
HP ACMS for OpenVMS
Writing Applications
Order Number: AA-LC14G-TE

January 2006

This document describes how to define transaction processing
applications by using the HP ACMS for OpenVMS software. This
document also describes how to write and migrate HP ACMS for
OpenVMS applications for OpenVMS Alpha systems.

Revision/Update Information: This manual supersedes HP ACMS
for OpenVMS Writing Applications,
Version 4.5A, and HP ACMS for
OpenVMS Writing and Migrating
Applications, Version 4.5A.

Operating System: OpenVMS Alpha Version 8.2
OpenVMS I64 Version 8.2-1

Software Version: HP ACMS for OpenVMS, Version 5.0

Hewlett-Packard Company
Palo Alto, California



© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additonal warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Motif is a registered trademark of The Open Group.

Oracle is a registered US trademark of Oracle Corporation, Redwood City, California.

Oracle CODASYL DBMS, Oracle CDD/Administrator, Oracle CDD/Repository, Oracle Rdb, Oracle
SQL/Services, Oracle Trace, and Oracle Trace Collector are registered US trademarks of Oracle
Corporation, Redwood City, California.

Printed in the US



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Part I Writing Generic Applications

1 Writing Definitions with ADU

1.1 Starting and Stopping ADU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
1.1.1 Starting ADU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
1.1.2 Stopping ADU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1.1.3 Assigning a Default Text Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1.2 ACMS and the Data Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.2.1 Dictionary Path Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.2.2 Creating CDO Directories and Establishing Directory and Entity

Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
1.3 Establishing Your ADU Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
1.4 Understanding ACMS Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
1.4.1 Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
1.4.2 File Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
1.4.3 Workspace Field Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11
1.4.4 Text Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11
1.5 Creating and Processing Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–12
1.6 How ACMS Uses Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–13
1.6.1 Creating ADU Definition Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–13
1.6.2 ACMS Definitions: Placing in and Retrieving from CDD . . . . . . . . . . . 1–14
1.6.3 Annotating Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–16
1.6.4 Abbreviating Commands and Keywords . . . . . . . . . . . . . . . . . . . . . . . . 1–16
1.6.5 Using Command Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17
1.6.6 Using the Command Continuation Character . . . . . . . . . . . . . . . . . . . 1–17
1.6.7 Responding to Command Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17
1.6.8 Leaving ADU Temporarily . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–18
1.6.9 Using ADU Interactively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–18
1.6.10 Using the Language-Sensitive Editor to Create Definition Files . . . . . 1–19
1.7 Getting Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–20

2 Defining Tasks

2.1 Structure of an ACMS Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.2 Defining a Data Entry Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
2.2.1 Using Workspaces to Pass Data Between Steps . . . . . . . . . . . . . . . . . . 2–4
2.2.2 Defining the Block Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.2.3 Defining Characteristics of the Task . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.2.4 Storing a Task Definition in the Dictionary . . . . . . . . . . . . . . . . . . . . . 2–8

iii



2.2.5 Additional Considerations: Error Handling and Ease of Use . . . . . . . . 2–9
2.2.5.1 Using ACMS Workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.2.5.1.1 Using the CONTROL FIELD Clause in an Exchange Step . . . 2–12
2.2.5.1.2 Using the IF THEN ELSE Clause in a Processing Step . . . . . . 2–13
2.2.5.1.3 Additional Workspace Definitions . . . . . . . . . . . . . . . . . . . . . . 2–15
2.2.5.2 Repeating the Task Automatically . . . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.3 Defining an Inquiry Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16
2.3.1 Getting Information from the User . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17
2.3.2 Retrieving Information from a File . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18
2.3.3 Displaying Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19
2.3.4 Completing the Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19
2.3.5 Additional Considerations: Displaying Multiple Records . . . . . . . . . . . 2–21
2.3.5.1 Getting Information from the User . . . . . . . . . . . . . . . . . . . . . . . . 2–22
2.3.5.2 Retrieving Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–22
2.3.5.3 Displaying Information to the User . . . . . . . . . . . . . . . . . . . . . . . . 2–23
2.3.5.4 Completing the Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–24
2.4 Defining an Update Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
2.4.1 Getting Information from the User . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–27
2.4.2 Retrieving Information from a File . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–27
2.4.3 Letting the User Update the Information . . . . . . . . . . . . . . . . . . . . . . 2–29
2.4.4 Writing the New Information to the File . . . . . . . . . . . . . . . . . . . . . . . 2–30
2.4.5 Completing the Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–31

3 Using HP DECforms with ACMS

3.1 ACMS Interface to HP DECforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1
3.1.1 Calls to External Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1
3.1.2 Processing External Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1
3.1.3 Responses to External Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.2 Writing and Compiling HP DECforms Escape Units . . . . . . . . . . . . . . . . . 3–3
3.2.1 Writing an Escape Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3
3.2.2 Calling an Escape Unit in a Form Source IFDL File . . . . . . . . . . . . . . 3–4
3.3 Linking HP DECforms Form Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
3.4 Linking Escape Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
3.4.1 Managing Escape Unit Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
3.4.2 Replacing Form Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
3.5 Creating Forms Trace Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
3.6 Naming Forms Image Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
3.7 User Interface Features with HP DECforms . . . . . . . . . . . . . . . . . . . . . . . 3–8
3.8 Comparison of HP DECforms and TDMS . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8

4 Defining Workspaces

4.1 Understanding the Types of ACMS Workspaces . . . . . . . . . . . . . . . . . . . . . 4–1
4.2 Handling Errors with a Task Workspace . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2
4.3 Using Data Supplied at the Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
4.4 Using Group Workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
4.5 Using User Workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11
4.6 Moving Data to a Workspace Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14
4.7 Passing Data with User-Written Agents . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15
4.8 Using External Global Symbols in Task Definitions . . . . . . . . . . . . . . . . . . 4–16

iv



5 Using the Task-Call-Task Feature

5.1 Calling Another Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5.1.1 Defining a Task Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
5.1.2 Task Call Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
5.1.3 Passing Workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7
5.1.3.1 Using System Workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8
5.1.3.2 Handling User and Group Workspaces . . . . . . . . . . . . . . . . . . . . . 5–9
5.1.3.3 Tasks You Also Select from a Menu . . . . . . . . . . . . . . . . . . . . . . . . 5–10
5.1.3.4 Example of Updating Group and User Workspaces . . . . . . . . . . . . 5–10
5.1.4 Controlling Called Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–12
5.1.4.1 Passing Control Information in User-Defined Workspaces . . . . . . . 5–12
5.1.4.2 Ending a Called Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–14
5.1.4.3 Controlling Parent Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–15
5.1.5 Defining Local Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–16
5.1.6 Mixing I/O Methods in Parent and Called Tasks . . . . . . . . . . . . . . . . . 5–16
5.1.7 Form and Server Context in Task Calling . . . . . . . . . . . . . . . . . . . . . . 5–17
5.1.8 Using the NOT CANCELABLE BY TASK SUBMITTER Clause . . . . . 5–17
5.1.9 Auditing and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–18
5.1.9.1 Task Auditing and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–18
5.1.9.2 Using ACMS Operator SHOW and CANCEL Commands . . . . . . . 5–18

6 Using the Detached Task Feature

6.1 Overview of Detached Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1
6.1.1 Detached Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1
6.1.2 Designing Your Application to Use Detached Tasks . . . . . . . . . . . . . . . 6–1
6.1.3 Characteristics of Detached Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
6.2 Managing Detached Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
6.2.1 Starting a Detached Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
6.2.2 Setting the Retry Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
6.2.3 Setting the Retry Wait Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
6.2.4 Showing the Status of Detached Tasks . . . . . . . . . . . . . . . . . . . . . . . . 6–3
6.2.4.1 Using the ACMS/SHOW TASK Command . . . . . . . . . . . . . . . . . . . 6–4
6.2.4.2 Using the ACMS/SHOW APPLICATION/DETACHED_TASKS

Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4
6.2.5 Stopping a Detached Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4
6.2.6 Forcing a Detached Task to Not Retry . . . . . . . . . . . . . . . . . . . . . . . . . 6–5
6.2.6.1 Task Failures that Cause ACMS Not to Retry a Task . . . . . . . . . . 6–5
6.2.7 Broadcasting Detached Task Messages . . . . . . . . . . . . . . . . . . . . . . . . 6–6
6.3 Using Group Workspaces in a Detached Task . . . . . . . . . . . . . . . . . . . . . . 6–7
6.4 Concurrent-Use Licensing with Detached Tasks . . . . . . . . . . . . . . . . . . . . 6–7

7 Defining Distributed Transactions

7.1 Why Use Distributed Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1
7.2 Including Distributed Transactions Syntax in the Task Definition . . . . . . . 7–2
7.3 Including Multiple Resource Managers in a Distributed Transaction . . . . 7–3
7.4 Using Task Sequencing Actions in a Distributed Transaction . . . . . . . . . . 7–4
7.5 Including a Called Task in a Distributed Transaction . . . . . . . . . . . . . . . . 7–5
7.6 How Distributed Transactions Affect Server Context . . . . . . . . . . . . . . . . 7–8
7.7 Excluding a Processing Step from a Distributed Transaction . . . . . . . . . . 7–9
7.8 Handling Deadlocks and Transaction Failures . . . . . . . . . . . . . . . . . . . . . 7–11

v



8 Handling Task Execution Errors

8.1 Why Use Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–1
8.2 What is an Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–2
8.2.1 Step Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–2
8.2.2 Transaction Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
8.2.3 Nonrecoverable Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4
8.3 Using the RAISE EXCEPTION Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–5
8.4 Using Exception Handler Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6
8.5 Examples of Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8
8.5.1 Recovering from a HP DECforms Time-Out Exception . . . . . . . . . . . . 8–8
8.5.2 Recovering from a Task-Call-Task Exception . . . . . . . . . . . . . . . . . . . . 8–8
8.5.3 Recovering from a Transaction Exception . . . . . . . . . . . . . . . . . . . . . . 8–11
8.6 How ACMS Performs Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . 8–13
8.6.1 Executing a Step Exception Outside of a Distributed Transaction . . . . 8–14
8.6.2 Executing a Step Exception Within a Distributed Transaction . . . . . . 8–14
8.6.3 Executing a Transaction Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–14
8.6.4 Executing Nonrecoverable Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . 8–14
8.7 How Exceptions Affect Server Cancel Procedures . . . . . . . . . . . . . . . . . . . 8–15
8.7.1 Step Exceptions and Server Cancel Procedures . . . . . . . . . . . . . . . . . . 8–15
8.7.2 Nonrecoverable Exceptions Raised by Action Clauses . . . . . . . . . . . . . 8–15
8.7.3 Other Nonrecoverable Exceptions and Transaction Exceptions . . . . . . 8–16

9 Queuing ACMS Tasks

9.1 Understanding the ACMS Queuing Facility . . . . . . . . . . . . . . . . . . . . . . . . 9–1
9.2 Using ACMS Queuing with Distributed Transactions . . . . . . . . . . . . . . . . 9–4
9.3 Steps in Using ACMS Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–5
9.4 Defining Queue Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–6
9.5 Using the ACMS Queue Services to Queue and Dequeue Tasks . . . . . . . . 9–7
9.5.1 Queuing Tasks Using the ACMS$QUEUE_TASK Service . . . . . . . . . . 9–7
9.5.2 Dequeuing Task Elements Using the ACMS$DEQUEUE_TASK

Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–8
9.6 Using the QTI to Dequeue Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–8
9.6.1 Characteristics of Queued Tasks That are Processed by the QTI . . . . . 9–9
9.6.2 Setting ACMSGEN Parameters for the QTI Process . . . . . . . . . . . . . . 9–10
9.6.2.1 Assigning a User Name to the QTI Process . . . . . . . . . . . . . . . . . . 9–10
9.6.2.2 Assigning a Priority to the QTI Process . . . . . . . . . . . . . . . . . . . . . 9–10
9.6.2.3 Controlling Submitter Sign-Ins . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
9.6.2.4 Setting the Retry Time for Failed Tasks . . . . . . . . . . . . . . . . . . . . 9–11
9.6.2.5 Setting the Polling Time for Task Queues . . . . . . . . . . . . . . . . . . . 9–11
9.6.3 Auditing Done by the QTI Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–11
9.6.4 How the QTI Handles Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–12
9.7 Processing Error Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–14
9.8 Debugging Queued Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–21
9.9 Online Backup of Task Queue Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–21
9.10 Queuing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–22
9.11 Procedure Parameter Notation for Programming Services . . . . . . . . . . . . . 9–33

ACMS$DEQUEUE_TASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–35
ACMS$QUEUE_TASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–40

vi



10 Defining Task Groups

10.1 Defining a Task Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–1
10.2 Identifying Which Tasks Belong to the Task Group . . . . . . . . . . . . . . . . . . 10–1
10.3 Identifying Which Servers Are Required in the Group . . . . . . . . . . . . . . . . 10–2
10.3.1 Assigning Server Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5
10.4 Naming Request Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–6
10.5 Identifying Which Message Files Are Used in the Group . . . . . . . . . . . . . . 10–7
10.6 Naming Workspaces in a Task Group Definition . . . . . . . . . . . . . . . . . . . . 10–7
10.7 Naming the Task Database for a Task Group . . . . . . . . . . . . . . . . . . . . . . 10–8
10.8 Changing Characteristics of Task Argument Workspaces . . . . . . . . . . . . . 10–9

11 Defining Applications

11.1 Defining a Simple Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1
11.2 Describing the Application Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 11–1
11.2.1 Naming Task Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2
11.2.2 Naming a User Name for the Application Execution Controller . . . . . . 11–2
11.2.3 Assigning Characteristics to Tasks and Servers . . . . . . . . . . . . . . . . . . 11–3
11.3 Controlling Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4
11.3.1 Controlling Access to Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4
11.3.2 Auditing Task Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–6
11.3.3 Controlling What Happens When a Task Ends . . . . . . . . . . . . . . . . . . 11–6
11.3.4 TASK ATTRIBUTES and TASK DEFAULTS Clauses . . . . . . . . . . . . . 11–7
11.3.4.1 Using the TASK ATTRIBUTES Clause . . . . . . . . . . . . . . . . . . . . . 11–7
11.3.4.2 Using the TASK DEFAULTS Clause . . . . . . . . . . . . . . . . . . . . . . . 11–8
11.3.4.3 Defaulting Task and Task Group Names . . . . . . . . . . . . . . . . . . . . 11–9
11.3.4.4 Positioning TASK ATTRIBUTES and TASK DEFAULTS

Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–10
11.3.5 Enabling and Disabling Tasks in the Application Definition . . . . . . . . 11–11
11.3.6 Controlling Transaction Timeouts in the Application Definition . . . . . 11–12
11.4 Controlling Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–13
11.4.1 Assigning a Server User Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–14
11.4.2 Assigning a Dynamic or Fixed Server User Name . . . . . . . . . . . . . . . . 11–15
11.4.3 Assigning Server Default Directories . . . . . . . . . . . . . . . . . . . . . . . . . . 11–16
11.4.4 Assigning Server Logical Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–17
11.4.5 Creating Logical Name Tables for Application Servers . . . . . . . . . . . . 11–18
11.4.6 Controlling the Number of Server Processes . . . . . . . . . . . . . . . . . . . . 11–19
11.4.7 Creating and Deleting Server Processes . . . . . . . . . . . . . . . . . . . . . . . . 11–20
11.4.8 Replacing an Active Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–21
11.4.9 SERVER ATTRIBUTES and SERVER DEFAULTS Clauses . . . . . . . . 11–22
11.4.10 Defaulting Server and Task Group Names . . . . . . . . . . . . . . . . . . . . . . 11–24
11.4.11 Positioning SERVER ATTRIBUTES and SERVER DEFAULTS

Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–25
11.4.12 Auditing Servers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–26
11.4.13 Enabling Procedure Server Process Dumps . . . . . . . . . . . . . . . . . . . . . 11–27
11.5 Controlling Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–27
11.5.1 Assigning an Application Execution Controller User Name . . . . . . . . . 11–27
11.5.2 Auditing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–28
11.5.3 Assigning Application Default Directories . . . . . . . . . . . . . . . . . . . . . . 11–28
11.5.4 Assigning Application Logical Names . . . . . . . . . . . . . . . . . . . . . . . . . 11–29
11.5.5 Assigning Application Database Files . . . . . . . . . . . . . . . . . . . . . . . . . 11–30
11.5.6 Controlling the Number of Server Processes . . . . . . . . . . . . . . . . . . . . 11–30
11.5.7 Controlling the Number of Task Instances . . . . . . . . . . . . . . . . . . . . . . 11–32
11.6 Modifying an Active Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–32

vii



11.7 Controlling Application Failover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–33

12 Defining Menus

12.1 Planning the Menu Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–1
12.2 Defining Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–3
12.2.1 Creating a Title for a Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–4
12.2.2 Naming Entries on a Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–4
12.2.3 Naming Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–5
12.2.4 Naming Tasks on a Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–5
12.2.5 Specifying WAIT or DELAY Action . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–5
12.2.6 Naming Default Application Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–7
12.2.7 Application Specifications and Remote Tasks . . . . . . . . . . . . . . . . . . . . 12–7
12.2.8 Naming Default Menu Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–8
12.2.9 Defining a Menu Forms Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–9
12.3 Processing the Menu Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–13

13 Defining Existing Applications as ACMS Tasks

13.1 Defining Single-Step Tasks in ACMS Task Groups . . . . . . . . . . . . . . . . . . 13–1
13.1.1 Defining OpenVMS Images as Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 13–1
13.1.2 Defining DCL Commands and Command Procedures as Tasks . . . . . . 13–2
13.1.3 Defining DATATRIEVE Commands and Procedures as Tasks . . . . . . . 13–2
13.2 Defining Servers to Handle Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–3
13.3 Using the Task Group in an Application . . . . . . . . . . . . . . . . . . . . . . . . . . 13–4

14 Using the ACMS Request Interface

14.1 Overview of the ACMS Request Interface . . . . . . . . . . . . . . . . . . . . . . . . . 14–1
14.2 The Request Interface and the ACMS Run-Time System . . . . . . . . . . . . . . 14–3
14.3 Defining Tasks and Task Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–4
14.3.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–5
14.3.2 Defining a Task Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
14.3.3 How and When to Use the ACMS$RI_LIB Logical Name . . . . . . . . . . 14–8
14.4 Writing User Request Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–9
14.4.1 Writing an ACMS$RI_LIB_INIT Initialization Procedure . . . . . . . . . . 14–11
14.4.2 Writing an ACMS$RI_LIB_CANCEL Cancellation Procedure . . . . . . . 14–13
14.4.3 Compiling and Linking URPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–14
14.5 Providing an RI Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–17
14.5.1 Providing a Menu Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–19
14.5.2 Compiling and Linking Menu Interface URPs with the RI Agent . . . . 14–21
14.5.3 User-Written Menus for the ACMS$RI_AGENT . . . . . . . . . . . . . . . . . 14–22
14.6 Debugging Applications that Call URPs . . . . . . . . . . . . . . . . . . . . . . . . . . 14–22
14.6.1 Using the OpenVMS Debugger to Debug URPs Using a Running

Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–23
14.6.2 Using the ACMS Task Debugger to Debug URPs and Their Tasks . . . 14–24
14.7 Defining an Application that Uses the Request Interface . . . . . . . . . . . . . . 14–25
14.8 Running the Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–25

viii



Part II Writing and Migrating Applications to OpenVMS Alpha

15 Introduction

16 Writing Applications for OpenVMS Alpha

16.1 Writing an ACMS Application for OpenVMS Alpha . . . . . . . . . . . . . . . . . . 16–1
16.2 Form Changes and Form File Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–2
16.2.1 Formatting and Naming HP DECforms Form Image Files . . . . . . . . . 16–2
16.2.1.1 Building HP DECforms Image Files on OpenVMS Alpha . . . . . . . 16–4
16.2.2 Caching with Multiple Submitter Platforms . . . . . . . . . . . . . . . . . . . . 16–4
16.2.3 Applications that Use HP DECforms Version 1.4 or TDMS . . . . . . . . . 16–5
16.3 Using Logical Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–5

17 Migrating ACMS Applications from OpenVMS VAX to OpenVMS
Alpha

17.1 Migration Checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–1
17.2 Migration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–2
17.3 Before You Compile and Link on OpenVMS Alpha . . . . . . . . . . . . . . . . . . 17–2
17.4 Compiling and Linking on OpenVMS Alpha . . . . . . . . . . . . . . . . . . . . . . . 17–3
17.4.1 Using Existing ACMS Databases on OpenVMS Alpha . . . . . . . . . . . . . 17–3
17.5 Translating Images Using the VEST Utility . . . . . . . . . . . . . . . . . . . . . . . 17–4
17.5.1 Overview of the VEST Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–4
17.5.2 ACMS Images that Can Be Translated . . . . . . . . . . . . . . . . . . . . . . . . 17–4
17.5.3 Running VEST to Translate an Image . . . . . . . . . . . . . . . . . . . . . . . . . 17–4
17.5.3.1 Referencing Translated Procedure Server Images . . . . . . . . . . . . . 17–6
17.5.3.2 Running Translated Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–6
17.5.4 Debugging Translated Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–7
17.6 Migrating HP DECforms Files to OpenVMS Alpha . . . . . . . . . . . . . . . . . . 17–7
17.6.1 Upgrading to HP DECforms Version 2.1 from Prior Versions . . . . . . . . 17–8
17.6.2 Using HP DECforms on Multiple Platforms . . . . . . . . . . . . . . . . . . . . . 17–8

18 I/O Options and Restrictions

18.1 Restrictions for Distributing an Application . . . . . . . . . . . . . . . . . . . . . . . . 18–1
18.2 OpenVMS Alpha Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–2
18.2.1 Alternatives to TDMS REQUEST I/O . . . . . . . . . . . . . . . . . . . . . . . . . 18–4
18.2.2 Alternative to HP DECforms FORM I/O . . . . . . . . . . . . . . . . . . . . . . . 18–4
18.3 Selecting Tasks and Menus on OpenVMS Alpha . . . . . . . . . . . . . . . . . . . . 18–4
18.3.1 ACMS Menu Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–5
18.3.2 ACMS Function Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–6

19 Managing Applications on OpenVMS Alpha

Appendixes

ix



A Changing the ACMS Menu Format Using HP DECforms

A.1 Modifying Menu Appearance Without Changing the Default Format . . . . A–1
A.2 Modifying the ACMS Menu Using HP DECforms . . . . . . . . . . . . . . . . . . . A–1
A.2.1 Obtaining the ACMS HP DECforms Default Menu File . . . . . . . . . . . A–2
A.2.2 How ACMS Uses Menu Form Record Definitions . . . . . . . . . . . . . . . . A–3
A.2.3 Instructions Performed by the Form File . . . . . . . . . . . . . . . . . . . . . . . A–5
A.2.4 Modifying the Menu Appearance Only . . . . . . . . . . . . . . . . . . . . . . . . . A–5
A.2.5 Changing SELECTION_STRING Field Lengths . . . . . . . . . . . . . . . . . A–11
A.2.6 Changing the Number of Entries per Screen . . . . . . . . . . . . . . . . . . . . A–12
A.2.7 Changing the Size of the Command Line Recall Buffer . . . . . . . . . . . . A–14
A.2.8 Changing the HP DECforms Layout Size . . . . . . . . . . . . . . . . . . . . . . A–15
A.2.9 Using a Customized Response and Panel Definition . . . . . . . . . . . . . . A–15
A.2.10 Building and Installing the New Menu Form . . . . . . . . . . . . . . . . . . . A–16
A.3 Disabling the SELECT Command in the ACMS Command Menu . . . . . . . A–17

B Changing the ACMS Menu Format Using TDMS

B.1 Modifying the Menu Format Using ACMS . . . . . . . . . . . . . . . . . . . . . . . . . B–1
B.2 Modifying the ACMS Menu Using TDMS Requests . . . . . . . . . . . . . . . . . . B–2
B.2.1 Getting the ACMS Menu Request and Form . . . . . . . . . . . . . . . . . . . . B–2
B.2.2 Modifying the Menu Form Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–4
B.2.3 Forms, Records, and Keypad Used by the Menu Request . . . . . . . . . . B–4
B.2.4 Instructions Performed by TDMS When ACMS Calls a Request . . . . . B–8
B.2.5 Modifying the Menu Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–10
B.2.6 Using the REQUEST Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–13
B.2.7 Changing the MENU_ENTRY_RECORD . . . . . . . . . . . . . . . . . . . . . . . B–14
B.2.8 Modifying and Building the ACMS Menu Request Library . . . . . . . . . B–15
B.3 Disabling the SELECT Command in the ACMS Command Menu . . . . . . . B–16

C Using CDO for Pieces Tracking

C.1 Overview of Dictionary Object Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–1
C.2 Creating Relationships Between Entities . . . . . . . . . . . . . . . . . . . . . . . . . . C–2

D Using LSE with ACMS

D.1 Using LSE with ACMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–1
D.2 Creating ACMS Source Files with LSE . . . . . . . . . . . . . . . . . . . . . . . . . . . D–1
D.2.1 Using Placeholders and Tokens in LSE . . . . . . . . . . . . . . . . . . . . . . . . D–3
D.2.2 Creating the Final Source File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–7
D.2.2.1 Syntax Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–8
D.2.2.2 Exiting Editing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–8
D.3 Compiling Definitions with LSE COMPILE . . . . . . . . . . . . . . . . . . . . . . . . D–9
D.4 Examining Diagnostic Messages with LSE REVIEW . . . . . . . . . . . . . . . . . D–9
D.4.1 Generating the Diagnostics File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–9
D.4.2 Examining the Diagnostics File with LSE REVIEW . . . . . . . . . . . . . . D–10
D.5 Using HELP in LSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–12

x



E Request Interface Kit Components

E.1 Application Independent Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–2
E.2 RI Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–4
E.2.1 RI Sample Application Source Modules . . . . . . . . . . . . . . . . . . . . . . . . E–4
E.2.2 RI Sample Application Run-Time Files . . . . . . . . . . . . . . . . . . . . . . . . E–8
E.3 FMS Sample Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–10
E.3.1 FMS Sample Application Source Modules . . . . . . . . . . . . . . . . . . . . . . E–10
E.3.2 FMS Sample Application Run-Time Files . . . . . . . . . . . . . . . . . . . . . . E–16

F Modifying the FMS Menu Interface

G Accessing ACMS Applications from Windows NT Clients

G.1 Access By NT Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–1
G.2 TP Web Connector Gateway Components . . . . . . . . . . . . . . . . . . . . . . . . . G–2
G.2.1 ADU Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–2
G.2.2 Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–2
G.3 Running ADU Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–3
G.3.1 Group Task Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–3
G.3.1.1 BUILD GROUP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–3
G.3.1.2 Translation Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–3
G.3.2 Application Group Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–4
G.3.2.1 BUILD APPLICATION Command . . . . . . . . . . . . . . . . . . . . . . . . . G–4
G.3.2.2 Translation Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–4
G.3.2.3 Using Translation Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–5
G.3.3 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–5
G.3.4 Converting Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–6
G.3.5 Data Type Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–6
G.3.5.1 Integer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–6
G.3.5.2 Floating Point and Complex Support . . . . . . . . . . . . . . . . . . . . . . . G–7
G.3.5.3 Decimal Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–7
G.3.5.4 Other Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–7
G.3.6 Translating Another Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–8

H Checklist of References to Platform-Specific Files

H.1 Task Group Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–1
H.2 ADU BUILD GROUP Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H–1

I Common Errors

I.1 ADU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–1
I.2 Task Debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–2
I.3 Application Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–2
I.4 Task Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I–3

xi



Index

Examples

1–1 A Sample ADUINI.COM File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
1–2 SET VERIFY Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
1–3 REPLACE Command in a Source Definition File . . . . . . . . . . . . . . . . . 1–15
2–1 Definition of ADD_RESERVE_WKSP Fields . . . . . . . . . . . . . . . . . . . . 2–5
2–2 Contents of a Source Definition File . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2–3 Complete Definition for the Add Car Reservation Task . . . . . . . . . . . . 2–16
2–4 Definition for RENTAL_CLASSES_WKSP . . . . . . . . . . . . . . . . . . . . . . 2–17
2–5 Complete Definition of the Review Car Rates Task . . . . . . . . . . . . . . . 2–20
2–6 Record Description for REVIEW_RESERVATION_WORKSPACE . . . . 2–22
2–7 Complete Definition of Review Reservation Task . . . . . . . . . . . . . . . . . 2–25
2–8 Definition for RESERVE_WKSP Workspace . . . . . . . . . . . . . . . . . . . . . 2–27
2–9 Record Description for RESERVE_SHADOW_WKSP Workspace . . . . . 2–30
2–10 Complete Definition of Review Update Task . . . . . . . . . . . . . . . . . . . . 2–32
3–1 Example of an Escape Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–3
4–1 Record Definition for ADD_RESERVE_WKSP . . . . . . . . . . . . . . . . . . . 4–3
4–2 Task Definition for Add Car Reservation Task . . . . . . . . . . . . . . . . . . . 4–4
4–3 Definition for the ACMS$SELECTION_STRING Workspace . . . . . . . . 4–6
4–4 Definition for Display Basic Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7
4–5 Record Definition for GROUP_WORKSPACE . . . . . . . . . . . . . . . . . . . . 4–9
4–6 Complete Definition for the Get Initial Value Task . . . . . . . . . . . . . . . 4–10
4–7 Definition for Labor Reporting Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11
4–8 Record Definition for DISPLAY_USER_WKSP . . . . . . . . . . . . . . . . . . . 4–12
4–9 Definition for Display Basic Task with User Workspace . . . . . . . . . . . 4–13
4–10 Moving Data to a Workspace Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15
5–1 Task ENTER_ORDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
5–2 Task PROCESS_ORDER_LINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4
5–3 Procedure WRITE_ORDER_LINE (in BASIC) . . . . . . . . . . . . . . . . . . . 5–6
5–4 Updating User and Group Workspaces . . . . . . . . . . . . . . . . . . . . . . . . 5–11
5–5 Passing User Workspaces to Menu Tasks . . . . . . . . . . . . . . . . . . . . . . . 5–12
5–6 Passing Data to a Called Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–13
5–7 Returning Your Own Exit and Cancel Status Values . . . . . . . . . . . . . . 5–15
5–8 MAIN_MENU Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–17
6–1 Audit Message for Starting a Detached Task . . . . . . . . . . . . . . . . . . . . 6–3
6–2 Audit Message for Exceeding the Retry Limit . . . . . . . . . . . . . . . . . . . 6–3
6–3 ACMS/SHOW TASK Message for Detached Tasks . . . . . . . . . . . . . . . . 6–4
6–4 ACMS/SHOW APPLICATION/DETACHED_TASKS Message . . . . . . . 6–4
6–5 Audit Messages for a Detached Task Canceled by a System

Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–5
6–6 Audit Message for a Task Failure that Is Not Retried . . . . . . . . . . . . . 6–6
6–7 Broadcast Message for a Detached Task that Exceeded the Retry

Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7
7–1 Distributed Transaction on a Nested Block Step . . . . . . . . . . . . . . . . . 7–3
7–2 Multiple Database Updates in a Distributed Transaction . . . . . . . . . . 7–4

xii



7–3 Calling a Task to Participate in a Distributed Transaction . . . . . . . . . 7–6
7–4 Complete Definition of the VR_COMPLETE_CHECKOUT_TASK . . . . 7–7
7–5 VR_FAST_CHECKIN_TASK with Nonparticipating Processing

Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–9
8–1 RAISE EXCEPTION Clause in a Processing Step . . . . . . . . . . . . . . . . 8–5
8–2 Performing Exception Handling in a Task . . . . . . . . . . . . . . . . . . . . . . 8–7
8–3 Recovering from a HP DECforms Time-Out Exception . . . . . . . . . . . . 8–9
8–4 Recovering from an Exception Raised in a Called Task . . . . . . . . . . . . 8–10
8–5 Recovering from a Transaction Exception . . . . . . . . . . . . . . . . . . . . . . 8–11
8–6 Canceling a Task without Calling Server Cancel Procedures . . . . . . . . 8–16
9–1 Sample QTI Audit Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–12
9–2 A Task That Dequeues from an Error Queue . . . . . . . . . . . . . . . . . . . . 9–14
9–3 A Dequeue Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–16
9–4 An Enqueue Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19
9–5 C Agent that Starts a Distributed Transaction . . . . . . . . . . . . . . . . . . 9–24
9–6 VR_FAST_CHECKIN_TASK Definition . . . . . . . . . . . . . . . . . . . . . . . . 9–27
9–7 Enqueuing Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–29
9–8 VR_COMP_FAST_CHKIN_TASK Definition . . . . . . . . . . . . . . . . . . . . 9–31
10–1 Definition of VR_READ_SERVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–6
10–2 Definition of Department Task Group . . . . . . . . . . . . . . . . . . . . . . . . . 10–8
11–1 Personnel Application Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–4
11–2 Application Definition Using TASK DEFAULTS . . . . . . . . . . . . . . . . . 11–8
11–3 Application Definition Using Multiple TASK DEFAULTS . . . . . . . . . . 11–10
11–4 Application Using TASK ATTRIBUTES and TASK DEFAULTS . . . . . 11–11
11–5 Enabling and Disabling Tasks in the Application Definition . . . . . . . . 11–11
11–6 Using TRANSACTION TIMEOUT in the Application Definition . . . . . 11–13
11–7 Application Definition Using Server Defaults . . . . . . . . . . . . . . . . . . . 11–24
11–8 Application Using Multiple Server Defaults Clauses . . . . . . . . . . . . . . 11–25
12–1 Menu Definition for the Personnel Menu . . . . . . . . . . . . . . . . . . . . . . . 12–2
12–2 Example of a Menu with a Remote Task . . . . . . . . . . . . . . . . . . . . . . . 12–8
13–1 A Task Group Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–4
14–1 Simple Inquiry Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
14–2 Task Group Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
14–3 FORTRAN User Request Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
14–4 TDMS Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–11
14–5 FORTRAN Initialization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–12
14–6 Example of Audit Trail Error Messages . . . . . . . . . . . . . . . . . . . . . . . . 14–13
14–7 FORTRAN Cancel Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–14
14–8 REQPROCS.OPT Options File on Alpha . . . . . . . . . . . . . . . . . . . . . . . 14–15
14–9 Linking Shareable Images and Using an Options File . . . . . . . . . . . . . 14–16
14–10 FMS Initialization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–20
14–11 FMS Menu Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–21
14–12 Example Application Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–25
A–1 Definition for ACMS Menu Header . . . . . . . . . . . . . . . . . . . . . . . . . . . A–3
A–2 Definition for Menu Entries Record . . . . . . . . . . . . . . . . . . . . . . . . . . . A–3
A–3 Definition for Menu Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–4
A–4 Definition for Menu Selection Record . . . . . . . . . . . . . . . . . . . . . . . . . . A–4

xiii



A–5 Control Text Response Found Record . . . . . . . . . . . . . . . . . . . . . . . . . . A–5
A–6 Panel Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–7
A–7 Default Panel Field Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–10
A–8 Command Panel Field Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–11
A–9 Record Group SELECT_LINE_GROUP . . . . . . . . . . . . . . . . . . . . . . . . A–11
A–10 SELECTION_STRING Record Groups . . . . . . . . . . . . . . . . . . . . . . . . . A–12
A–11 SELECTION_STRING Panel Definitions . . . . . . . . . . . . . . . . . . . . . . . A–12
A–12 ENTRIES Record Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–13
A–13 ENTRIES Record in Default Panel Definition . . . . . . . . . . . . . . . . . . . A–13
A–14 Menu Definition Specifying Entries per Screen . . . . . . . . . . . . . . . . . . A–14
A–15 Command Line Recall Buffer Definitions . . . . . . . . . . . . . . . . . . . . . . . A–15
A–16 Definition of Default Screen Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . A–15
A–17 Menu Definition Using CONTROL TEXT . . . . . . . . . . . . . . . . . . . . . . A–16
B–1 MENU_REQUEST Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–4
B–2 Definition for ACMS Menu Header Record . . . . . . . . . . . . . . . . . . . . . B–6
B–3 Definition for Menu Entry Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–6
B–4 Definition for Menu Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–7
B–5 Definition for Menu Selection Record . . . . . . . . . . . . . . . . . . . . . . . . . . B–7
B–6 Customized Menu Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–11
B–7 Menu Definition Using REQUEST Clause . . . . . . . . . . . . . . . . . . . . . . B–13
B–8 Record Definition for MENU_ENTRY_RECORD with 12 Entries . . . . B–14
B–9 MENU_LIBR Request Library Definition . . . . . . . . . . . . . . . . . . . . . . B–15
D–1 LSEDIT.COM File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–2

Figures

1–1 Creation of Definition Database Files . . . . . . . . . . . . . . . . . . . . . . . . . 1–13
1–2 The Review Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–14
2–1 Structure of a Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
2–2 The Workspace Used to Pass Information . . . . . . . . . . . . . . . . . . . . . . 2–5
2–3 Retrieving Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15
4–1 A Selection Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
8–1 Block Step Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6
9–1 Queuing, Dequeuing, and Processing Tasks . . . . . . . . . . . . . . . . . . . . . 9–3
9–2 A Queuing Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–23
9–3 List of Workspaces Passed by ACMS$DEQUEUE_TASK . . . . . . . . . . . 9–37
9–4 List of Workspaces Passed by ACMS$QUEUE_TASK Service . . . . . . . 9–41
10–1 A Task Group and Its Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–2
12–1 The ACMS Menu Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–2
12–2 Personnel Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–3
12–3 The Review Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–6
12–4 ACMS Menu Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–10
14–1 Request Interface Run-Time Components . . . . . . . . . . . . . . . . . . . . . . 14–3
14–2 Request Interface Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–4
14–3 User-Written Shareable Image File . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–15
14–4 Pseudocode for an RI Agent Using an FMS Menu Interface . . . . . . . . 14–18
18–1 AVERTZ Rental Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–5

xiv



D–1 Creating a New File with LSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–3
D–2 Expanding a Placeholder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–4
D–3 Expanding the REPLACE TASK | CREATE TASK Placeholder . . . . . . D–5
D–4 Choosing REPLACE_TASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–5
D–5 Expanded Comment Placeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–6
D–6 Expanding Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–7
D–7 Final Source File Created with LSE . . . . . . . . . . . . . . . . . . . . . . . . . . D–8
D–8 Examining Diagnostic Files with LSE REVIEW . . . . . . . . . . . . . . . . . D–10
F–1 Form Editor Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–2

Tables

1–1 Startup Qualifiers and Their Functions . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1–2 Ways to Exit from ADU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1–3 Establishing Protection for ACMS Dictionary Entities . . . . . . . . . . . . . 1–7
1–4 ADU Commands for ADUINI.COM File . . . . . . . . . . . . . . . . . . . . . . . . 1–8
2–1 Data Entry Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2–2 Field and Values Tested by Conditional Clauses . . . . . . . . . . . . . . . . . 2–11
2–3 Inquiry Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16
2–4 Update Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
3–1 HP DECforms and TDMS Terminology . . . . . . . . . . . . . . . . . . . . . . . . 3–8
4–1 Summary of ACMS Workspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2
6–1 Task Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–6
8–1 Step Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–2
8–2 Transaction Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
8–3 Nonrecoverable Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4
9–1 ACMSGEN Parameters Associated with QTI . . . . . . . . . . . . . . . . . . . . 9–10
9–2 Errors That Result in Queued Task Retry . . . . . . . . . . . . . . . . . . . . . . 9–12
9–3 Errors That Result in Writing Queued Task Elements to an Error

Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–13
9–4 Errors That Result in Immediate Retry of Queued Task . . . . . . . . . . 9–13
9–5 Procedure Parameter Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–33
14–1 Logical Names Used by the Request Interface . . . . . . . . . . . . . . . . . . . 14–19
14–2 Routines Used by the Request Interface . . . . . . . . . . . . . . . . . . . . . . . 14–19
14–3 Menu Interfaces Used by the Request Interface . . . . . . . . . . . . . . . . . . 14–19
16–1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16–3
16–2 ADU Clauses in Which You Can Specify a Logical Name . . . . . . . . . . 16–6
17–1 Using Existing ACMS Databases on OpenVMS Alpha . . . . . . . . . . . . . 17–3
18–1 Processing Step I/O Options and Restrictions on OpenVMS Alpha . . . 18–2
18–2 Exchange Step I/O Options and Restrictions on OpenVMS Alpha . . . . 18–3
18–3 ACMS Menu Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–5
18–4 ACMS Function Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18–6
B–1 Definitions Copied to the CDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–2
C–1 CDD Protocols for ACMS Entity and Relationship Objects . . . . . . . . . C–4
D–1 LSE REVIEW Window Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . D–11
E–1 Request Interface Kit Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–1
F–1 Defining the Named Data Associated with the Form . . . . . . . . . . . . . . F–3

xv





Preface

This manual explains how to define transaction processing applications using HP
ACMS for OpenVMS (ACMS) software. In particular, this manual describes:

• How to use the Application Definition Utility (ADU)

• How to write definitions of multiple-step tasks, task groups, menus, and
applications

Intended Audience
To use this manual effectively, you should be experienced in designing or defining
online applications but not necessarily experienced with ACMS application design
or definition. (Less experienced applications programmers can review HP ACMS
for OpenVMS Getting Started before reading this manual.)

Read this manual if you plan to use ADU to create and process task, task group,
application, and menu definitions, or if you are working with the completed
definitions.

You should be familiar with the HP ACMS for OpenVMS (OpenVMS) operating
system.

Document Structure
This manual contains two parts: Part I describes how to use ACMS to define
transaction-processing applications. Part II describes how to write ACMS
applications for an OpenVMS Alpha system and how to migrate an ACMS
application from an OpenVMS VAX system to an OpenVMS Alpha system. The
chapters and appendixes are described in the following table:

Part I

Chapter 1 Introduces ADU and explains how to set up your environment to use
ADU and create ACMS definitions.

Chapter 2 Provides an introduction to the design and definition of ACMS tasks;
explains how to define data entry, inquiry, and update multiple-step
tasks.

Chapter 3 Describes the HP DECforms interface to ACMS; shows how to write,
compile, and link HP DECforms escape units.

Chapter 4 Describes and shows how to use the four types of workspaces: task,
system, group, and user.

Chapter 5 Shows how to call a task from another task; describes the rules for
passing workspaces between tasks.

xvii



Part I

Chapter 6 Describes how to use detached tasks for applications that need batch-
style processing, where no user interaction occurs through a terminal
or device.

Chapter 7 Shows how to define tasks that start and end transactions involving
multiple resource managers, such as databases or files.

Chapter 8 Describes the different types of errors that can interrupt the execution
of tasks, and shows how to define tasks that test for and recover from
task execution errors.

Chapter 9 Explains how to queue tasks in an application for later processing.

Chapter 10 Explains how to write task group definitions to establish common
characteristics or shared resources for a group of tasks.

Chapter 11 Explains how to write application definitions to assign control
characteristics for tasks and applications.

Chapter 12 Explains how to write menu definitions.

Chapter 13 Explains how to implement existing programs, DCL commands, and
DATATRIEVE procedures as ACMS tasks.

Chapter 14 Explains how to develop applications that use the ACMS Request
Interface.

Part II

Chapter 15 Describes ACMS on OpenVMS Alpha.
Chapter 16 Describes how to write applications to run on an OpenVMS Alpha

system.

Chapter 17 Explains how to migrate ACMS applications from an OpenVMS VAX
system to an OpenVMS Alpha system.

Chapter 18 Describes the I/O options and restrictions in a distributed environment.

Chapter 19 Describes system management on OpenVMS Alpha.

Part III

Appendix A Shows how to modify the standard ACMS menu format using by HP
DECforms.

Appendix B Shows how to modify the standard ACMS menu format by using
TDMS.

Appendix C Shows how to use CDO to track relationships between ACMS entities
in the CDD dictionary.

Appendix D Demonstrates how to use the optional Language-Sensitive Editor
productivity tool to enter ACMS code on line.

Appendix E Lists the files included with the ACMS Request Interface examples and
software supplied by ACMS.

Appendix F Explains how to modify the FMS menu interface that you use with the
ACMS Request Interface.

Appendix G Describes how to use components of HP TP Web Connector, including
the ADU extension, to provide Windows NT clients with access to
ACMS applications.

Appendix H Contains a list of references to platform-specific files in an ACMS
application.

Appendix I Contains a list of common errors with an explanation and an
appropriate user action.

xviii



ACMS Help
ACMS and its components provide extensive online help.

• DCL level help

Enter HELP ACMS at the DCL prompt for complete help about the ACMS
command and qualifiers, and for other elements of ACMS for which
independent help systems do not exist. DCL level help also provides
brief help messages for elements of ACMS that contain independent help
systems (such as the ACMS utilities) and for related products used by ACMS
(such as HP DECforms or Oracle CDD/Repository).

• ACMS utilities help

Each of the following ACMS utilities has an online help system:

ACMS Debugger
ACMSGEN Utility
ACMS Queue Manager (ACMSQUEMGR)
Application Definition Utility (ADU)
Application Authorization Utility (AAU)
Device Definition Utility (DDU)
User Definition Utility (UDU)
Audit Trail Report Utility (ATR)
Software Event Log Utility Program (SWLUP)

The two ways to get utility-specific help are:

Run the utility and type HELP at the utility prompt.

Use the DCL HELP command. At the ‘‘Topic?’’ prompt, type @ followed by
the name of the utility. Use the ACMS prefix, even if the utility does not
have an ACMS prefix (except for SWLUP). For example:

Topic? @ACMSQUEMGR
Topic? @ACMSADU

However, do not use the ACMS prefix with SWLUP:

Topic? @SWLUP

Note that if you run the ACMS Debugger Utility and then type HELP, you
must specify a file. If you ask for help from the DCL level with @, you do not
need to specify a file.

• ACMSPARAM.COM and ACMEXCPAR.COM help

Help for the command procedures that set parameters and quotas is a subset
of the DCL level help. You have access to this help from the DCL prompt, or
from within the command procedures.

• LSE help

ACMS provides ACMS-specific help within the LSE templates that assist
in the creation of applications, tasks, task groups, and menus. The ACMS-
specific LSE help is a subset of the ADU help system. Within the LSE
templates, this help is context-sensitive. Type HELP/IND (PF1-PF2) at any
placeholder for which you want help.

• Error help

xix



ACMS and each of its utilities provide error message help. Use HELP ACMS
ERRORS from the DCL prompt for ACMS error message help. Use HELP
ERRORS from the individual utility prompts for error message help for that
utility.

• Terminal user help

At each menu within an ACMS application, ACMS provides help about
terminal user commands, special key mappings, and general information
about menus and how to select tasks from menus.

• Forms help

For complete help for HP DECforms or HP TDMS, use the help systems for
these products.

Related Documents
The following table lists the books in the HP ACMS for OpenVMS documentation
set.

ACMS Information Description

HP ACMS Version 5.0 for OpenVMS
Release Notes†

Information about the latest release of the software

HP ACMS Version 5.0 for OpenVMS
Installation Guide

Description of installation requirements, the installation
procedure, and postinstallation tasks.

HP ACMS for OpenVMS Getting
Started

Overview of ACMS software and documentation.
Tutorial for developing a simple ACMS application.
Description of the AVERTZ sample application.

HP ACMS for OpenVMS Concepts
and Design Guidelines

Description of how to design an ACMS application.

HP ACMS for OpenVMS Writing
Applications

Description of how to write task, task group, application, and
menu definitions using the Application Definition Utility.
Description of how to write and migrate ACMS applications on
an OpenVMS Alpha system.

HP ACMS for OpenVMS Writing
Server Procedures

Description of how to write programs to use with tasks and
how to debug tasks and programs.
Description of how ACMS works with the APPC/LU6.2
programming interface to communicate with IBM CICS
applications.
Description of how ACMS works with non-HP database
managers, with ORACLE used as an example.

HP ACMS for OpenVMS Systems
Interface Programming

Description of using Systems Interface (SI) Services to submit
tasks to an ACMS system.

HP ACMS for OpenVMS ADU
Reference Manual

Reference information about the ADU commands, phrases,
and clauses.

HP ACMS for OpenVMS Quick
Reference

List of ACMS syntax with brief descriptions.

HP ACMS for OpenVMS Managing
Applications

Description of authorizing, running, and managing ACMS
applications, and controlling the ACMS system.

HP ACMS for OpenVMS Remote
Systems Management Guide

Description of the features of the Remote Manager for
managing ACMS systems, how to use the features, and how to
manage the Remote Manager.

Online help† Online help about ACMS and its utilities.

†Available on line only.

xx



For additional information on the compatibility of other software products with
this version of ACMS, refer to the HP ACMS for OpenVMS Software Product
Description (SPD 25.50.xx).

For additional information about the Open Systems Software Group (OSSG)
products and services, access the following OpenVMS World Wide Web address:

http://h71000.www7.hp.com/openvms

Reader’s Comments
HP welcomes your comments on this manual.

Print or edit the online form SYS$HELP:OPENVMSDOC_COMMENTS.TXT and
send us your comments by:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Use the following World Wide Web address for information about how to order
additional documentation:

http://www.hp.com/go/openvms/doc

To reach the OpenVMS documentation website, click the Documentation link.

If you need help deciding which documentation best meets your needs, call
1–800–ATCOMPA.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must press and
hold the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets rather than a box.

xxi



. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

In the HMTL version of this document, this text style may
appear as italics.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

bold text Bold text represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

In the HMTL version of this document, this text style may
appear as italics.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE Uppercase text indicates the name of a routine, the name of a
file, the name of a file protection code, or the abbreviation for a
system privilege.

In command format descriptions, uppercase text is an optional
keyword.

UPPERCASE In command format descriptions, uppercase text that is
underlined is required. You must include it in the statement if
the clause is used.

lowercase In command format descriptions, a lowercase word indicates a
required element.

xxii



<lowercase> In command format descriptions, lowercase text in angle
brackets indicates a required clause or phrase.

( ) In command format descriptions, parentheses indicate that you
must enclose the options in parentheses if you choose more
than one.

[ | | ] In command format descriptions, vertical bars within square
brackets indicate that you can choose any combination of the
enclosed options, but you can choose each option only once.

{ | | } In command format descriptions, vertical bars within braces
indicate that you must choose one of the options listed, but you
can use each option only once.

References to Products
The ACMS documentation set to which this manual belongs often refers to certain
products by abbreviated names:

Abbreviation Product

ACMS HP ACMS for OpenVMS Alpha, and HP ACMS for OpenVMS I64

Ada HP Ada for OpenVMS Alpha Systems, and HP Ada for OpenVMS I64
Systems

BASIC HP BASIC for OpenVMS

C HP C for OpenVMS Alpha Systems, and HP C for OpenVMS I64 Systems

CDD Oracle CDD/Administrator, and Oracle CDD/Repository

COBOL HP COBOL for OpenVMS Alpha Systems, and HP COBOL for OpenVMS
I64 Systems

DATATRIEVE HP DATATRIEVE for OpenVMS Alpha, and HP DATATRIEVE for
OpenVMS I64

DBMS Oracle CODASYL DBMS

DECforms HP DECforms

FORTRAN HP Fortran for OpenVMS Alpha Systems, and HP Fortran for OpenVMS
I64 Systems

OpenVMS The OpenVMS Alpha operating system, and the OpenVMS I64 operating
system

Pascal HP Pascal for OpenVMS Alpha, and HP Pascal for OpenVMS I64

Rdb Oracle Rdb

SQL The SQL interface to Oracle Rdb

xxiii





Part I
Writing Generic Applications

This part explains how to define transaction-processing applications using HP
ACMS for OpenVMS (ACMS) software. In particular, this part describes:

• How to use the Application Definition Utility (ADU)

• How to write definitions of multiple-step tasks, task groups, menus, and
applications





1
Writing Definitions with ADU

One of the primary features of ACMS is the Application Definition Utility (ADU).
The ADU is the principal tool used to create and process the definitions that
comprise an ACMS application. You use ADU commands to write definitions
for ACMS tasks, task groups, menus, and applications. When processing these
definitions, ACMS builds the task group, menu, and application databases that it
uses at run time to operate the application.

This book contains tutorial information showing how to use ADU to create
ACMS applications. The HP ACMS for OpenVMS ADU Reference Manual, the
companion volume, contains reference material for all the ADU commands.
Together these books contain much of the information needed to create and build
ACMS applications.

Chapter 1 contains the information on how to use ADU. Topics covered include:

• Using ACMS commands to start and stop ADU

• Creating and processing definitions

• Using CDD path names

• Explaining ADU terminology

• Using ADU commands

1.1 Starting and Stopping ADU
This section explains how to invoke the Application Definition Utility (ADU) and
exit from it.

1.1.1 Starting ADU
There are three ways to invoke ADU. Two methods use startup qualifiers; the
third allows you to enter the utility only in default mode. After invoking the
utility, ACMS displays the ADU> prompt.

The three ways to start ADU are:

• By using the MCR command

Start ADU by entering the following command at the DCL prompt:

$ MCR ACMSADU
ADU>

Include startup command qualifiers on the MCR ACMSADU command line.

• By defining a foreign command

Define a foreign command in your LOGIN.COM file to invoke ADU. Then,
whenever you enter that command at the DCL prompt, you are in ADU.

Writing Definitions with ADU 1–1



Writing Definitions with ADU
1.1 Starting and Stopping ADU

Before using the foreign command ADU to invoke the utility, put the following
definition in your LOGIN.COM file. Then process the LOGIN.COM by
entering @LOGIN.COM at the DCL prompt to make the foreign command
available for the current session. After the current session, the command is
automatically defined whenever you log in.

The following definition creates ADU as the foreign command to invoke the
utility:

$ ADU :== $ACMSADU

After defining the foreign command and processing the login file, enter ADU
at the DCL prompt to invoke the utility:

$ ADU
ADU>

Include startup command qualifiers on the command line by using the
command:

$ ADU /COMMAND=RESERVATIONS

• By using the RUN command

Enter the RUN command at the DCL prompt to invoke ADU:

$ RUN SYS$SYSTEM:ACMSADU
ADU>

Do not include ADU command qualifiers when invoking the utility with the
RUN command.

Table 1–1 lists the startup command qualifiers and their functions. Use these
qualifiers when invoking ADU with the MCR command or a foreign command.

Table 1–1 Startup Qualifiers and Their Functions

Qualifier Function

/COMMAND [=file-spec]
/NOCOMMAND

Tells ADU whether or not to execute a startup command
file when you invoke the utility. By default, when
you invoke ADU, it runs a command file named
ADUINI.COM, located in your default directory. To
invoke a different startup command file, include its file
specification with the /COMMAND qualifier.

When you specify the /NOCOMMAND qualifier, ACMS
starts the ADU without executing any startup command
file.

/JOURNAL
/NOJOURNAL

By default, ADU creates a journal file that contains every
keystroke made during your ADU session. The journal
file, named ADUJNL.JOU, is located in your default
directory. The journal file is saved if your ADU session is
interrupted. When you exit normally (by using the EXIT
command or entering Ctrl/Z ), the journal file is not saved.

Use the /NOJOURNAL qualifier to turn off the journaling
feature.

/PATH=path-name Assigns a CDD directory. If you do not specify a path
name, ADU uses the default CDD directory.

(continued on next page)

1–2 Writing Definitions with ADU



Writing Definitions with ADU
1.1 Starting and Stopping ADU

Table 1–1 (Cont.) Startup Qualifiers and Their Functions

Qualifier Function

/RECOVER
/NORECOVER

If you specify the /RECOVER qualifier, ADU runs the
journal file, ADLJNL.JOU, to restore an ADU session
that has ended abnormally. With /RECOVER in effect,
ADU replays the interrupted session to recover your work.

/NORECOVER is the default.

1.1.2 Stopping ADU
There are three methods to stop the ADU utility. Two methods result in an
orderly exit from the utility. The third method causes an abrupt exit and should
be used only when the other methods fail. Table 1–2 lists the ways to end an
ADU session.

Table 1–2 Ways to Exit from ADU

Command Meaning

EXIT Ends your ADU session and returns control to the DCL command level
without issuing any messages. Using the EXIT command produces the
same results as pressing Ctrl/Z . When you create a file of ADU commands
to automatically run a session, enter only the EXIT command in the file to
terminate the automated session.

Ctrl/Z Ends your ADU session and returns control to the DCL command level
without issuing any messages.

Ctrl/Y Abruptly ends your ADU session and returns control to the DCL command
level without displaying any messages. Using Ctrl/Y can leave your
definitions in an inconsistent state; so, use this method of exiting from
ADU only when other methods fail.

1.1.3 Assigning a Default Text Editor
Two ADU commands, EDIT and MODIFY, require a text editor. By default, ADU
uses the OpenVMS EDT editor. If you plan to use an editor other than EDT, you
must set up a logical name, ADU$EDIT, to point to a command file naming the
editor you want to use. You can use the DCL DEFINE or ASSIGN command to
set up a pointer to the command file. For example:

$ DEFINE ADU$EDIT MYDISK$:[MYDIRECT]ADUEDIT.COM

This command assigns the logical name ADU$EDIT to the ADUEDIT.COM
command file in the directory MYDIRECT on the device MYDISK$. Including
this command in your LOGIN.COM file defines in the ADUEDIT.COM the editor
you want. If the ADUEDIT.COM file is not in your default directory, be sure to
include the disk and directory specification.

The following example demonstrates how to name TPU by using the EDT
interface as the default editor. To set up the ADUEDIT.COM file, enter the
following commands into a file named ADUEDIT.COM:

$ ASSIGN/USER ’F$LOGICAL("SYS$OUTPUT")’ SYS$INPUT
$ IF P1 .EQS. "" THEN GOTO INPUT
$ EDIT/TPU/SECTION=EDTSECINI/OUTPUT=’P2’ ’P1’
$ EXIT
$ NOINPUT:
$ EDIT/TPU/SECTION=EDTSECINI ’P2’

Writing Definitions with ADU 1–3



Writing Definitions with ADU
1.1 Starting and Stopping ADU

The third and last lines of this command procedure name TPU with the EDT
interface as the editing environment. You can change these lines to name any
other OpenVMS editor you want to use. See Section 1.6.10 for information on
using the Language-Sensitive Editor (LSE).

For information on DCL commands, see OpenVMS DCL Dictionary. Guide to
Using VMS Command Procedures has information on writing command and
startup procedures.

1.2 ACMS and the Data Dictionary
Prior to ACMS Version 3.1, the ADU Utility placed ACMS definitions in the CDD
dictionary in DMU format. Within CDD the definitions are called dictionary
objects.

With ACMS Version 3.1 and higher, ADU places ACMS definitions in the CDD
dictionary in CDO format. Within CDD the definitions are called entities.

Specify a dictionary path name either in DMU or CDO format. In either case,
ACMS stores the dictionary object in CDO format.

You can continue to use DMU-format objects created with earlier versions of
ACMS, whether or not you create new CDO format entities with ACMS. However,
you cannot use CDO to manipulate previously created DMU-format objects. Nor
can you use DMU to manipulate CDO-format objects.

1.2.1 Dictionary Path Names
Every dictionary definition has a path name that uniquely identifies it. The
naming conventions for DMU and CDO differ only in their specification of the
dictionary origin.

To refer to CDD dictionary definitions, list all dictionary directory given names.
Begin with CDD$TOP and end with the dictionary directory or dictionary object
you want to identify. Separate names by periods. In the following example, the
path name indicates that the RESERVATION_TASK dictionary object is located
in the CUSTOMERS directory, which in turn resides in the AVERTZ directory.
The AVERTZ directory is in the top-level directory CDD$TOP.

CDD$TOP.AVERTZ.CUSTOMERS.RESERVATION_TASK

Refer to CDD dictionary entities by specifying a dictionary anchor and a path
name. A dictionary anchor specifies the OpenVMS directory where the CDD
hierarchy is stored. DISK1:[CDDPLUS] is an example of an anchor. The anchor
is followed by the dictionary path. A dictionary path consists of dictionary names
separated by periods. All but the last name are dictionary directory names. The
last is an entity name. The following example illustrates the full CDD path name
for the RESERVATION_TASK dictionary entity:

DISK1:[CDDPLUS]AVERTZ.CUSTOMERS.RESERVATION_TASK

DISK1:[CDDPLUS] is the anchor. RESERVATION_TASK is the entity in the
CUSTOMERS directory, which is located in the AVERTZ directory.

A CDD name can consist of given names containing a maximum of 31 characters.
Characters can include the letters A through Z, digits 0 through 9, underscores
(_), and dollar signs ($). The first character of each given name must be a letter.
The last character can be either a letter or a digit. All lowercase letters are
translated to uppercase.

1–4 Writing Definitions with ADU



Writing Definitions with ADU
1.2 ACMS and the Data Dictionary

Identify a dictionary object with a full or relative path name. If a default
dictionary directory exists, use a relative path name. Relative path names
include the portion of the path name that is not part of the default dictionary
definition.

Suppose, for example, that the following command establishes your default
directory:

$ DEFINE CDD$DEFAULT DISK1:[CDDPLUS]AVERTZ.CUSTOMERS

With AVERTZ.CUSTOMERS as the default dictionary directory, the relative
path name is simply the object name itself: RESERVATION_TASK. If
the default directory is [CDDPLUS], the relative dictionary path name is
AVERTZ.CUSTOMERS.RESERVATION_TASK.

In DMU, you can assign a password to each dictionary directory, subdirectory,
and object in a path name. You cannot assign passwords to CDO entities. When
specifying the path name, put the password in parentheses and attach it to the
end of the given name to which it applies.

Passwords can contain a maximum of 64 printable ASCII characters, including
spaces and tabs. Eight-bit characters from the DEC Multinational Character Set
can also be used in passwords. Full support for the 8-bit character set requires
software and hardware support. For instance, the display terminal and printer
used must both support the 8-bit character set. Lowercase letters are translated
to uppercase. The only printable characters you cannot include in path name
passwords are parentheses, either left or right, and periods.

The following are legal given names with passwords:

JONES(ACMSPASS)

SMITH(CAPT JOHN)

The following example shows a path name with a password associated with a
dictionary directory:

CDD$TOP.PERSONNEL.MENU(ACMSPASS).MENU_WORK

You can also specify CDD dictionary specifications for ACMS workspaces. These
workspace specifications are stored in the CDD dictionary.

OpenVMS logical names may be used in all or part of a path name. For example,
if you define PERSONNEL_CDD as DISK1:[CDDPLUS]PERSONNEL, you can
use PERSONNEL_CDD.MENU as a path name.

For more information on CDD path names, see the appropriate CDD
documentation.

1.2.2 Creating CDO Directories and Establishing Directory and Entity
Protection

Before you create a new ACMS definition or replace an existing one that is
in DMU format, you must first create a CDO directory in which to store the
dictionary entity. This practice contrasts with the DMU behavior, in which the
creation of a dictionary object also created the dictionary directory, if one did not
exist. ADU returns an error if you attempt to create an entity in a CDO directory
that does not exist.

Writing Definitions with ADU 1–5



Writing Definitions with ADU
1.2 ACMS and the Data Dictionary

Default protection for CDO directories and entities is stricter beginning with
CDD Version 4.0. When you create a CDO directory or when you create or
replace ACMS definitions in CDO format, be aware of the following protection
issues:

• Default protection for CDO directories

Only the owner of the directory can put entities into the directory. You may
want to allow other users to be able to place ACMS definitions in the CDO
directory. See the CDD documentation for details of establishing default
protection for CDO directories.

• Default protection for CDO entities

Prior to ACMS Version 3.1, ADU used the CDD default protection when
creating dictionary objects. Beginning with CDD Version 4.0, the stricter
CDO default protections allow only the owner of a CDO entity access to that
entity. Therefore, beginning with ACMS Version 3.1, ACMS provides a means
for establishing your own default protection scheme for newly created ACMS
dictionary entities. This scheme applies the first time that the entity is placed
in the CDO directory; that is, when someone creates a new entity or replaces
an existing DMU object with a CDO entity. If you replace an existing CDO
entity, the replacement entity inherits protection from the entity it replaces.

The ACMS default protection scheme uses the logical name ACMS$ADU_ACL_
DEFAULT. Define this process logical to point to an access control list (ACL) file
specification.

ACMS also provides the ACMS$ADU_ACL_DEFAULT.COM command procedure
in the SYS$MANAGER directory to automate the definition of the logical and
the creation or modification of the file to which it points. ACMS$ADU_ACL_
DEFAULT.COM consists of a series of menus and forms that allow you to:

• Define or reassign the logical name to point to a file specification, or deassign
the logical name. The logical is a process logical. You need to redefine it each
time the process starts.

• Add, delete, resequence, or display Access Control Entries (ACE) in the
file pointed to by the logical name ACMS$ADU_ACL_DEFAULT. You must
define the logical name before you can create or modify the ACE listing.
The creation of the first ACE causes the creation of the file, if it does not
exist. The command procedure lists the ACE options in both CDD and
OpenVMS representations; however, the file created contains only OpenVMS
representations.

Following is an example of an ACL file with three ACE entries. You can create
this file by using SYS$MANAGER:ACMS$ADU_ACL_DEFAULT.COM. The
example was generated by issuing the CDD command DIR/FULL.

(IDENTIFIER=[ACMS,RICK],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+DEFINE+CHANGE+
DELETE+CONTROL+OPERATOR+ADMINISTRATOR)

(IDENTIFIER=[ACMS,HEINZ],ACCESS=READ+WRITE+DELETE)
(IDENTIFIER=[*,*],ACCESS=READ+WRITE+MODIFY+ERASE+SHOW+OPERATOR+ADMINISTRATOR)

Access is determined by the first ACE encountered that applies to the creator
of the entity. See the CDD documentation and OpenVMS Systems Services
documentation for more information about ACLs for dictionary entities.

1–6 Writing Definitions with ADU



Writing Definitions with ADU
1.2 ACMS and the Data Dictionary

Table 1–3 summarizes the determination of entity protection.

Table 1–3 Establishing Protection for ACMS Dictionary Entities

Action
DMU (ACMS
Version 3.0)

CDO (ACMS
Version 3.1 or
higher)

DMU to CDO
Migration

Adding a new object or
entity (ADU CREATE,
ADU REPLACE, ADU
COPY)

Inherits
directory’s ACL

Use logical; if
not, takes CDO
default

N/A

Modifying an existing
object or entity (ADU
REPLACE, ADU
MODIFY)

Inherits object’s
ACL

Inherits entity’s
ACL

Error if CDO
directory does not
exist; else, use
logical. If no logical,
use CDO default.

1.3 Establishing Your ADU Environment
To set up certain characteristics for the ACMS environment, you can create an
initialization command file called ADUINI.COM, in which you can put commands
for ADU to run at startup. You can include commands assigning the CDD default
directory, logging information to a log file, displaying commands processed from
an indirect command file, and so forth. Creating the ADUINI.COM file eliminates
the need to type the commands each time ADU starts. This command file serves
the same purpose for ADU that the LOGIN.COM file serves for the OpenVMS
operating system.

Before displaying the ADU> prompt at the beginning of a terminal session, ADU
searches for the logical name ADUINI in the logical name table. If it finds the
logical name ADUINI, ADU uses it with the default file type .COM. To define the
logical name ADUINI, place a line similar to the following in your LOGIN.COM:

DEFINE ADUINI MYDISK:[MYDIRECT]MYADUINI.COM

If your LOGIN.COM file contains a line similar to this one, ACMS looks for ADU
commands at ADU startup in the file MYADUINI.COM located in the directory
MYDIRECT on the disk pointed to by the logical name MYDISK. When you use
the DEFINE or ASSIGN DCL commands to assign the logical ADUINI to a disk,
directory, and file, ACMS can find the file containing your startup commands.

If you do not assign a logical name using DEFINE or ASSIGN, ADU searches
for the ADUINI.COM file in your default directory (SYS$LOGIN). If it finds
the file there, ADU automatically runs it from that location. Table 1–4 lists the
commands commonly included in the ADUINI.COM file.

Writing Definitions with ADU 1–7



Writing Definitions with ADU
1.3 Establishing Your ADU Environment

Table 1–4 ADU Commands for ADUINI.COM File

Command Description

SET DEFAULT Assigns a default CDD directory.

SET [NO]LOG Starts or stops logging of information to a log file.

SET [NO]VERIFY Controls whether or not ADU displays commands it runs from
an indirect command file.

SHOW DEFAULT Displays your current CDD default directory on your terminal
screen.

SHOW LOG Displays a message on your terminal screen telling you if
logging is active or inactive and the name of the log file.

To create the file ADUINI.COM, use a text editor such as EDT. Include in the
file any commands you want ADU to run when you start the utility. Because
ADUINI.COM is an ADU startup file and not a DCL command file, do not
begin the commands with the DCL prompt. Example 1–1 shows a sample
ADUINI.COM file.

Example 1–1 A Sample ADUINI.COM File

SET VERIFY
SET LOG [ACMS.SAMPLE]DEFINE.LOG
!Change default directory from CDD$DEFAULT
SET DEFAULT DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE.DEPARTMENT
SHOW DEFAULT

Start the ADUINI.COM file with the SET VERIFY command. The SET VERIFY
command displays any commands or definition clauses that ADU processes from
an indirect command file. For example, if you write a menu definition in a source
definition file and include the ADU REPLACE command, you can submit that
file to ADU as an indirect command procedure by using the at sign (@). The SET
VERIFY command displays each command or clause as it processes that source
definition file, as Example 1–2 shows.

Example 1–2 SET VERIFY Display

ADU> @MENU.COM
REPLACE MENU MENU_FIVE
APPLICATION IS APPLONE;
HEADER IS "P E R S O N N E L D E P A R T M E N T",

" M E N U";
ENTRIES ARE

DATR : TASK IS DATR;
TEXT IS "Datatrieve";

DUE : TASK IS DUE;
TEXT IS "Display Reviews Due";

END ENTRIES;
END DEFINITION;

If you use ADU often, you can also include the SET DEFAULT command in
your ADUINI.COM file. This command names the CDD directory in which you
want ADU commands, such as CREATE and REPLACE, to put definitions.
Because some CDD path names can be long, setting the default directory in the
ADUINI.COM file saves you from typing long CDD path names before beginning
each utility session.

1–8 Writing Definitions with ADU



Writing Definitions with ADU
1.3 Establishing Your ADU Environment

The SET DEFAULT command overrides the CDD default defined by the
CDD$DEFAULT logical name. By defining this logical name, you can set
your default directory. However, you cannot define CDD$DEFAULT in your
ADUINI.COM file or while running ADU. Define CDD$DEFAULT only from DCL
command level.

You can include the SHOW DEFAULT command in your ADUINI.COM file after
the SET DEFAULT command. Use the SHOW DEFAULT command to see the
directory to which your default is set when you start ADU. For example:

$ ADU
current CDD default path is ’DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE.DEPARTMENT’
ADU>

Because the SET DEFAULT command is in ADUINI.COM, ADU sets the default
to the DISK1:[CDDPLUS]ACMS$DIR.ACMS$SAMPLE.DEPARTMENT directory.
With the SHOW DEFAULT command in ADUINI.COM, ADU displays the default
directory you assigned with the SET DEFAULT command before it displays the
ADU> prompt.

Even if you set the default directory in the ADUINI.COM file, you can always
override the default. Use the SET DEFAULT command to change the default
while you use the utility. Remember that an interactive SET DEFAULT command
changes the default directory for only the current utility session.

By using SET LOG, you can record your use of the utility. The command creates
the file ADULOG.LOG if you do not include a file name with the command. With
logging in effect, ADU copies the following information to the log file while you
run the utility:

• Commands you enter at the ADU> prompt

• Messages that ADU displays on your terminal

The SET NOLOG command is the default. Unless you either include the SET
LOG command in ADUINI.COM or enter the command during a utility session,
ADU does not record session information in a log file. If you put in ADUINI.COM
either the SET LOG command to enable logging or the SET NOLOG command
to disable logging, you should also include the SHOW LOG command, which
indicates:

• Whether logging is enabled or disabled

• The name of a log file (if applicable)

1.4 Understanding ACMS Terminology
Several terms are used throughout this manual in a specialized manner. The
following sections explain the usage for each of these terms:

• Identifier

• File specification

• Workspace field name

• Text string

Writing Definitions with ADU 1–9



Writing Definitions with ADU
1.4 Understanding ACMS Terminology

1.4.1 Identifier
Several ADU clauses use identifiers in their syntax. Identifiers are names you
create, such as request library file names and task names. Identifiers can have a
maximum of 31 characters, but no spaces. You can use the following characters:

• All letters, including 8-bit alphabetic characters from the DEC Multinational
Character Set

• Digits 0 through 9

• Underscores (_)

• Dollar signs ($)

The first character of an identifier must be a letter, a dollar sign, or an
underscore. By convention, identifiers containing dollar signs are reserved
for HP use.

Note

ACMS converts all lowercase letters to uppercase.

When creating an identifier, do not use the ACMS reserved words ARE,
IS, USING, or WITH. In addition, some commands or clauses have special
restrictions for identifiers, such as whether the identifier must be unique within
a definition. These restrictions are included with the description of the command
or clause.

Identifier is also an OpenVMS term used to describe a special name that a user is
allowed to hold. Some identifiers represent the user names and user identification
codes (UICs). Others are more general names that a group of users holds. During
login, OpenVMS identifiers are copied into a rights list that becomes part of the
OpenVMS process. Access control lists (ACLs) associate identifiers with the type
of access to be granted or denied to a system object such as a file or logical name
table. The application definition ACCESS clause uses ACLs to grant and deny
access to ACMS tasks. For more information about OpenVMS identifiers see the
OpenVMS documentation set.

1.4.2 File Specification
A file specification can be either an identifier (for logical names) or a quoted
string. The contents of the quoted string must be an OpenVMS file specification.
A valid OpenVMS file specification can contain all or a subset of the following
fields:

node"access-string"::device-name:[directory-spec]file-name.file-type;version-number

node Identifies the system on which the file resides. Node names
are optional.

access-string Contains information that enables access to files that are
otherwise protected. Access control strings are optional.
However, when you include one in a file specification, you
must enclose it within quotation marks and precede it with the
appropriate node name.

1–10 Writing Definitions with ADU



Writing Definitions with ADU
1.4 Understanding ACMS Terminology

device-name Identifies the physical device where the file is located. The
device name can be the device code or a logical name specifying
the device. Device names are optional, but you must include
one if you specify a node name.

[directory-spec] Identifies the directory in which the file is located. Directory
specifications are enclosed within square brackets ([ ]).
Directory specifications are optional, but you must include
one if you specify a device name. The device name and the
directory specification go together in a single logical name.

file-name Specifies the name of the file. The file name field is required.

file-type Specifies the type of file. Always use a period (.) to separate
the file type from the file name. File types are optional.

version-number Specifies which version of the file you want. Always use a
semicolon (;) to separate the version number from the file
type. Version numbers are optional. When specifying a version
number, always specify the file type and file name.

See OpenVMS DCL Dictionary for information about file specification defaults
and default file types.

1.4.3 Workspace Field Name
You refer to a workspace field name by specifying a sequence of identifiers
which are separated by periods. A full workspace field name consists of the
workspace name followed by the structure names and ending with the name of
the elementary data item. Refer to the CDD documentation for more information
on structure names.

Any identifiers in the full workspace field name can be omitted, except for the
name of the elementary data item, as long as the result is a unique field name.
For example, the following is a valid CDO record definition:

DEFINE RECORD SALARY_RECORD.
SALARY STRUCTURE.

EMPLOYEE_ID.
PAY STRUCTURE.

JOB_CLASS.
WEEKLY_PAY.

END PAY STRUCTURE.
END SALARY STRUCTURE.
END SALARY_RECORD RECORD.

There are four different ways to reference the WEEKLY_PAY field in the
SALARY_RECORD example:

• SALARY_RECORD.SALARY.PAY.WEEKLY_PAY

• SALARY.PAY.WEEKLY_PAY

• PAY.WEEKLY_PAY

• WEEKLY_PAY

1.4.4 Text Strings
A text string contains a sequence of characters that are enclosed within single
(’ ’) or double (" ") quotation marks. Text strings can include the following:

• All printable characters, including 8-bit characters from the HP Multinational
Character Set

• Spaces

Writing Definitions with ADU 1–11



Writing Definitions with ADU
1.4 Understanding ACMS Terminology

• Tabs (except in the header of an ACMS menu)

To include quotation marks in a string that is enclosed by the same quotation
mark (either single or double), use two quotation marks; for example, ‘‘a text
string ""with"" embedded quotation marks’’.

The HEADER clause of the menu definition uses text strings to define the menu
title. For example:

HEADER " ACMS",
" EMPLOYEE SAMPLE APPLICATION";

The TEXT subclause in the menu definition also uses text strings.

When two or more legal text strings are joined by an ampersand (&), ACMS
concatenates the strings and treats the result as a single text string. This
technique can be used to break quoted strings that are too long to fit on one
line without wrapping. For example, certain SQL Data Manipulation Language
(DML) strings do not fit on a single line:

PROCESSING WITH
SQL RECOVERY "SET TRANSACTION READ WRITE " &

"RESERVING DEPART, ADMIN FOR PROTECTED WRITE"

ACMS concatenates the string into "SET TRANSACTION READ WRITE
RESERVING DEPART, ADMIN FOR PROTECTED WRITE" before passing
it to Rdb. When using the ampersand character to join lines, be sure to include
all necessary spaces. The following example results in a string that cannot be
interpreted correctly:

BLOCK WITH SQL RECOVERY
"SET TRANSACTION READ WRITE RESERVING" &

"EMPLOYEES FOR SHARED READ," &
"SALARY_HISTORY FOR SHARED WRITE," &
"JOBS FOR EXCLUSIVE WRITE"

ACMS concatenates the above example into the string "SET TRANSACTION
READ WRITE RESERVINGEMPLOYEES FOR SHARED READ,SALARY_
HISTORY FOR SHARED WRITE,JOBS FOR EXCLUSIVE WRITE" before
passing it to Rdb. To send Rdb the correct string, add spaces before the end
quotation marks:

BLOCK WITH SQL RECOVERY
"SET TRANSACTION READ WRITE RESERVING " &

"EMPLOYEES FOR SHARED READ, " &
"SALARY_HISTORY FOR SHARED WRITE, " &
"JOBS FOR EXCLUSIVE WRITE"

The new version translates to "SET TRANSACTION READ WRITE RESERVING
EMPLOYEES FOR SHARED READ, SALARY_HISTORY FOR SHARED WRITE,
JOBS FOR EXCLUSIVE WRITE". Rdb can now interpret the example correctly.

1.5 Creating and Processing Definitions
When you use ADU to create an application, first write the definitions that
compose the application and then process those definitions. There are four kinds
of definitions in an ACMS application: task, task group, application, and menu.
In each case, first create the definition of an element and then process it. Either
write a definition in a file and then submit the file to ADU for processing, or write
a definition interactively in ADU.

1–12 Writing Definitions with ADU



Writing Definitions with ADU
1.5 Creating and Processing Definitions

In general, it is easier to write a definition in a file and then process it, than
to create the definition interactively. The file method offers more control over
modifying and reorganizing the definition. Creating a definition file and then
processing it is analogous to writing a source file for a computer program and
then compiling the source code.

1.6 How ACMS Uses Definitions
When you write the definitions for ACMS tasks, task groups, applications,
and menus using ADU, ACMS stores the definitions in CDD. The definitions
must then be translated into binary format. At run time, the definitions are
represented by databases. For example, a task group definition is represented by
a task group database, or .TDB, that contains a binary representation of the
task group definition, including descriptions of the tasks in the group. Similarly,
an application definition is represented by an application database (.ADB), and
a menu definition is represented by a menu database (.MDB).

Use the ADU CREATE and BUILD commands to process task group, application,
and menu definitions. CREATE stores the definitions in CDD, and BUILD
creates the databases that ACMS uses at run time.

Figure 1–1 shows how to process each type of definition to create the three
database files.

Figure 1–1 Creation of Definition Database Files

TAY-0115-AD

Source Files

Menu Definition

Application Definition

Task Group Definition

Task Definition

CDD

Application Entity

Task Group Entity

Task Entity  

Menu Entity

Database Files

Menu 
Database
.MDB File

Application 
Database
.ADB File

Task Group 
Database
.TDB File

ADU 
CREATE

ADU 
BUILD

Using the CREATE or REPLACE command is like compiling a program. Using
the BUILD command is like linking a program.

The next three sections present an overview of writing ADU definition files and
processing those files.

1.6.1 Creating ADU Definition Files
To create ADU definition files, use an OpenVMS text editor (for example, EDT,
TPU, or the Language-Sensitive Editor) to enter the definition clauses. At the
end of each definition, include the END DEFINITION clause. Use a semicolon (;)
to mark the end of each clause. Indent the clauses to make it easy to understand
the code. Use an exclamation mark (!) to introduce comments.

Writing Definitions with ADU 1–13



Writing Definitions with ADU
1.6 How ACMS Uses Definitions

The following example shows a complete menu definition:

! Title for the menu
HEADER IS " REVIEW MENU";
! User Selections
ENTRIES ARE
HISTORY : TASK IS REVIEW_HISTORY IN PERSONNEL;

TEXT IS "Display Review Histories";
SCHEDULE : TASK IS REVIEW_SCHEDULE IN PERSONNEL;

TEXT IS "Display Review Schedules";
END ENTRIES;
END DEFINITION;

After creating a definition, process the file with the BUILD command. Figure 1–2
shows how the menu appears on the terminal screen after the definition file has
been built.

Figure 1–2 The Review Menu

1.6.2 ACMS Definitions: Placing in and Retrieving from CDD
The ADU REPLACE command replaces the previous version of a CDD entity
that describes an ACMS definition. Either the ADU REPLACE or ADU CREATE
command creates a CDD entity when you first place an ACMS definition in the
dictionary:

• CREATE — Checks and stores a definition being created for the first time. If
the definition already exists, the command fails.

• REPLACE — Checks and stores a definition either being created for the first
time or replacing a previous version of the definition.

To submit a file containing a task group definition, enter:

ADU> CREATE GROUP CUSTOMERS_GROUP CUSTOMERS.GDF/LIST=CUSTOMERS

This command tells ADU:

• You want to create a task group definition.

• The CDD path name of the task group definition you are creating is
CUSTOMERS_GROUP in your current CDD default directory.

• The file containing the source definition is CUSTOMERS.GDF in your default
device and directory. (The default file type for a task group source definition
file is .GDF.)

1–14 Writing Definitions with ADU



Writing Definitions with ADU
1.6 How ACMS Uses Definitions

• You want ADU to create a listing file of the definition. The name of the listing
file is CUSTOMERS, with a default file type of .LIS. This listing is much like
the listing obtained when you compile a program. The default name of the
list file is derived from the full CDD path name. It is located on your default
device and in your default directory. In this case, the default list file name is
CUSTOMERS.LIS.

The following example uses REPLACE instead of CREATE to take the task group
definition in the file CUSTOMERS. GDF and store the CUSTOMERS_GROUP
task group entity in the CDD directory DISK1:[CDDPLUS]AVERTZ. The GROUP
keyword indicates that the definition file is for a task group.

ADU> REPLACE GROUP DISK1:[CDDPLUS]AVERTZ.CUSTOMERS_GROUP CUSTOMERS.GDF

To continue an ADU command on a second line, use the hyphen (-) as the
continuation character just for DCL commands. You can abbreviate keywords,
such as GROUP, according to the DCL convention.

Instead of entering the CREATE or REPLACE command at the ADU> prompt
each time you process a source definition, you can include the entire command
line at the beginning of the source definition file. When including the command
line in your source definition files, use the REPLACE command instead of the
CREATE command, as Example 1–3 shows.

Example 1–3 REPLACE Command in a Source Definition File

REPLACE GROUP DISK1:[CDDPLUS]AVERTZ.CUSTOMERS_GROUP
SERVER IS
CUSTOMER_SERVER : DCL PROCESS;

END SERVER;
TASKS ARE
ADD : PROCESSING IS IMAGE IS "SYS$SAMPLE:CUSTOMERS.EXE";
DATR : PROCESSING IS DCL COMMAND IS "$MCR DTR32";

END TASKS;
END DEFINITION;

Use the REPLACE command to store in the dictionary a definition that does not
already exist or to replace one that does. The CREATE command processes only
definitions for which no dictionary location exists. Using the REPLACE command
saves you from having to change the CREATE command to REPLACE when you
change a definition and process it again.

After you include the REPLACE command in the source file, you then can use the
at sign (@) to submit this file to ADU.

ADU> @CUSTOMERS.GDF

After using the CREATE or REPLACE command to create a CDD entity for an
ACMS definition, you use the ADU BUILD command to build a binary database
of each ACMS task group, application, and menu definition for use by ACMS at
run time.

In the following example, the ADU BUILD command uses the GROUP keyword
to take the CDD CUSTOMER task group entity and create the CUSTOMER.TDB
task group file. ACMS displays messages indicating the work being done and the
size of the file. The resulting .TDB file is located in your default directory.

ADU> BUILD GROUP DISK1:[CDDPLUS]AVERTZ.CUSTOMERS_GROUP CUSTOMERS.TDB

Writing Definitions with ADU 1–15



Writing Definitions with ADU
1.6 How ACMS Uses Definitions

If the BUILD command detects any errors, you can correct them in the definition
source file. You must process the revised definition before you reissue the BUILD
command to create the database file. Use the REPLACE command to process and
store the revised definition in the same CDD location. If the revised definition
has no errors, the REPLACE command replaces the old definition with the new
version.

You process application and menu definitions the same way as task group
definitions. Use the CREATE and REPLACE commands with task definitions,
but not the BUILD command. Task definitions are not built; they are included in
task group files (.TDBs) when task groups are built.

1.6.3 Annotating Definitions
You can include comments in ADU definitions the same as when writing
programs. ADU uses the exclamation point (!) as the comment character.
All text to the right of an exclamation point is ignored. Either begin a comment
line with an exclamation point or insert an exclamation point at the end of a
clause and add a comment on the same line. The following example includes both
types of comments:

!--------------------------------------------------------------
! Notes included in a definition help document the definition’s
! use. Notes can make it easier to maintain the source
| definition file.
!--------------------------------------------------------------
!
! There is one server in this SERVERS clause.
!
SERVERS ARE ! More servers will be added later.
UTILITY_SERVER : DCL PROCESS;

REUSABLE;
END SERVERS;
!
! There are three tasks in this TASKS clause.
!
TASKS ARE ! More tasks will be added later.

DATR : DCL COMMAND IS "$MCR DTR32";
EDITOR : DCL COMMAND IS "$EDIT/EDT ’P1’";
RESTORE : DCL COMMAND IS "$@ACMS$EXAMPLES:RESTORE.COM";

END TASKS;
END DEFINITION;

1.6.4 Abbreviating Commands and Keywords
All ADU commands and keywords can be abbreviated to the first four characters.
Shorten command names and keywords to fewer characters as long as the
abbreviation is unique. For example, abbreviate the BUILD command to
the letter B, because no other ADU command begins with B. The GROUP
keyword can also be abbreviated to a single letter, G, because no other keyword
begins with G. The following ADU command calls for ACMS to build the group
EMPLOYEE_GROUP and assign it the name EMPLOYEE:

ADU> B G EMPLOYEE_GROUP EMPLOYEE

1–16 Writing Definitions with ADU



Writing Definitions with ADU
1.6 How ACMS Uses Definitions

1.6.5 Using Command Qualifiers
A number of ADU commands include a definition component type as a keyword.
These commands include: BUILD, COPY, CREATE, DELETE, LIST, MODIFY,
and REPLACE. The definition component keywords are APPLICATION, GROUP,
MENU, and TASK.

When including qualifiers with these commands, always place the qualifier after
the keyword. For example:

ADU> BUILD GROUP /LOG DISK1:[CDDPLUS]PERSONNEL -
ADU>_ PERSONNEL.TDB

You can place the qualifier after other elements in the command line, between
parameters, or at the end of the line. For example:

ADU> BUILD GROUP DISK1:[CDDPLUS]PERSONNEL /LOG -
ADU>_ PERSONNEL.TDB /PRINT

1.6.6 Using the Command Continuation Character
ADU commands can have a maximum of 256 characters. However, only 132
characters can be on a single line. When entering commands interactively, use
the command continuation character, the hyphen (-), to enter long commands
on several lines. Of course, you do not have to wait until you have entered
132 characters on a line before making a break. Break your command at any
convenient place.

When you reach the point for a break on the command line, enter a hyphen and
then press Return . ADU responds with the continuation prompt, ADU>_. Now
continue typing the command line.

The following example breaks the BUILD command onto several lines:

ADU> BUILD MENU -
DISK1:[CDDPLUS]DALLAS.PERSONNEL.EMPLOYEE_MENU-
ADU>_ MENU.MDB-
ADU>_ /LOG-
ADU>_ /LIST=MENU_DATABASE_BUILD.LIST

It is convenient to enter the command qualifiers last, with each one on a separate
line, as shown in the previous example.

Note that ACMS concatenates to the contents of the previous line whatever you
type in response to the continuation prompt. If elements need to be separated
with spaces, always include those spaces at the beginning of the next line. In the
preceding example, it was necessary to include a space before the name of the
menu database file MENU.MDB. No spaces were needed before the /LOG and
/LIST qualifiers, although inserting spaces before them is permissible. Be sure to
insert spaces wherever the syntax requires them.

1.6.7 Responding to Command Prompts
When you enter an ADU command, ADU can supply prompts for the command
parameters. This feature is helpful to those not sure of the order of the
parameters or not sure of which ones are needed. To have ADU supply prompts
for the required parameters, press Return at the end each input. In the following
example, the user entered the BUILD command and pressed Return . ADU first
prompts for the definition component type:

ADU> BUILD Return

Component_type :

Writing Definitions with ADU 1–17



Writing Definitions with ADU
1.6 How ACMS Uses Definitions

You can enter the component type and the dictionary path name in response
to this prompt, as well as include a database file specification and any desired
qualifiers. When you press Return after entering the component type, ADU
supplies prompts for the dictionary path name.

ADU does not prompt you for the database file specification or for any qualifiers.
These elements are not required. Enter the optional elements when responding
to a prompt for a required element.

1.6.8 Leaving ADU Temporarily
The ADU SPAWN command works the same way as the DCL SPAWN command.
It allows you to temporarily leave ADU to do other work and then return to
the same place. The SPAWN command creates a subprocess and attaches the
terminal to it. You can then issue other commands to do such things as invoke
DCL commands, get information about dictionary objects, or check how something
works in HP DECforms or DATATRIEVE. When you finish that work, you need
to log out of the subprocess or use the ADU ATTACH command to return to your
ADU session. The ADU ATTACH command allows you to switch control of your
terminal back and forth to previously created processes.

The following command creates the subprocess VIV_1 and transfers control of
your terminal to that process:

ADU> SPAWN
%DCL-S-SPAWNED, process VIV_1 spawned

If you include a command on the line with SPAWN, that command is executed
and you return to your ADU session. By including the /NOWAIT qualifier with
the SPAWN command, you return to your ADU session immediately. You can
resume your ADU session while the subprocess session processes your command.

For more details, see the descriptions of the SPAWN and ATTACH commands in
this manual.

1.6.9 Using ADU Interactively
When you want to use ADU interactively, enter the CREATE or REPLACE
command but do not include a source definition file specification. Then ADU
displays the ADUDFN> prompt. For example:

ADU> CREATE GROUP CUSTOMERS
ADUDFN>

At this prompt, you enter definition clauses, line by line. After entering a clause
or part of a clause, you press Return again to display the ADUDFN> prompt. As
you write the definition, ADU checks each definition clause and displays error
messages as it finds them, although ADU might not display an error message
until several lines after the line causing the error.

If you write a definition that has errors in it, ADU does not create that definition
in the CDD. It does, however, store the definition so that you can edit it with
the ADU EDIT command. You can also get a copy of the incorrect definition if
you enable the logging facility. Logging saves all output that ADU sends to your
terminal and keeps a copy of all commands and definitions you enter during one
run of the utility. The log file lets you see the definition or definitions you wrote
and lets you make changes to them. As a result of the structure of the log file,
you can also use the at sign (@) to process with ADU any definitions included in
the log file.

1–18 Writing Definitions with ADU



Writing Definitions with ADU
1.6 How ACMS Uses Definitions

To enable logging, enter SET LOG in response to the ADU> prompt. You can
specify the file you want ADU to use for logging:

ADU> SET LOG AUG18.LOG

In this example, ADU uses the log file, AUG18.LOG. If you do not specify a device
or directory, ADU creates the file in your default directory. If you omit the file
specification, ADU creates the file ADULOG.LOG on your default device and in
your default directory. You can create an ADUINI.COM file that includes the SET
LOG command. This enables logging every time you start ADU.

In addition to using SET LOG to save definitions that have errors, you can use
the EDIT or SAVE command after you finish writing the definition.

ADU displays errors automatically when you are creating definitions interactively.
During processing, use the SET VERIFY command. This command lets you see
where errors are occurring and thus lets you correct them more easily. You can
put the SET VERIFY command in the ADUINI.COM file to have ADU keep track
of errors automatically during processing.

Refer to the HP ACMS for OpenVMS ADU Reference Manual for information
about these commands.

1.6.10 Using the Language-Sensitive Editor to Create Definition Files
The Language-Sensitive Editor (LSE) contains five templates used for creating
ADU definitions. These templates are especially helpful if you are unfamiliar
with ADU syntax or cannot recall the exact definition clause syntax needed. The
templates cover all four types of ADU definitions, and they contain online help
about ADU phrases and clauses, plus optional diagnostics files. To use LSE, the
Language-Sensitive Editor software must be installed on your system.

The ACMS LSE templates supply syntax keywords for inserting directly into the
definition file you are creating. After you select the keyword, LSE prompts you
for the required parameters. Use the templates to choose syntax paths and to
expand subclause entries until they are complete.

LSE generates messages that explain syntax errors in the ADU definitions.
When you use the /DIAGNOSTICS qualifier with the ADU CREATE, MODIFY, or
REPLACE command, ADU outputs these messages to a file that you can review
by using the LSE REVIEW command. ACMS lets you use the LSE COMPILE
command from within an LSE editing session to create, modify, or replace a task,
task group, application, or menu definition. See Appendix D for information on
using the COMPILE command.

To invoke LSE at the DCL prompt, issue the LSEDIT command followed by a file
name with one of the following file extensions:

• .ADF – Invokes LSE with the template for application definitions.

• .GDF – Invokes LSE with the template for task group definitions.

• .TDF – Invokes LSE with the template for task definitions.

• .MDF – Invokes LSE with the template for menu definitions.

• .ADU – Invokes LSE with a template for any of the four preceding ACMS
definitions. You can include more than one type of ACMS definition in a file
with a .ADU extension.

Writing Definitions with ADU 1–19



Writing Definitions with ADU
1.6 How ACMS Uses Definitions

The following example invokes LSE to create or edit a file called
UPDATE_TASK.TDF. The .TDF file type tells LSE to use the task definition
template.

$ LSEDIT UPDATE_TASK.TDF

By default, the ADU EDIT and MODIFY commands invoke the EDT editor. You
can change that default to automatically invoke LSE. The ACMS system logical,
ADU$EDIT, points to a DCL command file that ADU runs when you invoke the
utility. The command file, in turn, invokes the text editor that the EDIT and
MODIFY commands use. The command file contains the following DCL code:

$ ASSIGN/USER ’F$LOGICAL("SYS$OUTPUT")’ SYS$INPUT
$ IF P1 .EQS. "" THEN GOTO NOINPUT
$ EDIT /OUTPUT =’P2’ ’P1’
$ EXIT
$ NOINPUT:
$ EDIT ’P2’

To invoke LSE automatically, replace the previous command lines with the
following code:

$ ASSIGN/USER ’F$LOGICAL("SYS$OUTPUT")’ SYS$INPUT
$ IF P1 .EQS. "" THEN GOTO NOINPUT
$ LSEDIT /LANGUAGE=ACMSADU /OUTPUT =’P2’ ’P1’
$ EXIT
$ NOINPUT:
$ LSEDIT /LANGUAGE=ACMSADU ’P2’

See Appendix D and VAX Language-Sensitive Editor and VAX Source Code
Analyzer User Manual for more information on using LSE. HP ACMS Version 5.0
for OpenVMS Installation Guide contains information on installing ACMS with
the LSE option.

1.7 Getting Help
When you are running ADU and need information about its commands and
clauses, use the ADU HELP command. ADU HELP works the same way as
HELP for the OpenVMS operating system. Enter HELP in response to the ADU>
prompt:

ADU> HELP

ADU then displays a list of topics on which you can get help. When finished with
the help information, press Return repeatedly until the ADU> prompt returns. To
return immediately to the ADU> prompt, press Ctrl/Z .

If you know the topic about which you want information, you can enter that topic
after the HELP command. For example, if you want information on the CREATE
command and you do not want to see the list of available topics, type:

ADU> HELP CREATE

ADU displays information about the CREATE command, and issues the CREATE
Subtopic? prompt. At this prompt, you can type PARAMETERS for information
about CREATE parameters or type QUALIFIERS to get information about its
qualifiers. If you do not need any further information about CREATE, press
Return once to return to the TOPIC prompt. Press Return twice to return to the
ADU> prompt.

1–20 Writing Definitions with ADU



Writing Definitions with ADU
1.7 Getting Help

To return immediately to the ADU> prompt after obtaining information about a
command or clause, use the /NOPROMPT qualifier:

ADU> HELP/NOPROMPT CREATE

ADU then displays information about the CREATE command. Rather than
display the Topic prompt, however, ADU returns to the ADU> prompt so that you
can continue the utility session.

For more information on help systems available in ACMS, consult the Preface.

Writing Definitions with ADU 1–21





2
Defining Tasks

Chapter 2 explains how you can use ADU syntax to define the components of an
ACMS task. The examples in this chapter show tasks that a car rental agency
might use in a typical car reservation transaction processing application.

2.1 Structure of an ACMS Task
The central part of a task definition is made up of a sequence of exchange and
processing steps that are grouped into a block step.

In a simple data entry task, there is just one exchange of information with the
terminal user and one processing step. Therefore, you define the task to have just
two steps within the block step. You can use the ACMS Application Definition
Utility (ADU) to define three parts for each block, exchange, and processing step:

• Attributes that describe processing characteristics for the steps in the block

• Work done in the step

• Action taken as a result of that work

The work of a block step consists of the exchange and processing steps that it
contains. The task itself contains overall characteristics that affect the block step
and its work. Figure 2–1 shows the structure of a task definition and, in addition
to an exchange and processing step, includes a block step that contains attributes
and actions taken as a result of the work done.

Defining Tasks 2–1



Defining Tasks
2.1 Structure of an ACMS Task

Figure 2–1 Structure of a Task Definition

TAY-0116-AD

Step

Block Step

Attributes

Work to be done

Action taken as a

Block Step Attributes

Action taken as a result

Step

Attributes

Work to be done

Action taken as a

.

result of work done

result of work done

of work done in block step

..

2.2 Defining a Data Entry Task
A data entry task can record information about a car reservation, a new part in
inventory, or a day’s events. This section discusses the case of adding information
to a database. The name of this sample task is Add Car Reservation task.

A simple data entry task requires just one exchange step and one processing step.
To display errors that might occur during the data entry task, you might want to
add another exchange step to the task definition. Table 2–1 summarizes the steps
and keywords you use to describe each step in the task definition.

2–2 Defining Tasks



Defining Tasks
2.2 Defining a Data Entry Task

Table 2–1 Data Entry Task

Step Type

Display a form to get information Exchange step

Write information to the database Processing step

Display an error message if necessary Exchange step

To begin the task definition, you can assign names, or labels, to these
steps. In the Add Car Reservation task, the step labels are GET_RENTAL_
INFORMATION, WRITE_RESERVATION_INFORMATION, and ERROR_
PROCESS_MSG:

You need a step label only if the step is referred to by name elsewhere in the task
definition. However, step labels often help you to identify the function of steps in
a definition.

GET_RENTAL_INFORMATION:
EXCHANGE ...

WRITE_RESERVATION_INFORMATION:
PROCESSING ...

ERROR_PROCESS_MSG:
EXCHANGE...

You can use any step labels you want. A step label begins with an alphabetic
character and can contain as many as 31 alphanumeric characters, including
dollar signs ($) and underscores (_). A step label cannot contain spaces. You
follow the step label with a colon (:) and the definition for that step.

Always use the keywords EXCHANGE and PROCESSING to identify the type
of step you are defining. The GET_RENTAL_INFORMATION and the ERROR_
PROCESS_MSG steps are exchange steps, and the WRITE_RESERVATION_
INFORMATION step is a processing step.

You use the TRANSCEIVE clause in an exchange step to accomplish two
operations, a send followed by a receive. First, the TRANSCEIVE clause instructs
HP DECforms to display a panel asking the terminal user for information about
the customer’s car reservation plans. Then the TRANSCEIVE clause instructs
HP DECforms to return that information in an ACMS workspace.

GET_RENTAL_INFORMATION:
EXCHANGE
TRANSCEIVE FORM RECORD ADD_RESERVE_FORM_REC, ADD_RESERVE_FORM_REC...

WRITE_RESERVATION_INFORMATION:
PROCESSING ...

In this example, the name of the HP DECforms form record is ADD_RESERVE_
FORM_REC. This is the name of the run-time form record definition in the form;
it is not a CDD path name or CDD given name. HP DECforms uses the form
record as a map of form data items and their corresponding workspace fields
when transferring data between the form and your task.

You can use a task definition to identify the form in which a form record belongs.
If you do not name a form, ACMS uses the first form named in the task group
definition. Chapter 10 explains how to define task groups. The HP ACMS for
OpenVMS ADU Reference Manual explains in detail how to name forms as part
of the exchange step.

Defining Tasks 2–3



Defining Tasks
2.2 Defining a Data Entry Task

In HP DECforms, you use the Form Development Environment (FDE) to create a
form. Based on your input, the FDE generates an Independent Form Description
Language (IFDL) file. Because of the length of the IFDL code, this chapter does
not show the definition of the ADD_RESERVE_FORM that this data entry task
uses. When the terminal user fills in the fields of a HP DECforms panel and
presses Enter , the HP DECforms passes the data from the form data items to
their corresponding fields in your application workspaces. See DECforms Guide
to Developing an Application for more information on defining forms.

After a form displays a panel that gets information from the terminal user,
the first part of the task is done. To do the second part of the data entry task,
you call an ACMS procedure to write that information to the database. A
procedure server contains procedures, or subroutines. You call the procedure in
the processing step:

GET_RENTAL_INFORMATION:
EXCHANGE
TRANSCEIVE FORM RECORD ADD_RESERVE_FORM_REC, ADD_RESERVE_FORM_REC...

WRITE_RESERVATION_INFORMATION:
PROCESSING
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER...

END BLOCK WORK;
END DEFINITION;

You use the CALL clause to name the procedure you want to run. In this
example, the procedure named WRITE_RESERVE_PROC is the program, entry
point, or routine name, such as the Program-ID for a COBOL subprogram; it is
not a CDD path name, CDD given name, or file name. HP ACMS for OpenVMS
Writing Server Procedures explains in detail how to write a procedure to run in
the processing step of a multiple-step task.

As part of the CALL clause, you also name the server that contains the step
procedure to run. When you include the server name, you use the name assigned
to the server in the SERVERS ARE clause of the task group definition. This
clause is explained in Chapter 10.

The name of the server that includes the procedure WRITE_RESERVE_PROC
is RESERVE_SERVER. If a task contains many processing steps, and they all
use the same server, you can define a default server for the task. HP ACMS for
OpenVMS ADU Reference Manual explains how to define a default server for a
task.

2.2.1 Using Workspaces to Pass Data Between Steps
After you get the information from the terminal user, you need to transfer the
information to the procedure so that the procedure can write it to the database.
This process consists of two steps:

1. You use workspaces to pass the information from the form that collects it.

2. A procedure receives the information from the workspaces and writes it to the
database.

A workspace is a buffer that the task uses to store information and pass
information between steps. Every workspace has a record definition, created by
using the Common Dictionary Operator (CDO), that describes the workspace
layout. The CDD documentation explains how to use the CDO. In the Add Car
Reservation task, you need a workspace to pass the new car rental information
from ADD_RESERVE_FORM_REC to the WRITE_RESERVE_PROC procedure.

2–4 Defining Tasks



Defining Tasks
2.2 Defining a Data Entry Task

Figure 2–2 shows how the form and the procedure use the workspace to pass
information.

Figure 2–2 The Workspace Used to Pass Information

Database

Jane Smith
Nashua, NH

Data Entry Form

Name:
Address:

Workspace

Name X(10)
Address X(20)

Server
Procedure

DECforms

Task

TAY-0157-AD

Both the form and the procedure in the definition use the workspace: the
form stores the information supplied by the terminal user in the workspace,
the procedure reads the information from the workspace and writes it to the
database. To define a workspace record in CDO, you must define the fields
separate from the record. Example 2–1 shows the definition of the
ADD_RESERVE_WKSP workspace.

Example 2–1 Definition of ADD_RESERVE_WKSP Fields

Definition of record ADD_RESERVE_WKSP
| Contains field CUST_NUMBER
| | Datatype signed longword
| Contains field CUST_NAME
| | Datatype text size is 30 characters
| Contains field CUST_STREET_ADDRESS
| | Datatype text size is 30 characters
| Contains field CUST_CITY
| | Datatype text size is 20 characters
| Contains field CUST_STATE
| | Datatype text size is 2 characters
| Contains field CUST_ZIP
| | Datatype text size is 5 characters
| Contains field CUST_PHONE
| | Datatype text size is 10 characters
| Contains field CAR_TYPE
| | Datatype text size is 3 characters
| Contains field RENTAL_DATE
| | Datatype text size is 6 characters
| Contains field RETURN_DATE
| | Datatype text size is 6 characters

When you define the ADD_RESERVE_FORM form using HP DECforms, the
form data items must correspond to the fields in the ADD_RESERVE_WKSP
definition. At run time, HP DECforms uses the form record to map form data
items to workspace fields. The easiest way to define the form record in your IFDL
code is to include a statement that instructs HP DECforms to copy the workspace
definition from the CDD dictionary into the IFDL file:

COPY
DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS.ADD_RESERVE_WKSP

FROM DICTIONARY
END COPY

Defining Tasks 2–5



Defining Tasks
2.2 Defining a Data Entry Task

A workspace name can be different from the name of the record in the record
definition for that workspace. For example, the record name in Example 2–1 does
not have to be ADD_RESERVE_WKSP. See the HP ACMS for OpenVMS ADU
Reference Manual for more information on workspace names and resolution of
workspace field names.

Because both the exchange step and the processing step use the ADD_
RESERVE_WKSP workspace, you must include the workspace name in both
the TRANSCEIVE and PROCEDURE clauses in the task definition.

The definition for the record layout of a workspace is stored in the CDD
dictionary. When you first declare a workspace in a task definition, you must
use the CDD path name of the record definition for that workspace. When
referring to the workspace from within the definition, you use the given name or
unique name of the workspace specified by the WORKSPACES ARE clause.

Suppose that the full CDD path name of the record description for the workspace
is DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS.ADD_RESERVE_
WKSP. When you are writing step definitions, you use only the given name of the
record description for a workspace, ADD_RESERVE_WKSP. For example:

GET_RENTAL_INFORMATION:
EXCHANGE
TRANSCEIVE FORM RECORD ADD_RESERVE_FORM_REC, ADD_RESERVE_FORM_REC
SENDING ADD_RESERVE_WKSP
RECEIVING ADD_RESERVE_WKSP;

WRITE_RESERVATION_INFORMATION:
PROCESSING
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER
USING ADD_RESERVE_WKSP;

END BLOCK WORK;

This definition assigns the ADD_RESERVE_WKSP workspace for use by both
the form and the procedure. The definition of the form record ADD_RESERVE_
FORM_REC must correspond with the record definition of the ADD_RESERVE_
WKSP workspace.

