctx_end

END RECORD sqlctx_structure

DECLARE sql_context_structure sqlcs

sqlcs::sqlctx_version = 1%
sqlcs::sqlctx_type = 1%
sqlcs::sqlctx_length = 16%
sqlcs::sqlctx_end = 0%

Alternatively, you can use a BASIC INCLUDE file to define and initialize the
context structure and then include this file in your procedure. For example:

%INCLUDE "pers_files:pers_sqlctx"

Accessing Resource Managers 4–5

Accessing Resource Managers
4.1 Using SQL with Rdb

4.1.2.2 Storing the TID in the SQL Context Structure
You must call the ACMS$GET_TID service to obtain the TID and store it in the
SQL context structure before you access the database.

The following code segment illustrates how to call the ACMS$GET_TID service
to obtain the TID and store it in the SQL context structure using COBOL.
If the ACMS$GET_TID service returns an error, the step procedure raises a
nonrecoverable exception and exits.

CALL "ACMS$GET_TID" USING BY REFERENCE cs-tid
GIVING ret-stat.

IF ret-stat IS NOT SUCCESS
THEN

CALL "ACMS$RAISE_NONREC_EXCEPTION"
USING BY REFERENCE ret-stat

GO TO 999-end
END-IF.

The following code segment illustrates how to call the ACMS$GET_TID service
to obtain the TID and store it in the SQL context structure using BASIC. If
the ACMS$GET_TID service returns an error, the step procedure raises a
nonrecoverable exception and exits.

sts = ACMS$GET_TID(sqlcs::sqlctx_tid BY REF)
IF (sts AND 1%) = 0% THEN

CALL ACMS$RAISE_NONREC_EXCEPTION(sts)
EXIT FUNCTION

END IF

4.1.2.3 Passing the Context Structure to SQL
You must pass the context structure to SQL whenever you use SQL within a
distributed transaction. This section describes how you pass the context structure
to SQL when you are using precompiled SQL and SQL module language.

• Using precompiled SQL

When you use precompiled SQL, the context structure is passed using the
CONTEXT parameter on the EXEC SQL phrase.

The following code segment illustrates how to pass the context structure
using precompiled SQL:

EXEC SQL USING CONTEXT :context-structure
SET TRANSACTION READ WRITE
RESERVING reservations FOR SHARED WRITE,

rental_classes,sites,regions FOR SHARED READ
END-EXEC.

• Using SQL module language

When you use SQL module language, you must pass the context structure
as an argument on the call to the SQL procedure. When you compile the
SQL module, you must use the /CONTEXT switch to generate an implicit
context parameter for each procedure that participates in a distributed
transaction. The context argument is always generated as the last argument
in the argument list; therefore, always pass the context structure as the last
argument when you call the SQL procedure.

The following code segment illustrates the module header and the first
procedure in an SQL module language program for use by a BASIC program:

4–6 Accessing Resource Managers

Accessing Resource Managers
4.1 Using SQL with Rdb

-- Header section
MODULE pers_appl_procs
LANGUAGE BASIC
AUTHORIZATION RDB$DBHANDLE
-- Declare schema
DECLARE PARTS SCHEMA FOR FILENAME ’pers_db:personnel’
-- Start transaction procedure
PROCEDURE start_new_employee_trans

SQLCODE;
-- Start the transaction

SET TRANSACTION READ_WRITE
RESERVING employees FOR SHARED WRITE,

history FOR SHARED WRITE;
-- Additional procedures

.

.

.

The following code segment illustrates how to call the START_NEW_
EMPLOYEE_TRANS SQL procedure from a BASIC program. Note that
the SQL context structure is passed as the last argument in the call to the
SQL procedure.

.

.

.
CALL start_new_employee_trans(sqlsts, sqlcs)

.

.

.

4.1.3 Starting and Ending SQL Database Transactions
You start an SQL database transaction by using a SET TRANSACTION
statement. However, the way in which you start the database transaction
depends on whether the database transaction is part of a distributed transaction.

This section describes how to start a database transaction that is part of a
distributed transaction and how to start and end an independent database
transaction. In addition, this section discusses various access modes that you can
specify when starting a database transaction.

4.1.3.1 Starting an SQL Database Transaction that is Part of a Distributed Transaction
You must specify the SQL context structure when you start a database
transaction that is part of a distributed transaction. For example:

EXEC SQL USING CONTEXT :context-structure
SET TRANSACTION READ WRITE
RESERVING reservations FOR SHARED WRITE,

rental_classes,sites,regions FOR SHARED READ
END-EXEC.

Note

You must specify the SQL context structure on every SQL verb that is
executed within the distributed transaction. The step procedure does
not function correctly if you omit the SQL context structure on an SQL
statement.

Accessing Resource Managers 4–7

Accessing Resource Managers
4.1 Using SQL with Rdb

Because the SQL database transaction is participating in a distributed
transaction, Rdb automatically commits or rolls back the database transaction
when the distributed transaction ends. Therefore, you must not use the COMMIT
or ROLLBACK verbs to end the database transaction.

4.1.3.2 Starting and Ending an Independent SQL Database Transaction
You start an independent database transaction by using a SET TRANSACTION
statement. For example:

EXEC SQL USING CONTEXT
SET TRANSACTION READ WRITE
RESERVING reservations FOR SHARED WRITE,

rental_classes,sites,regions FOR SHARED READ
END-EXEC.

Because the SQL database transaction is not participating in a distributed
transaction, you must commit or roll back the database transaction in the
procedure. For example:

IF step-proc-status IS SUCCESS
THEN

EXEC SQL
COMMIT

END-EXEC
ELSE

EXEC SQL
ROLLBACK

END-EXEC
END-IF.

4.1.3.3 Using Rdb Transaction Mode and Lock Mode Specifications
Specify the transaction mode and the lock mode when you start an Rdb database
transaction.

The transaction mode specifies how the step procedure accesses the database. If
the step procedure only reads records from the database, specify READ ONLY
when you start the database transaction. Otherwise, specify READ WRITE in
step procedures that read, write, and modify records in the database.

If you do not specify a mode, the SQL default for the SET TRANSACTION
statement is READ WRITE, which means that you can both read records from
specified tables and write data into them. If you are using RDO, the default is
READ ONLY, which means that you can only read records from the database; you
cannot update existing records or store new records in the database. Specifying
READ ONLY in a procedure that does not write or modify records reduces
contention in the database.

Note

When you use an Rdb database, any records you access are not locked
until you modify them. Once a record has been modified, it remains
locked until the end of the transaction.

The lock mode specifies how the step procedure accesses specific relations in the
database. To reduce contention in the database, specify explicitly which relations
you access in the database when you start an Rdb transaction. For each relation,
specify read or write access to the relation depending on the access the server
requires. For example, if the step procedure only reads records, specify READ

4–8 Accessing Resource Managers

Accessing Resource Managers
4.1 Using SQL with Rdb

access. If the server procedure reads, writes, and modifies records in the relation,
specify WRITE access.

Refer to the Rdb documentation for an explanation of the Rdb share modes and
the defaults for the keywords you use with the SET TRANSACTION statement
in SQL and with the START_TRANSACTION statement in RDO and RDML.

Example 4–3 illustrates how the step procedure VR_COMPLETE_CHECKOUT_
PROC starts the database transaction, specifying the transaction mode and the
relations it accesses, along with the lock specifications.

Example 4–3 Lock Specification Example

EXEC SQL USING CONTEXT :CONTEXT-STRUCTURE
SET TRANSACTION READ WRITE
.
.
.
RESERVING RESERVATIONS,

VEHICLES,
VEHICLE_RENTAL_HISTORY

FOR SHARED WRITE,
RENTAL_CLASSES,
SITES,
REGIONS

FOR SHARED READ
END-EXEC.

The RESERVATIONS, VEHICLES, and VEHICLE_RENTAL_HISTORY relations
are reserved for SHARED WRITE, which means that no other user can modify
the records you are updating once they have been modified; other users can,
however, read records that you are reading or modifying. Until you commit a
modification, other users read the original version of the record.

Also shown in Example 4–3, the RENTAL_CLASSES, SITES, and REGIONS
relations are reserved for SHARED READ; this means that other users can read
and modify the same records that you are accessing in the relation.

ACMS tasks typically perform a transaction with SHARED access because the
database is shared by more than one server process. You might occasionally need
to lock an entire relation when you access it; if you need to do so, refer to the SQL
documentation on PROTECTED and EXCLUSIVE access.

4.1.3.4 Using an Rdb Wait Mode Specification
The SQL SET TRANSACTION and RDO START_TRANSACTION statements
also allow you to specify a wait mode. Using the wait mode, you specify how Rdb
handles the situation if it encounters a locked relation or record while accessing
the database. If you specify WAIT, the default, Rdb waits until the lock can be
granted before continuing. If you specify NOWAIT, Rdb immediately returns an
error if it encounters a lock.

If you choose to wait for locks, you can specify the maximum time you are
prepared to wait until a lock is granted. If the lock is not granted in the specified
time limit, Rdb returns the RDMS$_TIMEOUT error. Specify the time limit by
defining the RDM$BIND_LOCK_TIMEOUT_INTERVAL logical name in a logical
name table that is accessible to the server. Define the RDM$BIND_LOCK_
TIMEOUT_INTERVAL logical name:

• As a server logical name in the application definition

Accessing Resource Managers 4–9

Accessing Resource Managers
4.1 Using SQL with Rdb

• In an application-specific logical name table

• In the system logical name table

• In a group logical name table

For example, the following server logical name definition specifies that Rdb
should wait no more than 10 seconds for a lock to be granted:

LOGICAL NAME IS
RDM$BIND_LOCK_TIMEOUT_INTERVAL = "10";

Important

If you are using distributed transactions, always specify a lock timeout
interval to ensure that ACMS can successfully cancel a task that is
waiting for a database lock. By specifying a lock timeout interval, you
ensure that the task will be canceled as soon as the timeout interval
expires. If you do not specify a lock timeout interval, the task cannot be
canceled until the lock is granted.

4.1.4 Reading from a Database
The procedure VR_COMPLETE_CHECKOUT_PROC from the AVERTZ Sample
Application illustrates the use of SQL statements in reading information from
an Rdb database. As part of the processing associated with checking out a
car, the procedure must find the current odometer reading for the selected
vehicle. It does this by selecting the record with the highest odometer reading
from the VEHICLE_RENTAL_HISTORY relation. Because the vehicle history
record might contain a null value, the procedure uses an indicator parameter to
determine whether or not an odometer reading has been retrieved.

Example 4–4 illustrates how the procedure VR_COMPLETE_CHECKOUT_PROC
declares an indicator array (for a subsequent STORE operation) and an indicator
parameter (for the SELECT operation). You need to include this when a read
operation on the database might return a null value. Example 4–4 shows one
way this can appear in a COBOL program.

For detailed information and information on step procedures written in other
high-level languages, see the SQL documentation.

Example 4–4 Indicator Array for Null Values

*
* Indicator array for null values
*
01 VR_VRH_IND_ARRAY.

05 VR_VRH_IND OCCURS 6 TIMES PIC S9(4) COMP.
01 VR_VRH_IND1 PIC S9(4) COMP.

The section of code in Example 4–5 selects the record with the highest odometer
reading from the VEHICLE_RENTAL_HISTORY relation, specifying an indicator
parameter (RH_VRH_IND1) that SQL sets when retrieving the data, and places
the value in a workspace field.

4–10 Accessing Resource Managers

Accessing Resource Managers
4.1 Using SQL with Rdb

Example 4–5 Selecting a Value from a Table

GET-ODOMETER-READING.
* Get the last return odometer reading for the vehicle being
* checked out from the database. If not found, ignore it.

.

.

.
EXEC SQL USING CONTEXT :CONTEXT-STRUCTURE

SELECT MAX(RETURN_ODOMETER_READING)INTO
:VR_VEHICLE_RENTAL_HISTORY_WKSP.CHECKOUT_ODOMETER_READING

INDICATOR :VR_VRH_IND1
FROM VEHICLE_RENTAL_HISTORY
WHERE VEHICLE_ID = :VR_VEHICLES_WKSP.VEHICLE_ID

END-EXEC.

4.1.5 Writing to a Database
Example 4–6 illustrates the use of SQL statements in writing to a database.
The procedure updates the car reservation record and the vehicle record in the
database. The procedure also writes a new vehicle rental history record to the
database. The values of the RETURN_ODOMETER_READING and ACTUAL_
RETURN_DATE fields are not known at the time the new history record is
stored; therefore, the procedure uses an indicator array to store null values in the
database for those fields. (Example 4–7 contains the complete procedure.)

Example 4–6 Writing to a Database
.
.
.

MOVE NEG-ONE TO VR_VRH_IND(5).
MOVE NEG-ONE TO VR_VRH_IND(6).

.

.

.

UPDATE-RESERVATION.
*
* Update the reservation in the database
*

EXEC SQL USING CONTEXT :CONTEXT-STRUCTURE
UPDATE RESERVATIONS

SET CREDIT_CARD_NO = :VR_RESERVATIONS_WKSP.CREDIT_CARD_NO,
CREDIT_CARD_TYPE_ID =

:VR_RESERVATIONS_WKSP.CREDIT_CARD_TYPE_ID,
RESERV_STATUS_FLAG = :C-ONE,
RESERV_MODIFIC_FLAG =

:VR_RESERVATIONS_WKSP.RESERV_MODIFIC_FLAG,
BILL_RENTAL_CLASS_ID =

:VR_RESERVATIONS_WKSP.BILL_RENTAL_CLASS_ID,
VEHICLE_EXPECTED_RETURN_DATE =

:VR_RESERVATIONS_WKSP.VEHICLE_EXPECTED_RETURN_DATE
WHERE RESERVATION_ID = :VR_RESERVATIONS_WKSP.RESERVATION_ID

END-EXEC.

(continued on next page)

Accessing Resource Managers 4–11

Accessing Resource Managers
4.1 Using SQL with Rdb

Example 4–6 (Cont.) Writing to a Database

*
* Update the vehicle record in the database
*
UPDATE-VEHICLES.

EXEC SQL USING CONTEXT :CONTEXT-STRUCTURE
UPDATE VEHICLES

SET CURRENT_SITE_ID =
:VR_RESERVATIONS_WKSP.VEHICLE_CHECKOUT_SITE_ID,

AVAILABLE_FLAG = :C-ZERO
WHERE VEHICLE_ID = :VR_VEHICLES_WKSP.VEHICLE_ID

END-EXEC.

*
* Write a new vehicle_rental_history record to the database
*

EXEC SQL USING CONTEXT :CONTEXT-STRUCTURE
INSERT INTO VEHICLE_RENTAL_HISTORY

VALUES (:VR_VEHICLE_RENTAL_HISTORY_WKSP:VR_VRH_IND)
END-EXEC.

4.1.6 Handling Errors
You typically write an error handler to process errors returned by Rdb when
starting and ending a database transaction and when accessing data in the
database. When you use Rdb with SQL, you have normal direct access to the
same status values as you do when you use Rdb with RDO. The Rdb return
status values are inherently compatible with OpenVMS usage.

Some Rdb errors are expected and are handled by resuming normal program
execution. For example, Rdb returns an end-of-stream error when the last record
in a record stream has been processed. In this case, the program can resume
execution and process the records that have been read. Rdb can also return a
number of recoverable errors that the program should check for and handle.
For example, if Rdb returns a deadlock error, you might want to roll back the
transaction and process the transaction again. Finally, Rdb can return a number
of nonrecoverable errors. For example, a disk on which one of the database
storage areas resides might fail. In this case, the program cannot continue until
the problem has been resolved.

A distributed transaction can abort at any time. If a transaction aborts while
a step procedure is executing, Rdb automatically rolls back an active database
transaction. However, the step procedure will receive an error the next time it
executes an SQL statement in a database transaction that was participating in
the distributed transaction. Therefore, an error handler for a step procedure
should check for and handle the errors that Rdb returns in this situation.

Typically, you want to retry a transaction automatically in the event of a
recoverable error condition such as a deadlock, lock-conflict, lock-timeout, or
transaction-timeout error. Rdb returns deadlock, lock-conflict, and lock-timeout
errors to your step procedure when you access the database. In contrast, if a
distributed transaction times out, the distributed transaction is aborted and
ACMS raises a transaction exception in the task. In this case, Rdb returns
an error if the step procedure accesses the database after the transaction has
aborted.

4–12 Accessing Resource Managers

Accessing Resource Managers
4.1 Using SQL with Rdb

There is an easy technique, illustrated in examples in this section, that allows you
to simplify an exception handler that handles recoverable transaction exceptions
in a task definition. The following list indicates how the error handler in the step
procedure handles each type of error returned by Rdb:

• Handling recoverable errors

If an error handler in a step procedure detects a recoverable error
condition, such as a deadlock, lock-conflict or lock-timeout error, it calls the
ACMS$RAISE_TRANS_EXCEPTION service to raise a transaction exception
using the ACMS$_TRANSTIMEDOUT exception code. If a distributed
transaction does not complete within the specified time limit, ACMS also
raises a transaction exception using the ACMS$_TRANSTIMEDOUT
exception code. Therefore, using ACMS$_TRANSTIMEDOUT as the
exception code in the step procedure means that the exception handler in
the task definition has to test for only a single exception code in order to
handle all recoverable transaction exceptions.

If you detect a recoverable error in a step procedure using an independent
database transaction that is not participating in a distributed transaction,
you can roll back the database transaction and repeat the transaction in the
step procedure.

• Handling transaction aborts

If a distributed transaction aborts while a step procedure is executing, Rdb
returns one of a number of error status values. If a step procedure detects
one of these errors, it raises a transaction exception using the error status. If
the error was due to a distributed transaction aborting, ACMS overrides the
exception in the task. However, if Rdb returns the error due to some other
problem, the task is canceled with the specified exception code.

• Handling nonrecoverable errors

If an unexpected error occurs, the procedure uses the LIB$CALLG RTL
routine to call LIB$SIGNAL to signal the error information returned by Rdb.
If the procedure signals a fatal OpenVMS status, ACMS writes the error
to the audit trail log, cancels the task, and runs down the server process.
However, if the procedure signals an error or a warning OpenVMS status,
ACMS continues executing the step procedure after writing the error to the
audit trail log. The error handler also calls the ACMS$RAISE_NONREC_
EXCEPTION service to ensure that the task is canceled.

The procedure VR_COMPLETE_CHECKOUT_PROC handles errors in the
following manner:

1. In the Working-Storage Section, the procedure obtains the structure for
SQLCODE and RDB$MESSAGE_VECTOR:

EXEC SQL INCLUDE SQLCA END-EXEC.

2. In the Procedure Division, the step procedure instructs SQL to execute the
instructions in the SQL_ERROR_HANDLER paragraph if an error occurs:

EXEC SQL
WHENEVER SQLERROR GO TO SQL-ERROR-HANDLER

END-EXEC.

Accessing Resource Managers 4–13

Accessing Resource Managers
4.1 Using SQL with Rdb

3. In the SQL_ERROR_HANDLER paragraph, the procedure checks the error
condition. If a recoverable error occurred, the procedure raises a transaction
exception using ACMS$_TRANSTIMEDOUT as the exception code. If the
distributed transaction aborted, the procedure raises a transaction exception
using the error status returned by Rdb. If any other error occurred, the
procedure signals the error information in the Rdb$MESSAGE_VECTOR
structure and raises a nonrecoverable exception.

SQL-ERROR-HANDLER.

EVALUATE TRUE
WHEN ((Rdb$LU_STATUS = RDB$_DEADLOCK) OR

(Rdb$LU_STATUS = RDMS$_DEADLOCK) OR
(Rdb$LU_STATUS = RDB$_LOCK_CONFLICT) OR
(Rdb$LU_STATUS = RDMS$_LCKCNFLCT) OR
(Rdb$LU_STATUS = RDMS$_TIMEOUT))

CALL "ACMS$RAISE_TRANS_EXCEPTION" USING
BY REFERENCE ACMS$_TRANSTIMEDOUT

WHEN ((RdB$LU_STATUS = RDB$_SYS_REQUEST_CALL) OR
(Rdb$LU_STATUS = RDB$_BAD_TRANS_HANDLE) OR
(Rdb$LU_STATUS = RDB$_DISTABORT) OR
(Rdb$LU_STATUS = RDB$_REQ_SYNC) OR
(Rdb$LU_STATUS = RDB$_READ_ONLY_TRANS))

CALL "ACMS$RAISE_TRANS_EXCEPTION" USING
BY REFERENCE Rdb$LU_STATUS

WHEN OTHER
CALL "LIB$CALLG" USING

BY REFERENCE Rdb$MESSAGE_VECTOR,
BY VALUE LIB$SIGNAL

CALL "ACMS$RAISE_NONREC_EXCEPTION" USING
BY REFERENCE Rdb$LU_STATUS

END-EVALUATE.

4. The task definition uses an exception handler action that repeats the
transaction step up to five times if a recoverable transaction error occurs:

.

.

.
EXCEPTION HANDLER

SELECT FIRST TRUE OF
(ACMS$L_STATUS = vr_update_error):

MOVE "TRAGN" TO vr_sendctrl_wksp.sendctrl_key;
GOTO STEP fix_cust_info;

(ACMS$L_STATUS = ACMS$_TRANSTIMEDOUT AND
vr_control_wksp.retry_count < 5):

REPEAT STEP;

NOMATCH:
GET MESSAGE INTO vr_control_wksp.messagepanel;
MOVE "ACTWT" TO vr_sendctrl_wksp.sendctrl_key,

" " TO vr_control_wksp.ctrl_key;
GOTO STEP disp_stat;

END SELECT;
.
.
.

For detailed information on SQL error handling, see the SQL documentation.

4–14 Accessing Resource Managers

Accessing Resource Managers
4.1 Using SQL with Rdb

4.1.7 Compiling Procedures that Use SQL
You use the SQL precompiler, SQLPRE, when you compile a procedure containing
embedded SQL statements. The SQL precompiler processes the embedded SQL
statements in your program, producing an intermediate host-language source file,
which it then submits to the host-language compiler to produce an object module.

The SQL precompiler command line includes both precompiler and host-language
compiler qualifiers. For the precompiler, include a qualifier to specify in which
host language the source is written; you can, optionally, include other qualifiers.
On the command line, also include any language compiler qualifiers (such as
LIST or DEBUG) that you want in effect when the precompiler submits the
preprocessed source file to the language compiler. For more information on SQL
precompiler qualifiers, see the SQL documentation.

You typically define a symbol to invoke the SQL precompiler. For example:

$ SCOB == "$SQLPRE/COBOL"

The following command line precompiles the procedure VR_COMPLETE_
CHECKOUT_PROC:

$ SCOB/LIST VR_COMPLETE_CHECKOUT_PROC

Note

Do not make changes to the language source module created by the SQL
precompiler and then use the language compiler directly to compile that
source module. This rule applies even if you want to make source changes
that do not affect SQL statements because the next precompilation of the
original embedded SQL module overwrites the changes you make to the
temporary language source module generated by the precompiler.

Chapter 6 explains how to link procedures that use SQL.

4.1.8 COBOL Step Procedure Using SQL with Rdb
Example 4–7 contains a complete COBOL procedure that accesses an Rdb
database using SQL.

The Complete Checkout Procedure, VR_COMPLETE_CHECKOUT_PROC, does
the following:

• Uses the ACMS$GET_TID service to obtain the TID associated with the
transaction

• Starts a database transaction (with the SET TRANSACTION statement)

• For the vehicle being checked out, gets the last odometer reading from the
database

• Updates the car rental reservation in the database

• Updates the vehicle record in the database

• Writes a new vehicle rental history record to the database

• Returns a value to the calling task

Accessing Resource Managers 4–15

Accessing Resource Managers
4.1 Using SQL with Rdb

• Handles any errors encountered in the execution of the procedure

Example 4–7 COBOL Procedure Using SQL with Rdb

IDENTIFICATION DIVISION.
**
PROGRAM-ID. VR-COMPLETE-CHECKOUT-PROC.
* *
* Version: 01 *
* Edit: 00 *
* Authors: HP *
* Called from: VR_COMPLETE_CHECKOUT_TASK *
* *
**
**
* F U N C T I O N A L D E S C R I P T I O N *
* *
* This procedure is called from the VR_COMPLETE_CHECKOUT_ *
* TASK and is used to write a completed reservation record *
* an updated vehicle record and a new vehicle_rental_his- *
* tory record to the VEHICLE_RENTALS database. *
**
ENVIRONMENT DIVISION.
**
DATA DIVISION.
**

WORKING-STORAGE SECTION.
*
* Return status to pass to ACMS
*
01 RET-STAT PIC S9(9) COMP.
01 RSTAT PIC S9(9) COMP.

*
* External variables
*
01 RDMS$_DEADLOCK PIC S9(9) COMP VALUE IS EXTERNAL RDMS$_DEADLOCK.
01 RDB$_DEADLOCK PIC S9(9) COMP VALUE IS EXTERNAL RDB$_DEADLOCK.
01 RDMS$_LCKCNFLCT PIC S9(9) COMP VALUE IS EXTERNAL RDMS$_LCKCNFLCT.
01 RDB$_LOCK_CONFLICT PIC S9(9) COMP VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.
01 RDMS$_TIMEOUT PIC S9(9) COMP VALUE IS EXTERNAL RDMS$_TIMEOUT.
01 ACMS$_TRANSTIMEDOUT PIC S9(9) COMP VALUE IS EXTERNAL ACMS$_TRANSTIMEDOUT.
01 RDB$_SYS_REQUEST_CALL PIC S9(9) COMP VALUE IS EXTERNAL RDB$_SYS_REQUEST_CALL.
01 RDB$_BAD_TRANS_HANDLE PIC S9(9) COMP VALUE IS EXTERNAL RDB$_BAD_TRANS_HANDLE.
01 RDB$_DISTABORT PIC S9(9) COMP VALUE IS EXTERNAL RDB$_DISTABORT.
01 LIB$SIGNAL PIC S9(5) COMP VALUE IS EXTERNAL LIB$SIGNAL.

*
* Indicator array for null values
*
01 VR_VRH_IND_ARRAY.

05 VR_VRH_IND OCCURS 6 TIMES PIC S9(4) COMP.
01 VR_VRH_IND1 PIC S9(4) COMP.
* External status variables for VR messages.
*
EXEC SQL INCLUDE

’AVERTZ_SOURCE:VR_MESSAGES_INCLUDE.LIB’
END-EXEC.

(continued on next page)

4–16 Accessing Resource Managers

Accessing Resource Managers
4.1 Using SQL with Rdb

Example 4–7 (Cont.) COBOL Procedure Using SQL with Rdb

*
* Literals
*
EXEC SQL INCLUDE

’AVERTZ_SOURCE:VR_LITERALS_INCLUDE.LIB’
END-EXEC.
*
* Define the SQL return status
*
EXEC SQL INCLUDE

’AVERTZ_SOURCE:VR_SQL_STATUS_INCLUDE.LIB’
END-EXEC.

*
* Declare the global transaction context structure. This is required for SQLPRE
*
EXEC SQL INCLUDE

’AVERTZ_SOURCE:VR_CONTEXT_STRUCTURE_INCLUDE.LIB’
END-EXEC.
*
* Get structure for SQLCODE and RDB$MESSAGE_VECTOR.
*
EXEC SQL INCLUDE SQLCA END-EXEC.

*
* Declare the database schema
*
*
* Copy VEHICLE_RENTAL_HISTORY from the CDD
*
EXEC SQL INCLUDE FROM DICTIONARY

’AVERTZ_CDD_WKSP:VR_VEHICLE_RENTAL_HISTORY_WKSP’
END-EXEC.

*
EXEC SQL

DECLARE EXTERNAL SCHEMA FILENAME AVERTZ_DATABASE:VEHICLE_RENTALS
END-EXEC.

**
LINKAGE SECTION.

*
* Copy RESERVATIONS from the CDD
*
EXEC SQL INCLUDE FROM DICTIONARY

’AVERTZ_CDD_WKSP:VR_RESERVATIONS_WKSP’
END-EXEC.
*
* Copy VEHICLES from the CDD
*
EXEC SQL INCLUDE FROM DICTIONARY

’AVERTZ_CDD_WKSP:VR_VEHICLES_WKSP’
END-EXEC.
* Copy CONTROL workspace from the CDD - used to handle DDTM timeout
*
EXEC SQL INCLUDE FROM DICTIONARY

’AVERTZ_CDD_WKSP:VR_CONTROL_WKSP’
END-EXEC.

(continued on next page)

Accessing Resource Managers 4–17

Accessing Resource Managers
4.1 Using SQL with Rdb

Example 4–7 (Cont.) COBOL Procedure Using SQL with Rdb

**
PROCEDURE DIVISION USING VR_RESERVATIONS_WKSP,

VR_VEHICLES_WKSP,
VR_CONTROL_WKSP

GIVING RET-STAT.
**

MAIN-PROGRAM.

SET RET-STAT TO SUCCESS.

IF INCREMENT_RETRY_COUNT OF VR_CONTROL_WKSP = "Y"
THEN

ADD 1 TO RETRY_COUNT OF VR_CONTROL_WKSP
END-IF.

CALL "ACMS$GET_TID" USING CS-TID GIVING RET-STAT.
IF RET-STAT IS NOT SUCCESS THEN

CALL "ACMS$RAISE_NONREC_EXCEPTION" USING BY REFERENCE RET-STAT
GO TO EXIT-PROGRAM

END-IF.

*
* Update the required record fields and DECLARE The appropriate null indicators
*

MOVE VEHICLE_CHECKOUT_SITE_ID OF VR_RESERVATIONS_WKSP TO
CHECKOUT_SITE_ID OF VR_VEHICLE_RENTAL_HISTORY_WKSP.

MOVE VEHICLE_ID OF VR_VEHICLES_WKSP TO
VEHICLE_ID OF VR_VEHICLE_RENTAL_HISTORY_WKSP.

MOVE RESERVATION_ID OF VR_RESERVATIONS_WKSP TO
RESERVATION_ID OF VR_VEHICLE_RENTAL_HISTORY_WKSP.

MOVE NEG-ONE TO VR_VRH_IND(5).
MOVE NEG-ONE TO VR_VRH_IND(6).

* Set up to trap errors returned by SQL; the precompiler will generate the
* necessary tests
*

EXEC SQL
WHENEVER SQLERROR GO TO SQL-ERROR-HANDLER

END-EXEC.

* Start the database transaction
*

EXEC SQL USING CONTEXT: CONTEXT_STRUCTURE
SET TRANSACTION READ WRITE
EVALUATING RS_VALID_BILL_RENTAL_CLASS AT VERB TIME,
RS_VALID_VEHICL_CHKOUT_SITE_ID AT VERB TIME,
VE_VALID_CURRENT_SITE_ID AT VERB TIME,
VRH_VALID_VEHICLE_ID AT VERB TIME,
VRH_VALID_PRIMARY_KEY AT VERB TIME
RESERVING RESERVATIONS,VEHICLES,VEHICLE_RENTAL_HISTORY

FOR SHARED WRITE,
RENTAL_CLASSES,SITES,REGIONS FOR SHARED READ

END-EXEC.

(continued on next page)

4–18 Accessing Resource Managers

Accessing Resource Managers
4.1 Using SQL with Rdb

Example 4–7 (Cont.) COBOL Procedure Using SQL with Rdb

*
*
GET-ODOMETER-READING.
* Get the last return odometer reading for the vehicle being checked out
* from the database. If not found, ignore it.

EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

EXEC SQL USING CONTEXT :CONTEXT-STRUCTURE
SELECT MAX(RETURN_ODOMETER_READING)INTO

:VR_VEHICLE_RENTAL_HISTORY_WKSP.CHECKOUT_ODOMETER_READING
INDICATOR :VR_VRH_IND1

FROM VEHICLE_RENTAL_HISTORY
WHERE VEHICLE_ID = :VR_VEHICLES_WKSP.VEHICLE_ID

END-EXEC.

UPDATE-RESERVATION.
* Update the reservation in the database
*

EXEC SQL USING CONTEXT :CONTEXT-STRUCTURE
UPDATE RESERVATIONS

SET CREDIT_CARD_NO = :VR_RESERVATIONS_WKSP.CREDIT_CARD_NO,
CREDIT_CARD_TYPE_ID =

:VR_RESERVATIONS_WKSP.CREDIT_CARD_TYPE_ID,
RESERV_STATUS_FLAG = :C-ONE,
RESERV_MODIFIC_FLAG =

:VR_RESERVATIONS_WKSP.RESERV_MODIFIC_FLAG,
BILL_RENTAL_CLASS_ID =

:VR_RESERVATIONS_WKSP.BILL_RENTAL_CLASS_ID,
VEHICLE_EXPECTED_RETURN_DATE =

:VR_RESERVATIONS_WKSP.VEHICLE_EXPECTED_RETURN_DATE
WHERE RESERVATION_ID = :VR_RESERVATIONS_WKSP.RESERVATION_ID

END-EXEC.

* Update the vehicle record in the database
*
UPDATE-VEHICLES.
*

EXEC SQL USING CONTEXT :CONTEXT-STRUCTURE
UPDATE VEHICLES

SET CURRENT_SITE_ID =
:VR_RESERVATIONS_WKSP.VEHICLE_CHECKOUT_SITE_ID,

AVAILABLE_FLAG = :C-ZERO
WHERE VEHICLE_ID = :VR_VEHICLES_WKSP.VEHICLE_ID

END-EXEC.

* Write a new vehicle_rental_history record to the database
*

EXEC SQL USING CONTEXT :CONTEXT-STRUCTURE
INSERT INTO VEHICLE_RENTAL_HISTORY

VALUES (:VR_VEHICLE_RENTAL_HISTORY_WKSP:VR_VRH_IND)
END-EXEC.

* All database activity was successful; commit the transaction in the task
*

MOVE CHKOUTCOM TO RET-STAT.

GO TO EXIT-PROGRAM.

* Error handling

(continued on next page)

Accessing Resource Managers 4–19

Accessing Resource Managers
4.1 Using SQL with Rdb

Example 4–7 (Cont.) COBOL Procedure Using SQL with Rdb

SQL-ERROR-HANDLER.

EVALUATE TRUE
WHEN ((Rdb$LU_STATUS = RDB$_DEADLOCK) OR

(Rdb$LU_STATUS = RDMS$_DEADLOCK) OR
(Rdb$LU_STATUS = RDB$_LOCK_CONFLICT) OR
(Rdb$LU_STATUS = RDMS$_LCKCNFLCT) OR
(Rdb$LU_STATUS = RDMS$_TIMEOUT))

CALL "ACMS$RAISE_TRANS_EXCEPTION" USING
BY REFERENCE ACMS$_TRANSTIMEDOUT

WHEN ((RdB$LU_STATUS = RDB$_SYS_REQUEST_CALL) OR
(Rdb$LU_STATUS = RDB$_BAD_TRANS_HANDLE) OR
(Rdb$LU_STATUS = RDB$_DISTABORT) OR
(Rdb$LU_STATUS = RDB$_REQ_SYNC) OR
(Rdb$LU_STATUS = RDB$_READ_ONLY_TRANS))

CALL "ACMS$RAISE_TRANS_EXCEPTION" USING
BY REFERENCE Rdb$LU_STATUS

WHEN OTHER
CALL "LIB$CALLG" USING

BY REFERENCE Rdb$MESSAGE_VECTOR,
BY VALUE LIB$SIGNAL

CALL "ACMS$RAISE_NONREC_EXCEPTION" USING
BY REFERENCE Rdb$LU_STATUS

END-EVALUATE.

EXIT-PROGRAM.
EXIT PROGRAM.

4.2 Using Precompiled RDO or RDML with Rdb
This section describes how to write step procedures that access an Rdb database
using precompiled RDO or RDML.

A step procedure that accesses an Rdb database on behalf of an ACMS task is
similar to any Rdb program that accesses a database. This section explains how
to start an Rdb database transaction and how to access data in an Rdb database
using RDO.

4.2.1 Using RDO Statements in Step Procedures
You use the &RDB& flag to distinguish Rdb RDO statements from host language
statements. See the Rdb documentation for more information on using RDO and
RDML statements in a host language program. You name the Rdb database that
your step procedure accesses using the INVOKE DATABASE statement. You
must use the INVOKE DATABASE statement before you can use other RDO
statements to access data in the database. For example:

&RDB& INVOKE DATABASE FILENAME "avertz_database:vehicle_rentals"

The database you name must be the same in all the step procedures, and in the
initialization and termination procedures and cancel procedures in the server.

4–20 Accessing Resource Managers

Accessing Resource Managers
4.2 Using Precompiled RDO or RDML with Rdb

4.2.2 Starting and Ending RDO Database Transactions
You start an RDO database transaction by using a START_TRANSACTION
statement. However, the way in which you start the database transaction
depends on whether the database transaction is part of a distributed transaction.

This section describes how to start a database transaction that is part of a
distributed transaction and how to start and end an independent database
transaction. When you start an Rdb database transaction, you can also specify
transaction, lock, and wait modes.

Important

See Section 4.1.3.3 for information on transaction and lock mode
specifications. See Section 4.1.3.4 for important information on
transaction wait modes.

4.2.2.1 Starting an RDO Database Transaction that is Part of a Distributed Transaction
For an RDO database transaction to participate in a distributed transaction, you
must specify the Transaction ID (TID) on the START_TRANSACTION statement.

Note

For a procedure that accesses an Rdb database to participate in a
distributed transaction, the database transaction must start in the
procedure, not in the task definition.

The following code segment in COBOL illustrates how to start an RDO database
transaction that is part of a distributed transaction. The procedure allocates
a structure to hold the TID in the Working-Storage Section. In the Procedure
Division, the procedure calls ACMS$GET_TID to retrieve the TID. If an error
occurs, the procedure raises a nonrecoverable exception and exits. If there is no
error, the procedure starts the database transaction, specifying the TID using the
DISTRIBUTED_TID phrase. A common error handler, described in Section 4.2.5,
is used to check the status from the START_TRANSACTION statement.

.

.

.
WORKING-STORAGE SECTION.

&RDB& INVOKE DATABASE FILENAME "avertz_database:vehicle_rentals"

01 dist_tid.
03 tid_data PIC X(16).

01 sts PIC S9(5) COMP.
.
.
.

Accessing Resource Managers 4–21

Accessing Resource Managers
4.2 Using Precompiled RDO or RDML with Rdb

PROCEDURE DIVISION.
MAIN SECTION.

.

.

.
CALL "ACMS$GET_TID" USING BY REFERENCE dist_tid

GIVING sts.
IF sts IS FAILURE
THEN

CALL "ACMS$RAISE_NONREC_EXCEPTION" USING BY REFERENCE sts
GO TO 999_end

END-IF.

&RDB& START_TRANSACTION DISTRIBUTED_TRANSACTION
&RDB& DISTRIBUTED_TID dist_tid READ_WRITE
&RDB& RESERVING reservations FOR SHARED WRITE,
&RDB& rental_classes,sites,regions FOR SHARED READ
&RDB& ON ERROR

GO TO 900-rdb-error
&RDB& END_ERROR.

.

.

.

The following code segment in BASIC illustrates how to start an RDO database
transaction that is part of a distributed transaction. The procedure first defines
and allocates a structure to hold the TID. The procedure next calls ACMS$GET_
TID to retrieve the TID. If an error occurs, the procedure raises a nonrecoverable
exception and exits. If there is no error, the procedure starts the database
transaction, specifying the TID using the DISTRIBUTED_TID phrase. A common
error handler is used to check the status from the START_TRANSACTION
statement.

.

.

.
&RDB& INVOKE DATABASE FILENAME "avertz_database:vehicle_rentals"

RECORD dist_tid_structure
STRING tid_data = 16

END RECORD

DECLARE dist_tid_structure dist_tid

sts = ACMS$GET_TID(dist_tid)
IF (sts AND 1%) = 0%
THEN

CALL ACMS$RAISE_NONREC_EXCEPTION(sts)
EXIT FUNCTION sts

END IF

&RDB& START_TRANSACTION DISTRIBUTED_TRANSACTION
&RDB& DISTRIBUTED_TID dist_tid READ_WRITE
&RDB& RESERVING reservations FOR SHARED WRITE,
&RDB& rental_classes,sites,regions FOR SHARED READ
&RDB& ON ERROR

GOSUB check_rdb_error
EXIT FUNCTION Rdb$LU_STATUS

&RDB& END_ERROR
.
.
.

4–22 Accessing Resource Managers

Accessing Resource Managers
4.2 Using Precompiled RDO or RDML with Rdb

Because the RDO database transaction is participating in a distributed
transaction, Rdb automatically commits or rolls back the database transaction
when the distributed transaction ends. Therefore, you must not use the COMMIT
or ROLLBACK verbs to end the database transaction in the step procedure.

4.2.2.2 Starting and Ending an Independent RDO Database Transaction
You start an independent database transaction by using the START_
TRANSACTION statement. For example:

&RDB& START_TRANSACTION
&RDB& RESERVING reservations FOR SHARED WRITE,
&RDB& rental_classes,sites,regions FOR SHARED READ
&RDB& ON ERROR

.

.

.
&RDB& END_ERROR

Because the RDO database transaction is not participating in a distributed
transaction, you must commit or roll back the database transaction in the
procedure. For example:

IF sts IS SUCCESS
THEN

&RDB& COMMIT
ELSE

&RDB& ROLLBACK
END-IF.

4.2.3 Reading from a Database
The examples in this section illustrate how to read a record from a database and
retrieve the data from the record.

Each example shows how to read a record from the SITES relation in the
AVERTZ database. The procedure first initializes the return status to a failure
status; it next uses a FOR statement to locate the target record and a GET
statement to retrieve the data from the record. If a record is successfully located,
a success value is stored in the procedure’s return status. If the record is not
found, the return status remains set to the failure status, indicating that the
record does not exist. For example, in COBOL:

.

.

.
MOVE vr_sirecnotfnd TO return_status.
&RDB& FOR s IN sites WITH s.site_id = site_id
&RDB& ON ERROR

GO TO 900-rdb-error
&RDB& END_ERROR
&RDB& GET
&RDB& ON ERROR

GO TO 900-rdb-error
&RDB& END_ERROR
&RDB& vr_sites_wksp = s.*
&RDB& END_GET

SET return_status TO SUCCESS
&RDB& END_FOR.

.

.

.

Accessing Resource Managers 4–23

Accessing Resource Managers
4.2 Using Precompiled RDO or RDML with Rdb

For example, in BASIC:

.

.

.
vr_find_site_proc = vr_sirecnotfnd
&RDB& FOR s IN sites WITH s.site_id = sites::site_id

&RDB& ON ERROR
GOSUB check_rdb_error
EXIT FUNCTION Rdb$LU_STATUS

&RDB& END_ERROR

&RDB& GET
&RDB& ON ERROR

GOSUB check_rdb_error
EXIT FUNCTION Rdb$LU_STATUS

&RDB& END_ERROR
&RDB& sites = s.*

&RDB& END_GET
vr_find_site_proc = 1%

&RDB& END_FOR
.
.
.

The error handlers used in these examples are shown in Section 4.2.5.

4.2.4 Writing to a Database
The examples in this section illustrate how to modify an existing record in a
database using the MODIFY statement and how to store a new record in a
database using the STORE statement.

When new customers are added to the AVERTZ database, each one must be
allocated a customer ID number and a new record stored in the CUSTOMERS
relation. A relation called CU_ID_INC_CONTROL contains a single control
record that holds the next available customer ID number. Each example in this
section:

• Reads the customer ID control record

• Saves the next available customer ID number

• Increments the ID number and updates the control record

• Stores the new record in the CUSTOMERS relation

The following code segment shows how a new customer is added to the database
using COBOL:

4–24 Accessing Resource Managers

Accessing Resource Managers
4.2 Using Precompiled RDO or RDML with Rdb

.

.

.
*
* Obtain new customer ID number
*

&RDB& FOR i IN cu_id_inc_control
&RDB& ON ERROR

GO TO 900-rdb-error
&RDB& END_ERROR

*
* Retrieve next available ID number from control record
*

&RDB& GET
&RDB& ON ERROR

GO TO 900-rdb-error
&RDB& END_ERROR
&RDB& customer_id = i.max_customer_id
&RDB& END_GET

*
* Increment next available ID number and update control record
*

&RDB& MODIFY i USING
&RDB& ON ERROR

GO TO 900-rdb-error
&RDB& END_ERROR
&RDB& i.max_customer_id = i.max_customer_id + 1
&RDB& END_MODIFY
&RDB& END_FOR

*
* Store new customer record
*

&RDB& STORE c IN customers USING
&RDB& ON ERROR

GO TO 900-rdb-error
&RDB& END_ERROR
&RDB& c.last_name = cu_last_name;
&RDB& c.first_name = cu_first_name;

.

.

.
&RDB& c.driver_license_region_id =
&RDB& cu_driver_license_region_id;
&RDB& c.driver_license_country_id =
&RDB& cu_driver_license_country_id
&RDB& END_STORE

.

.

.

The following code segment illustrates how a new customer is added to the
database using BASIC:

.

.

.
!
! Obtain new customer ID number
!
&RDB& FOR i IN cu_id_inc_control
&RDB& ON ERROR

GOSUB check_rdb_error
EXIT FUNCTION Rdb$LU_STATUS

&RDB& END_ERROR

Accessing Resource Managers 4–25

Accessing Resource Managers
4.2 Using Precompiled RDO or RDML with Rdb

!
! Retrieve next available ID number from control record
!

&RDB& GET
&RDB& ON ERROR

GOSUB check_rdb_error
EXIT FUNCTION Rdb$LU_STATUS

&RDB& END_ERROR
&RDB& cust::customer_id = i.max_customer_id
&RDB& END_GET

!
! Increment next available ID number and update record
!

&RDB& MODIFY i USING
&RDB& ON ERROR

GOSUB check_rdb_error
EXIT FUNCTION Rdb$LU_STATUS

&RDB& END_ERROR
&RDB& i.max_customer_id = i.max_customer_id + 1%
&RDB& END_MODIFY
&RDB& END_FOR

!
! Store new customer record
!
&RDB& STORE c IN customers USING
&RDB& ON ERROR

GOSUB check_rdb_error
EXIT FUNCTION Rdb$LU_STATUS

&RDB& END_ERROR

&RDB& c.last_name = cust::cu_last_name;
&RDB& c.first_name = cust::cu_first_name;

.

.

.

&RDB& c.driver_license_region_id =
&rdb& cust::cu_driver_license_region_id;
&RDB& c.driver_license_country_id =
&rdb& cust::cu_driver_license_country_id
&RDB& END_STORE

4.2.5 Handling Errors
You typically write an error handler to process errors returned by Rdb when
starting and ending a database transaction and when accessing data in the
database. Handling error conditions using RDO with Rdb is very similar to
using SQL with Rdb. This section describes the differences between RDO and
SQL when using distributed transactions. See Section 4.1.6 for information on
handling errors using SQL.

A distributed transaction can abort at any time. If a transaction aborts while
a step procedure is executing, Rdb automatically rolls back an active database
transaction. The next time the step procedure executes an RDO statement, Rdb
starts a new, default database transaction with read-only access to the database.
The RDO statement completes successfully only if it retrieves information from
the database. However, Rdb returns an error if the RDO statement writes to the
database. Therefore, the error handler in a procedure using RDO must check for
additional Rdb error codes.

4–26 Accessing Resource Managers

Accessing Resource Managers
4.2 Using Precompiled RDO or RDML with Rdb

Note

Chapter 2 discusses how to write a server cancel procedure that is used to
roll back the default database transaction that Rdb starts if a procedure
executes an RDO statement after a distributed transaction has aborted.

The following example shows how to write an error handler in BASIC for use in a
procedure using RDO:

EXTERNAL LONG CONSTANT RDB$_LOCK_CONFLICT
.
.
.

EXTERNAL LONG FUNCTION LIB$SIGNAL
.
.
.

check_rdb_error:
SELECT Rdb$LU_STATUS

CASE RDB$_DEADLOCK, &
RDMS$_DEADLOCK, &
RDB$_LOCK_CONFLICT, &
RDMS$_LCKCNFLCT, &
RDMS$_TIMEOUT

CALL ACMS$RAISE_TRANS_EXCEPTION(ACMS$_TRANSTIMEDOUT)

CASE RDB$_SYS_REQUEST_CALL, &
RDB$_BAD_TRANS_HANDLE, &
RDB$_DISTABORT, &
RDB$_READ_ONLY_TRANS, &
RDB$_REQ_SYNC

CALL ACMS$RAISE_TRANS_EXCEPTION(Rdb$LU_STATUS)

CASE ELSE
CALL LIB$CALLG(Rdb$MESSAGE_VECTOR, &

LOC(LIB$SIGNAL) BY VALUE)
CALL ACMS$RAISE_NONREC_EXCEPTION(Rdb$LU_STATUS)

END SELECT
RETURN

.

.

.

4.2.6 Compiling Rdb Procedures that Use RDO
You use the RDO precompiler, RDBPRE, when you compile a procedure
containing embedded RDO statements. The RDO precompiler processes the
embedded RDO statements in your program, producing an intermediate host
language source file, which it then submits to the host language compiler to
produce an object module.

The RDO precompiler command line includes both precompiler and host language
compiler qualifiers. For the precompiler, include a qualifier to specify in which
host language the source is written; you can, optionally, include other qualifiers.
On the command line, also include any language compiler qualifiers (such as
LIST or DEBUG) that you want in effect when the precompiler submits the
preprocessed source file to the language compiler. For more information on RDO
precompiler qualifiers, see the Rdb documentation.

Accessing Resource Managers 4–27

Accessing Resource Managers
4.2 Using Precompiled RDO or RDML with Rdb

You typically define a symbol to invoke the RDO precompiler. For example:

$ RCOB == "$RDBPRE/COBOL"

The following command line precompiles a procedure called VR_FIND_SITE_
RDO_PROC:

$ RCOB/LIST VR_FIND_SITE_RDO_PROC

Note

Do not make changes to the language source module created by the RDO
precompiler and then use the language compiler directly to compile that
source module. This rule applies even if you want to make source changes
that do not affect RDO statements because the next precompilation of the
original embedded RDO module overwrites the changes you make to the
temporary language source module generated by the precompiler.

Chapter 6 explains how to link procedures that use RDO.

4.3 Using DBMS
A procedure for an ACMS task that accesses a DBMS database is similar to any
DBMS program that accesses a database. For example, the procedure uses the
same DBMS DML (Data Manipulation Language) statements, such as MOVE and
STORE. It handles errors by testing against DBMS error conditions.

4.3.1 Using DBMS DML Statements in Step Procedures
COBOL supports DBMS DML statements as part of the COBOL language.
However, if you are using DBMS with another language, such as BASIC, you use
the DBMS DML precompiler to process the DML statements in your program in
much the same way as you do when you use SQL or RDO with Rdb.

