
HP Fortran for OpenVMS
User Manual
Order Number: AA–QJRWD–TE

January 2005

This manual provides information about the HP Fortran program
development environment on HP OpenVMS systems.

Revision/Update Information: This revised manual supersedes the
Compaq Fortran User Manual for
OpenVMS Alpha Systems, Version 7.4.

Software Version: HP Fortran for OpenVMS Systems Version
8.0

Operating System: OpenVMS Industry Standard 64 Systems
Version 8.2
OpenVMS Alpha Systems Version 8.2

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the US

ZK6443

This manual is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xxiii

1 Getting Started

1.1 Fortran Standards Overview . 1–1
1.2 HP Fortran Programming Environment 1–2
1.3 Commands to Create and Run an Executable Program 1–5
1.4 Creating and Running a Program Using a Module and Separate

Function . 1–6
1.4.1 Commands to Create the Executable Program 1–8
1.4.2 Running the Sample Program . 1–9
1.4.3 Debugging the Sample Program . 1–10
1.5 Program Development Stages and Tools 1–10

2 Compiling HP Fortran Programs

2.1 Functions of the Compiler . 2–1
2.2 FORTRAN Command Syntax, Use, and Examples 2–2
2.2.1 Specifying Input Files and Source Form 2–3
2.2.2 Specifying Multiple Input Files . 2–4
2.2.3 Creating and Using Module Files . 2–5
2.2.3.1 Creating Module Files . 2–5
2.2.3.2 Using Module Files . 2–6
2.2.4 Using Include Files and Include Text Library Modules 2–7
2.2.4.1 Using Include Files and INCLUDE Statement Forms . . . 2–8
2.2.4.2 INCLUDE Statement Forms for Including Text Library

Modules . 2–9
2.2.4.3 Using Include Text Library Modules for a Specified

Library Name . 2–10
2.2.4.4 Using Include Text Library Modules for an Unspecified

Library Name . 2–11
2.2.5 Specifying Output Files . 2–14

iii

2.2.6 Examples of the FORTRAN Command 2–15
2.2.6.1 Naming the Object File . 2–15
2.2.6.2 Compiler Source Checking Only (No Object File) 2–15
2.2.6.3 Requesting a Listing File and Contents 2–15
2.2.6.4 Compiling Multiple Files . 2–16
2.2.6.5 Requesting Additional Compile-Time and Run-Time

Checking . 2–17
2.2.6.6 Checking Fortran 90 or 95 Standard Conformance 2–17
2.2.6.7 Requesting Additional Optimizations 2–17
2.3 FORTRAN Command Qualifiers . 2–18
2.3.1 FORTRAN Command Qualifier Syntax 2–18
2.3.2 Summary of FORTRAN Command Qualifiers 2–18
2.3.3 /ALIGNMENT — Data Alignment . 2–27
2.3.4 /ANALYSIS_DATA—Create Analysis Data File 2–31
2.3.5 /ANNOTATIONS — Code Descriptions 2–32
2.3.6 /ARCHITECTURE — Architecture Code Instructions (Alpha

only) . 2–33
2.3.7 /ASSUME — Compiler Assumptions 2–35
2.3.8 /AUTOMATIC — Data Storage . 2–40
2.3.9 /BY_REF_CALL — Character Literal Argument Passing . . . 2–40
2.3.10 /CCDEFAULT — Carriage Control for Terminals 2–41
2.3.11 /CHECK — Generate Code for Run-Time Checking 2–42
2.3.12 /CONVERT — Unformatted Numeric Data Conversion 2–45
2.3.13 /D_LINES — Debugging Statement Indicator, Column 1 2–49
2.3.14 /DEBUG — Object File Traceback and Symbol Table 2–49
2.3.15 /DIAGNOSTICS — Create Diagnostics File 2–50
2.3.16 /DML — Invoke Fortran DML Preprocessor 2–51
2.3.17 /DOUBLE_SIZE — DOUBLE PRECISION Data Size 2–51
2.3.18 /ERROR_LIMIT — Limit Compiler Messages 2–52
2.3.19 /EXTEND_SOURCE — Line Length for Fixed-Form

Source . 2–53
2.3.20 /F77 — FORTRAN IV or FORTRAN-77 Compatibility 2–53
2.3.21 /FAST — Request Fast Run-Time Performance 2–53
2.3.22 /FLOAT — Specify Floating-Point Format in Memory 2–54
2.3.23 /GRANULARITY — Control Shared Memory Access to

Data . 2–57
2.3.24 /IEEE_MODE — Control IEEE Arithmetic Exception

Handling . 2–58
2.3.25 /INCLUDE — Add Directory for INCLUDE and Module File

Search . 2–60
2.3.26 /INTEGER_SIZE — Integer and Logical Data Size 2–62
2.3.27 /LIBRARY — Specify File as Text Library 2–63
2.3.28 /LIST — Request Listing File . 2–63

iv

2.3.29 /MACHINE_CODE — Request Machine Code in Listing
File . 2–65

2.3.30 /MATH_LIBRARY — Fast or Accurate Math Library
Routines (Alpha only) . 2–65

2.3.31 /MODULE — Placement of Module Files 2–67
2.3.32 /NAMES — Control Case of External Names 2–67
2.3.33 /OBJECT — Specify Name or Prevent Object File

Creation . 2–68
2.3.34 /OLD_F77 — Use Old FORTRAN 77 Compiler (Alpha only)

. 2–68
2.3.35 /OPTIMIZE — Specify Compiler Optimizations 2–68
2.3.36 /PAD_SOURCE — Pad Source Lines with Spaces 2–76
2.3.37 /REAL_SIZE — Floating-Point Data Size 2–76
2.3.38 /RECURSIVE — Data Storage and Recursion 2–78
2.3.39 /REENTRANCY — Specify Threaded or Asynchronous

Reentrancy . 2–78
2.3.40 /ROUNDING_MODE — Specify IEEE Floating-Point

Rounding Mode . 2–79
2.3.41 /SEPARATE_COMPILATION — Control Compilation Unit

Use in Object Files . 2–81
2.3.42 /SEVERITY — Specify Compiler Diagnostic Severity 2–82
2.3.43 /SHOW — Control Source Content in Listing File 2–83
2.3.44 /SOURCE_FORM — Fortran 90/95 Source Form 2–84
2.3.45 /STANDARD — Perform Fortran 90/95 Standards

Checking . 2–84
2.3.46 /SYNCHRONOUS_EXCEPTIONS — Report Exceptions More

Precisely (Alpha only) . 2–86
2.3.47 /SYNTAX_ONLY — Do Not Create Object File 2–87
2.3.48 /VERSION — Display the HP Fortran Version Number 2–87
2.3.49 /TIE — Enable Code for Shared Translated Images 2–88
2.3.50 /VMS — Request Compaq Fortran 77 for OpenVMS VAX

Compatibility . 2–88
2.3.51 /WARNINGS — Warning Messages and Compiler

Checking . 2–89
2.4 Creating and Maintaining Text Libraries 2–93
2.4.1 Using the LIBRARY Commands . 2–95
2.4.2 Naming Text Library Modules . 2–95
2.5 Using CDD/Repository . 2–96
2.5.1 Accessing CDD/Repository from HP Fortran Programs 2–98
2.5.2 HP Fortran and CDD/Repository Data Types 2–99
2.6 Compiler Limits, Diagnostic Messages, and Error Conditions . . . 2–101
2.6.1 Compiler Limits . 2–101
2.6.2 Compiler Diagnostic Messages and Error Conditions 2–102

v

2.7 Compiler Output Listing Format . 2–103
2.7.1 Source Code Section . 2–104
2.7.2 Machine Code Section . 2–105
2.7.3 Annotations Section . 2–111
2.7.4 Storage Map Section . 2–112
2.7.5 Compilation Summary Section . 2–114

3 Linking and Running HP Fortran Programs

3.1 Linker Overview . 3–1
3.2 LINK Command Qualifiers and Messages 3–1
3.2.1 Linker Output File Qualifiers . 3–3
3.2.1.1 Image File Qualifiers . 3–4
3.2.1.2 /NATIVE_ONLY Qualifier . 3–5
3.2.1.3 Map File Qualifiers . 3–6
3.2.2 /DEBUG and /TRACEBACK Qualifiers 3–7
3.2.3 Linker Input File Qualifiers . 3–7
3.2.4 Linker Symbol Table Qualifier . 3–9
3.2.5 Linker Options File Qualifier . 3–9
3.2.6 Other Linker Qualifiers . 3–9
3.2.7 Linker Messages . 3–10
3.3 Running HP Fortran Programs . 3–10
3.3.1 RUN Command . 3–11
3.3.2 System Processing at Image Exit . 3–11
3.3.3 Interrupting a Program . 3–11
3.3.4 Returning Status Values to the Command Interpreter 3–12
3.4 Symbol Table and Traceback Information: Locating Run-Time

Errors . 3–13
3.4.1 Effects of Error-Related Command Qualifiers 3–13
3.4.2 Sample Source Program and Traceback 3–14

4 Using the OpenVMS Debugger

4.1 Debugger Overview . 4–1
4.2 Getting Started with the Debugger . 4–2
4.2.1 Compiling and Linking a Program to Prepare for

Debugging . 4–2
4.2.2 Establishing the Debugging Configuration and Interface 4–3
4.2.3 Invoking the Debugger . 4–4
4.2.4 Debugger Commands Used Often . 4–6
4.2.5 Debugger Breakpoints, Tracepoints, and Watchpoints 4–6
4.2.6 Ending a Debugging Session . 4–8
4.2.7 Notes on Debugger Support for HP Fortran 4–8

vi

4.3 Sample Debugging Session . 4–9
4.4 Displaying HP Fortran Variables . 4–15
4.4.1 Accessing HP Fortran Common Block Variables 4–15
4.4.2 Accessing HP Fortran Derived-Type Variables 4–16
4.4.3 Accessing HP Fortran Record Variables 4–16
4.4.4 Accessing HP Fortran Array Variables 4–17
4.4.5 Accessing HP Fortran Module Variables 4–18
4.5 Debugger Command Summary . 4–18
4.5.1 Starting and Terminating a Debugging Session 4–18
4.5.2 Controlling and Monitoring Program Execution 4–19
4.5.3 Examining and Manipulating Data . 4–20
4.5.4 Controlling Type Selection and Symbolization 4–20
4.5.5 Controlling Symbol Lookup . 4–21
4.5.6 Displaying Source Code . 4–21
4.5.7 Using Screen Mode . 4–22
4.5.8 Editing Source Code . 4–23
4.5.9 Defining Symbols . 4–23
4.5.10 Using Keypad Mode . 4–23
4.5.11 Using Command Procedures and Log Files 4–23
4.5.12 Using Control Structures . 4–24
4.5.13 Additional Commands . 4–24
4.6 Locating an Exception . 4–25
4.7 Locating Unaligned Data . 4–27

5 Performance: Making Programs Run Faster

5.1 Software Environment and Efficient Compilation 5–1
5.1.1 Install the Latest Version of HP Fortran and Performance

Products . 5–2
5.1.2 Compile Using Multiple Source Files and Appropriate

FORTRAN Qualifiers . 5–3
5.1.3 Process Environment and Related Influences on

Performance . 5–7
5.2 Analyzing Program Performance . 5–8
5.2.1 Measuring Performance Using LIB$xxxx_TIMER Routines or

Command Procedures . 5–9
5.2.1.1 The LIB$xxxx_TIMER Routines . 5–9
5.2.1.2 Using a Command Procedure . 5–13
5.2.2 Performance and Coverage Analyzer (PCA) 5–16
5.3 Data Alignment Considerations . 5–17
5.3.1 Causes of Unaligned Data and Ensuring Natural

Alignment . 5–18
5.3.2 Checking for Inefficient Unaligned Data 5–21

vii

5.3.3 Ordering Data Declarations to Avoid Unaligned Data 5–22
5.3.3.1 Arranging Data Items in Common Blocks 5–22
5.3.3.2 Arranging Data Items in Derived-Type Data 5–24
5.3.3.3 Arranging Data Items in Compaq Fortran 77 Record

Structures . 5–25
5.3.4 Qualifiers Controlling Alignment . 5–26
5.4 Using Arrays Efficiently . 5–28
5.4.1 Accessing Arrays Efficiently . 5–28
5.4.2 Passing Array Arguments Efficiently 5–32
5.5 Improving Overall I/O Performance . 5–33
5.5.1 Use Unformatted Files Instead of Formatted Files 5–34
5.5.2 Write Whole Arrays or Strings . 5–34
5.5.3 Write Array Data in the Natural Storage Order 5–35
5.5.4 Use Memory for Intermediate Results 5–35
5.5.5 Defaults for Blocksize and Buffer Count 5–35
5.5.6 Specify RECL . 5–36
5.5.7 Use the Optimal Record Type . 5–36
5.5.8 Enable Implied-DO Loop Collapsing 5–36
5.5.9 Use of Variable Format Expressions 5–37
5.6 Additional Source Code Guidelines for Run-Time Efficiency 5–37
5.6.1 Avoid Small or Large Integer and Logical Data Items (Alpha

only) . 5–38
5.6.2 Avoid Mixed Data Type Arithmetic Expressions 5–38
5.6.3 Use Efficient Data Types . 5–38
5.6.4 Avoid Using Slow Arithmetic Operators 5–39
5.6.5 Avoid EQUIVALENCE Statement Use 5–39
5.6.6 Use Statement Functions and Internal Subprograms 5–39
5.6.7 Code DO Loops for Efficiency . 5–40
5.7 Optimization Levels: /OPTIMIZE=LEVEL=n Qualifier 5–40
5.7.1 Optimizations Performed at All Optimization Levels 5–42
5.7.2 Local (Minimal) Optimizations . 5–43
5.7.2.1 Common Subexpression Elimination 5–43
5.7.2.2 Integer Multiplication and Division Expansion 5–44
5.7.2.3 Compile-Time Operations . 5–44
5.7.2.4 Value Propagation . 5–45
5.7.2.5 Dead Store Elimination . 5–45
5.7.2.6 Register Usage . 5–46
5.7.2.7 Mixed Real/Complex Operations 5–47
5.7.3 Global Optimizations . 5–48
5.7.4 Additional Global Optimizations . 5–50
5.7.4.1 Loop Unrolling . 5–50
5.7.4.2 Code Replication to Eliminate Branches 5–51

viii

5.7.5 Automatic Inlining and Software Pipelining 5–52
5.7.5.1 Interprocedure Analysis . 5–52
5.7.5.2 Inlining Procedures . 5–52
5.7.5.3 Software Pipelining . 5–53
5.7.6 Loop Transformation . 5–53
5.8 Other Qualifiers Related to Optimization 5–53
5.8.1 Loop Transformation . 5–54
5.8.2 Software Pipelining . 5–55
5.8.3 Setting Multiple Qualifiers with the /FAST Qualifier 5–56
5.8.4 Controlling Loop Unrolling . 5–57
5.8.5 Controlling the Inlining of Procedures 5–57
5.8.6 Requesting Optimized Code for a Specific Processor

Generation (Alpha only) . 5–58
5.8.7 Requesting Generated Code for a Specific Processor

Generation (Alpha only) . 5–60
5.8.8 Arithmetic Reordering Optimizations 5–60
5.8.9 Dummy Aliasing Assumption . 5–61
5.9 Compiler Directives Related to Performance 5–63
5.9.1 Using the cDEC$ OPTIONS Directive 5–63
5.9.2 Using the cDEC$ UNROLL Directive to Control Loop

Unrolling . 5–64
5.9.3 Using the cDEC$ IVDEP Directive to Control Certain Loop

Optimizations . 5–64

6 HP Fortran Input/Output

6.1 Overview . 6–1
6.2 Logical I/O Units . 6–2
6.3 Types of I/O Statements . 6–3
6.4 Forms of I/O Statements . 6–5
6.5 Types of Files and File Characteristics . 6–7
6.5.1 File Organizations . 6–7
6.5.2 Internal Files and Scratch Files . 6–9
6.5.3 I/O Record Types . 6–10
6.5.3.1 Portability Considerations of Record Types 6–11
6.5.3.2 Fixed-Length Records . 6–11
6.5.3.3 Variable-Length Records . 6–12
6.5.3.4 Segmented Records . 6–12
6.5.3.5 Stream Records . 6–13
6.5.3.6 Stream_CR and Stream_LF Records 6–13
6.5.4 Other File Characteristics . 6–14
6.6 Opening Files and the OPEN Statement 6–15

ix

6.6.1 Preconnected Files and Fortran Logical Names 6–16
6.6.1.1 Preconnected Files . 6–17
6.6.1.2 HP Fortran Logical Names . 6–18
6.6.2 Disk Files and File Specifications . 6–19
6.6.3 OPEN Statement Specifiers . 6–22
6.7 Obtaining File Information: The INQUIRE Statement 6–25
6.7.1 Inquiry by Unit . 6–26
6.7.2 Inquiry by File Name . 6–26
6.7.3 Inquiry by Output Item List . 6–27
6.8 Closing a File: The CLOSE Statement . 6–28
6.9 Record Operations . 6–29
6.9.1 Record I/O Statement Specifiers . 6–29
6.9.2 Record Access Modes . 6–30
6.9.2.1 Sequential Access . 6–31
6.9.2.2 Direct Access . 6–31
6.9.2.3 Keyed Access . 6–32
6.9.3 Shared File Use . 6–32
6.9.4 Specifying the Initial Record Position 6–35
6.9.5 Advancing and Nonadvancing Record I/O 6–36
6.9.6 Record Transfer . 6–37
6.10 Output Data Buffering and RMS Journaling 6–39

7 Run-Time Errors

7.1 Run-Time Error Overview . 7–1
7.2 HP Fortran RTL Default Error Processing 7–2
7.2.1 Run-Time Message Format . 7–3
7.2.2 Run-Time Message Severity Levels . 7–3
7.3 Handling Errors . 7–4
7.3.1 Using the ERR, EOR, and END Branch Specifiers 7–5
7.3.2 Using the IOSTAT Specifier . 7–6
7.4 List of Run-Time Messages . 7–8

8 Data Types and Representation

8.1 Summary of Data Types and Characteristics 8–2
8.2 Integer Data Representations . 8–5
8.2.1 Integer Declarations and FORTRAN Command Qualifiers . . 8–5
8.2.2 INTEGER (KIND=1) or INTEGER*1 Representation 8–6
8.2.3 INTEGER (KIND=2) or INTEGER*2 Representation 8–6
8.2.4 INTEGER (KIND=4) or INTEGER*4 Representation 8–6
8.2.5 INTEGER (KIND=8) or INTEGER*8 Representation 8–7
8.3 Logical Data Representations . 8–7

x

8.4 Native Floating-Point Representations and IEEE Exceptional
Values . 8–9

8.4.1 REAL, COMPLEX, and DOUBLE PRECISION Declarations
and FORTRAN Qualifiers . 8–10

8.4.2 REAL (KIND=4) or REAL*4 Representations 8–11
8.4.2.1 IEEE S_float Representation . 8–11
8.4.2.2 VAX F_float Representation . 8–12
8.4.3 REAL (KIND=8) or REAL*8 Representations 8–12
8.4.3.1 IEEE T_float Representation . 8–13
8.4.3.2 VAX G_float Representation . 8–13
8.4.3.3 VAX D_float Representation . 8–14
8.4.4 REAL (KIND=16) or REAL*16 X_float Representation 8–15
8.4.5 COMPLEX (KIND=4) or COMPLEX*8 Representations 8–15
8.4.6 COMPLEX (KIND=8) or COMPLEX*16 Representations . . . 8–16
8.4.7 COMPLEX (KIND=16) or COMPLEX*32 Representation . . . 8–18
8.4.8 Exceptional IEEE Floating-Point Representations 8–19
8.5 Character Representation . 8–23
8.6 Hollerith Representation . 8–24

9 Converting Unformatted Numeric Data

9.1 Overview of Converting Unformatted Numeric Data 9–1
9.2 Endian Order of Numeric Formats . 9–2
9.3 Native and Supported Nonnative Numeric Formats 9–3
9.4 Limitations of Numeric Conversion . 9–7
9.5 Methods of Specifying the Unformatted Numeric Format 9–7
9.5.1 Logical Name FOR$CONVERTnnn Method 9–8
9.5.2 Logical Name FOR$CONVERT.ext (and FOR$CONVERT_ext)

Method . 9–10
9.5.3 OPEN Statement CONVERT=’keyword’ Method 9–13
9.5.4 OPTIONS Statement /CONVERT=keyword Method 9–13
9.5.5 FORTRAN Command /CONVERT=keyword Qualifier

Method . 9–14
9.6 Additional Information on Nonnative Data 9–15

10 Using HP Fortran in the Common Language Environment

10.1 Overview . 10–1
10.2 HP Fortran Procedures and Argument Passing 10–2
10.2.1 Explicit and Implicit Interfaces . 10–3
10.2.2 Types of HP Fortran Subprograms . 10–4
10.2.3 Using Procedure Interface Blocks . 10–5
10.2.4 Passing Arguments and Function Return Values 10–6

xi

10.2.5 Passing Arrays as Arguments . 10–8
10.2.6 Passing Pointers as Arguments . 10–9
10.2.7 HP Fortran Array Descriptor Format 10–10
10.3 Argument-Passing Mechanisms and Built-In Functions 10–11
10.3.1 Passing Arguments by Descriptor—%DESCR Function 10–12
10.3.2 Passing Addresses—%LOC Function 10–13
10.3.3 Passing Arguments by Immediate Value—%VAL

Function . 10–13
10.3.4 Passing Arguments by Reference—%REF Function 10–14
10.3.5 Examples of Argument Passing Built-in Functions 10–14
10.4 Using the cDEC$ ALIAS and cDEC$ ATTRIBUTES

Directives . 10–15
10.4.1 The cDEC$ ALIAS Directive . 10–15
10.4.2 The cDEC$ ATTRIBUTES Directive 10–16
10.4.2.1 C Property . 10–17
10.4.2.2 ALIAS Property . 10–19
10.4.2.3 REFERENCE and VALUE Properties 10–19
10.4.2.4 EXTERN and VARYING Properties 10–20
10.4.2.5 ADDRESS64 Property . 10–20
10.5 OpenVMS Procedure-Calling Standard . 10–21
10.5.1 Register and Stack Usage . 10–21
10.5.1.1 Register and Stack Usage on Alpha 10–21
10.5.2 Return Values of Procedures . 10–23
10.5.3 Argument Lists . 10–24
10.6 OpenVMS System Routines . 10–24
10.6.1 OpenVMS Run-Time Library Routines 10–25
10.6.2 OpenVMS System Services Routines 10–25
10.7 Calling Routines: General Considerations 10–26
10.8 Calling OpenVMS System Services . 10–28
10.8.1 Obtaining Values for System Symbols 10–29
10.8.2 Calling System Services by Function Reference 10–30
10.8.3 Calling System Services as Subroutines 10–31
10.8.4 Passing Arguments to System Services 10–31
10.8.4.1 Immediate Value Arguments . 10–38
10.8.4.2 Address Arguments . 10–38
10.8.4.3 Descriptor Arguments . 10–40
10.8.4.4 Data Structure Arguments . 10–41
10.8.4.5 Examples of Passing Arguments 10–41
10.9 Calling Between Compaq Fortran 77 and HP Fortran 10–44
10.9.1 Argument Passing and Function Return Values 10–44
10.9.2 Using Data Items in Common Blocks 10–48
10.9.3 I/O to the Same Unit Number . 10–49
10.10 Calling Between HP Fortran and HP C . 10–49

xii

10.10.1 Compiling and Linking Files . 10–49
10.10.2 Procedures and External Names . 10–50
10.10.3 Invoking a C Function from HP Fortran 10–50
10.10.4 Invoking an HP Fortran Function or Subroutine from C 10–51
10.10.5 Equivalent Data Types for Function Return Values 10–51
10.10.6 Argument Association and Equivalent Data Types 10–52
10.10.6.1 HP Fortran Intrinsic Data Types 10–53
10.10.6.2 Equivalent HP Fortran and C Data Types 10–53
10.10.7 Example of Passing Integer Data to C Functions 10–55
10.10.8 Example of Passing Complex Data to C Functions 10–56
10.10.9 Handling User-Defined Structures . 10–58
10.10.10 Handling Scalar Pointer Data . 10–59
10.10.11 Handling Arrays . 10–61
10.10.12 Handling Common Blocks of Data . 10–63

11 Using OpenVMS Record Management Services

11.1 Overview of OpenVMS Record Management Services 11–1
11.2 RMS Data Structures . 11–2
11.2.1 Using FORSYSDEF Library Modules to Manipulate RMS

Data Structures . 11–4
11.2.2 File Access Block (FAB) . 11–6
11.2.3 Record Access Block (RAB) . 11–8
11.2.4 Name Block (NAM) . 11–11
11.2.5 Extended Attributes Blocks (XABs) . 11–13
11.3 RMS Services . 11–15
11.3.1 Declaring RMS System Service Names 11–16
11.3.2 Arguments to RMS Services . 11–16
11.3.3 Checking Status from RMS Services 11–17
11.3.4 Opening a File . 11–18
11.3.5 Closing a File . 11–19
11.3.6 Writing Data . 11–19
11.3.7 Reading Data . 11–20
11.3.8 Other Services . 11–21
11.4 User-Written Open Procedures . 11–21
11.4.1 Examples of USEROPEN Routines . 11–23
11.4.2 RMS Control Structures . 11–24
11.5 Example of Block Mode I/O . 11–31
11.5.1 Main Block Mode I/O Program—BIO 11–32
11.5.2 Block Mode I/O USEROPEN Functions—BIOCREATE and

BIOREAD . 11–33
11.5.2.1 OUTPUT Routine . 11–35
11.5.2.2 INPUT Routine . 11–36

xiii

12 Using Indexed Files

12.1 Overview of Indexed Files . 12–1
12.2 Creating an Indexed File . 12–2
12.3 Writing Records to an Indexed File . 12–4
12.3.1 Duplicate Values in Key Fields . 12–4
12.3.2 Preventing the Indexing of Alternate Key Fields 12–6
12.4 Reading Records from an Indexed File . 12–6
12.5 Updating Records in an Indexed File . 12–7
12.6 Deleting Records from an Indexed File . 12–8
12.7 Current Record and Next Record Pointers 12–8
12.8 Exception Conditions When Using Indexed Files 12–9

13 Interprocess Communication

13.1 HP Fortran Program Section Usage . 13–1
13.2 Local Processes: Sharing and Exchanging Data 13–3
13.2.1 Sharing Images in Shareable Image Libraries 13–4
13.2.2 Sharing Data in Installed Common Areas 13–5
13.2.2.1 Creating and Installing the Shareable Image Common

Area . 13–6
13.2.2.2 Creating Programs to Access the Shareable Image

Common Area . 13–8
13.2.2.3 Synchronizing Access . 13–9
13.2.3 Creating and Using Mailboxes to Pass Information 13–10
13.2.3.1 Creating a Mailbox . 13–11
13.2.3.2 Sending and Receiving Data Using Mailboxes 13–11
13.3 Remote Processes: Sharing and Exchanging Data 13–13
13.3.1 Remote File Access . 13–13
13.3.2 Network Task-to-Task Communication 13–14

14 Condition-Handling Facilities

14.1 Overview of Condition-Handling Facilities 14–1
14.2 Overview of the Condition-Handling Facility 14–3
14.3 Default Condition Handler . 14–4
14.4 User-Program Interactions with the CHF 14–5
14.4.1 Establishing and Removing Condition Handlers 14–6
14.4.2 Signaling a Condition . 14–7
14.4.3 Condition Values and Symbols Passed to CHF 14–9
14.5 Operations Performed in Condition Handlers 14–12
14.6 Coding Requirements of Condition Handlers 14–13
14.7 Returning from a Condition Handler . 14–17

xiv

14.8 Matching Condition Values to Determine Program Behavior 14–19
14.9 Changing a Signal to a Return Status . 14–21
14.10 Changing a Signal to a Stop . 14–22
14.11 Checking for Arithmetic Exceptions . 14–22
14.12 Checking for Data Alignment Traps . 14–23
14.13 Condition Handler Example . 14–24