You may want to use the same record definition for more than one workspace
and assign different workspace names to that record definition. When you first
declare the workspace in the task definition, you can assign a unique name to
that workspace. For example:

WORKSPACE IS DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS.ADD_RESERVE_WKSP
WITH NAME ADD_RESERVE_WKSP_1;

To refer to this workspace from within the task definition, you use the unique
name ADD_RESERVE_WKSP_1:

GET_RENTAL_INFORMATION:
EXCHANGE
TRANSCEIVE FORM RECORD ADD_RESERVE_FORM_REC, ADD_RESERVE_FORM_REC
SENDING ADD_RESERVE_WKSP_1
RECEIVING ADD_RESERVE_WKSP_1;

WRITE_RESERVATION_INFORMATION:
PROCESSING
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER USING ADD_RESERVE_WKSP_1;

END BLOCK WORK;

The USING keyword names the workspace or workspaces that you want the form
and the procedure to use.

2–6 Defining Tasks



Defining Tasks
2.2 Defining a Data Entry Task

2.2.2 Defining the Block Step
When you define more than one step to do work for a task, you group those steps
into a block step. A block step has four parts:

• Attributes

• Work

• Action

• Exception handler

Chapter 8 describes how to use exception handlers.

In the attributes part of the block step, you must indicate that the task uses HP
DECforms to interface with the terminal by adding the keywords FORM I/O to
the definition.

The work part of a block step consists of the exchange and processing steps you
define for a task. The definition for the Add Car Reservation task, including the
minimum block step syntax, follows:

BLOCK WORK
WITH FORM I/O
GET_RENTAL_INFORMATION:
EXCHANGE
TRANSCEIVE FORM RECORD ADD_RESERVE_FORM_REC, ADD_RESERVE_FORM_REC
SENDING ADD_RESERVE_WKSP
RECEIVING ADD_RESERVE_WKSP;

WRITE_RESERVATION_INFORMATION:
PROCESSING
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER
USING ADD_RESERVE_WKSP;

END BLOCK WORK;

You use the BLOCK clause to start the work for the task. The END BLOCK
WORK keywords indicate the end of that work. Include a semicolon (;) after the
END BLOCK WORK keywords.

2.2.3 Defining Characteristics of the Task
A task definition must also describe the task characteristics. You use the task
part of a definition to set up characteristics for the block step and for steps within
the block step.

The most important characteristic of a simple data entry task is the workspace or
workspaces used by the steps in the task. You use the WORKSPACES clause to
name the workspace or workspaces used by the steps in the task. You must use
the CDD path name of the record description for each workspace you name. The
CDD given names of the path names you declare must match the given names of
the workspaces referred to by the TRANSCEIVE and CALL clauses in the task
definition.

The sample step definition uses only one workspace, ADD_RESERVE_WKSP.
Suppose that the definition for this workspace is in the ACMS$EXAMPLES_RMS
directory in the ACMS$DIR directory and that the anchor is in
DISK1:[CDDPLUS]. The corresponding WORKSPACE clause looks like this:

WORKSPACE IS DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS.ADD_RESERVE_WKSP;

Defining Tasks 2–7



Defining Tasks
2.2 Defining a Data Entry Task

You must end the clause with a semicolon (;). If you set your CDD default to
DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS when you build the
definition, you can use just the given name of the record description for the
workspace:

WORKSPACE IS ADD_RESERVE_WKSP;

If many programmers are working on a project, you might want to use the full
path name, rather than the given name, because different programmers might
use different CDD defaults.

Now the definition looks like this:

WORKSPACE IS ADD_RESERVE_WKSP;
BLOCK

WORK WITH FORM I/O
GET_RENTAL_INFORMATION:
EXCHANGE
TRANSCEIVE FORM RECORD ADD_RESERVE_FORM_REC, ADD_RESERVE_FORM_REC
SENDING ADD_RESERVE_WKSP
RECEIVING ADD_RESERVE_WKSP;

WRITE_RESERVATION_INFORMATION;
PROCESSING
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER USING ADD_RESERVE_WKSP;

END BLOCK WORK;
END DEFINITION;

You must end every definition with the END DEFINITION keywords and a
semicolon (;).

ACMS requires that the name of each workspace be unique within the workspace
declarations for each task group. If two or more given names of record path
names are identical, you must assign a unique name with the keyword WITH
NAME. For example, to assign the unique name ADD to the ADD_RESERVE_
WKSP workspace, you use:

WORKSPACE IS ADD_RESERVE_WKSP WITH NAME ADD;

Use the WITH NAME keyword carefully. In general, if you need to use the same
record definition, under different names, in multiple parts of your application, it
is easier to maintain the application if you assign unique workspace names than
if you use WITH NAME.

2.2.4 Storing a Task Definition in the Dictionary
Once you have written the task definition, you can use either the ADU CREATE
or ADU REPLACE command to store that definition in the dictionary.

When you use the CREATE or REPLACE command, you include:

• The kind of definition you are creating

• Where in the dictionary you want to store the definition

• The name of the file containing the source definition

For example:

ADU>CREATE TASK ADD_CAR_RESERVATION_TASK ADDCAR.TDF

This CREATE command processes the definition in the file ADDCAR.TDF. If
there are no errors in the definition, ADU stores it in the dictionary in the default
directory defined by CDD$DEFAULT.

2–8 Defining Tasks



Defining Tasks
2.2 Defining a Data Entry Task

You can insert the REPLACE command at the beginning of the source definition
file and submit it to ADU as a command file. When you submit definitions as
command files, use the REPLACE command rather than the CREATE command
to save yourself the effort of changing the command when you resubmit the file to
ADU.

Example 2–2 shows the contents of the source definition file ADDCAR.TDF. This
command file includes the REPLACE command and all the clauses used in this
chapter to build the source definition.

Example 2–2 Contents of a Source Definition File

SET VERIFY
REPLACE TASK ADD_CAR_RESERVATION_TASK
WORKSPACE IS ADD_RESERVE_WKSP;
BLOCK

WORK WITH FORM I/O
GET_RENTAL_INFORMATION:
EXCHANGE
TRANSCEIVE FORM RECORD ADD_RESERVE_FORM_REC, ADD_RESERVE_FORM_REC
SENDING ADD_RESERVE_WKSP
RECEIVING ADD_RESERVE_WKSP;

WRITE_RESERVATION_INFORMATION:
PROCESSING
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER
USING ADD_RESERVE_WKSP;

END BLOCK WORK;
END DEFINITION;

You can include the SET VERIFY command with a source definition you are
submitting as a command file. This command displays each line of the definition
as it is processed by ADU, letting you see where errors in the definition occur.

To submit the definition to ADU as a command file, use the at sign
character (@) followed by the file name:

ADU>@ADDCAR.COM

When you submit the command file, ADU checks the source definition file and
returns any errors to the terminal. If errors occur, you can edit the source
definition file to correct the definition and resubmit the file in the same manner.

Note

If you use the CREATE or REPLACE command at the ADU prompt to
process a definition file, the definition must not contain the CREATE or
REPLACE clause, or else ADU returns an error.

If you insert the CREATE or REPLACE clause in the definition file, you
must submit it to ADU as a command file.

2.2.5 Additional Considerations: Error Handling and Ease of Use
So far, the sample task definition does not handle two considerations that you
want to address when solving most business problems: handling processing errors
and making the task easy to use.

Defining Tasks 2–9



Defining Tasks
2.2 Defining a Data Entry Task

A complete and realistic version of a data entry task makes provision for errors
by taking the following actions:

1. Get information.

2. Allow the user to type a key or combination of keys to end the task instead of
completing the first form.

3. Write information to the database.

4. If the processing is successful, let the user repeat the same task without going
back to the selection menu. If a user-related or recoverable error occurs, save
the input data, tell the user about the error, and let the user correct the error.
If a nonrecoverable error occurs, cancel the task.

Once you have broken the problem down into these parts, you can begin putting
together the definition. To handle errors that might occur in the processing step,
you might need to add another exchange step to the task definition. To handle
errors and special conditions in both the exchange and processing steps, you
also might need to increase the number of workspaces and change some task
characteristics.

2.2.5.1 Using ACMS Workspaces
When you want to handle errors in a task, you test the contents of a field in a
workspace and take action based on the contents. For example, a procedure can
return a value to a field in a workspace. You can use the CONTROL FIELD
clause to test the contents of that field. Then you use action clauses to take
action based on those contents. In addition to the CONTROL FIELD clause,
ACMS provides three other conditional clauses for testing workspace fields:

• IF THEN ELSE

• SELECT FIRST

• WHILE DO

The CONTROL FIELD clause can test the contents of a control field in either of
two workspaces:

• An ACMS system workspace, especially ACMS$PROCESSING_STATUS

• A workspace you define

You can use any of the ACMS system workspaces with a conditional clause.
However, the ACMS$PROCESSING_STATUS system workspace is especially
useful for handling results of procedures in processing steps. Workspaces you
define are especially useful for handling information passed to a form.

There are three ACMS system workspaces; each workspace handles a different
kind of information. The HP ACMS for OpenVMS ADU Reference Manual lists
all the system workspaces and gives a brief description of each.

The first exchange step in the Add Car Reservation task uses the CONTROL
FIELD clause to test a workspace that you define, while the processing step uses
the IF THEN ELSE clause to test a system workspace field.

The ACMS$PROCESSING_STATUS system workspace has four fields:

• ACMS$L_STATUS

• ACMS$T_SEVERITY_LEVEL

• ACMS$T_STATUS_TYPE

2–10 Defining Tasks



Defining Tasks
2.2 Defining a Data Entry Task

• ACMS$T_STATUS_MESSAGE_LONG or ACMS$T_STATUS_MESSAGE

All processing work returns a final status value. For example, when a procedure
exits, ACMS places its return status in the ACMS$L_STATUS field of the
ACMS$PROCESSING_STATUS workspace. ACMS translates that value and
performs the following operations:

1. Stores in the ACMS$T_SEVERITY_LEVEL field a single character string
indicating the severity level of the error. These characters are:

• S — SUCCESS

• I — INFORMATION

• W — WARNING

• E — ERROR

• F — FATAL

If the error returned by the procedure does not match any of these error
severities, ACMS stores a question mark (?) in the ACMS$T_SEVERITY_
LEVEL field.

2. Stores in the ACMS$T_STATUS_TYPE field a single character string
indicating whether the severity level of the error is good or bad. These
characters are:

• G — GOOD

• B — BAD

If the severity level of the return status of the procedure is SUCCESS or
INFORMATION, ACMS stores a G in the ACMS$T_STATUS_TYPE field. If
the severity level is WARNING, ERROR, or FATAL, ACMS stores a B in that
field.

ACMS can also use the return status value in the ACMS$L_STATUS field to get
an error message from a message file. By default, it stores that message in the
ACMS$T_STATUS_MESSAGE_LONG field. To retrieve the error message, you
must use the GET ERROR MESSAGE clause, as explained later in this chapter.

Whether the conditional clause tests a field in a system workspace or in a
workspace you define, the values it tests must be literal strings and the datatype
of the field must be text. Table 2–2 summarizes the fields and values that
conditional clauses can test.

Table 2–2 Field and Values Tested by Conditional Clauses

Workspace Field Value

User-defined Any Quoted string

ACMS$PROCESSING_STATUS ACMS$T_SEVERITY_LEVEL S,I,W,E,F,?

ACMS$PROCESSING_STATUS ACMS$T_STATUS_TYPE G,B

The initial value of the ACMS$T_SEVERITY_LEVEL workspace is S. The initial
value of the ACMS$T_STATUS_TYPE field is G.

Defining Tasks 2–11



Defining Tasks
2.2 Defining a Data Entry Task

2.2.5.1.1 Using the CONTROL FIELD Clause in an Exchange Step One special
condition you want to allow for is letting the terminal user press a key to
stop running the task. The form stores a value associated with that key in a
workspace field. You can then use the CONTROL FIELD clause to test the
contents of that field.

In the Add Car Reservation task, you want to let the user stop running the task
when the form displays a panel asking for rental information. To do this, you
need to define a key, such as the PF4 key, as the exit or quit key. HP DECforms
refers to such a key as a function key. In your form definition, you must
make the function declaration after the LAYOUT specification. In the following
example, the function is PF4 and its name is QUIT_KEY.

FORM ADD_RESERVE_FORM
.
.
.
Layout VT_LAYOUT

.

.

.
Size 24 lines by 80 columns

Function QUIT_KEY
is %PF4

End Function

You must also declare a function response in the IFDL source file. A function
response alters the way HP DECforms processes the form. In this example, when
the terminal user presses PF4 , the function response directs HP DECforms to
return the value ‘‘QUIT’’ to an ACMS workspace. Place the function response at
the beginning of the panel declaration.

Panel ADD_RESERVE_PANEL
Function Response QUIT_KEY

Let QUIT_KEY = "QUIT"
Return Immediate

End Response

For more information about declaring function responses, see DECforms Guide to
Developing an Application.

In your exchange step, you need to identify the workspace where HP DECforms
stores the value ‘‘QUIT’’. In the example below, the QUIT_KEY field is in the
QUIT_CTRL_WKSP workspace. The form record used for the receive part of
the exchange is a record list. ADD_RESERVE_FORM_REC_LIS contains form
records for ADD_RESERVE_WKSP and QUIT_CTRL_WKSP. Then, in the action
part of the exchange step, you can use the CONTROL FIELD clause to test the
workspace field. For example:

EXCHANGE
TRANSCEIVE FORM RECORD ADD_RESERVE_FORM_REC,

ADD_RESERVE_FORM_REC_LIS
SENDING ADD_RESERVE_WKSP
RECEIVING ADD_RESERVE_WKSP, QUIT_CTRL_WKSP;

ACTION IS
CONTROL FIELD QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

2–12 Defining Tasks



Defining Tasks
2.2 Defining a Data Entry Task

The CONTROL FIELD clause tests the QUIT_KEY field of QUIT_CTRL_WKSP.
When you use the CONTROL FIELD clause, you can name the workspace and the
workspace field, or just the workspace field. ACMS checks all of the workspaces
defined for the task until it finds the field named in the CONTROL FIELD
clause. However, including the workspace name is a good way to keep track of
the location of information that the task uses. When you name the workspace in
the CONTROL FIELD clause, use a period to separate it from the name of the
control field.

If the value ‘‘QUIT’’ is in the QUIT_KEY field, ACMS exits or stops processing
the task. Otherwise, ACMS goes on to process the next step in the definition.
You must end each action clause, such as EXIT TASK, with a semicolon (;). End
the CONTROL FIELD clause with the keywords END CONTROL FIELD and a
semicolon (;).

When ACMS processes the EXIT TASK clause, it ends the task and returns
the user to a selection menu without returning a message to the user. You can
also use the CANCEL TASK clause to end a task. When ACMS processes the
CANCEL TASK clause, it records the ending of the task as an abnormal ending
or interruption, and returns a message to the user before returning the user to a
selection menu.

In general, you use the EXIT TASK clause if the user wants to end the task and
if there is no chance that data will be left in an inconsistent state. You use the
CANCEL TASK clause if there is an abnormal reason for ending the task.

2.2.5.1.2 Using the IF THEN ELSE Clause in a Processing Step Suppose the
user does not cancel the task in the first step of the task but types information
and presses Return or Enter . In this case, the processing step calls a procedure to
write that information to a file. This procedure can encounter errors.

You want the task to take different actions depending on the kind of
error encountered. There are two kinds of errors: recoverable errors and
nonrecoverable errors. Recoverable errors are those a user can correct, such
as typing the wrong customer number. Nonrecoverable errors are those a user
cannot correct. For example, ‘‘file not found’’ is a nonrecoverable error in the Add
Car Reservation task.

When a procedure encounters a recoverable error, you can tell the user about
the error and let the user do something to correct the error. In the case of a
nonrecoverable error, you generally want the procedure to cancel the task.

When a procedure runs, it returns a status value to ACMS. ACMS puts this value
in the ACMS$L_STATUS field of the ACMS$PROCESSING_STATUS system
workspace. ACMS translates the return status value and stores, in the ACMS$T_
SEVERITY_LEVEL field, a value indicating the severity level of the error. ACMS
also stores in the ACMS$T_STATUS_TYPE field a GOOD or BAD value. You can
use the IF THEN ELSE clause to test the contents of the ACMS$T_STATUS_
TYPE field.

ACMS can also use the return status value in ACMS$L_STATUS field to
retrieve an error message from a message file and then store that message in
the ACMS$T_STATUS_MESSAGE field.

Suppose now that WRITE_RESERVE_PROC tries to write a reservation record to
a file, but a record for that customer already exists. This is a recoverable error
because the user can try a different customer number or enter information for a
different customer. In this case, you want to tell the user about the error and let
the user try again. Here is the processing step of the Add Car Reservation task:

Defining Tasks 2–13



Defining Tasks
2.2 Defining a Data Entry Task

PROCESSING
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER
USING ADD_RESERVE_WKSP;

IF (ACMS$T_STATUS_TYPE EQ "B")
THEN GET ERROR MESSAGE;

MOVE ACMS$T_STATUS_MESSAGE TO MSG_WKSP.MESSAGE_PANEL;
GOTO STEP ERROR_PROCESS_MSG;

ELSE GOTO PREVIOUS EXCHANGE;
END IF;

In this step, WRITE_RESERVE_PROC tries to write the information in the
ADD_RESERVE_WKSP workspace to a file. It returns a status value to the
ACMS$L_STATUS field of the ACMS$PROCESSING_STATUS workspace. ACMS
translates that value and stores a B or G in the ACMS$T_STATUS_TYPE field.
If the record already exists, the value in that field is a B.

The IF THEN ELSE clause tests a Boolean expression to determine which course
of action to follow. You must enclose the Boolean expression within parentheses.
See the HP ACMS for OpenVMS ADU Reference Manual for more information
about using Boolean expressions. If the Boolean expression evaluates to true,
ACMS performs the actions associated with the THEN keyword. In this example,
if the record already exists, ACMS performs the following steps:

1. Retrieves the error message from a message file

2. Stores the error message in the MESSAGE_PANEL field of the
MSG_WKSP workspace

3. Goes to the ERROR_PROCESS_MSG exchange step in the task

To display the error message to the terminal user, you need to include the
following exchange step in your task definition:

ERROR_PROCESS_MSG:
EXCHANGE WORK
SEND FORM RECORD MSG_FORM_REC
SENDING MSG_WKSP;

This exchange step sends the error message stored in the MSG_WKSP workspace
to the MSG_FORM_REC form record for display. The IFDL file for the ADD_
RESERVE_FORM form must include the form record definition for MSG_FORM_
REC.

If the Boolean expression evaluates to false, ACMS performs the actions
associated with the ELSE keyword. In this example, the GOTO PREVIOUS
EXCHANGE clause directs ACMS to repeat the task. You must end the IF THEN
ELSE clause with the END IF keywords and a semicolon (;).

Figure 2–3 shows the process of retrieving and displaying error messages.

2–14 Defining Tasks



Defining Tasks
2.2 Defining a Data Entry Task

Figure 2–3 Retrieving Messages

TAY-0118-AD

MSG_WKSP MSG_FORM_REC

Message

Message  File Workspace DECforms Form Record

MESSAGE_PANEL

Message

Message

Message

Message Message

Field

Although you can use action clauses in any order you want, ACMS always
processes them in the same order. For example, ACMS always processes the
GET ERROR MESSAGE clause before any sequencing clauses, such as GOTO
PREVIOUS EXCHANGE.

For more information on returning status and using the system workspace
ACMS$PROCESSING_STATUS, see HP ACMS for OpenVMS Writing Server
Procedures.

2.2.5.1.3 Additional Workspace Definitions Because the error handling
described in the preceding sections named new workspaces, you must enter
these definitions into the dictionary. In the first exchange step, the CONTROL
FIELD clause tests the QUIT_KEY field of the QUIT_CTRL_WKSP workspace.

In the processing step, the IF THEN ELSE clause uses an ACMS system
workspace and the MSG_WKSP workspace. You do not need to do anything
with the system workspace, but you have to enter the MSG_WKSP definition into
the dictionary.

In your task definition, you must include QUIT_CTRL_WKSP and MSG_WKSP
in the WORKSPACES clause.

2.2.5.2 Repeating the Task Automatically
In a data entry task, you frequently do not want to redisplay the menu each time
the user adds a reservation record or encounters an error. Instead, you want to
repeat the task automatically, letting the user return to the menu by pressing a
function key such as PF4.

You can describe this characteristic by using the REPEAT TASK clause when
you define the actions for the block step. You can include the optional ACTION
keyword to distinguish the action part of the block definition from the work part
of the definition.

Example 2–3 shows the complete definition for the new version of the Add Car
Reservation task.

Defining Tasks 2–15



Defining Tasks
2.2 Defining a Data Entry Task

Example 2–3 Complete Definition for the Add Car Reservation Task

REPLACE TASK ADD_CAR_RESERVATION_TASK
WORKSPACES ARE ADD_RESERVE_WKSP, QUIT_CTRL_WKSP, MSG_WKSP;

BLOCK WORK WITH FORM I/O IS

GET_RENTAL_INFORMATION:
EXCHANGE WORK IS
TRANSCEIVE FORM RECORD ADD_RESERVE_FORM_REC,

ADD_RESERVE_FORM_REC_LIS
SENDING ADD_RESERVE_WKSP
RECEIVING ADD_RESERVE_WKSP, QUIT_CTRL_WKSP;

ACTION IS
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

WRITE_RESERVATION_INFORMATION:
PROCESSING WORK IS
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER
USING ADD_RESERVE_WKSP;
ACTION IS
IF (ACMS$T_STATUS_TYPE EQ "B")
THEN GET ERROR MESSAGE;

MOVE ACMS$T_STATUS_MESSAGE TO MSG_WKSP.MESSAGE_PANEL;
GOTO NEXT EXCHANGE;

ELSE GOTO PREVIOUS EXCHANGE;
END IF;

ERROR_PROCESS_MSG:
EXCHANGE WORK IS
SEND FORM RECORD MSG_FORM_REC
SENDING MSG_WKSP;

END BLOCK WORK;
ACTION IS
REPEAT TASK;

END DEFINITION;

2.3 Defining an Inquiry Task
A task displaying information from a file has many of the same characteristics
as one adding information to a file. This section presents an inquiry task, the
Review Car Rates task, that displays rental rates for particular types of cars.
Table 2–3 lists the steps that an inquiry task performs.

Table 2–3 Inquiry Task

Step Type

Display a form to get information Exchange step

Read information from a file Processing step

Display an error message if necessary Exchange step

Display a form with information Exchange step

2–16 Defining Tasks



Defining Tasks
2.3 Defining an Inquiry Task

2.3.1 Getting Information from the User
The first step of both data entry and inquiry tasks involves getting information
from the user. In the Review Car Rates task, the terminal user types in a code
indicating the class of car (compact, midsize, and so on) that the customer wants
to rent and presses Return or Enter to proceed to the next step. Otherwise, the
terminal user can press PF4 to exit from the task and return to the menu.

The first step of the Review History inquiry task looks like this:

DETERMINE_RENTAL_CLASS:
EXCHANGE
TRANSCEIVE FORM RECORD RENTAL_CLASSES_FORM_REC,

RENTAL_CLASSES_FORM_REC_LIS
SENDING RENTAL_CLASSES_WKSP
RECEIVING RENTAL_CLASSES_WKSP, QUIT_CTRL_WKSP;

ACTION
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

Because both the DETERMINE_RENTAL_CLASS step and the first step in
the data entry task get information from the user, their definitions are almost
identical. Both steps do the following:

• Use a TRANSCEIVE clause to display a form asking for information

• Let the user exit directly from the step

• Use workspaces to pass control information and data

The definitions of the workspaces for the data entry and inquiry tasks are similar
also. Example 2–4 shows the definition for RENTAL_CLASSES_WKSP that the
first step of the Review Car Rates task uses.

Example 2–4 Definition for RENTAL_CLASSES_WKSP

Definition of record RENTAL_CLASSES_WKSP
| Contains field COUNTRY_ID
| | Datatype signed longword
| Contains field REQUESTED_RENTAL_CLASS_ID
| | Datatype text size is 2 characters
| Contains field DAY_RENTAL_RATE_AMT
| | Datatype text size is 5 characters
| Contains field WEEK_RENTAL_RATE_AMT
| | Datatype text size is 7 characters
| Contains field MONTH_RENTAL_RATE_AMT
| | Datatype text size is 7 characters

As in the data entry task, you can use the HP DECforms COPY statement in the
RENTAL_CLASSES_FORM IFDL code to create the RENTAL_CLASSES_FORM_
REC form record that corresponds to the application workspace.

Defining Tasks 2–17



Defining Tasks
2.3 Defining an Inquiry Task

2.3.2 Retrieving Information from a File
The second part of data entry and inquiry involves interaction with a file. You
accomplish this interaction by using a procedure in a processing step. In a data
entry task, a procedure writes data to a file; in an inquiry task, a procedure reads
data from a file.

You must consider errors that can occur when a procedure tries to read from a
file. In the Review Car Rates task, a procedure reads from the Rates file, using
the rental class code as a key in RENTAL_CLASSES_WKSP. The procedure can
encounter the following errors:

• The record does not exist.

• The record is locked by another user.

Both of these errors are recoverable; the user can type a new number if the record
did not exist or can retry the inquiry if the record was locked. Any other errors in
reading the record are treated as nonrecoverable, and the procedure cancels the
task.

Both recoverable errors cause the procedure to return an error code with a
severity level of WARNING or ERROR. Both of these severity levels are handled
by the value B (BAD) in the ACMS$T_STATUS_TYPE field in the workspace
ACMS$PROCESSING_STATUS. Therefore, you can use the IF THEN ELSE
clause to test the contents of that field and handle errors for the task.

Because the second step of an inquiry task and the second step of a data entry
task perform processing, both steps are very similar.

GET_RENTAL_RATES:
PROCESSING
CALL GET_RATES_PROC IN RENTAL_SERVER
USING RENTAL_CLASSES_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE EQ "B")
THEN GET ERROR MESSAGE;

MOVE ACMS$T_STATUS_MESSAGE TO MSG_WKSP.MESSAGE_PANEL;
GOTO NEXT EXCHANGE;

ELSE GOTO STEP DISPLAY_RENTAL_RATES;
END IF;

Both steps do the following:

• Call a procedure to read from or write to a file

• Use information stored in a workspace

• Test the ACMS$T_STATUS_TYPE field of the ACMS$PROCESSING_STATUS
system workspace for the severity level of errors returned by the procedure

• Go to an exchange step that displays an error message, if the value of
ACMS$T_STATUS_TYPE is B

If ACMS evaluates the Boolean expression in the IF THEN ELSE clause to be
false, it performs the action associated with the ELSE keyword. In this case, it
passes control to the DISPLAY_RENTAL_RATES exchange step.

For the processing step of the Review Car Rates task, the procedure GET_
RATES_PROC in RENTAL_SERVER uses the rental class code stored in
RENTAL_CLASSES_WKSP to read a record from the Rates file. The procedure
returns a status value to the ACMS$PROCESSING_STATUS system workspace.
ACMS uses the severity level of the status to return either a B or G to the
ACMS$T_STATUS_TYPE field. If the value in that field is B, ACMS retrieves an

2–18 Defining Tasks



Defining Tasks
2.3 Defining an Inquiry Task

error message from an error message file and passes control to the NO_RC_MSG
exchange step, which displays the error message on the terminal screen.

NO_RC_MSG:
EXCHANGE
TRANSCEIVE FORM RECORD MSG_FORM_REC, QUIT_CTRL_FORM_REC
SENDING MSG_WKSP
RECEIVING QUIT_CTRL_WKSP;

ACTION IS
IF (QUIT_CTRL_WKSP.QUIT_KEY EQ "QUIT")
THEN EXIT TASK;
ELSE GOTO STEP DETERMINE_RENTAL_CLASS;
END IF;

As in the data entry task, you must define the additional workspaces that you
use for error handling, QUIT_CTRL_WKSP and MSG_WKSP. Because the NO_
RC_MSG exchange step sends the error message from MSG_WKSP to the form,
you also need to include the form record definition for MSG_FORM_REC in the
IFDL code. QUIT_CTRL_FORM_REC is the form record that corresponds to the
QUIT_CTRL_WKSP workspace.

The NO_RC_MSG exchange step uses an IF THEN ELSE clause in the action
part of the step to test whether or not the terminal user wants to exit from the
task. If the user does not want to exit, ACMS passes control to the DETERMINE_
RENTAL_CLASS exchange step so that the user can enter another rental class
code.

2.3.3 Displaying Information
In a data entry task, once a procedure has written the information to a file, the
task is complete. For an inquiry task, however, once the procedure has read
information from a file, you must display that information to the terminal user.

As in the first exchange step of both the data entry and inquiry tasks, you can let
the user press a function key to exit the task.

DISPLAY_RENTAL_RATES:
EXCHANGE WORK IS
TRANSCEIVE FORM RECORD RENTAL_CLASSES_FORM_REC, QUIT_CTRL_FORM_REC
SENDING RENTAL_CLASSES_WKSP
RECEIVING QUIT_CTRL_WKSP;

ACTION
CONTROL FIELD QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

This step:

• Displays the rates for cars in the requested rental class

• Ends the task, if the user presses a function key

Once the DISPLAY_RENTAL_RATES step has displayed the car rates, ACMS
returns control to the block step part of the definition.

2.3.4 Completing the Task Definition
Like the Add Car Reservation task, the Review Car Rates task uses HP
DECforms to communicate with the terminal user. Therefore, you need to
assign the FORM I/O attribute to the block step.

You define the start of the block step with the BLOCK WORK keywords. You
use the END BLOCK WORK keywords to signal the end of the work done in the
block and to separate the block work from the block action.

Defining Tasks 2–19



Defining Tasks
2.3 Defining an Inquiry Task

For inquiry tasks, terminal users are likely to want to look at more than one
record without having to reselect the task from a menu. You can let them do this
by using the REPEAT TASK clause in the action part of the block step definition.

Finally, you must identify the workspaces used by steps in the task. Here is the
task part of the definition for the Review Car Rates task:

WORKSPACES ARE RENTAL_CLASSES_WKSP, QUIT_CTRL_WKSP, MSG_WKSP;

The task automatically uses the ACMS$PROCESSING_STATUS workspace; do
not name that workspace in the WORKSPACES clause. Example 2–5 shows the
complete definition for the Review Car Rates task.

Example 2–5 Complete Definition of the Review Car Rates Task

REPLACE TASK REVIEW_CAR_RATES_TASK /LIST=CARRTRV.LIS

WORKSPACES ARE RENTAL_CLASSES_WKSP, QUIT_CTRL_WKSP, MSG_WKSP;
BLOCK WORK WITH FORM I/O

DETERMINE_RENTAL_CLASS:
EXCHANGE
TRANSCEIVE FORM RECORD RENTAL_CLASSES_FORM_REC,

RENTAL_CLASSES_FORM_REC_LIS
SENDING RENTAL_CLASSES_WKSP
RECEIVING RENTAL_CLASSES_WKSP, QUIT_CTRL_WKSP;

ACTION
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

GET_RENTAL_RATES:
PROCESSING
CALL GET_RATES_PROC IN RENTAL_SERVER
USING RENTAL_CLASSES_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE EQ "B")
THEN GET ERROR MESSAGE;

MOVE ACMS$T_STATUS_MESSAGE TO MSG_WKSP.MESSAGE_PANEL;
GOTO NEXT EXCHANGE;

ELSE GOTO STEP DISPLAY_RENTAL_RATES;
END IF;

NO_RC_MSG:
EXCHANGE
TRANSCEIVE FORM RECORD MSG_FORM_REC, QUIT_CTRL_FORM_REC
SENDING MSG_WKSP
RECEIVING QUIT_CTRL_WKSP;

ACTION IS
IF (QUIT_CTRL_WKSP.QUIT_KEY EQ "QUIT")
THEN EXIT TASK;
ELSE GOTO STEP DETERMINE_RENTAL_CLASS;
END IF;

(continued on next page)

2–20 Defining Tasks



Defining Tasks
2.3 Defining an Inquiry Task

Example 2–5 (Cont.) Complete Definition of the Review Car Rates Task

DISPLAY_RENTAL_RATES:
EXCHANGE WORK IS
TRANSCEIVE FORM RECORD RENTAL_CLASSES_FORM_REC, QUIT_CTRL_FROM_REC
SENDING RENTAL_CLASSES_WKSP
RECEIVING QUIT_CTRL_WKSP;

ACTION
CONTROL FIELD QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

END BLOCK WORK;

ACTION
REPEAT TASK;

END DEFINITION;

When making changes to the definition, use the REPLACE command on the first
line in the file to minimize the changes that you have to make to the file later.
If you want to produce a listing file when submitting the file to ADU, you must
include the /LIST qualifier in the file itself, because you cannot use it with the at
sign character (@). The listing file shows you the source definition file and errors
encountered by ADU when that definition was processed with the CREATE or
REPLACE command.

To submit the definition file REVIEW_CAR_RATES_TASK.COM to ADU, type:

ADU> @REVIEW_CAR_RATES_TASK.COM

If there are no syntax errors in the definition, ADU stores it in the dictionary.
If there are errors in the definition, you can edit the source definition file and
resubmit it to ADU as a command file.

2.3.5 Additional Considerations: Displaying Multiple Records
The previous sections show how to define a simple inquiry task, Review Car
Rates. That task displayed a single record from a file. However, you might want
to define a task that lets a user display many records at the same time. Also, all
the records requested by the user might not fit on a single screen.

For example, a car rental agency that handles many corporate car rentals
needs to be able to review all the current reservation records for a particular
company’s employees. The Review Reservation task lets a terminal user display
the reservation records for employees in a particular company. The task displays
only five records at a time. However, it lets the terminal user display five more
records without redisplaying the initial panel.

Because the Review Reservation task is still an inquiry task, its basic structure
is the same as before. However, although the basic parts of the problem are the
same, the action taken at the end of the second and fourth steps is affected by the
following:

• Whether or not there are more records available for display

• Whether or not the terminal user wants to see more records

The steps for the Review Reservation task follow:

1. Display a panel requesting the identification number of the company whose
employee reservations the terminal user wants to see.

Defining Tasks 2–21



Defining Tasks
2.3 Defining an Inquiry Task

2. Read information from the Reservation file.

3. Display error message if necessary.

4. Display records for the terminal user. If the user wants to see more records,
repeat the second and fourth parts. Otherwise, end the task.

2.3.5.1 Getting Information from the User
The exchange step you define to get information is virtually the same in the
Review Reservation task as in the Review Car Rates task:

GET_COMPANY_ID:
EXCHANGE
TRANSCEIVE FROM RECORD CO_RESERVE_FORM_REC,

CO_RESERVE_FORM_REC_LIS
SENDING CO_RESERVE_WKSP
RECEIVING CO_RESERVE_WKSP, QUIT_CTRL_WKSP;

ACTION IS
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;

END CONTROL FIELD;

Like the Review Car Rates task, the Review Reservation task uses one workspace
for storing data returned by the form and another workspace for testing whether
or not the terminal user wants to exit from the task. Example 2–6 shows the
record description of CO_RESERVE_WKSP.

Example 2–6 Record Description for REVIEW_RESERVATION_WORKSPACE

Definition of record CO_RESERVE_WKSP
| Contains field COMP_ID
| | Datatype text size is 5 characters
| Contains field COMP_NAME
| | Datatype text size is 20 characters
| Contains field WK_ERR_MSG
| | Datatype text size is 4 characters
| Contains field WK_SAVE_NUMBER
| | Datatype signed longword
| Contains record EMPL
| | Row_major array 1:5
| | Contains field EMPL_NAME
| | | Datatype text size is 30 characters
| | Contains field EMPL_PHONE
| | | Datatype text size is 10 characters
| | Contains field CAR_TYPE
| | | Datatype text size is 3 characters
| | Contains field RENTAL_DATE
| | | Datatype text size is 6 characters
| | Contains field RETURN_DATE
| | | Datatype text size is 6 characters

2.3.5.2 Retrieving Information
The definition of the processing step for the Review Reservation inquiry task is
very similar to that for the Review Car Rates inquiry task. It calls a procedure
and handles recoverable errors.

2–22 Defining Tasks



Defining Tasks
2.3 Defining an Inquiry Task

GET_FIVE_RESERVATIONS:
PROCESSING
CALL REVIEW_RESERVATION_PROC IN RESERVATION_SERVER
USING CO_RESERVE_WKSP;

ACTION IS
IF (ACMS$STATUS_TYPE EQ "B")
THEN GET ERROR MESSAGE;

MOVE ACMS$T_STATUS_MESSAGE TO MSG_WKSP.MESSAGE_PANEL;
GOTO NEXT EXCHANGE;

ELSE GOTO STEP DISPLAY_RESERVATIONS;
END IF;

However, the REVIEW_RESERVATION_PROC procedure, after reading as many
records as fit on the terminal screen, must tell the form whether or not there are
more records available for display.

The REVIEW_RESERVATION_PROC procedure writes either MORE or STOP
to the WK_ERR_MSG field of CO_RESERVE_WKSP. You must code your IFDL
form file to test that field to tell the terminal user whether or not there are more
records to see.

As in the previous task definitions, you need to add code to handle possible
processing errors. The processing step tests the ACMS$T_STATUS_TYPE field,
and if the field indicates that an error occurred, ACMS moves the error message
to the MSG_WKSP workspace and passes control to the DISPLAY_ERROR
exchange step.

DISPLAY_ERROR:
EXCHANGE
TRANSCEIVE FORM RECORD MSG_FORM_REC, QUIT_CTRL_FORM_REC
SENDING MSG_WKSP
RECEIVING QUIT_CTRL_WKSP.QUIT_KEY;
ACTION
IF (QUIT_CTRL_WKSP.QUIT_KEY EQ "QUIT")
THEN EXIT TASK;
ELSE GOTO STEP GET_COMPANY_ID;
END IF;

This exchange step is identical to that used in the Review Car Rates task. After
it displays the error message to the terminal user, it checks to see whether or not
the user wants to exit from the task. If the user does not want to exit, ACMS
returns control to the first exchange step.

2.3.5.3 Displaying Information to the User
As in any exchange step, when you use a form to display information, you can
let the terminal user press a function key to exit the task. In this type of inquiry
task, you also want to do the following:

• Use the form to tell the user whether or not there are more records available
for display

• Let the user press a function key to see more records

• Retrieve and display the next five records if the user wants to see more
records

Defining Tasks 2–23



Defining Tasks
2.3 Defining an Inquiry Task

Here is the definition of the final exchange step of the Review Reservation task:

DISPLAY_RESERVATION:
EXCHANGE
TRANSCEIVE FORM RECORD CO_RESERVE_FORM_REC, QUIT_CTRL_FORM_REC
SENDING CO_RESERVE_WKSP
RECEIVING QUIT_CTRL_WKSP;
ACTION IS
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
"MORE" : GOTO PREVIOUS PROCESSING;
END CONTROL FIELD;

Just as you declared the PF4 function key to be the QUIT_KEY in the Add
Car Reservation task, you must declare a function key and function response
in your IFDL file so that the terminal user can press that key to see five more
records. When the terminal user presses that key, HP DECforms passes the
‘‘MORE’’ value into the QUIT_KEY field of the QUIT_CTRL_WKSP workspace.
When ACMS processes the DISPLAY_RESERVATION step, if that field contains
‘‘MORE’’, ACMS repeats the GET_FIVE_RESERVATIONS processing step. The
user avoids returning to the first step to retype the company identification
number.

2.3.5.4 Completing the Task Definition
As with the Review Car Rates task, the block step in the Review Reservation task
uses HP DECforms to interface with the terminal user. Therefore, you need to
assign the FORM I/O attribute to the block.

Although the Review Reservation task has just one processing step, that step can
be repeated many times. You need to consider whether or not the task needs to
have the same server process each time it runs that processing step; you decide to
retain or release server context.

Suppose the REVIEW_RESERVATION_PROC procedure reads the first five
records, and the form displays those records. For the user to look at the next five
records, REVIEW_RESERVATION_PROC must keep a pointer in the file to keep
track of which record was last read. You need some way to save this pointer so
that the procedure can use it if the user wants to see more records.

You can choose one of two ways to retain pointers between steps in a task:

• Retain the pointers in a workspace

• Retain server context

To retain pointers in a workspace, the procedure must write those pointers to
the workspace. Pointers are part of the context associated with a server process.
Therefore, if you retain server context, you retain the file pointers and do not
have to write those pointers to a workspace. However, in a task such as Review
Reservation, retaining server context means retaining a process until the user
looks at all the records the user wants to see.

The least expensive choice in terms of system resources is to write the file pointer
to a workspace rather than retain server context. In the Review Reservation
task, the procedure writes this file pointer to the WK_SAVE_NUMBER field of
CO_RESERVE_WKSP and releases server context. HP ACMS for OpenVMS
Concepts and Design Guidelines explains server context in more detail.

2–24 Defining Tasks



Defining Tasks
2.3 Defining an Inquiry Task

In addition to considering the general characteristics of the block step, consider
the actions you want to take as a result of the work done in that block. Suppose
that you want to take the same actions as those defined in the action part of the
block step for the Review Car Rates task: repeat the task unless the user presses
the PF4 key in the final exchange step. You use the REPEAT TASK clause in the
action part of the block step definition.

.

.

.
END BLOCK WORK;

ACTION
REPEAT TASK;

Finally, use the WORKSPACE clause to name the workspaces that you define
(CO_RESERVE_WKSP, QUIT_CTRL_WKSP, and MSG_WKSP) for the Review
Reservation task. Example 2–7 shows the complete definition for the Review
Reservation task.

Example 2–7 Complete Definition of Review Reservation Task

REPLACE TASK REVIEW_RESERVATION_TASK /LIST=RVRSV.LIS
WORKSPACES ARE CO_RESERVE_WKSP, QUIT_CTRL_WKSP, MSG_WKSP;

BLOCK WORK WITH FORM I/O

GET_COMPANY_ID:
EXCHANGE
TRANSCEIVE FROM RECORD CO_RESERVE_FORM_REC,

CO_RESERVE_FORM_REC_LIS
SENDING CO_RESERVE_WKSP
RECEIVING CO_RESERVE_WKSP, QUIT_CTRL_WKSP;

ACTION IS
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;

END CONTROL FIELD;

GET_FIVE_RESERVATIONS:
PROCESSING
CALL REVIEW_RESERVATION_PROC IN RESERVATION_SERVER
USING CO_RESERVE_WKSP;

ACTION IS
IF (ACMS$STATUS_TYPE EQ "B")
THEN GET ERROR MESSAGE;

MOVE ACMS$T_STATUS_MESSAGE TO MSG_WKSP.MESSAGE_PANEL;
GOTO NEXT EXCHANGE;

ELSE GOTO STEP DISPLAY_RESERVATIONS;
END IF;

DISPLAY_ERROR:
EXCHANGE
TRANSCEIVE FORM RECORD MSG_FORM_REC, QUIT_CTRL_FORM_REC
SENDING MSG_WKSP
RECEIVING QUIT_CTRL_WKSP;
ACTION
IF (QUIT_CTRL_WKSP.QUIT_KEY EQ "QUIT")
THEN EXIT TASK;
ELSE GOTO STEP GET_COMPANY_ID;
END IF;

(continued on next page)

Defining Tasks 2–25



Defining Tasks
2.3 Defining an Inquiry Task

Example 2–7 (Cont.) Complete Definition of Review Reservation Task

DISPLAY_RESERVATION:
EXCHANGE
TRANSCEIVE FORM RECORD CO_RESERVE_FORM_REC, QUIT_CTRL_FORM_REC
SENDING CO_RESERVE_WKSP
RECEIVING QUIT_CTRL_WKSP;
ACTION IS
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
"MORE" : GOTO PREVIOUS PROCESSING;
END CONTROL FIELD;

END BLOCK WORK;
ACTION
REPEAT TASK;

END DEFINITION;

2.4 Defining an Update Task
This section presents an update task, the Review Update task, that lets the
terminal user review an existing reservation record and change information in
the record. Table 2–4 describes the steps of an update task.

Table 2–4 Update Task

Step Type

Display a panel to get information Exchange step

Read information from a file Processing step

Display an error message, if necessary Exchange step

Display a panel with information Exchange step

Update file and display message, if necessary Nested Block step

The steps of an update task apply to the Review Update task in the following
manner:

1. Display a panel requesting the name of the customer whose reservation
record the terminal user wants to update.

2. Read information about the reservation from the Reservation file.

3. If an error occurs during the processing step, display the error message on
the screen and return to the first step.

4. Display reservation review information, allowing the terminal user to update
the data.

5. Check to see whether or not the user has changed the reservation record; if
yes, write the new data to the Reservation file and display a message to the
user.

2–26 Defining Tasks



Defining Tasks
2.4 Defining an Update Task

2.4.1 Getting Information from the User
To get information from the terminal user, you display a panel. Here is the first
exchange step of the Review Update task:

GET_CUSTOMER_NAME:
EXCHANGE
TRANSCEIVE FORM RECORD RESERVE_FORM_REC, RESERVE_FORM_REC_LIS
SENDING RESERVE_WKSP
RECEIVING RESERVE_WKSP, QUIT_CTRL_WKSP;

ACTION
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

This step is very similar to the first step in the inquiry task, Review Reservation.
Both steps do the following:

• Call a form record to display a panel asking for a record key; in this case the
record key is the customer’s name.

• Let the terminal user end the task.

• Use an optional label to assign a name to the step.

As a result, the record definition for the workspace that you use to pass
reservation data between the application and the form is very similar to the
one in the Review Reservation task. Example 2–8 shows the record description of
RESERVE_WKSP.

Example 2–8 Definition for RESERVE_WKSP Workspace

Definition of record RESERVE_WKSP
| Contains field CUST_NAME
| | Datatype text size is 30 characters
| Contains field CUST_STREET_ADDRESS
| | Datatype text size is 30 characters
| Contains field CUST_CITY
| | Datatype text size is 20 characters
| Contains field CUST_STATE
| | Datatype text size is 2 characters
| Contains field CUST_ZIP
| | Datatype text size is 5 characters
| Contains field CUST_PHONE
| | Datatype text size is 10 characters
| Contains field CAR_TYPE
| | Datatype text size is 3 characters
| Contains field RENTAL_DATE
| | Datatype text size is 6 characters
| Contains field RETURN_DATE
| | Datatype text size is 6 characters

2.4.2 Retrieving Information from a File
As shown in the data entry and inquiry tasks, reading from or writing to a file
requires a processing step. Here is the processing step for the Review Update
task:

Defining Tasks 2–27



Defining Tasks
2.4 Defining an Update Task

FIND_RESERVATION:
PROCESSING
CALL FIND_RESERVE_PROC IN RESERVE_SERVER
USING RESERVE_WKSP;

ACTION
IF (ACMS$T_STATUS_TYPE EQ "B")
THEN GET ERROR MESSAGE;

MOVE ACMS$T_STATUS_MESSAGE TO MSG_WKSP.MESSAGE_PANEL;
GOTO NEXT EXCHANGE;

ELSE GOTO STEP DISPLAY_RESERVATION;
END IF;

When you update information, it is important that the contents of a record do not
change from the time those contents are displayed to the user for update until the
time you write the changed record back to the file. This is especially important in
a multiuser application in which another user might update the record while it is
being displayed on the terminal screen for the first user.

One way of ensuring the integrity of the record you are updating is to have the
procedure lock the record and then retain server context between processing
steps. However, it is much more efficient to release server context between
processing steps. When you update a record, to ensure the integrity of the
record without locking the record and retaining server context, you need to check
whether the record was updated by someone else before writing the first user’s
changes to the file. See HP ACMS for OpenVMS Writing Server Procedures for
further discussion on releasing server context.

As in the inquiry and data entry tasks, you must consider errors that can occur
when the procedure tries to read from the file. If the reservation record for
the customer name provided by the terminal user does not exist or is locked by
another user, ACMS stores the value B in the ACMS$T_STATUS_TYPE field of
the ACMS$PROCESSING_STATUS workspace. The processing step checks that
field and, if the field contains B, retrieves the error message and stores it in the
MSG_WKSP workspace. ACMS then passes control to the DISPLAY_ERROR
exchange step:

DISPLAY_ERROR:
EXCHANGE
TRANSCEIVE FORM RECORD MSG_FORM_REC, QUIT_CTRL_FORM_REC
SENDING MSG_WKSP
RECEIVING QUIT_CTRL_WKSP;
ACTION
IF (QUIT_CTRL_WKSP.QUIT_KEY EQ "QUIT")
THEN EXIT TASK;
ELSE GOTO STEP GET_CUSTOMER_NAME;
END IF;

This exchange step sends the error message stored in MSG_WKSP to the MSG_
FORM_REC form record for display to the terminal screen. The action part of
this step tests the QUIT_KEY field of the QUIT_CTRL_WKSP workspace to see
whether or not the terminal user wants to exit from the task. If the user presses
the PF4 key, HP DECforms returns the value ‘‘QUIT’’ to the workspace, and
ACMS ends the task and returns the user to the menu. Otherwise, ACMS passes
control to the first step in the task definition.

2–28 Defining Tasks



Defining Tasks
2.4 Defining an Update Task

2.4.3 Letting the User Update the Information
Once a procedure has read information from a file, you can display that
information to the terminal user. The user can then supply information, in
the form of changes, to be written back to the file. You use an exchange step to
call a form record to display information to the user and to accept changes.

Here is the exchange step that displays information for the Review Update task:

DISPLAY_RESERVATION:
EXCHANGE
TRANSCEIVE FORM RECORD RESERVE_FORM_REC, RESERVE_FORM_REC_LIS
SENDING RESERVE_WKSP
RECEIVING RESERVE_WKSP, QUIT_CTRL_WKSP

SHADOW IS RESERVE_SHADOW_WKSP;
ACTION
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

For an inquiry task, such as Review Reservation, this second exchange step is the
final step in the task. However, in an update task, the user can make changes to
the information displayed.

The DISPLAY_RESERVATION step uses RESERVE_WKSP to send the
information read by the FIND_RESERVE_PROC procedure to the form for
display. The step also uses RESERVE_WKSP to store the information that the
terminal user returns.

Unlike exchange steps in the data entry and inquiry tasks, this step uses a
shadow workspace to determine whether or not the terminal user changed any
information in the reservation record. When you declare a shadow workspace,
HP DECforms returns a value to that workspace that indicates whether or not
the user changed any data in the record. In this exchange step, RESERVE_
SHADOW_WKSP is the shadow workspace for the RESERVE_WKSP workspace.

The record description for RESERVE_SHADOW_WKSP is the same as for
RESERVE_WKSP, except that you must add a field to store the value that HP
DECforms returns. Example 2–9 shows the definition.

Defining Tasks 2–29



Defining Tasks
2.4 Defining an Update Task

Example 2–9 Record Description for RESERVE_SHADOW_WKSP Workspace

Definition of record RESERVE_SHADOW_WKSP
| Contains field REC_STATUS
| | Datatype text size is 1 character
| Contains field CUST_NAME_SHADOW
| | Datatype text size is 1 character
| Contains field CUST_STREET_ADDRESS_SHADOW
| | Datatype text size is 1 character
| Contains field CUST_CITY_SHADOW
| | Datatype text size is 1 character
| Contains field CUST_STATE_SHADOW
| | Datatype text size is 1 character
| Contains field CUST_ZIP_SHADOW
| | Datatype text size is 1 character
| Contains field CUST_PHONE_SHADOW
| | Datatype text size is 1 character
| Contains field CAR_TYPE_SHADOW
| | Datatype text size is 1 character
| Contains field RENTAL_DATE_SHADOW
| | Datatype text size is 1 character
| Contains field RETURN_DATE_SHADOW
| | Datatype text size is 1 character

If the terminal user changed any data in RESERVE_WKSP, ACMS stores a 1
in the REC_STATUS field of RESERVE_SHADOW_WKSP when the transceive
operation completes. The status field in the shadow workspace must be the
first field in your record definition. In your HP DECforms IFDL code, you must
assign the TRACKED attribute to the fields of shadow workspaces. See the HP
DECforms documentation for information on using this attribute.

After the DISPLAY_RESERVATION step ends, you need to check the shadow
workspace to see whether or not the reservation record has changed. If it has,
write the new record to the Reservation file and display a message on the
terminal screen confirming the update.

2.4.4 Writing the New Information to the File
The CHECK_RESERVE_CHANGES step is a nested block step that includes
the following parts:

• Block conditional clause

• Processing step

• Exchange step

By using a nested block step, you can group processing and exchange steps
and have ACMS process them only if a certain condition is met. You introduce
a nested block the same way you introduce a block, with the BLOCK WORK
keywords. As with other steps, you can assign a label to a nested block and refer
to it from elsewhere in the task definition.

A block conditional clause is one of the four ADU conditional clauses (CONTROL
FIELD, IF THEN ELSE, SELECT FIRST, or WHILE DO) used at the block step
level. You can use it to start an exchange step, a processing step, or another block
step. However, you can use a block conditional clause only at the start of a block
step. You cannot use it between steps within the block. Here is the definition for
the CHECK_RESERVE_CHANGES nested block step:

2–30 Defining Tasks



Defining Tasks
2.4 Defining an Update Task

CHECK_RESERVE_CHANGES:
BLOCK WORK
IF (RESERVE_SHADOW_WKSP.REC_STATUS EQ "1")
THEN

PROCESSING
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER
USING RESERVE_WKSP;

ACTION
MOVE "RESERVATION RECORD UPDATED" TO MSG_WKSP.MESSAGE_PANEL;

EXCHANGE
SEND FORM RECORD MSG_FORM_REC
SENDING MSG_WKSP;

END IF;
END BLOCK;

In the CHECK_RESERVE_CHANGES step, an IF THEN ELSE block conditional
clause tests the shadow workspace. If the REC_STATUS field equals 1, ACMS
processes the processing and exchange steps that follow the THEN keyword. The
processing step calls the WRITE_RESERVE_PROC procedure, which writes the
new reservation record to the Reservation file.

The action part of the processing step moves the message ‘‘RESERVATION
RECORD UPDATED’’ to the MSG_WKSP workspace, and the exchange step then
sends that message to HP DECforms for display.

If the shadow record indicates that the terminal user did not change any data
in the reservation record, ACMS does not perform the processing and exchange
steps in the CHECK_RESERVE_CHANGES block step. Note that you do not
need to include the ELSE keyword in the IF THEN ELSE clause. ACMS passes
control to the clause following the END IF keywords. Be sure to end the nested
block with the END BLOCK keywords.

2.4.5 Completing the Task Definition
The Review Update task uses HP DECforms to interface with the terminal;
therefore, you need to assign the FORM I/O attribute to the block. Nested blocks
inherit the attributes that you assign to their parent blocks; so, you do not need
to include the FORM I/O keywords with the CHECK_RESERVE_CHANGES step.

Because you want to repeat this task automatically rather than make the
terminal user choose the task again from the menu, include the REPEAT TASK
clause in the action part of the parent block.

Finally, you must name the workspaces used by the steps in the task. In the
Review Update task these are RESERVE_WKSP, RESERVE_SHADOW_WKSP,
QUIT_CTRL_WKSP, and MSG_WKSP. Declare these workspaces using the
WORKSPACES ARE clause in the task definition.

WORKSPACES ARE RESERVE_WKSP, RESERVE_SHADOW_WKSP, QUIT_CTRL_WKSP, MSG_WKSP;

Example 2–10 shows the complete definition for the Review Update task.

Defining Tasks 2–31



Defining Tasks
2.4 Defining an Update Task

Example 2–10 Complete Definition of Review Update Task

REPLACE TASK REVIEW_UPDATE_TASK /LIST=RVSCHED.LIS
WORKSPACES ARE RESERVE_WKSP, QUIT_CTRL_WKSP, MSG_WKSP,

RESERVE_SHADOW_WKSP;

BLOCK WORK WITH FORM I/O

GET_CUSTOMER_NAME:
EXCHANGE
TRANSCEIVE FORM RECORD RESERVE_FORM_REC, RESERVE_FORM_REC_LIS
SENDING RESERVE_WKSP
RECEIVING RESERVE_WKSP, QUIT_CTRL_WKSP;

ACTION
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

FIND_RESERVATION:
PROCESSING
CALL FIND_RESERVE_PROC IN RESERVE_SERVER
USING RESERVE_WKSP;

ACTION
IF (ACMS$T_STATUS_TYPE EQ "B")
THEN GET ERROR MESSAGE;

MOVE ACMS$T_STATUS_MESSAGE TO MSG_WKSP.MESSAGE_PANEL;
GOTO NEXT EXCHANGE;

ELSE GOTO STEP DISPLAY_RESERVATION;
END IF;

DISPLAY_ERROR:
EXCHANGE
TRANSCEIVE FORM RECORD MSG_FORM_REC, QUIT_CTRL_FORM_REC
SENDING MSG_WKSP
RECEIVING QUIT_CTRL_WKSP;
ACTION
IF (QUIT_CTRL_WKSP.QUIT_KEY EQ "QUIT")
THEN EXIT TASK;
ELSE GOTO STEP GET_CUSTOMER_NAME;
END IF;

DISPLAY_RESERVATION:
EXCHANGE
TRANSCEIVE FORM RECORD RESERVE_FORM_REC, RESERVE_FORM_REC_LIS
SENDING RESERVE_WKSP
RECEIVING RESERVE_WKSP, QUIT_CTRL_WKSP

SHADOW IS RESERVE_SHADOW_WKSP;
ACTION
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

CHECK_RESERVE_CHANGES:
BLOCK WORK
IF (RESERVE_SHADOW_WKSP.REC_STATUS EQ "1")
THEN

PROCESSING
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER
USING RESERVE_WKSP;

ACTION
MOVE "RESERVATION RECORD UPDATED" TO MSG_WKSP.MESSAGE_PANEL;

(continued on next page)

2–32 Defining Tasks



Defining Tasks
2.4 Defining an Update Task

Example 2–10 (Cont.) Complete Definition of Review Update Task

EXCHANGE
SEND FORM RECORD MSG_FORM_REC
SENDING MSG_WKSP;

END IF;
END BLOCK;

END BLOCK;
ACTION
REPEAT TASK;

END DEFINITION;

Defining Tasks 2–33





3
Using HP DECforms with ACMS

Chapter 3 describes how the implementation of HP DECforms affects ACMS task
and application definitions. Separate sections in this chapter explain the ACMS
interface to HP DECforms, making calls to HP DECforms external requests,
new HP DECforms user interface features, writing and compiling HP DECforms
escape units, and a comparison of HP DECforms and TDMS.

3.1 ACMS Interface to HP DECforms
The ACMS interface to HP DECforms is made up of six calls. These calls enable,
disable, or cancel a form as well as send, receive, and transceive (a combination
of send and receive) information to and from the form. ACMS makes these calls
to HP DECforms external requests, which are requests called from outside the
form.

The next section explains how external requests are called by ACMS. The second
section outlines how HP DECforms processes external requests.

3.1.1 Calls to External Requests
ACMS automatically makes calls to three external requests:

• ENABLE—When a form is accessed in a task for the first time

• DISABLE—When you exit from ACMS

• CANCEL—When you use the DCL commands ACMS/CANCEL USER,
ACMS/CANCEL TASK, or Ctrl/Y to cancel a task

You make calls to the remaining three external requests in the EXCHANGE step
of an ACMS task definition:

• SEND

Use the SEND call in a task definition when you want to send data to the
form.

• RECEIVE

Use the RECEIVE call in a task definition to receive data from the form.

• TRANSCEIVE

Use the TRANSCEIVE call to send data to and receive data from the form.

3.1.2 Processing External Requests
In processing external requests,HP DECforms follows a specific order of steps,
called phases. See DECforms Programmer’s Reference Manual for more details
on how phases proceed with HP DECforms.

Using HP DECforms with ACMS 3–1



Using HP DECforms with ACMS
3.1 ACMS Interface to HP DECforms

3.1.3 Responses to External Requests
With HP DECforms, use responses to control the operation of forms processing.
You can think of a HP DECforms response as a way of directing how HP
DECforms responds or behaves. By declaring responses, you can determine
much of what HP DECforms does in its interaction with the user’s terminal, the
form, and the ACMS application.

The following list describes HP DECforms responses that you can use to direct
the actions of forms processing. The descriptions include references to the HP
DECforms documentation for additional information.

• Control text responses

You can use control text responses to send information to HP DECforms
(such as display directions) or to collect information from HP DECforms
(such as status information about the completion of a SEND, RECEIVE, or
TRANSCEIVE operation).

Refer to DECforms IFDL Reference Manual for more information about
control text responses.

• External responses

After it processes control text responses, HP DECforms processes other
responses that you enter in the form source (IFDL) file. If you do not declare
responses in the IFDL file, the HP DECforms performs certain default actions
for each call to an external request. Default actions are detailed in DECforms
Programmer’s Reference Manual.

To alter the default actions of HP DECforms or to direct HP DECforms
to take certain actions if there are no defaults, you must enter external
responses in the form source IFDL file.

Refer to DECforms IFDL Reference Manual for more information on declaring
external responses.

• Response steps

A response step is an instruction to HP DECforms to alter the processing of
an external request. Enter response steps in the form source IFDL file.

DECforms Guide to Commands and Utilities contains a table of response
steps, and DECforms Programmer’s Reference Manual describes each response
step in detail.

An example of a response step is DISPLAY, which causes the named panels
on the terminal screen to display.

• Accept responses

Enter accept responses in the form source IFDL file to determine what HP
DECforms does during user input. The four types of accept responses are
ENTRY, EXIT, FUNCTION, and VALIDATION.

Refer to DECforms Programmer’s Reference Manual for more information
about accept responses.

• Internal responses

An internal response is one that is called from another response. You can use
internal responses for any action that is called for repeatedly in a form. For
example, you might want to direct HP DECforms to display a message each
time a user enters the last item in a list.

3–2 Using HP DECforms with ACMS



Using HP DECforms with ACMS
3.2 Writing and Compiling HP DECforms Escape Units

3.2 Writing and Compiling HP DECforms Escape Units
In HP DECforms, you can use escapes to call subroutines from the form. These
subroutines, which are called escape units, perform actions outside the form,
such as data validation or database lookup. (Escape units are similar to UARs in
FMS.)

Note

Many agents, including the CP agent supplied by ACMS, perform
work on behalf of multiple users. These agents are multithreaded or
asynchronous. However,HP DECforms escape units provide only a
synchronous interface. When you use an escape unit in a multithreaded
or asynchronous agent, be careful not to do anything that might delay
the CP agent in its processing other users’ requests. For example, do
not perform terminal or disk I/O from an escape unit executing in a
multithreaded or asynchronous agent.

Using HP DECforms escape units is a two-step procedure. You must write the
escape unit, and you must also edit the form IFDL source file to call the escape
unit from the form. The following sections explain the steps necessary to write
and implement HP DECforms escape units.

3.2.1 Writing an Escape Unit
You can write an escape unit in COBOL or in any other high-level programming
language that supports the OpenVMS calling standard. Example 3–1 shows a
COBOL program that counts the number of employees added to the EMPLOYEE_
INFO_RECORD_1.

Example 3–1 Example of an Escape Unit

***************************************************
IDENTIFICATION DIVISION.
PROGRAM-ID. EMPLOYEE_COUNT.

***************************************************
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.

***************************************************
DATA DIVISION.
WORKING-STORAGE SECTION.

LINKAGE SECTION.
01 EMPL_COUNT PIC S9(9) COMP.

***************************************************
PROCEDURE DIVISION USING COUNTER.

00-DO-ADD.

ADD 1 TO COUNTER.
END PROGRAM EMPLOYEE_COUNT.

One use for the COUNTER value is to display its value on a panel after a
message such as ‘‘Total number of employees is.’’

Using HP DECforms with ACMS 3–3



Using HP DECforms with ACMS
3.2 Writing and Compiling HP DECforms Escape Units

After you write an escape unit, you create an object (.OBJ) file by compiling the
escape unit. For example:

$ COBOL employee_count

3.2.2 Calling an Escape Unit in a Form Source IFDL File
To use a HP DECforms escape unit, you must also enter a response step in the
form source IFDL file to call that escape unit. The function of the escape unit
created in Example 3–1 is to count employees as they are added to the database.
You need to place the call to the escape unit within an external response, which
directs HP DECforms to vary its processing of an external request. For example:

RECEIVE RESPONSE EMPLOYEE_INFO_FORM
DISPLAY EMPLOYEE_INFO_PANEL_1
CALL ’EMPLOYEE_COUNT’ USING EMPL_NUMBER

END RESPONSE

In the previous example, the CALL response step calls the escape unit
EMPLOYEE_COUNT and passes the form data item EMPL_NUMBER to
the escape unit. For each EMPL_NUMBER sent to it, the escape unit adds 1 to
the COUNTER variable and returns the new value to the form. When the escape
unit finishes, HP DECforms ends the response.

3.3 Linking HP DECforms Form Objects
After you have edited your form’s IFDL source file and translated it into a binary
.FORM file, you need to create an object module and a shareable image of the
form to use in your application. First, use the HP DECforms EXTRACT OBJECT
command as follows:

$ FORMS EXTRACT OBJECT EMPLOYEE_INFO_FORM.FORM

This command creates a form object module, or .OBJ file. Then link the object
into a shareable image:

$ LINK/SHARE EMPLOYEE_INFO_FORM.OBJ

The result of the LINK/SHARE command is an image (.EXE) of the file, which
can be shared by multiple users.

3.4 Linking Escape Units
The two methods for linking the escape units used in an application are:

• Link escape unit objects with form objects. For example:

$ LINK/SHARE EMPLOYEE_INFO_FORM.OBJ, EMPLOYEE_ESC_UNIT.OBJ

• Link escape unit objects into a separate image. For example:

$ LINK/SHARE=SHARE_ESC_UNIT.EXE EMPLOYEE_ESC_UNIT1.OBJ, -
_$ EMPLOYEE_ESC_UNIT2.OBJ, ESC_UNIT.OPT/OPT

When you link escape units into a separate image, you must use an options file to
declare all escape unit names as universal. For example:

UNIVERSAL = EMPLOYEE_ESC_UNIT1
UNIVERSAL = EMPLOYEE_ESC_UNIT2

3–4 Using HP DECforms with ACMS



Using HP DECforms with ACMS
3.4 Linking Escape Units

If you link escape units separately, you can place them in a write-protected
directory for security. However, ACMS does not automatically cache escape unit
images that are stored separately. Instead, the system manager must manually
distribute the escape unit image files. HP ACMS for OpenVMS Managing
Applications explains caching ACMS and HP DECforms files in more detail.

Note

When you use HP DECforms, form objects and escape unit objects cannot
be linked with agents.

The following list describes the advantages and disadvantages of each method for
linking escape units:

• Linking escape units with the form objects

You can make escape units available to the Command Process (CP) agent by
linking them into the same image as the form. An advantage of this method
is that, if your system uses distributed processing, the escape units are
automatically cached, along with the form files, to the remote submitter node.

By using this method, however, you allow application code from a remote
system to execute in a privileged environment on your system. But if the
remote application node and the local submitter node are in a common
security domain, this may not be a concern.

To avoid the possible security problem of executing escape units that
are linked with the forms shareable image, ACMS, by default, does not
execute these escape units. To execute them, you must define the following
system-level logical:

ACMS$ESC_RTN_IN_FORM

If the value of this logical is set to T, t, Y, y, or l, then ACMS allows these
escape units to run. If this logical is not defined or has another value, ACMS
does not execute the escape units.

• Linking escape units in a separate image

You can also link escape units in their own shareable image. You then need
to make that image available to the CP agent by defining the following logical
name:

FORMS$IMAGE

If there are more than one escape unit image, you can make the logical a
search list of all images. For the CP agent supplied by ACMS, this logical
must be in either the system group name table or the system name table.
(Refer to the DECforms documentation for more information about defining
this logical.)

If you use the FORMS$IMAGE logical to specify escape unit images, these
escape units can be shared by all of the applications that the CP agent
references. However, sometimes the different applications may have the
same escape unit name for different functions. To settle this possible naming
conflict, ACMS provides an additional system-level logical name:

ACMS$ESC_RTN_<node>_<application>

Using HP DECforms with ACMS 3–5



Using HP DECforms with ACMS
3.4 Linking Escape Units

You can use this logical to define an escape unit image for a particular
application on a particular node. If the application uses more than one image,
this logical can be a search list. When you use this logical name on a system
where the NODE_NAME parameter is not defined in ACMSGEN, you must
omit the <node> part from the logical name. Therefore, the system-level
logical name looks like:

ACMS$ESC_RTN_<application>

If you do not define either of these logicals, or if the specified logical is not on
the search list, HP DECforms then uses the FORMS$IMAGE logical.

3.4.1 Managing Escape Unit Files
Escape units are executed in the context of the agent process. Consequently, the
application and system managers must consider the following:

• Making escape units available to the CP agent

• Protecting privileged agents that execute escape units

Certain agents, such as the CP agent that ACMS supplies, run in a privileged
environment. Any escape units that execute in a privileged agent also execute
in the same privileged environment. Be sure to develop escape units to execute
in a privileged agent in the same way as you develop any other privileged code.
Carefully review the code for any possible security violations before you run it
live on the system.

Place the escape unit images in a write-protected directory; also write-protect
the images themselves. After you place the file in a protected directory, you
can define the logical names that make the escape units available to the agent
process.

You may not, however, need to place the escape units executed by a nonprivileged
agent in a protected directory. In some cases, such as debugging, you may want
the person running the CP agent to be able to change the escape units executed.
Use the methods described in this section to make the escape unit images
available to the CP agent.

3.4.2 Replacing Form Files
If you need to change a HP DECforms file in binary format (.FORM), stop the
application and restart it before using the new file. This procedure ensures that
EXC has the correct file information for caching purposes.

HP DECforms files in image format (.EXE) require different treatment. Before
using a new form image file for HP DECforms files in image format, stop the
terminal subsystem so that the CP can map the new version of the form image.
This action is necessary because OpenVMS maps these images into the processes
that are using them, and there is no way to unmap the images.

Form image files are recommended for production environments, because they
require fewer resources in multithreaded environments than files in binary
format. The following procedure is suggested for customers who need to replace
form image files without stopping the agent process.

The ACMS task group definition must specify the form file with a logical name
rather than a file specification. Define the logical name outside ACMS in a logical
name table accessed by both the EXC process and the application manager.

3–6 Using HP DECforms with ACMS



Using HP DECforms with ACMS
3.4 Linking Escape Units

To replace a form file:

• Rename the new form file.

• Change the definition of the logical name for the form file to point to the new
file specification.

• Stop and restart the application.

When you follow this procedure, the application picks up the new name of the
form file and passes it to the agent. The agent then asks OpenVMS to map the
renamed file. Because the OpenVMS image activation code sees the new name of
the form file, it considers the file to be different from any files that are already
mapped in. The renamed form file is mapped in, and the agent process begins to
use it.

Note that the OpenVMS image activation code uses only the file name portion
of the file specification to determine whether or not it is a new image. Changing
other parts of the file specification (for example, device, directory, file extension,
or version number) has no effect. Each image can be activated only once in a
process. If an image file has been activated, then a different image file with the
same name is not activated.

3.5 Creating Forms Trace Files
To create HP DECforms forms trace files, define the HP DECforms logical names
FORMS$TRACE and FORMS$TRACE_FILE. If you are using the CP, define the
two HP DECforms logical names in the the system name table.

If you define FORMS$TRACE but not FORMS$TRACE_FILE, HP DECforms
writes the trace file to the CP default directory. In this case, you must ensure
that the CP default directory exists. Otherwise, the CP does not enable forms
because it cannot create trace files for the forms. If this happens, ACMS does not
let users sign in. This situation occurs even if you define the ACMS$DEFAULT_
MENU_FORMS_PRODUCT logical name to be TDMS.

3.6 Naming Forms Image Files
If you use HP DECforms forms image files, adhere to the following restrictions
when you name the image files:

• The file name of the image must be unique. The OpenVMS image activator
keeps track of images by file name only. Therefore, forms image file names
must be unique, even if they are located in different directories or on different
devices.

• Avoid defining the file name of a forms image file as a logical. The OpenVMS
image activator attempts to perform a logical translation of the file name.
However, it is recommended that you do not define the file name of a forms
image file to be a logical because this can cause problems with the ACMS
management of the forms file. If you do define the file name of a forms image
file to be a logical, the logical name must refer to a valid form file. Otherwise,
ACMS generates the following error message when a task tries to access the
forms image file:

An error was returned from a HP DECforms request
%FORMS-F-INVFHDSIZ, invalid form header size.

Using HP DECforms with ACMS 3–7



Using HP DECforms with ACMS
3.6 Naming Forms Image Files

The file name of the ACMS menu is ACMS_MENU. If you define ACMS_
MENU as a logical, it must refer to a forms image file that contains a valid
form for the ACMS menu. Otherwise, the CP does not let users sign in to
ACMS.

3.7 User Interface Features with HP DECforms
HP DECforms user interface features include the following:

• Ctrl/Z or F10 to exit from a HP DECforms menu

As part of HP DECforms design, Ctrl/Z can be defined so that it functions the
same as the EXIT command does. When a user presses Ctrl/Z or F10 for a HP
DECforms menu selection, the CP handles it like an EXIT command, and the
user exits out of ACMS.

• Cursor repositioning

In ACMS, a user can press PF2 and then the UP/DOWN arrow keys to move
the cursor up and down among the entries. If the user presses Return , the CP
handles it just as if the user had typed the number of the item.

• Line recall selection

In ACMS, a user can press the UP/DOWN arrow keys to recall a selected line
backward or forward just like the OpenVMS command line recall function.

3.8 Comparison of HP DECforms and TDMS
Although there are not always exact equivalents between HP DECforms and
TDMS, Table 3–1 is useful in understanding the differences and the similarities
of these two forms products.

Table 3–1 HP DECforms and TDMS Terminology

HP DECforms Term TDMS Equivalent

Form Request

Form file Request library file

Form record CDD record definition

IFDL source file Request definition file

Panel Form

Panel field Form field

Panel Editor Form editor (Layout Phase)

Layout (No equivalent)

Viewport (No equivalent)

Request response (No equivalent)

Request calls TDMS programming calls

Literals Background text

Function keys Program request keys and redefined keys

Refer to DECforms Guide to Converting VAX TDMS Applications for more
information about TDMS and HP DECforms terminology.

3–8 Using HP DECforms with ACMS



Using HP DECforms with ACMS
3.8 Comparison of HP DECforms and TDMS

Note

You can use the TDMS Converter to convert TDMS forms or TDMS
requests, or both, to a HP DECforms IFDL source file. There are many
differences between the two forms products, and ACMS continues to
support TDMS forms. Therefore, it is recommended that you use HP
DECforms to develop new forms, but that you continue to use TDMS
forms for existing ACMS applications. See DECforms Guide to Converting
VAX TDMS Applications for more information on conversions.

Using HP DECforms with ACMS 3–9





4
Defining Workspaces

Chapter 2 briefly introduces the concept of ACMS workspaces and shows how
to use them to pass data between parts of an application. Chapter 4 describes
workspaces in more detail. Specifically, this chapter describes the three types
of ACMS workspaces and explains how to use them to perform the following
functions:

• Using a workspace that you define, rather than a system workspace, to do
error handling in a definition

• Using data that the user types in response to the Selection: prompt on a
menu as input to a task definition

• Using special kinds of workspaces to pass information needed for more than
one instance of a task

HP ACMS for OpenVMS Writing Server Procedures explains how to write the
procedures required for the task definitions explained in this chapter.

4.1 Understanding the Types of ACMS Workspaces
The three types of workspaces you can use in your task definitions are:

• Task

• User

• Group

Task is the default and most frequently used workspace type. Use task
workspaces to store database records; to pass data between parts of your
application, such as the form and exchange steps; and to perform error handling.
Because ACMS retains task workspaces only for the life of a task instance, task
workspaces do not use a lot of memory and CPU time. A task instance is one
iteration of a task. Therefore, unless your application has certain requirements
that can be met only by using user or group workspaces, use task workspaces.

A system workspace is one of three ACMS-supplied task workspaces. The
ACMS$PROCESSING_STATUS workspace stores status information returned
from procedures. The ACMS$SELECTION_STRING workspace stores text
strings passed by the terminal user when the user selects a task from the menu.
The ACMS$TASK_INFORMATION workspace stores task execution information.
Because system workspaces are task workspaces, they do not use much memory
and CPU time.

User workspaces let you store information used by a single user in many tasks
or many task instances. User workspaces are helpful when the user needs to use
the same information as a key for multiple task selections. For example, in a
personnel application, a user might need to retrieve various information about an
employee by choosing several tasks. Instead of requiring the user to type in the
employee’s number for each task, you can store the employee number in a user

Defining Workspaces 4–1



Defining Workspaces
4.1 Understanding the Types of ACMS Workspaces

workspace so that it is available for all tasks that the user selects during that
particular ACMS session.

You might also use user workspaces to store user-specific information that
changes during the user’s session. For example, you might want to keep a log of
the type of work done by the user. Because ACMS retains user workspaces for
the duration of the user’s session, user workspaces require more memory and
CPU time than task workspaces.

Group workspaces let you store information used by many users in many tasks
or instances of the same task. You typically use group workspaces to store static
information. For example, an accounting application might include several tasks
that use the current interest rate. Instead of requiring users to repeatedly enter
the interest rate, you can store it in a group workspace. Because ACMS retains
group workspaces as long as the application is started, group workspaces require
more memory and CPU time than task workspaces.

Table 4–1 briefly summarizes the availability and purpose of the three types of
workspaces.

Table 4–1 Summary of ACMS Workspaces

Type Available Purpose

Task For duration of task
instance

Passing information between:

• Steps in a task

• Exchange steps and forms

• Processing steps and servers

• Parent tasks and called tasks

User For user’s ACMS session Storing user-specific information

Group As long as the application
is started

Storing static information required by many tasks in a group

4.2 Handling Errors with a Task Workspace
You want to trap errors that a task encounters and tell the user what happened
whenever a task encountered them. You use workspaces to pass error-related
information among the procedure, the definition, and the form in task definitions.

There are two kinds of workspaces you may want to use for error handling:

• The ACMS system workspace ACMS$PROCESSING_STATUS

• A task workspace that you define

The task definitions explained in Chapter 2 used the ACMS$PROCESSING_
STATUS system workspace for error handling. When you use the
ACMS$PROCESSING_STATUS workspace with the GET ERROR MESSAGE
clause, ACMS:

1. Checks the status value returned by a procedure and placed, by ACMS, in the
ACMS$L_STATUS field of the ACMS$PROCESSING_STATUS workspace

2. Gets a message from a file named by the MESSAGE FILE clause

4–2 Defining Workspaces



Defining Workspaces
4.2 Handling Errors with a Task Workspace

3. Stores the message in the ACMS$T_STATUS_MESSAGE_LONG field of the
ACMS$PROCESSING_STATUS workspace

To handle messages for a task, you may want to use a workspace that you define
rather than the ACMS$PROCESSING_STATUS system workspace if:

• You want to return to the user information not related to the return status of
a procedure

• You want to store literal message text instead of using message files

• You have other needs that are not completely met by the system workspace

When using workspaces that you define to handle errors, pass the workspace to
the form or procedure and move values to a field in the workspace. You then test
the workspace in the action part of the step to determine what to do next. This is
how the tasks explained in Chapter 2 use the QUIT_KEY field of a workspace to
handle actions in exchange steps. You can handle actions in processing steps in
the same way.

For example, you can add a field for storing information returned by the WRITE_
RESERVE_PROC procedure to the record definition for ADD_RESERVE_WKSP
used in the Add Car Reservation task in Chapter 2. Example 4–1 shows the new
CDD definition for ADD_RESERVE_WKSP.

Example 4–1 Record Definition for ADD_RESERVE_WKSP

Definition of record ADD_RESERVE_WKSP
| Contains field WK_CONTROL
| | Datatype text size is 7 characters
| Contains field CUST_NUMBER
| | Datatype signed longword
| Contains field CUST_NAME
| | Datatype text size is 30 characters
| Contains field CUST_STREET_ADDRESS
| | Datatype text size is 30 characters
| Contains field CUST_CITY
| | Datatype text size is 20 characters
| Contains field CUST_STATE
| | Datatype text size is 2 characters
| Contains field CUST_ZIP
| | Datatype text size is 5 characters
| Contains field CUST_PHONE
| | Datatype text size is 10 characters
| Contains field CAR_TYPE
| | Datatype text size is 3 characters
| Contains field RENTAL_DATE
| | Datatype text size is 6 characters
| Contains field RETURN_DATE
| | Datatype text size is 6 characters

The WRITE_RESERVE_PROC procedure returns a value to WK_CONTROL,
the new field you have added. Because the WK_CONTROL field is a 7-character
text field, the WRITE_RESERVE_PROC procedure can return a literal string
describing the success or failure of writing a new record to the Reservation file.

Now you add a workspace that you define for error handling to the USING part
of the CALL clause in the processing step of the Add Car Reservation task:

Defining Workspaces 4–3



Defining Workspaces
4.2 Handling Errors with a Task Workspace

PROCESSING
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER
USING ADD_RESERVE_WKSP;

CONTROL FIELD WK_CONTROL
"FAILURE" : GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

The WRITE_RESERVE_PROC procedure stores a value in the WK_CONTROL
field of ADD_RESERVE_WKSP, and you use the CONTROL FIELD clause to test
that value. Then you can return a message to the user. There are three ways to
return messages to the user:

• Return error message text from the procedure code. In this case, the
procedure moves the error message text into a workspace that is passed to
the form. The form displays the message text like any other output.

• Use the GET ERROR MESSAGE clause in the task definition to move a
message from a message file into a workspace. You can name the message
symbol used for getting the message in the GET ERROR MESSAGE clause,
or it can be the return status value of the procedure, placed by ACMS in the
ACMS$PROCESSING_STATUS workspace by ACMS. See the HP ACMS for
OpenVMS ADU Reference Manual for more information on the GET ERROR
MESSAGE clause.

• Include literal error message text in the form, using an IF THEN ELSE
response statement to determine whether or not to display the text or what
text to display.

In this case, if the WRITE_RESERVE_PROC procedure returns the string
FAILURE to the WK_CONTROL field, GOTO PREVIOUS EXCHANGE returns
ACMS to the previous exchange. You can use the form in the previous exchange
to display a message telling the user that the new car reservation record was not
added to the file. The "FAILURE" in this example is literal error message text
that displays when the WRITE_RESERVE_PROC procedure returns the string
FAILURE to the WK_CONTROL field.

Example 4–2 shows the complete definition for the Add Car Reservation task
using a workspace that you define for error handling.

Example 4–2 Task Definition for Add Car Reservation Task

REPLACE TASK ADD_CAR_RESERVATION_TASK
WORKSPACES ARE ADD_RESERVE_WKSP, QUIT_CTRL_WKSP;

BLOCK WORK WITH FORM I/O IS

GET_RENTAL_INFORMATION:
EXCHANGE WORK IS
RECEIVE FORM RECORD ADD_RESERVE_FORM_REC_LIS
RECEIVING ADD_RESERVE_WKSP, QUIT_CTRL_WKSP;

ACTION IS
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

(continued on next page)

4–4 Defining Workspaces



Defining Workspaces
4.2 Handling Errors with a Task Workspace

Example 4–2 (Cont.) Task Definition for Add Car Reservation Task

WRITE_RESERVATION_INFORMATION:
PROCESSING WORK IS
CALL WRITE_RESERVE_PROC IN RESERVE_SERVER
USING ADD_RESERVE_WKSP;
ACTION IS
CONTROL FIELD IS WK_CONTROL
"FAILURE" : GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

END BLOCK WORK;
ACTION IS
REPEAT STEP;

END DEFINITION;

4.3 Using Data Supplied at the Menu
You can use information that the user supplies when selecting a task from a
menu as input to a task.

Users often must type the number or keyword of the task they want to run when
selecting a task from a menu like the one shown in Figure 4–1.

Figure 4–1 A Selection Menu

To display the review history of an employee from the menu in Figure 4–1, the
user types HISTORY in response to the Selection: prompt.

When a user selects a task from a menu, the first step of the task is often
an exchange step asking the user to supply a key, usually something like an
employee number or department number. Instead of asking the user for the key
after making the selection, however, you can let the user supply that information
when making a selection. ACMS stores this selection string in the system
workspace, ACMS$SELECTION_STRING.

Example 4–3 shows the record definition of the ACMS$SELECTION_STRING
workspace.

Defining Workspaces 4–5



Defining Workspaces
4.3 Using Data Supplied at the Menu

Example 4–3 Definition for the ACMS$SELECTION_STRING Workspace

DEFINE RECORD DISK1:[CDDPLUS]ACMS$DIR.ACMS$WORKSPACES.ACMS$SELECTION_STRING.
ACMS$SELECTION_STRING STRUCTURE.
ACMS$T_SELECTION_STRING DATATYPE TEXT 255.

END STRUCTURE.
END RECORD.

Like the ACMS$PROCESSING_STATUS system workspace, the
ACMS$SELECTION_STRING workspace is automatically available to all
tasks. In the ACMS$SELECTION_STRING workspace, ACMS stores any text
containing up to 255 characters that the user types after typing the number or
keyword of a task.

If you use the ACMS$SELECTION_STRING workspace to let the user type in
a record key, the first exchange step of the task can check for that key in the
ACMS$SELECTION_STRING workspace. The exchange step displays a HP
DECforms panel asking for the key only if the workspace field is empty. Any
validation work that the form normally performs is bypassed. If the field contains
a key, ACMS does not do any work in the first exchange step of the task and goes
directly to the second step.

Include the ACMS$SELECTION_STRING workspace in the first exchange step
of the Display Basic task so that the user can type the number of the employee
when selecting the task from a menu.

VALIDATE_EMPLOYEE:
EXCHANGE
CONTROL FIELD ACMS$T_SELECTION_STRING
"" : RECEIVE FORM RECORD DISPLAY_NUMBER_FORM_REC

RECEIVING ACMS$SELECTION_STRING;
NOMATCH : NO EXCHANGE;

END CONTROL FIELD;

You can also use the CONTROL FIELD clause to take conditional actions
based on the contents of a workspace field. ACMS checks the field ACMS$T_
SELECTION_STRING field in the VALIDATE_EMPLOYEE step. If the field
is empty, the user did not supply an employee number when selecting the
Display Basic task, and DISPLAY_BASIC_FORM displays a panel asking for
the employee number. The form stores this number in the ACMS$SELECTION_
STRING workspace.

At the end of the previously shown exchange step, the ACMS$SELECTION_
STRING workspace always contains an employee number, typed in either as a
selection string or in response to the initial panel. Because the processing step in
the Display Basic task needs the employee number to know what record to get,
you must pass the contents of the selection string workspace to the procedure in
the processing step.

PROCESSING
CALL DISPLAY_BASIC_GET
USING ACMS$SELECTION_STRING, HIST_RECORD, PERS_RECORD;

CONTROL FIELD ACMS$T_STATUS_TYPE
"G" : GOTO NEXT STEP;
"B" : GET ERROR MESSAGE;

GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

4–6 Defining Workspaces



Defining Workspaces
4.3 Using Data Supplied at the Menu

The DISPLAY_BASIC_GET procedure uses the employee number stored in the
ACMS$SELECTION_STRING workspace to read basic employee information
from both the History and Personnel files. You name the ACMS$SELECTION_
STRING workspace in the USING part of the CALL clause, if the processing step
uses information stored in the workspace.

The error handling in this processing step is the same as that in other tasks
explained in this manual. If the DISPLAY_BASIC_GET procedure returns a
recoverable error, ACMS:

1. Stores the value B in the ACMS$T_STATUS_TYPE field of the
ACMS$PROCESSING_STATUS workspace

2. Repeats the first exchange, where the form uses the contents of the ACMS$T_
STATUS_TYPE field to display an error message to the user, asking for
another employee number

The DISPLAY_BASIC_GET procedure has to test and clear the ACMS$T_
SELECTION_STRING workspace before using the form. If the workspace had
contained a value when tested in the first exchange step, this would have put the
task into an infinite loop.

Example 4–4 shows the complete definition for the Display Basic task.

Example 4–4 Definition for Display Basic Task

REPLACE TASK DISPLAY_BASIC
USE WORKSPACES ADMIN_WORKSPACE, HIST_RECORD, PERS_RECORD,

QUIT_CTRL_WKSP;
DEFAULT SERVER IS ADMINISTRATION_SERVER;
DEFAULT FORM IS DISPLAY_BASIC_FORM
BLOCK

WORK WITH NO SERVER CONTEXT FORM I/O
VALIDATE_EMPLOYEE:
EXCHANGE
CONTROL FIELD ACMS$T_SELECTION_STRING
"" : RECEIVE FORM RECORD DISPLAY_NUMBER_FORM_REC

RECEIVING ACMS$SELECTION_STRING;
NOMATCH : NO EXCHANGE;

END CONTROL FIELD;
PROCESSING
CALL DISPLAY_BASIC_GET
USING ACMS$SELECTION_STRING, HIST_RECORD, PERS_RECORD;

CONTROL FIELD ACMS$T_STATUS_TYPE
"G" : GOTO NEXT STEP;
"B" : GET ERROR MESSAGE;

GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

(continued on next page)

Defining Workspaces 4–7



Defining Workspaces
4.3 Using Data Supplied at the Menu

Example 4–4 (Cont.) Definition for Display Basic Task

DISPLAY_BASIC_DATA:
EXCHANGE
TRANSCEIVE FORM RECORD DISPLAY_BASIC_FORM_REC,

QUIT_CTRL_FORM_REC
SENDING ADMIN_WORKSPACE
RECEIVING QUIT_CTRL_WKSP;

CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;

END CONTROL FIELD;
END BLOCK WORK;
ACTION
REPEAT STEP;

END DEFINITION;

When using the ACMS$SELECTION_STRING workspace to let the user supply a
record key when selecting a task, you:

1. Name the ACMS$SELECTION_STRING workspace in the form definitions
and in the steps using that workspace

2. Use the CONTROL FIELD clause in the first exchange step to do conditional
work based on the value in the ACMS$T_SELECTION_STRING field

3. Do not name the ACMS$SELECTION_STRING workspace or any other
ACMS system workspace in the WORKSPACES or USE WORKSPACES
clause of task or task group definitions

When you use the contents of the ACMS$SELECTION_STRING workspace as
input to a task, validation of that information, normally handled by the form,
must be handled in the procedure code of the task.

4.4 Using Group Workspaces
Often there is some information that many tasks in a task group use. For
example, in an accounting application there may be several tasks in a task
group that always require the current interest rate. You can store this shared
information in a group workspace.

Each task instance using a group workspace gets its own copy of the workspace.
ACMS discards the copy of the workspace belonging to each task instance, but
unless the workspace is being updated, ACMS keeps the original contents of a
group workspace when a task instance is finished, as it does with the contents of
a task workspace. This procedure allows many tasks or different instances of the
same task to use the contents of a group workspace many times.

A Labor Reporting task shows one example of how to use a group workspace.
This task lets the user type information about the work that an employee did on
different projects. Part of the information used by the task each time it runs is
the week-ending date. Rather than require the user to supply the date whenever
typing information for an employee, you can store that date in a group workspace.
The task can then access that workspace each time it runs.

Example 4–5 shows the record definition for LABOR_GROUP_WORKSPACE.

4–8 Defining Workspaces



Defining Workspaces
4.4 Using Group Workspaces

Example 4–5 Record Definition for GROUP_WORKSPACE

DEFINE RECORD
DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS.LABOR_GROUP_WORKSPACE.

LABOR_GROUP_WORKSPACE STRUCTURE.
WK_ENDING_DATE DATATYPE TEXT 6.

INITIAL VALUE "".
END LABOR_GROUP_WORKSPACE STRUCTURE.

END LABOR_GROUP_WORKSPACE.

Because the task is going to take a value from the workspace, you need a way
to put the value into the workspace. There are several ways to initialize the
contents of a group workspace:

• Run a task to load a value into the workspace when the application using the
workspace is started.

• Check the contents of the workspace in the initial step of each task using the
workspace. If the workspace is empty, either run a procedure or call a form
in that step to initialize the workspace. However, when many tasks use the
same group workspace, those tasks are not likely to have update access to
that workspace.

• Check the contents of the workspace in the initial step of each task using that
workspace. If the workspace is empty, use the MOVE clause in the action
part of the step. You may use MOVE to initialize signed longword fields and
text fields. If you want to initialize other data types, use one of the other
methods discussed here.

• Check the contents of the workspace in the initial step of each task using the
workspace. If the workspace is empty, invoke another task that initializes the
workspace.

The Labor Reporting task uses the last of these methods to set the initial contents
of the workspace. The first step of the task uses a CONTROL FIELD clause to
test the contents of the workspace and, if the workspace does not contain the
week ending date, runs another task, Get Initial Value, that initializes the
workspace. You can run another task without returning the user to a selection
menu by using the task-call-task feature, described in detail in Chapter 5.

The Get Initial Value task consists of a single processing step that runs a
procedure to initialize the group workspace.

The Labor Reporting task is the only task using the workspace named LABOR_
GROUP_WORKSPACE, so you can declare this group workspace at either the
group or task level. However, by declaring workspaces at the group level, you
ensure that the same workspace name is used consistently by all tasks. You use
the USE WORKSPACES clause in the task definition to specify that workspaces
to be used in a task are declared at the group level:

USE WORKSPACES LABOR_GROUP_WORKSPACE, LABOR_RECORD, LABOR_WORKSPACE;

Here is the first step of the Labor Reporting task:

PROCESSING
NO PROCESSING;
CONTROL FIELD LABOR_GROUP_WORKSPACE.WK_ENDING_DATE
"" : GOTO TASK GET_INITIAL_VALUE_TASK;
NOMATCH : GOTO NEXT STEP;

END CONTROL FIELD;

Defining Workspaces 4–9



Defining Workspaces
4.4 Using Group Workspaces

The WK_ENDING_DATE field must be defined to have an initial value of
" ". If you do not define an initial value for the field, ACMS initializes it with
zeros. If the CONTROL FIELD clause tests the field for " " and finds zeros, it
always takes the action associated with the NOMATCH keyword, because the
field is not empty.

If the WK_ENDING_DATE field is empty, ACMS runs INITIAL_VALUE_TASK.
Example 4–6 shows the definition for that task.

Example 4–6 Complete Definition for the Get Initial Value Task

REPLACE TASK GET_INITIAL_VALUE_TASK
USE WORKSPACE LABOR_GROUP_WORKSPACE WITH UPDATE LOCK;

PROCESSING
CALL LABOR_GET_INITIAL_VALUE IN WORKSPACE_SERVER
USING LABOR_GROUP_WORKSPACE;

CONTROL FIELD ACMS$T_STATUS_TYPE
"G" : GOTO TASK LABOR_DATA_ENTRY_TASK;
"B" : CANCEL TASK;

END CONTROL FIELD;
END DEFINITION;

The LABOR_GET_INITIAL_VALUE procedure gets the week-ending date from
a file and stores it in the WK_ENDING_DATE field of the workspace LABOR_
GROUP_WORKSPACE. When the week-ending date needs to be changed, the
contents of the file must be changed, and the application or applications using
that workspace must be stopped and restarted.

If the LABOR_GET_INITIAL_VALUE procedure is unsuccessful, ACMS cancels
the task, returning the user to the menu. If the procedure is successful, ACMS
processes the rest of the Labor Reporting task. When the initial processing step
of that task runs, the LABOR_GROUP_WORKSPACE contains the week-ending
date. The next step in the task can:

• Display a panel by using the contents of the workspace

• Do processing by using the contents of the workspace

In the Labor Reporting task, once the first processing step has checked the
contents of the group workspace, an exchange step uses a form to display an
initial panel. Here is the first exchange step of the Labor Reporting task:

EXCHANGE
TRANSCEIVE FORM RECORD LABOR_GROUP_FORM_REC, EMPLOYEE_FORM_REC_LIS
SENDING LABOR_GROUP_WKSP
RECEIVING EMPLOYEE_RECORD_WKSP, QUIT_CTRL_WKSP;

ACTION IS
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

When this step is complete, the task runs like any other update task. The user
supplies a record key to a form in this exchange step. A procedure in a processing
step uses that key to read information from a file or database. A form in an
exchange step displays that information for the user. The user can then type
additional information. In the Labor Reporting task, the user types project
information for an employee.

4–10 Defining Workspaces



Defining Workspaces
4.4 Using Group Workspaces

Example 4–7 shows the complete definition for the Labor Reporting task.

Example 4–7 Definition for Labor Reporting Task

REPLACE TASK LABOR_DATA_ENTRY_TASK
USE WORKSPACES
EMPLOYEE_RECORD_WKSP, LABOR_GROUP_WKSP, LABOR_RECORD_WKSP,
QUIT_CTRL_WKSP;

DEFAULT SERVER IS LABOR_SERVER;
DEFAULT FORM IS LABOR_FORM
BLOCK

WORK WITH FORM I/O
PROCESSING
NO PROCESSING;
CONTROL FIELD LABOR_GROUP_WKSP.WK_ENDING_DATE
"" : GOTO TASK GET_INITIAL_VALUE_TASK;
NOMATCH : GOTO NEXT STEP;

END CONTROL FIELD;

EXCHANGE
TRANSCEIVE FORM RECORD LABOR_GROUP_FORM_REC,

EMPLOYEE_FORM_REC_LIS
SENDING LABOR_GROUP_WKSP
RECEIVING EMPLOYEE_RECORD_WKSP, QUIT_CTRL_WKSP;

ACTION IS
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

PROCESSING
CALL LABOR_EMPLOYEE_GET USING EMPLOYEE_RECORD_WKSP;
CONTROL FIELD ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

GOTO PREVIOUS EXCHANGE;
"G" : GOTO NEXT STEP;

END CONTROL FIELD;
GET_PROJECT_DATA:
EXCHANGE
TRANSCEIVE FORM RECORD LABOR_FORM_REC, LABOR_FORM_REC_LIS
SENDING LABOR_RECORD_WKSP
RECEIVING LABOR_RECORD_WKSP, QUIT_CTRL_WKSP;

ACTION IS
CONTROL FIELD IS QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;
END CONTROL FIELD;

PROCESSING
CALL LABOR_PROJECT_PUT
USING LABOR_GROUP_WORKSPACE, LABOR_RECORD_WKSP;

CONTROL FIELD ACMS$T_STATUS_TYPE
"B" : GET ERROR MESSAGE;

GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

END BLOCK WORK;
ACTION
REPEAT STEP;

END DEFINITION;

4.5 Using User Workspaces
Just as group workspaces let you keep information for many users in many tasks
or instances of the same task, user workspaces let you store information used
by a single user in many tasks or many task instances.

Defining Workspaces 4–11



Defining Workspaces
4.5 Using User Workspaces

Because a user workspace is specific to a single user rather than to tasks in
an application, you do not run a task at application startup to initialize a user
workspace (as you would for a group workspace). Instead, you can include an
initial processing step that tests the contents of the workspace. If the workspace
is empty, a procedure or form gets information and writes it to the workspace.

The user may need to see several kinds of information about an employee, for
example. The user must select a separate task to see each kind of information.
To see information about the employee’s education, the user selects the Display
Education task. To see family information, the user selects the Display Family
task.

In each of these tasks, the user begins by typing in the employee number.
Because all the information displayed by different tasks is about a single
employee in this case, you do not want the user to have to supply the employee
number for each task selection. Instead you can use the contents of a user
workspace in the initial step of each task. Displaying those contents allows the
user either to change the employee number or to press Return to see information
about the employee.

Example 4–8 shows the record definition for DISPLAY_USER_WKSP.

Example 4–8 Record Definition for DISPLAY_USER_WKSP

DEFINE RECORD
DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS.DISPLAY_USER_WKSP.

DISPLAY_USER_WKSP STRUCTURE.
EMP_NUMBER DATATYPE SIGNED LONGWORD.

END DISPLAY_USER_WKSP STRUCTURE.
END DISPLAY_USER_WKSP.

This workspace has a single field for the number of the employee whose records
the user wants to see.

The first exchange step of each of the display tasks can use this workspace to
display the current employee number. Here is the first exchange step of the
Display Basic task:

VALIDATE_EMPLOYEE:
EXCHANGE
TRANSCEIVE FORM RECORD DISPLAY_NUMBER_FORM_REC,

DISPLAY_NUMBER_FORM_REC_LIS
SENDING DISPLAY_USER_WKSP
RECEIVING DISPLAY_USER_WKSP, QUIT_CTRL_WKSP;

CONTROL FIELD QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;

END CONTROL FIELD;

This exchange step displays the current employee number, and lets the terminal
user change the employee number to see information about a different employee.
The processing step then uses the DISPLAY_BASIC_GET procedure to retrieve
records for the employee whose number is in DISPLAY_USER_WKSP.

Example 4–9 shows the complete definition for the Display Basic task using a
user workspace.

4–12 Defining Workspaces



Defining Workspaces
4.5 Using User Workspaces

Example 4–9 Definition for Display Basic Task with User Workspace

REPLACE TASK DISPLAY_BASIC
USE WORKSPACES
ADMIN_WORKSPACE,
DISPLAY_USER_WKSP WITH ACCESS UPDATE,
HIST_RECORD, PERS_RECORD;

DEFAULT SERVER IS ADMINISTRATION_SERVER;
DEFAULT FORM IS DISPLAY_BASIC_FORM;
BLOCK

WORK WITH NO SERVER CONTEXT FORM I/O
VALIDATE_EMPLOYEE:
EXCHANGE

TRANSCEIVE FORM RECORD DISPLAY_NUMBER_FORM_REC,
DISPLAY_NUMBER_FORM_REC_LIS

SENDING DISPLAY_USER_WKSP
RECEIVING DISPLAY_USER_WKSP, QUIT_CTRL_WKSP;

ACTION IS
CONTROL FIELD QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;

END CONTROL FIELD;

PROCESSING
CALL DISPLAY_BASIC_GET
USING ADMIN_WORKSPACE, DISPLAY_USER_WKSP,

HIST_RECORD, PERS_RECORD;
CONTROL FIELD ACMS$T_STATUS_TYPE
"G" : GOTO NEXT STEP;
"B" : GET ERROR MESSAGE;

GOTO PREVIOUS EXCHANGE;
END CONTROL FIELD;

DISPLAY_BASIC_DATA:
EXCHANGE
TRANSCEIVE FORM RECORD DISPLAY_BASIC_FORM_REC, QUIT_CTRL_FORM_REC
SENDING ADMIN_WORKSPACE
RECEIVING QUIT_CTRL_WKSP;

ACTION IS
CONTROL FIELD QUIT_CTRL_WKSP.QUIT_KEY
"QUIT" : EXIT TASK;

END CONTROL FIELD;
END BLOCK WORK;
ACTION
REPEAT STEP;

END DEFINITION;

You can test the contents of the user workspace, just as you would the contents
of a group workspace. For example, in the Display Basic task, you can test the
contents of the workspace in the initial exchange step. If the workspace is empty,
you can use a form to display a panel asking for an employee number.

In the final steps of the task, you can use function keys to let the user clear or
save the contents of the user workspace. To test the EMP_NUMBER field, you
must be careful to redefine it as a text field, or you get a ‘‘datatype mismatch’’
error when you build the task group. If you change the data type of EMP_
NUMBER to text, the procedure must then convert that information to a numeric
datatype before moving the key to the personnel record.

You might want to let the user:

• Return to the menu with no value in the user workspace

• Return to the menu, keeping the current value in the user workspace

• Repeat the task, keeping the current value in the user workspace

Defining Workspaces 4–13



Defining Workspaces
4.5 Using User Workspaces

• Repeat the task with no value in the user workspace

The following example shows the final exchange steps:

DISPLAY_BASIC_DATA:
EXCHANGE

TRANSCEIVE FORM RECORD DISPLAY_BASIC_FORM_REC,
QUIT_CTRL_FORM_REC

SENDING ADMIN_WORKSPACE
RECEIVING QUIT_CTRL_WKSP;

CONTROL FIELD QUIT_CTRL_WKSP.CTRL_KEY
"NEXT" : GOTO NEXT STEP;
"QUIT" : EXIT TASK;
"REPET" : EXIT BLOCK;
NOMATCH : GOTO NEXT STEP;

END CONTROL FIELD;
EXCHANGE

RECEIVE FORM RECORD CLEAR_WKSP_FORM_REC_LIS
RECEIVING DISPLAY_USER_WKSP, QUIT_CTRL_WKSP;

CONTROL FIELD QUIT_CTRL_WKSP.CTRL_KEY
"QUIT" : EXIT TASK;
NOMATCH : EXIT BLOCK;

END CONTROL FIELD;
ACTION
REPEAT TASK;

In the first of these exchange steps, the user presses either one of three function
keys or Return .

To return to the menu and discard the current employee number, the user presses
GOLD-E, which returns the value ‘‘NEXT’’ to the CTRL_KEY field. The CLEAR_
WKSP_FORM_REC in the final exchange step clears the employee number from
DISPLAY_USER_WKSP.

To return to the menu and keep the same employee number, the user presses
GOLD-D, which returns the value ‘‘QUIT’’ to the CTRL_KEY field. ACMS exits
the task and returns the user to the menu, but ACMS does not clear the employee
number from DISPLAY_USER_WKSP.

To repeat the task by using the same employee number, the user presses GOLD-
R, which returns the value ‘‘REPET’’ to the CTRL_KEY field. ACMS processes
the block action, REPEAT STEP, without clearing the employee number from
DISPLAY_USER_WKSP.

To repeat the task with a new employee number, the user presses Return . The
CLEAR_WKSP_FORM_REC clears the employee number from DISPLAY_USER_
WKSP, and ACMS processes the block action REPEAT STEP.

Keeping a value such as an employee number in a user workspace when a task
instance is finished lets you write other task definitions that can use that value.

4.6 Moving Data to a Workspace Field
One method of moving data into a workspace field is by using the ADU MOVE
clause. The MOVE clause specifies that ADU moves one of the following elements
into a workspace field:

• Number

• Numeric value of a global symbol

• Workspace field

4–14 Defining Workspaces



Defining Workspaces
4.6 Moving Data to a Workspace Field

• Quoted string

Note

ACMS does not let you pass arrays to workspace fields.

Example 4–10 demonstrates the use of the MOVE clause.

Example 4–10 Moving Data to a Workspace Field

SET VERIFY
REPLACE TASK TASK01
WORKSPACES ARE
WKSP_1, WKSP_2;

PROCESSING IS
CALL NULL_TRANSACTION IN TEST_SERVER
USING WKSP_1;

MOVE RMS$_EOF INTO WKSP_1.L_MESSAGE,
-2 INTO WKSP_1.L_NUMBER,
"GOOD" INTO ( WKSP_1.T_TEXT,WKSP_1.T_STRING ),
WKSP_2.V_BASIC INTO WKSP_1.V_EMPL ;

END DEFINITION;

BUILD GROUP TEST_GROUP /SYSSHR -
/SYSLIB

Example 4–10 uses the MOVE clause to move information from various sources
to fields in the workspace called WKSP_1. The workspace fields in this example
receive data in the following form:

• Numeric value of a global symbol, RMS$_EOF

• Number ��

• Quoted string "GOOD"

• Workspace field WKSP_2.V_BASIC

The following restrictions apply to MOVE clauses:

• You must use the keywords INTO or TO.

• If the source is a global symbol, the target must be of type signed longword.

• You cannot use two MOVE clauses in the same ACTION step.