The DBMS DML precompiler uses a prefix character to distinguish DML
statements from host language statements. The default prefix character is
the pound-sign (#) character. For information on DML statements, refer to the
DBMS documentation.

In COBOL, you name the database that your step procedure accesses in the
SUBSCHEMA section in the Data Division. The subschema name is required,
even if you are using the default subschema. The schema name is also required.
For example:

DB DEFAULT_SUBSCHEMA
WITHIN "PERS_CDD.PERS_DBMS_SCHEMA"
FOR "PERS_DB:PERS_DBMS".

In other languages, you name the database that your step procedure accesses
using the INVOKE statement. In this BASIC example, the procedure uses
record-type structures in the user work area:

INVOKE DEFAULT_SUBSCHEMA -
WITHIN PERS_CDD.PERS_DBMS_SCHEMA -
FOR PERS_DB:PERSONNEL -
(RECORDS)

The database and subschema you name must be the same in all the procedures
linked into the server.

4–28 Accessing Resource Managers

Accessing Resource Managers
4.3 Using DBMS

4.3.2 Starting and Ending a DBMS Database Transaction
You start a DBMS database transaction by using a READY statement. However,
the way in which you start the database transaction depends on whether
the database transaction is part of a distributed transaction. In the READY
statement, you can specify the realms the step procedure accesses in the
database. If you do not specify one or more realms, DBMS readies all the
realms in the subschema.

This section describes how to start a database transaction that is part of a
distributed transaction and how to start and end an independent database
transaction. In addition, it discusses various access modes that you can specify
when starting a database transaction.

4.3.2.1 Starting a DBMS Database Transaction that Is Part of a Distributed Transaction
For a DBMS database transaction to participate in a distributed transaction, you
must specify the transaction ID (TID) on the READY statement.

Note

For a procedure that accesses a DBMS database to participate in a
distributed transaction, the database transaction must start in the
procedure, not in the task definition.

The following code segment illustrates how to start a DBMS database transaction
that is part of a distributed transaction in COBOL. In the Working-Storage
Section, the procedure allocates a structure to hold the TID. In the Procedure
Division, the procedure calls ACMS$GET_TID to retrieve the TID. If an error
occurs, the procedure raises a nonrecoverable exception and exits. If there is no
error, the procedure starts the database transaction by calling DBQ$INTERPRET.
It specifies the FOR TRANSACTION phrase in the READY statement and passes
the TID as an argument to DBQ$INTERPRET.

CALL "DBQ$INTERPRET" USING
BY DESCRIPTOR "READY CONCURRENT UPDATE FOR TRANSACTION",
BY REFERENCE dist_tid
GIVING return_status.

IF return_status IS FAILURE
THEN

CALL "DBM$SIGNAL"
END-IF

See the COBOL and DBMS documentation for more information on starting a
database transaction in COBOL.

The following code segment illustrates how to start a DBMS database transaction
that is part of a distributed transaction in BASIC. The procedure first defines and
allocates a structure to hold the TID. It next calls ACMS$GET_TID to retrieve the
TID. If an error occurs, the procedure raises a nonrecoverable exception and exits.
If there is no error, the procedure starts the database transaction, specifying the
TID using the FOR TRANSACTION phrase on the READY statement.

Accessing Resource Managers 4–29

Accessing Resource Managers
4.3 Using DBMS

.

.

.
RECORD dist_tid_structure

STRING tid_data = 16
END RECORD
DECLARE dist_tid_structure dist_tid

.

.

.
sts = ACMS$GET_TID(dist_tid BY REF)

IF (sts AND 1%) = 0% &
THEN

CALL ACMS$RAISE_NONREC_EXCEPTION(sts)
END IF

READY CONCURRENT UPDATE FOR TRANSACTION dist_tid
.
.
.

Because the DBMS database transaction is participating in a distributed
transaction, DBMS automatically commits or rolls back the database transaction
when the distributed transaction ends. Therefore, you must not use the COMMIT
or ROLLBACK verbs to end the database transaction in the step procedure.

Important

For a DBMS database transaction to participate in a distributed
transaction, you must specify the TID in the READY verb. If you omit it,
the task does not function correctly.

4.3.2.2 Starting and Ending an Independent DBMS Database Transaction
You start an independent database transaction by using the READY statement.
For example, in COBOL:

READY CONCURRENT RETRIEVAL.

The following example starts an independent, read-only database transaction
using BASIC:

READY CONCURRENT RETRIEVAL

Because the DBMS database transaction is not participating in a distributed
transaction, you must commit or roll back the database transaction in the
procedure. For example, in COBOL:

.

.

.
IF sts IS SUCCESS
THEN

COMMIT
ELSE

ROLLBACK
END-IF.
.
.
.

4–30 Accessing Resource Managers

Accessing Resource Managers
4.3 Using DBMS

For example, in BASIC:

.

.

.
IF (sts AND 1%) = 1%
THEN

COMMIT
ELSE

ROLLBACK
END IF

.

.

.

4.3.2.3 Using DBMS Access and Allow Mode Specifications
You can specify the access mode and allow mode when you start a DBMS database
transaction. The access mode specifies how the step procedure accesses the
database. If the step procedure only reads records from the database, specify
RETRIEVAL when you start the database transaction. Specify UPDATE in step
procedures that read, write, and modify records in the database. If you do not
specify an access mode, the default is RETRIEVAL access, which means that you
can only read records from the database. Using RETRIEVAL mode in a procedure
that does not update records reduces database contention.

The allow mode specifies how you will allow other processes to access the
database. The default is PROTECTED, which means that other processes can
read records from the database, but they cannot modify existing records or store
new records in the database. Specify PROTECTED if a single process only
needs write-access to the database. If multiple processes need write-access to
the database, specify CONCURRENT mode. (DBMS also supports BATCH and
EXCLUSIVE allow modes.)

Refer to the DBMS documentation for more information on database access and
allow modes.

4.3.2.4 Using a DBMS Wait Mode Specification
When you create or modify a database, you can specify how DBMS handles the
situation if it encounters a locked record while accessing the database. If you use
the /WAIT_RECORD_LOCKS qualifier on the DBO/CREATE or DBO/MODIFY
command, DBMS waits until the lock can be granted before continuing. If you
use the /NOWAIT_RECORD_LOCKS qualifier, DBMS immediately returns an
error if it encounters a lock. You can override the wait-mode specification at run
time by using the DBM$BIND_WAIT_RECORD_LOCKS logical name.

If you choose to wait for locks, you can specify the maximum time you are
prepared to wait until a lock is granted. If the lock is not granted in the specified
time limit, DBMS returns the DBM$_LCKCNFLCT or DBM$_TIMEOUT errors.
Specify the time limit by defining the DBM$BIND_LOCK_TIMEOUT_INTERVAL
logical name in a logical name table that is accessible to the server. Define the
DBM$BIND_LOCK_TIMEOUT_INTERVAL logical name in one of the following
ways:

• As a server logical name in the application definition

• In an application-specific logical name table

• In the system logical name table

• In a group logical name table

Accessing Resource Managers 4–31

Accessing Resource Managers
4.3 Using DBMS

For example, the following server logical name definition specifies that DBMS
should wait no more than 10 seconds for a lock to be granted:

LOGICAL NAME IS
DBM$BIND_LOCK_TIMEOUT_INTERVAL = "10";

See the DBMS documentation for more information on specifying the wait mode
and lock timeout interval.

Important

If you are using distributed transactions, always specify a lock timeout
interval to ensure that ACMS can successfully cancel a task that is
waiting for a database lock. By specifying a lock timeout interval, you
ensure that the task is canceled as soon as the timeout interval expires.
If you do not specify a lock timeout interval, the task cannot be canceled
until the lock is granted.

4.3.3 Reading from a Database
The examples in this section illustrate how to read a record from a DBMS
database and return the data to the task in a workspace.

Example 4–8 illustrates a simple step procedure written in COBOL that reads
a record from a personnel database. The procedure first moves the record key
from the task workspace into the user work area (UWA). It next starts a database
transaction and reads the record from the database. If the employee’s record
does not exist or is locked, the procedure returns a failure status. If any other
error occurs, the procedure calls DBM$SIGNAL to signal the error and then calls
ACMS$RAISE_NONREC_EXCEPTION to ensure that the task is canceled. If the
record is read successfully, the procedure moves the data from the UWA into the
task workspaces and returns a success status. Finally, the procedure ends the
transaction.

Example 4–8 Step Procedure in COBOL that Reads a DBMS Record

IDENTIFICATION DIVISION.
PROGRAM-ID. pers_find_employee_proc.

ENVIRONMENT DIVISION.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB DEFAULT_SUBSCHEMA
WITHIN "PERS_CDD.PERS_DBMS_SCHEMA"
FOR "PERS_DB:PERS_DBMS".

WORKING-STORAGE SECTION.

01 return_status PIC S9(5) COMP.
01 error_cond PIC S9(5) COMP.

COPY "pers_files:pers_common_defns".

(continued on next page)

4–32 Accessing Resource Managers

Accessing Resource Managers
4.3 Using DBMS

Example 4–8 (Cont.) Step Procedure in COBOL that Reads a DBMS Record

LINKAGE SECTION.
COPY "pers_cdd.employee_record" FROM DICTIONARY

REPLACING ==employee_record== BY ==emp_wksp_record==.

PROCEDURE DIVISION USING emp_wksp_record GIVING return_status.

MAIN SECTION.

000-start.
MOVE emp_badge_number OF emp_wksp_record TO

emp_badge_number OF employee_record.

READY CONCURRENT RETRIEVAL.

FETCH FIRST WITHIN ALL_EMPLOYEES
USING emp_badge_number OF employee_record

ON ERROR
CALL "LIB$MATCH_COND" USING

BY REFERENCE DB-CONDITION,
BY REFERENCE DBM$_END,
BY REFERENCE DBM$_DEADLOCK,
BY REFERENCE DBM$_LCKCNFLCT,
BY REFERENCE DBM$_TIMEOUT
GIVING error_cond

EVALUATE error_cond
WHEN 1

MOVE persmsg_empnotfound TO return_status
WHEN 2 THRU 4

MOVE persmsg_emplocked TO return_status
WHEN OTHER

CALL "DBM$SIGNAL"
CALL "ACMS$RAISE_NONREC_EXCEPTION" USING

BY REFERENCE DB-CONDITION
END-EVALUATE

NOT ON ERROR
MOVE employee_record TO emp_wksp_record
MOVE persmsg_success TO return_status

END-FETCH.

COMMIT.

999-end.
EXIT PROGRAM.

Example 4–9 illustrates a simple step procedure written in BASIC that reads a
record from a personnel database. The procedure extends the previous COBOL
example by including logic to retry the transaction automatically if the employee’s
record is locked. The procedure first initializes a transaction retry-counter and
moves the record key from the task workspace into the user work area (UWA).
It then starts a database transaction, reads the record from the database, and
ends the transaction. Finally, the procedure moves the employee’s record from the
UWA into the task workspaces and returns a success status.

The procedure uses an error handler to trap errors signaled by DBMS. Because
DBMS always signals severe OpenVMS status codes, the procedure uses the
HANDLE=SEVERE option to trap the errors in the handler. If the employee’s
record does not exist, the error handler returns a failure status. If the error
handler detects a record-locked or lock-timeout error, it retries the transaction
up to 5 times before return a failure status. If any other error occurs, the error

Accessing Resource Managers 4–33

Accessing Resource Managers
4.3 Using DBMS

handler uses the EXIT HANDLER statement to resignal the error condition.
Finally, the error handler ends the current transaction, trapping and ignoring all
errors.

Example 4–9 Step Procedure in BASIC that Reads a DBMS Record

FUNCTION LONG pers_find_employee_proc(employee_record emp_wksp)

OPTION HANDLE=SEVERE

%INCLUDE "pers_files:pers_common_defns"
%INCLUDE %FROM %CDD "pers_cdd.employee_record"

DECLARE LONG retry_count

INVOKE DEFAULT_SUBSCHEMA -
WITHIN PERS_CDD.PERS_DBMS_SCHEMA -
FOR PERS_DB:PERS_DBMS -
(RECORDS)

WHEN ERROR IN
retry_count = 0%
employee_record::emp_badge_number = emp_wksp::emp_badge_number

start_db_trans:
READY CONCURRENT RETRIEVAL
FETCH FIRST WITHIN ALL_EMPLOYEES USING emp_badge_number
COMMIT

emp_wksp = employee_record
pers_find_employee_proc = persmsg_success

USE
SELECT LIB$MATCH_COND(DBM_COND, DBM$_END, &

DBM$_DEADLOCK, &
DBM$_LCKCNFLCT, &
DBM$_TIMEOUT)

CASE 1 ! DBM$_END
pers_find_employee_proc = persmsg_empnotfound

CASE 2, 3, 4 ! DBM$_DEADLOCK, DBM$_LCKCNFLCT, DBM$_TIMEOUT
IF retry_count < 5% &
THEN

retry_count = retry_count + 1%
ROLLBACK (TRAP ERROR)
CONTINUE start_db_trans

ELSE
pers_find_employee_proc = persmsg_emplocked

END IF

CASE ELSE
EXIT HANDLER

END SELECT
ROLLBACK (TRAP ERROR)

END WHEN

END FUNCTION

4.3.4 Writing to a Database
This section illustrates how to store a new record in a DBMS database and how
to update a record in a DBMS database.

Example 4–10 explains how to store a new record in a DBMS database. The
PERS_ADD_EMPLOYEE_PROC procedure stores a new record in the employee
set using the information that is entered by the user and passed to the procedure
in a task workspace.

4–34 Accessing Resource Managers

Accessing Resource Managers
4.3 Using DBMS

The procedure first calls ACMS$GET_TID to obtain the current transaction
ID (TID). The procedure next calls DBQ$INTERPRET to start the database
transaction. If successful, it copies the new employee record data from the task
workspace to the user work area (UWA) and stores the current time in the
employee record; the time-stamp field is used for consistency-checking by the
update procedure. The procedure then stores the record in the database. If all is
successful, the procedure returns a success status to the task. The error handler
for this procedure is described in Section 4.3.5.

Example 4–10 Step Procedure in COBOL that Updates a DBMS Record

IDENTIFICATION DIVISION.
PROGRAM-ID. pers_add_employee_proc.

ENVIRONMENT DIVISION.

DATA DIVISION.
SUB-SCHEMA SECTION.

DB DEFAULT_SUBSCHEMA
WITHIN "PERS_CDD.PERS_DBMS_SCHEMA"
FOR "PERS_DB:PERS_DBMS".

WORKING-STORAGE SECTION.

01 return_status PIC S9(5) COMP.
01 error_cond PIC S9(5) COMP.
01 dist_tid.

03 tid_data PIC X(16).

COPY "pers_files:pers_common_defns".

LINKAGE SECTION.
COPY "pers_cdd.employee_record" FROM DICTIONARY

REPLACING ==employee_record== BY ==emp_wksp_record==.

PROCEDURE DIVISION USING emp_wksp_record GIVING return_status.

DECLARATIVES.
dml-failure SECTION.

USE FOR DB-EXCEPTION.
010-dbm-failure.

.

.

.
EXIT PROGRAM.

END DECLARATIVES.

MAIN SECTION.

000-start.
CALL "ACMS$GET_TID" USING

BY REFERENCE dist_tid
GIVING return_status.

IF return_status IS FAILURE
THEN

CALL "ACMS$RAISE_NONREC_EXCEPTION" USING
BY REFERENCE return_status

EXIT PROGRAM
END-IF.

(continued on next page)

Accessing Resource Managers 4–35

Accessing Resource Managers
4.3 Using DBMS

Example 4–10 (Cont.) Step Procedure in COBOL that Updates a DBMS Record

CALL "DBQ$INTERPRET" USING
BY DESCRIPTOR "READY CONCURRENT UPDATE FOR TRANSACTION",
BY REFERENCE dist_tid
GIVING return_status.

IF return_status IS FAILURE
THEN

CALL "DBM$SIGNAL"
END-IF

MOVE emp_wksp_record TO employee_record.
CALL "SYS$GETTIM" USING

BY REFERENCE emp_last_update OF employee_record
GIVING return_status.

IF return_status IS FAILURE
THEN

CALL "LIB$STOP" USING BY VALUE return_status
END-IF.

STORE employee_record.

MOVE persmsg_success TO return_status.

999-end.
EXIT PROGRAM.

Example 4–11 illustrates how to update a record in a DBMS database. The
PERS_CHANGE_EMPLOYEE_PROC procedure updates a record in the employee
set using the information that is entered by the user and passed to the procedure
in a task workspace. To conserve resources, the task does not retain server
context while the user is modifying the employee’s information. Therefore, the
procedure must ensure that the information in the record has not changed while
the user was updating the information on the screen.

The procedure first rereads the original record in the file and then uses a time
stamp stored in the record to ensure that the version read in this procedure is
the same as the version read previously by the PERS_FIND_EMPLOYEE_PROC
procedure. If the record has been updated, the procedure returns an error and
unlocks the record. If the record has not been changed, the procedure copies
the data from the task workspace record to the user workspace area (UWA),
calls SYS$GETTIM to retrieve the current system time, and updates the current
record. The error handling in this procedure is described in Section 4.3.5.

Example 4–11 Step Procedure in BASIC that Updates a DBMS Record

FUNCTION LONG pers_change_employee_proc(employee_record emp_wksp)

OPTION HANDLE=SEVERE

%INCLUDE "pers_files:pers_common_defns"
%INCLUDE %FROM %CDD "pers_cdd.employee_record"

(continued on next page)

4–36 Accessing Resource Managers

Accessing Resource Managers
4.3 Using DBMS

Example 4–11 (Cont.) Step Procedure in BASIC that Updates a DBMS Record

RECORD dist_tid_structure
STRING tid_data = 16

END RECORD
DECLARE dist_tid_structure dist_tid

DECLARE LONG sts

INVOKE DEFAULT_SUBSCHEMA -
WITHIN PERS_CDD.PERS_DBMS_SCHEMA -
FOR PERS_DB:PERS_DBMS -
(RECORDS)

sts = ACMS$GET_TID(dist_tid BY REF)
IF (sts AND 1%) = 0% &
THEN

CALL ACMS$RAISE_NONREC_EXCEPTION(sts)
END IF

WHEN ERROR IN
employee_record::emp_badge_number = emp_wksp::emp_badge_number
READY CONCURRENT UPDATE FOR TRANSACTION dist_tid
FETCH FIRST WITHIN ALL_EMPLOYEES -

USING emp_badge_number
IF employee_record::emp_last_update = &

emp_wksp::emp_last_update &
THEN

employee_record = emp_wksp
sts = SYS$GETTIM(employee_record::emp_last_update BY REF)
IF (sts AND 1%) = 0% &
THEN

CALL LIB$STOP(sts)
END IF
MODIFY employee_record
pers_change_employee_proc = persmsg_success

ELSE
pers_change_employee_proc = persmsg_empchanged

END IF

USE
.
.
.

END WHEN

END FUNCTION

4.3.5 Handling Errors
You typically write an error handler to process errors returned by DBMS when
accessing records in a database. The examples in Section 4.3.3 and Section 4.3.4
illustrate how to handle some of the standard errors, such as record-not-found,
that DBMS can return when you read, write, or update a record in a database. In
addition, also be aware of the error conditions that can occur when you are using
DBMS in distributed transactions.

Some DBMS errors are expected and are handled by resuming normal program
execution. For example, DBMS returns an end-of-collection error if a procedure
reads past the last record in a set. In this case, the program can resume
execution and process the records that have been read. DBMS can also return
a number of recoverable errors that the program should check for and handle.

Accessing Resource Managers 4–37

Accessing Resource Managers
4.3 Using DBMS

For example, if DBMS returns a deadlock error, you might want to roll back
the transaction and process the transaction again. Finally, DBMS can return
a number of nonrecoverable errors. For example, a disk on which one of the
database storage areas resides might fail. In this case, the program cannot
continue until the problem has been resolved.

A distributed transaction can abort at any time. If a transaction aborts while a
step procedure is executing, DBMS automatically rolls back an active database
transaction. However, the step procedure will receive an error the next time it
executes a DML statement in a database transaction that was participating in
the distributed transaction. Therefore, an error handler for a step procedure
should check for and handle the errors that DBMS returns in this situation.

Typically, you want to retry a transaction automatically in the event of a
recoverable error condition such as a deadlock, lock-timeout or transaction
timeout error. If DBMS detects deadlock or lock-timeout error conditions, it
returns an error to your step procedure when you access the database. In
contrast, if a distributed transaction times out, the distributed transaction
is aborted, and ACMS raises a transaction exception in the task. In this
case, DBMS returns an error if the step procedure accesses the file after the
transaction has aborted.

There is an easy technique, illustrated in examples in this section, that allows you
to simplify an exception handler that handles recoverable transaction exceptions
in a task definition. The following list indicates how the error handler in the step
procedure handles each type of error returned by DBMS:

• Handling recoverable errors

If an error handler in a step procedure detects a recoverable error condition,
such as a deadlock or lock-timeout error, it calls the ACMS$RAISE_TRANS_
EXCEPTION service to raise a transaction exception using the ACMS$_
TRANSTIMEDOUT exception code. If a distributed transaction does not
complete within the specified time limit, ACMS also raises a transaction
exception using the ACMS$_TRANSTIMEDOUT exception code. Therefore,
using ACMS$_TRANSTIMEDOUT as the exception code in the step procedure
means that the exception handler in the task definition has to test for only a
single exception code in order to handle all recoverable transaction exceptions.

If you detect a recoverable error in a step procedure that is using an
independent database transaction that is not participating in a distributed
transaction, you can roll back the database transaction and repeat the
transaction in the step procedure.

• Handling transaction aborts

If a distributed transaction aborts while a step procedure is executing, DBMS
returns one of a number of error status values. If a step procedure detects
one of these errors, it raises a transaction exception using the error status. If
the error was due to a distributed transaction aborting, ACMS overrides the
exception in the task. However, if DBMS returns the error due to some other
problem, the task is canceled with the specified exception code.

• Handling nonrecoverable errors

If an unexpected error occurs, the procedure signals the error information
returned by DBMS. If the procedure signals a fatal OpenVMS exception,
ACMS writes the error to the audit trail log, cancels the task, and runs
down the server process. However, if the procedure signals an error or a
warning OpenVMS status, ACMS continues executing the step procedure

4–38 Accessing Resource Managers

Accessing Resource Managers
4.3 Using DBMS

after writing the error to the audit trail log. The error handler also calls the
ACMS$RAISE_NONREC_EXCEPTION service to ensure that the task is
canceled.

The following example illustrates the error handler for the COBOL example
in Section 4.3.4. If a record with the same badge number already exists in the
database, the procedure returns a failure status. If the employee record set is
locked, it raises a transaction exception using ACMS$_TRANSTIMEDOUT as the
exception code. If the distributed transaction has aborted, it raises a transaction
exception using the DBMS error status as the exception code. If any other error
condition occurred, the procedure calls DBM$SIGNAL to signal the error and
then raises a nonrecoverable exception.

.

.

.
WORKING-STORAGE SECTION.

01 return_status PIC S9(5) COMP.
01 error_cond PIC S9(5) COMP.
01 dist_tid.

03 tid_data PIC X(16).
.
.
.

PROCEDURE DIVISION USING emp_wksp_record GIVING return_status.

DECLARATIVES.
dml-failure SECTION.

USE FOR DB-EXCEPTION.

010-dbm-failure.
CALL "LIB$MATCH_COND" USING

BY REFERENCE DB-CONDITION,
BY REFERENCE DBM$_DUPNOTALL,
BY REFERENCE DBM$_DEADLOCK,
BY REFERENCE DBM$_LCKCNFLCT,
BY REFERENCE DBM$_TIMEOUT,
BY REFERENCE DBM$_PARTDTXNERR,
BY REFERENCE DBM$_NOTIP,
BY REFERENCE DBM$_DTXNABORTED
GIVING error_cond

EVALUATE error_cond
WHEN 1

MOVE persmsg_empexists TO return_status
WHEN 2 THRU 4

CALL "ACMS$RAISE_TRANS_EXCEPTION" USING
BY REFERENCE ACMS$_TRANSTIMEDOUT

WHEN 5 THRU 7
CALL "ACMS$RAISE_TRANS_EXCEPTION" USING

BY REFERENCE DB-CONDITION
WHEN OTHER

CALL "DBM$SIGNAL"
CALL "ACMS$RAISE_NONREC_EXCEPTION" USING

BY REFERENCE DB-CONDITION

END-EVALUATE
EXIT PROGRAM.

END DECLARATIVES.
.
.
.

Accessing Resource Managers 4–39

Accessing Resource Managers
4.3 Using DBMS

The following example illustrates the error handler for the BASIC example in
Section 4.3.4. If the employee’s record has been deleted, the procedure returns
a failure status. If the record is locked by another user, it raises a transaction
exception using ACMS$_TRANSTIMEDOUT as the exception code. If the
distributed transaction has aborted, it raises a transaction exception using the
DBMS error status as the exception code. If any other error condition occurred,
the procedure uses the EXIT HANDLER statement to resignal the error.

.

.

.
WHEN ERROR IN

employee_record::emp_badge_number = emp_wksp::emp_badge_number
READY CONCURRENT UPDATE FOR TRANSACTION dist_tid
FETCH FIRST WITHIN ALL_EMPLOYEES -

USING emp_badge_number

IF employee_record::emp_last_update = &
emp_wksp::emp_last_update &

THEN
employee_record = emp_wksp
sts = SYS$GETTIM(employee_record::emp_last_update BY REF)
IF (sts AND 1%) = 0% &
THEN

CALL LIB$STOP(sts)
END IF
MODIFY employee_record
pers_change_employee_proc = persmsg_success

ELSE
pers_change_employee_proc = persmsg_empchanged

END IF

USE
SELECT LIB$MATCH_COND(DBM_COND, DBM$_END, &

DBM$_DEADLOCK, &
DBM$_LCKCNFLCT, &
DBM$_TIMEOUT, &
DBM$_PARTDTXNERR, &
DBM$_NOTIP, &
DBM$_DTXNABORTED)

CASE 1 ! DBM$_END
pers_change_employee_proc = persmsg_empdeleted

CASE 2, 3, 4 ! DBM$_DEADLOCK, DBM$_LCKCNFLCT, DBM$_TIMEOUT
CALL ACMS$RAISE_TRANS_EXCEPTION(ACMS$_TRANSTIMEDOUT)

CASE 5, 6, 7 ! DBM$_PARTDTXNERR, DBM$_NOTIP, DBM$_DTXNABORTED
CALL ACMS$RAISE_TRANS_EXCEPTION(VMSSTATUS)

CASE ELSE
EXIT HANDLER

END SELECT
END WHEN

.

.

.

4.3.6 Compiling DBMS Procedures
If you are using COBOL, use the COBOL compiler to compile your procedure.
However, if you are using another programming language, such as BASIC,
use the DBMS DML precompiler when you compile a procedure containing
embedded DML statements. The DML precompiler processes the embedded DML
statements in your program, producing an intermediate host language source file,
which it then submits to the host language compiler to produce an object module.

4–40 Accessing Resource Managers

Accessing Resource Managers
4.3 Using DBMS

The DML precompiler command line includes both precompiler and host language
compiler qualifiers. For the precompiler, use the /LANGUAGE qualifier to specify
in which host language the source is written; you can, optionally, include other
qualifiers. On the command line, include any language compiler qualifiers (such
as LIST or DEBUG) that you want in effect when the precompiler submits
the preprocessed source file to the language compiler using the /OPTION
qualifier. For more information on DML precompiler qualifiers, see the DBMS
documentation.

The following command line precompiles a procedure called PERS_CHANGE_
EMPLOYEE_PROC:

$ DML/LANGUAGE=BASIC/OPTION="/LIST" PERS_CHANGE_EMPLOYEE_PROC

Note

Do not make changes to the language source module created by the DML
precompiler and then use the language compiler directly to compile that
source module. This rule applies even if you want to make source changes
that do not affect DML statements because the next precompilation of the
original embedded DML module overwrites the changes you make to the
temporary language source module generated by the precompiler.

Chapter 6 explains how to link procedures that use DML.

4.4 Using RMS
This section describes how to write step procedures that access RMS files. A step
procedure that accesses an RMS file on behalf of an ACMS task is similar to any
other program that uses RMS to access a file.

The RMS Journaling layered product provides recovery-unit journaling, after-
image journaling, and before-image journaling for RMS sequential, relative, and
Prologue 3 indexed files. If you have installed the RMS Journaling product,
you can use recovery-unit journaling and distributed transactions to coordinate
modifications to records in RMS files with modifications to records in Rdb and
DBMS databases. If you do not have the RMS Journaling product, modifications
to RMS files will not be coordinated with modifications to Rdb and DBMS
databases. See RMS Journaling for OpenVMS Manual for more information on
RMS journaling.

This section first discusses how to access RMS files that are marked for recovery-
unit journaling. The section then illustrates how to read, write, and modify
records in an RMS file. Note that there are no special considerations for using
RMS files that are marked for after-image journaling or before-image journaling
or for using files that are not journaled.

4.4.1 Using Files Marked for RMS Recovery-Unit Journaling
There are no special considerations for using RMS recovery-unit journaling in
a distributed transaction started by a task or an agent program. If an RMS
file that is marked for recovery-unit journaling is accessed by a step procedure
that is participating in a distributed transaction, RMS automatically associates
the record stream with the default transaction established by ACMS for the
server process. See Chapter 3 for more information on the participation of a step
procedure in a distributed transaction.

Accessing Resource Managers 4–41

Accessing Resource Managers
4.4 Using RMS

Note

Processing steps that participate in a distributed transaction must
not make calls to the RMS Recovery Unit services ($START_RU,
$PREPARE_RU, $COMMIT_RU, $END_RU, and $ABORT_RU). Any
attempt to intermix these services with distributed transactions leads to
unpredictable results.

In contrast, if you access an RMS file marked for recovery-unit journaling outside
a distributed transaction, you must start a transaction in the step procedure.
Use the OpenVMS transactions services $START_TRANS, $END_TRANS, and
$ABORT_TRANS to start and end a transaction in a step procedure. Note that
the OpenVMS transaction services have superseded the RMS Recovery Unit
services. See RMS Journaling for OpenVMS Manual for more information on
using the OpenVMS transaction services and RMS recovery-unit journaling.

4.4.2 Reading RMS Records
The examples in this section illustrate how to read a record from an RMS file and
return the data to the task in a workspace.

Each example reads a record from a file containing employee records using a key
from a field in a workspace. If the record exists, the procedure returns a success
status to the task. If the record does not exist, the procedure returns a failure
status. Because the PERS_FIND_EMPLOYEE_PROC procedure executes in a
server that opens the employee file for read-only access, there is no need to use
manual locking statements.

Example 4–12 is a step procedure in COBOL that reads an RMS record.

Example 4–12 Step Procedure in COBOL that Reads an RMS Record

IDENTIFICATION DIVISION.
PROGRAM-ID. pers_find_employee_proc.

.

.

.
DATA DIVISION.

FILE SECTION.
FD emp_file

EXTERNAL
DATA RECORD IS employee_record
RECORD KEY emp_badge_number OF employee_record.

COPY "pers_cdd.employee_record" FROM DICTIONARY.
.
.
.

LINKAGE SECTION.
COPY "pers_cdd.employee_record" FROM DICTIONARY

REPLACING ==employee_record== BY ==emp_wksp_record==.

PROCEDURE DIVISION USING emp_wksp_record GIVING return_status.
MAIN SECTION.

(continued on next page)

4–42 Accessing Resource Managers

Accessing Resource Managers
4.4 Using RMS

Example 4–12 (Cont.) Step Procedure in COBOL that Reads an RMS Record

000-start.
MOVE persmsg_success TO return_status.
MOVE emp_badge_number OF emp_wksp_record TO

emp_badge_number OF employee_record.
READ emp_file RECORD INTO emp_wksp_record

KEY IS emp_badge_number OF employee_record
INVALID KEY

MOVE persmsg_empnotfound TO return_status
GO TO 999-end

END-READ.

.

.

.
999-end.

EXIT PROGRAM.

Example 4–13 is a step procedure in BASIC that reads an RMS record.

Example 4–13 Step Procedure in BASIC that Reads an RMS Record

FUNCTION LONG pers_find_employee_proc(employee_record emp_wksp)

%INCLUDE "pers_files:pers_common_defns"
%INCLUDE %FROM %CDD "pers_cdd.employee_record"

MAP (emp_map) employee_record emp_rec

WHEN ERROR IN
GET # emp_file, &

KEY # 0 EQ emp_wksp::emp_badge_number
MOVE FROM # emp_file, emp_wksp
pers_find_employee_proc = persmsg_success

USE
SELECT ERR

CASE basicerr_record_not_found
pers_find_employee_proc = persmsg_empnotfound

CASE ELSE
CALL ACMS$RAISE_NONREC_EXCEPTION(RMSSTATUS(emp_file))
EXIT HANDLER

END SELECT
END WHEN

END FUNCTION

4.4.3 Writing and Updating RMS Records
This section explains how to write a new record into an RMS file and how to
update a record in an RMS file.

Example 4–14 illustrates how to write a new record to a file. The PERS_ADD_
EMPLOYEE_PROC procedure is used to store a new record in an employee file
using the information entered by the user and passed to the procedure in a task
workspace. The procedure first stores the current time in the employee record;
the time-stamp field is used for consistency checking by the update procedure.
It then initializes the return status to success and writes the new record to the
file. Because this procedure is executing in a server that opens the file for read
and write access with explicit lock control, the procedure must unlock the record

Accessing Resource Managers 4–43

Accessing Resource Managers
4.4 Using RMS

if the write operation completes successfully. If the write operation fails with a
duplicate key, the procedure returns an error status to the task.

Example 4–14 Step Procedure in COBOL that Writes an RMS Record

IDENTIFICATION DIVISION.
PROGRAM-ID. pers_add_employee_proc.

.

.

.
DATA DIVISION.

FILE SECTION.
FD emp_file

EXTERNAL
DATA RECORD IS employee_record
RECORD KEY emp_badge_number OF employee_record.

COPY "pers_cdd.employee_record" FROM DICTIONARY.
.
.
.

LINKAGE SECTION.
COPY "pers_cdd.employee_record" FROM DICTIONARY

REPLACING ==employee_record== BY ==emp_wksp_record==.

PROCEDURE DIVISION USING emp_wksp_record GIVING return_status.
MAIN SECTION.

000-start.
CALL "SYS$GETTIM" USING

BY REFERENCE emp_last_update OF emp_wksp_record
GIVING return_status.

IF return_status IS FAILURE
THEN

CALL "LIB$STOP" USING BY VALUE return_status
END-IF.

MOVE persmsg_success TO return_status.
WRITE employee_record FROM emp_wksp_record

ALLOWING NO
INVALID KEY

MOVE persmsg_empexists TO return_status
NOT INVALID KEY

UNLOCK emp_file ALL RECORDS
END-WRITE.

.

.

.
999-end.

EXIT PROGRAM.

Example 4–15 illustrates how to update a record in an RMS file. The PERS_
CHANGE_EMPLOYEE_PROC procedure updates a record in an employee file
using the information that is entered by the user and passed to the procedure in
a task workspace. To conserve resources, the task does not retain server context
while the user is modifying the employee’s information. Therefore, the procedure
must ensure that the information in the record has not changed while the user
was updating the information on the screen.

4–44 Accessing Resource Managers

Accessing Resource Managers
4.4 Using RMS

The procedure first rereads the original record in the file and then uses a time-
stamp stored in the record to ensure that the version read in this procedure is
the same as the version read previously by the PERS_FIND_EMPLOYEE_PROC
procedure. If the record has been updated, the procedure returns an error and
unlocks the record. If the record has not been changed, the procedure copies the
data from the task workspace record to the file record, calls SYS$GETTIM to
retrieve the current system time, and updates the current record.

Because the employee file was opened using explicit lock control, the procedure
must unlock the record after updating it. The error handling in this procedure
checks for record-locked and record-lock timeout errors in case another user is
trying to update the employee’s record at the same time. In addition, it also
checks for a record-not-found error in case the employee’s record was deleted
while the user was modifying the information. In both cases, the procedure
returns an error status so the task can retrieve the error message text and inform
the user of the problem.

Example 4–15 Step Procedure in BASIC that Updates an RMS Record

FUNCTION LONG pers_change_employee_proc(employee_record emp_wksp)

%INCLUDE "pers_files:pers_common_defns"
%INCLUDE %FROM %CDD "pers_cdd.employee_record"

DECLARE LONG sts

MAP (emp_map) employee_record emp_rec

WHEN ERROR IN
GET # emp_file, &

KEY # 0 EQ emp_wksp::emp_badge_number, &
ALLOW NONE, &
WAIT 20

IF emp_rec::emp_last_update = emp_wksp::emp_last_update &

THEN
MOVE TO # emp_file, emp_wksp
sts = SYS$GETTIM(emp_rec::emp_last_update BY REF)
IF (sts AND 1%) = 0% &
THEN

CALL LIB$STOP(sts)
END IF
UPDATE # emp_file
pers_change_employee_proc = persmsg_success

ELSE
pers_change_employee_proc = persmsg_empchanged

END IF
UNLOCK # emp_file

USE
SELECT ERR

CASE basicerr_record_not_found
pers_change_employee_proc = persmsg_empdeleted

CASE basicerr_record_locked, &
basicerr_deadlock, &
basicerr_wait_exhausted

pers_change_employee_proc = persmsg_emplocked
CASE ELSE

CALL ACMS$RAISE_NONREC_EXCEPTION(RMSSTATUS(emp_file))
EXIT HANDLER

END SELECT
END WHEN

(continued on next page)

Accessing Resource Managers 4–45

Accessing Resource Managers
4.4 Using RMS

Example 4–15 (Cont.) Step Procedure in BASIC that Updates an RMS Record

END FUNCTION

4.4.4 Handling Errors
You typically write an error handler to process errors returned by RMS when
accessing records in a file. The examples in Section 4.4.2 and Section 4.4.3
illustrate how to handle some standard errors, such as record-not-found, that
RMS can return when you read, write, or update a record in an RMS file. In
addition, also be aware of the error conditions that can occur when you use RMS
files in distributed transactions.

Some RMS errors are expected and are handled by resuming normal program
execution. For example, RMS returns an end-of-file error if a procedure reads
past the last record in a file. In this case, the program can resume execution
and process the records that have been read. RMS can also return a number of
recoverable errors that the program should check for and handle. For example,
if RMS returns a deadlock error, you might want to roll back the transaction
and process the transaction again. Finally, RMS can return a number of
nonrecoverable errors. For example, a disk on which a file resides might fail.
In this case, the program cannot continue until the problem has been resolved.

A distributed transaction can abort at any time. For example, if the PERS_
CHANGE_EMPLOYEE_PROC procedure shown in Section 4.4.3 participates in
a distributed transaction, the transaction could time out while the procedure
is reading the original copy of the employee’s record or while updating the
record with the new information. If a transaction aborts while a step procedure
is executing, RMS automatically rolls back an active recovery unit. If a step
procedure reads a record from the file after a distributed transaction has aborted,
RMS completes the operation successfully if the record exists and is not locked
by another process. However, the step procedure receives an error if it executes a
recoverable operation, such as a write or update operation, on the file. Therefore,
an error handler for a step procedure should check for and handle the errors that
RMS returns in this situation.

If you use RMS in a distributed transaction, you must write a server cancel
procedure to release any records that might be read and locked by a step
procedure after a distributed transaction aborts. See Chapter 2 for more
information on writing server cancel procedures.

Typically, you want to retry a transaction automatically in the event of a
recoverable error condition such as a deadlock, lock-timeout or transaction
timeout error. RMS returns deadlock and lock-timeout errors to your step
procedure when you access the file. In contrast, if a distributed transaction
times out, the distributed transaction is aborted, and ACMS raises a transaction
exception in the task. In this case, RMS returns an error if the step procedure
accesses the file after the transaction has aborted.

There is an easy technique, illustrated in examples in this section, that allows you
to simplify an exception handler that handles recoverable transaction exceptions
in a task definition. The following list indicates how the error handler in the step
procedure handles each type of error returned by RMS:

4–46 Accessing Resource Managers

Accessing Resource Managers
4.4 Using RMS

• Handling recoverable errors

If an error handler in a step procedure detects a recoverable error condition,
such as a deadlock or lock-timeout error, it calls the ACMS$RAISE_TRANS_
EXCEPTION service to raise a transaction exception using the ACMS$_
TRANSTIMEDOUT exception code. If a distributed transaction does not
complete within the specified time limit, ACMS also raises a transaction
exception using the ACMS$_TRANSTIMEDOUT exception code. Therefore,
using ACMS$_TRANSTIMEDOUT as the exception code in the step procedure
means that the exception handler in the task definition has to test for only a
single exception code in order to handle all recoverable transaction exceptions.

• Handling transaction aborts

If a distributed transaction aborts while a step procedure is executing, RMS
returns one of a number of error status values. If a step procedure detects
one of these errors, it raises a transaction exception using the error status. If
the error was due to a distributed transaction aborting, ACMS overrides the
exception in the task. However, if RMS returns the error due to some other
problem, the task is canceled with the specified exception code.

If you detect a recoverable error in a step procedure that is using an
independent recovery unit that is not participating in a distributed
transaction, you can roll back the recovery unit and repeat the recovery
unit in the step procedure.

• Handling nonrecoverable errors

If an unexpected error occurs, the procedure signals the error information
returned by RMS. If the procedure signals a fatal OpenVMS exception,
ACMS writes the error to the audit trail log, cancels the task, and runs
down the server process. However, if the procedure signals an error or
warning OpenVMS status, ACMS continues executing the step procedure
after writing the error to the audit trail log. The error handler also calls the
ACMS$RAISE_NONREC_EXCEPTION service to ensure that the task is
canceled.

The following example illustrates how to handle RMS errors using COBOL. In
this example, the error-handling code in the Declaratives section uses the RMS
error status when checking for record locks because COBOL returns error 30 for
all but the record-locked error.

.

.

.
PROCEDURE DIVISION USING emp_wksp_record GIVING return_status.

DECLARATIVES.
employee_file SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON emp_file.

employee_file_handler.
EVALUATE TRUE

WHEN ((RMS-STS OF emp_file = RMS$_RLK) OR
(RMS-STS OF emp_file = RMS$_DEADLOCK))

CALL "ACMS$RAISE_TRANS_EXCEPTION" USING
BY REFERENCE ACMS$_TRANSTIMEDOUT

WHEN ((RMS-STS OF emp_file = RMS$_NRU) OR
(RMS-STS OF emp_file = RMS$_DDTM_ERR))

CALL "ACMS$RAISE_TRANS_EXCEPTION" USING
BY REFERENCE RMS-STS OF emp_file

Accessing Resource Managers 4–47

Accessing Resource Managers
4.4 Using RMS

WHEN OTHER
CALL "LIB$SIGNAL" USING

BY REFERENCE RMS-STS OF emp_file,
BY REFERENCE RMS-STV OF emp_file

CALL "ACMS$RAISE_NONREC_EXCEPTION" USING
BY REFERENCE RMS-STS OF emp_file

END-EVALUATE.
END DECLARATIVES.

MAIN SECTION.
000-start.

MOVE persmsg_success TO return_status.

MOVE emp_badge_number OF emp_wksp_record TO
emp_badge_number OF employee_record.

READ emp_file RECORD
ALLOWING NO OTHERS
KEY IS emp_badge_number OF employee_record
INVALID KEY

MOVE persmsg_empdeleted TO return_status
GO TO 999-end

END-READ.

IF emp_last_update OF employee_record = emp_last_update OF emp_wksp_record
THEN

CALL "SYS$GETTIM" USING
BY REFERENCE emp_last_update OF emp_wksp_record
GIVING return_status

IF return_status IS FAILURE
THEN

CALL "LIB$STOP" USING BY VALUE return_status
END-IF

REWRITE employee_record FROM emp_wksp_record
ALLOWING NO OTHERS
INVALID KEY

CALL "ACMS$RAISE_NONREC_EXCEPTION"
USING RMS-STS OF emp_file

END-REWRITE

ELSE
MOVE persmsg_empchanged TO return_status

END-IF.

UNLOCK emp_file ALL RECORDS.

999-end.
EXIT PROGRAM.

The following example illustrates how to handle RMS errors using BASIC. Note
that the EXIT HANDLER statement is used to resignal the error and exit the
error handler in BASIC.

FUNCTION LONG pers_change_employee_proc(employee_record emp_wksp)

%INCLUDE "pers_files:pers_common_defns"
%INCLUDE %FROM %CDD "pers_cdd.employee_record"

DECLARE LONG sts

MAP (emp_map) employee_record emp_rec

4–48 Accessing Resource Managers

Accessing Resource Managers
4.4 Using RMS

WHEN ERROR IN
GET # emp_file, &

KEY # 0 EQ emp_wksp::emp_badge_number, &
ALLOW NONE, &
WAIT 20

IF emp_rec::emp_last_update = emp_wksp::emp_last_update &
THEN

MOVE TO # emp_file, emp_wksp
sts = SYS$GETTIM(emp_rec::emp_last_update BY REF)
IF (sts AND 1%) = 0% &
THEN

CALL LIB$STOP(sts)
END IF
UPDATE # emp_file
pers_change_employee_proc = persmsg_success

ELSE
pers_change_employee_proc = persmsg_empchanged

END IF
UNLOCK # emp_file

USE
SELECT ERR

CASE basicerr_record_not_found
pers_change_employee_proc = persmsg_empdeleted

CASE basicerr_record_locked, &
basicerr_deadlock, &
basicerr_wait_exhausted

CALL ACMS$RAISE_TRANS_EXCEPTION(ACMS$_TRANSTIMEDOUT)

CASE ELSE
IF (RMSSTATUS(emp_file) = RMS$_NRU) OR &

(RMSSTATUS(emp_file) = RMS$_DDTM_ERR) &
THEN

CALL ACMS$RAISE_TRANS_EXCEPTION(RMSSTATUS(emp_file))
ELSE

CALL ACMS$RAISE_NONREC_EXCEPTION(RMSSTATUS(emp_file))
EXIT HANDLER

END IF
END SELECT

END WHEN

END FUNCTION

Accessing Resource Managers 4–49

5
Using Message Files with ACMS Tasks and

Procedures

At times, tasks and procedures need to return messages to users telling them,
for example, that information they requested is locked by another user, that
information they typed is not valid for the file the task is using, or that other
errors have occurred. You can simplify returning messages to users by setting
up a message file that contains the text of messages you want to display. If you
set up a message file, you can change the text of messages without having to
recompile and relink the procedures and definitions in the application.

This chapter discusses the following topics:

• Creating a source file of messages, including setting up message file
characteristics and writing messages

• Using the MESSAGE command to create two output files from your input
message file

• Displaying user-defined messages by returning message names from
procedures and using the GET MESSAGE clause to retrieve messages from
the message file and display messages to users

For more information on creating message files than is in this chapter, see
OpenVMS Command Definition, Librarian, and Message Utilities Manual.

5.1 Creating Source Files of Messages
A message source file has two main parts:

• Statements that apply to the entire message source file; they define
characteristics of the message file. These statements are in the first two
lines of the following example.

• Error messages, grouped by the facility to which they apply. These are in the
remaining lines of the following example.

.TITLE VRMSG Messages for AVERTZ

.IDENT /Version 1.0/

.FACILITY VR,1 / PREFIX=VR_

.SEVERITY INFORMATION

MULCURECFND <Multiple customer records found>
MULRSRECFND <Multiple reservation records found>

.END

The following sections explain how to write each part of a message source file.
Example 5–1 contains a complete message source file.

Using Message Files with ACMS Tasks and Procedures 5–1

Using Message Files with ACMS Tasks and Procedures
5.1 Creating Source Files of Messages

5.1.1 Setting Up Message File Characteristics
Three kinds of information can appear in the first part of a message source file,
which contains statements that apply to the entire message file:

• Module name

• Listing title

• Comments

The .TITLE statement defines the object module name, which is assigned to the
object module when you compile the source file using the Message Utility. The
object module does not need to have the same name as the source file or the file
containing the object module, but it is common practice to do so. The maximum
length of the module name is 31 characters.

In the .TITLE statement, include a module name and a listing title. For example:

.TITLE VRMSG Messages for AVERTZ

After the module name (here, VRMSG) is a listing title. If you use the /LIST
qualifier when compiling the source file, the listing title (in this case, Messages
for AVERTZ), appears at the top of each page of the .LIS file. The maximum
length of a listing title is 28 characters.

Optionally, you can use an .IDENT statement after a .TITLE statement to include
additional information (beyond that supplied by the .TITLE statement) in the
object module and the listing file. For example, you can use .IDENT to identify
the version of the file:

.IDENT /Version 1.0/

The Message Utility includes the literal string from the .IDENT statement in the
object module name.

To include comment text in your source file, use an exclamation mark (!). For
example:

! History:
! V1.0 Created 12-May-91.

Comment text helps others understand the message file and documents the
history of the file.

5.1.2 Writing Messages
The main part of a message source file includes the following:

• A .FACILITY statement

• .SEVERITY statements

• A list of message names and their accompanying text

The following sections explain how to write these.

5–2 Using Message Files with ACMS Tasks and Procedures

Using Message Files with ACMS Tasks and Procedures
5.1 Creating Source Files of Messages

5.1.2.1 .FACILITY Statement
You must have at least one .FACILITY statement and one .END statement in a
message file.

The following example illustrates how to use the .FACILITY statement:

.FACILITY VR,1
.
.
.

.END

Always include both a 1- to 9-character facility name and a facility number in
each .FACILITY statement. In the example, VR is the facility name. Separate
the facility name and the facility number with either a comma, one or more
spaces, or tabs. The name used in a .FACILITY statement does not need to be
unique in the message file.

The number in the .FACILITY statement must be a decimal value in the range
of 1 to 2047. The facility number used must be unique for the facility name. In
the example, 1 is the facility number. For a list of the qualifiers that you can use
with the .FACILITY statement, see OpenVMS Command Definition, Librarian,
and Message Utilities Manual.

The .END statement has no parameters or qualifiers. Always end the file with an
.END statement.

5.1.2.2 .SEVERITY Statements
In each block of messages, group messages by their OpenVMS severity levels.
The five severity level keywords are:

• SUCCESS

• INFORMATION

• WARNING

• ERROR

• FATAL (or SEVERE)

Use these keywords to mark the beginning of a subgroup of messages in the
.SEVERITY statement. For example:

.FACILITY VR,1

.SEVERITY INFORMATION
.
.
.