15 Using the Compaq Extended Math Library (CXML) (Alpha
Only)

15.1 What Is CXML? . 15–1
15.2 CXML Routine Groups . 15–2
15.3 Using CXML from Fortran . 15–3
15.4 CXML Program Example . 15–4

A Differences Between HP Fortran on OpenVMS I64 and
OpenVMS Alpha Systems

A.1 HP Fortran Commands on OpenVMS I64 That Are Not Available
on OpenVMS Alpha . A–1

A.2 HP Fortran Commands on OpenVMS Alpha That Are Not
Available on OpenVMS I64 . A–1

A.3 Differences in Default Values . A–2
A.4 Support for VAX-Format Floating-Point . A–2
A.5 Changes in Exception Numbers and Places A–3
A.5.1 Ranges of Representable Values . A–3
A.5.2 Underflow in VAX Format with /CHECK=UNDERFLOW . . . A–4
A.6 Changes in Exception-Mode Selection . A–4
A.6.1 How to Change Exception-Handling or Rounding Mode A–5
A.6.1.1 Calling DFOR$GET_FPE and DFOR$SET_FPE A–5
A.6.1.2 Calling SYS$IEEE_SET_FP_CONTROL,

SYS$IEEE_SET_PRECISION_MODE, and
SYS$IEEE_SET_ROUNDING_MODE A–6

A.6.1.3 Additional Rules That You Should Follow A–6
A.6.1.4 Whole-Program Mode and Library Calls A–7
A.6.2 Example of Changing Floating-Point Exception-Handling

Mode . A–7

xv

B Compatibility: Compaq Fortran 77 and HP Fortran

B.1 HP Fortran and Compaq Fortran 77 Compatibility on Various
Platforms . B–1

B.2 Major Language Features for Compatibility with Compaq
Fortran 77 for OpenVMS Systems . B–4

B.3 Language Features and Interpretation Differences Between
Compaq Fortran 77 and HP Fortran on OpenVMS Systems B–6

B.3.1 Compaq Fortran 77 for OpenVMS Language Features Not
Implemented . B–6

B.3.2 Compaq Fortran 77 for OpenVMS VAX Systems Language
Features Not Implemented . B–7

B.3.3 Compaq Fortran 77 for OpenVMS Language Interpretation
Differences . B–9

B.3.4 Compaq Fortran 77 for OpenVMS VAX Systems
Interpretation Differences . B–13

B.4 Improved HP Fortran Compiler Diagnostic Detection B–14
B.5 Compiler Command-Line Differences . B–19
B.5.1 Qualifiers Not Available on OpenVMS VAX Systems B–20
B.5.2 Qualifiers Specific to Compaq Fortran 77 for OpenVMS VAX

Systems . B–22
B.6 Interoperability with Translated Shared Images B–24
B.7 Porting Compaq Fortran 77 for OpenVMS VAX Systems Data . . B–24
B.8 VAX H_float Representation . B–26

C Diagnostic Messages

C.1 Overview of Diagnostic Messages . C–1
C.2 Diagnostic Messages from the HP Fortran Compiler C–2
C.2.1 Source Program Diagnostic Messages C–2
C.2.2 Compiler-Fatal Diagnostic Messages C–4
C.3 Messages from the HP Fortran Run-Time System C–5

D HP Fortran Logical Names

D.1 Commands for Assigning and Deassigning Logical Names D–1
D.2 Compile-Time Logical Names . D–2
D.3 Run-Time Logical Names . D–2

xvi

E Contents of the HP Fortran System Library FORSYSDEF

F Using System Services: Examples

F.1 Calling RMS Procedures . F–1
F.2 Using an AST Routine . F–3
F.3 Accessing Devices Using Synchronous I/O F–6
F.4 Communicating with Other Processes . F–8
F.5 Sharing Data . F–12
F.6 Displaying Data at Terminals . F–14
F.7 Creating, Accessing, and Ordering Files F–16
F.8 Measuring and Improving Performance . F–18
F.9 Accessing Help Libraries . F–19
F.10 Creating and Managing Other Processes F–21

Index

Examples

1–1 Sample Main Program . 1–5
1–2 Sample Main Program That Uses a Module and Separate

Function . 1–7
1–3 Sample Module . 1–7
1–4 Sample Separate Function Declaration 1–8
2–1 Sample Listing of Source Code on OpenVMS I64 2–104
2–2 Sample Listing of Source Code on OpenVMS Alpha 2–105
2–3 Sample (Partial) Listing of Machine Code on OpenVMS

I64 . 2–106
2–4 Sample (Partial) Listing of Machine Code on OpenVMS

Alpha . 2–108
2–5 Sample (Partial) Listing of Annotations 2–112
2–6 Sample Storage Map Section . 2–114
2–7 Sample Compilation Summary . 2–115
3–1 Sample HP Fortran Program . 3–15
4–1 Sample Program SQUARES . 4–10
4–2 Sample Debugging Session Using Program SQUARES 4–11
5–1 Measuring Program Performance Using LIB$SHOW_TIMER

and LIB$INIT_TIMER . 5–10

xvii

5–2 Command Procedure that Measures Program
Performance . 5–14

5–3 Using the /ASSUME=DUMMY_ALIASES Qualifier 5–62
7–1 Handling OPEN Statement File Name Errors 7–7
8–1 Testing for a NaN Value . 8–22
9–1 Example Showing the Use of the FOR$CONVERT.ext

Method . 9–11
10–1 Calling C Functions and Passing Integer Arguments 10–18
10–2 Calling C Functions and Passing Integer Arguments 10–18
10–3 Use of LIB$GET_VM and POINTER 10–27
10–4 Subroutine Using a Data Structure Argument 10–41
10–5 Ctrl/C Trapping Example . 10–43
10–6 HP Fortran Program Calling a Compaq Fortran 77

Subroutine . 10–46
10–7 Compaq Fortran 77 Subroutine Called by an HP Fortran

Program . 10–47
10–8 C Functions Called by an HP Fortran Program 10–55
10–9 Calling C Functions and Passing Integer Arguments 10–56
10–10 Calling C Functions and Passing Complex Arguments 10–57
10–11 Calling C Functions and Passing Pointer Arguments 10–60
10–12 C Functions Receiving Pointer Arguments 10–60
10–13 C Function That Receives an Explicit-Shape Array 10–62
10–14 HP Fortran Program That Passes an Explicit-Shape

Array . 10–63
A–1 Changing Floating-Point Exception Mode A–8
B–1 Using the CVT$CONVERT_FLOAT Routine B–25
C–1 Sample Diagnostic Messages (Listing Format) C–4

Figures

2–1 Specifying the Format of Numeric Data for Unformatted
Files . 2–54

2–2 Creating and Using a Text Library . 2–94
5–1 Common Block with Unaligned Data 5–23
5–2 Common Block with Naturally Aligned Data 5–23
5–3 Common Block with Naturally Aligned Reordered Data 5–24
5–4 Derived-Type Naturally Aligned Data (in

CATALOG_SPRING()) . 5–25

xviii

5–5 Memory Diagram of REC for Naturally Aligned Records . . . 5–26
6–1 Segmented Records . 6–12
6–2 Stream_CR and Stream_LF Records 6–14
8–1 INTEGER (KIND=1) or INTEGER*1 Representation 8–6
8–2 INTEGER (KIND=2) or INTEGER*2 Representation 8–6
8–3 INTEGER (KIND=4) or INTEGER*4 Representation 8–7
8–4 INTEGER (KIND=8) or INTEGER*8 Representation 8–7
8–5 LOGICAL Representations . 8–9
8–6 IEEE S_float REAL (KIND=4) or REAL*4 Representation . . 8–11
8–7 VAX F_float REAL (KIND=4) or REAL*4 Representation . . . 8–12
8–8 IEEE T_float REAL (KIND=8) or REAL*8 Representation . . 8–13
8–9 VAX G_float REAL (KIND=8) or REAL*8 Representation . . . 8–13
8–10 VAX D_float REAL (KIND=8) or REAL*8 Representation . . . 8–14
8–11 X_float REAL (KIND=16) Floating-Point Data

Representation . 8–15
8–12 IEEE S_float COMPLEX (KIND=4) or COMPLEX*8

Representation . 8–16
8–13 VAX F_float COMPLEX (KIND=4) or COMPLEX*8

Representation . 8–16
8–14 IEEE T_float COMPLEX (KIND=8) or COMPLEX*16

Representation . 8–17
8–15 VAX G_float COMPLEX (KIND=8) or COMPLEX*16

Representation . 8–17
8–16 VAX D_float COMPLEX (KIND=8) or COMPLEX*16

Representation . 8–18
8–17 COMPLEX (KIND=16) or COMPLEX*32 Representation . . . 8–18
8–18 CHARACTER Data Representation . 8–23
9–1 Little and Big Endian Storage of an INTEGER Value 9–3
9–2 Sample Unformatted File Conversion 9–10
14–1 Effects of Calls to LIB$SIGNAL or LIB$STOP 14–8
B–1 VAX H_float REAL*16 Representation (VAX Systems) B–27

xix

Tables

1–1 Tools for Program Development and Testing 1–11
2–1 FORTRAN Command Qualifiers . 2–19
2–2 FORTRAN Command Flags and Categories 2–25
2–3 Commands to Control Library Files . 2–95
2–4 CDO Data Types and Corresponding HP Fortran Data

Types . 2–99
2–5 Compiler Limits . 2–102
3–1 LINK Command Qualifiers . 3–3
3–2 /DEBUG and /TRACEBACK Qualifiers 3–14
5–1 FORTRAN Qualifiers Related to Run-Time Performance 5–4
5–2 Qualifiers that Slow Run-Time Performance 5–6
5–3 Output Argument Array Types . 5–33
5–4 Types of Optimization Performed at Different

/OPTIMIZE=LEVEL=n Levels . 5–41
6–1 Summary of I/O Statements . 6–4
6–2 Available I/O Statements and Record I/O Forms 6–7
6–3 Predefined System Logical Names . 6–16
6–4 Implicit Fortran Logical Units . 6–18
6–5 Valid Combinations of File Organization and Record Access

Mode . 6–31
7–1 Summary of Run-Time Errors . 7–9
8–1 HP Fortran Intrinsic Data Types, Storage, and Numeric

Ranges . 8–2
8–2 IEEE Exceptional Floating-Point Numbers 8–21
9–1 Unformatted Numeric Formats, Keywords, and Supported

Data Types . 9–5
10–1 C Property and Argument Passing . 10–17
10–2 OpenVMS Alpha Register Usage . 10–22
10–3 OpenVMS Alpha Function Return Values 10–23
10–4 Run-Time Library Facilities . 10–25
10–5 System Services . 10–26
10–6 HP Fortran Implementation of OpenVMS Data Types 10–32
10–7 Variable Data Type Requirements . 10–39
10–8 HP Fortran and C Data Types . 10–54
11–1 RMS Fields Available with USEROPEN 11–25
13–1 PSECT Names and Attributes . 13–2

xx

13–2 HP Fortran PSECT Attributes . 13–3
14–1 Severity Codes for Exception Condition Values 14–10
14–2 Contents of SIGARGS . 14–14
14–3 Contents of MECHARGS on OpenVMS Alpha Systems 14–16
14–4 Condition-Handler Function Return Values 14–18
15–1 CXML Routine Groups . 15–3
B–1 Summary of Language Compatibility B–2
B–2 HP Fortran Qualifiers Without Equivalents in Compaq

Fortran 77 for OpenVMS VAX Systems B–20
B–3 Compaq Fortran 77 for OpenVMS VAX Systems Options Not

in HP Fortran . B–23
B–4 Floating-Point Data Formats on OpenVMS VAX and

OpenVMS I64 and Alpha Systems . B–25
C–1 Run-Time Error Messages and Explanations C–6
D–1 HP Fortran Compile-Time Logical Names D–2
D–2 HP Fortran Run-Time Logical Names D–3
E–1 Contents of System Library FORSYSDEF E–2

xxi

Preface

This manual describes the HP Fortran compiler command, compiler, and run-
time environment. This includes how to compile, link, execute, and debug HP
Fortran programs on systems with Itanium or Alpha processor architectures
running the HP OpenVMS operating system. It also describes performance
guidelines, I/O and error-handling support, calling other procedures, and
compatibility.

Note

In this manual, the term OpenVMS refers to both OpenVMS I64 and
OpenVMS Alpha systems. If there are differences in the behavior of the
HP Fortran compiler on the two operating systems, those differences
are noted in the text.

Intended Audience
This manual assumes that:

• You already have a basic understanding of the Fortran 90/95 language.
Tutorial Fortran 90/95 language information is widely available in
commercially published books (see the online release notes or the Preface
of the HP Fortran for OpenVMS Language Reference Manual).

• You are familiar with the operating system commands used during
program development and a text editor. Such information is available in
the OpenVMS documentation set.

• You have access to the HP Fortran for OpenVMS Language Reference
Manual, which describes the HP Fortran 90/95 language.

xxiii

Document Structure
This manual consists of the following chapters and appendixes:

• Chapter 1 introduces the programmer to the HP Fortran compiler, its
components, and related commands.

• Chapter 2 describes the FORTRAN command qualifiers in detail.

• Chapter 3 describes how to link and run a HP Fortran program.

• Chapter 4 describes the OpenVMS Debugger and some special
considerations involved in debugging Fortran programs. It also lists
some relevant programming tools and commands.

• Chapter 5 describes ways to improve run-time performance, including
general software environment recommendations, appropriate FORTRAN
command qualifiers, data alignment, efficiently performing I/O and array
operations, other efficient coding techniques, profiling, and optimization.

• Chapter 6 provides information on HP Fortran I/O, including statement
forms, file organizations, I/O record formats, file specifications, logical
names, access modes, logical unit numbers, and efficient use of I/O.

• Chapter 7 lists run-time messages and describes how to control certain
types of I/O errors in your I/O statements.

• Chapter 8 describes the native Fortran OpenVMS data types, including
their numeric ranges, representation, and floating-point exceptional values.
It also discusses the intrinsic data types used with numeric data.

• Chapter 9 describes how to access unformatted files containing numeric
little endian and big endian data different than the format used in memory.

• Chapter 10 describes how to call routines and pass arguments to them.

• Chapter 11 describes how to utilize OpenVMS Record Management
Services (RMS) from an HP Fortran program.

• Chapter 12 describes how to access records using indexed sequential
access.

• Chapter 13 gives an introduction on how to exchange and share data
among both local and remote processes.

• Chapter 14 describes facilities that can be used to handle—in a structured
and consistent fashion—special conditions (errors or program-generated
status conditions) that occur in large programs with many program units.

xxiv

• Chapter 15 provides information on the Compaq Extended Math Library
(CXML) (Alpha only), a comprehensive set of mathematical library routines
callable from Fortran and other languages.

• Appendix A describes the differences between HP Fortran on OpenVMS
I64 systems and on OpenVMS Alpha systems.

• Appendix B describes the compatibility between HP Fortran for OpenVMS
systems and HP Fortran on other platforms, especially Compaq Fortran 77
for OpenVMS systems.

• Appendix C describes diagnostic messages issued by the HP Fortran
compiler and lists and describes messages from the HP Fortran Run-Time
Library (RTL) system.

• Appendix D lists the HP Fortran logical names recognized at compile-time
and run-time.

• Appendix E identifies the HP Fortran include files that define symbols for
use in HP Fortran programs.

• Appendix F contains examples of the use of a variety of system services.

Note

If you are reading the printed version of this manual, be aware
that the version at the HP Fortran Web site and the version on
the Documentation CD-ROM from HP may contain updated and/or
corrected information.

Related Documents
The following documents are also useful:

• HP Fortran for OpenVMS Language Reference Manual

Describes the HP Fortran 90/95 source language for reference purposes,
including the format and use of statements, intrinsic procedures, and other
language elements.

• HP Fortran Installation Guide for OpenVMS I64 Systems or HP Fortran
Installation Guide for OpenVMS Alpha Systems

Explain how to install HP Fortran.

• HP Fortran online release notes

xxv

Provide the most recent information on this version of HP Fortran. You
can view or print the online release notes from:

SYS$HELP:FORTRAN.RELEASE_NOTES (text version)
SYS$HELP:FORTRAN_RELEASE_NOTES.PS (PostScript version)

• HP Fortran online DCL HELP

Summarizes the HP Fortran command-line qualifiers, explains run-time
messages, and provides a quick-reference summary of language topics. To
use online HELP, use this command:

$ HELP FORTRAN

• Intel Itanium Architecture Software Developer’s Manual, Volume 1:
Application Architecture

• Operating system documentation

The operating system documentation set describes the DCL commands
(such as LINK), OpenVMS routines (such as system services and run-
time library routines), OpenVMS concepts, and other aspects of the
programming environment.

For OpenVMS systems, sources of programming information include the
following:

OpenVMS Programming Environment Manual

HP OpenVMS Programming Concepts Manual

OpenVMS Programming Interfaces: Calling a System Routine

HP OpenVMS Debugger Manual

Alpha Architecture Reference Manual

Alpha Architecture Handbook

For information on the documentation for the OpenVMS operating system,
including a list of books in the programmer’s kit, see the Overview of
OpenVMS Documentation.

OpenVMS VAX to OpenVMS Alpha porting information can be found in
Migrating an Application from OpenVMS VAX to OpenVMS Alpha. (For
Fortran-specific porting information, see Appendix B.)

OpenVMS Alpha to OpenVMS I64 porting information can be found in
Porting Applications from HP OpenVMS Alpha to HP OpenVMS Industry
Standard 64 for Integrity Servers.

xxvi

You can also use online DCL HELP for various OpenVMS commands and
most routines by typing HELP. For the Debugger (and other tools), type
HELP after you invoke the Debugger. For information on operating system
messages, use the HELP/MESSAGE command.

The following Web site contains comprehensive information on OpenVMS
systems: http://www.hp.com/go/openvms

Reader’s Comments
HP welcomes your comments on this manual. You can send comments by email
to:

fortran@hp.com

HP Fortran Web Page
The HP Fortran Web page is located at:

http://www.hp.com/software/fortran

This Web site contains information about software patch kits, example
programs, and additional product information. It also contains Web versions of
this and other HP Fortran manuals.

Conventions
The following product names may appear in this manual:

• HP OpenVMS Industry Standard 64 for Integrity Servers

• OpenVMS I64

• I64

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

The following conventions might be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

xxvii

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention
appears as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the
following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one or
more times.

• Additional parameters, values, or other information can
be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that
you must enclose choices in parentheses if you specify more
than one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in
an assignment statement.

| In command format descriptions, vertical bars separate
choices within brackets or braces. Within brackets, the
choices are optional; within braces, at least one choice is
required. Do not type the vertical bars on the command
line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

xxviii

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code
for the device type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

real This term refers to all floating-point intrinsic data types as
a group.

complex This term refers to all complex floating-point intrinsic data
types as a group.

logical This term refers to logical intrinsic data types as a group.

integer This term refers to integer intrinsic data types as a group.

Fortran This term refers to language information that is common
to ANSI FORTRAN-77, ANSI/ISO Fortran 90, ANSI/ISO
Fortran 95, and HP Fortran 90.

Fortran 90 This term refers to language information that is common to
ANSI/ISO Fortran 90 and HP Fortran. For example, a new
language feature introduced in the Fortran 90 standard.

Fortran 95 This term refers to language information that is common
to ISO Fortran 95 and HP Fortran. For example, a new
language feature introduced in the Fortran 95 standard.

HP Fortran Unless otherwise specified, this term (formerly Compaq
Fortran) refers to language information that is common
to the Fortran 90 and 95 standards, and any HP Fortran
extensions, running on the OpenVMS operating system.
Since the Fortran 90 standard is a superset of the
FORTRAN-77 standard, HP Fortran also supports the
FORTRAN-77 standard. HP Fortran supports all of the
deleted features of the Fortran 95 standard.

xxix

1
Getting Started

This chapter describes:

• Section 1.1, Fortran Standards Overview

• Section 1.2, HP Fortran Programming Environment

• Section 1.3, Commands to Create and Run an Executable Program

• Section 1.4, Creating and Running a Program Using a Module and
Separate Function

• Section 1.5, Program Development Stages and Tools

1.1 Fortran Standards Overview
HP Fortran for OpenVMS (formerly Compaq Fortran for OpenVMS) conforms
to the:

• American National Standard Fortran 90 (ANSI X3.198-1992), which is
the same as the International Standards Organization standard (ISO/IEC
1539:1991 (E))

• Fortran 95 standard (ISO/IEC 1539:1998 (E))

HP Fortran supports all of the deleted features of the Fortran 95 standard.

HP Fortran also includes support for programs that conform to the previous
Fortran standards (ANSI X3.9-1978 and ANSI X3.0-1966), the International
Standards Organization standard ISO 1539-1980 (E), the Federal Information
Processing Institute standard FIPS 69-1, and the Military Standard 1753
Language Specification.

The ANSI committee X3J3 is currently answering questions of interpretation
of Fortran 90 ands 95 language features. Any answers given by the ANSI
committee that are related to features implemented in HP Fortran may result
in changes in future releases of the HP Fortran compiler, even if the changes
produce incompatibilities with earlier releases of HP Fortran.

Getting Started 1–1

HP Fortran provides a number of extensions to the Fortran 90 and 95
standards. HP Fortran extensions to the latest Fortran standard are generally
provided for compatibility with Compaq Fortran 77 extensions to the ANSI
FORTRAN-77 standard.

When creating new programs that need to be standards-conforming for
portability reasons, you should avoid or minimize the use of extensions to
the latest Fortran standard. Extensions to the appropriate Fortran standard
are identified visually in the HP Fortran for OpenVMS Language Reference
Manual, which defines the HP Fortran language.

1.2 HP Fortran Programming Environment
The following aspects of Fortran 90/95 are relevant to the compilation
environment and should be considered before extensive coding begins:

• To install HP Fortran on your system, see the HP Fortran Installation
Guide for OpenVMS I64 Systems or the HP Fortran Installation Guide for
OpenVMS Alpha Systems.

• Once HP Fortran is installed, you can:

Use the FORTRAN command to compile source files. Use the LINK
command to link object files into executable programs.

Use the online HELP FORTRAN command and this manual to provide
information about the FORTRAN command.

• Make sure you have adequate process memory space, especially if your
programs use large arrays as data. Your system manager (or designated
privileged user) may be able to overcome this problem by checking and
possibly increasing the following:

Your process memory (working set)

Your system manager can use the Authorize Utility to adjust your
process working set quotas, page file quota, and limits.

System-wide virtual memory limits

Your system manager can use SYSGEN to change parameters (such as
WSMAX and VIRTUALPAGECNT), which take effect after the system
is rebooted.

Page file space on your system

Your system manager can use SYSGEN or AUTOGEN to increase
page file sizes or create new page files. Your system manager needs
to INSTALL any new page files available to the system by modifying
system startup command procedures and rebooting the system.

1–2 Getting Started

System hardware resources, such as physical memory and disk space

You can check the current memory limits using the SHOW WORKING_
SET command. To view peak memory use after compiling or running a
program, use the SHOW PROCESS/ACCOUNTING command. Your system
manager can use these commands (or SHOW PROCESS/CONTINUOUS)
for a currently running process and the system-side MONITOR command.

For example, the following DCL (shell) commands check the current limits
and show the current use of some of these limits:

$ SHOW WORKING_SET
...
$ SHOW PROCESS/ACCOUNTING
...

• Make sure you have an adequate process open file limit, especially if your
programs use a large number of module files.

During compilation, your application may attempt to use more module files
than your open file limit allows. In this case, the HP Fortran compiler will
close a previously opened module file before it opens another to stay within
your open file limit. This results in slower compilation time. Increasing
the open file limit may improve compilation time in such cases.

You can view the per-process limit on the number of open files (Open file
quota or FILLM) by using the SHOW PROCESS/QUOTA command:

$ SHOW PROCESS/QUOTA
...

Your system manager needs to determine the maximum per-process limit
for your system by checking the value of the CHANNELCNT SYSGEN
parameter and (if necessary) increasing its value.

• You can define logical names to specify libraries and directories.

You can define the FORT$LIBRARY logical name to specify a user-defined
text library that contains source text library modules referenced by
INCLUDE statements. The compiler searches first for libraries specified
on the command line and also in the system-supplied default library (see
Section 2.4).

For more information on using FORT$LIBRARY, see Section 2.2.4.

You can define the FORT$INCLUDE logical name to specify a directory to
be searched for the following files:

Module files specified by a USE statement (module name is used as a
file name)

Getting Started 1–3

Source files specified by an INCLUDE statement, where a file name is
specified without a directory name

Text library files specified by an INCLUDE statement, where a file
name is specified without a library name

For more information on the FORT$INCLUDE logical name, see
Section 2.2.3 and Section 2.2.4.

If you need to set logical names frequently, consider setting them in your
LOGIN.COM file, or ask your system manager to set them as system-wide
logical names in a system startup command procedure.

Several other logical names can similarly be used during program execution
(see Appendix D).

• Your HP Fortran source files can be in free or fixed form. You can indicate
the source form used in your source files by using certain file types or a
command-line qualifier:

For files using fixed form, specify a file type of FOR or F.

For files using free form, specify a file type of F90.

You can also specify the /SOURCE_FORM qualifier on the FORTRAN
command line to specify the source form for all files on that command
line.

For example, if you specify a file as PROJ_BL1.F90 on a FORTRAN
command line (and omit the /SOURCE_FORM=FIXED qualifier), the
FORTRAN command assumes the file PROJ_BL1.F90 contains free-form
source code.

A special type of fixed source form is tab form (an HP extension described
in the HP Fortran for OpenVMS Language Reference Manual).

• Each source file to be compiled must contain at least one program unit
(main program, subroutine, function, module, block data). Consider the
following aspects of program development:

Modularity and efficiency

For a large application, using a set of relatively small source files
promotes incremental application development.

When application run-time performance is important, compile related
source files together (or the entire application). When compiling
multiple source files, separate file names with plus signs (+) to
concatenate source files and create a single object file. This allows
certain interprocedure optimizations to minimize run-time execution
time (unless you specify certain qualifiers).

1–4 Getting Started

Code reuse

Modules, external subprograms, and included files allow reuse of
common code. Code used in multiple places in a program should be
placed in a module, external subprogram (function or subroutine), or
included file.

When using modules and external subprograms, there is one copy of
the code for a program. When using INCLUDE statements, the code in
the specified source file is repeated once for each INCLUDE statement.

In most cases, using modules or external subprograms makes programs
easier to maintain and minimizes program size.

For More Information:

• On modules, see Section 2.2.3.

• On include files, see Section 2.2.4.

• On HP Fortran source forms, see the HP Fortran for OpenVMS Language
Reference Manual.

• On recognized file types, see Section 2.2.1.

• On the types of subprograms and using an explicit interface to a
subprogram, see Chapter 10.

• On performance considerations, including compiling source programs for
optimal run-time performance, see Chapter 5.

• On logical names, see the OpenVMS User’s Manual.

1.3 Commands to Create and Run an Executable Program
Example 1–1 shows a short Fortran 90/95 main program using free-form
source.

Example 1–1 Sample Main Program

! File hello.f90

PROGRAM HELLO_TEST

PRINT *, ’hello world’
PRINT *, ’ ’

END PROGRAM HELLO_TEST

Getting Started 1–5

To create and revise your source files, use a text editor, such as the Extensible
Versatile Editor (EVE). For instance, to use EVE to edit the file HELLO.F90,
enter:

$ EDIT HELLO.F90

The following FORTRAN command compiles the program named HELLO.F90.
The LINK command links the compiled object file into an executable program
file named HELLO.EXE:

$ FORTRAN HELLO.F90
$ LINK HELLO

In this example, because all external routines used by this program reside
in standard OpenVMS libraries searched by the LINK command, additional
libraries or object files are not specified on the LINK command line.