You can also use the MOVE clause in CONTROL FIELD and SELECT FIRST
clauses. For example:

SELECT FIRST TRUE
(WK_VALUE EQL 1): MOVE 2 TO NUMBER;
(WK_VALUE EQL 2): MOVE 3 TO NUMBER;

4.7 Passing Data with User-Written Agents
Another method of passing information to an ACMS task is by using a Systems
Interface (SI) agent or another task. An SI agent can call an ACMS task and
optionally pass workspaces to that task for read, write, or modify purposes. The
called task can return the modified workspace back to the agent at the end of
the task instance. The agent can then use the contents of this workspace in
subsequent task executions. The agent passes workspaces in an argument list on

Defining Workspaces 4–15



Defining Workspaces
4.7 Passing Data with User-Written Agents

either the ACMS$CALL or ACMS$START_CALL services. The agent can pass
task workspaces only.

See HP ACMS for OpenVMS Systems Interface Programming for information
about passing arguments from an SI agent to an ACMS task.

4.8 Using External Global Symbols in Task Definitions
Task definitions can reference external global symbols in place of a workspace
field reference in the following instances (RMS$_EOF and RMS$_OK_DUP
represent external global symbols):

• SELECT FIRST clause. For example:

SELECT FIRST (RMS$_EOF = numeric_workspace_field):
(numeric_workspace_field = RMS$_EOF):

• CANCEL TASK RETURNING clause:

CANCEL TASK RETURNING RMS$_EOF;

• EXIT TASK RETURNING clause:

EXIT TASK RETURNING RMS$_OK_DUP;

• MOVE clause:

MOVE RMS$_EOF TO numeric_workspace_field;

• GET ERROR MESSAGE NUMBER clause:

GET ERROR MESSAGE NUMBER RMS$_EOF;

Global symbols have a signed longword data type.

ACMS resolves global symbols during BUILD GROUP processing, where ADU
searches for a matching workspace field reference. If it does not find a matching
reference, ADU then searches the object modules and libraries that you specified
on the BUILD GROUP command line with the /SYSLIB, /SYSSHR, /OBJECT,
and /USERLIBRARY qualifiers and takes the following actions:

• If it finds a matching symbol, ADU stores the numeric value of the global
symbol in the .TDB file.

• If it does not find a numeric workspace field or a global symbol, ADU issues
an error message stating that there is an unresolved field reference.

ADU does not use the MESSAGE FILES ARE clause to resolve global symbols at
build time.

4–16 Defining Workspaces



5
Using the Task-Call-Task Feature

In processing steps, you can call another task in the same task group, instead
of calling a procedure in a server. This capability is called the task-call-task
feature.

Task calling extends the capabilities of an ACMS task definition. Applications of
the task-call-task feature include:

• Customized menus

You can create menus that list only the tasks a user can select, allow a
user to select a series of tasks at once, or provide additional choices without
returning to a main menu.

• Enhanced security checking

You can call tasks to perform specialized security checking in addition to
default ACMS security checks.

• Common library tasks

You can define commonly used tasks once and then call them from many
tasks, like a subroutine library.

• Branching to another task

You can define a function key to branch to an inquiry task during an update
task, suspending the update task until the inquiry task completes.

See HP ACMS for OpenVMS Concepts and Design Guidelines for further
information on these applications of the task-call-task feature.

5.1 Calling Another Task
The task-call-task feature is based on the subroutine call-and-return model. You
call another task in basically the same way that you make a subroutine call to
a server procedure. Control passes to the task you call (along with whatever
workspaces you name as parameters) and then returns to the place from which
you made the call.

A calling task is referred to in this section as a parent task. A called task can
become a parent task if it calls another task in turn.

A called task can return a status value to a parent task similarly to the way a
routine in a procedure server can return a status value to a task. A parent task
can use this value, or the contents of a task workspace field modified by the called
task, to control subsequent task execution.

You must pay particular attention to the rules for passing workspaces. See
Section 5.1.3 for further information on passing workspaces in task calling.

Using the Task-Call-Task Feature 5–1



Using the Task-Call-Task Feature
5.1 Calling Another Task

There is no limit to the number of task calls you can make other than that
imposed by the maximum number of task instances specified in the application
definition, and resource limits such as the task workspace pool and virtual
memory inside the Application Execution Controller (EXC) process.

5.1.1 Defining a Task Call
To create a task call, you specify a task name instead of a server procedure. For
example:

REPLACE TASK ENTER_ORDER
.
.
.
PROCESSING
CALL TASK ORDER_LINES USING
CUSTOMER_INFO_RECORD,
CUSTOMER_ACCOUNT_RECORD,
ORDER_DATA_RECORD;

.

.

.

In this example, the processing step calls the ORDER_LINES task, passing the
CUSTOMER_INFO_RECORD, CUSTOMER_ACCOUNT_RECORD, and ORDER_
DATA_RECORD workspaces. The task name specified in a CALL TASK clause
must be a group task name, not an application task name.

You must also specify the workspaces that the called task will receive as
arguments.

REPLACE TASK ORDER_LINES

WORKSPACES ARE
CUSTOMER_INFO_RECORD,
CUSTOMER_ACCOUNT_RECORD,
ORDER_DATA_RECORD,
TASK_CONTROL_RECORD;

TASK ARGUMENTS ARE
CUSTOMER_INFO_RECORD WITH ACCESS READ,
CUSTOMER_ACCOUNT_RECORD WITH ACCESS MODIFY,
ORDER_DATA_RECORD WITH ACCESS WRITE;
.
.
.

The ENTER_ORDER task controls the entry of general information about the
order (such as customer name and address, shipping address, type of order,
sales representative, and so on) and then passes control to the ORDER_
LINES task. The ORDER_LINES task receives customer information in the
CUSTOMER_INFO_RECORD, updates the customer’s accounts information in
the CUSTOMER_ACCOUNT_RECORD, and returns line totals in the ORDER_
DATA_RECORD.

Workspaces you use as task call arguments must be defined as task workspaces
(the default) in the called task. Workspaces received by the called task must be
listed in the TASK ARGUMENTS statement in the order in which the calling
task passes them. You can specify MODIFY, READ, or WRITE access to those
workspaces for the calling task. Use MODIFY to pass and return data, READ to
pass data only, and WRITE to return data only.

5–2 Using the Task-Call-Task Feature



Using the Task-Call-Task Feature
5.1 Calling Another Task

You must be careful not to unintentionally overwrite data when accessing
group and user workspaces from both the parent task and the called task. See
Section 5.1.3 for further information on using workspaces.

5.1.2 Task Call Example
This section presents a complete example of how to use the task calling feature.
The example shows a simple order-entry transaction. The example is limited
to ACMS task definition syntax, with one exception: a BASIC program the
order-detail task uses.

Example 5–1 shows the ACMS task definition syntax that defines the order-
header portion of the order-entry transaction.

Example 5–1 Task ENTER_ORDER

REPLACE TASK ENTER_ORDER

WORKSPACES ARE
HEADER_DATA_WSP,
MSG_WKSP,
ORDER_DATA_RECORD,
TASK_CTL_WSP;

DEFAULT SERVER IS ORDER_SERVER;
DEFAULT FORM IS ORDER_FORM;
GLOBAL;

BLOCK WORK WITH FORM I/O

EXCHANGE
RECEIVE FORM RECORD HEADER_DATA_FORM_REC_LIS
RECEIVING HEADER_DATA_WSP, TASK_CTL_WSP;

ACTION IS
CONTROL FIELD TASK_CTL_WSP.TASK_CTL_FIELD
"QUIT" : EXIT TASK;
END CONTROL FIELD;

PROCESSING
CALL WRITE_ORDER_HEADER_DATA USING HEADER_DATA_WSP;

DO_ORDER_LINE:
PROCESSING

CALL TASK PROCESS_ORDER_LINE USING
ORDER_DATA_RECORD,
TASK_CTL_WSP, MSG_WKSP;

ACTION IS
CONTROL FIELD TASK_CTL_WSP.TASK_CTL_FIELD
"QUIT" : MOVE "Order completed successfully" TO

MSG_WKSP.MESSAGE_PANEL;
GOTO STEP END_ORDER;

END CONTROL FIELD;

PROCESSING
CALL INCREMENT_ORDER_TOTALS USING

ORDER_DATA_RECORD,
HEADER_DATA_WSP;

ACTION IS
GOTO STEP DO_ORDER_LINE;

END_ORDER:
EXCHANGE

SEND FORM RECORD MSG_WKSP_FORM_REC
SENDING MSG_WKSP;

(continued on next page)

Using the Task-Call-Task Feature 5–3



Using the Task-Call-Task Feature
5.1 Calling Another Task

Example 5–1 (Cont.) Task ENTER_ORDER

END BLOCK WORK;

The first exchange step in Example 5–1 displays the order entry panel and uses
the HEADER_DATA_WSP to store the data the user types in. If the TASK_CTL_
FIELD contains the word ‘‘QUIT’’ (which the user can place there by using a HP
DECforms-defined function key), the task exits. Otherwise, the first processing
step calls a server procedure to write the contents of HEADER_DATA_WSP to a
file.

The second processing step calls the PROCESS_ORDER_LINE task, passing
the ORDER_DATA_RECORD and TASK_CTL_WSP workspaces. Control passes
from this point in the task definition to the PROCESS_ORDER_LINE task (see
Example 5–2).

When control returns to the ENTER_ORDER task, the TASK_CTL_FIELD is
again checked for the word ‘‘QUIT’’. If the user did not press the QUIT function
key, the third processing step in the ENTER_ORDER task increments the order
totals and passes control back to the DO_ORDER_LINE step, which calls the
PROCESS_ORDER_LINE task to input the next line of the order.

This sequence continues until the user presses the QUIT function key and control
passes to the second, and final, exchange step.

Note

Whenever the user presses the QUIT key, all tests for the word ‘‘QUIT’’ in
both task definitions evaluate to TRUE. This is because the PROCESS_
ORDER_LINE task accepts the TASK_CTL_WSP workspace using
WRITE access; when control returns to the ENTER_ORDER task, ACMS
writes the contents of that workspace into the parent task’s workspace.

Example 5–2 shows the ACMS task definition syntax for the order-detail portion
of the order-entry transaction.

Example 5–2 Task PROCESS_ORDER_LINE

REPLACE TASK PROCESS_ORDER_LINE

WORKSPACES ARE
DATA_RECORD,
MSG_WKSP,
ORDER_DATA_RECORD,
TASK_CTL_WSP;

DEFAULT SERVER ORDER_SERVER;
DEFAULT FORM ORDER_FORM;

LOCAL;

TASK ARGUMENTS ARE
ORDER_DATA_RECORD WITH ACCESS MODIFY,
TASK_CTL_WSP WITH ACCESS WRITE;
MSG_WKSP WITH ACCESS WRITE;

(continued on next page)

5–4 Using the Task-Call-Task Feature



Using the Task-Call-Task Feature
5.1 Calling Another Task

Example 5–2 (Cont.) Task PROCESS_ORDER_LINE

BLOCK WORK WITH FORM I/O

EXCHANGE
RECEIVE FORM RECORD INPUT_DATA_FORM_REC_LIS
RECEIVING DATA_RECORD, TASK_CTL_WSP;

ACTION IS
CONTROL FIELD TASK_CTL_WSP.TASK_CTL_FIELD
"QUIT" : EXIT TASK;
END CONTROL FIELD;

PROCESSING
CALL WRITE_ORDER_LINE USING

DATA_RECORD,
ORDER_DATA_RECORD,
TASK_CTL_WSP;

ACTION IS
SELECT FIRST TRUE
( TASK_CTL_FIELD = "DUPL" ): GOTO PREVIOUS EXCHANGE;
NOMATCH : MOVE "Order line record successfully

added to database" TO MSG_WKSP.MESSAGE_PANEL;
END SELECT;

EXCHANGE
SEND FORM RECORD MSG_WKSP_FORM_REC
SENDING MSG_WKSP;

ACTION IS
EXIT TASK;

END BLOCK WORK;

The PROCESS_ORDER_LINE task is a LOCAL task, which means that it can be
called only from another task. It cannot be initiated by using a menu selection.
You assign the LOCAL attribute in the application definition.

The TASK ARGUMENTS clause lists the workspaces the PROCESS_ORDER_
LINE task can receive when called from another task. ORDER_DATA_RECORD
is defined as a modify-access workspace; that is, any data written to it by the
PROCESS_ORDER_LINE task can be modified, and is returned to the calling
task. TASK_CTL_WSP and MSG_WKSP are defined as write-only workspaces;
that is, no data are passed into them from the calling task, but any data written
to them by the PROCESS_ORDER_LINE task is returned to the calling task.
This way of passing workspaces is more efficient than using MODIFY (or
read-write) access.

The PROCESS_ORDER_LINE task calls a HP DECforms form to display
the order-lines panel and accept data that the user types in. After accepting
data from the user, the task calls the WRITE_ORDER_LINE procedure (see
Example 5–3) by using data from the order header as well as data from the order
line.

The WRITE_ORDER_LINE procedure checks for a duplicate key value and
returns to the first exchange step if it finds one. If the order line is written
successfully to the file, a second exchange step writes a success message, the task
exits, and control returns to the ENTER_ORDER task.

When the user presses the QUIT key, the task exits, and control returns
immediately to the ENTER_ORDER task, without calling the server procedure or
the second exchange step.

Using the Task-Call-Task Feature 5–5



Using the Task-Call-Task Feature
5.1 Calling Another Task

Example 5–3 shows the BASIC program that writes the order-line information to
a file.

Example 5–3 Procedure WRITE_ORDER_LINE (in BASIC)

10 SUB WRITE_ORDER_LINE( DATA_RECORD DATA_REC, &
ORDER_DATA_RECORD ORD_VALUE_REC, &
TASK_CTL_WSP TASK_CTL )

%INCLUDE %FROM %CDD "DATA_RECORD"
%INCLUDE %FROM %CDD "ORD_VALUE_REC"
%INCLUDE %FROM %CDD "TASK_CTL_WSP"
MAP (DATA_FILE) DATA_RECORD FILE_REC

FILE_REC = DATA_REC ! Transfer data to file buffer
ON ERROR GOTO 20 ! Set up an error trap
PUT #1% ! Store the data
ORD_VALUE_REC::ORD_LINE_TOTAL = DATA_REC::PRICE * DATA_REC::QTY

! Calculate order line total
TASK_CTL::TASK_CTL_FIELD = "OK" ! It all worked so return success
EXIT SUB ! And exit

20 IF ERR = 134% THEN ! If duplicate key detected then
TASK_CTL::TASK_CTL_FIELD = "DUPL" ! Return failure indicator
RESUME 99 ! And exit

ELSE ! Otherwise
CALL ACMSAD$REQ_CANCEL ! Something serious occurred

END IF ! so cancel the task.

99 END SUB

The procedure shown in Example 5–3 moves the data from the workspace to the
file buffer and then writes a record to the file. If the write operation succeeds,
the procedure returns a success code in a task control workspace. If it detects a
duplicate key, which indicates that a duplicate item exists in the same order, the
procedure returns a failure code to the task. Any other error causes the procedure
to cancel the task.

If there are any unexpected errors (such as a device-full RMS error) or the server
process terminates unexpectedly while the WRITE_ORDER_LINE procedure is
running, ACMS automatically cancels the PROCESS_ORDER_LINE task. When
a called task is canceled, ACMS by default also cancels the parent task.

In this example, ACMS automatically cancels the ENTER_ORDER task under
the following conditions:

• If any unexpected errors occur, such as a device-full RMS error

• If the server process terminates unexpectedly while the INCREMENT_
ORDER_TOTALS procedure is running

• If the server process terminates unexpectedly while the PROCESS_ORDER_
LINE task is executing and has called the WRITE_ORDER_LINE_ROUTINE
procedure

The ENTER_ORDER task does not need to check the status from the call to the
PROCESS_ORDER_LINE task to determine whether the task has failed. The
ENTER_ORDER task does not expect the called task to return anything other
than a success status and uses the contents of the TASK_CTL_FIELD workspace
field to control task execution. If the PROCESS_ORDER_LINE task fails, the
ENTER_ORDER task expects to be canceled. For example, the ENTER_ORDER
task expects to be canceled if:

5–6 Using the Task-Call-Task Feature



Using the Task-Call-Task Feature
5.1 Calling Another Task

• A user presses Ctrl/Y while entering order line data.

• An operator uses an ACMS/CANCEL TASK command to cancel the
PROCESS_ORDER_LINE task.

When a called task is canceled, by default the calling task also is canceled. For
information on how to override this default so that ACMS does not automatically
cancel the calling task when the called task is canceled, see Chapter 8.

5.1.3 Passing Workspaces
This section presents the rules for passing ACMS workspaces to and from a task
you call from another task.

ACMS allows a called task to accept arguments in the form of task workspaces.
User-written agents or tasks may pass workspaces to other tasks.

Note

The rules for passing workspaces when you call the task from an agent
are the same as the rules for passing workspaces when you call the
task from another task. See HP ACMS for OpenVMS Systems Interface
Programming for information on writing an agent program.

A task passes workspaces to a called task by position. That is, the contents of
the first workspace identified by the USING phrase in the parent task is moved
to the first workspace named in TASK ARGUMENTS clause in the called task,
and so on, for each workspace named in the USING phrase. This is the same
as the method for passing workspaces to routines in procedure servers or to HP
DECforms forms.

When calling a task, ACMS compares the length of each workspace to be passed
with the length of the corresponding workspace in the called task. If any do
not match, ACMS cancels both the parent and the called task. However, if you
transpose two workspaces of the same length, ACMS does not flag this reversal.

Warning

When the task-call-task feature is used, it is possible to see the following
error in SWL:

ACMSWSP-E-NONESUCH, INTERNAL ERROR: SPECIFIED BLOCK DOES NOT EXIST

This error could be the result of declaring a workspace in the child task,
but not using it. If the workspace is not used, remove the declaration
from the child task and remove the workspace from the workspace list in
the task call in the parent task.

A called task can accept arguments using task workspaces only. You cannot
pass arguments into group, user, or system workspaces. Special rules apply for
accessing group, user, and system workspaces in called tasks.

You can omit a workspace when you call a task. If you do, ACMS initializes the
workspace in the called task with its default contents from the CDD workspace
definition stored in the task database (.TDB file). If there are no default contents,
ACMS initializes the workspace with zeros.

Using the Task-Call-Task Feature 5–7



Using the Task-Call-Task Feature
5.1 Calling Another Task

You can specify READ, WRITE, or MODIFY access for each workspace you
include in a TASK ARGUMENT clause. Use MODIFY for passing and returning
data, READ for passing data, and WRITE for returning data:

• MODIFY access (the default)

ACMS passes data supplied by the parent task. If the parent task does not
pass any data, ACMS initializes the workspace with its default contents or
zeros. Data is returned to the parent task when the called task completes.

• READ access

ACMS passes data supplied by the parent task. If the parent task does not
pass any data, ACMS initializes the workspace with its default contents or
zeros. The called task can modify the contents of the workspace; however, no
data is returned to the parent task when the called task completes.

• WRITE access

ACMS initializes the workspace defined with its default contents or zeros.
Data is returned to the parent task when the called task completes.

Specifying READ access on task workspace arguments can provide performance
benefits for tasks calling other tasks, because ACMS does not have to update the
workspace in the parent task when the called task completes.

In creating workspaces for task calls, bear in mind the trade-off between
workspace size and the various access types. For large workspaces, it is more
efficient to pass data using a READ workspace and return data using a WRITE
workspace than it is to pass and return data in a single MODIFY workspace.
Conversely, it is more efficient to pass a single MODIFY workspace containing
a small amount of data than it is to pass several separate READ and WRITE
workspaces.

You may specify any workspace type (task, user, group, or system) as an argument
and pass it to the called task with the USING phrase. However, note that the
parent task may supply only workspaces to task workspaces in the called
task. See Section 5.1.3.2 for further information on accessing group and user
workspaces.

5.1.3.1 Using System Workspaces
Each task instance owns its own copy of each of the three ACMS system
workspaces. Once a called task instance starts, these copies are totally
independent of a parent task.

Normally, you do not pass a system workspace from a parent task to a called
task. Instead, move the data you need from the system workspace into a task
workspace, and then pass it. You can move data by using either a MOVE clause
or a processing step.

If you find you must pass a system workspace to a called task, specify READ
access in the TASK ARGUMENT clause. This protects the contents of the system
workspace from accidental modification.

The following rules apply to the three ACMS system workspaces when they are
passed by default to a called task:

• ACMS initializes the ACMS$TASK_INFORMATION system workspace with
information about the task instance and the task submitter.

5–8 Using the Task-Call-Task Feature



Using the Task-Call-Task Feature
5.1 Calling Another Task

The ACMS$L_CALL_SEQUENCE_NUMBER field contains the sequence
number of the current called task. When an agent (ACMS menu or user-
written) calls a task, ACMS initializes this field to zero. Each time a task
calls another task, ACMS increments this field by 1. Therefore, the first
called task has a call sequence number of 1. If that task calls another task,
or if that task returns and the original task calls another task, the sequence
number increments again and the new called task has a call sequence number
of 2. This sequence number resets to zero each time an agent calls a task.

• ACMS always initializes the ACMS$PROCESSING_STATUS system
workspace to reflect a success status and to contain a blank status message
field.

• ACMS copies the selection string argument from the ACMS$START_CALL
argument list to the ACMS$SELECTION_STRING system workspace. If no
selection string is supplied, ACMS initializes the workspace with spaces.

If a task calls another task, ACMS initializes the selection string system
workspace with the contents of the selection string system workspace from
the new parent task.

ACMS does not return the contents of the ACMS$SELECTION_STRING
system workspace to the parent task when the called task completes. If you
need to return the contents of the ACMS$SELECTION_STRING system
workspace to a parent task, move it to a task workspace and transfer it from
the task workspace into the ACMS$SELECTION_STRING workspace after
control returns to the parent task.

5.1.3.2 Handling User and Group Workspaces
A called task can access the same group and user workspaces that a parent
task can access. You must be careful when updating group and user workspaces
shared by a parent and called task, because it is possible to overwrite data and
store incorrect results.

If both parent and called tasks require only read access to a user or a group
workspace, then you can write both tasks as you normally do. However, because
ACMS updates only the master copies of user and group workspaces at the end of
a task instance, you must consider the case where either the parent task or the
called task must update a user or group workspace that both tasks reference and
use.

Note

If a parent and called task access the same workspace for update by using
the WITH LOCK clause, ACMS cancels the called task.

When a parent and a called task both attempt to update the contents of a user or
group workspace, the following occurs:

1. The called task completes and ACMS updates the master copy of the
workspace.

2. The parent task completes and ACMS updates the master copy of the
workspace, thereby overwriting the previous contents stored by the called
task.

Data from the called task can be lost this way.

Using the Task-Call-Task Feature 5–9



Using the Task-Call-Task Feature
5.1 Calling Another Task

The best method of handling a group or user workspace is to pass the workspace
from a parent task into a task workspace of the same layout in the called task
(see Example 5–5). This way, when the parent task completes, the master copy
of the user workspace updates correctly. This method is also more efficient than
having each called task individually access the user workspace.

5.1.3.3 Tasks You Also Select from a Menu
You must give special consideration to accessing group and user workspaces in
tasks that can be selected from a menu and that can also be called by other tasks.

You can test whether the task is being initiated by a menu or called from another
task. If it is being called from another task, move the user or group workspace
you want to use into a task workspace of the same layout. Example 5–5
illustrates a technique that you can use to implement this functionality.

When a task is initiated by a menu selection, ACMS initializes any TASK
ARGUMENT clause workspaces with their initial CDD contents or zeros. In
order for both a menu and another task to call it, the called task should check the
selection method and then transfer the contents from the appropriate workspace
(see Example 5–5).

Another method is to write a task that is selected from the menu and that calls
the other task. Example 5–4 illustrates this technique. You write a dummy
task, the only function of which is to call the other task from the menu, thereby
avoiding the problem.

5.1.3.4 Example of Updating Group and User Workspaces
Example 5–4 and Example 5–5 illustrate how to use group and user workspaces
with called tasks when the parent, the called task, or both need to update a group
or user workspace.

Following is an excerpt from the task group definition used in Example 5–4 and
Example 5–5:

WORKSPACES ARE
TASK_WSP1,
TASK_WSP2,
USER_WSP WITH TYPE USER;
.
.
.

TASKS ARE
PARENT_TASK: TASK DEFINITION IS PARENT_TASK;
CALLED_TASK: TASK DEFINITION IS CALLED_TASK;

END TASKS;
.
.
.

If a parent task requires that a called task update a user or group workspace,
pass the workspace into a workspace in the called task defined as a TASK
ARGUMENT WITH ACCESS MODIFY. When the called task completes, ACMS
updates the workspace in the parent task. When the parent task completes,
ACMS updates the master copy of the user workspace.

5–10 Using the Task-Call-Task Feature



Using the Task-Call-Task Feature
5.1 Calling Another Task

Example 5–4 Updating User and Group Workspaces

DEFINE TASK PARENT_TASK

USE WORKSPACES
TASK_WSP1,
USER_WSP WITH UPDATE LOCK;
.
.
.

PROCESSING
CALL TASK CALLED_TASK USING

TASK_WSP1,
USER_WSP;

.

.

.

END DEFINITION;

DEFINE TASK CALLED_TASK

USE WORKSPACES
TASK_WSP1,
TASK_WSP2,

WORKSPACE IS
USER_WSP;

TASK ARGUMENTS ARE
TASK_WSP1 WITH ACCESS MODIFY,
USER_WSP WITH ACCESS MODIFY;
.
.
.

PROCESSING
CALL UPDATE_PROCEDURE USING

TASK_WSP1,
TASK_WSP2,
USER_WSP;

.

.

.

END DEFINITION;

Note that the called task defines the workspace named USER_WSP as a task-
owned, task instance workspace and not as a user workspace. This definition
allows the called task to use the same record layout as that of the workspace
when it is defined in the group as a user workspace.

If you need to select CALLED_TASK (shown in Example 5–5) from an ACMS
menu as well as to call CALLED_TASK from PARENT_TASK, the technique of
passing the user workspace as a TASK ARGUMENT does not work. Because the
task is selected from a menu, ACMS initializes the TASK ARGUMENT workspace
with its CDD initial contents or with zeros. For both a menu and another task
to call it, the called task should check the selection method and then transfer the
contents from the appropriate source.

Using the Task-Call-Task Feature 5–11



Using the Task-Call-Task Feature
5.1 Calling Another Task

Example 5–5 Passing User Workspaces to Menu Tasks

USE WORKSPACES
TASK_WSP1,
TASK_WSP2,
USER_WSP;

WORKSPACE IS
USER_WSP WITH NAME USER_WSP_COPY;

TASK ARGUMENTS ARE
TASK_WSP1,
USER_WSP_COPY;

BLOCK WORK
PROCESSING

NO PROCESSING;
SELECT FIRST TRUE

( ACMS$L_CALL_SEQUENCE_NUMBER <> 0 ):
MOVE USER_WSP_COPY TO USER_WSP;

END SELECT;
.
.
.

PROCESSING
CALL update_procedure USING

TASK_WSP1,
TASK_WSP2,
USER_WSP;

.

.

.
END BLOCK WORK;
ACTION IS

SELECT FIRST TRUE
( ACMS$L_CALL_SEQUENCE_NUMBER <> 0 ):

MOVE USER_WSP TO USER_WSP_COPY;
END SELECT;

In Example 5–5, when the task is selected from a menu, the task uses the
contents of the user workspace. If another task calls the task, the first processing
step copies the user workspace data passed by the parent task into the user
workspace declared in this task. At the end of the block, the ACTION clause
employs a MOVE phrase to update the copy of the user workspace that the
parent task passed as a task workspace argument.

If the ACMS$L_CALL_SEQUENCE_NUMBER is not 0, you know that the task
was called by another task, and not initiated using a menu selection.

5.1.4 Controlling Called Tasks
This section describes various mechanisms for controlling tasks that are called by
other tasks. You can pass control information in a workspace that you define, use
the EXIT task clause, or test ACMS system workspace fields.

5.1.4.1 Passing Control Information in User-Defined Workspaces
In some cases, a called task needs to know information about the parent task.
For example, a called task may need to record the name of each task that calls
it, or it may need to perform different processing steps, depending on the task
that called it. Suppose that you want to pass only a few fields from a system
workspace to a called task. The most efficient method is to use the MOVE clause
to transfer the data from the system workspace to one or more fields in a task
workspace supplied to the called task.

5–12 Using the Task-Call-Task Feature



Using the Task-Call-Task Feature
5.1 Calling Another Task

Example 5–6 illustrates how a parent task can pass workspaces to a called task.

Example 5–6 Passing Data to a Called Task

WORKSPACES ARE
DATA_WSP1,
DATA_WSP2,
DATA_WSP3;

BLOCK WORK
.
.
.

PROCESSING
CALL PROC_1 USING

DATA_WSP1,
DATA_WSP2;

MOVE ACMS$T_TASK_NAME TO PARENT_TASK_NAME,
"BATCH_JOB_1.COM" TO ACMS$T_SELECTION_STRING;

.

.

.
PROCESSING

CALL TASK B USING
DATA_WSP1,
DATA_WSP2,
DATA_WSP3;

.

.

.
PROCESSING

CALL PROC_2 USING
DATA_WSP2,
DATA_WSP3;

END BLOCK WORK;
.
.
.

WORKSPACES ARE
DATA_WSP1,
DATA_WSP2,
DATA_WSP3;

TASK ARGUMENTS ARE
DATA_WSP1 WITH ACCESS READ,
DATA_WSP2 WITH ACCESS MODIFY,
DATA_WSP3 WITH ACCESS WRITE;

(continued on next page)

Using the Task-Call-Task Feature 5–13



Using the Task-Call-Task Feature
5.1 Calling Another Task

Example 5–6 (Cont.) Passing Data to a Called Task

BLOCK WORK
.
.
.

PROCESSING
CALL PROC_3 IN SVR1 USING

DATA_WSP1,
DATA_WSP2,
DATA_WSP3;

.

.

.
PROCESSING WITH NO IO

DCL COMMAND IS "SUBMIT ’P1" IN SVR2;
.
.
.

END BLOCK WORK;

In this example, Task B:

1. Accepts one set of data items for ACCESS READ into DATA_WSP1

2. Accepts another set of data items for ACCESS MODIFY into DATA_WSP2

3. Returns a group of data items in the workspace DATA_WSP3, defined with
ACCESS WRITE.

The name of the parent task is passed to the called task in a field named
PARENT_TASK_NAME in the DATA_WSP1 workspace. Task A copies the name
of the current task into that field with the MOVE clause. It uses the DATA_
WSP1 workspace, because that workspace is defined in the TASK ARGUMENTS
clause for READ access only.

This example also illustrates one method of loading data into the workspace
for use by the called task. In this case, Task B uses the ACMS$SELECTION_
STRING workspace to submit a batch job using a DCL server. ACMS always
passes the contents of the ACMS$SELECTION_STRING system workspace
from the parent task to the called task. ACMS parses each element of the
ACMS$SELECTION_STRING workspace and assigns the elements to the DCL
parameter. The first element is assigned to P1, the second element is assigned to
P2, and so on.

The technique of moving one or two fields from a system workspace into a task
instance workspace is more efficient than supplying the entire ACMS$TASK_
INFORMATION workspace to the called task. Not only do you pass one less
workspace to the called task, but the called task does not require as much space
in the task instance workspace pool.

5.1.4.2 Ending a Called Task
A task can end by exiting normally or by canceling itself. In either case, you can
return one of the default ACMS task status codes or a status code that you define.

To exit from a task normally, use the EXIT TASK clause. The EXIT TASK syntax
allows a task to complete with a success status value other than that which
produces the default ‘‘Task completed normally’’ message
(ACMS$_TASK_COMPLETE). If the EXIT TASK clause returns a status, it must
be a success status.

5–14 Using the Task-Call-Task Feature



Using the Task-Call-Task Feature
5.1 Calling Another Task

You can use the CANCEL TASK clause to cancel a task from within a task
definition. If the CANCEL TASK clause returns a status, it must be a failure
status. You can specify a failure status value other than that which produces
the default ‘‘Cancel results from a step action in the task definition’’ message
(ACMS$_TASK_DEF). See Example 5–7.

Example 5–7 Returning Your Own Exit and Cancel Status Values

PROCESSING
CALL STORE_NEW_CUSTOMER USING

CUST_RECORD;
SELECT FIRST TRUE

(TASK_STATUS = "OK"):
EXIT TASK RETURNING APPLMSG_CUST_ADDED;

(TASK_STATUS = "DUPL"):
CANCEL TASK RETURNING APPLMSG_DUPL_CUST;

END SELECT;

In this example, APPLMSG_CUST_ADDED returns a success status value that
you define, and APPLMSG_DUPL_CUST returns a cancel error status that you
define.

When a called task exits, ACMS commits any active recovery unit (if there is
no recovery-unit command) and returns the final status value to the parent
task, as well as the contents of any workspaces defined as TASK ARGUMENTS
for MODIFY or WRITE access. A called task can use this method to return
information to the parent task to subsequently control the execution of that task.

When a called task is canceled, ACMS rolls back any active recovery unit (if
there is no recovery-unit command). If the canceled task is retaining context in
a server and you have defined a cancel routine for the server in the task group,
ACMS runs the cancel routine. If the parent task BLOCK STEP has a CANCEL
ACTION clause, ACMS executes that command. If a task cancels for any reason,
only the cancel reason status code is returned to the parent task. The contents of
any workspaces defined as TASK ARGUMENTS for MODIFY or WRITE access
are not returned.

5.1.4.3 Controlling Parent Tasks
Once you have called a task, you can control subsequent execution of the parent
task by using either the fields in task workspaces modified by the called task or
the called task’s final completion status. You can easily obtain the called task’s
final completion status by using the symbolic message code support in ADU.

For example:

PROCESSING
CALL TASK ENTER_ORDER;
ACTION IS
SELECT FIRST TRUE OF

( ACMS$L_STATUS = ACMS$_CALL_CANCELLED ):
GOTO STEP SUBMITTER_CANCEL;

( ACMS$L_STATUS = ACMS$_OPR_CANCELLED ):
GOTO STEP OPERATOR_CANCEL;

END SELECT;
.
.
.

Using the Task-Call-Task Feature 5–15



Using the Task-Call-Task Feature
5.1 Calling Another Task

In this example, a called task returns a bad status to the parent task. Instead of
canceling the task, ACMS evaluates the SELECT FIRST clause in the ACTION
step to determine whether the task was canceled by the user or by an operator.

5.1.5 Defining Local Tasks
You can define a task as LOCAL or GLOBAL. GLOBAL tasks can be either
selected from a menu or called from another task. LOCAL tasks can only be
called from another task.

GLOBAL is the default task type. You can select a GLOBAL task from a menu
or with the SELECT command in CP, or you can call or chain to a GLOBAL task
from another task. However, you can access LOCAL tasks only by calling or
chaining to them from another task.

Define a LOCAL task when you want to:

• Extend task security

You can implement your own task selection security that does not rely on the
ACMS task access control list mechanism. Because you cannot select LOCAL
tasks from an ACMS menu or user-written agent, you can provide additional
security checking in a task that calls the LOCAL task. This method gives
the parent task complete control over which users can select which tasks.
Because the parent task is the only GLOBAL task in the application, it is,
therefore, the only task that a Command Process (CP) or an agent can select.

• Control access to commonly used tasks

Define as LOCAL tasks any tasks that you wish to use as subroutine or
library tasks. Users should not be able to select them from a menu or with
the SELECT command, because you want to tailor them for this purpose.

You cannot override the LOCAL/GLOBAL task attribute by using a task group
definition, if you define the task in a separate task definition.

5.1.6 Mixing I/O Methods in Parent and Called Tasks
ACMS allows a called task to use a different I/O method than that of the parent
task. For example, a task using HP DECforms I/O can call tasks that use
terminal I/O in DCL servers or ACMS stream I/O as well as other HP DECforms
I/O tasks.

In order for a task using HP DECforms or terminal I/O to call a task using
stream I/O, the user-written agent must associate a stream ID with a submitter
ID. Note that the ACMS CP performs this association automatically. For more
information on agents, streams, and submitted IDs, see HP ACMS for OpenVMS
Systems Interface Programming.

Although you can associate a stream ID with a submitter ID, you cannot associate
a terminal device specification with a stream ID. Therefore, if an agent calls a
task defined to use stream I/O, the called task can only call or chain to other
stream I/O tasks or tasks that do not perform I/O. If an agent calls a task defined
to use stream I/O, that task cannot call a task that performs local requests,
remote requests, or terminal I/O from a server.

A similar rule also applies to tasks that do not perform I/O and are, therefore,
defined WITH NO I/O. Because no I/O information is passed to the task when an
agent calls it, a NO I/O task may only call or chain to other NO I/O tasks.

5–16 Using the Task-Call-Task Feature



Using the Task-Call-Task Feature
5.1 Calling Another Task

5.1.7 Form and Server Context in Task Calling
You cannot retain server context when calling a task from another task.

If a task that is retaining context in a server process attempts to call another
task, ACMS unconditionally cancels the calling task.

TDMS does not support multiple sessions to the same device and limits form
context to a request using the same form as the previous request. Therefore,
called tasks using TDMS I/O always share form context with the parent task.

5.1.8 Using the NOT CANCELABLE BY TASK SUBMITTER Clause
Depending on the type of task, you might sometimes want to prevent a task from
being canceled by the terminal user. To accomplish this, ACMS lets you specify
the NOT CANCELABLE BY TASK SUBMITTER clause in your task definition.
The NOT CANCELABLE BY TASK SUBMITTER clause tells ACMS to ignore a
submitter cancel request generated in situations such as when a terminal user
presses Ctrl/Y . This clause affects a task only when it is currently executing.

In Example 5–8, if the user presses Ctrl/Y while the MAIN_MENU task is
running, ACMS ignores the request to cancel the task. However, when the
MAIN_MENU task calls the ENTER_ORDER task, Ctrl/Y cancels the called task.

Example 5–8 MAIN_MENU Task

WORKSPACE IS
TASK_CTL_WSP;

NOT CANCELABLE BY TASK SUBMITTER;

BLOCK WORK

EXCHANGE
RECEIVE FORM RECORD GET_SELECTION_FORM_REC_LIS
RECEIVING TASK_CTL_WSP, TASK_CTL_WSP;

ACTION IS
CONTROL FIELD TASK_CTL_WSP.TASK_CTL_FIELD
"QUIT" : EXIT TASK;
END CONTROL FIELD;

PROCESSING
SELECT FIRST TRUE

( TASK_NUMBER = 1 ): CALL TASK ADD_CUSTOMER;
( TASK_NUMBER = 2 ): CALL TASK MODIFY_CUSTOMER;
( TASK_NUMBER = 3 ): CALL TASK ENTER_ORDER;
( TASK_NUMBER = 4 ): CALL TASK MODIFY_ORDER;
( TASK_NUMBER = 5 ): CALL TASK DISPATCH_ORDERS;

END SELECT;
ACTION IS

CONTROL FIELD IS ACMS$T_STATUS_TYPE
"T":

GOTO PREVIOUS EXCHANGE;
NOMATCH:

GET ERROR MESSAGE;
GOTO PREVIOUS EXCHANGE;

END CONTROL FIELD;

END BLOCK WORK;

The MAIN_MENU task:

1. Prompts the user for a task selection

2. Calls a task based on that selection

Using the Task-Call-Task Feature 5–17



Using the Task-Call-Task Feature
5.1 Calling Another Task

If a called task returns a success status, the menu task prompts for another task
selection. If a called task returns a failure status, the MAIN_MENU task uses
the GET MESSAGE phrase to retrieve the error text associated with the returned
status value, so that the task selection form can display the message for the user.
The NOT CANCELABLE BY TASK SUBMITTER clause prevents the user from
canceling the menu task itself by typing Ctrl/Y .

5.1.9 Auditing and Operation
This section describes how to audit and operate task-calling applications.

5.1.9.1 Task Auditing and Security
ACMS writes an audit record to the audit trail log whenever a task calls another
task defined with the AUDIT attribute.

ACMS always checks the task access control list (ACL) to determine whether you
can execute a task, even when the task is called from another task.

To audit instances of tasks called by other tasks, ACMS appends the call
sequence number to the Task ID field. The ACMS$TASK_INFORMATION system
workspace describes the call sequence number.

5.1.9.2 Using ACMS Operator SHOW and CANCEL Commands
The ACMS operator command ACMS/SHOW USER/FULL displays the following
types of task selections:

• Tasks selected by a user from an ACMS menu

• Tasks selected by a user with the SELECT command

• Tasks invoked by a user agent

The ACMS/SHOW USER/FULL command does not display any tasks called by
another task. For example:

$ ACMS/SHOW USER TESTU1/FULL
ACMS V5.0 CURRENT USERS Time: 19-DEC-2005 12:40:52.53

User Name: TESTU1 Submitter ID: GROW::00010025
Agent PID: 21C0043F Device: RTA3:

Task Name: VR_CHECKIN_TASK
Task ID: GROW::00010025-00000005
Appl Name: VR_APPL
Appl Node: GROW::

To display all the task instances in a sequence of task calls, use the ACMS
operator command ACMS/SHOW TASKS. For example:

$ ACMS/SHOW TASKS
ACMS V5.0 CURRENT TASKS Time: 19-DEC-2005 12:41:27.60
Task Name: VR_CHECKIN_TASK
State: Active; Executing PROCESSING step WORK
Step Label: GET_RESV
Task ID: GROW::00010025-00000005
Application: VR_APPL User Name: TESTU1
Submitter ID: GROW::00010025 Device: RTA3:
Called Task: VR_GETRESV_TASK
State: Active; Executing EXCHANGE step WORK
Step Label: CHANGE_INFO
Task ID: GROW::00010025-00000005-00000001

5–18 Using the Task-Call-Task Feature



Using the Task-Call-Task Feature
5.1 Calling Another Task

ACMS indents called tasks under the header of the parent task. This example
illustrates that task VR_CHECKIN_TASK has called task VR_GETRESV_TASK.
The report appends the task call sequence number for the called tasks to the end
of the task ID.

The ACMS operator command ACMS/CANCEL USER cancels:

• The user’s session

• Any task that the user selected from a menu

• Any tasks that the task called

The ACMS operator command ACMS/CANCEL TASK accepts an optional third
hexadecimal number that indicates the task call sequence number of the task
instance to be canceled. If the operator omits the third number, ACMS cancels all
the task instances in the task call sequence. For example, the following command
cancels both of the tasks displayed in the previous example:

$ ACMS/CANCEL TASK/IDENTIFIER=GROW::00010025-00000005

The following command cancels VR_GETRESV_TASK. You can omit leading zeros
from each number in the task ID.

$ ACMS/CANCEL TASK/IDENTIFIER=GROW::10025-5-1

Using the Task-Call-Task Feature 5–19





6
Using the Detached Task Feature

This chapter describes how to use detached tasks in ACMS applications. For
information about ACMS operator commands, refer to HP ACMS for OpenVMS
Managing Applications.

6.1 Overview of Detached Tasks
This section provides an overview of detached tasks, describes an application
that effectively implements the interactive and deferred processing modes of task
execution, and lists the characteristics of detached tasks.

6.1.1 Detached Tasks
ACMS typically does interactive processing of the tasks in your applications, but
certain tasks capture data that does not require immediate processing. Detached
tasks provide ACMS applications with a mechanism to start a task with an
ACMS operator command, while allowing the task to execute in an unattended,
noninteractive manner once it has started.

6.1.2 Designing Your Application to Use Detached Tasks
ACMS supports two basic modes of task execution:

• Interactive work flow

• Detached processing

In the interactive work flow mode, ACMS tasks collect requests from a user and
process the requests while the user waits for a response. Users interact with the
executing task through a terminal or device. A typical task has an exchange step
to accept data from a user, followed by a processing step to process the data. The
next exchange step returns control to the terminal to complete the task, or to
continue to request input from the terminal.

The detached processing mode is similar to batch-style processing, where no user
interaction occurs through a terminal or device, from a task executing within
the Application Execution Controller (EXC). A task that executes in this mode is
called a detached task.

To illustrate the two modes of task execution, consider the following example
involving a manufacturing and distribution company. The company has its
headquarters and manufacturing facility based in one location, and multiple
distribution centers located remotely. At its headquarters, the company maintains
a master database, using Rdb, that holds information about its entire operation.
In addition, smaller Rdb databases, located at each distribution center, hold
information specific to that segment of the business.

Using the Detached Task Feature 6–1



Using the Detached Task Feature
6.1 Overview of Detached Tasks

During the day, changes are made to the distribution center databases. These
changes necessitate updates to the master database. As the changes are made
to the distribution center database, records are queued to a queue database on
the distribution center’s system. The records are then forwarded to the central
system. To update the distribution center databases, an employee executes a task
through a terminal device. This is an example of the interactive work flow mode.

Subsequently, a task running continuously in the background without any human
interaction is executed to update the master database at the central system.
This task is a detached task, and shows how an application uses the detached
processing mode.

6.1.3 Characteristics of Detached Tasks
Detached tasks have the following characteristics:

• When you write a detached task, the task cannot perform any exchange I/O
and you must define the task with the NO I/O phrase.

• Before starting a detached task, you must start the application within which
the detached task executes. The name of the detached task must exist in the
specified application database file.

• For every detached task started, the ACMS$SIGN_IN service signs in a task
submitter. By default, ACMS uses the user name of the application (EXC) as
the task submitter.

• A detached task can have a string passed to it through the
ACMS$SELECTION_STRING system workspace. When a detached task is
started, the selection string can optionally be specified.

• A detached task can be retried automatically after a task failure. When
a detached task is started, both a retry limit and retry wait timer can be
specified. The retry limit parameter specifies the number of times ACMS
retries the detached task after a failure. The retry wait timer defines how
long ACMS waits before retrying the detached task after a task failure.

6.2 Managing Detached Tasks
The following sections describe:

• Starting a detached task

• Setting the retry limit

• Setting the retry wait timer

• Showing the status for detached tasks

• Stopping a detached task

• Forcing a detached task not to retry

• Enabling broadcast of detached task notification messages

6–2 Using the Detached Task Feature



Using the Detached Task Feature
6.2 Managing Detached Tasks

6.2.1 Starting a Detached Task
To start a detached task, use the ACMS/START TASK command. When starting
a detached task, specify the task name and the application name where the task
executes. You can also specify a retry limit, retry wait timer, user name, and a
selection string to pass workspace data.

Before starting a detached task, start the application within which the detached
task executes. Use the following command to start a detached task:

$ ACMS/START TASK task-name application-name

Example 6–1 shows an audit message for starting a detached task.

Example 6–1 Audit Message for Starting a Detached Task

Type : TASK Time : 19-DEC-2005 12:41:27.60
Appl : DIST_APPL
Task : DEQUEUE_TASK
User : SMITH
ID : MYNODE::00020013-00000001-B985D5E0-009576B2
Sub : MYNODE::00020013-00000000-B985D5E0-009576B2
Text : Detached task started

See HP ACMS for OpenVMS Managing Applications for more information about
the ACMS/START TASK operator command.

6.2.2 Setting the Retry Limit
The retry limit is the maximum number of times ACMS retries the detached task
after a failure. The following command starts a detached task and specifies that
the task can be retried a maximum of 10 times after a task failure:

$ ACMS/START TASK timer_task dist_appl/RETRY_LIMIT=10

If the detached task retry limit is exceeded, then an audit message of type
ERROR is written to the audit log. Example 6–2 shows an audit message that
results when the task exceeds the retry limit.

Example 6–2 Audit Message for Exceeding the Retry Limit

Type : ERROR Time : 19-DEC-2005 12:41:27.60
Appl : DIST_APPL
Text : Detached Task DEQUEUE_TASK terminated due to retry limit being

exceeded

6.2.3 Setting the Retry Wait Timer
The retry wait timer indicates the number of seconds ACMS waits before retrying
the detached task after a task failure. The default value is 5 seconds. The
minimum value is 1 second, and the maximum is 65,535 seconds. If the detached
task is started with a retry limit of 0, or if the task completes successfully, the
retry wait timer is not used.

6.2.4 Showing the Status of Detached Tasks
The following sections describe two operator commands that allow you to
determine if a detached task is active, and whether the task has started and
has not completed.

Using the Detached Task Feature 6–3



Using the Detached Task Feature
6.2 Managing Detached Tasks

6.2.4.1 Using the ACMS/SHOW TASK Command
The ACMS/SHOW TASK command displays whether an active task is a detached
task. Use the following command to display the status of an active detached task:

$ ACMS/SHOW TASK task-name

If a detached task is active, then ACMS displays a message similar to
Example 6–3.

Example 6–3 ACMS/SHOW TASK Message for Detached Tasks

ACMS V5.0 CURRENT TASKS Time:19-DEC-2005 12:42:36.02

Task Name: DEQUEUE_TASK ***Detached Task***
State: Active; Executing PROCESSING step WORK
Step Label: $STEP_3
Task ID: MYNODE::00020016-00000001
Application: DIST_APPL User Name: JONES
Submitter ID: MYNODE::00020016 Device: NL:

6.2.4.2 Using the ACMS/SHOW APPLICATION/DETACHED_TASKS Command
While the ACMS/SHOW TASK command shows only detached tasks that are
active, the ACMS/SHOW APPLICATION/DETACHED_TASKS command shows
all detached tasks that have started and have not completed.

Use the following command to display the status of all detached tasks:

$ ACMS/SHOW APPLICATION/DETACHED_TASKS

ACMS displays the message shown in Example 6–4.

Example 6–4 ACMS/SHOW APPLICATION/DETACHED_TASKS Message

ACMS V5.0 CURRENT APPLICATIONS Time: 19-DEC-2005 12:43:01.62

Application Name: DIST_APPL State: STARTED

Task Name: DEQUEUE_TASK
Task State: Active
Submitter ID: MYNODE::00020016 Username: JONES
Retry Limit: 10 Retry Count: 2
Retry Wait Timer: 60

Task Name: UPDATE_CENTRAL_TASK
Task State: Waiting to Retry
Submitter ID: MYNODE::00020017 Username: SMITH
Retry Limit: 10 Retry Count: 0
Retry Wait Timer: 60

See HP ACMS for OpenVMS Managing Applications for more information about
the ACMS/SHOW APPLICATION/DETACHED_TASKS operator command.

6.2.5 Stopping a Detached Task
Use the ACMS/CANCEL TASK or ACMS/CANCEL USER operator commands to
stop a detached task when you need to cancel and not retry the detached task.
Both operator commands cancel a detached task and the associated submitter.

6–4 Using the Detached Task Feature



Using the Detached Task Feature
6.2 Managing Detached Tasks

ACMS treats task failures generated as a result of ACMS/CANCEL TASK
and ACMS/CANCEL USER operator commands as special cases and does not
retry the task. For example, you can use the ACMS/CANCEL USER operator
command to stop a task accessing a queue file, so the queue file can be backed up.
Once the queue file is backed up, you can start the detached task again. This is
particularly important for continuous operations.

In addition, a detached task is stopped whenever the application or the ACMS
system is stopped with the /CANCEL qualifier.

Example 6–5 shows an audit message for a canceled detached task.

Example 6–5 Audit Messages for a Detached Task Canceled by a System
Operator

Type : TASK Time : 19-DEC-2005 12:43:32.84
Appl : DIST_APPL
Task : DEQUEUE_TASK
User : SMITH
ID : MYNODE::00020013-00000001-B985D5E0-009576B2
Sub : MYNODE::00020013-00000001-B985D5E0-009576B2
Text : Detached task end
Task completion status: Task canceled by system operator
************************************************************
Type : OTHER Time : 19-DEC-2005 12:43:41.42
Text : Detached task terminated in application DIST_APPL
Detached task DEQUEUE_TASK canceled by system operator

6.2.6 Forcing a Detached Task to Not Retry
To force a detached task to not retry, a task can return the value ACMS$_
DETTASK_NORETRY as the completion status. The ACMS$_DETTASK_
NORETRY status directs the detached task to not retry even if the retry limit
has not been exceeded. Use the following task definition syntax to return the
completion status ACMS$_DETTASK_NORETRY:

CANCEL TASK
RETURNING ACMS$_DETTASK_NORETRY;

6.2.6.1 Task Failures that Cause ACMS Not to Retry a Task
Table 6–1 lists some of the failures that cause ACMS not to retry a detached
task.

Using the Detached Task Feature 6–5



Using the Detached Task Feature
6.2 Managing Detached Tasks

Table 6–1 Task Failures

Name Description

ACMS$_DETTASK_NORETRY Task explicitly specified as NO RETRY.

ACMS$_SECURITY_CHECK_FAILED Submitter not authorized.

ACMS$_APPL_NOT_STARTED Application is stopping.

ACMS$_OPR_CANCELED Operator canceled task.

ACMS$_SUB_CANCELED Operator canceled submitter.

ACMS$_INTERNAL Internal ACMS error.

ACMS$_TASKNOTCOMP Child task is not composable.

ACMS$_NEED_IOID Child task is defined with I/O.

ACMS$_NEED_DEVORRR Child task requires device name or RR server.

ACMS$_NEED_DEVICE Child task requires device name.

Example 6–6 shows an audit message for a task failure that is not retried.

Example 6–6 Audit Message for a Task Failure that Is Not Retried

Type: : ERROR Time : 18-DEC-2005 12:43:41.42
Text: Error in application DIST_APPL
Detached task DEQUEUE_TASK terminated due to a task failure that
cannot be retried.
Task is not composable

6.2.7 Broadcasting Detached Task Messages
ACMS operator terminals can receive notification when a detached task
terminates under the following conditions:

• The retry limit is exceeded.

• A task failure occurs that ACMS cannot retry.

• The detached task is canceled by an operator command.

• An unexpected internal failure occurs.

ACMS operator terminals receive notification when a detached task is waiting to
retry, and also the reason why the task is retrying.

To enable an ACMS operator terminal to receive these broadcasts, use one of the
following commands:

$ ACMS/SET SYSTEM/PROCESS/OPERATOR

The ACMS/SET SYSTEM/PROCESS/OPERATOR command enables your
terminal as an ACMS operator terminal for the duration of your process or
until ACMS stops.

$ ACMS/SET SYSTEM/TERMINAL=TTE2/OPERATOR

The ACMS/SET SYSTEM/TERMINAL/OPERATOR command enables terminal
TTE2 as an ACMS operator terminal for as long as ACMS is active.

6–6 Using the Detached Task Feature



Using the Detached Task Feature
6.2 Managing Detached Tasks

Example 6–7 shows a detached task broadcast message for a detached task that
exceeded the retry limit.

Example 6–7 Broadcast Message for a Detached Task that Exceeded the Retry
Limit

%ACMS, 20-DEC-2005 12:43:41.42, Detached task DEQUEUE_TASK terminated due to
retry limit being exceeded

6.3 Using Group Workspaces in a Detached Task
Workspaces that are declared as group workspaces and are used by detached
tasks that execute for long periods of time (for example, several days) have the
following limitations:

• If the detached task accesses a group workspace for modify access, then the
detached task prevents other tasks from updating the workspace until the
detached task is completed.

• If the detached task accesses a group workspace for read access, then the
detached task gets the contents of the workspace at the time the detached
task starts, and uses the contents until the detached task is completed.

To effectively use group workspaces, a detached task that executes for long
periods of time must call a task that executes for a short period of time (short-
lived) to update the contents of a group workspace. The detached task must
also call a short-lived task to read the contents of a group workspace when the
contents are needed.

6.4 Concurrent-Use Licensing with Detached Tasks
For every detached task started, the ACMS$SIGN_IN service is used to sign in
a task submitter. If your ACMS system has a concurrent-use license, a set of
license units is allocated for each detached task that is started. These license
units remain allocated until the task submitter signs out and the detached task
stops.

The submitter for a detached task is signed out under the following conditions:

• The task completes successfully.

• The retry limit for the detached task is exceeded.

• The task is canceled as a result of an ACMS/CANCEL TASK or an
ACMS/CANCEL USER operator command.

• The application within which the detached task is executing is stopped.

• The task completes with a task failure that ACMS cannot retry.

• An unexpected internal failure occurs; for example, the retry wait timer could
not start.

Using the Detached Task Feature 6–7





7
Defining Distributed Transactions

The previous chapters show how to write task definitions that perform add,
delete, update, and inquiry operations. For the sake of simplicity, the examples
assume that only one data source is being accessed. However, there might be
times when you need to combine updates to multiple files and/or databases into
one operation, or transaction. This chapter describes how to define tasks that use
distributed transactions. Specifically, this chapter describes:

• Why you might want to use distributed transactions

• How to include distributed transactions syntax in your task definition

• How to include multiple resource managers in a distributed transaction

• How to include a called task in a distributed transaction

• How distributed transactions affect server context

• How to exclude a processing step from participating in a distributed
transaction

• Why transactions can fail

7.1 Why Use Distributed Transactions
Often, a business function involves operations on several databases or files. For
example, a simple funds transfer function involves debiting one account and
crediting another account. For the function to be successful, both operations must
complete successfully. Because it is important to treat both operations as one
unit of work, include them in an atomic transaction. An atomic transaction is
a set of one or more operations where either all the operations take effect or none
of them take effect. If any of the operations cannot complete successfully, the
transaction is aborted. This means that all the operations are rolled back, or
undone. The transaction is said to be committed if all the operations complete
successfully and are made permanent.

In the funds transfer example, it is essential that the operations be included in
an atomic transaction. Otherwise, the consistency of the database is in jeopardy.
For example, if the system fails after the debit operation but before the credit
operation, the database is not accurate.

To access information stored in databases and files, you use resource managers.
A resource manager controls shared access to a set of recoverable resources.
The most common type of resource manager is a database system. Rdb, DBMS,
and RMS are resource managers. On the OpenVMS operating system, a resource
manager can ensure that a set of database operations involving one database is
atomic. An atomic set of operations, such as debits and credits, to a database is
a database transaction. In the funds transfer example, if the account to be
debited and the account to be credited reside in the same Rdb database, Rdb can
ensure that both operations complete successfully or both operations are undone.

Defining Distributed Transactions 7–1



Defining Distributed Transactions
7.1 Why Use Distributed Transactions

If both operations are successful, Rdb commits the database transaction. If one of
the operations fails, Rdb rolls back the database transaction.

The funds transfer example represents a very simple business function with
one database. However, your application might include multiple databases. The
OpenVMS operating system provides a set of transaction services, DECdtm
services, that ACMS uses to control a group of database transactions involving
multiple databases on one or more nodes. The DECdtm services ensure the
atomicity of a set of database transactions included in a distributed transaction.
A distributed transaction is an atomic transaction that consists of a set of
operations involving multiple resources on one or more nodes. Suppose the two
accounts in the funds transfer example reside in separate Rdb databases. A
distributed transaction would include two database transactions. If the debit and
credit operations complete successfully, the DECdtm services end the distributed
transaction by instructing the Rdb resource manager to prepare the database
transactions to be committed. If Rdb successfully prepares both database
transactions, the DECdtm services instruct Rdb to commit both database
transactions. If one of the operations fails, the DECdtm services abort the
distributed transaction and instruct Rdb to roll back the database transactions.

The resource managers need not be the same type to participate in a distributed
transaction. For example, a distributed transaction could include a procedure
that updates an Rdb database and a second procedure that writes to an RMS file.

Because the ACMS queuing system uses RMS, you can treat the queuing system
as another type of resource manager by setting queue files for journaling. You
can coordinate the removal of queued task elements from the task queue with
updates to a database. Likewise, you can coordinate the insertion of queued task
elements to a task queue with updates to a database. See Chapter 9 for details
on how to include queuing operations in a distributed transaction.

See HP ACMS for OpenVMS Concepts and Design Guidelines for more
information on designing distributed transactions.

7.2 Including Distributed Transactions Syntax in the Task Definition
ACMS provides syntax that lets you control distributed transactions in the
task definition. You can start a distributed transaction on a root block step,
nested block step, root processing step, or a processing step within a block by
specifying the phrase DISTRIBUTED TRANSACTION in the attributes part of
the step. The DISTRIBUTED keyword is optional. A distributed transaction
must end in the action part of the same step on which it started. Therefore, a
distributed transaction can span multiple processing steps only if you specify
TRANSACTION on the block that contains those processing steps.

To explicitly end a distributed transaction, specify either the COMMIT
TRANSACTION action clause or the ROLLBACK TRANSACTION action
clause. COMMIT TRANSACTION instructs ACMS to call the transaction
services to commit the transaction. If the resource managers participating in the
transaction can successfully complete their operations, DECdtm instructs each
resource manager to commit its operations, making all the changes permanent.
However, if any of the resource managers is unable to complete its operations,
DECdtm instructs all resource managers to roll back their updates. ROLLBACK
TRANSACTION instructs ACMS to call the DECdtm services to abort the
transaction; DECdtm then instructs each resource manager to roll back any
updates made during the transaction.

7–2 Defining Distributed Transactions



Defining Distributed Transactions
7.2 Including Distributed Transactions Syntax in the Task Definition

Example 7–1 shows the structure of a task definition that contains a distributed
transaction.

Example 7–1 Distributed Transaction on a Nested Block Step

BLOCK WORK
EXCHANGE

.

.
BLOCK WORK WITH DISTRIBUTED TRANSACTION

PROCESSING
.
.

PROCESSING
.
.

END BLOCK;
COMMIT TRANSACTION;

EXCHANGE
.
.

END BLOCK;

In this example, the distributed transaction spans the two processing steps
within the nested block. Because the distributed transaction starts on the nested
block, you must specify the COMMIT TRANSACTION clause in the action part
of the same block step. The exchange steps before and after the nested block are
not part of the distributed transaction.

If you do not explicitly end a distributed transaction in the action part of the
step on which it started, ACMS provides a default of COMMIT TRANSACTION
unless the action part of the step contains either the CANCEL TASK or RAISE
EXCEPTION sequencing action clause, in which case ACMS provides a default of
ROLLBACK TRANSACTION.

You can also start and end distributed transactions in procedures by using the
$START_TRANS, $END_TRANS, and $ABORT_TRANS system services. See HP
ACMS for OpenVMS Systems Interface Programming for information on including
these services in agent programs.

7.3 Including Multiple Resource Managers in a Distributed
Transaction

The AVERTZ sample car rental application includes a reservation task, VR_
RESERVE_TASK, which gathers customer and reservation information from the
terminal operator and updates several Rdb databases. The task uses several
distributed transactions to ensure the integrity of the databases.

Example 7–2 shows a part of the VR_RESERVE_TASK that includes updates
to two Rdb databases in a distributed transaction. Although the resources in
this example use the same type of resource manager, Rdb, you can include
different types of resource managers in a distributed transaction. For example, a
distributed transaction might include updates to a DBMS database and an RMS
file.

Defining Distributed Transactions 7–3



Defining Distributed Transactions
7.3 Including Multiple Resource Managers in a Distributed Transaction

Example 7–2 Multiple Database Updates in a Distributed Transaction

CANCEL_RES:

BLOCK WITH TRANSACTION

PROCESSING
CALL PROCEDURE VR_CANCEL_RS_PROC
IN VR_UPDATE_SERVER
USING VR_RESERVATIONS_WKSP,

VR_CONTROL_WKSP;

ACTION IS
GET MESSAGE INTO VR_CONTROL_WKSP.MESSAGEPANEL;
MOVE "CANCEL " TO VR_HIST_WKSP.TRANS_TYPE;

PROCESSING
CALL PROCEDURE VR_WRITE_HIST_RECORD_PROC
IN VR_LOG_SERVER
USING VR_HIST_WKSP,

VR_RESERVATIONS_WKSP;

END BLOCK;

ACTION IS
COMMIT TRANSACTION;
MOVE " " TO VR_CONTROL_WKSP.CTRL_KEY,

"ACTWT" TO VR_SENDCTRL_WKSP.SENDCTRL_KEY;

The CANCEL_RES nested block step appears toward the end of the VR_
RESERVE_TASK, and is processed if the terminal user wants to cancel a
reservation. The nested block step starts a distributed transaction by specifying
WITH TRANSACTION.

The first processing step calls the VR_CANCEL_RS_PROC procedure, which uses
the reservation number in the VR_RESERVATIONS_WKSP to locate and delete
the particular reservation record in the reservation database. If the procedure
completes successfully, the action part of the step moves CANCEL to the TRANS_
TYPE field in VR_HIST_WKSP.

The second processing step calls the VR_WRITE_HIST_RECORD_PROC
procedure, which records the cancel transaction in the history database.

The COMMIT TRANSACTION clause in the action part of the nested block
step instructs ACMS to call DECdtm to make permanent the effects of the two
database operations. Because the distributed transaction starts on the nested
block step, it must end in the action part of the same step.

7.4 Using Task Sequencing Actions in a Distributed Transaction
When writing some task definitions that use distributed transactions, you must
be aware of restrictions that ACMS imposes on the use of certain sequencing
action clauses. Specifically, use of distributed transactions affects the EXIT
TASK, CANCEL TASK, GOTO TASK, and REPEAT TASK action clauses.

• Because a distributed transaction must end in the action part of the step on
which it starts, you cannot specify EXIT TASK on the action part of a step
within a distributed transaction. Instead, you can use the EXIT BLOCK
action clause, which instructs ACMS to pass control to the action part of the
block step that started the distributed transaction.

7–4 Defining Distributed Transactions



Defining Distributed Transactions
7.4 Using Task Sequencing Actions in a Distributed Transaction

• If you specify CANCEL TASK in the action part of a step that starts
a distributed transaction, ACMS provides a default of ROLLBACK
TRANSACTION. You can override this default by specifying COMMIT
TRANSACTION on the action part of the step that starts the transaction. If
you specify CANCEL TASK on a step within a distributed transaction, ACMS
always calls DECdtm to abort the distributed transaction.

• You cannot specify the GOTO TASK clause in the action part of a step within
a distributed transaction; however, you can specify GOTO TASK in the
action part of the step that starts a distributed transaction. If you specify
GOTO TASK on a root block, that task cannot be called by a parent task to
participate in a distributed transaction.

• You cannot specify the REPEAT TASK clause in the action part of a step
within a distributed transaction; however, you can specify REPEAT TASK in
the action part of the step that starts a distributed transaction. If you specify
REPEAT TASK on a root block, that task cannot be called by a parent task
to participate in a distributed transaction. An alternative is to specify the
WHILE DO block conditional clause at the start of the root block.

• If you specify the REPEAT STEP clause in the action part of a root block,
that task cannot be called by a parent task to participate in a distributed
transaction. As with REPEAT TASK, an alternative is to specify WHILE DO
at the start of the root block.

7.5 Including a Called Task in a Distributed Transaction
Previous sections show how to define a distributed transaction within a single
task. You can also define a distributed transaction that starts in a parent task,
includes calls to other tasks, and then ends in the parent task. For a called task
to be able to participate in a distributed transaction started by a parent task, the
called task must conform to the following rules:

• The root block or root processing step must include the TRANSACTION
phrase.

• The root block or root processing step cannot include a sequencing action
clause other than EXIT TASK, CANCEL TASK, or RAISE EXCEPTION.

• The root block or root processing step cannot include the COMMIT
TRANSACTION or ROLLBACK TRANSACTION action clause.

• The root block or root processing step cannot include an exception handler.

• The root block or root processing step cannot include the CANCEL ACTION
phrase.

A task that conforms to these rules is said to be a composable task. A parent
task cannot exclude a called task from participating in an existing distributed
transaction.

In the VR_RESERVE_TASK, when customers make a reservation, they have the
option of checking out the car immediately. Rather than require the terminal
user to exit from the task, return to the AVERTZ menu, and select a different
task to check out the car, you can have the VR_RESERVE_TASK call the VR_
COMPLETE_CHECKOUT_TASK to handle the checkout. Example 7–3 shows
the nested block in VR_RESERVE_TASK that includes a called task within a
distributed transaction.

Defining Distributed Transactions 7–5



Defining Distributed Transactions
7.5 Including a Called Task in a Distributed Transaction

Example 7–3 Calling a Task to Participate in a Distributed Transaction

BLOCK WITH TRANSACTION

UPDATE_CUST_INFO:
!+
! If the user wanted to checkout the car and has updated the
! driver license info then
!-

PROCESSING
CALL PROCEDURE VR_STORE_CU_PROC
IN VR_CU_UPDATE_SERVER
USING VR_CONTROL_WKSP,

VR_CUSTOMERS_WKSP,
VR_TRANS_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "B") THEN

GET MESSAGE INTO VR_CONTROL_WKSP.MESSAGEPANEL;
RAISE EXCEPTION VR_UPDATE_ERROR;

END IF ;
!+
! If want to check car out now (=GTCAR) then call
! VR_COMPLETE_CHECKOUT_TASK to do that.
!-

PROCESSING
CALL TASK VR_COMPLETE_CHECKOUT_TASK
USING VR_SENDCTRL_WKSP,

VR_CONTROL_WKSP,
VR_RESERVATIONS_WKSP,
VR_TRANS_WKSP,
VR_VEHICLES_WKSP;

END BLOCK;

ACTION IS
MOVE " " TO VR_CONTROL_WKSP.CTRL_KEY,

"ACTWT" TO VR_SENDCTRL_WKSP.SENDCTRL_KEY;
COMMIT TRANSACTION;
GOTO STEP DISP_STAT;

The nested block step in VR_RESERVE_TASK starts a distributed transaction
with the TRANSACTION phrase. This step uses a distributed transaction
because it performs processing work before it calls the VR_COMPLETE_
CHECKOUT_TASK. The first processing step calls the VR_STORE_CU_PROC
procedure to update the customer’s record. If the called task fails, it is important
that the effects of the VR_STORE_CU_PROC procedure be rolled back.

The second processing step calls VR_COMPLETE_CHECKOUT_TASK. Because
the distributed transaction starts on the nested block step in the parent task, the
action part of the same step ends the distributed transaction with the COMMIT
TRANSACTION clause.

Example 7–4 shows the complete definition of the VR_COMPLETE_CHECKOUT_
TASK, called by VR_RESERVE_TASK.

7–6 Defining Distributed Transactions



Defining Distributed Transactions
7.5 Including a Called Task in a Distributed Transaction

Example 7–4 Complete Definition of the VR_COMPLETE_CHECKOUT_TASK

REPLACE TASK AVERTZ_CDD_TASK:VR_COMPLETE_CHECKOUT_TASK

USE WORKSPACES VR_CONTROL_WKSP,
VR_VEHICLES_WKSP,
VR_RENTAL_CLASSES_WKSP,
VR_TRANS_WKSP,
VR_SENDCTRL_WKSP,
VR_RESERVATIONS_WKSP,
VR_VE_ARRAY_WKSP,
VR_HIST_WKSP;

TASK ARGUMENTS ARE VR_SENDCTRL_WKSP WITH ACCESS READ,
VR_CONTROL_WKSP WITH ACCESS MODIFY,
VR_RESERVATIONS_WKSP WITH ACCESS MODIFY,
VR_TRANS_WKSP WITH ACCESS READ,
VR_VEHICLES_WKSP WITH ACCESS READ;

BLOCK WITH TRANSACTION
NO I/O

!
PERFORM:
!+
! Perform the checkout process or cancel the reservation depending
! on the user’s choice
!

PROCESSING
SELECT FIRST TRUE

(VR_CONTROL_WKSP.CTRL_KEY = "OK"):
CALL PROCEDURE VR_COMPLETE_CHECKOUT_PROC
IN VR_UPDATE_SERVER
USING VR_RESERVATIONS_WKSP,

VR_VEHICLES_WKSP;
(VR_CONTROL_WKSP.CTRL_KEY = "CANCL"):

CALL PROCEDURE VR_CANCEL_RS_PROC
IN VR_UPDATE_SERVER
USING VR_RESERVATIONS_WKSP,

VR_CONTROL_WKSP;
END SELECT;

ACTION IS
SELECT FIRST TRUE OF
(VR_CONTROL_WKSP.CTRL_KEY = "OK"):

GET MESSAGE INTO VR_CONTROL_WKSP.MESSAGEPANEL;
MOVE "CHECKOUT" TO VR_HIST_WKSP.TRANS_TYPE,

VR_VEHICLES_WKSP.VEHICLE_ID TO VR_HIST_WKSP.VEHICLE_ID;
(VR_CONTROL_WKSP.CTRL_KEY = "CANCL"):

GET MESSAGE INTO VR_CONTROL_WKSP.MESSAGEPANEL;
MOVE "CANCEL " TO VR_HIST_WKSP.TRANS_TYPE,

VR_VEHICLES_WKSP.VEHICLE_ID TO VR_HIST_WKSP.VEHICLE_ID;
NOMATCH:

CANCEL TASK;
END SELECT;

! Write to the history record to record the completion of the
! checkout or the cancellation of the reservation.

PROCESSING
CALL PROCEDURE VR_WRITE_HIST_RECORD_PROC
IN VR_LOG_SERVER
USING VR_HIST_WKSP,

VR_RESERVATIONS_WKSP;

END BLOCK;

(continued on next page)

Defining Distributed Transactions 7–7



Defining Distributed Transactions
7.5 Including a Called Task in a Distributed Transaction

Example 7–4 (Cont.) Complete Definition of the VR_COMPLETE_CHECKOUT_
TASK

!
! This is a composable task called by the RESERVE and the CHECKOUT
! tasks. In the case of the RESERVE task the distributed transaction
! is started in the RESERVE task and therefore committed in the
! RESERVE task. However, the CHECKOUT task does not start the
! distributed transaction but the COMPLETE_CHECKOUT task is composable
! so the commit is done as a default action by ACMS.
!
END DEFINITION;

For the VR_COMPLETE_CHECKOUT_TASK task to be composable, it must
include the TRANSACTION phrase at the root block step. At the end of the
block step, the task does not commit or roll back the distributed transaction. The
transaction must end in the task in which it started, the VR_RESERVE_TASK.

Example 7–4 shows one called task participating in a distributed transaction.
You can include multiple called tasks in a distributed transaction. For example,
the VR_COMPLETE_CHECKOUT_TASK can include a call to another task as
long as that task is composable.

A parent task that does not start a distributed transaction can call a task
that includes a distributed transaction. In this case, the called task ends the
distributed transaction.

7.6 How Distributed Transactions Affect Server Context
By default, any server used by processing steps within a distributed transaction
is reserved to that distributed transaction until the transaction ends. As a result,
ACMS automatically retains server context between steps within a distributed
transaction. You cannot specify the RELEASE SERVER CONTEXT action
clause on a step that participates in a distributed transaction. When DECdtm
ends a distributed transaction, by either committing it or rolling it back, ACMS
automatically releases server context. You cannot specify the RETAIN SERVER
CONTEXT or NO SERVER CONTEXT ACTION clause in the action part of a
step that starts a distributed transaction.

Within a distributed transaction, if multiple processing steps call one or more
procedures in the same server, ACMS allocates just one server process for all
the processing steps. Therefore, the first procedure called within a distributed
transaction must ready the database for all procedures in the transaction. See
HP ACMS for OpenVMS Writing Server Procedures for more information on how
to write procedures that ready the database.

A called task that participates in a distributed transaction started by the parent
task does not share server context with the parent task. In other words, if the
parent and called tasks include processing steps that call procedures in the same
server, ACMS allocates a server process for the parent task and a second server
process for the called task.

Note

A task can retain context in multiple servers only if each server
participates in a distributed transaction. If a task attempts to start
a distributed transaction while retaining context in a server, ACMS

7–8 Defining Distributed Transactions



Defining Distributed Transactions
7.6 How Distributed Transactions Affect Server Context

cancels the task. It is strongly recommended that you do not include
exchange steps within a distributed transaction. Including exchange steps
within a distributed transaction increases the system resources used by
the application, and can adversely affect performance.

7.7 Excluding a Processing Step from a Distributed Transaction
Occasionally, within a block that starts a distributed transaction, you want
to include a processing step that accesses a database independently of the
distributed transaction. You need to exclude a processing step from a distributed
transaction, if the application requires that the effects of the processing step
survive even when the transaction is rolled back.

For example, an application requires a security log that records information about
users who access or attempt to access sensitive information. In this case, the
procedure that updates the security log is not part of the distributed transaction
because if the transaction fails you do not want to roll back the security log
update.

To exclude a processing step from a distributed transaction, use the
NONPARTICIPATING SERVER phrase on the processing step. Because a task
can retain context in multiple servers only if each of the servers participates in a
distributed transaction, ACMS automatically releases server context at the end
of a processing step that specifies NONPARTICIPATING SERVER. You cannot
specify the RETAIN SERVER CONTEXT or NO SERVER CONTEXT ACTION
clause in the action part of a processing step that specifies NONPARTICIPATING
SERVER.

The AVERTZ sample application includes an agent written in C that starts a
distributed transaction and calls a task that joins the distributed transaction
and queues a task. The called task, VR_FAST_CHECKIN_TASK, uses the
NONPARTICIPATING SERVER phrase to exclude two processing steps from the
distributed transaction. Example 7–5 shows the VR_FAST_CHECKIN_TASK
definition.

Example 7–5 VR_FAST_CHECKIN_TASK with Nonparticipating Processing
Steps

BLOCK WORK WITH DISTRIBUTED TRANSACTION
NO I/O

!
! Retrieve the reservation record, using the reservation number/id
! entered by the customer and passed by the vr_agent agent.
!

PROCESSING WITH NONPARTICIPATING SERVER
CALL PROCEDURE VR_FIND_RES_PROC
IN VR_READ_SERVER

USING VR_FAST_CHECKIN_WKSP,
VR_RESERVATIONS_WKSP;

(continued on next page)

Defining Distributed Transactions 7–9



Defining Distributed Transactions
7.7 Excluding a Processing Step from a Distributed Transaction

Example 7–5 (Cont.) VR_FAST_CHECKIN_TASK with Nonparticipating
Processing Steps

ACTION IS
IF (ACMS$T_STATUS_TYPE = "G")
THEN

MOVE VR_FAST_CHECKIN_WKSP.ACTUAL_RETURN_DATE
TO VR_VEHICLE_RENTAL_HISTORY_WKSP.ACTUAL_RETURN_DATE,

VR_FAST_CHECKIN_WKSP.RETURN_ODOMETER_READING
TO

VR_VEHICLE_RENTAL_HISTORY_WKSP.RETURN_ODOMETER_READING;
ELSE

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

!
! RETRIEVE THE VEHICLE AND VEHICLE_RENTAL_HISTORY RECORDS
!

PROCESSING WITH NONPARTICIPATING SERVER
CALL PROCEDURE VR_FIND_VE_VRH_PROC
IN VR_READ_SERVER

USING VR_RESERVATIONS_WKSP,
VR_VEHICLES_WKSP,
VR_VEHICLE_RENTAL_HISTORY_WKSP,
VR_RENTAL_CLASSES_WKSP,
VR_TRANS_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "B") THEN

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

!
! QUEUE THE TASK TO BE RUN LATER
!

PROCESSING
CALL PROCEDURE VR_ENQ_FAST_CHECKIN
IN VR_QUEUE_SERVER

USING VR_FAST_CHECKIN_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "G")
THEN

MOVE "FASTCHIN" TO VR_HIST_WKSP.TRANS_TYPE,
VR_VEHICLES_WKSP.VEHICLE_ID

TO VR_HIST_WKSP.VEHICLE_ID;
ELSE

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

!
! WRITE A RECORD OF A SUCCESSFUL CHECK IN TO THE HISTORY DATABASE
!

PROCESSING
CALL PROCEDURE VR_WRITE_HIST_RECORD_PROC
IN VR_LOG_SERVER
USING VR_HIST_WKSP,

VR_RESERVATIONS_WKSP;

END BLOCK;

(continued on next page)

7–10 Defining Distributed Transactions



Defining Distributed Transactions
7.7 Excluding a Processing Step from a Distributed Transaction

Example 7–5 (Cont.) VR_FAST_CHECKIN_TASK with Nonparticipating
Processing Steps

Because the VR_FAST_CHECKIN_TASK is joining a distributed transaction
started by the agent, the root block step must use the DISTRIBUTED
TRANSACTION phrase.

The first processing step in VR_FAST_CHECKIN_TASK uses the reservation ID,
obtained from the customer by the agent, to retrieve the reservation record. The
second processing step retrieves the car history record. Because the first two
processing steps perform read-only operations, neither step needs to participate in
the distributed transaction. Therefore, both steps use the NONPARTICIPATING
SERVER phrase.

ACMS automatically releases context at the end of each of the first two processing
steps, thereby freeing up the server processes for other tasks.

The third processing step calls the VR_ENQ_FAST_CHECKIN procedure to
queue the VR_COMP_FAST_CHKIN_TASK.

The final processing step writes a record of the transaction into the database. If
the procedure completes successfully, the task ends, and the agent calls DECdtm
to commit the distributed transaction.

7.8 Handling Deadlocks and Transaction Failures
If your application contains tasks that use distributed transactions, deadlock
problems are possible. One type of deadlock involves multiple tasks attempting
to access the same server process. For example, suppose that two tasks each use
two servers. Each server has one active server process. The first task accesses
the first server, and the second task accesses the second server. If both tasks then
attempt to access the other server, they become deadlocked waiting to use the
server process being used by the other task.

If your application and databases are distributed across multiple systems that are
not part of a single OpenVMS Cluster system, deadlocks can occur when multiple
tasks attempt to access the same database records. The OpenVMS Lock Manager
is able to detect deadlocks only within a single system or an OpenVMS Cluster
system.

By specifying the TRANSACTION TIMEOUT subclause in the application
definition, you can instruct ACMS to call the transaction services to abort
a transaction if it has not completed within a certain number of seconds.
See Chapter 11 for an example of an application definition that includes
TRANSACTION TIMEOUT.

In addition to deadlocks, there are a number of reasons why distributed
transactions might fail, such as:

• Communication with a remote node participating in the distributed
transaction fails.

• A resource manager participating in the distributed transaction detects a
data integrity constraint failure.

• A called task completes with a transaction error or is canceled.

Defining Distributed Transactions 7–11



Defining Distributed Transactions
7.8 Handling Deadlocks and Transaction Failures

ACMS lets you test for and recover from distributed transaction failures. For
information on how to write task definitions that handle distributed transaction
failures, see Chapter 8.

7–12 Defining Distributed Transactions



8
Handling Task Execution Errors

Chapter 2 shows how to handle some common task errors, such as when a
requested database record cannot be found, by using conditional clauses to test
workspace field values. However, this method cannot detect and handle certain
events that prevent tasks from completing successfully. To handle all types of
task execution errors, ACMS provides an exception handler action component of
the task definition language. This chapter describes:

• The three classes of exceptions

• The RAISE EXCEPTION clause

• The EXCEPTION HANDLER ACTION clause

• How to recover from a transaction exception, a HP DECforms time-out
exception, and a task-call-task exception

• How ACMS performs exception handling at run time

8.1 Why Use Exception Handling
Use of exception handling is optional. By default, if ACMS encounters an
error that prevents it from executing a task, ACMS cancels the task. In some
situations, you might want to handle the error and continue task execution. For
example, if the task includes one or more distributed transactions, you might
want to include exception handler action syntax to test for, and recover from,
distributed transaction failures. If you do not specify an action to take when
a distributed transaction fails, ACMS cancels the task. Instead, depending
upon the reason the transaction failed, you might want to retry the distributed
transaction or transfer control to another part of the task definition.

You might also want to use exception handling to test for, and recover from,
HP DECforms timeouts. For example, if a terminal user does not fill in a HP
DECforms field within the timeout period specified in the exchange step, HP
DECforms returns an error. Rather than let ACMS cancel the task, you can
specify an exception handler action to test for the timeout error and repeat the
exchange step, reminding the terminal user to fill in the panel.

You can also use exception handling to enable a parent task to continue executing
when a called task fails. In short, exception handling gives you flexibility in
designing tasks that can detect a variety of execution errors and respond in a
predictable manner.

Handling Task Execution Errors 8–1



Handling Task Execution Errors
8.2 What is an Exception

8.2 What is an Exception
An exception is an event or an error condition that interrupts the normal flow
of an executing task. Each exception has a unique OpenVMS longword exception
code that indicates the failure condition. ACMS raises, or generates, an exception
based on errors or events occurring in the following sources:

• System software such as ACMS, OpenVMS, Rdb, and HP DECforms

• A task definition action clause

• A user-written program running in a server or in an agent

• An operator command or request such as ACMS/CANCEL TASK

An exception handler is an optional part of an exchange, processing, or block
step that lets you control task execution when an exception is raised in the work
or action part of the step. Note that the work part of a block step includes the
work, action, and exception handler parts of all exchange, processing, and nested
block steps in that block step. After an exception has been raised, you can test
for its presence with a conditional clause, and specify the action to take in the
exception handler part of the step. The class of exception determines where in
the task definition you can specify an exception handler, and whether you can
handle the exception at all. The three classes of exceptions are:

• Step

• Transaction

• Nonrecoverable

8.2.1 Step Exceptions
A step exception is an error that you can handle in the exception handler part
of the step on which the exception occurs or in an exception handler on an outer
block step. Table 8–1 shows the complete list of step exceptions.

Table 8–1 Step Exceptions

Source of Exception Description of Exception

RAISE EXCEPTION action
clause

You can specify an exception code with RAISE
EXCEPTION; if you do not, ACMS provides a default
exception code based on where in the task definition you
specify RAISE EXCEPTION. Section 8.3 describes how to
use the RAISE EXCEPTION action clause.

ACMS$RAISE_STEP_
EXCEPTION service

You can use this service to raise a step exception when the
procedure detects an error that it cannot handle. You can
specify actions to recover from the error in an exception
handler part of the task definition. See HP ACMS for
OpenVMS Writing Server Procedures for more information
on using this service in step procedures.

HP DECforms A common reason for ACMS to raise a step exception is that
the terminal user did not fill in a HP DECforms field within
the specified timeout period. ACMS also raises a step
exception when HP DECforms encounters data conversion
problems while moving data from a task workspace field to
a form.

(continued on next page)

8–2 Handling Task Execution Errors



Handling Task Execution Errors
8.2 What is an Exception

Table 8–1 (Cont.) Step Exceptions

Source of Exception Description of Exception

TDMS A common reason for ACMS to raise a step exception is that
TDMS encounters data conversion problems while moving
data from a task workspace field to a form.

User-written request
procedure (URP)

ACMS raises a step exception if a user-written request
procedure returns an error status.

Stream I/O operation ACMS raises a step exception if an agent completes a
stream I/O request by passing an error status to the
ACMS$REPLY_TO_STREAM_IO service.

Called task If a task, called by a parent task that does not start
a distributed transaction, completes with any type of
exception, ACMS raises a step exception in the parent
task. If a called task that participates in a distributed
transaction started by the parent task completes with a
step exception, ACMS raises a step exception in the parent
task. See Section 8.5.2 for details on handling exceptions
that occur in called tasks.

8.2.2 Transaction Exceptions
A transaction exception is an error that causes a distributed transaction to
fail. Table 8–2 shows the complete list of transaction exceptions.

Table 8–2 Transaction Exceptions

Source of Exception Description of Exception

Transaction timeout error In the application definition, you can use the
TRANSACTION TIMEOUT phrase to specify a time limit
within which the distributed transaction must complete. If
the transaction does not end within the specified number
of seconds, ACMS raises a transaction exception with
the ACMS$_TRANSTIMEDOUT exception code. If the
transaction started in the current task, ACMS calls the
DECdtm services to abort the transaction. If the task was
called to participate in a transaction started by a parent
task, ACMS calls DECdtm to abort the transaction when
ACMS resumes executing the parent task. If the task was
called to participate in a transaction started by an agent,
the agent must abort the transaction when the task ends
and the ACMS$CALL or ACMS$WAIT_FOR_CALL_END
service completes.

ACMS$RAISE_TRANS_
EXCEPTION service

You can use this service to raise a transaction exception
when the procedure detects an error that it cannot handle.
You can specify actions to recover from the error in an
exception handler part of the task definition. See HP
ACMS for OpenVMS Writing Server Procedures for more
information on using this service in step procedures.

Transaction is aborted A transaction exception can be raised when a distributed
transaction is aborted while ACMS is executing the task.
For example, if a network link to a remote database server
process that is participating in a distributed transaction
fails, ACMS raises a transaction exception.

(continued on next page)

Handling Task Execution Errors 8–3



Handling Task Execution Errors
8.2 What is an Exception

Table 8–2 (Cont.) Transaction Exceptions

Source of Exception Description of Exception

SYS$ABORT_TRANS[W]
system service

If a user-written agent calls the SYS$ABORT_TRANS[W]
service while ACMS executes a composed task, ACMS
raises a transaction exception.

Called task If a called task that participates in a distributed transaction
started by the parent task completes with a transaction
exception or a nonrecoverable exception, ACMS raises a
transaction exception in the parent task.

Note

A step procedure that participates in a distributed transaction started by
a task or an agent must not call the SYS$ABORT_TRANS[W] service,
because the results are unpredictable.

8.2.3 Nonrecoverable Exceptions
A nonrecoverable exception is an error from which the task cannot recover.
When a nonrecoverable exception is raised, ACMS cancels the task. Table 8–3
shows the list of nonrecoverable exceptions.

Table 8–3 Nonrecoverable Exceptions

Source of Exception Description of Exception

CANCEL TASK action
clause

As with the RAISE EXCEPTION clause, the CANCEL
TASK clause lets you raise an exception. However, while
RAISE EXCEPTION lets you recover from the exception
and continue executing the task, CANCEL TASK raises a
nonrecoverable exception that always cancels the task.

ACMS$RAISE_NONREC_
EXCEPTION system
service

You can call ACMS$RAISE_NONREC_EXCEPTION from a
step procedure to raise a nonrecoverable exception when the
procedure detects an error from which it cannot recover. HP
ACMS for OpenVMS Writing Server Procedures has more
information on how to use the ACMS$RAISE_NONREC_
EXCEPTION system service.

Server procedure ACMS raises a nonrecoverable exception when a step
procedure encounters a fatal error, such as an access
violation.

Server process ACMS raises a nonrecoverable exception if a server process
dies while a task is executing a step procedure or a DCL
command in the server process, or is retaining context in
the server process.

Submitter-requested
cancellation

If a terminal user presses Ctrl/Y to cancel a task, and the
task definition does not include the NOT CANCELABLE
phrase, ACMS raises a nonrecoverable exception.

Operator-requested
cancellation

If a system operator invokes the ACMS/CANCEL TASK
command to cancel a task, ACMS raises a nonrecoverable
exception.

(continued on next page)

8–4 Handling Task Execution Errors



Handling Task Execution Errors
8.2 What is an Exception

Table 8–3 (Cont.) Nonrecoverable Exceptions

Source of Exception Description of Exception

RMS file or database
recovery unit

A file or database recovery unit might fail to start because a
realm or relation is temporarily locked. A constraint check
failure might prevent a recovery unit from committing
successfully.

Unknown distributed
transaction failure

If a distributed transaction fails for an unknown reason,
ACMS raises a nonrecoverable exception.

Any other task cancellation Any event or error condition that causes ACMS to
unconditionally cancel the task causes ACMS to raise a
nonrecoverable exception.

8.3 Using the RAISE EXCEPTION Clause
To explicitly raise a step exception in the task definition, use the RAISE
EXCEPTION clause in the action part of the step where the error is detected.
You do not have to specify an exception code with RAISE EXCEPTION; ACMS
provides a default exception code of ACMS$_EXCPTN_TASKACTN when you
raise an exception in the action part of a step. If you use the RAISE EXCEPTION
clause in an exception handler, and you do not specify an exception code, ACMS
raises a step exception using the exception code associated with the current
exception. If you do specify an exception code, it must be a failure status.
Otherwise, ACMS cancels the task. Example 8–1 shows a processing step that
uses the RAISE EXCEPTION clause.

Example 8–1 RAISE EXCEPTION Clause in a Processing Step

PROCESSING WORK
CALL ENTER_ORDER IN DIST_CTR_DATABASE_UPDATE_SERVER

USING ORDER_ENTRY_RECORD, RESTOCK_RECORD, STATUS_RECORD;
ACTION IS

IF (DATA_IS_VALID <> "Y")
THEN

RAISE EXCEPTION APPL_INVALID_DATA
END IF;

In Example 8–1, the processing step calls a procedure to add a record to a
database. The action part of the step tests the DATA_IS_VALID workspace field
to see if the procedure returned a Y, indicating that the data to be stored in the
database is valid. If the procedure returns a value other than Y, the processing
step raises a step exception. APPL_INVALID_DATA is a user-defined exception
code.

When an exception is raised, ACMS searches for an exception handler in the
current step. If the current step does not contain an exception handler, ACMS
searches the outer block or blocks until it finds an exception handler. If ACMS
finds an exception handler, ACMS moves the exception code into the ACMS$L_
STATUS field of the ACMS$PROCESSING_STATUS system workspace. You can
then use a conditional clause in the exception handler action part of the step to
test for the exception code and to direct the task flow. If ACMS does not find an
exception handler, it cancels the task.

Section 8.6 contains a detailed description of how ACMS performs exception
handling at run time.

Handling Task Execution Errors 8–5



Handling Task Execution Errors
8.4 Using Exception Handler Actions

8.4 Using Exception Handler Actions
Exception handler actions make up the third part of a step, following the work
and action parts. The exception handler action part is optional. If you use it,
it must appear after the work and action parts of the step. The action part of
a step is optional. Use the EXCEPTION HANDLER clause to introduce the
exception handler component. Figure 8–1 shows how exception handlers fit into
the structure of a block step.

Figure 8–1 Block Step Structure

Block Step

Block Phrases
Block Conditional Clause 

...

Exchange Clauses

Action Clauses

Action Clauses

Exchange Step

Processing Step

Processing Clauses

Exception Handler 
Action Clauses

Exception Handler 
Action Clauses

TAY-0095-AD

You use the same action clauses in the exception handler component as you use
in the action part of a step with the exception of transaction actions and recovery
actions. You cannot use a transaction action clause (COMMIT TRANSACTION
or ROLLBACK TRANSACTION) or a recovery unit action clause in an exception
handler. Because there is no logical default sequencing action for an exception
handler, ACMS requires that you include a sequencing action clause. Regardless
of the order in which the exception handler action clauses appear in the task
definition, ACMS executes the clauses in the following order:

1. Workspace manipulation

2. Server process context action

3. Task sequencing

8–6 Handling Task Execution Errors



Handling Task Execution Errors
8.4 Using Exception Handler Actions

Example 8–2 Performing Exception Handling in a Task

BLOCK WORK WITH FORM I/O
EXCHANGE

RECEIVE FORM RECORD ORDER_ENTRY_RECORD IN ORDER_ENTRY_FORM
RECEIVING ORDER_ENTRY_WKSP;

WRITE_ORDER:
BLOCK WORK WITH DISTRIBUTED TRANSACTION

PROCESSING
CALL ENTER_ORDER IN DIST_CTR_DATABASE_UPDATE_SERVER
USING ORDER_ENTRY_WKSP, RESTOCK_WKSP, STATUS_WKSP;

ACTION IS
IF (DATA_IS_VALID <> "Y")
THEN

RAISE EXCEPTION APPL_INVALID_DATA
END IF;

PROCESSING
IF (ORDERED_AMOUNT > IN_STOCK_AMOUNT)
THEN

CALL QUEUE_REPLENISH_INVENTORY_TASK_PROC IN QUEUE_SERVER
USING RESTOCK_WKSP;

END IF;
END BLOCK;
ACTION IS

COMMIT TRANSACTION;
EXIT TASK;

EXCEPTION HANDLER ACTION IS
IF (ACMS$L_STATUS = APPL_INVALID_DATA)
THEN

GOTO STEP REENTER_DATA;
END IF;

REENTER_DATA:
EXCHANGE

TRANSCEIVE FORM RECORD STATUS_RECORD, ORDER_ENTRY_RECORD
IN ORDER_ENTRY_FORM
SENDING STATUS_WKSP
RECEIVING ORDER_ENTRY_WKSP;

ACTION IS
IF (RETRY_TRANSACTION = "Y")
THEN

GOTO STEP WRITE_ORDER;
ELSE

EXIT TASK;
END IF;

END BLOCK;

Example 8–2 shows how to include exception handling in a task definition.

In Example 8–2, if the first processing step raises the APPL_INVALID_DATA
exception, ACMS first looks for an exception handler in the same step. Because
the processing step does not include an exception handler, ACMS searches the
end of the nested block step where it finds an EXCEPTION HANDLER ACTION
clause. If the nested block step does not include an exception handler, ACMS
then looks at the end of the root block.

If an exception is raised other than the ones you test for in the exception handler
part of a step, ACMS provides a default action of RAISE EXCEPTION. For
example, in the above task definition, if an exception other than APPL_INVALID_
DATA is raised, ACMS raises another exception, which you can handle with an
exception handler on the root block.

Handling Task Execution Errors 8–7



Handling Task Execution Errors
8.5 Examples of Exception Handling

8.5 Examples of Exception Handling
Because ACMS exception handling is an all-purpose task execution error handling
tool, you can use it in task definitions to detect and recover from a variety of
exceptions. The following sections show how to use exception handling to recover
from a HP DECforms time-out exception, a task-call-task exception, and a
transaction exception.

8.5.1 Recovering from a HP DECforms Time-Out Exception
HP DECforms lets you specify a time limit within which the terminal user must
fill in a HP DECforms field. You may want to provide a way to recover from a HP
DECforms time-out error so that ACMS does not cancel the task. Example 8–3
shows how to test for and recover from a HP DECforms time-out exception.

In Example 8–3, the exchange step specifies that the terminal user must fill in
each HP DECforms field within 30 seconds. The exception handler part of the
exchange step tests the ACMS$L_STATUS field of the ACMS$PROCESSING_
STATUS workspace for the presence of the FORMS$_TIMEOUT exception code.
If ACMS raises the time-out exception, the exception handler action repeats the
exchange step to give the terminal user a second chance to complete the HP
DECforms field. If the time-out exception occurs a second time, ACMS passes
control to the DISP_STAT exchange step, which displays an error message, then
ends the task.

Note

If your application is distributed across a front-end node that performs
terminal I/O and a back-end node that performs computation and
database operations, ACMS Version 3.2 or higher must be installed
on both nodes, if the task definition is to recover from exceptions raised
by exchange steps.

8.5.2 Recovering from a Task-Call-Task Exception
If an exception occurs in a called task, you might want to continue executing the
parent task rather than letting ACMS cancel it. You can specify an exception
handler action in the processing step that called the task or on an outer block
step in the parent task. Note that the CONTINUE ON BAD STATUS phrase is a
declining feature that has been superseded by the exception handler mechanism.
Do not use it in new task definitions. Example 8–4 shows part of a parent task
that includes an exception handler action to recover from possible exceptions
raised in the called task.

8–8 Handling Task Execution Errors



Handling Task Execution Errors
8.5 Examples of Exception Handling

Example 8–3 Recovering from a HP DECforms Time-Out Exception

DISPLAY_RESV_NO:
EXCHANGE

!
! DISPLAY RESERVATION # AND PROMPT TO SEE IF CUSTOMER WANTS TO CHECK
! CAR OUT NOW.
!

TRANSCEIVE RECORD RES_INFO,
RES_CHECKOUT_DETAILS

SENDING VR_CONTROL_WKSP,
VR_RESERVATIONS_WKSP

RECEIVING VR_CONTROL_WKSP,
VR_RESERVATIONS_WKSP,
VR_CUSTOMERS_WKSP,
VR_TRANS_WKSP

WITH TIMEOUT 30
SEND CONTROL VR_SENDCTRL_WKSP;

ACTION IS
CONTROL FIELD VR_CONTROL_WKSP.CTRL_KEY
"QUIT" : EXIT TASK;
"CANCL": MOVE "ACTWT" TO VR_SENDCTRL_WKSP.SENDCTRL_KEY,

0 TO VR_CONTROL_WKSP.RETRY_COUNT,
"Y" TO VR_CONTROL_WKSP.INCREMENT_RETRY_COUNT;

GOTO STEP CANCEL_RES;
"REPET": GOTO STEP DISPLAY_RESV_NO;
"GTCAR": GOTO STEP FIND_CAR;
" ": MOVE "ACTWT" TO VR_SENDCTRL_WKSP.SENDCTRL_KEY;

GET MESSAGE NUMBER VR_RESVCOMP INTO
VR_CONTROL_WKSP.MESSAGEPANEL;

GOTO STEP DISP_STAT;
END CONTROL;

! IF THE FORM TIMES OUT, REMIND THE USER ONCE TO MAKE A SELCTION -
! THEN CANCEL THE TASK.

EXCEPTION HANDLER
SELECT FIRST TRUE OF
(ACMS$L_STATUS = FORMS$_TIMEOUT AND VR_CONTROL_WKSP.RETRY_COUNT = 0):

MOVE 1 TO VR_CONTROL_WKSP.RETRY_COUNT,
"RETRY" TO VR_CONTROL_WKSP.CTRL_KEY;

GET MESSAGE NUMBER VR_INACTIVE INTO
VR_CONTROL_WKSP.MESSAGEPANEL;

GOTO STEP DISPLAY_RESV_NO;
(ACMS$L_STATUS = FORMS$_TIMEOUT AND VR_CONTROL_WKSP.RETRY_COUNT > 0):

GET MESSAGE INTO VR_CONTROL_WKSP.MESSAGEPANEL;
MOVE "ACTWT" TO VR_SENDCTRL_WKSP.SENDCTRL_KEY,

" " TO VR_CONTROL_WKSP.CTRL_KEY;
GOTO STEP DISP_STAT;

END SELECT;

Handling Task Execution Errors 8–9



Handling Task Execution Errors
8.5 Examples of Exception Handling

Example 8–4 Recovering from an Exception Raised in a Called Task

COMPLETE_PROC:

! CALL THE VR_COMPLETE_CHECKOUT_TASK TO COMPLETE THE CHECKOUT
! TRANSACTION.
!
!

PROCESSING
CALL TASK VR_COMPLETE_CHECKOUT_TASK
USING VR_SENDCTRL_WKSP,

VR_CONTROL_WKSP,
VR_RESERVATIONS_WKSP,
VR_TRANS_WKSP,
VR_VEHICLES_WKSP;

!
! THE DISTRIBUTED TRANSACTION IS STARTED IN THE VR_COMPLETE_CHECKOUT_TASK
! BUT IS NOT EXPLICITLY COMMITTED SINCE IT IS A COMPOSABLE TASK. THE
! COMMIT WILL BE PERFORMED BY ACMS (DEFAULT ACTION).
!

ACTION IS
MOVE " " TO VR_CONTROL_WKSP.CTRL_KEY,

"ACTWT" TO VR_SENDCTRL_WKSP.SENDCTRL_KEY;
!
! RETRY IF A TIME OUT ERROR OCCURRED BEFORE CANCELING TASK.
!

EXCEPTION HANDLER
IF ( (ACMS$L_STATUS = ACMS$_TRANSTIMEDOUT AND

VR_CONTROL_WKSP.RETRY_COUNT = 0) )
THEN

MOVE 1 TO VR_CONTROL_WKSP.RETRY_COUNT;
REPEAT STEP;

ELSE
GET MESSAGE INTO VR_CONTROL_WKSP.MESSAGEPANEL;
MOVE " " TO VR_CONTROL_WKSP.CTRL_KEY,

"ACTWT" TO VR_SENDCTRL_WKSP.SENDCTRL_KEY;
GOTO STEP DISP_STAT;

END IF;

!
! DISPLAY STATUS TO THE USER.
!
DISP_STAT:

EXCHANGE
SEND RECORD VR_CONTROL_WKSP
SENDING VR_CONTROL_WKSP
WITH SEND CONTROL VR_SENDCTRL_WKSP;

In Example 8–4, the COMPLETE_PROC processing step calls the VR_
COMPLETE_CHECKOUT_TASK to compute the customer’s bill and perform final
checkout work. The VR_COMPLETE_CHECKOUT_TASK starts a distributed
transaction. Because VR_COMPLETE_CHECKOUT_TASK is a composable task,
it cannot explicitly commit or roll back the distributed transaction. Because a
distributed transaction must end in the action part of the step where it starts,
ACMS provides the default transaction action.

The exception handler part of the parent task uses an IF THEN ELSE
conditional clause to test the contents of the ACMS$L_STATUS field in the
ACMS$PROCESSING_STATUS workspace. If the called task raises the ACMS$_
TRANSTIMEDOUT exception code, ACMS retries the called task once.

8–10 Handling Task Execution Errors



Handling Task Execution Errors
8.5 Examples of Exception Handling

If a called task completes without raising an exception, ACMS returns the
contents of any modify-access and write-access task argument workspaces to the
parent task. ACMS then resumes executing the task from the action part of the
processing step that called the task.

If a called task completes with an exception, ACMS does not return the contents
of task argument workspaces to the parent task. If a task, called by a parent
task that does not start a distributed transaction, completes with any type of
exception, ACMS raises a step exception in the parent task. If a called task that
participates in a distributed transaction started by the parent task completes
with a step exception, ACMS raises a step exception in the parent task. If
a called task that participates in a distributed transaction completes with a
transaction or nonrecoverable exception, ACMS raises a transaction exception in
the parent task.

8.5.3 Recovering from a Transaction Exception
If your task includes a distributed transaction, there are several exceptions you
may want to test for and recover from by including an exception handler in
the task definition. A communication link between nodes participating in the
distributed transaction could be broken, or a resource manager that is part of the
distributed transaction might detect an error and be unable to prepare its part of
the distributed transaction. Example 8–5 shows how to test for and recover from
a transaction exception.

Example 8–5 Recovering from a Transaction Exception

BLOCK WITH TRANSACTION

!+
! ONLY UPDATE CUSTOMER RECORD IF SHADOW RECORD INDICATES
! CHANGE HAS BEEN MADE ON PREVIOUS EXCHANGE.

IF ( (VR_CUSTOMERS_SHADOW_WKSP.REC_STATUS = "1") OR
(VR_TRANS_SHADOW_WKSP.REC_STATUS = "1") OR
(VR_SENDCTRL_WKSP.SENDCTRL_KEY = "TRAGN") ) THEN

PROCESSING

CALL PROCEDURE VR_STORE_CU_PROC
IN VR_CU_UPDATE_SERVER
USING VR_CONTROL_WKSP,

VR_CUSTOMERS_WKSP,
VR_TRANS_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "B") THEN

GET MESSAGE INTO VR_CONTROL_WKSP.MESSAGEPANEL;
MOVE "TRAGN" TO VR_SENDCTRL_WKSP.SENDCTRL_KEY;
EXIT BLOCK;

ELSE
MOVE " " TO VR_CONTROL_WKSP.CTRL_KEY,

" " TO VR_SENDCTRL_WKSP.SENDCTRL_KEY;
END IF;

END IF;

(continued on next page)

Handling Task Execution Errors 8–11



Handling Task Execution Errors
8.5 Examples of Exception Handling

Example 8–5 (Cont.) Recovering from a Transaction Exception

STORE_RESV:
!+
! CREATE RESERVATION NUMBER AND WRITE RESERVATION RECORD TO DB.
!-

PROCESSING
CALL PROCEDURE VR_WRITE_RS_PROC
IN VR_UPDATE_SERVER
USING VR_CONTROL_WKSP,

VR_RESERVATIONS_WKSP,
VR_SITES_WKSP,
VR_RENTAL_CLASSES_WKSP,
VR_CUSTOMERS_WKSP;

ACTION
MOVE "RESERVE " TO VR_HIST_WKSP.TRANS_TYPE;

!+
! WRITE A RECORD TO THE HISTORY FILE TO LOG THE COMPLETED TRANSACTION
! - HISTORY RECORDS ARE RDB RECORDS (COULD BE ANY TYPE OF FILE SYSTEM
! OR DATABASE). THIS IS PART OF THE DISTRIBUTED TRANSACTION.
!-

PROCESSING

CALL PROCEDURE VR_WRITE_HIST_RECORD_PROC
IN VR_LOG_SERVER
USING VR_HIST_WKSP,

VR_RESERVATIONS_WKSP;

!
! END OF DISTRIBUTED TRANSACTION
!
END BLOCK;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "G")

THEN
COMMIT TRANSACTION;
MOVE " " TO VR_SENDCTRL_WKSP.SENDCTRL_KEY,

"Y" TO VR_CONTROL_WKSP.INCREMENT_RETRY_COUNT,
0 TO VR_CONTROL_WKSP.RETRY_COUNT;

ELSE
ROLLBACK TRANSACTION;
GOTO STEP DISPLAY_CUST_INFO;

END IF;
!
! EXCEPTION HANDLER FOR ABOVE BLOCK
!
! RETRY THE DISTRIBUTED TRANSACTION 5 TIMES (ONLY IF A
! ACMS$_TRANSTIMEDOUT ERROR OCCURRED) BEFORE CANCELING TASK.
! THE RETRY_COUNT IS INCREMENTED IN EITHER VR_STORE_CU_PROC
! OR VR_WRITE_RS_PROC.
!