.END

In message files for ACMS tasks, application developers can write the text
of severity messages. In the AVERTZ sample application, most messages are
either INFORMATION level or WARNING level messages. The messages for
recoverable errors, for example, indicate that an error prevented the procedure
from completing but that the user can recover from the error.

Chapter 3 and OpenVMS RTL Library (LIB$) Manual contain more information
about severity levels.

Using Message Files with ACMS Tasks and Procedures 5–3

Using Message Files with ACMS Tasks and Procedures
5.1 Creating Source Files of Messages

5.1.2.3 Message Names and Text
Messages contain the following:

• Message name

A message name is part of a message symbol, which ACMS uses to retrieve
messages from a message file. (An explanation of message symbols follows.)

• Message text

Message text is the 1- to 255-byte text displayed on the screen for the
terminal user. Enclose message text in angle brackets (< >) or in quotation
marks (" "). For example:

.FACILITY VR,1

.SEVERITY INFORMATION

MULCURECFND <Multiple customer records found>
MULRSRECFND <Multiple reservation records found>

.END

Note

Never include $FAO directives in message text accessed by the GET
MESSAGE clause. However, message text accessed directly by step
procedures can include $FAO directives. See Chapter 3 for details.

In the previous example, each message text follows a message name
(MULCURECFND, for example). ACMS uses message symbols (rather than
message names) to retrieve message text from the message file. The linker also
uses message symbols to resolve the message symbols in step procedures.

When you compile a message source file, the Message Utility creates a symbol for
each message by putting the facility code and an underscore (_) in front of each
message name.

Follow these guidelines when creating and using message symbols:

• You can define a shorter facility prefix in a message symbol by using a
/PREFIX qualifier with the .FACILITY statement. For example:

.FACILITY VEHICLE,1 / PREFIX=VR_

If you define a prefix, the Message Utility then uses the prefix instead of the
facility name when it creates the message symbol. For example:

VR_MULCURECFND
VR_MULRSRECFND

• Message symbols must be unique in each message file and in all files used by
an ACMS task group. If an ACMS application uses more than one task group,
each message symbol must be unique in all files used by all task groups in
that application.

• If you use message files, make sure that the symbols created by the Message
Utility when you compile the message source file are the same as the message
symbols you define in your procedures. For example:

01 MULCURECFND PIC S9(11) COMP
VALUE IS EXTERNAL VR_MULCURECFND.

5–4 Using Message Files with ACMS Tasks and Procedures

Using Message Files with ACMS Tasks and Procedures
5.1 Creating Source Files of Messages

Example 5–1 shows a complete message source file.

Example 5–1 Source File of Messages

.TITLE VRMSG Messages for AVERTZ

.IDENT /Version 1.0/

.FACILITY VR,1 /PREFIX=VR_

.SEVERITY INFORMATION
MULCURECFND <Multiple customer records found>
MULRSRECFND <Multiple reservation records found>
VEUPGPRF <Vehicle upgrade performed - no charge>
VEDNGPRF <Vehicle downgrade performed - rates adjusted>
CURECUPD <Customer record has been updated in database-hit RETURN to continue>
CURECINS <Customer record has been inserted in database>
CHKINCOMP <Vehicle Checking-in completed successfully - hit RETURN to continue>
CHKOUTCOM <Vehicle Checkout completed successfully - hit RETURN to continue>
RESVCOMP <Vehicle reservation completed successfully - hit RETURN to continue>
VERECFND <Vehicle(s) found in class requested, choose one>
RESSUCCNCLD <Reservation successfully canceled - hit RETURN to continue>

.SEVERITY WARNING
CURECNOTFND <Customer record not found>
RCRECNOTFND <Rental class record not found>
RERECNOTFND <Invalid state/country-reenter valid state/country names>
RSRECNOTFND <Reservation record not found >
SIRECNOTFND <Site record not found, press PF1 S for a list of sites>
VERECNOTFND <No vehicles available for checkout - hit RETURN to continue>
VRHRECNOTFND <Vehicle rental history record not found>
NOTCHKOUT <Vehicle not checked out>
RESCNCLD <Reservation was canceled - reenter data or PF1 Q to quit>
CARCHKIN <Reservation archived,car checked in,paid in full>
CARCHKOUT <Vehicle has already been checked out - reenter data or PF1 Q to quit>
RESCLOSED <Reservation archived,car checked in,payment pending>
DLRENOTFND <Invalid Driver’s license state/country>
NOCANCEL <Reservation cannot be canceled at this stage>
INACTIVE <Please enter data or task will be canceled due to inactivity>
DDTM_TIMEOUT <The distributed transaction timed out --- please retry>

.SEVERITY ERROR
NO_DUP <Duplicate database key>
DEADLOCK <Database deadlock>
INTEG_FAIL <Database integrity failure>
LOCK_CONFLICT <Database lock conflict>
CAR_UNAVAILABLE <Vehicle unavailable - hit RETURN to continue>
CHK_CANCL_ERR <Error in checkout or cancel reservation>
HIST_WRITE_ERR <Error in writing to history file>
UPDATE_ERROR <Error updating file>

.SEVERITY FATAL
BILLERR <Bill computation error - canceling transaction>
DB_FATAL <Fatal database error - check audit log>
ICRECNOTFND <ID increment control record not found>

.END

Example 5–1 lists the messages available to tasks in the AVERTZ Vehicle
Rental task group. For example, the example lists both CURECNOTFND and
RCRECNOTFND under a .SEVERITY WARNING statement. When you compile
the file, the Message Utility sets the low three bits of the longwords representing
the message symbols to the binary value corresponding to WARNING level (000).

Regardless of what the error level was when the procedure trapped the error,
if you return CURECNOTFND or RCRECNOTFND as status values of your
procedure, the error level of the return status is WARNING. For information on
returning status values, see Chapter 3.

Using Message Files with ACMS Tasks and Procedures 5–5

Using Message Files with ACMS Tasks and Procedures
5.2 Compiling Message Files

5.2 Compiling Message Files
To use message files with ACMS applications, create two output files from your
source file:

• The image (.EXE) file containing the message texts and their corresponding
symbols. This file is a shared image.

• Object module containing pointers to the .EXE message file.

Figure 5–1 shows the steps you take and the files you create when you compile
message files. Following the figure are numbered instructions that correspond to
the numbers in the figure.

Figure 5–1 Creating Message Files

.EXE$MESSAGE/ _PTR

.EXE

.OBJ

Message Object

Message

Message Utility

Message Utility

Message Source File

.MSG

Message File

TAY-0158-AD

LINK/$MESSAGE/

LINK

Procedure

2

1
4 5

3

Modules Pointer
Server Image

Object Modules

SHARE

FILE_NAME

OBJECT

.OBJ

1. Edit a message file (.MSG) with an editor.

Follow the instructions in Section 5.1 to create a source file containing the
text of messages.

2. Create the object module (.OBJ) containing the message text from the
message file by running the Message Utility with the /OBJECT qualifier. For
example:

$ MESSAGE /OBJECT=VRMSG.OBJ VRMSG.MSG

The optional /OBJECT qualifier defines the name of the object module. If
you omit the qualifier (and do not use /NOOBJECT), the utility assigns the
file name of the input file to the object module with a file type of .OBJ. The
default file type for the input file is .MSG.

3. Create an .EXE message file by using the LINK command with the /SHARE
qualifier. For example:

$ LINK /SHARE=VRMSG.EXE VRMSG.OBJ

The /SHARE qualifier defines the name of the shareable image to be created
by the Linker. If you omit the file name from the /SHARE qualifier, the
Linker assigns the file name of the input file to the object module output file,
giving the output file a file type of .EXE. The default file type for the input
file is .OBJ.

5–6 Using Message Files with ACMS Tasks and Procedures

Using Message Files with ACMS Tasks and Procedures
5.2 Compiling Message Files

4. Create an object module that points to the .EXE message file containing the
message text by running the Message Utility again, using the /FILE_NAME
qualifier with the MESSAGE command. For example:

$ MESSAGE /FILE_NAME=ACMS$EXAMPLES:VRMSG.EXE/OBJ=VRMSG_PTR VRMSG

When you use this command, the Message Utility creates an object module
named VRMSG_PTR.OBJ. This object module contains the message symbols
from the source file, but points to VRMSG.EXE for the text corresponding to
those symbols. The default file name for the text message file is the same file
name as the source file; the default file type is .EXE.

Always include the device and directory specification for the text message
file. Otherwise, ACMS looks for the text message file in the same directory as
the ACMS software. Make sure that the name you use in the /FILE_NAME
qualifier is the same as the name of the file you created with the LINK
command.

5. After creating the pointer object module, link it into the procedure server
images for all servers that handle tasks using that message file. The
procedure server image contains all the modules for the procedure server,
including step, initialization, and termination procedures; the message object
module; and the server control object module created by the BUILD command
of the Application Definition Utility. For example:

$ LINK /DEBUG /EXE=VR_SERVER.EXE VR_SERVER.OBJ, -
_$...,VRMSG_PTR

This example is an abbreviated version of the LINK command. See Chapter 6
for instructions and examples of full LINK commands.

Do not link the text message file into the server image. The .EXE file created
with the MESSAGE command is separate from the server image, in the same
way that a run-time library is separate from a program.

If you need to change the wording of a message, change the message source file;
then use the MESSAGE and LINK commands to create a new text message file
(.EXE). You do not need to relink the procedure server image. For example:

$ MESSAGE /OBJ=VRMSG.OBJ VRMSG.MSG
$ LINK/SHARE=VRMSG.EXE VRMSG.OBJ

If you change only the message text, you do not need to create a new object
module pointer file. However, if you add a new message, delete a message,
change the order of messages in the file, or change a message symbol, you must
create a new object module pointer file and relink the server image to include
that new module (steps 4 and 5). Otherwise, the symbols in the message file and
in the server image do not correspond to one another.

5.3 Displaying User-Defined Messages
After you define error messages in a message file, you can return message names
from a server procedure and have the task calling the procedure trap for errors.
Follow these steps for returning and displaying user-defined messages:

1. Define all symbols that you want a procedure to return as external to the
program. In COBOL, use the VALUE IS EXTERNAL clause in the procedure.
For example:

01 CURECNOTFND PIC S9(11) COMP
VALUE IS EXTERNAL VR_CURECNOTFND.

Using Message Files with ACMS Tasks and Procedures 5–7

Using Message Files with ACMS Tasks and Procedures
5.3 Displaying User-Defined Messages

In the previous example, the message name is CURECNOTFND; the message
symbol is VR_CURECNOTFND.

In BASIC, use the EXTERNAL CONSTANT statement to define the message
symbol in the procedure. For example:

EXTERNAL LONG CONSTANT VR_CURECNOTFND

You can define return values either in the program or in a library file of
values.

2. In the procedure, move the message name into the return-status workspace.
For example:

SQL-NOT-FOUND.
* If no customer record was found, return warning status.

IF CTRL_KEY = "CUSID" THEN
MOVE CURECNOTFND TO RET-STAT

. . .
END-IF.

When a procedure returns a value in a return status field, ACMS does the
following:

• Stores the return status values in ACMS$L_STATUS field of the
ACMS$PROCESSING_STATUS workspace.

• Sets the value of the ACMS$T_SEVERITY_LEVEL field; here, the value
is set to W (warning).

• Also sets the value of the ACMS$T_STATUS_TYPE field; here, the value
is set to B (bad).

Chapter 3 explains fields in the ACMS$PROCESSING_STATUS workspace.

3. Have the task definition check the ACMS$T_STATUS_TYPE field of the
ACMS$PROCESSING_STATUS workspace.

Include the GET MESSAGE clause in the task definition to direct ACMS to
store the error message associated with the message symbol in the ACMS$T_
STATUS_MESSAGE workspace. For example:

ACTION IS
IF (ACMS$T_STATUS_TYPE = "B") THEN

GET MESSAGE INTO vr_control_wksp.messagepanel;
GOTO PREVIOUS EXCHANGE;

END IF;

According to the previous instructions, ACMS checks the ACMS$T_STATUS_
TYPE field. If it is B (bad), ACMS retrieves the error message. ACMS then
goes to the previous exchange step in the task definition to display the error
message.

5–8 Using Message Files with ACMS Tasks and Procedures

6
Building Procedure Server Images

After writing procedures for ACMS tasks, you must compile and link those
procedures. You compile procedures as you do any other program. However, you
do not link and run ACMS procedures as you do an OpenVMS image, because
ACMS procedures are not independent programs.

The first section of this chapter contains the steps necessary to build a procedure
server image, including compiling and linking commands that you use to debug
procedures later. The chapter also explains the run-time operation of server
processes and describes the files that you need to create to debug an ACMS
application. Finally, the chapter tells how to use a procedure object library.

6.1 Steps in Building a Procedure Server Image
Procedures that you write for ACMS tasks run under the control of ACMS. Each
performs only part of the processing for a task; the task definition takes care of
the rest of the processing. Before you can debug tasks and the procedures that
run in those tasks, you need to link the object code of procedures together with
the procedure server transfer module and the message object module. You link all
of these into a procedure server image (.EXE).

A simplified list of the order of operations for building a procedure server image
follows.

1. Write the source code of the procedure.

2. Compile the source code into a procedure object module.

3. Create any message files you want to use; compile and link them.

4. Build the task group, which creates both a task group database (.TDB) and a
procedure server transfer module (.OBJ).

5. Link the procedure server transfer module, server procedure object modules,
and message pointer object modules to create a procedure server image.

Figure 6–1 shows the steps that you need to take and the files that you use when
you create a procedure server image. The steps are labeled 1 through 5 in the
diagram. The example in the figure is a procedure that is a COBOL program.

Building Procedure Server Images 6–1

Building Procedure Server Images
6.1 Steps in Building a Procedure Server Image

Figure 6–1 Creating a Procedure Server Image

.TDB

.EXE

BUILD

.OBJ

LINK

$MESSAGE/ _PTR

.EXE

.OBJ

.OBJ

Procedure

Procedure

Message

Message

Message Utility

Message Utility

Message Source File

Procedure

.COB

.MSG

Task Group

Procedure

Message File

TAY-0159-AD

LINK/

Compile

$MESSAGE/

21

4

3

5

GROUP

Source Files

FILE_NAME

OBJECT

Object Modules

SHARE

.OBJ
Object
Modules
Pointer

Server Image

Server
Transfer
Module

Database

Object Modules

The following sections explain the steps for creating a procedure server image.
The sections correspond to the steps in Figure 6–1.

6.1.1 Writing the Source Code of the Procedure
Follow the instructions in Chapter 3 for writing step procedures. Follow the
instructions in Chapter 2 for writing initialization, termination, and cancel
procedures.

6.1.2 Compiling the Source Code into a Procedure Object Module
Compiling step, initialization, termination, and cancel procedures is similar to
compiling any program. You use the same commands, create the same output
files, and expect the same kinds of errors, such as missing periods in COBOL or
missing ampersands in BASIC. For information on compiling source programs
and correcting compile-time errors, see the reference manual and user’s guide for
the language you are using.

If you plan to debug a high-level language procedure later, you might want to
include the OpenVMS debug symbol table in the procedure when you compile it.
For example, if you use the COBOL command to compile a procedure, use the
/DEBUG qualifier in the command line:

$ COBOL/DEBUG VR_FIND_SI_PROC

The file name of the procedure in the example is VR_FIND_SI_PROC.

Figure 6–2 shows the relationship between procedure source files and their
file names when they are compiled to create object modules. (These are the
file names that you use when you link object modules in step 5.) The example
uses COBOL step, initialization, and termination procedures from the AVERTZ
application.

6–2 Building Procedure Server Images

Building Procedure Server Images
6.1 Steps in Building a Procedure Server Image

Figure 6–2 Compiling Source Code into Object Modules

TAY-0160-AD

Step Procedure

Step Procedure

Initialization Procedure

Termination Procedure

VR_GET_CUSTOMER_PROC.COB

VR_MOVE_CU_PROC.COB

VR_INIT.COB

VR_TERM.COB

VR_GET_CUSTOMER_PROC.OBJ

VR_MOVE_CU_PROC.OBJ

VR_INIT.OBJ

VR_TERM.OBJ

Object Modules CreatedCOBOL Source FileType of Procedure

COBOL Compiler

Legend:

6.1.3 Creating, Compiling, and Linking Message Files
Chapter 5 explains how to create, compile, and link message files. When you use
the Message Utility a second time, you create a pointer object module, which is a
file that you link into the procedure server image in step 5.

6.1.4 Building the Task Group
When you build a task group, you create both a task group database (.TDB) and
a procedure server transfer module (.OBJ). For example:

ADU> BUILD GROUP VR_TASK_GROUP

HP ACMS for OpenVMS Writing Applications contains detailed instructions for
building a task group.

To use the ACMS Task Debugger EXAMINE and DEPOSIT commands, include
the /DEBUG qualifier with the BUILD GROUP command. For example:

ADU> BUILD GROUP VR_TASK_GROUP/DEBUG

Chapter 7 contains instructions for debugging tasks.

6.1.5 Linking the Object Code of Procedures
Link the object code of procedures with the procedure server transfer module into
a procedure server image. Before linking, you can place files in a procedure object
library. Doing so allows you to track insertion into the library and simplifies
the job of creating a server image. Using procedure object libraries also reduces
linking time. See Section 6.2 for more information about using an object library.

You use the DCL LINK command to combine the following object modules into an
executable (.EXE) file:

• Procedure server transfer module created for that server by the BUILD
command of ADU

• All step procedures for all tasks in the task group that use that server

• Initialization, termination, and cancel procedures (if any) for the server

• Any procedures called as cancel actions by tasks using the server

Building Procedure Server Images 6–3

Building Procedure Server Images
6.1 Steps in Building a Procedure Server Image

Figure 6–3 shows the relationship between the task group definition and object
modules when they are linked to create a procedure server image.

Figure 6–3 Linking Object Modules into a Procedure Server Image

.

VR_GET_CUSTOMER_PROC

VR_MOVE_CU_PROC

VR_INIT

VR_TERM

TAY-0161-AD

Server_Transfer_Module

VR_SERVER.EXE

.

.

PROCEDURE SERVER IMAGE IS "VR_SERVER.EXE";

VR_GET_CUSTOMER_PROC,

DEFAULT OBJECT FILE IS "VR_SERVER.OBJ";

SERVER IS VR_SERVER:

PROCEDURES ARE

VR_MOVE_CU_PROC;
INITIALIZATION PROCEDURE IS VR_INIT;

REPLACE GROUP VR_TASK_GROUP

.

.

.

TERMINATION PROCEDURE IS VR_TERM;.
.
.

END SERVER;

END DEFINITION;

Follow these guidelines when using the LINK command:

• In the LINK command, include all of the procedures that are named in the
server definition in the task group.

The LINK command creates a server image named from the first module
named in the command line, and places it in your default directory. Use the
optional /EXE qualifier to explicitly assign a name to the server image. For
example:

$ LINK/DEBUG/EXE=VR_SERVER.EXE ...

In the example, the name assigned to the executable file is VR_SERVER.EXE.
If you do not use the qualifier, the Linker uses the file name of the first object
module in the LINK command as the name of the server image. The default
file type is .EXE.

• Include the /DEBUG qualifier in the LINK command if you want to debug the
procedures in the server.

• Use the same name for the server image in the LINK command as you do in
the IMAGE clause of the task group definition. For example:

REPLACE GROUP VR_TASK_GROUP
.
.

SERVER IS
PROCEDURE SERVER IMAGE IS "VR_SERVER.EXE";

In the LINK command, the first object module that you name is the procedure
server transfer module; in the example, it is called VR_SERVER.OBJ. You
can assign a name to the procedure server transfer module in the task group
definition, in the SERVER IS statement. For example:

6–4 Building Procedure Server Images

Building Procedure Server Images
6.1 Steps in Building a Procedure Server Image

SERVER IS
PROCEDURE SERVER IMAGE IS "VR_SERVER.EXE";
.
.
.
DEFAULT OBJECT FILE IS "VR_SERVER.OBJ";

You might also prefer to include a logical with file names. For example:

PROCEDURE SERVER IMAGE IS "PRODUCTION:VR_SERVER.EXE";

• If you plan to debug a server image later, do not use the /NOTRACEBACK
qualifier on the LINK command. You can still start the server with the
Task Debugger if you link the server with /NOTRACEBACK. However, you
cannot debug it because the OpenVMS Debugger cannot be invoked while a
program linked without traceback information is running. Also, if you use the
INTERRUPT command to access the OpenVMS Debugger in that server, the
server stops.

Example 6–1 shows a LINK command example for a server that uses SQL.

Example 6–1 LINK Command for a Procedure that Uses SQL

$ LINK/DEBUG/EXE=VR_SERVER.EXE VR_SERVER.OBJ,-
_$ ACMS$SAMPLES:VR_TERM,-
_$ ACMS$SAMPLES:VR_GET_CUSTOMER_PROC,-
_$ ACMS$SAMPLES:VR_MOVE_CU_PROC,-
_$ ACMS$SAMPLES:VR_INIT,-
_$ SYS$LIBRARY:SQL$USER/LIB

When linking a server image containing procedures called by tasks that use the
WITH SQL RECOVERY phrase, you must reference the ACMS SQL library in
SYS$LIBRARY immediately after the transfer vector object module name. As the
last item, link the SQL library file that is found in SYS$LIBRARY. When you use
the WITH SQL RECOVERY phrase in the task definition, if you do not reference
the correct libraries in the correct order, you can receive unpredictable run-time
errors.

Example 6–2 shows a complete LINK command for a server image containing
procedures called by tasks that use the WITH SQL RECOVERY phrase.

Example 6–2 LINK Command for Servers Called by Tasks that Use the SQL
RECOVERY Phrase

$ LINK/DEBUG/EXE=VR_SERVER.EXE VR_SERVER.OBJ,-
_$ SYS$LIBRARY:ACMSSQL/LIB,-
_$ ACMS$SAMPLES:VR_GET_CUSTOMER_PROC,-
_$ ACMS$SAMPLES:VR_MOVE_CU_PROC,-
_$ ACMS$SAMPLES:VR_INIT,-
_$ SYS$LIBRARY:SQL$USER/LIB

The ACMSSQL library is not required if the SQL database transactions are
started by the step procedures in the server, not in the task definition.

When linking procedure server code, if the task definition uses Rdb recovery, then
include the following two statements in your link option file:

PSECT_ATTR=RDB$TRANSACTION_HANDLE,LCL,NOSHR
PSECT_ATTR=RDB$DBHANDLE,LCL,NOSHR

Building Procedure Server Images 6–5

Building Procedure Server Images
6.1 Steps in Building a Procedure Server Image

Because of an Rdb restriction, the link is not upward compatible; therefore, you
need to relink the server for each new version of Rdb.

6.2 Using an Object Library for Procedures
In many cases, it is more convenient to place all the object modules for your
procedures in a procedure object library before linking the server image. A
procedure object library allows you to track insertion into the library by using the
following command:

$ LIBRARY/LIST/FULL library_name

Using a library also simplifies the job of creating a server image. Finally, using
object libraries also reduces link time.

After compiling the procedures for a server and correcting the compilation
errors, use the OpenVMS LIBRARY command to put the object modules in your
procedure object library. If the library does not exist, create it. For example:

$ LIBRARY VR_PROC.OLB /CREATE

To place modules in the library, use the /INSERT qualifier in the LIBRARY
command. For example:

$ LIBRARY/INSERT VR_PROC.OLB VR_FIND_SI_PROC.OBJ

The first name used in the LIBRARY command is the procedure object library; its
default file type is .OLB. The second name is the file containing the object module
to be placed in the library. In this case, the name of the file is VR_FIND_SI_
PROC.OBJ in the default device and directory.

If you use an object library for your procedures, use the /LIBRARY qualifier to
identify the object library when you link the server image. For example:

$ LINK/DEBUG VR_SERVER, VR_PROC/LIBRARY

In this example, VR_SERVER is the name of the procedure server transfer
module (.OBJ) created by building the task group containing that server. The
procedure object library is identified as VR_PROC.OLB. By using the /LIBRARY
qualifier, you indicate that all modules referenced by VR_SERVER.OBJ are to be
taken from the VR_PROC.OLB library and included in the server image.

For more information on using a procedure object library, see OpenVMS
Command Definition, Librarian, and Message Utilities Manual.

6–6 Building Procedure Server Images

7
Debugging Tasks and Procedures

After writing server procedures for tasks, you need to test procedures for errors.
You compile procedures as you would any other program, but, because ACMS
procedures are not independent programs, you do not link, run, and debug server
procedures as you would an OpenVMS image.

Server procedures run under the control of ACMS and perform only part of the
processing for a task. The task definition takes care of the rest of the processing.
You need to debug tasks and the procedures that are called by tasks at the same
time to be sure that tasks and procedures work together as they should.

This chapter discusses the following topics:

• Using debugging tools

• Preparing to use the ACMS Task Debugger

• Using the ACMS Task Debugger to step through the execution of individual
tasks

• Using the OpenVMS Debugger to step through the execution of server
procedures

• Returning to the ACMSDBG> prompt

• Debugging tasks that are called by user-written agent programs

7.1 Using Debugging Tools
You use several tools to debug ACMS tasks and procedures:

• ACMS Task Debugger

The ACMS Task Debugger provides an environment for testing tasks and
server procedures without building an entire ACMS application. The Task
Debugger lets you control a task while the task is running. You can set
breakpoints at the beginning of the task, at the beginning of any step in
the task, at the action part of any step, and at the end of any step. Once
you reach a breakpoint in the task, you can examine and deposit values in
workspaces and then resume the execution of the task.

• OpenVMS Debugger

The OpenVMS Debugger lets you control the procedures called by the
task. You use the OpenVMS Debugger in the same way as you use it with
any program. For example, you can use the OpenVMS Debugger to set a
breakpoint in the procedure after the procedure reads a record; when you
reach the breakpoint, you can examine and deposit data in variables and then
resume execution of the procedure. You also use the OpenVMS Debugger
to check whether your procedures perform properly or not and to debug HP
DECforms escape routines.

Debugging Tasks and Procedures 7–1

Debugging Tasks and Procedures
7.1 Using Debugging Tools

• HP DECforms Trace Facility

In addition to ACMS and OpenVMS facilities for debugging tasks, you
can also use the HP DECforms trace facility. This facility logs processing
information at run time to help you debug both your applications and
your form. The trace facility uses the logical names FORMS$TRACE and
FORMS$TRACE_FILE. See DECforms Guide to Commands and Utilities for
more information about the HP DECforms trace facility.

Chapter 10 contains reference information on all of the ACMS Task Debugger
commands. In general, you use Task Debugger commands to do the following:

• Start, stop, and assign logical names for the servers you are going to use

• Start, stop, and step through a task

• Display and change workspace contents while a task is running

When you select a task to debug, the ACMS Task Debugger starts the task. When
the task reaches a breakpoint, you can enter commands to continue running the
task, display the contents of workspaces, change the contents of workspaces, or
display information about ACMS Task Debugger commands.

By examining and changing workspace contents, variable assignments, and
other values, you can find most of the errors in the definitions or procedures
for your tasks. You can look for inconsistencies between workspaces in form
definitions, task definitions, and procedures. You can also check that logical
names in procedures or definitions point to the correct files and that files have
correct protection codes. Finally, you can check for error conditions that are not
handled by the server procedures or the task definition.

7.2 Preparing to Use the ACMS Task Debugger
Before you can debug ACMS tasks, you need to:

• Prepare definitions and build a task group.

• Prepare procedures by compiling and linking them.

• Check to make sure that all the files you need are complete.

• Define logical names and prepare DECforms escape routines for debugging, if
necessary.

Before you debug, you need to check a number of quotas to make sure that the
ACMS Task Debugger can be run. If you plan to debug using two terminals, you
also need to complete additional preparatory steps. Finally, to debug a task called
from a user-written agent program, you must complete additional preparatory
steps, which are explained in Section 7.6.

7.2.1 Preparing Definitions
Before debugging a task, be sure to complete the following steps:

1. Use the Common Dictionary Operator (CDO) Utility to define all fields,
records, and workspaces used by the task.

2. Use HP DECforms to define all forms for the task.

3. Use the Application Definition Utility (ADU) to define the task and the task
group.

7–2 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.2 Preparing to Use the ACMS Task Debugger

Because tasks involve both code and definitions, it is important to understand
all parts of the task to debug it. The primary definition you must understand
is the task definition. For a detailed explanation of task definitions, see HP
ACMS for OpenVMS Writing Applications.

4. Use the ADU BUILD command to create a task group database from the task
group definition. To use the ACMS Task Debugger EXAMINE and DEPOSIT
commands, include the /DEBUG qualifier with the BUILD GROUP command.
For example:

ADU> BUILD GROUP/DEBUG VR_TASK_GROUP

You can use the EXAMINE and DEPOSIT commands to examine or deposit
data into the workspaces when you debug the task.

7.2.2 Preparing Procedures
It is easier to debug procedures if you compile and link them with the /DEBUG
qualifier. Using the /DEBUG qualifier makes more information available to the
OpenVMS Debugger. For example:

$ COBOL/DEBUG VR_FIND_SI_PROC
$ LINK/DEBUG/EXE=VR_SERVER.EXE VR_SERVER.OBJ,-
.
.
.

After you compile and link the procedures called by a task, you can run the task
in the ACMS Task Debugger. The task you run is a real one; when the task is in
daily use, ACMS runs the same definitions and code as the ones you test.

To protect business data, you can set up test files to run against the task. For
example, if your procedures use logical names to identify files, create a set of data
files in another directory, and temporarily redefine the logical names to point to
that directory. See Section 7.2.3 for an explanation of the two methods of defining
logical names.

While debugging, keep in mind the relationship between a server procedure, a
task, and a task group:

• If you make a change in a server procedure, you must compile the server
procedure and relink the server image to include the new object module.

• If you revise a task or task group definition, you must rebuild the task group
using ADU.

One of the difficult parts of debugging a task is making sure that all the files you
need are complete. Chapter 6 explains the steps you take to build a procedure
server image. After completing those steps, check that all the files are ready.
Figure 7–1 shows the files needed for debugging and depicts how you produce
those files from CDD definitions, source programs, and message source files.

Debugging Tasks and Procedures 7–3

Debugging Tasks and Procedures
7.2 Preparing to Use the ACMS Task Debugger

Figure 7–1 Files Needed for Debugging

.TDB

.EXE

.EXE

.OBJ

LINK

$MESSAGE/
FILE_NAME

CDD

_PTR
.OBJ

.EXE

.OBJ

.OBJ

Record Definition

Records, Tasks,
Task Groups

Procedure
Server
Transfer
Module

Procedure
Object Modules

Message
Object
Modules
Pointer

Message
Object Modules

Message Utility

Message Utility

Message Source File

Procedure
Source Files

.COB

.MSG

Files Needed
for Debugging

DECforms Form

Task Group
Database

Procedure
Server Image

Message File

TAY-0163-AI

CDD Definitions

Build
Form

Compile

Records

Task Group

Record

Task

Form File

$MESSAGE/
OBJECT

BUILD
GROUP

LINK/
SHARE

Table 7–1 explains how to produce the files needed to run a task with the ACMS
Task Debugger.

Table 7–1 Files Needed for Debugging

Files Description

DECforms form files Created using DECforms.

Data files or database
files for the task group

Created and populated using either RMS, DBMS, or Rdb.

Message files for the
task group

Created with the OpenVMS Message Utility. You need these
files if your tasks use the GET MESSAGE clause.

Procedure server images Created with the DCL LINK command. These files contain
executable images of the procedure server transfer module,
message file module, and all procedures for the task group.

Task group database
(.TDB)

Created with the BUILD GROUP command of the ACMS
Application Definition Utility (ADU). This file contains
information used by ACMS to run tasks.

7–4 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.2 Preparing to Use the ACMS Task Debugger

7.2.3 Defining Logical Names
Most task groups and server procedures use OpenVMS logical names. If this is
the case in your ACMS application, you must define these logical names before
you start a debugging session. For example, the AVERTZ task group definition
specifies that it uses the message file AVERTZ_DEFAULT:VRMSG.EXE. If the
logical name AVERTZ_DEFAULT is not defined when you attempt to start the
debugging session, the Task Debugger cannot find the message file, and therefore
cannot start.

Some of the logical names used by your task group and server procedures might
have already been defined. In the previous example, the AVERTZ application
might be installed on your system in such a way that the necessary logical names
are available to everyone on the system. In this case, you do not need to define
any logical names in order to run the application. However, if the logical names
are not defined, or if you want to test your own private copy of a file, you must
define the logical names that point to that file. Also, be sure to define logical
names in a way that does not affect other users on the system.

To define logical names, you need some information about the processes that
are used in a debugging session. When you use the ACMS/DEBUG task-group
command, you run the ACMS Task Debugger image in your process. For this
reason, any logical names that are available to your process are also available to
the Task Debugger.

However, when the Task Debugger starts a server, it creates the server as a
subprocess of your process. When this server process is created, it has access to
the same logical name tables as the Task Debugger process, with the exception
of the Task Debugger’s process logical name table. Instead of using the Task
Debugger process logical name table, each server is created with its own process
logical name table.

The logical names that must be available to the Task Debugger process include
the logical names pointing to:

• Form files

• Message files

• Request library files

The logical names that the server process must have access to are:

• Logical names pointing to the procedure server image

• Logical names used in server procedures

With this information, you can decide which logical name tables to use in different
situations. Generally, if you want the Task Debugger and the server process to
use the same definition of a logical name, define the logical in a logical name
table that is shared by the Task Debugger process and the server subprocess. You
can do this in one of two ways:

• To do this in a way that does not affect anyone else on the system, define the
logical as a job logical name. For example:

$ DEFINE/JOB AVERTZ_DEFAULT DSK$:[AVERTZ.PUBLIC]

Debugging Tasks and Procedures 7–5

Debugging Tasks and Procedures
7.2 Preparing to Use the ACMS Task Debugger

• Alternatively, define logical names in a user-defined logical name table. If
the application uses a user-defined logical name table at run time, there is
one less difference between the debugging environment and the run-time
environment, which makes the transition between the two easier. Follow
these steps:

1. Create the logical name table.

If a logical name table does not already exist, create it. To make the table
shareable, specify the system directory as the parent table. For example:

$ CREATE/NAME_TABLE -
_$ /PARENT_TABLE=LNM$SYSTEM_DIRECTORY my_name_table

This command requires the SYSPRV privilege. If you do not have this
privilege, ask your system manager to create the table for you.

2. Define the logical name in the logical name table.

If the logical name is not defined in the table, define it:

$ DEFINE/TABLE=my_name_table AVERTZ_DEFAULT DSK$:[AVERTZ.PUBLIC]

3. Include the logical name table in the list that the system searches.

If the logical name table is not included in the system default logical
name table list, include it in the logical name table list for your process.
For example:

$ DEFINE/TABLE=LNM$PROCESS_DIRECTORY LNM$FILE_DEV -
_$ LNM$PROCESS, LNM$JOB, my_name_table, LNM$GROUP, LNM$SYSTEM

List the logical name tables in the same order as the name tables will be
defined in the application definition.

See OpenVMS User’s Manual for more information on logical names and logical
name tables.

In some situations, you might not want to share logical names between the Task
Debugger and the server:

• If you want the logical name to be used only by the Task Debugger process,
define the logical name as a process logical name.

• If you want the logical name to be used only by the server process, define
the logical name as a process logical name for the server subprocess. The
only way to do this is to use the Task Debugger ASSIGN command. See
Section 7.3.2 for details.

7.2.4 Preparing to Debug DECforms Escape Routines
If exchange steps in your tasks call HP DECforms, and HP DECforms, in
turn, calls procedural escapes, you need to debug escape routines. Because HP
DECforms escape routines are written in a VAX programming language, you use
the OpenVMS Debugger to debug escape routines. To have more information
available to you while you are debugging, compile escape routines using the
/DEBUG qualifier.

You must complete several preparatory steps before you debug HP DECforms
escape routines. First, you must tell HP DECforms that you want to debug escape
routines by defining the logical name FORMS$DEBUG_ESCAPE_ROUTINES to
be true. This definition tells HP DECforms to activate the OpenVMS Debugger
when it activates the escape routine image for the first time. Because HP
DECforms invokes the OpenVMS Debugger only one time for each image, you

7–6 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.2 Preparing to Use the ACMS Task Debugger

must set breakpoints in your escape routines in order to debug them. See the HP
DECforms documentation for more details on the FORMS$DEBUG_ESCAPE_
ROUTINES logical name.

The next step depends on whether the escape routine you are debugging is linked
into a separate image or linked into the forms image.

Note

Debugging escape routines is much easier if you link the routines into a
separate image.

• For an escape routine linked into a separate image:

Specify the location of the escape routine image. Do this by defining
FORMS$IMAGE to point to the shared image that contains the escape
routine. If you have more than one escape routine image, you can make
FORMS$IMAGE a search list. Refer to the HP DECforms documentation for
more information about defining this logical name.

ACMS uses the ACMS$ESC_RTN_<node>_<application> logical name at
run time to avoid naming conflicts that can occur with multiple applications.
However, the ACMS Task Debugger does not recognize this logical name
because the task group that the Task Debugger uses does not have an
application name. Instead, use the FORMS$IMAGE logical name.

• For escape routines linked directly into the form image:

You must modify your escape routine code to debug it. The escape routine
must initiate the debugging process by invoking the OpenVMS Debugger. Do
this by signaling SS$_DEBUG from the escape routine. For example:

01 debug_symbol pic S9(9) COMP VALUE EXTERNAL SS$_DEBUG
.
.
.
CALL ’LIB$SIGNAL’ USING BY VALUE debug_symbol.

Remember to remove the signal of SS$_DEBUG when you finish debugging.
If you do not define FORMS$DEBUG_ESCAPE_ROUTINES to be true, and
you do not remove the code that signals SS$_DEBUG, your escape routine
will hang.

7.2.5 Setting Up for Debugging with Two Terminals
When debugging ACMS tasks, you control two input/output (I/O) streams:

• Task I/O stream

The task I/O stream handles the terminal I/O defined for the task. For
example, in an inquiry task that reviews car rental reservations, the task I/O
stream handles the form that displays information about the reservations.

• Debugger I/O stream

The debugger I/O stream handles the debugger commands and the
information the debugger displays in response to those commands. For
example, the debugger I/O stream handles the Task Debugger prompt
ACMSDBG>.

Debugging Tasks and Procedures 7–7

Debugging Tasks and Procedures
7.2 Preparing to Use the ACMS Task Debugger

By default, both the task I/O stream and the debugger I/O are attached to the
same terminal. This is necessary if you have only one terminal to use. However,
if two terminals are available to you, you might want to use a separate terminal
for each I/O stream. This is useful when you want to see the task output without
having debugger prompts overwrite it.

The OpenVMS operating system supplies the following logical names that connect
a terminal with the I/O streams:

• SYS$INPUT — Where ACMS looks for task input

• SYS$OUTPUT — Where ACMS sends task output

• DBG$INPUT — Where the debugger looks for input

• DBG$OUTPUT — Where the debugger sends output

OpenVMS defines the logical names SYS$INPUT and SYS$OUTPUT to be the
name of your terminal when you log in (TTA1, for example). The logical names
DBG$INPUT and DBG$OUTPUT default to SYS$INPUT and SYS$OUTPUT.
If you do not reassign DBG$INPUT and DBG$OUTPUT, both I/O streams are
attached to your terminal.

To use a second terminal for the debug stream, assign DBG$INPUT and
DBG$OUTPUT to the second terminal. For example:

$ DEFINE DBG$INPUT TTA6:
$ DEFINE DBG$OUTPUT TTA6:

In this example, the debug streams are assigned to terminal TTA6.

After setting up your I/O streams for two terminals, follow the instructions in the
next section. The breakpoints you set, the commands you use, and the problems
to look for are the same as when you debug from a single terminal. The only
difference is that the terminal I/O and the debugger I/O display at different
terminals. Before starting the debugger, make sure that no one is logged in at
the other terminal. If anyone is logged in at the second terminal, the debugger
cannot allocate and use that terminal.

7.2.6 Verifying that the ACMS Task Debugger Can Be Run
Before starting the ACMS Task Debugger, you need to check that quotas and
system parameters are set correctly:

• Quotas

For each of these, use the DCL command SHOW PROCESS/QUOTA. Make
sure that:

The buffered I/O byte count quota (BYTLM) is at least 50,000.

The enqueue quota (ENQLM) is at least 2,000.

The open file quota (FILLM) is at least 96.

The subprocess quota (PRCLM) is adequate.

The workspace looker process (that is, the process activated if you use
the /WORKSPACE qualifier) and server processes are implemented as
subprocesses. Make sure that your PRCLM is large enough to handle
this.

The AST limit (ASTLM) is at least 24.

The timer queue entry limit (TQELM) is at least 10.

7–8 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.2 Preparing to Use the ACMS Task Debugger

See your system manager if you need higher quotas.

• System parameters

Check with your system manager to make sure that the following system
parameters have values equal to or greater than the ones indicated here:

PQL_DASTLM = 24
PQL_DDIOLM = 20
PQL_DBIOLM = 18
PQL_MDIOLM = 20

7.3 Using the ACMS Task Debugger
When you have completed all of the preparations for debugging ACMS tasks
and procedures, you are ready to debug a task. After you start the ACMS Task
Debugger, assign any additional logical names that you need. Then you can start
the servers needed by a task.

Before running a task in the Task Debugger, however, you usually set breakpoints
so that you can check that information that should be in a workspace is actually
there. You might also want to set breakpoints in procedures to debug them using
the OpenVMS Debugger.

The following sections explain how to start the ACMS Task Debugger; use the
Task Debugger ASSIGN command; start, stop, and interrupt servers; set and
remove breakpoints in tasks; check values in workspaces; and debug transaction
timeout codes. Debugging procedures with the OpenVMS Debugger is described
in Section 7.4.

You can use two control characters when running the Task Debugger. Table 7–2
lists these control characters and explains how to use them.

Table 7–2 Control Characters for the ACMS Task Debugger

Control
Character Function

Ctrl/G Interrupts the current task (if any) and the current Task Debugger
or OpenVMS Debugger command, and returns to the Task Debugger
prompt (ACMSDBG>). Typing GO continues a task interrupted with
Ctrl/G .

Ctrl/Z Equivalent to the EXIT command. If you press Ctrl/Z when you are
at the Task Debugger prompt, the Task Debugger stops all servers,
cleans up all the subprocesses it has allocated, and returns to the DCL
command-level prompt ($).

If you press Ctrl/Z at an OpenVMS Debugger prompt, the debugger
stops the server process you are running in and returns to the Task
Debugger prompt. Any active tasks using that server are canceled.

7.3.1 Starting the Task Debugger
To start the ACMS Task Debugger, you use the ACMS/DEBUG command. For
example:

$ ACMS/DEBUG VR_TASK_GROUP/WORKSPACE

Debugging Tasks and Procedures 7–9

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

In the command, include the name of the task group database file (.TDB)
containing the task or tasks you want to debug; in the example, the task group is
VR_TASK_GROUP. You cannot debug more than one task group at a time. If the
file is not in your default device and directory, include the device and directory
specifications. The default file type is .TDB.

Use the /WORKSPACE qualifier with the ACMS/DEBUG command to examine
and deposit data in workspaces using the Task Debugger. If you do not include
the /WORKSPACE qualifier, you can still look at workspaces when a task is
running in a server. However, you must use /WORKSPACE if you want to look at
workspaces during exchange steps, during the action part of processing steps, or
at the beginning or end of the task.

Once the Task Debugger starts, it displays the ACMSDBG> prompt. You can
then enter any of the Task Debugger commands. Reference information on all the
ACMS Task Debugger commands is in Chapter 10.

7.3.2 Using the Task Debugger ASSIGN Command
ACMS defines process logical names for a server based on logical names that
you define using the Task Debugger ASSIGN command. A logical name that you
assign in the Task Debugger takes effect only when the server starts. Therefore,
if you assign a logical name after a server starts, that name does not take effect.

The following example assigns a logical name for the VR_UPDATE_SERVER
to point to a different directory from the one defined with the DCL DEFINE
command:

ACMSDBG> ASSIGN /SERVER=VR_UPDATE_SERVER [AVERTZ.UNAME] AVERTZ_DEFAULT
ACMSDBG> START VR_UPDATE_SERVER

Note that, unlike the DCL DEFINE command, the directory name precedes
the logical name in the Task Debugger ASSIGN command. (The ACMS Task
Debugger ASSIGN command is patterned after the DCL ASSIGN command.)

The ASSIGN command defines the logical name AVERTZ_DEFAULT to point to
the [AVERTZ.UNAME] directory rather than to the [AVERTZ.PUBLIC] directory.
The /SERVER qualifier names the server that can use this logical name: the
VR_UPDATE_SERVER.

If you are assigning many logical names for a server, use the SET SERVER
command to indicate the server to which the ASSIGN commands apply. If you
use SET SERVER before the ASSIGN command, you do not need the /SERVER
qualifier. For example:

ACMSDBG> SET SERVER VR_UPDATE_SERVER
ACMSDBG> ASSIGN [AVERTZ.UNAME] AVERTZ_DEFAULT

The name included in the SET SERVER command or the /SERVER qualifier must
be the same name used for the server in the task group definition.

7.3.3 Starting, Stopping, and Interrupting Servers
After starting the ACMS Task Debugger, the next step is to start the servers that
handle the tasks you want to debug. The following sections explain how to start,
stop, and interrupt servers.

7–10 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

7.3.3.1 Starting Servers
You can start servers in two ways from the Task Debugger:

• The ACMS Task Debugger automatically starts a server if it is needed to run
a procedure called by the task.

• Alternatively, you can start servers for tasks yourself. You might, for example,
want to debug an initialization procedure without starting a task.

You might need multiple instances of a server when you use distributed
transactions and the task-call-task feature. When you use distributed
transactions, a called task that participates in a distributed transaction started
by a parent task might need to use the same server as the parent task. Different
server processes are started and allocated to the parent and to the called tasks.

The number of active servers allowed for a debugging session is limited. A user
is allowed up to four times the number of servers defined in the task group that
is being debugged. You can, however, allocate the total number of servers allowed
to server instances in any manner you like. For example, if a task group has
two servers, you can start eight server instances. You can, if you like, have eight
instances of one server and none of the other.

Use the START server-name command to start one or more instances of one or
more servers. The following examples show three alternative ways to use the
START command:

• If both a parent and a called task use the same server (in this case, VR_
SERVER), issue a command like the following one to start two instances of
that server:

ACMSDBG> START VR_SERVER, VR_SERVER

• If you will use only one of the servers defined for the task group, include that
server name in the START command:

ACMSDBG> START VR_SERVER

• If the tasks you are debugging use all the servers in a task group or if
only one server is defined for a group, use the /ALL qualifier in the START
command to start any servers that have not been started:

ACMSDBG> START /ALL

You cannot use both the /ALL qualifier and a server name in the same START
command.

When you start a server with the ACMS Task Debugger, ACMS creates the server
process. If the server is a procedure server, the OpenVMS Debugger prompt is
displayed. For example:

ACMSDBG> START VR_SERVER
Terminal is in SERVER VR_SERVER

VAX DEBUG Version V5.4-019
%DEBUG-I-INITIAL - language is COBOL, module set to ’VR_SERVER’
DBG>

The first line after the START server command indicates that the ACMS Task
Debugger has transferred control of the debugging session to the server process.
The OpenVMS Debugger software displays an identifying line showing the
version number. On a separate line, the OpenVMS Debugger names the language
it is using and the module where the program is beginning. The program begins
in the server transfer module, which is produced by building the task group.

Debugging Tasks and Procedures 7–11

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

Therefore, the language displayed comes from the server transfer module rather
than from your server procedure. The default language for the server transfer
module is COBOL. Following these messages, the OpenVMS Debugger displays
the DBG> prompt.

At this point, you can set breakpoints in the server using the OpenVMS Debugger.
You might, for example, want to set a break at the server’s initialization
procedure. Instructions for using the OpenVMS Debugger are in Section 7.4.

To complete the operation of starting the server and return to the ACMS Task
Debugger, enter the GO command:

DBG> GO
Server VR_SERVER has been started
ACMSDBG>

7.3.3.2 Stopping Servers
Once a server starts, it remains available for other tasks until one of the following
occurs:

• You use the Task Debugger STOP command.

• You use the OpenVMS Debugger EXIT command.

• ACMS runs down a server due to a task cancellation.

One way to stop a server is to use the STOP command. For example:

ACMSDBG> STOP VR_SERVER
Terminal is in SERVER VR_SERVER
Server VR_SERVER stopped
ACMSDBG>

If there are multiple instances of a server started when you use the STOP
command, only one instance is stopped. For example:

ACMSDBG> STOP VR_SERVER
Stopping only one instance of server VR_SERVER
Terminal is in SERVER VR_SERVER
Server VR_SERVER stopped
ACMSDBG>

You can stop all instances of all servers with the STOP/ALL command. For
example:

ACMSDBG> STOP/ALL
Terminal is in SERVER VR_SERVER
Server VR_SERVER stopped
Terminal is in SERVER VR_SERVER
Server VR_SERVER stopped
Terminal is in SERVER DCL_SERVER
Server DCL_SERVER stopped
ACMSDBG>

If you use the STOP command, the termination procedure is run for the server. If
you want to debug the termination procedure, you must set a breakpoint at the
termination procedure. If you forget to do this when the server is first started or
while you are debugging step procedures, you can use the INTERRUPT command
to bring the OpenVMS Debugger up in the server.

You cannot issue a STOP command while a task is active. If you want to stop
the server while a task is active, you can interrupt the server and use the EXIT
command at the OpenVMS Debugger prompt. Exiting the server while an active
task has context in the server causes the task to be canceled. For example:

7–12 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

ACMSDBG> INTERRUPT VR_SERVER
Task is in SERVER VR_SERVER
DBG> EXIT
Task is in the task debugger
%ACMSDBG-I-SPDIED, Server VR_SERVER stopped unexpectedly
Processing non-recoverable exception from step $STEP_1 in task VR_RESERVE_TASK
Exception code text:
%ACMS-E-TASK_SP_DIED, Cancel results from the server process dying
Exception code value: 16632498 (decimal), %X00FDCAB2 (hex)
Task was canceled.
ACMSDBG>

The previous example shows that the task is canceled due to a nonrecoverable
error. The nonrecoverable error is that a server that the task was using stopped
unexpectedly. The message also gives the decimal and hexadecimal values of the
exception code.

Another reason a server stops is that a task is canceled while the task has
context in the server, and the server is to run down as a result of a cancel. In
this situation, the termination procedure is called only if you use the ALWAYS
EXECUTE TERMINATION PROCEDURE clause in your server definition. See
Chapter 2 for details on how to determine if a server is run down on a cancel.