To run the program, enter the RUN command and the program name:

$ RUN HELLO

If the executable program is not in your current default directory, specify the
directory before the file name. Similarly, if the executable program resides on a
different device than your current default device, specify the device name and
directory name before the file name.

For More Information:

• On the OpenVMS programming environment, see the operating system
documents listed in the Preface of this manual.

• On specifying files on an OpenVMS system, see the OpenVMS User’s
Manual.

1.4 Creating and Running a Program Using a Module and
Separate Function

Example 1–2 shows a sample HP Fortran main program using free-form source
that uses a module and an external subprogram.

The function CALC_AVERAGE is contained in a separately created file and
depends on the module ARRAY_CALCULATOR for its interface block.

1–6 Getting Started

Example 1–2 Sample Main Program That Uses a Module and Separate
Function

! File: main.f90
! This program calculates the average of five numbers

PROGRAM MAIN

USE ARRAY_CALCULATOR !
REAL, DIMENSION(5) :: A = 0
REAL :: AVERAGE

PRINT *, ’Type five numbers: ’
READ (*,’(BN,F10.3)’) A
AVERAGE = CALC_AVERAGE(A) "
PRINT *, ’Average of the five numbers is: ’, AVERAGE

END PROGRAM MAIN

! The USE statement accesses the module ARRAY_CALCULATOR. This
module contains the function declaration for CALC_AVERAGE (use
association).

" The 5-element array is passed to the function CALC_AVERAGE, which
returns the value to the variable AVERAGE for printing.

Example 1–3 shows the module referenced by the main program. This example
program shows more Fortran 90 features, including an interface block and an
assumed-shape array.

Example 1–3 Sample Module

! File: array_calc.f90.
! Module containing various calculations on arrays.

MODULE ARRAY_CALCULATOR
INTERFACE
FUNCTION CALC_AVERAGE(D)
REAL :: CALC_AVERAGE
REAL, INTENT(IN) :: D(:)

END FUNCTION CALC_AVERAGE
END INTERFACE

! Other subprogram interfaces...

END MODULE ARRAY_CALCULATOR

Getting Started 1–7

Example 1–4 shows the function declaration CALC_AVERAGE referenced by
the main program.

Example 1–4 Sample Separate Function Declaration

! File: calc_aver.f90.
! External function returning average of array.

FUNCTION CALC_AVERAGE(D)
REAL :: CALC_AVERAGE
REAL, INTENT(IN) :: D(:)
CALC_AVERAGE = SUM(D) / UBOUND(D, DIM = 1)

END FUNCTION CALC_AVERAGE

1.4.1 Commands to Create the Executable Program
During the early stages of program development, the three files might be
compiled separately and then linked together, using the following commands:

$ FORTRAN ARRAY_CALC.F90
$ FORTRAN CALC_AVER.F90
$ FORTRAN MAIN.F90
$ LINK/EXECUTABLE=CALC.EXE MAIN, ARRAY_CALC, CALC_AVER

In this sequence of FORTRAN commands:

• Each of the FORTRAN commands creates one object file (OBJ file type).

• The first FORTRAN command creates the object file ARRAY_CALC.OBJ
and the module file ARRAY_CALCULATOR.F90$MOD. The name in the
MODULE statement (ARRAY_CALCULATOR) in Example 1–3 determines
the file name of the module file. The FORTRAN command creates module
files in the process default device and directory with a F90$MOD file type.

• The second FORTRAN command creates the file CALC_AVER.OBJ
(Example 1–4).

• The third FORTRAN command creates the file MAIN.OBJ (Example 1–2)
and uses the module file ARRAY_CALCULATOR.F90$MOD.

• The LINK command links all object files (OBJ file type) into the executable
program named CALC.EXE.

To allow more optimizations to occur (such as the inline expansion of called
subprograms), compile the entire set of three source files together using a
single FORTRAN command:

$ FORTRAN/OBJECT=CALC.OBJ ARRAY_CALC.F90 + CALC_AVER.F90 + MAIN.F90

1–8 Getting Started

The order in which the file names are specified is significant. This FORTRAN
command:

• Compiles the file ARRAY_CALC.F90, which contains the module definition
(shown in Example 1–3), and creates its object file and the file ARRAY_
CALCULATOR.F90$MOD in the process default device and directory.

• Compiles the file CALC_AVER.F90, which contains the external function
CALC_AVERAGE (shown in Example 1–4).

• Compiles the file MAIN.F90 (shown in Example 1–2). The USE statement
references the module file ARRAY_CALCULATOR.F90$MOD.

• Creates a single object file named CALC.OBJ.

When you omit the file type on the FORTRAN command line, the FORTRAN
command searches for a file with the F90 file type before a file with the FOR
or F file type, so you can enter the previous command (without file types) as
follows:

$ FORTRAN/OBJECT=CALC.OBJ ARRAY_CALC + CALC_AVER + MAIN

Use a LINK command to link the single object file into an executable program:

$ LINK CALC

When you omit the file type on the LINK command line, the Linker searches
for a file with a file type of OBJ. Unless you will specify a library on the LINK
command line, you can omit the OBJ file type.

1.4.2 Running the Sample Program
If the current default directory contains the file named CALC you can run the
program by entering the RUN command followed by its name:

$ RUN CALC

When you omit the file type on the RUN command line, the image activator
searches for a file with a file type of EXE (you can omit the EXE file type).

When running the sample program, the PRINT and READ statements in the
main program result in the following dialogue between user and program:

Type five numbers:
55.5
4.5
3.9
9.0
5.6
Average of the five numbers is: 15.70000

Getting Started 1–9

1.4.3 Debugging the Sample Program
To debug a program using the OpenVMS Debugger, compile and link with the
/DEBUG qualifier to request additional symbol table information for source line
debugging in the object and executable program files. The following FORTRAN
command names the object file CALC_DEBUG.OBJ. The LINK command then
creates the program file CALC_DEBUG.EXE with full debugging information:

$ FORTRAN/DEBUG/OBJECT=CALC_DEBUG.OBJ/NOOPTIMIZE ARRAY_CALC + CALC_AVER + MAIN
$ LINK/DEBUG CALC_DEBUG

The OpenVMS debugger has a character-cell interface and a windowing
interface (available with the DECwindows Motif product). To debug an
executable program named CALC_DEBUG.EXE, enter the following command:

$ RUN CALC_DEBUG

For more information on running the program within the debugger and the
windowing interface, see Chapter 4.

1.5 Program Development Stages and Tools
This manual primarily addresses the program development activities
associated with implementation and testing phases. For information
about topics usually considered during application design, specification,
and maintenance, see your operating system documentation or appropriate
commercially published documentation.

HP Fortran provides the standard features of a compiler and the OpenVMS
operating system provides a linker.

Use a LINK command to link the object file into an executable program.

Table 1–1 describes some of the software tools you can use when developing
(implementing) and testing a program:

1–10 Getting Started

Table 1–1 Tools for Program Development and Testing

Task or Activity Tool and Description

Manage source files Use the Code Management System (CMS).

Create and modify
source files

Use a text editor, such as the EDIT command to use the
EVE editor. You can also use the optional Language-
Sensitive Editor (LSE). For more information using
OpenVMS text editors, see the OpenVMS User’s Manual.

Analyze source code Use DCL commands such as SEARCH and DIFFERENCES.

Build program (compile
and link)

You can use the FORTRAN and LINK commands to create
small programs, perhaps using command procedures, or
use the Module Management System (MMS) to build your
application in an automated fashion.

For more information on the FORTRAN and LINK
commands, see Chapter 2 and Chapter 3 respectively.

Debug and Test program Use the OpenVMS Debugger to debug your program or
run it for general testing. For more information on the
OpenVMS Debugger, see Chapter 4 in this manual.

Analyze performance To perform program timings and profiling of code, use the
LIB$xxxx_TIMER routines, a command procedure, or the
Performance Coverage Analyzer (PCA).

For more information on timing and profiling HP Fortran
code, see Chapter 5.

To perform other program development functions at various stages of program
development, use the following DCL commands:

• Use the LIBRARIAN command to create an object or text library, add or
delete library modules in a library, list the library modules in a library, and
perform other functions. For more information, enter HELP LIBRARIAN
or see the VMS Librarian Utility Manual.

• Use the LINK/NODEBUG command to remove symbolic and other
debugging information to minimize image size. For more information, see
Chapter 3.

• The LINK/MAP command creates a link map, which shows information
about the program sections, symbols, image section, and other information.

• The ANALYZE/OBJECT command shows which compiler compiled the
object file and the version number used. It also does a partial error
analysis and shows other information.

Getting Started 1–11

• The ANALYZE/IMAGE command checks information about an executable
program file. It also shows the date it was linked and the version of the
operating system used to link it.

For More Information:

• On the OpenVMS programming environment, see the Preface of this
manual.

• On DCL commands, use DCL HELP or see the HP OpenVMS DCL
Dictionary.

1–12 Getting Started

2
Compiling HP Fortran Programs

This chapter describes:

• Section 2.1, Functions of the Compiler

• Section 2.2, FORTRAN Command Syntax, Use, and Examples

• Section 2.3, FORTRAN Command Qualifiers

• Section 2.4, Creating and Maintaining Text Libraries

• Section 2.5, Using CDD/Repository

• Section 2.6, Compiler Limits, Diagnostic Messages, and Error Conditions

• Section 2.7, Compiler Output Listing Format

2.1 Functions of the Compiler
The primary functions of the HP Fortran compiler are to:

• Verify the HP Fortran source statements and to issue messages if the
source statements contain any errors

• Venerate machine language instructions from the source statements of the
HP Fortran program

• Group these instructions into an object module for the OpenVMS Linker

When the compiler creates an object file, it provides the linker with the
following information:

• The program unit name. The program unit name is the name specified in
the PROGRAM, MODULE, SUBROUTINE, FUNCTION, or BLOCK DATA
statement in the source program. If a program unit does not contain any of
these statements, the source file name is used with $MAIN (or $DATA, for
block data subprograms) appended.

Compiling HP Fortran Programs 2–1

• A list of all entry points and common block names that are declared in the
program unit. The linker uses this information when it binds two or more
program units together and must resolve references to the same names in
the program units.

• Traceback information, used by the system default condition handler when
an error occurs that is not handled by the program itself. The traceback
information permits the default handler to display a list of the active
program units in the order of activation, which aids program debugging.

• A symbol table, if specifically requested (/DEBUG qualifier). A symbol
table lists the names of all external and internal variables within a object
module, with definitions of their locations. The table is of primary use in
program debugging.

For More Information:
On the OpenVMS Linker, see Chapter 3.

2.2 FORTRAN Command Syntax, Use, and Examples
The FORTRAN command initiates compilation of a source program.

The command has the following form:

FORTRAN [/qualifiers] file-spec-list[/qualifiers]

/qualifiers
Indicates either special actions to be performed by the compiler or special
properties of input or output files.

file-spec-list
Specifies the source files containing the program units to be compiled. You can
specify more than one source file:

• If source file specifications are separated by commas (,), the programs are
compiled separately.

• If source file specifications are separated by plus signs (+), the files are
concatenated and compiled as one program.

When compiling source files with the default optimization (or additional
optimizations), concatenating source files allows full interprocedure
optimizations to occur.

2–2 Compiling HP Fortran Programs

In interactive mode, you can also enter the file specification on a separate
line by entering the command FORTRAN, followed by a carriage return. The
system responds with the following prompt:

_File:

Enter the file specification immediately after the prompt and then press
Return.

2.2.1 Specifying Input Files and Source Form
If you omit the file type on the FORTRAN command line, the compiler searches
first for a file with a file type of F90. If a file with a file type of F90 is not
found, it then searches for file with a file type of FOR and then F.

For example, the following FORTRAN command line shows how file type
searching occurs:

$ FORTRAN PROJ_ABC

This FORTRAN command searches for the following files:

1. It searches first for PROJ_ABC.F90.

2. If PROJ_ABC.F90 does not exist, it then searches for PROJ_ABC.FOR.

3. If PROJ_ABC.F90 and PROJ_ABC.FOR do not exist, it then searches for
PROJ_ABC.F.

Indicate the Fortran 90 source form used in your source files by using certain
file types or a command-line qualifier:

• For files using fixed form, use a file type of FOR or F.

• For files using free form, use a file type of F90.

• You can also specify the /SOURCE_FORM qualifier on the FORTRAN
command line to specify the source form (FIXED or FREE) for:

All files on that command line (when used as a command qualifier)

Individual source files in a comma-separated list of files (when used as
a positional qualifier)

For example, if you specify a file as PROJ_BL1.F90 on an FORTRAN command
line (and omit the /SOURCE_FORM=FIXED qualifier), the FORTRAN
command assumes the file PROJ_BL1.F90 contains free-form source code.

Compiling HP Fortran Programs 2–3

2.2.2 Specifying Multiple Input Files
When you specify a list of input files on the FORTRAN command line, you
can use abbreviated file specifications for those files that share common device
names, directory names, or file names.

The system applies temporary file specification defaults to those files
with incomplete specifications. The defaults applied to an incomplete file
specification are based on the previous device name, directory name, or file
name encountered in the list.

The following FORTRAN command line shows how temporary defaults are
applied to a list of file specifications:

$ FORTRAN USR1:[ADAMS]T1,T2,[JACKSON]SUMMARY,USR3:[FINAL]

The preceding FORTRAN command compiles the following files:

USR1:[ADAMS]T1.F90 (or .FOR or .F)
USR1:[ADAMS]T2.F90 (or .FOR or .F)
USR1:[JACKSON]SUMMARY.F90 (or .FOR or .F)
USR3:[FINAL]SUMMARY.F90 (or .FOR or .F)

To override a temporary default with your current default directory, specify the
directory as a null value. For example:

$ FORTRAN [OMEGA]T1, []T2

The empty brackets indicate that the compiler is to use your current default
directory to locate T2.

FORTRAN qualifiers typically apply to the entire FORTRAN command
line. One exception is the /LIBRARY qualifier, which specifies that the file
specification it follows is a text library (positional qualifier). The /LIBRARY
qualifier is discussed in Section 2.3.27.

You can specify multiple files on the FORTRAN command line. You can
separate the multiple source file specifications with:

• Plus signs (+)

All files separated by plus signs are concatenated and compiled as one
program into a single object file.

A positional qualifier after one of the file specifications applies to all files
concatenated by plus signs (+). One exception is the /LIBRARY qualifier
(used only as a positional qualifier).

Concatenating source files allows full interprocedure optimizations to
occur across the multiple source files (unless you specify certain command
qualifiers, such as /NOOPTIMIZE and /SEPARATE_COMPILATION).

2–4 Compiling HP Fortran Programs

• Commas (,)

When separated by commas, the files are compiled separately into multiple
object files.

A positional qualifier applies only to the file specification it immediately
follows.

Separate compilation by using comma-separated files (or by using multiple
FORTRAN commands) prevents certain interprocedure optimizations.

If you use multiple FORTRAN commands to compile multiple HP Fortran
source files that are linked together into the same program, you must be
consistent when specifying any qualifiers that affect run-time results. For
example, suppose you do the following:

1. Specify /FLOAT=IEEE_FLOAT on one command line

2. Specify /FLOAT=G_FLOAT on another command line

3. Link the resulting object files together into a program

When you run the program, the values returned for floating-point numbers
in a COMMON block will be unpredictable. For qualifiers related only to
compile-time behavior (such as /LIST and /SHOW), this restriction does not
apply.

2.2.3 Creating and Using Module Files
HP Fortran creates module files for each module declaration and
automatically searches for a module file referenced by a USE statement
(introduced in Fortran 90). A module file contains the equivalent of the module
source declaration in a post-compiled, binary form.

2.2.3.1 Creating Module Files
When you compile an HP Fortran source file that contains module declarations,
HP Fortran creates a separate file for each module declaration in the current
process default device and directory. The name declared in a MODULE
statement becomes the base prefix of the file name and is followed by the
F90$MOD file type.

For example, consider a file that contains the following statement:

MODULE MOD1

The compiler creates a post-compiled module file MOD1.F90$MOD in the
current directory. An object file is also created for the module.

Compiling HP Fortran Programs 2–5

Compiling a source file that contains multiple module declarations will create
multiple module files, but only a single object file. If you need a separate object
file for each module, place only one module declaration in each file.

If a source file does not contain the main program and you need to create
module files only, specify the /NOOBJECT qualifier to prevent object file
creation.

To specify a directory other than the current directory for the module file(s) to
be placed, use the /MODULE qualifier (see Section 2.3.31).

Note that an object file is not needed if there are only INTERFACE or constant
(PARAMETER) declarations; however, it is needed for all other types of
declarations including variables.

2.2.3.2 Using Module Files
Once you create a module file, you can copy module files into an appropriate
shared or private directory. You reference a module file by specifying the
module name in a USE statement (use association). For example:

USE MOD1

By default, the compiler searches for a module file named MOD1.F90$MOD in
the current directory.

When selecting a directory location for a set of module files, consider how your
application gets built, including:

• Whether the module files need to be available privately, such as for testing
purposes (not shared).

• Whether you want the module files to be available to other users on your
project or available system-wide (shared).

• Whether test builds and final production builds will use the same or a
different directory for module files.

HP Fortran allows you to use multiple methods to specify which directories are
searched for module files:

• You can specify one or more additional directories for the compiler to search
by using the /INCLUDE=directory qualifier.

• You can specify one or more additional directories for the compiler to
search by defining the logical name FORT$INCLUDE. To search multiple
additional directories with FORT$INCLUDE, define it as a search list.
Like other logical names, FORT$INCLUDE can be for a system-wide
location (such as a group or system logical name) or a private or project
location (such as a process, job, or group logical name).

2–6 Compiling HP Fortran Programs

• You can prevent the compiler from searching in the directory specified by
the FORT$INCLUDE logical name by using the /NOINCLUDE qualifier.

To locate modules referenced by USE statements, the compiler searches
directories in the following order:

1. The current process device and directory

2. Each directory specified by the /INCLUDE qualifier

3. The directory specified by the logical name FORT$INCLUDE (unless
/NOINCLUDE was specified).

You cannot specify a module (.F90$MOD) file directly on the FORTRAN
command line.

Suppose you need to compile a main program PROJ_M.F90 that contains
one or more USE statements. To request that the compiler look for module
files in the additional directories DISKA:[PROJ_MODULE.F90] and then
DISKB:[COMMON.FORT] (after looking in the current directory), enter the
following command line:

$ FORTRAN PROJ_M.F90 /INCLUDE=(DISKA:[PROJ_MODULE.F90],DISKB:[COMMON.FORT])

If you specify multiple directories with the /INCLUDE qualifier, the order of
the directories in the /INCLUDE qualifier determines the directory search
order.

Module nesting depth is unlimited. If you will use many modules in a program,
check the process and system file limits (see Section 1.2).

For More Information:

• On the FORTRAN /INCLUDE qualifier, see Section 2.3.25.

• On an example program that uses a module, see Section 1.4.

2.2.4 Using Include Files and Include Text Library Modules
You can create include files with a text editor. The include files can be placed
in a text library. If needed, you can copy include files or include text library to
a shared or private directory.

When selecting a directory location for a set of include files or text libraries,
consider how your application is to be built, including:

• Whether the include files or text library needs to be available privately,
such as for testing purposes (not shared).

• Whether you want the files to be available to other users on your project or
available system-wide (shared).

Compiling HP Fortran Programs 2–7

• Whether test builds and final production builds will use the same or a
different directory.

• Instead of placing include files in a directory, consider placing them in a
text library. The text library can contain multiple include files in a single
library file and is maintained by using the OpenVMS LIBRARY command.

2.2.4.1 Using Include Files and INCLUDE Statement Forms
Include files have a file type like other HP Fortran source files (F90, FOR, or
F). Use an INCLUDE statement to request that the specified file containing
source lines be included in place of the INCLUDE statement.

To include a file, the INCLUDE statement has the following form:

INCLUDE ’name’
INCLUDE ’name.typ’

You can specify /LIST or /NOLIST after the file name. You can also specify
the /SHOW=INCLUDE or /SHOW=NOINCLUDE qualifier to control whether
source lines from included files or library modules appear in the listing file (see
Section 2.3.43).

You can also include a file with a directory (and optionally the device name)
specified with the following form:

INCLUDE ’[directory]name’
INCLUDE ’[directory]name.typ’

If a directory is specified, only the specified directory is searched. The
remainder of this section addresses an INCLUDE statement where the
directory has not been specified.

HP Fortran allows you to use multiple methods to specify which directories are
searched for include files:

• You can request that the HP Fortran compiler search either in the
current process default directory or in the directory where the source
file resides that references the include file. To do this, specify the
/ASSUME=NOSOURCE_INCLUDE (process default directory) or
/ASSUME=SOURCE_INCLUDE qualifier (source file directory). The
default is /ASSUME=NOSOURCE_INCLUDE.

• You can specify one or more additional directories for the compiler to search
by using the /INCLUDE=directory qualifier.

2–8 Compiling HP Fortran Programs

• You can specify one or more additional directories for the compiler to
search by defining the logical name FORT$INCLUDE. To search multiple
additional directories with FORT$INCLUDE, define it as a search list.
Like other logical names, FORT$INCLUDE can be for:

A system-wide location (such as a group or system logical name)

A private or project location (such as a process, job, or group logical
name)

• You can prevent the compiler from searching in the directory specified by
the FORT$INCLUDE logical name by using the /NOINCLUDE qualifier.

To locate include files specified in INCLUDE statements (without a device or
directory name), the HP Fortran compiler searches directories in the following
order:

1. The current process default directory or the directory that the source file
resides in (depending on whether /ASSUME=SOURCE_INCLUDE was
specified)

2. Each directory specified by the /INCLUDE qualifier

3. The directory specified by the logical name FORT$INCLUDE (unless
/NOINCLUDE was specified).

2.2.4.2 INCLUDE Statement Forms for Including Text Library Modules
HP Fortran provides certain include library modules in the text library
FORSYSDEF.TLB. Users can create a text library and populate it with include
library modules (see Section 2.4). Within a library, text library modules are
identified by a library module name (no file type).

To include a text library module, the INCLUDE statement specifies the name
of the library module within parentheses, as follows:

INCLUDE ’(name)’

You can specify the library name before the library module name in the
INCLUDE statement. For example:

INCLUDE ’MYLIB(PROJINC)’

Use one of the following methods to access a source library module in a text
library:

• Specify only the name of the library module in an INCLUDE statement in
your HP Fortran source program. You use FORTRAN command qualifiers
and logical names to control the directory search for the library.

Compiling HP Fortran Programs 2–9

• Specify the name of both the library and library module in an INCLUDE
statement in your HP Fortran source program.

• When the INCLUDE statement does not specify the library name, you can
define a default library by using the logical name FORT$LIBRARY.

• When the INCLUDE statement does not specify the library name, you
can specify the name of the library using the /LIBRARY qualifier on the
FORTRAN command line that you use to compile the source program.

2.2.4.3 Using Include Text Library Modules for a Specified Library Name
When the library is named in the INCLUDE statement, the FORTRAN
command searches various directories for the named library, similar to the
search for an include file.

HP Fortran allows you to use multiple methods to specify which directories are
searched for named text libraries:

• You can request that the HP Fortran compiler search either in the
current process default directory or in the directory where the source
file resides that references the text library. To do this, specify the
/ASSUME=NOSOURCE_INCLUDE (process default directory) or
/ASSUME=SOURCE_INCLUDE qualifier (source file directory).

• You can specify one or more additional directories for the compiler to search
by using the /INCLUDE=directory qualifier.

• You can specify one or more additional directories for the compile to
search by defining the logical name FORT$INCLUDE. To search multiple
additional directories with FORT$INCLUDE, define it as a search list.
Like other logical names, FORT$INCLUDE can be for:

A system-wide location (such as a group or system logical name)

A private or project location (such as a process, job, or group logical
name)

• You can prevent the compiler from searching in the directory specified by
the FORT$INCLUDE logical name by using the /NOINCLUDE qualifier.

The HP Fortran compiler searches directories in the following order:

1. The current process default directory or the directory that the source file
resides in (depending on whether /ASSUME=SOURCE_INCLUDE was
specified)

2. Each directory specified by the /INCLUDE qualifier

2–10 Compiling HP Fortran Programs

3. The directory specified by the logical name FORT$INCLUDE (unless
/NOINCLUDE was specified).

You can specify /LIST or /NOLIST after the library module name. For example:

INCLUDE ’PROJLIB(MYINC)/LIST’

You can also specify the /SHOW=INCLUDE or /SHOW=NOINCLUDE qualifier
to control whether source lines from included files or library modules appear in
the listing file (see Section 2.3.43).

For More Information:

• On the /ASSUME=[NO]SOURCE_INCLUDE qualifier, see Section 2.3.7.

• On the /INCLUDE qualifier, see Section 2.3.25.

• On creating and using text libraries, see Section 2.4.

2.2.4.4 Using Include Text Library Modules for an Unspecified Library Name
When the INCLUDE statement does not specify the library, you can specify
additional text libraries to be searched on the FORTRAN command line or by
defining a logical name. The order in which the compiler searches for a library
file follows:

• Specify the library name on the FORTRAN command line, appended with
the /LIBRARY positional qualifier. The /LIBRARY qualifier identifies a file
specification as a text library.

Concatenate the name of the text library to the name of the source file and
append the /LIBRARY qualifier to the text library name (use the plus sign
(+)) separator. For example:

$ FORTRAN APPLIC+DATAB/LIBRARY

Whenever an INCLUDE statement occurs in APPLIC.FOR, the compiler
searches the library DATAB.TLB for the source text module identified in
the INCLUDE statement and incorporates it into the compilation.

When more than one library is specified on a FORTRAN command line,
the HP Fortran compiler searches the libraries each time it processes an
INCLUDE statement that specifies a text module name. The compiler
searches the libraries in the order specified on the command line. For
example:

$ FORTRAN APPLIC+DATAB/LIBRARY+NAMES/LIBRARY+GLOBALSYMS/LIBRARY

Compiling HP Fortran Programs 2–11

When the HP Fortran compiler processes an INCLUDE statement in
the source file APPLIC.FOR, it searches the libraries DATAB.TLB,
NAMES.TLB, and GLOBALSYMS.TLB, in that order, for source text
modules identified in the INCLUDE statement.

When the FORTRAN command requests multiple compilations, a library
must be specified for each compilation in which it is needed. For example:

$ FORTRAN METRIC+DATAB/LIBRARY, APPLIC+DATAB/LIBRARY

In this example, HP Fortran compiles METRIC.FOR and APPLIC.FOR
separately and uses the library DATAB.TLB for each compilation.

If the text library is not in the current process default directory, specify the
device and/or directory. For example:

$ FORTRAN PROJ_MAIN+$DISK2:[PROJ.LIBS]COMMON_LIB/LIBRARY

Instead of specifying the device and directory name, you can use
the /ASSUME=SOURCE_INCLUDE and /INCLUDE qualifiers and
FORT$INCLUDE logical name to control the directory search.

• After the compiler has searched all libraries specified on the command
line, it searches the default user library (if any) specified by the logical
name FORT$LIBRARY. When you want to define one of your private
text libraries as a default library for the HP Fortran compiler to search,
consider using the FORT$LIBRARY logical name.

For example, define a default library using the logical name
FORT$LIBRARY before compilation, as in the following example of the
DCL command DEFINE:

$ DEFINE FORT$LIBRARY $DISK2:[LIB]DATAB
$ FORTRAN PROJ_MAIN

While this assignment is in effect, the compiler automatically searches
the library $DISK2:[LIB]DATAB.TLB for any include library modules that
it cannot locate in libraries explicitly specified, if any, on the FORTRAN
command line.

You can define the logical name FORT$LIBRARY in any logical name table
defined in the logical name table search list LMN$FILE_DEV. For example:

$ DEFINE /GROUP FORT$LIBRARY $DISK2:[PROJ.LIBS]APPLIB.TLB
$ FORTRAN PROJ_MAIN

2–12 Compiling HP Fortran Programs

If the name is defined in more than one table, the HP Fortran compiler
uses the equivalence for the first match it finds in the normal order of
search—first the process table, then intermediate tables (job, group, and
so on), and finally the system table. If the same logical name is defined in
both the process and system logical name tables, the process logical name
table assignment overrides the system logical name table assignment.