EXCEPTION HANDLER
IF (ACMS$L_STATUS = ACMS$_TRANSTIMEDOUT AND

VR_CONTROL_WKSP.RETRY_COUNT < 5)
THEN

REPEAT STEP;
ELSE

GET MESSAGE INTO VR_CONTROL_WKSP.MESSAGEPANEL;
MOVE "ACTWT" TO VR_SENDCTRL_WKSP.SENDCTRL_KEY,

" " TO VR_CONTROL_WKSP.CTRL_KEY;

(continued on next page)

8–12 Handling Task Execution Errors



Handling Task Execution Errors
8.5 Examples of Exception Handling

Example 8–5 (Cont.) Recovering from a Transaction Exception
GOTO STEP DISP_STAT;

END IF;

In this example, a nested block starts a distributed transaction and includes
three processing steps. The first processing step checks to see if the user has
changed any customer information. If one of the shadow workspaces indicates
that information has changed, the processing step calls the VR_STORE_CU_
PROC procedure to update the database.

The STORE_RESV step adds a reservation record to the reservation database.
The third processing step updates a transaction log in another database.

If the three processing steps complete successfully, the action part of the nested
block step commits the distributed transaction. If an error occurs that causes the
distributed transaction to fail before completing, ACMS raises a transaction
exception. The exception handler part of the nested block checks for the
ACMS$_TRANSTIMEDOUT transaction exception code to see if the distributed
transaction did not complete within the time limit specified in the application
definition with the TRANSACTION TIMEOUT phrase.

If the ACMS$L_STATUS field contains the ACMS$_TRANSTIMEDOUT exception
code, ACMS repeats the block step up to five times. If ACMS$L_STATUS contains
any other exception code, or if the distributed transaction has already timed out
five times, ACMS passes control to the DISP_STAT exchange step, which displays
an error message, and ends the task.

8.6 How ACMS Performs Exception Handling
To be able to design tasks that make efficient use of exception handling, you need
to know how ACMS executes tasks that use exception handling. ACMS takes
different actions depending upon the type of exception and where in the task
definition the exception was raised; however, for step exceptions and transaction
exceptions, ACMS performs the following steps:

1. Interrupts task execution. If the exception is raised while ACMS is executing
an exchange step, ACMS cancels the exchange I/O. If the exception is raised
while ACMS is executing a processing step, ACMS cancels a call to a server
procedure or DCL command.

2. Searches for an exception handler. When ACMS finds an exception handler,
ACMS stores the exception code in the ACMS$PROCESSING_STATUS
system workspace, and evaluates the conditional clause, if present. If no
exception handler has been specified, ACMS cancels the task.

3. Executes the exception handler action clauses. Regardless of the order in
which the action clauses appear in the definition, ACMS processes them in
the following order:

1. Workspace manipulation

2. Server context action

3. Task sequencing

The following sections describe how ACMS executes each type of exception, and
how ACMS cancels a task.

Handling Task Execution Errors 8–13



Handling Task Execution Errors
8.6 How ACMS Performs Exception Handling

8.6.1 Executing a Step Exception Outside of a Distributed Transaction
If ACMS detects a step exception outside the bounds of a distributed transaction,
ACMS first looks for an exception handler on the same step that raised the
exception. If the current step does not include an exception handler, ACMS
checks block steps out to the root block step for an exception handler. If ACMS
does not find an exception handler, it cancels the task. If ACMS finds an
exception handler, it stores the exception code in ACMS$PROCESSING_STATUS
and performs the exception handler action clauses. If the exception handler does
not specify how to handle the particular exception raised, ACMS searches out to
the root block for another exception handler. If ACMS cannot find an exception
handler that specifies how to handle the particular exception raised, ACMS raises
a nonrecoverable exception and cancels the task. For example, if the exception
handler specifies a recovery action only for the FORMS$_TIMEOUT exception
code, and a different exception is raised, ACMS cancels the task.

8.6.2 Executing a Step Exception Within a Distributed Transaction
If ACMS detects a step exception within a distributed transaction, ACMS
searches for an exception handler on the current step. If the current step does
not include an exception handler, ACMS searches any outer block steps within
the distributed transaction. If ACMS finds an exception handler, ACMS performs
the exception handler action clauses.

If ACMS does not find an exception handler, or if the exception is raised in
a processing step that starts a distributed transaction, ACMS checks to see
whether the distributed transaction was started by the current task, a parent
task, or an agent. If the current task started the distributed transaction, ACMS
aborts the distributed transaction and raises a transaction exception with the
same exception code. If the current task is a called task that participates in a
distributed transaction started by the parent task or an agent, ACMS cancels the
current task and raises a transaction exception in the parent task, or returns the
exception code to the agent.

8.6.3 Executing a Transaction Exception
As with step exceptions, when ACMS detects a transaction exception, it interrupts
the task execution. If the task was not executing a COMMIT TRANSACTION
clause when the transaction exception was raised, ACMS calls the server cancel
procedure, if defined, for each server in which the task maintains context. If the
task was executing COMMIT TRANSACTION, ACMS does not call any server
cancel procedures. Before searching for an exception handler, ACMS releases
context held in server processes.

ACMS then searches for an exception handler, starting on the step that started
the distributed transaction and searching out to the root block.

8.6.4 Executing Nonrecoverable Exceptions
When ACMS detects a nonrecoverable exception, it interrupts the task execution
and begins to cancel the task. ACMS performs the following steps to cancel a
task:

1. Handles an active distributed transaction. If a distributed transaction is
active, and the task is not a called task that participates in a distributed
transaction started by the parent task or agent, ACMS aborts the distributed
transaction. If the task is a called task that joins a distributed transaction,
the parent task or agent that started the distributed transaction must abort
it.

8–14 Handling Task Execution Errors



Handling Task Execution Errors
8.6 How ACMS Performs Exception Handling

2. Calls the server cancel procedure for each server in which the task maintains
context.

3. Writes a task cancellation record to the ACMS audit trail log.

4. Executes the task’s CANCEL ACTION processing work, if defined.

5. If task is a called task, returns an exception to the parent task or agent.

8.7 How Exceptions Affect Server Cancel Procedures
When you define the characteristics of a server in the task group definition, you
can specify a server cancel procedure. Server cancel procedures perform cleanup
work when a task cancels. For example, a server cancel procedure might close
a channel that was opened for terminal I/O, release resources used by a server
procedure such as an OpenVMS lock, or roll back a database recovery unit.
However, calling server cancel procedures after an exception has been raised can
adversely affect the performance of your application, because ACMS must make
an additional call to each server process.

If an exception causes the server process to be run down, calling a server cancel
procedure increases the time it takes to shut down and restart the server process.
If the server process does not have to be run down, calling a server cancel
procedure causes a delay in allocating the server process to another task instance.
Therefore, wherever possible, design tasks and step procedures that do not call
server cancel procedures when an exception has been raised. The following
sections describe how ACMS uses the exception type to determine when to call
server cancel procedures.

8.7.1 Step Exceptions and Server Cancel Procedures
If a step exception is raised, and the task definition does not include an exception
handler to recover from the exception, ACMS raises a transaction exception or a
nonrecoverable exception. If a distributed transaction was active when the step
exception was raised, ACMS raises a transaction exception; otherwise, ACMS
raises a nonrecoverable exception. ACMS then calls any server cancel procedures
and cancels the task.

ACMS does not call server cancel procedures when a step exception is raised and
the task definition includes an exception handler to recover from the exception.

8.7.2 Nonrecoverable Exceptions Raised by Action Clauses
If a nonrecoverable exception is raised while a task maintains context in one or
more server processes, ACMS calls server cancel procedures. If the action part of
the step in which the nonrecoverable exception is raised releases server context,
ACMS does not call server cancel procedures. The action part of the processing
step in the following example explicitly releases server context.

PROCESSING
CALL UPDATE_ORDER_IN ORDER_SERVER USING ORDER_RECORD;

ACTION IS
IF (ACMS$L_STATUS <> 1)
THEN

RELEASE SERVER CONTEXT;
CANCEL TASK RETURNING ACMS$L_STATUS;

END IF;

Because ACMS executes server context actions before sequencing actions, ACMS
releases server context before canceling the task. Therefore, ACMS does not call
server cancel procedures.

Handling Task Execution Errors 8–15



Handling Task Execution Errors
8.7 How Exceptions Affect Server Cancel Procedures

The processing step in the previous example did not participate in a distributed
transaction. Within a distributed transaction, ACMS requires that server context
be retained between steps. Therefore, if a processing step within a distributed
transaction cancels the task, ACMS calls server cancel procedures. Example 8–6
shows how to cancel a task within a distributed transaction without calling server
cancel procedures.

Example 8–6 Canceling a Task without Calling Server Cancel Procedures

BLOCK WORK WITH DISTRIBUTED TRANSACTION
PROCESSING

CALL UPDATE_ORDER IN ORDER_SERVER
USING ORDER_RECORD;

ACTION IS
IF (ACMS$L_STATUS <> 1)
THEN

EXIT BLOCK;
END IF;

PROCESSING
CALL WRITE_LOG_RECORD IN LOG_SERVER

USING ORDER_RECORD;
END BLOCK;
ACTION IS

IF (ACMS$L_STATUS = 1)
THEN

COMMIT TRANSACTION;
ELSE

ROLLBACK TRANSACTION;
CANCEL TASK RETURNING ACMS$L_STATUS;

END IF;

Example 8–6 starts a distributed transaction on the block step. If the UPDATE_
ORDER procedure returns a status value other than 1, ACMS passes control
to the action part of the block step, rolls back the distributed transaction, and
cancels the task. When ACMS processes the ROLLBACK TRANSACTION clause,
the distributed transaction ends and ACMS releases server context. As a result,
ACMS does not call server cancel procedures when it cancels the task.

8.7.3 Other Nonrecoverable Exceptions and Transaction Exceptions
When ACMS executes a COMMIT TRANSACTION clause, if a transaction
exception is raised because the distributed transaction fails to prepare, ACMS
does not call server cancel procedures.

In all other cases, if a transaction exception or a nonrecoverable exception is
raised while the task maintains context in one or more server processes, ACMS
calls server cancel procedures.

8–16 Handling Task Execution Errors



9
Queuing ACMS Tasks

ACMS typically does interactive processing of the tasks in your application,
but certain tasks have requirements that you can meet through the use of task
queues. These requirements include:

• Data capture and deferred processing of data

For example, an application has hundreds of time cards that must be
processed in a very short time during a shift change. In this type of
application, processing each data item immediately can have adverse effects
on the performance of the system, so it is useful to capture the data and
store it for future processing. This type of processing is also known as
desynchronized processing, because the data capture and the data processing
are not synchronized.

• High application availability

In a distributed environment, if the back-end machine fails, the front-end
machine or machines can continue processing by submitting tasks to queues.

• Transaction persistence

If a system failure interrupts the processing of a queued task, the queuing
facilities continue to dequeue and submit that task until it succeeds.

For these and other such requirements, you can use the ACMS queuing facility to
capture and initiate the tasks in your ACMS application.

9.1 Understanding the ACMS Queuing Facility
In an ACMS application, exchange steps of a task gather data while processing
steps of that task process the data.

When you use ACMS queuing, you may include in a processing step a call to
an ACMS programming service to enqueue a deferred task on a task queue
for later processing. This queued task includes task arguments, together with a
task name, and an application name, to comprise a queued task element that
is stored on the task queue. At a later time, ACMS executes a queued task (a
task submitted by the ACMS queuing facility). ACMS processes the queued task
and then deletes the queued task element from the task queue. In other words, a
queued task element is stored in a task queue for later processing.

Queued tasks must have certain characteristics (discussed in Section 9.6.1) in
order for them to be successfully executed by the ACMS queuing facility. For
example, queued tasks cannot perform exchange steps to collect input, because
all the input needed by the queued task must be passed to the task as task
arguments. Aside from these characteristics, there is no difference between a
queued task and any other ACMS task.

Queuing ACMS Tasks 9–1



Queuing ACMS Tasks
9.1 Understanding the ACMS Queuing Facility

Note

ACMS task queues are distinct from OpenVMS batch queues. Many of
the concepts are similar, but ACMS and OpenVMS queues are completely
independent entities that are managed and used by independent
interfaces.

You use the following components of the ACMS queuing facility to implement,
manage, and execute your queuing applications:

• ACMS Queue Manager Utility (ACMSQUEMGR)

Provides commands that you use to create and manage task queues and
queued task elements.

• ACMS Queued Task Services

Provides the ACMS$QUEUE_TASK and ACMS$DEQUEUE_TASK services
that you use to queue and dequeue task elements and their task arguments
to and from task queues. You can call these services either from a step
procedure or from a standalone, user-written program.

• ACMS Queued Task Initiator (QTI)

Consists of a run-time component that automatically dequeues task elements
from task queues and invokes each queued task in the appropriate
application. You use the ACMS operator commands to start, stop, and
show the QTI, and to start, stop, and show the queues the QTI processes.

Conceptually, you can think of the QTI as a user of the ACMS$DEQUEUE_
TASK service. The QTI calls the ACMS$DEQUEUE_TASK service to read
the queued task elements and then uses the ACMS Systems Interface (SI)
services to invoke queued tasks in ACMS applications. Hence, the QTI is an
ACMS-supplied agent program.

Figure 9–1 shows how to use the ACMS$QUEUE_TASK service to queue tasks,
and how to use the QTI to dequeue and initiate tasks in the queue.

9–2 Queuing ACMS Tasks



Queuing ACMS Tasks
9.1 Understanding the ACMS Queuing Facility

Figure 9–1 Queuing, Dequeuing, and Processing Tasks

�

ACMS$QUEUE_TASK

Task Queue
- Queued Task Element 1

3

Error Queue

EXC Process2

1

.

ACMS$DEQUEUE_TASK

ACMS System Interface
Application

User-Written Process

QTI Process

TAY-0149-AD

Service

- Queued Task Element 2

Service

..

In Figure 9–1:

1 A high-level language, user-written program calls the ACMS$QUEUE_TASK
service to store a queued task element in a task queue. Any data needed by
the queued task is passed to the ACMS$QUEUE_TASK service and is stored
with the queued task element.

2 The QTI process dequeues the queued task element and initiates the queued
task in the specified application. The queued task element remains on the
task queue as the queued task executes, but it is unavailable for dequeuing.
When the queued task completes, the QTI process deletes the queued task
element from the queue.

3 If the queued task fails, the QTI automatically retries the task until it
determines the task cannot succeed. Then the QTI places the task on the
error queue associated with the task queue. If no error queue exists, the QTI
removes the task from the queue.

Queues can be shared within a cluster. Therefore, you can have user-written
procedures, ACMS applications, and QTI processes that are spread across several
nodes in the same cluster, and can queue and dequeue tasks to the same task
queue.

Queuing ACMS Tasks 9–3



Queuing ACMS Tasks
9.1 Understanding the ACMS Queuing Facility

The application can be on the same node or on the same cluster as the QTI, or
anywhere on the network (using DECnet). The QTI locates the application using
an application specification that uses the same semantics (logical names, search
lists, and failover) that exist for invoking interactive tasks.

9.2 Using ACMS Queuing with Distributed Transactions
In writing applications that use queue services, you must be concerned with
ensuring the integrity of task queues and databases in the event of abnormal
system failures (such as a machine crash or a disk failure). For example, if the
QTI calls a task and the task completes, but the application node crashes before
the QTI is notified that the task completed, the QTI retries the task. Prior to
ACMS Version 3.2, the QTI did not know whether the task successfully updated
a database. Therefore, when the QTI retries the task, the database might be
updated again.

If it is critical that each queued task element update the database exactly once,
include queue operations in an atomic transaction. In an atomic transaction,
each operation must complete successfully for the transaction to be successful.
If one operation fails, the effects of the other operations are undone. An atomic
transaction that includes operations involving multiple resources, such as a task
queue and a database, is a distributed transaction.

The OpenVMS operating system provides a set of transaction services, DECdtm
services, that ACMS uses to control distributed transactions. ACMS lets you use
distributed transactions to coordinate the removal of queued task elements from
a task queue with updates to a database or file. Likewise, you can coordinate
the insertion of queued task elements to a task queue with database updates
in a distributed transaction. If all operations in the distributed transaction
complete successfully, ACMS calls the transaction services to commit, or
make permanent, the effects of the operations. If any of the operations in the
distributed transaction fail, ACMS calls the transaction services to roll back, or
undo, the effects of the operations. In this way, ACMS ensures that updates to
databases or files by the queued task are performed exactly once.

Note

If your application is distributed across OpenVMS Cluster systems, each
system must be running ACMS Version 3.2 or higher; otherwise, tasks
participating in distributed transactions might have unpredictable results.

To include a queued task in a distributed transaction, you must mark the task
queue file for recovery-unit journaling by using the SET FILE/RU_JOURNAL
DCL command. Any task queue file not marked for recovery-unit journaling
cannot participate in a distributed transaction. In addition, for a queued task to
be able to join an existing distributed transaction, the queued task must conform
to the following rules:

• The root block or root processing step must include the TRANSACTION
phrase.

• The root block or root processing step cannot include a sequencing action
clause other than EXIT TASK, CANCEL TASK, or RAISE EXCEPTION.

• The root block or root processing step cannot include the COMMIT
TRANSACTION or ROLLBACK TRANSACTION action clause.

9–4 Queuing ACMS Tasks



Queuing ACMS Tasks
9.2 Using ACMS Queuing with Distributed Transactions

• The root block or root processing step cannot include an exception handler.

• The root block or root processing step cannot include the CANCEL ACTION
phrase.

A task that conforms to these rules is said to be a composable task.

When ACMS calls DECdtm to start a distributed transaction, DECdtm
returns a unique transaction identifier (TID). The ACMS$QUEUE_TASK
and ACMS$DEQUEUE_TASK services use the default TID.

At run time, the QTI process starts a distributed transaction for task queues
marked for recovery-unit journaling, dequeues the queued task element from the
task queue, and initiates the queued task in the specified application. If the task
completes successfully, the QTI process deletes the queued task element from the
task queue and commits the transaction.

If the queued task fails, the QTI process aborts the distributed transaction which
rolls back any updates the queued task made to a database or file, and restores
the task queue to the state it was in prior to the distributed transaction. The QTI
process then starts another transaction and, depending on the reason for the task
failure, performs one of the following actions:

• Retries the queued task element

• Moves the queued task element to an error queue

• Deletes the queued task element from the task queue if there is an error
queue

See Section 9.6.4 for details on how the QTI handles errors.

9.3 Steps in Using ACMS Queuing
The following is a list of the management and programming steps you must take
to use queuing:

1. Create a task queue using the ACMSQUEMGR Utility. You must create a
queue before the ACMS Queued Task services or the QTI run-time component
can access that queue.

2. Create an error queue, if needed, using the ACMSQUEMGR Utility.

3. Enable RMS journaling using the DCL SET FILE/RU_JOURNAL command
for task queue files, if the queued tasks are to participate in a distributed
transaction.

4. Set ACMSGEN parameters for the QTI process.

5. Place queued task elements onto the task queue by using the
ACMS$QUEUE_TASK service. The service can be called from a step
procedure or from a standalone program. If the service is called from a step
procedure, and you want to include the queue operations in a distributed
transaction, include the TRANSACTION phrase in the task definition. If the
service is part of a standalone program, use the $START_TRANS system
service to include the queue operations in a distributed transaction.

6. Start the QTI process by using the ACMS/START QTI operator command.

7. Start one or more task queues and specify the error queue to be associated
with the task queues by using the ACMS/START QUEUE operator command.

Queuing ACMS Tasks 9–5



Queuing ACMS Tasks
9.3 Steps in Using ACMS Queuing

8. Process the error task queues, if any, in whatever manner is appropriate
for your application. For example, if elements on the error queue could be
corrected by a terminal user, then define a task to:

• Dequeue an element from the error task queue using the
ACMS$DEQUEUE_TASK service called from a step procedure

• Display the data fields to the terminal user and accept corrections using
an exchange step

• Queue the corrected element back to the task queue using the
ACMS$QUEUE_TASK service from a step procedure

9. Periodically perform routine maintenance on the task queue files.

The remainder of this chapter contains information about using many of
these steps. HP ACMS for OpenVMS Managing Applications describes how
to use the ACMSQUEMGR Utility and ACMS operator commands affecting
queues. ACMS$QUEUE_TASK and ACMS$DEQUEUE_TASK contain reference
information on the ACMS$QUEUE_TASK and ACMS$DEQUEUE_TASK
services.

Considerations for providing queue security are described in Section 9.4.

9.4 Defining Queue Security
When you use the CREATE QUEUE command to create a queue, the
ACMSQUEMGR Utility sets the owner of the queue file to [1,4] and sets the
protection of the file to O:RWED,S:RWED,G,W. Therefore, to access the queue
file, a user must have a system UIC or must have the SYSPRV privilege.

Access to a task is distinct from access to a task queue. Task security is defined
by an access control list (ACL) in the application definition. (For information on
the user name under which queued tasks can run and, therefore, the user name
used to determine access to a task, see Section 9.5.1.)

The queue services used from within application programs to access queues have
the following access to the queue file:

• The ACMS$QUEUE_TASK service that you use to queue tasks enables the
SYSPRV privilege (only for the purpose of accessing the queue file) so it can
always access the queue file. Therefore, any user can store a queued task
element on any queue. The ACMS$QUEUE_TASK service always enables
SYSPRV in order to gain write access to the queue file. SYSPRV is disabled
after the ACMS$QUEUE_TASK call completes.

• The ACMS$DEQUEUE_TASK service that you use to dequeue tasks does not
enable the SYSPRV privilege and cannot access the queue file automatically.
Therefore, any process that uses the ACMS$DEQUEUE_TASK service must
have the SYSPRV privilege or a system UIC; only privileged users can
dequeue tasks.

The QTI process has the SYSPRV privilege and is, therefore, able to access the
queue file to dequeue tasks.

You can use OpenVMS security interfaces to override the default queue security.
For example, you can use the DCL SET FILE command to change the owner of
the queue file or the protection on the queue file. You can also define an access
control list for the queue file.

9–6 Queuing ACMS Tasks



Queuing ACMS Tasks
9.5 Using the ACMS Queue Services to Queue and Dequeue Tasks

9.5 Using the ACMS Queue Services to Queue and Dequeue Tasks
There are two ACMS queue services:

• ACMS$QUEUE_TASK

Stores the queued task element in a task queue. You call the
ACMS$QUEUE_TASK service from a standalone program or a step procedure
written in any OpenVMS-supported language.

• ACMS$DEQUEUE_TASK

Dequeues, or optionally reads, a queued task element from a queue and
returns information about the queued task element.

Any process, including a procedure server in an ACMS application, can call these
services. You cannot call these services from a program run in a DCL server. A
step procedure or standalone program can call these services from user mode at
AST or non-AST level. These services are not AST reentrant. A service that is
being called at non-AST level cannot be interrupted by an AST-level call to the
service.

HP ACMS for OpenVMS Writing Server Procedures shows the calling sequence of
the ACMS$QUEUE_TASK service and the ACMS$DEQUEUE_TASK service.

Section 9.7 and Section 9.10 contain examples of procedures that use these
services.

9.5.1 Queuing Tasks Using the ACMS$QUEUE_TASK Service
Once you have created a task queue using the ACMS Queue Manager
(ACMSQUEMGR) Utility, you can queue tasks using the ACMS$QUEUE_
TASK service. You place tasks onto the queue from either a step procedure or a
standalone program that calls the ACMS$QUEUE_TASK service. Before calling
ACMS$QUEUE_TASK, the task or standalone program gathers the information
necessary to run the task. Before queuing the task, you might want to perform
some of the processing, as well. If you want the queued task to be part of a
distributed transaction, you must declare the start of the distributed transaction,
either in the task definition by using the TRANSACTION phrase or in the
standalone program by using the $START_TRANS service.

The ACMS$QUEUE_TASK service passes several parameters including the
queue name (which cannot contain trailing spaces), the task name, the name of
the application in which the task is to run, as well as the data to be passed in
the workspaces. You can optionally include parameters that assign a priority to
the queued task element, place the queued task element in a hold state (make it
unavailable for dequeuing), supply a user name under which you want the task to
run, and request that the ACMS$QUEUE_TASK service return a unique element
ID of the queued task element. The ACMS$QUEUE_TASK service queues the
task element and its parameters onto the specified queue.

Associated with each queued task element is an enqueuer user name. Provided
that the QTI runs under a user name that has the ACMS agent privilege in the
User Definition Utility (UDU) user authorization file, the QTI submits tasks
under the enqueuer user name. Access to the task and access to the resources
used by the task are granted or denied based on the access rights of this user
name. By default, the enqueuer user name is the user name of the process that
called the ACMS$QUEUE_TASK service. A user name other than the process
user name can be passed to ACMS$QUEUE_TASK as the enqueuer user name if
the process has the OpenVMS CMKRNL privilege.

Queuing ACMS Tasks 9–7



Queuing ACMS Tasks
9.5 Using the ACMS Queue Services to Queue and Dequeue Tasks

9.5.2 Dequeuing Task Elements Using the ACMS$DEQUEUE_TASK Service
As with the ACMS$QUEUE_TASK service, any process, including a procedure
server process, can call the ACMS$DEQUEUE_TASK service. To have the
dequeue operation coordinated with other resource manager operations, such as
database updates, you must have declared the start of a distributed transaction,
either in the task definition by using the TRANSACTION phrase or in the
procedure by using the $START_TRANS system service. The most common use
of the ACMS$DEQUEUE_TASK service is for taking queued task elements off an
error queue, although it is possible to use this service to remove task elements
from a task queue and perform your own processing rather than using the QTI.
(See Section 9.6 for more information on using the QTI.)

The ACMS$DEQUEUE_TASK service:

• Dequeues, or optionally reads, a queued task element from a queue and
returns information about the queued task

• Does not dequeue queued task elements that are on hold (except by element
ID)

• Deletes a queue element immediately upon removing it from the queue
(unless the ACMS$DEQUEUE_TASK service is called with the READ_ONLY
flag)

You can dequeue tasks by highest priority (first-in-first-out within priority),
by element ID, or sequentially. See ACMS$DEQUEUE_TASK for the list of
parameters that you can include on the ACMS$DEQUEUE_TASK service. See
Section 9.7 for an example of a procedure that uses the ACMS$DEQUEUE_TASK
service to process error queues.

9.6 Using the QTI to Dequeue Tasks
The ACMS QTI (Queued Task Initiator) is a run-time component that
concurrently dequeues task elements from one or more queues and invokes
the specified task in an ACMS application. The QTI is an ACMS-supplied
Systems Interface (SI) agent program that automatically dequeues queued task
elements that were queued by the ACMS$QUEUE_TASK service. You use the
ACMS operator commands to start and stop the QTI, and to control the queues
that are processed by the QTI.

You can start only one QTI process for each node on a cluster, but each QTI
process can access multiple task queues anywhere on the same cluster. Multiple
QTI processes can access the same task queues and error queues.

The QTI initiates processing of a queue by assigning an execution thread to the
queue. An execution thread is a run-time entity which loops to do the processing
described in the following list. The QTI is multithreaded, that is, it can execute
many tasks (task threads) simultaneously. You can specify up to 255 task threads
for a queue when you use the ACMS/START QUEUE command or the ACMS/SET
QUEUE/TASK_THREADS command.

Specifying more execution threads for a queue increases the rate at which
queued task elements are processed by performing the processing in parallel;
the throughput for a queue increases with the number of execution threads. By
assigning different numbers of execution threads to different queues, you can
prioritize or weight several queues relative to one another. Normally, relatively
small numbers (1 to 5) of task threads are sufficient.

9–8 Queuing ACMS Tasks



Queuing ACMS Tasks
9.6 Using the QTI to Dequeue Tasks

Each execution thread of the QTI processes a queued task element in the
following order:

1. If the task queue file is marked for recovery unit journaling, the QTI starts a
distributed transaction.

2. Reads and locks the queued task element.

3. If the QTI has the agent privilege and has not already signed in the enqueuer
user name, the QTI executes the systems interface ACMS$SIGN_IN service
to sign in the submitter. If the QTI does not have the agent privilege, the
submitter user name is the user name of the QTI process. You assign the
agent privilege through the ACMS User Definition Utility (UDU).

4. Performs the systems interface ACMS$GET_PROCEDURE_INFO,
ACMS$START_CALL, and ACMS$WAIT_FOR_CALL_END services to
process the task in an ACMS application.

5. If the task completes successfully, the QTI deletes the queued task element
from the queue and ends the distributed transaction. If the task fails, the
QTI either places the element on hold so it can retry it later, places the task
on an error queue (if one was specified), or deletes the element from the task
queue (if it cannot be retried and an error queue was not specified).

6. When the queue is empty, the execution thread suspends processing until
another queued task element is queued.

See HP ACMS for OpenVMS Managing Applications for more information about
the ACMS operator commands you use to manage the QTI.

9.6.1 Characteristics of Queued Tasks That are Processed by the QTI
When you write a task that will be invoked by the QTI, you must write the task
so that it abides by the following characteristics:

• The task cannot perform any exchange I/O. You must explicitly use the block
phrase WITH NO I/O in the task definition. Because the task has no I/O, the
ACMS$TASK_SUBMITTER_DEVICE field of the
ACMS$TASK_INFORMATION workspace contains spaces at task execution
time.

• The task must be composable if it is to participate in a distributed
transaction. Section 9.2 describes how to make a task composable. The
task queue file must be marked for recovery-unit journaling.

• You must define any input data needed by the task as task workspace
arguments. Pass these workspaces to the task through the
ACMS$QUEUE_TASK service. You must specify read access for the task
workspace arguments being passed to the task.

• The task cannot assume any context in user or group workspaces as a result
of previous tasks having executed. Tasks that are queued in a particular
order might not be processed in the same order that they were submitted to
the queue; therefore, a task invoked by the QTI should not assume context
from tasks that are expected to run earlier. The following are some reasons
why the order of the invocation of tasks might be different from the order
that the queued tasks were queued:

Some queued task elements were placed on hold while others were not.

A task queue was suspended while another was not.

Queuing ACMS Tasks 9–9



Queuing ACMS Tasks
9.6 Using the QTI to Dequeue Tasks

A queued task failed (for example, workspace pool exhausted) but before
being retried by the QTI, other queued tasks ran successfully.

Some queued task elements were higher or lower priority.

• The ACMS$SELECTION_STRING workspace contains the queued task
element ID in binary format. A queued task element ID is generated for each
queued task element. The element ID is unique for all time and space.

9.6.2 Setting ACMSGEN Parameters for the QTI Process
Table 9–1 shows the ACMSGEN parameters that are associated with the QTI
process.

Table 9–1 ACMSGEN Parameters Associated with QTI

Parameter Name Default Range Dynamic

QTI_POLLING_TIMER 5000 1 through –1 milliseconds Yes

QTI_PRIORITY 4 0 through 31 No

QTI_SUB_TIMEOUT 7200 1 through –1 seconds Yes

QTI_RETRY_TIMER 1800 1 through –1 seconds Yes

QTI_USERNAME SYSTEM None No

The next sections briefly explain these parameters. For more detail, see HP
ACMS for OpenVMS Managing Applications.

9.6.2.1 Assigning a User Name to the QTI Process
You use the ACMSGEN parameter QTI_USERNAME to assign a user name to
the QTI process. Be sure that the user name you assign has the SYSPRV and
SYSLCK privileges. SYSPRV is needed for the QTI process in order to dequeue
tasks from task queues. SYSLCK is needed for the QTI process to use the
OpenVMS lock manager. See HP ACMS for OpenVMS Managing Applications for
information on setting up the user name of the QTI.

If the user name of the QTI has been defined with ACMS agent privilege in the
User Definition Utility (UDU) user authorization file, then the QTI submits tasks
under the enqueuer user name. (See Section 9.5.1 for more information about the
enqueuer user name.) If the user name of the QTI does not have the ACMS agent
privilege, then QTI submits tasks under the QTI user name.

See HP ACMS for OpenVMS Managing Applications for information about
assigning the agent privilege.

9.6.2.2 Assigning a Priority to the QTI Process
You use the ACMSGEN parameter QTI_PRIORITY to assign an OpenVMS
priority to the QTI process.

9.6.2.3 Controlling Submitter Sign-Ins
The QTI is an ACMS Systems Interface (SI) agent program. As with all agent
programs, the QTI uses the ACMS$SIGN_IN service to sign in a submitter
before invoking a task on behalf of that submitter. Normally, an agent program
determines when to sign out a submitter based on some submitter action. For
example, the submitter might type ‘‘LOGOUT’’. However, the submitters being
handled by the QTI are not active users who interact with the ACMS system
(they are simply queued task elements). Therefore, the QTI leaves submitters
signed in for a specified interval of time.

9–10 Queuing ACMS Tasks



Queuing ACMS Tasks
9.6 Using the QTI to Dequeue Tasks

Because each submitter that is signed in to ACMS consumes memory resources,
the QTI process uses a mechanism that enables it to bypass a submitter sign-in
for each task. When the QTI process dequeues a queued task element, it checks
the user name of that element. If it is the first time it has dequeued an element
with that user name, it signs it in to ACMS but it does not sign out of ACMS
when the task ends. Instead, it leaves the submitter signed in for a certain
amount of time before signing it out. Consequently, if another queue element
with the same user name is dequeued, the user name is already signed in.

You use the ACMSGEN parameter QTI_SUB_TIMEOUT to indicate how long a
submitter can remain inactive before the QTI process signs that submitter out of
ACMS. To determine how many submitters are signed in under a QTI process,
use the ACMS/SHOW QTI command (see HP ACMS for OpenVMS Managing
Applications for more information on operator commands).

9.6.2.4 Setting the Retry Time for Failed Tasks
You use the ACMSGEN parameter QTI_RETRY_TIMER to determine how long
the QTI process waits before it retries a task that it has already dequeued, but
that did not complete successfully and that can be retried. For example, if the
QTI process dequeues a task for an application that is not started, the QTI
process waits for the number of seconds identified by the QTI_RETRY_TIMER
parameter before retrying the task.

9.6.2.5 Setting the Polling Time for Task Queues
You use the ACMSGEN parameter QTI_POLLING_TIMER to specify the amount
of time that the QTI process waits to poll populated queues that previously had
an RMS lock outstanding.

9.6.3 Auditing Done by the QTI Process
The QTI audits all ACMS operator commands that start, stop, or set queues. In
addition, the QTI audits all task invocations that fail. The audit trail record of
failed task invocations shows the following:

• The error that caused the task invocation to fail

• What the QTI has done with the queued task element

Example 9–1 shows a sample QTI audit entry.

HP ACMS for OpenVMS Managing Applications provides more information on
application auditing with the ACMS Audit Trail Report Utility.

Queuing ACMS Tasks 9–11



Queuing ACMS Tasks
9.6 Using the QTI to Dequeue Tasks

Example 9–1 Sample QTI Audit Entry

************************************************************
Type : COMMAND Time : 24-NOV-1987 16:50:28.38
User : OPERATOR
Text : Successful start for queue PAYROLL_QUEUE
************************************************************
Type : ERROR Time : 24-NOV-1987 16:52:04.62
Queue : PAYROLL_QUEUE
ErrQue : PAYROLL_ERROR_QUEUE
Elem Id: MYNODE::28000114-00000003-87A9ECE0-0090A5F7
Appl : PAYROLL
Task : HIRE_EMPLOYEE
User : JONES
Text : Error processing queued task
-ACMSQUE-E-ERRGETPROC, Error returned from ACMS$GET_PROCEDURE_INFO
-ACMS-E-NOSUCH_PKG, There is no such package defined
-ACMSQUE-I-QTRETRY, Queued task will be retried later
************************************************************

9.6.4 How the QTI Handles Errors
Once the QTI has submitted a task to an ACMS application, it must handle any
errors that result when the task is processed. The QTI handles errors in one of
four ways:

1. Retries the task. Table 9–2 lists the errors that result in this action.

Table 9–2 Errors That Result in Queued Task Retry

Error QTI assumes that . . .

ACMS$_APPL_NOT_STARTED The application is not started.

ACMS$_CALL_CANCELLED The task was canceled, perhaps due to a
system or application shutdown.

ACMS$_INVPROCID The application stopped unexpectedly.

ACMS$_MAX_TASKS There is a temporary resource limitation.

ACMS$_NOSUCH_PKG The application is not started.

ACMS$_QTI_RETRY The task returns this value as the task
completion status, thereby directing the QTI
to retry this queued task later.

ACMS$_SRVDEAD The server stopped unexpectedly.

ACMS$_TASK_DISABLED The task will be enabled later.

ACMS$_WSPALLOCERR There is a temporary resource limitation.

ACMS$_WSPLOCKED There is a temporary resource limitation.

2. Does not retry the task, deletes the queued task element from the task queue
and writes it to the error queue, if any. Table 9–3 lists the errors that result
in this action.

9–12 Queuing ACMS Tasks



Queuing ACMS Tasks
9.6 Using the QTI to Dequeue Tasks

Table 9–3 Errors That Result in Writing Queued Task Elements to an Error
Queue

Error Cause of Error

ACMS$_BADUSER QTI was unable to sign in the user name.

ACMS$_CANTRETRY The submitter services have tried to connect to
server services twice, using different protocols,
without success.

ACMS$_ERRREADARG There is a problem with the workspaces being
used.

ACMS$_INVQUEELM Invalid queue element; assume the queue is
corrupt.

ACMS$_NOSUCH_PROC The task does not exist in the application.

ACMS$_NOTRANSADB The task definition has been modified to
participate in a distributed transaction, but
the application database (ADB) has not been
rebuilt.

ACMS$_NOTRANSNODE The application node is not running ACMS
Version 3.2 or later.

ACMS$_QTI_NORETRY The task has returned this value as the task
completion status, thereby directing the QTI
not to retry this queued task.

ACMS$_SECURITY_CHECK_FAILED The user name is not allowed access in the
task ACL.

ACMS$_TASKARGWSPERR The number or size of workspaces supplied to
the task is incorrect.

ACMS$_TASKNOTCOMP The task is not composable.

QUE$_INVIOMETH The task being selected uses terminal, stream,
or request (TDMS) I/O.

3. Retries the task once. If the same error occurs twice consecutively, then the
QTI does not retry the task. Instead, it deletes it from the task queue and
writes it to the error queue, if any. Any error not shown in Table 9–2 or
Table 9–3 can cause this action.

4. Immediately retries the task up to five times. If one of the errors is still
returned after five retries, the QTI handles the error according to the third
way listed above. Table 9–4 lists the errors that result in this action.

Table 9–4 Errors That Result in Immediate Retry of Queued Task

Error Cause of Error

ACMS$_QTI_RETRY_IMMEDIATELY The task has returned this value as the
completion status, thereby directing the QTI
to retry the queued task immediately.

ACMS$_TRANSTIMEDOUT The distributed transaction did not complete
with the time limit specified in the application
definition.

See Section 9.7 for information about how to process elements from an error
queue.

Queuing ACMS Tasks 9–13



Queuing ACMS Tasks
9.6 Using the QTI to Dequeue Tasks

If a task invocation does not complete successfully, the QTI writes an audit record
to the ACMS audit trail log. The audit record indicates the reason for the task
invocation failure as well as what the QTI did with the queued task element (to
be retried later, moved to the error queue, or deleted from the task queue).

Note

There are three error messages, ACMS$_QTI_RETRY, ACMS$_QTI_
RETRY_IMMEDIATELY, and ACMS$_QTI_NORETRY, that a queued
task can return that explicitly direct whether or not the QTI retries the
queued task.

9.7 Processing Error Queues
You process elements from an error queue in the same way that you can process
elements from any ACMS task queue; you use the ACMS$DEQUEUE_TASK
service.

Application programs can access queue files to queue and dequeue task elements
using the ACMS queuing services. The queue or dequeue operation can be atomic
with other operations by including them in a distributed transaction.

For example, a task definition includes the following operations within a
distributed transaction:

• Use the ACMS$DEQUEUE_TASK service to dequeue queued task elements
from an error queue.

• Correct the field that caused the task invocation to fail (which presumably is
why the queued task element is on the error queue).

• Write a statistical record to an RMS file.

• Use the ACMS$QUEUE_TASK service to queue the queued task element
back to a task queue. The QTI can then retry the queued task element.

By performing the operations in this example within a distributed transaction,
ACMS ensures that all operations occur or none of the operations occur. For
example, if a system failure occurs after dequeuing the task and writing the
statistics record but before enqueuing the task, then ACMS rolls back the
dequeue operation and the write operation to the state they were in before the
operation began.

Example 9–2 shows a task that can be selected by a terminal user to dequeue
a queued task element from an error queue, correct the element, and queue the
corrected element to another task queue.

Example 9–2 A Task That Dequeues from an Error Queue

!
! CORR_QTE_ERR.TDF This task calls a program to read queued task
! element entries from the error queue PAY_ERR_QUE.
! The entry will be displayed to a terminal operator.
! The operator will either correct the entry and
! resubmit the task to the PAY_QUE, or delete
! the entry without further processing.

(continued on next page)

9–14 Queuing ACMS Tasks



Queuing ACMS Tasks
9.7 Processing Error Queues

Example 9–2 (Cont.) A Task That Dequeues from an Error Queue

!
SET LOG CORR_QTE_ERR.TDF_LOG
REPLACE TASK CORR_QTE_ERR
DEFAULT SERVER IS QUE_EXAM_SERVER;
WORKSPACES ARE QTE_INFO, EMP_PAY_REC, QUE_MISC, CONT_PROC;

BLOCK WORK WITH REQUEST I/O
!
! Start a distributed transaction, then call procedure to read the next
! entry in the error queue PAY_ERR_QUE. QTE_INFO contains the queued
! task element structure, and EMP_PAY_REC is the data record associated
! with the task.
!
GET_ENTRY:

BLOCK WORK WITH DISTRIBUTED TRANSACTION

PROCESSING
CALL GET_QTE_ERRENT USING QTE_INFO,

EMP_PAY_REC;
!
! If the procedure call fails, roll back the transaction and cancel the
! task. If not, use GET ERROR MESSAGE to translate this QTE’s error
! status and display that text on the form.
!

CONTROL FIELD ACMS$T_STATUS_TYPE
"B" : ROLLBACK TRANSACTION;

CANCEL TASK;
"G" : GET ERROR MESSAGE NUMBER QTE_LAST_ERR_SYM INTO QTE_LAST_ERR;
END CONTROL FIELD;

DISPLAY_ENTRY:
EXCHANGE
REQUEST IS DISP_QTE_ERRENT USING QTE_INFO, QUE_MISC;

!
! REQU will cause the entry to be queued back onto the PAY_QUE queue
! for processing. DELE will cause the removal of the entry from the
! error queue to be committed. QUE_MISC contains the PROGRAM_REQUEST_KEY.
!

CONTROL FIELD IS PROGRAM_REQUEST_KEY
"REQU" : GOTO STEP REQUE_ENTRY;
"DELE" : EXIT BLOCK;
NOMATCH : ROLLBACK TRANSACTION;

CANCEL TASK;
END CONTROL FIELD;

REQUE_ENTRY:
PROCESSING
CALL REQUE_QTE_ERRENT USING QTE_INFO;

CONTROL FIELD ACMS$T_STATUS_TYPE
"B" : ROLLBACK TRANSACTION;

CANCEL TASK;
"G" : EXIT BLOCK;
NOMATCH : ROLLBACK TRANSACTION;

CANCEL TASK;
END CONTROL FIELD;

END BLOCK;

ACTION IS
COMMIT TRANSACTION;

CHECK_CONTINUE:

(continued on next page)

Queuing ACMS Tasks 9–15



Queuing ACMS Tasks
9.7 Processing Error Queues

Example 9–2 (Cont.) A Task That Dequeues from an Error Queue

EXCHANGE
READ CONT_PROC WITH PROMPT
"Enter Y to continue, N to EXIT TASK==> ";

ACTION
CONTROL FIELD IS CONT_PROC.CONT_PROC_CHECK
"Y" : REPEAT TASK;
"N" : EXIT TASK;
NOMATCH : CANCEL TASK;
END CONTROL FIELD;

END BLOCK WORK;
END DEFINITION;

By starting a distributed transaction on the nested block step, the CORR_QTE_
ERR task ensures that the GET_ENTRY, DISPLAY_ENTRY, and REQUE_
ENTRY steps complete successfully or are rolled back.

Be sure that you enable journaling for both the queue file from which you are
dequeuing elements and the queue file to which you are enqueuing elements. Use
the DCL command SET FILE/RU_JOURNALING to enable journaling on those
files.

Example 9–3 shows the GET_QTE_ERRENT procedure called in the first
processing step of the task shown in Example 9–2. Example 9–4 shows the
REQUE_QTE_ERRENT procedure that is called in the second processing step of
that task.

Example 9–3 A Dequeue Procedure

IDENTIFICATION DIVISION.
**************************************************************
* *
PROGRAM-ID. GET_QTE_ERRENT.
* *
* *
* Version: 01 *
* Edit date: 06-APR-1988 *
* *
**************************************************************

(continued on next page)

9–16 Queuing ACMS Tasks



Queuing ACMS Tasks
9.7 Processing Error Queues

Example 9–3 (Cont.) A Dequeue Procedure

**************************************************************
* P R O G R A M D E S C R I P T I O N *
* *
* GET_QTE_ERRENT is called from task CORR_QTE_ERR. This *
* ACMS procedure calls ACMS$DEQUEUE_TASK to dequeue a *
* queued task element (QTE) from the error queue *
* PAY_ERR_QUEUE. *
* *
* INPUT: QTE_INFO, a record containing the queue task *
* element fields, queue name and queued task *
* element information. *
* EMP_PAY_REC, the employee record needed for *
* the task. *
* *
* OUTPUT: The queued task element information returned *
* in QTE_INFO and the data returned to EMP_PAY_REC *
* from ACMS$DEQUEUE_TASK call. *
* *
* *
**************************************************************
* *
* *
* C O P Y R I G H T *
* *
* *
* *
* *
* © Copyright 2006 Hewlett-Packard Development Company, L.P. *
* *
* HP assumes no responsibility for the use or *
* reliability of its software on equipment that is not *
* supplied by HP. *
* *
* *
**************************************************************
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
**************************************************************
DATA DIVISION.
**************************************************************
* *
* C O M M O N D E C L A R A T I O N S *
* *
**************************************************************
WORKING-STORAGE SECTION.
*
* Set up fields to receive element id from ACMS$DEQUEUE_TASK.
*
01 RET-QTE-ID.

03 PIP PIC S9(9) COMP.
03 SEQ-NO PIC S9(9) COMP.
03 ADT1 PIC S9(9) COMP.
03 ADT2 PIC S9(9) COMP.
03 NODE-NAME-LEN PIC X.
03 NODE-NAME PIC X(15) VALUE ’’.

*
01 STATUS-RESULT PIC S9(9) COMP.

(continued on next page)

Queuing ACMS Tasks 9–17



Queuing ACMS Tasks
9.7 Processing Error Queues

Example 9–3 (Cont.) A Dequeue Procedure

* Set up a descriptor list with number of workspaces this task
* requires and pointers to each individual workspace descriptor.
* The USAGE IS POINTER allows us to define the address at runtime.
*
01 WS_DESC_LIST.

05 DESC_LIST_CNT PIC S9(9) COMP VALUE 1.
05 QTE_WS_DESC_PTR USAGE IS POINTER.

*
* Set up a descriptor for each workspace being passed with the
* workspace size and a pointer to the address of the record,
* also to be defined at runtime.
*
01 QTE_WS_DESC.

05 EMP_PAY_REC_SIZE PIC S9(9) COMP VALUE IS 13.
05 EMP_PAY_REC_PTR USAGE IS POINTER.

**************************************************************
LINKAGE SECTION.
COPY "QTE_INFO" FROM DICTIONARY.
COPY "EMP_PAY_REC" FROM DICTIONARY.
***************************************************************
PROCEDURE DIVISION USING QTE_INFO,

EMP_PAY_REC
GIVING STATUS-RESULT.

***************************************************************
MAIN-PROCEDURE.
*
* Set up addresses for the pointers to reference.
*
SET QTE_WS_DESC_PTR TO REFERENCE OF QTE_WS_DESC.
SET EMP_PAY_REC_PTR TO REFERENCE OF EMP_PAY_REC.
*
* Enable the flag to say we do not want to wait if the queue is
* empty.
*
MOVE 2 TO FLAG.

CALL-DEQUE.

CALL "ACMS$DEQUEUE_TASK" USING BY DESCRIPTOR PAY_ERR_QUE,
OMITTED,

BY REFERENCE FLAG,
BY DESCRIPTOR RET_TASK,
BY DESCRIPTOR RET_APPL,
BY REFERENCE WS_DESC_LIST,
BY REFERENCE RET_WKSP_CNT,
BY REFERENCE QTE_PRIO,
BY DESCRIPTOR QTE_SUBMITTER,
BY REFERENCE RET-QTE-ID,
BY REFERENCE QTE_ERR_CNT,

BY REFERENCE QTE_LAST_ERR_SYM,
BY REFERENCE QTE_ERR_ADT

GIVING STATUS-RESULT.

(continued on next page)

9–18 Queuing ACMS Tasks



Queuing ACMS Tasks
9.7 Processing Error Queues

Example 9–3 (Cont.) A Dequeue Procedure

*
* Move information into EMP_PAY_REC returned by the call to the QTE_INFO
* workspace, as it will be used by the request to display both record
* data and QTE information.
*

MOVE BADGE OF EMP_PAY_REC TO BADGE OF QTE_INFO.
MOVE PAYCODE OF EMP_PAY_REC TO PAYCODE OF QTE_INFO.
MOVE HOURS OF EMP_PAY_REC TO HOURS OF QTE_INFO.
MOVE WAGE OF EMP_PAY_REC TO WAGE OF QTE_INFO.
MOVE VACATION OF EMP_PAY_REC TO VACATION OF QTE_INFO.
MOVE SPACES TO QTE_SUBMITTER OF QTE_INFO.
*
* Move PID into displayable field to be returned to the request.
*
SPACE-MOVE.

MOVE NODE-NAME TO QTE_NODE.
MOVE PID TO QTE_PID.

EXIT-GET-QTE-ERRENT.

EXIT PROGRAM.

Example 9–4 An Enqueue Procedure

IDENTIFICATION DIVISION.
***************************************************************************
* *
PROGRAM-ID. REQUE_QTE_ERRENT.
* *
* Version: 01 *
* Edit date: 06-APR-1988 *
* *
***************************************************************************
***************************************************************************
* P R O G R A M D E S C R I P T I O N *
* *
* REQUE_QTE_ERRENT is called from task CORR_QTE_ERR. This ACMS procedure *
* calls ACMS$QUEUE_TASK to requeue a queued task element (QTE) entry from *
* the PAY_ERR_QUE. The QTE is requeued to the PAY_QUE queue. *
* *
* INPUT: QTE_INFO, a record containing the task element information *
* to be queued. *
* EMP_PAY_REC, a record contains the user data needed by the task. *
* *
***************************************************************************
* *
* *
* C O P Y R I G H T *
* *
* *
* *
* © Copyright 2006 Hewlett-Packard Development Company, L.P. *
* *
* *
* HP assumes no responsibility for the use or reliability of its *
* software on equipment that is not supplied by HP. *
**************************************************************************

(continued on next page)

Queuing ACMS Tasks 9–19



Queuing ACMS Tasks
9.7 Processing Error Queues

Example 9–4 (Cont.) An Enqueue Procedure

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX-11.
OBJECT-COMPUTER. VAX-11.
***************************************************************************
DATA DIVISION.
***************************************************************************
* *
* C O M M O N D E C L A R A T I O N S *
* *
***************************************************************************
WORKING-STORAGE SECTION.
*
01 STATUS-RESULT PIC 9(9) COMP VALUE IS 0.
*
* Copy in record this task needs to run.
*
COPY "EMP_PAY_REC" FROM DICTIONARY.
*
* Set up descriptor list with number of workspaces we are passing
* and pointers to each individual workspace descriptor.
*
01 WS_DESC_LIST.

05 DESC_LIST_CNT PIC S9(9) COMP VALUE 1.
05 QTE_WS_DESC_PTR POINTER VALUE IS REFERENCE QTE_WS_DESC.

01 QTE_WS_DESC.
05 EMP_PAY_REC_SIZE PIC S9(9) COMP VALUE IS 13.
05 EMP_PAY_REC_PTR POINTER VALUE IS REFERENCE EMP_PAY_REC.

**************************************************************
LINKAGE SECTION.
COPY "QTE_INFO" FROM DICTIONARY.
***************************************************************
PROCEDURE DIVISION USING QTE_INFO

GIVING STATUS-RESULT.
***************************************************************
MAIN-PROCEDURE.
*
* Move data received from the call to ACMS$DEQUEUE_TASK, and
* passed to the operator, back to EMP_PAY-REC.
*
MOVE BADGE IN QTE_INFO TO BADGE IN EMP_PAY_REC.
MOVE PAYCODE IN QTE_INFO TO PAYCODE IN EMP_PAY_REC.
MOVE WAGE IN QTE_INFO TO WAGE IN EMP_PAY_REC.
MOVE VACATION IN QTE_INFO TO VACATION IN EMP_PAY_REC.

CALL-QUEUE.

CALL "ACMS$QUEUE_TASK" USING BY DESCRIPTOR PAY_QUE,
BY DESCRIPTOR RET_TASK,
BY DESCRIPTOR RET_APPL,
BY REFERENCE WS_DESC_LIST,
BY REFERENCE FLAG,
BY REFERENCE QTE_PRIO

GIVING STATUS-RESULT.

EXIT-REQUE-QTE-ERRENT.

EXIT PROGRAM.

9–20 Queuing ACMS Tasks



Queuing ACMS Tasks
9.8 Debugging Queued Tasks

9.8 Debugging Queued Tasks
There are several sources of information or methods you can use when debugging
queued tasks:

• Look at the audit trail log. The QTI process puts entries in the audit trail
log for certain kinds of errors. (See HP ACMS for OpenVMS Managing
Applications for more information.) Because the QTI is an agent program and
uses the Systems Interface to submit tasks to an ACMS application, error
messages in the audit trail log are likely to be Systems Interface messages.
Therefore, you might want to learn enough about the Systems Interface to
understand these messages. See HP ACMS for OpenVMS Systems Interface
Programming for more information about the ACMS Systems Interface.

• Check the Software Event Log. In some cases, there is an entry there.

• Use the following techniques to isolate problems:

Queue the queued task element, then use the ACMSQUEMGR SHOW
ELEMENT command to examine the element in the queue.

Use the ACMS$DEQUEUE_TASK service to dequeue the task. By
dequeuing the task yourself, you can look at the workspace contents of
the queued task element.

Run the task interactively. For example, write a test task that calls the
task that would have been invoked by the QTI. The test task can fill in
the necessary arguments to be passed to the called task.

• Check the accessibility of each entity that is involved in the queue and
dequeue operation. Specifically, check the ACMSQDF.DAT file, the queue
file, and the access control list on the task. Check the privileges of the QTI
process and the enqueuing process to make sure that these two processes
have the necessary privileges and access rights to the entities just listed.

9.9 Online Backup of Task Queue Files
ACMS lets you back up task queue files without having to stop the QTI or
programs that call the ACMS$QUEUE_TASK and ACMS$DEQUEUE_TASK
services. To enable a program that calls a queuing service to continue processing
while you back up a task queue file, have the program check for the return status
of ACMS$_QUEENQSUS, ACMS$_QUEDEQSUS, or both. The ACMS$QUEUE_
TASK service returns the ACMS$_QUEENQSUS status if the enqueue operations
for that task queue file are suspended. The ACMS$DEQUEUE_TASK service
returns the status ACMS$_QUEDEQSUS if the dequeue operations for that task
queue file are suspended.

If a queuing service returns one of these statuses, the program can set a timer
and then retry the call. For example, if the ACMS$QUEUE_TASK service
returns the ACMS$_QUEENQSUS status, the program could wait for 10 seconds
and then retry the call. The program would continue to retry the call every 10
seconds until the ACMS$QUEUE_TASK service completed successfully.

See HP ACMS for OpenVMS Managing Applications for information on how to
back up a task queue file.

Queuing ACMS Tasks 9–21



Queuing ACMS Tasks
9.10 Queuing Example

9.10 Queuing Example
This section shows an example of a car rental reservation application that uses
the ACMS queuing facility. The purpose of the application is to process the
customer’s account when the customer returns the rental car. Because there
might be peak periods when many customers return their cars at the same time,
the application accepts the necessary reservation information from a customer,
then queues that information to be processed at a later, less busy time. The
example consists of:

• A C routine that gets reservation information from the terminal user, starts a
distributed transaction, calls a task, performs error handling, and commits or
rolls back the distributed transaction

• A task that validates the reservation information entered by the terminal
user and calls a procedure to enqueue a task

• A COBOL procedure used in the processing step of the task to enqueue a task

• A queued task that is called by the QTI process

Figure 9–2 shows how these items work together.

9–22 Queuing ACMS Tasks



Queuing ACMS Tasks
9.10 Queuing Example

Figure 9–2 A Queuing Example

TAY-0150-AD

VR_FAST_CHECKIN_TASK

ACMS$QUEUE_TASK
Service

Error Queue

ACMSEXC Process

VR_APPL

TASK

VR_COMP_FAST_CHKIN_TASK

VR_QUEUE

...

ACMS$DEQUEUE_TASK
Service

QTI PROCESS

ACMS System Interface

$START_TRANSW Service

VR_AGENT.EXE
(Standalone C Routine)

The following is the flow of events leading up to and including the example:

1. The application manager does the following:

Defines queue security

Uses the UDU to define agent privileges for the QTI

Uses the ACMSQUEMGR CREATE command to create the queue VR_
QUEUE and the error queue

Enables RMS journaling for the queue file and the error queue file

Sets ACMSGEN parameters for the QTI

Starts the QTI process

Starts the VR_QUEUE queue with the error queue

2. The VR_AGENT agent gets information from the terminal user, starts a
distributed transaction, and calls the VR_FAST_CHECKIN_TASK

Queuing ACMS Tasks 9–23



Queuing ACMS Tasks
9.10 Queuing Example

3. The VR_FAST_CHECKIN_TASK validates the information entered by the
terminal user, and queues the task VR_COMP_FAST_CHKIN_TASK to the
queue VR_QUEUE

4. The QTI process dequeues VR_COMP_FAST_CHKIN_TASK and submits the
task to the application

5. VR_COMP_FAST_CHKIN_TASK runs

Example 9–5 shows the main part and the process_this_transaction subroutine
of the C agent that uses the $START_TRANSW system service to start a
distributed transaction, and calls the VR_FAST_CHECKIN_TASK. See HP ACMS
for OpenVMS Systems Interface Programming for a detailed explanation of the
complete agent code.

Example 9–5 C Agent that Starts a Distributed Transaction

/**************************************************************/
/* */
/* Version: 01 */
/* Edit dates: 06-MAR-90 */
/* Authors: HP */
/* */
/**************************************************************/
/**************************************************************/
/* F U N C T I O N A L D E S C R I P T I O N */
/* */
/* */
/* VR_AGENT is an ACMS agent program that acts like an ATM */
/* where you type in your reservation number and odometer */
/* reading, drop the keys in a slot, and walk away. The */
/* system bills you later for the amount you owe. The */
/* agent uses QIOs to get the data, starts a distributed */
/* transaction, then calls a task to do the work. The task */
/* consists of a nonparticipating step that validates the */
/* reservation number, a step that queues a task to do the */
/* actual checkin work, and a step that writes a history */
/* record. If the task succeeds, the agent commits the */
/* transaction. If the task fails, the agent aborts the */
/* the transaction and notifies the user of the problem. */
/* The agent is also responsible for handling errors, such */
/* as transaction timeouts. */
/* */
/**************************************************************/
/**************************************************************/
/* */
/* C O P Y R I G H T */
/* */
/* © Copyright 2006 Hewlett-Packard Development Company, L.P. */
/* */
/* Confidential computer software. Valid license */
/* from HP required for possession, use or copying. */
/* Consistent with FAR 12.211 and 12.212, Commercial */
/* Computer Software, Computer Software Documentation, */
/* and Technical Data for Commercial Items are licensed */
/* to the U.S. Government under vendor’s standard */
/* commercial license. */
/* */
/* The information contained herein is subject to */
/* change without notice. The only warranties for HP */

(continued on next page)

9–24 Queuing ACMS Tasks



Queuing ACMS Tasks
9.10 Queuing Example

Example 9–5 (Cont.) C Agent that Starts a Distributed Transaction
/* products and services are set forth in the express */
/* warranty statements accompanying such products and */
/* services. Nothing herein should be construed as */
/* constituting an additional warranty. HP shall not be */
/* liable for technical or editorial errors or omissions */
/* contained herein. */
/* */
/**************************************************************/

/* . */
/* . */
/* . */
/* . */

main ()

/**********************************************************************/
/* */
/* Get Procedure information to see if the application is running. */
/* */
/* While the application is up and running prompt user for */
/* reservation ID and odometer reading. */
/* */
/* If the user enters the data, process the fast checkin transaction.*/
/* */
/* If the user aborts, notify the user that the transaction was not */
/* processed. */
/* */
/**********************************************************************/
{

for (;;)
{

status = initialization ();

check_status(status);

status = ACMS$GET_PROCEDURE_INFO(&submitter_id,
&task_name_desc,
&appl_name_desc,
&task_info_list);

while (status & STS$M_SUCCESS)
{

status = get_data ();

if (status & STS$M_SUCCESS)
status = process_this_transaction();

else if (status == RMS$_EOF)
status = report_user_abort();

check_status(status);

status = ACMS$GET_PROCEDURE_INFO(&submitter_id,
&task_name_desc,
&appl_name_desc,
&task_info_list);

}

if (status == ACMS$_NOSUCH_PKG)
status = application_not_running();

check_status(status);

status = termination ();

check_status(status);

(continued on next page)

Queuing ACMS Tasks 9–25



Queuing ACMS Tasks
9.10 Queuing Example

Example 9–5 (Cont.) C Agent that Starts a Distributed Transaction

}

}
*/ . */
*/ . */
*/ . */
*/ . */

process_this_transaction()

/********************************************************************/
/* */
/* Start Transaction. Call the task. Commit if successful. */
/* Abort if failure. Retry if timed out. Notify user whether */
/* transaction succeeded or failed. */
/* */
/********************************************************************/

{
short retry, trans_completed;
retry = 0;
trans_completed = FALSE;

while ((trans_completed == FALSE) && (retry < MAX_RETRY))
{

status = SYS$START_TRANSW (0,0,&iosb,0,0,tid);

if (status & STS$M_SUCCESS)
status = iosb.status;

check_status(status);

status = call_return_task();

if (status & STS$M_SUCCESS)
{

status = SYS$END_TRANSW (0,0,&iosb,0,0,tid);

if (status & STS$M_SUCCESS)
status = iosb.status;

check_status(status);

trans_completed = TRUE;
}
else
{

if ((status == ACMS$_TRANSTIMEDOUT) ||
(status == ACMS$_SRVDEAD) ||
(status == RDB$_DEADLOCK) ||
(status == RDMS$_DEADLOCK) ||
(status == RDB$_LOCK_CONFLICT) ||
(status == RDMS$_LCKCNFLCT) ||
(status == RDMS$_TIMEOUT))
++retry;

else
retry = MAX_RETRY;

status = SYS$ABORT_TRANSW (0,0,&iosb,0,0,tid);

if (status & STS$M_SUCCESS)
status = iosb.status;

(continued on next page)

9–26 Queuing ACMS Tasks



Queuing ACMS Tasks
9.10 Queuing Example

Example 9–5 (Cont.) C Agent that Starts a Distributed Transaction

check_status(status);
}

}
if (trans_completed == FALSE)

status = notify_failure();
else

status = notify_success();

return status;
}

If the distributed transaction fails because of an error that can be handled,
such as server deadlock or transaction timeout, the agent retries the distributed
transaction up to five times. Example 9–6 shows the task definition called by the
C agent.

Example 9–6 VR_FAST_CHECKIN_TASK Definition

REPLACE TASK AVERTZ_CDD_TASK:VR_FAST_CHECKIN_TASK

USE WORKSPACES VR_FAST_CHECKIN_WKSP,
VR_RESERVATIONS_WKSP,
VR_RENTAL_CLASSES_WKSP,
VR_VEHICLES_WKSP,
VR_TRANS_WKSP,
VR_VEHICLE_RENTAL_HISTORY_WKSP,
VR_HIST_WKSP;

TASK ARGUMENTS ARE VR_FAST_CHECKIN_WKSP WITH ACCESS READ;

! TASK MUST BE COMPOSABLE TO BE CALLED AS PART OF A DISTRIBUTED
! TRANSACTION

BLOCK WORK WITH DISTRIBUTED TRANSACTION
NO I/O

!
! Retrieve the reservation record, using the reservation number/ID
! entered by the customer and passed by the vr_agent agent.
!

PROCESSING WITH NONPARTICIPATING SERVER
CALL PROCEDURE VR_FIND_RES_PROC
IN VR_READ_SERVER

USING VR_FAST_CHECKIN_WKSP,
VR_RESERVATIONS_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "G")
THEN

MOVE VR_FAST_CHECKIN_WKSP.ACTUAL_RETURN_DATE
TO VR_VEHICLE_RENTAL_HISTORY_WKSP.ACTUAL_RETURN_DATE,

VR_FAST_CHECKIN_WKSP.RETURN_ODOMETER_READING
TO

VR_VEHICLE_RENTAL_HISTORY_WKSP.RETURN_ODOMETER_READING;
ELSE

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

(continued on next page)

Queuing ACMS Tasks 9–27



Queuing ACMS Tasks
9.10 Queuing Example

Example 9–6 (Cont.) VR_FAST_CHECKIN_TASK Definition

!
! RETRIEVE THE VEHICLE AND VEHICLE_RENTAL_HISTORY RECORDS
!

PROCESSING WITH NONPARTICIPATING SERVER
CALL PROCEDURE VR_FIND_VE_VRH_PROC
IN VR_READ_SERVER

USING VR_RESERVATIONS_WKSP,
VR_VEHICLES_WKSP,
VR_VEHICLE_RENTAL_HISTORY_WKSP,
VR_RENTAL_CLASSES_WKSP,
VR_TRANS_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "B") THEN

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

!
! QUEUE THE TASK TO BE RUN LATER
!

PROCESSING
CALL PROCEDURE VR_ENQ_FAST_CHECKIN
IN VR_QUEUE_SERVER

USING VR_FAST_CHECKIN_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "G")
THEN

MOVE "FASTCHIN" TO VR_HIST_WKSP.TRANS_TYPE,
VR_VEHICLES_WKSP.VEHICLE_ID

TO VR_HIST_WKSP.VEHICLE_ID;
ELSE

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

!
! WRITE A RECORD OF A SUCCESSFUL CHECK IN TO THE HISTORY DATABASE
!

PROCESSING
CALL PROCEDURE VR_WRITE_HIST_RECORD_PROC
IN VR_LOG_SERVER
USING VR_HIST_WKSP,

VR_RESERVATIONS_WKSP;

END BLOCK;
END DEFINITION;

Because the VR_FAST_CHECKIN_TASK is joining a distributed transaction
started by the agent, the root block step must use the TRANSACTION phrase.

The first processing step in VR_FAST_CHECKIN_TASK uses the reservation
ID, obtained from the customer by the agent, to retrieve the reservation record.
The second processing step retrieves the car history record. Because the first
two processing steps perform read-only operations, neither step participates in
the distributed transaction. Both steps use the NONPARTICIPATING SERVER
phrase.

The third processing step calls the VR_ENQ_FAST_CHECKIN procedure to
queue the VR_COMP_FAST_CHKIN_TASK.

9–28 Queuing ACMS Tasks



Queuing ACMS Tasks
9.10 Queuing Example

The final processing step writes a record of the transaction into the database.
If the procedure completes successfully, the task ends, and the agent calls the
transaction services to commit the distributed transaction. Example 9–7 shows
the COBOL procedure that the VR_FAST_CHECKIN_TASK calls to enqueue a
task.

Example 9–7 Enqueuing Routine

IDENTIFICATION DIVISION.
**************************************************************
PROGRAM-ID. VR-ENQ-FAST-CHECKIN.
* *
* Version: 01 *
* Edit: 00 *
* Edit dates: 16-OCT-1990 *
* Authors: HP *
* Called From: AGENT *
* *
**************************************************************
**************************************************************
* F U N C T I O N A L D E S C R I P T I O N *
* *
* This routine is called by the VR_FAST_CHECKIN_TASK. *
* The VR_FAST_CHECKIN_WKSP is initialized by the VR_AGENT. *
* The VR_COMP_FAST_CHKIN_TASK uses the information in the *
* workspace to complete the checkin database functions. *
* *
**************************************************************
**************************************************************
* *
* C O P Y R I G H T *
* *
* © Copyright 2006 Hewlett-Packard Development Company, L.P. *
* *
* Confidential computer software. Valid license *
* from HP required for possession, use or copying. *
* Consistent with FAR 12.211 and 12.212, Commercial *
* Computer Software, Computer Software Documentation, *
* and Technical Data for Commercial Items are licensed *
* to the U.S. Government under vendor’s standard *
* commercial license. *
* *
* The information contained herein is subject to *
* change without notice. The only warranties for HP *
* products and services are set forth in the express *
* warranty statements accompanying such products and *
* services. Nothing herein should be construed as *
* constituting an additional warranty. HP shall not be *
* liable for technical or editorial errors or omissions *
* contained herein. *
* *
**************************************************************
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
**************************************************************
DATA DIVISION.
******************************************************************
WORKING-STORAGE SECTION.
*
* Return status to pass status to ACMS

(continued on next page)

Queuing ACMS Tasks 9–29



Queuing ACMS Tasks
9.10 Queuing Example

Example 9–7 (Cont.) Enqueuing Routine
*
01 RET-STAT PIC S9(9) COMP.
*
* Task name
*
01 TASK PIC X(24) VALUE IS "VR_COMP_FAST_CHKIN_TASK".
*
* Application Name
*
01 APPL PIC X(7) VALUE IS "VR_APPL".
*
*
* Queue Name
*
* Queue name cannot contain trailing spaces.
*
01 QNAM PIC X(8) VALUE IS "VR_QUEUE".
*
* Flag - 0 = NOHOLD - the queued task is free to run
* 1 = HOLD - the queued task is stored but may not run
*
01 FLAG PIC 9(9) COMP VALUE IS 0.
*
* A list of workspace descriptors is sent to the queue service.
* For this task, only 1 workspace is required (VR_FAST_CHECKIN_WKSP).
* 1 is the number of workspaces in the list, QTE_WS_DESC is the
* descriptor being sent, so the address of the address of
* QTE_WS_DESC is stored.
*
01 WS_DESC_LIST.

05 DES_LIST_CNT PIC S9(9) COMP VALUE 1.
05 QTE_WS_DESC_PTR POINTER VALUE IS REFERENCE QTE_WS_DESC.

*
* Each workspace must be described by a desriptor. 16 is the number
* of bytes in the workspace VR_FAST_CHECKIN_WKSP so its address is
* stored in the descriptor.
*
01 QTE_WS_DESC.

05 FAST_CHECKIN_WS_SIZE PIC S9(9) COMP VALUE IS 16.
05 FAST_CHECKIN_PTR USAGE IS POINTER.

*********************************************************************
LINKAGE SECTION.
*
COPY "VR_FAST_CHECKIN_WKSP" FROM DICTIONARY.
*
**********************************************************************
PROCEDURE DIVISION USING VR_FAST_CHECKIN_WKSP

GIVING RET-STAT.
**********************************************************************
MAIN-SECTION.

SET RET-STAT TO SUCCESS.

SET FAST_CHECKIN_PTR TO REFERENCE OF VR_FAST_CHECKIN_WKSP.

CALL "ACMS$QUEUE_TASK" USING BY DESCRIPTOR QNAM,
BY DESCRIPTOR TASK,
BY DESCRIPTOR APPL,
BY REFERENCE WS_DESC_LIST,
BY REFERENCE FLAG

GIVING RET-STAT.

(continued on next page)

9–30 Queuing ACMS Tasks



Queuing ACMS Tasks
9.10 Queuing Example

Example 9–7 (Cont.) Enqueuing Routine

EXIT-PROGRAM.
EXIT PROGRAM.

Example 9–8 shows the definition of the VR_COMP_FAST_CHKIN_TASK.

Example 9–8 VR_COMP_FAST_CHKIN_TASK Definition

!
! This task is queued by the VR_FAST_CHECKIN_TASK which in turn
! is called by an ACMS agent. The agent obtains information from
! the user and sends it to the VR_FAST_CHECKIN_TASK. The
! VR_FAST_CHECKIN_TASK passes the information to the task.
!
REPLACE TASK AVERTZ_CDD_TASK:VR_COMP_FAST_CHKIN_TASK
USE WORKSPACES VR_FAST_CHECKIN_WKSP,

VR_RESERVATIONS_WKSP,
VR_RENTAL_CLASSES_WKSP,
VR_VEHICLES_WKSP,
VR_TRANS_WKSP,
VR_VEHICLE_RENTAL_HISTORY_WKSP,
VR_HIST_WKSP,
VR_CONTROL_WKSP;

TASK ARGUMENTS ARE VR_FAST_CHECKIN_WKSP WITH ACCESS READ;

! QTI STARTS A DISTRIBUTED TRANSACTION BEFORE BEGINNING THIS TASK.
! THIS TASK JOINS THE DISTRIBUTED TRANSACTION. SHOULD THE TASK FAIL
! FOR ANY REASON, THE QTI ABORTS THE DISTRIBUTED TRANSACTION AND STARTS
! A NEW DISTRIBUTED TRANSACTION SO THAT IT CAN TRANSFER THE FAILED
! QUEUED TASK RECORD ONTO AN ERROR QUEUE, IF ONE EXISTS.

BLOCK WITH TRANSACTION
NO I/O

!
! FIND THE RESERVATION RECORD.
!

PROCESSING WITH NONPARTICIPATING SERVER
CALL PROCEDURE VR_FIND_RES_PROC
IN VR_READ_SERVER

USING VR_FAST_CHECKIN_WKSP,
VR_RESERVATIONS_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "G")
THEN
MOVE VR_FAST_CHECKIN_WKSP.ACTUAL_RETURN_DATE

TO VR_VEHICLE_RENTAL_HISTORY_WKSP.ACTUAL_RETURN_DATE,
VR_FAST_CHECKIN_WKSP.RETURN_ODOMETER_READING
TO

VR_VEHICLE_RENTAL_HISTORY_WKSP.RETURN_ODOMETER_READING;

(continued on next page)

Queuing ACMS Tasks 9–31



Queuing ACMS Tasks
9.10 Queuing Example

Example 9–8 (Cont.) VR_COMP_FAST_CHKIN_TASK Definition

ELSE
CANCEL TASK RETURNING ACMS$L_STATUS;

END IF;
!
! RETRIEVE THE VEHICLE AND VEHICLE_RENTAL_HISTORY RECORDS.
!

PROCESSING WITH NONPARTICIPATING SERVER
CALL PROCEDURE VR_FIND_VE_VRH_PROC
IN VR_READ_SERVER

USING VR_RESERVATIONS_WKSP,
VR_VEHICLES_WKSP,
VR_VEHICLE_RENTAL_HISTORY_WKSP,
VR_RENTAL_CLASSES_WKSP,
VR_TRANS_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "B")
THEN

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

!
! COMPUTE THE BILL.
!

PROCESSING WITH NONPARTICIPATING SERVER
CALL PROCEDURE VR_COMPUTE_BILL_PROC
IN VR_READ_SERVER

USING VR_RESERVATIONS_WKSP,
VR_RENTAL_CLASSES_WKSP;

ACTION IS
IF (ACMS$T_STATUS_TYPE = "B")
THEN

CANCEL TASK RETURNING ACMS$L_STATUS;
END IF;

!
! COMPLETE THE CHECKIN PROCESS.
!

PROCESSING
CALL PROCEDURE VR_COMPLETE_CHECKIN_PROC
IN VR_UPDATE_SERVER

USING VR_RESERVATIONS_WKSP,
VR_VEHICLES_WKSP,
VR_VEHICLE_RENTAL_HISTORY_WKSP,
VR_CONTROL_WKSP;

ACTION IS
MOVE "FSTCHKIN"

TO VR_HIST_WKSP.TRANS_TYPE,
VR_VEHICLES_WKSP.VEHICLE_ID

TO VR_HIST_WKSP.VEHICLE_ID,
VR_RESERVATIONS_WKSP.RENTAL_TOTAL_AMT

TO VR_HIST_WKSP.RENTAL_TOTAL_AMT;

PROCESSING
CALL PROCEDURE VR_WRITE_HIST_RECORD_PROC
IN VR_LOG_SERVER

USING VR_HIST_WKSP,
VR_RESERVATIONS_WKSP;

END BLOCK;

(continued on next page)

9–32 Queuing ACMS Tasks



Queuing ACMS Tasks
9.10 Queuing Example

Example 9–8 (Cont.) VR_COMP_FAST_CHKIN_TASK Definition

END DEFINITION;

The task queue VR_QUEUE is marked for RMS recovery unit journaling.
Therefore, the QTI starts a distributed transaction before submitting the VR_
COMP_FAST_CHKIN_TASK for processing. To join the distributed transaction,
the task specifies TRANSACTION on the root block step.

The first two processing steps use the reservation ID, obtained by the agent, to
retrieve reservation and car records. The third processing step computes the
bill. Because these three processing steps are not writing to the database, they
use the NONPARTICIPATING SERVER phrase to exclude themselves from the
distributed transaction.

9.11 Procedure Parameter Notation for Programming Services
ACMS$DEQUEUE_TASK and ACMS$QUEUE_TASK contain reference material
for the ACMS$DEQUEUE_TASK and ACMS$QUEUE_TASK programming
services. The format descriptions for the services use OpenVMS procedure
parameter notation. Each parameter can have four characteristics, represented
by two groups of symbols following the parameter. The characteristics definable
for each parameter are:

<name>.<access type><data type>.<pass mech><parameter form>

The characteristics are always listed in this order. A period (.) separates access
and data types from passing mechanism and parameter form. For example:

comp_status.wq.r

Table 9–5 defines the symbols used for procedure parameter notation.

Table 9–5 Procedure Parameter Notation

Notation Symbol Meaning

Access Type m Modify access

r Read access only

s Call without stack unwinding

w Write and read access

Data Type adt Absolute date and time

bu Byte logical (unsigned)

l Longword integer (signed)

lc Longword return status

lu Longword logical (unsigned)

q Quadword integer (signed)

qu Quadword integer (unsigned)

r Record

t Character-coded text string

(continued on next page)

Queuing ACMS Tasks 9–33



9.11 Procedure Parameter Notation for Programming Services

Table 9–5 (Cont.) Procedure Parameter Notation

Notation Symbol Meaning

w Word integer (signed)

x Data type by descriptor

z Unspecified

zem Procedure entry mask

Passing Mechanism d By descriptor

r By reference

v By immediate value

Parameter Form none Scalar (also called atomic data type)

x Class type by descriptor

For a complete explanation of all the OpenVMS data structures, data types,
access mechanisms and passing mechanisms, see Guide to Creating OpenVMS
Modular Procedures.

9–34 Queuing ACMS Tasks



ACMS$DEQUEUE_TASK

ACMS$DEQUEUE_TASK

Removes or reads a queued task element from the queued task file and returns
information about the task. This service does not dequeue or read queued task
elements that are on hold unless you include the element ID in the parameter list.
ACMS$DEQUEUE_TASK deletes a queue element immediately upon removing it
from the queue (unless READ ONLY is specified).

Format

ACMS$DEQUEUE_TASK (queue_name.rt.dx,
[element_id.rr.r],
[flags.rlu.r],
[ret_task.wt.dx],
[ret_application.wt.dx],
[ret_workspace_list.wz.r],
[ret_workspace_count.wl.r],
[ret_element_priority.wl.r],
[ret_username.wt.dx],
[ret_element_id.wr.r],
[ret_error_count.wlu.r],
[ret_last_error.wlu.r],
[ret_last_error_adt.wadt.r])

Parameters

queue_name
The name of the queue from which to dequeue the task. The name is subject
to logical name translation in the calling process. The logical translation is
performed only the first time that the queue is accessed by the calling process.
Any queue names resulting from logical translation can have a maximum length
of 39 characters. Logical search lists are not supported.

The queue name parameter is case-sensitive, so this parameter must be
uppercase in order to match the queue name created with ACMSQUEMGR.
(The ACMSQUEMGR uppercases all queue names unless you explicitly enclose
the queue name in quotes when using the CREATE QUEUE command.)

The queue name cannot contain any trailing spaces. For example, if the queue
name is "UPDATE_QUEUE" then the descriptor must have a length of 12.

Always create the queue before using this service. Create a task queue by using
the ACMS Queue Management Utility (ACMSQUEMGR).

Dequeue tasks in one of three access modes:

• By highest element priority (first-in-first-out, FIFO, within priority). This is
the default mode for this service.

• By element ID. By supplying the element_ID parameter, you can
directly access a queued task element. When you enqueue a task, the
ACMS$QUEUE_TASK service returns the element ID.

• Sequentially, by specifying the ACMS$M_QUE_GETNEXT flag.

Queuing ACMS Tasks 9–35



ACMS$DEQUEUE_TASK

element_id
The queued task element ID in binary format. The parameter allows direct
access to a queued task element. The ACMS$QUEUE_TASK service returns the
element ID (also in binary format). When you specify the element ID, the queued
task element is dequeued regardless of whether or not it is on hold.

The binary queued task element ID is 32 bytes long and has the following format:

Field Name Length

Process ID (PID) Longword
Sequence number Longword
Enqueue absolute date/time Quadword
Node name length Byte
Node name 15 bytes

When the ACMSQUEMGR utility displays or accepts the queued task element
ID, it uses the following display format:

node_name::pid-seq_no-adt1-adt2

In this format:

• node_name is the node name.

• PID is the process ID formatted as 8 hex characters.

• seq_no is the sequence number formatted as 8 hex characters.

• adt1 is the low order longword of the enqueue absolute date/time formatted
as 8 hex characters.

• adt2 is the high-order longword of the enqueue absolute date/time formatted
as 8 hex characters.

flags
Flags specifying options for the ACMS$DEQUEUE_TASK operation. The flags
argument is a longword bit mask that is the logical OR of each bit set, where
each bit corresponds to an option.

• ACMS$M_QUE_READONLY

When this bit is set, the ACMS$DEQUEUE_TASK service reads a queued
task element but does not delete the queue element from the task queue
file. The service performs the read operation regardless of whether or not
dequeues have been suspended for the queue.

If the ACMS$M_QUE_READONLY bit is set and you use the default access
mode (FIFO within priority), the ACMS$DEQUEUE_TASK service returns
the same queued task element each time you call the service (assuming a
static queue file).

By default this bit is clear.

• ACMS$M_QUE_NOWAIT

When this bit is set, the ACMS$DEQUEUE_TASK service does not wait for a
queued task element before returning. If there are no elements and this bit is
set, then the error ACMS$_QUEEMPTY is returned.

When this bit is not set, the ACMS$DEQUEUE_TASK service waits for a
queue element if no elements are currently queued.

9–36 Queuing ACMS Tasks



ACMS$DEQUEUE_TASK

By default this bit is clear.

• ACMS$M_QUE_GETNEXT

When this bit is set, the ACMS$DEQUEUE_TASK service operates in
sequential mode.

Before you set this bit, you can establish a position in the queue file by
using a prior ACMS$DEQUEUE_TASK service call in either of the other
two access modes. If you have not established a position in the queue file by
using a prior ACMS$DEQUEUE_TASK service call, then by default you are
positioned to the top of the queue file.

If you set the ACMS$M_QUE_GETNEXT bit after initially calling the
ACMS$DEQUEUE_TASK service in the default access mode, position the
internal file pointer to the highest priority element. Then the queue file will
be read sequentially on successive calls to the ACMS$DEQUEUE_TASK
service.

Because of the queue file organization, this sequential access returns
queued task elements in the same order that they would be returned if
you were using the default access mode without setting the ACMS$M_QUE_
READONLY bit (assuming a static queue file). The ordering of the queue file
is by highest priority, and FIFO within priority.

By default, this bit is clear.

ret_task
The task name for this queued task element.

ret_application
The application specification for this queued task element.

ret_workspace_list
The list of workspaces for this queued task element. This is a varying length
argument list of workspaces passed by descriptor, as shown in Figure 9–3.

Figure 9–3 List of Workspaces Passed by ACMS$DEQUEUE_TASK

wsp_n.wt.dx

wsp_2.wt.dx

wsp_1.wt.dx

workspace_list wsp_1 desc

wsp_1

ZK−7560−GE

n

.

.

.

. . .

If the queued task element has more workspaces than are passed in
ret_workspace_list, then the warning error message ACMS$_TOOFEWWSPS
is returned and the element is deleted. In all cases, the actual number of
workspaces contained in the queued task element is returned in the
ret_workspace_count parameter.

ret_workspace_count
The total number of workspaces for this queued task element.

Queuing ACMS Tasks 9–37



ACMS$DEQUEUE_TASK

ret_element_priority
The priority of this queued task element [0 through 255].

ret_username
The user name of the process that enqueued the queued task element, or, if the
enqueuing process had CMKRNL privilege, this could be the user name specified
with the user name parameter on the ACMS$QUEUE_TASK call.

ret_element_id
The queued task element ID for this queued task element.

ret_error_count
The number of times (if any) that the QTI component attempted a task invocation
which failed for this queued task element.

ret_last_error
The error message code (if any) returned to the QTI due to a task invocation
error. If the QTI retries a task invocation and the retry also fails, then this
parameter contains the most recent failure status. If the queued task element
has never failed on a task invocation, then the error code is ACMS$_NORMAL.

ret_last_error_adt
The absolute date and time of the most recent error message returned to QTI due
to a task invocation error. If the queued task element has never failed on a task
invocation, then the absolute date and time is zero.

Return Status

The error messages that can be returned by the ACMS$DEQUEUE_TASK service
include:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion
ACMS$_TOOFEWWSPS Warning The workspace list parameter

had fewer workspaces than the
queued task

ACMS$_ERROPNAQF Error Error opening the ACMS Queue
Definition File

ACMS$_ERROPNPAR Error Error opening the ACMS
parameter file

ACMS$_ERROPNQUE Error Error opening queue
ACMS$_ERRQUEINIT Error Error initializing the queue

services
ACMS$_INSUFPRIV Error Insufficient privilege for

attempted operation
ACMS$_INVNUMWSP Error Invalid number of workspaces
ACMS$_INVQUENAM Error Invalid queue name
ACMS$_LNE Error Logical name translation count

exceeded

9–38 Queuing ACMS Tasks



ACMS$DEQUEUE_TASK

Status Severity Level Description

ACMS$_QUEDEQSUS Error Dequeue operations are
suspended

ACMS$_QUEEMPTY Error Queue is empty
ACMS$_QUENOTFND Error Queue does not exist
SS$_ACCVIO Fatal Access violation; an argument

that you passed was not
accessible

Errors from the RMS services SYS$OPEN, SYS$CONNECT, SYS$GET, and the
RTL service LIB$SCOPY.dx.dx can also be returned.

Note

You can include the ACMS$DEQUEUE_TASK call within a distributed
transaction. When ACMS calls the DECdtm to start the distributed transaction,
DECdtm returns a unique transaction identifier (TID). ACMS$DEQUEUE_TASK
uses this default TID.

Queuing ACMS Tasks 9–39



ACMS$QUEUE_TASK

ACMS$QUEUE_TASK

Stores the queued task element in an on-disk queued task file.

Format

ACMS$QUEUE_TASK (queue_name.rt.dx,
task.rt.dx,
application.rt.dx,
[workspace_list.rz.r],
[flags.rlu.r],
[element_priority.rl.r],
[username.rt.dx],
[element_id.wr.r])

Parameters

queue_name
The name of the queue in which you want to store this task. The name is subject
to logical name translation in the calling process. The logical is performed only
the first time that the queue is accessed by the calling process. The queue_name
and any queue names resulting from logical translation can have a maximum
length of 39 characters. Using logical names for queue names allows the actual
queue name to change without recoding programs. Logical search lists are not
supported.

The queue name parameter is case-sensitive, so this parameter must be
uppercase in order to match the queue name created with ACMSQUEMGR.
The ACMSQUEMGR uppercases all queue names unless you explicitly enclose
the queue-name in quotes when using the CREATE QUEUE command.

The queue name cannot contain any trailing spaces. For example, if the queue
name is "UPDATE_QUEUE" then the descriptor must have a length of 12.

Always create the queue before using this service. Create a task queue by using
the ACMS Queue Management Utility (ACMSQUEMGR).

task
The name of the task queued. The task name must be in capital letters.

application
The name of the application in which the task is to be run. The application name
must be in capital letters. This parameter names an application specification.
The semantics associated with application specifications (for example, logical
translation, search lists, failover) occur as the task is invoked by the QTI.
(See HP ACMS for OpenVMS Managing Applications for more information on
application specifications.)

workspace_list
A list of workspaces to pass to the task. This is a variable length argument list of
workspaces passed by descriptor, as shown in Figure 9–4.

9–40 Queuing ACMS Tasks



ACMS$QUEUE_TASK

Figure 9–4 List of Workspaces Passed by ACMS$QUEUE_TASK Service

workspace_list wsp_1 desc

wsp_1

ZK−7559−GE

wsp_n.rt.dx

wsp_2.rt.dx

wsp_1.rt.dx

n

.

.

.

. . .

flags
Flags specifying options for the ACMS$QUEUE_TASK operation. The flags
argument is a longword bit mask that is the logical OR of each bit set, where
each bit corresponds to an option.

ACMS$M_QUE_HOLD

Setting the bit puts the queued task element in the hold state. Queued task
elements that are in the hold state are not available for dequeuing by either the
QTI or the ACMS$DEQUEUE_TASK service. Once a task is queued, you can use
the ACMSQUEMGR utility to modify its state.

By default, this bit is clear.

element_priority
The relative priority of the queue element: higher priority elements are dequeued
before lower priority elements. Valid values are 0 through 255.

The default value is 10.

username
The user name under which the task runs. To specify this parameter, you must
have the OpenVMS CMKRNL privilege. If you specify the parameter without
this privilege, the ACMS$QUEUE_TASK service fails and returns ACMS$_
INSUFPRIV.

If you do not use this parameter, the user name of the enqueuing process is stored
as the user name under which the task runs.

The QTI uses the enqueuer user name as the submitter user name for the
task selection (provided the process user name of the QTI has the ACMS agent
privilege).

element_id
A returned queued task element ID (in binary format) for this queued task
element. See the ACMS$DEQUEUE_TASK service for a description of the binary
and display formats of the element ID.

You can use the element ID from the ACMSQUEMGR Utility and in the
ACMS$DEQUEUE_TASK service to directly access this queued task element
for element operations.

Queuing ACMS Tasks 9–41



ACMS$QUEUE_TASK

Return Status

The error messages returned by the ACMS$QUEUE_TASK service include:

Status Severity Level Description

ACMS$_NORMAL Success Normal successful completion
ACMS$_ERROPNAQF Error Error opening the ACMS Queue

Definition File
ACMS$_ERROPNPAR Error Error opening the ACMS

parameter file
ACMS$_ERROPNQUE Error Error opening queue
ACMS$_ERRQUEINIT Error Error initializing the queue

services
ACMS$_INSUFPRIV Error Insufficient privilege for

attempted operation
ACMS$_INVAPPLE Error The application specification or

its descriptor was invalid
ACMS$_INVNUMWSP Error Invalid number of workspaces
ACMS$_INVPRIO Error Invalid priority for element
ACMS$_INVQUENAM Error Invalid queue name
ACMS$_INVSIZWSP Error Total size of workspaces exceeds

the size defined in the ACMS
Queue Definition File

ACMS$_INVTASK Error The task name or its descriptor
was invalid

ACMS$_INVUSER Error The user name was invalid
ACMS$_LNE Error Logical name translation count

exceeded
ACMS$_QUEENQSUS Error Enqueue operations are

suspended
ACMS$_QUENOTFND Error Queue does not exist
SS$_ACCVIO Fatal Access violation; an argument

that you passed was not
accessible

Errors from the RMS services SYS$OPEN, SYS$CONNECT, and SYS$PUT can
also be returned.

Note

You can include the ACMS$QUEUE_TASK call within a distributed transaction.
When ACMS calls the DECdtm to start the distributed transaction, DECdtm
returns a unique transaction identifier (TID). ACMS$QUEUE_TASK uses this
default TID.

9–42 Queuing ACMS Tasks



10
Defining Task Groups

Once you create one or more task definitions, you can take the two final steps to
prepare the definitions for debugging:

• Define a task group that sets up characteristics for the task or tasks.

• Use the BUILD command to produce object modules for the procedure servers
in the task group and to produce information ACMS uses to run the tasks in
that group.

This chapter explains these steps.

10.1 Defining a Task Group
Often you have a set of tasks that have common characteristics or require the
same resources. You group these tasks in task groups. Task groups let you set
up resources needed by a number of tasks, such as the servers those tasks use.

Just as the task part of a task definition sets up characteristics for the steps
in the task, a task group definition sets up characteristics for the tasks in that
group.

There are several characteristics you can define for a task group:

• Task or tasks belonging to the group

• Server or servers that do work for those tasks

• Request libraries and message files used by tasks in the group

• Workspaces used by tasks in the task group

• Name of the task group database file

Of these characteristics, you must always define the first two: the tasks that
belong to the group and the server or servers that do work for those tasks. The
third characteristic is required only if you use requests or the GET ERROR
MESSAGE clause in any of the tasks in the task group. Declaring workspaces
used by tasks in the task is optional; the task database file name is optional.

10.2 Identifying Which Tasks Belong to the Task Group
In a task group definition you must identify the tasks belonging to that group.
For example, in Figure 10–1, the Department task group includes three tasks.

Defining Task Groups 10–1



Defining Task Groups
10.2 Identifying Which Tasks Belong to the Task Group

Figure 10–1 A Task Group and Its Tasks

Review History

Review Schedule

Review Update

Department

TAY-0120-AD

Task Group

You name the tasks in the definition for the Department task group as follows:

TASKS ARE
REVIEW_HISTORY : TASK IS REVIEW_HISTORY_TASK;
REVIEW_SCHEDULE : TASK IS REVIEW_SCHEDULE_TASK;
REVIEW_UPDATE : TASK IS REVIEW_UPDATE_TASK;

END TASKS

When you name a task in a task group definition:

• Assign a name, such as REVIEW_HISTORY, to the task. The name, an
alphanumeric string of 1 to 31 characters, can contain dollar signs ($) and
underscores but no embedded blanks. The name must begin with a letter,
dollar sign ($), or underscore (_).

• Use the CDD path name to indicate the location of the task definition in the
CDD.

Use a colon (:) to separate the task name and the path name. Unless you set
your CDD default to the correct directory when you build the definition, you must
use the full CDD path name of each task you define. If you have set your CDD
default, you can use just the given name of each task, as in the previous example,
or a partial CDD path name.

You can also include single-step task definitions directly in a task group definition
rather than creating a separate definition for this task and referencing it by a
CDD path name in the task group definition:

TASKS ARE
EDITOR : DELAY;

PROCESSING IS
DCL COMMAND IS "$EDIT/EDT ’P1’" IN PRIVATE_UTILITY_SERVER;

See Chapter 13 for an explanation of single-step tasks.

10.3 Identifying Which Servers Are Required in the Group
When you write a definition for a multiple-step task, you name the server
or servers required to handle the processing work for that task. Many tasks
can use the same server. DCL servers handle DCL commands or procedures,
DATATRIEVE commands or procedures, and OpenVMS images. Procedure
servers handle calls to procedures or subroutines.

10–2 Defining Task Groups



Defining Task Groups
10.3 Identifying Which Servers Are Required in the Group

There are two characteristics you must define for each server you name in a task
group:

• Server type

• Procedures handled by that server, if it is a procedure server

The server type can be either DCL PROCESS or PROCEDURE SERVER. The
procedures you name for a procedure server are the procedures named in the
processing steps of tasks using that server.

The Department task group uses a single procedure server.

SERVER IS
DEPARTMENT_SERVER:
PROCEDURE SERVER IMAGE IS "ACMS$EXAMPLES:DEPRMSCOB.EXE";
.
.
.

END SERVER;

When you use the PROCEDURE SERVER clause to identify the server type,
you must also name the file specification of the image for the server you are
describing. The procedure server image is the runnable collection of all the
procedures handled by a server. It is the result of linking:

• Object module for the server created when building the task group

• Object modules created by compiling the step procedures handled by the
server

• Object modules created by compiling the cancel, initialization, and
termination procedures for the server

• Object modules for the messages used by the server

For example, the file DEPRMSCOB.EXE is the result of linking:

1. Object module for DEPARTMENT_SERVER, created when building the
Department task group

2. Object modules for the procedures used in the Review History, Review
Schedule, and Review Update tasks

3. Object modules for the cancel, initialization, and termination procedures for
DEPARTMENT_SERVER

4. Object module for the DEPARTMSG messages

If you define the server type to be PROCEDURE SERVER, you must name the
step procedures handled by a server. For example:

SERVER IS
DEPARTMENT_SERVER:
PROCEDURE SERVER IMAGE IS "ACMS$EXAMPLES:DEPRMSCOB.EXE";
PROCEDURES ARE
REVIEW_HISTORY_GET, REVIEW_SCHEDULE_GET,
REVIEW_UPDATE_GET, REVIEW_UPDATE_PUT;

.

.

.
END SERVER;

Defining Task Groups 10–3



Defining Task Groups
10.3 Identifying Which Servers Are Required in the Group

These are the procedure names the Review History, Review Schedule, and Review
Update task definitions use in their processing steps. The names are the entry
points for these procedures in the procedure server image. In the PROCEDURES
clause, you can also name initialization, termination, and cancel procedures;
however, only the names of step procedures are required.

There are additional characteristics you can describe for a procedure server:

• Procedures that run when the server processes start and stop

• Cancel procedure used by the server

• File name of the server object module produced when you build the task
group

Tasks using the same procedure server usually require one or more of the same
files. For example, the Review History, Review Schedule, and Review Update
tasks all use the Personnel and History files. Rather than opening and closing
files for each task, you can name, for a server, procedures that open and close files
when that server starts and stops. These procedures are called initialization
and termination procedures. You name each procedure as part of the server
definition:

INITIALIZATION PROCEDURE IS DEPART_STARTUP;
TERMINATION PROCEDURE IS DEPART_SHUTDOWN;

You identify an initialization or termination procedure by its entry point
in the procedure server image. DEPART_STARTUP is the entry point of
the initialization procedure in the image for the PERSONNEL procedure
server. If you are using a procedure written in COBOL, it begins with an
IDENTIFICATION DIVISION, which defines the entry point as the PROGRAM-
ID:

IDENTIFICATION DIVISION.
PROGRAM-ID. DEPART_STARTUP.

If you use BASIC, the entry point is the function name of the initialization or
termination procedure. You do not enclose the procedure name within quotation
marks.

A server definition can also name a cancel procedure. This procedure usually
releases record locks and performs other cleanup work for the server. If a task
is canceled either during a processing step or while ACMS is retaining process
context in a task, ACMS runs the cancel procedure named for the server being
used by the task when the cancel occurs.

CANCEL PROCEDURE IS DEPART_CANCEL;

As with initialization and termination procedures, the name of the cancel
procedure is its entry point in the procedure server image. Do not enclose the
procedure name within quotation marks.

When you build a task group, ACMS creates an object file, called the procedure
server transfer module, for each procedure server named in the definition for
that group. You can use the DEFAULT OBJECT FILE clause to define, for a
server, the file specification you want ACMS to use for the object file it creates.
For example:

DEFAULT OBJECT FILE IS "ACMS$EXAMPLES:DEPRMSCOB.OBJ";

10–4 Defining Task Groups



Defining Task Groups
10.3 Identifying Which Servers Are Required in the Group

You can also use logical names to name the location of the default object file.
Enclose the file specification within quotation marks. If you do not name an
object file, ACMS derives the name of the file from the the full given name you
assign to the server in the task group definition, including dollar signs and
underscores.

Here is the SERVER IS clause for the Department task group:

SERVER IS
DEPARTMENT_SERVER:
PROCEDURE SERVER IMAGE IS "ACMS$EXAMPLES:DEPRMSCOB.EXE";
PROCEDURES ARE

REVIEW_HISTORY_GET, REVIEW_SCHEDULE_GET,
REVIEW_UPDATE_GET, REVIEW_UPDATE_PUT;

INITIALIZATION PROCEDURE IS DEPART_STARTUP;
TERMINATION PROCEDURE IS DEPART_SHUTDOWN;
CANCEL PROCEDURE IS DEPART_CANCEL;
DEFAULT OBJECT FILE IS "ACMS$EXAMPLES:DEPRMSCOB.OBJ";

END SERVER;

10.3.1 Assigning Server Attributes
In addition to naming the procedures, procedure server image, and default
object file, you can use the server definition to specify attributes that affect
the modularity and, possibly, the performance of your application. This section
describes two such attributes, the RUNDOWN ON CANCEL IF INTERRUPTED
and ALWAYS EXECUTE TERMINATION PROCEDURE server subclauses.

By default, ACMS processes a server’s termination procedure when the server
process is run down, unless the server process is being run down because the
task was canceled. There might be times when you want to override this default
by specifying ALWAYS EXECUTE TERMINATION PROCEDURE. For example,
a server that uses global sections might need to clean up information in the
global sections when the server process is run down. The ALWAYS EXECUTE
TERMINATION PROCEDURE subclause instructs ACMS to process the server’s
termination procedure whenever the server process is run down.

By default, ACMS runs down a server process when the task is canceled while
the task is keeping context in that server. When the server exits, ACMS releases
server context. Preventing unnecessary process deletions and creations can
improve the performance of your application. You can use the RUNDOWN ON
CANCEL IF INTERRUPTED server subclause to instruct ACMS to run down the
server process only if ACMS interrupts the execution of a step procedure due to
an exception. ACMS does not run down the server process if, for example, the
task is simply retaining context when you specify RUNDOWN ON CANCEL IF
INTERRUPTED.

Example 10–1 shows a server definition that specifies ALWAYS EXECUTE
TERMINATION PROCEDURE and RUNDOWN ON CANCEL IF
INTERRUPTED.

Defining Task Groups 10–5



Defining Task Groups
10.3 Identifying Which Servers Are Required in the Group

Example 10–1 Definition of VR_READ_SERVER

SERVERS ARE
VR_READ_SERVER:
PROCEDURE SERVER IMAGE IS "AVERTZ_DEFAULT:VR_READ_SERVER.EXE";
INITIALIZATION PROCEDURE IS VR_READ_INIT;
TERMINATION PROCEDURE IS VR_TERM;
ALWAYS EXECUTE TERMINATION PROCEDURE ON RUNDOWN;
RUNDOWN ON CANCEL IF INTERRUPTED;
PROCEDURES ARE

VR_COMPUTE_BILL_PROC,
VR_FIND_CU_PROC,
VR_FIND_SI_PROC,
VR_FIND_VE_VRH_PROC,
VR_FIND_RES_PROC,
VR_RES_DETAILS_PROC;

DEFAULT OBJECT FILE IS "AVERTZ_DEFAULT:VR_READ_SERVER.OBJ";

Once you have defined the tasks in a task group and the servers used by those
tasks, you can consider other characteristics of the task group, such as the
request libraries, message files, and workspaces used by the tasks in the group.

10.4 Naming Request Libraries
When you define tasks, you can name TDMS requests in the exchange steps. For
ACMS to process a request, it must know in which request library to find it. This
library stores the definitions for all the requests that you use for tasks in the
group. For example, all the requests you use in the exchange steps of tasks in the
Department task group are in the same request library.

For each task group definition, you name all the request libraries used by tasks
in the task group:

REQUEST LIBRARY IS "ACMS$EXAMPLES_DEPRMSRLB";

In this example, ACMS$EXAMPLES_DEPRMSRLB is the name of the request
library. This name is a logical name pointing to the location of the request library
file. The default file type is .RLB. If you do not name a directory, ACMS uses
the directory named by the DEFAULT DIRECTORY clause in the application
definition. You must enclose the file name of the request library within quotation
marks if there are characters in that name that are invalid for an identifier (such
as periods, colons, or semicolons), or if the name is longer than 31 characters.

If you name just one request library, ACMS uses that request library for all the
tasks in the group. If different tasks in the group use different libraries, or if
different steps in a single task use different libraries, you must name all these
request libraries in the task group definition. In this case, you must also assign a
name to each request library you name. For example:

REQUEST LIBRARY IS "ACMS$EXAMPLES_DEPRMSRLB" WITH NAME DEPARTREQ;

The name you assign to a request library is an identifier containing 1 to 31
characters. When writing a task definition, you use this name in the DEFAULT
REQUEST LIBRARY clause or with the IN keyword of the REQUEST clause to
identify the request library used by the task or exchange step. For example:

EXCHANGE
REQUEST IS REVIEW_HISTORY_INPUT_REQUEST
IN DEPARTREQ USING REVIEW_HISTORY_WORKSPACE;

10–6 Defining Task Groups



Defining Task Groups
10.4 Naming Request Libraries

If you do not name the request library with the IN keyword of the REQUEST
clause of an exchange step, and you do not use the DEFAULT REQUEST
LIBRARY clause in the definition of the task containing that step, ACMS uses
the first request library named in the task group containing the task.

When defining a task group whose tasks call only user request procedures (URPs)
, you can use the REQUEST LIBRARY IS clause to name the shareable image
containing URP procedures. The shareable image must have a .EXE extension.
You may specify a complete file specification or a logical name in the REQUEST
LIBRARY IS clause. If you use a logical name (the recommended method), be
sure to define the logical name to translate to a full file specification with a .EXE
extension. If the logical name does not contain the .EXE extension, the EXC uses
the .RLB default when it tries to open all the files declared in the REQUEST
LIBRARY IS clauses. This action causes the ACMS/START APPLICATION to
fail, unless ACMS finds a TDMS (.RLB) file of the same name.

For information on building request libraries, see VAX TDMS Request and
Programming Manual.