7.3.3.3 Interrupting Servers
You can use the INTERRUPT command to interrupt a server and transfer control
to the OpenVMS Debugger. After you enter this command, the OpenVMS
Debugger displays the DBG> prompt. You can then set breakpoints, examine
addresses, or change values in a server that has already been started. Beginning
with ACMS Version 3.2, you can specify an instance of a server that is allocated
to a specific task. Reference information about this command is in Chapter 10.

If you do not specify a task with the INTERRUPT command, ACMS interrupts
the named server if the current task instance has context in that server. If the
task is not retaining context in the named server, or if no task is active, then
ACMS interrupts the first free server process belonging to the named server. This
process is allocated to the first task or first called task that calls a procedure in
the named server.

In a distributed transaction, both parent and called tasks might use the same
server. As explained in Section 7.3.3.1, you can start separate instances of a
server. To interrupt a specific server process when both tasks have started,
specify a task name after the INTERRUPT command. Following is an example
of setting breakpoints for a procedure after a Task Debugger INTERRUPT
command.

ACMSDBG> INTERRUPT VR_SERVER/ TASK=VR_RESERVE_CAR_TASK
Terminal is in server VR_SERVER
DBG> SET BREAK VR_FIND_SI_PROC\MAIN\MAIN-SECTION
DBG> GO

CTRL/G

ACMSDBG>

When you specify a task name, ACMS interrupts the process currently owned by
that task. In the previous example, ACMS interrupts the VR_SERVER owned by
the called task, VR_RESERVE_CAR_TASK. If the named task (in this case, VR_
RESERVE_CAR_TASK) is not currently retaining context in the named server
(in this case, VR_SERVER), then the command returns an error. The example
also illustrates using Ctrl/G to return to the ACMS Task Debugger prompt,
ACMSDBG>.

Debugging Tasks and Procedures 7–13

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

If you are debugging a recursive task, supplying a task name does not have any
effect; ACMS ignores the /TASK qualifier and follows the rules for interrupting a
server when no task name is supplied.

Note

If you use the INTERRUPT command, do not link the server image with
/NOTRACEBACK. If the server image was linked with /NOTRACEBACK,
and you try to access the server process with an INTERRUPT command,
the server process returns a fatal error and exits. The debugger returns
the Task Debugger prompt, ACMSDBG>. You must then use the START
command to restart the server.

You cannot use the INTERRUPT command to interrupt servers that are in the
process of starting or stopping. If you do, ACMS displays the following error
message:

%ACMSDBG-E-SRVNOTUP, Server ... is not started

If there is a bug in your initialization procedure that causes it not to return,
you cannot stop the server. To debug the initialization procedure, you must use
Ctrl/G to display the ACMSDBG> prompt, and then exit from the Task Debugger.
When you start the Task Debugger again and attempt to start the server, set a
breakpoint at the initialization procedure so that you can debug it. Do the same
for termination procedures.

7.3.4 Setting and Removing Breakpoints in a Task
After you start the servers needed by a task for debugging, you are ready to start
the task. However, you might want to set breakpoints before selecting the task.

A breakpoint is a selected place where the debugger stops a task. For example,
the first time through a task, you might want to stop the task at the beginning of
the action part of each exchange step. You can then check that the information
that should be in a workspace is actually there.

You use the SET BREAK command to set breakpoints in a task. For example:

ACMSDBG> SET BREAK VR_RESERVE_TASK

In this example, a breakpoint is set in the VR_RESERVE_TASK.

After you have used ACMS Task Debugger commands to examine and deposit
data in workspaces, set breakpoints, and so on, enter GO to continue processing
from that breakpoint in the task. Otherwise, the step or task cannot complete,
and you cannot select another task.

The following sections explain how to:

• Set breakpoints in a task

• Debug a task called by another task

• Remove breakpoints from tasks

If there are breakpoints that you often use, you can create a command file
containing SET BREAK commands. Then use the at-sign (@) command to run the
command (.COM) file. For example:

ACMSDBG> @RESERVE_CAR_DBG.COM

7–14 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

Setting up a command file of common commands can make a debugging session
much easier.

7.3.4.1 Setting Location and Event Breakpoints
With the ACMS Task Debugger, you can use a breakpoint to cause the Task
Debugger to break either at a particular location in a task or when a particular
event occurs:

• Location breakpoints

Use the following format to define a location breakpoint:

task-name\step-name\ location

In the format above:

Task-name is required.

Step-name is optional.

The default is the root step of the task.

Location is optional.

The default is the beginning of the step.

The step-name can be the one you define in the task definition. If you do not
define a label for a step, ACMS assigns one. The label that ACMS assigns
always has the format $STEP_n, where n is the number of the step. For
example:

$STEP_1

Step numbering continues sequentially from step to step rather than just for
steps that do not have labels. A label supplied in a task definition replaces
the ACMS label. ACMS assigns the name $TASK to the block step of a
multiple-step task and to the only step in a single-step task.

Note

To see a listing of step label names, use the ADU DUMP command to
obtain a dump of the task group database. Example 7–2 contains part of
a dump file.

You can use four symbols for location breakpoints: $BEGIN, $ACTION,
$HANDLER, and $END. Table 7–3 lists location symbols and explains the
effect of using each of them.

Table 7–3 Location Breakpoint Symbols

Symbol Explanation

$BEGIN Breakpoint occurs at the start of the step.

$ACTION Breakpoint occurs at the start of the action of the step. At this
breakpoint, none of the actions for the step have been performed.

$HANDLER Breakpoint occurs at the start of the exception handler action for
the step. At this breakpoint, none of the exception handler actions
for the step have been performed. The exception reason, however,
has been moved to the ACMS$PROCESSING_STATUS workspace.

$END Breakpoint occurs at the end of the step. At this breakpoint, the
action clauses (if any) have been performed.

Debugging Tasks and Procedures 7–15

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

• Event breakpoints

Use the following format to define an event breakpoint:

task-name\event

In the format above:

Task-name is required.

Event is required.

You can use two symbols for event breakpoints: $EXCEPTION and
$CANCEL. Table 7–4 lists event symbols and explains the effect of using
each of them.

Table 7–4 Event Breakpoint Symbols

Symbol Explanation

$EXCEPTION Breakpoint occurs as soon as an exception is raised in the task.
At this breakpoint, the exception reason has not been moved to
the ACMS$L_STATUS field in the workspace. ACMS displays
information about the exception (type, reason code, and so on).

$CANCEL Breakpoint occurs just before ACMS cancels the task. At this
time, ACMS has called server cancel procedures but has not yet
performed a task cancel action, if supplied.

At the $EXCEPTION breakpoint, ACMS has not yet updated the
ACMS$PROCESSING_STATUS workspace with information about the exception.
This allows you to examine the contents of the ACMS$PROCESSING_STATUS
workspace at the time the exception occurred. Once you reach the $HANDLER
breakpoint, ACMS has filled in the ACMS$PROCESSING_STATUS workspace
with information about the exception. This enables you to examine the workspace
before you execute the exception handler action.

Server cancel procedures are called after a task stops at the $EXCEPTION
breakpoint and before a task stops at the $CANCEL breakpoint. Therefore, you
must set a break at the $EXCEPTION breakpoint if you want to interrupt
a server process in order to set a breakpoint in a server cancel procedure.
Alternatively, you can use the OpenVMS Debugger to set a breakpoint in a
server cancel procedure when you start the server process. Section 7.4 contains
instructions for using the OpenVMS Debugger.

The breakpoints you set depend on the task you are debugging. Breakpoints are
often useful at the beginning of a task, at the action part of each step, and at the
block action for a task. Setting breakpoints at these places helps you make sure
that the work part of each step has put the right values into the workspaces it
used.

In setting breakpoints, be sure to include backslashes (\) to separate task
name, step label, and symbol. Use the SHOW BREAK command to check the
breakpoints set.

Example 7–1 contains part of a task definition that is annotated to show the use
of breakpoint symbols.

7–16 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

Example 7–1 Task Definition with Breakpoint Symbols

REPLACE TASK sample_task
.
.
.

sample_task\$BEGIN -----------> BLOCK WITH DISTRIBUTED TRANSACTION
get_number:

------------------------- EXCHANGE
| sample_task\$EXCEPTION | .
| When exception occurs | .
------------------------- .

| sample_task\$CANCEL |
When cancellation occurs

get_data:

sample_task\get_data\$BEGIN --> PROCESSING WORK IS
CALL sample_procedure
.
.
.

sample_task\get_data\$ACTION ---> ACTION IS
SELECT FIRST TRUE OF
.

.
.

sample_task\get_data\$END ------> END SELECT;

display_data;
EXCHANGE
.
.
.

END BLOCK;

sample_task\$ACTION --------------> ACTION IS
REPEAT STEP;

sample_task\$HANDLER -------------> EXCEPTION HANDLER ACTION
.
.
.

sample_task\$END -----------------> END DEFINITION;

7.3.4.2 Using a Dump File
Using an ADU task-group dump file can simplify the job of debugging ACMS
tasks because a dump file of a task group lists, in one place, all of the following:

• Names of servers

• Tasks

• Workspaces

• Steps (in tasks)

Rather than searching through directories and listings, in the dump file you can
find the names of all the elements that you need to know for debugging. To obtain
a dump file, enter ADU and use the DUMP GROUP command. For example:

ADU> DUMP GROUP VR_TASK_GROUP /OUTPUT=VR_TASK_GROUP.DMP

Debugging Tasks and Procedures 7–17

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

Examples of how you can use a dump file in debugging are bolded and numbered
in Example 7–2. The numbers correspond to the numbered explanations following
the example.

Example 7–2 Sample Task Group Dump File

1 Task group file : UDISK:[UNAME]VR_TASK_GROUP.TDB;5
Creation time : 6-MAR-1991 15:08:29.07
File size : 107 BLOCKS

==

CDD node name : AVERTZ_CDD_GROUP:VR_TASK_GROUP

==
GROUP workspace count : 0 Server count : 4
TASK workspace count : 21 Task count : 5
USER workspace count : 0

Message file list -
1. "AVERTZ_DEFAULT:VRMSG.EXE"

No request library

Forms list -
1. Form: VR_FORM File: AVERTZ_DEFAULT:VR_FORM.FORM

==
WORKSPACES

==
GROUP workspace list -
USER workspace list -
TASK workspace list -

VR_CONTROL_WKSP 0
VR_TRANS_WKSP 1
.
.
.
ACMS$PROCESSING_STATUS 18
ACMS$TASK_INFORMATION 19
ACMS$SELECTION_STRING 20

--
Workspace name : VR_CONTROL_WKSP Workspace index : 0
Workspace size : 127 BYTES Workspace type : TASK
Owner node name : AVERTZ_CDD_GROUP:VR_TASK_GROUP Owner type : GROUP
Initial content -

00000000 00000000 00000000 00000000 "................"
The above line is repeated 6 times (96 BYTES).

00000000 00000000 00000000 00000000 "..............."
.
.
.

==
SERVERS

==
--
2 Group server name : VR_UPDATE_SERVER Server index : 1

Server username : USERNAME OF APPLICATION Server type : PROCEDURE
Rundown on cancel : YES, IF INTERRUPTED Reusable : YES
Username attribute : NOT EXPLICITLY SPECIFIED
Server image file : "AVERTZ_DEFAULT:VR_UPDATE_SERVER.EXE"
Execute termination procedure: ALL RUNDOWNS

.

.

.

(continued on next page)

7–18 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

Example 7–2 (Cont.) Sample Task Group Dump File

==
TASKS

.

.

.
--
3 Task name : VR_COMPLETE_CHECKOUT_TASK
--
Task type : GLOBAL
Composable : YES
Wait/delay specified : NONE Task index : 4

The following is a list of 5 workspaces that are arguments to this task -
1. Workspace name : VR_SENDCTRL_WKSP Access mode: READ
2. Workspace name : VR_CONTROL_WKSP Access mode: MODIFY
3. Workspace name : VR_RESERVATIONS_WKSP Access mode: MODIFY
4. Workspace name : VR_TRANS_WKSP Access mode: READ
5. Workspace name : VR_VEHICLES_WKSP Access mode: READ

The following is a list of 9 workspaces referenced by this task -

1. Workspace name : ACMS$PROCESSING_STATUS Workspace index : 18
Access type : UPDATE NO LOCK
.
.
.

000 ---
000 Step name: $TASK Step type: BLOCK
000 ---
000 BLOCK STEP CHARACTERISTICS -
000 Server context : RETAINED
000 I/O method : REQUEST
000 Recovery unit : NOT ACTIVE
000 Transaction state: STARTING

000 BLOCK WORK -
001 ---

4 001 Step name : PERFORM
001 ---
001 STEP CHARACTERISTICS -

001 Step type : PROCESSING Step index : 0
.
.
.

001 STEP WORK -

001 1. Conditional : YES
.
.
.

001 Processing server: VR_UPDATE_SERVER Server index : 1
001 The procedure vector index in the server image is 3
001 2 workspaces passed to the server -
001 Wksp. name: VR_RESERVATIONS_WKSP Wksp. index: 5
001 Wksp. size: 140
001 Wksp. name: VR_VEHICLES_WKSP Wksp. index: 7
001 Wksp. size: 71

5 001 STEP ACTION -

(continued on next page)

Debugging Tasks and Procedures 7–19

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

Example 7–2 (Cont.) Sample Task Group Dump File

001 1. Conditional : YES
001 Comparison type : EQUAL
001 Data type : TEXT STRING
001 Source field information -
001 Source type : WORKSPACE FIELD
001 Wksp. name : ACMS$PROCESSING_STATUS

.

.

.
001 Recovery action : NO RECOVERY ACTION
001 Transaction action: NO TRANSACTION ACTION
001 Context action : RETAIN SERVER CONTEXT IF ACTIVE
001 Sequencing action: RAISE EXCEPTION
001 Returning : A MESSAGE NUMBER
001 Message no. : 08018122

.

.

.
001 Error message will be put into the following workspace :
001 Wksp. name : VR_CONTROL_WKSP
001 Wksp. index : 0
001 Field offset : 11
001 Field size : 80
001 Move Action : NONE SPECIFIED
.
.
.

Following are explanations of how you can use a task group dump file to help you
in debugging a task. The numbers correspond to those in Example 7–2.

1 Use the task group name when you start the ACMS Task Debugger:

$ ACMS/DEBUG VR_TASK_GROUP/WORKSPACE

2 Use the server name to start the server in ADU:

ADU> START VR_UPDATE_SERVER

3 Use the task name to select the task:

ADU> SELECT VR_COMPLETE_CHECKOUT_TASK

4 Use the task name, the step name, and $BEGIN to set a breakpoint at the
beginning of a task:

ACMSDBG> SET BREAK VR_COMPLETE_CHECKOUT_TASK \ PERFORM \ $BEGIN

5 Use the task name, step name, and $ACTION to set a breakpoint at the
action part of a step:

ACMSDBG> SET BREAK VR_COMPLETE_CHECKOUT_TASK \ PERFORM \ $ACTION

7.3.4.3 Debugging a Task Called by Another Task
When debugging a task that is called by another task (parent task), use the SET
BREAK command to pause execution of the called task just as you do when you
debug any ACMS task. If you do not define breakpoints in the called task, then
the task runs to completion and returns control to the parent task.

If you use a STEP command at the point in the parent task where the parent task
calls another task, the Task Debugger steps into the called task. Then use the
STEP command to execute one exchange or processing step at a time. The Task
Debugger executes one step in the called task for each STEP command issued.

7–20 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

To avoid stepping all the way through the called task, set a breakpoint at the end
of the called task to have it run to completion without pausing at each exchange
or processing step:

ACMSDBG> SET BREAK called_task\$END
ACMSDBG> GO

The commands in this example cause the Task Debugger to execute all the steps
in the task CALLED_TASK without waiting for you to issue the STEP command.
After reaching the breakpoint at the end of the called task, enter the STEP
command to have the Task Debugger resume stepping through the parent task.

7.3.4.4 Removing Breakpoints
You can remove breakpoints at any time during a debugging session with the
CANCEL BREAK command. For example:

ACMSDBG> CANCEL BREAK VR_RESERVE_CAR_TASK\$BEGIN

To remove all breakpoints in a task or in all tasks for the task group that you are
debugging, use the /ALL qualifier. For example:

ACMSDBG> CANCEL BREAK /ALL=VR_RESERVE_CAR_TASK

This command removes all breakpoints in VR_RESERVE_CAR_TASK. If you
do not include a task name in the /ALL qualifier, the command removes all
breakpoints in all tasks.

7.3.5 Running a Task in the ACMS Task Debugger
To start a task you want to run, use the SELECT command. For example:

ACMSDBG> SELECT VR_RESERVE_CAR_TASK

The name you use in the SELECT command must be the name of the task in the
task definition. For example:

REPLACE GROUP VR_TASK_GROUP
.
.
.
TASKS ARE
RESERVE_CAR : TASK IS VR_RESERVE_CAR_TASK;

If a task uses information entered as part of the selection string, you can include
this information as part of the SELECT command. For example:

ACMSDBG> SELECT DISPLAY_EMPLOYEE JONES

In this example, the Display Employee task expects an employee name to be
passed to it in the ACMS$SELECTION_STRING workspace. If you enter a
name after the task name, ACMS moves the name into the ACMS$SELECTION_
STRING workspace and passes it to the task. For further explanation of the use
of selection strings, see HP ACMS for OpenVMS Writing Applications.

When you use the SELECT command, select only one task at a time. If you have
selected a task and it is still running, use the CANCEL TASK command to stop
the current task before starting another one:

ACMSDBG> CANCEL TASK

Debugging Tasks and Procedures 7–21

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

The CANCEL TASK command does not take any parameters or qualifiers. It
always stops the current task, if there is one. If the task has context in a server
when it is canceled, and if there is a cancel procedure defined for the server, the
cancel procedure runs. If there is a cancel action defined for the task, that action
is performed after the server cancel procedure, if any, runs.

When you select a task, the ACMS Task Debugger starts the task. Once the task
reaches the first breakpoint, you can enter commands to continue running the
task, display the contents of workspaces, change the contents of workspaces, or
display information about ACMS Task Debugger commands.

7.3.6 Checking Values in Workspaces
You can use both the ACMS Task Debugger and the OpenVMS Debugger to check
values in workspaces.

Use the ACMS Task Debugger to check the following workspace values:

• Initial values

• Entered values

• Values in ACMS$PROCESSING_STATUS

The following sections explain how to check the workspace values listed above.

7.3.6.1 Checking Initial Values
Use the EXAMINE command to check the initial value of a workspace field. For
example:

ACMSDBG> EXAMINE CHECKOUT_SITE_ID OF VR_VEHICLE_RENTAL_HISTORY_WKSP
CHECKOUT_SITE_ID of VR_CHECKIN_TASK\VR_VEHICLE_RENTAL_HISTORY_WKSP: 0

In this example, the initial value of the CHECKOUT_SITE_ID field is 0.

You can also examine the initial contents of an entire workspace. For example:

ACMSDBG> EXAMINE VR_VEHICLE_RENTAL_HISTORY_WKSP
VR_CHECKIN_TASK\VR_VEHICLE_RENTAL_HISTORY_WKSP
VEHICLE_ID: +0
CHECKOUT_SITE_ID: +0
RESERVATION_ID: +0

.

.

.

To continue running the task after you check an initial workspace value, enter
GO after the ACMSDBG> prompt. The GO command tells the Task Debugger to
run the task until it reaches the next breakpoint.

7.3.6.2 Checking Entered Values
As you debug a task, exchange and processing steps store new data in workspace
fields. At breakpoints in the task, you can use the EXAMINE command to
examine the contents of workspaces to determine whether the task is functioning
correctly. For example:

ACMSDBG> EXAMINE CHECKOUT_SITE_ID OF VR_VEHICLE_RENTAL_HISTORY_WKSP
CHECKOUT_SITE_ID of VR_CHECKIN_TASK\VR_VEHICLE_RENTAL_HISTORY_WKSP: 1

7–22 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

You can also examine the contents of an entire workspace. For example:

ACMSDBG> EXAMINE VR_VEHICLE_RENTAL_HISTORY_WKSP
VR_CHECKIN_TASK\VR_VEHICLE_RENTAL_HISTORY_WKSP
VEHICLE_ID: +2
CHECKOUT_SITE_ID: +1
RESERVATION_ID: +26

.

.

.

In this example, reservation 26 was correctly retrieved from the VEHICLE_
RENTAL_HISTORY relation in the AVERTZ database. In this case, the car was
rented from site number 1.

While debugging a task, you might find that a workspace does not contain the
data you expect. When you encounter such a problem, check that:

• The order of the workspaces in the form definition and step procedures is the
same as the order specified in the task definition.

• The workspace definition is the same in the form definitions, the step
procedures, and the task definition; if you have modified a workspace
definition, be sure to rebuild all the components that reference the workspace.

• The forms used by the task correctly return the necessary data in a RECEIVE
or TRANSCEIVE operation.

• The step procedures called by the task read the correct records from a
database or a file.

7.3.6.3 Checking Values in the ACMS$PROCESSING_STATUS Workspace
You can check the contents of the ACMS$PROCESSING_STATUS workspace by
using the EXAMINE command. Using the EXAMINE command, you can make
sure that the workspace message field contains the correct message and that the
correct error codes are loaded into ACMS$T_STATUS_TYPE.

You can use the EXAMINE command to check that a procedure did what was
expected. For example, if a read was successful, a workspace should contain a
value, and the ACMS$T_SEVERITY_LEVEL field of the system workspace should
contain the value S, showing that the process was successful:

ACMSDBG> EXAMINE ACMS$T_SEVERITY_LEVEL
ACMS$T_SEVERITY_LEVEL OF VR_RESERVE_CAR_TASK: S

For a detailed discussion of the ACMS$PROCESSING_STATUS workspace, see
HP ACMS for OpenVMS Writing Applications.

7.3.7 Debugging Transaction Timeout Code
In an ACMS application definition, you can specify a time limit within which a
distributed transaction must complete. If the transaction does not end within the
specified number of seconds, ACMS rolls back the transaction.

You can use the following commands to test that a task handles transaction
timeout errors correctly:

Debugging Tasks and Procedures 7–23

Debugging Tasks and Procedures
7.3 Using the ACMS Task Debugger

• SET TRANSACTION_TIMEOUT seconds

After you set a transaction timeout limit using this command, ACMS raises
a transaction exception if a transaction does not complete in the specified
amount of time.

• CANCEL TRANSACTION_TIMEOUT

When you have finished testing the task definition logic to handle transaction
timeouts, you can use this command to cancel the transaction timeout period
you set previously.

• SHOW TRANSACTION_TIMEOUT

You can use this command to determine the current transaction timeout
value.

By default, there is no transaction time limit. Chapter 10 contains reference
information about these commands.

7.3.8 Stopping the Task Debugger
Use the EXIT command or Ctrl/Z at the ACMSDBG> prompt to exit the Task
Debugger and return to the DCL command-level prompt:

ACMSDBG> EXIT
$

If you exit the Task Debugger while server processes are still active, these
servers are stopped. If the server has a termination procedure defined for it, the
termination procedure is executed.

If there is some reason that you do not want the server’s termination procedure
to run, you can set a breakpoint at the termination procedure. When you reach
the breakpoint, use the EXIT command at the OpenVMS Debugger prompt to
cause the server process to exit without executing the termination procedure.

7.4 Using the OpenVMS Debugger
Section 7.3 explains how to use the ACMS Task Debugger to debug the steps in a
task. This section explains how to use the OpenVMS Debugger to debug server
procedures. Transfer control to the OpenVMS Debugger in a server process in
one of the following ways:

• Start a server.

When a server is started, the server comes up under the control of the
OpenVMS Debugger. See Section 7.3.3.1 for information on starting servers.

• Issue the INTERRUPT command.

When the server is already started, you can use the ACMS Task Debugger
INTERRUPT command to transfer control to the OpenVMS Debugger in the
server. See Section 7.3.3.3 for details.

• Set a breakpoint in the procedure code.

If you set a breakpoint in your procedure code at a time when the server is
under the control of the OpenVMS Debugger, you return to the server when
you reach this breakpoint.

7–24 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.4 Using the OpenVMS Debugger

Once you display the DBG> prompt, you can debug your procedure as you debug
procedures in any standalone program. You can enter any of the OpenVMS
Debugger commands that are valid for the language used. There are, however,
situations in which the OpenVMS Debugger behaves differently when you use it
in an ACMS environment.

Following are details that are specific to using the OpenVMS Debugger in an
ACMS environment:

• Using SET BREAK/EXCEPTION

You might want to use the SET BREAK/EXCEPTION command so that the
debugger stops the program at any line where an error occurs. However,
be sure to cancel the exception break before canceling a task. Otherwise,
a breakpoint occurs in the ACMS code controlling the server process, with
confusing messages from the Task Debugger.

• Using SET WATCH and defining symbols

Because workspace addresses can change during a task, be careful when
using the OpenVMS Debugger SET WATCH command. When you use SET
WATCH, the debugger sets a watchpoint at a location in the workspace
to watch an entity and to notify you if the value changes. Because the
workspace can be in a different location for each task instance, the field you
look at might be in a different location each time, and you might never get a
watchpoint.

A task can exit from a server process and later use the same server again
with different workspace addresses. When a task reenters a server process,
redefine symbols and reset watchpoints. Also, changing the contents of a
workspace from the ACMSDBG> prompt when the task is not using the
server, or when it is using a different server, does not trigger a watchpoint set
in the server.

For more information on how to set, display, and change breakpoints, see the
OpenVMS Debugger Manual. For features specific to a language, see the user’s
guide for that language.

7.5 Returning to the ACMSDBG> Prompt
In the process of debugging a task definition and server procedures, you might
want to use an ACMS Task Debugger command, but you cannot because you are
not at the ACMSDBG> prompt. Following are situations in which you might
want to display the ACMSDBG> prompt:

• As you step through server code, you decide that you want to set a breakpoint
in your task.

You must transfer control to the ACMS Task Debugger to set your task
breakpoint.

• As you step through a task, you might want to interrupt a server to set a
breakpoint.

Once you set your breakpoint, you need to return control to the ACMS Task
Debugger to continue stepping through the task.

Debugging Tasks and Procedures 7–25

Debugging Tasks and Procedures
7.5 Returning to the ACMSDBG> Prompt

• Your server is in an infinite loop.

You need to transfer control to the ACMS Task Debugger so that you can use
the INTERRUPT SERVER command to get control of your server. Once you
finish with your server code, you might need to return control to the ACMS
Task Debugger again to cancel the task.

Use Ctrl/G to display the ACMDBG> prompt in all of these situations.

Note

In versions of ACMS prior to Version 3.2, you use Ctrl/C to display the
ACMSDBG> prompt.

7.6 Debugging Tasks Called from a User-Written Agent Program
Users who have written their own command process, called an agent program,
must not only debug their ACMS task definitions and the high-level language
step procedures called from the task definition, but also debug the flow of control
between an agent program and an ACMS task.

When you debug a conventional ACMS task, the task and the task submitter
both execute in the same Task Debugger process, and you have your choice
of debugging using one or two terminals. However, when you debug a task
called by a user-written agent program, you must debug both the task and the
agent program at the same time. Because an additional process is running, you
must allocate a terminal to each process. One process runs the agent program,
whose only job is to select ACMS tasks. The other process runs the ACMS Task
Debugger and performs the usual debugging functions, including:

• Starting and stopping servers

• Setting breakpoints

• Examining and depositing data in workspaces

• Assigning logical names for servers

• Executing tasks

These task debugging functions are described in Section 7.2.5 and Section 7.3.

Important

The agent program and the ACMS Task Debugger must run on the same
node.

The processes running the agent program and the Task Debugger require special
consideration during debugging. Before debugging, set up so that the agent
program selects the task in the ACMS Task Debugger rather than in an ACMS
application. Follow these steps to debug tasks that are submitted by agent
programs:

1. Use the ACMS$SIGN_IN service in the agent program.

Do not use the default submitter when debugging tasks submitted by agent
programs. The agent program must execute the ACMS$SIGN_IN service to
obtain a submitter ID.

7–26 Debugging Tasks and Procedures

Debugging Tasks and Procedures
7.6 Debugging Tasks Called from a User-Written Agent Program

2. Set protection for remote terminals.

Set WORLD protection for remote terminals to read/write access. Check the
protection set for remote terminals using the DCL SHOW DEVICE command:

$ SHOW DEV/FULL TT

If the terminal does not have WORLD:RW protection, then set the appropriate
protection. For example:

$ SET PROT=W:RW/DEV TT

3. Check quotas, parameters, and logical names.

Make sure that system quotas and parameters are set using the values
specified in Section 7.2.6. Also, make sure that any logical names used by the
ACMS Task Debugger are defined. (See Section 7.2.3.)

4. Start the ACMS Task Debugger.

Use the ACMS/DEBUG command to start the ACMS Task Debugger. With
the command, include the /AGENT_HANDLE qualifier and a handle name
(for the agent program) that is unique to the system on which you are
debugging the task.

The handle name must be a maximum of 39 characters. To ensure that the
agent handle name is unique to the system, you can choose to include the PID
of the task debugger or the user name of the person doing the debugging in
the /AGENT_HANDLE name.

The following example shows how to start the Task Debugger using an agent
handle named VR_26200E49 and a task group database called VR_TASK_
GROUP:

$ ACMS/DEBUG/AGENT_HANDLE=VR_26200E49 VR_TASK_GROUP
ACMSDBG>

When you start the Task Debugger and include the /AGENT_HANDLE
qualifier, you can select tasks from within the Task Debugger as well as
submitting calls to ACMS tasks from an agent program. Select or submit
only one task at a time.

You can run more than one agent program consecutively or simultaneously
with the Task Debugger, but only one agent program can select a task at
one time. Also, you cannot use the ACMS Task Debugger CANCEL TASK
command to cancel tasks that are called by agent programs.

5. Set up the ACMS Task Debugger environment.

After you start the ACMS Task Debugger, it returns its ACMSDBG> prompt.
You can then start servers (described in Section 7.3.3) and define the
debugging environment to include items such as breakpoints (described in
Section 7.3.4).

6. Accept calls to ACMS tasks from agent programs.

Use the ACMS Task Debugger ACCEPT command to have the ACMS Task
Debugger accept calls from the agent program:

ACMSDBG> ACCEPT

After this command, the ACMS Task Debugger waits until the agent program
selects a task. After the agent program selects a task, the task executes
in the ACMS Task Debugger. (Chapter 10 describes all the ACMS Task
Debugger commands.)

Debugging Tasks and Procedures 7–27

Debugging Tasks and Procedures
7.6 Debugging Tasks Called from a User-Written Agent Program

You can use Ctrl/G to return to the ACMSDBG> prompt to set more
breakpoints, for example, or to exit from the debugger. To resume waiting for
the task call, enter the GO command.

The ACCEPT command accepts one task selection at a time from an agent
program. To allow the ACMS Task Debugger to accept subsequent calls to
tasks without reentering the ACCEPT command for each task selection, use
the /CONTINUOUS qualifier on the ACCEPT command:

ACMSDBG> ACCEPT/CONTINUOUS

This allows the ACMS Task Debugger to accept task selections from an agent
program without entering the ACCEPT command at the agent program’s
terminal each time.

7. Define logical names for the application names used in the agent program.

To make tasks selected by the agent program run in the Task Debugger,
define two process logical names before running the agent program.

• Define the logical name ACMS$DEBUG_AGENT_TASK to be either
TRUE (T or t), YES (Y or y), or an ASCII number with an odd value:

$ DEFINE ACMS$DEBUG_AGENT_TASK Y

• Assign a logical name for the application name used in the agent
program. The agent program code contains actual application and task
names that are defined in the application definition. However, because
the agent program selects tasks in the ACMS Task Debugger, you can use
logical names (rather than changing the names in the agent program) to
associate the application name used in the agent program and the handle
name for the debugger. The following example illustrates how to define
the application name as a logical name that equates to the agent handle
that you specified when you started the Task Debugger.

$ DEFINE VR_APPL VR_26200E49

In this case, VR_APPL is the application name used in the agent
program, and VR_26200E49 is the agent handle name included on
the ACMS/DEBUG command when the debugger was started (see the
example in step 4).

The logical name is optional; if the application name is not defined as a
logical name, then the application name in the agent program is used as
the /AGENT_HANDLE name. If the agent program cannot find a Task
Debugger process with the appropriate handle name, the agent program
returns an ACMS-E-SRVNOTFOUND error.

8. Do any preparation work necessary for DECforms.

Because DECforms runs in the agent process, do all DECforms setup in the
agent process. Section 7.2.4 contains instructions for preparing to debug
DECforms escape routines.

9. Run the agent program.

Remember that the agent program can select tasks in only one application.
If the agent program’s ACMS$GET_PROCEDURE_INFO service selects
a task from a second application, the ACMS Task Debugger returns the
ACMS-E-DBGMULTIPKGS error message.

7–28 Debugging Tasks and Procedures

8
Debugging an Application in an ACMS

Run-Time Environment

After debugging the tasks in a task group, you include the task group in an
application definition and make the tasks available from a menu. Then you need
to test the application as a single, working unit before releasing it for use in the
ACMS run-time environment.

Because the ACMS Task Debugger runs in a different environment from an
ACMS application, even the best-designed and best-developed application can
encounter problems during the transition from one environment to another. To
help you overcome this potential problem, ACMS allows you to debug servers
executing in an active ACMS application. You can also request an OpenVMS
process dump for a server that aborts execution due to system or programming
errors and then analyze the output from the dump file.

Sections in this chapter explain the following:

• Moving to an ACMS run-time environment

• Checking files that you need to run tasks under ACMS

• Debugging procedure servers in a run-time environment

• Determining why a server stops unexpectedly

8.1 Moving from Debugging to a Run-Time Environment
When you make the transition from testing a task running under the ACMS Task
Debugger to running the task in the ACMS run-time environment, check that
logical names, server quotas and privileges, and file or database protections are
set adequately for the run-time environment.

Avoid run-time problems by ensuring that:

• Logical names that were available to the server subprocess running under the
ACMS Task Debugger are available to the ACMS run-time server process.

The server runs as a subprocess under the ACMS Task Debugger, but it runs
as a detached process under the ACMS run-time environment. Therefore,
logical names that were available to the server through logical name tables
when it runs as a subprocess may not be available to the server when it runs
as a detached process.

The Application Execution Controller and servers can run under user names
different from each other and different from the one you used while debugging
the task group. Because of this, determine the best way to define the logical
names so that all processes that need them have access to them. You can
define them:

As system logical names

Debugging an Application in an ACMS Run-Time Environment 8–1

Debugging an Application in an ACMS Run-Time Environment
8.1 Moving from Debugging to a Run-Time Environment

In a logical name table to which the server and application have access

As server logical names in the application definition for the server

• Server quotas and privileges are adequate for the operations that the
run-time server performs.

As discussed previously, the ACMS run-time server may run under a different
user name than in the ACMS Task Debugger. Therefore, an operation that
was performed successfully under the ACMS Task Debugger may not work at
run time. This happens if the server user name does not have the quotas or
privileges (if any) required for the operation.

If the user names are different, the quotas may be insufficient. Make sure
that the quotas of the user name in the run-time environment are high
enough.

• Protection on files and databases allow access by the run-time server.

If the run-time server uses a different user name than the server that it ran
under in the ACMS Task Debugger, files and databases that can be read and
written to during debugging may not be available at run time.

• Servers that perform terminal I/O during processing steps must explicitly
open and close the terminal channel.

During debugging, the ACMS Task Debugger always makes the terminal
available to the server subprocess. Therefore, procedures that successfully do
terminal I/O during processing steps under the ACMS Task Debugger may
not work when they are run under the ACMS run-time system. The task
definition must explicitly make the terminal available to the server using the
TERMINAL I/O phrase.

• Logical names that translate to specific devices or files under the ACMS Task
Debugger must translate to the appropriate devices or files when used during
run time with the ACMS Application Execution Controller.

When a task uses logical names to determine which of several files or devices
to access, take care that the logical names translate to the file or device
you intend to access. Under the ACMS Task Debugger, for example, if you
want to print or generate a hard copy of a HP DECforms form, the form
listing goes to the device pointed to by the programmer’s translation of
the FORMS$PRINT_FILE logical name. Tasks running under the ACMS
run-time environment, however, send their output to the device pointed to by
the agent process’s translation of the FORMS$PRINT_FILE logical name (for
example, the CP process).

In addition, if the task is accessed remotely (such as when the submitter and
the application are on different nodes), the output goes to the device pointed
to by the remote agent process’s translation of FORMS$PRINT_FILE (for
example, the CP process).

• Step procedures that open channels to the terminal must close them before
ending.

In the run-time environment, if a step procedure opens a channel to the
terminal but returns without closing it, ACMS cancels the task. However,
ACMS cannot do this when you are using the Task Debugger because open
channels could be due to debugging. Therefore, if you do not correctly close
all channels to the terminal that you open in a step procedure, the task works
in the Task Debugger but will be canceled at run time.

8–2 Debugging an Application in an ACMS Run-Time Environment

Debugging an Application in an ACMS Run-Time Environment
8.2 Checking Files Needed to Run Tasks Under ACMS

8.2 Checking Files Needed to Run Tasks Under ACMS
A task under the control of ACMS at run time uses all the files needed to run the
task under the ACMS Task Debugger plus two additional files, the application
database (.ADB) and the menu database (.MDB):

• Application database

You create application database files with the ADU command BUILD
APPLICATION. These files contain information used by ACMS in running
tasks.

• Menu database

You create menu database files when you use the ADU command BUILD
MENU. These files contain binary versions of menu definitions.

For a list of the files you need when you use the ACMS Task Debugger, see
Table 7–1 and Figure 7–1.

8.3 Debugging Procedure Servers in the Run-Time Environment
Even though a task executes successfully in the ACMS Task Debugger
environment, it may contain errors that do not show up until the task runs
in a server in the ACMS run-time environment. For example, the server may go
into an infinite loop, give incorrect output, or terminate prematurely.

ACMS provides the ACMS/DEBUG/SERVER operator command so that you can
debug servers as they execute in the ACMS run-time environment. Using this
command, you can observe the server process execution through the OpenVMS
Debugger. This feature provides a way for you to use OpenVMS Debugger
commands to locate run-time programming or logic errors and other bugs. If
a server is looping, for example, you can step through a procedure and isolate
bugs in the live server just as though the server were running in the ACMS Task
Debugger.

Once you have identified and corrected an error in a server, ACMS also provides
the ACMS/REPLACE SERVER operator command to replace the faulty server
without interrupting the live application.

The following sections describe how to debug running servers. Section 8.3.2
describes the ACMS/DEBUG/SERVER command. HP ACMS for OpenVMS
Managing Applications describes the syntax for the ACMS/REPLACE SERVER
operator commands.

Note

Use ACMS/DEBUG/SERVER to debug only procedure servers. Do not use
this command to debug DCL servers.

8.3.1 Controlling Which Users Can Debug Servers
Because the ACMS/DEBUG/SERVER command allows users to stop a server or
change the way it operates, you must provide a means of controlling which users
can debug servers. You provide this security by using logical names. For each
user who can debug servers, define the logical name ACMS$DEBUG_SERVER_
vmsusername as either TRUE or YES.

Debugging an Application in an ACMS Run-Time Environment 8–3

Debugging an Application in an ACMS Run-Time Environment
8.3 Debugging Procedure Servers in the Run-Time Environment

Note

The logical name ACMS$DEBUG_SERVER_vmsusername must be an
executive mode logical.

The following example shows how to define an executive mode logical name to
allow the user SMITH to debug any server on the system:

$ DEFINE/SYSTEM/EXEC ACMS$DEBUG_SERVER_SMITH YES

This example uses the /SYSTEM qualifier to define the logical name as a system
logical so that the user named SMITH can debug any server on the system.

Define the ACMS$DEBUG_SERVER_vmsusername logical at DCL level as shown
in the previous example, using the /SYSTEM, /GROUP, or /TABLE qualifier.
A user can debug any server on the system if ACMS$DEBUG_SERVER_
vmsusername is defined as an executive mode system logical.

By using the /GROUP qualifier, you can restrict users to debugging only servers
in a particular group. You can also define the logical in a server logical name
table and point to it from the ACMS application definition. Use the /TABLE
qualifier on the DEFINE ACMS$DEBUG_SERVER_vmsusername command if
you define the logical in a server logical name table.

You do not need to define the ACMS$DEBUG_SERVER_vmsusername logical if
the user has the CMKRNL privilege. ACMS allows any user with the CMKRNL
privilege to debug any server.

Although you can authorize several users to debug a server or servers, only one
user can debug a server at a time.

8.3.2 Using the ACMS/DEBUG/SERVER Command
To debug a running server, you must link the server to include traceback
information. This is required for the OpenVMS Debugger to interrupt the server.
By default, the OpenVMS Linker links images with traceback. If the server was
linked without traceback (that is, the /NOTRACEBACK qualifier was used on the
LINK command), you must relink the server before you can debug it. Then you
must replace the server in the running application before continuing.

If the server is linked with /TRACEBACK (the default), and you have either
defined the ACMS$DEBUG_SERVER_vmsusername logical name or provided the
CMKRNL privilege for the users who can debug the server, follow these steps to
debug the server:

1. Use the ACMS/SHOW SERVER command to get the server process name and
process identification (PID). Use the process name or the server’s PID when
you start debugging the server.

2. Invoke the debugger by issuing the ACMS/DEBUG/SERVER command,
including either the server process name or the process ID. The following
example starts the debugger for VR_SERVER, whose server process name is
ACMS021SP001000:

$ ACMS/DEBUG/SERVER ACMS021SP001000
DBG>

8–4 Debugging an Application in an ACMS Run-Time Environment

Debugging an Application in an ACMS Run-Time Environment
8.3 Debugging Procedure Servers in the Run-Time Environment

Include the PID number with this command by specifying the PID number
with the /PID=PID_number qualifier. For example:

$ ACMS/DEBUG/PID=26000049
DBG>

3. Issue OpenVMS Debugger commands to debug the server code.

See OpenVMS Debugger Manual for more information on using the OpenVMS
Debugger commands.

4. Press Ctrl/G while debugging a server to interrupt the server and return
control to the OpenVMS Debugger.

Using Ctrl/G is a handy way to interrupt the debugger, if you forgot to set
a breakpoint and want to do it before continuing, for example. Use the GO
command or STEP command to continue debugging the server.

5. Use Ctrl/Z or the EXIT command to stop the debugging session from the DBG>
prompt. When you complete a debugging session, you stop the server that
you are debugging.

8.3.3 Replacing a Faulty Server
After you find an error in a server, you need to complete several steps to correct
the situation:

1. Correct the code.

2. Rebuild the server image.

3. Place the server image in the location specified in the SERVER IMAGE IS
statement in the task group definition.

4. Use the ACMS/REPLACE SERVER operator command to run down the
server processes that are executing the faulty server code and create new
processes running the corrected image. You can do this without interrupting
the live application. For example:

$ ACMS/REPLACE SERVER VR_SERVER /CONFIRM

If a task has context in a server that you are replacing at the time the REPLACE
command is issued, the server does not run down until context is released.

You must have OPER privilege to issue the ACMS/REPLACE SERVER command.
HP ACMS for OpenVMS Managing Applications contains more information on
replacing servers in a live application.

8.4 Determining Why Servers Stop Unexpectedly
Sometimes servers executing in a production environment stop unexpectedly. If
you suspect that the server stopped as a result of system errors or errors in the
step procedure, you need a way to trace the location of the error.

You can request ACMS to generate an OpenVMS process dump if a server stops
unexpectedly. This produces a dump file that contains the context of the process
when the server stopped. You can then analyze the contents of the dump file for
clues as to why the server stopped.

To get a server process dump, you can include the SERVER PROCESS
DUMP clause in the ACMS application definition or use the ACMS/MODIFY
APPLICATION command. These two methods are explained in the next section.

Debugging an Application in an ACMS Run-Time Environment 8–5

Debugging an Application in an ACMS Run-Time Environment
8.4 Determining Why Servers Stop Unexpectedly

8.4.1 Collecting Server Information in a Dump File
The following occurrences can cause a server to stop executing while running in
an application:

• The initialization procedure, termination procedure, or a step procedure
signals a FATAL (F) error.

• The initialization procedure returns a bad status with a severity level of
FATAL (F), ERROR (E), or WARNING (W).

• Channels to the terminal are left open after the procedure returns control to
the task definition.

If you have problems with a particular server, set up the server to provide server
process dumps. Then run the task and try to reproduce the situation that causes
the server to stop, so that ACMS generates a dump file for analyzing the problem.

First, enable or disable server process dumps in the application definition by
using the SERVER PROCESS DUMP clause. You can enable server process
dumps in the running application by using the ACMS/MODIFY APPLICATION
operator command in an active application. This command temporarily modifies
the application definition parameters for the current active application. If you
stop and restart the application, the application parameters are reset to their
original values.

HP ACMS for OpenVMS Managing Applications describes the ACMS/MODIFY
APPLICATION command and its qualifiers.

Another method of enabling server process dumps is to stop the application,
replace the application definition with one that includes the SERVER PROCESS
DUMP clause, rebuild the application, and then restart the application. This
method permanently enables server process dumps for the server in the
application definition.

Example 8–1 shows an application definition that specifies server process dumps.

Example 8–1 Using the SERVER PROCESS DUMP Clause in an Application
Definition

.

.

.
SERVER ATTRIBUTES ARE
UPDATE_SERVER:
SERVER PROCESS DUMP;

END SERVER ATTRIBUTES;
.
.
.

When the server terminates abnormally, ACMS writes the context for the server
to a dump file located in the default directory for the server. The dump file has
the same name as the server. At the same time that ACMS generates the dump
file, it also writes a record to the ACMS audit trail log.

If, for some reason, ACMS is unable to generate a server process dump, ACMS
writes an audit record to explain the failure. For example, there may be
insufficient privileges for ACMS to write the dump file to the server’s default
directory.

8–6 Debugging an Application in an ACMS Run-Time Environment

Debugging an Application in an ACMS Run-Time Environment
8.4 Determining Why Servers Stop Unexpectedly

See HP ACMS for OpenVMS ADU Reference Manual for more information about
including the server process dump qualifier in an application definition.

8.4.2 Analyzing Server Process Dumps
You use the DCL command ANALYZE/PROCESS_DUMP to analyze the contents
of a server process dump file. For example:

$ ANALYZE/PROCESS_DUMP/IMAGE=avertz_default:vr_update_server_.exe -
_$ vr_update_server.dmp

In some cases, the ANALYZE/PROCESS_DUMP returns an error if the server
process dump file and procedure server image are not located in the same
directory. If you encounter this problem, simply copy the procedure server
image to the same directory as the server process dump file, and reissue the
ANALYZE/PROCESS_DUMP command. For example:

$ ANALYZE/PROCESS_DUMP/IMAGE=vr_update_server_.exe -
_$ vr_update_server.dmp

Be sure the dump file allows read (R) access before invoking the analyzer. For a
complete description of the debugger, see OpenVMS Debugger Manual. OpenVMS
DCL Dictionary discusses using the DCL ANALYZE/PROCESS_DUMP command.

Debugging an Application in an ACMS Run-Time Environment 8–7

Part II
Reference Material

This part of the manual contains reference materials on writing procedures and
debugging ACMS tasks and procedures: ACMS programming services and ACMS
Task Debugger commands.

9
ACMS Programming Services

This chapter contains reference material for the programming services supplied
by ACMS. Table 9–1 summarizes these services. The sections following the table
list the services and provide detailed information about how to use each service.

ACMS queuing services are discussed in HP ACMS for OpenVMS Writing
Applications.

Table 9–1 Summary of the ACMS Programming Services

Service Description

ACMS$GET_TID Used by a server procedure to obtain the transaction
ID currently associated with an executing task.

ACMS$RAISE_NONREC_
EXCEPTION

Raises a nonrecoverable exception. This service is
called if a step procedure detects an error from which
it cannot recover. ACMS cancels the task when a step
procedure raises a nonrecoverable exception.

ACMS$RAISE_STEP_
EXCEPTION

Raises a step exception. This service is called if a
step procedure detects an error from which it cannot
recover, but which the task definition may be able to
handle.

ACMS$RAISE_TRANS_
EXCEPTION

Raises a transaction exception. This service is called if
a step procedure detects an error from which it cannot
recover, but which the task definition may be able to
handle.

ACMS Programming Services 9–1

ACMS Programming Services

Note

The raise-exception programming services differ in an important way
from the superseded ACMSAD$REQ_CANCEL service; if a step procedure
calls the ACMSAD$REQ_CANCEL service, the service immediately
cancels the current task and does not return control to the step procedure.

In contrast, after storing the appropriate exception information, the
raise-exception services all return control to the step procedure. Once the
step procedure completes, the exception is raised in the task.

The format descriptions for the services use OpenVMS procedure parameter
notation. Each parameter can have four characteristics, represented by two
groups of symbols following the parameter. The characteristics definable for each
parameter are:

<name>.<access type><data type>.<pass mech>

The characteristics are always listed in this order. A period (.) separates access
and data types from passing mechanism and parameter form. For example:

comp_status.wl.r

Table 9–2 defines the symbols used for procedure parameter notation.

Table 9–2 Procedure Parameter Notation

Notation Symbol Meaning

Access type r Read access only

w Write and read access

Data type l Longword integer (signed)

o Octaword integer (signed)

Passing mechanism r By reference

For a complete explanation of all the OpenVMS data structures, data types,
access mechanisms and passing mechanisms, see Guide to Creating OpenVMS
Modular Procedures.

9–2 ACMS Programming Services

ACMS$GET_TID

ACMS$GET_TID

Used by a server procedure to obtain the transaction ID (TID) currently
associated with an executing task.

Format

ACMS$GET_TID (tid.wo.r)

Parameter

tid
Address of a 16-byte data structure into which ACMS writes the TID.

Return Status

The ACMS$GET_TID service can return the following status values:

Status
Severity
Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_TRANSNOTACT Error A distributed transaction is not

active at this time.
ACMS$_INSUFPRM Error Insufficient number of arguments

supplied to this routine. You must
specify a TID argument when you
call ACMS$GET_TID.

ACMS$_INVNUMARGS Error Too many arguments supplied to
this service. Check the procedure
and remove any extraneous
arguments.

ACMS$_NOGETTIDCANPROC Error Cannot obtain the transaction ID
from a server cancel procedure.

ACMS$_TASKNOTACTGT Fatal ACMS$GET_TID service may not
be called when no task is active.

Note

This service cannot be called by initialization, termination, or cancel procedures.