If FORT$LIBRARY is defined as a search list, the compiler opens the
first text library specified in the list. If the include library module is not
found in that text library, the search is terminated and an error message is
issued.

The logical name FORT$LIBRARY is recognized by both Compaq Fortran
77 and HP Fortran.

• When the HP Fortran compiler cannot find the include library modules in
libraries specified on the FORTRAN command line or in the default library
defined by FORT$LIBRARY, it then searches the standard text library
supplied by HP Fortran. This library resides in SYS$LIBRARY with a
file name of FORSYSDEF.TLB and simplifies calling OpenVMS system
services.

SYS$LIBRARY identifies the device and directory containing system li-
braries and is normally defined by the system manager. FORSYSDEF.TLB
is a library of include library modules supplied by HP Fortran. It contains
local symbol definitions and structures required for use with system
services and return status values from system services.

For more information on the contents of FORSYSDEF, see Appendix E.

You can specify /LIST or /NOLIST after the library module name. For example:

INCLUDE ’(MYINC)/NOLIST’

You can also specify the /SHOW=INCLUDE or /SHOW=NOINCLUDE qualifier
to control whether source lines from included files or library modules appear in
the listing file (see Section 2.3.43).

For More Information:

• On the /ASSUME=[NO]SOURCE_INCLUDE qualifier, see Section 2.3.7.

• On the /INCLUDE qualifier, see Section 2.3.25.

• On creating and using text libraries, see Section 2.4.

Compiling HP Fortran Programs 2–13

2.2.5 Specifying Output Files
The output produced by the compiler includes the object and listing files. You
can control the production of these files by using the appropriate qualifiers on
the FORTRAN command line.

The production of listing files depends on whether you are operating in
interactive mode or batch mode:

• In interactive mode, the compiler does not generate listing files by default;
you must use the /LIST qualifier to generate the listing file.

• In batch mode, the compiler generates a listing file by default. To suppress
it, you must use the /NOLIST qualifier.

For command procedures that compile the application in either batch or
interactive mode, consider explicitly specifying /NOLIST (or /LIST).

The compiler generates an object file by default. During the early stages of
program development, you may find it helpful to use the /SYNTAX_ONLY
or /NOOBJECT qualifiers to prevent the creation of object files until your
source program compiles without errors. If you omit /NOOBJECT, the compiler
generates object files as follows:

• If you specify one source file, one object file is generated.

• If you specify multiple source files separated by commas, each source file is
compiled separately, and an object file is generated for each source file.

• If you specify multiple source files separated by plus signs, the source files
are concatenated and compiled, and one object file is generated.

You can use both commas and plus signs in the same command line to produce
different combinations of concatenated and separate object files (see the
examples of the FORTRAN command at the end of this section).

To name an object file, use the /OBJECT qualifier in the form /OBJECT=file-
spec. Otherwise, the object file has the file name of its corresponding source file
and a file type of OBJ. By default, the object file produced from concatenated
source files has the name of the first source file. All other file specification
fields (node, device, directory, and version) assume the default values.

When creating object files that will be placed in an object library, consider
using the /SEPARATE_COMPILATION qualifier, which places individual
compilation units in a source file as separate components in the object file.
This minimizes the size of the routines included by the linker as it creates the
executable image. However, to allow more interprocedure optimizations, use
the default /NOSEPARATE_COMPILATION.

2–14 Compiling HP Fortran Programs

For More Information:

• On creating and naming object files, see Section 2.2.6.1 and Section 2.3.33.

• On the /SEPARATE_COMPILATION qualifier, see Section 2.3.41.

• On using object libraries, see Chapter 3.

2.2.6 Examples of the FORTRAN Command
The following examples show the use of the FORTRAN command.

2.2.6.1 Naming the Object File
The following FORTRAN command compiles the HP Fortran free-form source
file (CIRCLE.F90) into an object file:

$ FORTRAN /OBJECT=[BUILD]SQUARE /NOLIST Return

_File: CIRCLE

The source file CIRCLE.F90 is compiled, producing an object file named
SQUARE.OBJ in the [BUILD] directory, but no listing file.

2.2.6.2 Compiler Source Checking Only (No Object File)
The following FORTRAN command examines HP Fortran fixed-form source file
(ABC.FOR) without creating an object file:

$ FORTRAN /NOOBJECT ABC.FOR

The source file ABC.FOR is compiled, syntax checking occurs, but no object
file is produced. The /NOOBJECT qualifier performs full compilation checking
without creating an object file.

2.2.6.3 Requesting a Listing File and Contents
The following FORTRAN command compiles HP Fortran free-form source file
(XYZ.F90) and requests a listing file:

$ FORTRAN /LIST /SHOW=INCLUDE /MACHINE_CODE XYZ.F90

The source file XYZ.F90 is compiled, and the listing file XYZ.LIS and object file
XYZ.OBJ are created. The listing file contains the optional included source files
(/SHOW=INCLUDE) and machine code representation (/MACHINE_CODE).

The default is /NOLIST for interactive use and /LIST for batch use, so consider
explicitly specifying either /LIST or /NOLIST.

Compiling HP Fortran Programs 2–15

2.2.6.4 Compiling Multiple Files
The following FORTRAN command compiles the HP Fortran free-form source
files (AAA.F90, BBB.F90, and CCC.F90) into separate object files:

$ FORTRAN/LIST AAA.F90, BBB.F90, CCC.F90

Source files AAA.F90, BBB.F90, and CCC.F90 are compiled as separate files,
producing:

• Object files named AAA.OBJ, BBB.OBJ, and CCC.OBJ

• Listing files named AAA.LIS, BBB.LIS, and CCC.LIS

The default level of optimization is used (/OPTIMIZE=LEVEL=4), but
interprocedure optimizations are less effective because the source files are
compiled separately.

The following FORTRAN command compiles the HP Fortran fixed-form
source files XXX.FOR, YYY.FOR, and ZZZ.FOR into a single object file named
XXX.OBJ:

$ FORTRAN XXX.FOR+YYY.FOR+ZZZ.FOR

Source files XXX.FOR, YYY.FOR, and ZZZ.FOR are concatenated and compiled
as one file, producing an object file named XXX.OBJ. The default level of
optimization is used, allowing interprocedure optimizations since the files are
compiled together (see Section 5.1.2). In interactive mode, no listing file is
created; in batch mode, a listing file named XXX.LIS would be created.

The following FORTRAN command compiles the HP Fortran free-form source
files AAA.F90, BBB.F90, and CCC.F90 into two object files:

$ FORTRAN AAA+BBB,CCC/LIST

Two object files are produced: AAA.OBJ (comprising AAA.F90 and BBB.F90)
and CCC.OBJ (comprising CCC.F90). One listing file is produced: CCC.LIS
(comprising CCC.F90), since the positional /LIST qualifier follows a specific
file name (and not the FORTRAN command). Because the default level of
optimization is used, interprocedure optimizations for both AAA.F90 and
BBB.F90 occur. Only interprocedure optimizations within CCC.F90 occur.

The following FORTRAN command compiles the HP Fortran free-form source
files ABC.F90, CIRC.F90, and XYZ.F90, but no object file is produced:

$ FORTRAN ABC+CIRC/NOOBJECT+XYZ

The /NOOBJECT qualifier applies to all files in the concatenated file list and
suppresses object file creation. Source files ABC.F90, CIRC.F90, and XYZ.F90
are concatenated and compiled, but no object file is produced.

2–16 Compiling HP Fortran Programs

2.2.6.5 Requesting Additional Compile-Time and Run-Time Checking
The following FORTRAN command compiles the HP Fortran free-form source
file TEST.F90, requesting all possible compile-time diagnostic messages
(/WARN=ALL) and run-time checking (/CHECK=ALL):

$ FORTRAN /WARNINGS=ALL /CHECK=ALL TEST.F90

This command creates the object file TEST.OBJ and can result in more
informational or warning compilation messages than the default level of
warning messages. Additional run-time messages can also occur.

2.2.6.6 Checking Fortran 90 or 95 Standard Conformance
The following FORTRAN command compiles the HP Fortran free-form source
file PROJ_STAND.F90, requesting compile-time diagnostic messages when
extensions to the Fortran 90 language are detected without creating an object
file:

$ FORTRAN /STANDARD=F90 /NOOBJECT PROJ_STAND.F90

This command does not create an object file but issues additional compilation
messages about the use of any nonstandard extensions to the Fortran 90
standard it detects.

To check for Fortran 95 standard conformance, specify /STANDARD=F95
instead of /STANDARD=F90.

2.2.6.7 Requesting Additional Optimizations
The following FORTRAN command compiles the HP Fortran free-form source
files (M_APP.F90 and SUB.F90) as a single concatenated file into one object
file:

$ FORTRAN /OPTIMIZE=(LEVEL=5,UNROLL=3) M_APP.F90+SUB.F90/NOLIST

The source files are compiled together, producing an object file named M_
APP.OBJ. The software pipelining optimization (/OPTIMIZE=LEVEL=4) is
requested. Loops within the program are unrolled three times (UNROLL=3).
Loop unrolling occurs at optimization level three (LEVEL=3) or above.

For More Information:

• On linking object modules into an executable image (program) and running
the program, see Chapter 3.

• On requesting debugger symbol table information, see Section 4.2.1.

• On requesting additional directories to be searched for module files or
included source files, see Section 2.3.25 and Section 2.4.

• On the FORTRAN command qualifiers, see Section 2.3.

Compiling HP Fortran Programs 2–17

2.3 FORTRAN Command Qualifiers
FORTRAN command qualifiers influence the way in which the compiler
processes a file. In some cases, the simple FORTRAN command is sufficient.
Use optional qualifiers when needed.

You can override some qualifiers specified on the command line by using the
OPTIONS statement. The qualifiers specified by the OPTIONS statement
affect only the program unit where the statement occurs. For more information
about the OPTIONS statement, see the HP Fortran for OpenVMS Language
Reference Manual.

2.3.1 FORTRAN Command Qualifier Syntax
Normal DCL parsing rules apply to the FORTRAN command, allowing you
to abbreviate qualifier names and keywords as long as they are unique.
For example, the following use of the FORTRAN command to specify the
/ALIGNMENT qualifier as NATURAL and the /LIST qualifier is valid:

$ FORTRAN /ALIG=NAT /LIS EXTRAPOLATE.FOR

When creating command procedures, avoid using abbreviations for qualifiers
and their keywords. HP Fortran might add new qualifiers and keywords
for a subsequent release that makes an abbreviated qualifier and keyword
nonunique in a subsequent release.

If you specify multiple keywords for a qualifier, enclose the keywords in
parentheses:

$ FORTRAN /WARN=(ALIGN, DECLARATION) EXTRAPOLATE.FOR

To concatenate source files, separate file names with a plus sign (+) instead of
a comma (,). (See Section 2.2.2.)

2.3.2 Summary of FORTRAN Command Qualifiers
Table 2–1 lists the FORTRAN Command qualifiers, including their default
values.

Sections 2.3.3 through 2.3.51 describe each qualifier in detail.

2–18 Compiling HP Fortran Programs

Table 2–1 FORTRAN Command Qualifiers

Qualifier Default

/ALIGNMENT or /NOALIGNMENT or

/ALIGNMENT=

����
���

rule
class = rule
(class = rule [, ...])
[NO]SEQUENCE
ALL (or NATURAL)
NONE (or PACKED)

����
���

where:

class =

�
COMMONS
RECORDS
STRUCTURES

�
and

rule =

��
�

NATURAL
PACKED
STANDARD2

[NO]MULTILANGUAGE2

��
�

/ALIGNMENT=(COMMONS=(PACKED1,
NOMULTILANGUAGE), NOSEQUENCE1,

RECORDS=NATURAL)

/ANALYSIS_DATA[=filename] or /NOANALYSIS_DATA /NOANALYSIS_DATA

/ANNOTATIONS or /NOANNOTATIONS or

/ANNOTATIONS=

	

�

����������
���������

CODE
DETAIL
INLINING
LOOP_TRANSFORMS
LOOP_UNROLLING
PREFETCHING
SHRINKWRAPPING
SOFTWARE_PIPELINING
TAIL_CALLS
TAIL_RECURSION

����������
���������

[, ...]

�
ALL
NONE

�
����������������

/NOANNOTATIONS

1The default changes if you specify /FAST.
2STANDARD and MULTILANGUAGE are valid for class=COMMON (not class=RECORDS).

(continued on next page)

Compiling HP Fortran Programs 2–19

Table 2–1 (Cont.) FORTRAN Command Qualifiers

Qualifier Default

/ARCHITECTURE=

�������
������

GENERIC
HOST
EV4
EV5
EV56
PCA56
EV6
EV67

�������
������

/ARCHITECTURE=GENERIC1

/NOASSUME or

/ASSUME=

	

�

����������
���������

[NO]ACCURACY_SENSITIVE
[NO]ALTPARAM
[NO]BUFFERED_IO
[NO]BYTERECL
[NO]DUMMY_ALIASES
[NO]FP_CONSTANT
[NO]INT_CONSTANT
[NO]MINUS0
[NO]PROTECT_CONSTANTS
[NO]SOURCE_INCLUDE

����������
���������

[, ...]

�
ALL
NONE

�
����������������

/ASSUME=(ACCURACY_SENSITIVE1,
ALTPARAM, NOBUFFERED_
IO, NOBYTERECL, NODUMMY_
ALIASES, NOFP_CONSTANT,
NOINT_CONSTANT, NOMINUS0,
PROTECT_CONSTANTS, NOSOURCE_
INCLUDE)

/AUTOMATIC or /NOAUTOMATIC /NOAUTOMATIC

/BY_REF_CALL=(routine-list) No default

/CCDEFAULT or

/CCDEFAULT=

	

�
� FORTRAN

LIST
NONE
DEFAULT

� �
��

/CCDEFAULT=DEFAULT

1The default changes if you specify /FAST.

(continued on next page)

2–20 Compiling HP Fortran Programs

Table 2–1 (Cont.) FORTRAN Command Qualifiers

Qualifier Default

/NOCHECK or

/CHECK=

	

�

����������
���������

[NO]ARG_INFO (I64 only)
[NO]ARG_TEMP_CREATED
[NO]BOUNDS
[NO]FORMAT
[NO]FP_EXCEPTIONS
[NO]FP_MODE (I64 only)
[NO]OUTPUT_CONVERSION
[NO]OVERFLOW
[NO]POWER
[NO]UNDERFLOW

����������
���������

[, ...]

�
ALL
NONE

�
����������������

/CHECK=(NOARG_TEMP_CREATED,
NOBOUNDS, FORMAT3, NOFP_
EXCEPTIONS, OUTPUT_CONVERSION3,
NOOVERFLOW, POWER, NOUNDER-
FLOW)

/CONVERT=

���������
��������

BIG_ENDIAN
CRAY
FDX
FGX
IBM
LITTLE_ENDIAN
NATIVE
VAXD
VAXG

���������
��������

/CONVERT=NATIVE

/D_LINES or /NOD_LINES /NOD_LINES

/DEBUG or /NODEBUG or

/DEBUG=

	

�
�

[NO]SYMBOLS
[NO]TRACEBACK

[, ...]

�
ALL
NONE

�
����

/DEBUG=(NOSYMBOLS,
TRACEBACK)

/DIAGNOSTICS[=filename] or /NODIAGNOSTICS /NODIAGNOSTICS

/DML Omitted

/DOUBLE_SIZE=
�

64
128

 /DOUBLE_SIZE=64

/ERROR_LIMIT=n or /NOERROR_LIMIT /ERROR_LIMIT=30

3The default changes if you specify /NOVMS.

(continued on next page)

Compiling HP Fortran Programs 2–21

Table 2–1 (Cont.) FORTRAN Command Qualifiers

Qualifier Default

/EXTEND_SOURCE or /NOEXTEND_SOURCE /NOEXTEND_SOURCE

/F77 or /NOF77 /F77

/FAST No default

/FLOAT=

�
D_FLOAT
G_FLOAT
IEEE_FLOAT

�
/FLOAT=IEEE (I64)
/FLOAT=G_FLOAT (Alpha)4

/GRANULARITY=

� BYTE
LONGWORD
QUADWORD

�
/GRANULARITY=QUADWORD

/IEEE_MODE=

�
FAST
UNDERFLOW_TO_ZERO
DENORM_RESULTS

�
/IEEE_MODE=DENORM_RESULTS
(I64)
/IEEE_MODE=FAST (Alpha)

/INCLUDE=directory [, ...] or /NOINCLUDE /NOINCLUDE

/INTEGER_SIZE=

�
16
32
64

�
/INTEGER_SIZE=324

/LIBRARY No default

/LIST[=file-spec] or /NOLIST /NOLIST (interactive)
/LIST (batch)

/MACHINE_CODE or /NOMACHINE_CODE /NOMACHINE_CODE

/MATH_LIBRARY=
�

ACCURATE
FAST

(Alpha only) /MATH_LIBRARY=ACCURATE1

/MODULE=directory or /NOMODULE /NOMODULE

/NAMES=

�
UPPERCASE
LOWERCASE
AS_IS

�
/NAMES=UPPERCASE

/OBJECT[=file-spec] or /NOOBJECT /OBJECT

/OLD_F77 (Alpha only) Omitted

1The default changes if you specify /FAST.
4Use the /FLOAT qualifier instead of the /[NO]G_FLOAT qualifier; use the /INTEGER_SIZE qualifier instead
of the /[NO]I4 qualifier.

(continued on next page)

2–22 Compiling HP Fortran Programs

Table 2–1 (Cont.) FORTRAN Command Qualifiers

Qualifier Default

/OPTIMIZE or /NOOPTIMIZE or

/OPTIMIZE=

������������������������
�����������������������

LEVEL=n

INLINE=

���
��

NONE
MANUAL
SIZE
SPEED
ALL

���
��

NOINLINE
LOOPS
PIPELINE

TUNE=

�������
������

GENERIC
HOST
EV4
EV5
EV56
PCA56
EV6
EV67

�������
������

UNROLL=n

������������������������
�����������������������

[, ...]

/OPTIMIZE (same as /OPTIMIZE=
(LEVEL=4, INLINE=SPEED,
NOLOOPS, NOPIPELINE,
TUNE=GENERIC1, UNROLL=0))

/PAD_SOURCE or /NOPAD_SOURCE /NOPAD_SOURCE

/REAL_SIZE=

�
32
64
128

�
/REAL_SIZE=32

/RECURSIVE or /NORECURSIVE /NORECURSIVE

/NOREENTRANCY or /REENTRANCY=

�
ASYNC
NONE
THREADED

�
/REENTRANCY=NONE

/ROUNDING_MODE=

��
�

NEAREST
CHOPPED
DYNAMIC
MINUS_INFINITY

��
� /ROUNDING_MODE=NEAREST

/SEPARATE_COMPILATION or /NOSEPARATE_COMPILATION /NOSEPARATE_COMPILATION

/SEVERITY=WARNINGS=

�
WARNING
ERROR
STDERROR

�
/SEVERITY=WARNINGS=(WARNING)

1The default changes if you specify /FAST.

(continued on next page)

Compiling HP Fortran Programs 2–23

Table 2–1 (Cont.) FORTRAN Command Qualifiers

Qualifier Default

/SHOW or /NOSHOW or

/SHOW=

	

�

��
�

[NO]DICTIONARY
[NO]INCLUDE
[NO]MAP
[NO]PREPROCESSOR

��
� [, ...]

�
ALL
NONE

�
�������

/SHOW=(NODICTIONARY, NOINCLUDE,
MAP, NOPREPROCESSOR)

/SOURCE_FORM=
�

FREE
FIXED

 Depends on file type (F90 for free form
and FOR or F for fixed form)

/STANDARD=
�

F90
F95

or /NOSTANDARD

/NOSTANDARD

/SYNCHRONOUS_EXCEPTIONS or
/NOSYNCHRONOUS_EXCEPTIONS (Alpha only)

/NOSYNCHRONOUS_EXCEPTIONS

/SYNTAX_ONLY or /NOSYNTAX_ONLY /NOSYNTAX_ONLY

/TIE or /NOTIE /NOTIE

/VERSION Omitted

/VMS or /NOVMS /VMS

/WARNINGS or /NOWARNINGS or

/WARNINGS=

	

�

������������
�����������

[NO]ALIGNMENT
[NO]ARGUMENT_CHECKING
[NO]DECLARATIONS
[NO]GENERAL
[NO]GRANULARITY
[NO]IGNORE_LOC
[NO]TRUNCATED_SOURCE
[NO]UNCALLED
[NO]UNINITIALIZED
[NO]UNUSED
[NO]USAGE

������������
�����������

[, ...]

�
ALL
NONE

�
�����������������

/WARNINGS=(ALIGNMENT,
NOARGUMENT_CHECKING,
NODECLARATIONS, GENERAL,
GRANULARITY, NOIGNORE_
LOC, NOTRUNCATED_SOURCE,
UNCALLED, UNINITIALIZED,
NOUNUSED, USAGE)

Table 2–2 shows the functional groupings of the FORTRAN command qualifiers
and the section in which they are described in more detail.

2–24 Compiling HP Fortran Programs

Table 2–2 FORTRAN Command Flags and Categories

Category Flag Name and Section in this Manual

Carriage control for terminal or
printer displays

/CCDEFAULT (see Section 2.3.10)

Code generation for specific
Alpha chip

/ARCHITECTURE (Alpha only) (see Section 2.3.6)

Convert Nonnative Data Files /CONVERT (see Section 2.3.12)
/ASSUME=BYTERECL (see Section 2.3.7)
Also see Chapter 9.

Data Size /DOUBLE_SIZE (see Section 2.3.17)
/INTEGER_SIZE (see Section 2.3.26)
/REAL_SIZE (see Section 2.3.37)
Also see Chapter 8.

Data Storage and Recursion /AUTOMATIC (see Section 2.3.8)
/RECURSIVE (see Section 2.3.38)

Debugging and Symbol Table /D_LINES (see Section 2.3.13)
/DEBUG (see Section 2.3.14)
Also see Chapter 4.

Floating-Point Exceptions and
Accuracy

/ASSUME=([NO]ACCURACY_SENSITIVE, [NO]FP_
CONSTANT, [NO]MINUS0,) (see Section 2.3.7)
/CHECK=([NO]FP_EXCEPTIONS, [NO]POWER, [NO]UN-
DERFLOW) (see Section 2.3.11)
/DOUBLE_SIZE (see Section 2.3.17)
/FAST (see Section 2.3.21)
/FLOAT (see Section 2.3.22)
/IEEE_MODE (see Section 2.3.24)
/MATH_LIBRARY (Alpha only) (see Section 2.3.30)
/REAL_SIZE (see Section 2.3.37)
/ROUNDING_MODE (see Section 2.3.40)
/SYNCHRONOUS_EXCEPTIONS (Alpha only) (see
Section 2.3.46)

Floating-Point Format in
Memory

/FLOAT (see Section 2.3.22)

(continued on next page)

Compiling HP Fortran Programs 2–25

Table 2–2 (Cont.) FORTRAN Command Flags and Categories

Category Flag Name and Section in this Manual

Language Compatibility /DML (see Section 2.3.16)
/F77 (see Section 2.3.20)
/ALIGNMENT=COMMONS=STANDARD (see Section 2.3.3)
/ASSUME=([NO]ALTPARAM, [NO]DUMMY_ALIASES,
[NO]INT_CONSTANT, /[NO]PROTECT_CONSTANTS) (see
Section 2.3.7)
/BY_REF_CALL (see Section 2.3.9)
/OLD_F77 (Alpha only) (see Section 2.3.34)
/PAD_SOURCE (see Section 2.3.44)
/SEVERITY (see Section 2.3.42)
/STANDARD (see Section 2.3.45)
/VMS (see Section 2.3.50)

Language-Sensitive Editor Use /DIAGNOSTICS (see Section 2.3.15)

Listing File and Contents /ANNOTATIONS (see Section 2.3.5)
/LIST (see Section 2.3.28)
/MACHINE_CODE (see Section 2.3.29)
/SHOW (see Section 2.3.43)
Also see Section 2.7.

Module File Searching and
Placement; Include File
Searching

/INCLUDE (see Section 2.3.25)
/ASSUME=[NO]SOURCE_INCLUDE (see Section 2.3.7)
/LIBRARY (see Section 2.3.27)
/MODULE (see Section 2.3.31)
Also see Section 2.2.3 (modules), Section 2.2.4 (include files),
and Section 2.4 (text libraries).

Multithreaded Applications /REENTRANCY (see Section 2.3.39)

Object File Creation, Contents,
Naming, and External Names

/OBJECT (see Section 2.3.33)
/NAMES (see Section 2.3.32)
/SEPARATE_COMPILATION (see Section 2.3.41)
/SYNTAX_ONLY (see Section 2.3.47)
/TIE (see Section 2.3.49)

Performance Optimizations and
Alignment

/ALIGNMENT (see Section 2.3.3)
/ASSUME=(NOACCURACY_SENSITIVE, NODUMMY_
ALIASES) (see Section 2.3.7)
/ARCHITECTURE (Alpha only) (see Section 2.3.6)
/FAST (see Section 2.3.21)
/MATH_LIBRARY (Alpha only) (see Section 2.3.30)
/OPTIMIZE (see Section 2.3.35)
Also see Chapter 5.

(continued on next page)

2–26 Compiling HP Fortran Programs

Table 2–2 (Cont.) FORTRAN Command Flags and Categories

Category Flag Name and Section in this Manual

Recursion and Shared Access to
Data

/GRANULARITY (see Section 2.3.23)
/RECURSIVE (see Section 2.3.38)
/REENTRANCY (see Section 2.3.39)
/WARNINGS=GRANULARITY (see Section 2.3.51)

Source Code Analyzer Use /ANALYSIS_DATA (see Section 2.3.4)

Source Form and Column Use /D_LINES (see Section 2.3.13)
/EXTEND_SOURCE (see Section 2.3.19)
/PAD_SOURCE (see Section 2.3.36)
/SOURCE_FORM (see Section 2.3.44)
/WARNINGS=TRUNCATED_SOURCE (see Section 2.3.51)

Warning Messages and Run-
Time Checking

/CHECK (see Section 2.3.11)
/ERROR_LIMIT (see Section 2.3.18)
/IEEE_MODE (see Section 2.3.24)
/SEVERITY (see Section 2.3.42)
/WARNINGS (see Section 2.3.51)
Also see the qualifiers related to ‘‘Floating-Point Exceptions
and Accuracy’’ in this table.

2.3.3 /ALIGNMENT — Data Alignment
The /ALIGNMENT qualifier controls the data alignment of numeric fields in
common blocks and structures.

If you omit the /ALIGNMENT and /FAST qualifiers:

• Individual data items (not part of a common block or other structure) are
naturally aligned.

• Fields in derived-type (user-defined) structures (where the SEQUENCE
statement is omitted) are naturally aligned.

• Fields in Compaq Fortran 77 record structures are naturally aligned.

• Data items in common blocks are not naturally aligned, unless data
declaration order has been planned and checked to ensure that all data
items are naturally aligned.

Although HP Fortran always aligns local data items on natural boundaries,
certain data declaration statements and unaligned arguments can force
unaligned data.

Use the /ALIGNMENT qualifier to control the alignment of fields associated
with common blocks, derived-type structures, and record structures.

Compiling HP Fortran Programs 2–27

The compiler issues messages when it detects unaligned data by default
(/WARNINGS=ALIGNMENT). For information about the causes of unaligned
data and detection at run time, see Section 5.3.

Note

Unaligned data significantly increases the time it takes to execute a
program, depending on the number of unaligned fields encountered.
Specifying /ALIGNMENT=ALL (same as /ALIGNMENT=NATURAL)
minimizes unaligned data.