10.5 Identifying Which Message Files Are Used in the Group
Just as you declare the request libraries containing requests used by tasks in a
task group, you must name the message files used by the tasks in a group. You
use the MESSAGE FILES clause as follows:

MESSAGE FILE IS "ACMS$EXAMPLES:DEPARTMSG.EXE";

When you use the MESSAGE FILES clause, you use the name of the image
(.EXE) version of the message file. In this example, the message file used by the
Department task group is the file ADMINMSG.EXE in the directory with the
logical name ACMS$EXAMPLES. If you do not name a directory, ACMS uses
the directory named by the DEFAULT DIRECTORY clause of the application
definition.

For information on creating message files, see HP ACMS for OpenVMS Writing
Server Procedures.

10.6 Naming Workspaces in a Task Group Definition
Often workspaces are used by more than one task in a task group. You can name
these workspaces in the task group definition. You use the USE WORKSPACES
clause in a task definition that uses workspaces named in the task group. For
example, suppose that you declare DEPT_WORKSPACE in the definition for the
Department task group:

WORKSPACE IS DEPT_WORKSPACE WITH TYPE USER;

The Review History task uses the USE WORKSPACE clause to refer to the
DEPT_WORKSPACE named in the task group definition:

USE WORKSPACE DEPT_WORKSPACE;

When you use the USE WORKSPACE clause, you can change the access
restrictions that are defined for the workspace in the task group definition. You
cannot change the workspace type.

Defining Task Groups 10–7



Defining Task Groups
10.7 Naming the Task Database for a Task Group

10.7 Naming the Task Database for a Task Group
When you build a task group, ACMS creates a task database for that task group.
ACMS uses the database at run time to get information about processing tasks
selected by a user. You can use the DEFAULT TASK GROUP FILE clause
to assign the file specification you want ACMS to use when creating the task
database. For example:

DEFAULT TASK GROUP FILE IS "ACMS$EXAMPLES:DEPRMSCOB.TDB";

If you do not use a file specification with the BUILD command, ACMS uses the
file specification, if any, you named in the DEFAULT TASK GROUP FILE clause.
If you do not use the DEFAULT TASK GROUP FILE clause, ACMS derives the
file specification from the full given name of the task group, including dollar signs
and underscores.

Example 10–2 shows the complete definition for the Department task group.

Example 10–2 Definition of Department Task Group

REPLACE GROUP DEPART_TASK_GROUP/LIST=DEPGRP.LIS

REQUEST LIBRARY IS "ACMS$EXAMPLES_DEPRMSRLB";
MESSAGE FILE IS "ACMS$EXAMPLES:DEPARTMSG.EXE";
DEFAULT TASK GROUP FILE IS "ACMS$EXAMPLES:DEPRMSCOB.TDB";
TASKS ARE
REVIEW_HISTORY : TASK IS REVIEW_HISTORY_TASK;
REVIEW_SCHEDULE: TASK IS REVIEW_SCHEDULE_TASK;
REVIEW_UPDATE : TASK IS REVIEW_UPDATE_TASK;

END TASKS;
SERVER IS
DEPARTMENT_SERVER:
PROCEDURE SERVER IMAGE IS "ACMS$EXAMPLES:DEPRMSCOB.EXE";
PROCEDURES ARE
REVIEW_HISTORY_GET, REVIEW_SCHEDULE_GET,
REVIEW_UPDATE_GET, REVIEW_UPDATE_PUT;

INITIALIZATION PROCEDURE IS DEPART_STARTUP;
TERMINATION PROCEDURE IS DEPART_SHUTDOWN;
CANCEL PROCEDURE IS DEPART_CANCEL;
DEFAULT OBJECT FILE IS "ACMS$EXAMPLES:DEPRMSCOB.OBJ";

END SERVER;
END DEFINITION;

This definition does not include all the clauses you can use to define a task
group. An additional characteristic you can define for a task group is a list of
the workspaces used by tasks in that group. For a complete list and explanation
of all the task group clauses, see the HP ACMS for OpenVMS ADU Reference
Manual.

Once you have written a task group definition, you can store it in the CDD. If
you include the CREATE or REPLACE command in the definition source file, you
submit the file to the ADU as a command file:

ADU> @DEPARTGRP.COM

If you did not include the REPLACE command in the source definition file, you
use the REPLACE command in response to the ADU> prompt. For example:

ADU> REPLACE GROUP DEPART_TASK_GROUP DEPART.GDF

10–8 Defining Task Groups



Defining Task Groups
10.7 Naming the Task Database for a Task Group

This command stores the definition in the DEPART.GDF file in the CDD, using
the name DEPART_TASK_GROUP. Common errors you might receive when you
use the CREATE command are:

• The definition already exists. You can rename the group you have defined. Or
you can use the REPLACE command to replace the existing definition with
the new one.

• The CDD directory you named is invalid or access is not allowed to the
directory. You may have used the wrong path name for the task group
definition. Or you may need to change the access control list for the CDD
directory.

• There are errors in the syntax, such as omitted semicolons (;). You may also
have omitted required clauses or required keywords.

The CREATE command does not check whether the task group definition is valid
or correct, such as whether the tasks named in the definition exist or whether
file specifications are correct; it checks only for correct syntax. ACMS checks
file specifications only at run time. However, references to CDD definitions are
checked when you build the task group.

Once you have defined a task group and stored the definition in the CDD, you can
go on to build the task group.

10.8 Changing Characteristics of Task Argument Workspaces
If you change the number of TASK ARGUMENT workspaces defined for a task or
if you change the ACCESS method of a TASK ARGUMENT workspace, you must
rebuild the application database (.ADB) after you rebuild the task group database
(.TDB). If you forget to rebuild the .ADB and attempt to select a task that has
been changed in this manner, ACMS cancels the task and writes the following
message to the audit trail log:

************************************************************
Type : TASK Time : 16-FEB-1988 15:24:48.45
Appl : CTAPPL
Task : PWT
User : USER1
ID : SAILNG::00010014-00000001-8A8853C0-0090E729
Sub : SAILNG::00010014-00000000-8A8853C0-0090E729
Text : Task start failed during initialization
Application must be rebuilt due to TASK ARGUMENT workspace changes
************************************************************
Type : TASK Time : 16-FEB-1988 15:24:48.45
Appl : CTAPPL
Task : PWT
User : USER1
ID : SAILNG::00010014-00000001-8A8853C0-0090E729
Sub : SAILNG::00010014-00000000-8A8853C0-0090E729
Text : Task end
Task completion status: Unexpected error during task initialization. See
audit/error logs for details
************************************************************

Defining Task Groups 10–9





11
Defining Applications

Once the tasks and task groups of an application are implemented, you create
application and menu definitions to control the application and to present tasks
to users. Chapter 11 begins by walking you through the creation of a simple,
complete application. The rest of the chapter explains how to define control
characteristics for tasks, servers, and the application as a whole. Chapter 12
explains how to create menu definitions to access the application.

11.1 Defining a Simple Application
Suppose that your personnel department needs a way to monitor performance
reviews for all company employees. The department also needs to use the
DATATRIEVE procedure DUE, which displays reviews that are due, and the DCL
command EDIT.

First, you develop the four tasks and the two task groups you need. The
Department task group contains two tasks described in Chapter 2:

• Review History displays the performance history of one employee.

• Review Schedule displays the performance review schedules of an entire
department.

The Administration task group contains two single-step tasks:

• DATATRIEVE procedure, DUE

• DCL command, EDIT

(Chapter 13 explains how to define the Administration task group. See
Example 13–1 for a listing of the task group definition.)

The following sections explain how to create an application definition that
contains and controls the tasks in these two task groups.

11.2 Describing the Application Environment
In the application definition, you describe the application environment by defining
control characteristics for the application. Application definitions must:

• Name the task groups that contain the tasks of the application

• Assign a user name to the Application Execution Controller (EXC), the ACMS
system process that controls the application

Access to tasks is always controlled from the application definition. You use
application clauses to describe these and other application characteristics, as
described in the following sections.

Defining Applications 11–1



Defining Applications
11.2 Describing the Application Environment

11.2.1 Naming Task Groups
You begin writing an application definition by naming the task groups of the
application. You use the TASK GROUPS clause to name the task groups. The
clause begins with the keywords TASK GROUPS ARE and ends with END TASK
GROUPS. Between these keywords, you include:

• Name for each of the task groups in the application

• Name of the task group database file created by building each task group
definition

The TASK GROUPS clause for the Personnel application is:

TASK GROUPS ARE
DEPARTMENT_COBOL_TASK_GROUP :

TASK GROUP FILE IS "ACMS$EXAMPLES:DEPRMSCOB.TDB";
ADMINISTRATION_COBOL_TASK_GROUP :

TASK GROUP FILE IS "ACMS$EXAMPLES:ADMRMSCOB.TDB";
END TASK GROUPS;

Task groups in the application are DEPARTMENT_COBOL_TASK_GROUP and
ADMINISTRATION_COBOL_TASK_GROUP. These names are not CDD path
names for the task group; they are names that you assign in the application to
identify the task groups. DEPRMSCOB.TDB and ADMRMSCOB.TDB are the
task group database files that are created when you build the two task group
definitions by using the ADU BUILD command.

You can name all the task groups in an application in a single TASK GROUPS
clause, or you can group them in multiple TASK GROUPS clauses. For example,
you could put the two task groups DEPARTMENT_COBOL_TASK_GROUP and
ADMINISTRATION_COBOL_TASK_GROUP in separate TASK GROUPS clauses:

TASK GROUP IS
DEPARTMENT_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:DEPRMSCOB.TDB";
END TASK GROUP;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:ADMRMSCOB.TDB";
END TASK GROUP;

11.2.2 Naming a User Name for the Application Execution Controller
ACMS uses a process called the Application Execution Controller (EXC) to
manage the servers that handle processing work for tasks. The EXC process
requires special quotas and privileges to perform this work. Therefore, the
application definition must include an OpenVMS user name for the EXC process
that has the necessary quotas and privileges. Include the APPLICATION
USERNAME clause in your source file.

APPLICATION USERNAME IS ACMSAMPLE;
TASK GROUPS ARE

DEPARTMENT_COBOL_TASK_GROUP :
TASK GROUP FILE IS "ACMS$EXAMPLES:DEPRMSCOB.TDB";

ADMINISTRATION_COBOL_TASK_GROUP :
TASK GROUP FILE IS "ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUPS;

In this example, the user name is ACMSAMPLE. End the APPLICATION
USERNAME clause with a semicolon (;).

11–2 Defining Applications



Defining Applications
11.2 Describing the Application Environment

11.2.3 Assigning Characteristics to Tasks and Servers
For applications more complex than the Personnel application, you can assign
task and server control characteristics that affect how ACMS handles tasks and
servers at run time. You assign these characteristics by using subclauses within
the DEFAULTS and ATTRIBUTES clauses of the application definition. There
are two characteristics, however, that are very important for even the simplest
application:

• Who can select a task

• The user names under which you want servers to run

One important purpose of an application definition is to control who can run
which tasks in that application. You use the ACCESS subclause to control access
to tasks.

For example, suppose that you want to let everyone in the Personnel department
run all the tasks in the Personnel application and you want to prevent anyone
outside the department from running any of the tasks in the application. If all
the users in the Personnel department have user identification codes (UICs) with
a group number of 300, such as [300,1], [300,2], and so on, you can set up this
access control list (ACL) for the tasks in the application:

TASK DEFAULT IS
ACCESS CONTROL LIST
IDENTIFIER [300,*] ACCESS EXECUTE;

END TASK DEFAULT;

Any user with a UIC group number of 300 can run the tasks in the application.
ACMS does not allow any other users to run the tasks. This ACCESS subclause
overrides the default ACMS ACL, which allows all users to run all tasks.

For characteristics assigned with the TASK DEFAULTS clause to take effect, the
TASK DEFAULTS clause must be placed before the TASK GROUPS clause and
the TASK ATTRIBUTES clause in the application definition.

In addition to defining control characteristics such as access control to tasks, you
can define control characteristics for servers.

It is important to assign user names to servers in an application because when
a server runs, it takes on the privileges, priority, and quotas associated with
its user name. The default value for server user names is the user name of the
application. Because the application requires more privileges and quotas, and
a higher priority than servers, it is a good idea to assign servers a user name
different from the application user name.

For example, you can assign a server user name to all the servers in the
Personnel application with the USERNAME subclause in the SERVER
DEFAULTS clause:

SERVER DEFAULT IS
USERNAME IS PERSONSVR;

END SERVER DEFAULT;

This subclause assigns the user name PERSONSVR to all the servers in
the Personnel application. For characteristics assigned with the SERVER
DEFAULTS clause to take effect, the SERVER DEFAULTS clause must be placed
before the TASK GROUPS clause and the SERVER ATTRIBUTES clause in the
application definition.

Defining Applications 11–3



Defining Applications
11.2 Describing the Application Environment

Example 11–1 shows the application definition for the Personnel application.

Example 11–1 Personnel Application Definition

APPLICATION USERNAME IS ACMSAMPLE;

TASK DEFAULT IS
ACCESS CONTROL LIST
IDENTIFIER [300,*] ACCESS EXECUTE;

END TASK DEFAULT;

SERVER DEFAULT IS
USERNAME IS PERSONSVR;

END SERVER DEFAULT;
TASK GROUPS ARE
DEPARTMENT_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:DEPRMSCOB.TDB";
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:ADMRMSCOB.TDB";
END TASK GROUPS;
END DEFINITION;

You can give any number of users or groups of users access to tasks by using the
ACCESS subclause. You can also use the same subclause to prevent certain users
or groups of users from running tasks with the same subclause.

11.3 Controlling Tasks
You control tasks in an application by assigning task control characteristics in an
application definition. These characteristics determine:

• Who can run a task

• Whether or not information about a task is written to the ACMS audit trail
log

• What happens at the end of a task

• Whether or not the task is available for execution

When ADU begins processing an application definition, it assigns default values
to all characteristics of tasks. You can reset these default values by assigning
different characteristics to the tasks of an application by using the TASK
ATTRIBUTES or TASK DEFAULTS clauses. Within these clauses, you use
subclauses to describe specific task control characteristics.

The examples in the following sections use the TASK ATTRIBUTES clause
to explain how to describe control characteristics for tasks in an application.
Section 11.3.4 describes the TASK ATTRIBUTES and TASK DEFAULTS clauses
in more detail.

11.3.1 Controlling Access to Tasks
One of the important purposes of the application definition is to control who can
run which tasks in an application. You use the ACCESS subclause to control
access to tasks.

The Personnel application used in the examples in this book includes the DATR
task. You can define an ACL to control which users have access to the DATR
task. For example, you may want to let everyone in the Personnel department
run this task, but to prevent anyone outside the department from running it.
Because all the users in the Personnel department have UICs with a group

11–4 Defining Applications



Defining Applications
11.3 Controlling Tasks

number of 300, the ACL for the DATR task is [300,*] ACCESS EXECUTE. This
ACL says that all users with a group number of 300 can run the task:

TASK ATTRIBUTE IS
DATR : TASK DATR IN ADMINSTRATION_COBOL_TASK_GROUP;

ACCESS CONTROL LIST
IDENTIFIER [300,*] ACCESS EXECUTE;

END TASK ATTRIBUTE;

The default value for access control is to allow all users to run all tasks. This
ACCESS subclause overrides this default ACL.

In some cases you may want to provide access to the same task by different
groups of users. You can include access definitions for more than one group in the
same ACCESS subclause. For example:

TASK ATTRIBUTE IS
DATR : TASK DATR IN ADMINISTRATION_COBOL_TASK_GROUP;

ACCESS CONTROL LIST
IDENTIFIER [100,*] ACCESS EXECUTE,
IDENTIFIER [300,*] ACCESS EXECUTE;

END TASK ATTRIBUTE;

This ACL allows all users with UIC group numbers of 100 or 300 to run the
DATR task. If you include more than one access definition in an ACCESS
subclause, separate them with commas. End the ACCESS subclause with a
semicolon (;).

You can also use the NONE keyword to prevent a user or group of users from
running a particular task. For example:

TASK ATTRIBUTE IS
DATR : TASK DATR IN ADMINISTRATION_COBOL_TASK_GROUP;

ACCESS CONTROL LIST
IDENTIFIER [200,*] ACCESS NONE,
IDENTIFIER [*,*] ACCESS EXECUTE;

END TASK ATTRIBUTE;

Because ACCESS NONE overrides the default value that allows all users to run
all tasks, you must follow it with IDENTIFIER [*,*] ACCESS EXECUTE, so that
users who are not in group 200 can run the DATR task.

Note

The most general access definition must be last in the list.

When ACMS looks at an ACL to find out whether a user can run a task, it starts
at the top of the list and reads only until it finds an entry matching that user.
If the definition for [*,*] is first in the ACL, then ACMS stops before finding the
entry for [200,*], allowing users with group number 200 to run the DATR task.

In most cases, you group all access definitions for a single task in a single
ACCESS subclause, but you can include more than one ACCESS subclause for
each task, as well as more than one access definition in each ACCESS subclause.
If you include more than one ACCESS subclause in one TASK ATTRIBUTES or
TASK DEFAULTS clause, ACMS uses the lists as though they were one list; the
values set in the TASK ATTRIBUTES clause override the values set in the TASK
DEFAULTS clause.

Defining Applications 11–5



Defining Applications
11.3 Controlling Tasks

11.3.2 Auditing Task Events
ACMS provides an auditing facility to record task events such as unexpected
canceling of tasks. The Audit Trail Report Utility writes reports on task events
from the audit trail log file.

You use the AUDIT subclause to control whether or not events such as task
selections and completions are recorded in the audit trail log:

TASK ATTRIBUTE IS
DATR : TASK DATR IN ADMINISTRATION_COBOL_TASK_GROUP;

AUDIT;
END TASK ATTRIBUTE;

In this example, the audit trail log records task events for the DATR task
whenever that task is run. The default value for the AUDIT subclause is
NOAUDIT. For a list of the events written to the audit trail log, see
HP ACMS for OpenVMS Managing Applications. Even if you do not specify the
AUDIT subclause, ACMS records all failure statuses.

11.3.3 Controlling What Happens When a Task Ends
From the application definition you can control what happens when an ACMS
task ends. ACMS provides three options:

• Display the menu immediately

• Display the menu after a 3-second delay

• Display the menu after the user presses Return

The default value for this attribute is to display a menu immediately when a task
ends. To delay the display of a menu for three seconds after a task ends, use the
DELAY subclause:

TASK ATTRIBUTE IS
DATR : TASK DATR IN ADMINISTRATION_COBOL_TASK_GROUP;

DELAY;
END TASK ATTRIBUTE;

When a user finishes using the DATR task, ACMS waits for three seconds before
displaying the next menu.

To delay the display of a menu until the user presses Return after a task ends, use
the WAIT subclause. For example:

TASK ATTRIBUTE IS
DATR : TASK DATR IN ADMINISTRATION_COBOL_TASK_GROUP;

WAIT;
END TASK ATTRIBUTE;

Now when a user finishes using the DATR task, ACMS waits until the user
presses Return before displaying the menu.

You can also define the wait and DELAY subclauses in the task group definition.
A WAIT or DELAY characteristic that you assign in a TASK ATTRIBUTES clause
in an application definition overrides a WAIT or DELAY assignment in the task
group definition.

Although all the examples so far have defined task control attributes within a
TASK ATTRIBUTES clause, you can use these subclauses in a TASK DEFAULTS
clause. The next section discusses the TASK ATTRIBUTES and TASK
DEFAULTS clauses, the differences between the two, and the circumstances
in which to use each.

11–6 Defining Applications



Defining Applications
11.3 Controlling Tasks

11.3.4 TASK ATTRIBUTES and TASK DEFAULTS Clauses
When ADU begins processing an application definition, it assigns default
values to all characteristics of tasks. Characteristics assigned with the TASK
DEFAULTS or TASK ATTRIBUTES clauses reset the values of ACMS-supplied
defaults. A characteristic assigned with the TASK DEFAULTS clause can become
the value of the characteristic, or you can override it with a value supplied in the
task group definition or a value supplied in a TASK ATTRIBUTES clause.

ACMS uses the following order of default to find values for task control
characteristics:

1. TASK ATTRIBUTES clause in the application definition

If you specifically define an attribute for a task in a TASK ATTRIBUTES
clause, ADU uses that value for the attribute for that task.

2. TASKS clause in the task definition or the TASK subclause in the task group
definition

If you do not define a task attribute for a task in a TASK ATTRIBUTES
clause, and if the attribute is one that you can assign in a task group
definition, ADU looks in the task group database that defines implementation
attributes for that task to see whether the attribute is defined there. The
control attributes that you can define in a task group definition are DELAY,
WAIT, CANCELABLE, LOCAL, and GLOBAL.

3. TASK DEFAULTS clause in the application definition

ADU looks at the TASK DEFAULTS clauses in the application definition
for any attribute that you do not define in the TASK ATTRIBUTES clause
of the application or task group definition. The TASK DEFAULTS clause
changes the ACMS-supplied default values for task attributes. An application
definition can include more than one TASK DEFAULTS clause. The position
of the TASK DEFAULTS clauses, TASK ATTRIBUTES clauses, and TASK
GROUPS clauses in the application definition determines which task defaults
apply to which tasks.

4. ACMS-supplied defaults

ADU uses the default value it supplies only if you do not assign a value for
the attribute in the TASK ATTRIBUTES or TASK DEFAULTS clause of the
application definition, or in the task group database.

11.3.4.1 Using the TASK ATTRIBUTES Clause
You can include more than one task in a TASK ATTRIBUTES clause, and you can
include more than one TASK ATTRIBUTES clause in an application definition.

In a TASK ATTRIBUTES clause, you must always name the task or tasks to
which you want a subclause to apply. The task name must be unique in the
application and must conform to the rules for ACMS identifiers. For example:

TASK ATTRIBUTE IS
DATR : TASK DATR IN ADMINISTRATION_COBOL_TASK_GROUP;

AUDIT;
END TASK ATTRIBUTE;

This TASK ATTRIBUTES clause assigns the name DATR to the DATR task in
the ADMINSTRATION_COBOL_TASK_GROUP task group. A colon ( : ) separates
the name from the TASK and AUDIT subclauses. The name you assign to the left
of the colon, DATR, must be unique within the application definition. However,

Defining Applications 11–7



Defining Applications
11.3 Controlling Tasks

the actual task name to the right of the colon needs to be unique within the task
group only, not within the application. End each subclause with a semicolon (;).

The TASK keyword points to a task in a task group. In this example, the TASK
keyword points to the DATR task in the Administration task group. The task
group name must be the same as the name you used in the TASK GROUPS
clause in the application definition.

11.3.4.2 Using the TASK DEFAULTS Clause
You can use TASK DEFAULTS clauses with TASK ATTRIBUTES clauses to
simplify your application definition.

The TASK DEFAULTS clause changes the ACMS-supplied defaults for task
control characteristics. These new defaults apply until the end of the definition,
or until they are changed again with another TASK DEFAULTS clause. You can
override the TASK DEFAULTS by assigning a value in a task group definition or
a TASK ATTRIBUTES clause.

Several tasks can have one or more control attributes in common that are
different from the ACMS-supplied defaults. In this case, one way to simplify
your application definition is to use a TASK DEFAULTS clause.

The TASK DEFAULTS clause allows you to define an attribute that several tasks
have in common in a single subclause. If you use the TASK ATTRIBUTES clause,
you must name each task and the identical attribute for each task. If you use the
TASK DEFAULTS clause, you can give users with the group UIC 100 access to
both the DATR and EDIT tasks in a single subclause:

TASK DEFAULT IS
ACCESS CONTROL LIST IDENTIFIER [100,*] ACCESS EXECUTE;

END TASK DEFAULT;

TASK ATTRIBUTES ARE
DATR : ADMINISTRATION_COBOL_TASK_GROUP;
EDIT : ADMINISTRATION_COBOL_TASK_GROUP;

END TASK ATTRIBUTES;

When you build an application database, ADU takes the ACL for the DATR
and EDIT tasks from the TASK DEFAULTS clause. ACMS uses the defaults it
supplies for all other task control attributes for those tasks.

The TASK DEFAULTS clause must precede the TASK GROUPS or TASK
ATTRIBUTES clause to which you want it to apply.

Example 11–2 shows an application definition that uses a TASK DEFAULTS
clause to define control attributes for all the tasks in the application. The
application includes only one task group.

Example 11–2 Application Definition Using TASK DEFAULTS

REPLACE APPLICATION PERSONNEL_APPLICATION
USERNAME IS PERSONNEL;
TASK DEFAULTS ARE
ACCESS CONTROL LIST IDENTIFIER [200,*] ACCESS EXECUTE;
AUDIT;

END TASK DEFAULTS;

(continued on next page)

11–8 Defining Applications



Defining Applications
11.3 Controlling Tasks

Example 11–2 (Cont.) Application Definition Using TASK DEFAULTS

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;
END DEFINITION;

If an application includes only one task group, and if all the tasks in the
application use the same control characteristics, the application definition can
be as simple as this, even if the application includes many tasks.

11.3.4.3 Defaulting Task and Task Group Names
Depending on the position of TASK ATTRIBUTES clauses in the application
definition, you may not need to explicitly name the task or task group to which
you assign a control characteristic. ACMS provides some defaulting of task and
task group names in the application definition.

The following TASK ATTRIBUTE clause includes both the task and the task
group name of the task to which the AUDIT subclause applies:

TASK ATTRIBUTE IS
DATR : TASK DATR IN ADMINISTRATION_COBOL_TASK_GROUP;

AUDIT;
END TASK ATTRIBUTE;

In the preceding TASK ATTRIBUTE clause, there are two phrases: the task name
and the task group name. In some cases, you can omit one of these phrases. If
the task has the same name in the application as it has in the task group, you do
not have to use the task name phrase. For example:

TASK DEFAULT IS
ACCESS CONTROL LIST IDENTIFIER [100,*] ACCESS EXECUTE;

END TASK DEFAULT;

TASK ATTRIBUTES ARE
DATR : IN ADMINISTRATION_COBOL_TASK_GROUP;
EDIT : IN ADMINISTRATION_COBOL_TASK_GROUP;

END TASK ATTRIBUTES;

If the task group is the same as the last one named in the immediately preceding
TASK GROUPS clause, you do not have to use the task group phrase. For
example:

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:ADMRMSCOB.TDB";
END TASK GROUP;

TASK ATTRIBUTE IS
DATR : AUDIT;

END TASK ATTRIBUTE;

If you do not specify a task group name in a TASK ATTRIBUTES clause, ACMS
defaults the task group name from the last task group name in the immediately
preceding TASK GROUPS clause. If you name the task group in the TASK
ATTRIBUTES clause, then the TASK ATTRIBUTES clause does not have to
follow the TASK GROUPS clause to which you want it to apply.

Defining Applications 11–9



Defining Applications
11.3 Controlling Tasks

Task attribute and default values affect tasks in a task group depending on the
position of the clauses in relation to each other in an application definition. The
next section discusses the positioning of the TASK ATTRIBUTES and TASK
DEFAULTS clauses in an application definition.

11.3.4.4 Positioning TASK ATTRIBUTES and TASK DEFAULTS Clauses
The way you place TASK ATTRIBUTES and TASK DEFAULTS clauses in an
application definition affects how ACMS assigns control characteristics to the
tasks in the application.

For example, Example 11–3 shows an application definition that uses multiple
TASK DEFAULTS clauses to define different task control characteristics for the
tasks in two task groups.

Example 11–3 Application Definition Using Multiple TASK DEFAULTS

REPLACE APPLICATION PERSONNEL_APPLICATION
USERNAME IS PERSONNEL;
TASK DEFAULTS ARE
ACCESS CONTROL LIST
IDENTIFIER [100,*] ACCESS EXECUTE,
IDENTIFIER [200,*] ACCESS EXECUTE;

AUDIT;
END TASK DEFAULTS;

TASK GROUP IS
DEPARTMENT_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:DEPRMSCOB.TDB";

END TASK GROUP;

TASK DEFAULTS ARE
ACCESS CONTROL LIST IDENTIFIER [200,*] ACCESS EXECUTE;

END TASK DEFAULTS;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;
END DEFINITION;

This first TASK DEFAULTS clause defines a default ACL. ADU assigns this
ACL to all the tasks in the Department group. The second TASK DEFAULTS
clause changes that default ACL. ADU assigns the second ACL to all the tasks
in the Administration group. So, the only users who can run the tasks in the
Administration task group are those who have a group UIC of 200.

The application definition also assigns AUDIT to all the tasks in the application.
AUDIT applies to both task groups because the first TASK DEFAULTS clause
used the AUDIT subclause and the second TASK DEFAULTS clause did not use
the NOAUDIT subclause.

Defaults set in a TASK DEFAULTS clause remain in effect unless changed by
a later TASK DEFAULTS clause. Any control attributes not named in a TASK
DEFAULTS clause retain their ACMS-supplied defaults. You can also override
a default value by assigning a control attribute in the task group definition of a
task or by using the TASK ATTRIBUTES clause.

Example 11–4 shows an application definition that includes one task group and
uses TASK ATTRIBUTES and TASK DEFAULTS clauses to define the control
attributes of the tasks in the application.

11–10 Defining Applications



Defining Applications
11.3 Controlling Tasks

Example 11–4 Application Using TASK ATTRIBUTES and TASK DEFAULTS

REPLACE APPLICATION PERSONNEL_APPLICATION
USERNAME IS PERSONNEL;
TASK DEFAULTS ARE
ACCESS CONTROL LIST
IDENTIFIER [100,*] ACCESS EXECUTE,
IDENTIFIER [200,*] ACCESS EXECUTE;

AUDIT;
END TASK DEFAULTS;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;

TASK DEFAULTS ARE
ACCESS CONTROL LIST IDENTIFIER [200,*] ACCESS EXECUTE;

END TASK DEFAULTS;

TASK ATTRIBUTES ARE

DATR : IN ADMINISTRATION_COBOL_TASK_GROUP;
EDIT : IN ADMINISTRATION_COBOL_TASK_GROUP;

END TASK ATTRIBUTES;
END DEFINITION;

In Example 11–4, all the tasks in the application take the ACMS default values
for all attributes except ACCESS and AUDIT. The definition assigns ACLs for
the DATR and EDIT tasks; only users with a group UIC of 100 or 200 can run
these tasks. For the other tasks in the application, the definition assigns an
ACL that allows all users with group UIC of 100 or 200 to run the tasks. The
application also assigns AUDIT to all tasks with the AUDIT clause in the first
TASK DEFAULTS clause.

When you write an application definition, use the order of TASK DEFAULTS,
TASK GROUP, and TASK ATTRIBUTES clauses that lets you take maximum
advantage of defaulting. Your goal is to make the application definition as simple
and easy to understand as possible so that the control characteristics for your
application are clear to anyone who works with the application definition.

11.3.5 Enabling and Disabling Tasks in the Application Definition
Section 11.6 describes how to enable or disable tasks on a temporary
basis with the ACMS/MODIFY APPLICATION command. By using the
DISABLED/ENABLED attribute in the application definition, you can specify
on a permanent basis whether or not the task is available for selection by task
submitters.

Example 11–5 shows this attribute in a definition.

Example 11–5 Enabling and Disabling Tasks in the Application Definition

REPLACE APPLICATION TEST_APPL
USERNAME IS TPSS;

TASK DEFAULTS ARE
DISABLE;
END TASK DEFAULTS;

(continued on next page)

Defining Applications 11–11



Defining Applications
11.3 Controlling Tasks

Example 11–5 (Cont.) Enabling and Disabling Tasks in the Application
Definition

TASK GROUPS ARE
CDUTEST_GROUP1:
TASK GROUP FILE IS "CDU$:CDUTEST_GROUP1.TDB";

END TASK GROUPS;

SERVER ATTRIBUTES ARE
RDBLSRV1:
MINIMUM SERVER PROCESSES IS 1;
SERVER RDBLSRV1 IN CDUTEST_GROUP1;
AUDIT;

END SERVER ATTRIBUTES;

TASK ATTRIBUTES ARE
RDB_SINGLE_TASK;
ENABLE;
TASK RDB_SINGLE_TASK IN CDUTEST_GROUP1;

END TASK ATTRIBUTES;

END DEFINITION;

In this example, all tasks are initially disabled by default in the TASK
DEFAULTS ARE clause. The RDB_SINGLE_TASK is subsequently enabled
in the TASK ATTRIBUTES ARE clause. The other tasks in the task group CDU_
TEST_GROUP1 remain disabled.

11.3.6 Controlling Transaction Timeouts in the Application Definition
If your application contains tasks that use distributed transactions, you might
need to concern yourself with possible deadlock problems. One type of deadlock
involves multiple tasks attempting to access the same server process. For
example, suppose two tasks each use two servers. Each server has one active
server process. The first task accesses the first server, and the second task
accesses the second server. If both tasks then attempt to access the other server,
they will become deadlocked waiting to use the server process being used by the
other task.

If your application and databases are distributed across multiple systems that are
not part of a single OpenVMS Cluster system, deadlocks can occur when multiple
tasks attempt to access the same database record. The OpenVMS Lock Manager
is able to detect deadlocks only within a single system or an OpenVMS Cluster
system.

By specifying the TRANSACTION TIMEOUT subclause in the application
definition, you can instruct ACMS to abort a transaction if it has not completed
within a certain number of seconds. Example 11–6 shows this attribute in a
definition.

11–12 Defining Applications



Defining Applications
11.3 Controlling Tasks

Example 11–6 Using TRANSACTION TIMEOUT in the Application Definition

REPLACE APPLICATION AVERTZ_CDD_APPL:VR_APPL
USERNAME IS AVERTZ_EXC;

AUDIT;
TASK DEFAULTS ARE
AUDIT;
TRANSACTION TIMEOUT IS 1200;
END TASK DEFAULTS;

SERVER CONTROL ATTRIBUTES ARE
VR_READ_SERVER:
SERVER VR_READ_SERVER IN VR_TASK_GROUP;
AUDIT;
MAXIMUM SERVER PROCESSES IS 3;
MINIMUM SERVER PROCESSES IS 1;

VR_UPDATE_SERVER:
SERVER VR_UPDATE_SERVER IN VR_TASK_GROUP;
AUDIT;
MAXIMUM SERVER PROCESSES IS 1;
MINIMUM SERVER PROCESSES IS 1;

END SERVER ATTRIBUTES;

TASK GROUP IS
VR_TASK_GROUP:
TASK GROUP FILE IS "AVERTZ_DEFAULT:VR_TASK_GROUP.TDB";

END TASK GROUP;

END DEFINITION;

In this example, the TRANSACTION TIMEOUT subclause specifies that by
default all transactions should be aborted if they do not complete within 20
minutes. Be sure to set the transaction time limit to a value higher than the
amount of time it takes to complete your longest transaction when the system is
at peak load. When a transaction aborts, ACMS cancels the task. For information
on how to define a task definition so that the task can recover from a transaction
timeout error and retry the distributed transaction, see Chapter 8.

11.4 Controlling Servers
You control servers in an application by assigning server control attributes in the
application definition. These attributes determine the processing characteristics
of a server, including:

• Its OpenVMS user name

• Whether the user name, UIC, and default directory of a server remain the
same when the server processes tasks for different terminal users

• Maximum and minimum number of server processes the server can have

• Logical names and name tables for a server process

• Whether or not server events are audited

• Default directory for the server

• How frequently new server processes are created and deleted

• Protected workspaces

• Server process dumps

Defining Applications 11–13



Defining Applications
11.4 Controlling Servers

ACMS supplies default values for server control characteristics. If one or
more servers in your application need control characteristics different from the
defaults, you use the SERVER ATTRIBUTES and SERVER DEFAULTS clauses
to override the ACMS-supplied defaults. Within these clauses, you use subclauses
to describe specific server control characteristics.

11.4.1 Assigning a Server User Name
Every server has an OpenVMS user name that you assign in the application
definition with the USERNAME subclause and that determines:

• How the work done by a server process is logged by the OpenVMS
ACCOUNTING facility

• Privileges, priority, and quotas assigned to a server process

• Default directory assigned to a server process when the process is created

ACMS assigns the user name of the application to the server by default. However,
if you use the USERNAME OF TERMINAL USER in the task group definition,
ADU always assigns the server that name. Because an application requires
more privileges, higher quotas, and larger working sets than a server, you should
instead assign a server a user name that has only the necessary privileges,
quotas, and priority for the work that server has to do. The user name must
be a valid OpenVMS user name consisting of 1 to 12 alphanumeric characters,
including underscores.

In many cases you want all servers handling tasks in a group to run under
the same user name. For example, many of the tasks in the ACMS sample
application use a server named ADMINISTRATION_SERVER. The following
application definition uses the SERVER DEFAULTS clause to assign the user
name PERSONNEL to this server:

SERVER DEFAULTS ARE
USERNAME IS PERSONNEL;

END SERVER DEFAULTS;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;

This example uses the SERVER DEFAULTS clause and a USERNAME subclause
to change the ADU default for SERVER USERNAME from USERNAME OF
APPLICATION to PERSONNEL. All servers used by ADMINISTRATION_
COBOL_TASK_GROUP run under the same user name. For all other attributes
of servers, ADU uses the defaults in effect, which are ACMS supplied, except for
the user name, which was reset in the SERVER DEFAULTS clause.

If you want a server to have the same priorities, privileges, and quotas as
the Application Execution Controller, define the server to run under the same
user name as the Application Execution Controller. Use the USERNAME OF
APPLICATION subclause to define this type of server user name.

SERVER DEFAULTS ARE
USERNAME IS USERNAME OF APPLICATION;

END SERVER DEFAULTS;

If the application user name is PERSONNEL, this USERNAME subclause has
the same effect as defining PERSONNEL as the user name. USERNAME OF
APPLICATION is the default value for the user name.

11–14 Defining Applications



Defining Applications
11.4 Controlling Servers

Sometimes a task may require a server process with all the characteristics
assigned to the terminal user who selected the task. For example, if a user needs
to run a task under the user’s own user name, the task requires a server process
with all the characteristics assigned to that user. There are two ways to define
this type of server for a task:

• Define a specific dynamic user name for servers. (Dynamic user names are
discussed in Section 11.4.2.)

• Define a server process with all the characteristics assigned to the terminal
user who selected the task, using the USERNAME OF TERMINAL USER
subclause. For example:

SERVER DEFAULTS ARE
USERNAME IS USERNAME OF TERMINAL USER;

END SERVER DEFAULTS;

SERVER ATTRIBUTES ARE
PRIVATE_UTILITY_SERVER: IN PERSONNEL_TASK_GROUP;

END SERVER ATTRIBUTES;

In this case, each time a task from the Personnel task group needs a server,
ACMS starts a server process with all the characteristics of the terminal
user’s user name. When the task finishes using the server, ACMS stops the
server process. The PRIVATE_UTILITY_SERVER is a DCL server.

The USERNAME OF TERMINAL USER subclause is intended for use with
DCL servers only.

If you use the USERNAME OF TERMINAL USER subclause for a server:

• The value of MINIMUM SERVER PROCESSES for that server must
be 0

• The server process is deleted when the task finishes using the server

Before a server can be started, the server user name must be authorized with the
OpenVMS Authorize Utility. See HP ACMS for OpenVMS Managing Applications
for information on the Authorize Utility.

11.4.2 Assigning a Dynamic or Fixed Server User Name
When a task is selected by the terminal user, you may want a server to change
its OpenVMS user name to the user name of the user who selected the task if:

• The task requires access to the terminal user’s files

• The task uses the terminal user’s UIC to access files that are not in the
default directory of the server in which the task is running

A server can change its OpenVMS user name if you assign a dynamic user
name to the server with the DYNAMIC USERNAME subclause for DCL servers.
Procedure servers must always have a fixed user name.

Assigning a dynamic user name to a DCL server allows each server process
allocated by the server to change its user name to match the user name of the
terminal user. For example:

SERVER DEFAULTS ARE
DYNAMIC USERNAME;

END SERVER DEFAULTS;

Defining Applications 11–15



Defining Applications
11.4 Controlling Servers

SERVER ATTRIBUTES ARE
PRIVATE_UTILITY_SERVER: IN PERSONNEL_TASK_GROUP;

USERNAME IS PERSONNEL;
END SERVER ATTRIBUTES;

Here you use USERNAME IS to assign an initial user name of PERSONNEL
to all servers in the Personnel task group. The PRIVATE_UTILITY_SERVER is
a DCL server. Each time a server is started, it has the user name, privileges,
quotas, priority, and other characteristics of PERSONNEL. Because the user
name is defined as dynamic, each time a server process is allocated to a task,
ACMS changes the user name of the server process to match that of the user who
selected the task. These changes include:

• User name set to that of the terminal user

• Default directory set to that of the terminal user

• UIC set to that of the terminal user

• SYS$LOGIN set to the user’s default device and directory

• SYS$SCRATCH set to the user’s default device and directory

• SYS$DISK set to the user’s default device

ACMS does not change the quotas, privileges, or priority of the server process.
These remain the same as they were when ACMS started the server process.
If you need the server process to have the quotas, privileges, or priority of the
terminal user’s process, use the USERNAME OF TERMINAL USER subclause.
Because a USERNAME OF TERMINAL USER subclause forces ACMS to start
and stop a server process each time a task needs that server, it adds to the
processing cost. A dynamic user name does not stop the server process when
a task is finished using the process. Instead, the process becomes available for
another task instance. Not having to start and stop a server process each time a
task needs a server reduces the processing cost.

By default, server user names are fixed. If the server user name is fixed, the UIC,
user name, default directory and other characteristics of the server remain the
same as they were when the server process was started.

For more information about how different types of user names affect the
performance of your ACMS system, see HP ACMS for OpenVMS Managing
Applications.

11.4.3 Assigning Server Default Directories
ACMS assigns every server process a default device and directory. The values
come from the device and directory assigned to the user name of each server.

Assigning the default directory for a server is necessary when you need a different
default directory from the one assigned to the server’s user name in the SYSUAF
file. For example, you need to define server default directories when two servers
need most of the same characteristics, but the servers access different databases
in different directories. You also need to assign a default directory if files needed
by the server, like data files or the procedure server image for a procedure server,
are identified only by file name rather than by complete file specification.

Note

Do not use both a DYNAMIC USERNAME clause and a DEFAULT
DIRECTORY clause for the same server. If you do, when a DCL server
process is created for that server, the DEFAULT DIRECTORY clause sets

11–16 Defining Applications



Defining Applications
11.4 Controlling Servers

the default directory. However, each time a task uses that DCL server
process, the DYNAMIC USERNAME clause changes the default directory
to that of the terminal user submitting the task.

You can name a default device and directory with the DEFAULT DIRECTORY
subclause. For example:

SERVER DEFAULTS ARE
USERNAME IS PERSONNEL;
DEFAULT DIRECTORY IS ACMS$EXAMPLES;

END SERVER DEFAULTS;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;

This definition assigns the device and directory pointed to by the logical name
ACMS$EXAMPLES as the default directory for the servers in the Administration
task group. You can name a directory specification and device name rather than a
logical name, but using logical names lets you change directory locations without
redefining and rebuilding the application.

By default, ACMS assigns USERNAME DEFAULT DIRECTORY for the
DEFAULT DIRECTORY clause. When the default is in effect, ACMS assigns
the server process the default directory that is in the SYSUAF entry for the
server user name.

11.4.4 Assigning Server Logical Names
Sometimes the image running in a server process can use logical names to refer
to the data files it uses, or the definition for a procedure server can use a logical
name to identify a procedure server image. In both these cases, you need to make
the translation of the logical names available to the server process. There are
several ways to do this:

• Define the logical names as system logicals.

• Define the logical names as group logicals. Make sure that the logical names
are available to the group UIC for the server process.

• Use the LOGICAL NAMES subclause to define process logical names for the
server process.

There are two reasons for using the LOGICAL NAMES subclause:

• If you are using servers with dynamic user names, and if users with
different group UIC numbers can run tasks, group logicals available to
one task instance may not be available to other task instances.

• By using the LOGICAL NAMES subclause to define process logical
names, you ensure that logical name assignments cannot conflict with
logical names needed by other processes.

• Use the NAME TABLE subclause to define a list of tables that define logical
names.

Defining Applications 11–17



Defining Applications
11.4 Controlling Servers

In the LOGICAL NAMES subclause, list each logical name and its equivalent
name. For example:

SERVER DEFAULTS ARE
USERNAME IS PERSONNEL;
LOGICAL NAMES
ACMS$EXAMPLES = "DBA7:[PERSONNEL]",
PERS_FILE = "ACMS$EXAMPLES:PERSFILE.DAT";

END SERVER DEFAULTS;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;

In this example, the LOGICAL NAMES subclause defines the logical name
ACMS$EXAMPLES as the directory DBA7:[PERSONNEL]. It also defines
the logical name PERS_FILE as the file name PERSFILE.DAT, in the
ACMS$EXAMPLES directory. If a logical name or equivalent name does not
conform to the syntax rules for ACMS identifiers, enclose it in quotation marks.

The following logical names are always assigned by ACMS:

• SYS$DISK

• SYS$LOGIN

• SYS$SCRATCH

ACMS automatically assigns the following logical names for the DCL servers
you define. The logicals are assigned to either the terminal or the null device,
depending on whether or not the processing step of the task uses the terminal.
The logical names are assigned in supervisor mode. These logical names are:

• SYS$INPUT

• SYS$OUTPUT

• SYS$ERROR

• SYS$COMMAND

• TT

For procedure servers, if the processing step uses a terminal, ACMS assigns the
following logical names:

• SYS$INPUT

• SYS$OUTPUT

• SYS$ERROR

• SYS$COMMAND

• TT

11.4.5 Creating Logical Name Tables for Application Servers
Using name tables can give you the following advantages over using logical
names:

• Modify logicals used by an application or server without rebuilding application
definitions

• Share common logicals among servers and applications without duplicating
definitions

11–18 Defining Applications



Defining Applications
11.4 Controlling Servers

• Reduce server process initialization time by reducing the number of server
process logicals

You can specify a list of logical name tables in the application definition for
reference by applications and servers. For example:

APPLICATION NAME TABLE IS LNM$PROCESS,
LNM$JOB,
OUR_APPL_LOGICALS,
LNM$GROUP,
LNM$SYSTEM;

If you specify the APPLICATION NAME TABLE IS clause and you want the
Application Execution Controller to use any of the default tables, you must name
these default tables in the clause.

ACMS uses the list of logical name tables specified in the application definition
to define the logical LNM$FILE_DEV in the process directory table for the
appropriate server or application process. The system uses process directory
tables when translating logical names for the application or server process. For
example, LNM$FILE_DEV must translate to a search list of one or more logical
name table names which specify the tables and the search order of the tables for
translating file specifications.

If you do not specify APPLICATION NAME TABLE IS, ACMS uses the default
definition of LNM$FILE_DEV in the system logical name directory table, which
normally holds the process, job, group, or system logical name tables.

For more information on logical name tables, see the OpenVMS documentation
set.

11.4.6 Controlling the Number of Server Processes
One of the important factors in improving the performance of your ACMS
application is the number of active server processes allowed for that application.
There must be enough server processes available for users to do their work and as
few idle processes as possible. To control the number of server processes available
for each server, you use the MAXIMUM SERVER PROCESSES and MINIMUM
SERVER PROCESSES subclauses. For example:

SERVER DEFAULTS ARE
MAXIMUM SERVER PROCESSES IS 5;
MINIMUM SERVER PROCESSES IS 1;

END SERVER DEFAULTS;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;

For each server in the Administration task group, ACMS starts a single server
process when it starts the application. As more server processes are necessary,
ACMS starts them. When the number of processes for the server reaches five,
ACMS does not start any more processes. Any further tasks that needs a server
process must wait until a process is free. As tasks finish using the server
processes, ACMS gradually decreases the number of processes for each server,
until the number reaches the minimum of one.

If you define a server with USERNAME OF TERMINAL USER, MINIMUM
SERVER PROCESSES must be zero for that server because when the application
starts, there is no terminal user for the server. Zero is the default value for
MINIMUM SERVER PROCESSES.

Defining Applications 11–19



Defining Applications
11.4 Controlling Servers

The best way to judge how many server processes are necessary for your
application is to use the ACMS/SHOW APPLICATION command to determine
how your application is using server processes. You can also check with terminal
users about system response time. See HP ACMS for OpenVMS Managing
Applications for information on the ACMS/SHOW APPLICATION command
and on how to interpret the information it supplies to determine appropriate
values for the MAXIMUM and MINIMUM SERVER PROCESSES subclauses.
See Section 11.5.6 for information on the application-level MAXIMUM SERVER
PROCESSES clause and on how ACMS determines a value for MAXIMUM
SERVER PROCESSES.

11.4.7 Creating and Deleting Server Processes
Business environments can differ widely in the pattern of the work day. For
example, a stock broker’s office is busiest when the New York Stock Exchange is
in session. A dairy farm depends on the cows’ schedule. Your work environment
may be mildly busy in the morning, slack over the lunch hour, and very busy in
the afternoon. The demand for ACMS server processes may vary, too. It could
be stable through the day, with only minor variations, or it could suddenly and
sharply increase and just as suddenly decrease.

ACMS creates and deletes new server processes as necessary, within the
parameters of maximum and minimum server processes. The queue of tasks
waiting for server processes is polled at 5-second intervals, as are inactive
server processes. Before beginning to create new server processes, ACMS delays
10 seconds (default) to be sure that the requirement cannot be filled when
another user completes a task and releases a server process. If no server process
becomes available in this way, ACMS creates new server processes at intervals
of 10 seconds (default) until the maximum is reached or no tasks are waiting.
Similarly, when a server process becomes inactive, ACMS delays 30 seconds
(default) to be sure no other task requires it. ACMS then deletes server processes
at intervals of 15 seconds (default) until the minimum is reached or there are no
more inactive server processes.

ACMS provides the ability to adjust these delays and intervals according to
the pattern of demand for your application. Four server control subclauses are
available for this purpose:

• CREATION DELAY

• CREATION INTERVAL

• DELETION DELAY

• DELETION INTERVAL

For example, a stock broker’s office runs an ACMS application, recording
transactions with the New York Stock Exchange as well as customer transactions.
Both tasks use the same server. Customer transactions are steady throughout
the day. Stock exchange transactions, however, begin at
10 a.m. and end at 4 p.m. The application definition uses these server control
subclauses:

11–20 Defining Applications



Defining Applications
11.4 Controlling Servers

SERVER ATTRIBUTES ARE
BROKER_SERVER: CREATION DELAY IS 5;

CREATION INTERVAL IS 2;
DELETION DELAY IS 15;
DELETION INTERVAL IS 5;
MAXIMUM SERVER PROCESSES IS 10;
MINIMUM SERVER PROCESSES IS 0;

END SERVER ATTRIBUTES;

The application runs the NYSE task and the CUSTOMER task in the BROKER_
SERVER. The CREATION DELAY of 5 seconds means that ACMS waits 5
seconds before starting to create new processes of BROKER_SERVER, to see
if old processes become available. Before 10 a.m., the requirement for server
processes is usually filled in this way.

After the New York Stock Exchange opens, demand for server processes increases
sharply, and tasks are kept waiting for longer than 5 seconds. ACMS then begins
to create new server processes at a CREATION INTERVAL of 2 seconds (up to
the maximum of 10), quickly filling the need. Demand continues steadily until 4
p.m. when instances of the NYSE task are no longer required. ACMS then waits
15 seconds, the DELETION DELAY specified, before beginning to delete inactive
server processes at a DELETION INTERVAL of 5 seconds, until there are no
inactive BROKER_SERVER processes (minimum number).

ACMS does not monitor the queue of waiting tasks continuously; there is
a monitoring interval which can be set with the SERVER MONITORING
INTERVAL application clause. The actual delay at run time includes a waiting
period of up to the monitoring interval. For example, if the definition specifies
a CREATION DELAY of 10 seconds and if the monitoring interval is 5 seconds,
the actual delay can be anywhere from 10 to 15 seconds. Use the SERVER
MONITORING INTERVAL clause with caution, however. Setting the monitoring
interval too low can affect performance, causing ACMS to use its resources
monitoring its own requirements.

The use of the clauses controlling minimum and maximum server processes
and the associated delays and intervals enables ACMS to adapt the supply of
server processes to the demands of your business environment. In using these
server control subclauses, you need to strike a balance between having inactive
server processes and keeping your users waiting. In most environments, the
default settings provided with ACMS strike this balance. You can handle unusual
situations with the server control subclauses.

11.4.8 Replacing an Active Server
Once an application is running, you may want to make code changes to a server.
ACMS gives an application manager the capability to dynamically replace a
server within an active application without affecting task execution or availability
of the application.

To dynamically replace a server in an active application, follow these steps:

1. Make the necessary changes to the new server’s source file.

2. Compile and relink the new server image.

3. Fully test the new image.

4. Copy the server image to the location specified by the SERVER IMAGE IS
statement in the application’s task definition.

5. Issue the ACMS/REPLACE SERVER command.

Defining Applications 11–21



Defining Applications
11.4 Controlling Servers

For example, an application manager might be integrating some code changes to
an existing server called DEPRMSCOB.EXE, whose server image definition is:

SERVER IS
DEPARTMENT_SERVER:
PROCEDURE SERVER IMAGE IS "ACMS$EXAMPLES:DEPRMSCOB.EXE"

.

.

.
END SERVER;

The logical name ACMS$EXAMPLES points to the directory in which ACMS
expects to find the server image.

After compiling, relinking, and testing the server image, the application manager
must copy the server image to the correct directory:

$ COPY DEPRMSCOB.EXE ACMS$EXAMPLES:DEPRMSCOB.EXE

Finally, the application manager uses the ACMS/REPLACE SERVER command
to activate the new server using the server name defined in the application.

$ ACMS/REPLACE SERVER DEPARTMENT_SERVER/APPLICATION=PERSONNEL

When the application controller receives the ACMS/REPLACE SERVER
command, it runs down all free server processes for the specified server and
requests all active servers to run down when they are free. A server retaining
context does not run down until it releases context. ACMS creates new server
processes to meet the MIN and MAX requirements of the application.

For more information on modifying an active server, consult HP ACMS for
OpenVMS Managing Applications.

11.4.9 SERVER ATTRIBUTES and SERVER DEFAULTS Clauses
When ADU begins processing an application definition, ACMS assigns default
values to all characteristics of servers. You can change these default values
by assigning different characteristics to the servers of an application with the
SERVER ATTRIBUTES or SERVER DEFAULTS clauses.

A characteristic assigned with the SERVER DEFAULTS clause can become the
value of the characteristic or it can be overridden by a value supplied in the task
group definition or a value supplied in a SERVER ATTRIBUTES clause.

ADU uses the following order of defaulting to find values for server attributes:

1. SERVER ATTRIBUTES clause in the application definition

If a characteristic is defined for a server in a SERVER ATTRIBUTES clause,
ADU uses that value for the characteristic for that server.

2. SERVERS clause in the task group definition

If a server characteristic is not defined for a server in a SERVER
ATTRIBUTES clause, and if the characteristic is one that can be assigned in
a task group definition, ADU looks in the task group database that defines
implementation for that server. The two control characteristics that can be
defined in a task group definition are USERNAME OF TERMINAL USER
and FIXED/DYNAMIC USERNAME.

3. SERVER DEFAULTS clause in the application definition

11–22 Defining Applications



Defining Applications
11.4 Controlling Servers

ADU looks at the SERVER DEFAULTS clauses in the application definition
for any characteristic not defined in the application or task group definition.
The SERVER DEFAULTS clause sets up default values for server
characteristics. An application definition can include more than one of these
clauses. The position of the SERVER DEFAULTS, SERVER ATTRIBUTES,
and TASK GROUP clauses in the application definition determines which
server defaults apply to which servers.

4. ACMS-supplied defaults

ADU uses the default value it derives only if no value is assigned for the
characteristic in the SERVER ATTRIBUTES or SERVER DEFAULTS clause
of the application definition, or the task group database.

You can include more than one server in a SERVER ATTRIBUTES clause and you
can also include more than one SERVER ATTRIBUTES clause in an application
definition.

In a SERVER ATTRIBUTES clause, you must always name the server to which
you want a subclause to apply. This name must be unique for each server in the
application and it must conform to the rules for identifiers. For example:

SERVER ATTRIBUTE IS
UTILITY_SERVER : SERVER UTILITY_SERVER IN DEPARTMENT_COBOL_TASK_GROUP;

USERNAME IS DEPARTMENT;
END SERVER ATTRIBUTE;

This SERVER ATTRIBUTES clause assigns the name UTILITY_SERVER to
the UTILITY_SERVER. A colon separates the server name from the SERVER
keyword and the USERNAME subclause. You must end the subclause with a
semicolon (;).

The SERVER keyword points to a server in a task group. In the example, the
SERVER keyword points to the UTILITY_SERVER. The task group name
must be the same as the name used in the TASK GROUPS clause in the
application definition. You can use SERVER DEFAULTS clauses with SERVER
ATTRIBUTES clauses to simplify your application definition.

The SERVER DEFAULTS clause resets the ACMS defaults for server control
characteristics. These new defaults apply until the end of the definition, or until
they are changed again with another SERVER DEFAULTS clause. You can
override the defaults by assigning a value assigned in a task group definition or a
SERVER ATTRIBUTES clause.

Several servers may have one or more control attributes in common that are
different from the ACMS-supplied defaults. In this case, one way to simplify your
application definition is to use a SERVER DEFAULTS clause.

The SERVER DEFAULTS clause allows you to define, in a single subclause, an
attribute that several servers have in common. Using the SERVER ATTRIBUTES
clause, you have to name each server and the identical attribute for each. For
example, using the SERVER DEFAULTS clause, you can assign all the servers
in the DEPARTMENT task group the user name DEPARTMENT in a single
subclause:

Defining Applications 11–23



Defining Applications
11.4 Controlling Servers

SERVER DEFAULT IS
USERNAME IS DEPARTMENT;

END SERVER DEFAULT;

TASK GROUP IS
DEPARTMENT_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:DEPRMSCOB.TDB";
END TASK GROUPS;

When you build the application database, ADU assigns the user name
Department to every server in the Department task group. ADU uses the
defaults it derives for all other server control characteristics for those servers.

Remember that control characteristics assigned either in SERVER ATTRIBUTES
clauses or in the task group definition override values assigned with the SERVER
DEFAULTS clause. Also, the SERVER DEFAULTS clause must precede the
TASK GROUPS clause to which you want it to apply.

Example 11–7 shows an application definition that uses a SERVER DEFAULTS
clause to define control attributes for all the servers in the application. The
application includes only one task group.

Example 11–7 Application Definition Using Server Defaults

USERNAME IS PERSONNEL;
SERVER DEFAULTS ARE
AUDIT;
USERNAME IS DEPARTMENT;
MAXIMUM SERVER PROCESSES IS 5;
MINIMUM SERVER PROCESSES IS 1;

END SERVER DEFAULTS;

TASK GROUP IS
DEPARTMENT_TASK_GROUP: TASK GROUP FILE IS

"ACMS$EXAMPLES:DEPART.TDB";
END TASK GROUP;

If an application contains only one task group and if all servers in the application
use the same control attributes, the application definition can be as simple as
this, even if the application includes many tasks.

11.4.10 Defaulting Server and Task Group Names
Depending on the position of SERVER ATTRIBUTES clauses in the application
definition, you do not need to name explicitly the server or task group to which
you want a control characteristic to apply. ACMS provides some defaulting of
server and task group names in the application definition.

The following SERVER ATTRIBUTE clause includes both the server and the task
group name of the server to which the user name DEPARTMENT applies:

SERVER ATTRIBUTE IS
UTILITY_SERVER : SERVER UTILITY_SERVER IN DEPARTMENT_COBOL_TASK_GROUP;

USERNAME IS DEPARTMENT;
END SERVER ATTRIBUTE;

In the SERVER ATTRIBUTES clause, there are two phrases: the server name
and the task group name. In some cases, one of these phrases can be omitted. If
the server has the same name in that application as it has in the task group, you
do not have to use the server name phrase. For example:

11–24 Defining Applications



Defining Applications
11.4 Controlling Servers

SERVER ATTRIBUTE IS
UTILITY_SERVER : IN DEPARTMENT_COBOL_TASK_GROUP;

USERNAME IS DEPARTMENT;
END SERVER ATTRIBUTE;

If the task group containing the server immediately precedes the SERVER
ATTRIBUTES clause, you do not have to use the task group phrase. For example:

TASK GROUP IS
DEPARTMENT_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:DEPRMSCOB.TDB";
END TASK GROUPS;

SERVER ATTRIBUTE IS
UTILITY_SERVER : SERVER UTILITY_SERVER;

USERNAME IS DEPARTMENT;
END SERVER ATTRIBUTE;

If you do not specify a task group name in a SERVER ATTRIBUTES clause, the
task group name is defaulted from the last task group name in the immediately
preceding TASK GROUPS clause. If you name the task group in the SERVER
ATTRIBUTES clause, then you do not have to place the SERVER ATTRIBUTES
clause after the TASK GROUPS clause to which it applies.

11.4.11 Positioning SERVER ATTRIBUTES and SERVER DEFAULTS Clauses
The way you place SERVER ATTRIBUTES and SERVER DEFAULTS clauses in
an application definition affects how ACMS assigns control characteristics to the
servers in the application.

Example 11–8 shows an application definition that uses multiple SERVER
DEFAULTS clauses to define different server control attributes for the servers in
two task groups.

Example 11–8 Application Using Multiple Server Defaults Clauses

USERNAME IS PERSONNEL;
SERVER DEFAULTS ARE
AUDIT;
USERNAME IS DEPARTMENT;
LOGICAL NAME

PERS_FILE = "ACMS$EXAMPLES:PERSFILE.DAT";
MAXIMUM SERVER PROCESSES IS 5;
MINIMUM SERVER PROCESSES IS 1;

END SERVER DEFAULTS;

TASK GROUP IS
DEPARTMENT_TASK_GROUP: TASK GROUP FILE IS

"ACMS$EXAMPLES:DEPART.TDB";
END TASK GROUP;

SERVER DEFAULTS ARE
USERNAME IS PERSONNEL;

END SERVER DEFAULTS;

TASK GROUP IS
PERSONNEL_TASK_GROUP: TASK GROUP FILE IS

"ACMS$EXAMPLES:PERSONNEL.TDB";
END TASK GROUP;

(continued on next page)

Defining Applications 11–25



Defining Applications
11.4 Controlling Servers

Example 11–8 (Cont.) Application Using Multiple Server Defaults Clauses

SERVER ATTRIBUTES
UTILITY_SERVER : DYNAMIC USERNAME;

END SERVER ATTRIBUTES;
END DEFINITION;

Because none of the servers in the Department task group is named in a SERVER
ATTRIBUTES clause, the defaults defined by the first SERVER DEFAULTS
clause apply to all the servers in that task group. Most of those default values
also apply to all the servers in the Personnel task group, except that:

• The second SERVER DEFAULTS clause sets up a different default user name
for the Personnel servers.

• The SERVER ATTRIBUTES clause defines the Utility server in the Personnel
task group as the only one with a dynamic user name.

Any defaults set in a SERVER DEFAULTS clause remain in effect unless changed
by a later SERVER DEFAULTS clause. Any control attributes not named in a
SERVER DEFAULTS clause retain their ACMS-supplied defaults. You can also
override any default value by explicitly assigning an attribute in a SERVER
ATTRIBUTES clause.

When you write an application definition, use the order of SERVER DEFAULTS,
SERVER ATTRIBUTES, and TASK GROUP clauses that lets you take the best
advantage of defaulting. Your goal is always to make the application definition as
simple and as clear as possible.

11.4.12 Auditing Servers
ACMS provides an auditing facility to record events occurring when a task is
running in a server process. Use the AUDIT subclause to control whether events
such as the unexpected stopping of a server process are recorded in the audit trail
log. For example:

SERVER DEFAULT IS
AUDIT;

END SERVER DEFAULT;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;

In this example, the audit trail log records server events for the Administration
task group whenever a task in that group is run and at other times. The default
value for the AUDIT subclause is NOAUDIT. If you want a record of task events,
be sure to include the AUDIT subclause in the SERVER ATTRIBUTES or
SERVER DEFAULTS clause. For a list of the events written to the audit trail
log, see HP ACMS for OpenVMS Managing Applications. Even if you do not
specify the AUDIT subclause, ACMS records all failure statuses.

11–26 Defining Applications



Defining Applications
11.4 Controlling Servers

11.4.13 Enabling Procedure Server Process Dumps
Although a task executes successfully under the ACMS Task Debugger, it
can sometimes encounter problems when it is running in the ACMS run-time
environment. You can request a server process dump in the event that a server
abnormally terminates processing. Using the server process dump, you can trace
the location of a software error that occurs while the server is executing in a
production environment.

To enable server process dumps, use the SERVER PROCESS DUMP clause in the
application definition:

SERVER ATTRIBUTES ARE
SMITHSRV:
SERVER SMITHSRV IN ACMSTEST_GROUP;
SERVER PROCESS DUMP;

END SERVER ATTRIBUTES;

If the server process terminates abnormally and you have enabled server dumps,
ACMS saves the context of the process at the point where the error occurs and
writes it to a dump file.

To analyze the output from a server process dump file, use the command
ANALYZE/PROCESS_DUMP. For information on using this command, consult
OpenVMS Debugger Manual.

For more information on requesting server process dumps, see HP ACMS for
OpenVMS Writing Server Procedures.

11.5 Controlling Applications
In addition to controlling an application by assigning server and task
attributes, you can assign control characteristics to the application itself.
These characteristics determine processing for the application including:

• User name for the EXC

• Whether or not application events are audited

• Default directory for the EXC

• Logical names and name tables for the EXC

• Default file name for the application database

• Maximum number of server processes the application can have active at one
time

• Maximum number of task instances the application can have active at one
time

11.5.1 Assigning an Application Execution Controller User Name
ACMS assigns default values to all user names except the EXC user name.
Every EXC has a user name that you assign in the application definition with
the APPLICATION USERNAME clause. The execution controller user name
determines:

• How the work done by the execution controller process is logged by the
OpenVMS ACCOUNTING facility

• The privileges, priority, and quotas assigned to the execution controller

Defining Applications 11–27



Defining Applications
11.5 Controlling Applications

The following application definition assigns the user name PERSONNEL to the
execution controller:

APPLICATION USERNAME IS
PERSONNEL;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;

The user name that you assign to the Application Execution Controller must
be a valid OpenVMS user name consisting of 1 to 12 alphanumeric characters,
including underscores. The user whose user name you assign to the Application
Execution Controller must be an authorized OpenVMS user.

11.5.2 Auditing Applications
ACMS provides the audit trail log to record application events such as application
starts and stops, and to write out reports on application events. You use the
AUDIT clause to control whether events are recorded in the audit trail log. For
example:

AUDIT;
APPLICATION USERNAME IS PERSONNEL;

TASK GROUPS ARE
DEPARTMENT_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:DEPRMSCOB.TDB";
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:ADMRMSCOB.TDB";
END TASK GROUPS;
END DEFINITION;

In this example, the audit trail log records application events for the Personnel
application whenever that application is run. The default value for the AUDIT
subclause is NOAUDIT. For a list of the events written to the audit trail log, see
HP ACMS for OpenVMS Managing Applications. Even if you do not specify the
AUDIT clause, ACMS records all failure statuses.

11.5.3 Assigning Application Default Directories
ACMS assigns a default directory to every Application Execution Controller
process directory. The default value comes from the directory that you assign to
the user name of an application.

You can assign a default directory for an execution controller if you want to
override the default directory assignment because the execution controller
needs a different default directory from the one assigned to the application user
name in the SYSUAF file. By default, ACMS assigns USERNAME DEFAULT
DIRECTORY for the DEFAULT DIRECTORY clause. When the default is in
effect, ACMS assigns the execution controller the default directory that is in the
SYSUAF entry for the application user name.

If you do not supply full file specifications for task group databases, request
libraries, or message files in the application and task group definition, ACMS
uses the default directory assigned to the application user name in the SYSUAF
file to find them.

11–28 Defining Applications



Defining Applications
11.5 Controlling Applications

You can name a default device and directory with the DEFAULT DIRECTORY
subclause. For example:

DEFAULT DIRECTORY IS SYS$SAMPLE;
USERNAME IS PERSONNEL;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;

This definition assigns the device and directory pointed to by the logical name
SYS$SAMPLE as the default directory for the execution controller in the
Personnel application. You can name a directory specification and device name
rather than a logical name, but using logical names lets you change directory
locations without redefining and rebuilding the application. You can also use the
LOGICAL NAMES subclause to define the name.

11.5.4 Assigning Application Logical Names
It is important to define logical names for an EXC process if that process needs
to find task group databases, request libraries, or message files by logical name.
Logical name translations must be available to the EXC. There are several ways
to make the names available:

• Define the logical names as system logicals.

• Define the logical names as group logicals. Make sure the logical names are
available to the group UIC for the EXC process.

• Use the APPLICATION LOGICAL NAMES subclause to define process logical
names for the execution controller process.

• Use logical name tables.

Logicals assigned with the LOGICAL NAMES subclause are available only to
the execution controller. List each logical name and its equivalent name. For
example:

APPLICATION LOGICAL NAME IS EMPLOYEE_MESSAGES = "ACMS$SAMPLE:EMPMSG.EXE";
APPLICATION USERNAME IS PERSONNEL;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS
"ACMS$EXAMPLES:ADMRMSCOB.TDB";

END TASK GROUP;
END DEFINITION;

In this example, the LOGICAL NAMES clause defines the logical name
EMPLOYEE_MESSAGES for the file ACMS$SAMPLE:EMPMSG.EXE. If a
logical name or equivalent name does not conform to the rules for identifiers,
enclose it in quotation marks.

ACMS assigns the logical names SYS$LOGIN, SYS$DISK, and SYS$SCRATCH
by default.

For information on using logical name tables, see Section 11.4.5.

Defining Applications 11–29



Defining Applications
11.5 Controlling Applications

11.5.5 Assigning Application Database Files
When you build an application definition, you can include the name of the
application database file with the BUILD command. The BUILD command
translates the CDD version of the definition into the application database file.
For example:

ADU> BUILD APPLICATION PERSONNEL_APPL1 SYS$SAMPLE:PERSONNEL
ADU>

In this example, PERSONNEL_APPL1 is the CDD application object. The
application database file is SYS$SAMPLE:PERSONNEL.ADB.

To simplify the BUILD command, you can include the default database file name
in the application definition instead of putting it on the command line. You name
the file in the application definition with the DEFAULT APPLICATION FILE
clause. For example:

DEFAULT APPLICATION FILE IS PERSONNEL;
USERNAME IS PERSONNEL;
TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:ADMRMSCOB.TDB";
END TASK GROUP;
END DEFINITION;

The application database file you are naming for the default is PERSONNEL. The
default file type is .ADB. If you do not include a device or directory, ADU uses
your default device and directory when you build the application. The default
device and directory are those of the process at work when the application is
built, rather than those in effect when the application definition is created.

If ADU does not find an application database file on the BUILD command line,
it looks for the name in the application definition. If you have not used the
DEFAULT APPLICATION FILE clause, ADU derives the file name from the full
CDD given name of the application, including underscores (_) and dollar signs ($),
and a default file type of .ADB, to create the application database file name.

The DEFAULT APPLICATION FILE clause accepts a full file specification so
that ADU can control the placement of the application database file. Once
you build the application, you must move the application database file to
ACMS$DIRECTORY or use the INSTALL command to copy the application
database into ACMS$DIRECTORY before you can start the application.

11.5.6 Controlling the Number of Server Processes
It is important to control the number of server processes active in your application
in order to make the best use of your system resources. Because every application
requires a slightly different allocation of system resources, experiment with the
number of server processes that is best for your application. For more information
on determining the best number of server processes for your application, see HP
ACMS for OpenVMS Managing Applications.

You can control the number of server processes allowed in an ACMS application
from two places in the application definition:

• MAXIMUM SERVER PROCESSES subclause in the SERVER DEFAULTS or
SERVER ATTRIBUTES clauses

• MAXIMUM SERVER PROCESSES clause at the application level

11–30 Defining Applications



Defining Applications
11.5 Controlling Applications

For example:

DEFAULT APPLICATION FILE IS "ADRMSCAPP.ADB";
MAXIMUM SERVER PROCESSES IS 2;

APPLICATION USERNAME IS PERSONNEL;

SERVER DEFAULTS ARE
AUDIT;
MAXIMUM SERVER PROCESSES IS 2;
MINIMUM SERVER PROCESSES IS 0;
END SERVER DEFAULTS;

TASK GROUP IS
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:ADMRMSCOB.TDB";
END TASK GROUP;

END DEFINITION;

In the SERVER DEFAULTS clause, the MAXIMUM SERVER PROCESSES is set
to 2. In the MAXIMUM SERVER PROCESSES clause at the application level,
the number of server processes is also set to 2.

When an application is started, ACMS checks three values to determine the
actual maximum number of server processes:

• Value your system manager sets for the maximum number of OpenVMS
processes OpenVMS can create (MAXPROCESSCNT)

• Value of the MAXIMUM SERVER PROCESSES clause at the application
level

• Sum of the values of all the MAXIMUM SERVER PROCESSES subclauses
for all the servers in the application

ACMS first compares the value of all the MAXIMUM SERVER PROCESSES
subclauses with the value of the MAXIMUM SERVER PROCESSES clause at
the application level. ACMS takes the smaller value of the two and compares it
to the maximum number of OpenVMS processes available. The smaller of these
two values is the number assigned for the overall maximum number of server
processes in the application.

The number you assign with the MAXIMUM SERVER PROCESSES clause
for the application must be greater than the sum of the MINIMUM SERVER
PROCESSES subclauses for all the servers in the application.

When you start an application, the EXC determines the smallest value for the
maximum server processes. Then it creates a table for each server. The tables
can become large enough to affect the size of the EXC, and the size of the EXC
affects your system.

You can make sure that ACMS does not use up all of the process slots on your
operating system table by setting a MAXIMUM SERVER PROCESSES value in
the application that is less than the maximum number of OpenVMS processes
allowed on your system.

If the execution controller cannot start a server process because no more
OpenVMS processes are available on the system, the execution controller cancels
tasks. If there are no available server processes in the ACMS system, the
execution controller holds a task until a server process becomes available.

Defining Applications 11–31



Defining Applications
11.5 Controlling Applications

You can experiment with the number of server processes to get an idea of how
many server processes are best for your application and system. The default
value for MAXIMUM SERVER PROCESSES is unlimited. Try the default value
and then decrease the number of server processes. Too many server processes can
degrade the performance of your system. Too few may decrease throughput. Set
a limit that does not degrade system performance but still lets users complete
their work as quickly as possible.

11.5.7 Controlling the Number of Task Instances
The value you define with the MAXIMUM INSTANCES clause controls the
number of task instances that can be active at one time. The number of task
instances allowed on your system affects the system’s performance. For example:

DEFAULT APPLICATION FILE IS "ADRMSCAPP.ADB";
MAXIMUM SERVER PROCESSES IS 2;
MAXIMUM TASK INSTANCES IS 25;

TASK GROUPS ARE
DEPARTMENT_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:DEPRMSCOB.TDB";
ADMINISTRATION_COBOL_TASK_GROUP : TASK GROUP FILE IS

"ACMS$EXAMPLES:ADMRMSCOB.TDB";
END TASK GROUPS;

By default, ACMS allows as many task instances as there are task selections. In
most cases, you can use the default value, but there are two reasons to define a
lower value for MAXIMUM TASK INSTANCES:

• To prevent the EXC from using up its OpenVMS quotas

• To improve performance if a large number of active tasks are causing poor
performance

The execution controller assigns quotas to each task from the pool of quotas
that it has available. If the number of task instances is greater than the value
of MAXIMUM TASK INSTANCES, ACMS cancels additional task selections.
To avoid overloading your system and thereby reducing performance, set a
reasonable task limit with the MAXIMUM TASK INSTANCES clause. Because
the needs of different applications vary, you must experiment with this value to
find the best setting for the applications you have.

After you write an application definition, you must store the definition in the CDD
and then process the definition, using ADU, to create an application database
that ACMS can use at run time.

11.6 Modifying an Active Application
ACMS allows you to modify certain environmental attributes for the following
components of an active ACMS application:

• Application attributes

• Server attributes

• Task attributes

Using the ACMS/MODIFY APPLICATION command, you can perform the
following functions:

• Enable or disable application, server, and task auditing

• Enable or disable tasks

11–32 Defining Applications



Defining Applications
11.6 Modifying an Active Application

• Adjust the minimum and maximum number of server processes for a
particular server

• Adjust server creation and deletion intervals

• Adjust server creation and deletion delays

• Adjust the maximum number of task instances and server processes for an
application

• Adjust server monitoring intervals

• Adjust transaction timeout limits

Changes you make with the ACMS/MODIFY APPLICATION command affect
only the current application and do not permanently affect the ADB. Parameters
changed with the ACMS/MODIFY APPLICATION command are reset when you
restart an application. To change attributes permanently, you must modify and
rebuild the application definition.

For more information on modifying active applications, consult HP ACMS for
OpenVMS Managing Applications.

11.7 Controlling Application Failover
ACMS is capable of keeping applications available in the event of a system
failure. The ACMS/REPROCESS APPLICATION_SPEC command redirects
all subsequent task selections to the application pointed to by the applications
specification.

For example, suppose that:

• The application specification payroll points to an application in which tasks
are being selected

• You have defined PAYROLL as a logical name for A::PAYROLL

To force subsequent task selections for PAYROLL to go to node B, you must:

1. Redefine PAYROLL as B::PAYROLL

2. Issue the command to redirect future task selections:

$ ACMS/REPROCESS APPLICATION_SPEC PAYROLL

By using search lists for application specifications, you can provide for automatic
change to one or more backup applications in the event of a system failure. When
the original system becomes available, you can use the ACMS/REPROCESS
APPLICATION_SPEC command to change back to the original application.

For more information on application failover, see HP ACMS for OpenVMS
Managing Applications.

Defining Applications 11–33





12
Defining Menus

After you define the tasks, task groups, and application as described in the
previous chapters, you need to write menu definitions to describe how your
application looks to users.

You can define two types of entries to display on a menu: tasks and menus.
Tasks do the work of an application; menus display tasks and other menus for
selection by users. Because a user can select one menu from another menu, you
can create a menu hierarchy or tree. There are three parts to creating a menu
hierarchy for your application:

• Planning the menu structure of your application

• Deciding whether to use HP DECforms or TDMS to display each menu in
your menu structure

• Writing definitions for menus in the application

You can create and use a menu tree before any applications exist. This feature is
useful for early tests of how your menus and menu tree will look to users. Before
you write menu definitions, plan the menu structure that best represents the
work users need to do with your application.

For each menu in a menu tree, you need to decide whether you want to use HP
DECforms or TDMS to display your menu. You can use a combination of HP
DECforms and TDMS to display the menus in one menu tree.

12.1 Planning the Menu Structure
The ACMS menu structure provides a great deal of flexibility for presenting your
application to users. ACMS menus are organized in a hierarchical structure,
much like the OpenVMS directory structure. A top menu points to menus and
tasks. Users can select either a menu or a task to run from the top menu.

You can display the tasks of an application on a single menu or on more than one
menu. This choice depends on how you want to present the tasks to users.

One menu or menu tree can point to tasks in several applications. Several menus
or menu trees can point to tasks in a single application. Finally, you can create
any combination of these two cases.

Figure 12–1 shows the hierarchical ACMS menu structure.

Defining Menus 12–1



Defining Menus
12.1 Planning the Menu Structure

Figure 12–1 The ACMS Menu Structure

TAY-0121-AD

Task

Menu

Menu MenuTask

Task Task MenuTask

Task Task

Task

Using a fictional personnel application as an example, suppose you had two kinds
of tasks in the application:

• REVIEW_HISTORY and REVIEW_SCHEDULE tasks, which are restricted
tasks that deal with employee performance reviews

• Utility tasks, such as an LSEDIT task to run the LSE editor and a DATR
task to run the DATATRIEVE procedure DUE

You can create a menu hierarchy that includes three menus: one to display the
REVIEW_HISTORY and REVIEW_SCHEDULE tasks, one to display the utility
tasks, and one from which the other two menus can be selected. Example 12–1
shows the menu definition for the last of these menus.

Example 12–1 Menu Definition for the Personnel Menu

HEADER IS " PERSONNEL MENU";
ENTRIES ARE
REVIEW : MENU IS EXAMPLES_DEFINITIONS.REVIEW_MENU;

TEXT IS "Review Menu";
UTILITY : MENU IS EXAMPLES_DEFINITIONS.UTILITY_MENU;

TEXT IS "Utility Menu";
END ENTRIES;
END DEFINITION;

Figure 12–2 shows the menu that is displayed by the top menu definition after it
is processed. The letter M indicates that the menu selection is another menu; if
the letter T appears it indicates that the menu selection is a task.

12–2 Defining Menus



Defining Menus
12.2 Defining Menus

Figure 12–2 Personnel Menu

12.2 Defining Menus
Once you plan a menu structure for your application, you can write menu
definitions to describe what the user sees on the menus. In the menu definition
you:

• Assign a title, or header, to a menu

• Name tasks and menus to be listed on the menu

• Include descriptive text for each task and menu

• Assign default application files for tasks on the menu

• Assign default menu database files for the build process

• Assign WAIT/DELAY characteristics for tasks

• Reference HP DECforms control text responses or TDMS requests for
customized menus

ACMS provides both a HP DECforms form and a TDMS request for ACMS to
use when displaying menus. ACMS takes the specific information that you enter
about a menu (heading, titles of menus and tasks listed, and so on) from your
menu database (.MDB) and displays that information in the format of either
the HP DECforms or TDMS request. (See Section 12.2.9 for details on how to
determine which forms product ACMS uses.)

Both the HP DECforms and TDMS menu formats allow you to create menus
that serve the needs of your users. By specifying menu elements in your menu
definition, you can create a menu to suit almost any application. After you
define a menu, you use ADU to create a menu database (.MDB) to use in
your application. (See Section 12.3 for an explanation of how to build a menu
database.)

If you need to use a menu format different from the one provided with either HP
DECforms or TDMS requests, you can modify the standard menu format. See
Appendix A and Appendix B for information on modifying menus displayed by HP
DECforms and TDMS requests.

Defining Menus 12–3



Defining Menus
12.2 Defining Menus

12.2.1 Creating a Title for a Menu
The first step in creating a menu definition is to enter a title for the menu. The
HEADER clause lets you create either a 1-line or 2-line title. ACMS displays the
title at the top of a menu screen. By default, ACMS leaves the lines at the top of
a screen blank. However, it is a good idea to include a title for each menu so your
users always know where they are working within the menu structure.

To define a menu title, type the HEADER clause in your source file, putting
quotation marks around the title. For example:

HEADER IS " PERSONNEL MENU";

You center the title by including spaces before the text of the title, inside the
quotation marks. End the clause with a semicolon (;). If you include a second line
in a HEADERS clause, end the first line with a comma (,) and end the second line
with a semicolon (;). For example:

HEADER IS " HISTORY AND SALARY MENU",
" FOR PERSONNEL APPLICATION";

Caution

If you are using TDMS to display your menu, do not use tabs in your
menu definition. TDMS does not allow tabs; therefore, using tabs can
cause a fatal error at run time.

If you are using HP DECforms to display your menu, however, you can
use tabs in your menu definition.

12.2.2 Naming Entries on a Menu
You use the ENTRIES clause to name the entries on a menu and to describe
characteristics of each entry. The ENTRIES clause is the only required clause in
the menu definition. The descriptions of an entry include the entry name, entry
description, and the type of entry.

The ENTRIES clause begins with the keywords ENTRIES ARE and ends with
END ENTRIES. Entry names can be up to 10 characters long and should describe
the task or menu that they name. An entry name can be enclosed in quotation
marks. If your entry name is a quoted string, do not include spaces, tabs, or
periods in the name. A colon (:) separates an entry name from the subclauses
that define the entry. For example:

HEADER IS " PERSONNEL MENU";
ENTRIES ARE
REVIEW :

UTILITY:

END ENTRIES;
END DEFINITION;

You can define two types of entries in a menu definition: tasks and menus. If
you define an entry as a task and a user who has access to it selects that entry,
ACMS runs that task. When you define an entry as a menu, and a user selects
that entry, ACMS displays another menu. You use either the TASK or MENU
subclause in the ENTRIES clause to indicate the type of entry. Every ENTRIES
clause must include at least one TASK or MENU subclause.

12–4 Defining Menus



Defining Menus
12.2 Defining Menus

12.2.3 Naming Menus
You use the MENU subclause to define every menu entry on a menu. In the
menu subclause, you include the keywords MENU IS and the CDD path name of
the definition for the menu you want to display. For example:

HEADER IS " PERSONNEL MENU";
ENTRIES ARE
REVIEW : MENU IS EXAMPLES_DEFINITIONS.REVIEW_MENU;
UTILITY : MENU IS EXAMPLES_DEFINITIONS.UTILITY_MENU;

END ENTRIES;
END DEFINITION;

In this example, the REVIEW entry is a menu whose definition is in the CDD
directory EXAMPLES_DEFINITIONS. The menu is named REVIEW_MENU.
The second entry in the menu definition is UTILITY. This entry is also a menu
that would be found in the CDD directory EXAMPLES_DEFINITIONS. The
menu is named UTILITY_MENU.

Both entries in the menu definition are menus. Tasks and menus can be named
on the same menus or on different ones. Naming tasks is very similar to naming
menus.

12.2.4 Naming Tasks on a Menu
You use the TASK subclause to define every task entry on a menu. In the
TASK subclause, you include the keywords TASK IS, the name of the task in
the application database, and the application specification of the application
database file that contains the task. For a more complete discussion of application
specifications, see Section 12.2.7.

If the task is defined with the TASK ATTRIBUTES clause in the application
definition, the task name must be the one used in the ATTRIBUTES clause. If
the task is not defined in the application definition, the task name must be the
one used in the task group definition.

For the application database file name, include only the file name, not a device,
directory, or file type specification. For example:

HEADER IS " REVIEW MENU";
ENTRIES ARE
SCHEDULE : TASK IS REVIEW_SCHEDULE IN PERSONNEL;
HISTORY : TASK IS REVIEW_HISTORY IN PERSONNEL;

END ENTRIES;
END DEFINITION;

In this example, the HISTORY entry is a task named REVIEW_HISTORY in the
Personnel application. The SCHEDULE entry is a task named
REVIEW_SCHEDULE, running in the Personnel application.

12.2.5 Specifying WAIT or DELAY Action
You can specify the WAIT/DELAY attribute on tasks in the menu definition. The
WAIT/DELAY attribute causes the Command Process (CP) to wait or delay before
displaying the menu. The WAIT/DELAY attribute specified in the menu definition
overrides the WAIT/DELAY value specified for the task in the application
database.

Defining Menus 12–5



Defining Menus
12.2 Defining Menus

HEADER IS " REVIEW MENU";
ENTRIES ARE
HISTORY : TASK IS REVIEW_HISTORY IN PERSONNEL;

DELAY;
SCHEDULE : TASK IS REVIEW_SCHEDULE IN PERSONNEL;

WAIT;
END ENTRIES;
END DEFINITION;

In this example, the WAIT command causes the CP to wait until the user signals
to continue, and the DELAY command causes the CP to wait 3 seconds. This
section describes how to create short descriptions of tasks and menus that are
displayed with the entry on an ACMS menu.

The TEXT subclause lets you create a short description of an entry that is
displayed on an ACMS menu. By default, ACMS does not include descriptive text
on the screen. However, it is a good idea to include descriptive text for each task
and menu in your application to help users identify the item they are selecting,
rather than relying just on the name of a selection.

To include descriptive text on a menu, use the TEXT IS subclause, followed by
the text itself. The text can be up to 50 characters long, must be enclosed in
quotation marks and must end with a semicolon (;). For example:

HEADER IS " REVIEW MENU";
ENTRIES ARE
HISTORY : TASK IS REVIEW_HISTORY IN PERSONNEL;

TEXT IS "Display Review Histories";
SCHEDULE : TASK IS REVIEW_SCHEDULE IN PERSONNEL;

TEXT IS "Display Review Schedules";
END ENTRIES;
END DEFINITION;

For each task on the Review Menu, descriptive text is included to the right of
the task selection. Figure 12–3 shows the menu created by the Review Menu
definition.

Figure 12–3 The Review Menu

So far, every menu definition shown in this chapter has named the application
for each individual task or menu. The next section explains the menu definition
clause that allows you to avoid this repetition.

12–6 Defining Menus



Defining Menus
12.2 Defining Menus

12.2.6 Naming Default Application Files
It is not necessary to name the application for every task and menu in a menu
definition. Instead, you can assign a default application specification in a menu
definition. ADU uses the application specification by default when you build the
application.

The DEFAULT APPLICATION clause includes the keywords DEFAULT
APPLICATION IS and the application specification. When you use the DEFAULT
APPLICATION clause, the application name should not include the device,
directory, or file type specification. For example, the menu definition for the
Review Menu includes a default application name:

DEFAULT APPLICATION IS PERSONNEL;
HEADER IS " REVIEW MENU";
ENTRIES ARE
SCHEDULE : TASK IS REVIEW_SCHEDULE;

TEXT IS "Display Review Schedules";
HISTORY : TASK IS REVIEW_HISTORY;

TEXT IS "Display Review Histories";
END ENTRIES;
END DEFINITION;

In this example, Personnel is the default application specification for the
application. The TASK subclauses in the definition do not need to specify the
application.

The application specification that you assign in the TASK subclause overrides the
one that you assign with the DEFAULT APPLICATION clause.

12.2.7 Application Specifications and Remote Tasks
You can select a task running in an application on another node in a distributed
environment, whether that environment is a local area network, wide area
network, or OpenVMS Cluster system. There are two methods for selecting a
task in a distributed environment:

• You can use a logical name for the node name or for the application name.
Using a logical name means that you do not need to rebuild the application if
the application node changes for some reason. For a more complete discussion
of remote tasks and application specifications, see HP ACMS for OpenVMS
ADU Reference Manual.

• In your menu definition you can also specify the node that the application
is on. If the application and the task are on the same node, the application
specification consists of the application name. If the application is on a
remote node, the application specification consists of the node name followed
by two colons (::) followed by the application name.

Using the example of two applications, Personnel and Employee, suppose
the department using these applications has an OpenVMS Cluster with two
nodes, RAVEN and MAGPIE. The Personnel application runs on the node
RAVEN; Employee runs on MAGPIE. Rather than duplicate tasks from the
Employee application for users on RAVEN, you can provide remote access to
Personnel tasks on RAVEN for users on MAGPIE using the menu definition.
Example 12–2 shows the menu definition for the node MAGPIE.

Defining Menus 12–7



Defining Menus
12.2 Defining Menus

Example 12–2 Example of a Menu with a Remote Task

HEADER IS " EMPLOYEE MENU";
ENTRIES ARE
SCHEDULE : TASK IS REVIEW_SCHEDULE IN RAVEN::PERSONNEL;
EMPLOYEE : TASK IS EMPLOYEE IN EMPLOYEE;

END ENTRIES;
END DEFINITION;

Remember that the EMPLOYEE menu definition is on MAGPIE. The
SCHEDULE entry is a task named REVIEW_SCHEDULE, in the Personnel
application running on node RAVEN. The EMPLOYEE entry is the task named
EMPLOYEE in the Employee application on node MAGPIE. The SCHEDULE
entry provides remote access to the task named REVIEW_SCHEDULE in the
Personnel application on RAVEN.

12.2.8 Naming Default Menu Files
You can assign a default menu database file specification in a menu definition. If
you specify a file specification, the Application Definition Utility (ADU) uses the
name by default for the menu database created when you build a menu tree.

The DEFAULT MENU FILE clause includes the keywords DEFAULT MENU
FILE and the name you assign to the database file. If the file name you assign
to the database file does not fit the specifications for an ACMS identifier, enclose
the name in quotation marks. By default, ADU assigns the file type .MDB to the
menu database file. If you do not include a device or directory specification for
the file, ADU uses your current device and directory. For example:

DEFAULT APPLICATION IS PERSONNEL;
DEFAULT MENU FILE IS "PERSONNEL.MDB";
HEADER IS " PERSONNEL MENU";
ENTRIES ARE
REVIEW : MENU IS EXAMPLES_DEFINITIONS.REVIEW_MENU;

TEXT IS "Review Menu";
UTILITY : MENU IS EXAMPLES_DEFINITIONS.UTILITY_MENU;

TEXT IS "Utility Menu";
END ENTRIES;
END DEFINITION;

In this example, the default menu file is PERSONNEL.MDB in the current
default device and directory. When you build this menu, ACMS creates a menu
database called PERSONNEL.MDB.

A menu database file assignment you make with the BUILD command overrides
an assignment you make with the DEFAULT MENU FILE clause. If you do not
include a file specification for the menu database with the BUILD command,
ADU uses the menu database file name assigned with the DEFAULT MENU
FILE clause in the menu definition. If you do not name a menu database file
either with the BUILD command or in the menu definition, ADU derives the file
name from the full CDD given name of the menu definition, including dollar signs
and underscores.

ADU ignores the DEFAULT MENU FILE clause if the clause is in any menu
definition other than the menu definition specified in the BUILD command. For
more information on how ADU derives the menu database file name from a CDD
path name, see HP ACMS for OpenVMS ADU Reference Manual.

12–8 Defining Menus



Defining Menus
12.2 Defining Menus

12.2.9 Defining a Menu Forms Product
ACMS uses either HP DECforms or TDMS to display menus for users. In cases
where HP DECforms or TDMS is not available (if it is not installed on the system,
or the user is logged in to an unsupported terminal), ACMS uses OpenVMS QIOs
to prompt the user to enter a selection.

If HP DECforms or TDMS is available, ACMS uses the following information, in
the order specified, to determine which forms product will be used to display the
menu:

1. If the MDB was built using ACMS Version 3.0 or lower, TDMS will be used.

2. You can choose to customize your menu by specifying the REQUEST IS
clause for TDMS or the CONTROL TEXT IS clause for HP DECforms. If
one of these clauses is specified in the menu definition, the corresponding
forms product will be used. (See Appendix A and Appendix B for specific
information on customizing ACMS menus displayed by HP DECforms or
TDMS.)

3. You can define the logical ACMS$DEFAULT_MENU_FORMS_PRODUCT to
be TDMS or HP DECforms. This logical forces the forms product for all users
in the CP.

4. If HP DECforms is installed on the system, it will be used to display the
menu. Otherwise, TDMS will be used.

Figure 12–4 is a diagram of the decisions ACMS makes in selecting HP DECforms
or TDMS to display an ACMS menu.

Defining Menus 12–9



Defining Menus
12.2 Defining Menus

Figure 12–4 ACMS Menu Choices

Yes

No

REQUEST

CONTROL

TDMS

No

Yes

Yes

No

Yes

No

Yes

No

Which

DECforms

Something

Use DECforms

Use $QIO

Use DECforms

WhatIs a

Use TDMS

Use TDMS

Use TDMS

TAY-0122-AD

logical
defined?

clause?
TEXT

is the
translation?

else?

Is 
DECforms

on the
system?

Is it
a V3.1 or greater

MBD?

Is a
Clause

specified?

Is TDMS
on the
system?

If you need to modify the standard ACMS menu format, an advantage to using
HP DECforms is that you do not need to make modifications in both the menu
request and in the menu definition. You can make all your changes in the menu
form source (.IFDL) file. (See Appendix A for information about customizing HP
DECforms menus.)

To use HP DECforms to display menus for versions of ACMS prior to ACMS
Version 3.1, you must rebuild MDBs.

If you remove TDMS from your system, ACMS does not automatically use HP
DECforms for menus displayed by the CP. Unless you rebuild your MDB, the task
submitter sees only a selection prompt. After rebuilding your MDB, you can use
HP DECforms to display menus.

12–10 Defining Menus



Defining Menus
12.2 Defining Menus

If you want to use two identical menus, one using HP DECforms and another
using TDMS, in your application, you must build two separate MDBs. You can,
however, use HP DECforms for one menu and TDMS for another menu in the
same menu tree.

Following are explanations of how to select HP DECforms or TDMS as a menu
forms product in a menu definition or in a logical:

• Selecting a menu displayed by TDMS in a menu definition

If your ACMS application requires a menu format different from the
ACMS menu format displayed by TDMS, you can use TDMS to modify
the menu format. However, this requires a thorough knowledge of TDMS.
See Appendix B for more information on how to modify ACMS menus using
TDMS.

To specify a TDMS menu, you must include the REQUEST IS clause in your
menu definition. In the REQUEST IS clause, you must include the given
name of the request you want ACMS to use for that menu. This given name
is not the CDD path name of the request but, rather, the name by which the
request is listed in the request library definition. For example:

HEADER IS " PERSONNEL MENU";
REQUEST IS PERSONNEL_MENU_REQUEST WITH 12 ENTRIES PER SCREEN;
DEFAULT APPLICATION IS PERSONNEL;
ENTRIES ARE
REVIEW : MENU IS EXAMPLES_DEFINITIONS.REVIEW_MENU;

TEXT IS "Review Menu";
UTILITY : MENU IS EXAMPLES_DEFINITIONS.UTILITY_MENU;

TEXT IS "Utility Menu";
END ENTRIES;
END DEFINITION;

In this example, the REQUEST clause names the TDMS request
PERSONNEL_MENU_REQUEST for the menu format. This definition
must be in the request library, ACMSREQ.RLB, which is used by ACMS for
displaying menus.

The definition also specifies that the Personnel request display 12 entries per
screen. The number in the ENTRIES PER SCREEN phrase must correspond
to the number of form fields to which the request writes entry information.
The default number of entries for each screen is 16. If you want more or
fewer than 16 entries on each screen, you must use the WITH ENTRIES
PER SCREEN phrase to define the number of entries. You must also define a
request to handle that number of entries.

If you are not customizing the menu format and you want to use TDMS only
to display the menu, specify the request name provided by ACMS:

REQUEST IS MENU_REQUEST;

• Selecting a menu displayed by HP DECforms in a menu definition

If your ACMS application requires a menu format different from the ACMS
menu format displayed by HP DECforms, you can use HP DECforms to
modify the menu format. However, this requires a thorough knowledge of HP
DECforms forms source files. See Appendix A for more information on how to
modify ACMS menus using HP DECforms.

Defining Menus 12–11



Defining Menus
12.2 Defining Menus

To specify a HP DECforms menu that you have customized, you must include
the CONTROL TEXT IS clause in your menu definition. In the CONTROL
TEXT IS clause, you must include a five-character control text item. In
the menu form source (IFDL) file, you must define a control text response
with the same name. In the menu definition, for example, you enter the
CONTROL TEXT IS clause, followed by a one- to five-character string:

HEADER IS " PERSONNEL MENU";
CONTROL TEXT IS "MYMNU";
DEFAULT APPLICATION IS PERSONNEL;
ENTRIES ARE
REVIEW : MENU IS EXAMPLES_DEFINITIONS.REVIEW_MENU;

TEXT IS "Review Menu";
UTILITY : MENU IS EXAMPLES_DEFINITIONS.UTILITY_MENU;

TEXT IS "Utility Menu";
END ENTRIES;
END DEFINITION;

forms product in a menu definition or in a logical:In this example, the
CONTROL TEXT IS clause names the control text item MYMNU.

You must enter a reference to MYMNU in the form menu source file; for
example:

Control Text Response "MYMNU"
Activate MY_PANEL

End Response

In this example, the control text response identifies the control text item
MYMNU and directs HP DECforms to display the customized menu panel
MY_PANEL to terminal users.

The default number of entries on each screen of menus displayed by HP
DECforms is 16. With menus displayed by HP DECforms, you specify
a different number of entries per screen in the menu form source file.
(Appendix A contains instructions for customizing menus displayed by HP
DECforms.)

If you are not customizing the menu format and you want to use HP
DECforms only to display the menu, specify the control text response
provided by ACMS:

CONTROL TEXT IS "DFMENU";

• Selecting a forms product by defining a Logical

If you do not use a REQUEST IS or a CONTROL TEXT IS clause in a menu
definition to specify a customized menu displayed by TDMS or HP DECforms,
ACMS attempts to translate this logical:

ACMS$DEFAULT_MENU_FORMS_PRODUCT

You can define this logical to be either TDMS or HP DECforms and thus
specify a forms product for all users on the CP. For example:

$ DEFINE/SYSTEM ACMS$DEFAULT_MENU_FORMS_PRODUCT TDMS

$ DEFINE/SYSTEM ACMS$DEFAULT_MENU_FORMS_PRODUCT DECFORMS

This logical name should be defined before you start ACMS. To change the
value of the logical after you have started ACMS, stop and restart the ACMS
terminal subsystem.

12–12 Defining Menus



Defining Menus
12.3 Processing the Menu Definition

12.3 Processing the Menu Definition
You use the ADU CREATE or REPLACE command to store menu definitions in
CDD. After you store a definition in CDD, you use the ADU BUILD command to
create a database from the definition that ACMS uses at run time.

As explained in Chapter 1, processing definitions can be simpler if a REPLACE
command is included in the source definition file. Include a REPLACE command
at the top of each menu source definition file. For example, the command for the
Personnel menu is:

REPLACE MENU PERSONNEL_MENU/LOG/LIST

With the REPLACE command in each source file, type the at sign (@) command
and the name of each menu definition source file in response to the ADU>
prompt:

$ ADU
ADU> @PERSMEN1.MDF

%ACMSCDU-S-MENREPLAC,
Menu UDISK:[CDDPLUS]EXAMPLES_DEFINITIONS.PERSONNEL_MENU replaced
ADU>

The errors you can get when replacing menu definitions are explained
in the online error message documentation contained in the file
SYS$HELP:ACMSADU.MEM. If you get an error, correct the definition and
use ADU to process it again.

Once the corrected definition is stored in CDD, you can use the BUILD command
to create menu databases. The BUILD command includes:

• The MENU keyword.

• The CDD relative or full path name of the menu definition of the top-level
menu of your menu tree.

• A menu database file specification (optional). If you do not provide a file
name, and if the top-level menu definition does not contain a DEFAULT
MENU FILE clause, ADU creates one from the full CDD path name including
dollar signs and underscores, and the .MDB file type.

Use the BUILD command to produce menu databases. You need to build only the
top menu in an application. The other menus are built automatically at the same
time. To build the top menu, enter the BUILD command:

ADU> BUILD MENU PERSONNEL_MENU PERSMEN1.MDB/LOG

%ACMSCDU-I-MENUNAME, Menu named ’REVIEW’
%ACMSCDU-I-LODMENNAM, Loading menu
%ACMSCDU-I-MENPTHLOD, Menu CDD object
’UDISK:[CDDPLUS]EXAMPLES_DEFINITIONS.REVIEW_MENU’ loaded
%ACMSCDU-I-PROCMENU, Processing menu ’REVIEW_MENU’
%ACMSCDU-I-PROCTASK, Processing task ’REVIEW_SCHEDULE’
%ACMSCDU-I-PROCTASK, Processing task ’REVIEW_HISTORY’
%ACMSCDU-I-MENUNAME, Menu named ’UTILITY’
%ACMSCDU-I-LODMENNAM, Loading menu
%ACMSCDU-I-MENPTHLOD, Menu CDD object
’CDD$TOP.EXAMPLES_DEFINITIONS.UTILITY_MENU’ loaded
%ACMSCDU-I-PROCMENU, Processing menu ’UTILITY_MENU’
%ACMSCDU-I-PROCTASK, Processing task ’EDIT’
%ACMSCDU-I-PROCTASK, Processing task ’DATR’
%ACMSCDU-I-WRITEMDB, Writing MDB
-ACMSCDU-I-BYTESWRIT, 1336 bytes (3 blocks)

Defining Menus 12–13



Defining Menus
12.3 Processing the Menu Definition

This command produces a menu database file, PERSMEN1.MDB, containing the
run-time version of all three menu definitions.

All submenus in the menu tree must exist in CDD before the BUILD MENU
command can complete successfully.

12–14 Defining Menus



13
Defining Existing Applications as ACMS Tasks

ACMS applications are made up of tasks. Typically, these tasks are defined using
the ACMS Application Definition Utility (ADU), as described in the preceding
chapters. However, it is possible that you have existing programs or applications
that you did not define using ACMS. Such applications might include OpenVMS
images, DATATRIEVE commands and procedures, or DCL commands and
command procedures. You can include these existing programs as tasks in your
ACMS application.

This chapter explains how to include these types of applications in an ACMS
application.

13.1 Defining Single-Step Tasks in ACMS Task Groups
To include existing OpenVMS images, DATATRIEVE commands or procedures,
or DCL commands or procedures in your application, you must define them as
single-step tasks in the task group definition.

You specify single-step tasks using the TASKS clause in the same way you specify
a multiple-step task. However, rather than specifying a CDD pathname for a
multiple-step task definition, you specify the executable image, DCL command, or
DATATRIEVE procedure that you want to run.

The following sections explain how to include the following as single-step tasks in
ACMS task group definitions:

• OpenVMS images

• DCL commands and command procedures

• DATATRIEVE commands and procedures

13.1.1 Defining OpenVMS Images as Tasks
Many applications include programs that perform certain tasks. Suppose you
have a program, written in a language that adheres to the OpenVMS Calling
Standard, that you want to include as a task in your ACMS application. You
use, as part of the TASKS clause, the IMAGE processing subclause to define an
OpenVMS image as a task in a task group. For example:

TASKS ARE
EMPLOYEE : PROCESSING IMAGE "SYS$SAMPLE:EMPLOYEE.EXE";

.

.

.

The name you assign to the task can contain up to 31 alphanumeric characters,
dollar signs, and underscores, but no embedded blanks. In this example, the
task named EMPLOYEE runs an OpenVMS image with the file specification
SYS$SAMPLE:EMPLOYEE.EXE. If you do not specify a default device and
directory, ACMS uses the current default device and directory by default. You

Defining Existing Applications as ACMS Tasks 13–1



Defining Existing Applications as ACMS Tasks
13.1 Defining Single-Step Tasks in ACMS Task Groups

begin the IMAGE subclause with the keyword PROCESSING. Follow the keyword
with IMAGE and, in quotation marks, the image name. End the subclause with a
semicolon (;).

13.1.2 Defining DCL Commands and Command Procedures as Tasks
It is common for applications to include editing and mail functions that users can
select and run. For example, you may want to include the DCL commands EDIT
and MAIL as tasks in your ACMS application. You use the DCL COMMAND
subclause to describe tasks that consist of DCL commands or command
procedures.

TASKS ARE
EMPLOYEE : PROCESSING IMAGE "SYS$SAMPLE:EMPLOYEE.EXE";
EDIT : PROCESSING DCL COMMAND "$EDIT/EDT ’P1’";
MAIL : PROCESSING DCL COMMAND "$MAIL";

.

.

.

When a user selects the EDIT task, ACMS invokes the EDIT/EDT command.
When selecting the task, the user can supply a string that ACMS passes to the
task as the parameter, P1. For the EDIT command, this parameter is the name
of the input file for the editing session. The MAIL task invokes the DCL MAIL
command, allowing the user to read and send mail.

When you use the DCL COMMAND subclause, precede the subclause with the
PROCESSING keyword. Be sure to enclose the command in quotation marks ("")
and begin the command with the dollar sign ($). You must also end the subclause
with a semicolon ( ; ).

13.1.3 Defining DATATRIEVE Commands and Procedures as Tasks
If you have DATATRIEVE commands and procedures that you want to include in
your ACMS application, use the DATATRIEVE COMMAND subclause to name
them in a task group definition. For example, suppose you have a DATATRIEVE
procedure that produces a report outlining all the performance reviews that are
due for a department. The following TASKS clause names the DUE task that
runs a DATATRIEVE procedure.