ACMS Programming Services 9–3

ACMS$GET_TID

Example

IDENTIFICATION DIVISION.
PROGRAM-ID. VR-COMPLETE-CHECKOUT-PROC.
...
DATA DIVISION.
...
WORKING-STORAGE SECTION.
*
* Return status to pass to ACMS
*
01 RET-STAT PIC S9(9) COMP.
.
.
.
*
* Declare the global transaction context structure. This is
* required for SQLPRE
*
EXEC SQL INCLUDE

’AVERTZ_SOURCE:VR_CONTEXT_STRUCTURE_INCLUDE.LIB’
END-EXEC.
.
.
.
PROCEDURE DIVISION USING VR_RESERVATIONS_WKSP,

VR_VEHICLES_WKSP
GIVING RET-STAT.

MAIN-PROGRAM.
CALL "ACMS$GET_TID" USING CS-TID GIVING RET-STAT.
.
.
.

In this example from the AVERTZ sample application, the context structure is
defined in the library VR_CONTEXT_STRUCTURE_INCLUDE.LIB. CS-TID is
one field in that structure:

01 CONTEXT-STRUCTURE.
02 CS-VERSION PIC S9(9) COMP VALUE 1.
02 CS-TYPE PIC S9(9) COMP VALUE 1.
02 CS-LENGTH PIC S9(9) COMP VALUE 16.
02 CS-TID PIC X(16).
02 CS-END PIC S9(9) COMP VALUE 0.

9–4 ACMS Programming Services

ACMS$RAISE_NONREC_EXCEPTION

ACMS$RAISE_NONREC_EXCEPTION

Raises a nonrecoverable exception if a step procedure detects an error from
which it cannot recover. ACMS cancels the current task when a nonrecoverable
exception is raised.

Format

ACMS$RAISE_NONREC_EXCEPTION ([exception_code.rl.r])

Parameter

exception_code
Optional address of a longword containing the exception code.

Return Status

The ACMS$RAISE_NONREC_EXCEPTION service can return the following
status values:

Status
Severity
Level Description

ACMS$_NORMAL Success Normal successful operation; the
nonrecoverable exception is raised
and the task is canceled as soon as
the step procedure completes.

ACMS$_EXCPTNACTIVE Error An exception of the same or higher
level has already been raised. The
existing exception is raised in the
task as soon as the step procedure
completes.

ACMS$_
INVNONRECEXCCODE

Error An invalid nonrecoverable exception
code was passed to the service. A
nonrecoverable exception is raised,
and the task is canceled with the
ACMS$_INVNONRECEXCCODE
failure status as soon as the step
procedure completes.

ACMS$_NOEXCPTNCANPROC Error Cannot raise an exception from a
server cancel procedure.

ACMS$_TSKCANINVARGS Error Too many arguments were supplied
to this service. A nonrecoverable
exception is raised, and the task
is canceled with the ACMS$_
TSKCANINVARGS failure status
as soon as the step procedure
completes.

ACMS$_TASKNOTACTNRE Fatal ACMS$RAISE_NONREC_
EXCEPTION service may not be
called when no task is active.

ACMS Programming Services 9–5

ACMS$RAISE_NONREC_EXCEPTION

Notes

If an exception code is not supplied, ACMS uses ACMS$_NONRECEXCPTN_
PROCSVR; ACMS-E-NONRECEXCPTN_PROCSVR, "Exception resulted from a
procedure server calling ACMS$RAISE_NONREC_EXCEPTION." If an exception
code is supplied, it must be a failure status.

If an exception code is supplied that is not a failure status, then ACMS cancels
the task with a status of ACMSEXC-E-INVNONRECEXCCODE, "Task canceled:
invalid exception code passed to ACMS$RAISE_NONREC_EXCEPTION."

ACMS sets the appropriate exception information when this service is called;
however, the exception is not raised in the task until the step procedure
completes. Therefore, a step procedure should return as soon as possible after
calling the ACMS$RAISE_NONREC_EXCEPTION service.

This service cannot be called from a cancel procedure or from an initialization or
a termination procedure.

Example

IF RET-STAT NOT SUCCESS THEN
CALL "ACMS$RAISE_NONREC_EXCEPTION" GIVING RSTAT

In this example, if the return status is not success, then the procedure raises a
nonrecoverable exception in the task.

9–6 ACMS Programming Services

ACMS$RAISE_STEP_EXCEPTION

ACMS$RAISE_STEP_EXCEPTION

Raises a step exception if a step procedure detects an error from which it cannot
recover but which the task definition may be able to handle.

When a step procedure raises a step exception, the exception falls under the
control of the exception handler defined for the processing step or outer-block
step, if one exists.

Format

ACMS$RAISE_STEP_EXCEPTION ([exception_code.rl.r])

Parameter

exception_code
Optional address of a longword containing the exception code.

Return Status

The ACMS$RAISE_STEP_EXCEPTION can return the following status values:

Status
Severity
Level Description

ACMS$_NORMAL Success Normal successful operation; the
step exception is raised in the
task as soon as the step procedure
completes.

ACMS$_EXCPTNACTIVE Error An exception of the same or higher
level has already been raised. The
existing exception is raised in the
task as soon as the step procedure
completes.

ACMS$_INVSTPEXCCODE Error An invalid step exception code
was passed to the service. A
nonrecoverable exception is raised,
and the task is canceled with the
ACMS$_INVSTPEXCCODE failure
status as soon as the step procedure
completes.

ACMS$_NOEXCPTNCANPROC Error Cannot raise an exception from a
server cancel procedure.

ACMS$_TSKCANINVARGS Error Too many arguments were supplied
to this service. A nonrecoverable
exception has been raised, and the
task is canceled with the ACMS$_
TSKCANINVARGS failure status
as soon as the step procedure
completes.

ACMS Programming Services 9–7

ACMS$RAISE_STEP_EXCEPTION

Status
Severity
Level Description

ACMS$_TASKNOTACTSE Fatal ACMS$RAISE_STEP_EXCEPTION
service may not be called when not
task is active.

Notes

If an exception code is not supplied, ACMS uses ACMS$_STPEXCPTN_
PROCSVR; ACMS-E-STPEXCPTN_PROCSVR, "Exception resulted from a
procedure server calling ACMS$RAISE_STEP_EXCEPTION." If an exception
code is supplied, it must be a failure status.

If an exception code is supplied that is not a failure status, then ACMS cancels
the task with a status of ACMSEXC-E-INVSTPEXCPTNCODE, "Task canceled:
invalid step exception code passed to ACMS$RAISE_STEP_EXCEPTION."

ACMS stores the appropriate exception information when this service is called;
however, the exception is not raised in the task until the step procedure
completes. Therefore, a step procedure should return as soon as possible after
calling the ACMS$RAISE_STEP_EXCEPTION service.

This service cannot be called from a cancel procedure or from an initialization or
a termination procedure.

Example

SQL-ERROR-HANDLER.
CALL "ACMS$RAISE_STEP_EXCEPTION" USING

BY REFERENCE RET-STAT.

In this example, the SQL error handler raises a step exception that is handled in
the task.

9–8 ACMS Programming Services

ACMS$RAISE_TRANS_EXCEPTION

ACMS$RAISE_TRANS_EXCEPTION

Raises a transaction exception if a step procedure detects an error from which it
cannot recover but which the task definition may be able to handle.

When a step procedure raises a transaction exception, the exception falls under
the control of the exception handler defined for the transaction step or outer-block
step, if one exists.

Format

ACMS$RAISE_TRANS_EXCEPTION ([exception_code.rl.r])

Parameter

exception_code
Optional address of a longword containing the exception code.

Return Status

The ACMS$RAISE_TRANS_EXCEPTION service can return the following status
values:

Status
Severity
Level Description

ACMS$_NORMAL Success Normal successful operation; the
transaction exception is raised
in the task as soon as the step
procedure completes.

ACMS$_INVTRANSEXCCODE Error An invalid transaction exception
code was passed to the service. A
nonrecoverable exception has been
raised, and the task is canceled with
the ACMS$_INVTRANSEXCCODE
failure status as soon as the step
procedure completes.

ACMS$_EXCPTNACTIVE Error An exception of the same or higher
level has already been raised. The
existing exception is raised in the
task as soon as the step procedure
completes.

ACMS$_NOEXCPTNCANPROC Error Cannot raise an exception from a
server cancel procedure.

ACMS Programming Services 9–9

ACMS$RAISE_TRANS_EXCEPTION

Status
Severity
Level Description

ACMS$_TRANSEXCNOTACT Error The ACMS$RAISE_TRANS_
EXCEPTION service was called by
a step procedure, but a transaction
was not active. A nonrecoverable
exception has been raised, and the
task is canceled with the ACMS$_
TRANSEXCNOTACT failure status
as soon as the step procedure
completes.

ACMS$_TSKCANINVARGS Error Too many arguments were supplied
to this service. A nonrecoverable
exception has been raised, and the
task is canceled with the ACMS$_
TSKCANINVARGS failure status
as soon as the step procedure
completes.

ACMS$_TASKNOTACTTE Fatal ACMS$RAISE_TRANS_
EXCEPTION service may not be
called when no task is active.

Notes

If an exception code is not supplied, ACMS uses ACMS$_TRANSEXCPTN_
PROCSVR; ACMS-E-TRANSEXCPTN_PROCSVR, "Exception resulted from a
procedure server calling ACMS$RAISE_TRANS_EXCEPTION." If an exception
code is supplied, it must be a failure status.

If an exception code is supplied that is not a failure status, then ACMS cancels
the task with a status of ACMSEXC-E-INVTRANSEXCCODE, "Task canceled:
invalid step exception code passed to ACMS$RAISE_TRANS_EXCEPTION."

If a step procedure calls the ACMS$RAISE_TRANS_EXCEPTION service
when a transaction is not active, then ACMS cancels the task with a status of
ACMS$_TRANSEXCNOTACT; ACMS-E-TRANSEXCNOTACT, "Task canceled:
ACMS$RAISE_TRANS_EXCEPTION called when no transaction active."

ACMS sets the appropriate exception information when this service is called;
however, the exception is not raised in the task until the step procedure
completes. Therefore, a step procedure should return as soon as possible after
calling the ACMS$RAISE_TRANS_EXCEPTION service.

This service cannot be called from a cancel procedure or from an initialization or
a termination procedure.

9–10 ACMS Programming Services

ACMS$RAISE_TRANS_EXCEPTION

Example

SQL-ERROR-HANDLER.

CALL "ACMS$RAISE_TRANS_EXCEPTION" USING
BY REFERENCE RDB$LU_STATUS.

EXIT PROGRAM.

The previous example shows how to raise a transaction exception in the error-
handling section of a COBOL procedure.

ACMS Programming Services 9–11

10
ACMS Task Debugger Commands

This chapter lists the commands available with the ACMS Task Debugger. You
can use these commands to run an ACMS task without starting an application,
to control the task, and to examine and change the contents of the workspaces
the task uses as it runs. Table 10–1 lists the ACMS Task Debugger commands
described in this chapter.

Table 10–1 ACMS Task Debugger Commands

Command Description

@ (at sign) Runs a file containing Task Debugger commands.

ACCEPT Accepts one task selection at a time from one or more
agent programs.

ASSIGN Assigns a process logical name to a server.

CANCEL BREAK Removes one or more breakpoints from a task or all
breakpoints from all tasks.

CANCEL TASK Cancels the current task.

CANCEL TRANSACTION_
TIMEOUT

Cancels the transaction timeout period previously set.

DEPOSIT Puts a value into a workspace field.

EXAMINE Displays the current value of a workspace field.

EXIT Ends the debugger session and returns you to DCL, or
ends the running of a file of Task Debugger commands.

GO Continues a task after a breakpoint or INTERRUPT
command. Also continues a task interrupted with Ctrl/G .

HELP Displays information about Task Debugger commands and
symbols.

INTERRUPT Interrupts a server and gives control to the OpenVMS
Debugger in that server process.

SELECT Selects and starts a task.

SET BREAK Sets a breakpoint in a task.

SET SERVER Names the default server for ASSIGN commands.

SET TRANSACTION_
TIMEOUT

Sets the transaction timeout limit (in seconds).

SHOW BREAK Displays breakpoints set for all tasks.

SHOW SERVERS Displays all servers that have been started with the
START command.

(continued on next page)

ACMS Task Debugger Commands 10–1

ACMS Task Debugger Commands

Table 10–1 (Cont.) ACMS Task Debugger Commands

Command Description

SHOW TRANSACTION_
TIMEOUT

Displays the value of the current transaction timeout.

SHOW VERSION Displays the version number of the Task Debugger.

START Starts one or more instances of one or more servers.

STEP Runs the task to the next task-level step point.

STOP Stops one or more servers.

10–2 ACMS Task Debugger Commands

ACCEPT (ACMSDBG>)

@ (At sign) Command

Runs the debugger commands contained in the named file. The file can contain
any ACMS Task Debugger command, including another at-sign command. When
the ACMS Task Debugger reaches an EXIT command or the end of the file, it
returns control to the terminal or command procedure that issued the at-sign
command.

Format

@ file-spec

Parameter

file-spec
The OpenVMS file specification of the command procedure to be run. The default
device and directory are your current default device and directory. The default file
type is .COM. Do not enclose the file specification in single or double quotation
marks.

Notes

The ACMS Task Debugger does not recognize a SET VERIFY command. When
the command procedure runs, the commands in the file are not displayed on the
terminal screen.

Include comments in the command file by preceding them with an exclamation
mark (!).

Examples

1. ACMSDBG> @VRDBG.COM

This example shows how to run the command procedure whose file
specification is VRDBG.COM; it is in the current default directory. The
following example is a command procedure.

2. ! Command procedure for debugging tasks using the VR_SERVER.
!
ASSIGN /SERVER=VR_SERVER SYS$SAMPLE:VRFILE.DAT VR_FILE
START VR_SERVER

In this example, the equivalence name SYS$SAMPLE:VRFILE.DAT is
assigned to the process logical name VR_FILE for the server named VR_
SERVER. The command file VRDBG.COM specifies this assignment.

ACMS Task Debugger Commands 10–3

ASSIGN (ACMSDBG>)

ACCEPT Command

Accepts calls from an agent program.

Format

ACCEPT [/qualifier]

Command Qualifier Default

/CONTINUOUS None

Qualifier

/CONTINUOUS
Specifies that the Task Debugger can accept multiple consecutive task selections
from agent programs.

Notes

One or more agent programs can call tasks, but the ACCEPT command accepts
only one task selection at a time. You must type the ACCEPT command each time
you want the Task Debugger to accept another call from an agent program unless
you specify the /CONTINUOUS qualifier. The /CONTINUOUS qualifier allows
the Task Debugger to accept subsequent task calls without entering the ACCEPT
command each time. After you type the ACCEPT or ACCEPT/CONTINUOUS
command, the Task Debugger waits until the agent program calls a task. Then
the task executes in the Task Debugger.

Before the agent program calls a task, use Ctrl/G to return to the ACMSDBG>
prompt if you want to enter more Task Debugger commands before executing the
task. This discontinues the effect of the /CONTINUOUS qualifier. To resume
waiting for the task call, enter the GO command.

Tasks selected by agent programs cannot be canceled using the CANCEL TASK
command.

Example

ACMSDBG> ACCEPT/CONTINUOUS

This example allows the Task Debugger to accept consecutive calls to tasks
without reentering the ACCEPT command for each task selection.

10–4 ACMS Task Debugger Commands

CANCEL BREAK (ACMSDBG>)

ASSIGN Command

Assigns a process logical name for a server.

Format

ASSIGN [/qualifier] equivalence-name logical-name

Command Qualifier Default

/SERVER=server-name /SERVER=current-server

Parameters

equivalence-name
The OpenVMS file specification or other string assigned to the logical name. The
string must conform to the standards for equivalence names, which are explained
in OpenVMS DCL Dictionary.

logical-name
The 1- to 63-character process logical name assigned. The logical name must
conform to the standards for logical names as explained in OpenVMS DCL
Dictionary.

Qualifier

/SERVER=server-name
Names the server for which the logical name is assigned. The server name must
be the same as the name used in a Task Debugger START command; that is, it
must be the name assigned to the server in the task group definition. The default
server name is the one named in the most recent SET SERVER command.

Note

When ACMS starts a server, it creates the server with all the logical names
specified up to that point. Therefore, to assign logical names for a server, assign
them before starting the server.

Examples

1. ACMSDBG> ASSIGN SYS$SAMPLE:VRFILE.DAT VR_FILE

In this example, the equivalence name SYS$SAMPLE:VRFILE.DAT is
assigned to the process logical name VR_FILE for the current server.

2. ACMSDBG> ASSIGN /SERVER=VR_SERVER SYS$SAMPLE:VRFILE.DAT VR_FILE

In this example, the equivalence name SYS$SAMPLE:VRFILE.DAT is
assigned to the process logical name VR_FILE for the server named VR_
SERVER.

ACMS Task Debugger Commands 10–5

CANCEL TASK (ACMSDBG>)

CANCEL BREAK Command

Removes one or more breakpoints from a task or from all tasks.

Format

CANCEL BREAK [/qualifiers] [breakpoint]

Command Qualifier Default

/ALL[=task-name] None

Parameter

breakpoint
Names a breakpoint to cancel in the current task. See the SET BREAK command
for the format of this parameter.

Qualifier

/ALL
Declares that all breakpoints in all tasks or in one task are to be canceled. If
you include an equal sign (=) and task name in the /ALL qualifier, the task name
must be the name of the task in the task group definition.

Note

You must include either the /ALL qualifier or the breakpoint parameter in the
CANCEL BREAK command.

Examples

1. ACMSDBG> CANCEL BREAK VR_RESERVE_TASK\$STEP_1\$BEGIN

This example shows how to cancel the breakpoint at the beginning of the first
step of the Vehicle Rental Reserve Car Task, VR_RESERVE_TASK.

2. ACMSDBG> CANCEL BREAK /ALL=VR_RESERVE_TASK

This example shows how to cancel all task-level breakpoints in the task
VR_RESERVE_TASK.

10–6 ACMS Task Debugger Commands

CANCEL TRANSACTION_TIMEOUT (ACMSDBG>)

CANCEL TASK Command

Cancels the current task.

Format

CANCEL TASK

Notes

You can use the CANCEL TASK command at the ACMSDBG> prompt when
there is an active task that was started with the ACMSDBG SELECT command.
However, you cannot use this command to cancel a task that was submitted by
an agent program.

To display the ACMSDBG> prompt when you are not at a breakpoint or when
you are at an OpenVMS Debugger prompt, press Ctrl/G .

When you use this command, the OpenVMS Debugger runs the cancel action if
any is defined for the task. If the task has context in a server when it is canceled,
the cancel procedure (if any) for that server is also run.

Example

ACMSDBG> CANCEL TASK

This example shows how to cancel the current task.

ACMS Task Debugger Commands 10–7

DEPOSIT (ACMSDBG>)

CANCEL TRANSACTION_TIMEOUT Command

Cancels any transaction timeout period previously set.

Format

CANCEL TRANSACTION_TIMEOUT

Notes

You can use the CANCEL TRANSACTION_TIMEOUT command at the
ACMSDBG> prompt when you have already set a transaction timeout period.
Use the command when you have finished testing your transaction timeout
handling.

Example

ACMSDBG> CANCEL TRANSACTION_TIMEOUT

This example shows how to cancel the current transaction timeout.

10–8 ACMS Task Debugger Commands

EXAMINE (ACMSDBG>)

DEPOSIT Command

Puts a value into a workspace field.

Format

DEPOSIT [/qualifiers] workspace-field-name=value

Parameters

workspace-field-name
The name of a field in a workspace defined for the task. The value parameter
is put into this field. Use the symbol for current location (.) to indicate that the
field named in the last DEPOSIT or EXAMINE command is the field in which to
put a value.

value
The data put into the workspace field. The qualifiers used with the DEPOSIT
command define the length and data type of the value.

Qualifiers

When the Task Debugger receives a DEPOSIT command, it passes that command
directly to the OpenVMS Debugger. The qualifiers for the DEPOSIT command
are the same qualifiers available for the DEPOSIT command for the OpenVMS
Debugger. These qualifiers determine the data type used to display the
information in the workspace field. See OpenVMS Debugger Manual for a
list of available qualifiers.

Notes

You can use the DEPOSIT command only if a task is active.

Both the Task Debugger and the OpenVMS Debugger look at the same copy
of the workspace. If you change a workspace value from the Task Debugger
(ACMSDBG>), you see the changes in the OpenVMS Debugger; if you change a
workspace value from the OpenVMS Debugger (DBG>), you see the changes in
the Task Debugger.

Example

ACMSDBG> DEPOSIT RESERVATION_NUMBER = "000121"

This example shows how to deposit the 6-byte ASCII value 000121 in the
RESERVATION_NUMBER field.

ACMS Task Debugger Commands 10–9

EXIT (ACMSDBG>)

EXAMINE Command

Displays the contents of a workspace field.

Format

EXAMINE [/qualifiers] workspace-field-name [OF workspace-record-name]

Parameters

workspace-field-name
The workspace field to be read by the EXAMINE command. Use the symbol
for current location (.) to indicate that the field named in the last DEPOSIT or
EXAMINE command is the field you want to examine.

workspace-record-name
If the workspace-field-name is not unique, use the workspace-record-name to
specify the name of the workspace that contains the field you want to examine.

Qualifiers

When the ACMS Task Debugger receives an EXAMINE command, it passes
that command directly to the OpenVMS Debugger. The qualifiers for the
EXAMINE command are the same qualifiers as for the EXAMINE command
for the OpenVMS Debugger. These qualifiers determine the data type used to
display information in the workspace field. See OpenVMS Debugger Manual for a
list of available qualifiers.

Notes

You can use the EXAMINE command only if a task is active.

Both the ACMS Task Debugger and the OpenVMS Debugger look at the task’s
copy of a workspace.

Example

ACMSDBG> EXAMINE RESERVATION_NUMBER OF VR_RECORD
RESERVATION_NUMBER OF VR_RECORD: +121

This example shows how to display the contents of the RESERVATION_NUMBER
field of the VR_RECORD workspace.

10–10 ACMS Task Debugger Commands

GO (ACMSDBG>)

EXIT Command

Ends the debugging session or ends the execution of commands in a command
procedure. If typed after the ACMSDBG> prompt, the EXIT command stops all
subprocesses started by the Task Debugger and returns to DCL command level.
If included in a command procedure, the EXIT command returns control to the
command stream that started the command procedure.

Format

EXIT

Example

ACMSDBG> EXIT

This example shows how to end the current Task Debugger session.

ACMS Task Debugger Commands 10–11

HELP (ACMSDBG>)

GO Command

Continues a task after a breakpoint. Also returns you to a server process
from which you have exited with Ctrl/G and continues any command after an
INTERRUPT command.

Format

GO

Note

The GO command always restarts the task at the breakpoint where it stopped.

Examples

1. ACMSDBG> SELECT VR_RESERVE_TASK
Task breakpoint at VR_RESERVE_TASK\$TASK\$BEGIN
ACMSDBG> GO

This example shows how to start the task VR_RESERVE_TASK, which
breaks at $BEGIN on the root step. The GO command restarts the task
VR_RESERVE_TASK at that breakpoint.

2. ACMSDBG> INTERRUPT VR_SERVER
Task is in server VR_SERVER
DBG> SET BREAK UPDATE_RECORD
DBG> GO

Ctrl/G

ACMSDBG> GO

This example shows how to return to the OpenVMS Debugger prompt (DBG>)
so that you can set breakpoints or use other OpenVMS Debugger commands
in the server VR_SERVER. The example then shows how to return to the
ACMSDBG> prompt and resume task execution.

10–12 ACMS Task Debugger Commands

INTERRUPT (ACMSDBG>)

HELP Command

Displays information about ACMS Task Debugger commands, step points, control
characters, and symbols.

Format

HELP [topic] [...]

Parameter

topic
A Task Debugger command, step point, or symbol about which information
is available. Topics can have subtopics about which additional information is
available.

Examples

1. ACMSDBG> HELP

This example shows how to display general information about the Task
Debugger.

2. ACMSDBG> HELP EXAMINE

This example shows how to display information about how to use the Task
Debugger EXAMINE command.

ACMS Task Debugger Commands 10–13

INTERRUPT (ACMSDBG>)

INTERRUPT Command

Interrupts a server and gives control to the OpenVMS Debugger in that server
process. Use this command to get the DBG> prompt in order to set breakpoints,
examine addresses, or change values in a server that has already been started.

Format

INTERRUPT server-name [/qualifiers]

Command Qualifier Default

/[TASK=task-name] None

Parameter

server-name
The name of a server in the task group definition. This parameter is required.

Qualifier

/TASK
A called task that participates in a distributed transaction started by a parent
task might need to use the same server as the parent task. In a distributed
transaction, different server processes are started and allocated to the parent and
to the called tasks. The /TASK qualifier allows you to specify the server process
that you want to interrupt.

If you do not specify a task name, ACMS checks for an active task:

• If there is an active task, and the task has context in an instance of the
specified server, ACMS interrupts that instance of the server.

• If no task is active, or if the active task does not have context in the specified
server, ACMS interrupts the first free instance of the specified server. The
first free server instance is the process that ACMS uses the next time a task
calls a procedure in this server.

If you specify a task name, then ACMS interrupts the server process currently
owned by that task. If the named task is not currently retaining context in the
named server, this command returns an error.

If you debug a recursive task, supplying a task name does not have any effect;
the /TASK qualifier is ignored and the rules for interrupting a server when no
task name is supplied are followed.

Notes

The START server command must be completed before interrupting the server. If
you use Ctrl/G to return to the ACMSDBG> prompt before the server is completely
started, you will not be able to complete the server startup and will experience
unpredictable results.

When you finish with your debugging commands, type GO to resume the
execution of the server. Then press Ctrl/G to end the INTERRUPT command
and return to the Task Debugger ACMSDBG> prompt.

10–14 ACMS Task Debugger Commands

SELECT (ACMSDBG>)

When linking server images that you are going to debug, take the default of
/TRACEBACK. If you link a server with /NOTRACEBACK, you cannot interrupt
the server because the INTERRUPT command causes a fatal error in the server.
Instead, use the STOP command to stop the server and return to the ACMSDBG>
prompt. You can then relink and restart the server.

Example

ACMSDBG> INTERRUPT VR_SERVER
Task is in server VR_SERVER
DBG> SET BREAK UPDATE_RECORD
DBG> GO

Ctrl/G

ACMSDBG>

This example shows how to return to the OpenVMS Debugger prompt (DBG>) so
that you can set breakpoints or use other OpenVMS Debugger commands in the
server VR_SERVER. The example also shows how to return to the ACMSDBG>
prompt in order to resume task execution.

ACMS Task Debugger Commands 10–15

SET BREAK (ACMSDBG>)

SELECT Command

Selects and starts a task.

Format

SELECT task-name [selection-string]

Parameters

task-name
The name of the task selected, which is assigned in the task group definition.
This parameter is required.

selection-string
Additional information the Task Debugger passes to the task in the
ACMS$SELECTION_STRING workspace. Enclose the selection string in
quotation marks if the data has embedded spaces.

Note

Select only one task at a time. If a selected task has not completed yet, use
CANCEL TASK to end that task before selecting another.

Examples

1. ACMSDBG> SELECT VR_RESERVE_TASK

This example shows how to select and start the VR_RESERVE_TASK.

2. ACMSDBG> SELECT VR_RESERVE_TASK 000121

This example shows how to start the VR_RESERVE_TASK. It also shows
how to pass the decimal number 000121 to the ACMS$SELECTION_STRING
workspace.

10–16 ACMS Task Debugger Commands

SET SERVER (ACMSDBG>)

SET BREAK Command

Sets a breakpoint in a task. Breakpoints can be set at specific locations or at
specific events.

Table 7–3 contains location breakpoint symbols. Table 7–4 contains event
breakpoint symbols.

Format

SET BREAK task-name\step-name\ location

SET BREAK task-name\event

Parameters

task-name
Always include a task name in the SET BREAK command.

step-name
The step in the task at which a breakpoint is set.

If you omit the step-name in a location breakpoint, the break is set at the root
step.

location
Location breakpoint symbols are $BEGIN, $ACTION, $HANDLER, and $END.

If you omit the location, the breakpoint is set at the beginning of the step.

event
Event breakpoint symbols are $EXCEPTION and $CANCEL.

Notes

You can use the SET BREAK command from the ACMSDBG> prompt only to
set breakpoints in the task definition. Use the SET BREAK command from the
DBG> prompt to set breakpoints in user procedure code.

You can set breakpoints for tasks that are not active.

Examples

1. ACMSDBG> SET BREAK VR_RESERVE_TASK

In this example, a breakpoint is set at the beginning of the VR_RESERVE_
TASK.

2. ACMSDBG> SET BREAK VR_RESERVE_TASK\$STEP_1\$BEGIN

In this example, a location breakpoint is set at the beginning of the first step
in VR_RESERVE_TASK.

3. ACMSDBG> SET BREAK VR_RESERVE_TASK\$CANCEL

In this example, a CANCEL event breakpoint is set. This breakpoint is
reached when any event that causes a task cancellation occurs.

ACMS Task Debugger Commands 10–17

SET TRANSACTION_TIMEOUT (ACMSDBG>)

SET SERVER Command

Names the server used as the default for the ASSIGN command.

Format

SET SERVER server-name

Parameter

server-name
The name of the server, taken from the task group definition, to set as the current
server for ASSIGN commands. This parameter is required.

Notes

The SET SERVER command does not affect which servers the START and STOP
commands handle.

The SET SERVER command has no default.

If you do not use the SET SERVER command, you must use the /SERVER
qualifier on the ASSIGN command.

Example

ACMSDBG> SET SERVER VR_SERVER

This example shows how to establish VR_SERVER as the current server for
ASSIGN commands.

10–18 ACMS Task Debugger Commands

SHOW BREAK (ACMSDBG>)

SET TRANSACTION_TIMEOUT Command

Sets the current transaction timeout period. This allows you to verify that your
task correctly handles a transaction timeout.

Format

SET TRANSACTION_TIMEOUT seconds

Parameter

seconds
The number of seconds to set as the current transaction timeout limit. This
parameter is required.

Notes

If you do not set a transaction timeout, your transactions will never time out.

Once a transaction timeout limit is set using this command, if a transaction
does not complete in the specified amount of time, the Task Debugger raises a
transaction exception.

Example

ACMSDBG> SET TRANSACTION_TIMEOUT 60

This example shows how to establish 60 seconds as the transaction timeout limit.

ACMS Task Debugger Commands 10–19

SHOW SERVERS (ACMSDBG>)

SHOW BREAK Command

Displays breakpoints that have been set in the task.

Format

SHOW BREAK

Example

ACMSDBG> SHOW BREAK

This example shows how to display all breakpoints that you have set (and not yet
canceled) in the task during the current Task Debugger session.

10–20 ACMS Task Debugger Commands

SHOW TRANSACTION_TIMEOUT (ACMSDBG>)

SHOW SERVERS Command

Displays all servers that have started (and not stopped) in the current Task
Debugger session.

Format

SHOW SERVERS

Example

ACMSDBG> SHOW SERVERS
VR_SERVER

This example shows that VR_SERVER is the only server currently running in
this Task Debugger session.

ACMS Task Debugger Commands 10–21

SHOW VERSION (ACMSDBG>)

SHOW TRANSACTION_TIMEOUT Command

Displays the value of the current transaction timeout.

Format

SHOW TRANSACTION_TIMEOUT

Example

ACMSDBG> SHOW TRANSACTION_TIMEOUT
Transaction timeout value is 60 seconds

This example shows how to display the transaction timeout currently set.

10–22 ACMS Task Debugger Commands

START (ACMSDBG>)

SHOW VERSION Command

Displays the version number of the Task Debugger.

Format

SHOW VERSION

Example

ACMSDBG> SHOW VERSION
ACMS Task Debugger V5.0

This example shows how to display the version number of the Task Debugger
image that the user is running.

ACMS Task Debugger Commands 10–23

STEP (ACMSDBG>)

START Command

Starts one or more instances of one or more servers.

Format

START [/qualifier] [server-name] [,...]

Command Qualifier Default

/ALL None

Parameter

server-name
The name of one or more servers, from the task group definition. Separate
multiple server names with commas.

In most cases, you need only one instance of a server to be active. The instance
that is started is used by each task that uses that server.

In a distributed transaction, however, a called task that participates in a
distributed transaction started by a parent task might need to use the same
server as the parent task. Different server processes are started and allocated
to the parent and the called task. You can use the START command to start
multiple instances of the same server.

Qualifier

/ALL
Starts all reusable servers defined in the task group database (.TDB) being used
for the current debugger session.

Notes

Always include either a server name or /ALL in the START command.

The servers named in the START command go through startup as if you were
starting them with the ACMS/START APPLICATION command. The Task
Debugger runs all initialization procedures and allocates group workspaces. If
the server image was linked with /DEBUG, the START server command gives
control to the OpenVMS Debugger in the server process.

The number of active server processes allowed for the debugging session is
limited. A user is allowed up to four times the number of servers defined in the
task group that is being debugged. The number of server instances allowed per
server, however, is unlimited. If a task group has two servers, for example, you
have can eight server instances started. If need be, you can have eight instances
of one server and none of the other.

Examples

1. ACMSDBG> START VR_SERVER,VR_SERVER

This example shows how to start two processes for the server VR_SERVER.

10–24 ACMS Task Debugger Commands

STEP (ACMSDBG>)

2. ACMSDBG> START/ALL

This example shows how to start one instance of all servers defined in the
task group database file (.TDB) used in the current debugger session.

ACMS Task Debugger Commands 10–25

STOP (ACMSDBG>)

STEP Command

Runs the task from the current breakpoint to the next task-level breakpoint.
When stepping through a task that was called by another task, the Task
Debugger proceeds through all the steps in the called task until the task
completes. Control then returns to the parent task; continue to enter the STEP
command for the Task Debugger to step through the parent task.

Format

STEP

Note

This command is valid only when you select a task using the SELECT or
ACCEPT commands.

Example

ACMSDBG> STEP

This example shows how to move the current task to the next task-level
breakpoint.

10–26 ACMS Task Debugger Commands

STOP (ACMSDBG>)

STOP Command

Stops one or more servers.

Format

STOP [/qualifier] [server-name][,...]

Command Qualifier Default

/ALL None

Parameter

server-name
The name of the server to stop. The name of the server comes from the task
group definition. Separate multiple server names with commas.

Qualifier

/ALL
Stops all instances of all servers included in the task group database file (.TDB)
used in the current debugger session.

Notes

Use either the server-name parameter or the /ALL qualifier. If you use the
server-name parameter, ACMS stops a single server process and displays a
message if other server processes remain active for the same server.

The servers named in the STOP command go through shutdown as if you were
stopping them with the ACMS/STOP APPLICATION command. All termination
procedures are run.

Examples

1. ACMSDBG> STOP VR_SERVER,VR_UPDATE_SERVER

This example shows how to stop the servers VR_SERVER and VR_UPDATE_
SERVER.

2. ACMSDBG> STOP /ALL

This example shows how to stop all servers defined in the task group database
file (.TDB) used in the current debugger session.

ACMS Task Debugger Commands 10–27

Part III
Interoperability with Third-Party Databases:

Oracle Case Study

This part of the manual describes how HP ACMS for OpenVMS transaction
processing (TP) software works with third-party database managers, with code
examples given for the Oracle database manager.

11
Overview of ACMS and Oracle

This chapter provides background on ACMS and discusses how ACMS and
third-party database managers (such as Oracle) can be integrated. It also
specifically answers the following questions:

• Why would you want to use HP and ACMS?

• What are the basic concepts for ACMS?

• How do you use ACMS with third-party databases?

• How do you integrate ACMS with Oracle databases?

11.1 Why Use HP and ACMS?
When you read articles and business school case studies on companies that
remain competitive year after year, decade after decade, you typically find a
common denominator for those companies: they remained flexible enough to
change the way they did business to suit the current business environment. If
information is critical to the operation of your business, don’t you need that same
advantage of flexibility?

HP offers you computing solutions that fit for today and for the future as well.
Because HP is the premier vendor in interoperability and networking, flexibility
means the ability to:

• Use the appropriately sized (and therefore appropriately priced) computer
system for different business needs. HP’s ACMS system runs on all OpenVMS
machines, from the smallest desktop to the largest mainframe. Every one of
these machines can interoperate with Oracle databases.

• Define the level of availability that your business needs. You can create
clustered and fault-tolerant hardware configurations to ensure continuous
hardware operations. ACMS provides for application failover to ensure
continuous software operations.

• Integrate your existing systems into the ACMS environment to protect
your current investment. The HP TP Desktop Connector (foermerly ACMS
Desktop) product allows additional clients (using a client/server approach
with systems such as DOS, Macintosh®, SCO™ UNIX®, and ULTRIX
systems) and additional presentation managers (such as Microsoft® Windows,
HyperCard®, and Motif®) to be connected to ACMS. These connections can
be made over existing networks such as HP’s PATHWORKS and Novell®
NetWare®.

• Move computing to the right location. With ACMS, you can either keep your
business data and processing in a central location or distribute it throughout
your corporation.

Overview of ACMS and Oracle 11–1

Overview of ACMS and Oracle
11.1 Why Use HP and ACMS?

• Interoperate with HP and third-party databases. ACMS coordinates the
activities of end users against the database, helping to reduce database and
lock contention. For environments that have a large number of users, ACMS
is crucial for high performance and security.

With HP, flexibility means the choice is yours!

11.2 Introduction to Developing ACMS Applications
An ACMS application consists of a set of tasks that relate to the functions of a
business. A task is the unit of work that a user selects from an ACMS menu.
Each task usually comprises a sequence of steps that perform this unit of work.
You use the ACMS task definition language (TDL) to define tasks.

Figure 11–1 illustrates the basic principles of the ACMS TDL used to write a task
definition.

The task definition specifies an interface to the presentation service (forms
management system) for communication with a terminal or other device.
The task definition also specifies an interface to a procedure server for
executing procedures (user-written subroutines) that handle database I/O and
computational work.

Figure 11–1 Execution Flow of an ACMS Task Definition

ProcedureTaskPresentation

Display I/O Execution Flow Database I/O
TAY-0099-AD

STEPS:

Call
Procedure 1

Procedure 2

Send

Receive

2

1

3

CALL

CALL

CALL

Database

Exchange

Processing

Exchange

Service Definition

RETURN

RETURN

Procedure 1

Server

RETURN
Form
Manager

The semantics of the ACMS task definition language are based on a call and
return model. The task definition performs calls to the presentation service
in exchange steps, and to the procedure server in processing steps. The
presentation service and procedure server perform a function and return control
to the task definition. Upon return of control to the task definition, subsequent
parts of a step can evaluate the results of the call and, if necessary, handle any
error conditions.

In Figure 11–1, for example:

1. In the first exchange step, the task definition calls the presentation service
to display a form on the terminal screen (for example, a form to add a new
employee record to a database). When the terminal user finishes filling in the
form, the user presses a specified key (or keys) that returns the input data to
the task definition.

11–2 Overview of ACMS and Oracle

Overview of ACMS and Oracle
11.2 Introduction to Developing ACMS Applications

2. In the processing step, the task definition then calls Procedure 1 in the
procedure server to write that input data to the database. Procedure 1 then
returns its results (either success or failure). If Procedure 1 succeeds, the
task ends with a success status. If Procedure 1 fails to write to the database,
the task continues executing at step 3.

3. In the second exchange step, the task definition calls the presentation service
to send an error message to the terminal screen (for example, that the
employee number of the new record duplicates an existing employee number).
The presentation service then returns control to step 3, which ends the task.

By keeping exchange and processing steps as distinct steps within an ACMS task,
ACMS allows for the separation of forms (end-user interaction) from function
(database access, computation, and execution control). This means that you can
easily distribute end-user processing while maintaining centralized data control.

11.2.1 Writing ACMS Definitions
The ACMS task definition language allows you to write an ACMS definition as a
series of simple, English-like statements. The four types of ACMS definitions are:

• A task definition describes, in steps, the work to be accomplished in the
task. For example, a task can collect information from a user and call a
procedure to store the information in a file or database.

• A task group definition specifies similar tasks for control purposes and
defines resources common to all tasks in the group.

• An application definition describes the environment and control
characteristics of tasks and task groups.

• A menu definition describes how users access tasks in one or more
applications.

You build the task, task group, and application definitions into binary files that
run as an application under the control of the ACMS run-time environment. You
build a menu definition into a binary file that is not necessarily tied to a single
application.

Figure 11–2 illustrates the ACMS development components for a simple ACMS
application with two tasks (for example, one to add a new employee record to a
database, and one to update an existing employee record).

Figure 11–2 ACMS Application Components

Menu DefinitionApplication
Definition

Task Group
Definition

Task Definition 2

Task Definition 1

TAY-0014-AF

Figure 11–2 does not show that there can be more than one task group definition
specified for a single application. Also, more than one menu definition can specify
tasks that point to the same application. Conversely, a single menu definition can
specify tasks in different applications.

Overview of ACMS and Oracle 11–3

Overview of ACMS and Oracle
11.2 Introduction to Developing ACMS Applications

Because ACMS applications are modular, you develop each part of an application
independently. Built-in modular design based on English-like syntax statements
means that ACMS applications are easy to structure and easy to maintain.
Furthermore, modularity means that you can easily update an application
module without affecting the entire application.

11.2.2 Composition of ACMS Definitions
A task definition controls the exchange of information with the user, and the
processing of that information against the file or database. Each ACMS task
definition is made up of one or more steps. ACMS breaks the work to be
accomplished by a task into two types of steps:

• Exchange steps usually interact with the Form Manager to handle forms
I/O (that is, the exchange of information between the task and the user). An
exchange step can interact with DECforms or TDMS forms, or interface with
other devices using the ACMS Request Interface or the ACMS Systems
Interface for communicating with nonstandard devices. Figure 11–1
illustrates an execution flow with two exchange steps.

• Processing steps call step procedures (user-written subroutines) to handle
computations and interactions with databases or files, typically using
procedures written in a high-level programming language (any language
adhering to the OpenVMS Calling Standard). ACMS uses two types of
servers: procedure servers for executing a procedure, and Digital Command
Language (DCL) servers for invoking images or DCL commands. Figure 11–1
illustrates an execution flow with one processing step.

A server process may perform an initialization routine of common work
when the server is started, rather than each time a task is selected. ACMS
manages pools of servers to save on process creation and image activation.

Servers are single-threaded and serially reusable. A single server process
can be called by many different ACMS tasks in a serial fashion. Once a
call is complete, the server is then available to be called by another ACMS
task. Reusable servers in a single process means that the performance in the
processing of your transactions is greatly enhanced.

When ACMS starts a processing step, it allocates a procedure server
process to a task to execute the procedure in that step. This single-
threaded process remains allocated to the task for the duration of one or
more processing steps.

In ACMS, a workspace is a buffer used to pass data between the task and
processing steps, and between the task and exchange steps.

Task group definitions combine similar tasks of an application that need to share
common resources such as workspaces, HP DECforms forms, and procedure
servers.

The application definition describes:

• Task groups that belong to an application

• Characteristics that control the tasks, such as security restrictions on which
users can select a particular task

• Servers, such as the number of server processes that can be active at the
same time

11–4 Overview of ACMS and Oracle

Overview of ACMS and Oracle
11.2 Introduction to Developing ACMS Applications

• Application characteristics, such as whether application activity is recorded in
the audit trail log

Menu definitions list both tasks and additional menus that a user can select from
a menu. For example, the tasks on a menu can include adding new employee
records, displaying employee information, and entering labor data.

When you write definitions for ACMS tasks, ACMS automatically stores the
definitions in a CDD dictionary. At run time, the definitions are represented in
binary form in databases defined by ACMS. For example, a task group definition
is represented by a task group database that contains a binary representation of
the task group definition.

11.3 Introduction to Using ACMS with Third-Party Databases
ACMS allows the use of any HP or third-party database manager that can be
called using 3GL languages that adhere to the OpenVMS Calling Standard (such
as COBOL, FORTRAN, and C).

To understand the area of an ACMS application that is affected by use of third-
party databases, refer to Figure 11–1. Because ACMS is modular, the execution
flow (ACMS task definitions) and display I/O (forms management code) are for the
most part similar regardless of whether you use HP’s or third-party databases.
The key difference is with the location of a few database statements.

When you write ACMS task definitions that access Rdb databases, you can embed
database recovery, transaction setting or rollback, and commit statements within
the task definition. When using other third-party databases, these functions must
reside in the 3GL procedures that perform database access. Thus, the ACMS
application components that are most affected by the use of other third-party
databases (that is, other than Rdb) are the 3GL procedures that perform database
access (labeled Procedure 1 in the Database I/O portion of Figure 11–1).

Depending on the features and capabilities of a particular third-party database
(other than Rdb), there may be other restrictions. For example, a particular
database may use its own internal data dictionary to store database metadata,
and that metadata cannot be integrated with the CDD data dictionary (such is
the case with Oracle). This manual points out the key restrictions with Oracle
databases; for other third-party databases (other than Oracle and Rdb), you must
look at the documentation for that database to determine restrictions that might
apply when it interoperates with an ACMS environment.

11.4 How Do You Use ACMS with Oracle?
When using Oracle as a database manager with ACMS, you can use the existing
3GL code that accesses the Oracle database with little modification. The main
modification is to cut the Oracle application code into smaller, more focused
modules to fit with the ACMS approach to procedure servers. ACMS uses four
types of procedures:

• Step procedures

• Initialization procedures

• Termination procedures

• Cancel procedures

Overview of ACMS and Oracle 11–5

Overview of ACMS and Oracle
11.4 How Do You Use ACMS with Oracle?

A programmer who has been writing 3GL code in an Oracle environment without
a TP monitor must group the functions of the code into different servers. In
an Oracle database environment, a step procedure might be used to perform
database read and write operations; an initialization procedure might be used to
make connections to a particular Oracle instance; a termination procedure might
close those connections to a particular Oracle instance made by the initialization
procedure; and a cancel procedure might perform some type of database clean-up
after a user cancels an operation already begun.

Typically, similar read-intensive database modules are gathered into a group of
step procedure images, while write-intensive database modules are gathered into
a different group of step procedure images. This helps to control database locking
contention.

Although the structure of existing 3GL code for an Oracle application needs
to be reorganized for ACMS, the 3GL code itself does not need to be modified
significantly (if at all). Good server design is one of the crucial steps in writing a
powerful ACMS application. The ACMS documentation describes ACMS server
design and development in detail.

In addition to making your 3GL code more modular, the following functions must
remain in the 3GL procedure: database recovery, transaction setting or rollback,
and commit functions. (If you have an existing Oracle application, these functions
are probably already in your 3GL procedures.)

There are three methods to access an Oracle database using 3GL code:

• Embedded SQL

SQL code that is preceded by an EXEC SQL clause in the 3GL module.

• PL/SQL

An extension to SQL that supports procedural constructs, variable
declaration, and robust error handling.

• OCIs

Oracle Call Interfaces that allow high-level language applications access to
data by directly calling subroutines contained in language-specific Oracle
run-time libraries.

When you create 3GL modules, keep in mind that the Oracle Corporation
provides precompilers for the following HP programming languages:

• Ada

• C

• COBOL

• FORTRAN

• Pascal

• PL/I

With an Oracle database, data definitions (metadata) are stored in an internal
data dictionary that resides in the database. With ACMS and other layered
products, metadata is stored in a central location in CDD and then used by
the various layered products. To use an Oracle database with ACMS, you must
maintain metadata in both CDD and the Oracle database.

11–6 Overview of ACMS and Oracle

Overview of ACMS and Oracle
11.4 How Do You Use ACMS with Oracle?

The sample application in Chapter 12 provides code examples (with accompanying
descriptions) of 3GL code that accesses an Oracle database using embedded SQL.

Overview of ACMS and Oracle 11–7

12
Implementation Details of the Sample

Application

This chapter contains parts of a sample application that shows how ACMS, by
using Oracle as its database manager, can access third-party databases (other
than Rdb). The sample is based on a simple car reservation system used by a
fictional company named AVERTZ. The complete AVERTZ application is described
in the ACMS documentation set.

The AVERTZ sample application is an example of how transaction processing
can solve a business problem. The AVERTZ company has rental offices at many
sites in different regions and their clerks need to reserve vehicles at any site in
any region. The AVERTZ application consists of functions that allow users to
view and update all the data necessary to make automobile rental reservations
and maintain information on customers. (A modified subset of AVERTZ has been
used in this book. The sample has been modified to exclude two-phase database
commit functions, which cannot be used when interoperating with Oracle).

The VR_DISPLAY_SITES_TASK task definition, which is included and described
in this manual, displays site and region information. This task is called from
another task in the application. The VR_DISPLAY_SITES_TASK task uses a
server process to access the Oracle database and retrieve the regions in the
database so that the regions can be displayed using DECforms. After the user
selects a region, the task calls a server procedure (VR_GET_SITES_PROC, also
included and described in this manual) to access the Oracle database to retrieve
site data, which AVERTZ displays using DECforms. The user then selects a
particular rental site, and the necessary information is passed back to the calling
task, where it is processed further.

12.1 Execution Flow of the Sample Task
Figure 12–1 shows how the task definition in this sample controls the flow of
work between the user and the Oracle database.

1 Processing step in the task calls the COBOL server procedure with embedded
Oracle SQL.

2 COBOL procedure accesses the Oracle database to read all regions and passes
the data back to the task.

3 Exchange step in the task calls the DECforms form that displays the list of
regions.

4 HP DECforms form allows the user to select a region to have its sites
displayed and returns that region data to the task.

Implementation Details of the Sample Application 12–1

Implementation Details of the Sample Application
12.1 Execution Flow of the Sample Task

Figure 12–1 Execution Flow of the Sample Task

Presentation
Service

TAY-0030-AF

CALL
RETURN

Exchange

Processing

Call Get
Regions
Procedure

1 CALL
RETURN

Get
Regions
Procedure

2

CALL
RETURN

Exchange

Processing

Processing

Call Move
Region
Procedure

Move
Region
Procedure

6

Transceive
3Display

Region
Data
and Select
Region of
Interest

4

Form
Manager

CALL
RETURN

Display
Site Data
and Select
Site of
Interest

Processing

CALL
RETURN

Call
Move Site
Procedure

Move
Site
Procedure

Display I/O Execution Flow Database I/O

ACMS
User

Steps:

Task
Definition

Procedure
Server

Get
Sites
Procedure

8
CALL
RETURN

Call Get
Sites
Procedure

Transceive
9

ORACLE
Database

11

5

7

12

10

5 Processing step in the task calls the server procedure that moves data
between workspaces.

6 COBOL procedure moves the data related to the region of interest from the
region array workspace into the sites workspace.