The qualifier has the following form:

/ALIGNMENT=

�������
������

rule
class = rule
(class = rule [, ...])
[NO]SEQUENCE
ALL (or NATURAL)
NONE (or PACKED)

�������
������

where: class =

�
COMMONS
RECORDS
STRUCTURES

�
and rule =

���
��

NATURAL
PACKED
STANDARD
[NO]MULTILANGUAGE

���
��

STANDARD and MULTILANGUAGE are valid for class=COMMON (not
class=RECORDS).

The /ALIGNMENT qualifier keywords specify whether the HP Fortran
compiler should naturally align or arbitrarily pack the following:

class
Specifies the type of data blocks:

• COMMONS=rule applies to common blocks (COMMON statement); rule
can be PACKED, STANDARD, NATURAL, or MULTILANGUAGE.

• RECORDS=rule applies to derived-type and record structures; rule can be
PACKED or NATURAL. However, if a derived-type data definition specifies
the SEQUENCE statement, the FORTRAN /ALIGNMENT qualifier has
no effect on unaligned data, so data declaration order must be carefully
planned to naturally align data.

2–28 Compiling HP Fortran Programs

• STRUCTURES=rule applies to derived-type and record structures; rule can
be PACKED or NATURAL. For the HP Fortran language, STRUCTURES
and RECORDS are the same (they may have a different meaning in other
OpenVMS languages).

rule
Specifies the alignment for the specified class of data blocks:

• NATURAL requests that fields in derived-type and record structures
and data items in common blocks be naturally aligned on up to 8-byte
boundaries, including INTEGER (KIND=8) and REAL (KIND=8) data.

Specifying /ALIGNMENT=NATURAL is equivalent to any of the following:

/ALIGNMENT
/ALIGNMENT=ALL

/ALIGNMENT=(COMMONS=(NATURAL,NOMULTILANGUAGE),RECORDS=NATURAL,SEQUENCE)

• PACKED requests that fields in derived-type and record structures and
data items in common blocks be packed on arbitrary byte boundaries and
not naturally aligned.

Specifying /ALIGNMENT=PACKED is equivalent to any of the following:

/ALIGNMENT=NONE
/NOALIGNMENT

/ALIGNMENT=(COMMONS=(PACKED,NOMULTILANGUAGE),RECORDS=PACKED,NOSEQUENCE)

• STANDARD specifies that data items in common blocks will be naturally
aligned on up to 4-byte boundaries (consistent with the FORTRAN-77,
Fortran 90, and Fortran 95 standards).

The compiler will not naturally align INTEGER (KIND=8) and REAL
(KIND=8) data declarations. Such data declarations should be planned so
they fall on natural boundaries. Specifying /ALIGNMENT=COMMONS=-
STANDARD alone is the same as /ALIGNMENT=(COMMONS=
(STANDARD,NOMULTILANGUAGE),RECORDS=NATURAL).

You cannot specify /ALIGNMENT=RECORDS=STANDARD or
/ALIGNMENT=STANDARD.

• MULTILANGUAGE specifies that the compiler pad the size of common
block program sections to ensure compatibility when the common block
program section is shared by code created by other OpenVMS compilers.

Compiling HP Fortran Programs 2–29

When a program section generated by a Fortran common block is
overlaid with a program section consisting of a C structure, linker error
messages can result. This is because the sizes of the program sections are
inconsistent; the C structure is padded and the Fortran common block is
not.

Specifying /ALIGNMENT=COMMONS=MULTILANGUAGE ensures that
HP Fortran follows a consistent program section size allocation scheme that
works with HP C program sections that are shared across multiple images.
Program sections shared in a single image do not have a problem. The
equivalent HP C qualifier is /PSECT_MODEL=[NO]MULTILANGUAGE.

The default is /ALIGNMENT=COMMONS=NOMULTILANGUAGE, which
also is the default behavior of Compaq Fortran 77 and is sufficient for most
applications.

The [NO]MULTILANGUAGE keyword only applies to common blocks. You
can specify /ALIGNMENT=COMMONS=[NO]MULTILANGUAGE, but you
cannot specify /ALIGNMENT=[NO]MULTILANGUAGE.

[NO]SEQUENCE
Specifying /ALIGNMENT=SEQUENCE means that components of derived
types with the SEQUENCE attribute will obey whatever alignment rules are
currently in use. The default alignment rules align components on natural
boundaries.

The default value of /ALIGNMENT=NOSEQUENCE means that components
of derived types with the SEQUENCE attribute will be packed, regardless of
whatever alignment rules are currently in use.

Specifying /FAST sets /ALIGNMENT=SEQUENCE so that components of
derived types with the SEQUENCE attribute will be naturally aligned
for improved performance. Specifying /ALIGNMENT=ALL also sets
/ALIGNMENT=SEQUENCE.

ALL
Specifying /ALIGNMENT=ALL is equivalent to /ALIGNMENT,
/ALIGNMENT=NATURAL), or /ALIGNMENT=(COMMONS=
(NATURAL,NOMULTILANGUAGE),RECORDS=NATURAL,SEQUENCE).

NONE
Specifying /ALIGNMENT=NONE is equivalent to /NOALIGNMENT, /ALIGN-
MENT=PACKED, or /ALIGNMENT=(COMMONS=(PACKED,
NOMULTILANGUAGE), RECORDS=PACKED,NOSEQUENCE).

2–30 Compiling HP Fortran Programs

Defaults depend on whether you specify or omit the /ALIGNMENT and /FAST
qualifiers, as follows:

Command Line Default

Omit /ALIGNMENT and omit
/FAST

/ALIGNMENT=(COMMONS=(PACKED,NOMULTI-
LANGUAGE),NOSEQUENCE,RECORDS=-
NATURAL)

Omit /ALIGNMENT and
specify /FAST

/ALIGNMENT=(COMMONS=NATURAL,
RECORDS=NATURAL,SEQUENCE)

/ALIGNMENT=COMMONS=rule Use whatever the /ALIGNMENT qualifier spec-
ifies for COMMONS, but use the default of
RECORDS=NATURAL

/ALIGNMENT=RECORDS=rule Use whatever the /ALIGNMENT qualifier specifies
for RECORDS, but use the default for COMMONS
(depends on whether /FAST was specified or omitted)

You can override the alignment specified on the command line by using a
cDEC$ OPTIONS directive, as described in the HP Fortran for OpenVMS
Language Reference Manual.

The /ALIGNMENT and /WARNINGS=ALIGNMENT qualifiers can be used
together in the same command line.

For More Information:

• On run-time performance guidelines, see Chapter 5.

• On data alignment, see Section 5.3.

• On checking for alignment traps with a condition handler, see Section 14.12.

• On intrinsic data sizes, see Chapter 8.

• On the /FAST qualifier, see Section 2.3.21.

2.3.4 /ANALYSIS_DATA—Create Analysis Data File
The /ANALYSIS_DATA qualifier produces an analysis data file that contains
cross-reference and static-analysis information about the source code being
compiled.

Analysis data files are reserved for use by products such as, but not limited to,
the Source Code Analyzer (SCA).

The qualifier has the following form:

/ANALYSIS_DATA[=filename.type]

Compiling HP Fortran Programs 2–31

If you omit the file specification, the analysis file name has the name of the
primary source file and a file type of ANA (filename.ANA).

The compiler produces one analysis file for each source file that it compiles. If
you are compiling multiple files and you specify a particular name as the name
of the analysis file, each analysis file is given that name (with an incremental
version number).

If you do not specify the /ANALYSIS_DATA qualifier, the default is
/NOANALYSIS_DATA.

2.3.5 /ANNOTATIONS — Code Descriptions
The /ANNOTATIONS qualifier controls whether an annotated listing showing
optimizations is included with the listing file.

The qualifier has the following form:

/ANNOTATIONS=

	

�

���������������
��������������

CODE
DETAIL
INLINING
LOOP_TRANSFORMS
LOOP_UNROLLING
PREFETCHING
SHRINKWRAPPING
SOFTWARE_PIPELINING
TAIL_CALLS
TAIL_RECURSION

���������������
��������������

[, ...]

�
ALL
NONE

�
���������������������

CODE
Annotates the machine code listing with descriptions of special instructions
used for prefetching, alignment, and so on.

DETAIL
Provides additional level of annotation detail, where available.

INLINING
Indicates where code for a called procedure was expanded inline.

LOOP_TRANSFORMS
Indicates where advanced loop nest optimizations have been applied to improve
cache performance.

2–32 Compiling HP Fortran Programs

LOOP_UNROLLING
Indicates where a loop was unrolled (contents expanded multiple times).

PREFETCHING
Indicates where special instructions were used to reduce memory latency.

SHRINKWRAPPING
Indicates removal of code establishing routine context when it is not needed.

SOFTWARE_PIPELINING
Indicates where instructions have been rearranged to make optimal use of the
processor’s functional units.

TAIL_CALLS
Indicates an optimization where a call can be replaced with a jump.

TAIL_RECURSION
Indicates an optimization that eliminates unnecessary routine context for a
recursive call.

ALL
All annotations, including DETAIL, are selected. This is the default if no
keyword is specified.

NONE
No annotations are selected. This is the same as /NOANNOTATIONS.

2.3.6 /ARCHITECTURE — Architecture Code Instructions (Alpha only)
The /ARCHITECTURE qualifier specifies the type of Alpha architecture code
instructions generated for a particular program unit being compiled; it uses
the same options (keywords) as used by the /OPTIMIZE=TUNE (Alpha only)
qualifier (for instruction scheduling purposes).

OpenVMS Version 7.1 and subsequent releases provide an operating system
kernel that includes an instruction emulator. This emulator allows new
instructions, not implemented on the host processor chip, to execute and
produce correct results. Applications using emulated instructions will run
correctly but may incur significant software emulation overhead at runtime.

All Alpha processors implement a core set of instructions. Certain Alpha
processor versions include additional instruction extensions.

Compiling HP Fortran Programs 2–33

The qualifier has the following form:

/ARCHITECTURE=

�����������
����������

GENERIC
HOST
EV4
EV5
EV56
PCA6
EV6
EV67

�����������
����������

GENERIC
Generates code that is appropriate for all Alpha processor generations. This is
the default.

Programs compiled with the GENERIC option run on all implementations of
the Alpha architecture without any instruction emulation overhead.

HOST
Generates code for the processor generation in use on the system being used
for compilation.

Programs compiled with this option may encounter instruction emulation
overhead if run on other implementations of the Alpha architecture.

EV4
Generates code for the 21064, 21064A, 21066, and 21068 implementations of
the Alpha architecture. Programs compiled with the EV4 option run on all
Alpha processors without instruction emulation overhead.

EV5
Generates code for some 21164 chip implementations of the Alpha architecture
that use only the base set of Alpha instructions (no extensions). Programs
compiled with the EV5 option run on all Alpha processors without instruction
emulation overhead.

EV56
Generates code for some 21164 chip implementations that use the BWX
(Byte/Word manipulation) instruction extensions of the Alpha architecture.

Programs compiled with the EV56 option may incur emulation overhead on
EV4 and EV5 processors but still run correctly on OpenVMS Version 7.1 (or
later) systems.

2–34 Compiling HP Fortran Programs

PCA56
Generates code for the 21164PC chip implementation that uses the BWX
(Byte/Word manipulation) and MAX (Multimedia) instruction extensions of the
Alpha architecture.

Programs compiled with the PCA56 option may incur emulation overhead
on EV4, EV5, and EV56 processors but will still run correctly on OpenVMS
Version 7.1 (or later) systems.

EV6
Generates code for the 21264 chip implementation that uses the following
extensions to the base Alpha instruction set: BWX (Byte/Word manipulation)
and MAX (Multimedia) instructions, square root and floating-point convert
instructions, and count instructions.

Programs compiled with the EV6 option may incur emulation overhead on EV4,
EV5, EV56, and PCA56 processors but will still run correctly on OpenVMS
Version 7.1 (or later) systems.

EV67
Generates code for chip implementations that use advanced instruction
extensions of the Alpha architecture. This option permits the compiler to
generate any EV67 instruction, including the following extensions to the base
Alpha instruction set: BWX (Byte/Word manipulation), MVI (Multimedia)
instructions, square root and floating-point convert extensions (FIX), and count
extensions (CIX).

Programs compiled with the EV67 keyword might incur emulation overhead
on EV4, EV5, EV56, PCA56, and EV6 processors but still run correctly on
OpenVMS Alpha systems.

2.3.7 /ASSUME — Compiler Assumptions
The /ASSUME qualifier specifies a variety of assumptions:

• Whether the compiler should use certain code transformations that affect
floating-point operations. These changes may affect the accuracy of the
program’s results.

• What the compiler can assume about program behavior without affecting
correct results when it optimizes code.

• Whether a single-precision constant assigned to a double-precision variable
should be evaluated in single or double precision.

Compiling HP Fortran Programs 2–35

• Changes the directory where the compiler searches for files specified by an
INCLUDE statement to the directory where the source files reside, not the
current default directory.

The qualifier has the following form:

/ASSUME=

	

�

���������������
��������������

[NO]ACCURACY_SENSITIVE
[NO]ALTPARAM
[NO]BUFFERED_IO
[NO]BYTERECL
[NO]DUMMY_ALIASES
[NO]FP_CONSTANT
[NO]INT_CONSTANT
[NO]MINUS0
[NO]PROTECT_CONSTANTS
[NO]SOURCE_INCLUDE

���������������
��������������

[, ...]

�
ALL
NONE

�
���������������������

[NO]ACCURACY_SENSITIVE
If you use ACCURACY_SENSITIVE (the default unless you specified /FAST),
the compiler uses a limited number of rules for calculations, which might
prevent some optimizations.

Specifying NOACCURACY_SENSITIVE allows the compiler to reorder code
based on algebraic identities (inverses, associativity, and distribution) to
improve performance. The numeric results can be slightly different from the
default (ACCURACY_SENSITIVE) because of the way intermediate results are
rounded. Specifying the /FAST qualifier (described in Section 2.3.21) changes
the default to NOACCURACY_SENSITIVE.

Numeric results with NOACCURACY_SENSITIVE are not categorically less
accurate. They can produce more accurate results for certain floating-point
calculations, such as dot product summations.

For example, the following expressions are mathematically equivalent but may
not compute the same value using finite precision arithmetic.

X = (A + B) - C

X = A + (B - C)

Optimizations that result in calls to a special reciprocal square root routine
for expressions of the form 1.0/SQRT(x) or A/SQRT(B) are enabled only if
/ASSUME=NOACCURACY_SENSITIVE is in effect.

2–36 Compiling HP Fortran Programs

[NO]ALTPARAM
Specifying the /ASSUME=ALTPARAM qualifier allows the alternate syntax
for PARAMETER statements. The alternate form has no parentheses
surrounding the list, and the form of the constant, rather than implicit or
explicit typing, determines the data type of the variable. The default is
/ASSUME=ALTPARAM.

[NO]BUFFERED_IO
The /ASSUME=[NO]BUFFERED_IO qualifier is provided for compatibility
with other platforms. On OpenVMS systems, the SET RMS command controls
the number of output buffers.

Specifying /ASSUME=BUFFERED_IO requests that buffered I/O be used
for all Fortran logical units opened for sequential writing (the default is
NOBUFFERED_IO). On OpenVMS systems, this qualifier has an effect only if
the system or process RMS default buffers are set to 1.

[NO]BYTERECL
Specifying the /ASSUME=BYTERECL qualifier:

• Indicates that the OPEN statement RECL value for unformatted files is
in byte units. If you omit /ASSUME=BYTERECL, HP Fortran expects
the OPEN statement RECL value for unformatted files to be in longword
(4-byte) units.

• Returns the record length value for an INQUIRE by output item list
(unformatted files) in byte units. If you omit /ASSUME=BYTERECL, HP
Fortran returns the record length for an INQUIRE by output item list in
longword (4-byte) units.

• Returns the record length value for an INQUIRE by unit or file name
(unformatted files) in byte units if all of the following occur:

You had specified /ASSUME=BYTERECL for the code being executed

The file was opened with an OPEN statement and a RECL specifier

The file is still open (connected) when the INQUIRE occurs.

If any one of the preceding conditions are not met, HP Fortran returns the
RECL value for an INQUIRE in longword (4-byte) units.

To specify /ASSUME=BYTERECL your application must be running on a
system that has the associated Fortran Run-Time Library support. This
support is provided by installing one of the following on the system where the
application will be run:

• HP Fortran Version 7.0 or later

Compiling HP Fortran Programs 2–37

• OpenVMS Version 7.0 or later

If you specify /ASSUME=BYTERECL and your application is running on a
system without the proper Run-Time Library support, it will fail with an
INVARGFOR, Invalid argument to Fortran Run-Time Library error.

[NO]DUMMY_ALIASES
Specifies whether dummy (formal) arguments are permitted to share memory
locations with COMMON block variables or other dummy arguments.

If you specify DUMMY_ALIASES, the compiler must assume that dummy
(formal) arguments to procedures share memory locations with other dummy
arguments or with variables shared through use association, host association,
or common block use.

These program semantics do not strictly obey the Fortran 90 and Fortran 95
Standards and slow performance.

If you use NODUMMY_ALIASES, the default, the compiler does not need
to make these assumptions, which results in better run-time performance.
However, omitting /ASSUME=DUMMY_ALIASES can cause some programs
that depend on such aliases to fail or produce wrong answers.

You only need to compile the called subprogram with DUMMY_ALIASES.

If you compile a program that uses dummy aliasing with NODUMMY_
ALIASES in effect, the run-time behavior of the program will be unpredictable.
In such programs, the results will depend on the exact optimizations that
are performed. In some cases, normal results will occur; however, in other
cases, results will differ because the values used in computations involving the
offending aliases will differ.

[NO]FP_CONSTANT
Specifies whether a single-precision constant assigned to a double-precision
variable will be evaluated in double precision.

If you use NOFP_CONSTANT, the default, a single-precision constant assigned
to a double-precision variable is evaluated in single precision. The Fortran 90
and 95 standards require that the constant be evaluated in single precision.

If you specify FP_CONSTANT, a single-precision constant assigned to a
double-precision variable is evaluated in double precision.

Certain programs created for FORTRAN-77 compilers (including Compaq
Fortran 77) may show different results with FP_CONSTANT than when
you use NOFP_CONSTANT, because they rely on single-precision constants
assigned to a double-precision variable to be evaluated in double precision.

2–38 Compiling HP Fortran Programs

In the following example, if you specify FP_CONSTANT, identical values are
assigned to D1 and D2. If you use NOFP_CONSTANT, HP Fortran will follow
the standard and assign a less precise value to D1:

REAL (KIND=8) D1,D2
DATA D1 /2.71828182846182/ ! REAL (KIND=4) value expanded to double
DATA D2 /2.71828182846182D0/ ! Double value assigned to double

[NO]INT_CONSTANT
Specifies whether Compaq Fortran 77 or Fortran 90/95 semantics are used to
determine the type for integer constants.

If you specify /ASSUME=INT_CONSTANT, integer constants take their type
from the value, as interpreted by Compaq Fortran 77.

If you specify /ASSUME=NOINT_CONSTANT, integer constants have Fortran
90/95 ‘‘default integer’’ type. This is the default.

[NO]MINUS0
Controls whether the compiler uses Fortran 95 standard semantics for the
IEEE floating-point value of -0.0 (minus zero) in the SIGN intrinsic, if the
processor is capable of distinguishing the difference between -0.0 and +0.0.

The default is /ASSUME=NOMINUS0, which uses Fortran 90 and FORTRAN
77 semantics where the value -0.0 or +0.0 in the SIGN function is treated as
an 0.0.

To request Fortran 95 semantics, specify /ASSUME=MINUS0 to allow use
of the IEEE value -0.0 in the SIGN intrinsic and printing -0.0. This option
applies only to programs compiled with the /FLOAT=IEEE_FLOAT qualifier.

[NO]PROTECT_CONSTANTS
Specifies whether constant actual arguments can be changed. By default,
actual arguments that are constants are read-only (/ASSUME=PROTECT_
CONSTANTS): any attempt to modify them in the called routine results in
an error. /ASSUME=NOPROTECT_CONSTANTS specifies that a copy of a
constant actual argument is to be passed, so it can be modified by the called
routine, even though the Fortran standard prohibits such modification. The
constant is not modified in the calling routine.

If NOPROTECT_CONSTANTS is specified, a writeable copy of the constant is
passed as the actual argument.

[NO]SOURCE_INCLUDE
Controls whether the directory where the compiler searches for source files or
text libraries specified by an INCLUDE statement is either:

Compiling HP Fortran Programs 2–39

• The current default directory (NOSOURCE_INCLUDE)

• The directory where the source file reside (SOURCE_INCLUDE)

The default, NOSOURCE_INCLUDE, indicates that the compiler should search
in the current default directory.

Specifying SOURCE_INCLUDE causes the compiler to search the directory of
the source file specified on the FORTRAN command line, instead of the current
default directory.

You can specify additional directories for the compiler to search for module
files, include files, or include libraries by using the /INCLUDE qualifier.

For More Information:

• On the effect of /ASSUME=NOACCURACY_SENSITIVE on optimizations,
see Section 5.8.8.

• On converting and using nonnative unformatted data files, see Chapter 9.

• On the INQUIRE statement, see Chapter 6.

• On the effect and an example of /ASSUME=DUMMY_ALIASES, see
Section 5.8.9.

• On the /INCLUDE qualifier, see Section 2.3.25.

2.3.8 /AUTOMATIC — Data Storage
The /AUTOMATIC and /NOAUTOMATIC qualifiers are synonyms of
/RECURSIVE or /NORECURSIVE (see Section 2.3.38). This qualifier is
provided for Compaq Fortran 77 compatibility.

2.3.9 /BY_REF_CALL — Character Literal Argument Passing
Specifying /BY_REF_CALL=routine-list indicates that character constants used
as actual arguments in calls to the specified routines be passed by reference
and not by character descriptor. This helps applications that pass quoted
character constants to numeric dummy parameters, such as applications
ported from OpenVMS VAX systems that rely on the OpenVMS VAX Linker
to change the argument passing mechanism for character constant actual
arguments.

By default, HP Fortran passes character constants used as actual arguments
by the usual OpenVMS character descriptor mechanism.

2–40 Compiling HP Fortran Programs

You can specify a list of routines or use wildcard characters (such as an
asterisk (*)) to indicate all routines, for example:

$ FORTRAN/BY_REF_CALL=(PROJA_ROUT,PROJB_ROUT) TEST.FOR
$ FORTRAN/BY_REF_CALL=(*) APPLIC.FOR

The first FORTRAN command requests special character constant actual
argument handling for two specific routines. The second requests this for all
routines. You can select routines whose names match certain characters and a
wildcard, such as all routines that start with MY:

$ FORTRAN/BY_REF_CALL=(MY*) X.FOR

2.3.10 /CCDEFAULT — Carriage Control for Terminals
The /CCDEFAULT qualifiers specify default carriage control when a terminal
or printer displays a file.

The qualifier has the following form:

/CCDEFAULT=

	

�
���
��

FORTRAN
LIST
NONE
DEFAULT

���
��

�
����

FORTRAN
Specifying /CCDEFAULT=FORTRAN results in normal Fortran interpretation
of the first character, such as the character ‘‘0’’ resulting in a blank line before
output.

LIST
Specifying /CCDEFAULT=LIST results in one linefeed between records.

NONE
Specifying /CCDEFAULT=NONE results in no carriage control processing.

DEFAULT
Specifying /CCDEFAULT=DEFAULT results in the possibility of other
qualifiers, such as /VMS, affecting this default setting: if /NOVMS is specified,
the default is LIST; otherwise, the default is FORTRAN.

Compiling HP Fortran Programs 2–41

2.3.11 /CHECK — Generate Code for Run-Time Checking
The /CHECK qualifier requests certain error checking during program
execution (run time). The compiler produces extra code that performs the
checks.

The qualifier has the following form:

/CHECK=

	

�

���������������
��������������

[NO]ARG_INFO (I64 only)
[NO]ARG_TEMP_CREATED
[NO]BOUNDS
[NO]FORMAT
[NO]FP_EXCEPTIONS
[NO]FP_MODE (I64 only)
[NO]OUTPUT_CONVERSION
[NO]OVERFLOW
[NO]POWER
[NO]UNDERFLOW

���������������
��������������

[, ...]

�
ALL
NONE

�
���������������������

[NO]ARG_INFO (I64 only)
Controls whether run-time checking of the actual argument list occurs. For
actual arguments that correspond to declared formal parameters, the check
compares the run-time argument type information for arguments passed in
registers with the type that is expected. An informational message is issued
at run time for each miscompare. Extra actual arguments or too few actual
arguments are not reported.

With the default, NOARG_INFO, no check is made.

ARG_TEMP_CREATED
Controls whether a run-time warning message is displayed (execution
continues) if a temporary is created for an array actual argument passed
to a called routine.

[NO]BOUNDS
Controls whether run-time checking occurs for each dimension of an array
reference or substring reference to determine whether it is within the range of
the dimension specified by the array or character variable declaration.

Specify BOUNDS to request array bounds and substring checking. With the
default, NOBOUNDS, array bounds and substring checking does not occur.

2–42 Compiling HP Fortran Programs

[NO]FORMAT
Controls whether the run-time message number 61 (FORVARMIS) is displayed
and halts program execution when the data type for an item being formatted
for output does not match the format descriptor being used (such as a REAL
data item with an I format).

The default, FORMAT, causes FORVARMIS to be a fatal error and halts
program execution.

Specifying NOFORMAT ignores the format mismatch, which suppresses the
FORVARMIS error and allows program continuation.

If you omit /NOVMS and omit /CHECK=NOFORMAT, the default is
/CHECK=FORMAT.

If you specify /NOVMS, the default is NOFORMAT (unless you also specify
/CHECK=FORMAT).

[NO]FP_EXCEPTIONS
Controls whether run-time checking counts calculations that result in
exceptional values. With the default, NOFP_EXCEPTIONS, no run-time
messages are reported.

Specifying FP_EXCEPTIONS requests reporting of the first two occurrences of
each type of exceptional value and a summary run-time message at program
completion that displays the number of times exceptional values occurred.
Consider using FP_EXCEPTIONS when the /IEEE_MODE qualifier allows
generation of exceptional values.

To limit reporting to only denormalized numbers (and not other exceptional
numbers), specify UNDERFLOW instead of FP_EXCEPTIONS.

Using FP_EXCEPTIONS applies to all types of native floating-point data.

[NO]FP_MODE (I64 only)
Controls whether run-time checking of the current state of the processor’s
floating-point status register (FPSR) occurs. For every call of every function
or subroutine, the check will compare the current state of the FPSR register
against the expected state. That state is based on the /FLOAT, /IEEE_MODE
and /ROUND qualifier values specified by the FORTRAN command. An
informational message is issued at run time for miscompares.

With the default, NOFP_MODE, no check is made.

Compiling HP Fortran Programs 2–43

[NO]OUTPUT_CONVERSION
Controls whether run-time message number 63 (OUTCONERR) is displayed
when format truncation occurs. Specifying /CHECK=NOOUTPUT_
CONVERSION disables the run-time message (number 63) associated with
format truncation. The data item is printed with asterisks. When OUTPUT_
CONVERSION is in effect and a number could not be output in the specified
format field length without loss of significant digits (format truncation), the
OUTCONERR (number 63) error occurs.

If you omit /NOVMS and omit /CHECK=NOOUTPUT_CONVERSION, the
default is OUTPUT_CONVERSION.

If you specify /NOVMS, the default is NOOUTPUT_CONVERSION (unless you
also specify /CHECK=OUTPUT_CONVERSION).

[NO]OVERFLOW
Controls whether run-time checking occurs for arithmetic overflow of all integer
calculations (INTEGER, INTEGER with a kind parameter, or INTEGER with
a length specifier). Specify OVERFLOW to request integer overflow checking.

Real and complex calculations are always checked for overflow and are not
affected by /NOCHECK. Integer exponentiation is performed by a routine in
the mathematical library. The routine in the mathematical library always
checks for overflow, even if NOOVERFLOW is specified.

With the default, NOOVERFLOW, overflow checking does not occur.