TASKS ARE
EMPLOYEE : PROCESSING IMAGE "SYS$SAMPLE:EMPLOYEE.EXE";
EDTR : PROCESSING DCL COMMAND "$EDIT/EDT ’P1’";
MAIL : PROCESSING DCL COMMAND "$MAIL";
DUE : PROCESSING DTR COMMAND IS

"DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS.DUE";
END TASKS;

The DUE task uses a DATATRIEVE procedure stored in the directory. You must
enclose the command string in quotation marks ("") and end the subclause with
a semicolon ( ; ).

When you use the DTR COMMAND processing subclause, ACMS uses the image
DTR32 by default. If you want to use another image, you must define DTR32 as
a logical that points to the DATATRIEVE image you want to run.

Once you have named all the tasks for a TASKS clause, use the END TASKS
keywords followed by a semicolon ( ; ). You can use more than one TASKS clause
in a single task group definition and can include one or more tasks in each
TASKS clause.

13–2 Defining Existing Applications as ACMS Tasks



Defining Existing Applications as ACMS Tasks
13.1 Defining Single-Step Tasks in ACMS Task Groups

After deciding which tasks to include in a task group, you must define servers to
handle processing for those tasks.

13.2 Defining Servers to Handle Processing
Servers handle the processing work for the tasks in an application. There are two
kinds of servers: procedure servers and DCL servers. Procedure servers handle
calls to subroutines and are typically used for processing steps of multiple-step
tasks defined with ADU. DCL servers handle the processing work for tasks
that run OpenVMS images, DCL commands or command procedures, and
DATATRIEVE commands or procedures.

If you are including single-step tasks in your ACMS application, you must define
one or more DCL servers to handle the processing work for those tasks. If the
task group already includes a DCL server, that server may be able to handle the
work for any tasks you are including. However, you may need to name one or
more additional servers to handle the processing work for tasks you add to the
task group.

You can use the SERVERS clause and its subclauses to name and describe servers
for the tasks in a task group. The syntax for the server subclauses is similar
to the syntax of the SERVER ATTRIBUTES clause you use in an application
definition. For example:

SERVER IS
EMPLOYEE_SERVER : DCL PROCESS;

END SERVER;

Here the SERVERS clause names one server, EMPLOYEE_SERVER. The server
subclause DCL PROCESS indicates that the server is a DCL server rather than a
procedure server. The DCL PROCESS subclause is the only required subclause of
the SERVERS clause.

You can also define other server attributes in the SERVERS clause such as the
DYNAMIC USERNAME and USERNAME OF TERMINAL USER. However,
because these are control attributes, they can be overridden in the SERVER
ATTRIBUTES clause of the application definition. (See Chapter 11 for more
information.)

To enable terminal users to receive their own mail, edit their own files, or use
DATATRIEVE against files in their own directories, you must define a dynamic
user name for the server, EMPLOYEE_SERVER. When you use the DYNAMIC
USERNAME subclause to define a server process, ACMS changes the user
name, UIC, and default directory of the task to those of the user selecting a
task processed by that server. Chapter 11 explains in more detail how to use the
DYNAMIC USERNAME subclause.

There are two ways to assign servers to tasks in a task group. One way is to
position the TASKS clause under the SERVERS clause containing the servers
you want the tasks to use. In this case, the tasks in the TASKS clause will be
assigned the server defined above them in the SERVERS clause, which is the
default server in effect.

In Example 13–1, the EMPLOYEE_SERVER is assigned to the EMPLOYEE,
EDIT, MAIL, and DUE tasks because the TASKS clause follows the SERVERS
clause in the task group definition.

Defining Existing Applications as ACMS Tasks 13–3



Defining Existing Applications as ACMS Tasks
13.2 Defining Servers to Handle Processing

Example 13–1 A Task Group Definition

REPLACE GROUP ADMINISTRATION_GROUP
DEFAULT TASK GROUP FILE IS "ACMS$EXAMPLES:ADMRMSCOB.TDB";

SERVER IS
EMPLOYEE_SERVER : DCL PROCESS;

DYNAMIC USERNAME;
END SERVER;
TASKS ARE
EMPLOYEE : PROCESSING IMAGE "SYS$SAMPLE:EMPLOYEE.EXE";
EDIT : PROCESSING DCL COMMAND "$EDIT/EDT ’P1’";
MAIL : PROCESSING DCL COMMAND "$MAIL";
DUE : PROCESSING DTR COMMAND IS

"DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS.DUE";
END TASKS;
END DEFINITION;

The other way to define servers for tasks is to name specific servers for specific
tasks in the TASKS clause. For example:

TASKS ARE
EMPLOYEE : PROCESSING IMAGE "SYS$SAMPLE:EMPLOYEE.EXE"

IN EMPLOYEE_SERVER;
EDIT : PROCESSING DCL COMMAND "$EDIT/EDT ’P1’"

IN EMPLOYEE_SERVER;
MAIL : PROCESSING DCL COMMAND "$MAIL"

IN EMPLOYEE_SERVER;
DUE : PROCESSING DTR COMMAND IS

"DISK1:[CDDPLUS]ACMS$DIR.ACMS$EXAMPLES_RMS.DUE"
IN EMPLOYEE_SERVER;

END TASKS;

In the TASKS clause, EMPLOYEE_SERVER is individually assigned to the
EMPLOYEE, EDIT, MAIL, and DUE tasks in the IN SERVER phrase of the
TASKS clause in the processing subclause for each task.

The task group definition in Example 13–1 lists only tasks that use a DCL
server and that were not defined using ADU. However, you can include ACMS
multiple-step tasks as well as definitions for already existing tasks in a single
task group definition.

13.3 Using the Task Group in an Application
Once you have included existing tasks in a task group, you must consider the
effect of those tasks and that task group on the application. You need to change
the application definition if:

• You want to change control attributes for tasks or servers named in the
modified task group

• You created a new task group definition and must include the name of that
group in the TASK GROUPS clause of the application definition

Whether or not you make changes to the application definition, you must rebuild
it to create a run-time application database that includes the new tasks. You
must also:

• Add new tasks to existing menu definitions or create new menu definitions

• Rebuild modified menu definitions and build new menu definitions

13–4 Defining Existing Applications as ACMS Tasks



14
Using the ACMS Request Interface

ACMS provides great flexibility in collecting user input for processing in an
application. You can use HP DECforms, TDMS, the ACMS Request Interface, the
ACMS Systems Interface, or a combination of these tools to capture data for use
in an ACMS application. This chapter discusses the ACMS Request Interface and
how to use it in an ACMS application.

The examples shown in this chapter are taken from the request interface
examples located in the SYS$COMMON:[SYSHLP.EXAMPLES.ACMS.RI]
directory, which the logical ACMS$RI_EXAMPLES points to. For ease of use, the
components of the ACMS$RI_EXAMPLES directory are listed in Appendix E.

14.1 Overview of the ACMS Request Interface
The ACMS Request Interface (RI) provides an alternate method of doing request
I/O from an ACMS task during processing. You can use a combination of HP
DECforms I/O, TDMS Request I/O and/or the RI, Stream I/O, or Terminal I/O in
different tasks within the same application. You can use a combination of TDMS
Request I/O and the RI in a single task definition on a per-request-library basis.
However, you cannot use the RI in conjunction with HP DECforms I/O or Stream
I/O in the same task.

While HP DECforms and TDMS limit you to collecting user input from HP
DECforms- and TDMS-supported terminals, the RI allows use of other I/O
methods such as FMS, SMG, third-party forms products, OpenVMS mailboxes,
DECnet task-to-task communication, and OpenVMS QIOs. Using the RI allows
you to take advantage of several interactive facilities that are not available with
TDMS or HP DECforms:

• 3270 terminal support

• Multiwindow support

• Graphics support

The RI provides the flexibility of choosing an interface to ACMS without
impacting the multiple-step task structure or ease-of-maintenance features
inherent in an ACMS application. The RI simply provides a mechanism for
executing user-written request procedures (URPs) that perform their own
I/O in place of TDMS requests. You write a URP in any OpenVMS-supported,
high-level language and include the necessary facility calls (for example, FMS,
SMG, QIO) for interfacing ACMS with the preferred device.

ACMS multiple-step tasks call URPs from a task definition using the same syntax
necessary to call TDMS requests. The RI translates a logical name and uses the
resulting translation to determine if it should process a TDMS request or execute
a URP from a shareable image.

Using the ACMS Request Interface 14–1



Using the ACMS Request Interface
14.1 Overview of the ACMS Request Interface

ACMS supplies a multi-user agent program called the command process (CP),
through which HP DECforms and TDMS terminal users can access ACMS tasks.
With the RI, you use a single-user agent to access ACMS tasks. ACMS supplies
an agent called ACMS$RI_AGENT that you can use to select tasks that use the
RI. Either use the ACMS-supplied RI agent, or, if an application requires it,
write a customized, single-threaded RI agent. Code an RI agent in any high-level
language that adheres to the OpenVMS calling standard.

Never use the RI if an application requires asynchronous processing or
multithreaded processing (one process handling the needs of several users).
Instead, you must use the SI services to write a multithreaded agent.

The Request Interface consists of four major components:

• Request Interface agent

You use an RI agent in place of the ACMS-supplied command process. The RI
agent enables the RI so that you can interface non-TDMS devices with ACMS.
Note that the standard ACMS menu interface is available only with CP.
However, the ACMS-supplied RI agent program ACMS$RI_AGENT allows
you to develop your own menu interface.

• User-written request procedures (URPs)

The RI calls URPs to perform the exchange work for an ACMS task. A URP
is a procedure that replaces a TDMS request in an exchange step and is
responsible for performing the I/O to the user’s device. A group of URPs
is linked together into a shareable image that replaces a TDMS request
library (.RLB). You can write URPs in any high-level language; include the
appropriate facility calls (for example, FMS, SMG, QIO) to interface ACMS
with the preferred device.

• ACMRRSHR

This ACMS shareable image is responsible for calling a TDMS request or
a URP based on the translation of an ACMS$RI_LIB logical name. You
can, optionally, define an ACMS$RI_LIB logical to point to a TDMS request
library (RLB) or to a URP shareable image (EXE). At run time, ACMRRSHR
translates the ACMS$RI_LIB logical to determine if the agent should or
perform TDMS or RI I/O during the exchange step.

• Menu interface

You use this component to develop a menu interface that can be processed by
the RI ACMS$RI_AGENT program. For example, you can develop a routine
that uses FMS calls to display a menu on an FMS-supported device and to
accept a task selection from the user.

Figure 14–1 shows the four RI run-time components and their relationship with
ACMS.

14–2 Using the ACMS Request Interface



Using the ACMS Request Interface
14.1 Overview of the ACMS Request Interface

Figure 14–1 Request Interface Run-Time Components

TAY-0254-AF

ACMRRSHR
and ACMSHR

Menu
Procedure

URPs

RI Agent

This chapter describes these components in more detail and explains how to
incorporate the Request Interface in an ACMS application.

14.2 The Request Interface and the ACMS Run-Time System
The ACMS Command Process (CP) uses HP DECforms or TDMS to interact with
the terminal user. If you use the RI, you cannot use the CP; you must, instead,
use either the ACMS-supplied RI agent or develop an RI agent that does the
following:

1. Signs in the user to ACMS

2. Enables the Request Interface

3. Repeatedly prompts the user for task selection information and then calls the
task, until the user wants to exit ACMS

4. Disables the Request Interface

5. Signs the user out of ACMS

Note that the URPs that ACMS calls to perform the exchange I/O are not linked
into the RI agent image. URPs are called by the ACMRRSHR shareable image,
not by the RI agent program.

This section describes how the RI interacts with the ACMS run-time system and
the impact it has on ACMS system performance.

When you use the RI (either locally or with distributed applications), the RI
agent process always handles the I/O defined in exchange steps. Since the RI is a
synchronous interface, it can be used only in a single-threaded agent. Therefore,
users must each have their own process that executes the RI agent. Contrast this
with the ACMS-supplied CP agent that is a multithreaded, asynchronous agent
that can support multiple users in a single process.

Figure 14–2 shows one multithreaded CP agent and two single-threaded RI
agents interfacing with the same ACMS application execution controller.

As Figure 14–2 shows, an ACMS system can include more than one agent
process. Also, a single Application Execution Controller (EXC) can pass request
information and handle flow control and scheduling for different types of agent
programs. The EXC is a multithreaded process for flow control and scheduling.
It interprets the definitions of the tasks in an application. The same performance
benefits are realized from ACMS on the processing end (back end) of the system
regardless of the I/O method (HP DECforms, TDMS, or RI) used.

Using the ACMS Request Interface 14–3



Using the ACMS Request Interface
14.2 The Request Interface and the ACMS Run-Time System

An application can lose performance when using the RI on the front-end system
because of the synchronous nature of the Request Interface. Since a single CP
agent process supports multiple users, it uses less system resources than a
single-user RI agent, where individual users must have their own process. For
example, 40 users each running their own copy of a single-user RI agent will
often use more memory than two CP agent processes, each handling 20 users.

If an application requires a multithreaded and asynchronous agent, you must use
the ACMS Systems Interface to develop an SI agent; you cannot use the RI for
multithreaded, asynchronous processing. However, you cannot use asynchronous
processing if the interface you want to use is synchronous (such as FMS or
SMG). See HP ACMS for OpenVMS Systems Interface Programming for more
information about the Systems Interface.

Figure 14–2 Request Interface Model

DECforms Terminals

TAY-0252-AD

ACMS-Supplied
Command
Process (CP)

URPs

RI Agent

URPs

RI Agent

Application
Execution
Controller
(EXC)

Procedure
Server ProcessTouch Screen Terminals

14.3 Defining Tasks and Task Groups
You define a task the same way whether the task calls TDMS requests or URPs.
When you want existing TDMS applications to take advantage of the RI, you do
not need to change any definitions in those applications. In fact, you can enable
or disable the RI on a per-request-library and/or user-by-user basis, letting an
exchange step in a task use TDMS requests for one user and the RI for another
user.

ACMS determines whether to call TDMS requests or URPs at run time. If you
use the Request Interface, you can define a logical name that ACMS translates to
determine whether to use a TDMS request or a user-request procedure to do the
work of an exchange step.

At run time, ACMS does the following to determine if it should call a TDMS
request or a user-request procedure:

1. At application startup time, the EXC attempts to open library files with both
.RLB and .EXE file types. If the EXC cannot open a library with a file type of
.RLB, it logs an error message and the application does not start. However, if

14–4 Using the ACMS Request Interface



Using the ACMS Request Interface
14.3 Defining Tasks and Task Groups

the EXC cannot open a library file with the file type of .EXE, the application
will start. This is because EXC needs .RLB files to perform local TDMS
request I/O, but it does not need .EXE files.

2. When the task step begins executing, the EXC passes the name of the TDMS
request library (.RLB) file or the user request procedure (.EXE) shareable
image to the Request Interface in the RI agent (ACMRRSHR component).

3. If you have defined the ACMS$RI_LIB_library-name logical name, the RI
translates the logical and uses the file type of the resulting translation to
determine whether or not to process a request from a request library or
a user-request procedure from a shareable image. (Library-name is the
file-name portion of the request library or shareable image file specification
named in the task group definition.)

In other words, the ACMS$RI_LIB_library-name logical overrides the request
library named in the task group definition. If no logical name exists, the RI
uses the file specification passed by the EXC. (Section 14.3.3 describes how to
define the ACMS$RI_LIB logical name.)

• If the ACMS$RI_LIB logical name translation is a file with an .RLB file
type, the Request Interface processes a TDMS request from the named
request library.

• If the ACMS$RI_LIB logical name translation is a file with an .EXE file
type, the RI calls the user-request procedure in the named shareable
image file.

This run-time determination means that your application has full front-end
independence; the EXC need not be aware of the front-end interface used by the
application.

14.3.1 Task Definition
The task definition in Example 14–1 is an example of a simple inquiry task. This
task definition is generic in that it can be used to call a TDMS request or a URP
in a shareable image. This discussion provides the task definition for the sake of
example. This example is part of the ACMS-supplied example that is provided in
the ACMS$RI_EXAMPLES directory. It is also referred to in several subsequent
sections.

The task definition consists of two exchange steps and a processing step. In this
task, the user enters a customer number and presses Return . The task uses the
customer number to read the customer data file and retrieve the appropriate
record, displaying that record on the screen.

Using the ACMS Request Interface 14–5



Using the ACMS Request Interface
14.3 Defining Tasks and Task Groups

Example 14–1 Simple Inquiry Task

REPLACE TASK RI_INQ_TASK
DEFAULT SERVER IS RI_SERVER;
WORKSPACES ARE RI_EMPLOYEE_RECORD;
BLOCK WORK

EX1:
EXCHANGE
REQUEST IS RI_INQ_REQUEST IN RI_REQUEST_LIBRARY1

USING RI_EMPLOYEE_RECORD;
SP1:

PROCESSING
CALL RI_GET_PROCEDURE IN RI_SERVER

USING RI_EMPLOYEE_RECORD;
EX2:

EXCHANGE
REQUEST IS RI_INQ_DISP_REQUEST IN RI_REQUEST_LIBRARY2

USING RI_EMPLOYEE_RECORD;
END BLOCK WORK;
END DEFINITION;

In this example, the task calls a request in a library identified as REQUEST_
LIBRARY1. Note that this does not indicate whether ACMS should use a TDMS
request or a URP. This decision is not made until run time, when the RI calls a
TDMS request or a URP depending on how the library is defined in the group
and whether or not an ACMS$RI_LIB logical has been defined for this library.

In a single task, one exchange step can call a URP to do terminal I/O while
another can use a TDMS request to do terminal I/O. ACMS passes workspaces to
URPs in the same way that it passes workspaces to routines in procedure servers.

See Chapter 10 for more information on defining a task.

14.3.2 Defining a Task Group
When defining a task group whose tasks call only URPs, you can use the
REQUEST LIBRARY IS clause to name the shareable image containing URP
procedures. Example 14–2 shows an example of a task group definition.
Alternatively, you can name an .RLB file and use an ACMS$RI_LIB logical
name to point to a shareable image at run time. See Chapter 10 for more
information on defining a task group.

Example 14–2 Task Group Definition

REPLACE GROUP RI_PASSED_GROUP
REQUEST LIBRARY ARE "ACMS$RI_EXAMPLES:RI_REQUEST_LIBRARY1.EXE"

WITH NAME RI_REQUEST_LIBRARY1,
"ACMS$RI_EXAMPLES:RI_REQUEST_LIBRARY2.RLB"

WITH NAME RI_REQUEST_LIBRARY2;

DEFAULT TASK GROUP FILE
IS "ACMS$RI_EXAMPLES:RI_PASSED_GROUP.TDB";

(continued on next page)

14–6 Using the ACMS Request Interface



Using the ACMS Request Interface
14.3 Defining Tasks and Task Groups

Example 14–2 (Cont.) Task Group Definition

SERVER IS
RI_SERVER:

PROCEDURE SERVER IMAGE IS
"ACMS$RI_EXAMPLES:RI_SERVER.EXE";

INITIALIZATION PROCEDURE IS RI_INIT_PROCEDURE;
TERMINATION PROCEDURE IS RI_TERM_PROCEDURE;
PROCEDURES ARE RI_ADD_PROCEDURE,

RI_GET_PROCEDURE;
END SERVER;

TASK IS
RI_ADD_TASK : TASK DEFINITION IS RI_ADD_TASK;
RI_INQ_TASK : TASK DEFINITION IS RI_INQ_TASK;

END TASK;
END DEFINITION;

Notice that this task group names both a URP shareable image file and a request
library; the tasks in the group can use both user request procedures and TDMS
requests.

However, be aware that you cannot use CP to select a task that uses a request
in a library that is defined as an .EXE file. This is because CP cannot call URPs
and does not translate ACMS$RI_LIB logical names in order to determine if an
.RLB file is also available.

Consider the steps ACMS takes when processing the task and task group shown
in Example 14–1 and Example 14–2:

1. At application startup time, the EXC determines the file type of the request
libraries (.RLB or .EXE). It opens the ACMS$RI_EXAMPLES:RI_REQUEST_
LIBRARY2.RLB file but does not open the ACMS$RI_EXAMPLES:RI_
REQUEST_LIBRARY1.EXE file.

If there is an ACMS$RI_LIB logical name that redefines the .EXE file to be
an .RLB file, the Request Interface opens that request library at run time.
See Section 14.3.3 for information on defining the ACMS$RI_LIB logical
name.

2. When the task step begins executing, the EXC passes the following names to
the RI agent:

• RI_REQUEST_LIBRARY1

• RI_REQUEST_LIBRARY2

The image activation for a shareable image (.EXE) occurs only the first
time a URP in that image is needed. After that, the image stays active;
only a call to the procedure is necessary.

3. The Request Interface does the following:

• Translates the logical name ACMS$RI_LIB_RI_REQUEST_LIBRARY1
and uses the file type of the resulting translation to determine whether
to call a user request procedure from a shareable image or a request from
a TDMS request library. In this example, if no logical name has been
defined, the Request Interface calls the RI_INQ_REQUEST user request
procedure from the RI_REQUEST_LIBRARY1.EXE shareable image file.

Using the ACMS Request Interface 14–7



Using the ACMS Request Interface
14.3 Defining Tasks and Task Groups

• Translates the logical name ACMS$RI_LIB_RI_REQUEST_LIBRARY2
and uses the file type of the resulting translation to determine whether to
call a user request procedure from a shareable image or a request from a
request library. In this example, if no logical name has been defined, the
Request Interface calls the RI_DISP_INQ_REQUEST request from the
RI_REQUEST_LIBRARY2.RLB request library.

14.3.3 How and When to Use the ACMS$RI_LIB Logical Name
The TDMS request libraries (.RLB) files or the URP (.EXE) shareable image files
can be defined and referenced in the REQUEST LIBRARY IS clause in the task
group definition or with the ACMS$RI_LIB_libraryname logical. In either case,
the ACMS$RI_LIB logical name can replace or override whatever is defined in
the task group definition.

The ACMS shareable image, ACMRRSHR (in the RI agent process), translates
the ACMS$RI_LIB logical name at run time to determine whether the task
should use TDMS or a URP. Define the ACMS$RI_LIB logical name in any logical
name table that is accessible by the RI agent program. For example, defining
it as a process logical name means that only a specific user has access to the
request library or shareable image defined by the logical. However, defining it
as a group logical name means that all users with the same UIC group can have
access to the request library or shareable image file defined by the logical.

You use the DEFINE command to define the logical name ACMS$RI_LIB_file-
name for a shareable image or request library. It is important that the request
library that is referenced by the ACMS$RI_LIB logical name has the same library
name as defined in the task group definition, and it must include the .RLB or
.EXE file extension:

$ DEFINE ACMS$RI_LIB_RI_REQUEST_LIBRARY1 -
_$ ACMS$RI_EXAMPLES:RI_REQUEST_LIBRARY1.EXE/GROUP

This example defines a group logical for the shareable image named
RI_REQUEST_LIBRARY1.EXE. When defining the ACMS$RI_LIB logical,
provide the full file specification. Otherwise, ACMS assumes the file is located in
SYS$SHARE.

If you use TDMS applications with the RI, you do not need to make any
modifications to existing task, task group, or application definitions. However,
try to avoid misleading other users by what you have defined in the task
definition. Consider the following options to improve the readability of a task
group definition:

• When defining a task whose exchange steps call only URPs, name the URP
executable images (.EXE) in the task group.

• When defining a task whose exchange steps call only TDMS, name the TDMS
request libraries (.RLB) in the task group.

• When defining a task whose exchange steps call TDMS requests and also
call URPs, name the TDMS request library in the task group, and use
the ACMS$RI_LIB logical name to point to URP executable images where
necessary.

Remember that ACMS makes the final determination at run time to call a TDMS
request or a URP. You can use the ACMS$RI_LIB logical to override what is
defined in the task group definition. Use this logical to enable or disable the RI
on a user-by-user basis so that you can have one person use TDMS and another
use a URP in the same ACMS application. This makes the RI attractive for

14–8 Using the ACMS Request Interface



Using the ACMS Request Interface
14.3 Defining Tasks and Task Groups

testing an application because you can use logicals to redefine the RLB that is
hard-coded in the task group definition.

14.4 Writing User Request Procedures
Write user request procedures, URPs, to perform I/O for ACMS tasks in place
of TDMS requests. You can write a URP in any OpenVMS-supported high-level
language and include the necessary facility calls (for example, FMS, SMG, QIO)
that allow you to interface ACMS with the appropriate device.

A URP can use all the facilities available to a normal program and extend the
terminal I/O capabilities of the ACMS application without impacting the task
definition or task group definition. Use the following guidelines when writing RI
procedures:

• The name of the URP must correspond exactly to the name used for the
request in the task definition. For example, the function name in BASIC
or FORTRAN or a COBOL PROGRAM-ID must match the request name in
the task definition. In Example 14–1, the URP request name is RI_INQ_
REQUEST.

• The workspaces named in the URP parameter list must be in the same order
as those listed for the exchange step in the task definition.

• As an option, include an initialization procedure in an RI shared image. If
you provide one, ACMS calls this procedure the first time it calls a URP in
the shared image. For example, you can use an initialization procedure to
open a channel to a device or open an FMS form file.

• You can also optionally provide a cancellation procedure in an RI shared
image. If you provide one, ACMS will call it if it must cancel a task that is
calling a URP in the shared image at the time of the cancellation.

• Considerations for the URP shareable image:

Link the URP into a shared image and make sure the image is position
independent.

Set the protection of the shareable image file to have read and execute
access.

The RI agent activates the URP shareable image only once, and it remains
mapped into the agent’s memory until the agent image exits.

• Each URP procedure must return a status value or you will receive the
message ‘‘Error processing request interface call.’’

• ACMS only caches .RLB files that are defined in the task group. It does not
cache .RLB files defined by an ACMS$RI_LIB logical. ACMS never caches RI
.EXE files.

Example 14–1 and Example 14–2 depict a task and a task group in which the first
exchange step in the task calls a URP. Example 14–3 shows RI_INQ_REQUEST,
a FORTRAN URP that displays the inquiry form and prompts the user to enter
the customer number.

Using the ACMS Request Interface 14–9



Using the ACMS Request Interface
14.4 Writing User Request Procedures

Example 14–3 FORTRAN User Request Procedure

!********************** RI_INQ_REQUEST *******************
!

INTEGER FUNCTION RI_INQ_REQUEST (DATA_REC)
INCLUDE ’($IODEF)’ !OpenVMS I/O definitions

!
! Declaration of variables
!
! Declare external routines
!

INTEGER SYS$QIOW
!
! Declare the workspaces that will be passed as parameters
!

STRUCTURE /RI_EMPLOYEE_RECORD/
INTEGER*4 EMPLOYEE_ID
CHARACTER*10 EMPLOYEE_FIRST_NAME
CHARACTER*10 EMPLOYEE_LAST_NAME

END STRUCTURE
RECORD /RI_EMPLOYEE_RECORD /DATA_REC

!
! Declare the IOSB to be used in the OpenVMS QIO system service
!

STRUCTURE /IOSTAT_BLOCK/
INTEGER*2 IOSTAT
INTEGER*2 TERM_OFFSET
INTEGER*2 TERMINATOR
INTEGER*2 TERM_SIZE

END STRUCTURE
RECORD /IOSTAT_BLOCK/ IOSB

!
! Declare input channel number to be shareable
! by all User Request Procedures (URP).
!

INTEGER*2 INPUT_CHAN
COMMON /INPUT_CHANNEL/INPUT_CHAN

!
! Declare local variables
!

INTEGER*4 CODE,STATUS

CHARACTER*1 ESC
DATA ESC /27/
CHARACTER*3 CLEAR
DATA CLEAR /’[2J’/
CHARACTER*7 POSITION
DATA POSITION /’[00;24f’/

CHARACTER*80 PROMPT
CHARACTER*10 INPUT_STRING

(continued on next page)

14–10 Using the ACMS Request Interface



Using the ACMS Request Interface
14.4 Writing User Request Procedures

Example 14–3 (Cont.) FORTRAN User Request Procedure

!
! Perform the RI_INQ_REQUEST User Request Procedure. This
! routine will duplicate the work done by the RI_INQ_REQUEST
! TDMS request, which displays a form to accept employee id from
! the terminal user.
!
! Set return status success
!

RI_INQ_REQUEST = 1
!
! Screen is cleared and cursor is positioned at 6th line,
! 24th column then user is requested to input Employee ID.
!

POSITION(2:3) = ’06’
PROMPT = ESC//CLEAR//ESC//POSITION//’EMPLOYEE ID: ’
CODE = IO$_READVBLK.OR.IO$_READPROMPT
STATUS = SYS$QIOW (,%VAL(INPUT_CHAN), %VAL(CODE),IOSB,,,
1 %REF(INPUT_STRING), %VAL(6),,,
1 %REF(PROMPT), %VAL(25))
IF (.NOT. STATUS) THEN

RI_INQ_REQUEST = STATUS
RETURN

END IF
!
! Employee ID is converted from a string to the integer
! field in the workspace record.
!

DECODE (IOSB.TERM_OFFSET,100,INPUT_STRING) DATA_REC.EMPLOYEE_ID
100 FORMAT (I6)

END

Example 14–4 shows RI_INQ_DISP_REQUEST, a TDMS request used in the
second exchange step of the task shown in Example 14–1.

Example 14–4 TDMS Request

REPLACE REQUEST RI_INQ_DISP_REQUEST

FORM IS RI_INQ_DISP_FORM;
RECORD IS RI_EMPLOYEE_RECORD;

CLEAR SCREEN;
DISPLAY FORM RI_INQ_DISP_FORM;

OUTPUT EMPLOYEE_ID TO EMPLOYEE_ID,
EMPLOYEE_FIRST_NAME TO EMPLOYEE_FIRST_NAME,
EMPLOYEE_LAST_NAME TO EMPLOYEE_LAST_NAME;

WAIT;
END DEFINITION;

14.4.1 Writing an ACMS$RI_LIB_INIT Initialization Procedure
As an option, you can write an initialization procedure that sets up the necessary
data structures for the RI shared image. For example, if the URP use an FMS-
supported device, the initialization procedure might set up FMS workspaces, open
an I/O channel to the terminal, open forms libraries, and do other initialization
work necessary to perform I/O to the terminal. The initialization procedure must
return a status value, or the RI reports a failure and cancels the current task.

Using the ACMS Request Interface 14–11



Using the ACMS Request Interface
14.4 Writing User Request Procedures

The ACMSRRSHR component calls the ACMS$RI_LIB_INIT procedure only once
(when it first maps the shared image) before it calls a URP in the shared image
for the first time. Always name this procedure ACMS$RI_LIB_INIT. Link the
initialization procedure with the shared image.

Example 14–5 shows an initialization procedure written in FORTRAN.

Example 14–5 FORTRAN Initialization Procedure

!**************** ACMS$RI_LIB_INIT **********************
!

INTEGER FUNCTION ACMS$RI_LIB_INIT
!
! This procedure is the initialization routine for the TDMS_LIB
! library file. The initialization procedure is not required,
! but if one exists it must be named ACMS$RI_LIB_INIT.
!
! Since this library file will perform QIOs to the terminal
! instead of executing the normal TDMS request for each exchange
! step, the initialization procedure will open a channel to
! the user terminal.
!
! Declaration of variables
!
! Declare external routines
!

INTEGER SYS$ASSIGN
!
! Declare input channel number to be shareable
! by all User Request Procedures (URP).
!

INTEGER*2 INPUT_CHAN
COMMON /INPUT_CHANNEL/INPUT_CHAN

!
! Set up local variables
!

INTEGER*4 STATUS
!
! **IMPORTANT:
! A status must be passed back from the initialization procedure
! or the RI will report a failure and cancel the current task.
!
! Set the return status equal to success,
!

ACMS$RI_LIB_INIT = 1
!
! Perform the initialization procedure for the QIO
! library file.
!
! Assign the terminal pointed to by SYS$INPUT and provide
! the I/O channel number to perform subsequent QIO calls.
!

STATUS = SYS$ASSIGN (’SYS$INPUT’,INPUT_CHAN,,)
!
! Check the status that was return from the
! SYS$ASSIGN system service call. If an error
! occurred, then return the error to the Request
! Interface which will report the error in
! ACMS audit log and cancel the task.
!

IF (.NOT. STATUS) THEN

(continued on next page)

14–12 Using the ACMS Request Interface



Using the ACMS Request Interface
14.4 Writing User Request Procedures

Example 14–5 (Cont.) FORTRAN Initialization Procedure
ACMS$RI_LIB_INIT = STATUS
RETURN

END IF

END

The name of the URP in this example is in a function statement. The URP does
not pass any parameters, but it defines a COMMON area with which to open
a channel to a user terminal. This initialization URP sets the return status to
success. When using the RI, it is important to return a status from the URP
whether it is an initialization URP or any other URP. The RI agent checks the
status returned. If there is an error, the message is returned to the RI. The RI
reports the error to ACMS, cancels the current task, and logs the message in the
ACMS audit trail log. If you do not return status information from a URP, the RI
agent:

• Reports an error (‘‘Error Processing request interface call’’) and cancels the
task

• Is unable to record the exact error message in the ACMS audit trail log

Example 14–6 shows an example of the error messages that would be recorded
in the audit trail log if the RI agent was unable to open the I/O channel for the
RI_INQ task.

Example 14–6 Example of Audit Trail Error Messages

Task canceled in STEP EX1 task RI_INQ_REQUEST in Group RI_PASSED_GROUP
Error processing request interface call
Error executing initialization routine for request library file

DEVICE:$[$DIR]LIBRARY1.EXE
PROGRAM ERROR:

Error processing request interface call
Error in Request RI_INQ_REQUEST, error returned from URP in

DEVICE:$[$DIR]LIBRARY1.EXE
SYSTEM-F-INVCHAN, invalid I/O channel

14.4.2 Writing an ACMS$RI_LIB_CANCEL Cancellation Procedure
You can optionally write a cancel procedure to abort any I/O in progress and
do any necessary cleanup work for a task. If a task is canceled for any reason
such as by the ACMS/CANCEL operator command (discussed in HP ACMS
for OpenVMS Managing Applications), the Request Interface searches for the
ACMS$RI_LIB_CANCEL routine in the shareable image and uses that routine
as the cancellation procedure for the task. Example 14–7 shows a cancellation
procedure written in FORTRAN.

Using the ACMS Request Interface 14–13



Using the ACMS Request Interface
14.4 Writing User Request Procedures

Example 14–7 FORTRAN Cancel Procedure

!****************** ACMS$RI_LIB_CANCEL ***********************
!

INTEGER FUNCTION ACMS$RI_LIB_CANCEL
!
! This procedure is the cancellation routine for the TDMS_LIB
! library file. The cancellation procedure is not required,
! but if one exists it must be named ACMS$RI_LIB_CANCEL.
!
! This routine will get called when the current task gets
! canceled either by the operator command "ACMS/CANCEL TASK"
! or the using typing Ctrl during an exchange step. It
! signals an ACMS$_CANCELD error, which will abort any
! QIO’s that were in progress and will unwind the call
! stack.
!
! Declaration of variables
!
! Declare external symbols and routines
!

EXTERNAL ACMS$_CANCELD
INTEGER LIB$SIGNAL,SYS$CANCEL

!
! Declare input channel number to be shareable
! by all User Request Procedures (URP).
!

INTEGER*2 INPUT_CHAN
COMMON /INPUT_CHANNEL/INPUT_CHAN

!
! Declare local variables
!

INTEGER*4 STATUS
!
! Perform the cancellation procedure for the TDMS_LIB
! library file.
!
! Cancel any QIO that is outstanding
!

STATUS = SYS$CANCEL(%VAL(INPUT_CHAN))
CALL LIB$SIGNAL(ACMS$_CANCELD)

!
END

14.4.3 Compiling and Linking URPs
After writing the user request procedures for all the tasks in a task group and
any initialization and cancellation procedures, compile those procedures and link
them into a shareable image file. Reference the shareable image file in either of
the following ways:

• In the REQUEST LIBRARY IS clause of the definition of each task group
whose tasks call URPs

• By defining the ACMS$RI_LIB logical name to point to the URP shareable
image file

An application can use multiple shareable image files. Each shareable image
file contains any number of URPs, an optional URP initialization procedure to
set up the necessary work areas, and an optional URP cancellation procedure.
Figure 14–3 shows the contents of a shareable image file.

14–14 Using the ACMS Request Interface



Using the ACMS Request Interface
14.4 Writing User Request Procedures

Figure 14–3 User-Written Shareable Image File

ZK−7557−GE

ACMS$RI_LIB_INIT

Initialization procedure that opens the terminal channel.

Cancellation procedure.

ACMS$RI_LIB_CANCEL

RI_INQ_REQUEST

Request procedure which runs during an exchange step.

REQUEST_n:  (procedure name)

Request procedure which runs during an exchange step.

ACMS$RI_EXAMPLES:
RI_REQUEST_LIBRARY 1 .EXE (shareable image file)

.

.

.

The following command compiles request procedures RI_INQ_REQUEST,
ACMS$RI_LIB_INIT, and ACMS$RI_CANCEL, and produces three object
modules:

FORTRAN RI_INQ_REQUEST, ACMS$RI_LIB_INIT, ACMS$RI_LIB_CANCEL/DEBUG

When linking your request procedures, you must:

• Name the ACMS$RI_DEBUG_MODULE object module in the LINK command
if you want to test a URP in the debugger.

• Use an options file to declare all URP names as universal and common
data as nonshared. See Example 14–8 for an example of an options file on
OpenVMS Alpha.

Example 14–8 REQPROCS.OPT Options File on Alpha

SYMBOL_VECTOR = (RI_INQ_REQUEST = PROCEDURE,-
ACMS$RI_DEBUG_ROUTINE = PROCEDURE ,-
ACMS$RI_LIB_INIT = PROCEDURE ,-
ACMS$RI_LIB_CANCEL = PROCEDURE)

PSECT_ATTR = INPUT_CHANNEL,PIC,USR,OVR,REL,GBL,NOSHR,NOEXE,RD,WRT,NOVEC

The RI uses the OpenVMS Run-Time Library (RTL) routine LIB$FIND_IMAGE_
SYMBOL to locate the URP to call. Therefore, the request library executable
image must meet the following requirements of the LIB$FIND_IMAGE_SYMBOL
routine:

• The image must be a shareable image. Therefore, always link URPs as a
shareable image.

Using the ACMS Request Interface 14–15



Using the ACMS Request Interface
14.4 Writing User Request Procedures

• The names of all URPs, including ACMS$RI_DEBUG_ROUTINE, ACMS$RI_
LIB_INIT, and ACMS$RI_LIB_CANCEL, must be universal symbols.

• All common (global) areas defined as shareable between the URPs must not
be shareable by different processes, and must be declared nonshareable in an
options file. Every process can share the RI request library shareable image
code but must have its own copy of common data areas.

You can use any OpenVMS file names for your procedures and for the shareable
image file.

Example 14–9 links into a shareable image the four object modules. It also shows
how to use the options file in Example 14–8 and how to meet the requirements of
the LIB$FIND_IMAGE_SYMBOL RTL service.

Example 14–9 Linking Shareable Images and Using an Options File

$ LINK/DEBUG/SHARE/EXECUTABLE=REQPROCS.EXE RI_INQ_REQUEST, -
_$ ACMS$RI_LIBINIT, ACMS$RI_LIB_CANCEL, -
_$ SYS$LIBRARY:ACMS$RI.OLB/INCLUDE=ACMS$RI_DEBUG_MODULE, -
_$ REQPROCS.OPT

In this list of commands:

1. The /SHARE qualifier creates an OpenVMS shareable image. If you forget
this qualifier and attempt to use the image, the RI logs the error ‘‘Reserved
addressing fault’’ in the ACMS audit trail log to notify you that the image has
not been linked as a shareable image.

2. The SYMBOL_VECTOR command in the options file on an Alpha system
sets up the global symbols as keys into the image. The symbols referenced
must be global to be defined as universal. You define a symbol as universal
on Alpha by using the SYMBOL_VECTOR command. All URPs, including the
initialization, debugger, and cancellation URPs, must be defined as universal
symbols. If you try to access a URP that was not declared as a universal
symbol, the RI logs the following error in the ACMS audit trail log:

%LIB-F-KEYNOTFOU, key not found in tree

3. The PSECT_ATTR command in the option file sets the URP common area
as not shareable. By default, all common areas have the PSECT attribute
SHR. This attribute lets multiple processes share the same data area if it is
installed (using the OpenVMS Install Utility) as writable.

Be sure that all URPs for a given RI request library can share the data
areas. However, those data areas should not be shareable across different
processes. If you define the PSECT attribute as NOSHR, each user (process)
can have a separate copy of the data area. If you try to run the RI with the
PSECT attribute set to SHR, the RI logs an error in the ACMS audit trail log,
notifying you that the image must be installed as WRITABLE. This message
indicates that the PSECT attribute is set to SHR. Remember, if you install
the image as writable, the data areas are shared by many processes and the
URPs may access corrupted data.

14–16 Using the ACMS Request Interface



Using the ACMS Request Interface
14.5 Providing an RI Agent

14.5 Providing an RI Agent
When using the RI, do not use the ACMS-supplied agent (CP). Instead, use an
RI agent to interface the task submitter to ACMS. An RI agent is provided as
part of the ACMS software. You can use either this ACMS-supplied agent, called
ACMS$RI_AGENT, or you can write your own agent to meet the specific needs of
an application.

The ACMS$RI_AGENT provides an example of how an agent program can be
developed to utilize the RI interface. An RI agent uses the Systems Interface (SI)
services to sign users in to ACMS, enable the RI agent to perform I/O through
the request interface, and call tasks in an ACMS application. The ACMS$RI_
EXAMPLES directory contains a listing of the source code of the ACMS-supplied
RI agent. See HP ACMS for OpenVMS Systems Interface Programming for more
information about the Systems Interface and its services.

Always run an RI agent from a user process so there is one RI agent for each user
process. An RI agent submits tasks to ACMS under the OpenVMS user name
of the user process. The RI agent signs in each user process to identify it to the
ACMS system. Just as in a standard ACMS system, only users authorized with
the ACMS User Definition Utility can gain access to ACMS. Also, all terminals
or devices accessing ACMS must be authorized with the ACMS Device Definition
Utility. See HP ACMS for OpenVMS Managing Applications for more information
about authorizing users and devices.

The RI agent ACMS$RI_AGENT (by default) prompts the user for an application
and task name. An RI agent can also call a menu interface through which the
user can enter data. You can write your own menu interface modules, or if you
are interfacing to FMS, you might want to use the ACMS-supplied FMS menu
interface. Section 14.5.1 describes more about how to provide a menu interface.

Figure 14–4 shows the pseudocode for the Request Interface agent and two menu
interface routines. The routines in the figure use FMS calls to display the menu
and retrieve the data.

Using the ACMS Request Interface 14–17



Using the ACMS Request Interface
14.5 Providing an RI Agent

Figure 14–4 Pseudocode for an RI Agent Using an FMS Menu Interface

start:
   ACMS$SIGN_IN
   ACMS$INIT_EXCHANGE_IO
   call init_routine

loop:
   call Menu_procedure
   if (task = "$EXIT") then
      goto exit_loop
   ACMS$GET_PROCEDURE_INFO
   ACMS$START_CALL
   ACMS$WAIT_FOR_CALL_END

   goto loop
exit_loop:
   ACMS$TERM_EXCHANGE_IO
   ACMS$SIGNOUT
   exit

start:
   FDV$ATERM
   FDV$AWKSP
   FDV$LOPEN
   return

ACMS$RI_MENU_INIT

ACMS$RI_MENU_ROUTINE

start:
.
.
.

menu_routine:
   FDV$CDISP
   task = task_name
   appl = application_name
   return

TAY-0442-AF

In this figure, the RI agent:

1. Signs in the user to the ACMS system. The agent uses the ACMS$SIGN_IN
service to sign in the user. By default, the user name signed in is the agent’s
OpenVMS user name.

2. Calls the ACMS$INIT_EXCHANGE_IO service to prepare the agent for use
with the RI. The RI agent uses the ACMS$M_IO_ENABLE_SYNC_RI flag to
indicate to the ACMS EXC that the RI agent performs all task I/O. See HP
ACMS for OpenVMS Systems Interface Programming for more information on
flags used by the ACMS$INIT_EXCHANGE_IO service.

3. Determines whether or not the agent calls a user-written menu. The user-
written menu routine can be linked into the agent, or into a shared image
that is pointed to by the ACMS$RI_MENU logical name. The RI agent uses
the ACMS$RI_MENU logical to locate the menu interface image, if any,
that contains the ACMS$RI_MENU_INIT and ACMS$RI_MENU_ROUTINE
user interface routines. If there is no menu, ACMS prompts the user for the
application name and task name.

4. Performs the exit processing starting at step 7 if the user enters $EXIT
in response to the ‘‘Enter task name:’’ prompt. Otherwise, the agent calls
the ACMS$GET_PROCEDURE_INFO service to find out what I/O method
(terminal, request, stream, or none) and procedure ID to use for the task.

5. Uses the ACMS$START_CALL service to submit an ACMS task if the task
and application names are valid. Because the ACMS$START_CALL service
only starts the task, the agent must also include an ACMS$WAIT_FOR_
CALL_END service to wait for the task to end.

6. Loops back to step 4 to prompt for another task selection.

7. Calls the ACMS$TERM_EXCHANGE_IO service to terminate the exchange
I/O enabled earlier.

14–18 Using the ACMS Request Interface



Using the ACMS Request Interface
14.5 Providing an RI Agent

8. Calls the ACMS$SIGNOUT service to sign the user out of ACMS.

While taking these steps to develop an agent, you may need to define several
logical names and routines for use at run time. Table 14–1, Table 14–2, and
Table 14–3 summarize these names and routines.

Table 14–1 Logical Names Used by the Request Interface

Logical Name Used by ACMS at Run Time

ACMS$RI_LIB_library-name A logical defined by the user that identifies the request
library or shareable image associated with the name
used in a REQUEST IS USING clause.

ACMS$RI_MENU A logical defined by the user that identifies the
shareable image created by linking the ACMS$RI_
MENU_INIT menu initialization procedure and
the ACMS$RI_MENU_ROUTINE menu interface
procedure.

Table 14–2 Routines Used by the Request Interface

Routine Name Identifies

ACMS$RI_LIB_CANCEL An optional user-written cancel procedure that the RI
calls to do cleanup work when a task is canceled.

ACMS$RI_DEBUG_ROUTINE An ACMS-supplied routine that the Request Interface
starts up when you debug URP object modules.

ACMS$RI_LIB_INIT An optional user-written initialization procedure
that sets up the necessary data structures for the RI
executable image.

Table 14–3 Menu Interfaces Used by the Request Interface

Routine Name Identifies

ACMS$RI_MENU_INIT An optional user-written initialization procedure that
sets up to use the ACMS$RI_MENU_ROUTINE menu
interface.

ACMS$RI_MENU_ROUTINE A user-written (URP) menu interface procedure.

14.5.1 Providing a Menu Interface
There are two ways to obtain task selection information from the user: write
your own menu interface, or code the RI agent to prompt you automatically
for information. If you choose not to write a menu interface and you use the
ACMS-supplied RI agent, by default the ACMS$RI_AGENT prompts the user to
enter the task and application selections. If you choose to use a menu interface,
the ACMS$RI_AGENT can optionally call special-purpose menu interface (URP)
procedures with which the user can enter the task and application information.

With a menu interface in place, the application is easier to use because you do
not have to select an application and the specific task each time you want to run
a task. To use a menu interface with the ACMS$RI_AGENT, a programmer must
write a menu initialization procedure and a menu interface procedure. These
procedures must be named ACMS$RI_MENU_INIT and ACMS$RI_MENU_
ROUTINE, respectively.

Using the ACMS Request Interface 14–19



Using the ACMS Request Interface
14.5 Providing an RI Agent

Include these procedures in the RI agent code in one of the following ways:

• Link them into a shared image and then dynamically activate them at
run time. Activate the shareable image in the RI agent process by using
the LIB$FIND_IMAGE_SYMBOL RTL routine. In order to activate these
procedures in the ACMS$RI_AGENT, define the logical ACMS$RI_MENU
to point to the shared image file that contains the two menu interface
procedures.

• Link them directly into the RI agent code and call them as required. This
is the preferred and recommended method because it results in better
performance.

If interfacing to FMS, you may want to use the ACMS-supplied FMS menu
interface. ACMS supplies an FMS-based menu interface as part of the RI
software. The sample FMS form library for the menu interface is located in the
ACMS$RI_EXAMPLES directory.

As with the user-written menu interface described previously, you can include
the ACMS-supplied FMS menu interface in an RI agent by either defining the
logical ACMS$RI_MENU to point to a shared image that contains the ACMS$RI_
MENU_INIT and ACMS$RI_MENU_ROUTINE procedures, or relinking the
RI agent with the ACMS$RI_MENU_INIT and ACMS$RI_MENU_ROUTINE
procedures.

The layout of the FMS menu form is similar to the ACMS menu format. The
FMS menu form contains a menu header, a selection list, a prompt line and
a message line. The menu header is the name of the menu. The selection list
shows the tasks to run and the menus for display. The prompt line includes both
the SELECTION: prompt and the blank spaces after the prompt. You type the
number or keyword for the task or menu you want in the blank space after the
prompt. Press Return after your selection.

Example 14–10 and Example 14–11 show FMS-supplied initialization and menu
interface definitions.

Example 14–10 FMS Initialization Procedure

FUNCTION LONG ACMS$RI_MENU_INIT

RET_STATUS = FDV$ATERM(TCA%(),12%,12%)

RET_STATUS = FDV$AWKSP(FMS_WORKSPACE%(),2000%)

RET_STATUS = FDV$LOPEN(’ACMS$RI_FMS_MENU_LIB’m10%)

END FUNCTION

14–20 Using the ACMS Request Interface



Using the ACMS Request Interface
14.5 Providing an RI Agent

Example 14–11 FMS Menu Procedure

FUNCTION LONG ACMS$RI_MENU_ROUTINE ( STRING TASK_NAME , &
STRING APPLICATION_NAME, &
LONG EXECUTION_STATUS )

RET_STATUS = FDV$CDISP(TRM$(CURRENT_FORM))

RET_STATUS = FDV$GET ( MENU_OPTION, TERMINATOR, ’OPTION’)

RET_STATUS = FDV$RETDI(VAL%(DATA_INDEX),NAMED_DATA)

END FUNCTION

To change FMS menus, change only the form definition. You do not need to
make code changes to change FMS menus. The NAMED_DATA syntax is part
of FMS forms definition and is explained in the FMS documentation. For more
information about how to modify the ACMS-supplied FMS menu interface to work
with your application, see Appendix F.

14.5.2 Compiling and Linking Menu Interface URPs with the RI Agent
After writing the menu initialization and interface procedures, compile those
procedures and link the resulting object modules with the RI agent in one of the
following ways:

• Link the ACMS$RI_MENU_INIT and ACMS$RI_MENU_ROUTINE menu
interface object modules with the RI agent object module.

• Link the ACMS$RI_MENU_INIT and ACMS$RI_MENU_ROUTINE menu
interface object modules (using the /SHARE qualifier) into a menu interface
image. At run time, the RI agent uses the ACMS$RI_MENU logical name to
locate that image.

For example, type the following command to link the RI agent to include the FMS
menu interface:

$ LINK/EXE=fmsagent.exe sys$input/option
sys$library:acms$ri.olb/include=acms$ri_agent_module
sys$library:acms$ri_fms_menu.olb/include=
(acms$ri_menu_init, acms$ri_menu_routine)

$ DEFINE ACMS$RI_LIB_libraryname ri_request_library.exe

$ DEFINE ACMS$RI_FMS_MENU_LIB fmsformmenulib.flb

$ RUN fmsagent

At run time, the ACMS$RI_AGENT uses the following steps to run the menu
interface procedures:

1. If the menu interface procedures have been linked with the agent object
module, it runs those procedures.

2. If the menu interface procedures have not been linked with the agent object
module, the ACMS$RI_AGENT uses the logical name ACMS$RI_MENU
to locate the menu interface image containing the menu initialization and
interface procedures.

3. If the menu interface procedure is not available, then the ACMS$RI_AGENT
prompts the user for an application and task name.

To debug menu initialization and menu interface procedures, follow the
instructions for debugging URPs in Section 14.6.

Using the ACMS Request Interface 14–21



Using the ACMS Request Interface
14.5 Providing an RI Agent

14.5.3 User-Written Menus for the ACMS$RI_AGENT
When you write a user-written menu routine for the ACMS$RI_AGENT, it is
important to be aware of how your chosen language handles dynamic string
descriptors. The task name and application name arguments in the ACMS$RI_
AGENT are passed to the ACMS$RI_MENU_ROUTINE as dynamic descriptors.
If the language you have chosen does not support dynamic string descriptors,
you must use an OpenVMS run-time library routine to return the task and
application names to the ACMS$RI_AGENT.

The following FORTRAN example accepts an application name and a task name
into two fixed-length strings. The STR$TRIM OpenVMS RTL routine is then
used to remove trailing spaces and copy the names into the arguments supplied
by the ACMS$RI_AGENT.

!
! THIS ROUTINE GETS THE TASK AND APPLICATION
! NAMES FROM THE USER....
!
INTEGER FUNCTION ACMS$RI_MENU_ROUTINE(TASK,APPL,TASK_STS)
!
! Addresses of appl and task name dynamic string descriptors
INTEGER*4 TASK, APPL
!
! Completion status of previous task (0 if 1st time through)
INTEGER*4 TASK_STS
!
! Local strings to input application and task names
CHARACTER*32 TNAME, ANAME
!
! RTL completion status
INTEGER*4 STATUS
!
! RTL routine to trim spaces from a string
INTEGER*4 STR$TRIM
!
WRITE( UNIT=5,FMT=’(A,$)’ ) ’ INPUT APPLICATION SELECTION: ’
READ ( UNIT=5,FMT=’(A32)’ ) ANAME
WRITE( UNIT=5,FMT=’(A,$)’ ) ’ INPUT TASK SELECTION: ’
READ ( UNIT=5,FMT=’(A32)’ ) TNAME
!
STATUS = STR$TRIM( %REF(TASK), %DESCR(TNAME) )
IF (STATUS) THEN
STATUS = STR$TRIM( %REF(APPL), %DESCR(ANAME) )
END IF
!
ACMS$RI_MENU_ROUTINE = STATUS
RETURN
END

14.6 Debugging Applications that Call URPs
The method used to debug the RI user request procedures depends on whether or
not:

• You have a running ACMS application (with the application started and
menus defined) and you want to debug just the RI agent and the URPs

• You need to debug the complete application including the RI agent, ACMS
tasks, and URPs

14–22 Using the ACMS Request Interface



Using the ACMS Request Interface
14.6 Debugging Applications that Call URPs

Section 14.6.1 discusses using the OpenVMS Debugger to debug applications
that are already up and running, but are currently using TDMS requests.
Section 14.6.2 describes using the ACMS Task Debugger to debug URPs and the
tasks that they call.

Do the following to prepare to debug:

1. Link the RI agent with the debugger:

$ LINK/DEBUG/EXE=debug_agent -
_$ sys$library:acms$ri.olb/include=acms$ri_agent_module

This command creates an image named DEBUG_AGENT.EXE in your default
directory. You can use the optional /EXE qualifier to assign a name to the
image. If you do not use the qualifier, the linker uses the file name of the first
object module in the LINK command as the name of the server image. The
default file type is .EXE. Make sure that the name of the server image is the
same as the name in the IMAGE clause of the task group definition.

Include the /DEBUG qualifier in the LINK command to set up the table of
symbols used for debugging.

2. Include the ACMS$RI_DEBUG_MODULE object module in the RI
shareable image file by adding the following line to the LINK command
in Example 14–9:

sys$library:acms$ri.olb/include=acms$ri_debug_module

ACMS supplies the ACMS$RI_DEBUG_MODULE to debug URPs. Link
the ACMS$RI_DEBUG_MODULE in the shared image that contains
the URPs so that when the shared image is activated, the RI agent
(ACMRRSHR component) will invoke the debugger. The image is activated
by the LIB$FIND_IMAGE_SYMBOL RTL routine in the RI agent. The
ACMS$DEBUG_ROUTINE is then invoked to signal the debugger. The user
sets the module to the URP module to set breaks and so on.

To protect business data, set up test files to run against the task. If your
procedures use logical names to identify the files used, create a set of data files
in another directory and temporarily redefine the logical names to point to that
directory. If defining these logical names from DCL command mode, be sure to
define the names as group or system logicals using the /GROUP or /SYSTEM
logical on the DEFINE or ASSIGN command.

14.6.1 Using the OpenVMS Debugger to Debug URPs Using a Running
Application

Start with a running ACMS application that is currently working by using TDMS
requests. Then define the ACMS$RI_LIB_library-name logical name to point
to the URP shareable image file. Then run the RI agent you linked with the
debugger. For example:

$ ACMS/START APPLICATION test_application
$ DEFINE ACMS$RI_LIB_request_library1 request_lib_image.exe
$ RUN debug_agent
DBG> GO
Task Name:
Application Name:
DBG>

Using the ACMS Request Interface 14–23



Using the ACMS Request Interface
14.6 Debugging Applications that Call URPs

In this example, test_application is a fully developed ACMS application that
contains a TDMS request library named request_library1.rlb. The shareable
image created to replace that TDMS request library is named request_lib_
image.exe.

14.6.2 Using the ACMS Task Debugger to Debug URPs and Their Tasks
This section provides an outline of the steps to debug URPs and their tasks by
using the ACMS Task Debugger. This method of debugging is very similar to the
method for debugging tasks submitted by user-written agents that is discussed
in HP ACMS for OpenVMS Writing Server Procedures. By following these
instructions and supplementing this discussion with the one in HP ACMS for
OpenVMS Writing Server Procedures, you can debug URPs with the RI debugger
and debug tasks with the ACMS Task Debugger. To use this debugging method,
do the following:

1. Type the following commands to start the ACMS Task Debugger process:

$ SET PROCESS/PRIVILEGE=SHARE
$ ACMS/DEBUG/AGENT_HANDLE=dummyapplicationname testgroup.tdb
ACMSDBG>

In response to the ACMSDBG prompt, start servers needed by the task and
set breakpoints before selecting the task (see HP ACMS for OpenVMS Writing
Server Procedures). Then type the ACCEPT command to allow the ACMS
Task Debugger to accept calls from the RI agent program:

ACMSDBG> ACCEPT

2. Make tasks selected by the RI agent program run in the ACMS Task
Debugger by defining the following before you run the RI agent:

$ DEFINE ACMS$RI_LIB_request_library1 request_lib_image.exe
$ DEFINE ACMS$DEBUG_AGENT_TASK "TRUE"
$ RUN debug_agent
DBG> GO
Task Name:
Application Name: dummyapplicationname
DBG>

When you run the RI agent linked with the OpenVMS debugger, the debugger
prompt appears. In these commands, the dummyapplicationname is the agent
handle that was used in the ACMS/DEBUG/AGENT_HANDLE command in
the debugger process (see HP ACMS for OpenVMS Writing Server Procedures).

After setting up the debugger process, start the agent process and enter the GO
command at the DBG> prompt. Because a menu interface was not linked into the
RI agent in this example, the ACMS$RI_AGENT prompts you for a task name
and an application name.

After you enter the task and application names, the RI determines if the RI
request library shareable image file contains the ACMS$RI_DEBUG_MODULE
procedure (URP). If the debugger procedure exists, the OpenVMS debugger
(DBG>) prompt appears.

At this point, use the SET IMAGE command to tell the debugger that you are
going to use the RI request library shareable image file. The name of the image
specified with this command must be the same as the logical name used to point
to the RI request library image. Then you can set breakpoints at any URPs,
including the initialization and cancellation URPs. For example:

14–24 Using the ACMS Request Interface



Using the ACMS Request Interface
14.6 Debugging Applications that Call URPs

DBG> SET IMAGE ACMS$RI_LIB_<!OPEN>requestlibraryname<!CLOSE>
DBG> SET BREAK urp1
DBG> SET BREAK urp2
DBG> GO

Type $EXIT in response to the ‘‘Enter Task Name:’’ prompt to exit from the RI
agent.

14.7 Defining an Application that Uses the Request Interface
There are no differences between an application definition that uses HP
DECforms or TDMS and one that uses the Request Interface. Example 14–12
shows the application definition that uses the task group and tasks defined in
this document.

Example 14–12 Example Application Definition

REPLACE APPLICATION RI_SAMPLE_APPL
AUDIT;

APPLICATION USERNAME IS adf$exc;
DEFAULT APPLICATION FILE IS

"ACMS$RI_EXAMPLES:RI_SAMPLE_APPL.ADB";

SERVER DEFAULTS ARE
AUDIT;
USERNAME IS adf$server;

END SERVER DEFAULTS;

TASK DEFAULTS ARE
AUDIT;

END TASK DEFAULTS;

TASK GROUP IS
RI_LOGICAL_GROUP:

TASK GROUP FILE IS "ACMS$RI_EXAMPLES:RI_PASSED_GROUP.TDB";
END TASK GROUP;
END DEFINITION;

14.8 Running the Agent
To run your agent in a production environment, relink the request procedures,
omitting the /DEBUG qualifier and the RI debug object module ACMS$RI_
DEBUG_MODULE. Then use the DCL RUN command followed by the name of
the RI agent image. For example:

$ RUN ACMS$RI_AGENT

Using the ACMS Request Interface 14–25





Part II
Writing and Migrating Applications to

OpenVMS Alpha

This part describes how to write HP ACMS for OpenVMS (ACMS) applications
for a HP OpenVMS (OpenVMS) Alpha system and how to migrate ACMS
applications from an OpenVMS VAX system to an OpenVMS Alpha system.





15
Introduction

ACMS supports the same set of features on both OpenVMS VAX and OpenVMS
Alpha systems, including HP DECforms support. This part of the manual
describes the following:

• Writing applications for OpenVMS Alpha

• Migrating applications from OpenVMS VAX to OpenVMS Alpha

• I/O options and restrictions

• Managing applications on OpenVMS Alpha

Although ACMS supports HP DECforms Version 2.1B on systems running
OpenVMS Alpha Version 6.1 or higher, excluding OpenVMS Alpha Version 7.0,
TDMS and HP DECforms Version 1.4 are not available on OpenVMS Alpha.
Therefore, if your application uses either one of these products for any of its
presentation services, refer to Chapter 18 for restrictions.

Refer to the ACMS Software Product Description (SPD) and the HP DECforms
SPD for supported versions and platforms.

Introduction 15–1





16
Writing Applications for OpenVMS Alpha

This chapter describes how to write applications using ACMS for OpenVMS
Alpha, focusing on information that is specific to ACMS on OpenVMS Alpha.

16.1 Writing an ACMS Application for OpenVMS Alpha
For the most part, you write your ACMS applications the same way you would for
OpenVMS VAX. The main difference is that with the exception of TDMS requests
you build the source components on OpenVMS Alpha instead of OpenVMS VAX.
Refer to Section 16.2.3 for restrictions on TDMS.

An ACMS application typically consists of the following source components:

• Task definitions

• Task group definitions

• Menu definition

• Application definition

• Server procedures

• User-written agents

• Programs that call ACMS Queued Task Services

• Message definition files

• CDD record definitions

• Forms

Follow these steps to build an ACMS application for OpenVMS Alpha:

1. Invoke the CDD Dictionary Operator utility on OpenVMS Alpha to define
the record definitions. If you have a OpenVMS Cluster with VAX and Alpha
systems, then you can define the record definitions on the VAX system.

2. Invoke ADU on the OpenVMS Alpha system to build the task, task group,
menu, and application definitions.

3. Invoke the HP DECforms IFDL translator on the OpenVMS Alpha system to
build the form files.

4. Invoke the OpenVMS Alpha 3GL compiler of choice and the OpenVMS Alpha
linker to compile and link the server procedures, user-written agents, and
programs that call the ACMS Queued Task Services.

Note

VAX and Alpha object libraries (OLBs) are incompatible. If a server
procedure references procedures in an OLB, you must rebuild the OLB.

Writing Applications for OpenVMS Alpha 16–1



Writing Applications for OpenVMS Alpha
16.1 Writing an ACMS Application for OpenVMS Alpha

5. Invoke the OpenVMS Alpha Message utility to build the message definitions.

6. If you use HP DECforms Version 1.4 or TDMS, you must build the forms on
OpenVMS VAX.

16.2 Form Changes and Form File Caching
All form files (HP DECforms form image files and TDMS request libraries)
used by an application must be on the same node on which the application is
started because the application execution controller (EXC) checks that all files
are present when the application starts. This is necessary in order for ACMS to
cache the form files or request libraries to the submitter node when a user selects
a task that uses HP DECforms or TDMS in exchange steps.

The form image files or request libraries must be in the location specified in the
task group definition.

The following line from a task group definition file shows that the form file is in
the directory pointed to by the AVERTZ_DEFAULT logical name:

.

.

.
FORM IS vr_form IN "avertz_default:vr_form.form";
.
.
.

In this example, the VR_FORM.FORM form file must be in the AVERTZ_
DEFAULT directory.

The following line from a task group definition file shows that the request library
is in the directory pointed to by the AVERTZ_DEFAULT logical name:

.

.

.
REQUEST LIBRARY IS "avertz_default:deprmsrlb.rlb";
.
.
.

In this example, the DEPRMSRLB.RLB request library must be in the AVERTZ_
DEFAULT directory on OpenVMS Alpha.

16.2.1 Formatting and Naming HP DECforms Form Image Files
The HP DECforms form image files (.EXE) on the application node must have the
image format expected on the submitter node:

• If the submitter node is an OpenVMS Alpha node, the form image file on the
application node must be an OpenVMS Alpha image.

• If the submitter node is an OpenVMS VAX node, the form image file on the
application node must be an OpenVMS VAX image.

If all submitter nodes are of the same platform, either all OpenVMS Alpha
nodes or all OpenVMS VAX nodes, create a form image file for the submitter
node’s platform and copy it to the application node in the location specified in the
FORMS clause of the task group definition.

16–2 Writing Applications for OpenVMS Alpha



Writing Applications for OpenVMS Alpha
16.2 Form Changes and Form File Caching

If the submitter nodes are a mixture of OpenVMS Alpha nodes and OpenVMS
VAX nodes, create two form file images for each form (one for the OpenVMS
Alpha submitter nodes and one for the OpenVMS VAX submitter nodes) and place
them on the application node in the location specified in the FORMS clause of the
task group definition.

Use the following naming convention to distinguish executables for each of the
two platforms when you have a mixture of OpenVMS Alpha and OpenVMS VAX
submitter nodes:

• OpenVMS Alpha form image file name:

<form-name>.EXE_AXP

• OpenVMS VAX form image file name:

<form-name>.EXE_VAX

Note

The HP DECforms form image files have the .EXE file type in the FORMS
clause of the task group definition and are the only file types that require
special attention. The HP DECforms form files have the .FORM file type
or have no type specified in the FORMS clause. These files will function
as they have in the past on both VAX and Alpha systems.

Table 16–1 illustrates the six possible environments.

Table 16–1 Environments

Option Submitter Node(s) Application Node Form Image File

1 OpenVMS VAX OpenVMS VAX form_name.EXE (VAX image)

2 OpenVMS Alpha OpenVMS VAX form_name.EXE (Alpha image)

3 OpenVMS VAX OpenVMS Alpha form_name.EXE (VAX image)

4 OpenVMS Alpha OpenVMS Alpha form_name.EXE (Alpha image)

5 OpenVMS VAX and
OpenVMS Alpha

OpenVMS VAX form_name.EXE_VAX (VAX image) and
form_name.EXE_AXP (Alpha image)

6 OpenVMS VAX and
OpenVMS Alpha

OpenVMS Alpha form_name.EXE_VAX (VAX image) and
form_name.EXE_AXP (Alpha image)

For options 1 through 4, create a form image file for the submitter node’s platform
(OpenVMS VAX or OpenVMS Alpha) and put it in the location specified in the
FORMS clause of the task group definition on the application node.

For options 5 and 6 create two separate form image files, one for each platform
(OpenVMS VAX and OpenVMS Alpha). Then rename the form image files
using the naming convention defined above and put the new files in the location
specified in the FORMS clause of the task group definition on the application
node.

Note

Options 2 and 3 assume that tasks using form images are not selected
locally on the application node.

Writing Applications for OpenVMS Alpha 16–3



Writing Applications for OpenVMS Alpha
16.2 Form Changes and Form File Caching

16.2.1.1 Building HP DECforms Image Files on OpenVMS Alpha
There are a few differences in building HP DECforms files on OpenVMS Alpha
compared to OpenVMS VAX. An overview of the primary differences is provided
here. For full details about using HP DECforms on OpenVMS Alpha, refer to the
HP DECforms Version 2.x Release Notes and the HP DECforms manuals.

When translating the .IFDL file on OpenVMS Alpha, you have the option
of taking advantage of the OpenVMS Alpha natural alignment (by default)
or specifying that you do not want to use natural alignment by using the
/NOMEMBER_ALIGNMENT qualifier. In order to use the default alignment, the
workspace definitions must be longword aligned. When you specify/NOMEMBER_
ALIGNMENT, the form-file and data-records are byte aligned, that is, they are
using the "VAX Compatible" record layout scheme. You can use this qualifier
if your form files need byte-alignment to be compatible with other parts of the
application that are byte-aligned.

If you want to use the default "Aligned" record layout scheme, use the command:

$ FORMS TRANSLATE <form-name>

If you want to use the "VAX Compatible" record layout scheme, use this command:

$ FORMS TRANSLATE/NOMEMBER_ALIGNMENT <form-name>

Extract the object file the same way as on OpenVMS VAX:

$ FORMS EXTRACT OBJECT <form-name>

The link command for HP DECforms shareable images on OpenVMS Alpha
has a different format than on OpenVMS VAX. When building applications that
use shared images that contain either forms or procedural escape routines on
OpenVMS Alpha, specify the following linker option when building these shared
images:

symbol_vector=(Forms$AR_Form_Table=Data)

The link command is as follows:

$ LINK/SHARE <form-name>, sys$input/opt -
symbol_vector=(Forms$AR_Form_Table=Data)

If you declare symbols as universal symbols on OpenVMS VAX, declare them
using the SYMBOL_VECTOR= option on OpenVMS Alpha. In certain cases, you
must declare shared-procedural, escape-routine (PEU) entry points in this option
as well. Refer to the HP DECforms Version 2.x Release Notes for information
about using the SYMBOL_VECTOR= option for linking HP DECforms images.

16.2.2 Caching with Multiple Submitter Platforms
To support forms caching, the application execution controller (EXC) checks that
all form image files are present when the application starts. Therefore, if you use
HP DECforms form image files on multiple submitter node platforms, you must
define the following logical name on the application node:

ACMS$MULTIPLE_SUBMITTER_PLATFORMS

This notifies the EXC that there are multiple submitter node platforms. The
scope of the logical name can be systemwide. However, if you have multiple
applications, you may want to define this logical name at the application level by
using the APPLICATION LOGICALS clause in your application definition.

16–4 Writing Applications for OpenVMS Alpha



Writing Applications for OpenVMS Alpha
16.2 Form Changes and Form File Caching

At startup, the EXC translates the logical name. If the value of the logical name
is set to "T", "t", "Y", "y", or "1" and the file type in the FORMS clause of the
task group definition specified is .EXE, the EXC looks for the presence of both
form image files (form_name.EXE_VAX and form_name.EXE_AXP). If either
file is missing, the application does not start. If the logical name is not defined
or translates to something other than "T", "t", "Y", "y", or "1", the EXC looks
for the file that is specified in the task group definition. If you have multiple
submitter platforms and FORM image files are copied to the submitted nodes
manually, the file type must be retained (for example, form_name.EXE_VAX and
form_name.EXE_AXP).

Note

1. The platform-specific form image files with the extensions
.EXE_VAX and .EXE_AXP must be present in the specified
directory on the application node. In addition, the logical name
ACMS$MULTIPLE_SUBMITTER_PLATFORMS must be defined for
all applications that have submitters on mixed platforms, even if the
form image files are copied to the submitter nodes manually rather
than being cached.

2. When using multiple submitter platforms, a form name cannot be a
logical name. If the task group definition uses a logical name for the
form name, the EXC cannot locate the form because no logical name
translation is performed.

16.2.3 Applications that Use HP DECforms Version 1.4 or TDMS
If your ACMS application uses HP DECforms Version 1.4 or TDMS, you must
distribute it in order to use ACMS for OpenVMS Alpha. In this case, the forms
processing must be on an OpenVMS VAX submitter node. Some I/O restrictions
apply to ACMS in a distributed environment. See HP ACMS for OpenVMS
Managing Applications for more information on distributed forms processing.

16.3 Using Logical Names
Use logical names instead of hardcoded names to make your application more
flexible and easier to maintain. If an application is moved to another directory or
node, you simply redefine the logical names to reflect the new configuration. If
you do not use logical names, you must modify and rebuild your application. You
can use logical names to define the following:

• File names

• Node names

• Device names

• CDD path names

Using logical names also makes distributing your application easier, because
fewer changes in the source code are required.

Writing Applications for OpenVMS Alpha 16–5



Writing Applications for OpenVMS Alpha
16.3 Using Logical Names

Note

When used in a multiplatform environment, form names cannot be logical
names. See Section 16.2.2 for more information.

Table 16–2 lists the ADU clauses in which you can specify a logical name, and
the ACMS definitions containing the clauses.

Table 16–2 ADU Clauses in Which You Can Specify a Logical Name

Clause Definition

IMAGE Task, task group

WORKSPACES Task, task group

DEFAULT OBJECT FILE Task group

DEFAULT TASK GROUP FILE Task group

FORMS Task group

MESSAGE FILES Task group

PROCEDURE SERVER IMAGE Task group

REQUEST LIBRARIES Task group

APPLICATION DEFAULT DIRECTORY Application

DEFAULT APPLICATION FILE Application

DEFAULT DIRECTORY Application

TASK GROUPS Application

DEFAULT APPLICATION Menu

DEFAULT MENU FILE Menu

MENU Menu

TASK Menu

16–6 Writing Applications for OpenVMS Alpha



17
Migrating ACMS Applications from OpenVMS

VAX to OpenVMS Alpha

This chapter describes how to migrate applications from OpenVMS VAX to
OpenVMS Alpha, focusing on information specific to ACMS on OpenVMS Alpha.
Two options are available for migrating your application:

• Compiling and linking on OpenVMS Alpha

• Translating images with the VEST utility

For additional details on migrating applications, see the following OpenVMS
Alpha documentation:

• Migrating an Application from OpenVMS VAX to OpenVMS Alpha

• DECmigrate for OpenVMS AXP Systems Translating Images

17.1 Migration Checklist
Use the following checklist to identify what you need to review and possibly
modify in order to migrate an ACMS application:

• Server procedures

• User-written agents

• Programs that call the ACMS Queued Task Services

• Task definitions

Review the task I/O restrictions

Review the distributed restrictions

• Message files

• Hardcoded file names, node names, device names, and CDD path names

• Task groups

• Forms and PEUs

• Command procedures for building applications

Applications that use TDMS must be distributed. See Chapter 18 for more
information.

Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha 17–1



Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha
17.2 Migration Options

17.2 Migration Options
The format of an executable image is different on OpenVMS VAX and OpenVMS
Alpha. In order for an ACMS application on OpenVMS Alpha to use an
executable image, you must choose one of the following options:

• Compile and link on OpenVMS Alpha using the appropriate OpenVMS Alpha
3GL compiler and the OpenVMS Alpha linker. This option generates a native
OpenVMS Alpha image.

• Translate the executable OpenVMS VAX image using the VEST utility. This
option generates a translated OpenVMS Alpha image.

If the OpenVMS Alpha compiler is currently not available for the language your
source code is written in, or if the source code is not available, then translation is
your only option.

Note

Compiling and linking on OpenVMS Alpha is the preferred option because
it achieves better performance than translating images.

17.3 Before You Compile and Link on OpenVMS Alpha
You may need to make changes to source code that has dependencies on the
underlying OpenVMS VAX architecture before you compile and link the source
code on OpenVMS Alpha. The following list provides some examples of source
code that needs to be modified:

• References to the frame pointer (FP)

• References to the argument pointer (AP)

• Variables that are sized to be machine-specific

• References to a mechanism array

• Dependencies on the OpenVMS VAX Calling Standard

When you migrate an application, you must consider that the default compiler
behavior for alignment of fields within records/data structures may differ on
OpenVMS VAX and OpenVMS Alpha. This is especially important if the data
structures are shared or passed between OpenVMS VAX and OpenVMS Alpha.
For example, the default behavior of the VAX C compiler is to not align fields on
their natural boundaries within a data structure, whereas the default behavior
of the DEC C compiler for OpenVMS Alpha is to align fields on their natural
boundaries within a data structure.

See Migrating an Application from OpenVMS VAX to OpenVMS Alpha and
the language documentation for more information about OpenVMS VAX
dependencies.

17–2 Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha



Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha
17.4 Compiling and Linking on OpenVMS Alpha

17.4 Compiling and Linking on OpenVMS Alpha
Compile and link the following:

• Server procedures

If you are going to compile and link the server procedures on OpenVMS
Alpha, you have to rebuild the task group on OpenVMS Alpha before you link
your server procedures. The procedure server object modules produced by the
ADU BUILD GROUP command are referenced when you link your server
procedures. The format of a procedure server object module is different on
OpenVMS VAX and OpenVMS Alpha.

• User-written agents

• Programs that call the ACMS Queued Task Services

• Message files

Create the message object module using the OpenVMS Alpha Message utility.
Create the message executable image using the OpenVMS Alpha linker. The
message object module can be referenced when you build the task group. The
message executable image is used at run time by the ACMS application.

17.4.1 Using Existing ACMS Databases on OpenVMS Alpha
In some cases, you can use the ACMS databases that were built on OpenVMS
VAX without building them again on OpenVMS Alpha. Table 17–1 describes
when you can and cannot use databases built on OpenVMS VAX without
rebuilding them on OpenVMS Alpha.

Table 17–1 Using Existing ACMS Databases on OpenVMS Alpha

If: And: Then:

The task group database
(TDB) was built with the
/DEBUG qualifier

You want to debug tasks on
OpenVMS Alpha

You must rebuild the task
group on OpenVMS Alpha

The TDB was built with the
/NODEBUG qualifier

You are not going to compile
and link server procedures
on OpenVMS Alpha

You do not need to rebuild
the task group on OpenVMS
Alpha

You are compiling your
server procedures on
OpenVMS Alpha

You must rebuild the task
group on OpenVMS Alpha

The application database
(ADB) contains TASK
access control lists (ACLs)

The User Identification
Code (UIC) or identifiers
in the ACLs have different
values on the OpenVMS
Alpha submitter node

You must rebuild the
application on OpenVMS
Alpha 1

The menu definition
contains an optional clause
that calls TDMS, that is,
REQUEST IS

If you use this clause, you
can still access the menu
database from OpenVMS
Alpha. However, the clause
will be ignored and ACMS
will display the default
command line menu.

1 This is also true when copying an application database from one OpenVMS VAX system to another
OpenVMS VAX system.

Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha 17–3



Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha
17.4 Compiling and Linking on OpenVMS Alpha

If your ACMS databases do not need to be rebuilt on OpenVMS Alpha, you can
simply copy the ACMS databases from OpenVMS VAX to OpenVMS Alpha.

17.5 Translating Images Using the VEST Utility
DECmigrate for OpenVMS is a layered product that facilitates migrating
OpenVMS VAX applications to OpenVMS Alpha systems. The VAX
Environment Software Translator (VEST) is a DECmigrate utility that
converts an OpenVMS VAX executable or shareable image into a translated
image for an OpenVMS Alpha system. If DECmigrate is installed on your
system, you can use it to translate OpenVMS VAX images.

17.5.1 Overview of the VEST Utility
VEST accepts as input an OpenVMS VAX image file (for example, a procedure
server image or a user-written agent image) and creates a translated image that
can be used on an OpenVMS Alpha system. When the translated image runs, the
OpenVMS Alpha system transparently supports the image with an environment
that allows it to run as if it were on an OpenVMS VAX system. In that support
environment, the average translated image runs as fast as or faster than the
original running on an equivalent OpenVMS VAX system.

17.5.2 ACMS Images that Can Be Translated
You can translate the following ACMS images:

• Procedure server images

• User-written agent images

• Images that call the ACMS Queued Task Services

Note

The VEST utility cannot translate all OpenVMS VAX images. There
are some restrictions. For example, images linked prior to VAX VMS
Version 4.0 and most privileged images cannot be translated. For more
information on images that cannot be translated, see DECmigrate for
OpenVMS AXP Systems Translating Images.

17.5.3 Running VEST to Translate an Image
The example in this section shows the steps involved in translating a procedure
server image. These same steps can be used for translating a user-written agent
or a program that calls the ACMS Queued Task Services.

Perform the following steps to translate an OpenVMS VAX image:

1. Before you translate the image, use the VEST/DEPENDENCY command to
identify references to shareable images:

$ VEST/DEPENDENCY VR_READ_SERVER.EXE

%VEST-I-READIMAGE, Reading image file VR_READ_SERVER.EXE;
%VEST-I-READIMAGE, Reading image file SYS$COMMON:[SYSLIB]ACMTWPSHR.EXE;
%VEST-I-READIMAGE, Reading image file SYS$COMMON:[SYSLIB]ACMSHR.EXE;
%VEST-I-READIMAGE, Reading image file SYS$COMMON:[SYSLIB]DTI$SHARE.EXE;
%VEST-I-READIMAGE, Reading image file SYS$COMMON:[SYSLIB]LIBRTL.EXE;
%VEST-I-READIMAGE, Reading image file SYS$COMMON:[SYSLIB]COBRTL.EXE;

17–4 Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha



Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha
17.5 Translating Images Using the VEST Utility

The output of this command identifies the shareable images that may be
required in order to translate the vr_read_server.exe image. For some of the
shareable images listed, there must be a corresponding Image Information
File (IIF file). An IIF file is a text file that provides VEST with additional
information to be used during the image translation. ACMS provides three
image information files. These are:

• ACMSHR.IIF

• ACMTWPSHR.IIF

• ACMRRSHR.IIF

The ACMS installation procedure places the IIF files in the SYS$LIBRARY
directory on your OpenVMS Alpha system. You must reference the IIF files
when you issue the VEST command. Reference the IIF files in one of the
following ways:

• Define the VEST$INCLUDE logical name to point to the directory where
the IIF files are located.

• Copy the required IIF files to the directory where you plan to issue the
VEST command.

• Specify the /INCLUDE_DIRECTORY qualifier when you issue the VEST
command and specify the directory where the IIF files are located.

Based on the output of the VEST/DEPENDENCY command, the vr_read_
server.exe procedure server image has dependencies on the following
shareable images:

ACMTWPSHR.EXE
ACMSHR.EXE
DTI$SHARE.EXE
LIBRTL.EXE
COBRTL.EXE

You need an IIF file for each of the ACMS shareable images that are listed
from the VEST/DEPENDENCY command. In addition, you need an IIF file
for the language the source code was written in. In this case, the source code
was written in COBOL. If calls are made to library routines from the COBOL
source code, then an IIF file for the LIBRTL shareable image is also required.

Note

Although DTI$SHARE appears as a dependency, there is no IIF file for
this shareable image. It appears as a dependency because the ACMS
shareable images have a dependency on it.

2. Translate the image:

$ VEST VR_READ_SERVER.EXE

If the translation is successful, VEST creates the translated image in your
current directory and names it by appending "_TV" to the output image file
name as follows:

VR_READ_SERVER_TV.EXE

3. Reflect the name change from VR_READ_SERVER.EXE to VR_READ_
SERVER_TV.EXE.

Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha 17–5



Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha
17.5 Translating Images Using the VEST Utility

If the image you are translating is a procedure server image, and if logical
names for procedure servers were not used, modify your task group definition.
See Section 17.5.3.1 for more information.

If the image you are translating is a user-written agent or a program
that calls the ACMS Queued Task Services, see Section 17.5.3.2 for more
information.

17.5.3.1 Referencing Translated Procedure Server Images
Modify your task group definition to use a logical name rather than a file
specification in the PROCEDURE SERVER IMAGE clause. The server in the
following example references a server by the name of VR_READ_SERVER:

SERVERS ARE
vr_read_server:
PROCEDURE SERVER IMAGE IS "avertz_default:vr_read_server.exe";
INITIALIZATION PROCEDURE IS vr_read_init;
RUNDOWN ON CANCEL IF INTERRUPTED;
PROCEDURES ARE

vr_compute_bill_proc,
vr_find_cu_proc,
vr_find_si_proc,
vr_find_ve_vrh_proc,
vr_find_res_proc,
vr_res_details_proc;

DEFAULT OBJECT FILE IS "avertz_default:vr_read_server.obj";

END SERVER;

If you translate the VR_READ_SERVER procedure server image, the translated
name is VR_READ_SERVER_TV.EXE.

Modify the PROCEDURE SERVER IMAGE clause and replace the server name
with a logical name. For example, replace "avertz_default:vr_read_server.exe"
with "vr_read_server_log". Then rebuild the task group with the new logical
name.

Before you start your ACMS application, you need to define a logical name, vr_
read_server_log, that points to the translated image. One way of doing this is:

$ DEFINE/SYSTEM VR_READ_SERVER_LOG DISK1$:[ACMS.ALPHA.IMAGES]VR_READ_SERVER_TV.EXE

If you want to reference the OpenVMS VAX version of the executable image,
define the logical name to point to the OpenVMS VAX image. You do not need to
modify and build the task group again. For example:

$ DEFINE/SYSTEM VR_READ_SERVER_LOG DISK1$:[ACMS.VAX.IMAGES]VR_READ_SERVER.EXE

17.5.3.2 Running Translated Images
As the example in Section 17.5.3 shows, you need to reflect the name change
when you reference a translated image. If you are running a user-written agent
or a program that calls the ACMS Queued Task Services, you can accommodate
the change in the image name in one of the following ways:

• Use the translated name (file-spec_TV) when you issue the RUN command,
or define a logical name to point the old name to the location and name of the
translated image.

• If you use command procedures, modify your command procedures to use the
translated name or define a logical name to point the old name to the location
and name of the translated image.

17–6 Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha



Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha
17.5 Translating Images Using the VEST Utility

• If you use a foreign command symbol, modify the symbol name to point to the
location and name of the translated image or define a logical name to point
the old name to the location and name of the translated image.

For more information on translating images, see DECmigrate for OpenVMS AXP
Systems Translating Images.

17.5.4 Debugging Translated Images
Debugging translated images involves debugging at the machine code level. You
can use either the OpenVMS Delta Debugger or the OpenVMS Debugger to debug
images that have been translated with the VEST utility.

Note

Although the OpenVMS Debugger supports debugging by symbol name
and by source code line, you cannot use these methods to debug translated
images.

You must be able to debug at the machine code level to effectively debug
translated images.

To debug a translated image:

1. Map OpenVMS Alpha program counters to OpenVMS VAX program counters.

Use the machine code listing generated by the VEST utility to do this. Issue
the following command to generate the machine code listing:

$ VEST/SHOW=MACHINE vax_image.exe

VEST writes the output of this command in the VAX_IMAGE_TV.LIS file.
The output shows the OpenVMS VAX machine code and the corresponding
OpenVMS Alpha machine code.

2. Identify the routines or instructions in the machine code listing where you
want to set breakpoints.

3. Locate the translated addresses corresponding to the routines or instructions
in the machine code listing.

4. Set breakpoints at the translated addresses.

For detailed information on how to debug translated images, see the following
documentation:

• OpenVMS Delta/XDelta Debugger Manual

• OpenVMS Debugger Manual

• DECmigrate for OpenVMS AXP Systems Translating Images

17.6 Migrating HP DECforms Files to OpenVMS Alpha
The best method for migrating HP DECforms .FORM or .EXE files from an
OpenVMS VAX system is to copy the .IFDL files to the OpenVMS Alpha system
and build them on the OpenVMS Alpha system. This provides the best DECforms
performance.

Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha 17–7



Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha
17.6 Migrating HP DECforms Files to OpenVMS Alpha

HP DECforms form image files (.EXE) must either be built on the OpenVMS
Alpha system or translated from OpenVMS VAX files. For information about
building HP DECforms files on OpenVMS Alpha, refer to Section 16.2.1.1. For
information about using the VEST utility, refer to Section 17.5.

HP DECforms .FORM files are compatible between OpenVMS VAX and OpenVMS
Alpha. Therefore, you can copy .FORM files built on one platform to the other
platform. Note, however, that the alignment of the form and data structures
are "Aligned" on the OpenVMS Alpha system and "VAX Compatible" on the
OpenVMS VAX system. If you copy the .FORM files, be sure that any programs
interfacing with the forms are compiled with the default alignment for that
OpenVMS system.

17.6.1 Upgrading to HP DECforms Version 2.1 from Prior Versions
HP DECforms .FORM and .EXE files are backwards compatible. Form files built
with Version 2.0 of HP DECforms and earlier work with HP DECforms Version
2.1. However, because there have been changes to the internal structure of the
.FORM files with the Version 2.1 release of HP DECforms, the performance is
better if you rebuild the .FORM and .EXE files using HP DECforms Version 2.1.

17.6.2 Using HP DECforms on Multiple Platforms
If your application uses HP DECforms on both OpenVMS Alpha and OpenVMS
VAX submitter nodes, see Section 16.2.

17–8 Migrating ACMS Applications from OpenVMS VAX to OpenVMS Alpha



18
I/O Options and Restrictions

This chapter describes the following:

• I/O options and restrictions when distributing an application

• I/O options and restrictions when one of the nodes in a distributed
environment is an OpenVMS Alpha node

• Task and menu selection on OpenVMS Alpha

18.1 Restrictions for Distributing an Application
It is important to know the I/O methods that the tasks in your application use
when you are determining whether or not you can distribute the application.
There are defaults for the I/O attributes, and, in some cases, it is not obvious by
looking at the task definition to see what the I/O attributes of the task are.

You can use the ADU DUMP GROUP command to display the contents of the
task group database. The output of this command shows the I/O type of each
task in the task group. The ADU DUMP GROUP command lists the I/O type of
each block, exchange, and processing step for each task in the task group. For
example:

ADU> DUMP GROUP VR_TASK_GROUP.TDB/OUTPUT=VR_TASK_GROUP_DUMP.DMP

You cannot distribute tasks that have the following:

• TERMINAL I/O in a processing step

• REQUEST I/O in a processing step

• Clauses that run in a DCL server and require terminal I/O

Tasks that run in a DCL server and require terminal I/O can be selected
only from the system where the application is started. The following task
definition clauses run in a DCL server:

DATATRIEVE COMMAND

DCL COMMAND

IMAGE

The OpenVMS image specified in the IMAGE clause must be compatible with
the platform on which the application is executing.

I/O Options and Restrictions 18–1



I/O Options and Restrictions
18.2 OpenVMS Alpha Restrictions

18.2 OpenVMS Alpha Restrictions
A system configured with an OpenVMS Alpha submitter node has the following
restrictions:

• There is no HP DECforms that is compatible with ACMS on OpenVMS Alpha
Version 1.5. ACMS requires HP DECforms Version 2.1 as the minimum
version on OpenVMS Alpha. HP DECforms Version 2.1 is not supported on
OpenVMS Alpha Version 1.5.

• TDMS is not available on OpenVMS Alpha.

The additional restrictions are:

• Any task that has HP DECforms FORM I/O can execute on OpenVMS Alpha,
but must be selected from an OpenVMS VAX submitter node if the application
is running on OpenVMS Alpha Version 1.5.

• Any task that has TDMS REQUEST I/O in exchange steps can execute on
OpenVMS Alpha, but must be selected from an OpenVMS VAX submitter
node.

• Any local task that has TDMS REQUEST I/O in processing steps cannot
execute on OpenVMS Alpha.

• You cannot select a task from OpenVMS Alpha that uses TDMS in exchange
steps. Also, you cannot select a task from OpenVMS Alpha Version 1.5 that
uses HP DECforms in exchange steps. These tasks fail on selection.

From OpenVMS Alpha, you can, however, select the following types of tasks:

• Tasks that require no terminal interaction

• Tasks that specify FORM/IO in the task definition if using OpenVMS
Version 6.1

• Tasks that specify STREAM I/O in the task definition

• Local tasks that specify TERMINAL I/O in the task definition (see
Table 18–1 for more information)

Table 18–1 shows the additional restrictions for processing steps on an OpenVMS
Alpha system. Table 18–2 shows the restrictions for exchange steps on an
OpenVMS Alpha system.

Table 18–1 Processing Step I/O Options and Restrictions on OpenVMS Alpha

Block Step Processing Step

Selectable from
Local Alpha
Node

Selectable from
VAX to an
Application on
Remote Alpha
Node

Selectable from Alpha to an
Application on Remote VAX or
Remote Alpha

No BLOCK step
(Single-step task)

NO I/O Yes Yes Yes

TERMINAL I/O
(Default)

Yes No No

REQUEST I/O No No No

(continued on next page)

18–2 I/O Options and Restrictions



I/O Options and Restrictions
18.2 OpenVMS Alpha Restrictions

Table 18–1 (Cont.) Processing Step I/O Options and Restrictions on OpenVMS Alpha

Block Step Processing Step

Selectable from
Local Alpha
Node

Selectable from
VAX to an
Application on
Remote Alpha
Node

Selectable from Alpha to an
Application on Remote VAX or
Remote Alpha

BLOCK WITH NO I/O NO I/O
(Default)

Yes Yes Yes

TERMINAL I/O Yes No No

REQUEST I/O No No No

BLOCK WITH FORM
I/O

NO I/O
(Default)

Yes1 Yes Yes1

TERMINAL I/O Yes1 No No

BLOCK WITH
REQUEST I/O
(Default)

NO I/O
(Default)

No2 Yes No2

TERMINAL I/O No2 No No

REQUEST I/O No No No

BLOCK WITH
STREAM I/O

NO I/O
(Default)

Yes Yes Yes

1If the task is selected from the OpenVMS Alpha Version 1.5 node, these are restrictions. However, you can use HP TP
Desktop Connector (formerly ACMS Desktop) to perform FORM I/O on the block step on OpenVMS Alpha Version 1.5.
2If you use the RI or HP TP Desktop Connector (formerly ACMS Desktop) to perform REQUEST I/O on the block step,
these are not restrictions.

Table 18–2 Exchange Step I/O Options and Restrictions on OpenVMS Alpha

Block Step Exchange Step

Selectable from
Local Alpha
Node

Selectable from
VAX to an
Application on
Remote Alpha
Node

Selectable from Alpha to an
Application on Remote VAX or
Remote Alpha

BLOCK WITH
REQUEST I/O
(Default)

READ, WRITE No1 Yes No1

REQUEST No1 Yes No1

BLOCK WITH FORM
I/O

SEND, RECEIVE,
or TRANSCEIVE

Yes2 Yes Yes2

1If you use the RI or HP TP Desktop Connector (formerly ACMS Desktop) to perform REQUEST I/O on the block step,
these are not restrictions.
2If the task is selected from the OpenVMS Alpha Version 1.5 node, these are restrictions. However, you can use HP TP
Desktop Connector (formerly ACMS Desktop) to perform FORM I/O on the block step on OpenVMS Alpha Version 1.5.

(continued on next page)

I/O Options and Restrictions 18–3



I/O Options and Restrictions
18.2 OpenVMS Alpha Restrictions

Table 18–2 (Cont.) Exchange Step I/O Options and Restrictions on OpenVMS Alpha

Block Step Exchange Step

Selectable from
Local Alpha
Node

Selectable from
VAX to an
Application on
Remote Alpha
Node

Selectable from Alpha to an
Application on Remote VAX or
Remote Alpha

BLOCK WITH
STREAM I/O

READ, WRITE Yes Yes Yes

18.2.1 Alternatives to TDMS REQUEST I/O
You can use either the ACMS Request Interface (RI) or HP TP Desktop Connector
(formerly ACMS Desktop) to perform REQUEST I/O from a task in place of
TDMS requests. If you use the RI or HP TP Desktop Connector (formerly ACMS
Desktop) in your ACMS application to perform REQUEST I/O, then some of the
restrictions in Table 18–1 and all of the restrictions in Table 18–2 regarding
REQUEST I/O on the block step do not apply.

See HP ACMS for OpenVMS Writing Applications for more information about the
Request Interface. See the TP Desktop Connector for OpenVMS Programming
and Management Guide for more information about using HP TP Desktop
Connector (formerly ACMS Desktop).

18.2.2 Alternative to HP DECforms FORM I/O
If you are using OpenVMS Alpha Version 1.5, you can use HP TP Desktop
Connector (formerly ACMS Desktop) to perform FORM I/O from a task in place
of HP DECforms FORM I/O. If you use HP TP Desktop Connector in your ACMS
application to perform FORM I/O, then some of the restrictions in Table 18–1 and
all of the restrictions in Table 18–2 regarding FORM I/O on the block step do not
apply.

See the TP Desktop Connector for OpenVMS Programming and Management
Guide for more information about using FORM I/O with HP TP Desktop
Connector (formerly ACMS Desktop).

18.3 Selecting Tasks and Menus on OpenVMS Alpha
You can use the ACMS/ENTER command on OpenVMS Alpha to select the
following kinds of tasks:

• Tasks that require no terminal interaction

• Tasks that specify FORM I/O in the task definition

• Tasks that specify STREAM I/O in the task definition

• Some local tasks that specify TERMINAL I/O in the task definition

See Table 18–1 for more information.

Because TDMS is not on the OpenVMS Alpha platform, a menu that uses
this request option appears as a command line menu when you issue the
ACMS/ENTER command on OpenVMS Alpha. The following sections describe the
commands and keys that are available in the command line menu interface.

18–4 I/O Options and Restrictions



I/O Options and Restrictions
18.3 Selecting Tasks and Menus on OpenVMS Alpha

18.3.1 ACMS Menu Commands
If you issue the ACMS/ENTER command on an OpenVMS Alpha system, ACMS
returns the Selection prompt as the following example shows:

$ ACMS/ENTER
Selection:

Enter a dollar sign ($) at the Selection prompt to enable the ACMS command
menu prompt. Table 18–3 lists the ACMS commands that are available at the
selection prompt.

Table 18–3 ACMS Menu Commands

Command Description

CONTINUE Returns to a selection menu from a command menu

EXIT Ends your ACMS session and signs you out of ACMS

HELP Provides information on ACMS commands and menus

MENU Displays selection or command menu

NOMENU Displays a Command: or Selection: prompt without displaying the
command or selection menu

SELECT Selects a task that is not in your menu tree without including the
menu path for the task

A selection menu is application-specific. Issue the MENU command at the
Selection prompt to display menu items. Figure 18–1 shows the selection menu
from the AVERTZ sample application.

Figure 18–1 AVERTZ Rental Menu

You select an item from the menu by either name or number. For example, to
select the reservation task, type RESERVE or 1.

Menus can display tasks and menus. The letter (T or M) following the task name
in the selection menu indicates whether the menu item is a task or another menu
(called a submenu). If you know the name of the task you want to select from
a submenu, you can enter both the menu keyword and the task keyword at the
Selection prompt.

I/O Options and Restrictions 18–5



I/O Options and Restrictions
18.3 Selecting Tasks and Menus on OpenVMS Alpha

You can also select a task without specifying the menu path by including the
application name and the task name on the command line. For example, suppose
that you want to access the DELETE task, which is an item on a submenu of
the PAYROLL application. You can select it directly by issuing the following
command:

Selection: SELECT SAMPLE::PAYROLL DELETE

If you know the menu path of the task you want to select, you can access the task
directly from the Selection prompt. For example:

Selection: 1 2 1

This allows you to select the task without going through every menu in the menu
path.

18.3.2 ACMS Function Keys
Table 18–4 lists the keys that are available in the command line menu interface.

Table 18–4 ACMS Function Keys

Key Description

Asterisk Enables the default menu

Ctrl/Y Cancels the current ACMS task

DELETE Erases the last character typed

Dollar sign Enables the command menu

Hyphen Enables the menu one level above the current menu

18–6 I/O Options and Restrictions



19
Managing Applications on OpenVMS Alpha

You manage and monitor ACMS applications on OpenVMS Alpha the same way
as you do on OpenVMS VAX. The ACMS operator commands, utilities, and tools
are the same for both platforms. However, there are some differences based on
the architecture of OpenVMS Alpha and OpenVMS VAX.

Take the following into consideration when managing an ACMS application on
OpenVMS Alpha:

• Process quotas

Process quotas need to be higher on OpenVMS Alpha. Execute the ACMS
command procedures ACMSPARAM.COM and ACMEXCPAR.COM on
OpenVMS Alpha to calculate values for the ACC, CP, EXC, QTI, and TSC.

• Physical page sizes

Physical page sizes are larger on OpenVMS Alpha. Therefore, the value of the
ACMSGEN TWS_POOLSIZE parameter needs to be increased on OpenVMS
Alpha. Execute the ACMS command procedure ACMSPARAM.COM on
OpenVMS Alpha to calculate the value for the TWS_POOLSIZE parameter.

You do not need to increase any other ACMSGEN parameters unless the
application load increases.

• Memory requirements

Memory requirements for users are higher on OpenVMS Alpha. Therefore,
account quotas and SYSGEN parameters associated with memory usage need
to be increased.

• Disk quotas

Disk quotas for users on OpenVMS Alpha may need to be higher because
images on OpenVMS Alpha require more disk space.

See the following for more information:

• HP ACMS for OpenVMS Managing Applications

• A Comparison of System Management on OpenVMS AXP and OpenVMS VAX

Managing Applications on OpenVMS Alpha 19–1





Appendixes

The appendixes provide the following supplemental information:

• Appendix A shows how to modify the standard ACMS menu format using by
HP DECforms.

• Appendix B shows how to modify the standard ACMS menu format by using
TDMS.

• Appendix C shows how to use CDO to track relationships between ACMS
entities in the CDD dictionary.

• Appendix D demonstrates how to use the optional Language-Sensitive Editor
productivity tool to enter ACMS code on line.

• Appendix E lists the files included with the ACMS Request Interface
examples and software supplied by ACMS.

• Appendix F explains how to modify the FMS menu interface that you use
with the ACMS Request Interface.

• Appendix H contains a list of references to platform-specific files in an ACMS
application.

• Appendix I contains a list of common errors with an explanation and an
appropriate user action.





A
Changing the ACMS Menu Format Using HP

DECforms

Do not attempt to make changes in the standard ACMS menu unless you are
thoroughly familiar with HP DECforms. Errors in the HP DECforms records
and definitions that ACMS uses for menu work can produce fatal exceptions that
cause other parts of the ACMS system to fail; avoid changing the ACMS menu
format except when there is a serious need.

This appendix also describes how to disable the SELECT command, which gives
the user the ability to select a task by application name and task name from the
ACMS Command Menu. Disabling the SELECT command does not require using
HP DECforms.

A.1 Modifying Menu Appearance Without Changing the Default
Format

There are two ways to revise the ACMS menu format without changing the
default format. First, you can include OpenVMS images that use option lists or
menus in your application. Second, when you set up a menu using ADU, you can
make a number of choices in the menu format that ACMS supplies. For example,
you can define the text that appears at the top of the menu. You define the
entries that are displayed on the screen and the descriptive text for these entries.

By using the HEADER, DEFAULT APPLICATION, and ENTRIES clauses (and
the subclauses under ENTRIES), you can change what is displayed on the menu.
The format of the menu, however, is the same from menu to menu:

• The two lines of header text are the top two lines of the screen.

• Each page of the menu can contain up to 16 entries.

• Each entry line consists of a number, a keyword, a task/menu flag, and
descriptive text.

• The Selection: prompt displays on the third line from the bottom.

• The bottom line is used for all messages except ‘‘Press <RET> for more’’ and
‘‘Press <RET> for first page’’. These messages are displayed on the line above
the selection prompt.

A.2 Modifying the ACMS Menu Using HP DECforms
You can change some parts of this format just by changing the HP DECforms
panel definitions that ACMS uses. For example, you can change the Selection:
prompt or the ‘‘Press <RET> ...’’ message lines by changing the Default and
Command panel definitions in the ACMS_MENU.IFDL file. Other changes can
require you to change other parts of the ACMS_MENU.IFDL source file that is

Changing the ACMS Menu Format Using HP DECforms A–1



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

the source of the menu form. The rest of this appendix explains how to change
the source file, ACMS_MENU.IFDL, in order to modify the ACMS menu format.

ACMS uses two panel definitions contained in the ACMS_MENU.IFDL file to
control the display of menus on the system:

• Panel DEFAULT_PANEL is the complete ACMS menu, which includes 16
entries, a 2-line menu header, the Selection: prompt, and a 2-line selection
input field.

• Panel EXPERT_DEF_PANEL contains the Selection: prompt and the 2-line
selection input field; this form is for users who want to select tasks without
seeing menus.

There are two corresponding definitions in the ACMS_MENU.IFDL for the ACMS
Command Menu: panel COMMAND_PANEL, and panel EXPERT_COM_PANEL.
The latter displays only the Command: prompt while the former displays eight
entries plus the Command: prompt.

To modify the default ACMS menu format, you need to change the ACMS_
MENU.IFDL file that displays and controls the menu form. For example, if you
want to change the number of entries that can appear on a menu, you must
change the ACMS_MENU.IFDL file. After it has been modified, you use HP
DECforms to create a new .EXE file to produce the menu format. For more
information on creating a new .EXE file after you have modified the ACMS_
MENU.IFDL file, see DECforms Guide to Developing an Application.

To change the menu, you must either modify the ACMS_MENU.IFDL file
supplied by ACMS or create a new ACMS_MENU.IFDL file.

You can modify the ACMS menu ACMS_MENU.IFDL file and keep the same
name for it. Alternatively, you can make a copy of the ACMS_MENU.IFDL
file and make your changes in the copy. In either case, you use HP DECforms
procedures to create a new .EXE file.

ACMS always looks for the menu form file in the same place with a fixed
name: SYS$SHARE:ACMS_MENU.EXE. So after you have modified the ACMS_
MENU.IFDL file or a copy of it and created a new .EXE file, it must always be
copied to the SYS$SHARE directory with the ACMS_MENU.EXE file name. All
menus on your ACMS system then use the modified default format.

A.2.1 Obtaining the ACMS HP DECforms Default Menu File
To create a new default menu file, you can make a copy of the source file, ACMS_
MENU.IFDL, and alter it as explained in this appendix in order to meet your
needs. Or, you can alter the ACMS_MENU.IFDL file itself if you are sure the
changes you are making are permanent. The ACMS_MENU.IFDL is also stored
in the SYS$SHARE directory.

CAUTION

Do not, under any conditions, change the HEADER RECORD DATA
or the MENU CONTROL RECORD DATA definitions. There is only
one entry in the MENU ENTRY RECORD DATA definition that can be
changed, as explained in the following sections. Changes in any other
fields of these definitions can cause the ACMS system to fail.

A–2 Changing the ACMS Menu Format Using HP DECforms



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

A.2.2 How ACMS Uses Menu Form Record Definitions
Five form record definitions in the ACMS menu definition file control how the
information you supply in the menu definitions you write as part of an application
is used.

The first is the menu header record. Example A–1 shows how this form record
definition appears in the ACMS_MENU.IFDL file.

Example A–1 Definition for ACMS Menu Header

Form Record MENU_HEADER
NUM_ENTRIES Unsigned Longword
MENU_PATH Character(70)
MENU_HEADER_1 Character(80)
MENU_HEADER_2 Character(80)

End Record

ACMS uses the NUM_ENTRIES field to pass to the form the number of entries
in the MENU_ENTRIES record.