7 Processing step in the task calls the COBOL server procedure with embedded
SQL.

8 COBOL procedure accesses the Oracle database to read all sites for a
particular region and passes the data back to the task.

9 Exchange step in the task calls the HP DECforms form that displays the list
of sites.

1 0 HP DECforms form allows the user to select a site and returns that site data
to the task.

1 1 Processing step in the task calls the server procedure that moves the data
between workspaces.

1 2 COBOL procedure moves the data related to the site of interest from the sites
array workspace into the sites workspace.

12–2 Implementation Details of the Sample Application

Implementation Details of the Sample Application
12.1 Execution Flow of the Sample Task

The sample application is comprised of over 40 separate pieces of code. Although
at first glance this might seem like a lot of code, remember that ACMS code is
very modular, and these modules contain relatively small amounts of code. This
modularity allows the reuse of modules as building blocks when creating other
applications.

The following AVERTZ modules are described in this manual:

• VR_DISPLAY_SITES_TASK task definition, which controls the flow of work
at run time for the display and selection of sites

• VR_GET_SITES_PROC COBOL procedure, which has embedded SQL to
access the Oracle database for a list of a specific region’s sites

• AVERTZ_VR_APPLICATION application definition, which is an ACMS TDL
file that defines the run-time characteristics of the application

• VR_TASK_GROUP task group definition, which is an ACMS TDL file that
defines the resources available to the tasks in the group

• ACMS_SAMPLE_MENU menu definition, which is an ACMS TDL file that
allows users to select tasks to run or additional menus to display

• VR_INIT COBOL initialization procedure, which makes the connection for
the server to the Oracle database instance

• VR_TERM COBOL termination procedure, which terminates the connection
to the Oracle database instance that was made with the initialization
procedure

The code for these files is contained in the following sections, along with an
explanation of what is happening in each file.

12.1.1 Task Definition
Example 12–1 shows the ACMS task definition (VR_DISPLAY_SITES_TASK)
that uses exchange steps to display the region and site data, and collects the
user’s selection of a particular region and a particular site. This task definition
coordinates all the steps shown in the task definition in Figure 12–1 (labeled
execution flow). The task uses processing steps to call COBOL procedures,
which perform the database I/O to the Oracle database and move data between
workspaces.

Table 12–1 describes the coding in the VR_DISPLAY_SITES_TASK task definition
in more detail.

Example 12–1 VR_DISPLAY_SITES_TASK Task Definition

REPLACE TASK VR_DISPLAY_SITES_TASK TSK1

WORKSPACES ARE VR_CONTROL_WKSP, TSK2

VR_RE_ARRAY_WKSP,
VR_SI_ARRAY_WKSP,
VR_SITES_WKSP,
VR_MSG_WKSP;

TASK ARGUMENTS ARE VR_CONTROL_WKSP WITH ACCESS READ, TSK3

VR_SITES_WKSP WITH ACCESS MODIFY,
VR_MSG_WKSP WITH ACCESS MODIFY;

(continued on next page)

Implementation Details of the Sample Application 12–3

Implementation Details of the Sample Application
12.1 Execution Flow of the Sample Task

Example 12–1 (Cont.) VR_DISPLAY_SITES_TASK Task Definition

DEFAULT SERVER IS VR_SERVER; TSK4

DEFAULT FORM IS VR_DISPLAY_SITES_FORM; TSK5

LOCAL; TSK6

BLOCK WORK WITH FORM I/O IS TSK7

IF (VR_CONTROL_WKSP.CTRL_KEY = " FREG") THEN
BLOCK WORK IS

GET_REGIONS:
PROCESSING WORK IS TSK8

CALL VR_GET_REGIONS_PROC USING VR_RE_ARRAY_WKSP;

ACTION IS TSK9

CONTROL FIELD ACMS$T_SEVERITY_LEVEL
"S" : GOTO STEP SELECT_REGION;
"W" : MOVE VR$_RERECNOTFND TO VR_MSG_WKSP.STATUS,

"W" TO VR_MSG_WKSP.SEVERITY_LEVEL;
EXIT TASK;

NOMATCH : MOVE VR$_DB_FATAL TO VR_MSG_WKSP.STATUS,
"F" TO VR_MSG_WKSP.SEVERITY_LEVEL;

EXIT TASK;
END CONTROL FIELD;

SELECT_REGION:
EXCHANGE WORK IS TSK10

TRANSCEIVE RECORD RE_ARRAY_FORM_REC, RE_ARRAY_FORM_REC
IN VR_DISPLAY_SITES_FORM
SENDING VR_RE_ARRAY_WKSP
RECEIVING VR_RE_ARRAY_WKSP
WITH RECEIVE CONTROL VR_CONTROL_WKSP;

ACTION IS TSK11

CONTROL FIELD IS VR_CONTROL_WKSP.CTRL_KEY
" FQUT" : MOVE VR$_RERECNOTFND TO VR_MSG_WKSP.STATUS,

"W" TO VR_MSG_WKSP.SEVERITY_LEVEL;
EXIT TASK;

END CONTROL FIELD;

MOVE_REGION:
PROCESSING WORK IS TSK12

CALL VR_MOVE_RE_PROC USING VR_RE_ARRAY_WKSP, VR_SITES_WKSP;

ACTION IS TSK13

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"B" : CANCEL TASK RETURNING ACMS$L_STATUS;

END CONTROL FIELD;

END BLOCK WORK;
END IF;

GET_SITES:
PROCESSING WORK IS TSK14

CALL VR_GET_SITES_PROC USING VR_SITES_WKSP,VR_SI_ARRAY_WKSP;

ACTION IS TSK15

CONTROL FIELD ACMS$T_SEVERITY_LEVEL
"S" : GOTO STEP SELECT_SITE;
"W" : MOVE VR$_SIRECNOTFND TO VR_MSG_WKSP.STATUS,

"W" TO VR_MSG_WKSP.SEVERITY_LEVEL;
EXIT TASK;

NOMATCH : MOVE VR$_DB_FATAL TO VR_MSG_WKSP.STATUS,
"F" TO VR_MSG_WKSP.SEVERITY_LEVEL;

EXIT TASK;
END CONTROL FIELD;

(continued on next page)

12–4 Implementation Details of the Sample Application

Implementation Details of the Sample Application
12.1 Execution Flow of the Sample Task

Example 12–1 (Cont.) VR_DISPLAY_SITES_TASK Task Definition

SELECT_SITE:
EXCHANGE WORK IS TSK16

TRANSCEIVE RECORD SI_ARRAY_FORM_REC,SI_ARRAY_FORM_REC
IN VR_DISPLAY_SITES_FORM
SENDING VR_SI_ARRAY_WKSP
RECEIVING VR_SI_ARRAY_WKSP
WITH RECEIVE CONTROL VR_CONTROL_WKSP;

ACTION IS TSK17

CONTROL FIELD IS VR_CONTROL_WKSP.CTRL_KEY
" FQUT": MOVE VR$_SIRECNOTFND TO VR_MSG_WKSP.STATUS,

"W" TO VR_MSG_WKSP.SEVERITY_LEVEL;
EXIT TASK;

END CONTROL FIELD;

MOVE_SITE:
PROCESSING WORK IS TSK18

CALL VR_MOVE_SI_PROC USING VR_SI_ARRAY_WKSP,VR_SITES_WKSP;

ACTION IS TSK19

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"G" : MOVE "S" TO VR_MSG_WKSP.SEVERITY_LEVEL;

EXIT TASK;
"B" : CANCEL TASK RETURNING ACMS$L_STATUS;

END CONTROL FIELD;

END BLOCK;
END DEFINITION;

Table 12–1 Description of Code for VR_DISPLAY_SITES_TASK Task Definition

Callout Description

TSK1 Replaces an old CDD dictionary task definition with the current task definition or creates
a new definition if one does not already exist. Section 12.4 discusses the role of the CDD
dictionary.

TSK2 Names one or more workspaces to which the task needs access. Workspaces are buffers
used to pass data between steps in a task, between a task and a procedure, between a task
and a form, and between two or more tasks.

TSK3 Defines the workspaces that are used to pass data, with the type of access that VR_
DISPLAY_SITES_TASK has to them. (Definitions are here because this task is called from
another task.)

TSK4 Names a default server image in which to run the procedures. If this is not specified, the
server must be named at each call to a COBOL routine.

TSK5 Names a default form to be used in the exchange steps. If this is not specified, the form
name must be specified with each TRANSCEIVE call in this task.

TSK6 Specifies that this task can be run only when called from another task. (You cannot select
this task to run independently from a menu.)

TSK7 Groups multiple steps as a logical unit between the BLOCK WORK and END BLOCK
WORK clauses. (In this example, the block consists of two EXCHANGE steps and four
PROCESSING steps.) FORM I/O is a block phrase indicating that the EXCHANGE steps
use DECforms for I/O with the user.

(continued on next page)

Implementation Details of the Sample Application 12–5

Implementation Details of the Sample Application
12.1 Execution Flow of the Sample Task

Table 12–1 (Cont.) Description of Code for VR_DISPLAY_SITES_TASK Task Definition

Callout Description

TSK8 Calls the COBOL procedure VR_GET_REGIONS_PROC within a PROCESSING step. The
COBOL procedure performs the Oracle database inquiry and returns the region records to
the ACMS task using the VR_RE_ARRAY_WKSP workspace.

TSK9 Handles potential errors that are returned from VR_GET_REGIONS_PROC.

TSK10 Calls the HP DECforms form VR_DISPLAY_SITES_FORM within an EXCHANGE step.
HP DECforms uses the VR_DISPLAY_SITES_FORM to format and display all of the regions
on the ACMS user’s terminal. The user can also select a particular region at this point.

TSK11 Handles potential errors that are returned from the DECforms session.

TSK12 Calls the COBOL procedure VR_MOVE_RE_PROC within a PROCESSING step. The
COBOL procedure moves data between workspaces.

TSK13 Handles potential errors that are returned from VR_MOVE_RE_PROC.

TSK14 Calls the COBOL procedure VR_GET_SITES_PROC within a PROCESSING step. The
COBOL procedure performs the Oracle database inquiry and returns the site records to the
ACMS task using the VR_SI_ARRAY_WKSP workspace.

TSK15 Handles potential errors that are returned from VR_GET_SITES_PROC.

TSK16 Calls the HP DECforms form VR_DISPLAY_SITES_FORM within an EXCHANGE step.
DECforms uses the VR_DISPLAY_SITES_FORM to format and display all the sites on the
ACMS user’s terminal. The user can select a particular site at this point.

TSK17 Handles potential errors that are returned from the DECforms session.

TSK18 Calls the COBOL procedure VR_MOVE_RE_PROC within a PROCESSING step. The
COBOL procedure moves data between workspaces.

TSK19 Handles potential errors that are returned from VR_MOVE_SI_PROC.

Keep the following in mind so that your task definition code is interoperable:

• You cannot use the SQL RECOVERY phrase, which establishes an SQL
recovery unit at the beginning of a block or processing step. The SQL
RECOVERY phrase includes various types of SET TRANSACTION
statements that are incompatible with an Oracle database.

• You cannot use the COMMIT and ROLLBACK phrases. Because these
statements signal the end of the transaction established with an SQL
RECOVERY statement, they are incompatible with an Oracle database.

As of ACMS Version 3.2, these statements (SQL RECOVERY, COMMIT and
ROLLBACK) are considered declining features of ACMS TDL anyway.

12.1.2 Form Definition
Because of the modularity of the components of ACMS, there are no Oracle-
specific issues that relate to the generation of a HP DECforms form.

HP DECforms code is typically not hand-generated, but rather is generated by
the HP DECforms Forms Development Environment, an easy-to-use interface for
forms generation.

12–6 Implementation Details of the Sample Application

Implementation Details of the Sample Application
12.1 Execution Flow of the Sample Task

12.1.3 Read Database COBOL Step Procedure
The COBOL procedure (VR_GET_SITES_PROC) in Example 12–2, which is
a processing step procedure that becomes part of the VR_SERVER procedure
server, performs the Oracle database access necessary to return an array of site
data back to the task.

Keep the following points in mind when you look at the code example:

• For simplicity’s sake, no robust error handling is used (although robust error
handling is available with HP’s ACMS and programming language products).

• Although this example of a server procedure accesses the Oracle database, it
is possible to have server procedures that manipulate data only (and do not
access that data from a database manager).

Note

Although COBOL is used in this example, users can create server
procedures using any programming language that supports the OpenVMS
Calling Standard and supports Oracle. This holds true for all COBOL
examples in this guide.

Writing procedures is fully described in HP ACMS for OpenVMS Writing
Server Procedures.

Table 12–2 describes the coding in the VR_GET_SITES_PROC step procedure in
more detail.

Example 12–2 VR_GET_SITES_PROC COBOL Step Procedure

IDENTIFICATION DIVISION.

PROGRAM-ID. VR-GET-SITES-PROC.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 RET-STAT PIC S9(9) COMP. SRV1

01 RECNOTFND PIC S9(9) COMP VALUE IS EXTERNAL VR$_SIRECNOTFND. SRV2

01 DBFATAL PIC S9(9) COMP VALUE IS EXTERNAL VR$_DB_FATAL.

EXEC SQL SRV3

BEGIN DECLARE SECTION
END-EXEC.

01 VR_SI_IND_ARRAY.
05 VR_SI_IND OCCURS 9 TIMES PIC S9(4) COMP.

EXEC SQL
END DECLARE SECTION

END-EXEC.

01 SI-ARRAY-LIMIT PIC S9(9) COMP VALUE IS 60. SRV4

(continued on next page)

Implementation Details of the Sample Application 12–7

Implementation Details of the Sample Application
12.1 Execution Flow of the Sample Task

Example 12–2 (Cont.) VR_GET_SITES_PROC COBOL Step Procedure

01 SQL-SUCCESS PIC S9(9) COMP VALUE IS 0. SRV5

01 REC-NOT-FOUND PIC S9(9) COMP VALUE IS +100.

EXEC SQL SRV6

INCLUDE AVERTZ_ORACLE_DIR:SQLCA.CBT
END-EXEC.

LINKAGE SECTION. SRV7

EXEC SQL
INCLUDE AVERTZ_ORACLE_DIR:VR_SITES_WKSP.LIB

END-EXEC.

EXEC SQL
INCLUDE AVERTZ_ORACLE_DIR:VR_SI_ARRAY_WKSP.LIB

END-EXEC.

PROCEDURE DIVISION USING VR_SITES_WKSP, VR_SI_ARRAY_WKSP GIVING RET-STAT.

MAIN-SECTION. SRV8

SET RET-STAT TO SUCCESS.

EXEC SQL
WHENEVER SQLERROR GOTO SQL-ERROR-HANDLER

END-EXEC.

EXEC SQL
DECLARE SITES_ARRAY CURSOR FOR

SELECT * FROM SITES
WHERE SITES.CITY = :WS_CITY

OR
SITES.REGION_ID = :WS_REGION_ID

ORDER BY SITES.SITE_NAME ASC
END-EXEC.

EXEC SQL
WHENEVER NOT FOUND GOTO SQL-NOT-FOUND

END-EXEC.

EXEC SQL
OPEN SITES_ARRAY

END-EXEC.

EXEC SQL
WHENEVER NOT FOUND CONTINUE

END-EXEC.

SET SI_ARRAY_INDEX TO 1.

PERFORM FILL-ARRAY THRU FILL-ARRAY-EXIT UNTIL
(SQLCODE = REC-NOT-FOUND) OR (SI_ARRAY_INDEX > SI-ARRAY-LIMIT).

EXEC SQL
CLOSE SITES_ARRAY

END-EXEC.

EXEC SQL
COMMIT

END-EXEC.

GO TO EXIT-PROGRAM.

FILL-ARRAY.

(continued on next page)

12–8 Implementation Details of the Sample Application

Implementation Details of the Sample Application
12.1 Execution Flow of the Sample Task

Example 12–2 (Cont.) VR_GET_SITES_PROC COBOL Step Procedure

EXEC SQL
FETCH SITES_ARRAY INTO :WS_SITE_ID,

:WS_SITE_NAME,
:WS_FIRST_ADDRESS_LINE,
:WS_SECOND_ADDRESS_LINE,
:WS_CITY,
:WS_REGION_ID,
:WS_COUNTRY_ID,
:WS_POSTAL_CODE,
:WS_PHONE_NO

END-EXEC.

IF SQLCODE = SQL-SUCCESS
THEN MOVE VR_SITES_WKSP TO SI_ARRAY(SI_ARRAY_INDEX).

SET SI_ARRAY_INDEX UP BY 1.

FILL-ARRAY-EXIT.

EXIT.

SQL-NOT-FOUND.

MOVE RECNOTFND TO RET-STAT.

EXEC SQL
ROLLBACK

END-EXEC.

GO TO EXIT-PROGRAM.

SQL-ERROR-HANDLER.

MOVE SQLCODE TO RET-STAT.

EXEC SQL
WHENEVER SQLERROR CONTINUE

END-EXEC.

GO TO EXIT-PROGRAM.

EXIT-PROGRAM.

EXIT PROGRAM.

Table 12–2 Description of Code for VR_GET_SITES_PROC COBOL Step Procedure

Callout Description

SRV1 Defines the status that is returned to the task. RET-STAT is returned to the ACMS$L_
STATUS field in the ACMS$PROCESSING_STATUS workspace. When the value of
ACMS$L_STATUS changes, ACMS internally updates related fields, such as ACMS$T_
SEVERITY_LEVEL, which can be tested when control is returned to the task.

SRV2 Defines an external status that matches up with the message file that is used in the ACMS
application. These values can then be used in the task as well.

SRV3 Declares COBOL variables that are used in the Oracle SQL statements. (These varibles
must be included in the DECLARE SECTION.)

SRV4 Defines the maximum number of sites (60) that can be returned to the task. This number
matches the dimensions of the VR_SI_ARRAY_WKSP.

SRV5 Defines SQL status values.

(continued on next page)

Implementation Details of the Sample Application 12–9

Implementation Details of the Sample Application
12.1 Execution Flow of the Sample Task

Table 12–2 (Cont.) Description of Code for VR_GET_SITES_PROC COBOL Step Procedure

Callout Description

SRV6 Includes the Oracle SQL communications area that is updated every time an SQL
statement is executed.

SRV7 Includes the two workspaces that are passed back and forth between the ACMS task and
this procedure. The text library includes embedded SQL DECLARE SECTION statements,
because the fields in the workspaces are used in the embedded SQL statements in the 3GL
code.

SRV8 Declares a cursor, opens the cursor, fetches data into the cursor and closes the cursor.
Control is then returned to the task that called this procedure. This is one of the ways
that this code can be distributed between the various portions of procedure server code.
(Because this manual assumes Oracle experience, it does not include a detailed explanation
of all of the SQL code.)

Keep the following in mind so that your 3GL server code is interoperable:

• Server processes are serially reusable, which means that there is no
guarantee that one user will run the same instance of a server process
consecutively. Because of this, the contents of working storage might not
be the same throughout all the steps of a task for a particular user (unless
server context is retained over processing steps, which is not recommended).
The contents of working storage must be moved to an ACMS workspace so
that the values are preserved over multiple users of a server.

• Whenever a host variable is used in an embedded SQL statement, that
variable must be declared either in working storage or in the linkage section
between the SQL BEGIN DECLARE SECTION and the SQL END DECLARE
SECTION statements. If the variables are included in a record definition,
the copied record definition must be a text record definition and not a CDD
record definition. (See Section 12.4 for information about field and record
definitions.)

• Oracle SQL does not include a statement like the Rdb SQL DECLARE
EXTERNAL SCHEMA statement. The connection to an Oracle database is
made through the logical ORA_SID, which ties a process to an instance of an
Oracle database.

• The Oracle database manager performs an implicit SET TRANSACTION
READ ONLY and then increments its locks when data is selected for update.
The Rdb SQL SET TRANSACTION statement is replaced by the SQL
CONNECT statement.

• The Oracle server code includes commits and rollbacks within the 3GL code.
You cannot embed commits and rollbacks in the task TDL code as you can
with Rdb. Also, you cannot use the database recovery TDL statements in the
task definition.

• The ORACLE ARRAY FETCH statement is recommended, because it allows a
single database read to fetch multiple rows into a cursor.

When debugging, an application developer’s debugging session is different from
a multiuser production environment. The application developer is a single user
of that instance of the server process and, as such, is automatically guaranteed
the same instance throughout the debugging session. The developer must ensure
that working storage variables that need to be saved between processing steps in
the task are moved into a workspace and passed back and forth between the task
and the 3GL code.

12–10 Implementation Details of the Sample Application

Implementation Details of the Sample Application
12.1 Execution Flow of the Sample Task

After you write an Oracle server procedure, you must compile it. Use the
following Oracle SQL precompile statement to compile the VR_GET_SITES_
PROC procedure:

$ PROCOBOL HOST=COBOL INAME=vr_get_sites_proc MODE=ANSI FORMAT=TERMINAL -
_$ HOLD_CURSOR=Y RELEASE_CURSOR=NO SELECT_ERROR=NO SQLCHECK=SYNTAX

Execute the following statements to compile the VR_GET_SITES_PROC code
with the COBOL compiler, and insert the resulting object into an object library:

$ COBOL vr_get_sites_proc
$ LIBRARY ora_obj_lib vr_get_sites_proc

Once all of the modules are compiled, link them with the following command,
where VR_SERVER is the name of the server executable, and VR_OBJECT is the
object created for that server when the task group is built with an ACMS ADU
BUILD GROUP command:

$ LNPROCOB vr_server vr_object, ora_obj_lib/LIB

12.2 Application, Task Group, and Menu Definitions
This section describes the code that:

• Sets the environment and control characteristics of tasks and task groups
(AVERTZ_VR_APPLICATION application definition)

• Sets the resources required by the group of tasks (VR_TASK_GROUP task
group definition)

• Displays a list from which users can choose available tasks and menus
(ACMS_SAMPLE_MENU menu definition)

12.2.1 Application Definition
Example 12–3 is an ACMS application definition (AVERTZ_VR_APPLICATION)
that defines the characteristics for the application, the servers, and the task
groups.

Table 12–3 describes the coding in the AVERTZ_VR_APPLICATION application
definition in more detail.

Example 12–3 AVERTZ_VR_APPLICATION Application Definition

REPLACE APPLICATION AVERTZ_VR_APPLICATION APP1

AUDIT;

MAX SERVER PROCESS IS 2; APP2

MAX TASK INSTANCE IS 5;

APPLICATION USERNAME IS ORAAPP; APP3

APPLICATION DEFAULT DIRECTORY IS "AVERTZ_ORACLE_DIR";

TASK DEFAULTS ARE APP4

ACCESS CONTROL LIST IS
ID [*,*] ACCESS EXECUTE;

AUDIT;
WAIT;

END TASK DEFAULTS;

(continued on next page)

Implementation Details of the Sample Application 12–11

Implementation Details of the Sample Application
12.2 Application, Task Group, and Menu Definitions

Example 12–3 (Cont.) AVERTZ_VR_APPLICATION Application Definition

SERVER DEFAULTS ARE APP5

AUDIT;
DEFAULT DIRECTORY IS "AVERTZ_ORACLE_DIR";
LOGICAL NAME IS ORA_SID = "X1";
MINIMUM SERVER PROCESSES IS 0;
USERNAME IS USERNAME OF APPLICATION;

END SERVER DEFAULTS;

TASK GROUP IS APP6

VR_TASK_GROUP: TASK GROUP FILE IS "AVERTZ_ORACLE_DIR:VR_TASK_GROUP";

END TASK GROUP;
END DEFINITION;

Table 12–3 Description of Code for AVERTZ_VR_APPLICATION Application Definition

Callout Description

APP1 Replaces an old CDD dictionary application definition with the current application
definition or creates a new definition if one does not already exist. Section 12.4 discusses
the role of the CDD dictionary. The AUDIT clause indicates that application-level activities
(such as starting and stopping the application) are noted in the ACMS audit log.

APP2 Specifies the maximum number of server processes that this application can have running,
and the maximum number of task instances that can be active for this application. The
maximum number of task instances is larger than the maximum number of server instances
because users share server processes serially.

APP3 Defines the OpenVMS account and default OpenVMS directory for the application.

APP4 Describes the defaults for each task. The access control list is related to task security. The
AUDIT clause indicates that task-level activities (such as the calling of tasks, including
the time and user name of the caller) are noted in the ACMS audit log. The WAIT clause
causes a message to be displayed to the user when a task has finished executing. The
user is required to press Return to get back to a menu. The AUDIT and WAIT clauses are
optional.

APP5 Describes the attributes for the procedure server. The AUDIT clause indicates that server-
level activities (such as the calling of servers, including the time and user name of the
caller) are noted in the ACMS audit log. The DEFAULT DIRECTORY clause associates a
default device and directory with the server process. The instance of the AVERTZ Oracle
database is known to the server through the use of the logical ORA_SID. The minimum
number of server instances for this server is set. The server process runs in the same
account as the application.

APP6 Lists the task group that is associated with this particular application. Although this
sample has a single task group, ACMS applications often consist of several tasks groups
that contain many tasks in each application.

12.2.2 Task Group Definition
Example 12–4 is an ACMS task group definition (VR_TASK_GROUP). The task
group definition specifies:

• Message file specification

• DECforms form file information

• Tasks that belong to the group

• Procedures that are in the server

12–12 Implementation Details of the Sample Application

Implementation Details of the Sample Application
12.2 Application, Task Group, and Menu Definitions

Table 12–4 describes the coding in the VR_TASK_GROUP task group definition
in more detail.

Example 12–4 VR_TASK_GROUP Task Group Definition

REPLACE GROUP VR_TASK_GROUP GRP1

MESSAGE FILE IS "AVERTZ_ORACLE_DIR:VRMSG.EXE"; GRP2

FORMS ARE GRP3

VR_RESERVE_CAR_FORM IN "VR_FORMS.EXE" WITH NAME VR_RESERVE_CAR_FORM,
VR_DISPLAY_SITES_FORM IN "VR_FORMS.EXE" WITH NAME VR_DISPLAY_SITES_FORM,
VR_DISPLAY_CU_FORM IN "VR_FORMS.EXE" WITH NAME VR_DISPLAY_CU_FORM;

TASKS ARE GRP4

VR_RESERVE_CAR_TASK : TASK IS VR_RESERVE_CAR_TASK;
VR_DISPLAY_SITES_TASK : TASK IS VR_DISPLAY_SITES_TASK;
VR_DISPLAY_CU_TASK : TASK IS VR_DISPLAY_CU_TASK;

END TASKS;

SERVER IS VR_SERVER: GRP5

PROCEDURE SERVER IMAGE IS "VR_SERVER.EXE";
PROCEDURES ARE

VR_FIND_SI_PROC,
VR_GET_RATES_PROC,
VR_VERIFY_AVAILABILITY_PROC,
VR_FIND_CU_PROC,
VR_STORE_CU_PROC,
VR_WRITE_RS_PROC,
VR_GET_REGIONS_PROC,
VR_GET_SITES_PROC,
VR_GET_CUSTOMERS_PROC,
VR_MOVE_RE_PROC,
VR_MOVE_SI_PROC,
VR_MOVE_CU_PROC;

INITIALIZATION PROCEDURE IS VR_INIT; GRP6

TERMINATION PROCEDURE IS VR_TERM; GRP7

DEFAULT OBJECT FILE IS "VR_OBJECT.OBJ";
END SERVER;

END DEFINITION;

Table 12–4 Description of Code for VR_TASK_GROUP Task Group Definition

Callout Description

GRP1 Replaces an old CDD dictionary task group definition with the current task group definition
or creates a new definition if one does not already exist. Section 12.4 discusses the role of
the CDD dictionary.

GRP2 Names the message file that is used in the GET ERROR MESSAGE clause in the tasks.

GRP3 Lists the HP DECforms form files that are used by the tasks in the task group, the location
of those forms on the system, and the label (for reference) that is used within the task
definition for each form.

GRP4 Lists the task definitions that are associated with that task group and the label that is used
for each task. Typically, the label is the same as the name, but can be changed for special
circumstances.

GRP5 Defines the contents of the procedure server named VR_SERVER. The procedure server
is a single process that manages the initialization procedure (VR_INIT), the termination
procedure (VR_TERM), and all the step procedures.

(continued on next page)

Implementation Details of the Sample Application 12–13

Implementation Details of the Sample Application
12.2 Application, Task Group, and Menu Definitions

Table 12–4 (Cont.) Description of Code for VR_TASK_GROUP Task Group Definition

Callout Description

GRP6 Names the initialization procedure that is run when the procedure server images starts up.

GRP7 Names the termination procedure that is run when the procedure server image runs down.

12.2.3 Menu Definition
Example 12–5 is an ACMS menu definition (ACMS_SAMPLE_MENU) that
allows users to select a menu or a task. In this example, the menu definition
file contains the definitions for a hierarchy of menus. The VR_RESERVE_CAR_
TASK in the third-level menu calls the VR_DISPLAY_SITES_TASK described
in Section 12.1.1. In larger applications, multiple options (tasks and menus) are
typically offered on the menu.

Table 12–5 describes the coding in the ACMS_SAMPLE_MENU menu definition
in more detail.

Example 12–5 ACMS_SAMPLE_MENU Menu Definition

REPLACE MENU ACMS_SAMPLE_MENU MEN1

HEADER IS " A C M S S a m p l e A p p l i c a t i o n M e n u"; MEN2

ENTRIES ARE MEN3

AVERTZ_TOP: MENU IS AVERTZ_ORACLE_CDD.AVERTZ_TOP;
TEXT IS "AVERTZ APPLICATION MENU";

END ENTRIES;
END DEFINITION;

REPLACE MENU AVERTZ_TOP

HEADER IS
" A V E R T Z T O P M E N U ";

ENTRIES ARE MEN4

VR_MENU: MENU IS AVERTZ_ORACLE_CDD.VR_MENU;
TEXT IS "Vehicle Rental Menu";

END ENTRIES;
END DEFINITION;

REPLACE MENU VR_MENU
HEADER IS

" V E H I C L E R E N T A L M E N U";

ENTRIES ARE MEN5

RESERVE: TASK IS VR_RESERVE_CAR_TASK IN O_AVERTZ_VR_APPLICATION;
TEXT IS " Reserve Car Task";

END ENTRIES;
END DEFINITION;

12–14 Implementation Details of the Sample Application

Implementation Details of the Sample Application
12.2 Application, Task Group, and Menu Definitions

Table 12–5 Description of Code for ACMS_SAMPLE_MENU Menu Definition

Callout Description

MEN1 Replaces an old CDD dictionary menu definition with the current menu definition or creates
a new definition if one does not already exist. Section 12.4 discusses the role of the CDD
dictionary.

MEN2 Defines the text to be displayed at the top of the ACMS menu (the name of the menu).

MEN3 Defines each first-level menu item. (In this case, there is only one first-level menu item:
AVERTZ APPLICATION MENU.) The menu definition also defines the name of the menu
definition for the menu item and the text associated with that menu item. Typically, a
menu definition consists of multiple entries for tasks and, possibly, additional menus.

MEN4 Defines each second-level menu item. (In this case, there is only one second-level menu
item: Vehicle Rental Menu.)

MEN5 Defines each third-level menu item. (In this case, there is only one third-level menu item:
Reserve Car Task.)

12.3 Additional Procedure Server Components
This section describes the code that:

• Makes the initial connection to an instance of an Oracle database for a server
process (VR_INIT initialization procedure)

• Disconnects the server process from an instance of an Oracle database (VR_
TERM termination procedure)

12.3.1 Initialization Procedure
Example 12–6 is the server initialization procedure (VR_INIT) written in COBOL.
The server initialization procedure performs work that must be done before any
step procedure executes. The initialization procedure is executed only once before
the server becomes available. In this case, the initial connection is made to the
Oracle database.

Table 12–6 describes the coding in the INIT_EMPL_INFO initialization procedure
in more detail.

Example 12–6 VR_INIT Initialization Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. VR-INIT.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
WORKING-STORAGE SECTION.

EXEC SQL INCLUDE INI1

AVERTZ_ORACLE_DIR:SQLCA.CBT
END-EXEC.

EXEC SQL INI2

BEGIN DECLARE SECTION
END-EXEC.

(continued on next page)

Implementation Details of the Sample Application 12–15

Implementation Details of the Sample Application
12.3 Additional Procedure Server Components

Example 12–6 (Cont.) VR_INIT Initialization Procedure

01 CONNECT-DATA.
02 USERID PIC X(3) VALUE "SYS".
02 PASSWORD PIC X(3) VALUE "B52".

EXEC SQL
END DECLARE SECTION

END-EXEC.

PROCEDURE DIVISION.
MAIN SECTION.

000-OPEN_DB.

EXEC SQL INI3

CONNECT :USERID IDENTIFIED BY :PASSWORD
END-EXEC.

100-EXIT-PROGRAM.

EXIT PROGRAM.

Table 12–6 Description of Code for VR_INIT Initialization Procedure

Callout Description

INI1 Includes the Oracle SQL communications area that is updated every time an SQL
statement is executed.

INI2 Declares the Oracle username and password that the server uses to connect to the instance
of the Oracle database. Instead of hard-coding this security information in the initialization
procedure, you can take advantage of the automatic logon feature of Oracle. If the Oracle
username is specified as OPS$username, where username is the OpenVMS account that the
server is running in, the connect statement can then be "CONNECT :/".

INI3 Makes the connection to the Oracle database instance.

12.3.2 Termination Procedure
Example 12–7 is the server termination procedure (VR_TERM) written in
COBOL. The termination procedure performs any cleanup work that must be
done before the procedure server runs down. In this example, the procedure
simply disconnects the server from the database.

Table 12–7 describes the coding in the VR_TERM termination procedure in more
detail.

Example 12–7 VR_TERM Termination Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. VR-TERM.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.
WORKING-STORAGE SECTION.

(continued on next page)

12–16 Implementation Details of the Sample Application

Implementation Details of the Sample Application
12.3 Additional Procedure Server Components

Example 12–7 (Cont.) VR_TERM Termination Procedure

EXEC SQL TRM1

INCLUDE AVERTZ_ORACLE_DIR:SQLCA.CBT
END-EXEC.

EXEC SQL TRM2

BEGIN DECLARE SECTION
END-EXEC.

01 CONNECT-DATA.
02 USERID PIC X(3) VALUE "SYS".
02 PASSWORD PIC X(3) VALUE "B52".

EXEC SQL
END DECLARE SECTION

END-EXEC.

PROCEDURE DIVISION.
MAIN SECTION.

000-CLOSE_DB.

EXEC SQL TRM3

COMMIT
END-EXEC.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Table 12–7 Description of Code for VR_TERM Termination Procedure

Callout Description

TRM1 Includes the Oracle SQL communications area that is updated every time an SQL
statement is executed.

TRM2 Declares the Oracle username and password.

TRM3 The connection to the Oracle database instance is severed.

12.4 Field and Record Definitions
Data dictionaries contain metadata (descriptions of data, not the data itself) in
the form of dictionary definitions. The most commonly used dictionary definitions
are fields and records.

A field definition describes the data that can be stored in a specific field in your
application. Field definitions typically include information such as data type and
size. In this sample, site fields are defined.

A record definition consists of a grouping of field definitions. This sample
defines a record named VR_SITES_WKSP, which contains a group of field
definitions corresponding to the sites.

In an ACMS application that is written using a native HP database manager,
the record definitions that are stored in the CDD data dictionary are normally
used as ACMS workspace definitions, 3GL record definitions, HP DECforms form
records definitions and database definitions. Because an Oracle database has its
own internal data dictionary, CDD cannot be used to store Oracle metadata.

Implementation Details of the Sample Application 12–17

Implementation Details of the Sample Application
12.4 Field and Record Definitions

Any program variables used in an Oracle SQL statement must be defined within
an SQL DECLARE SECTION. You can create a text copy of the record definition
in the Oracle database and copy it into the program (using an SQL INCLUDE
statement) at time of Oracle precompile. In this scenario, the Oracle database
and the ACMS workspaces or 3GL server programs do not share data definitions.

The CDD field definitions in Example 12–8 specify the information on fields used
in AVERTZ. In addition to the name, each field definition also includes the data
type and size for each field.

Example 12–8 Field Definitions

DEFINE FIELD SITE_ID DATATYPE SIGNED LONGWORD.
DEFINE FIELD SITE_NAME DATATYPE TEXT SIZE 25.
DEFINE FIELD FIRST_ADDRESS_LINE DATATYPE TEXT SIZE 25.
DEFINE FIELD SECOND_ADDRESS_LINE DATATYPE TEXT SIZE 25.
DEFINE FIELD CITY DATATYPE TEXT SIZE 20.
DEFINE FIELD REGION_ID DATATYPE SIGNED LONGWORD.
DEFINE FIELD COUNTRY_ID DATATYPE SIGNED LONGWORD.
DEFINE FIELD POSTAL_CODE DATATYPE TEXT SIZE IS 10.
DEFINE FIELD PHONE_NO DATATYPE TEXT SIZE IS 21.

AVERTZ uses both records and workspaces. Example 12–9 shows one of the
workspace definitions contained in CDD for AVERTZ. This workspace definition
can be used in the 3GL procedures if the variables in the record are not
referenced in an Oracle SQL statement.

Example 12–9 Record and Workspace Definitions

DEFINE RECORD VR_SITES_WKSP

SITE_ID.
SITE_NAME.
FIRST_ADDRESS_LINE.
SECOND_ADDRESS_LINE.
CITY.
REGION_ID.
COUNTRY_ID.
POSTAL_CODE.
PHONE_NO.

END RECORD.

If the variables in the record are referenced in an Oracle SQL statement in the
COBOL procedure, the third definition, shown in Example 12–10, is necessary.
All variables that are used in an Oracle SQL statement must be included in a
DECLARE SECTION.

Example 12–10 Text Library Record Definition

EXEC SQL
BEGIN DECLARE SECTION

END-EXEC.

(continued on next page)

12–18 Implementation Details of the Sample Application

Implementation Details of the Sample Application
12.4 Field and Record Definitions

Example 12–10 (Cont.) Text Library Record Definition

01 VR_SITES_WKSP.
05 WS_SITE_ID PIC S9(9) COMP.
05 WS_SITE_NAME PIC X(25).
05 WS_FIRST_ADDRESS_LINE PIC X(25).
05 WS_SECOND_ADDRESS_LINE PIC X(25).
05 WS_CITY PIC X(20).
05 WS_REGION_ID PIC S9(9) COMP.
05 WS_COUNTRY_ID PIC S9(9) COMP.
05 WS_POSTAL_CODE PIC X(10).
05 WS_PHONE_NO PIC X(21).

EXEC SQL
END DECLARE SECTION

END-EXEC.

12.5 CASE Tools
When you use ACMS with Oracle, you combine the power of the best CASE tools
for both environments. Note the following about using CASE tools when you
create interoperable ACMS and Oracle applications:

• You can use all the Oracle tools, such as SQL*Plus, SQL*Forms and
SQL*Report, while an ACMS and Oracle application is running.

• You can use HP CASE tools such as DECset (a collection of code editing,
management, testing, and analysis tools) regardless of whether a HP or
a third-party database is used. You can even create custom LSE editing
templates to handle Oracle-specific SQL syntax.

• The combination of ACMS and Oracle with the use of SQL*Net allows an
online TP application to access Oracle data on other platforms. In addition,
the use of Oracle’s SQL*Connect gateways provides links to non-Oracle data
sources on other platforms.

Implementation Details of the Sample Application 12–19

Part IV
Interoperability with IBM LU6.2 and CICS

This part of the manual describes how HP ACMS for OpenVMS transaction
processing (TP) software works with APPC/LU6.2 programming interface
software (developed by HP Equipment Corporation) to communicate with an
IBM® CICS® application on an IBM system.

13
Overview of ACMS and APPC/LU6.2

This chapter provides a high-level technical discussion of how you can use
APPC/LU6.2 as a gateway between a HP ACMS for OpenVMS application (HP’s
transaction processing system) and an IBM system, and specifically answers the
following questions:

• Why would you want to use HP and ACMS?

• How does APPC/LU6.2 work as a gateway between an ACMS application and
an IBM system?

• What are the basic concepts of ACMS and APPC/LU6.2?

13.1 Why Use HP and ACMS?
When you read articles and business school case studies on companies that
remain competitive year after year, decade after decade, you typically find a
common denominator for those companies: they remained flexible enough to
change the way they did business to suit the current business environment. If
information is critical to the operation of your business, do you also need that
same advantage of flexibility?

HP offers you computing solutions that fit for today and for the future as well.
Because HP is the premier vendor in interoperability and networking, flexibility
means the ability to:

• Use the appropriately sized (and, therefore, appropriately priced) computer
system for different business needs. HP’s ACMS software runs on all
OpenVMS machines, from the smallest desktop to the largest mainframe.
Every one of these machines can interoperate with IBM CICS applications.

• Integrate your existing systems into the ACMS environment to protect your
current investment. In addition to being able to connect with IBM CICS
applications, the HP TP Desktop Connector (formerly ACMS Desktop) product
allows DOS, Macintosh, SCO UNIX, and ULTRIX systems to tie into the
ACMS environment using a client/server computing approach.

• Move computing to the right location. With ACMS, you can either keep your
business data in a central location or scatter it throughout your corporation.

With HP, flexibility means the choice is yours!

13.2 Introduction to Developing ACMS Applications
An ACMS application consists of a set of tasks that relate to the functions of a
business. A task is the unit of work that a user selects from an ACMS menu.
Each task usually comprises a sequence of steps that perform this unit of work.
You use the ACMS task definition language (TDL) to define tasks.

Overview of ACMS and APPC/LU6.2 13–1

Overview of ACMS and APPC/LU6.2
13.2 Introduction to Developing ACMS Applications

Figure 13–1 illustrates the basic principles of the ACMS TDL used to write a
task definition.

The task definition specifies an interface to the presentation service (forms
management system) for communication with a terminal or other device.
The task definition also specifies an interface to a procedure server for
executing procedures (user-written subroutines) that handle database I/O and
computational work.

Figure 13–1 Execution Flow of an ACMS Task Definition

ProcedureTaskPresentation

Display I/O Execution Flow Database I/O
TAY-0099-AD

STEPS:

Call
Procedure 1

Procedure 2

Send

Receive

2

1

3

CALL

CALL

CALL

Database

Exchange

Processing

Exchange

Service Definition

RETURN

RETURN

Procedure 1

Server

RETURN
Form
Manager

The semantics of the ACMS task definition language are based on a call and
return model. The task definition performs calls to the presentation service
in exchange steps, and to the procedure server in processing steps. The
presentation service and procedure server perform a function and return control
to the task definition. Upon return of control to the task definition, subsequent
parts of a step can evaluate the results of the call and, if necessary, handle any
error conditions.

In Figure 13–1, for example:

1. In the first exchange step, the task definition calls the presentation service
to display a form on the terminal screen (for example, a form to add a new
employee record to a database). When the terminal user finishes filling in the
form, the user presses a specified key (or keys) that returns the input data to
the task definition.

2. In the processing step, the task definition then calls Procedure 1 in the
procedure server to write that input data to the database. Procedure 1 then
returns its results (either success or failure). If Procedure 1 succeeds, the
task ends with a success status. If Procedure 1 fails to write to the database,
the task continues executing at step 3.

3. In the second exchange step, the task definition calls the presentation service
to send an error message to the terminal screen (for example, that the
employee number of the new record duplicates an existing employee number).
The presentation service then returns control to step 3, which ends the task.

By keeping exchange and processing steps as distinct steps within an ACMS task,
ACMS allows for the separation of forms (end-user interaction) from function
(database access, computation, and execution control). This means that you can
easily distribute end-user processing while maintaining centralized data control.

13–2 Overview of ACMS and APPC/LU6.2

Overview of ACMS and APPC/LU6.2
13.2 Introduction to Developing ACMS Applications

13.2.1 Writing ACMS Definitions
The ACMS task definition language allows you to write an ACMS definition as a
series of simple, English-like statements. The four types of ACMS definitions are:

• A task definition describes, in steps, the work to be accomplished in the
task. For example, a task can collect information from a user and call a
procedure to store the information in a file or database.

• A task group definition specifies similar tasks for control purposes and
defines resources common to all tasks in the group.

• An application definition describes the environment and control
characteristics of tasks and task groups.

• A menu definition describes how users access tasks in one or more
applications.

You build the task, task group, and application definitions into binary files that
run as an application under the control of the ACMS run-time environment. You
build a menu definition into a binary file that is not necessarily tied to a single
application.

Figure 13–2 illustrates the ACMS development components for a simple ACMS
application with two tasks (for example, one to add a new employee record to a
database, and one to update an existing employee record).

Figure 13–2 ACMS Application Components

Menu DefinitionApplication
Definition

Task Group
Definition

Task Definition 2

Task Definition 1

TAY-0014-AF

Figure 13–2 does not show that there can be more than one task group definition
specified for a single application. Also, more than one menu definition can specify
tasks that point to the same application. Conversely, a single menu definition can
specify tasks in different applications.

Because ACMS applications are modular, you develop each part of an application
independently. Built-in modular design based on English-like syntax statements
means that ACMS applications are easy to structure and easy to maintain.
Furthermore, modularity means that you can easily update an application
module without affecting the entire application.

13.2.2 Composition of ACMS Definitions
A task definition controls the exchange of information with the user, and the
processing of that information against the file or database. Each ACMS task
definition is made up of one or more steps. ACMS breaks the work to be
accomplished by a task into two types of steps:

• Exchange steps usually interact with the Form Manager to handle forms
I/O (that is, the exchange of information between the task and the user).
An exchange step can interact with HP DECforms or TDMS forms, or
interface with other devices using the ACMS Request Interface or the ACMS
Systems Interface for communicating with nonstandard devices. Figure 13–1
illustrates an execution flow with two exchange steps.

Overview of ACMS and APPC/LU6.2 13–3

Overview of ACMS and APPC/LU6.2
13.2 Introduction to Developing ACMS Applications

• Processing steps call step procedures (user-written subroutines) to handle
computations and interactions with databases or files, typically using
procedures written in a high-level programming language (any language
adhering to the OpenVMS Calling Standard). ACMS uses two types of
servers: procedure servers for executing a procedure, and DCL servers for
invoking images or DCL commands. Figure 13–1 illustrates an execution flow
with one processing step.

A server process may perform an initialization routine of common work
when the server is started, rather than each time a task is selected. ACMS
manages pools of servers to save on process creation and image activation.

Servers are single-threaded and serially reusable. A single server process
can be called by many different ACMS tasks in a serial fashion. Once a
call is complete, the server is then available to be called by another ACMS
task. Reusable servers in a single process means that the performance in the
processing of your transactions is greatly enhanced.

When ACMS starts a processing step, it allocates a procedure server
process to a task to execute the procedure in that step. This single-
threaded process remains allocated to the task for the duration of one or
more processing steps.

In ACMS, a workspace is a buffer used to pass data between the task and
processing steps, and between the task and exchange steps.

Task group definitions combine similar tasks of an application that need to share
common resources such as workspaces, HP DECforms forms, and procedure
servers.

The application definition describes:

• Task groups that belong to an application

• Characteristics that control the tasks, such as security restrictions on which
users can select a particular task

• Servers, such as the number of server processes that can be active at the
same time

• Application characteristics, such as whether application activity is recorded in
the audit trail log

Menu definitions list both tasks and additional menus that a user can select from
a menu. For example, the tasks on a menu can include adding new employee
records, displaying employee information, and entering labor data.

When you write definitions for ACMS tasks, ACMS automatically stores the
definitions in a CDD dictionary. At run time, the definitions are represented in
binary form in databases defined by ACMS. For example, a task group definition
is represented by a task group database that contains a binary representation of
the task group definition.

Chapter 14 provides code examples (with accompanying descriptions) of the
different components of an ACMS application.

13–4 Overview of ACMS and APPC/LU6.2

Overview of ACMS and APPC/LU6.2
13.3 Introduction to Using the APPC/LU6.2 Programming Interface

13.3 Introduction to Using the APPC/LU6.2 Programming Interface
Logical Unit 6.2 is a general purpose architecture that enables IBM products
to communicate with one another. Unlike other IBM LUs, which are designed
with specific products in mind, LU6.2 has general function as the goal (that is, a
common LU for all products).

The LU6.2 architecture defines a set of protocols. To communicate with one
another, products (such as HP’s APPC/LU6.2 Programming Interface) must
implement LU6.2 according to these protocols.

Communication using LU6.2 is analogous in function to the DECnet task-to-task
communication over a DECnet logical link. As with DECnet, communication
between transaction programs using LU6.2 is transparent. You can develop
applications that move data through a DECnet network to a remote IBM host
transaction program without requiring your programmers to know the details of
SNA.

LU6.2 transaction programs exchange information by means of a conversation,
which is a temporary logical path established between two cooperating
transaction programs. As in DECnet task-to-task communication, transaction
programs must cooperate during the transaction process. For instance, when
one transaction program issues a command to send data, the other transaction
program must issue a command to receive the data. In cooperating transaction
programs (such as ACMS and CICS), you can make calls to the APPC/LU6.2
Programming Interface procedures to:

• Establish LU6.2 sessions

• Set up conversations between transaction programs

• Send and receive data

• Support mapped and basic conversations

• Confirm data exchange

Before transaction programs can exchange messages, their LUs must first
establish a logical connection or session. A session is a long-term logical
connection that permits communication between two logical units (such as
between ACMS and CICS). A conversation is a short-term logical connection that
lasts only for the duration of one complete transaction. ACMS establishes both
sessions and conversations by using explicit calls to APPC/LU6.2 procedures.

Chapter 14 provides code examples (with accompanying descriptions) of how
these APPC/LU6.2 Programming Interface calls are made.

13.4 How Do You Connect ACMS with IBM CICS Systems?
Using the APPC/LU6.2 Programming Interface, you can develop ACMS
applications that exchange messages with remote IBM host transaction programs
(such as CICS). Figure 13–3 shows how ACMS works with APPC/LU6.2 to
connect to an IBM mainframe.

Figure 13–3 shows a HP server node running ACMS (with APPC/LU6.2 running
on the same HP system). The HP computer can be attached either to HP’s
proprietary network DECnet, or to an Open Systems Interconnection (OSI)
network.

Overview of ACMS and APPC/LU6.2 13–5

Overview of ACMS and APPC/LU6.2
13.4 How Do You Connect ACMS with IBM CICS Systems?