[NO]POWER
Specifying the /CHECK=NOPOWER qualifier allows certain arithmetic
expressions containing floating-point numbers and exponentiation to be
evaluated and return a result rather than cause the compiler to display a
run-time message and stop the program. The specific arithmetic expressions
include:

• 0.0 ** 0.0

• negative-value ** integer-value-of-type-real

For example, if you specify /CHECK=NOPOWER the calculation of the
expression 0.0 ** 0.0 results in 1. The expression (–3.0) ** 3.0 results in –27.0.

If you omit /CHECK=NOPOWER for such expressions, an exception occurs,
error message number 65 is displayed, and the program stops (default is
/CHECK=POWER).

2–44 Compiling HP Fortran Programs

[NO]UNDERFLOW
Controls whether run-time messages are displayed for floating underflow (de-
normalized numbers) in floating-point calculations. Specifying UNDERFLOW
might be used in combination with the /IEEE_MODE=DENORM_RESULTS
qualifier. Specify UNDERFLOW to request reporting of the first two
occurrences of denormalized numbers and a summary run-time message at
program completion that displays the number of times denormalized numbers
occurred.

The default, NOUNDERFLOW, means that floating underflow messages are
not displayed. To check for all exceptional values (not just denormalized
numbers), specify /CHECK=FP_EXCEPTIONS.

ALL
Requests that all run-time checks (BOUNDS, FORMAT, FP_EXCEPTIONS,
OUTPUT_CON2VERSION, OVERFLOW, and UNDERFLOW) be performed.
Specifying /CHECK and /CHECK=ALL are equivalent.

NONE
Requests no run-time checking. This is the default. Specifying /NOCHECK
and /CHECK=NONE are equivalent.

For More Information:

• On exceptional floating-point values, see Section 8.4.8.

• On controlling IEEE arithmetic exception handling (/IEEE_MODE
qualifier), see Section 2.3.24.

• On the ranges of the various data types (including denormalized ranges),
see Chapter 8.

2.3.12 /CONVERT — Unformatted Numeric Data Conversion
The /CONVERT qualifier specifies the format of numeric unformatted data
in a file, such as IEEE little endian, VAX G_float, VAX D_float floating-point
format, or a nonnative big endian format.

By default, an unformatted file containing numeric data is expected to
be in the same floating-point format used for memory representation or
/CONVERT=NATIVE. You set the floating-point format used for memory
representation using the /FLOAT qualifier (see Section 2.3.22).

Instead of specifying the unformatted file format by using the /CONVERT
qualifier, you can use one of the other methods (predefined logical names or
the OPEN CONVERT keyword) described in Chapter 9, which allow the same
program to use different floating-point formats, as shown in Figure 2–1.

Compiling HP Fortran Programs 2–45

The qualifier has the following form (specify one keyword):

/CONVERT=

�������������
������������

BIG_ENDIAN
CRAY
FDX
FGX
IBM
LITTLE_ENDIAN
NATIVE
VAXD
VAXG

�������������
������������

BIG_ENDIAN
Specifies that unformatted files containing numeric data are in IEEE big
endian (nonnative) format.

If you specify BIG_ENDIAN, the resulting program will read and write
unformatted files containing numeric data assuming:

• Big endian integer format (INTEGER declarations of the appropriate size)

• Big endian IEEE floating-point formats (REAL and COMPLEX declarations
of the appropriate size).

CRAY
Specifies that unformatted files containing numeric data are in CRAY
(nonnative) big endian format.

If you specify CRAY, the resulting program will read and write unformatted
files containing numeric data assuming:

• Big endian integer format (INTEGER declarations of the appropriate size)

• Big endian CRAY proprietary floating-point formats (REAL and COMPLEX
declarations of the appropriate size)

FDX
Specifies that unformatted files containing numeric data are in I64/Alpha-
compatible D_float-centered little endian format, as follows:

• REAL (KIND=4) and COMPLEX (KIND=4) (same as REAL*4 and
COMPLEX*8) single-precision data is in VAX little endian F_float format.

• REAL (KIND=8) and COMPLEX (KIND=8) (same as REAL*8 and
COMPLEX*16) double-precision data is in VAX little endian D_float
format.

2–46 Compiling HP Fortran Programs

• REAL (KIND=16) (same as REAL*16) data is in IEEE-style little endian
X_float format.

FGX
Specifies that unformatted files containing numeric data are in I64/Alpha-
compatible G_float-centered little endian format, as follows:

• REAL (KIND=4) and COMPLEX (KIND=4) (same as REAL*4 and
COMPLEX*8) single-precision data is in VAX little endian F_float format.

• REAL (KIND=8) and COMPLEX (KIND=8) (same as REAL*8 and
COMPLEX*16) double-precision data is in VAX little endian G_float
format.

• REAL (KIND=16) (same as REAL*16) data is in IEEE-style little endian
X_float format.

IBM
Specifies that unformatted files containing numeric data are in IBM®
(nonnative) big endian format (such as IBM System\370 and similar systems).

If you specify IBM, the resulting program will read and write unformatted files
containing numeric data assuming:

• Big endian integer format (INTEGER declarations of the appropriate size)

• Big endian IBM proprietary floating-point formats (REAL and COMPLEX
declarations of the appropriate size)

LITTLE_ENDIAN
Specifies that unformatted files containing numeric data are in native little
endian integer format and IEEE little endian floating-point format, as follows:

• Integer data is in native little endian format.

• REAL (KIND=4) and COMPLEX (KIND=4) (same as REAL*4 and
COMPLEX*8) single-precision data is in IEEE little endian S_float format.

• REAL (KIND=8) and COMPLEX (KIND=8) (same as DOUBLE
PRECISION and DOUBLE COMPLEX) double-precision data is in IEEE
little endian T_float format.

• REAL (KIND=16) data is in IEEE-style little endian X_float format.

NATIVE
Specifies that the format for unformatted files containing numeric data is
not converted. When using NATIVE (the default), the numeric format in
the unformatted files must match the floating-point format representation in
memory, which is specified using the /FLOAT qualifier.

Compiling HP Fortran Programs 2–47

This is the default.

VAXD
Specifies that unformatted files containing numeric data are in VAX-compatible
D_float-centered little endian format, as follows:

• Integer data is in native little endian format.

• REAL (KIND=4) and COMPLEX (KIND=4) (same as REAL*4 and
COMPLEX*8) single-precision data is in VAX F_float floating-point format.

• REAL (KIND=8) and COMPLEX (KIND=8) (same as REAL*8 and
COMPLEX*16) double-precision data is in VAX D_float little endian
format.

• REAL (KIND=16) (same as REAL*16) data is in VAX H_float little endian
format.

VAXG
Specifies that unformatted files containing numeric data are in VAX-compatible
G_float-centered little endian format, as follows:

• Integer data is in native little endian format.

• REAL (KIND=4) and COMPLEX (KIND=4) (same as REAL*4 and
COMPLEX*8) single-precision data is in VAX F_float floating-point format.

• REAL (KIND=8) and COMPLEX (KIND=8) (same as REAL*8 and
COMPLEX*16) double-precision data is in VAX G_float little endian
format.

• REAL (KIND=16) (same as REAL*16) data is in VAX H_float little endian
format.

For More Information:

• On limitations of data conversion, see Section 9.4.

• On converting unformatted data files, including using the OPEN statement
CONVERT specifier and using FOR$CONVERTnnn logical names, see
Section 9.5.

• On the ranges and formats of the various native intrinsic floating-point
data types, see Section 8.4.

• On porting Compaq Fortran 77 data from OpenVMS VAX systems, see
Section B.7.

• On the ranges of the nonnative VAX H_float data type, see Section B.8.

2–48 Compiling HP Fortran Programs

2.3.13 /D_LINES — Debugging Statement Indicator, Column 1
Specify /D_LINES to request that the compiler should treat lines in fixed-form
source files that contain a D in column 1 as source code rather than comment
lines. Such lines might print the values of variables or otherwise provide
useful debugging information. This qualifier is ignored for free-form source
files.

The default is /NOD_LINES, which means that lines with a D in column 1 are
treated as comments.

2.3.14 /DEBUG — Object File Traceback and Symbol Table
The /DEBUG qualifier requests that the object module contain information for
use by the OpenVMS Debugger and the run-time error traceback mechanism.

The qualifier has the following form:

/DEBUG=

	

�

�
[NO]SYMBOLS
[NO]TRACEBACK

�
[, ...]

�
NONE
ALL

�
�����

[NO]SYMBOLS
Controls whether the compiler provides the debugger with local symbol
definitions for user-defined variables, arrays (including dimension information),
structures, parameter constants, and labels of executable statements.

[NO]TRACEBACK
Controls whether the compiler provides an address correlation table so that the
debugger and the run-time error traceback mechanism can translate virtual
addresses into source program routine names and compiler-generated line
numbers.

ALL
Requests that the compiler provide both local symbol definitions and an
address correlation table. If you specify /DEBUG without any keywords, it
is the same as /DEBUG=ALL or /DEBUG=(TRACEBACK,SYMBOLS). When
you specify /DEBUG, also specify /NOOPTIMIZE to prevent optimizations that
complicate debugging.

Compiling HP Fortran Programs 2–49

NONE
Requests that the compiler provide no debugging information. The
/NODEBUG, /DEBUG=NONE, and /DEBUG=(NOTRACEBACK, NOSYMBOLS)
qualifiers are equivalent.

If you omit /DEBUG, the default is /DEBUG=(TRACEBACK, NOSYMBOLS).

Note

The use of /NOOPTIMIZE is strongly recommended when the /DEBUG
qualifier is used. Optimizations performed by the compiler can
cause several different kinds of unexpected behavior when using
the OpenVMS Debugger.

For More Information:

• On using the OpenVMS Debugger, see Chapter 4.

• On debugging qualifiers for the FORTRAN and LINK commands, see
Section 4.2.1.

• On LINK command qualifiers related to traceback and debugging, see
Section 3.2.2 and Table 3–2.

2.3.15 /DIAGNOSTICS — Create Diagnostics File
The /DIAGNOSTICS qualifier creates a file containing compiler messages and
diagnostic information.

The qualifier has the following form:

/DIAGNOSTICS[=file-spec]

The default is /NODIAGNOSTICS.

If you omit the file specification, the diagnostics file has the name of your
source file and a file type of DIA.

The diagnostics file is reserved for use with third-party layered products such
as, but not limited to, the Language Sensitive Editor (LSE).

For More Information:
On using LSE, see the Guide to Source Code Analyzer for VMS Systems or
online LSE HELP.

2–50 Compiling HP Fortran Programs

2.3.16 /DML — Invoke Fortran DML Preprocessor
The /DML qualifier invokes the Fortran Data Manipulation Language (DML)
preprocessor before the compiler. The preprocessor produces an intermediate
file of HP Fortran source code in which Fortran DML commands are expanded
into HP Fortran statements. The compiler is then automatically invoked to
compile this intermediate file.

The qualifier has the following form:

/DML

The default is not to invoke the Fortran DML preprocessor.

Use the /SHOW=PREPROCESSOR qualifier in conjunction with the /DML
qualifier to cause the preprocessor-generated source code to be included in the
listing file.

Any switches preceding the /DML qualifier in the command line are ignored.

Note

Unless you specify the /DEBUG qualifier, the intermediate file
is deleted by the Fortran DML preprocessor immediately after
compilation is complete, and the Language Sensitive Editor and
the Source Code Analyzer cannot access the source program when you
use the /DML qualifier. The results with the /DEBUG qualifier reflect
the intermediate source.

For More Information:
On the DML preprocessor, see the Oracle CODASYL DBMS Programming
Reference Manual.

2.3.17 /DOUBLE_SIZE — DOUBLE PRECISION Data Size
The /DOUBLE_SIZE qualifier allows you to specify the data size for floating-
point DOUBLE PRECISION data declarations. The qualifier has the following
form:

/DOUBLE_SIZE=
�

64
128

To request that all DOUBLE PRECISION declarations, constants, functions,
and intrinsics use the REAL (KIND=16) extended-precision data rather than
REAL (KIND=8) double-precision data, specify /DOUBLE_SIZE=128. REAL
(KIND=16) data is stored in memory using X_float format.

Compiling HP Fortran Programs 2–51

If you omit /DOUBLE_SIZE=128, the size of DOUBLE PRECISION
declarations is REAL (KIND=8) or 64-bit double-precision data (default is
/DOUBLE_SIZE=64). To select the floating-point format used in memory for
64-bit REAL (KIND=8) data, use the /FLOAT qualifier.

For More Information:
On the /FLOAT qualifier, see Section 2.3.22.

2.3.18 /ERROR_LIMIT — Limit Compiler Messages
The /ERROR_LIMIT qualifier specifies the maximum number of error-level or
fatal-level compiler errors allowed for a given compilation unit (one or more
files specified on the FORTRAN command line that create a single object file).

The qualifier has the following form:

/ERROR_LIMIT[=nn] or /NOERROR_LIMIT

If you specify /ERROR_LIMIT=n, the compilation can have up to n - 1
errors without terminating the compilation. When the error limit is reached,
compilation is terminated.

If you specify /NOERROR_LIMIT, there is no limit on the number of errors
that are allowed.

By default, execution of the compiler is terminated when 30 error (E-level) and
fatal (F-level) messages are detected (default is /ERROR_LIMIT=30).

When the error limit is surpassed, only compilation of the current comma-
list element is terminated; the compiler will proceed to compile any other
comma-list element. For example, consider the following:

$ FORTRAN A,B,C

If comma-list element A has more than 30 E- or F-level errors, its compilation
is terminated, but the compiler proceeds to compile elements B and C.

A list of files separated by plus signs (+) form a single compilation unit. In the
following example, compilation of the plus-sign separated files A, B, or C stops
when the total of E- or F-level errors for all three files exceeds 30:

$ FORTRAN A+B+C

Specifying /ERROR_LIMIT=0 is equivalent to specifying /ERROR_LIMIT=1
(compilation terminates when the first error-level or fatal-level error occurs).

For More Information:
On compiler diagnostic messages, see Section 2.6.

2–52 Compiling HP Fortran Programs

2.3.19 /EXTEND_SOURCE — Line Length for Fixed-Form Source
Specify /EXTEND_SOURCE to request that the compiler increase the length of
HP Fortran statement fields to column 132 for fixed-form source files, instead
of column 72 (the default). It is ignored for free-form source files.

You can also specify this qualifier by using the OPTIONS statement. The
default in either case is /NOEXTEND_SOURCE.

To request warning messages for truncated fixed-form source lines, specify
/WARNINGS=TRUNCATED_SOURCE.

For More Information:

• On recognized file name suffix characters and their relationship to fixed
and free source formats, see Section 2.2.1.

• On column positions and more complete information on the fixed and free
source formats, see the HP Fortran for OpenVMS Language Reference
Manual.

• On /WARNINGS=TRUNCATED_SOURCE, see Section 2.3.51.

2.3.20 /F77 — FORTRAN IV or FORTRAN-77 Compatibility
The /F77 qualifier requests that the compiler use FORTRAN-77 (and thus
Fortran 90/95) interpretation rules for those statements that have different
meanings in older versions of the Fortran standards. The default is /F77.

If you specify /NOF77, the compiler uses the FORTRAN 66 (FORTRAN IV)
interpretation. This means, among other things, that:

• DO loops are always executed at least once FORTRAN-66 EXTERNAL
statement syntax and semantics are allowed.

• If the OPEN statement STATUS specifier is omitted, the default changes to
STATUS=’NEW’ instead of STATUS=’UNKNOWN’.

• If the OPEN statement BLANK specifier is omitted, the default changes to
BLANK=’ZERO’ instead of BLANK=’NULL’.

2.3.21 /FAST — Request Fast Run-Time Performance
Specifying /FAST changes the defaults for certain qualifiers, usually improving
run-time performance. The new defaults are:

• /ALIGNMENT=(COMMONS=NATURAL,RECORDS=NATURAL,SEQUENCE)
(same as /ALIGNMENT=NATURAL) (see Section 2.3.3)

• /ARCHITECTURE=HOST (see Section 2.3.6)

• /ASSUME=NOACCURACY_SENSITIVE (see Section 2.3.7)

Compiling HP Fortran Programs 2–53

• /MATH_LIBRARY=FAST (Alpha only) (see Section 2.3.30)

• /OPTIMIZE=TUNE=HOST (Alpha only) (see Section 2.3.35)

2.3.22 /FLOAT — Specify Floating-Point Format in Memory
The /FLOAT qualifier specifies the floating-point data format to be used in
memory for REAL or COMPLEX data. For performance reasons, consider
specifying the same floating-point memory format as the floating-point format
used by unformatted files the program will access if the data falls within the
acceptable range.

Figure 2–1 shows the FORTRAN command qualifiers used to specify the
floating-point format used in memory and in an unformatted file. Because
REAL (KIND=16) (same as REAL*16) data is always in X_float format on
OpenVMS I64 and Alpha systems, the /FLOAT keyword specifies the format
for REAL (KIND=4), COMPLEX (KIND=4), REAL (KIND=8), and COMPLEX
(KIND=8) data (or equivalent declarations).

Figure 2–1 Specifying the Format of Numeric Data for Unformatted Files

/FLOAT = specifies format in memory

Memory

Unformatted File

ZK−5297A−GE

/CONVERT qualifier, OPTIONS statement, logical name,
or OPEN CONVERT keyword specifies format in unformatted file

To specify the floating-point format (such as big endian) for all unformatted
files opened by the program, use the /CONVERT qualifier. To allow the same
program to use different floating-point formats, you must use the predefined
logical names or the OPEN CONVERT keyword to specify the format for
specific unit numbers, as described in Chapter 9.

2–54 Compiling HP Fortran Programs

The qualifier has the following form:

/FLOAT=

� D_FLOAT
G_FLOAT
IEEE_FLOAT

�

Note

The OpenVMS Alpha instruction set does not support D_float
computations, and the OpenVMS I64 instruction set does not support
D_float, F_float or G_float computations. As a result, any data stored
in those formats is converted to a native format for arithmetic
computations and then converted back to its original format. On
Alpha systems, the native format used for D_float is G_float. On I64
systems, S_float is used for F_float data, and T_float is used for D_float
and G_float data.

This means that for programs that perform many floating-point
computations, using D_float data on Alpha systems is slower than
using G_float or T_float data. Similarly, using D_float, F_float, or
G_float data on I64 systems is slower than using S_float or T_float
data. Additionally, due to the conversions involved, the results might
differ from native VAX D_float, F_float, and G_float computations and
results.

You should not mix floating data type formats in routines that pass single-
precision or double-precision quantities among themselves.

D_FLOAT
Specifies that the memory format for REAL (KIND=4) and COMPLEX
(KIND=4) data is VAX F_float and that the memory format for REAL (KIND=8)
and COMPLEX (KIND=8) data is VAX D_float. Same as the obsolete qualifier
/NOG_FLOATING.

Due to the considerations noted above, we do not recommend use of the
/FLOAT=D_FLOAT qualifier unless a program must use unformatted data
files in D_float format. If range and accuracy constraints permit the use of the
other REAL (KIND=8) data types, consider converting existing unformatted
files that contain D_float data to another format, such as G_float on Alpha
systems, or T_float on Alpha or I64 systems (see Chapter 9).

Compiling HP Fortran Programs 2–55

G_FLOAT
Specifies that the memory format for single precision REAL (KIND=4) and
COMPLEX (KIND=4) data is VAX F_float and that the memory format for
double precision REAL (KIND=8) and COMPLEX (KIND=8) data is VAX G_
float. Same as the obsolete qualifier /G_FLOATING.

The default on Alpha systems is /FLOAT=G_FLOAT.

Due to the considerations noted above, on I64 systems we do not recommend
use of the /FLOAT=G_FLOAT qualifier unless a program must use unformatted
data files in G_float format. If range and accuracy constraints permit it,
consider converting existing unformatted files that contain G_float data to
T_float (see Chapter 9).

IEEE_FLOAT
Specifies that the memory format for single precision REAL (KIND=4) and
COMPLEX (KIND=4) data is IEEE S_float and the memory format for double
precision REAL (KIND=8) and COMPLEX (KIND=8) is IEEE T_float.

The default on I64 systems is /FLOAT=IEEE_FLOAT. If possible, this default
should be used, because it provides the greatest performance and accuracy on
I64.

Specifying /FLOAT=IEEE_FLOAT allows the use of certain IEEE exceptional
values. When you specify /FLOAT=IEEE_FLOAT, you should be aware of
the /CHECK=FP_EXCEPTIONS, /CHECK=FP_MODE, /IEEE_MODE, and
/ROUNDING_MODE qualifiers.

Because REAL (KIND=16) (same as REAL*16) and COMPLEX (KIND=16)
(same as COMPLEX*32) data is always in X_float format on I64 and Alpha
systems, operations that use REAL (KIND=16) and COMPLEX (KIND=16)
data may encounter certain exceptional values even when /FLOAT=IEEE_
FLOAT is not used.

For More Information:

• On intrinsic floating-point data types, see Chapter 8.

• On converting unformatted files, see Section 2.3.12.

• On qualifiers of interest when you specify /FLOAT=IEEE_FLOAT, see:

Section 2.3.11 (/CHECK=FP_EXCEPTIONS)
Section 2.3.11 (/CHECK=FP_MODE) (I64 only)
Section 2.3.24 (/IEEE_MODE)
Section 2.3.40 (/ROUNDING_MODE)

2–56 Compiling HP Fortran Programs

2.3.23 /GRANULARITY — Control Shared Memory Access to Data
The /GRANULARITY qualifier controls the size of data that can be safely
accessed from different threads. You do not need to specify this option for local
data access by a single process, unless asynchronous write access from outside
the user process might occur. The default is /GRANULARITY=QUADWORD.

The qualifier has the following form:

/GRANULARITY=

�
BYTE
LONGWORD
QUADWORD

�

Data that can be written from multiple threads must be declared as VOLATILE
(so it is not held in registers). To ensure alignment in common blocks, derived
types, and record structures, use the /ALIGNMENT qualifier.

BYTE
Requests that all data (one byte or greater) can be accessed from different
threads sharing data in memory. This option will slow run-time performance.

LONGWORD
Ensures that naturally aligned data of four bytes or greater can be accessed
safely from different threads sharing access to that data in memory. Accessing
data items of three bytes or less and unaligned data may result in data items
written from multiple threads being inconsistently updated.

QUADWORD
Ensures that naturally aligned data of eight bytes can be accessed safely from
different threads sharing data in memory. Accessing data items of seven bytes
or less and unaligned data may result in data items written from multiple
threads being inconsistently updated. This is the default.

For More Information:

• On the Itanium architecture, see the Intel Itanium Architecture Software
Developer’s Manual, Volume 1: Application Architecture.

• On the Alpha architecture, see the Alpha Architecture Reference Manual.

• On intrinsic data types, see Chapter 8.

Compiling HP Fortran Programs 2–57

2.3.24 /IEEE_MODE — Control IEEE Arithmetic Exception Handling
The /IEEE_MODE qualifier specifies the arithmetic exception handling used for
floating-point calculations, such as for exceptional values. On Alpha systems,
it also controls the precision of exception reporting (like /SYNCHRONOUS_
EXCEPTIONS (Alpha only)).

Exceptional values are associated with IEEE arithmetic and include Infinity
(+ and -) values, Not-A-Number (NaN) values, invalid data values, and
denormalized numbers (see Section 8.4.8).

Use the /IEEE_MODE qualifier to control:

• Whether exceptional values cause program termination or continuation

• Whether exception reporting is precise

• Whether underflow (denormalized) values are set to zero

This qualifier only applies to arithmetic calculations when:

• You omit the /MATH_LIBRARY=FAST (Alpha only) qualifier (or /FAST)
qualifier. On Alpha systems, using /MATH_LIBRARY=FAST provides
limited handling of exceptional values of arguments to and results from HP
Fortran intrinsic functions.

• You specify the /FLOAT=IEEE_FLOAT qualifier to request IEEE S_float
(KIND=4) and T_float (KIND=8) data.

If you specify /FLOAT=G_FLOAT (the default) or /FLOAT=D_FLOAT,
/IEEE_MODE must not also be specified.

The qualifier has the following form:

/IEEE_MODE=

� FAST
UNDERFLOW_TO_ZERO
DENORM_RESULTS

�

The default on I64 systems is /IEEE_MODE=DENORM_RESULTS.

The default on Alpha systems is /IEEE_MODE=FAST.

Note

You should choose the value for the /IEEE_MODE qualifier based on
the floating-point semantics your application requires, not on possible
performance benefits.

2–58 Compiling HP Fortran Programs

FAST
Specifies that the program should stop if any exceptional values are detected.
This is the default.

When the program encounters or calculates any exceptional values (infinity (+
or –), NaN, or invalid data) in a calculation, the program stops and displays a
message.

Denormalized values calculated in an arithmetic expression are set to zero.
Denormalized values encountered as variables in an arithmetic expression
(including constant values) are treated as invalid data (an exceptional value),
which stops the program.

On Alpha systems, exceptions are not reported until one or more instructions
after the instruction that caused the exception. To have exceptions reported
at the instruction that caused the exception when using /IEEE_MODE=FAST,
also specify /SYNCHRONOUS_EXCEPTIONS (Alpha only).

UNDERFLOW_TO_ZERO
Specifies that the program should continue if any exceptional values are
detected and set calculated denormalized (underflow) values to zero.

When the program encounters an exceptional value (infinity (+ or –), NaN,
invalid data) in an arithmetic expression, the program continues. It also
continues when the result of a calculation is an exceptional value.

Calculated denormalized values are set to zero (0). This prevents the
denormalized number from being used in a subsequent calculation
(propagated).

Exceptions are reported at the instruction that caused the exception (same as
/SYNCHRONOUS_EXCEPTIONS (Alpha only)). This allows precise run-time
reporting of exceptions for those programs that generate exceptional values,
but this slows program run-time performance.

Using UNDERFLOW_TO_ZERO allows programs to handle exceptional values,
but does not propagate numbers in the denormalized range.

To request run-time messages for arithmetic exceptions, specify the
/CHECK=FP_EXCEPTIONS qualifier.

DENORM_RESULTS
Specifies that the program should continue if any exceptional values are
detected and leave calculated denormalized values as is (allows underflow).

When the program encounters an exceptional value (infinity (+ or –), NaN,
invalid data) in an arithmetic expression, the program continues. It also
continues when the result of a calculation is an exceptional value.

Compiling HP Fortran Programs 2–59

Calculated denormalized values are left as denormalized values. When
a denormalized number is used in a subsequent arithmetic expression, it
requires extra software-assisted handling and slows performance. A program
that generates denormalized numbers will be slower than the same program
compiled using /IEEE_MODE=UNDERFLOW_TO_ZERO.

Exceptions are reported at the instruction that caused the exception (same as
/SYNCHRONOUS_EXCEPTIONS (Alpha only)). This allows precise run-time
reporting of exceptions for those programs that generate exceptional values,
but this slows program run-time performance.

Using DENORM_RESULTS allows programs to handle exceptional values,
including allowing underflow of denormalized numbers.

To request run-time messages for arithmetic exceptions, specify the
/CHECK=FP_EXCEPTIONS qualifier. To request run-time messages for
only those arithmetic exceptions related to denormalized numbers, specify the
/CHECK=UNDERFLOW qualifier.

For More Information:

• On exceptional floating-point values, see Section 8.4.8.

• On controlling run-time arithmetic exception messages (/CHECK=(FP_
EXCEPTIONS,UNDERFLOW) qualifier), see Section 2.3.11.

• On the ranges of the various data types (including denormalized ranges),
see Chapter 8.

• On IEEE floating-point exception handling, see the IEEE Standard for
Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985).

• On the Itanium architecture, see the Intel Itanium Architecture Software
Developer’s Manual, Volume 1: Application Architecture.

2.3.25 /INCLUDE — Add Directory for INCLUDE and Module File Search
The /INCLUDE qualifier specifies one or more additional directories for the HP
Fortran compiler to search for:

• Module files (specified by a USE statement)

Module files have a file type of F90$MOD and are created by the HP
Fortran compiler. For more information on module files, see Section 2.2.3.