ACMS uses the two menu header fields to pass the menu header, or title, to the
form file. It takes this text from the HEADER clause of the menu definition.

The default ACMS menu does not use the MENU_PATH field of this record.
The menu path is the sequence of menus, identified by keyword, that the user
followed in reaching the current menu; ACMS maintains this information. But
this field can be used to display the user’s current location in the menu tree.

Example A–2 shows the ACMS_MENU.IFDL file definition for the second record
used by the ACMS form file, MENU_ENTRIES.

Example A–2 Definition for Menu Entries Record

Form Record MENU_ENTRIES
Group ENTRIES

Occurs 16
ENTRY_ENABLE Character(1)
ENTRY_NUMBER Character(6)
ENTRY_FILL Character(3)
ENTRY_KEY Character(10)
ENTRY_FLAG_TEXT Character(56)

End Group

End Record

ACMS uses the form record MENU_ENTRIES to pass the number, keyword,
identifying flag, and descriptive text to the form file. It derives all this
information for each entry from the menu database. The number for an entry is
derived from the sequence in which the entry occurs in the ENTRIES clause of
the menu definition you write as part of an application. The keyword is derived
from the name used for the entry in the ENTRIES clause; the text is taken from
the TEXT subclause for the entry. The ENTRY_ENABLE field contains one of
two values: T (for tasks) or M (for menus).

Changing the ACMS Menu Format Using HP DECforms A–3



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

Example A–3 shows MENU_CONTROL, the third form record used by the form
file.

Example A–3 Definition for Menu Control

Form Record MENU_CONTROL
CTL_EXPERT_MENU Character(1)
CTL_NEW_ENTRIES Character(1)
CTL_MULTI_PAGE Character(1)
CTL_LAST_PAGE Character(1)

End Record

The information in the menu control record does not come directly from the menu
database. Rather, it is information that ACMS maintains for each user and for
the user’s current menu. The value of CTL_EXPERT_MENU determines whether
the user sees the complete ACMS menu, in which case the field is set to F (False),
or sees only the selection prompt, in which case the field is set to T (True). The
initial value is set from the user definition file (ACMSUDF.DAT). Each time
the user types in the terminal user MENU or NOMENU command, that field is
updated.

ACMS uses the MULTI_PAGE and LAST_PAGE fields in the record to tell the
form file whether more menu entries are available than would fit on a single
screen. It uses the NEW_ENTRIES field to tell the form file whether the entries
to be displayed differ from the entries last displayed.

Example A–4 shows MENU_SELECTION_RECORD, the fourth record used by
the form file.

Example A–4 Definition for Menu Selection Record

Form Record MENU_SELECTION
Group APPL_SELECT_LINE_GROUP

APPL_SELECTION_STRING_1 Character(68)
Transfer APPL_SELECT_LINE_GROUP.APPL_SELECTION_STRING_1

Source SELECT_LINE_GROUP.SELECTION_STRING_1
APPL_SELECTION_STRING_2 Character(187)
Transfer APPL_SELECT_LINE_GROUP.APPL_SELECTION_STRING_2

Source SELECT_LINE_GROUP.SELECTION_STRING_2
End Group

End Record

This record consists of two fields which accept the selection strings from the
menu. The APPL_SELECTION_STRING_1 and APPL_SELECTION_STRING_
2 fields are the actual fields received by the ACMS Command Process (CP).
The user input is made in the SELECTION_STRING fields. The two APPL_
SELECTION_STRING fields accept up to a maximum of 255 characters. If the
actual input is less, the strings are padded with blanks. The size of the APPL_
SELECTION_STRING fields cannot be changed.

Example A–5 shows the fifth record, which tells the ACMS CP if any control text
response with an accept phase has been executed.

A–4 Changing the ACMS Menu Format Using HP DECforms



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

Example A–5 Control Text Response Found Record

Form Record MENU_CTRL_TEXT_FOUND
CTRL_TEXT_RESP_FOUND Longword Integer

End Record

A.2.3 Instructions Performed by the Form File
The .EXE file built from the ACMS_MENU.IFDL file carries out a number of
functions when ACMS calls a menu you defined in the course of constructing an
application. This section explains those functions.

First, either a complete menu or the selection prompt only is displayed.

After the user has typed in a selection keyword or number (and, optionally, a
selection string) and pressed Return , the request moves that information to the
menu selection record.

The form file uses the value passed in the CTL_EXPERT_MENU field to
determine whether to display the complete menu or only the expert menu. If
the CTL_EXPERT_MENU field is set to T, the expert menu is displayed, the
selection is entered in the menu selection record, and the process ends.

If the CTL_EXPERT_MENU field is not set to T, the form file then checks
whether the entries to be displayed are the same ones as the last entries the user
saw. If the value of the CTL_NEW_ENTRIES field of the control record is set to
a value other than T, then the menu is the same as the last one. In this case, the
form file displays the last menu, accepts the selection string, and ends.

If the menu to be displayed does contain new entries, then ACMS has set the
value of CTL_NEW_ENTRIES to T. In this case, the form file displays the menu
form and outputs the menu header. It then begins displaying the entries to the
indexed fields on the menu form. As long as there is an entry, which the form file
checks by looking at one of the fields to be displayed, it continues to produce the
entry information. As soon as there are no more entries, or when the sixteenth
entry has been displayed, the process stops.

If there are more entries than the number of entries allowed per screen, ACMS
sets the value of CTL_MULTI_PAGE to ‘‘T’’. This indicates that the menu has
multiple pages.

If there are more than 16 entries, which is the default number of entries for each
screen, then the request tests the CTL_LAST_PAGE field to determine whether
or not this is the last page of the menu displayed to the user. ACMS indicates
the last page of the menu by setting the CTL_LAST_PAGE field to T. If this is
a multiple page menu and it is the last page, the form file displays the message
‘‘Press <RET> for first page’’. If it is not the last page of the menu, the form file
outputs the message ‘‘Press <RET> for more’’. It then accepts the selection from
the user and ends.

A.2.4 Modifying the Menu Appearance Only
If you are changing only the appearance of the menu without changing the
number of entries, you can make the changes by modifying the panel definitions
in the ACMS_MENU.IFDL file. By modifying the panel definitions, you can
change:

• The background text that displays on the menu. The only background text
on the ACMS-supplied form is the Selection: or Command: prompt. You can
change this prompt or add other background text.

Changing the ACMS Menu Format Using HP DECforms A–5



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

• The text of the instruction for multiple-page menus.

For a detailed explanation of how to modify HP DECforms form definitions, see
DECforms Guide to Developing an Application. If you are changing only the
Selection: or Command: prompts or adding more background text, or want to
change the text of the instructions for multiple page menus, you will be altering
the panel definitions only.

The ACMS_MENU.IFDL file supplied with ACMS includes a number of HP
DECforms panel definitions. To make the changes detailed in the following
paragraphs, you must alter two of these panel definitions, those for DEFAULT_
PANEL and COMMAND_PANEL.

These two definitions are very similar, but you must be sure to make the changes
you want in both definitions so that your menus will be consistent. Example A–6
shows how the DEFAULT_PANEL definition appears in the ACMS_MENU.IFDL
file.

A–6 Changing the ACMS Menu Format Using HP DECforms



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

Example A–6 Panel Definition

Panel DEFAULT_PANEL
Viewport DEFAULT_VIEW
Field MENU_HEADER_1

Line 1
Column 1
Display

Bold
Output Picture X(80)

End Field

Field MENU_HEADER_2
Line 2
Column 1
Display

Bold
Output Picture X(80)

End Field

Literal Text
Next Line
Value ""

End Literal

Group ENTRIES
Vertical

Displays 16
Entry Response

Reset
INFO_LINE_1

End Response

Exit Response
Message

""
If (RECALL_HOLD = 1) Then

Let RECALL_HOLD = 0
Else

If (PREVIOUS_PAGE = 1) Then
Let SELECT_LINE_GROUP.SELECTION_STRING_1 = "\"
Reset

SELECT_LINE_GROUP.SELECTION_STRING_2
Else

If (NEXT_PAGE = 1) Then
Reset

SELECT_LINE_GROUP.SELECTION_STRING_1
Reset

SELECT_LINE_GROUP.SELECTION_STRING_2
Else

Let SELECT_LINE_GROUP.SELECTION_STRING_1 =
ENTRIES(MENU_ENTRIES_INDEX).ENTRY_KEY

Reset
SELECT_LINE_GROUP.SELECTION_STRING_2

Include RESET_RECALL_LIST
End If

End If
End If

End Response

(continued on next page)

Changing the ACMS Menu Format Using HP DECforms A–7



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

Example A–6 (Cont.) Panel Definition

Function Response CHANGE
Let ON_ENTRIES = 0
Let RECALL_HOLD = 1
Deactivate

All
Activate

Field SELECT_LINE_GROUP.SELECTION_STRING_2 on
DEFAULT_PANEL

Activate
Field SELECT_LINE_GROUP.SELECTION_STRING_1 on

DEFAULT_PANEL
Position To Field SELECT_LINE_GROUP.SELECTION_STRING_1 On

DEFAULT_PANEL
End Response

Function Response GO_UP
If (MENU_ENTRIES_INDEX = 1) Then

Let PREVIOUS_PAGE = 1
Return

Else
Position To Up Occurrence

End If
End Response

Function Response GO_DOWN
If (MENU_ENTRIES_INDEX = NUM_ENTRIES) Then

Let NEXT_PAGE = 1
Return

Else
Position To Down Occurrence

End If
End Response
Field ENTRY_NUMBER

Next Line
Column 3
Active Highlight

Reverse
Output Picture X(6)
No Data Input

End Field

Field ENTRY_KEY
Same Line
Column 12
Output Picture X(10)

End Field

Field ENTRY_FLAG_TEXT
Same Line
Column 22
Output Picture X(56)

End Field

End Group

Field INFO_LINE_1
Line 21
Column 1
Output Picture X(80)

End Field

(continued on next page)

A–8 Changing the ACMS Menu Format Using HP DECforms



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

Example A–6 (Cont.) Panel Definition

Group SELECT_LINE_GROUP
Entry Response

If (CTL_MULTI_PAGE = "T") Then
If (CTL_LAST_PAGE = "T") Then

Let INFO_LINE_1 = " ....... "-
"Press <RET> for first page ......."

Else
Let INFO_LINE_1 = " ....... "-

"Press <RET> for more ......."
End If

Else
Reset

INFO_LINE_1
End If

End Response
Exit Response

Message
""

If (RECALL_HOLD = 1) Then
Let RECALL_HOLD = 0

Else
If (PREVIOUS_PAGE = 1) Then

Let SELECT_LINE_GROUP.SELECTION_STRING_1 = "\"
Reset

SELECT_LINE_GROUP.SELECTION_STRING_2
Let PREVIOUS_PAGE = 0

Else
If (NEXT_PAGE = 1) Then

Reset
SELECT_LINE_GROUP.SELECTION_STRING_1

Reset
SELECT_LINE_GROUP.SELECTION_STRING_2

Let NEXT_PAGE = 0
Else

Include RESET_RECALL_LIST
End If

End If
End If

End Response

Function Response CHANGE
Let ON_ENTRIES = 1
Let RECALL_HOLD = 1
Reset

SELECT_LINE_GROUP.SELECTION_STRING_1
Reset

SELECT_LINE_GROUP.SELECTION_STRING_2
Deactivate

All
Activate

Field ENTRIES.ENTRY_NUMBER on DEFAULT_PANEL
Position To Field ENTRIES(1).ENTRY_NUMBER

On DEFAULT_PANEL
End Response

Function Response GO_UP
Include GET_PREVIOUS_RECALL_ITEM

End Response

(continued on next page)

Changing the ACMS Menu Format Using HP DECforms A–9



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

Example A–6 (Cont.) Panel Definition

Function Response GO_DOWN
Include GET_NEXT_RECALL_ITEM

End Response

Literal Text
Line 22
Column 1
Value "Selection: "

End Literal

Field SELECTION_STRING_1
Line 22
Column 12
Autoskip
Output Picture X(68)

End Field

Field SELECTION_STRING_2
Line 23
Column 1
Output Picture X(79)

End Field

End Group

End Panel

If you make changes to add background text, you are adding literals, in HP
DECforms terminology. Be sure that your new background text areas do not
conflict with areas on the panel that are already defined for use in the
ACMS_MENU.IFDL file.

To change the prompt, you must alter the wording in two panel definitions. These
definitions begin with:

Panel DEFAULT_PANEL

and

Panel COMMAND_PANEL

Example A–7 shows the section of the default panel definition in the ACMS_
MENU.IFDL file which needs to be altered to change the prompt.

Example A–7 Default Panel Field Definition

Literal Text
Line 22
Column 1
Value "Selection: "

Example A–8 shows the section of the ACMS_MENU.IFDL file which needs to be
altered to change the Command: prompt in the Command Panel definition.

A–10 Changing the ACMS Menu Format Using HP DECforms



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

Example A–8 Command Panel Field Definition

Literal Text
Line 22
Column 1
Value "Command: "

Example A–9 Record Group SELECT_LINE_GROUP

Group SELECT_LINE_GROUP
Entry Response

If (CTL_MULTI_PAGE = "T") Then
If (CTL_LAST_PAGE = "T") Then

Let INFO_LINE_1 = " ....... "-
"Press <RET> for first page ......."

Else
Let INFO_LINE_1 = " ....... "-

"Press <RET> for more ......."
End If

You can replace the quoted string in either definition with text which suits your
needs.

To change the text of the instructions which appear on multiple-page menus,
you also make changes in the DEFAULT_PANEL and COMMAND_PANEL panel
definitions in the ACMS_MENU.IFDL file.

To change these instructions, you must find the record group SELECT_LINE_
GROUP in the ACMS_MENU.IFDL file. Example A–9 shows how the group
entry appears in the ACMS_MENU.IFDL file supplied with ACMS.

To change the instructions, change the text within the quotation marks.
Remember to change the text in both the DEFAULT_PANEL panel definition
and the COMMAND_PANEL definition or the instructions the user sees will vary
depending on what panel is in use.

If you want to change any other characteristics of the ACMS menu format, you
must modify the other areas in the ACMS_MENU.IFDL file beyond the panel
definitions.

A.2.5 Changing SELECTION_STRING Field Lengths
The SELECTION_STRING is an ACMS-supplied system workspace. It allows a
user to enter input after making a menu selection. ACMS places this input in
the SELECTION_STRING workspace and ACMS has access to it within the task
called by the menu selection. It could be used, for example, to pass an employee
number to an employee record update task.

In the ACMS_MENU.IFDL file, the selection string fields are defined as a
68-character field beginning after the Selection: or Command: prompt and a
79-character field beginning in column 1 of the line below the
Selection: or Command: prompt.

If you need SELECTION_STRING fields of different lengths than these, you must
alter the ACMS_MENU.IFDL file in four places.

Changing the ACMS Menu Format Using HP DECforms A–11



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

First, you must change two record groups, SELECT_LINE_GROUP and
RECORD_LIST. Example A–10 shows the two groups as they appear in the
ACMS_MENU.IFDL file.

Example A–10 SELECTION_STRING Record Groups

Group SELECT_LINE_GROUP
SELECTION_STRING_1 Character(68)
SELECTION_STRING_2 Character(79)

End Group

Group RECALL_LIST
Occurs 20
RECALL_ITEM_1 Character(68)
RECALL_ITEM_2 Character(79)

End Group

The length values for the fields can be changed. If a change is made in one group,
however, the corresponding change must be made in the other group.

Next, you must change the SELECTION_STRING field sizes in the panel
definitions to correspond to the new values you entered in the record group
definitions. Remember to change the field sizes in both the DEFAULT_PANEL
and COMMAND_PANEL definitions. Example A–11 shows the field definitions as
they appear in the panel definitions in the ACMS_MENU.IFDL file supplied by
ACMS.

Example A–11 SELECTION_STRING Panel Definitions

Field SELECTION_STRING_1
Line 22
Column 12
Autoskip
Output Picture X(68)

End Field

Field SELECTION_STRING_2
Line 23
Column 1
Output Picture X(79)

End Field

Remember that the values in the panel field definitions must correspond to the
changes you made earlier in the record group definitions.

A.2.6 Changing the Number of Entries per Screen
The menu file supplied with ACMS causes a maximum of 16 entries per screen to
be displayed when the DEFAULT_PANEL panel definition is used. The ACMS_
MENU.IFDL file also contains panel definitions for a COMMAND_PANEL and
for two expert panels.

A–12 Changing the ACMS Menu Format Using HP DECforms



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

As supplied by ACMS, the menu file allows up to 16 lines per menu screen in
the default panel and eight lines per screen in the command panel. The expert
panels display only the prompts Selection: or Command: for those who want to
make selections without seeing menu entries.

When there are fewer than 16 menu entries, ACMS fills out the screen with
blanks. When there are more than 16 menu entries, ACMS will break up the
menu into multiple pages. Each screen will display one page of the menu. If
you need to change the number of entries allowed per screen, you need to make
changes in two places: in a record definition and in the DEFAULT_PANEL
definition.

The first change you need to make is in the record group ENTRIES.
Example A–12 shows how that record group appears in the ACMS_MENU.IFDL
file as supplied with ACMS.

Example A–12 ENTRIES Record Group

Group ENTRIES
Occurs 16
Current MENU_ENTRIES_INDEX
ENTRY_ENABLE Character(1)
ENTRY_NUMBER Character(6)
ENTRY_FILL Character(3)
ENTRY_KEY Character(10)
ENTRY_FLAG_TEXT Character(56)

End Group

You can change the ‘‘Occurs 16’’ line to the number of lines you wish to be the
maximum per menu screen.

CAUTION

Do not, under any conditions, change any other field in the group
ENTRIES. This is a record used by the ACMS CP and changing values
other than the 16 in ‘‘Occurs 16’’ may cause the ACMS system to fail.

Next you must change the Displays statement of the record group ENTRIES in
the DEFAULT_PANEL panel definition. Example A–13 shows how that section of
the panel definition appears in the ACMS_MENU.IFDL file.

Example A–13 ENTRIES Record in Default Panel Definition

Group ENTRIES
Vertical

Displays 16

You can change the number of entries allowed per screen for the Command Panel
in a similar fashion.

Changing the ACMS Menu Format Using HP DECforms A–13



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

When you change the number of entries allowed per screen, you must also change
the size of the record for the entries passed from the ACMS CP to the menu
form. To let the ACMS CP know about the change in the size of the record for the
entries, you have to specify the new number of entries allowed per screen in the
ACMS menu definition. Example A–14 shows an example of this.

Example A–14 Menu Definition Specifying Entries per Screen

CREATE MENU PERSONNEL_MENU
HEADER IS " P E R S O N N E L M E N U";
CONTROL TEXT IS "DFMNU" WITH 12 ENTRIES PER SCREEN;
DEFAULT APPLICATION IS "PERSONNEL";
ENTRIES ARE
ADD : TASK IS ADD_EMPLOYEE;

TEXT IS "Add a new employee record";
.
.
.

END ENTRIES;
END DEFINITION;

DFMNU is the default control text response. If you have defined other control
text responses in the form, you can specify those responses. On each system, all
the menus use the same form, so all menus must use the same number of entries
allowed per screen.

Caution

If you change the ‘‘Occurs 16’’ entry in the ENTRIES Record Group, then
all menus on your system must use this number of entries and all menu
definitions must include the ‘‘WITH n ENTRIES PER SCREEN’’ phrase.
So if you change the number of entries per screen all menu definitions on
the system that use HP DECforms must be altered.

You can include more entries in the menu definition than the number you specify
in the WITH ENTRIES PER SCREEN phrase. For example, you can include 13
or more entries in the menu definition shown in Example A–14 even though the
WITH ENTRIES PER SCREEN phrase specifies 12 entries for each screen. In
this case, when ACMS displays the menu it also displays the message:

"....... Press <RET> for more .......".

If the user presses Return , ACMS displays the additional entries listed in the
menu definition. But remember that whatever number of entries per screen you
choose, that is the number that must be used by all menus on your system.

A.2.7 Changing the Size of the Command Line Recall Buffer
Another item that can be changed, if need be, is the number of lines in the
command line recall buffer. This buffer stores the commands you issue at the
terminal keyboard. Commands can be recalling by pressing the up-arrow key,
much as commands can be recalled at the DCL level. As supplied by ACMS, the
number of commands that can be recalled is 20.

A–14 Changing the ACMS Menu Format Using HP DECforms



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

To change the number of commands that can be recalled, you need to change
the default value of 20 in two definitions in the ACMS_MENU.IFDL file.
Example A–15 shows how those definitions appear in the form file supplied
with ACMS.

Example A–15 Command Line Recall Buffer Definitions

Group RECALL_LIST
Occurs 20
RECALL_ITEM_1 Character(68)
RECALL_ITEM_2 Character(79)

End Group

RECALL_MAX Longword Integer
Value 20

Remember to change the definitions so that the two values match.

A.2.8 Changing the HP DECforms Layout Size
Another area of the ACMS menu format which you can change is the layout size.

The layout size specifies the largest rectangular area on the terminal screen that
the menu form will occupy at any given time. In the ACMS_MENU.IFDL file
supplied with ACMS, this size is the HP DECforms default value, 24 lines deep
by 80 columns wide.

If you need to change this, you must alter the DEFAULT_LAYOUT definition in
the ACMS_MENU.IFDL file. Example A–16 shows how that definition appears.

Example A–16 Definition of Default Screen Layout

Layout DEFAULT_LAYOUT
Device

Terminal VT_100_DEV
Type %VT100

Terminal VT_200_DEV
Type %VT200

End Device
Size 24 Lines by 80 Columns

A.2.9 Using a Customized Response and Panel Definition
You can write new control text responses and panel definitions in the ACMS_
MENU.IFDL file in order to create exactly the responses or panels that meet your
needs. If so, you must include a CONTROL TEXT clause in your menu definition
to point to the new panel definition.

When you use the CONTROL TEXT clause in a menu definition, you specify
the control text response or responses that you want to execute when the ACMS
CP gets input from users. By default, ACMS executes the DFMNU control text
response for the default menu and the COMND control text response for the
command menu.

Changing the ACMS Menu Format Using HP DECforms A–15



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

Example A–17 shows an example of a menu definition that uses the CONTROL
TEXT clause.

Example A–17 Menu Definition Using CONTROL TEXT

CREATE MENU PERSONNEL_MENU
HEADER IS " P E R S O N N E L M E N U";
CONTROL TEXT IS "MENU1MENU2MENU3";
DEFAULT APPLICATION IS "PERSONNEL";
ENTRIES ARE
ADD : TASK IS ADD_EMPLOYEE;

TEXT IS "Add a new employee record";
.
.
.

END ENTRIES;
END DEFINITION;

In the CONTROL TEXT clause, you must include the five-character
string that identifies the CONTROL TEXT RESPONSE. Here, the string
‘‘MENU1MENU2MENU3’’ sets up a sequence of three responses.HP DECforms
automatically reads each five characters as the CONTROL TEXT definition. You
can specify up to five control text responses. At least one of these responses must
have an accept phase, or input from the user. Otherwise, you will get a ‘‘control
text response not found’’ error.

A.2.10 Building and Installing the New Menu Form
After you have customized the ACMS_MENU.IFDL file, you must build the new
menu form as an executable image and make it available to the ACMS system.

You build a new menu form by creating a new ACMS_MENU.EXE file. This
involves translating the form, extracting an object from the .FORM file to create
a .OBJ file, linking the object file to produce a shareable image, and copying the
new executable file to the common SYS$SHARE directory on the system.

If you have customized the ACMS menu form definition file, you must rebuild the
form image file. Use the following DCL command to rebuild and install the new
form image file on the system:

$ @SYS$MANAGER:ACMS_BUILD_MENU_FORM.COM

In order to make the new version of the menu form file available to the command
process, you must stop and restart the ACMS terminal subsystem. Do this by
using the ACMS/STOP TERMINALS and ACMS/START TERMINALS commands.
Make sure your ACMS user definition points to the menu database containing the
menu that uses the new menu format. Then sign in to ACMS and check whether
or not:

• You can select the menu.

• The menu has the right number of entries.

• You can select the entries.

• The fields are in the correct places.

• The cursor moves from field to field in the correct order.

A–16 Changing the ACMS Menu Format Using HP DECforms



Changing the ACMS Menu Format Using HP DECforms
A.2 Modifying the ACMS Menu Using HP DECforms

If ACMS cannot display the new menu, you get this error message when signing
in to ACMS:

A HP DECforms request failed in the menu form SYS$SHARE:ACMS_MENU.EXE

If you get this message, check the record, form, control text response, and panel
definitions for unmatched names, inappropriate file protection, or differences in
the number of entries.

A.3 Disabling the SELECT Command in the ACMS Command Menu
The SELECT command appears on the ACMS Command Menu and permits
a user to select tasks by application and task name. To disable the SELECT
command, remove it from the ACMS Command Menu by editing and replacing
the command menu definitions, and rebuilding the command database as outlined
in the following steps:

1. Rename the file SYS$LIBRARY:ACMS$MENU_CUST.COM to
ACMSMENU.COM. This file contains the ACMS command menu and
the ACMS default menu.

2. Edit the file ACMSMENU.COM and delete or comment out the SELECT
command entry. The exclamation points (!) in the following example mark
the lines you need to comment out or delete.

HEADER IS " ACMS Command Menu";
ENTRIES ARE
"Continue":
TEXT IS "Continue interrupted operation";
COMMAND 3;

"Exit":
TEXT IS "Leave the ACMS menu environment";
COMMAND 8;

"Help":
TEXT IS "Display ACMS help information on the terminal";
COMMAND 17;

"Menu":
TEXT IS "Display selection and command menus";
COMMAND 18;

"Nomenu":
TEXT IS "Do not display selection and command menus";
COMMAND 19;

!"Select":
! TEXT IS "Select task by application name and task name";
! COMMAND 20;

END ENTRIES;
END DEFINITION;

3. Change the CDD path names specified in ACMSMENU.COM to be the CDD
path names of your choice.

4. Use the following ADU commands to insert the definition file
ACMSMENU.COM in the CDD:

$ ADU
ADU> @ACMSMENU.COM

5. Use the following ADU commands to rebuild the ACMS command menu
database:

$ ADU
ADU> BUILD MENU COMMAND$ROOT ACMS$DIRECTORY:ACMSCMD.MDB
ADU> EXIT

Changing the ACMS Menu Format Using HP DECforms A–17





B
Changing the ACMS Menu Format Using TDMS

Changing the standard ACMS menu requires the full TDMS kit; do not attempt
to make changes in the menu unless you are thoroughly familiar with TDMS.
Errors in the TDMS requests and records that ACMS uses for menu work can
produce fatal exceptions that cause other parts of the ACMS system to fail; avoid
changing the ACMS menu format except when there is a serious need. This
appendix also describes how to disable the SELECT command, which gives the
user the ability to select a task by application name and task name from the
ACMS Command Menu. Disabling the SELECT command does not require using
TDMS.

B.1 Modifying the Menu Format Using ACMS
There are two ways to revise the ACMS menu format without changing the
default format. First, you can include OpenVMS images that use option lists or
menus in your application. For an example of a task that includes an option list,
see the Employee task of the ACMS Sample Application. Second, when you set
up a menu using ADU, you can make a number of choices in the menu format
that ACMS supplies. For example, you can define the text that appears at the
top of the menu. You define the entries that are displayed on the screen and the
descriptive text for these entries.

By using the HEADER, DEFAULT APPLICATION, and ENTRIES clauses (and
the subclauses under ENTRIES), you can change what is displayed on the menu.
The format of the menu, however, is the same from menu to menu:

• The two lines of header text are the top two lines of the screen.

• Each page of the menu can contain up to 16 entries.

• Each entry line consists of a number, a keyword, a task/menu flag, and
descriptive text.

• The Selection: prompt displays on the third line from the bottom.

• The bottom line is used for all messages except "Press <RET> for more" and
"Press <RET> for first page". These messages are displayed on the line above
the selection prompt.

You can change some parts of this format just by changing the form definition
that ACMS uses. For example, you can change the Selection: prompt or the
location of the "Press <RET> ..." message lines by changing the menu form.
Other changes can require you to change the TDMS request that displays the
menu form. The rest of this appendix explains how to use TDMS requests to
modify the ACMS menu format.

Changing the ACMS Menu Format Using TDMS B–1



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

B.2 Modifying the ACMS Menu Using TDMS Requests
To modify the default ACMS menu format, you need to change the TDMS request
that displays the menu form. For example, if you want to change the number of
entries that can appear on a menu, you must change the menu request.

To change the menu request, you must either modify the menu request supplied
by ACMS or create a new menu request in order to add or delete fields:

• If you modify the ACMS menu request and keep the same name for it, you
must also rebuild the ACMS menu request library. All menus on the ACMS
system then use the new menu format. You must rebuild the ACMS menu
request library if you either change the ACMS-supplied menu or add your
own.

• If you are creating a new menu request, you must name the request in a
REQUEST clause in all menu definitions that use the new request. Make
sure the number of entries in the request is the same as the number in the
ENTRIES PER SCREEN phrase in the menu definition.

Next, add the new request to the MENU_LIBR request library definition.
Then rebuild MENU_LIBR to create a new version of the ACMSREQ.RLB
request library file that includes the new request.

The only way to change the number of entry lines on an ACMS menu is to change
the menu request. Whenever a menu definition includes fewer entries than there
are entry lines in the menu request, only the entries for that menu are displayed.
The remaining entry lines are filled with spaces by TDMS.

B.2.1 Getting the ACMS Menu Request and Form
To create a new menu request, either you can create a copy of the ACMS menu
request or you can create entirely new request and form definitions. To modify
the ACMS menu request, load the contents of the SYS$SYSTEM:ACMSREQ.BAK
file into a CDD directory:

$ DMU
DMU> SET DEF CDD$TOP.MENU_REQUESTS
DMU> RESTORE SYS$SYSTEM:ACMSREQ.BAK
DMU> EXIT

In this example, the contents of the ACMSREQ.BAK file are stored in the
CDD directory MENU_REQUESTS, directly below CDD$TOP. Be sure that the
directory you use is in the CDD before you use the RESTORE command.

If the ACMSREQ.BAK file is not in the directory pointed to by the SYS$SYSTEM
logical name, you can get it from the ACMS distribution kit by reinstalling
ACMS.

Table B–1 lists the definitions that the RESTORE command loads into the CDD.

Table B–1 Definitions Copied to the CDD

Definition Name Description

BLANK_FORM <CDD$FORM> Form used to reset the screen. Do not
change this definition.

(continued on next page)

B–2 Changing the ACMS Menu Format Using TDMS



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

Table B–1 (Cont.) Definitions Copied to the CDD

Definition Name Description

CLEAR_SCREEN <CDD$REQUEST> Request used to reset the screen. Do
not change this definition.

COMD_CONTROL_RECORD <CDD$RECORD> Record used for control information
for command menu.

COMD_ENTRY_RECORD <CDD$RECORD> Record used for entry information for
command menu.

COMD_FORM <CDD$FORM> Form used for command menu.

COMD_HEADER_RECORD <CDD$RECORD> Record used for header of command
menu.

COMD_REQUEST <CDD$REQUEST> Request used for command menu.

COMD_SELECTION_RECORD
<CDD$RECORD>

Record used for selection string typed
after Command: prompt.

EXIT_REQUEST <CDD$REQUEST> Request used to do a $EXIT from
menu.

EXPERT_COMD_FORM <CDD$FORM> Form used for command prompt when
no command menu displayed.

EXPERT_MENU_FORM <CDD$FORM> Form used for selection prompt when
no selection menu displayed.

HCOMD_FORM <CDD$FORM> Help form for command menu.

HMENU_FORM <CDD$FORM> Help form for selection menu.

MENU_CONTROL_RECORD <CDD$RECORD> Record used for control information
for selection menu.

MENU_ENTRY_RECORD <CDD$RECORD> Record used for entry information for
selection menu.

MENU_FORM <CDD$FORM> Form used for selection menu.

MENU_HEADER_RECORD <CDD$RECORD> Record used for header of selection
menu.

MENU_LIBR <CDD$REQUEST_LIBRARY> ACMSREQ.RLB definition.

MENU_REQUEST <CDD$REQUEST> Request used for selection menu.

MENU_SELECTION_RECORD
<CDD$RECORD>

Record used for selection string typed
after Selection: prompt.

RESET_SCREEN <CDD$REQUEST> Request used to reset the screen. Do
not change this definition.

You can then use the TDMS utilities to change the MENU_FORM or MENU_
REQUEST definitions to suit your needs.

WARNING

Do not, under any conditions, change the BLANK_FORM, CLEAR_
SCREEN, or RESET_SCREEN definitions.

Changing the ACMS Menu Format Using TDMS B–3



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

B.2.2 Modifying the Menu Form Only
If you are changing only the appearance of the menu without changing the
number of entries, the only definition you need to modify is the MENU_FORM
definition. By modifying only the form definition, you can change:

• The background text that displays on the menu. The only background text
on the ACMS-supplied form is the Selection: prompt. You can change this
prompt or add background text to the form if you wish.

• The location of the selection input field.

• The location of the header text output fields.

• The location of the entry output fields. However, they must still be indexed
fields, and there must be 16 fields in the form’s indexed array.

For an explanation of how to modify TDMS form definitions, see
VAX TDMS Forms Manual.

Use the name MENU_FORM if you want all menus in the ACMS system to
use the new form. In this case, you do not have to change the menu request.
However, you must store the new MENU_FORM in the same CDD directory
as the menu request and then rebuild the request library, as explained in
Section B.2.8.

If you are changing only the menu form, be sure to use the same field names
as MENU_FORM uses. Do not delete any input or output fields from the form.
Keep their type and size the same as in the MENU_FORM definition.

If you want to change any other characteristics of the ACMS menu format, you
must modify the existing ACMS menu request or create a new ACMS menu
request.

B.2.3 Forms, Records, and Keypad Used by the Menu Request
The menu request has two parts. The first part identifies the forms, records,
and keypad used by the request. The second part contains the instructions that
TDMS performs when ACMS calls the request. Example B–1 shows the definition
for MENU_REQUEST.

Example B–1 MENU_REQUEST Definition

CREATE REQUEST MENU_REQUEST

RECORD IS MENU_HEADER_RECORD;
RECORD IS MENU_ENTRY_RECORD;
RECORD IS MENU_CONTROL_RECORD;
RECORD IS MENU_SELECTION_RECORD;

FORM IS MENU_FORM;
FORM IS EXPERT_MENU_FORM;

(continued on next page)

B–4 Changing the ACMS Menu Format Using TDMS



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

Example B–1 (Cont.) MENU_REQUEST Definition

KEYPAD IS NUMERIC;

CONTROL FIELD IS CTL_EXPERT_MENU
"T":

USE FORM EXPERT_MENU_FORM;
DEFAULT FIELD SELECTION_STRING_1;
DEFAULT FIELD SELECTION_STRING_2;
INPUT SELECTION_STRING_1 TO SELECTION_STRING_1;
INPUT SELECTION_STRING_2 TO SELECTION_STRING_2;

NOMATCH:
CONTROL FIELD IS CTL_NEW_ENTRIES
"T":

DISPLAY FORM MENU_FORM;

OUTPUT MENU_HEADER_1 TO MENU_HEADER_1;
OUTPUT MENU_HEADER_2 TO MENU_HEADER_2;

CONTROL FIELD IS ENTRY_FLAG [1 TO 16]
" ":

WAIT;
NOMATCH:
OUTPUT ENTRY_NUMBER [%LINE] TO ENTRY_NUMBER [%LINE];
OUTPUT ENTRY_KEY [%LINE] TO ENTRY_KEY [%LINE];
OUTPUT ENTRY_FLAG [%LINE] TO ENTRY_FLAG [%LINE];
OUTPUT ENTRY_TEXT [%LINE] TO ENTRY_TEXT [%LINE];

END CONTROL FIELD;

CONTROL FIELD IS CTL_MULTI_PAGE
"T":

CONTROL FIELD IS CTL_LAST_PAGE
"T":

OUTPUT " ....... Press <RET> for first page ......."
to MENU_MORE;

NOMATCH:
OUTPUT " ....... Press <RET> for more ......."

to MENU_MORE;
END CONTROL FIELD;

END CONTROL FIELD;

INPUT SELECTION_STRING_1 TO SELECTION_STRING_1;
INPUT SELECTION_STRING_2 TO SELECTION_STRING_2;

NOMATCH:
USE FORM MENU_FORM;
DEFAULT FIELD SELECTION_STRING_1;
DEFAULT FIELD SELECTION_STRING_2;
INPUT SELECTION_STRING_1 TO SELECTION_STRING_1;
INPUT SELECTION_STRING_2 TO SELECTION_STRING_2;

END CONTROL FIELD;
END CONTROL FIELD;

END DEFINITION;

The ACMS menu request uses two forms:

• MENU_FORM is the complete ACMS menu, which includes 16 entries, a
2-line menu header, the Selection: prompt, and a 2-line selection input field.

• EXPERT_MENU_FORM contains the Selection: prompt and the 2-line
selection input field; this form is for users who want to select tasks without
seeing menus.

Changing the ACMS Menu Format Using TDMS B–5



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

There are four records in the ACMS menu request. Example B–2 shows the
definitions for the MENU_HEADER_RECORD.

Example B–2 Definition for ACMS Menu Header Record

DEFINE RECORD MENU_HEADER_RECORD
DESCRIPTION IS /* RECORD FOR THE DEFAULT ACMS MENU HEADER INFO */.

MENU_HEADER_RECORD STRUCTURE.
NUMBER_OF_ENTRIES DATATYPE UNSIGNED LONGWORD.
MENU_PATH DATATYPE TEXT 70.
MENU_HEADER_1 DATATYPE TEXT 80.
MENU_HEADER_2 DATATYPE TEXT 80.

END MENU_HEADER_RECORD STRUCTURE.
END MENU_HEADER_RECORD.

ACMS uses the NUMBER_OF_ENTRIES field to pass to the request the number
of entries in the MENU_ENTRY_RECORD record. It takes this value from the
user’s menu database, using the value assigned in the ENTRIES PER SCREEN
clause in the definition for the menu.

ACMS uses the two menu header fields to pass the menu header, or title, to the
request. It takes this text from the HEADER clause of the menu definition.

The default ACMS menu does not use the MENU_PATH field of this record.
The menu path is the sequence of menus, identified by keyword, that the user
followed in reaching the current menu; ACMS maintains this information. A
request can use this field to display the user’s current location in the menu tree.

Example B–3 shows the CDD definition for the second record used by the request,
MENU_ENTRY_RECORD.

Example B–3 Definition for Menu Entry Record

DEFINE RECORD MENU_ENTRY_RECORD
DESCRIPTION IS /* RECORD FOR THE DEFAULT ACMS MENU ENTRY INFO */.

MENU_ENTRY_RECORD STRUCTURE.
LINE STRUCTURE OCCURS 16 TIMES.

ENTRY_NUMBER DATATYPE TEXT 2.
ENTRY_KEY DATATYPE TEXT 10.
ENTRY_FLAG DATATYPE TEXT 1.
ENTRY_TEXT DATATYPE TEXT 50.

END LINE STRUCTURE.
END MENU_ENTRY_RECORD STRUCTURE.
END MENU_ENTRY_RECORD.

ACMS uses MENU_ENTRY_RECORD to pass the number, keyword, identifying
flag, and descriptive text to the request. It derives all this information for each
entry from the menu database. The number for an entry is derived from the
sequence in which the entry occurs in the ENTRIES clause of the definition. The
keyword is derived from the name used for the entry in the ENTRIES clause; the
text is taken from the TEXT subclause for the entry. The flag field contains one
of two values: T (for tasks) or M (for menus).

Example B–4 shows MENU_CONTROL_RECORD, the third record used by the
request.

B–6 Changing the ACMS Menu Format Using TDMS



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

Example B–4 Definition for Menu Control

DEFINE RECORD MENU_CONTROL_RECORD
DESCRIPTION IS /* RECORD FOR THE DEFAULT ACMS MENU CONTROL INFO */.

MENU_CONTROL_RECORD STRUCTURE.
CTL_EXPERT_MENU DATATYPE TEXT 1.
CTL_NEW_ENTRIES DATATYPE TEXT 1.
CTL_MULTI_PAGE DATATYPE TEXT 1.
CTL_LAST_PAGE DATATYPE TEXT 1.

END MENU_CONTROL_RECORD STRUCTURE.
END MENU_CONTROL_RECORD.

The information in the menu control record does not come directly from the menu
database. Rather, it is information that ACMS maintains for each user and for
the user’s current menu. The value of CTL_EXPERT_MENU determines whether
the user sees the complete ACMS menu, in which case the field is set to F (False),
or sees only the selection prompt, in which case the field is set to T (True). The
initial value is set from the user definition file (ACMSUDF.DAT). Each time
the user types in the terminal user MENU or NOMENU command, that field is
updated.

ACMS uses the MULTI_PAGE and LAST_PAGE fields in the record to tell the
request whether more menu entries are available than would fit on a single
screen. It uses the NEW_ENTRIES field to tell the request whether the entries
to be displayed differ from the entries last displayed.

Example B–5 shows MENU_SELECTION_RECORD, the final record used by the
request.

Example B–5 Definition for Menu Selection Record

DEFINE RECORD MENU_SELECTION_RECORD
DESCRIPTION IS /* RECORD FOR THE DEFAULT ACMS MENU SELECTION */.

MENU_SELECTION_RECORD STRUCTURE.
VARIANTS.

VARIANT.
SELECTION_STRING DATATYPE TEXT 255.
END VARIANT.
VARIANT.
SELECTION_STRING_1 DATATYPE TEXT 69.
! Must match size of selection_string_1 field in MENU_FORM
SELECTION_STRING_2 DATATYPE TEXT 186.
! Should calculate as 255 - <size of selection_string_1>
END VARIANT.

END VARIANTS.
END MENU_SELECTION_RECORD STRUCTURE.
END MENU_SELECTION_RECORD.

This record consists of a single field, into which the request moves the selection
string. The variant for this field lets the request move the two lines of the
selection input field separately.

The second part of the menu request contains instructions that TDMS performs
when ACMS calls the request. The next section explains these instructions.

Changing the ACMS Menu Format Using TDMS B–7



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

B.2.4 Instructions Performed by TDMS When ACMS Calls a Request
A menu request must include the forms, records, and keypad it uses, as well as
the instructions that TDMS performs when ACMS calls the request. This section
explains the instructions that the request contains.

The second part of the menu request begins with the "CONTROL FIELD IS
CTL_EXPERT_MENU" instruction. Although this part of the request is complex
because of its control fields, the work it does is always the same:

1. The request displays either a complete menu or the selection prompt only.

2. After the user has typed in a selection keyword or number (and, optionally,
a selection string) and pressed Return , the request moves that information to
the menu selection record.

The request uses the value passed in the CTL_EXPERT_MENU field to determine
whether to display the complete menu or only the expert menu. This control field
is the first TDMS looks at; if the CTL_EXPERT_MENU field is set to T, the
request displays the expert menu, enters the selection in the menu selection
record, and ends. These statements, taken from the menu request, perform those
operations:

CONTROL FIELD IS CTL_EXPERT_MENU
"T" : USE FORM EXPERT_MENU_FORM;

DEFAULT FIELD SELECTION_STRING_1;
DEFAULT FIELD SELECTION_STRING_2;
INPUT SELECTION_STRING_1 TO SELECTION_STRING_1;
INPUT SELECTION_STRING_2 TO SELECTION_STRING_2;

.

.

.
END CONTROL FIELD;

If the CTL_EXPERT_MENU field is not set to T, the request then checks whether
the entries to be displayed are the same ones as the last entries the user saw. If
the value of the CTL_NEW_ENTRIES field of the control record is set to a value
other than T, then the menu is the same as the last one. In this case, the request
displays the last menu, accepts the selection string, and ends. The following
statements, taken from the menu request, show this second way you can write
the request:

CONTROL FIELD IS CTL_EXPERT_MENU
.
.
.
NOMATCH:
CONTROL FIELD IS CTL_NEW_ENTRIES
.
.
.

NOMATCH:
USE FORM MENU_FORM;
DEFAULT FIELD SELECTION_STRING_1;
DEFAULT FIELD SELECTION_STRING_2;
INPUT SELECTION_STRING_1 TO SELECTION_STRING_1;
INPUT SELECTION_STRING_2 TO SELECTION_STRING_2;

END CONTROL FIELD;
END CONTROL FIELD;
END DEFINITION;

B–8 Changing the ACMS Menu Format Using TDMS



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

If the menu to be displayed does contain new entries, then ACMS has set
the value of CTL_NEW_ENTRIES to T. In this case, the request displays the
menu form and outputs the menu header. The request then begins displaying
the entries to the indexed fields on the menu form. This work is done by the
statements in the conditional instruction that begins "CONTROL FIELD IS
ENTRY_FLAG". As long as there is an entry, which the request checks by
looking at one of the fields to be displayed, the request continues to produce the
entry information. As soon as there are no more entries, or when the request has
displayed the sixteenth entry, the request stops displaying entries.

Before accepting the selection information from the user, the request checks the
CTL_MULTI_PAGE field to see if there are more entries than fit on one screen. If
so, ACMS sets the value of that field to T. If not, then the request does not display
a message; there is an implicit NOMATCH in this control field. The request then
accepts input from the user and ends.

The statements that follow show this third sequence of operations:

CONTROL FIELD IS CTL_EXPERT_MENU
.
.
.
NOMATCH:
CONTROL FIELD IS CTL_NEW_ENTRIES
"T" :

DISPLAY FORM MENU_FORM;
OUTPUT MENU_HEADER_1 TO MENU_HEADER_1;
OUTPUT MENU_HEADER_2 TO MENU_HEADER_2;

CONTROL FIELD IS ENTRY_FLAG [1 TO 16]
" " :

WAIT;
NOMATCH :

OUTPUT ENTRY_NUMBER [%LINE] TO ENTRY_NUMBER [%LINE];
OUTPUT ENTRY_KEY [%LINE] TO ENTRY_KEY [%LINE];
OUTPUT ENTRY_FLAG [%LINE] TO ENTRY_FLAG [%LINE];
OUTPUT ENTRY_TEXT [%LINE] TO ENTRY_TEXT [%LINE];

END CONTROL FIELD;

CONTROL FIELD IS CTL_MULTI_PAGE
.
.
.

END CONTROL FIELD;
INPUT SELECTION_STRING_1 TO SELECTION_STRING_1;
INPUT SELECTION_STRING_2 TO SELECTION_STRING_2;

.

.

.
END CONTROL FIELD;

END CONTROL FIELD;
END DEFINITION;

If there are more than 16 entries, which is the default number of entries for each
screen, then the request tests the CTL_LAST_PAGE field to determine whether
or not this is the last page of the menu displayed to the user. ACMS indicates
the last page of the menu by setting the CTL_LAST_PAGE field to T. If it is the
last page, the request displays the message "Press <RET> for first page". If it is
not the last page of the menu, the request outputs the message "Press <RET> for
more". It then accepts the selection from the user and ends.

Changing the ACMS Menu Format Using TDMS B–9



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

The statements that follow show this fourth sequence of operations:

CONTROL FIELD IS CTL_EXPERT_MENU
.
.
.
NOMATCH:
CONTROL FIELD IS CTL_NEW_ENTRIES
"T" :

DISPLAY FORM MENU_FORM;
OUTPUT MENU_HEADER_1 TO MENU_HEADER_1;
OUTPUT MENU_HEADER_2 TO MENU_HEADER_2;

CONTROL FIELD IS ENTRY_FLAG [1 TO 16]
" " :

WAIT;
NOMATCH :

OUTPUT ENTRY_NUMBER [%LINE] TO ENTRY_NUMBER [%LINE];
OUTPUT ENTRY_KEY [%LINE] TO ENTRY_KEY [%LINE];
OUTPUT ENTRY_FLAG [%LINE] TO ENTRY_FLAG [%LINE];
OUTPUT ENTRY_TEXT [%LINE] TO ENTRY_TEXT [%LINE];

END CONTROL FIELD;

CONTROL FIELD IS CTL_MULTI_PAGE
"T" :

CONTROL FIELD IS CTL_LAST_PAGE
"T":

CONTROL FIELD IS CTL_LAST_PAGE
"T":

OUTPUT " ....... Press <RET> for first page ......."
to MENU_MORE;

NOMATCH:
OUTPUT " ....... Press <RET> for more ......."

to MENU_MORE;
END CONTROL FIELD;

END CONTROL FIELD;

INPUT SELECTION_STRING_1 TO SELECTION_STRING_1;
INPUT SELECTION_STRING_2 TO SELECTION_STRING_2;

.

.

.
END CONTROL FIELD;

END CONTROL FIELD;
END DEFINITION;

The complexity of the ACMS menu request can provide several significant
performance benefits. The instruction CONTROL FIELD IS ENTRY_FLAG
ensures that the request performs an output mapping only when there is an
entry to be displayed. Using USE FORM rather than DISPLAY FORM in the
CONTROL FIELD IS CTL_NEW_ENTRIES instruction ensures that the request
does not repaint the screen if a user selects an invalid selection. Removing these
instructions simplifies the request but decreases ACMS performance.

B.2.5 Modifying the Menu Request
The default format for ACMS menus is set by the MENU_REQUEST request,
which is included in the SYS$LIBRARY:ACMSREQ.RLB request library file. You
must change the menu request if you want to:

• Change the names of fields in the form

• Add or remove input or output fields in the form

• Change the number of entries on the form

B–10 Changing the ACMS Menu Format Using TDMS



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

• Define program request keys available to users from the menu

Suppose you want to include a company logo on the menu and restrict that form
to 12 entries. You also want to provide a program request key that would be
equivalent to the terminal user MENU and NOMENU commands. First redefine
the form, keeping the output fields for the entry information as an indexed array.
If you kept the form field names the same, the new request, called NEW_MENU_
REQUEST, would be like the one shown in Example B–6.

Example B–6 Customized Menu Request

CREATE REQUEST NEW_MENU_REQUEST

RECORD IS MENU_HEADER_RECORD;
RECORD IS MENU_ENTRY_12_RECORD;
RECORD IS MENU_CONTROL_RECORD;
RECORD IS MENU_SELECTION_RECORD;

FORM IS NEW_MENU_FORM;
FORM IS EXPERT_MENU_FORM;

KEYPAD IS APPLICATION;

PROGRAM KEY IS KEYPAD "0"
NO CHECK;
RETURN "$MENU" TO SELECTION_STRING_1;

END PROGRAM KEY;

PROGRAM KEY IS KEYPAD "."
NO CHECK;
RETURN "$NOMENU" TO SELECTION_STRING_1;

END PROGRAM KEY;

CONTROL FIELD IS CTL_EXPERT_MENU
"T":

USE FORM EXPERT_MENU_FORM;
DEFAULT FIELD SELECTION_STRING_1;
DEFAULT FIELD SELECTION_STRING_2;
INPUT SELECTION_STRING_1 TO SELECTION_STRING_1;
INPUT SELECTION_STRING_2 TO SELECTION_STRING_2;

NOMATCH:
CONTROL FIELD IS CTL_NEW_ENTRIES
"T":

DISPLAY FORM NEW_MENU_FORM;

OUTPUT MENU_HEADER_1 TO MENU_HEADER_1;
OUTPUT MENU_HEADER_2 TO MENU_HEADER_2;

CONTROL FIELD IS ENTRY_FLAG [1 TO 12]
" ":

WAIT;
NOMATCH:
OUTPUT ENTRY_NUMBER [%LINE] TO ENTRY_NUMBER [%LINE];
OUTPUT ENTRY_KEY [%LINE] TO ENTRY_KEY [%LINE];
OUTPUT ENTRY_FLAG [%LINE] TO ENTRY_FLAG [%LINE];
OUTPUT ENTRY_TEXT [%LINE] TO ENTRY_TEXT [%LINE];

END CONTROL FIELD;

(continued on next page)

Changing the ACMS Menu Format Using TDMS B–11



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

Example B–6 (Cont.) Customized Menu Request

CONTROL FIELD IS CTL_MULTI_PAGE
"T":
CONTROL FIELD IS CTL_LAST_PAGE
"T":

OUTPUT " ....... Press <RET> for first page ......."
to MENU_MORE;

NOMATCH:
OUTPUT " ....... Press <RET> for more ......."

to MENU_MORE;
END CONTROL FIELD;

END CONTROL FIELD;

INPUT SELECTION_STRING_1 TO SELECTION_STRING_1;
INPUT SELECTION_STRING_2 TO SELECTION_STRING_2;

NOMATCH:
USE FORM NEW_MENU_FORM;
DEFAULT FIELD SELECTION_STRING_1;
DEFAULT FIELD SELECTION_STRING_2;
INPUT SELECTION_STRING_1 TO SELECTION_STRING_1;
INPUT SELECTION_STRING_2 TO SELECTION_STRING_2;
END CONTROL FIELD;

END CONTROL FIELD;

END DEFINITION;

The changes to the menu request are:

• Replacing MENU_FORM by NEW_MENU_FORM throughout the definition

• The NEW_MENU_FORM definition should include only 12 indexed fields

• Changing the indexed array output from 16 records to 12 records

• Changing the keypad to APPLICATION and adding two program request
keys

If you want all menus in the ACMS system to use the revised menu format, use
the name MENU_REQUEST for the revised request and MENU_FORM for the
revised form. In the definition for every menu using this new request you must
include the clause:

REQUEST IS MENU_REQUEST
WITH 12 ENTRIES;

Including this clause in the menu definition tells ACMS to display the menu
using the request for the customized menu. You must also rebuild the request
library, as explained in Section B.2.8.

However, if you want some menus to use the default ACMS format and others
use the new format, you must:

1. Create the new form, assigning a name other than MENU_FORM to the form
you have created.

2. Create a copy of the menu request, assigning a name other than MENU_
REQUEST.

3. Replace the FORM IS MENU_FORM instruction in the new menu request
with an instruction that names your new form.

B–12 Changing the ACMS Menu Format Using TDMS



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

4. Include the new request in the menu library definition and rebuild the
request library, as explained in Section B.2.8.

Then use the REQUEST clause in the definitions for any menus that you want
to use the new format, declaring the name of the new request. Also declare the
number of entries for the menu if the number is other than the default value of
16. The next section explains the REQUEST clause.

B.2.6 Using the REQUEST Clause
When you use the REQUEST clause in a menu definition, you are telling ACMS
to use a request other than MENU_REQUEST for that menu.

Example B–7 shows an example of a menu definition that uses the REQUEST
clause.

Example B–7 Menu Definition Using REQUEST Clause

CREATE MENU PERSONNEL_MENU
HEADER IS " P E R S O N N E L M E N U";
REQUEST IS PERSONNEL_MENU_REQUEST WITH 12 ENTRIES PER SCREEN;
DEFAULT APPLICATION IS "PERSONNEL";
ENTRIES ARE
ADD : TASK IS ADD_EMPLOYEE;

TEXT IS "Add a new employee record";
.
.
.
END ENTRIES;

END DEFINITION;

In the REQUEST clause, you must include the given name of the request you
want ACMS to use for that menu. This is not the CDD path name of the request,
but the name by which the request is listed in the request library definition.

Note

The number in the ENTRIES PER SCREEN phrase in the REQUEST
clause must correspond to the number of form fields to which the request
writes entry information. The default number of entries for each screen is
16.

If you want more or less than 16 entries on each screen, you must use the WITH
ENTRIES PER SCREEN phrase to define the number of entries you want. You
must also define a request to handle that many entries. You can change the
number of entries only if you have defined a request that is different from the
ACMS-supplied request. You cannot use the WITH ENTRIES PER SCREEN
phrase to change the number of entries that display on the menus supplied by
ACMS, unless you modify the request.

You can include more entries in the menu definition than the number you specify
in the WITH ENTRIES PER SCREEN phrase. For example, you could include 13
or more entries in the menu definition shown in Example B–7 even though the
WITH ENTRIES PER SCREEN phrase specifies 12 entries for each screen. In
this case, when ACMS displays the menu it also displays the message:

"....... Press <RET> for more .......".

Changing the ACMS Menu Format Using TDMS B–13



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

If the user presses Return , ACMS displays the additional entries listed in the
menu definition.

You can include the REQUEST clause in any menu definition. If you want two
menus with the same format, and that format is different from the ACMS default
format, you must include the REQUEST clause in both definitions.

You can also use different menu requests in different menu definitions. There is
no restriction on the number of menu requests for each ACMS system, but using
different menu requests for different menu definitions can decrease ACMS system
performance.

B.2.7 Changing the MENU_ENTRY_RECORD
If you decrease the number of entries displayed by the request, you do not have
to change any of the records passed to the request. However, if you increase the
number of entries, you must also change the definition for the record, MENU_
ENTRY_RECORD, that ACMS passes to the request.

The number used in the LINE STRUCTURE statement in the record definition
must be the same as or larger than the number of entries displayed by the
request. ACMS passes only as many entries in MENU_ENTRY_RECORD as the
menu definition specifies, regardless of the size of MENU_ENTRY_RECORD.
However, if MENU_ENTRY_RECORD is smaller than the number of entries
specified by the menu definition, the request can get access violation errors when
it tries to read the record.

The MENU_ENTRY_RECORD description is included in the ACMSREQ.BAK file.
When you restore that file to the CDD, the MENU_ENTRY_RECORD description
is loaded into the same directory as MENU_FORM and MENU_REQUEST.
Extract that description from the CDD, putting it in a text file. Then change
the record description to match the number of entries in the menu request.
Example B–8 shows the record description for a MENU_ENTRY_RECORD
containing 12 entries.

Example B–8 Record Definition for MENU_ENTRY_RECORD with 12 Entries

DEFINE RECORD MENU_ENTRY_RECORD
DESCRIPTION IS /* RECORD FOR THE ACMS MENU ENTRY INFO */.

MENU_ENTRY_RECORD STRUCTURE.
LINE STRUCTURE OCCURS 12 TIMES.

ENTRY_NUMBER DATATYPE TEXT 2.
ENTRY_KEY DATATYPE TEXT 10.
ENTRY_FLAG DATATYPE TEXT 1.
ENTRY_TEXT DATATYPE TEXT 50.

END LINE STRUCTURE.
END MENU_ENTRY_RECORD STRUCTURE.
END MENU_ENTRY_RECORD.

The only item you should ever change in this record definition is the decimal
number in the "LINE STRUCTURE OCCURS n TIMES" statement.

When you have edited the file, use the Common Data Dictionary Data Definition
Language (CDDL) Utility to write the new record definition into the CDD. Use a
different name for the new record definition and in the request definition; in that
case, you must use the same name when referring to the record definition from
the request. If all your menus use the same or fewer entries than the number
used in the new record definition, you can delete the existing MENU_ENTRY_
RECORD definition from the CDD and use the same name for the new record.

B–14 Changing the ACMS Menu Format Using TDMS



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

You can then use the CDDL Utility to write the new MENU_ENTRY_RECORD
definition into the CDD. For information on storing definitions in the CDD, refer
to the CDD documentation.

Although you can change the name of MENU_ENTRY_RECORD, you cannot
include additional records in a menu request. Each menu request must use
only four records, in the order in which they occur in MENU_REQUEST. Do not
change the definitions for the other menu records. However, you can include
additional forms in the request, such as when you use a conditional request.

If you change the name of the MENU_ENTRY_RECORD in the CDD, be sure to
change the name in the request as well. Also, when you modify the menu form
and request definition, or when you reload the record description into the CDD,
be sure that you use the same CDD directory for all three definitions.

B.2.8 Modifying and Building the ACMS Menu Request Library
Once you have changed the menu form and, if necessary, the menu request and
record, you have to rebuild the menu request library.

If you have created a new menu request, use the TDMS Request Definition Utility
(RDU) to add to MENU_LIBR the request you have created. Example B–9 shows
a MENU_LIBR request library definition that includes all the requests that
ACMS supplies and an additional menu request called NEW_MENU_REQUEST.

Example B–9 MENU_LIBR Request Library Definition

REQUEST IS COMD_REQUEST;
REQUEST IS MENU_REQUEST;
REQUEST IS RESET_SCREEN;
REQUEST IS CLEAR_SCREEN;
REQUEST IS NEW_MENU_REQUEST;
END DEFINITION;

The request name you use in the REQUEST clause of the menu definition must
be the name of the request in the run-time version of the request library. By
default, the run-time name of the request is the same as the CDD given name
of the request as it is used in the request library definition. However, in the
REQUEST IS instructions of the request library definition you can include a
WITH NAME phrase to assign a unique name to the new menu request. In this
case, you must use the same unique name in the REQUEST clause of the menu
definition.

To edit the request library definition, either modify the definition directly in the
CDD or extract the definition, revise it, and then reload it into the CDD. Once
you have edited the request library definition, you can build the request library.

Before building the library, make sure that the request definition, form definition,
record definition, and request library definition are all in the CDD directory in
which you restored the contents of the ACMSREQ.BAK file. Then use the RDU
BUILD command from TDMS :

$ RUN SYS$SYSTEM:RDU
RDU> BUILD LIBRARY MENU_LIBR ACMSREQ.RLB /LIST=ACMSREQ.LIS
RDU> EXIT

Changing the ACMS Menu Format Using TDMS B–15



Changing the ACMS Menu Format Using TDMS
B.2 Modifying the ACMS Menu Using TDMS Requests

For explanations of the BUILD command and of the error messages you get, see
VAX TDMS Request and Programming Manual.

If the BUILD command is successful, move the new menu request library
to the SYS$LIBRARY directory. Instead of putting the request library into
SYS$LIBRARY, you can redefine the logical name ACMS$REQLIB to point to the
request library. This name must be defined either as a system logical name or
as a group logical name, in the same group as the user name under which the
ACMS Command Process (CP) is running. (See HP ACMS for OpenVMS Getting
Started for an explanation of the command process.) Redefining ACMS$REQLIB
makes it easy to switch back to the existing menu request library if you discover
problems with the new one.

You can then build the menu definition pointing to the new request and try using
the new menu. In order to make the new version of the menu request library
available to the command process, you must stop and restart the ACMS terminal
subsystem, as by using the ACMS/START TERMINALS and ACMS/STOP
TERMINALS commands. Make sure your ACMS user definition points to the
menu database containing the menu that uses the new menu format. Then sign
in to ACMS and check whether or not:

• You can select the menu.

• The menu has the correct number of entries.

• You can select the entries.

• The fields are in the correct places.

• The cursor moves from field to field in the correct order.

If ACMS cannot display the new menu, you get this error message when signing
in to ACMS:

Error while trying to display menu -- bad MDB.

If you get this message, make sure you have put the request library in
SYS$LIBRARY or that the system logical name ACMS$REQLIB is pointing
to the directory that contains the menu request library. If the library is there,
check the record, form, request, and library definitions for unmatched names,
unmatched CDD locations, inappropriate file protection, or differences in the
number of entries.

B.3 Disabling the SELECT Command in the ACMS Command Menu
The SELECT command appears on the ACMS Command Menu and permits
a user to select tasks by application and task name. In order to disable the
SELECT command, you need to remove it from the ACMS Command Menu
by editing and replacing the command menu definitions, and rebuilding the
command database, as follows:

1. Rename the file SYS$LIBRARY:ACMS$MENU_CUST.COM to
ACMSMENU.COM. This file contains the ACMS command menu and
the ACMS default menu.

2. Edit the file ACMSMENU.COM and delete or comment out the SELECT
command entry. The exclamation points (!) in the following example mark
the lines you need to comment out or delete.

B–16 Changing the ACMS Menu Format Using TDMS



Changing the ACMS Menu Format Using TDMS
B.3 Disabling the SELECT Command in the ACMS Command Menu

REQUEST IS COMD_REQUEST WITH 8 ENTRIES;
HEADER IS " ACMS Command Menu";
ENTRIES ARE
"Continue":
TEXT IS "Continue interrupted operation";
COMMAND 3;

"Exit":
TEXT IS "Leave the ACMS menu environment";
COMMAND 8;

"Help":
TEXT IS "Display ACMS help information on the terminal";
COMMAND 17;

"Menu":
TEXT IS "Display selection and command menus";
COMMAND 18;

"Nomenu":
TEXT IS "Do not display selection and command menus";
COMMAND 19;

!"Select":
! TEXT IS "Select task by application name and task name";
! COMMAND 20;

END ENTRIES;
END DEFINITION;

3. Change the CDD path names specified in ACMSMENU.COM to be the CDD
path name of your choice.

4. Use the following ADU commands to insert the definition file
ACMSMENU.COM in the CDD:

$ ADU
ADU> @ACMSMENU.COM

5. Use the following ADU commands to rebuild the ACMS command menu
database:

$ ADU
ADU> BUILD MENU COMMAND$ROOT ACMS$DIRECTORY:ACMSCMD.MDB
ADU> EXIT

Changing the ACMS Menu Format Using TDMS B–17





C
Using CDO for Pieces Tracking

Chapter 1 describes using the ADU utility to place ACMS definitions in the CDD.
In some ACMS applications, you may want to track relationships among ACMS
entities in the CDD.

C.1 Overview of Dictionary Object Types
The CDD dictionary allows you to see the relationships among entities. You can
only create relationships for ACMS entities that are in CDO format. You cannot
track DMU format objects. Some relationships are established automatically; for
example, if you create an Rdb record entity, the relationship between the record
and each of its fields is defined for you. For ACMS entities, you must define the
relationships using the CDO Utility.

To define relationships you need to know more about the three distinct types of
dictionary objects in CDD:

• Entity

An entity is the dictionary object that contains the definition of, for example,
an ACMS task definition or an Rdb record. You use ADU commands to create
entities for ACMS applications, menus, tasks, and task groups. Use the
CDO Utility to create any other ACMS dictionary entities needed to create
relationships. You must create dictionary entities for your ACMS definitions
and for the database objects required by your ACMS applications.

• Relationship

A relationship is the dictionary object that links two entities, modeling
a functional link between the application objects those entities describe.
For example, you can create a relationship that links a task group to an
application, and one that links the task group to a task. You can create
relationships only with the CDD CDO Utility. If you do not want to do pieces
tracking, you do not need to create relationships.

• Attribute

An attribute describes a specific characteristic of a CDD entity or relationship.
Attributes are the basic units of information contained in a CDD dictionary.
You do not need to create attributes for ACMS dictionary entities or
relationships.

Within the dictionary, each particular entity is identified by the name you give it
and by a predefined protocol name for each type of entity.

Protocols govern the use of the dictionary objects. A protocol is a set of rules
controlling the entities, relationships, and attributes of an item in the dictionary
(for example, an ACMS task definition or an Rdb record). If you plan to use
the dictionary without pieces tracking, you need not concern yourself with
protocols; the dictionary automatically associates your ACMS definition with the

Using CDO for Pieces Tracking C–1



Using CDO for Pieces Tracking
C.1 Overview of Dictionary Object Types

appropriate protocol. However, if you plan to do pieces tracking, you must use
protocols as you:

• Create ACMS entities needed for pieces tracking that cannot be created from
ADU

• Define relationship between entities for which relationship protocols exist

Section C.2 describes how to use CDO to create relationships for pieces tracking.

The CDO DIRECTORY command lists the entities within the current dictionary
directory. The left column lists the specific entities by name. The right column
lists the protocol for each type of entity listed to the left. For example:

1. Use the ADU REPLACE TASK command to create a dictionary entity for
your TASK_ADD definition, and one for your TASK_UPDATE definition.

2. Use the CDO DIRECTORY command at the dictionary directory where you
placed TASK_ADD. CDO lists the entity name on the left and the protocol for
that type of entity on the right:

. .

. .

. .
TASK_ADD ACMS$TASK
TASK_UPDATE ACMS$TASK

. .

. .

. .

C.2 Creating Relationships Between Entities
CDD contains protocols for all ACMS entity types and ACMS relationship types.
When you use an ADU command to place an ACMS definition in CDD, the
dictionary automatically associates the entity with one of the following four
protocols:

• ACMS$APPLICATION — for an ACMS application definition

• CDO$MENU — for an ACMS menu definition

• ACMS$TASK — for an ACMS task definition

• ACMS$TASK_GROUP — for an ACMS task group definition

Although ADU commands create application, menu, task, and task group entities,
you may need other ACMS dictionary entities to create relationships. If you want
to do pieces tracking, you must use the CDO Utility to:

1. Define all other entities needed to establish a relationship, associating each
entity with a predefined protocol for that entity type.

For example, if you use the command ADU REPLACE GROUP MYGROUP,
MYGROUP automatically enters CDD as the MYGROUP entity, based on the
ACMS$TASK_GROUP protocol. In this example, you establish relationships
between the MYGROUP entity and:

• Server entities, based on the ACMS$SERVER protocol

• Record entities, based on the CDD$DATA_AGGREGATE protocol

• A .TDB or .RLB file entity, based on the CDD$FILE protocol

• Task entities, based on the ACMS$TASK protocol

C–2 Using CDO for Pieces Tracking



Using CDO for Pieces Tracking
C.2 Creating Relationships Between Entities

In this example, only the task and group entities can be created through the
ACMS ADU commands. You must create the other entities through the CDO
Utility.

Use CDO DEFINE GENERIC to create an ACMS dictionary entity other than
the four that are created automatically (that is, other than application, menu,
task, and task group).

CDO> DEFINE GENERIC ACMS$SERVER MYSERVER
CDO> CDD$PROCESSING_NAME ’MYSERVER’.
CDO> END ACMS$SERVER MYSERVER.

Refer to the CDD documentation for complete syntax for this command.

2. Define relationships between entities for which relationship protocols exist.

You must define all relationships through the CDO Utility. Each relationship
consists of an owner and a member. For example, a task entity is the owner
and a task procedure item is the member in a relationship between a task
and a task procedure item. You can create relationships only between entities
for which CDD supplies a relationship protocol. See Table C–1 for a list of
all the protocols used to create relationships between ACMS entities, and the
entities which can be connected by these relationships.

You use the CDO DEFINE GENERIC or CDO CHANGE GENERIC
commands to create relationships between specific instances of ACMS
dictionary entities. DEFINE GENERIC allows you to create both the entity
and the relationship to another entity. CHANGE GENERIC creates a
relationship between already existing entities, or changes the relationship to
connect to a different member entity. The CDO CHANGE GENERIC syntax
is:

CDO> CHANGE GENERIC protocol-name entity-name. DEFINE relationship-name
cont> relationship-mbr END relationship-name DEFINE.

For example:

CDO> CHANGE GENERIC ACMS$TASK_GROUP MYGROUP. DEFINE
cont> ACMS$TASK_GROUP_SERVER MYSERVER. END
cont> ACMS$TASK_GROUP_SERVER DEFINE.
cont> END MYGROUP ACMS$TASK_GROUP

See the CDD documentation set for complete syntax and for the CDO
CHANGE GENERIC command.

A description of the parts of this command follows:

• ACMS$TASK_GROUP is the protocol name of the owner entity in the
relationship.

• MYGROUP is the name you gave the task group entity. This entity was
created and associated with ACMS$TASK_GROUP when you placed the
MYGROUP task group definition in the dictionary.

• ACMS$TASK_GROUP_SERVER is the CDD protocol for a relationship
between a task group entity and a server entity in that task group.

• MYSERVER is the name of an ACMS server entity you created with the
CDO DEFINE GENERIC command. MYSERVER is the member entity
in the relationship. MYSERVER must be based on the ACMS$SERVER
protocol. Only an entity based on the ACMS$SERVER protocol can be
used to create a relationship between the task group and server entities.

Using CDO for Pieces Tracking C–3



Using CDO for Pieces Tracking
C.2 Creating Relationships Between Entities

Relationships are always one-to-one, but you can establish multiple relationships
for any entity. For example, you can create a relationship between an ACMS
menu entity and an ACMS task entity, or between the same task entity and a HP
DECforms form entity. You can then use CDO commands such as SHOW USES
and SHOW USED_BY to do pieces tracking.

If you create a relationship and subsequently change the member entity, CDD
assigns a message to the owner entity. At the next use of the owner entity, ADU
informs you that there are messages pending for the owner entity. This situation
can occur after you create a relationship between a task and a task group. For
example, if you change a task in task group RMS_GROUP and then build the
group, ADU issues the message:

Object RMS_GROUP has CDD messages

See the CDD documentation set for complete information about these commands.

The left column of Table C–1 lists all the dictionary protocols for ACMS entities.
The table also lists the protocols for entities eligible for relating to any entities of
each protocol in the left column. Finally, the table lists the relationship protocols
you can use to relate the eligible entities.

Table C–1 CDD Protocols for ACMS Entity and Relationship Objects

Protocol for Entity of This Type

ACMS$APPLICATION Entities of this protocol defined by ADU commands in ACMS application
definition.

Owns Entities with Protocol: By Relationship:

ACMS$APPL_TASK_ITEM ACMS$APPLICATION_TASK

ACMS$TASK_GROUP ACMS$APPLICATION_TASK_GROUP

ACMS$APPL_SERVER_ITEM ACMS$APPLICATION_SERVER

$CDD$FILE ACMS$APPLICATION_ADB_FILE

Member of Entity with Protocol: By Relationship:

ACMS$MENU_TASK_ITEM ACMS$MENU_TASK_APPL

ACMS$APPL_SERVER_ITEM Entities of this protocol defined through CDD CDO Utility. Defined by server and
group that server is in.

Owns Entities with Protocol: By Relationship:

ACMS$SERVER ACMS$APPLICATION_SRV_SRV

ACMS$TASK_GROUP ACMS$APPLICATION_SRV_GRP

Member of Entity with Protocol: By Relationship:

ACMS$APPLICATION ACMS$APPLICATION_SERVER

ACMS$APPL_TASK_ITEM Entities of this protocol defined through CDD CDO Utility. Defined by task name
and group in which task appears.

Owns Entities with Protocol: By Relationship:

ACMS$TASK ACMS$APPLICATION_TASK_TSK

(continued on next page)

C–4 Using CDO for Pieces Tracking



Using CDO for Pieces Tracking
C.2 Creating Relationships Between Entities

Table C–1 (Cont.) CDD Protocols for ACMS Entity and Relationship Objects

Protocol for Entity of This Type

ACMS$TASK_GROUP ACMS$APPLICATION_TASK_GROUP

Member of Entity with Protocol: By Relationship:

ACMS$APPLICATION ACMS$APPLICATION_TASK

ACMS$MENU_TASK_ITEM ACMS$MENU_TASK_TASK

CDD$MENU Entities of this protocol defined by ADU commands in ACMS menu definition.

Owns Entities with Protocol: By Relationship:

ACMS$MENU_TASK_ITEM ACMS$MENU_TASK

CDD$FILE ACMS$MENU_MDB_FILE

CDD$MENU ACMS$MENU_CONTAINS

Member of Entity with Protocol: By Relationship:

CDD$MENU ACMS$MENU_CONTAINS

ACMS$PROCEDURE Entities of this protocol defined through CDD CDO Utility.

Owns Entities with Protocol: By Relationship:

CDD$EXECUTABLE_IMAGE ACMS$PROCEDURE_ENTRY_PT

CDD$PROCEDURE ACMS$PROCEDURE_ENTRY_PT

Member of Entity with Protocol: By Relationship:

ACMS$SERVER ACMS$SERVER_ABORT_PROCEDURE

ACMS$SERVER ACMS$SERVER_ACTION_PROCEDURE

ACMS$SERVER ACMS$SERVER_EXIT_PROCEDURE

ACMS$SERVER ACMS$SERVER_INIT_PROCEDURE

ACMS$TASK_PROCEDURE_ITEM ACMS$PROCEDURE_PROCEDURE

Protocol for Entity of This Type

ACMS$SERVER Entities of this protocol defined through CDD CDO Utility.

Owns Entities with Protocol: By Relationship:

ACMS$PROCEDURE ACMS$SERVER_ABORT_PROCEDURE

ACMS$PROCEDURE ACMS$SERVER_ACTION_PROCEDURE

ACMS$PROCEDURE ACMS$SERVER_EXIT_PROCEDURE

ACMS$PROCEDURE ACMS$SERVER_INIT_PROCEDURE

ACMS$SERVER ACMS$SERVER_BASED_ON

CDD$COMPILED_MODULE ACMS$SERVER_MODULE

Member of Entity with Protocol: By Relationship:

ACMS$APPL_SERVER_ITEM ACMS$APPLICATION_SRV_SRV

(continued on next page)

Using CDO for Pieces Tracking C–5



Using CDO for Pieces Tracking
C.2 Creating Relationships Between Entities

Table C–1 (Cont.) CDD Protocols for ACMS Entity and Relationship Objects

Protocol for Entity of This Type

ACMS$SERVER ACMS$SERVER_BASED_ON

ACMS$TASK_GROUP ACMS$TASK_GROUP_SERVER

ACMS$TASK_PROCEDURE_ITEM ACMS$_PROCEDURE_SERVER

ACMS$TASK Entities of this protocol defined by ADU commands in ACMS task definition.

Owns Entities with Protocol: By Relationship:

ACMS$TASK ACMS$TASK_BASED_ON

ACMS$TASK_TASK_ITEM ACMS$TASK_TASK

ACMS$TASK_PROCEDURE_ITEM ACMS$TASK_PROCEDURE

CDD$VIDEO_DISPLAY ACMS$TASK_VIDEO_DISPLAY

CDD$DATA_AGGREGATE ACMS$TASK_DATA_AGGREGATE

Member of Entity with Protocol: By Relationship:

ACMS$APPL_TASK_ITEM ACMS$APPLICATION_TASK_TSK

ACMS$TASK ACMS$TASK_BASED_ON

ACMS$TASK_GROUP ACMS$TASK_GROUP_TASK

ACMS$TASK_TASK_ITEM ACMS$TASK_ITEM_TASK

Protocol for Entity of This Type

ACMS$TASK_GROUP Entities of this protocol defined by ADU commands in ACMS task group
definition.

Owns Entities with Protocol: By Relationship:

ACMS$TASK ACMS$TASK_GROUP_TASK

ACMS$TASK_GROUP ACMS$TASK_GROUP_BASED_ON

ACMS$SERVER ACMS$TASK_GROUP_SERVER

CDD$FILE ACMS$TASK_GROUP_MSG_FILE

CDD$FILE ACMS$TASK_GROUP_TDB_FILE

CDD$VIDEO_DISPLAY ACMS$TASK_GROUP_VIDEO_DISPLAY

CDD$DATA_AGGREGATE ACMS$TASK_GROUP_DATA_AGG

Member of Entity with Protocol: By Relationship:

ACMS$APPLICATION ACMS$APPLICATION_TASK_GROUP

ACMS$APPL_SRV_ITEM ACMS$APPL_SRV_GRP

ACMS$APPL_TASK_ITEM ACMS$APPLICATION_TASK_GRP

ACMS$TASK_GROUP ACMS$TASK_GROUP_BASED_ON

Protocol for Entity of This Type

ACMS$TASK_PROCEDURE_ITEM Entities of this protocol defined through CDD CDO Utility. Defined by procedure
and server for that procedure.

Owns Entities with Protocol: By Relationship:

ACMS$PROCEDURE ACMS$PROCEDURE_PROCEDURE

(continued on next page)

C–6 Using CDO for Pieces Tracking



Using CDO for Pieces Tracking
C.2 Creating Relationships Between Entities

Table C–1 (Cont.) CDD Protocols for ACMS Entity and Relationship Objects

Protocol for Entity of This Type

ACMS$SERVER ACMS$PROCEDURE_SERVER

CDD$DATA_AGGREGATE ACMS$PROCEDURE_DATA_
AGGREGATE

Member of Entity with Protocol: By Relationship:

ACMS$TASK ACMS$TASK_PROCEDURE

ACMS$TASK_TASK_ITEM Entities of this protocol defined through CDD CDO Utility. Defined by task
renamed in group, and task arguments.

Owns Entities with Protocol: By Relationship:

ACMS$TASK ACMS$TASK_ITEM_TASK

CDD$DATA_AGGREGATE ACMS$TASK_ITEM_DATA_
AGGREGATE

Member of Entity with Protocol: By Relationship:

ACMS$TASK ACMS$TASK_TASK

CDD$COMPILED MODULE Entities of this protocol defined through CDD CDO Utility.

Owns Entities with Protocol: By Relationship:

CDD$EXECUTABLE_IMAGE CDD$IMAGE_DERIVED_FROM

Member of Entity with Protocol: By Relationship:

ACMS$SERVER ACMS$SERVER_MODULE

Protocol for Entity of This Type

CDD$EXECUTABLE_IMAGE Entities of this protocol defined through CDD CDO Utility.

Owns Entities with Protocol: By Relationship:

none

Member of Entity with Protocol: By Relationship:

ACMS$PROCEDURE ACMS$PROCEDURE_ENTRY_PT

CDD$COMPILED_MODULE CDD$IMAGE_DERIVED_FROM

CDD$FILE Entities of this protocol defined through CDD CDO Utility.

Owns Entities with Protocol: By Relationship:

none

Member of Entity with Protocol: By Relationship:

ACMS$APPLICATION ACMS$APPLICATION_ADB_FILE

CDD$MENU ACMS$MENU_MDB_FILE

ACMS$TASK_GROUP ACMS$TASK_GROUP_TDB_FILE

ACMS$TASK_GROUP ACMS$TASK_GROUP_MSG_FILE

(continued on next page)

Using CDO for Pieces Tracking C–7



Using CDO for Pieces Tracking
C.2 Creating Relationships Between Entities

Table C–1 (Cont.) CDD Protocols for ACMS Entity and Relationship Objects

Protocol for Entity of This Type

CDD$PROCEDURE Entities of this protocol defined through CDD CDO Utility.

Owns Entities with Protocol: By Relationship:

none

Member of Entity with Protocol: By Relationship:

ACMS$PROCEDURE ACMS$PROCEDURE_ENTRY_PT

CDD$VIDEO_DISPLAY Defined by

Owns Entities with Protocol: By Relationship:

CDD$VIDEO_DISPLAY ACMS$VIDEO_DISPLAY_BASED_ON

Member of Entity with Protocol: By Relationship:

ACMS$TASK ACMS$TASK_VIDEO_DISPLAY

ACMS$TASK_GROUP ACMS$TASK_GROUP_VIDEO_DISPLAY

CDD$DATA_AGGREGATE Defined by

Owns Entities with Protocol: By Relationship:

CDD$DATA_AGGREGATE CDD$DATA_AGGREGATE_BASED_ON

Member of Entity with Protocol: By Relationship:

ACMS$TASK ACMS$TASK_DATA_AGG

ACMS$TASK_GROUP ACMS$TASK_GROUP_DATA_AGG

ACMS$TASK_PROCEDURE_ITEM ACMS$TASK_PROCEDURE_ITEM_
DATA_AGG

ACMS$TASK_TASK_ITEM ACMS$TASK_ITEM_DATA_AGG

CDD$DATA_AGGREGATE CDD$DATA_AGGREGATE_BASED_ON

C–8 Using CDO for Pieces Tracking



D
Using LSE with ACMS

This appendix provides an overview of the optional Language-Sensitive Editor
(LSE) productivity tool. ACMS software does not include this tool; you must
purchase it separately. For information on how to purchase this tool, contact your
HP sales representative.

D.1 Using LSE with ACMS
LSE is a text editor designed specifically for software development with features
that help you produce syntactically correct ACMS code. With LSE, you can:

• Edit programs or text files using standard text editor commands with either
the EDT or EVE keypad

• Use formatted language constructs to quickly develop syntactically correct
programs

• Use two windows and multiple buffers

• Review and correct compilation errors from the editing session

• Customize your editing environment

• Integrate with other VAXset tools and products

In ACMS, you can use LSE for creating application, menu, task, and task group
definitions for processing by the Application Definition Utility (ADU). Some of the
key features of LSE when used with ACMS include:

• Creating source code

• Using placeholders and tokens

• Reviewing diagnostic files

• Getting ACMS-specific help for placeholders and tokens created by LSE

D.2 Creating ACMS Source Files with LSE
There are five LSE templates, one each for syntax for ACMS application
definitions, task group definitions, task definitions, and menu definitions. The
fifth template can be used for any of the four ACMS definition types.

There are two ways to invoke an LSE template for an ACMS definition. At the
DCL prompt, do one of the following:

• Issue the LSEDIT command followed by a file name with one of these file
extensions:

.ADF — For the ACMS application definition template.

.GDF — For the ACMS task group definition template.

.TDF — For the ACMS task definition template.

Using LSE with ACMS D–1



Using LSE with ACMS
D.2 Creating ACMS Source Files with LSE

.MDF — For the ACMS menu definition template.

.ADU — Invokes LSE with a template that can be used for any of the
four preceding ACMS definitions. You can include more than one type of
ACMS definition in a file with a .ADU extension.

• Issue the LSEDIT command with the /LANGUAGE qualifier and one of the
following languages, followed by a file name with any file extension:

ACMS$APPLICATION — For the ACMS application definition template.

ACMS$TASK_GROUP — For the ACMS task group definition template.

ACMS$TASK — For the ACMS task definition template.

ACMS$MENU — For the ACMS menu definition template.

For example:

$ LSEDIT ADDCAR.TDF

or:

$ LSEDIT/LANGUAGE = ACMS$TASK ADDCAR.TDF

The ADU file type tells LSE to use the ADU template for a task group definition.

You can also use LSE as the editor of choice with ADU EDIT and MODIFY
commands. To do this, you must define the ADU$EDIT logical name to point to
a command procedure that invokes LSE. For example, in the following command
line, the ADU$EDIT process logical name points to the command procedure
LSEDIT.COM:

$ DEFINE ADU$EDIT "LSEDIT.COM"

The command procedure LSEDIT.COM actually invokes LSE. You can devise your
own command procedure to perform this task or you can use the one shown in
Example D–1.

Example D–1 LSEDIT.COM File

$ ! LSEDIT.COM - Invoke VAXLSE for ADU
$ !
$ ! Inputs:
$ !
$ ! P1 = Input file name
$ ! P2 = Output file name
$ !
$ ! Note that this procedure is run in the context of a spawned
$ ! subprocess. Though LOGIN.COM is not executed when this
$ ! subprocess starts, the spawning procedure copies the symbols
$ ! and logicals from the spawning process.
$ ! The default directory for the subprocess is the same as
$ ! that for the spawning process.
$ !
$ ASSIGN/USER ’F$LOGICAL("SYS$OUTPUT")’ SYS$INPUT
$ IF P1 .EQS. "" THEN GOTO NOINPUT
$ LSEDIT /LANGUAGE=ACMSADU /OUTPUT=’P2’ ’P1’
$ EXIT
$ NOINPUT:
$ LSEDIT /LANGUAGE=ACMSADU ’P2’

This command procedure accepts a definition file or command file for input. It
then invokes LSE, edits the definition file or command file using ACMSADU
language type, and produces a listing file if specified.

D–2 Using LSE with ACMS



Using LSE with ACMS
D.2 Creating ACMS Source Files with LSE

When you invoke LSE to create a new file with the .TDF extension, your terminal
screen displays the text:

{TASK_definition}

Similarly, when you invoke LSE with the .ADF, .GDF, or .MDF extensions, your
terminal screen displays initial template information for application, task group,
and menu definitions.

D.2.1 Using Placeholders and Tokens in LSE
At the bottom of the screen shown in Figure D–1, LSE displays a bar containing
TPU editing information. The phrase TASK_definition appears at the top of the
screen. LSE provides this phrase, called a placeholder, as a starting template
to aid you in coding your application. LSE surrounds a placeholder with:

• A pair of curly braces ({}) to represent a place in the source code where the
user must provide additional program text

• A pair of square brackets ([ ]) to represent optional syntax which the user can
delete or modify

The curly braces surrounding the phrase TASK_definition indicate that the
phrase represents a required language construct.

Figure D–1 Creating a New File with LSE

In order to get template entries for a placeholder, you must move your cursor
to the placeholder and expand it by using special LSE key sequences or key
bindings. The most commonly used LSE commands and their default key
bindings are:

• EXPAND (CTRL/E)

• GOTO PLACEHOLDER/FORWARD (CTRL/N)

• ERASE PLACEHOLDER (CTRL/K)

• GET LSE COMMAND LINE (CTRL/Z)

• HELP/INDICATED (PF1-PF2)

Using LSE with ACMS D–3



Using LSE with ACMS
D.2 Creating ACMS Source Files with LSE

The HELP/INDICATED command summons ADU help for the token or
placeholder on which you place your cursor. See Section D.5 for a description
of help within the LSE template.

Suppose that you want to duplicate the source definition file ADDCAR.TDF
shown in Example 2–2.

Use the EXPAND command to display in the editing buffer the clauses associated
with the placeholder on which your cursor rests. Figure D–2 shows the result
when you use the EXPAND command on the LSE phrase TASK_definition. You
can also expand these clauses until you display the options necessary to create
the source code for your particular task.

Figure D–2 Expanding a Placeholder

The cursor now rests on the [REPLACE_TASK | CREATE_TASK] placeholder.
Use the EXPAND command again to list the additional options for that
placeholder. Figure D–3 displays these options with the an arrow on the first
choice.

D–4 Using LSE with ACMS



Using LSE with ACMS
D.2 Creating ACMS Source Files with LSE

Figure D–3 Expanding the REPLACE TASK | CREATE TASK Placeholder

To select an option from this menu, use the up and down arrow keys to position
the pointer at one of the options and press Return . Figure D–4 shows the display
you receive when you select the option REPLACE_TASK.

Figure D–4 Choosing REPLACE_TASK

LSE inserts the clause REPLACE_TASK into the buffer and displays a new
string of arguments associated with the REPLACE clause. When you expand the
placeholder path name, LSE displays the following message:

Enter the CDD path name of the object in the CDD

In Example 2–2, the object name is ADD_CAR_RESERVATION_TASK. When you
type this object name, LSE automatically removes the placeholder path name
from the display.

Move the cursor to the [replace_qualifiers] placeholder with the command
GOTO PLACEHOLDER/FORWARD Ctrl/N . Since the REPLACE TASK clause in
Example 2–2 does not contain any qualifiers, you can delete the placeholder with
the ERASE PLACEHOLDER command Ctrl/K . When you erase a placeholder,
LSE automatically positions the cursor at the next placeholder.

Using LSE with ACMS D–5



Using LSE with ACMS
D.2 Creating ACMS Source Files with LSE

Note that when you attempt to delete a required placeholder (signified by curly
braces), LSE returns the following message:

This is a required placeholder. Continue erase operation [Y or N]?

You can also use LSE to enter comments. Figure D–5 demonstrates the expansion
of the ![definition_comment] placeholder.

Figure D–5 Expanded Comment Placeholders

The string ~tbs~ stands for to be supplied and indicates where you need to
provide additional information.

Example 2–2 contains a line at the top of the file for which LSE did not give the
user a prompt. That line is:

SET VERIFY

You can request that LSE prompt you for this line by expanding a token. A
token is a keyword specific to ADU syntax. LSE does not provide tokens in the
same way it provides placeholders. Instead, you must type a token directly into
the buffer to add an ADU clause when there are no placeholders in the existing
program. When you expand the token, LSE displays the available options in the
same way it displays options for placeholders.

Figure D–6 demonstrates token expansion. The user has typed a portion of the
token for the ADU clause SET VERIFY and expanded the token. LSE displays
the option menu from which the user can select the SET_VERIFY clause.

D–6 Using LSE with ACMS



Using LSE with ACMS
D.2 Creating ACMS Source Files with LSE

Figure D–6 Expanding Tokens

You can also use tokens to bypass menus in cases where expanding a placeholder
would result in a lengthy menu.

LSE also provides a COMMENT token that you can expand to include inline code.
To use the COMMENT token, type the word COMMENT and expand the token.
LSE inserts the following line at the position indicated by the cursor:

![inline_comment]

When you expand this new placeholder, LSE inserts the following lines into your
program:

!++
![~tbs~]...
!--

LSE positions the cursor on the placeholder ~tbs~, which stands for to be
supplied. You can then enter comment text.

D.2.2 Creating the Final Source File
By using this process of expanding, selecting, moving to, and deleting
placeholders and tokens and adding text where necessary, you can use LSE
to create a source file that looks something like Figure D–7.

Using LSE with ACMS D–7



Using LSE with ACMS
D.2 Creating ACMS Source Files with LSE

Figure D–7 Final Source File Created with LSE

D.2.2.1 Syntax Differences
The syntax generated by LSE may differ slightly from syntax that you use.
For example, the source file produced by LSE contains expanded versions of
the ADU clauses, such as PROCESSING WORK IS, where you may simply use
PROCESSING. Both versions are correct. Whether or not you use the expanded
syntax and different spacing depends on the programming conventions used at
your site.

D.2.2.2 Exiting Editing Mode
Once you finish editing text, you can save the file and process it. To exit editing
mode, press Ctrl/Z . LSE opens a command line preceded by the prompt LSE> at
the bottom of the screen. At this command prompt you can:

• EXIT or QUIT the LSE session

• Access HELP

• Enter LSE and SCA commands

• Continue editing

For example, to continue editing, use the CONTINUE command:

LSE> CONTINUE

LSE then positions your cursor in the editing buffer.

To leave the LSE session and save your editing changes, use the EXIT command:

LSE> EXIT

LSE then writes the buffer to a file and exits to the DCL level. You can then
process your file with ACMS.

D–8 Using LSE with ACMS



Using LSE with ACMS
D.3 Compiling Definitions with LSE COMPILE

D.3 Compiling Definitions with LSE COMPILE
ACMS lets you use the LSE COMPILE command from within an LSE editing
session to create, modify, or replace a task, task group, application, or menu
definition. To use the COMPILE command, you must include the ADU CREATE,
REPLACE, or MODIFY command in the definition, and enter COMPILE at the
the LSE prompt.

LSE> COMPILE ADDCAR.TDF

LSE then displays the following message, indicating the start of the compilation:

Starting compilation: @SYS$LIBRARY:ACMS$LSE_COMPILE.COM ADDCAR.TDF

When the compilation is finished, LSE displays the following message:

Compilation of buffer ADDCAR.TDF completed

The ADU language templates define the LSE COMPILE string as
"@SYS$LIBRARY:ACMS$LSE_COMPILE.COM". LSE passes the definition
filename as a parameter to the ACMS$LSE_COMPILE.COM command procedure.
The command procedure then enters ADU and invokes the definition file, using
the @ command.

If ADU finds an error in the CREATE, REPLACE, or MODIFY command, ACMS
does not create the LSE diagnostics file, and LSE does not display any messages
referring to the error.

D.4 Examining Diagnostic Messages with LSE REVIEW
The REVIEW command issued within an LSE session enables you to display
a diagnostics file at the same time you are examining the source code that
generated the diagnostics file. ACMS creates the diagnostics file when you
attempt to create, modify, or replace a definition with the /DIAGNOSTICS
qualifier.

When you process the definition, ACMS creates a separate diagnostics file using
the entity name and a .DIA extension. You can then use LSE to review the source
code and the diagnostics file with a split screen.

D.4.1 Generating the Diagnostics File
Suppose you have created a definition file called ADDCAR.TDF and want to
generate a diagnostics file to aid you in fixing coding errors. The REPLACE
command in the definition file contains the task name with /DIAGNOSTICS
qualifier required to produce the diagnostics file:

REPLACE TASK ADD_CAR_RESERVATION_TASK/DIAGNOSTICS

When you compile the definition file ADDCAR.TDF in ADU, ACMS produces a
diagnostic file called ADD_CAR_RESERVATION_TASK.DIA.

ACMS names the diagnostic file after the entity, not after the source file. For
example, if your source file is CLOCKS.GDF and you have defined a task group
called GRANDFATHER with the /DIAGNOSTICS qualifier in the file, ACMS
names the resulting diagnostics file GRANDFATHER.DIA.

If you want the name of the diagnostic file to be different than the entity name,
specify the filename with the /DIAGNOSTICS qualifier. For example:

REPLACE GROUP CLOCKS/DIAGNOSTICS=CLOCKS.DIA

Using LSE with ACMS D–9



Using LSE with ACMS
D.4 Examining Diagnostic Messages with LSE REVIEW

D.4.2 Examining the Diagnostics File with LSE REVIEW
To examine the diagnostics file, invoke LSEDIT and supply the name of the
source file:

$ LSEDIT ADDCAR.TDF

Obtain the LSE> prompt by pressing Ctrl/Z . Then issue the REVIEW command,
supplying the name of the diagnostics file:

LSE> REVIEW/FILE=ADD_CAR_RESERVATION_TASK.DIA

If your compilation was successful and the diagnostic file contains no errors, LSE
displays the following message:

Compilation produced no errors

Because the compilation was error free, LSE does not display the .DIA file. If you
make an error in the ADU command line of the task definition, ADU does not
compile the task definition, and a success status is returned.

If the compilation was unsuccessful and the diagnostic file contains error
messages, the screen displays two buffers — one at the top half of the screen
and one at the bottom half — as shown in Figure D–8.

Figure D–8 Examining Diagnostic Files with LSE REVIEW

The window at the top of the screen contains the $REVIEW buffer that displays
diagnostic messages. The window at the bottom of the screen contains the source
file text. By moving between these two windows, you can review the compilation
errors and correct the corresponding code.

Table D–1 lists some commands you can use at the LSE> prompt to move between
the $REVIEW buffer and the source code buffer.

D–10 Using LSE with ACMS



Using LSE with ACMS
D.4 Examining Diagnostic Messages with LSE REVIEW

Table D–1 LSE REVIEW Window Commands

Command
Default Key
Binding Description

NEXT ERROR Ctrl/N Highlights next error message in the $REVIEW
buffer

GOTO SOURCE Ctrl/G Highlights source line corresponding with error
message currently highlighted in the $REVIEW
buffer

CONTINUE Ctrl/Z When used after GOTO SOURCE, places cursor in
source code buffer for editing. To return to REVIEW
mode, press Ctrl/Z .

PREVIOUS
ERROR

Ctrl/B Highlights previous error line in $REVIEW buffer

END REVIEW None Terminates review. Removes $REVIEW buffer from
screen and displays source code buffer only.

When you start the REVIEW session, LSE highlights the first error message
in the $REVIEW buffer. To find the source code corresponding with this error
message, use the GOTO SOURCE command:

LSE> GOTO SOURCE

In the lower part of the screen, LSE then displays and highlights the line of
source code that generated the error. To edit the source code, use the CONTINUE
command:

LSE> CONTINUE

You can now enter your changes in the source code buffer. Once you have made
your changes, you can return to the LSE command by typing Ctrl/Z .

When you have completed your review of the diagnostics file, you can terminate
the review session by entering the END REVIEW command at the LSE> prompt:

LSE> END REVIEW

LSE then removes the diagnostics file from your screen and displays the source
file.

When you use the REVIEW command, you must call the correct version of
the diagnostics file generated by the source file you are currently editing. For
example, suppose you compiled ADDCAR.TDF;4 to generate the diagnostics file
ADD_CAR_RESERVATION_TASK.DIA;4. If you create another version called
ADDCAR.TDF;5 but do not recompile it to generate a matching .DIA file, you
will receive the following message when you attempt to use the GOTO SOURCE
command during LSE REVIEW mode:

File in buffer is not the version compiled

When you receive this message, you can perform either of the following actions to
resolve the problem:

• Enter the LSE COMPILE command to recompile the source file to generate
a new diagnostics file. Then enter the REVIEW command. When you enter
the REVIEW command and the file specification, LSE reads the most recent
version of the .DIA file into the buffer.

Using LSE with ACMS D–11



Using LSE with ACMS
D.4 Examining Diagnostic Messages with LSE REVIEW

• End the LSE session. Invoke LSE again and specify the source file name
and the version number. For example, although ADDCAR.TDF;5 is the most
recent version, you want to debug ADDCAR.TDF;4 with its corresponding
diagnostics file, ADDCAR.DIA;4. Therefore, at the DCL level, specify the file
name and version number:

LSE> ADDCAR.TDF;4

Then invoke REVIEW as you normally would. To ensure that you are
requesting the correct version of the .DIA file, you can specify the version
number:

$ LSE> REVIEW/FILE=ADDCAR.DIA;4

If you try to use REVIEW with a diagnostics file that was not generated from
the source file you are displaying, LSE REVIEW attempts to match errors
in the diagnostics file with lines in the source file. To avoid such confusion,
always delete outmoded .DIA files.

D.5 Using HELP in LSE
LSE includes a help system for navigating and editing within the buffer being
edited. Press Help within an LSE editing buffer to get a description of the LSE
editing commands and key definitions.

LSE also provides access to context-senstive ADU help for ACMS. Within the
LSE editing sesion, place your cursor on any placeholder or token and use the
HELP/INDICATED command (PF1 PF2 ). LSE summons an appropriate ADU
help message from the ADU help message file. Just as when you type a series
of help topics to reach a particular help message, the help message indicates the
topic titles that led to the message for the placeholder or token for which you
summoned help. For example, the help message for the placeholder GROUP in a
task definition file is:

TASK

WORKSPACES

Keywords

GROUP

Identifies the workspace as a GROUP type workspace. The
contents of a GROUP workspace can be used by many instances
of the same or different tasks. ACMS maintains these contents
from application startup to application shutdown.

You cannot move back up the topic path within the LSE editing session. However,
if there are additionial subtopics for the current topic, you can reach them as you
would for subtopics through the ADU HELP command.

If you type a portion of a token and press PF1 PF2 , you get a message for each
ADU keyword that could be expanded from the portion you typed. The messages
correspond to the choices on the option menu that appears if you expand the
partial token. For example, if you type the partial token SET as shown in
Figure D–6, and then press PF1 PF2 , you get help for each ADU keyword listed
in the options menu.

For more comprehensive information on other LSE features, consult VAX
Language-Sensitive Editor and VAX Source Code Analyzer User Manual.

D–12 Using LSE with ACMS



E
Request Interface Kit Components

When you install the Request Interface, the installation procedure creates
the system logical ACMS$RI_EXAMPLES, which is a subdirectory of the
ACMS$EXAMPLES directory. It also creates a new CDD dictionary,
ACMS$RI_CDD, under the ACMS$DIR dictionary.

This appendix lists the files included with the Request Interface software.
Table E–1 gives the name and location of the components that are on the kit.

Table E–1 Request Interface Kit Components

Component Name Location

ACMS Request Interface
agent source modules

ACMS$RI_AGENT.B32 ACMS$RI_EXAMPLES

ACMS Request Interface
AGENT and DEBUG
object module library

ACMS$RI.OLB SYS$LIBRARY

ACMS-supplied RI agent
image
(ACMS$RI_AGENT)

ACMS$RI_AGENT.EXE SYS$SYSTEM

ACMS Request Interface
MENU (FMS menu)
source modules used by
ACMS$RI_AGENT

ACMS$RI_FMS_MENU.BAS ACMS$RI_EXAMPLES

ACMS Request Interface
MENU object module
library

ACMS$RI_FMS_MENU.OLB SYS$LIBRARY

ACMS Request Interface
menu form definitions
for the menu interface of
ACMS$RI_AGENT

MENU_MAIN_FORM.FRM ACMS$RI_EXAMPLES

ACMS Request Interface
FMS menu form

MENU_HELP_FORM.FRM ACMS$RI_EXAMPLES

ACMS Request Interface
FMS menu form library

FMS_MENU_LIBRARY.FLB ACMS$RI_EXAMPLES

For more information on these components, continue on to the next sections of
this appendix.

Request Interface Kit Components E–1



Request Interface Kit Components
E.1 Application Independent Modules

E.1 Application Independent Modules
The application independent modules are as follows:

• ACMS$RI_AGENT.B32

The ACMS$RI_AGENT is an example of how an agent program can be
developed to utilize the RI interface. The ACMS$RI_AGENT uses the
Systems Interface (SI) to sign users in to ACMS and call tasks in an ACMS
application, just like any other ACMS agent.

The ACMS$RI_AGENT allows a choice of two different user interfaces to
enter the task and application selections. The first interface is a user-written
menu interface. This type of interface requires that a programmer write two
special purpose procedures: an initialization procedure names ACMS$RI_
MENU_INIT, and a menu interface procedure names ACMS$RI_MENU_
ROUTINE. These two menu routines can be included into the ACMS$RI_
AGENT code in one of two ways:

The ACMS$RI_MENU_INIT procedure and the ACMS$RI_MENU_
ROUTINE procedure can be linked into a shared image and then, at run
time, dynamically activated. The shareable image is activated into the RI
agent process, using the LIB$FIND_IMAGE_SYMBOL RTL routine. In
order to activate these routines in the ACMS$RI_AGENT, the user must
define the logical ACMS$RI_MENU that points to the shared image file
that contains the two procedures.

The ACMS$RI_MENU_INIT procedure and the ACMS$RI_MENU_
ROUTINE procedure can be linked directly into the RI agent code and
called as required.

The second interface is the default interface. If the user chooses not to write
a menu interface, ACMS$RI_AGENT prompts the user for the task and
application desired.

With either interface, the ACMS$RI_AGENT signs the user in to the ACMS
system. The agent then calls the ACMS$INIT_EXCHANGE_IO service and
specifies the ACMS$M_IO_ENABLE_SYNC_RI flag. This flag indicates to the
ACMS system, EXC specifically, that all task I/O will be executed in the agent
process synchronously.

• ACMS$RI_DEBUG.B32

This is the source code for the Request Interface (RI) supplied debugger
module. The debugger module signals with an SS$_DEBUG status, which
acts like pressing Ctrl/Y and then typing DEBUG at the DCL prompt. If
you include this module in the Request Interface request library shared
image file, the first time this library file is accessed the OpenVMS debugger
prompt (DBG>) appears. This allows you to set breakpoints at User Request
Procedures (URPs) so you can debug the request procedure code.

• ACMS Request Interface AGENT and DEBUG object module library,
ACMS$RI.OLB

This is the object library that contains the RI agent object and the RI
debugger module object. It contains the following modules:

ACMS$RI_AGENT

RI agent object module is provided so you are not required to write an
agent to make use of RI facility. In addition, users may want to code their
own menu interfaces and link them directly into the RI agent code.

E–2 Request Interface Kit Components



Request Interface Kit Components
E.1 Application Independent Modules

ACMS$RI_DEBUG

Debug object module which, if included in the RI request library shared
image file, allows users to test and debug their user request procedures
(URPs) using the OpenVMS debugger. This must be linked into the
shared image file.

• ACMS Request Interface Agent executable image(s), ACMS$RI_AGENT.EXE

This is the supplied RI agent executable image, which can be used to activate
the menu interface shared image or to debug URPs. By default, this agent
prompts you for task name and application name. In addition, if the default
prompt mode is selected, it displays the error (or success) message of a
selected task.

• ACMS Request Interface MENU (FMS menu) source modules, ACMS$RI_
FMS_MENU.BAS

This is the source code for the supplied FMS menu interface. It contains the
two special-purpose procedures, an initialization procedure called ACMS$RI_
MENU_INIT and a user interface (menu) procedure named ACMS$RI_
MENU_ROUTINE.

ACMS$RI_MENU_INIT

This module is BASIC FUNCTION source code for the initialization
procedure for the FMS Menu interface. This procedure creates the FMS
workspaces, attaches the terminal, and opens the FMS Menu form library
pointed to by the logical ACMS$RI_FMS_MENU_LIB.

ACMS$RI_MENU_ROUTINE

This module is BASIC FUNCTION source code for the FMS menu
interface. This procedure displays a menu and prompts the user for a
selection. The FMS menu interface duplicates some of the ACMS menu
functionality (*, -, $EXIT, $HELP, keyword, number). This procedure uses
the named data functionality of FMS. To adapt this FMS interface to your
specific requirements, you need to change only the supplied FMS forms;
you do not need to change the FMS interface procedures.