Figure 13–3 How ACMS and APPC/LU6.2 Connect to an IBM Machine

ACMS
(Servers)

SNA/APPC/LU6.2

DECnet/OSI

Front-End
Processor

(FEP)

IBM
Mainframe

S/370
S/3090

Gateway-ST

DECnet/SNA

Synchronous
Wide Area
Gateway

Channel
Connect
Gateway

Gateway-CT

DECnet/SNA

VM-0422A-AI

SNA
Network

CICS Appl

As shown in Figure 13–3, a HP node running ACMS software can connect to an
IBM system by two physical paths:

• DECnet/SNA Gateway synchronous transport (ST), which connects the HP
system physically to an IBM Systems Network Architecture (SNA) network.
Once on the SNA network, ACMS can connect to a myriad of host IBM
mainframes. The one or more IBM mainframes are connected to the same
SNA network by a front-end processor (FEP).

• DECnet/SNA Gateway channel transport (CT), which connects the HP system
directly to an IBM mainframe by way of a hardwired channel port on the
IBM host.

Once the hardware connection is established, ACMS works together with
APPC/LU6.2 to start a CICS transaction. Chapter 14 describes the code for an
example of an ACMS application making a request to a CICS application for data
stored in an IBM database.

13–6 Overview of ACMS and APPC/LU6.2

14
Implementation Details of the Sample

Application

The APPC/LU6.2 programming interface enables HP OpenVMS users to connect
to remote third-party computers, providing the connectivity that enables both the
other vendor’s computer and HP computers to transparently exchange data and
share resources.

This chapter contains a sample program that shows how ACMS, by using
APPC/LU6.2 as its interconnectivity programming interface, can communicate
with a remote IBM host computer’s application program (in particular, an IBM
CICS transaction processing application). The sample program is based on the
Personnel Application example provided in HP ACMS for OpenVMS Getting
Started.

Because the purpose of the sample is to demonstrate interconnectivity, it provides
a single inquiry option on the ACMS menu. Real ACMS applications, however,
are not limited to inquiry options; they can also write, modify, and delete data on
IBM and other vendor databases.

14.1 Execution Flow of the Sample Task
Figure 14–1 shows how the task definition in this sample controls the flow of
work between the ACMS user and the IBM database. (The task definition runs
after the user selects the inquiry option from the ACMS menu.)

Implementation Details of the Sample Application 14–1

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Figure 14–1 Execution Flow of the Sample Task

STEPS:

Exchange

Procedure
Server

Presentation
Service

Display I/O

Exchange

Task
Definition

Form
Manager

Call Read Empl
Info Procedure

Display
Info Form

6

Receive

Processing

Send

Read Empl Info
Procedure

CALL
RETURN

CALL
RETURN

Execution Flow Database I/O

ACMS User

CICS
Appl IBM

Database

IBM

TAY-0099-AF

VMS

Prompt
Form

2

CALL
RETURN

1

5

3 4

1 Exchange step in the task calls the HP DECforms form that prompts the user
to enter an Employee ID number.

2 HP DECforms form prompts the user for an Employee ID number, and
returns that number to the task.

3 Processing step in the task calls the server procedure that connects to the
IBM system.

4 COBOL procedure passes the Employee ID number to a CICS application
on the IBM machine. The CICS application uses that number to access the
employee’s record residing in a database on the IBM system. After the record
is found, all pertinent employee information is passed back to the ACMS task
on the HP system.

5 Exchange step in the task calls the HP DECforms form to display the
requested employee record.

6 HP DECforms form displays all of the fields in the employee record on the
ACMS user’s terminal.

For all this work to take place, the sample uses four separate files:

• EMPLOYEE_INFO_READ_TASK task definition, an ACMS file that controls
the flow of work at run time

• EMPLOYEE_INFO_PROMPT_FORM form definition, a HP DECforms file
that prompts the user for the Employee ID number

• READ_EMPL_INFO server procedure, a COBOL procedure that accesses the
IBM database through a CICS transaction, reads the employee record, and
returns that record to the ACMS application

• EMPLOYEE_INFO_FORM form definition, a HP DECforms file that displays
all the fields in the employee record on the ACMS user’s terminal

14–2 Implementation Details of the Sample Application

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

The code for the sample files is contained in the following sections, along with an
explanation of what is happening in each file.

14.1.1 Task Definition
Example 14–1 shows the ACMS task definition for the sample (EMPLOYEE_
INFO_READ_TASK). The task uses exchange steps to get the employee number
from the user and to display the employee information to the user. The task
uses a processing step to call the COBOL procedure, which handles the I/O
interactions among the ACMS application, the IBM CICS application, and the
database.

Table 14–1 describes the coding in the EMPLOYEE_INFO_READ_TASK task
definition in more detail.

Example 14–1 EMPLOYEE_INFO_READ_TASK Task Definition

REPLACE TASK EMPLOYEE_INFO_READ_TASK TSK1

USE WORKSPACES TSK2

EMPLOYEE_INFO_WKSP,
EMPLOYEE_INFO_COMPARE_WKSP,
QUIT_WORKSPACE,
CONTROL_WORKSPACE;

BLOCK WORK WITH FORM I/O TSK3

GET_EMPL_NUMBER: TSK4

EXCHANGE
RECEIVE FORM RECORD EMPLOYEE_INFO_RECORD
IN EMPLOYEE_INFO_PROMPT_LABEL
RECEIVING EMPLOYEE_INFO_WKSP
WITH RECEIVE CONTROL QUIT_WORKSPACE;

CONTROL FIELD IS QUIT_WORKSPACE.QUIT_KEY
" FQUT" : EXIT TASK;

END CONTROL FIELD;

RETRIEVE_EMPL_INFO: TSK5

PROCESSING
CALL READ_EMPL_INFO IN EMPL_SERVER
USING EMPLOYEE_INFO_WKSP, EMPLOYEE_INFO_COMPARE_WKSP, CONTROL_WORKSPACE;

DISPLAY_INFO_TO_USER: TSK6

EXCHANGE
SEND FORM RECORD EMPLOYEE_INFO_RECORD

IN EMPLOYEE_INFO_LABEL
SENDING EMPLOYEE_INFO_WKSP;

END BLOCK WORK;

END DEFINITION;

Table 14–1 Description of Code for EMPLOYEE_INFO_READ_TASK Task Definition

Callout Description

TSK1 Replaces an old CDD dictionary task definition with the current task definition or creates
a new definition if one does not already exist. Section 14.4 discusses the role of the CDD
dictionary.

(continued on next page)

Implementation Details of the Sample Application 14–3

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Table 14–1 (Cont.) Description of Code for EMPLOYEE_INFO_READ_TASK Task Definition

Callout Description

TSK2 Names one or more workspaces to which the task needs access. Workspaces are buffers
used to pass data between steps in a task, between a task and a procedure, between a task
and a form, and between two or more tasks.

TSK3 Groups multiple steps as a logical unit between the BLOCK WORK and END BLOCK
WORK clauses (in this example, the block consists of two EXCHANGE steps and one
PROCESSING step). FORM I/O is a block phrase that indicates that the EXCHANGE
steps use HP DECforms for I/O with the user.

TSK4 Calls the HP DECforms form EMPLOYEE_INFO_PROMPT_FORM within an EXCHANGE
step. HP DECforms uses the EMPLOYEE_INFO_PROMPT_FORM form to prompt the user
for an Employee ID number. Once the user supplies that number, control returns to the
ACMS task.

If the user decides to quit the task when prompted for the Employee ID number, the user
can press a predefined quit key. The CONTROL FIELD clause indicates that if the user
presses the quit key, ACMS exits the entire task and return control to the ACMS menu.

TSK5 Calls the COBOL procedure READ_EMPL_INFO within a PROCESSING step. The COBOL
procedure performs the database inquiry and returns the employee record to the ACMS
application using the EMPLOYEE_INFO_WKSP workspace.

TSK6 Calls the HP DECforms form EMPLOYEE_INFO_FORM within an EXCHANGE step. HP
DECforms uses the EMPLOYEE_INFO_FORM to format and display all of the fields in the
employee record on the ACMS user’s terminal.

14.1.2 Prompt Form Definition
Example 14–2 is the HP DECforms form definition for the sample prompt form
(EMPLOYEE_INFO_PROMPT_FORM). In this example, the form prompts the
user for the Employee ID number. The Employee ID number is then passed back
to the ACMS task, which supplies the Employee ID number to the procedure
server.

This code is not hand-generated, but rather is generated by the HP DECforms
Forms Development Environment, an easy-to-use interface for forms generation.
Because this coding is computer-generated (programmers do not need to generate
this code), there is no detailed explanation of the code following the example.

Example 14–2 EMPLOYEE_INFO_PROMPT_FORM Form Definition

Form EMPLOYEE_INFO_PROMPT_FORM

Form Data
EMPL_NUMBER Character(6)

End Data

Form Record EMPLOYEE_INFO_RECORD
copy

employee_info_record from dictionary
end copy
end record

/**************************************
*defines several function responses: *
**************************************/

(continued on next page)

14–4 Implementation Details of the Sample Application

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Example 14–2 (Cont.) EMPLOYEE_INFO_PROMPT_FORM Form Definition

Layout VT_LAYOUT
Device

Terminal
Type %VT100

End Device
Size 24 Lines by 80 Columns

Function QUIT_KEY
Is %PF4

End Function

Function Response QUIT_KEY
Remove All
Return

" FQUT"
End Response

Disable Response
Request Exit Response

Remove All
End Response

End Response

/**
Describes the display for the first panel in the
*employee inquiry example: *
**/

Panel EMPLOYEE_PROMPT_PANEL

Remove

Literal Text
Line 1
Column 25
Value "EMPLOYEE INQUIRY"

End Literal

Literal Text
Line 6
Column 9
Value "Employee Number of Record to View:"

End Literal

Literal Text
Line 16
Column 9
Value "Press Ctrl/Z to transmit employee number; PF4 to cancel."

End Literal

Field EMPL_NUMBER
Line 6
Column 47
Entry Response

Reset EMPL_NUMBER
End Response

End Field

End Panel

End Layout
End Form

(continued on next page)

Implementation Details of the Sample Application 14–5

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Example 14–2 (Cont.) EMPLOYEE_INFO_PROMPT_FORM Form Definition

14.1.3 Read Database COBOL Step Procedure
The COBOL procedure (READ_EMPL_INFO) in Example 14–3, which is a
processing step procedure that becomes part of the EMPL_SERVER procedure
server, performs the following functions at run time:

• Allocates and deallocates the channel for the conversation between the HP
and IBM system. (Section 14.3 shows how sessions are created and deleted
between the HP and IBM system.)

• Starts an IBM CICS transaction to read the employee record.

• Translates the record from EBCDIC to ASCII and back to EBCDIC.

Note

Although COBOL is used in this example, users can create server
procedures using any programming language that supports the OpenVMS
Calling Standard.

Table 14–2 describes the coding in the READ_EMPL_INFO_COBOL step
procedure in more detail.

Note

If your step procedures involve write, modify, or delete operations, HP
suggests you use a timestamp from the IBM system. The timestamp
field is given by the IBM transaction to each requester (in this case, the
step procedure) as part of the requested record. You can then pass this
timestamp back to the IBM system for database locking purposes (do this
without converting it from EBCDIC-ASCII then ASCII-EBCDIC). It is
the responsibility of the IBM system to check the timestamp field in the
file with the new record. If the timestamp fields are different, the record
has been modified by a different transaction.

Writing step procedures is fully described in HP ACMS for OpenVMS
Writing Server Procedures.

Example 14–3 READ_EMPL_INFO COBOL Step Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. READ_EMPL_INFO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

DATA DIVISION.

(continued on next page)

14–6 Implementation Details of the Sample Application

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Example 14–3 (Cont.) READ_EMPL_INFO COBOL Step Procedure

WORKING-STORAGE SECTION. SRV1

01 resource-id pic 9(9) comp.
01 status-result pic S9(9) comp.
01 i-status pic S9(9) comp.
01 i-ctr pic S9(4) comp.
01 status-vec pic X(64) is external.
01 lu-name pic X(5) is external.
01 tpn-name pic X(4).
01 event-flag pic 9(8) comp value 5.
01 what-received pic 9(8) comp.
01 rts-rec pic 9(4) comp.
01 record-number pic X(6).
01 data-length pic 9(04) comp.
01 data-buffer pic X(86).
01 temp-length pic 9(4).
01 flag-for-connect pic X value SPACE.
01 nodename-gateway pic X(6) is external.
01 ascii-tpn-name pic X(4) value "AIBR".
01 access-name pic X(7) is external.

01 output-buffer.
02 o-filler1 pic X(13).
02 o-name pic X(20).
02 o-addrx pic X(20).
02 o-phone pic X(8).
02 o-datex pic X(8).
02 o-amount pic X(8).
02 o-comment pic X(9).

01 session-status pic X is external.
88 session-connected value ’Y’.
88 session-not-connected value ’N’.

* SNA LU6.2 APPC - Symbols definition

01 SNALU62$_DEALNOR pic 9(8) comp value 34832986.
01 SNALU62$_OK pic 9(8) comp value 34833145.
01 SNALU62$K_OTHER pic 9(8) comp value 2.
01 SNALU62$K_MAPPED_CONVERSATION pic 9(8) comp value 4.
01 SNALU62$K_WHEN_SESSION_ALLOC pic 9(8) comp value 5.
01 SNALU62$K_SL_CONFIRM pic 9(8) comp value 9.
01 SNALU62$K_LOCAL pic 9(8) comp value 32.
01 SNALU62$K_DATA_COMPLETE pic 9(8) comp value 38.

* Buffer passed on during conversation to turn off the state conversation
* between OpenVMS and MVS.

01 dummy-record pic X(2000) value SPACES.
01 dummy-record_length pic 9(4) comp value 2000.

(continued on next page)

Implementation Details of the Sample Application 14–7

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Example 14–3 (Cont.) READ_EMPL_INFO COBOL Step Procedure
LINKAGE SECTION.
COPY "EMPLOYEE_INFO_WKSP" FROM DICTIONARY REPLACING SRV2

==EMPLOYEE_INFO_WKSP. == BY ==EMPLOYEE_INFO_LINKAGE_WKSP. ==.
COPY "CONTROL_WORKSPACE" FROM DICTIONARY.

PROCEDURE DIVISION USING EMPLOYEE_INFO_LINKAGE_WKSP, CONTROL_WORKSPACE.

MAIN SECTION.
000-SET-STATUS.

MOVE SPACES TO ERROR_STATUS_FIELD.

010-GET-RECORD.

* initialize work fields*

move 0 to data-length, temp-length.

move spaces to data-buffer, output-buffer.

* Allocate an LU6.2 conversation.*

move 0 TO rts-rec.

* Allocate the conversation. *
* Prior we want to convert transaction name into EBCDIC.*

call "LIB$TRA_ASC_EBC" using by descriptor ascii-tpn-name, SRV3

tpn-name,
giving status-result.

call "SYS$CLREF" using by value event-flag giving i-status. SRV4

call "SNALU62$ALLOCATE" using SRV5

by reference resource-id,
by descriptor status-vec,
by reference SNALU62$K_OTHER,
by descriptor lu-name,
by value 0,
by descriptor tpn-name,
by reference SNALU62$K_MAPPED_CONVERSATION,
by reference SNALU62$K_WHEN_SESSION_ALLOC,
by reference SNALU62$K_SL_CONFIRM,
by value 0,0,0,0,0,
by reference event-flag,

giving status-result.

call "SYS$WAITFR" using by value event-flag giving i-status. SRV6

if status-result IS FAILURE
go to 100-EXIT-PROGRAM.

* Translate the request to EBCDIC.*

call "LIB$TRA_ASC_EBC" using by descriptor SRV7

empl_number of employee_info_linkage_wksp
record-number,
giving status-result.

(continued on next page)

14–8 Implementation Details of the Sample Application

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Example 14–3 (Cont.) READ_EMPL_INFO COBOL Step Procedure

* Send the data to CICS transaction.*

call "SNALU62$SEND_DATA" using SRV8

by reference resource-id,
by descriptor status-vec,
by descriptor record-number,
by reference data-length,rts-rec,

giving status-result.

if status-result IS FAILURE
go to 100-EXIT-PROGRAM.

* Receive and wait from the IBM system*

call "SNALU62$RECEIVE_AND_WAIT" using SRV9

by reference resource-id,
by descriptor status-vec,
by value 0,
by reference data-length,rts-rec,
by descriptor data-buffer,
by reference what-received,

giving status-result.

if status-result is FAILURE
then

if not status-result = SNALU62$_DEALNOR
go to 100-EXIT-PROGRAM.

* Translate the record from EBCDIC to ASCII.*

call "LIB$TRA_EBC_ASC" using by descriptor data-buffer, SRV10

output-buffer,
giving status-result.

move o-name to empl_name of employee_info_linkage_wksp.
move o-addrx to empl_street_address of employee_info_linkage_wksp.
move o-phone to empl_phone of employee_info_linkage_wksp.
move o-datex to empl_date of employee_info_linkage_wksp.
move o-amount to empl_amount of employee_info_linkage_wksp.
move o-comment to empl_comment of employee_info_linkage_wksp.

* To clear the conversation do the receive with a dummy record of blanks*
* Translate the request to EBCDIC. *

move 0 to dummy-record-length. SRV11

move spaces to dummy-record.

call "LIB$TRA_ASC_EBC" using by descriptor dummy-record,
dummy-record,

giving status-result.

perform 200-clear-receive through 200-clear-receive_x with test after
until status-result = SNALU62$_DEALNOR
or status-result is FAILURE.

(continued on next page)

Implementation Details of the Sample Application 14–9

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Example 14–3 (Cont.) READ_EMPL_INFO COBOL Step Procedure

if status-result is FAILURE
then

if not status-result = SNALU62$_DEALNOR
go to 100-EXIT-PROGRAM.

* Deallocate the conversation*

call "SNALU62$DEALLOCATE" using by reference resource-id, SRV12

by descriptor status-vec,
by reference SNALU62$K_LOCAL,

giving status-result.

if status-result is FAILURE
go to 100-EXIT-PROGRAM.

100-EXIT-PROGRAM.
EXIT PROGRAM.

200-clear-receive.

call "SNALU62$RECEIVE_AND_WAIT" using SRV13

by reference resource-id,
by descriptor status-vec,
by value 0,
by reference dummy-record_length,rts-rec,
by descriptor dummy-record,
by reference what-received,
giving status-result.

200-clear_receive_x.

Table 14–2 Description of Code for READ_EMPL_INFO COBOL Step Procedure

Callout Description

SRV1 Defines the variables and data types that this COBOL procedure uses.

SRV2 Copies the EMPLOYEE_INFO_WKSP employee record definition from the CDD dictionary,
and refers to the record definition as EMPLOYEE_INFO_LINKAGE_WKSP in this COBOL
procedure.

SRV3 Calls the LIB$TRA_ASC_EBC OpenVMS run-time library system routine, which translates
the transaction name from the ASCII format used on HP systems to the EBCDIC format
used on IBM systems.

SRV4 Calls the SYS$CLREF OpenVMS system service, which clears the field for the event flag.

SRV5 Calls the SNALU62$ALLOCATE APPC/LU6.2 procedure, which initiates a conversation
(a short-term connection) between this COBOL procedure and the remote IBM CICS
application.

SRV6 Calls the SYS$WAITFR OpenVMS system service, which waits for the event flag to be set
by the SNALU62$ALLOCATE APPC/LU6.2 call. If the result of the attempt to initiate a
conversation is a failure, the COBOL procedure is exited and control returns to the task.

SRV7 Calls the LIB$TRA_ASC_EBC OpenVMS run-time library system routine, which translates
the Employee ID number from the ASCII format used on HP systems to the EBCDIC
format used on IBM systems.

(continued on next page)

14–10 Implementation Details of the Sample Application

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Table 14–2 (Cont.) Description of Code for READ_EMPL_INFO COBOL Step Procedure

Callout Description

SRV8 Calls the SNALU62$SEND_DATA APPC/LU6.2 procedure, which sends the Employee ID
number (in EBCDIC format) to the CICS application.

SRV9 Calls the SNALU62$RECEIVE_AND_WAIT APPC/LU6.2 procedure, which waits for the
CICS application to return the full employee record to this COBOL procedure.

SRV10 Calls the LIB$TRA_EBC_ASC OpenVMS run-time library system routine, which translates
the employee record from EBCDIC to ASCII format so that the data can be used on the HP
system. The data is then copied to the EMPLOYEE_INFO_LINKAGE_WKSP workspace, so
that it can be accessed by the ACMS task.

SRV11 Initializes a dummy record and translates that dummy record from ASCII to EBCDIC
format. This cleanup work is done to clear the conversation with the IBM machine so that
the next conversation can occur.

SRV12 Calls the SNALU62$DEALLOCATE APPC/LU6.2 procedure, which deallocates the
conversation (connection) between this COBOL procedure and the CICS application.

SRV13 Calls the SNALU62$RECEIVE_AND_WAIT procedure, which waits for the dummy record
to be returned to the COBOL procedure from the CICS application to clear the connection.
Note that this call is actually made from SRV11 .

14.1.4 Display Form Definition
Example 14–4 shows the HP DECforms form definition (EMPLOYEE_INFO_
FORM) that defines the characteristics for displaying the employee record on the
user’s terminal. The ACMS task uses this form to display the various fields of
information in the employee record on the ACMS user’s terminal.

This code is not hand-generated, but rather is generated by the HP DECforms
Forms Development Environment, an easy-to-use interface for forms generation.
Because this coding is computer-generated (programmers do not need to generate
this code), there is no detailed explanation of the code following the example.

Example 14–4 EMPLOYEE_INFO_FORM Form Definition

Form EMPLOYEE_INFO_FORM

Form Data
EMPL_NUMBER Character (6)
EMPL_NAME Character (20)
EMPL_STREET_ADDRESS Character (20)
EMPL_PHONE Character (8)
EMPL_DATE Character (8)
EMPL_AMOUNT Character (8)
EMPL_COMMENT Character (9)

End Data

Form Record EMPLOYEE_INFO_RECORD
copy

employee_info_record from dictionary
end copy
end record

Form Record CONTROL_WORKSPACE
ERROR_STATUS_FIELD Character (4)
MESSAGEPANEL Character (80)

End record

(continued on next page)

Implementation Details of the Sample Application 14–11

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Example 14–4 (Cont.) EMPLOYEE_INFO_FORM Form Definition

/************
*VT Layout *
************/

Layout VT_LAYOUT
Device

Terminal
Type %VT100

End Device
Size 24 Lines by 80 Columns

Function QUIT_KEY
Is %PF4

End Function

Function Response QUIT_KEY
Remove All
Return

" FQUT"
End Response

Disable Response
Request Exit Response

Remove All
End Response

End Response

Receive Response EMPLOYEE_INFO_RECORD
Reset All
Display EMPLOYEE_INFO_PANEL
Activate Panel EMPLOYEE_INFO_PANEL

End Response

Send Response EMPLOYEE_INFO_RECORD
Display EMPLOYEE_INFO_PANEL
Activate Panel EMPLOYEE_INFO_PANEL
Position to Field EMPL_NAME on EMPLOYEE_INFO_PANEL

End Response

Send Response CONTROL_WORKSPACE
Activate Wait
Signal

End Response

/*****************************
*Employee Info Panel Layout *
*****************************/

Panel EMPLOYEE_INFO_PANEL

Remove

Literal Text
Line 1
Column 13
Value "EMPLOYEE INFORMATION RECEIVED FROM THE IBM APPLICATION"

End Literal

(continued on next page)

14–12 Implementation Details of the Sample Application

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Example 14–4 (Cont.) EMPLOYEE_INFO_FORM Form Definition

Literal Text
Line 5
Column 1
Value "Employee number:"

End Literal

Literal Text
Line 7
Column 1
Value "Employee name:"

End Literal

Literal Text
Line 8
Column 1
Value "Address:"

End Literal

Literal Text
Line 9
Column 1
Value "Phone:"

End Literal

Literal Text
Line 10
Column 1
Value "Hire Date:"

End Literal

Literal Text
Line 11
Column 1
Value "Amount:"

End Literal

Literal Text
Line 12
Column 1
Value "Comments:"

End Literal

Literal Text
Line 16
Column 1
Value "Press PF4 to continue."

End Literal

Field EMPL_NUMBER
Line 5
Column 19
Output Picture X(6)

End Field

Field EMPL_NAME
Line 7
Column 19
Output Picture X(20)

End Field

(continued on next page)

Implementation Details of the Sample Application 14–13

Implementation Details of the Sample Application
14.1 Execution Flow of the Sample Task

Example 14–4 (Cont.) EMPLOYEE_INFO_FORM Form Definition

Field EMPL_STREET_ADDRESS
Line 8
Column 19
Output Picture X(20)

End Field

Field EMPL_PHONE
Line 9
Column 19
Output Picture X(8)

End Field

Field EMPL_DATE
Line 10
Column 19
Output Picture X(8)

End Field

Field EMPL_AMOUNT
Line 11
Column 19
Output Picture X(8)

End Field

Field EMPL_COMMENT
Line 12
Column 19
Output Picture X(9)

End Field

End Panel

End Layout
End Form

14.2 Application, Task Group, and Menu Definitions
This section describes the code that:

• Sets the environment and control characteristics of tasks and task groups
(EMPLOYEE_INFO_APPL_ACMS_APPC application definition)

• Sets the resources required by a task or group of tasks (EMPLOYEE_INFO_
TASK_GROUP task definition)

• Displays a list from which terminal users can choose available tasks
(EMPLOYEE_INFO_MENU menu definition)

14.2.1 Application Definition
Example 14–5 is an ACMS application definition (EMPLOYEE_INFO_APPL_
ACMS_APPC) that defines the characteristics for the application, the servers, and
the task groups.

Table 14–3 describes the coding in the EMPLOYEE_INFO_APPL_ACMS_APPC
application definition in more detail.

14–14 Implementation Details of the Sample Application

Implementation Details of the Sample Application
14.2 Application, Task Group, and Menu Definitions

Example 14–5 EMPLOYEE_INFO_APPL_ACMS_APPC Application Definition

REPLACE APPLICATION EMPLOYEE_INFO_APPL_ACMS_APPC APP1

AUDIT;
APPLICATION USERNAME IS EMPLOYEE_EXC;

SERVER DEFAULTS ARE APP2

AUDIT;
USERNAME IS EMPL_SERVER;
MAXIMUM SERVER PROCESSES IS 1;
MINIMUM SERVER PROCESSES IS 1;
END SERVER DEFAULTS;

TASK DEFAULTS ARE APP3

AUDIT;
END TASK DEFAULTS;

TASK GROUPS ARE APP4

EMPLOYEE_INFO_TASK_GROUP:
TASK GROUP FILE IS "ACMS_APPC_FILES:EMPLOYEE_INFO_TASK_GROUP.TDB";
END TASK GROUPS;
END DEFINITION;

Table 14–3 Description of Code for EMPLOYEE_INFO_APPL_ACMS_APPC Application
Definition

Callout Description

APP1 Replaces an old CDD dictionary application definition with the current application
definition or creates a new definition if one does not already exist. Section 14.4 discusses
the role of the CDD dictionary. The AUDIT clause indicates that application-level activities
(such as starting and stopping the application) are noted in the ACMS audit log.

APP2 Describes the attributes for the procedure server. (The sample procedure server consists of
three procedures combined into a single server: the COBOL database inquiry procedure,
the initialization procedure, and the termination procedure.) The AUDIT clause indicates
that server-level activities (such as the calling of servers, including the time and user name
of the caller) are noted in the ACMS audit log.

APP3 Describes the defaults for each task. The AUDIT clause indicates that task-level activities
(such as the calling of tasks, including the time and user name of the caller) are noted in
the ACMS audit log.

APP4 Lists the task groups that are associated with this particular application. Although this
sample has a single task and a single task group, ACMS applications often consist of
several tasks in each task group, and several task groups in each application.

14.2.2 Task Group Definition
Example 14–6 is an ACMS task group definition (EMPLOYEE_INFO_TASK_
GROUP). The task group definition specifies:

• DECforms form file information

• Tasks that belong to the group

• Procedures that are in each server

• Workspaces used by the tasks

Implementation Details of the Sample Application 14–15

Implementation Details of the Sample Application
14.2 Application, Task Group, and Menu Definitions

Table 14–4 describes the coding in the EMPLOYEE_INFO_TASK_GROUP task
group definition in more detail.

Example 14–6 EMPLOYEE_INFO_TASK_GROUP Task Group Definition

REPLACE GROUP EMPLOYEE_INFO_TASK_GROUP GRP1

FORM IS EMPLOYEE_INFO_FORM IN "ACMS_APPC_FILES:EMPLOYEE_INFO_FORM" GRP2

WITH NAME EMPLOYEE_INFO_LABEL;
FORM IS EMPLOYEE_INFO_PROMPT_FORM
IN "ACMS_APPC_FILES:EMPLOYEE_INFO_PROMPT_FORM"
WITH NAME EMPLOYEE_INFO_PROMPT_LABEL;

TASKS ARE GRP3

EMPLOYEE_INFO_READ_TASK : TASK IS EMPLOYEE_INFO_READ_TASK;
END TASKS;

SERVER IS GRP4

EMPL_SERVER :
DEFAULT OBJECT FILE IS EMPL_SERVER;
PROCEDURE SERVER IMAGE IS "ACMS_APPC_FILES:EMPL_SERVER";
INITIALIZATION PROCEDURE IS INIT_EMPL_INFO;
TERMINATION PROCEDURE IS TERM_EMPL_INFO;
PROCEDURES ARE

READ_EMPL_INFO;
END SERVER;

WORKSPACES ARE GRP5

EMPLOYEE_INFO_WKSP,
EMPLOYEE_INFO_WKSP WITH NAME EMPLOYEE_INFO_COMPARE_WKSP,
QUIT_WORKSPACE,
CONTROL_WORKSPACE;

END DEFINITION;

Table 14–4 Description of Code for EMPLOYEE_INFO_TASK_GROUP Task Group Definition

Callout Description

GRP1 Replaces an old CDD dictionary task group definition with the current task group definition
or creates a new definition if one does not already exist. Section 14.4 discusses the role of
the CDD dictionary.

GRP2 Lists the DECforms form files that are used by the tasks in the task group, the location
of those forms on the system, and the label (for reference) that is used within the task
definition for each form.

GRP3 Lists the task definition files that are associated with that task group, and the label that is
used for each task. (Typically, the label is the same as the file name, but can be changed for
special circumstances.) Note that this particular task group definition names only one task,
because this application has only one task, a database inquiry task.

GRP4 Defines the contents of the procedure server named EMPL_SERVER. The procedure server
is a single process that manages the initialization procedure (INIT_EMPL_INFO), the
termination procedure (TERM_EMPL_INFO), and all the step procedures (in this case, just
a single COBOL procedure named READ_EMPL_INFO).

GRP5 Lists the different workspaces used by the tasks, forms, and procedures in that group.
Workspaces are buffers used for passing data between steps in a task, between a task and a
procedure, between a task and a form, and between two or more tasks.

14–16 Implementation Details of the Sample Application

Implementation Details of the Sample Application
14.2 Application, Task Group, and Menu Definitions

14.2.3 Menu Definition
Example 14–7 is an ACMS menu definition (EMPLOYEE_INFO_MENU) that
defines the contents of the inquiry menu panel displayed to users. Terminal users
can select tasks from this menu. In this example, the menu contains only one
task, the inquiry task. In larger applications, multiple options (tasks) are offered
on the menu.

Table 14–5 describes the coding in the EMPLOYEE_INFO_MENU menu
definition in more detail.

Example 14–7 EMPLOYEE_INFO_MENU Menu Definition

REPLACE MENU EMPLOYEE_INFO_MENU MEN1

HEADER IS " ACMS to IBM Personnel Lookup System"; MEN2

ENTRIES ARE MEN3

"INQUIRY" : TASK IS EMPLOYEE_INFO_READ_TASK IN EMPLOYEE_INFO_APPL_ACMS_APPC;
TEXT IS "Inquiry to IBM for an employee record";

END ENTRIES;
END DEFINITION;

Table 14–5 Description of Code for EMPLOYEE_INFO_MENU Menu Definition

Callout Description

MEN1 Replaces an old CDD dictionary menu definition with the current menu definition or creates
a new definition if one does not already exist. Section 14.4 discusses the role of the CDD
dictionary.

MEN2 Defines the text to be displayed at the top of the ACMS menu (the name of the menu).

MEN3 Defines each menu item (in this case, there is only one menu item: INQUIRY). The menu
definition also defines the name of the task definition for each option, the application that
the task is in, and the text that is displayed next to each option on the menu.

14.3 Additional Procedure Server Components
This section describes the code that:

• Opens all the files and readies databases needed by a group of tasks (INIT_
EMPL_INFO initialization procedure)

• Closes at one time all the files and any databases used by a group of tasks
(TERM_EMPL_INFO termination procedure)

14.3.1 Initialization Procedure
Example 14–8 is the server initialization procedure (INIT_EMPL_INFO) written
in COBOL. The server initialization procedure performs work that must be done
before the step procedure executes. In this example, the procedure calls an
SNA/LU6.2 routine to create the LU6.2 session with the remote IBM computer.

Note

Although COBOL is used in this example, users can create procedures
using any programming language that supports the OpenVMS Calling
Standard.

Implementation Details of the Sample Application 14–17

Implementation Details of the Sample Application
14.3 Additional Procedure Server Components

Table 14–6 describes the coding in the INIT_EMPL_INFO initialization procedure
in more detail.

Example 14–8 INIT_EMPL_INFO Initialization Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. INIT_EMPL_INFO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
DATA DIVISION.

WORKING-STORAGE SECTION. INI1

01 status-result pic S9(9) comp is external.
01 status-vec pic X(64) is external.
01 lu-name pic X(5) is external.
01 nodename-gateway pic X(6) is external.
01 access-name pic X(7) is external.
01 session-status pic X(1) is external.

88 session-connected value ’Y’.
88 session-not-connected value ’N’.

PROCEDURE DIVISION GIVING STATUS-RESULT.

MAIN SECTION.
000-SET-STATUS.

Set status-result to SUCCESS.

010-DEFINE-REMOTE.

Move "ALACK" to nodename-gateway. INI2

Move "XDDXFTB" to access-name.
Move SPACES to lu-name.
Set session-not-connected to TRUE.

Call "SNALU62$DEFINE_REMOTE" using INI3

by descriptor status-vec,
by descriptor lu-name,
by descriptor lu-name,
by value 0,0,0,0,0,0,
by descriptor nodename-gateway,
by descriptor access-name,
giving status-result.

IF status-result is SUCCESS INI4

set session-connected to TRUE.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Table 14–6 Description of Code for INIT_EMPL_INFO Initialization Procedure

Callout Description

INI1 Defines the variables and data types that this procedure uses.

INI2 Initializes the variables that are used for making the connection with the IBM machine.
(For example, the variable nodename-gateway is set to ALACK, the name of the HP
machine that serves as the network gateway to the IBM network in this sample.)

(continued on next page)

14–18 Implementation Details of the Sample Application

Implementation Details of the Sample Application
14.3 Additional Procedure Server Components

Table 14–6 (Cont.) Description of Code for INIT_EMPL_INFO Initialization Procedure

Callout Description

INI3 Calls the SNALU62$DEFINE_REMOTE APPC/LU6.2 procedure, which initializes local LU
parameters that control the operation of the local LU in conjunction with the remote LU
(defines the LU name).

INI4 Tests the result of the SNALU62$DEFINE_REMOTE APPC/LU6.2 procedure, and, if the
operation is successful, sets the session-connected variable to TRUE.

14.3.2 Termination Procedure
Example 14–9 is the server termination procedure (TERM_EMPL_INFO) written
in COBOL. The termination procedure performs any cleanup work that must be
done before the procedure server runs down. In this example, the procedure calls
an SNA/LU6.2 routine to delete the LU6.2 session with the remote IBM node.

Note

Although COBOL is used in this example, users can create procedures
using any programming language that supports the OpenVMS Calling
Standard.

Table 14–7 describes the coding in the TERM_EMPL_INFO termination
procedure in more detail.

Example 14–9 TERM_EMPL_INFO Termination Procedure

IDENTIFICATION DIVISION.
PROGRAM-ID. TERM_EMPL_INFO.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
DATA DIVISION.

WORKING-STORAGE SECTION. TRM1

01 status-vec pic X(64) is external.
01 lu-name pic X(5) is external.
01 status-result pic S9(9) comp.

PROCEDURE DIVISION GIVING STATUS-RESULT.

MAIN SECTION.
000-SET-STATUS.

Set status-result to SUCCESS.

010-DELETE_LU_SESSION.

call "SNALU62$DELETE" using by descriptor status-vec, TRM2

by value 0,
by descriptor lu-name,

giving status-result.

100-EXIT-PROGRAM.
EXIT PROGRAM.

Implementation Details of the Sample Application 14–19

Implementation Details of the Sample Application
14.3 Additional Procedure Server Components

Table 14–7 Description of Code for TERM_EMPL_INFO Termination Procedure

Callout Description

TRM1 Defines the variables and data types that this procedure uses.

TRM2 Calls the SNALU62$DELETE APPC/LU6.2 procedure, which deletes the specified LU
name. Any sessions without active conversations are immediately deactivated; sessions
with active conversations are deactivated as soon as the conversation is deallocated.

14.4 Field and Record Definitions
This section describes some of the field and record definitions that are created
and stored in the CDD data dictionary. By using the CDD data dictionary for
central storage of field and record definitions, you can modify field and record
definitions in one location without needing to make the same modifications to
each of the various application components that use those definitions.

CDD is a data dictionary that provides a central storage location for data
descriptions and definitions shared by ACMS, other related products (such as
DECforms and Rdb), and programming languages. CDD is an active dictionary
system that provides the user interface known as Common Dictionary
Operator (CDO).

The dictionary contains metadata (descriptions of data, not the data itself) in the
form of dictionary definitions. The most commonly used dictionary definitions
are fields, records, and databases. CDD objects are stored hierarchically and are
accessed by reference to dictionary path names.

A field definition describes the data that can be stored in a specific field in your
application. Field definitions typically include information such as data type and
size. In the sample program, the following employee fields are defined:

• Employee number

• Employee name

• Employee street address

• Employee phone

• Employee date

• Employee amount

• Employee comment

A record definition typically consists of a grouping of field definitions. The
sample program defines a record named EMPLOYEE_INFO_RECORD, which
contains a group of field definitions corresponding to the preceding fields.

In summary, CDD provides the following:

• Ensures the integrity of shared metadata and the procedures used to analyze,
maintain, manage, and design business metadata

• Provides a centralized repository for information management shops

• Offers a dynamic aid to software application development

14–20 Implementation Details of the Sample Application

Implementation Details of the Sample Application
14.4 Field and Record Definitions

The CDD field definitions in Example 14–10 specify the information on each field
used in the sample application. In addition to the name, each field definition also
includes the data type and size (in characters) for each field.

Example 14–10 Field Definitions

define field empl_number
datatype text size 6.

define field empl_name
datatype text size 20.

define field empl_street_address
datatype text size 20.

define field empl_phone
datatype text size 8.

define field empl_date
datatype text size 8.

define field empl_amount
datatype text size 8.

define field empl_comment
datatype text size 9.

The sample uses both a record and a workspace (workspaces are buffers used for
passing data between steps in a task, between a task and a procedure, between a
task and a form, and between two or more tasks). Example 14–11 shows both the
record and workspace definitions contained in CDD for this sample.

Example 14–11 Record and Workspace Definitions

define record employee_info_record.
empl_number.
empl_name.
empl_street_address.
empl_phone.
empl_date.
empl_amount.
empl_comment.

end record.

define record employee_info_wksp.
empl_number.
empl_name.
empl_street_address.
empl_phone.
empl_date.
empl_amount.
empl_comment.

end record.

Implementation Details of the Sample Application 14–21

Part V
Appendixes

This part of the manual contains supplemental information that may be useful
when writing server procedures for HP ACMS for OpenVMS applications.

Appendix A contains a summary of ACMS system workspaces. Appendix B lists
the libraries included in the AVERTZ sample procedures. Appendix C describes
superseded features of HP ACMS for OpenVMS.

A
Summary of ACMS System Workspaces

The three ACMS system workspaces are:

• ACMS$PROCESSING_STATUS

• ACMS$SELECTION_STRING

• ACMS$TASK_INFORMATION

Each ACMS system workspace has a different purpose. All of the Common Data
Definition Language (CDDL) record definitions for these workspaces are stored
in the CDD$TOP.ACMS$DIR.ACMS$WORKSPACES directory in the CDD. This
appendix lists these workspaces and explains the uses of each.

A.1 ACMS$PROCESSING_STATUS System Workspace
The ACMS$PROCESSING_STATUS workspace handles processing status
information. It has four fields, each for a different part of that information.
The CDD location of the CDDL record definition for this workspace is
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$PROCESSING_STATUS.

Table A–1 describes the fields in the ACMS$PROCESSING_STATUS workspace.

Summary of ACMS System Workspaces A–1

Summary of ACMS System Workspaces
A.1 ACMS$PROCESSING_STATUS System Workspace

Table A–1 Fields in the ACMS$PROCESSING_STATUS Workspace

ACMS$L_STATUS

Type: Signed longword

Description: Contains the return status from the last processing step. The initial
value of the ACMS$L_STATUS field is set to 1 (SUCCESS) when a task
is started.

ACMS$T_SEVERITY_LEVEL

Type: Text

Size: 1 character

Description: Contains a single-character severity level code representing the return
status in the ACMS$L_STATUS field. The characters this field can
contain are: S (SUCCESS), I (INFORMATION), W (WARNING), E
(ERROR), F (FATAL), or ? (OTHER). The initial value of ACMS$T_
SEVERITY_LEVEL is S.

ACMS$T_STATUS_TYPE

Type: Text

Size: 1 character

Description: Contains a single-character severity level code representing the return
status in the ACMS$L_STATUS field. G indicates the low bit in the
ACMS$L_STATUS field is set to 1. B indicates the low bit is clear. The
initial value of the ACMS$T_STATUS_TYPE field is G.

ACMS$T_STATUS_MESSAGE/ACMS$T_STATUS_MESSAGE_LONG

Type: Text

Size: 80/132 characters

Description: ACMS$T_STATUS_MESSAGE is an 80-character variant of the 132
character ACMS$T_STATUS_MESSAGE_LONG field. When you use the
GET ERROR MESSAGE clause, this field contains the error message
associated with the return status code in ACMS$L_STATUS. The
ACMS$T_STATUS_MESSAGE_LONG field is set initially to spaces.

A–2 Summary of ACMS System Workspaces

Summary of ACMS System Workspaces
A.2 ACMS$SELECTION_STRING System Workspace

A.2 ACMS$SELECTION_STRING System Workspace
The ACMS$SELECTION_STRING workspace handles strings passed by a task
submitter (terminal user) at task selection time. This workspace has a single
field. The CDD location of the CDDL record definition for this workspace is
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$SELECTION_STRING.

Table A–2 describes the field in the ACMS$SELECTION_STRING workspace.

Table A–2 Field in the ACMS$SELECTION_STRING Workspace

ACMS$T_SELECTION_STRING

Type: Text

Size: 255 characters

Description: Contains the selection string provided by a terminal user at task
selection time. If the user does not provide a selection string, ACMS
sets the field to spaces.

If the task is queued, the first 32 bytes of the selection string contain the
queued task element ID.

A.3 ACMS$TASK_INFORMATION System Workspace
The ACMS$TASK_INFORMATION workspace handles task execution
information. It has ten fields, each for a different part of that information.
The CDD location of the CDDL record definition for this workspace is
CDD$TOP.ACMS$DIR.ACMS$WORKSPACES.ACMS$TASK_INFORMATION.

Table A–3 describes the fields in the ACMS$TASK_INFORMATION workspace.

Table A–3 Fields in the ACMS$TASK_INFORMATION Workspace

ACMS$AL_TASK_ID

Type: Signed longword array

Size: 4 longwords

Description: Contains the task ID in binary format for the current task instance; the
ACMS$AL_TASK_ID field is a four-element longword array.

It is possible for two task instances to have the same value if the tasks
are selected on two different nodes. To ensure a unique task identifier,
use both the ACMS$AL_TASK_ID field and the ACMS$T_SUBMITTER_
NODE field.

ACMS$L_TASK_SEQUENCE_NUMBER

Type: Signed longword

Description: Contains the number of the current task instance within the current
task. This field always contains 1 when the task is initially selected from
a menu. ACMS increments this number each time the user repeats the
task or chains to another task, thus starting a new task instance without
returning to the menu.

(continued on next page)

Summary of ACMS System Workspaces A–3

Summary of ACMS System Workspaces
A.3 ACMS$TASK_INFORMATION System Workspace

Table A–3 (Cont.) Fields in the ACMS$TASK_INFORMATION Workspace

ACMS$T_TASK_NAME

Type: Text

Size: 31 characters

Description: Contains the task name as defined in the application under which the
task is running. ACMS does not update this field when one task chains
to another.

ACMS$T_TASK_IO_DEVICE

Type: Text

Size: 8 characters

Description: Contains the device name for the task submitter. For remote users, the
device name is always NL:. For local request I/O or terminal I/O users,
this field includes the terminal device name. For stream I/O or no I/O,
this field is set to spaces.

If this field contains a device name (not spaces or NL:), then the device
can be used by the task to perform I/O from a processing step.

ACMS$AL_TASK_SUBMITTER_ID

Type: Signed longword array

Size: 4 longwords

Description: Contains the current terminal user’s identification code for the user who
started the current task instance. This field is a four-element longword
array.

ACMS$T_TASK_USERNAME

Type: Text

Size: 12 characters

Description: Contains the OpenVMS user name for the terminal user who started the
current task instance. For remote tasks, this is the name of the proxy.

ACMS$T_SUBMITTER_NODE_NAME

Type: Text

Size: 15 characters

Description: Contains the DECnet node name for the task submitter.

ACMS$L_CALL_SEQUENCE_NUMBER

Type: Signed longword

Description: Contains the call sequence number of the currently called task. ACMS
increments this number each time a task calls another task.

(continued on next page)

A–4 Summary of ACMS System Workspaces

Summary of ACMS System Workspaces
A.3 ACMS$TASK_INFORMATION System Workspace

Table A–3 (Cont.) Fields in the ACMS$TASK_INFORMATION Workspace

ACMS$T_SIGN_IN_USERNAME

Type: Text

Size: 12 characters

Description: Contains the OpenVMS user name of the user on the submitter node.

If a submitter selects a remote task, then the user name under which
that task runs may be different from the user name under which the
submitter signed in. The contents of the ACMS$T_TASK_USERNAME
are based on the proxy lookup and user name defaulting mechanism and
may differ from the ACMS$T_SIGN_IN_USERNAME field.

If a submitter selects a local task, the ACMS$T_SIGN_IN_USERNAME
field is the same as the ACMS$T_TASK_USERNAME field.

To distinguish between users that have the same name but reside on
different nodes, use the ACMS$T_SIGN_IN_USERNAME field with the
ACMS$T_SUBMITTER_NODE_NAME field to log the user name and
the node location.

ACMS$T_SIGN_IN_DEVICE

Type: Text

Size: 8 characters

Description: Contains the name of the device that was supplied to ACMS when the
submitter signed in.

For applications using the ACMS command process, this field contains a
terminal device name.

For applications using a user-written command process (agent), this field
can contain a terminal device name, the name of a nonterminal device
that the agent is handling, or the NL: device specification.

Use the ACMS$T_SIGN_IN_DEVICE field in conjunction with the
ACMS$T_SUBMITTER_NODE_NAME field to log the device name and
its node location. Use both fields to distinguish between devices that
have the same name but reside on different nodes.

Summary of ACMS System Workspaces A–5

B
Libraries Included in AVERTZ Sample

Procedures

This appendix lists the contents of the libraries referred to in procedures that are
part of the AVERTZ sample application.

B.1 VR_MESSAGES_INCLUDE.LIB
*
* AVERTZ messages
*
*
* Informational
*
01 MULCURECFND PIC S9(9) COMP VALUE IS EXTERNAL VR_MULCURECFND.
01 MULRSRECFND PIC S9(9) COMP VALUE IS EXTERNAL VR_MULRSRECFND.
01 VEUPGPRF PIC S9(9) COMP VALUE IS EXTERNAL VR_VEUPGPRF.
01 VEDNGPRF PIC S9(9) COMP VALUE IS EXTERNAL VR_VEDNGPRF.
01 CURECUPD PIC S9(9) COMP VALUE IS EXTERNAL VR_CURECUPD.
01 CURECINS PIC S9(9) COMP VALUE IS EXTERNAL VR_CURECINS.
01 CHKINCOMP PIC S9(9) COMP VALUE IS EXTERNAL VR_CHKINCOMP.
01 CHKOUTCOM PIC S9(9) COMP VALUE IS EXTERNAL VR_CHKOUTCOM.
01 RESVCOMP PIC S9(9) COMP VALUE IS EXTERNAL VR_RESVCOMP.
01 VERECFND PIC S9(9) COMP VALUE IS EXTERNAL VR_VERECFND.
01 RESSUCCNCLD PIC S9(9) COMP VALUE IS EXTERNAL VR_RESSUCCNCLD.
*
* Warning
*
01 CURECNOTFND PIC S9(9) COMP VALUE IS EXTERNAL VR_CURECNOTFND.
01 RCRECNOTFND PIC S9(9) COMP VALUE IS EXTERNAL VR_RCRECNOTFND.
01 RERECNOTFND PIC S9(9) COMP VALUE IS EXTERNAL VR_RERECNOTFND.
01 RSRECNOTFND PIC S9(9) COMP VALUE IS EXTERNAL VR_RSRECNOTFND.
01 SIRECNOTFND PIC S9(9) COMP VALUE IS EXTERNAL VR_SIRECNOTFND.
01 VERECNOTFND PIC S9(9) COMP VALUE IS EXTERNAL VR_VERECNOTFND.
01 VRHRECNOTFND PIC S9(9) COMP VALUE IS EXTERNAL VR_VRHRECNOTFND.
01 NOTCHKOUT PIC S9(9) COMP VALUE IS EXTERNAL VR_NOTCHKOUT.
01 RESCNCLD PIC S9(9) COMP VALUE IS EXTERNAL VR_RESCNCLD.
01 CARCHKIN PIC S9(9) COMP VALUE IS EXTERNAL VR_CARCHKIN.
01 CARCHKOUT PIC S9(9) COMP VALUE IS EXTERNAL VR_CARCHKOUT.
01 RESCLOSED PIC S9(9) COMP VALUE IS EXTERNAL VR_RESCLOSED.
01 DLRENOTFND PIC S9(9) COMP VALUE IS EXTERNAL VR_DLRENOTFND.
01 NOCANCEL PIC S9(9) COMP VALUE IS EXTERNAL VR_NOCANCEL.
01 INACTIVE PIC S9(9) COMP VALUE IS EXTERNAL VR_INACTIVE.
01 DDTM_TIMEOUT PIC S9(9) COMP VALUE IS EXTERNAL VR_DDTM_TIMEOUT.
*
* Error
*
01 NO_DUP PIC S9(9) COMP VALUE IS EXTERNAL VR_NO_DUP.
01 DEADLOCK PIC S9(9) COMP VALUE IS EXTERNAL VR_DEADLOCK.
01 INTEG_FAIL PIC S9(9) COMP VALUE IS EXTERNAL VR_INTEG_FAIL.
01 LOCK_CONFLICT PIC S9(9) COMP VALUE IS EXTERNAL VR_LOCK_CONFLICT.
01 CAR_UNAVAILABLE PIC S9(9) COMP VALUE IS EXTERNAL VR_CAR_UNAVAILABLE.
01 CHK_CANCL_ERR PIC S9(9) COMP VALUE IS EXTERNAL VR_CHK_CANCL_ERR.
01 HIST_WRITE_ERR PIC S9(9) COMP VALUE IS EXTERNAL VR_HIST_WRITE_ERR.
01 UPDATE_ERROR PIC S9(9) COMP VALUE IS EXTERNAL VR_UPDATE_ERROR.
*
* Fatal
*
01 BILLERR PIC S9(9) COMP VALUE IS EXTERNAL VR_BILLERR.