• Include files (specified by an INCLUDE statement)

Include files have a file type like other HP Fortran source files (F90, FOR,
or F) and are usually created by the user with a text editor.

2–60 Compiling HP Fortran Programs

HP Fortran also provides certain include library modules in the text library
FORSYSDEF.TLB. Users can create a text library and then populate and
maintain include library modules in the library. For more information on
include files and include text library modules, see Section 2.2.4.

If the INCLUDE statement specifies an explicit device and/or directory, only
that directory is searched.

If you omit /INCLUDE, the compiler searches in the current directory for
module files and either the current directory or the directory containing the
source file specified on the FORTRAN command line for include files or text
libraries:

• If you omit /ASSUME=SOURCE_INCLUDE, only the current default
directory is searched.

• If you specify /ASSUME=SOURCE_INCLUDE, the directory where the
source file resides is searched instead of the current directory.

The order of directory searching follows:

1. The current directory (omit /ASSUME=SOURCE_INCLUDE) or the
directory where the source file resides (specify /ASSUME=SOURCE_
INCLUDE).

2. One or more directories specified by the /INCLUDE qualifier.

3. The location defined by the logical name FORT$INCLUDE (if defined). To
prevent searching in this directory, specify /NOINCLUDE.

If you do not specify /INCLUDE or /NOINCLUDE, the compiler searches first
in the current directory (or directory where the source file resides) and then
the directory specified by FORT$INCLUDE (if defined).

To request that the compiler only search in the current directory (or
directory where the source file resides), specify /NOINCLUDE. This prevents
the compiler from searching the FORT$INCLUDE directory. If you use
/NOINCLUDE, you cannot specify /INCLUDE.

To request that the compiler only search in the directory specified by
FORT$INCLUDE, specify /INCLUDE=FORT$INCLUDE.

To control the searching for text libraries (not included files or modules), you
can also use the logical name FORT$LIBRARY.

Like other OpenVMS logical names, it can specify the location for your process
only or for multiple processes (including system-wide).

Compiling HP Fortran Programs 2–61

To specify the additional directories DISKA:[PROJ_MODULE.F90] and
DISKB:[F_COMMON.F90] with the /INCLUDE qualifier, use a single
/INCLUDE qualifier, as follows:

$ FORTRAN PROJ_M.F90 /INCLUDE=(DISKA:[PROJ_MODULE.F90],DISKB:[F_COMMON.F90])

If you specify multiple directories, the order of the directories (and their
devices) in the /INCLUDE qualifier determines the directory search order.

For More Information:

• On the /ASSUME=SOURCE_INCLUDE qualifier, see Section 2.3.7.

• On using library modules in a text library, see Section 2.2.4 and
Section 2.3.27.

• On OpenVMS logical names, see the OpenVMS User’s Manual.

2.3.26 /INTEGER_SIZE — Integer and Logical Data Size
The /INTEGER_SIZE qualifier controls how the compiler interprets INTEGER
or LOGICAL declarations that do not have a specified length. The default is
INTEGER_SIZE=32.

The qualifier has the following form:

/INTEGER_SIZE=

�
16
32
64

�

16
Indicates that INTEGER declarations are interpreted as INTEGER (KIND=2)
and LOGICAL declarations as LOGICAL (KIND=2). Same as the obsolete
/NOI4 qualifier.

32
Indicates that INTEGER declarations are interpreted as INTEGER (KIND=4)
and LOGICAL declarations as LOGICAL (KIND=4). Same as the obsolete /I4
qualifier.

64
Indicates that INTEGER declarations are interpreted as INTEGER (KIND=8)
and LOGICAL declarations as LOGICAL (KIND=8)

For performance reasons, use INTEGER (KIND=4) data instead of INTEGER
(KIND=2) or INTEGER (KIND=1) and whenever possible. You must explicitly
declare INTEGER (KIND=1) data.

2–62 Compiling HP Fortran Programs

Note

To improve performance, use /INTEGER_SIZE=32 rather than
/INTEGER_SIZE=16 and declare variables as INTEGER (KIND=4) (or
INTEGER (KIND=8)) rather than INTEGER (KIND=2) or INTEGER
(KIND=1). For logical data, avoid using /INTEGER_SIZE=16 and
declare logical variables as LOGICAL (KIND=4) rather than LOGICAL
(KIND=2) or LOGICAL (KIND=1).

For More Information:

• On intrinsic data types and their ranges, see Chapter 8.

• On run-time integer overflow checking (/CHECK=OVERFLOW), see
Section 2.3.11.

2.3.27 /LIBRARY — Specify File as Text Library
The /LIBRARY qualifier specifies that a file is a text library file.

The qualifier has the following form:

text-library-file/LIBRARY

The /LIBRARY qualifier can be specified on one or more text library files in a
list of files concatenated by plus signs (+). At least one of the files in the list
must be a nonlibrary file. The default file type is TLB.

For More Information:

• On the use of text libraries, see Section 2.4.

• On the OpenVMS Librarian, see the OpenVMS Librarian Utility Manual
or enter HELP LIBRARY.

2.3.28 /LIST — Request Listing File
The /LIST qualifier requests a source listing file. You can request additional
listing information using the /MACHINE_CODE and /SHOW qualifiers.

The qualifier has the following form:

/LIST[=file-spec]

You can include a file specification for the listing file. If you omit the file
specification, the listing file has the name of the first source file and a file type
of LIS.

Compiling HP Fortran Programs 2–63

The default depth of a page in a listing file is 66 lines. To modify the default,
assign the new number to the logical name SYS$LP_LINES, using the DCL
command DEFINE. For example, the following DCL command sets the page
depth at 88 lines:

$ DEFINE SYS$LP_LINES 88

The valid number of lines per page ranges from 30 to a maximum of 255.
The definition can be applied to the entire system by using the command
DEFINE/SYSTEM.

In interactive mode, the compiler does not produce a listing file unless you
include the /LIST qualifier. In batch mode, the compiler produces a listing file
by default. In either case, the listing file is not automatically printed; you must
use the PRINT command to obtain a line printer copy of the listing file.

If a source line of length 1 contains a form-feed character, the source code
listing begins a new page with the following line; the line containing the
form-feed does not appear.

If a source line of length greater than 1 contains a form-feed character, that
line is printed but the form-feed character is ignored (does not generate a new
page).

Any other nonprinting ASCII characters encountered in HP Fortran source
files are replaced by a space character, and a warning message appears.

You can request additional information in the listing file using the /MACHINE_
CODE and /SHOW qualifiers.

The listing file includes the HP Fortran version number.

The /ANNOTATIONS qualifier controls whether an annotated listing showing
optimizations is included with the listing file.

For More Information:

• On the format of listing files, see Section 2.7.1.

• On the /MACHINE_CODE qualifier, see Section 2.3.29.

• On the /SHOW qualifier, see Section 2.3.43.

• On the /ANNOTATIONS qualifier, see Section 2.3.5

2–64 Compiling HP Fortran Programs

2.3.29 /MACHINE_CODE — Request Machine Code in Listing File
Specifying /MACHINE_CODE requests that the listing file include a symbolic
representation of the OpenVMS object code generated by the compiler.
Generated code and data are represented in a form similar to an assembly
code listing. The code produced by the /MACHINE_CODE qualifier is for
informational purposes only. It is not intended to be assembled and is not
supported by the MACRO assembler.

If a listing file is not being generated, the /MACHINE_CODE qualifier is
ignored.

The default is /NOMACHINE_CODE.

For More Information:

• On the format of a machine code listing, see Section 2.7.2.

• On the /LIST qualifier, see Section 2.3.28.

2.3.30 /MATH_LIBRARY — Fast or Accurate Math Library Routines
(Alpha only)
If you omit /MATH_LIBRARY=FAST (and /FAST), the compiler uses the
standard, very accurate math library routines for each HP Fortran intrinsic
function, such as SQRT (default is /MATH_LIBRARY=ACCURATE).

Specify /MATH_LIBRARY=FAST to use a special version of certain math
library routines that produce faster results, but with a slight loss of precision
and less exception checking.

This qualifier applies only to IEEE data types (when you specify
/FLOAT=IEEE_FLOAT). The qualifier has the following form:

/MATH_LIBRARY=
�

ACCURATE
FAST

ACCURATE
On Alpha systems, using /MATH_LIBRARY=ACCURATE (the default if you
omit /FAST) produces the very accurate results and error checking expected of
quality compiler products. It uses the standard set of math library routines for
the applicable intrinsics.

The standard math library routines are designed to obtain very accurate ‘‘near
correctly rounded’’ results and provide the robustness needed to check for IEEE
exceptional argument values, rather than achieve the fastest possible run-time
execution speed. Using /MATH_LIBRARY=ACCURATE allows user control of
arithmetic exception handling with the /IEEE_MODE qualifier.

Compiling HP Fortran Programs 2–65

FAST
Specifying /MATH_LIBRARY=FAST (the default if you specify /FAST) use
versions of certain math library routines that perform faster computations
than the standard, more accurate math library routines, but with slightly
less fractional accuracy and less reliable arithmetic exception handling.
Using /MATH_LIBRARY=FAST allows certain math library functions to get
significant performance improvements when the applicable intrinsic function is
used.

If you specify /MATH_LIBRARY=FAST, the math library routines do not
necessarily check for IEEE exceptional values and the /IEEE_MODE qualifier
is ignored.

When you use MATH_LIBRARY=FAST, you should carefully check the
calculated output from your program. Check the program’s calculated output to
verify that it is not relying on the full fractional accuracy of the floating-point
data type (see Section 8.4) to produce correct results or producing unexpected
exceptional values (exception handling is indeterminate).

Programs that do not produce acceptable results with /MATH_LIBRARY=FAST
and single-precision data might produce acceptable results with /MATH_
LIBRARY=FAST if they are modified (or compiled) to use double-precision
data.

The specific intrinsic routines that have special fast math routines depend on
the version of the OpenVMS operating system in use. Allowed error bounds
vary with each routine.

For More Information:

• On controlling arithmetic exception handling, including using the /IEEE_
MODE qualifier, see Section 2.3.24.

• On the /FAST qualifier, see Section 2.3.21.

• On requesting double-precision data during compilation for REAL data
declarations (/REAL_SIZE=64 qualifier, see Section 2.3.37.

• On native floating-point formats, see Section 8.4.

• On the specific intrinsic routines that have special fast math routines, see
the online release notes.

2–66 Compiling HP Fortran Programs

2.3.31 /MODULE — Placement of Module Files
The /MODULE qualifier controls where module files (.F90$MOD) are placed. If
you omit this qualifier or specify /NOMODULE, the .F90$MOD files are placed
in your current default directory.

The qualifier has the following form

/MODULE=directory

If you specify this qualifier, .F90$MOD files are placed in the specified directory
location.

2.3.32 /NAMES — Control Case of External Names
The /NAMES qualifier specifies how the HP Fortran compiler represents
external (global) names to the linker.

The qualifier has the following form:

/NAMES=

� UPPERCASE
LOWERCASE
AS_IS

�

UPPERCASE
Causes the compiler to ignore case differences in identifiers and to convert
external names to uppercase. This is the default.

LOWERCASE
Causes the compiler to ignore case differences in identifiers and to convert
external names to lowercase.

AS_IS
Causes the compiler to distinguish case differences in identifiers and to
preserve the case of external names.

The default, /NAMES=UPPERCASE, means that HP Fortran converts external
names to uppercase.

For More Information:

• On the EXTERNAL statement, see the HP Fortran for OpenVMS Language
Reference Manual.

• On specifying case names with the C property, see Section 10.4.2.1.

• On specifying names with the ALIAS property, see Section 10.4.2.2.

Compiling HP Fortran Programs 2–67

2.3.33 /OBJECT — Specify Name or Prevent Object File Creation
The /OBJECT qualifier specifies the name of the object file or prevents object
file creation.

The qualifier has the following form:

/OBJECT[=file-spec]

The default is /OBJECT. If you omit the file specification, the object file has the
name of the first source file and a file type of OBJ.

Use /NOOBJECT to suppress object code (for example, when you want to test
only for compilation errors in the source program).

For More Information:
On using the /OBJECT qualifier, see Section 2.2.5.

2.3.34 /OLD_F77 — Use Old FORTRAN 77 Compiler (Alpha only)
To use the Compaq Fortran 77 compiler, specify /OLD_F77 as the first qualifier
on the FORTRAN command line. The default is to use the HP Fortran (90/95
language) compiler. The default HP Fortran compiler supports the FORTRAN
77 language as well as the Fortran 90 and Fortran 95 standards.

If you specify the /OLD_F77 qualifier, certain FORTRAN command qualifiers
will be ignored, including qualifiers associated with Fortran 90 and Fortran
95 features, Fortran 90 and 95 standards checking, and certain optimization
keywords.

2.3.35 /OPTIMIZE — Specify Compiler Optimizations
The /OPTIMIZE qualifier requests that the compiler produce optimized code.

The qualifier has the following form:

2–68 Compiling HP Fortran Programs

/OPTIMIZE=

��������������������������������
�������������������������������

LEVEL=n

INLINE=

�����
����

NONE
MANUAL
SIZE
SPEED
ALL

�����
����

NOINLINE
LOOPS
PIPELINE

TUNE=

�����������
����������

GENERIC
HOST
EV4
EV5
EV56
PCA6
EV6
EV67

�����������
����������

UNROLL=n

��������������������������������
�������������������������������

[, ...]

The default is /OPTIMIZE, which is equivalent to /OPTIMIZE=LEVEL=4. Use
/NOOPTIMIZE or /OPTIMIZE=LEVEL=0 for a debugging session to ensure
that the debugger has sufficient information to locate errors in the source
program.

In most cases, using /OPTIMIZE will make the program execute faster. As
a side effect of getting the fastest execution speeds, using /OPTIMIZE can
produce larger object modules and longer compile times than /NOOPTIMIZE.

To allow full interprocedure optimization when compiling multiple source
files, consider separating source file specifications with plus signs (+), so
the files are concatenated and compiled as one program. Full interprocedure
optimization can reduce overall program execution time (see Section 5.1.2).
Consider not concatenating source files when the size of the source files is
excessively large and the amount of memory or disk space is limited.

The /OPTIMIZE keywords follow:

LEVEL
You can specify the optimization level with /OPTIMIZE=LEVEL=n, where n is
from 0 to 5, as follows:

• LEVEL=0 disables nearly all optimizations. Specifying LEVEL=0 causes
the /WARNINGS=UNUSED qualifier to be ignored.

This provides the same inlining as /OPTIMIZE=INLINE=NONE.

Compiling HP Fortran Programs 2–69

• LEVEL=1 enables local optimizations within the source program unit,
recognition of common subexpressions, and integer multiplication and
division expansion (using shifts).

• LEVEL=2 enables global optimizations and optimizations performed with
LEVEL=1. Global optimizations include data-flow analysis, code motion,
strength reduction and test replacement, split-lifetime analysis, and
instruction scheduling.

This provides the same inlining as /OPTIMIZE=INLINE=MANUAL.

• LEVEL=3 enables additional global optimizations that improve speed (at
the cost of extra code size) and optimizations performed with LEVEL=2.
Additional global optimizations include:

Loop unrolling

Code replication to eliminate branches

• LEVEL=4 enables interprocedure analysis, automatic inlining of small
procedures (with heuristics limiting the amount of extra code), the
software pipelining optimization (also set by /OPTIMIZE=PIPELINE),
and optimizations performed with LEVEL=3. LEVEL=4 is the default.

The software pipelining optimization applies instruction scheduling to
certain innermost loops, allowing instructions within a loop to ‘‘wrap
around’’ and execute in a different iteration of the loop. This can reduce
the impact of long-latency operations, resulting in faster loop execution.
Software pipelining also enables the prefetching of data to reduce the
impact of cache misses.

For more information on software pipelining, see the PIPELINE keyword
in this section.

This provides the same inlining as /OPTIMIZE=INLINE=SPEED.

• LEVEL=5 activates the loop transformation optimizations (also set by
/OPTIMIZE=LOOPS).

• The loop transformation optimizations are a group of optimizations
that apply to array references within loops. These optimizations can
improve the performance of the memory system and can apply to
multiple nested loops.

Loop transformation optimizations include loop blocking, loop
distribution, loop fusion, loop interchange, loop scalar replacement,
and outer loop unrolling.

2–70 Compiling HP Fortran Programs

To specify loop transformation optimizations without software
pipelining, do one of the following:

Specify LEVEL=5 with NOPIPELINE (preferred method)

Specify LOOPS with LEVEL=4, LEVEL=3, or LEVEL=2. This
optimization is not performed at optimization levels below
LEVEL=2.

For more information on the loop transformation optimizations, see the
LOOPS keyword in this section.

In addition to loop transformation, specifying LEVEL=5 activates certain
optimizations that are not activated by LOOPS and PIPELINE, including
byte-vectorization, and insertion of additional NOP (No Operation)
instructions for alignment of multi-issue sequences.

To determine whether using LEVEL=5 benefits your particular program,
you should time program execution for the same program compiled at
LEVEL=4 and LEVEL=5 (see Section 5.2).

For programs that contain loops that exhaust available registers, longer
execution times may result with /OPTIMIZE=LEVEL=5, requiring use of
/OPTIMIZE=UNROLL=n to limit loop unrolling (see the UNROLL keyword
in this section).

Specifying LEVEL=5 implies the optimizations performed at LEVEL=1,
LEVEL=2, LEVEL=3, and LEVEL=4.

This provides the same inlining as /OPTIMIZE=INLINE=SPEED.

INLINE
You can specify the level of inlining with /OPTIMIZE=INLINE=xxxxx, where
xxxx is one of the following keywords:

• NONE (same as /OPTIMIZE=NOINLINE) prevents any procedures from
being inlined, except statement functions, which are always inlined. This
type of inlining occurs if you specify /OPTIMIZE=LEVEL=0, LEVEL=1,
LEVEL=2, or LEVEL=3 and omit /OPTIMIZE=INLINE=keyword.

• MANUAL is the same as NONE for HP Fortran (but not necessarily for
other OpenVMS languages). This type of inlining occurs if you specify
/OPTIMIZE=LEVEL=0, LEVEL=1, LEVEL=2, or LEVEL=3 and omit
/OPTIMIZE=INLINE=keyword.

• SIZE inlines procedures that will improve run-time performance without
significantly increasing program size. This type of inlining is relevant at
/OPTIMIZE=LEVEL=1 or higher.

Compiling HP Fortran Programs 2–71

• SPEED inlines procedures that will improve run-time performance with
a significant increase in program size. This type of inlining is relevant at
/OPTIMIZE=LEVEL=1 or higher. INLINE=SPEED occurs if you specify
/OPTIMIZE=LEVEL=4 or LEVEL=5 and omit /INLINE=keyword.

• ALL inlines every call that can possibly be inlined while generating correct
code, including the following:

Statement functions (NONE or MANUAL)

Any procedures that HP Fortran thinks will improve run-time
performance (SPEED)

Any other procedures that can possibly be inlined and generate correct
code. Certain recursive routines are not inlined to prevent infinite
loops.

This type of inlining is relevant at /OPTIMIZE=LEVEL=1 or higher.

NOINLINE
Same as INLINE=NONE.

LOOPS
Specifying /OPTIMIZE=LOOPS (or /OPTIMIZE=LEVEL=5) activates a group
of loop transformation optimizations that apply to array references within
loops. These optimizations can improve the performance of the memory
system and usually apply to multiple nested loops. The loops chosen for loop
transformation optimizations are always counted loops (which include DO or
IF loops, but not uncounted DO WHILE loops).

Conditions that typically prevent the loop transformation optimizations from
occurring include subprogram references that are not inlined (such as an
external function call), complicated exit conditions, and uncounted loops.

The types of optimizations associated with /OPTIMIZE=LOOPS include the
following:

• Loop blocking

• Loop distribution

• Loop fusion

• Loop interchange

• Loop scalar replacement

• Outer loop unrolling

2–72 Compiling HP Fortran Programs

The loop transformation optimizations are a subset of optimizations activated
by /OPTIMIZE=LEVEL=5. Instead of specifying both LOOPS and PIPELINE,
you can specify /OPTIMIZE=LEVEL=5.

To specify loop transformation optimizations without software pipelining, do
one of the following:

• Specify LEVEL=5 with NOPIPELINE (preferred method)

• Specify LOOPS with LEVEL=3 or LEVEL=2. This optimization is not
performed at optimization levels below LEVEL=2.

To determine whether using /OPTIMIZE=LOOPS benefits your particular
program, you should time program execution for the same program (or
subprogram) compiled with and without loop transformation optimizations
(such as with /OPTIMIZE=LOOPS and /OPTIMIZE=NOLOOPS).

PIPELINE
Specifying /OPTIMIZE=PIPELINE (or /OPTIMIZE=LEVEL=4) activates the
software pipelining optimization. The software pipelining optimization applies
instruction scheduling to certain innermost loops, allowing instructions within
a loop to "wrap around" and execute in a different iteration of the loop. This
can reduce the impact of long-latency operations, resulting in faster loop
execution.

For this version of HP Fortran, loops chosen for software pipelining are always
innermost loops and do not contain branches, procedure calls, or COMPLEX
floating-point data.

On Alpha systems, software pipelining can be more effective when you combine
/OPTIMIZE=PIPELINE with the appropriate /OPTIMIZE=TUNE=xxxx
keyword for the target Alpha processor generation (see the TUNE keyword in
this section).

Software pipelining also enables the prefetching of data to reduce the impact of
cache misses.

Software pipelining is a subset of the optimizations activated by /OPTIMIZE=-
LEVEL=4.

To specify software pipelining without loop transformation optimizations, do
one of the following:

• Specify LEVEL=4 with NOLOOPS (preferred method)

• Specify PIPELINE with LEVEL=3 or LEVEL=2. This optimization is not
performed at optimization levels below LEVEL=2.

Compiling HP Fortran Programs 2–73

To determine whether using /OPTIMIZE=PIPELINE benefits your particular
program, you should time program execution for the same program (or
subprogram) compiled with and without software pipelining (such as with
/OPTIMIZE=PIPELINE and /OPTIMIZE=NOPIPELINE).

For programs that contain loops that exhaust available registers, longer
execution times may result with /OPTIMIZE=LEVEL=5, requiring use of
/OPTIMIZE=UNROLL=n to limit loop unrolling (see the UNROLL keyword in
this section).

TUNE (Alpha only)
You can specify the types of processor-specific instruction tuning for
implementations of the Alpha architecture using the /OPTIMIZE=TUNE=xxxx
keywords. Regardless of the setting of /OPTIMIZE=TUNE=xxxx you use, the
generated code runs correctly on all implementations of the Alpha architecture.
Tuning for a specific implementation can improve run-time performance; it is
also possible that code tuned for a specific target may run slower on another
target.

The /OPTIMIZE=TUNE=xxxx keywords are as follows:

• GENERIC generates and schedules code that will execute well for all
generations of Alpha processor chips. This provides generally efficient
code for those cases where both processor generations are likely to be
used. If /FAST is specified, the default is HOST; otherwise, the default is
GENERIC.

• HOST generates and schedules code optimized for the processor generation
in use on the system being used for compilation.

• EV4 generates and schedules code optimized for the 21064, 21064A, 21066,
and 21068 implementations of the Alpha chip.

• EV5 generates and schedules code optimized for the 21164 implementation
of the Alpha chip. This processor generation is faster and more recent
than the implementations of the Alpha chip associated with EV4 (21064,
21064A, 21066, and 21068).

• EV56 generates and schedules code optimized for some 21164 Alpha
architecture implementations that use the BWX (Byte/Word manipulation)
instruction extensions of the Alpha architecture.

• PCA56 generates and schedules code optimized for 21164PC Alpha
architecture implementation that uses BWX (Byte/Word manipulation)
and MAX (Multimedia) instructions extensions.

2–74 Compiling HP Fortran Programs

• EV6 generates and schedules code optimized for the 21264 chip
implementation that uses the following extensions to the base Alpha
instruction set: BWX (Byte/Word manipulation) and MAX (Multimedia)
instructions, square root and floating-point convert instructions, and count
instructions.

• EV67 generates and schedules code optimized for the EV67 Alpha
architecture implementation that uses BWX (Byte/Word manipulation),
MVI (Multimedia) instructions, square root and floating-point convert
extensions (FIX), and count extensions (CIX).

If /OPTIMIZE=TUNE=xxxx specifies a processor of less functionality than is
specified by /ARCHITECTURE, code is optimized for the processor specified by
/ARCHITECTURE.

If you omit /OPTIMIZE=TUNE=xxxx, HOST is used if /FAST is specified;
otherwise, GENERIC is used.

UNROLL
You can specify the number of times loops are unrolled with /OPTIMIZE=
UNROLL=n, where n is a number from 0 to 16. If you omit the UNROLL
keyword or specify UNROLL=0 (the default), the optimizer determines how
many times loops are unrolled. Usually loops are unrolled four times, but code
analysis may result in certain loops being unrolled two times (twice).

HP Fortran unrolls loops at /OPTIMIZE=LEVEL=3 or higher. When timings
using LEVEL=5 show that performance has not improved, consider specifying
UNROLL=1 with LEVEL=5, such as the following:

$ FORTRAN /OPTIMIZE=(LEVEL=5,UNROLL=1) M_APP.F90+SUB.F90/NOLIST

For More Information:

• On the effects of /OPTIMIZE=LEVEL=5, see Section 5.8.2.

• On limiting loop unrolling, see Section 5.7.4.1.

• On timing program execution, see Section 5.2.

• On the related /ASSUME=NOACCURACY_SENSITIVE qualifier, see
Section 2.3.7.

• On guidelines for improving performance, see Chapter 5.

• On the optimizations performed at each level, see Section 5.7.

Compiling HP Fortran Programs 2–75

2.3.36 /PAD_SOURCE — Pad Source Lines with Spaces
Controls how the compiler treats fixed-form file source lines that are shorter
than the statement field width (72 characters, or 132 characters if /EXTEND_
SOURCE is in effect.) This determines how the compiler treats character and
Hollerith constants that are continued across two or more source lines. This
qualifier does not apply to free-form source files.

Specifying /PAD_SOURCE causes the compiler to treat short source lines as if
they were padded with blanks out to the statement field width. This may be
useful when compiling programs developed for non-HP compilers that assume
that short source lines are blank-padded.

The default, /NOPAD_SOURCE, is compatible with current and previous
HP Fortran compilers, which causes the compiler to not treat short source
lines as padded with blanks so that the first character of a continuation line
immediately follows the last character of the previous line.

If /NOPAD_SOURCE is in effect, the compiler issues an informational message
if it detects a continued constant that might be affected by blank padding.

For More Information:
On /WARNINGS=USAGE qualifier, see Section 2.3.51.

2.3.37 /REAL_SIZE — Floating-Point Data Size
The /REAL_SIZE qualifier controls how the compiler interprets floating-point
declarations that do not have a specified length.

The qualifier has the following form:

/REAL_SIZE=

�
32
64
128

�

32
Defines REAL declarations, constants, functions, and intrinsics as REAL
(KIND=4) (single precision) and COMPLEX declarations, constants, functions,
and intrinsics as COMPLEX (KIND=4) (single complex).

64
Defines REAL and COMPLEX declarations, constants, functions, and intrinsics
as REAL (KIND=8) (double precision) and COMPLEX declarations, constants,
functions, and intrinsics as COMPLEX (KIND=8) (double complex).

2–76 Compiling HP Fortran Programs

This also causes intrinsic functions to produce a double precision REAL
(KIND=8) or COMPLEX (KIND=8) result instead of a single precision REAL
(KIND=4) or COMPLEX (KIND=4) result, except if the argument is explicitly
typed.

For example, references to the CMPLX intrinsic produce DCMPLX results
(COMPLEX (KIND=8)), except if the argument to CMPLX is explicitly typed
as REAL (KIND=4) or COMPLEX (KIND=4), in which case the resulting
data type is COMPLEX (KIND=4). Other affected intrinsic functions include
CMPLX, FLOAT, REAL, SNGL, and AIMAG.