• ACMS Request Interface MENU object module library, ACMS$RI_FMS_
MENU.OLB

This is the Request Interface FMS menu interface object module library. It
contains the ACMS$RI_MENU_INIT and the ACMS$RI_MENU_ROUTINE
object modules. With it, you can link the FMS menu interface directly into
the RI agent code.

• ACMS Request Interface FMS menu form definitions:

MENU_MAIN_FORM.FRM

This is the FMS form used as the top-level (main) menu form. It is
similar to the layout of the ACMS default menu format, which includes a
number, a keyword, task or menu indicator (T or M) and some descriptive
text. At the bottom of the menu is the selection prompt. The menu layout
is static text in the FMS form. The only field on the menu form is the
selection field. Numbers and keywords are used as named data indexes
and named data keywords. To change the form for a specific application,
modify the static text on the main menu, and change the named data
field information. The default main menu is set up for the FMS sample
application.

Request Interface Kit Components E–3



Request Interface Kit Components
E.1 Application Independent Modules

MENU_HELP_FORM.FRM

This is the FMS form used when the user types $HELP or presses PF2

twice at the selection prompt. It displays a form that explains what
functionality is available under the FMS menu interface such as *, -,
$EXIT, number, keyword, and so on. Include this form in all FMS menu
interface form libraries.

• ACMS Request Interface FMS menu form library, FMS_MENU_
LIBRARY.FLB

This is the FMS form library that contains the MENU_MAIN_FORM and the
MENU_HELP_FORM. The name of the form library is not important since
the FMS menu interface uses a logical (ACMS$RI_FMS_MENU_LIB) to point
to the proper FMS form library.

E.2 RI Sample Application
This section describes the components of the ACMS Request Interface SMG and
QIO sample application source modules. In general, the RI sample application
uses SMG and QIO user request procedures (URPs) to do terminal I/O. There are
two task group definitions: one uses .RLB request libraries, and the other uses
an EXE shareable image file in the REQUEST LIBRARY IS clause. All these
components are located in the ACMS$RI_EXAMPLES directory.

E.2.1 RI Sample Application Source Modules
This section lists the sample applicaton source modules for the RI sample
application.

• RI_EMPLOYEE_RECORD.CDO record definition

This is the CDD record definition for the ACMS Request Interface (RI)
SMG and QIO sample application. The record contains three fields: the
EMPLOYEE ID NUMBER, EMPLOYEE FIRST NAME, and EMPLOYEE
LAST NAME.

• RI_APPL_FORMS.BAK — CDD backup of FMS form definitions

This is the CDD backup of the FMS forms used in the SMG and QIO sample
application. It contains the following forms:

RI_ADD_FORM

TDMS form used in the add request that is used in the add task example.

RI_INQ_FORM

TDMS form used in the inquire request that is used in the inquiry task.

RI_INQ_DISP_FORM

TDMS form used in the inquire display request that is used in the inquiry
task.

• FMS request definitions

RI_ADD_REQUEST.RDF

This is the TDMS request definition used in the RI_ADD_TASK task
in the SMG and QIO sample application. It prompts the user to enter
employee ID, employee first name, and employee last name.

E–4 Request Interface Kit Components



Request Interface Kit Components
E.2 RI Sample Application

RI_INQ_REQUEST.RDF

This is the TDMS request definition used in the RI_INQ_TASK task
in the SMG and QIO sample application. It prompts the user to enter
employee ID.

RI_INQ_DISP_REQUEST.RDF

This is the TDMS request definition used in the RI_INQ_TASK task
in the SMG and QIO sample application. It displays the employee ID,
employee first name, and employee last name.

• TDMS request library definition (includes BUILD command),
RI_REQUEST_LIBRARY.LDF

This is the request library definition for the two TDMS request libraries. It
also includes the BUILD command to build the request libraries
RI_REQUEST_LIBRARY1.RLB and RI_REQUEST_LIBRARY2.RLB.

• Task definitions

RI_ADD_TASK.TDF

This is the ACMS Task Definition for the add task in the sample
application. The task has one exchange step and one processing step.
The exchange step prompts the user to enter employee ID, employee first
name, and employee last name and then the processing step writes the
data out to an RMS datafile using employee ID as the key. The task
contains no control action or program request keys.

RI_INQ_TASK.TDF

This is the ACMS Task Definition for the inquire task in the sample
application. The task has two exchange steps and one processing step.
The first exchange step prompts the user to enter employee ID. The
processing step retrieves the employee information from an RMS datafile
using employee ID as the key. Then the second exchange step displays
the employee information retrieved from the previous processing step.
The task contains no control action or program request keys.

• Task group definition (includes BUILD command)

RI_LOGICAL_GROUP.GDF

This is the ACMS task group definition for the RI SMG and QIO sample
application. This group does not define a request library shared image
(.EXE) file in the REQUEST LIBRARY IS clause (only TDMS request
library files (RLB)). If you build the ACMS application using this task
group definition, you must define a logical name (ACMS$RI_LIB_
libraryname) to use the SMG or QIO user request procedures for this
group. By default, the sample SMG/QIO application was built using the
logical name task group definition. In order to make use of the SMG or
QIO procedures, you must define the ACMS$RI_LIB_libraryname logical.
The definition also includes the BUILD command to build the task group
(.TDB).

RI_PASSED_GROUP.GDF

This is the ACMS task group definition for the RI SMG and QIO sample
application. This task group defines a request library shared image
(.EXE) file in the REQUEST LIBRARY IS clause. If you build the ACMS
application using this task group definition, you do not need a logical
to use the SMG or QIO user request procedures for this group. This

Request Interface Kit Components E–5



Request Interface Kit Components
E.2 RI Sample Application

definition also includes the BUILD command to build the task group
(.TDB).

• Procedure server source modules

RI_INIT_PROCEDURE.COB

This is the COBOL source code for the initialization routine for the
SMG/QIO sample application server procedure. The routine opens an
RMS datafile called RI_SIMPLE_APPL.DAT.

RI_ADD_PROCEDURE.COB

This is the COBOL source code for the add routine for the SMG/QIO
sample application server procedure. This procedure is used in the
RI_ADD_TASK to store a record containing employee ID, employee first
name, and employee last name.

RI_GET_PROCEDURE.COB

This is the COBOL source code for the get routine for the SMG/QIO
sample application server procedure. This procedure is used in the
RI_INQ_TASK to retrieve a record containing employee ID, employee first
name, and employee last name.

RI_TERM_PROCEDURE.COB

This is the COBOL source code for the termination routine for the
SMG/QIO sample application server procedure. The routine closes the
RMS datafile called RI_SIMPLE_APPL.DAT.

• Command procedures to COMPILE and LINK the procedure server

RI_SERVER_COMPILE.COM

This is a command procedure to recompile all the procedure server
modules. It also creates a new object library
(RI_SERVER.OLB) and inserts all the server modules.

RI_SERVER_LINK.COM

This is a command procedure to relink the procedure server modules
into SMG/QIO sample application server image. It uses the server object
library created in the recompile command procedure.

• Application definition (includes BUILD command), RI_SAMPLE_APPL.ADF

This is the ACMS application definition for the RI SMG and QIO sample
application. It uses the RI_LOGICAL_GROUP.TDB task group. The
definition includes the BUILD command to build the application database
(.ADB).

• Menu definition (includes BUILD command), RI_APPL_MENU.MDB

This is the ACMS menu definition for the RI SMG and QIO sample
application. It includes the BUILD command to build the menu database
(.MDB).

• Request Interface user request procedure (URP) source modules

RI_FORTRAN_QIO.FOR

This is the FORTRAN source code for the RI request library file that
contains all the user request procedures (URPs) for the RI QIO sample
application. The URPs use the OpenVMS QIO system service to read

E–6 Request Interface Kit Components



Request Interface Kit Components
E.2 RI Sample Application

and write to the terminal. This file contains the following URP source
modules:

* ACMS$RI_LIB_INIT

This is the FORTRAN FUNCTION source code for the initialization
procedure for the RI request library shared image file. This assigns
a channel to the current terminal using the OpenVMS SYS$ASSIGN
system service.

* ACMS$RI_LIB_CANCEL

This is the FORTRAN FUNCTION source code for the cancellation
procedure for the RI request library shared image file. This cancels all
outstanding terminal I/O, using the OpenVMS SYS$CANCEL system
service, and signals an ACMS cancel error.

* RI_ADD_REQUEST

This is the FORTRAN FUNCTION source code to duplicate the
TDMS add request by using the OpenVMS SYS$QIOW system
service to prompt the user for employee ID, employee first name,
and employee last name. The employee record workspace (RI_
EMPLOYEE_RECORD) is passed to it as a parameter.

* RI_INQ_REQUEST

This is the FORTRAN FUNCTION source code to duplicate the TDMS
inquire request by using the OpenVMS SYS$QIOW system service
to prompt the user for employee ID number. The employee record
(RI_EMPLOYEE_RECORD) workspace is passed to it as a parameter.

* RI_INQ_DISP_REQUEST

This is the FORTRAN FUNCTION source code to duplicate the TDMS
inquire display request by using the OpenVMS SYS$QIOW system
service to display the employee first name and the employee last
name. The employee record workspace (RI_EMPLOYEE_RECORD) is
passed to it as a parameter.

RI_BASIC_SMG.BAS

This is the BASIC source code for RI request library file that contains all
the user request procedures (URPs) for the RI SMG sample application.
The URPs use the OpenVMS SMG Run-Time Library (RTL) service to
read and write to the terminal. This file contains the following URP
source modules (note that this file does not contain an optional cancel
URP):

* ACMS$RI_LIB_INIT

This is the BASIC FUNCTION source code for the initialization
procedure for the RI request library shared image file. This creates a
pasteboard and a keyboard for the terminal using the OpenVMS SMG
RTL services.

* RI_ADD_REQUEST

This is the BASIC FUNCTION source code to duplicate the TDMS
add request by using the OpenVMS SMG RTL services to prompt the
user for employee ID, employee first name, and employee last name.
The employee record workspace (RI_EMPLOYEE_RECORD) is passed
to it as a parameter.

Request Interface Kit Components E–7



Request Interface Kit Components
E.2 RI Sample Application

* RI_INQ_REQUEST

This is the BASIC FUNCTION source code to duplicate the TDMS
inquire request by using the OpenVMS SMG RTL services to prompt
the user for employee ID number. The employee record workspace
(RI_EMPLOYEE_RECORD) is passed to it as a parameter.

* RI_INQ_DISP_REQUEST

This is the BASIC FUNCTION source code to duplicate the TDMS
inquire display request by using the OpenVMS SMG RTL services
to display the employee first name and the employee last name. The
employee record workspace (RI_EMPLOYEE_RECORD) is passed to
it as a parameter.

• Command procedures to COMPILE and LINK the request library shared
image file:

RI_REQ_LIB_COMPILE.COM

This is a command procedure to recompile both the user request procedure
modules for the SMG and the QIO request library shared image file. It
also creates two new object libraries (RI_FORTRAN_QIO.OLB and RI_
BASIC_SMG.OLB) and inserts all URP modules in the appropriate object
library.

RI_REQ_LIB_LINK.COM

This is a command procedure to relink the user request procedure
modules into the request library shared image file used in the RI_
SAMPLE_APPLICATION. It uses the object library created in the
recompile command procedure.

E.2.2 RI Sample Application Run-Time Files
This section lists the run-time files for the RI sample application.

• TDMS request library file (RLB)

RI_REQUEST_LIBRARY1.RLB

This is the TDMS request library for the RI SMG/QIO sample application.
It contains the RI_ADD_REQUEST request and the RI_INQ_REQUEST
request. The reason for splitting the TDMS request between two TDMS
request libraries is to demonstrate the use of a URP and a TDMS request
in a single task (RI_INQ_TASK).

RI_REQUEST_LIBRARY2.RLB

This is the TDMS request library for the RI SMG/QIO sample application.
It contains the RI_INQ_DISP_REQUEST request.

• Task group database (TDB)

RI_LOGICAL_GROUP.TDB

This is the ACMS task group database for the RI SMG and QIO sample
application. This group does not define a request library shared image
(.EXE) file in the REQUEST LIBRARY IS clause (only TDMS request
library files (RLB)). If you build the ACMS application using this
task group database, you must define a logical name (ACMS$RI_LIB_
libraryname) to use the SMG or QIO user request procedures for this
group. By default, the sample SMG/QIO application was built using

E–8 Request Interface Kit Components



Request Interface Kit Components
E.2 RI Sample Application

the logical name task group database. To make use of the SMG or QIO
procedures, you must define the ACMS$RI_LIB_libraryname logical.

RI_PASSED_GROUP.TDB

This is the ACMS task group database for the RI SMG and QIO sample
application. This task group defines a request library shared image
(.EXE) file in the REQUEST LIBRARY IS clause. If you build the ACMS
application using this task group database, no logical is needed to use the
SMG or QIO user request procedures for this group.

• RI_SERVER.OLB—Procedure server object module library

This is the object library containing the four object modules that make up the
RI server used in the SMG/QIO sample application. It includes the following
four modules:

RI_INIT_PROCEDURE—Object module for the initialization procedure

RI_TERM_PROCEDURE—Object module for the termination procedure

RI_ADD_PROCEDURE —Object module for the add record procedure

RI_GET_PROCEDURE —Object module for the get record procedure

• RI_SERVER.EXE—Procedure Server image file

This is the procedure server image for the RI SMG/QIO sample application.

• RI_SAMPLE_APPL.ADB—Application Database (ADB)

This is the ACMS application database for the RI sample application. It uses
the RI_LOGICAL_GROUP.TDB task group.

• RI_APPL_MENU.MDB—Menu Database (MDB)

This is the ACMS menu database for the RI sample application.

• Request Interface User Request Procedure object module library

RI_BASIC_SMG.OLB

This is the object library that contains the object modules for the SMG
URPs contained in the RI request library shared image file. It contains
the following object modules:

* ACMS$RI_LIB_INIT

This is the object module for the RI request library shared image file
initialization user request procedure.

* RI_ADD_REQUEST

This is the object module for the RI request library shared image file
add request user request procedure.

* RI_INQ_REQUEST

This is the object module for the RI request library shared image file
inquiry request user request procedure.

* RI_INQ_DISP_REQUEST

This is the object module for the RI request library shared image file
inquiry display user request procedure.

Request Interface Kit Components E–9



Request Interface Kit Components
E.2 RI Sample Application

RI_FORTRAN_QIO.OLB

This is the object library which contains the object modules for the QIO
URPs contained in the RI request library shared image file. It contains
the following object modules:

* ACMS$RI_LIB_INIT

This is the object module for the RI request library shared image file
initialization user request procedure.

* ACMS$RI_LIB_CANCEL

This is the object module for the RI request library shared image file
cancellation user request procedure.

* RI_ADD_REQUEST

This is the object module for the RI request library shared image file
add request user request procedure.

* RI_INQ_REQUEST

This is the object module for the RI request library shared image file
inquiry request user request procedure.

* RI_INQ_DISP_REQUEST

This is the object module for the RI request library shared image file
inquiry display user request procedure.

• Request Interface request library shared image file

RI_BASIC_SMG.EXE

This is the SMG RI request library shared image file that includes all
SMG URP modules.

RI_FORTRAN_QIO.EXE

This is the QIO RI request library shared image file that includes all QIO
URP modules.

E.3 FMS Sample Application
This section describes the components of the FMS sample application. In general,
the FMS sample application uses FMS user request procedures written in
FORTRAN to replace the TDMS requests included in the request libraries that
are defined in the task group definition. This requires the use of the ACMS$RI_
LIB_libraryname logical. All the components listed are in the ACMS$RI_
EXAMPLES directory.

E.3.1 FMS Sample Application Source Modules
This section lists the source modules for the FMS sample application.

• Record definitions

FMS_EMPLOYEE_RECORD.DDL

This is the CDD record definition for the ACMS Request Interface (RI)
FMS sample application. The record contains employee information.

E–10 Request Interface Kit Components



Request Interface Kit Components
E.3 FMS Sample Application

FMS_WORKSPACE_RECORD.CDO

This is the CDD record definition for the ACMS RI FMS sample
application. The record contains two fields: the program request key
field and the error status field.

FMS_SCROLL_RECORD.CDO

This is the CDD record definition for the ACMS RI FMS sample
application. The record contains scroll area information.

FMS_SALARY_RECORD.CDO

This is the CDD record definition for the ACMS RI FMS sample
application. The record contains the salary range information used
by the FMS user action routines to demonstrate cross-field validation.

• FMS_FORM.BAK—CDD backup of TDMS form definitions

This is the CDD backup of the TDMS forms used in the FMS sample
application. It contains the following forms:

FMS_ADD_FORM

TDMS form used in the add request that is used in the add task example.

FMS_INQ_FORM

TDMS form used in the inquiry request and the inquiry display request
that is used in the inquiry task.

FMS_UPD_FORM

TDMS form used in the inquiry update request and the display/modify
request that is used in the update task.

FMS_SCROLL_FORM

TDMS form used in the inquiry scroll request that is used in the scroll
task.

FMS_SCROLL_DISP_FORM

TDMS form used in the display scroll request that is used in the scroll
task.

• TDMS request definitions

FMS_ADD_REQUEST.RDF

This is the TDMS request definition used in the FMS_ADD_TASK task in
the FMS_SAMPLE application. It prompts the user to enter all employee
information.

FMS_INQ_REQUEST.RDF

This is the TDMS request definition used in the FMS_INQ_TASK task in
the FMS_SAMPLE application. It prompts the user to enter the employee
badge number.

FMS_INQ_DISP_REQUEST.RDF

This is the TDMS request definition used in the FMS_INQ_TASK task
in the FMS_SAMPLE application. It displays employee information that
was requested in the inquire request.

Request Interface Kit Components E–11



Request Interface Kit Components
E.3 FMS Sample Application

FMS_UPD_REQUEST.RDF

This is the TDMS request definition used in the FMS_UPD_TASK task in
the FMS_SAMPLE application. It prompts the user to enter the employee
badge number. This is the same as the FMS_INQ_REQUEST.

FMS_UPD_DISP_REQUEST.RDF

This is the TDMS request definition used in the FMS_UPD_TASK task
in the FMS_SAMPLE application. It displays the employee information
requested in the update request; it then allows users to modify the
employee information.

FMS_SCROLL_REQUEST.RDF

This is the TDMS request definition used in the FMS_SCROLL_TASK
task in the FMS_SAMPLE application. It prompts the user to enter an
employee last name.

FMS_SCROLL_DISP_REQUEST.RDF

This is the TDMS request definition used in the FMS_SCROLL_TASK
task in the FMS_SAMPLE application. It displays employee last name,
employee first name, and employee badge number for all employees with
the specified last name from the FMS_SCROLL_REQUEST.

• TDMS request library definition (includes BUILD command),
FMS_REQUEST_LIBRARY.LDF

This is the request library definition for the TDMS request libraries. This also
includes the BUILD command to build the request library FMS_REQUEST_
LIBRARY.RLB.

• Task definitions

FMS_ADD_TASK.TDF

This is the ACMS task definition for the add task in the FMS_SAMPLE
application. The task has one exchange step and one processing step. The
exchange step prompts the user to enter the employee information, and
then the processing step writes the data out to an RMS datafile using
employee ID as the key. The task contains control action for duplicate
records and a program request key for PF1/E .

FMS_INQ_TASK.TDF

This is the ACMS task definition for the inquire task in the FMS_
SAMPLE application. The task has two exchange steps and one
processing step. The first exchange step prompts the user to enter
employee ID. The processing step retrieves the employee information
from an RMS datafile using employee ID as the key; then the second
exchange step displays the employee information retrieved from the
previous processing step. The task contains control action for record not
found and a program request key for PF1/E .

FMS_UPD_TASK.TDF

This is the ACMS Task Definition for the update task in the FMS_
SAMPLE application. The task has two exchange steps and two
processing step. The first exchange step prompts the user to enter
employee ID. The processing step retrieves the employee information from
an RMS data file using employee ID as the key. The second exchange step
displays the employee information retrieved from the previous processing
step and lets user modify the employee data. Then the second processing

E–12 Request Interface Kit Components



Request Interface Kit Components
E.3 FMS Sample Application

step rewrites the data record to the file. The task contains control action
for record not found and a program request key for PF1/E .

FMS_SCROLL_TASK.TDF

This is the ACMS task definition for the scroll task in the FMS_SAMPLE
application. The task has two exchange steps and one processing steps.
The first exchange step prompts the user to enter the last name. The
processing step retrieves employee information on all employees with
that last name from an RMS datafile, using employee last name as the
key. Then the second exchange step displays the employee information
retrieved from the previous processing step in a scroll region. The task
contains control action for record not found and a program request key for
PF1/E .

• Task group definition (includes BUILD command), FMS_GROUP.GDF

This is the ACMS task group definition for the RI FMS sample application.
This group does not define a shared image (.EXE) file in the REQUEST
LIBRARY IS clause. You must define a logical name to use the RI for this
group. This also includes the BUILD command to build the task group
database FMS_GROUP.TDB.

• Procedure server source modules

FMS_INIT_PROCEDURE.COB

This is the COBOL source code for the initialization routine for the FMS
sample application server procedure. The routine opens an RMS datafile
called FMS_APPL.DAT.

FMS_ADD_PROCEDURE.COB

This is the COBOL source code for the add routine for the FMS sample
application server procedure. This procedure is used in the FMS_ADD_
TASK to store a record containing the employee information.

FMS_GET_PROCEDURE.COB

This is the COBOL source code for the get routine for the FMS sample
application server procedure. This procedure is used in the FMS_INQ_
TASK and FMS_UPD_TASK to retrieve a record containing all employee
information using the EMPLOYEE_ID as the key.

FMS_UPDATE_PROCEDURE.COB

This is the COBOL source code for the update routine for the FMS sample
application server procedure. This procedure is used in the FMS_UPD_
TASK to rewrite the record after the user modifies it.

FMS_SCROLL_PROCEDURE.COB

This is the COBOL source code for the get scroll data routine for the
FMS sample application server procedure. This procedure is used in the
FMS_SCROLL_TASK to retrieve employee information for all employees
with a specified last name.

FMS_TERM_PROCEDURE.COB

This is the COBOL source code for the termination routine for the FMS
sample application server procedure. The routine closes the RMS datafile
called FMS_APPL.DAT.

Request Interface Kit Components E–13



Request Interface Kit Components
E.3 FMS Sample Application

• Message source file, FMS_MESSAGES.MSG

This is the message file source that contains the error messages for the FMS
sample application. These messages are displayed using the ACMS GET
MESSAGE clause.

• Command Procedure to build message file, FMS_MESSAGES.COM

This is a command file to build the FMS messages file.

• Command Procedures to COMPILE and LINK the procedure server

FMS_SERVER_COMPILE.COM

This is a command procedure to recompile all the procedure server
modules. It also creates a new object library (FMS_SERVER.OLB) and
inserts all server modules.

FMS_SERVER_LINK.COM

This is a command procedure to relink the procedure server modules into
FMS sample application server image. It uses the server object library
created in the recompile command procedure.

• Application Definition (includes BUILD command), FMS_APPLICATION.ADF

This is the ACMS application definition for the RI FMS sample application.
It uses the FMS_GROUP.TDB task group and includes the BUILD command
to build the application database (.ADB).

• Menu Definition (includes BUILD command), FMS_APPLICATION_
MENU.MDB

This is the ACMS menu definition for the RI FMS sample application. It
includes the BUILD command to build the menu database (.MDB).

• FMS form definitions

FMS_ADD_FORM.FRM

This is the FMS form used in the add request URP that the add task
example uses.

FMS_INQ_FORM.FRM

This is the FMS form used in the inquiry request URP that is used in the
inquiry task.

FMS_DISP_FORM.FRM

This is the FMS form used in the inquiry display request URP that is
used in the inquiry task.

FMS_DEP_FORM.FRM

This is the FMS form used in the inquiry display request URP and the
update display request URP that is used in the inquiry task/update task.

FMS_UPD_FORM.FRM

This is the FMS form used in the update inquiry request URP that is
used in the update task.

FMS_SCROLL_FORM.FRM

This is the FMS form used in the inquiry scroll request that is used in the
scroll task.

E–14 Request Interface Kit Components



Request Interface Kit Components
E.3 FMS Sample Application

FMS_SCROLL_DISP_FORM.FRM

This is the FMS form used in the display scroll request that is used in the
scroll task.

FMS_HELP_FORM.FRM

This is the FMS form used as a help form to the FMS_ADD_FORM.FRM.

• Command Procedure to build the FMS form library, FMS_BUILD_FORM_
LIB.COM

This is a command procedure that builds the FMS form library for the FMS
sample application.

• Request Interface URP source modules

FMS_INIT_LIBRARY.COB

This is COBOL PROCEDURE source code for the initialization procedure
for the FMS RI request library. This procedure creates the FMS
workspaces, attaches the terminal, and opens the FMS forms library
defined by the logical ACMS$RI_FMS_MENU_LIB.

FMS_ADD_REQUEST.COB

This is COBOL PROCEDURE source code to duplicate the TDMS
add request by using FMS service calls to prompt the user employee
information. The employee record and workspace record are passed to it
as parameters.

FMS_INQ_REQUEST.COB

This is COBOL PROCEDURE source code to duplicate the TDMS inquiry
request by using the FMS service calls to prompt the user for badge
number. The employee record, the ACMS processing status record, and
the workspace record are passed to it as parameters.

FMS_INQ_DISP_REQUEST.COB

This is COBOL PROCEDURE source code to duplicate the TDMS inquiry
display request by using the FMS service calls to display the employee
information. The employee record is passed to it as a parameter.

FMS_UPD_REQUEST.COB

This is COBOL PROCEDURE source code to duplicate the TDMS update
request by using the FMS service calls to prompt the user for badge
number. The employee record, the ACMS processing status record, and
the workspace record are passed to it as parameters.

FMS_UPD_DISP_REQUEST.COB

This is COBOL PROCEDURE source code to duplicate the TDMS inquiry
display/modify request by using the FMS service calls to display the
employee information and request user updates. The employee record and
workspace record are passed to it as parameters.

FMS_SCROLL_REQUEST.COB

This is COBOL PROCEDURE source code to duplicate the TDMS inquiry
scroll request by using the FMS service calls to prompt the user for
an employee last name. The scroll record, the ACMS processing status
record, and the workspace record are passed to it as parameters.

Request Interface Kit Components E–15



Request Interface Kit Components
E.3 FMS Sample Application

FMS_SCROLL_DISP_REQUEST.COB

This is COBOL PROCEDURE source code to duplicate the TDMS scroll
display request by using the FMS service calls to display all employees
with the requested last name. The scroll record is passed to it as a
parameter.

• FMS user action routines (UAR) source modules

FMS_TITLE_CHECK_UAR.COB

This is COBOL PROCEDURE source code to execute as a UAR in the
FMS add task. It checks the title field entered on the form with a data
file named TITLE_SALARY.DAT.

FMS_SALARY_CHECK_UAR.COB

This is COBOL PROCEDURE source code to execute as a UAR in the
FMS add task. It checks the salary field entered on the form with a
salary range for the entered title field.

• Command Procedures to COMPILE and LINK Request Library shared image
file

FMS_REQ_LIB_COMPILE.COM

This is a command procedure used to recompile the FMS RI request
library modules. It also creates a new object library and inserts all the
modules.

FMS_REQ_LIB_LINK.COM

This is command procedure used to relink the FMS RI request library
shared image. It uses the object library.

E.3.2 FMS Sample Application Run-Time Files
This section contains the run-time files for the FMS sample application.

• TDMS request library file (RLB), FMS_REQUEST_LIBRARY.RLB

This is the TDMS request library for the RI FMS sample application. It
contains all the TDMS requests for the FMS sample application.

• Task group database (TDB), FMS_GROUP.TDB

This is the ACMS task group database for the RI FMS sample application.
This group does not define a request library shared image (.EXE) file in the
REQUEST LIBRARY IS clause (only TDMS request library files (RLB)).
Because the FMS sample application is built using this task group database,
you must define a logical name (ACMS$RI_LIB_libraryname) to use the FMS
user request procedures for this group.

• Procedure server object module library, FMS_SERVER.OLB

This is the object library containing the six object modules that make up the
ACMS server used in the FMS sample application. It includes the following
modules:

FMS_INIT_PROCEDURE

Object module for the initialization procedure

FMS_TERM_PROCEDURE

Object module for the termination procedure

E–16 Request Interface Kit Components



Request Interface Kit Components
E.3 FMS Sample Application

FMS_ADD_PROCEDURE

Object module for the add record procedure

FMS_GET_PROCEDURE

Object module for the get record procedure

FMS_UPDATE_PROCEDURE

Object module for the update record procedure

FMS_SCROLL_PROCEDURE

Object module for the get scroll data procedure

• Procedure server image file, FMS_SERVER.EXE

This is the procedure server image for the RI FMS sample application.

• Application database (ADB), FMS_APPLICATION.ADB

This is the ACMS application database for the RI FMS sample application. It
uses the FMS_GROUP.TDB task group.

• Menu database (MDB), FMS_APPLICATION_MENU.MDB

This is the ACMS menu database for the RI FMS sample application.

• Application message file, FMS_MESSAGES.EXE

This is the message file that contains the error messages for the FMS sample
application. These messages are displayed using the ACMS GET MESSAGE
clause.

• Request Interface FMS form library, FMS_FORM_LIBRARY.FLB

This is the FMS form library that contains all the FMS forms used in the
FMS sample application.

• Request Interface request library shared image file, FMS_REQUEST_
LIBRARY.EXE

This is the FMS RI request library shared image file that includes all FMS
URP modules.

• Request Interface URP object module library, FMS_REQ_LIB.OLB

This is the object library that contains the object modules for the FMS RI
request library shared image file.

ACMSRI$INIT_LIBRARY

Object module for the FMS RI request library initialization procedure

FMS_ADD_REQUEST

Object module for the FMS RI request library add request procedure

FMS_INQ_REQUEST

Object module for the FMS RI request library inquiry request procedure

FMS_INQ_DISP_REQUEST

Object module for the FMS RI request library inquiry display request
procedure

FMS_UPD_REQUEST

Object module for the FMS RI request library inquiry update request
procedure

Request Interface Kit Components E–17



Request Interface Kit Components
E.3 FMS Sample Application

FMS_UPD_DISP_REQUEST

Object module for the FMS RI request library update display/modify
request procedure

FMS_SCROLL_REQUEST

Object module for the FMS RI request library inquiry scroll request
procedure

FMS_SCROLL_DISP_REQUEST

Object module for the FMS RI request library display scroll request
procedure

FMS_TITLE_CHECK_UAR

Object module for the FMS UAR

FMS_SALARY_CHECK_UAR

Object module for the FMS UAR

• FMS User Action Routine RMS data file, TITLE_SALARY.DAT

This is the data file that contains title and salary range information. This
matches the FMS_HELP_FORM information.

E–18 Request Interface Kit Components



F
Modifying the FMS Menu Interface

ACMS software includes an FMS-based menu interface to use with the ACMS-
supplied RI agent, ACMS$RI_AGENT. The sample FMS form library for the
menu interface is in the ACMS$RI_EXAMPLES directory.

This appendix describes how to modify this menu interface to suit the needs of
a particular application. To incorporate the modified menu interface into the
ACMS$RI_AGENT, see Chapter 14.

There are two FMS menu form definitions:

• MENU_MAIN_FORM.FRM

This is the FMS form used as the top-level (main) menu form. It is similar
to the layout of the ACMS default menu format, which includes a number,
a keyword, a task or menu indicator (T or M), and descriptive text. At the
bottom of the menu is the SELECTION: prompt.

The menu layout is static text in the FMS form. The only field on the
menu form is the selection field. The numbers and keywords are used as
named-data indexes and named-data keywords. To change the form for a
specific application, modify the static text on the main menu and change the
named-data field information. The default main menu is set up for the FMS
sample application.

• MENU_HELP_FORM.FRM

This is the FMS form used when the user types $HELP or presses PF2 twice
at the SELECTION: prompt. It displays a form explaining the functionality
available under the FMS menu interface, such as *, -, $EXIT, number,
keyword, and so on. Include this form in all FMS menu interface form
libraries.

To modify the supplied FMS menu form, MENU_MAIN_FORM.FRM:

1. Make a copy of the form. Do not modify the original copy of MENU_MAIN_
FORM.FRM; you must modify a copy of the form. The form MENU_MAIN_
FORM must stay the same because the menu interface routine uses that
name. For example:

$ COPY MENU_MAIN_FORM.FRM newmenu.frm

2. Edit the form to make the necessary changes.

$ FMS/EDIT newmenu.frm

FMS responds by clearing the screen and displaying the Form Editor Menu,
shown in Figure F–1. You use this menu to select an action to perform. Type
the name of the phase you wish to enter.

Modifying the FMS Menu Interface F–1



Modifying the FMS Menu Interface

Figure F–1 Form Editor Menu

TAY-0434-AD

Form Editor Menu

Phase Choice: 

First change the layout of the form. To enter the layout phase, type LAYOUT
and press Return .

The layout of the ACMS-supplied menu form is similar to the ACMS menu
format. The FMS menu form contains a menu header, a selection list, a
prompt line, and a message line. The menu header is the name of the menu.
The selection list shows the tasks you can run and the menus available.

• The first column in the list is the number of the entry on the menu.

• The second column is a keyword for the item.

• The third column is a label identifying the item as a task (T) or a
menu (M).

• The fourth column is text describing the item.

• The prompt line includes both the SELECTION: prompt and blank spaces
after the prompt.

Type the number or keyword for the task or menu in the blank space after
the prompt. Press Return after making your selection.

The FMS menu form contains only one field, the selection field. The
remaining data on the screen is background text. In the layout phase, you
can change, delete, or add any background text that is needed for a given
application; the selection field name and size, however, must remain the
same.

The selection list is also used by the menu interface routines. The FMS menu
interface routine uses the selection list numbers as indexes or the selection
list keywords as keywords for FMS-named data calls to retrieve the task and
application names.

3. After modifying the FMS menu form layout, change the Named Data Area of
the form. Named Data provides a convenient way for the FMS menu routine
to store program parameters with the form instead of coding them into the
menu routines. Use Named Data to add additional menu forms and change
the existing menu form without changing the menu interface routine.

F–2 Modifying the FMS Menu Interface



Modifying the FMS Menu Interface

Named Data is data that is associated with a form but does not appear on the
operator’s screen. Named Data exists in the FMS workspace with the form.
Define the Named Data to the menu form during the data phase. Enter the
data phase by typing PHASE at the form editor menu.

The data can be any string up to 80 characters and is referenced by either
name or index. The FMS menu routine subdivides the 80-character data area
into ACMS task name and application name. The task name must be first;
the application name follows, with at least one space in between them.

Table F–1 shows how to define the named data associated with a form.

Table F–1 Defining the Named Data Associated with the Form

Index Name
Data Area
Task Name/Application

1 ADD FMS_ADD_TASK / FMS_APPLICATION

2 DISPLAY FMS_INQ_TASK / FMS_APPLICATION

The FMS menu interface routine uses the Named Data area to determine
the ACMS task name and the ACMS application name by providing the user
with two ways to select a task or menu: by number or by keyword. The user
can type either the number from the menu (that is used as a index into the
Named Data area) or the keyword from the menu (that is used as a keyword
into the Named Data area). You can use the short form of a keyword. Use
enough letters to make the selection unique.

The select list numbers and keywords must exactly match the indexes and
names in the Named Data area of the menu form. If a user enters a selection
that is not contained in the Named Data area, an error message is displayed
indicating that it was an invalid selection and to enter another one.

In addition, the FMS menu interface routines define three keywords that
implement some of the ACMS menu functionality. The interface routines
keywords must be placed in the task-name field of the Named Data area. The
keywords are as follows:

• MENU

If the menu interface routine finds the keyword MENU in the task-name
field, FMS assumes that the application-name field contains the name of
another menu form in the same FMS menu form library. This keyword
enables you to develop menu trees.

The FMS menu interface routine provides two special characters for
moving through the menu tree. This is similar to the ACMS menu
facility. The special characters are the asterisk (*) for moving up to the
main level menu and the hyphen (-) for moving up to the previous level.
The FMS menu interface supports five levels of menus.

• $EXIT

If the menu interface routine finds the keyword $EXIT in the task-name
field, it exits from the RI agent code.

Modifying the FMS Menu Interface F–3



Modifying the FMS Menu Interface

• $HELP

If the menu interface routine finds the keyword $HELP in the task-name
field, it displays the help form (MENU_HELP_FORM) that is provided in
the ACMS$RI_EXAMPLES directory. The help form simply describes the
user’s options at the selection prompt.

4. Create a new FMS menu library.

After modifying the supplied menu form, create a new FMS form library. Use
the FMS Form Librarian Utility. Putting forms in form libraries makes the
forms available to the Form Driver and the FMS menu interface routine. The
create operation makes a new library file and puts one or more binary forms
in it, as follows:

$ FMS/LIBRARY/CREATE

LIBRARY: newmenulibrary.flb

FORMS: newmenu.frm,menuhelpform.frm

5. Link the FMS menu interface routine.

You can link the FMS menu interface routine directly into the ACMS$RI_
AGENT or into a shared image that is activated at run time. See
Section 14.5.1 for more information on linking and running the menu
interface.

F–4 Modifying the FMS Menu Interface



G
Accessing ACMS Applications from Windows

NT Clients

This appendix describes how to use components of HP TP Web Connector,
including the ADU extension, to provide Windows NT clients with access to
ACMS applications.

An application is a set of related tasks that solve a business problem and that
can be started or stopped as a unit. An application definition consists of a set of
clauses you use to define control attributes for tasks, servers, and the application
execution controller that manages the server processes in which tasks run. The
general format for an application definition is:

<application-clause> [...]
END DEFINITION ;

The two clauses you must include in an application definition are TASK GROUPS
and APPLICATION USERNAME. The TASK GROUPS clause names the task
groups that define the tasks of the application. The APPLICATION USERNAME
clause defines the user name under which the application execution controller
runs.

If you want to provide access to the application from Windows NT clients (the
clients call ACMS tasks), including clients on the World Wide Web (web), you
can do so using the components of HP TP Web Connector Gateway for ACMS
software, including the ADU extension.

G.1 Access By NT Clients
The components of the HP TP Web Connector Gateway for ACMS software on
ACMS systems can be used so that Windows NT clients, including clients on
the World Wide Web (web), can be built to access ACMS applications. The TP
Web Connector Gateway for ACMS software is part of the HP TP Web Connector
product, one of the products created from HP TPware technology. The HP TPware
software produces objects that you can easily use to connect a web server to your
application. The HP TP Web Connector product allows Microsoft Transaction
Server (MTS) applications and web servers to call ACMS tasks.

If your client is going to call ACMS tasks, use the components of the HP TP Web
Connector Gateway for ACMS software on the ACMS development system where
the ACMS application is defined. The following topics discuss the HP TP Web
Connector Gateway for ACMS components and preparing ACMS applications for
client access. For more information about HP TPware technology and HP TP Web
Connector capabilities, see HP TP Web Connector Getting Started.

Accessing ACMS Applications from Windows NT Clients G–1



Accessing ACMS Applications from Windows NT Clients
G.2 TP Web Connector Gateway Components

G.2 TP Web Connector Gateway Components
If your client calls ACMS tasks, use the HP TP Web Connector Gateway for
ACMS components that you install and run on an ACMS system. The HP TP
Web Connector Gateway for ACMS software includes the following components
that support the generation and use of Windows NT clients that access ACMS
applications:

• ACMS ADU extension

Enables ADU to translate ACMS task headers and associated record and field
definitions into an STDL task group specification with associated data type
definitions and STDL record definitions.

• A gateway

Supports the ACMS RPC protocol between the TP Desktop Connector
(formerly ACMS Desktop) output adapters on the calling system and ACMS
applications on the called system.

The HP TP Web Connector Gateway for ACMS components (the ADU extension
and the gateway) reside on OpenVMS systems running ACMS software. The
components can be on the same ACMS system or on different ACMS systems (see
HP TP Web Connector Gateway for ACMS Installation Guide).

G.2.1 ADU Extension
The extension in the modified ADU image enables you to translate ACMS task
headers and associated record and field definitions into an STDL task group
specification with associated data type definitions and STDL record definitions.
HP TPware extension commands allow you to control the translation. ADU
performs the following HP TPware functions:

• Extracts the ACMS application, task group, task, and record definitions from
the Common Data Dictionary (CDD).

• Processes the extracted information and translates the task headers and
associated record and field definitions to STDL format.

• Writes the translated information in a form that the STDL compiler can read.

As directed by the extension commands, ADU produces, as output, task group
information in an intermediate binary file, from which ADU produces the STDL
task group specification, with STDL record definitions and task group headers
with records as arguments.

G.2.2 Gateway
The gateway runs on an ACMS system and connects the ACMS Desktop adapter
on a Windows NT system to the ACMS system on which the target application is
running. You provide information that enables the connection between your client
program and the ACMS tasks being called. Use command procedures provided
with the software to control and manage the gateway. For information about
enabling the connection and about using the command procedures, see HP TP
Web Connector for ACMS Getting Started.

G–2 Accessing ACMS Applications from Windows NT Clients



Accessing ACMS Applications from Windows NT Clients
G.3 Running ADU Extension

G.3 Running ADU Extension
Translating the necessary ACMS application information from TDL format to
STDL format requires the following operations:

• Group_task translation

• Application_group translation

• Record definition translation and conversion

You perform these operations in ADU with TPware qualifiers for the BUILD
GROUP and BUILD APPLICATION commands.

Note

Existing parameters and qualifiers for the ADU’s BUILD GROUP and
BUILD APPLICATION commands have not changed from ACMS Version
4.2. For a listing of existing qualifiers, refer to the ADU online help topics
about ADU commands or to the HP ACMS for OpenVMS ADU Reference
Manual.

G.3.1 Group Task Translation
Group_task translation produces a temporary binary file containing ACMS task
and task group information. Group_task translation must be performed for the
ACMS task group that comprises the application.

G.3.1.1 BUILD GROUP Command
The command syntax is:

BUILD GROUP acms_group_name [/STDL]

The acms_group_name parameter refers to the name of the ACMS task group.

The /STDL qualifier directs ADU to output task and record information that is
used for completing the translation to STDL format. The output file produced by
the /STDL qualifier has a name in the following format:

GROUP.WDB

The .WDB file type indicates the intermediate-format web database file. The
BUILD GROUP command writes the file to the default directory (see the HP
ACMS for OpenVMS ADU Reference Manual for information about the ADU task
group definition clause DEFAULT TASK GROUP FILE).

The /NOSTDL qualifier instructs ADU not to produce the intermediate-format
file. The default qualifier is /NOSTDL.

G.3.1.2 Translation Actions
In the group_task translation operation, ADU produces a file containing
intermediate-format task group and task information.

During group_task translation, ADU performs the following actions:

• Reads information from the CDD.

• Processes the read information.

• Creates the intermediate-format file.

Accessing ACMS Applications from Windows NT Clients G–3



Accessing ACMS Applications from Windows NT Clients
G.3 Running ADU Extension

ADU processes the task group description and the description of any tasks
and records associated with that group. ADU builds descriptions of all records
according to the CDD information. Then, ADU creates a description of all tasks
in the group along with the names of records used as parameters to those tasks.
The intermediate-format file in which ADU writes all this information is used as
input to the application_group translation.

G.3.2 Application Group Translation
Application_group translation reads the task group name specified in the
application and translates the intermediate-format task group file built from
the group_task translation.

G.3.2.1 BUILD APPLICATION Command
The command syntax is:

BUILD APPLICATION application_name [/STDL]

The parameter application_name refers to the name of an ACMS application.

The /STDL qualifier directs the translator during the processing initiated by
the ADU BUILD APPLICATION command to generate STDL code using the
intermediate-format group file that was created during the ADU BUILD GROUP
processing. The output is a file with a name in the following format:

application_name.STDL

ADU generates in the default directory an STDL source file containing a task
group specification and related data type and record definitions. The output file
name application_name is derived from the ACMS application name. You use this
file to create the client interface.

G.3.2.2 Translation Actions
If the ACMS task group information has been translated and written to an
intermediate-format task group file (see the Group_Task_translation help topic
and its Translation_actions subtopic), use the ADU BUILD APPLICATION /STDL
command to translate the intermediate-format information to STDL format. ADU
processes the internal descriptions of the records and fields and writes them in
STDL format with duplicate names removed (see the Restrictions help topic for
the ADU extention restrictions).

After each task name is processed, ADU generates the STDL TASK ARGUMENT
statement, which includes the task parameters and an indication about whether
they are input or output. The arguments are as follows:

• A record containing a text field of 256 characters for the selection string as an
input argument.

• A record containing a text field of 80 characters for the extended status as an
output argument.

• Any argument(s) defined in the TDL task definition, in order.

The resulting file that ADU generates contains an STDL task group specification
with associated data type definitions and STDL record definitions that you use in
the next stage of development (see the Using_translation_output help topic).

G–4 Accessing ACMS Applications from Windows NT Clients



Accessing ACMS Applications from Windows NT Clients
G.3 Running ADU Extension

G.3.2.3 Using Translation Output
To generate the adapters for the client, use the file containing the STDL task
group specification and associated data type definitions and STDL record
definitions that ADU generates (see the Application_Group_translation help
topic). The next steps you take are on the Windows NT platform, as follows:

1. Copy the file that contains the STDL task group specification to the Windows
NT system on which you have the HP TP Web Connector product installed
and to the directory in which you are going to build the client.

2. Edit the STDL task group specification on the Windows NT system to provide
a nonzero UUID, as follows:

a. Invoke guidgen from either a DOS command line or the guidgen
application.

b. Select the Registry Format menu and Copy command to copy the UUID
to the Windows NT clipboard.

c. Paste the UUID into the generated STDL task group specification.

d. After you paste the UUID, replace each brace (left brace ({) and right
brace (})) with double quotation marks (").

3. Follow the procedures for writing and building the client, depending on the
type of client: C, asynchronous, or Automation server. For information about
the procedures, see HP TP Web Connector Getting Started.

G.3.3 Restrictions
The ADU extension has the following restrictions:

• Each application is limited to exactly one ACMS task group.

• An ACMS task cannot be renamed in the ACMS application definition.

• Exchange I/O statements are not supported. All records must appear as task
arguments. Refer to the HP ACMS for OpenVMS ADU Reference Manual for
information about building no I/O tasks.

• The HP TP Web Connector software does not allow the reordering of rows and
columns of an array to support the COLUMN MAJOR feature of the CDD.

• All record names within a group must resolve to a unique name. STDL record
names are the CDD simple names. If two CDD record names have the same
simple name, edit the source code to differentiate the two records.

• All ACMS tasks are processed as GLOBAL. ACMS allows tasks to be
identified as LOCAL or GLOBAL in the task, group, and application
definitions. For the purposes of STDL translation, all tasks are processed as
GLOBAL tasks. Therefore, when you build an application with the /STDL
qualifier, all tasks appear in the .STDL file that the ADU utility creates. If
a HP TP Web Connector client calls a local ACMS task, the runtime system
flags the call as an error.

Accessing ACMS Applications from Windows NT Clients G–5



Accessing ACMS Applications from Windows NT Clients
G.3 Running ADU Extension

G.3.4 Converting Records
The ACMS software uses records to allow data to be passed from user agents or
from forms acting as agents, through the ACMS system to ACMS servers, and
back to the caller. These records are buffers containing record-like structures
made up of fields. Each field has a name, a data type, and other attributes.

The data descriptions used by ACMS software to describe records are defined by
either the CDDL utility in DMU format or the CDO utility in CDO format, and
then are placed into the CDD. Record descriptions are extracted from the CDD
by various OpenVMS and user programs, including agents, forms systems, the
ACMS system, and OpenVMS compilers when compiling ACMS servers. When
creating an STDL task group specification with associated data type definitions
and STDL record definitions to translate an ACMS application’s task group
information, ADU extracts record descriptions from the CDD and translates them
to STDL format.

G.3.5 Data Type Translation
Fields within the ACMS records all have an OpenVMS data type. For OpenVMS
data types that at runtime need to be converted to STDL data types, ADU
creates the #Pragma statements in the generated data type definitions. During
processing, ADU selects a corresponding STDL data type for each OpenVMS
data type that can be expressed in the CDD. Not all OpenVMS data types
are represented in STDL, so the ACMS Desktop output adapter makes some
conversions at runtime according to the ADU selections. The tables in the
following help topics summarize the OpenVMS data type support for the HP
TP Web Connector Gateway for ACMS software. The data types labeled Not
Supported are flagged as warnings by the STDL compiler.

G.3.5.1 Integer Support
The following table summarizes integer OpenVMS data type support for the HP
TP Web Connector Gateway for ACMS software.

OpenVMS STDL OpenVMS Pragma

SIGNED BYTE INTEGER SIZE 1 None

UNSIGNED BYTE UNSIGNED INTEGER
SIZE 1

None

SIGNED WORD INTEGER SIZE 2 None

UNSIGNED WORD UNSIGNED INTEGER
SIZE 2

None

SIGNED LONGWORD INTEGER SIZE 4 None

UNSIGNED LONGWORD UNSIGNED INTEGER
SIZE 4

None

SIGNED QUADWORD ARRAY SIZE 8 OF OCTET None

UNSIGNED QUADWORD ARRAY SIZE 8 OF OCTET None

SIGNED OCTAWORD ARRAY SIZE 16 OF OCTET None

UNSIGNED OCTAWORD ARRAY SIZE 16 OF OCTET None

G–6 Accessing ACMS Applications from Windows NT Clients



Accessing ACMS Applications from Windows NT Clients
G.3 Running ADU Extension

G.3.5.2 Floating Point and Complex Support
The following table summarizes floating point and complex OpenVMS data type
support for the HP TP Web Connector Gateway for ACMS software.

OpenVMS STDL OpenVMS Pragma

F_FLOATING FLOAT SIZE 4 F_FLOATING

D_FLOATING FLOAT SIZE 8 D_FLOATING

G_FLOATING FLOAT SIZE 8 G_FLOATING

H_FLOATING ARRAY SIZE 16 OF OCTET None

S_FLOATING FLOAT SIZE 4 None

T_FLOATING FLOAT SIZE 8 None

F_FLOATING
COMPLEX

RECORD
R FLOAT SIZE 4;
I FLOAT SIZE 4;
END RECORD;

F_FLOATING for each field

D_FLOATING
COMPLEX

RECORD
R FLOAT SIZE 8;
I FLOAT SIZE 8;
END RECORD;

D_FLOATING for each field

G_FLOATING
COMPLEX

RECORD
R FLOAT SIZE 8;
I FLOAT SIZE 8;
END RECORD;

G_FLOATING for each field

H_FLOATING
COMPLEX

ARRAY SIZE 32 OF OCTET None

G.3.5.3 Decimal Support
The following table summarizes decimal OpenVMS data type support for the HP
TP Web Connector Gateway for ACMS software.

OpenVMS
or OpenVMS Pragma STDL

PACKED DECIMAL DECIMAL STRING SIZE X

UNSIGNED NUMERIC DECIMAL STRING SIZE X

LEFT OVERPUNCH NUMERIC DECIMAL STRING SIZE X

LEFT SEPARATE NUMERIC DECIMAL STRING SIZE X

RIGHT OVERPUNCH NUMERIC DECIMAL STRING SIZE X

RIGHT SEPARATE NUMERIC DECIMAL STRING SIZE X

ZONED NUMERIC DECIMAL STRING SIZE X

The maximum SIZE for the decimal STDL data type is limited to 18.

G.3.5.4 Other Support
The following table summarizes other OpenVMS data type support for the HP TP
Web Connector Gateway for ACMS software.

OpenVMS STDL OpenVMS Pragma

DATE DATE VMS DATE

Accessing ACMS Applications from Windows NT Clients G–7



Accessing ACMS Applications from Windows NT Clients
G.3 Running ADU Extension

OpenVMS STDL OpenVMS Pragma

VARYING STRING Not Supported

Note

A data type labeled Not Supported is flagged as a warning by the STDL
compiler.

G.3.6 Translating Another Record
Other properties may be defined in the CDD for records and fields. ADU supports
translation of the following property to STDL:

OCCURS

The OCCURS field declares fixed-length, one-dimensional arrays.

For example:

OCCURS n TIMES

G–8 Accessing ACMS Applications from Windows NT Clients



H
Checklist of References to Platform-Specific

Files

An ACMS application executing on OpenVMS Alpha must reference images
that have been built (either natively or by using the VEST utility) on OpenVMS
Alpha. Similarly, an ACMS application on OpenVMS VAX must reference images
that have been built on OpenVMS VAX. This appendix identifies potential areas
that may cause platform compatibility errors.

H.1 Task Group Definition
Check that the following objects or image files referenced in the task group
definition are compatible with the platform on which the application is
executing:

Procedure server object module

Procedure server image

Message object module

Message executable image

Form file image

H.2 ADU BUILD GROUP Command
The ADU BUILD GROUP command has several qualifiers that reference
platform-specific object modules and libraries. If you use the qualifiers /OBJECT,
/SYSLIB, /SYSSHR, or /USERLIBRARY when building a task group, check that
the object modules or libraries you reference are compatible with the platform on
which the application is executing.

Checklist of References to Platform-Specific Files H–1





I
Common Errors

This appendix contains common errors that you may get when you are writing or
migrating an ACMS application for OpenVMS Alpha. The errors are in one of the
following categories:

• ADU

• Task debugger

• Application startup

• Task execution

I.1 ADU
This section lists some of the common errors that ADU may return.

ACMSTDU-E-INVLIBTYPA, <filename> is not an OpenVMS AXP object or shared
image library.
Explanation: ADU encountered an error when trying to open a file specified
with the /USERLIBRARY qualifier. The file specified was not an Alpha object
library or an Alpha shared image library.
User Action: Check to see that the specified file is an OpenVMS Alpha
object or shared image library. This can be checked by executing the DCL
LIBRARY command LIBRARY/LIST. Only OpenVMS Alpha object libraries
and shared image libraries are valid input with the /USERLIBRARY qualifier.

ACMSTDU-W-INVVAXOBJMOD, <filename> is not an OpenVMS VAX object
module.
Explanation: ADU encountered an error when trying to access a file
specified on the /OBJECT qualifier. The file specified was not an OpenVMS
VAX object module.
User Action: Check to see that the specified file is an OpenVMS VAX object
module. This can be checked by executing the DCL ANALYZE command
ANALYZE/OBJECT.

ACMSTDU-W-INVALPHAOBJMOD, <filename> is not an OpenVMS AXP object
module.
Explanation: ADU encountered an error when trying to access a file
specified on the /OBJECT qualifier. The file specified was not an OpenVMS
Alpha object module.
User Action: Check to see that the specified file is an OpenVMS Alpha
object module. This can be checked by executing the DCL ANALYZE
command ANALYZE/OBJECT.

Common Errors I–1



Common Errors
I.2 Task Debugger

I.2 Task Debugger
This section lists some of the common errors that the Task Debugger may
return.

ACMSDBG-W-WLK_DEAD, Unexpected Workspace Symbol Image termination
-IMGACT-F-NOTNATIVE, image is not an OpenVMS AXP image

Explanation: The workspace symbol process could not be created for
debugging workspaces because the task group being debugged was built on
an OpenVMS VAX system.
User Action: Build the task group on an OpenVMS Alpha system.

ACMSDBG-I-SPDIED, Server <server-name> stopped unexpectedly
Explanation: This error can occur when starting a server within the task
debugger. Additional information on why the server stopped unexpectedly can
be found in the SWL. Typical reasons for this are:

• CLI-E-IMAGEFNF, image file not found <filename>

• IMGACT-F-NOTNATIVE, image is not an OpenVMS Alpha image

• IMGACT-F-BAD_LINK, image, linked /NATIVE_ONLY, cannot call a
translated routine

User Action: Check the SWL log for the cause of the server stopping
unexpectedly. Then issue the following command for more information on the
error:

$ HELP/MESSAGE <message identifier>

I.3 Application Startup
This section lists some of the common errors that can occur at application
startup.

ACMSEXC-E-ACTIVATE_MSG, Error activating message file <filename> in task
group <task-group>

-IMGACT-F-NOTNATIVE, image is not an OpenVMS AXP image
Explanation: A message file defined for a task group is invalid.
User Action: Check the MESSAGE FILES clause in the task group
definition and build an OpenVMS Alpha message executable image.

ACMSEXC-E-ERROPENVFF, Error in opening HP DECforms file specification
<file-name>.EXE_VAX;

-RMS-E-FNF, file not found
Explanation: The ACMS$MULTIPLE_SUBMITTER_PLATFORMS logical is
defined and the form image file for the OpenVMS VAX submitter nodes is not
found on the application node.
User Action: Build the form image file on OpenVMS VAX with the extension
.EXE if it has not been built. Then rename the .EXE file to use the extension
.EXE_VAX and copy the file to the application node.

I–2 Common Errors



Common Errors
I.3 Application Startup

ACMSEXC-E-ERROPENVFF, Error in opening HP DECforms file specification
<file-name>.EXE_AXP;

-RMS-E-FNF, file not found
Explanation: The ACMS$MULTIPLE_SUBMITTER_PLATFORMS logical is
defined and the form image file for the OpenVMS Alpha submitter nodes is
not found on the application node.
User Action: Build the form image file on OpenVMS Alpha with the
extension .EXE if it has not been built. Then rename the .EXE file to use the
extension .EXE_AXP and copy the file to the application node.

ACMSEXC-E-WP_TRM, Server Process for server <server-name> defined in
group <task-group> died unexpectedly
Explanation: This error can occur when starting an application. Additional
information on why the server died unexpectedly can be found in the SWL.
Typical reasons for this are:

• CLI-E-IMAGEFNF, image file not found <filename>

• IMGACT-F-NOTNATIVE, image is not an OpenVMS Alpha image

• IMGACT-F-BAD_LINK, image, linked /NATIVE_ONLY, cannot call a
translated routine

User Action: Check the SWL log for the cause of the server dying
unexpectedly. Then issue the following command for more information
on the error:

$ HELP/MESSAGE <message identifier>

ACMSEXC-E-ERROPENVFF, Error in opening HP DECforms file specification
<filename>
Explanation: An error occurred while opening a HP DECforms file
specification. All HP DECforms files used by an application must be
accessible when starting the application.
User Action: Check the file specification in the task group definition and
check to see if the file exists. Check the file protection on the form file to
make sure the EXC process can access it.

ACMSEXC-E-OPEN_RLB, Error opening Request Library <filename> in task
group <task-group>
Explanation: The request library defined for a task group is invalid.
User Action: Check the REQUEST LIBRARY clause in the task group
definitions. See accompanying messages for more information.

I.4 Task Execution
This section lists some of the common errors that can occur when a task
executes.

Common Errors I–3



Common Errors
I.4 Task Execution

%FORMS-F-LOADFORM, failure attempting to load a binary form.
-FORMS-F-INVFHDSIZ, invalid form header size.

Explanation: The HP DECforms form file image was not built properly or
was built on a different OpenVMS platform than from which it is being called.
User Action: Relink the form image file with the /symbol_vector option
and include (Forms$AR_Form_Table=Data) as shown in Section 16.2.1.1. If
the application uses multiple submitter platforms, make sure to build the
form image file on the appropriate platform and use the naming convention
explained in Section 16.2.1.

%FORMS-E-BADRECLEN, the record length argument does not match the length
of the record in the form.

-FORMS-W-RECORD_LEN, you specified a record length of 234, but the length of
the MENU_HEADER record is 236.
Explanation: The data alignment in the form file is not consistent with the
alignment in the application.
User Action: Retranslate the form file using the /MEMBER_ALIGNMENT
or /NOMEMBER_ALIGNMENT qualifier to match the alignment of the
application, or rebuild the application to match the alignment of the form file.

TDMSNOTAVAIL, Task performs TDMS I/O but TDMS is not installed on the
system
Explanation: The selected task requires TDMS to perform exchange I/O,
however, the TDMS software is not installed.
User Action: Select the task from an OpenVMS VAX node that has the
TDMS software installed on it or install the TDMS software on the OpenVMS
VAX node on which the submitter is selecting the task. TDMS is not available
on OpenVMS Alpha.

CANTPASSTERM, Remote tasks cannot pass terminals to processing steps
Explanation: A user on a remote submitter node selected a task on an
application node and the task attempted to access the user’s terminal to
perform I/O from a server process. The task is canceled because server
processes can only access terminals that are on the application node.
User Action: There are a number of possible solutions:

• The terminal user can log in to the application node and select the task
again.

• If the task does not need to access the terminal directly, the
PROCESSING step definition can be rewritten using the WITH NO
I/O phrase. For example, it is not necessary to pass a terminal to a DCL
set that is being used to submit batch or print jobs.

• Redesign the system to provide an application on the submitter’s node.
For example, you may want to allow terminal users access to the VMS
MAIL facility. You can provide an application on the submitter’s node
that contains a DCL server and a task that invokes MAIL.

I–4 Common Errors



Index

@ (At sign)
See At sign (@), command, ADU

A
Accept

responses (HP DECforms), 3–2
ACCESS

subclause
ADU

changing Access Control Lists, 11–12
controlling access to tasks, 11–4
in application definitions, 11–3
multiple, 11–5

Access Control List, 11–4
default values, 11–5
in application definitions, 11–3
ordering, 11–5
security for task queues, 9–6

ACL
See Access Control List

ACMRRSHR
overview, 14–2
running ACMS$RI_LIB_INIT, 14–11
translating ACMS$RI_LIB, 14–8

ACMS$ADU_ACL_DEFAULT logical, 1–6
ACMS$CMD

See ACMS Command Menu
ACMS$DEFAULT_MENU_FORM_PRODUCT

logical, 12–9
ACMS$DEQUEUE_TASK, 9–7, 9–8, 9–35

access to the queue file, 9–2
processing error queues, 9–14, 9–16e
service access to the queue file, 9–6

ACMS$ESC_RTN
logical, 3–5

ACMS$L_STATUS, 2–11
ACMS$MULTIPLE_SUBMITTER_PLATFORMS,

16–4
ACMS$M_DISABLE_FLAG, 14–18
ACMS$PROCESSING_STATUS

See also Workspaces
fields in, 2–11
handling errors, 4–2
handling errors for RMS inquiry tasks, 2–18
passing data to requests, 2–10
testing

ACMS$PROCESSING_STATUS
testing (cont’d)

fields in, 2–11t
ACMS$QUEUE_TASK, 9–7, 9–40

access to the queue file, 9–2, 9–6, 9–7
processing queues, 9–19e

ACMS$RI_AGENT
See also RI agent
debugging, 14–22
linking against menu URPs, 14–21
overview, 14–17
running, 14–25
running menu interface procedures, 14–21
using menu interfaces, 14–19

ACMS$RI_DEBUG_MODULE
debugging URPs, 14–23
linking, 14–15
omitting, 14–25

ACMS$RI_INQ_REQUEST
in shareable image file, 14–14

ACMS$RI_LIB
defining, 14–8
overview, 14–2
translation, 14–5

ACMS$RI_LIB_CANCEL
cancellation URP, 14–14

ACMS$RI_LIB_INIT
example, 14–12e
initialization URP, 14–11
in shareable image file, 14–14

ACMS$RI_MENU
using, 14–18

ACMS$RI_MENU_INIT
menu initialization, 14–19

ACMS$RI_MENU_ROUTINE
menu interface, 14–19

ACMS$SELECTION_STRING, 4–5
accepting record keys with, 4–6
getting record key from form, 4–6
passing record key processing step, 4–6

ACMS$SELECTION_STRING system workspace,
6–2

ACMS$SIGN_IN service, 6–2
ACMS$T_SEVERITY_LEVEL, 2–11

severity level values, 2–11

Index–1



ACMS$T_STATUS_MESSAGE, 2–11
ACMS$T_STATUS_TYPE, 2–11
ACMS$_DETTASK_NORETRY status, 6–5
ACMS/CANCEL TASK

command
for detached tasks, 6–4

ACMS/CANCEL USER
command

for detached tasks, 6–4
ACMS/SHOW APPLICATION/DETACHED_

TASKS
command, 6–4

ACMS/SHOW TASK
command

for detached tasks, 6–4
ACMS/START TASK

command
for detached tasks, 6–3

ACMS Command Menu, A–17, B–16
ACMS$CMD, A–17, B–16
COMMAND$ROOT, A–17, B–16
command panel

changing prompt, A–10
disabling SELECT in, A–1, A–17, B–1, B–16

ACMS databases
on OpenVMS Alpha, 17–3

ACMSGEN Utility
QTI parameters, 9–10
QTI user name, 9–10

ACMS Queue Manager Utility, 9–2
ACMSREQ.BAK

loading into CDD, B–2
ACMS system

interface to HP DECforms, 3–1
resources

effect of customized menus on, B–10
effect of server processes on, 11–30
effect of task instances on, 11–32
server context, 2–24
sharing among tasks, 10–1

Action
conditional, 2–10
delay, 11–6
wait, 11–6

Active
modifying application, 11–32
replacing server, 11–21

Add Car Reservation task
See also Steps
RMS, 2–16e

definition for handling errors, 4–3e
ADU

See Application Definition Utility
ADUEDIT.COM

command file
setting up, 1–3

ADUINI.COM
command file, 1–7, 1–8

assign logical, 1–7
example of, 1–8e

Agent, 6–1
Agent program

See also Request Interface, agent
debugging, 14–22
linking against URPs, 14–9
providing RI, 14–17
Request Interface, 14–2
RI agent definition, 14–3

Alignment
when translating IFDL file on OpenVMS Alpha,

16–4
Anchor

part of CDD path name, 1–4
Application

See also Application definitions
See also Application design
control

default characteristics, 11–27
failover, 11–33

controlling, 11–1, 11–27
database

See Application database
debugging RI, 14–23
default directories

overriding the default, 11–28
defining, 13–1
defining RI, 14–25
distributed, 12–7
implementing, 11–1
modifying

active, 11–32
running RI, 14–25
specification, 12–5, 12–7
user name definitions, 11–2

Application clauses (ADU)
SERVER MONITORING INTERVAL, 11–21

Application database, 1–13
naming, 12–7

Application definitions
ACCESS subclause (ADU), 11–3
assigning default directories to, 11–28
assigning logical names to, 11–29
ATTRIBUTES clause (ADU), 11–3
auditing application events, 11–28
DEFAULTS clause (ADU), 11–3
enabling and disabling tasks, 11–11
multiple TASK DEFAULTS clauses in, 11–10e
naming database files for, 11–30
naming task groups in, 11–1, 11–2
processing, 1–13, 11–27
SERVER DEFAULTS clauses in, 11–24e, 11–25
TASK ATTRIBUTES clauses in, 11–10e
TASK DEFAULTS clauses in, 11–8e, 11–10e

Index–2



Application Definition Utility
See also Commands (ADU)
commands (ADU)

using qualifiers, 1–17
leaving ADU temporarily, 1–18
logging utility sessions, 1–19
processing definitions, 1–13
prompt for interactive use, 1–18
starting, 1–1
startup qualifiers, 1–2
stopping qualifiers, 1–3
submitting command files, 1–15
use of, 1–1
using DCL conventions, 1–14
using interactively, 1–18

Application environment
describing, 11–1

Application Execution Controller, 6–1
assigning default directories to, 11–28
assigning logical names to, 11–29
assigning user names, 11–1, 11–2, 11–27
processing work for tasks, 11–2
quotas and privileges, 11–2, 11–32

APPLICATION USERNAME
clause

ADU, 11–27
Arrow keys

using with HP DECforms, 3–8
ASSIGN

command
DCL, 1–3

assign ADUINI.COM logical, 1–7
Atomic transaction, 7–1
At sign (@)

command
ADU, 1–15, 2–9

ATTACH
command

ADU, 1–18
Attributes

CDD object, C–1
ATTRIBUTES

clause
ADU, 11–3

AUDIT, 11–26
auditing servers, 11–26
auditing task events, 11–6
default value, 11–26

Auditing
queued tasks, 9–11
server events, 11–26
task events, 11–28

Audit Trail Log
messages returned by RI agent, 14–13
recording application events, 11–28
recording task events, 11–6

B
BAD severity code, 2–11
BLOCK

clause
ADU, 2–7

Block steps
characteristics for, 2–7
displaying many records, 2–24
for RMS update tasks, 2–30
handling errors displaying many records, 2–24
parts of, 2–7

Broadcast messages
for detached tasks, 6–6

BUILD
command

ADU, 1–15, 12–8
Building

databases, 1–13
application, 11–30
BUILD command

ADU, 11–30
menu, 12–8, 12–13

task groups, 10–1

C
Caching

escape units, 3–5
form files

DECforms with multiple submitter
platforms, 16–4

migrating to OpenVMS Alpha, 16–2
CALL

clause
ADU, 2–3

naming procedures in processing steps,
2–4

naming servers, 2–4
CANCEL

external request to HP DECforms, 3–1
with task-call-task, 5–18

Canceling
procedures, 10–4
tasks

defining actions, 2–12
from URPs, 14–13

Cancel procedures, 10–4
CANCEL TASK

clause
ADU, 2–19

Caution
menus

number of entries, A–13
CDD

ACMS default menu definitions, B–2t
attribute object in, C–1

Index–3



CDD (cont’d)
definition

of ACMS application objects, 1–14
of records on OpenVMS Alpha, 16–1
use of BUILD command to process, 1–15

entity object in, C–1
path name, 1–4
pieces tracking in, C–3
relationship object in, C–1
setting default directories, 1–9
storing definitions in, 1–13, 2–8, 10–9
structure names, 1–11

CDD$DEFAULT
logical name, 1–9

Checklist
for migrating to OpenVMS Alpha, 17–1

platform-specific files, H–1
Clauses (ADU)

BLOCK, 2–7
CALL, 2–3
CANCEL TASK, 2–19
CONTROL FIELD, 2–10
DEFAULT OBJECT FILE, 10–4
DEFAULT REQUEST LIBRARY, 10–6
DEFAULT TASK GROUP FILE, 10–8
EXIT TASK, 2–19
GOTO PREVIOUS EXCHANGE, 2–14
GOTO TASK, 2–19
MESSAGE FILES, 10–7
PROCEDURE SERVER, 10–3
REPEAT TASK, 2–19
REQUEST LIBRARIES, 10–6
SERVERS, 2–4
WORKSPACES, 2–7

Closing files
termination procedures, 10–4

COMMAND$ROOT
See ACMS Command Menu

Command files
ADUEDIT.COM, 1–3
ADUINI.COM, 1–8
LOGIN.COM, 1–1

Command line menu, 18–4
Command procedures

for storing definitions, 2–9
Commands (ADU)

@ (At sign), 2–9
continuing, 1–15, 1–17
CREATE, 1–14, 2–8, 10–9
EDIT, 1–19
EXIT, 1–3
HELP, 1–20
prompts, 1–17
REPLACE, 1–14, 2–9
SAVE, 1–19
SET DEFAULT, 1–7t, 1–8, 1–9
SET LOG, 1–7t, 1–9, 1–19
SET NOLOG, 1–7t

Commands (ADU) (cont’d)
SET NOVERIFY, 1–7t
SET VERIFY, 1–7t, 1–8, 1–19
SHOW DEFAULT, 1–7t, 1–9
SHOW LOG, 1–7t, 1–9
summary of, 1–7t

Commands (DCL)
MCR, 1–1
RUN, 1–2

Commands (Menu)
on OpenVMS Alpha, 18–5

COMMIT TRANSACTION
clause

ADU, 7–2
COMMON area

defining in a URP, 14–13
Common Data Dictionary

See CDD
Compiling

menu interfaces, 14–21
URPs, 14–14

Composable task, 7–5
Concurrent-use license

with detached tasks, 6–7
Continuation character (-), 1–15
Continuing commands on more than one line

See Continuation character
CONTROL FIELD

clause
ADU, 2–10

defining conditional work, 4–6
handling errors in data entry tasks,

2–10
NOMATCH keyword, 2–11
taking conditional actions, 2–10
testing literal strings, 2–11
testing workspace fields, 2–10, 2–11t

Control text
responses, 3–2

CONTROL TEXT
clause

ADU
menu definitions using, A–14e, A–16e

CREATE
command

ADU, 1–14
compared to REPLACE, 1–15
errors to check for, 10–9
for building menu databases, 12–13
for creating dictionary definitions,

1–14
storing definitions in CDD, 1–13, 2–8

CREATION DELAY
subclause

ADU, 11–20

Index–4



CREATION INTERVAL
subclause

ADU, 11–20
Ctrl/Y

stopping ADU, 1–3
Ctrl/Z

exiting HELP, 1–20
stopping ADU, 1–3
to exit from a HP DECforms menu, 3–8

Currency indicators
in RMS update tasks, 2–28

Cursor
reposition with HP DECforms, 3–8

Customized workspaces
See Workspaces

D
Data

collection
using the Request Interface, 14–1

Databases
application, 1–13, 11–30, 12–7
creating, 1–13f
defaulting names for, 11–30
menu, 1–13, 12–13

building, 12–8, 12–13
creating, 12–8

task group, 1–13, 10–8
Data dictionary

See CDD
Data entry tasks

RMS
block steps, 2–7
checking workspaces, 2–10
complete structure, 2–10
defining actions in exchange steps, 2–12
defining actions in processing steps, 2–13
displaying forms, 2–3
dividing into steps, 2–2
getting data, 2–3
handling errors, 2–10
parts of, 2–2t
processing steps, 2–14
sample definition, 2–16e
structure of, 2–1f
work of steps, 2–3
workspaces required, 2–15

DATATRIEVE
defining commands as tasks, 11–1, 13–2
defining procedures as tasks, 13–2
running, 11–1

DATATRIEVE COMMAND
subclause

ADU
defining processing, 13–2

DCL
default logical names assigned to servers,

11–18
defining commands as tasks, 11–1, 13–2
defining procedures as tasks, 13–2
running, 11–1
servers, 10–2

DCL COMMAND
subclause

ADU
defining processing, 13–2

DCL server
See Servers

Debugging
translated images, 17–7

Debugging tasks
called by agents, 14–22
for applications that call URPs, 14–22
queued, 9–21

DECforms
building on OpenVMS Alpha, 16–4
image files

building on OpenVMS Alpha, 16–4
formatting when migrating to OpenVMS

Alpha, 16–2
naming when migrating to OpenVMS

Alpha, 16–2
menus

creating, A–2
modifying, A–1

migrating to OpenVMS Alpha, 17–7
upgrading, 17–8

DECforms Form I/O
alternatives to, 18–4

DECmigrate software, 17–4
Default

menu
HP DECforms, 12–9
TDMS, 12–9

menu file, 12–8
server and task group names

in TASK ATTRIBUTES clause, 11–9
server names

in SERVER ATTRIBUTES clause, 11–25
task group names

in SERVER ATTRIBUTES clause, 11–25
DEFAULT APPLICATION FILE

clause
ADU, 11–30, 12–7

DEFAULT DIRECTORY
subclause

ADU, 11–17, 11–29
DEFAULT MENU

ADU clause, 12–8
DEFAULT OBJECT FILE

subclause
ADU, 10–4

Index–5



DEFAULT REQUEST LIBRARY
clause

ADU, 10–6
DEFAULTS

clause
ADU, 11–3

DEFAULT TASK GROUP FILE
clause

ADU, 10–8
Deferred processing of ACMS tasks, 9–1
DEFINE

command
DCL, 1–3

assign ADUINI.COM logical, 1–7
Definitions

creating, 1–14
including comments in, 1–16
menu, 12–1
of ACMS application objects in dictionary, 1–14
replacing, 1–14
servers, 13–3
task group, 13–1
types in CDD, C–1
use of BUILD command to process from

dictionary, 1–15
writing, 1–13

DELAY
subclause

ADU, 11–6
DELETION DELAY

subclause
ADU, 11–20

DELETION INTERVAL
subclause

ADU, 11–20
Dequeuing tasks

ACMS$DEQUEUE_TASK, 9–35
using ACMS$DEQUEUE_TASK, 9–8
using Queued Task Initiator, 9–8

Detached processing
example of, 6–1

Detached tasks, 6–1
characteristics, 6–2
description, 6–1

Dictionary
See CDD

Dictionary anchor
part of CDD path name, 1–4

DISABLE
external request to HP DECforms, 3–1

Disabling the SELECT command
See ACMS Command Menu

Display Basic task, 4–7e
accepting record keys, 4–6

Displaying
diagnostic messages with LSE REVIEW, D–9
error messages, 2–13, 2–15f, 10–7

Displaying (cont’d)
forms, 2–27, 2–29

Display tasks
See Display Basic task

Distributed application
using, 12–7

Distributed transactions, 7–1
affect on server context, 7–8
committing, 7–2
defining in task definition, 7–2
excluding a processing step, 7–9
handling deadlocks, 7–11
including a called task, 7–5
reasons to use, 7–1
rolling back, 7–2
using multiple resource managers, 7–3
using sequencing actions in, 7–4

Dumps
procedure server process, 11–27

Dynamic
user names

effects on processing, 11–16
for servers with initialization procedures,

11–16
DYNAMIC USERNAME

subclause
ADU, 11–15

E
EDIT

command
ADU, 1–19, 1–20

ENABLE
external request to HP DECforms, 3–1

Enqueuer username, 9–7
Entities

and pieces tracking in CDD, C–3
CDD object, C–1

ENTRIES
clause

ADU, 12–4
Equivalence names

in LOGICAL NAMES subclauses, 11–29
Error handling

See Handling errors
Errors

handling
in URPs, 14–9
queues, 9–14, 9–16e, 9–19e

messages
displaying, 2–13
online documentation for, 12–13
returned to ACMS$T_STATUS_MESSAGE,

2–13
nonrecoverable, 2–13
queues, 9–12

Index–6



Errors (cont’d)
recoverable, 2–13
signaling in ACMS$RI_LIB_INIT, 14–13
using ADU interactively, 1–19

Escape units
caching, 3–5
FORMS$IMAGE with, 3–5
HP DECforms

calling, 3–4
description of, 3–3
example of, 3–3
managing, 3–6
using, 3–3
writing, 3–3

linking, 3–4
making available to CP agent, 3–5
shareable image of, 3–4

Exception handling, 8–1
See also Errors, handling
actions, 8–6
at run time, 8–13
reasons to use, 8–1
recovering

from a HP DECforms time-out exception,
8–8

from a task-call-task exception, 8–8
from a transaction exception, 8–11

suggested uses, 8–8
using exception handler actions, 8–6
using RAISE EXCEPTION, 8–5

Exceptions, 8–2
affect on server cancel procedures, 8–15
nonrecoverable, 8–4
step, 8–2
transaction, 8–3

Exchange steps, 2–3
in RMS data entry task, 2–3
in RMS update tasks, 2–29

.EXE file
replacing, 3–6

EXIT
command

ADU, 1–3
EXIT TASK

clause
ADU, 2–19

External requests
HP DECforms, 3–1

F
Failover

controlling, 11–33
Files

See also File specifications
ADUINI.COM command, 1–7, 1–8
opening and closing, 10–4
platform-specific, H–1

Files (cont’d)
pointers

in RMS inquiry tasks, 2–24
in RMS update tasks, 2–28
saving in workspaces, 2–24

source definition, 1–15
task group source, 1–15

File specifications, 1–10
FIXED USERNAME

subclause
ADU, 11–15

FMS
accessing with the Request Interface, 14–1
menu interface, 14–20
menu URP example, 14–20
modifying menu interfaces, 14–21

Form files
menu

functions, A–5
Forms

changes
migrating to OpenVMS Alpha, 16–2

image files
replacing, 3–6

modifying
definitions, B–4

objects
linking, 3–4

used by menu request, B–4
FORMS$IMAGE

logical
using, 3–5

FORMS EXTRACT OBJECT
clause, 3–4

Function keys, 18–6

G
.GDF files

See Task groups, source files
Global

areas
shareable between URPs, 14–15

symbols
in task definitions, 4–16

GOOD severity code, 2–11
GOTO PREVIOUS EXCHANGE

clause
ADU, 2–14

GOTO STEP
clause

ADU, 2–18
Group workspaces

See Workspaces, group

Index–7



H
Handling errors

ACMS$PROCESSING_STATUS, 4–2
data entry block steps, 2–15
displaying one record, 2–18
in URPs, 14–9
RMS

data entry tasks, 2–9
inquiry tasks, 2–18
update tasks, 2–28

user-defined workspaces, 4–2
using workspaces, 4–2

HEADER
clause

ADU
using the, 12–4

HELP
command

ADU, 1–20
/NOPROMPT qualifier, 1–21

HP DECforms
accept responses, 3–2
control text responses, 3–2
Ctrl/Z with, 3–8
cursor repositioning, 3–8
escape units, 3–3
external requests, 3–1

CANCEL, 3–1
DISABLE, 3–1
ENABLE, 3–1
RECEIVE, 3–1
SEND, 3–1
TRANSCEIVE, 3–1

image files
migrating to OpenVMS Alpha, 16–2
replacing, 3–6

interface to ACMS, 3–1
internal responses, 3–2
line recall, 3–8
menus

changing format, 12–12
defining, 12–11

as menu forms product, 12–9
structure, 12–1

replacing with the Request Interface, 14–1
response steps, 3–2
responses to external requests, 3–2
TDMS comparison, 3–8

Hyphen (-)
See Continuation character

I
Identifiers

in definitions, 11–2
length, 1–10

IMAGE
subclause

ADU
defining processing, 13–1

Images
translating, 17–4

Initialization
group workspaces, 4–9
menu, 14–19
URP

ACMS$RI_LIB_INIT, 14–11
Initialization procedures, 10–4

effect on servers with dynamic user names,
11–16

Inquiry tasks
RMS

defining block steps, 2–19
displaying

forms, 2–17
many records, 2–21, 2–24
one record, 2–19

final exchange steps, 2–19, 2–23
first exchange steps, 2–17
handling errors, 2–18
processing step, 2–18
program request keys, 2–19
reading one record, 2–18
requests to display many records, 2–22
requests to read one record, 2–17, 2–19
sample definition to read one record, 2–20e
testing workspaces, 2–18
workspaces to display many records, 2–22
workspaces to read one record, 2–17

Interactive work flow
example of, 6–1

Internal
See also Responses
responses (HP DECforms), 3–2

J
Journaling

error queues, 9–16

K
Keypad

used by menu request, B–4
Keys

arrow
using with HP DECforms, 3–8

Index–8



Keywords
GROUP, 1–15

L
Labels

step, 2–3
Language-Sensitive Editor, 1–13, 1–19

creating source files with, D–1
invoking with LSEDIT, D–1
invoking with the EDIT command, 1–20
invoking with the MODIFY command, 1–20
using as default editor with ADU EDIT and

MODIFY, D–2
using COMPILE to compile definitions, D–9
using for writing source code, 1–19
using placeholders and tokens in, D–3
using REVIEW to read diagnostic messages,

D–9
using with ACMS, D–1
using with ADU, 1–19

LINK
command

ADU
HP DECforms escape units, 3–4
HP DECforms form objects, 3–4

Linking
application, 16–1, 17–2
HP DECforms escape units, 3–4
HP DECforms form objects, 3–4
menu interface procedures, 14–20
menu interfaces, 14–21
RI agents against URPs, 14–9
URPs, 14–14

Locks
See Record locks

Logical names
ACMS$RI_LIB, 14–2, 14–5, 14–8, 14–19
ACMS$RI_MENU, 14–18, 14–19
ADU$EDIT, 1–3
assign ADUINI.COM, 1–7
assigning to server default directories, 11–17
CDD$DEFAULT, 1–9
defaults assigned to DCL servers, 11–18
for application servers, 11–18
for default editor, 1–3
in tables, 11–18
on OpenVMS Alpha

ACMS$MULTIPLE_SUBMITTER_
PLATFORMS, 16–4

advantages, 16–5
defining, 16–5, 17–6
referencing translated images, 17–6
restriction for forms with multiple

submitter platforms, 16–5
specifying in ADU clauses, 16–6
VEST$INCLUDE, 17–5

used by RI, 14–19

LOGICALS
subclause

ADU, 11–17, 11–29
using to define directories, 11–29

LSE
See Language-Sensitive Editor

M
Managing applications

See System management
MAXIMUM SERVER PROCESSES

clause
ADU, 11–31

subclause
ADU, 11–19, 11–20, 11–30

MAXIMUM TASK INSTANCES
clause

ADU, 11–32
MCR ACMSADU command, 1–1
Menu

changing
appearance, A–2
number of entries, 12–11, 12–12

changing requests for, B–2
choices, 12–9
command panel

changing prompt, A–10
creating titles for, 12–4
customizing

response and panel definition, A–15
databases, 1–13
default file, 12–8
default panel

changing prompt, A–10e
defaults

defining, A–2
defining

default, 12–9
entries, 12–1, 12–4
HP DECforms, 12–11

definitions
building, B–16
DELAY attribute, 12–5
for Personnel menu, 12–2e
parts of, 12–3
processing, 1–13, 12–13
structure of, 12–1
WAIT attribute, 12–5
writing, 12–1

entries
ACMS default limits, A–14, B–13
overriding ACMS default limits, A–14,

B–13
parts of, 12–4
types of, 12–4

format

Index–9



Menu
format (cont’d)

ACMS default, A–1, B–1
modifying, A–1, B–1, B–2

background text, A–10
form file

functions, A–5
forms

modifying, B–4
grouping tasks for display, 12–2
hierarchy

for Personnel application, 12–2
HP DECforms

Ctrl/Z to exit, 3–8
HP DECforms as menu forms product, 12–9
HP DECforms format, 12–3
including descriptive text, 12–6
interface

ACMS$RI_MENU, 14–18
compiling and linking, 14–21
FMS, 14–20
FMS menu example, 14–20
for RI agent, 14–2
modifying FMS menus, 14–21
procedures, 14–19
providing, 14–19

modifying, 12–11, A–1, B–1
background text, A–10
building new default menu, A–16
command line recall buffer, A–14
DECforms layout size, A–15
installing new default menu, A–16
number of entries, A–13
panel definitions, A–6
SELECTION_STRING field lengths, A–12,

A–13
testing new default menu, A–16

multipage instructions
changing, A–11

naming
menus on, 12–5
remote tasks on, 12–5
tasks on, 12–5

on OpenVMS Alpha
selecting, 18–5

planning to write, 12–1
record

CONTROL TEXT RESPONSE FOUND,
A–4e

definition for header, A–3e, B–6e
entries, A–3e
entry, B–6e
menu control, A–4e
selection, A–4e, B–7e

request library
building, B–15
modifying, B–15

requests

Menu
requests (cont’d)

customized, B–11e
defining, 12–11, B–2
modifying, B–2, B–10

structure, 12–1
TDMS format, 12–3
trees

planning, 12–1
structure of, 12–1f

user-written, 14–18
MENU

subclause
ADU, 12–5

required keywords, 12–5
Menu commands, 18–5
Menu database

building, 12–13
naming, 12–8

MENU_REQUEST
definition for, B–4e

Message files
displaying error messages, 2–13, 10–7
naming, 10–7

MESSAGE FILES
clause

ADU, 10–7
Messages

returning, 4–4
Message Utility

running
on OpenVMS Alpha, 16–1, 17–3

Migrating applications
to OpenVMS Alpha, 17–1

checklist, 17–1
DECforms, 17–7
message files, 17–3
options, 17–2
programs, 17–3
server procedures, 17–3
user-written agents, 17–3

MINIMUM SERVER PROCESSES
subclause

ADU, 11–19, 11–20
MODIFY

command
ADU

changing the editor, 1–20
using to modify an active application, 11–32

Modifying
active application, 11–32
menu

See also ACMS Command Menu
ACMS Command Menu, A–1, B–1
altering record definitions, A–11
background text, A–10
building new default menu, A–16
caution on number of entries, A–14

Index–10



Modifying
menu (cont’d)

changing fields, A–11
command line recall buffer, A–14
correcting errors in, B–16
DECforms layout size, A–15
DMU RESTORE command, B–2
effect on system performance, B–13
formats, B–4, B–13
installing new default menu, A–16
MENU_ENTRY_RECORD, B–14e
moving fields, B–4
number of entries, A–5, A–12, A–13, A–14,

B–12, B–13
panel definitions, A–6
rebuilding request libraries, B–15
renaming requests, B–15
requests, B–13
sample MENU_ENTRY_RECORD, B–14e
sample request definition, B–4e
SELECTION_STRING field lengths, A–12,

A–13
testing new default menu, A–16

menus
See also ACMS Command Menu

Multiple submitter platforms
caching DECforms with, 16–4
logical name restriction, 16–5

N
Naming

application database, 12–7
menu, 12–5

NONPARTICIPATING SERVER
phrase

ADU, 7–9
Nonrecoverable errors

defining actions for data entry tasks, 2–13
Nonrecoverable exceptions, 8–4

O
Object

types in CDD, C–1
Object library

rebuilding on OpenVMS Alpha, 16–1
Online

application modification, 11–1
Opening files

initialization procedures, 10–4
OpenVMS

images
defining as tasks, 13–1

quotas
for tasks, 11–32

OpenVMS Alpha Linker Utility
See Linking

OpenVMS Alpha Message Utility
See Message Utility

OpenVMS Alpha restrictions, 18–2
OpenVMS Debugger

URPs, 14–23
OpenVMS VAX dependencies

eliminating, 17–2
examples, 17–2

Operator commands
ACMS/CANCEL TASK, 6–4
ACMS/CANCEL USER, 6–4
ACMS/SHOW APPLICATION/DETACHED_

TASKS, 6–4
ACMS/SHOW TASK, 6–4
ACMS/START TASK, 6–3

Options file (Alpha)
example, 14–15

P
Parameters

queuing, 9–10
Path name

CDD, 1–4
elements in CDD, 1–4

Personnel application
definition for, 11–4e
menu, 12–2f

PERS_RECORD workspace
record definition, 2–5e

Pieces tracking
using CDD, C–3

Preparing definitions for use
checking errors, 10–9
menu, 12–13
task groups, 10–1

Procedures
See Step procedures

PROCEDURE SERVER IMAGE
subclause

ADU, 10–3
Process

dumps
for servers, 11–27

Processing
deferred, 9–1
error queues, 9–14
queued tasks, 9–8

Processing steps, 2–3
allocating servers, 2–28
calling procedures in, 2–4
displaying many records, 2–23
final RMS update step, 2–30
RMS

update tasks, 2–28

Index–11



Processing steps (cont’d)
RMS data entry task, 2–3

Programming
debugging queued tasks, 9–21
queued tasks, 9–5, 9–7
tools

ACMS Request Interface, 14–1
to process error queues, 9–14
using the ACMS$DEQUEUE_TASK service,

9–8
using the ACMS$QUEUE_TASK service, 9–7

Prompts
ADUDFN, 1–18
with ADU commands, 1–17

Q
QTI

See Queued Task Initiator
Qualifiers

startup, 1–3
Queued task element, 9–1

processing, 9–8
Queued Task Initiator, 9–2

access to queues, 9–6
auditing, 9–11
error handling, 9–12
privileges, 9–10
process, 9–10
processes queue elements, 9–8
process priority, 9–10
retry timer, 9–11
setting the polling time, 9–11
signing in submitters, 9–10
task characteristics, 9–9
to dequeue tasks, 9–8

Queue task service
See Task queue service

Queuing
See Task queue

R
RAISE EXCEPTION

clause
ADU, 8–5

Rdb databases, 6–1
RECEIVE

clause
ADU, 3–1

Recompiling
source code, 17–2

Records
definitions

PERS_RECORD workspace, 2–5e
workspaces, 2–6

releasing locks after task cancels, 10–4

Records (cont’d)
used by menu request, B–4

Recoverable errors
defining actions

for data entry tasks, 2–13
for RMS inquiry tasks, 2–18
for RMS update tasks, 2–28

reading one record, 2–18
Relationship

and pieces tracking in CDD, C–3
CDD object, C–1

Relinking
object code, 17–2

Remote
tasks, 12–5, 12–7

example, 12–7e
REPEAT TASK

clause
ADU, 2–19

REPLACE
command

ADU, 1–14, 2–9, 11–21
compared to CREATE, 1–15
examples of, 1–15e
for creating dictionary definitions,

1–14
in source file, 1–15e

Replacing
an active server, 11–21

REPROCESS
controlling failover with, 11–33

REQUEST
ADU clause

defining a menu format, 12–11
clause

ADU, B–13
menu definitions using, B–13e
naming requests for menus, B–13

Request Interface
ACMRRSHR, 14–2
ACMS$RI_AGENT, 14–17
ACMS$RI_LIB logical, 14–2
ACMS$RI_LIB logical translation, 14–5
agent

debugging, 14–23
definition, 14–2, 14–3
FMS pseudo code, 14–17
in ACMS run-time system, 14–3
linking against URP, 14–9, 14–20
performing task I/O, 14–18
providing, 14–17
running, 14–25
signing in, 14–17
using menu interface, 14–18

application definition, 14–25
asynchronous processing, 14–2
cancel procedure, 14–13
components, 14–2

Index–12



Request Interface (cont’d)
defining tasks, 14–4
enabling, 14–3, 14–18
in ACMS run-time system, 14–3
initialization URPs, 14–11
menu interface, 14–2
model, 14–4
overview, 14–1
performance considerations, 14–3
replacing HP DECforms, 14–2
replacing TDMS, 14–2
running, 14–25
shareable image code, 14–15
using URPs, 14–6
writing URPs, 14–9

Request libraries
defining, 14–8
MENU_LIBR definition, B–15e
rebuilding, B–15

REQUEST LIBRARIES
clause

ADU, 10–6
Requests

changing menu formats with, B–13
creating new menus with, B–2

Resource manager, 7–1
See alsoDBMS
See alsoRdb
See alsoRMS

Responses
accept (HP DECforms), 3–2
control text (HP DECforms), 3–2
external (HP DECforms), 3–2
internal (HP DECforms), 3–2
steps ( HP DECforms), 3–2
to external requests (HP DECforms), 3–2

RESTORE
DMU command

copying ACMS default menu definitions to
CDD, B–2

Restrictions
OpenVMS Alpha, 18–2

Retry limit, 6–3
Retry wait timer, 6–3
Return

messages, 2–13
Review History task

RMS, 2–20e
Review Menu, 12–6f
REVIEW_SCHEDULE_WORKSPACE, 2–22e
RI

See Request Interface
ROLLBACK TRANSACTION

clause
ADU, 7–2

RUN
command

DCL, 1–2

S
SAVE

command
ADU, 1–19

Screen
number of menu entries, A–12

Screen Management Facility
accessing with the Request Interface, 14–1

Security
providing for queues, 9–6

SELECT
command

See also ACMS Command Menu
disabling in command menu, A–17, B–16

SEND
external request to HP DECforms, 3–1

SERVER ATTRIBUTES
clause

ADU
assigning user names in, 11–25
defaulting server names, 11–24
defaulting task group names, 11–24
defining attributes, 11–22, 11–25
positioning in application definitions,

11–25
using, 11–23
using multiple, 11–23

SERVER DEFAULTS
clause

ADU, 11–23, 11–25
assigning server attributes, 11–26
default values, 11–26
defining characteristics in, 11–22,

11–25
in application definitions, 11–24e
multiple instances of, 11–25e
positioning in application definitions,

11–25
resetting default values, 11–23, 11–25

SERVER MONITORING INTERVAL
clause

ADU, 11–21
Servers

allocating processes, 2–4
assigning

attributes to, 11–25
default directory, 11–16
default values, 11–23
logical names to, 11–17
user name to, 11–3, 11–14, 11–15

attributes
default values, 11–14, 11–23, 11–25
defining, 11–13
order of default, 11–22
resetting default values, 11–23, 11–25

auditing events, 11–26

Index–13



Servers (cont’d)
context

effect on system resources, 2–24
in RMS inquiry tasks, 2–24
in RMS update tasks, 2–28

control characteristics, 11–3, 11–13
default directories

default values, 11–17
defaulting

server names, 11–24
task group names, 11–24

describing characteristics for, 10–4
enabling and disabling process dumps for,

11–27
for RMS update task processing steps, 2–28
images, 10–3
initializing, 10–4
limiting number of, 11–31
logical name tables with application, 11–18
naming

in CALL clause, 2–4
in task groups, 10–2
procedures for, 10–3

overriding task group defaults, 11–25
procedure, 10–2

creating runnable images, 10–3
processes

allocating, 2–28
characteristics of, 11–14
continuing for file pointers, 2–24
controlling number of, 11–19, 11–30
creating server processes, 11–20
default devices and directories, 11–16
defining maximum, 11–31
deleting server processes, 11–20
for RMS update task processing steps,

2–28
starting in ACMS, 11–19

processing characteristics, 11–13
replacing an active, 11–21
resetting defaults, 11–23
running images in, 13–3
terminating, 10–4
types, 10–2
user names

assigning with characteristics of terminal
user, 11–15

default value, 11–14, 11–16
dynamic, 11–15
fixed, 11–15

SERVERS
clause

ADU, 2–4
task group name phrase, 11–25

SET DEFAULT
command

ADU, 1–7t, 1–8
overriding defaults, 1–9

SET LOG
command

ADU, 1–7t, 1–19
enable logging, 1–9

SET VERIFY
command

ADU, 1–7t, 1–19
examples of, 1–8e

Severity
codes, 2–11

SHARE
LINK qualifier, 3–4

Shareable image
of HP DECforms escape unit, 3–4
of HP DECforms form, 3–4
RI request library, 14–15

SHOW
command

with task-call-task, 5–18
SHOW DEFAULT

command
ADU, 1–7t

using, 1–9
SHOW LOG

command
ADU, 1–7t, 1–9

Single-step tasks
See also Steps
See also Tasks
task groups using, 10–1

Source files
application, 11–1

SPAWN
command

ADU, 1–18
Starting

ADU
MCR command, 1–1
RUN command, 1–2

qualifiers (ADU), 1–2
Status

return
ACMS$RI_LIB_INIT, 14–13

returning
in ACMS$RI_LIB_INIT, 14–13
to URPs, 14–9

Step exception, 8–2
Step procedures

CALL clause, 2–4
calling

from processing steps, 2–4
defining actions for data entry tasks, 2–13
handling RMS inquiry task errors reading one

record, 2–18
naming, 2–4
passing data to requests, 2–4
returning status, 2–13

Index–14



Step procedures (cont’d)
updating RMS files, 2–30
using ACMS$PROCESSING_STATUS

workspace, 2–11
using workspaces, 2–4

Steps
See also Labels, step
See also Single-step tasks
actions, 2–1
block, 2–7
characteristics, 2–1, 2–7
clauses for, 2–3
naming, 2–3
procedures

naming servers in task groups for, 10–2
structure in RMS data entry task, 2–1f
work done in, 2–1

Storing
definitions, 2–8

indirect command procedures, 2–9
Strings, 1–11
System management

differences, 19–1
disk quotas, 19–1
memory requirements, 19–1
on OpenVMS Alpha, 19–1
physical page sizes, 19–1
process quotas, 19–1

Systems Interface
passing data using, 4–15

T
Tables, 11–18

logical name, 11–18
TASK

subclause
ADU, 12–7

TASK ATTRIBUTES
clause

ADU, 11–8
defaulting names in, 11–9
defining attributes, 11–4, 11–7
overriding task defaults, 11–10
positioning in application definition,

11–10
using multiple, 11–7

Task-call-task, 5–1
application management and operation, 5–18
calling a task with, 5–1
CANCEL, 5–18
defining local tasks, 5–16
mixed I/O methods between tasks, 5–16
passing workspaces, 5–7
preventing task cancellations with, 5–17
SHOW, 5–18
system workspaces, 5–8
task auditing, 5–18

Task-call-task
task auditing (cont’d)

and task security, 5–18
Task Debugger

debugging URPs, 14–24
TASK DEFAULTS

clause
ADU, 11–8

assigning task attributes, 11–10
defining task attributes, 11–4, 11–7
in application definition, 11–8e
positioning in application definition,

11–10
resetting default attributes, 11–8
using multiple, 11–10e

Task groups
assigning names to, 10–1
building, 10–8
databases, 1–13, 10–8

building, 11–2
in application definitions, 11–2

defining, 10–1
definitions

calling URPs, 14–6
defining URPs, 14–6
naming

in applications, 13–4
processing, 1–13

naming
message files, 10–7
request libraries for, 10–6
servers for, 10–2
workspaces, 10–7

sample definition, 10–8e
sample tasks in, 10–1f
single-step tasks in, 10–1
source files, 1–15

TASK GROUPS
clause

ADU
using multiple, 11–2

Task queue
access rights, 9–7
ACMS$QUEUE_TASK, 9–40
ACMS queue services, 9–7
ACMS tasks, 9–1
characteristics, 9–9
components, 9–2
defining

security for, 9–6
error queue errors, 9–13t
error queues, 9–14
example, 9–22e
handling errors, 9–12, 9–16e, 9–19e
overview, 9–1
Queued Task Initiator, 9–2
Queue Manager Utility, 9–2
reinvoking task, 9–11

Index–15



Task queue (cont’d)
retry task errors, 9–12t
security, 9–6
service, 9–22e

ACMS$DEQUEUE_TASK, 9–7, 9–8
ACMS$DEQUEUE_TASK access to the

queue file, 9–2, 9–6
ACMS$QUEUE_TASK, 9–7
ACMS$QUEUE_TASK access to the queue

file, 9–2, 9–6, 9–7
processing error queues, 9–14

setting
ACMSGEN parameters, 9–10

steps in using, 9–5
submitter sign-in, 9–10
task queue services, 9–7
tasks, 9–2f
using the QTI, 9–8

Tasks
See also Task-call-task
access to, 11–1, 11–3, 11–4, 11–12
access to a queue, 9–6
action at end of, 11–6
assigning default values, 11–8
attributes

default values, 11–7, 11–8
resetting default values, 11–7
values for, 11–4

auditing events, 11–6
canceling, 2–12
comparing interactive and detached, 6–1
control characteristics, 11–1, 11–3, 11–4
defining, 11–1, 13–1

characteristics, 2–7
DATATRIEVE commands as, 13–2
DATATRIEVE procedures as, 13–2
DCL commands as, 13–2
default servers, 2–4
for the RI, 14–4
in ACMS task groups, 13–1
in task groups, 10–1
OpenVMS images as, 13–1

definitions
calling URPs, 14–6
use with the RI, 14–4

designed for ease of use, 2–9
detached, 6–1
developing with ACMS development tools, 11–1
displaying status of active detached tasks, 6–4
enabling and disabling in application

definitions, 11–11
execution threads, 9–8
failures ACMS does not retry, 6–5
including existing in applications, 13–1
instances

controlling number of, 11–32
labels

length, 1–10

Tasks (cont’d)
naming

servers for, 10–2
on OpenVMS Alpha

selecting, 18–5
passing

data to, 4–15
processing by procedure servers, 2–4
queue, 9–1
remote, 12–7
resetting default characteristics, 11–8
sharing system resources, 10–1
single-step

in task groups, 10–1
TASKS

clause
ADU, 11–8

TDMS
See Terminal Data Management System
request libraries

migrating to OpenVMS Alpha, 16–2
TDMS Request I/O

alternatives to, 18–4
restrictions, 18–4

Terminal
accessing non-TDMS, 14–1
I/O

accessing with the Request Interface, 14–1
enabling RI, 14–18
front-end independence, 14–5
using RI or TDMS, 14–7

Terminal Data Management System
comparison with HP DECforms, 3–8
disabling, 14–18
modifying menus with, B–1, B–2
replacing with the Request Interface, 14–1
requests for changing menu format, 12–11

Termination procedures, 10–4
Terminology (ACMS), 1–9

file specifications, 1–10
identifiers, 1–10
text strings, 1–11
workspaces, 1–11

TEXT
subclause

ADU, 12–6
Text editors

using for writing source code, 1–19
Text strings, 1–11
TID

used with queuing services, 9–5
TPU, 1–13

invoking
with the EDIT command, 1–20
with the MODIFY command, 1–20

Transaction exceptions, 8–3

Index–16



Transactions
atomic, 7–1

TRANSACTION TIMEOUT
subclause

ADU, 7–11
TRANSCEIVE

external request to HP DECforms, 3–1
Translated images

on OpenVMS Alpha
debugging, 17–7
referencing, 17–6
running, 17–6

Translating
DECforms forms

IFDL file on OpenVMS Alpha, 16–4
Tuning

performance, 11–20

U
UIC

See User Identification Codes
Universal

declaring module names as, 14–15
Update tasks

handling errors, 4–3
RMS

actions in processing steps, 2–28
analysis of structure, 2–26
block steps, 2–30
exchange steps, 2–27
final processing step, 2–30
getting data from users, 2–29
processing steps using workspaces, 2–28
sample definition, 2–32e
second exchange step, 2–29
workspaces, 2–27
writing to files, 2–30

Updating RMS files, 2–26
URP

See User Request Procedure
User

interface tools, 14–1
workspaces, 4–11

initializing, 4–12
using in more than one task, 4–13

User-defined workspaces
See also Workspaces

User Identification Codes
in access control lists, 11–3

USERNAME
subclause

ADU, 11–14
as server user name, 11–14

USERNAME OF TERMINAL USER
subclause

ADU, 11–15

User names
assigning

to Application Execution Controllers,
11–27

to servers, 11–14
dynamic, 11–15
fixed, 11–15

User Request Procedure, 14–19
ACMS$RI_DEBUG_MODULE procedure,

14–19
ACMS$RI_LIB_CANCEL cancel procedure,

14–13
ACMS$RI_LIB_INIT initialization procedure,

14–11
ACMS$RI_LIB_INIT procedure, 14–19
calling in task definitions, 14–6
compiling and linking, 14–14
debugging, 14–22
declaring modules as universal, 14–15
defining in task groups, 14–6
error handling, 14–13
example, 14–10e, 14–12e
linking, 14–9
menu interface, 14–19
naming, 14–9
overview, 14–1
replacing HP DECforms, 14–2
replacing TDMS, 14–2
shareable image file, 14–14
writing, 14–9

USE WORKSPACES
clause

ADU, 10–7

V
VAX Environment Software Translator (VEST)

See VEST utility
VEST utility, 17–4

W
WAIT

subclause
ADU

action at end of tasks, 11–6
Workspaces, 1–11

ACMS$PROCESSING_STATUS, 2–10
ACMS$SELECTION_STRING, 4–5, 6–2
changing characteristics of, 10–9
data entry tasks, 2–4
displaying

many records for RMS inquiry tasks, 2–22
file pointers in, 2–24
given names, 2–6
group

in detached tasks, 6–7
initializing, 4–8, 4–9

Index–17



Workspaces (cont’d)
in detached tasks, 6–7
initializing, 4–9
moving data to, 4–14
naming

in task groups, 4–9, 10–7
in tasks, 2–7

number needed for data entry tasks, 2–15
passing

data with, 2–4, 2–5f
PERS_RECORD record definition, 2–5e
record definition, 2–6

ACMS$SELECTION_STRING, 4–5e
ADD_RESERVE_WKSP, 4–3e
RMS inquiry tasks, 2–18

RMS
data entry tasks using, 2–6
update tasks, 2–27

system

initial values, 2–10
testing

contents of, 2–10
fields in, 2–10, 2–11t, 2–18

user, 4–11
user-defined, 2–10, 2–20, 4–1

handling errors, 4–2
reasons for using, 4–3
testing contents, 2–10
testing fields, 2–11t

WORKSPACES
clause

ADU, 2–7
Writing

applications
for OpenVMS Alpha, 16–1

to files, 2–4
using workspaces, 2–4

Index–18