Libraries Included in AVERTZ Sample Procedures B–1

Libraries Included in AVERTZ Sample Procedures
B.1 VR_MESSAGES_INCLUDE.LIB

01 DB_FATAL PIC S9(9) COMP VALUE IS EXTERNAL VR_DB_FATAL.
01 ICRECNOTFND PIC S9(9) COMP VALUE IS EXTERNAL VR_RCRECNOTFND.

B.2 VR_LITERALS_INCLUDE.LIB
01 C-ZERO PIC X VALUE "0".
01 C-NINE PIC X VALUE "9".
01 C-ONE PIC X VALUE "1".
01 NEG-ONE PIC S9(4) COMP VALUE -1.

B.3 VR_SQL_STATUS_INCLUDE.LIB
*
* Define the SQL return status
*
01 SQL_NOTFOUND PIC S9(9) COMP VALUE +100.
01 SQL_NO_DUP PIC S9(9) COMP VALUE -803.
01 SQL_DLOCK PIC S9(9) COMP VALUE -913.
01 SQL_INTEGFAIL PIC S9(9) COMP VALUE -1001.
01 SQL_LOCK PIC S9(9) COMP VALUE -1003.
01 SQL_SELMORVAL PIC S9(9) COMP VALUE -811.
*

B.4 VR_CONTEXT_STRUCTURE_INCLUDE.LIB
01 CONTEXT-STRUCTURE.
02 CS-VERSION PIC S9(9) COMP VALUE 1.
02 CS-TYPE PIC S9(9) COMP VALUE 1.
02 CS-LENGTH PIC S9(9) COMP VALUE 16.
02 CS-TID PIC X(16).
02 CS-END PIC S9(9) COMP VALUE 0.

B–2 Libraries Included in AVERTZ Sample Procedures

C
Superseded Features

This appendix describes features used in earlier versions of ACMS. Although you
can continue to use these features, they have been superseded by new features
and are considered to be declining functionality.

Superseded Features C–1

ACMSAD$REQ_CANCEL

ACMSAD$REQ_CANCEL

Cancels a task. ACMS writes the task cancellation to the audit trail log.
When you include a reason parameter, the call also writes the reason for the
cancellation to the audit trail log.

Note

This programming service is a declining feature. Beginning with ACMS
Version 3.2, use ACMS$RAISE_NONREC_EXCEPTION to raise an
exception that cancels a task.

Format

ACMSAD$REQ_CANCEL ([reason.rl.r])

Parameter

reason
Optional longword address of the reason for canceling, passed by reference as a
read-only longword value.

Return Status

The ACMSAD$REQ_CANCEL service can return the following status values:

Status
Severity
Level Description

ACMS$_NORMAL Success Normal successful completion.
ACMS$_PENDING Informational Successful operation pending

asynchronous completion.
ACMS$_EXCPTNACTIVE Error An exception of the same or

higher level has already been
raised. The existing exception is
raised in the task as soon as the
step procedure completes.

ACMS$_
INVREQCANREASON

Error Task canceled: invalid cancel
reasons passed to ACMS$_
INVREQCANREASON.

ACMS$_
NOCANCELCANPROC

Error ACMSAD$REQ_CANCEL service
may not be called from a server
cancel procedure.

ACMS$_TASKNOTACTRC Fatal ACMSAD$REQ_CANCEL service
may not be called when no task
is active.

C–2 Superseded Features

ACMSAD$REQ_CANCEL

Notes

The optional parameter reason must be a condition value. For example, the
parameter can be a symbol in a message file you have created, or it can be an
OpenVMS or RMS condition value.

If a reason (that is, an exception code) is not supplied, ACMS uses ACMS$_
CANCEL_PROCSVR, "Cancel resulting from procedure server calling
ACMSAD$REQ_CANCEL." If a reason is supplied, it must be a failure status. If
a reason is supplied that is not a failure status, then ACMS cancels the task with
a status of ACMS$_INVCANCELREASON, "invalid cancel reason."

The behavior of ACMSAD$REQ_CANCEL depends on whether or not AST
delivery is enabled. If the ACMSAD$REQ_CANCEL service is called with AST
delivery enabled, then the nonrecoverable exception is raised immediately, and
the service does not return to the procedure. If the ACMSAD$REQ_CANCEL
service is called with AST delivery disabled, then the service returns ACMS$_
PENDING, and the nonrecoverable exception is raised when AST delivery is once
again enabled. Note that the step procedure must enable AST delivery before
completing.

This service cannot be called from a cancel procedure or from an initialization or
a termination procedure.

Examples

1. WORKING-STORAGE SECTION.
01 CNCL_MSG PIC S9(5)

VALUE IS EXTERNAL "MSG_CANCEL".

PROCEDURE DIVISION.
.
.
.
CALL "ACMSAD$REQ_CANCEL" USING CNCL_MSG.

In this COBOL example, MSG_CANCEL is a message symbol in an external
message file. CNCL_MSG is a data item declared with MSG_CANCEL as its
value.

2. CALL ACMSAD$REQ_CANCEL

This BASIC example shows how to cancel the task with the default reason of
ACMS$_ACMSTP_CALL, ACMSI-E-ACMSTP_CALL, "Cancel resulting from
procedure server calling ACMSAD$REQ_CANCEL."

Superseded Features C–3

Index

@
See At sign (@)

A
$ABORT_TRANS, 3–6
ACCEPT

command Task Debugger, 7–27
Task Debugger command, 10–4

Access
characteristic

for DBMS realms, 4–31
keywords for defining, 4–31

mode
DBMS, 4–31

mode for opening files, 2–13
specifying, 2–6

types
with Programming Services, 9–2

ACMS$AL_TASK_ID, A–3
ACMS$AL_TASK_SUBMITTER_ID, A–4
ACMS$DEBUG_AGENT_TASK

defining, 7–28
ACMS$DEBUG_SERVER

logical name, 8–4
ACMS$ESC_RTN, 7–7
ACMS$GET_TID, 9–1, 9–3

return status, 9–3
to obtain and store in context structure, 4–6
using, 3–7
using with Rdb and DBMS, 3–7
with DBMS, 4–30

ACMS$L_CALL_SEQUENCE_NUMBER, A–4
ACMS$L_STATUS, 3–9, A–2
ACMS$L_TASK_SEQUENCE_NUMBER, A–3
ACMS$PROCESSING_STATUS, 3–2, A–1

ACMS$L_STATUS, 3–9
ACMS$T_SEVERITY_LEVEL, 3–9
ACMS$T_STATUS_MESSAGE, 3–9
ACMS$T_STATUS_TYPE, 3–9
checking values during debugging, 7–23
contains status values, 3–8
fields in, 3–9, A–2
initial values in fields, 3–10
to return status from procedure, 3–17

ACMS$RAISE_NONREC_EXCEPTION, 3–21,
4–13, 9–1, 9–5

return status, 9–5
to replace ACMSAD$REQ_CANCEL, 3–20

ACMS$RAISE_STEP_EXCEPTION, 3–20, 9–1,
9–7

AST delivery disabled, 9–8
AST delivery enabled, 9–8
return status, 9–7

ACMS$RAISE_TRANS_EXCEPTION, 3–20, 4–13,
9–1, 9–9

AST delivery disabled, 9–10
AST delivery enabled, 9–10
return status, 9–9

ACMS$SELECTION_STRING, 3–2, A–3
ACMS$SIGN_IN

using to debug tasks called by agent programs,
7–26

ACMS$TASK_INFORMATION, 3–2
fields in, A–3

ACMS$T_SELECTION_STRING, A–3
ACMS$T_SEVERITY_LEVEL, 3–9, A–2

table of values, 3–9
ACMS$T_SIGN_IN_DEVICE, A–5
ACMS$T_SIGN_IN_USERNAME, A–4
ACMS$T_STATUS_MESSAGE, 3–9, A–2
ACMS$T_STATUS_TYPE, 3–9, A–2

table of values, 3–9
ACMS$T_SUBMITTER_NODE_NAME, A–4
ACMS$T_TASK_IO_DEVICE, A–4
ACMS$T_TASK_NAME, A–3
ACMS$T_TASK_USERNAME, A–4
ACMS$_ACMSTP_CALL, C–3
ACMS$_ALRDYCANCELLING, C–2
ACMS$_EXCPTNACTIVE, 9–5, 9–8, 9–10, C–2
ACMS$_INSUFPRM, 9–3
ACMS$_INVCANCELREASON, C–3
ACMS$_INVNONRECEXCODE, 9–5
ACMS$_INVNUMARGS, 9–3
ACMS$_INVREQCANREASON, C–2
ACMS$_INVSTPEXCCODE, 9–8
ACMS$_INVTIDARG, 9–3
ACMS$_INVTRANSEXCCODE, 9–10
ACMS$_NOCANCELCANPROC, C–2
ACMS$_NOEXCPTNCANPRO, 9–5, 9–8, 9–10

Index–1

ACMS$_NOGETTIDCANPROC, 9–3
ACMS$_NONRECEXCPTN_PROCSVR, 9–6
ACMS$_NORMAL, 9–3, 9–5, 9–8, 9–10, C–2
ACMS$_NO_ACTIVE_TASK, C–2
ACMS$_NRNDWN, 2–33
ACMS$_PENDING, C–2
ACMS$_RNDWN, 2–33
ACMS$_RNDWNIFINT, 2–33
ACMS$_STPEXCPTN_PROCSVR, 9–8
ACMS$_TASKNOTACTGT, 9–3
ACMS$_TASKNOTACTNRE, 9–5
ACMS$_TASKNOTACTRC, C–2
ACMS$_TASKNOTACTSE, 9–8
ACMS$_TASKNOTACTTE, 9–10
ACMS$_TRANSEXCNOTACT, 9–10
ACMS$_TRANSEXCPTN_PROCSVR, 9–10
ACMS$_TRANSNOTACT, 9–3
ACMS$_TSKCANINVARGS, 9–5, 9–8, 9–10
ACMS/DEBUG

command
AGENT_HANDLE qualifier, 7–27
to start Task Debugger, 7–9
WORKSPACE qualifier, 7–10

ACMS/DEBUG/SERVER
command, 8–3, 8–4

ACMS/MODIFY APPLICATION
command

to get server process dump, 8–5
ACMS/REPLACE SERVER

command, 8–3, 8–5
ACMS/SHOW SERVER

command
to get server process name and PID, 8–4

ACMSAD$REQ_CANCEL, 3–19, 9–1, C–2
return status, C–2

ACMSDBG
See also Task Debugger
ACMS Task Debugger prompt

using Ctrl/G to return to, 7–25
Task Debugger command, 10–1
using command, 7–2

ACMS-E-NONRECEXCPTN_PROCSVR, 9–6
ACMS-E-STPEXCPTN_PROCSVR, 9–8
ACMS-E-TRANSEXCNOTACT, 9–10
ACMS-E-TRANSEXCPTN_PROCSVR, 9–10
ACMSEXC-E-INVNONRECEXCCODE, 9–6
ACMSEXC-E-INVSTPEXCPTNCODE, 9–8
ACMSEXC-E-INVTRANSEXCCODE, 9–10
ACMSI-E-ACMSTP_CALL, C–3
ACMS system

programming services, 9–1
$ACTION

location breakpoint symbol, 7–15
Agent program

accepting calls from, 10–4
debugging tasks called by, 7–26
logical names before running, 7–28
running with debugger, 7–28

Agent program (cont’d)
starting the Task Debugger for, 7–27

AGENT_HANDLE
qualifier for ACMS/DEBUG command, 7–27

ALL
qualifier

with CANCEL BREAK, 7–21
with STOP command, 7–12

qualifier with CANCEL BREAK command,
10–6

Allow characteristic
for DBMS realms, 4–31
keywords for defining, 4–31

Allow mode
DBMS, 4–31

ANALYZE/PROCESS_DUMP
command

OpenVMS Debugger, 8–7
Application

defining, 8–1
programming

SQL step procedures, 4–2
setting up for production, 8–1

ASSIGN
command

Task Debugger, 7–10, 10–5
setting default for, 10–18

AST
See Asychronous system trap

Asynchronous system trap, 2–30
delivery enabled/disabled with ACMS$RAISE_

STEP_EXCEPTION, 9–8
delivery enabled/disabled with ACMS$RAISE_

TRANS_EXCEPTION, 9–10
disabling, 2–30
enabling, 2–30

At sign (@)
command

Task Debugger, 7–15, 10–3

B
BASIC

cancel procedures, 2–37
closing files, 2–19
DBMS initialization procedures, 2–12
initialization procedure, 2–18
opening files, 2–18
Rdb initialization procedures, 2–8
Rdb termination procedures, 2–21
RMS initialization procedures, 2–19
RMS termination procedures, 2–24
statements

INPUT, 3–22
PRINT, 3–22
UNLOCK EXPLICIT, 2–18

Index–2

$BEGIN
location breakpoint symbol, 7–15

Binding to database
in initialization procedures, 2–3

methods of, 2–3
Breakpoints

canceling, 7–21, 10–6
continuing after, 7–22
definition of, 7–14
displaying, 7–16, 10–20
event, 7–16
location, 7–15
removing, 7–21
setting, 7–14

in step procedures, 7–21
in tasks called by other tasks, 7–20
with SET BREAK command, 10–17

$STEP_n, 7–16
types of, 7–15
using dump file to set, 7–17

Building
procedure server images, 6–1

C
Cancel

rundown server on, 2–25
$CANCEL

event breakpoint symbol, 7–16
CANCEL BREAK

command
Task Debugger, 10–6

using, 7–21
Canceling

See also Cancel procedures
breakpoints, 7–21, 10–6
tasks, 10–7

ACMSAD$REQ_CANCEL, C–2
termination procedures, 2–19

transaction timeout, 10–8
Canceling tasks

CANCEL TASK
Task Debugger command, 7–21

Cancel procedures, 1–2, 2–1
ACMS$_NRNDWN, 2–33
ACMS$_RNDWN, 2–33
ACMS$_RNDWNIFINT, 2–33
avoiding, 2–26
COBOL, 2–35
compiling, 6–2
conditions for calling, 2–31
declared in task group, 1–3
for Rdb files

BASIC, 2–37
for Rdb with RDO, 2–34

BASIC, 2–34
for RMS files, 2–35
guidelines for avoiding, 2–28

Cancel procedures (cont’d)
in distributed transactions, 2–32
in nondistributed transactions, 2–32
naming in task group, 2–33
purpose of, 2–33
releasing locked records, 2–26
releasing memory after LIB$GET_VM, 2–27
releasing terminal channels, 2–33
rolling back database transaction, 2–27
to close channel, 3–23
when to use, 2–29
when unavoidable, 2–29
with NO RUNDOWN clause, 2–26
with RMS files, 2–29
workspaces not passed to, 2–32
writing, 2–32

CANCEL TASK
command

Task Debugger, 7–21, 10–7
CANCEL TRANSACTION_TIMEOUT

command
Task Debugger, 7–24, 10–8

CDD
storing copies of workspace, 3–3
workspace record definition, 3–3

Channels
closing, 2–27

CMKRNL
privilege in debugging, 8–4

COBOL
APPLY LOCK-HOLDING statement, 2–14
cancel procedures, 2–35
closing files, 2–19
GIVING statement, 2–14
initialization procedures, 2–6, 2–8, 2–14
naming step procedures, 1–6
opening files, 2–1
SELECT statement, 2–14
SQL example, 4–1
statements

ACCEPT, 3–22
DISPLAY, 3–22
GIVING, 3–3
USING, 3–3

step procedures
RDO with Rdb, 4–20
SQL with Rdb, 4–15

testing FILE-STAT, 2–14
Command files

submitting Task Debugger commands as, 7–15
Command procedures

running in Task Debugger, 10–3
Commands (Task Debugger)

ACCEPT, 10–4
ASSIGN, 10–5
At sign (@), 10–4, 10–7
CANCEL BREAK, 10–6
CANCEL TASK, 10–7

Index–3

Commands (Task Debugger) (cont’d)
CANCEL TRANSACTION_TIMEOUT, 10–8
comment lines, 10–3
DEPOSIT, 10–9
EXAMINE, 10–10
EXIT, 10–11
GO, 10–12
HELP, 10–13
INTERRUPT, 10–14
SELECT, 10–16
SET BREAK, 10–17
SET TRANSACTION_TIMEOUT, 10–19
SHOW BREAK, 10–20
SHOW SERVERS, 10–21
SHOW TRANSACTION_TIMEOUT, 10–22
SHOW VERSION, 10–23
START, 10–24
STEP, 10–26
STOP, 10–27

COMMIT
DBMS statement, 2–11
DML statement, 3–6
removing statement, 3–8
SQL statement, 4–8
statement

with distributed transactions, 3–5
Compiling

escape routines
using /DEBUG qualifier, 7–6

initialization, termination, and cancel
procedures, 6–2

message files, 5–4, 5–6
procedures, 7–3
procedures that use DBMS DML, 4–40
procedures that use RDO, 4–27
procedures that use SQL, 4–15
step procedures, 6–2

Context
See Servers, context

Context structure
defining SQL, 4–5

in BASIC, 4–5
in COBOL, 4–5

passing to SQL, 4–6
storing TID in, 4–6

CONTINUOUS
qualifier with ACCEPT Task Debugger

command, 10–4
Control characters

with Task Debugger, 7–9
Copying records

from CDD to COBOL procedures, 2–14
CREATE

logical name table, 7–6
Ctrl/G

to interrupt server in debugging, 8–5
to return to Task Debugger prompt, 7–25
using while debugging, 7–9

Ctrl/G (cont’d)
using with Task Debugger, 10–7, 10–8, 10–14

Ctrl/Z
to stop debugging session, 8–5
using while debugging, 7–9

Current
server, 10–18

D
Databases

access mode
specifying, 2–6

attaching to DBMS, 2–10
binding

in initialization procedures, 2–3
binding to, 2–1
DBMS

reading from, 4–32
writing to, 4–34

declaring, 4–4
defining, 4–4
handling errors

nonrecoverable, 4–13
recoverable, 4–13
SQL, 4–12

handling transaction aborts, 4–13
reading from, 4–23

Rdb, 4–10
relations

specifying, 2–6
releasing DBMS, 2–22
releasing Rdb, 2–20, 2–21
unbinding, 2–19
updating, 4–24
writing to, 4–24

Rdb, 4–11
Database transactions

DBMS, 4–29
independent, 4–30

definition of, 3–6
ending, 3–7
independent

starting and ending, 4–8
independent transaction

RDO, 4–23
part of distributed transaction, 4–7

RDO, 4–21
passing TID, 3–7
rolling back with cancel procedure, 2–29
SQL

starting and ending, 4–7
starting, 3–7
starting and ending

RDO, 4–21
starting SQL, 4–7, 4–8
with distributed transaction, 3–7

Index–4

Data types
with Programming Services, 9–2

DBG$INPUT
logical name for debugging, 7–8

DBM$SIGNAL
to return fatal error status, 2–11
to signal error condition, 2–3

DBM$_ALLREADY
error, 2–12

DBMS
access characteristic, 4–31
access mode, 4–31
allow characteristic, 4–31
allow mode, 4–31
attaching to database, 2–10
BASIC initialization procedures, 2–12
binding subschemas, 2–10
COBOL procedure, 4–34
COMMIT statement, 2–11
DBM$_ALLREADY error, 2–12
DBO/OPEN command, 2–11
handling errors, 4–37
initialization procedures, 2–10
reading from database, 4–32
READY statement, 2–11, 3–7
recovery, 3–7
releasing databases, 2–22
setting lock timeout interval, 3–7
starting and ending database transactions,

4–29, 4–30
subschemas in initialization procedures, 2–11
termination procedures, 2–22
wait mode, 4–31
writing step procedure to access, 4–28
writing to database, 4–34

DEBUG
qualifier

BUILD GROUP command, 7–3
compiling escape routines, 7–6
compiling with, 7–3
linking with, 7–3

qualifier with COBOL COMPILE command,
6–2

qualifier with LINK command, 6–5
Debugging

See also Debugging procedures
HP DECforms escape routines, 7–6
tasks

See Debugging tasks
using the FORMS$DEBUG_ESCAPE_

ROUTINES logical name, 7–7
Debugging procedures

See also OpenVMS Debugger
in run-time environment, 8–3
invoking debugger, 8–4
replacing faulty server, 8–3
using the OpenVMS Debugger, 7–25

Debugging tasks
See also Task Debugger
assigning logical names, 7–10, 10–5
breakpoints with, 7–16
building task group, 7–3
called by other tasks, 7–20
called from user-written agent programs, 7–26
canceling breakpoints, 10–6
canceling tasks, 10–7
canceling transaction timeout, 10–8
changing variables, 7–2
changing workspace contents, 7–2, 10–9
checking

ACMS$PROCESSING_STATUS workspace,
7–23

entered values, 7–22
initial values, 7–22
workspace values, 7–22

checking completeness of tasks, 7–3
continuing after breakpoints, 10–12
continuing after INTERRUPT command, 10–12
defining logical names, 7–5, 7–10, 7–11
displaying active servers, 10–21
displaying breakpoints, 7–16, 10–20
displaying debugger version, 10–23
displaying HELP information, 10–13
displaying transaction timeout, 10–22
displaying workspace contents, 10–10
examining workspaces, 7–2
files needed for, 7–4
interrupting a server, 7–12, 10–14
interrupting servers, 7–13
preparations, 7–2
preparing definitions, 7–2
quotas required for, 7–9
removing breakpoints, 7–21
returning to the Task Debugger prompt, 7–25
running agent programs, 7–28
running command procedures, 10–3
running initialization procedures, 7–11
selecting tasks, 7–21
setting breakpoints, 7–14, 10–14, 10–17
setting current server, 10–18
setting current timeout period, 10–19
starting servers, 7–10, 7–11, 10–24
starting tasks, 10–16
starting the Task Debugger, 7–9
stepping through tasks, 7–20, 10–26
stopping servers, 7–12, 10–27
stopping the Task Debugger, 7–24, 10–2, 10–11
system parameters required for, 7–9
Task Debugger commands, 10–1
that use HP DECforms escape routines, 7–6
timeout code, 7–23
tools for, 7–2
typical errors, 7–23
using ACMS Task Debugger, 7–9

Index–5

Debugging tasks (cont’d)
using Ctrl/G , 7–9
using Ctrl/Z , 7–9
using dump file, 7–17
using group logical names, 7–10
using Task Debugger commands, 7–2
using test files, 7–3
using two terminals, 7–7
workspace copies used, 10–9

DECLARE SCHEMA
SQL statement, 2–5
SQL statement in procedure, 4–4

DEFINE
logical names, 7–6
logical name table list, 7–6

DEPOSIT
command

Task Debugger, 7–3, 10–9
Detached process

server in run-time environment, 8–1
Displaying

breakpoints, 7–16
Distributed transactions

ACMS$GET_TID, 9–3
calling servers in, 3–5
database transaction participating in, 4–21
DBMS database transaction

starting, 4–29
ending, 3–5, 3–6
end of, 3–8
retaining context with, 3–8
RMS journaling with, 4–41
starting, 3–5, 3–6
step procedure with, 4–2
using SQL, 4–4
using TID, 3–7
with DBMS, 4–30

DML
DBMS Data Manipulation Language
precompiler, 4–40

Dump files
using in debugging, 7–17

DUMP GROUP
command

ADU, 7–17
Dumps

server process
getting, 8–5

E
.END

Message Utility statement, 5–3
$END

location breakpoint symbol, 7–15
$END_TRANS, 3–6

Error
handling

SQL, 4–14
ERROR

nonrecoverable error, 8–6
Error messages

See Errors, messages
Errors

ACMSAD$REQ_CANCEL service, C–2
DBM$_ALLREADY, 2–12
defining severity levels, 5–3
during debugging, 7–23
handling

See also Handling errors
DBMS, 4–37
Rdb, 4–26
RMS, 4–46

in BASIC initialization procedures, 2–18
initialization procedures, 2–1
messages

returning to users, 3–14
using hard-coded messages in form, 3–17
using hard-coded messages in step

procedure, 3–18
using message file

in step procedure, 3–15
in task definition, 3–14

recoverable
in step procedure, 3–13

Escape routines
debugging, 7–7
debugging HP DECforms, 7–6

EXAMINE
command

Task Debugger, 7–3, 7–22, 7–23, 10–10
$EXCEPTION

event breakpoint symbol, 7–16
Exceptions

nonrecoverable, 3–21
raising in step procedure, 3–19
recoverable, 3–20
running down server processes after, 2–28
step, 3–20
transaction, 3–20

EXE
qualifier with LINK command, 6–4

Executable images
See Images

EXIT
command

OpenVMS Debugger, 7–12
Task Debugger, 10–11

EXTERNAL CONSTANT
BASIC statement, 5–8

Index–6

F
.FACILITY

Message Utility statement, 5–3
FAO

See OpenVMS Formatted ASCII Output facility
FATAL

nonrecoverable error, 8–6
Files

closing, 2–19
command

of Task Debugger commands, 7–15
dump

using in debugging, 7–17
message

See Message files
needed for debugging, 7–3
opening, 2–1, 2–18

access mode for, 2–13
for procedure servers, 2–13
returning status, 2–13

sharing, 2–13
testing FILE-STAT, 2–14
using with step procedures, 4–1

FILE_NAME
qualifier with Message Utility, 5–6

FINISH
Rdb, 2–21

Formatted ASCII Output (FAO)
See OpenVMS Formatted ASCII Output facility

FORMS$DEBUG_ESCAPE_ROUTINES
logical name, 7–7

FORMS$IMAGE
defining, 7–7

FORMS$PRINT_FILE
HP DECforms logical name, 8–2

Function
step procedure, 1–6

G
GO

command
Task Debugger, 10–12

using after setting breakpoints, 8–5
using to continue after breakpoints,

7–22
GROUP

qualifier used in debugging, 8–4

H
$HANDLER

location breakpoint symbol, 7–15

Handling errors, 3–13
with message files, 5–1

HELP
command

Task Debugger, 10–13
HP DECforms

escape routines
debugging, 7–6

HP DECforms trace facility
for debugging, 7–2

I
.IDENT

Message Utility statement, 5–2
IMAGE

qualifier with ANALYZE/PROCESS_DUMP
command, 8–7

Images
building procedure server, 6–1
procedure server executable

creating, 5–7
Indicator array

declaring, 4–10
Initialization

See also Initialization procedures
servers, 2–1
user-defined workspaces, 3–12

Initialization procedures, 1–2, 2–1
access mode on opens, 2–13
BASIC using RMS, 2–16
binding to database, 2–3
compiling, 6–2
DBMS

BASIC, 2–12
COBOL, 2–10

declared in task group, 1–3
file descriptions, 2–14
guidelines for, 2–2
handling errors, 2–2

in BASIC, 2–18
in COBOL, 2–14

in COBOL, 2–6
naming subschema, 2–11
opening files in BASIC, 2–18
passing workspaces, 2–2
Rdb BASIC, 2–8
Rdb COBOL, 2–8
record locks, 2–14
restrictions for, 2–2
returning status, 2–2, 2–14

in BASIC, 2–2
in COBOL, 2–2

sequential files, 2–13
using RDO with Rdb, 2–8
using RMS files, 2–13
using SQL with Rdb, 2–5
when called, 2–2

Index–7

Initialization procedures (cont’d)
work of, 2–1

Initial values
of workspaces during debugging, 7–22

INSERT
qualifier with LIBRARY command, 6–6

INTERRUPT
command

Task Debugger, 7–12, 7–13, 10–14
INVOKE DATABASE

RDO statement, 2–9
with Rdb, 4–20

Invoking databases, 2–8

J
Journaling

See also RMS journaling
RMS, 4–41

L
Labels

step, 7–15, 7–16
LIB$CALLG

to signal error condition, 2–3
LIB$GET_INPUT, 3–22
LIB$GET_VM

with cancel procedures, 2–27
LIB$PUT_OUTPUT, 3–22
LIB$SIGNAL

to signal error condition, 2–3
LIB$SYS_FAO

using with error messages, 3–15
LIB$SYS_GETMSG

using with error messages, 3–15
Library

object
linking, 6–6
placing files in, 6–3

procedure object, 6–6
LIBRARY

DCL command, 6–6
qualifier with LINK command, 6–6

LINK
command

DCL, 6–3, 6–6
linking message files, 5–7
to create images, 6–4

NOTRACEBACK qualifier, 7–14
with /DEBUG qualifier, 7–3

Linker, 6–5
See also Linking

Linking
message file object modules, 5–7
message files, 5–4, 5–6
object modules, 6–3
procedure object libraries, 6–6

Linking (cont’d)
procedures, 7–3
procedure server images, 7–14

if task definition uses Rdb recovery, 6–5
server image

with NOTRACEBACK qualifier, 7–14
server image with /DEBUG, 6–5
step procedures, 6–3

Link option file
linking procedure server code, 6–5

Local
symbols

and LINK/DEBUG command, 6–5
Lock mode

Rdb
specifying, 4–8

Locks
See Records, locks

Lock timeout
DBMS, 4–32
setting for Rdb and DBMS, 3–7
specifying interval, 4–10

Logical names
accessed by server process, 7–5
assigning in Task Debugger, 7–10
assigning with ASSIGN command, 10–5
checking for accuracy, 8–1
DBG$INPUT, 7–8
DBG$OUTPUT, 7–8
defining

during debugging session, 7–10, 7–11
for debugging, 7–5

for two-terminal debugging, 7–8
SYS$INPUT, 7–8
SYS$OUTPUT, 7–8
using group logical names during debugging,

7–10
with Task Debugger, 7–5

Logical name tables
creating

for debugging, 7–6
list, 7–6

M
MESSAGE

Message Utility command, 5–7
Message files

See also Messages
changing, 5–7
compiling, 5–4, 5–6
example of source file, 5–4
facility name and number, 5–3
handling errors with, 5–1
in step procedure, 3–15
in task definition, 3–14
linking, 5–4, 5–6
name of message, 5–4

Index–8

Message files (cont’d)
object module, 5–6
parts of, 5–1
setting up messages in, 5–2
source files, 5–1

Messages
creating files, 5–2
displaying to users using message files, 5–1
symbols, 5–4

Message Utility
.END statement, 5–3
.FACILITY statement, 5–3
FILE_NAME qualifier, 5–6
.IDENT statement, 5–2
OBJECT qualifier, 5–6
prohibition of $FAO directives statements, 5–4
running, 5–6
.SEVERITY statements, 5–3
.TITLE statement, 5–2

MODIFY
Rdb statement, 4–25

N
Naming

procedures
guidelines, 1–6
initialization, 2–13

server procedures, 1–5
NONPARTICIPATING SERVER

phrase
ADU, 3–5

Nonrecoverable errors
handling

DBMS, 4–38
RMS, 4–47

handling in step procedure, 4–13
Nonrecoverable exception

raising in step procedure, 3–21
NO RUNDOWN ON CANCEL, 2–25

clause
ADU, 2–33

NOTRACEBACK
qualifier with LINK command, 6–5, 7–14, 8–4

O
OBJECT

qualifier with Message Utility, 5–6
Object library

placing files in, 6–3
procedure, 6–6

Object modules
compiling source code into, 6–2
message file, 5–6

Opening files
access mode, 2–13
for procedure servers, 2–13

OpenVMS Debugger, 7–1
accessing from Task Debugger, 7–24
checking values in workspaces, 7–22
debugging HP DECforms escape routines, 7–6
EXIT command, 7–12
invoking, 8–5
SET BREAK/EXCEPTION command, 7–25
SET WATCH command, 7–25
transferring control to, 7–13

OpenVMS Formatted ASCII Output facility
for using message file in step procedure, 3–15
prohibition of directives with Message Utility,

5–4
OPER

privilege needed to replace server, 8–5

P
Parameters

format
with Programming Services, 9–2

system
for debugging, 7–9

Passing mechanism
with Programming Services, 9–2

PID
qualifier with ACMS/DEBUG/SERVER

command, 8–5
using ACMS/SHOW SERVER to display, 8–4

Precompiler
DML, 4–40
RDO, 4–27

invoking, 4–28
SQL, 4–15

Procedures
cancel

See Cancel procedures
debugging

See Debugging procedures
initialization

See Initialization procedures
servers

See Procedure servers
setting breakpoints in, 7–21
step

See Step procedures
termination

See Termination procedures
Procedure servers

See also Servers, procedure
building server images, 6–1
closing RMS files, 2–22
concept of, 1–1
creating server images, 6–3
definition of, 1–2
images

linking, 5–7, 7–14

Index–9

Procedure servers (cont’d)
linking, 6–3

message file object modules, 5–7
object modules, 6–3

object libraries, 6–6
opening files, 2–13
releasing

DBMS databases, 2–22
Rdb databases, 2–20, 2–21

terminal I/O, 3–22
terminology, 1–1
transfer module, 1–3, 6–3

Process
identification

See PID
logical name

assigning, 10–5
Process identification

See PID
Production

setting up applications for, 8–1
Programming Services

ACMS, 1–6
ACMS$GET_TID, 3–7, 9–1
ACMS$RAISE_NONREC_EXCEPTION, 9–1
ACMS$RAISE_STEP_EXCEPTION, 9–1
ACMS$RAISE_TRANS_EXCEPTION, 9–1
parameter notation used, 9–2

Q
Queuing Services

ACMS, 1–6
Quotas

required for debugging, 7–9

R
Raising exceptions

ACMS$RAISE_NONREC_EXCEPTION, 9–5
ACMS$RAISE_STEP_EXCEPTION, 9–7
ACMS$RAISE_TRANS_EXCEPTION, 9–9

Rdb
binding subschemas, 2–8
binding to database, 2–4
cancel procedures

with RDO, 2–34, 2–35
compiling procedures that access, 4–27
creating .RUJ file, 2–4
defining databases, 4–4
errors

handling, 4–26
initialization procedures, 2–5, 2–7

BASIC, 2–8
COBOL, 2–8

invoking database, 4–20
lock mode, 4–8
reading from database, 4–23

Rdb (cont’d)
recovery, 3–7, 6–5
releasing databases, 2–20, 2–21
rolling back database transaction, 2–29
setting lock timeout interval, 3–7
share modes, 4–9
START_TRANSACTION statement in

procedures, 4–20
step procedures

COBOL, 4–15, 4–20
termination procedures, 2–20, 2–21

BASIC, 2–21
transaction mode, 4–8
using SQL with, 4–2
using with RDML, 4–20
using with RDO, 4–20
wait mode, 4–9

RDB$_BAD_TRANS_HANDLE, 2–34
RDM$BIND_LOCK_TIMEOUT_INTERVAL

specifying in logical name table, 4–9
RDML

SQL similar to, 4–2
using with Rdb, 4–20

RDO
cancel procedures with, 2–29
compiling, 4–27
initialization procedures, 2–8
precompiler, 4–27
START_TRANSACTION statement, 3–7
termination procedures, 2–21
using precompiled with Rdb, 4–20
using with distributed transaction, 4–21

READY
DBMS statement, 2–10, 2–11
DBMS statement to start distributed

transaction, 3–6
DML statement, 4–29

Realms
readying DBMS, 4–29
usage characteristics, 4–29

Reason parameter
ACMSAD$REQ_CANCEL (optional), C–3

Records
locks, 2–13

COBOL initialization procedures, 2–14
unlocking RMS, 2–29

Recoverable errors
handling

DBMS, 4–38
in step procedure, 4–13
RMS, 4–47

Recovery
resource manager, 3–4
units

creating .RUJ file, 2–10
definition of, 3–6
starting .RUJ file, 2–9

Index–10

Releasing
DBMS databases, 2–22
Rdb databases, 2–20, 2–21

Relinking
server

for new Rdb versions, 6–6
Removing breakpoints, 7–21
Replacing

faulty servers, 8–5
REQUEST I/O

phrase
ADU

for terminal I/O, 3–22
Resource manager

recovery, 3–4
definition of, 3–4

Resources
definition of, 3–4
recoverable

definition of, 3–4
Return status

See Status, return
RMS

BASIC termination procedures, 2–24
cancel procedures, 2–35

BASIC, 2–37
files

sharing, 2–13
handling errors with, 4–46
initialization procedures

BASIC, 2–18
COBOL, 2–13

journaling
See RMS journaling

reading records, 4–42
recoverable errors, 4–47
recovery, 3–7
transaction aborts, 4–47
updating records, 4–43
writing records, 4–43
writing step procedures that use, 4–41

RMS journaling
after-image, 4–41
before-image, 4–41
recovery-unit, 4–41
types of, 4–41
using with procedures, 4–41
with distributed transactions, 4–41

ROLLBACK
DML statement, 3–6
Rdb, 2–21
removing statement, 3–8
SQL statement, 4–8
statement

DBMS, 2–10
with distributed transactions, 3–5

Rolling back
Rdb database transaction, 2–29

RUJ file
creating, 2–8

Rundown
server process

conditions for, 2–24
RUNDOWN ON CANCEL, 2–25

clause
ADU, 2–33

IF INTERRUPTED
clause

ADU, 2–33
RUNDOWN ON CANCEL IF INTERRUPTED,

2–25
Run-time

environment
running tasks in, 8–1

files needed, 8–3
logical names in, 8–2
protection of files and databases, 8–2
servers open terminal channel, 8–2
user name quotas, 8–2

S
SELECT

command
Task Debugger, 7–21, 10–16

with STEP command, 10–26
SERVER

qualifier with ASSIGN command, 10–5
Server context

See Servers, context
Server procedures

See Servers, procedures
Server processes

See Servers, processes
Servers

calling in distributed transactions, 3–5
cancel procedures, 2–26
compiling with /DEBUG qualifier, 7–3
context

releasing, 3–7
retaining, 3–7

current
setting during debugging, 10–18

DCL, 1–3
debugging, 10–24

debugging
DCL servers, 10–24
procedure servers, 10–24

detached process in run-time environment, 8–1
displaying

with SHOW SERVERS command, 10–21
initializing, 2–1
interrupting, 7–12, 7–13

Index–11

Servers
interrupting (cont’d)

in Task Debugger, 7–13
linking message file object modules, 5–7
linking with /DEBUG qualifier, 7–3
procedures

definition of, 1–2
naming, 1–5
preparing to debug, 7–3
structuring, 1–5
terminology, 1–1

process dump
analyzing, 8–6
analyzing file, 8–7

processes
cancel procedures, 2–26
definition of, 1–2
reasons for stopping, 8–6
releasing terminal channel, 2–32
running down, 2–19, 2–24, 2–32
running down after exception, 2–28
stopping, 2–19
using ACMS/SHOW SERVER to display

name, 8–4
quotas and privileges, 8–1
releasing DBMS databases, 2–22
releasing Rdb databases, 2–20, 2–21
replacing faulty, 8–3, 8–5
running cancel procedures, 2–32
SERVER PROCESS DUMP

application definition clause, 8–5
clause in application definition, 8–6

starting, 7–10, 7–11
in Task Debugger, 7–10, 7–11
with Task Debugger START command,

10–24
stopping, 7–12

in Task Debugger, 7–12
with STOP Task Debugger command,

10–27
stop unexpectedly, 8–5
termination of, 8–6

$SETAST
pseudocode for using, 2–31
using to avoid canceling a task, 2–26

SET BREAK
command

Task Debugger, 7–20, 10–17
SET BREAK/EXCEPTION

OpenVMS Debugger command, 7–25
SET SERVER

command
Task Debugger, 7–10, 10–18

SET TRANSACTION
SQL statement, 2–5, 4–7
SQL statement to start distributed transaction,

3–6

SET TRANSACTION_TIMEOUT
command

Task Debugger, 7–23, 10–19
SET WATCH

OpenVMS Debugger command, 7–25
Severity

levels
defining in message file, 5–3

.SEVERITY
Message Utility statements, 5–3

SHARE
LINK qualifier, 5–6
qualifier with LINK command, 5–7

Share modes
Rdb, 4–9

SHOW BREAK
command

Task Debugger, 7–16, 10–20
SHOW SERVERS

command
Task Debugger, 10–21

SHOW TRANSACTION_TIMEOUT
command

Task Debugger, 7–24, 10–22
SHOW VERSION

command
Task Debugger, 10–23

SQL
binding to database, 2–3, 2–4
compiling, 4–15
context structure

defining, 4–5
database transactions

starting and ending, 4–7
declaring databases, 4–4
embedded

guidelines for using, 4–3
statements in step procedures, 4–3

error handler, 4–14
error handling, 4–14
initialization procedures, 2–5, 2–7
interface to Rdb, 4–2
module language

passing context structure, 4–6
passing context structure to, 4–6
precompiled

passing context structure, 4–6
precompiler, 4–15
recovery, 3–7
statements

SET TRANSACTION, 3–7
step procedures, 4–2

COBOL, 4–15
using, 4–9

storing TID, 4–6
task definition, 3–7
termination procedures, 2–20
with distributed transactions, 4–4, 4–7

Index–12

SQL$SIGNAL
to signal error condition, 2–3

SS$_DEBUG, 7–7
removing, 7–7

START
ALL qualifier, 7–11
command

Task Debugger, 7–11, 10–24
Task Debugger command, 7–11

Starting
applications

errors in, 2–2
Task Debugger, 7–9

Startup
server

See Initialization procedures
$START_TRANS, 3–6
START_TRANSACTION

RDO statement
in step procedures, 4–20

RDO statement to start distributed transaction,
3–6

Status
return

ACMS$GET_TID, 9–3
ACMS$RAISE_NONREC_EXCEPTION,

9–5
ACMS$RAISE_STEP_EXCEPTION, 9–7
ACMS$RAISE_TRANS_EXCEPTION, 9–9
ACMSAD$REQ_CANCEL, C–2
initialization procedures, 2–2
termination procedure for RMS files, 2–22
termination procedures, 2–19

returning
BASIC procedure for, 3–12
COBOL procedure for, 3–11
in user-defined workspaces, 3–10
required, 3–9
to task, 3–8

STEP
command

Task Debugger, 7–20, 10–26
Step exception

raising in step procedure, 3–20
Step labels

See Labels, step
Stepping through tasks

with Task Debugger, 10–26
Step procedures, 1–2

aborts
distributed transaction, 4–26
handling transaction, 4–13

accessing resource managers, 4–1
called from task, 1–4, 4–2
calling in distributed transactions, 3–5
calling in processing step, 1–5
compiling

Step procedures
compiling (cont’d)

DBMS, 4–40
RDO, 4–27
SQL, 4–15

DBMS, 4–29
accessing database, 4–28
reading from database, 4–32
writing to database, 4–34

declared in task group, 1–4
definition of, 1–4
excluding from distributed transaction, 3–5
files needed for debugging, 7–4
handling errors

nonrecoverable, 4–13
recoverable, 4–13
SQL, 4–12

modifying existing, 3–8
naming in COBOL, 1–6
participating in distributed transaction, 3–5
passing workspaces, 3–3
Rdb

reading from database, 4–10
writing to database, 4–11

RDML with Rdb, 4–20
RDO with Rdb, 4–20
SQL, 4–15

access to Rdb databases, 4–2
writing to Rdb databases, 4–9

SQL with Rdb, 4–1
using workspaces, 3–3
writing, 3–1

$STEP_n
label, 7–16

STOP
command

Task Debugger, 7–12, 10–27
Stopping

server process
during debugging, 7–9

Task Debugger, 7–24, 10–2
Structuring

server procedures, 1–5
Subprogram

COBOL procedure, 1–6
Subschemas

naming in DB statement, 4–28
naming in initialization procedures, 2–11

Symbols
OpenVMS debug, 6–2
tables, 6–5
Task Debugger, 7–15

Symbol table
OpenVMS debug, 6–2

SYS$FAO
using with error messages, 3–15

Index–13

SYS$GETMSG
using with error messages, 3–15

SYS$INPUT
logical name for debugging, 7–8

SYS$OUTPUT
logical name for debugging, 7–8

SYSTEM
qualifier used to debug any server on system,

8–4
System services

with step procedures
FAO facility, 3–15
$SETAST, 2–30

System workspaces
See Workspaces, system

T
TABLE

qualifier used in debugging, 8–4
Tables

selecting a value from, 4–10
Task Debugger, 7–1, 10–1

See also Debugging tasks
checking values in workspaces, 7–22
commands

ACCEPT, 10–4
ASSIGN, 10–5
At sign (@), 10–3
CANCEL BREAK, 7–21, 10–6
CANCEL TASK, 7–21, 10–7
CANCEL TRANSACTION_TIMEOUT,

7–24, 10–8
DEPOSIT, 10–9
EXAMINE, 7–22, 7–23, 10–10
EXIT, 10–11
GO, 7–22, 10–12
HELP, 10–13
INTERRUPT, 7–12, 7–13, 10–14
SELECT, 10–16
SET BREAK, 7–14, 7–20, 10–17
SET SERVER, 7–10, 10–18
SET TRANSACTION_TIMEOUT, 7–23,

10–19
SHOW BREAK, 7–16, 10–20
SHOW SERVERS, 10–21
SHOW TRANSACTION_TIMEOUT, 7–24,

10–22
SHOW VERSION, 10–23
START, 7–11, 10–24
STEP, 7–20, 10–26
STOP, 7–12, 10–27
table of, 10–1
Task Debugger, 7–10, 7–21

control characters, 7–9
debugging a user-written agent program, 7–27
prompt

Task Debugger
prompt (cont’d)

returning to, 7–25
running tasks in, 7–9
setting breakpoints, 7–15
starting, 7–9
stopping, 10–2

using Ctrl/Z , 7–24
using EXIT command, 7–24

transferring control to OpenVMS Debugger,
7–13

version
displaying, 10–23

Tasks
accessing Rdb databases, 4–2
called

debugging, 7–20
canceling

in Task Debugger, 7–21
debugging, 7–2

See also Debugging tasks
selecting tasks to debug, 7–21

definitions
breakpoints in, 7–16
calling step procedures, 4–2

error handling, 4–14
files needed for debugging, 7–4
identifying workspaces, 3–3
preparing for production, 8–1
processing step example, 1–6
testing status values, 3–8
workspaces

See also Workspaces
defining records for, 3–4

writing to Rdb databases with SQL, 4–9
Terminal

channels
closing, 3–23
opening, 3–22
procedure server use of, 3–22
releasing in cancel procedure, 2–33

I/O
defining, 3–22
from procedure servers, 3–22
releasing terminal channel, 2–33

TERMINAL I/O
ADU

for terminal I/O, 3–22
Termination procedures, 1–2, 2–1

canceling tasks, 2–19
compiling, 6–2
DBMS, 2–22
declared in task group, 1–3
file definitions for, 2–22
Rdb BASIC, 2–21
Rdb using RDO, 2–21
Rdb using SQL, 2–20
record definitions, 2–22

Index–14

Termination procedures (cont’d)
returning status, 2–22
RMS, 2–22

BASIC, 2–24
writing, 2–19

Terminology (ACMS)
procedure server, 1–1

Testing
application in run-time environment, 8–1

TID
ACMS$GET_TID, 9–3
creation of, 3–7
passing

with DBMS, 3–7
with Rdb, 3–7

storing in SQL, 4–6
with RMS files, 3–7

Timeout
canceling in Task Debugger, 7–24
debugging code, 7–23
displaying transaction, 10–22
lock

specifying, 4–32
setting current, 10–19
setting in Task Debugger, 7–23
showing in Task Debugger, 7–24
specifying interval, 4–10
specifying with Rdb and DBMS, 3–7

.TITLE
Message Utility statement, 5–2

Transaction aborts
handling DBMS, 4–38
handling in step procedure, 4–13
handling Rdb, 4–26
handling RMS, 4–47
handling SQL, 4–12

Transaction exceptions
raising in step procedure, 3–20

Transaction ID
See TID

Transaction mode
specifying, 4–8

Transactions
database

starting, 3–7
distributed

retaining context with, 3–8
independent database

RDO, 4–23
Transaction timeout

displaying, 10–22
Transfer module

procedure server, 1–3, 6–3
Transition

from debugging to run-time environment, 8–1

U
UNBIND

DBMS statement, 2–22
Unbinding

DBMS databases, 2–22
Rdb databases, 2–20, 2–21

Unlocking
records, 2–29

User names
run-time server quotas, 8–2
servers and EXC run under different, 8–1

W
Wait mode

DBMS
specifying, 4–31

Rdb
specifying, 4–9

WARNING
nonrecoverable error, 8–6

WORKSPACE
qualifier with ACMS/DEBUG command, 7–10

Workspaces
ACMS$PROCESSING_STATUS, A–2
ACMS$SELECTION_STRING, A–3
ACMS$TASK_INFORMATION, A–3
assigning initial values to fields, 3–4
CDD, 3–3
changing contents of, 10–9
checking values in, 7–22
definition of, 3–1
displaying

contents, 10–10
entered values

checking during debugging, 7–22
examining or changing the contents of, 7–10
how ACMS applications use, 3–1
identifying, 3–3 to 3–4
initial values

assigning, 3–4
checking during debugging, 7–22

naming
in COBOL programs, 3–3

passing
status values, 3–8
to cancel procedures, 2–32

referencing in task definition, 3–3
system, 3–2

ACMS$PROCESSING_STATUS, 3–2, A–2
ACMS$SELECTION_STRING, 3–2, A–3
ACMS$TASK_INFORMATION, 3–2, A–3
ACMS-supplied, 3–2
location in CDD, A–1
reading from, 3–2
writing to, 3–2

Index–15

Workspaces (cont’d)
used during debugging, 10–9
user-defined

initializing, 3–12
returning status in, 3–10
to hold status indicator, 3–17

using, 3–1
with initialization procedures, 2–2

Index–16