128
Specifying /REAL_SIZE=128 defines:

• REAL and DOUBLE PRECISION declarations, constants, functions, and
intrinsics as REAL (KIND=16) (REAL*16)

• COMPLEX and DOUBLE COMPLEX declarations, constants, functions,
and intrinsics as COMPLEX (KIND=16) (COMPLEX*32)

If you omit /REAL_SIZE=128, then:

• REAL declarations, constants, functions, and intrinsics are defined as
REAL (KIND=4).

• DOUBLE PRECISION declarations, constants, functions, and intrinsics
are defined as REAL (KIND=8).

• COMPLEX declarations, constants, functions, and intrinsics are defined as
COMPLEX (KIND=4).

• DOUBLE COMPLEX declarations, constants, functions, and intrinsics are
defined as COMPLEX (KIND=8).

Specifying /REAL_SIZE=128 causes REAL, DOUBLE PRECISION, COMPLEX,
and DOUBLE COMPLEX intrinsic functions to produce REAL (KIND=16) or
COMPLEX (KIND=16) results unless their arguments are typed with an
explicit KIND type parameter.

For example, a reference to the CMPLX intrinsic with /REAL_SIZE=128
produces a COMPLEX (KIND=16) result unless the argument is explicitly
typed as REAL (KIND=4) or COMPLEX (KIND=4), in which case the result is
COMPLEX (KIND=4).

The default is /REAL_SIZE=32.

Compiling HP Fortran Programs 2–77

For More Information:

• On data types, see Chapter 8.

• On intrinsic functions, see the HP Fortran for OpenVMS Language
Reference Manual.

2.3.38 /RECURSIVE — Data Storage and Recursion
The /RECURSIVE qualifier requests that HP Fortran generate code and
allocate data so that a subroutine or a function can be called recursively.

The /RECURSIVE qualifier:

• Changes the default allocation class for all local variables from STATIC to
AUTOMATIC, except for variables that are data-initialized, named in a
SAVE statement, or declared as STATIC.

• Permits references to a routine name from inside the routine.

Subprograms declared with the RECURSIVE keyword are always recursive
(whether you specify or omit the /RECURSIVE qualifier).

Variables declared with the AUTOMATIC statement or attribute always use
stack-based storage for all local variables (whether you specify or omit the
/RECURSIVE or /AUTOMATIC qualifiers).

Specifying /RECURSIVE sets /AUTOMATIC.

For More Information:
On the RECURSIVE keyword, see the HP Fortran for OpenVMS Language
Reference Manual.

2.3.39 /REENTRANCY — Specify Threaded or Asynchronous
Reentrancy
The /REENTRANCY qualifier specifies whether code generated for the main
program and any Fortran procedures it calls will be relying on threaded or
asynchronous reentrancy. The default is /REENTRANCY=NONE.

The qualifier has the following form:

/REENTRANCY=

�
ASYNC
NONE
THREADED

�

2–78 Compiling HP Fortran Programs

ASYNC
Informs the HP Fortran run-time library that the program may contain
asynchronous handlers that could call the RTL. The run-time library will
guard against asynchronous interrupts inside its own critical regions.

NONE
Informs the HP Fortran run-time library that the program will not be relying
on threaded or asynchronous reentrancy. The run-time library need not
guard against such interrupts inside its own critical regions. Same as
/NOREENTRANCY.

THREADED
Informs the HP Fortran run-time library that the program is multithreaded,
such as programs using the POSIX threads library. The run-time library will
use thread locking to guard its own critical regions.

To use the kernel threads libraries, also specify the /THREADS_ENABLE
qualifier on the LINK command (see the Guide to the POSIX Threads Library).

Specifying NOREENTRANCY is equivalent to /REENTRANCY=NONE.

For More Information:
On writing multithreaded applications, see the Guide to the POSIX Threads
Library.

2.3.40 /ROUNDING_MODE — Specify IEEE Floating-Point Rounding
Mode
The /ROUNDING_MODE qualifier allows you to control how rounding occurs
during calculations. This qualifier applies only to IEEE data types (when you
specify /FLOAT=IEEE_FLOAT). Note that if you specify /FLOAT=G_FLOAT or
/FLOAT=D_FLOAT, /ROUNDING_MODE must not also be specified.

Note that the rounding mode applies to each program unit being compiled.

The qualifier has the following form:

/ROUNDING_MODE=

���
��

NEAREST
CHOPPED
MINUS_INFINITY
DYNAMIC

���
��

Compiling HP Fortran Programs 2–79

NEAREST
This is the normal rounding mode, where results are rounded to the
nearest representable value. If you omit the /ROUNDING_MODE qualifier,
/ROUNDING_MODE=NEAREST is used.

CHOPPED
Results are rounded to the nearest representable value in the direction toward
zero.

MINUS_INFINITY
Results are rounded toward the next smallest representative value.

DYNAMIC
Lets you set the rounding mode at run time.

On OpenVMS I64, you can call the SYS$IEEE_SET_ROUNDING_MODE
routine to set the rounding mode and obtain the previous rounding mode.

When you call SYS$IEEE_SET_ROUNDING_MODE, you can set the rounding
mode to one of the following settings:

• Round toward zero (same as /ROUNDING_MODE=CHOPPED)

• Round toward nearest (same as /ROUNDING_MODE=NEAREST)

• Round toward plus infinity

• Round toward minus infinity (same as /ROUNDING_MODE=CHOPPED)

If you compile with /ROUNDING_MODE=DYNAMIC, the initial rounding
mode is set to NEAREST. It will remain NEAREST until you call SYS$IEEE_
SET_ROUNDING_MODE to change it.

On OpenVMS Alpha, there is no system routine to call to set the rounding
mode dynamically. You have to write and call your own routines to set the
rounding mode at run time. The mode is set by setting the rounding control
bits in the floating-point control register (FPCR). You can do this in C using
the asm feature from the system include file c_asm.h, or in assembly language.

Note

For the fastest run-time performance, avoid using /ROUNDING_
MODE=DYNAMIC.

The rounding mode applies to each program unit being compiled.

2–80 Compiling HP Fortran Programs

For More Information:

• On IEEE floating-point rounding modes, see the IEEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Std 754-1985).

• On SYS$IEEE_SET_ROUNDING_MODE, see the HP OpenVMS System
Services Reference Manual.

• On the floating-point status register and Itanium architecture, see the Intel
Itanium Architecture Software Developer’s Manual, Volume 1: Application
Architecture.

• On the floating-point control register and Alpha architecture, see the Alpha
Architecture Reference Manual.

2.3.41 /SEPARATE_COMPILATION — Control Compilation Unit Use in
Object Files
Controls whether the HP Fortran compiler:

• Places individual compilation units in an HP Fortran source file as
separate object modules in the object file (/SEPARATE_COMPILATION)

• Groups individual compilation units in an HP Fortran source file as a
single object module in the object file (/NOSEPARATE_COMPILATION),
which allows more interprocedure optimization

The default is /NOSEPARATE_COMPILATION.

When creating object modules for use in an object library, consider using
/SEPARATE_COMPILATION to minimize the size of the routines included
by the linker as it creates the executable image. In most cases, to allow
more interprocedure optimizations, use the default /NOSEPARATE_
COMPILATION.

For More Information:

• On compiling multiple files, see Section 2.2.2.

• On the optimizations that can be performed (such as inlining), see
Section 2.3.35.

Compiling HP Fortran Programs 2–81

2.3.42 /SEVERITY — Specify Compiler Diagnostic Severity
The /SEVERITY qualifier changes one or both of the following:

• Changes compiler diagnostic warning messages to have a severity of error
(instead of warning). The severity of informational compiler diagnostic
messages remains informational severity.

To control the conditions checked during compilation that prevent
or request messages, use the /WARNINGS qualifier keywords (see
Section 2.3.51.

• When used with the /STANDARD qualifier, /SEVERITY changes standards
checking warning messages to have a severity of error (instead of warning).
The severity of informational standards checking diagnostic messages
remains informational severity.

To control the type of standards checking performed, specify the
/STANDARDS qualifier with either the F90 keyword (default) or the
F95 keyword (see Section 2.3.45.

The qualifier has the following form:

/SEVERITY=WARNINGS=

�
WARNING
ERROR
STDERROR

�

The default is that compiler diagnostic warning messages and standards
checking messages have a severity of warning or
/SEVERITY=(WARNINGS=WARNING).

You can specify one of the following:

• ERROR

Specifies that all warning messages are to be issued with ERROR severity.

• STDERROR

Specifies that if /STANDARD is in effect and diagnostics indicating non-
standard features are issued, the diagnostics are issued with ERROR
severity (the default is that these are informational). All other warning
messages are issued with WARNING severity.

• WARNINGS

Specifies that all warning messages are to be issued with WARNING
severity.

2–82 Compiling HP Fortran Programs

For example, the following command line requests that compiler diagnostic
messages have a severity of warning (default) and standards checking
messages have a severity of error (and requests Fortran 95 standards
checking)::

$ FORTRAN/SEVERITY=WARNINGS=STDERROR/STANDARD=F95 file.F90

For More Information:

• On using the /WARNINGS qualifier to control the conditions checked
during compilation, see Section 2.3.51.

• On using the /STANDARDS qualifier to control the type of standards
checking performed, see Section 2.3.45.

2.3.43 /SHOW — Control Source Content in Listing File
The /SHOW qualifier controls whether optionally listed source lines and a
symbol map appear in the source listing. (Optionally listed source lines are
text-module source lines and preprocessor-generated source lines.)

For the /SHOW qualifier to take effect, you must specify the /LIST qualifier.

The qualifier has the following form:

/SHOW =

	

�

���
��

[NO]DICTIONARY
[NO]INCLUDE
[NO]MAP
[NO]PREPROCESSOR

���
�� [, ...]

�
ALL
NONE

�
���������

ALL
Requests that all optionally listed source lines and a symbol map be included
in the listing file. Specifying /SHOW is equivalent to /SHOW=ALL.

[NO]DICTIONARY
Controls whether HP Fortran source representations of any CDD/Repository
records referenced by DICTIONARY statements are included in the listing file.

[NO]INCLUDE
Controls whether the source lines from any file or text module specified by
INCLUDE statements are included in the source listing.

[NO]MAP
Controls whether the symbol map is included in the listing file.

Compiling HP Fortran Programs 2–83

[NO]PREPROCESSOR
Controls whether preprocessor-generated source lines are included in the
listing file.

NONE
Requests that no optionally listed source lines or a symbol map be included in
the listing file. Specifying /NOSHOW is equivalent to /SHOW=NONE.

The /SHOW qualifier defaults are NOINCLUDE and MAP.

For More Information:
On the /LIST qualifier, see Section 2.3.28.

2.3.44 /SOURCE_FORM — Fortran 90/95 Source Form
The /SOURCE_FORM qualifier allows you to specify whether all HP Fortran
source files on the FORTRAN command line are in fixed or free source form.
The qualifier has the following form:

/SOURCE_FORM=
�

FIXED
FREE

FIXED
Specifies that the input source files will be in fixed source form, regardless of
the file type. Source files with a file type of FOR or F (or any file type other
than F90) are assumed to contain fixed source form.

FREE
Specifies that the input source files will be free form, regardless of the file type.
Source files with a file type of F90 are assumed to contain free source form.

For More Information:
On column positions and source forms, see the HP Fortran for OpenVMS
Language Reference Manual.

2.3.45 /STANDARD — Perform Fortran 90/95 Standards Checking
The /STANDARD qualifier instructs the compiler to generate informational
messages for language elements that are not standard in the Fortran 90 or
Fortran 95 language and that can be identified at compile-time. The default
is /NOSTANDARD. If you specify /STANDARD with no value, the default is
Fortran 95.

2–84 Compiling HP Fortran Programs

The qualifier has the following form:

/[NO]STANDARD=

�
F90
F95
NONE

�

The /STANDARD=F90 qualifier requests that the compiler issue informational
messages for:

• Syntax extensions to the Fortran 90 standard. SYNTAX extensions include
nonstandard statements and language constructs.

• Fortran 90 standard-conforming statements that become nonstandard due
to the way in which they are used. Data type information and statement
locations are considered when determining semantic extensions.

• For fixed-format source files, lines that use tab formatting.

The /STANDARD=F95 qualifier (or /STANDARD) requests that the compiler
issue informational messages for:

• Syntax extensions to the Fortran 95 standard. SYNTAX extensions include
nonstandard statements and language constructs.

• Fortran 95 standard-conforming statements that become nonstandard due
to the way in which they are used. Data type information and statement
locations are considered when determining semantic extensions.

• For fixed-format source files, lines that use tab formatting.

• Deleted Fortran language features.

Specifying /STANDARD=NONE is equivalent to /NOSTANDARD.

If you specify the /NOWARNINGS qualifier, the /STANDARD qualifier is
ignored.

If you omit the /STANDARD qualifier, the default is /NOSTANDARD.

To change the severity of standards checking warning messages to error
severity, specify /SEVERITY=WARNINGS=SDTERROR (see Section 2.3.42).

Source statements that do not conform to Fortran 90 or Fortran 95 language
standards are detected by the HP Fortran compiler under the following
circumstances:

• The statements contain ordinary syntax and semantic errors.

• A source program containing nonconforming statements is compiled with
the /STANDARD or /CHECK qualifiers.

Compiling HP Fortran Programs 2–85

Given these circumstances, the compiler is able to detect most instances of
nonconforming usage. It does not detect all instances because the /STANDARD
qualifier does not produce checks for all nonconforming usage at compile
time. In general, the unchecked cases of nonconforming usage arise from the
following situations:

• The standard violation results from conditions that cannot be checked at
compile time.

• The compile-time checking is prone to false alarms.

Most of the unchecked cases occur in the interface between calling and called
subprograms. However, other cases are not checked, even within a single
subprogram.

The following items are known to be unchecked:

• Use of a data item prior to defining it

• Use of the SAVE statement to ensure that data items or common blocks
retain their values when reinvoked

• Association of character data items on the right and left sides of character
assignment statements

• Mismatch in order, number, or type in passing actual arguments to
subprograms with implicit interfaces

• Association of one or more actual arguments with a data item in a common
block when calling a subprogram that assigns a new value to one or more
of the arguments

For More Information:
On the HP Fortran language, see the HP Fortran for OpenVMS Language
Reference Manual.

2.3.46 /SYNCHRONOUS_EXCEPTIONS — Report Exceptions More
Precisely (Alpha only)
The /SYNCHRONOUS_EXCEPTIONS qualifier associates an exception with
the instruction that causes it. Specifying /SYNCHRONOUS_EXCEPTIONS
slows program execution, you should specify it only when debugging a specific
problem, such as locating the source of an exception.

If you omit /SYNCHRONOUS_EXCEPTIONS, /NOSYNCHRONOUS_
EXCEPTIONS is used where exceptions can be reported imprecisely one
or more instructions after the instruction that caused the exception.

2–86 Compiling HP Fortran Programs

Specifying /IEEE_MODE=FAST (default) provides imprecise exception
reporting (same as /NOSYNCHRONOUS_EXCEPTIONS). Specifying
other /IEEE_MODE keywords (when you also specify /FLOAT=IEEE_
FLOAT) provides precise exception reporting (same as /SYNCHRONOUS_
EXCEPTIONS on Alpha systems).

Note that floating-point exceptions are always synchronous on EV6 and later
processors, regardless of whether /SYNCHRONOUS_EXCEPTIONS is used.

For More Information:

• On run-time arithmetic exception handling (/IEEE_MODE qualifier), see
Section 2.3.24.

• On controlling run-time arithmetic exception messages (/CHECK=FP_
EXCEPTIONS qualifier), see Section 2.3.11.

• On the Alpha architecture and instruction pipelining, see the Alpha
Architecture Reference Manual.

2.3.47 /SYNTAX_ONLY — Do Not Create Object File
The /SYNTAX_ONLY qualifier requests that source file be checked only
for correct syntax. If you specify the /SYNTAX_ONLY qualifier, no code is
generated, no object file is produced, and some error checking done by the
optimizer is bypassed (for example, checking for uninitialized variables with
/WARNINGS=UNINITIALIZED). This qualifier allows you to do a quick
syntax check of your source file, and is especially useful in conjunction with
/WARNINGS=ARGUMENT_CHECKING.

For More Information:

• On the related qualifier that prevents object file creation (/NOOBJECT),
see Section 2.3.33.

• On the /WARNINGS qualifier, see Section 2.3.51.

2.3.48 /VERSION — Display the HP Fortran Version Number
The /VERSION qualifier can be used alone on the FORTRAN command line to
display the HP Fortran version number. If you specify /VERSION, compilation
does not occur.

For example:

$ FORTRAN /VERSION
HP Fortran V8.n-nnn-nnnn
$

Compiling HP Fortran Programs 2–87

2.3.49 /TIE — Enable Code for Shared Translated Images
The /TIE qualifier enables compiled code to be used with translated shared
images, either because the code might call into a translated image or might be
called from a translated image. Specifying /NOTIE, the default, indicates the
compiled code will not be associated with a translated image.

If you specify /TIE, link the object module using the LINK command
/NONATIVE_ONLY qualifier, and follow the guidelines provided in
Section B.6.

For More Information:
On appropriate LINK command qualifiers, see Section 3.2.1 and Section B.6.

2.3.50 /VMS — Request Compaq Fortran 77 for OpenVMS VAX
Compatibility
The /VMS qualifier specifies that the run-time system behave like Compaq
Fortran 77 for OpenVMS VAX Systems (VAX FORTRAN) in certain ways. To
prevent this behavior, specify /NOVMS.

This qualifier is the default.

The /VMS qualifier specifies the following aspects of the run-time system:

• Sets the defaults for the following qualifiers:

/CHECK=FORMAT

Specifying /NOVMS changes the default to /CHECK=NOFORMAT (see
Section 2.3.11).

/CHECK=OUTPUT_CONVERSION

Specifying /NOVMS changes the default to /CHECK=NOOUTPUT_
CONVERSION (see Section 2.3.11).

Note that the /VMS qualifier allows use of /LIST or /NOLIST in INCLUDE
statement specifications. (Also see /ASSUME=SOURCE_INCLUDE to control
included directory.)

To override the effects of the /VMS qualifier, specify /NOVMS.

For More Information:
On the OPEN statement, see the HP Fortran for OpenVMS Language Reference
Manual.

2–88 Compiling HP Fortran Programs

2.3.51 /WARNINGS — Warning Messages and Compiler Checking
The /WARNINGS qualifier instructs the compiler to generate informational (I-
level) and warning (W-level) diagnostic messages in response to informational
and warning-level errors.

The following /WARNINGS keywords prevent the display of warning messages:

NOALIGNMENT (default is ALIGNMENT)
NOGENERAL (default is GENERAL)
NOGRANULARITY (default is GRANULARITY)
NOUNCALLED (default is UNCALLED)
NOUNINITIALIZED (default is UNINITIALIZED)
NOUSAGE (default is USAGE)

The following /WARNINGS keywords can display additional warning messages
(request additional checking):

ARGUMENT_CHECKING (default is NOARGUMENT_CHECKING)
DECLARATIONS (default is NODECLARATIONS)
IGNORE_LOC (default is NOIGNORE_LOC)
TRUNCATED_SOURCE (default is NOTRUNCATED_SOURCE)
UNUSED (default is NOUNUSED)

If you omit /WARNINGS, the defaults are:

/WARNINGS=(ALIGNMENTS,NOARGUMENT_CHECKING,
NODECLARATIONS, NOERRORS,FILEOPTS,GENERAL,GRANULARITY,
NOIGNORE_LOC,NOSTDERRORS,NOTRUNCATED_SOURCE,UNCALLED,
UNINITIALIZED, NOUNUSED,USAGE)

The qualifier has the following form:

Compiling HP Fortran Programs 2–89

/WARNINGS =

	

�

�����������������
����������������

[NO]ALIGNMENT
[NO]ARGUMENT_CHECKING
[NO]DECLARATIONS
[NO]GENERAL
[NO]GRANULARITY
[NO]IGNORE_LOC
[NO]TRUNCATED_SOURCE
[NO]UNCALLED
[NO]UNINITIALIZED
[NO]UNUSED
[NO]USAGE

�����������������
����������������

[, ...]

�
ALL
NONE

�
�����������������������

[NO]ALIGNMENT
Controls whether the compiler issues diagnostic messages when variables or
arrays (created in COMMON or EQUIVALENCE statements) are declared in
such a way that they cross natural boundaries for their data size. For example,
a diagnostic message is issued if /WARNINGS=ALIGNMENT is in effect and
the virtual address of a REAL (KIND=8) variable is not a multiple of 8.

The default is ALIGNMENT. To suppress diagnostic messages about unaligned
data, specify NOALIGNMENT.

To control the alignment of fields in common blocks, derived types, and record
structures, use the /ALIGNMENT qualifier (see Section 2.3.3).

[NO]ARGUMENT_CHECKING
Controls whether the compiler issues diagnostic messages for argument
mismatches between caller and callee (when compiled together). The default is
/WARNINGS=NOARGUMENT_CHECKING.

[NO]DECLARATIONS
Controls whether the compiler issues diagnostic messages for any untyped data
item used in the program. DECLARATIONS acts as an external IMPLICIT
NONE declaration. See the description of the IMPLICIT statement in the HP
Fortran for OpenVMS Language Reference Manual for information about the
effects of IMPLICIT NONE.

The default is NODECLARATIONS.

2–90 Compiling HP Fortran Programs

[NO]GENERAL
Controls whether the compiler issues I-level and W-level diagnostic messages.
An I-level message indicates that a correct HP Fortran statement may have
unexpected results or contains nonstandard syntax or source form. A W-level
message indicates that the compiler has detected acceptable, but nonstandard,
syntax or has performed some corrective action; in either case, unexpected
results may occur.

To suppress I-level and W-level diagnostic messages, specify the negative form
of this qualifier (/WARNINGS=NOGENERAL).

The default is GENERAL.

[NO]GRANULARITY
Controls whether the compiler issues the compiler diagnostic message "Unable
to generate code for requested granularity" to indicate when data access might
not occur safely from different threads in a shared memory system (such
as asynchronous write access from outside the user process). The default is
/WARNINGS=GRANULARITY.

For more information on data granularity and controlling the size of data that
can be safely accessed from different threads, see Section 2.3.23.

[NO]IGNORE_LOC
Requests that the compiler issue warnings when %LOC is stripped from an
argument due to specification of the IGNORE_LOC attribute. The default is
/WARNINGS=NOIGNORE_LOC (does not issue a warning for this condition).

[NO]TRUNCATED_SOURCE
Controls whether the compiler issues a warning diagnostic message
(EXCCHASRC) when it reads a fixed-form source line with a statement
field that exceeds the maximum column width. The maximum column width
is column 72 or 132, depending whether /EXTEND_SOURCE qualifier was
specified (or its OPTIONS statement qualifier).

This option has no effect on truncation; lines that exceed the maximum column
width are always truncated.

The default is /WARNINGS=NOTRUNCATED_SOURCE.

[NO]UNCALLED
Suppresses the compiler warning diagnostic message when a statement
function is never called. The default is /WARNINGS=UNCALLED.

Compiling HP Fortran Programs 2–91

[NO]UNINITIALIZED
Controls whether warning messages are issued when a variable is referenced
before a value was assigned to it. Specify NOUNINITIALIZED to suppress
such warning messages.

The default, /WARNINGS=UNINITIALIZED, issues warning messages when a
variable is referenced before a value was assigned to it.

[NO]UNUSED
Requests warning messages for a variable that is declared but never used. The
default is /WARNINGS=NOUNUSED.

[NO]USAGE
Specifying /WARNINGS=NOUSAGE suppresses informational messages about
questionable programming practices and the use of intrinsic functions that use
only two digits to represent years (such as 2000). The compiler allows such
programming practices, although they are often an artifact of programming
errors. For example, a continued character or Hollerith literal whose first part
ends before the statement field and appears to end with trailing spaces.

The default is USAGE.

ALL
Causes the compiler to print all I-level and W-level diagnostic messages,
including warning messages for any unaligned data and untyped data items.
Specifying ALL is equivalent to /WARNINGS and has the effect of specifying
/WARNINGS=(ALIGNMENT, DECLARATIONS, GENERAL, UNCALLED,
UNINITIALIZED).

NONE
Suppresses all I-level and W-level messages. Specifying /NOWARNINGS is
equivalent to /WARNINGS=NONE.

For More Information:

• On compiler diagnostic messages, see Section 2.6.

• On run-time checking for various conditions (/CHECK qualifier), see
Section 2.3.11.

• On changing the severity of compiler diagnostic warnings messages to error
severity, see Section 2.3.42.

2–92 Compiling HP Fortran Programs

2.4 Creating and Maintaining Text Libraries
A text library contains library modules of source text. To include a library
module from a text library in a program, use an INCLUDE statement.

Library modules within a text library are like ordinary text files, but they
differ in the following ways:

• They contain a unique name, called the library module name, that is used
to access them.

• Several library modules can be contained within the same library file.

Library modules in text libraries can contain any kind of text; this section only
discusses their use when HP Fortran language source is used.

You should be aware of the difference between library modules that reside in
text libraries and the HP Fortran post-compiled module files (.F90$MOD file
type) that support use association (see Section 2.2.3).

Use the LIBRARY command (OpenVMS Librarian Utility) to create text
libraries and insert, replace, delete, copy, or list library modules in text
libraries. Text libraries have a default file type of TLB.

Figure 2–2 shows the creation of a text library and its use in compiling HP
Fortran programs.

Compiling HP Fortran Programs 2–93

Figure 2–2 Creating and Using a Text Library

COMMAND INPUT/OUTPUT FILES

APPLIC.SYM

DECLARE.F90

FORFILES.TLB

METRIC.F90

ZK−7478A−GE

FORFILES.TLB
files in library

and DECLARE
modules APPLIC
containing the
Create a library

locate the INCLUDE

$ LIBRARY/TEXT/CREATE FORFILES

METRIC.F90, and
$ FORT METRIC+FORFILES/LIBRARY

Process the input file

$__FILE: APPLIC.SYM,DECLARE.F90

For More Information:

• On using the logical name FORT$LIBRARY to define a default library, see
Section 2.2.4.

• On specifying the name of the library using the /LIBRARY qualifier on the
FORTRAN command line, see Section 2.3.27.

• On specifying the directory location of the library using the /INCLUDE
qualifier, see Section 2.3.25.

• On specifying the directory location of the library using the
/ASSUME=SOURCE_INCLUDE qualifier, see Section 2.3.7.

• On using Fortran modules, see Section 2.2.3.

• On using INCLUDE or USE statements, see the HP Fortran for OpenVMS
Language Reference Manual.

2–94 Compiling HP Fortran Programs

2.4.1 Using the LIBRARY Commands
Table 2–3 summarizes the commands that create libraries and provide
maintenance functions. For a complete list of the qualifiers for the LIBRARY
command and a description of other DIGITAL Command Language (DCL)
commands listed in Table 2–3, see the Guide to Using VMS Command
Procedures or enter HELP LIBRARY.

Table 2–3 Commands to Control Library Files

Function Command Syntax1

Create a library. LIBRARY/TEXT/CREATE library-name file-spec,...

Add one or more library
modules to a library.

LIBRARY/TEXT/INSERT library-name file-spec,...

Replace one or more library
modules in a library.

LIBRARY/TEXT/REPLACE library-name file-spec,...2

Specify the names of library
modules to be added to a
library.

LIBRARY/TEXT/INSERT library-name file-spec/MODULE=
module-name

Delete one or more library
modules from a library.

LIBRARY/TEXT/DELETE=(module-name,...) library-name

Copy a library module from a
library into another file.

LIBRARY/TEXT/EXTRACT=module-name/OUTPUT=
file-spec library-name

List the library modules in a
library.

LIBRARY/TEXT/LIST=file-spec library-name

1The LIBRARY command qualifier /TEXT indicates a text module library. By default, the LIBRARY command
assumes an object module library.
2REPLACE is the default function of the LIBRARY command if no other action qualifiers are specified. If no
library module exists with the given name, /REPLACE is equivalent to /INSERT.

2.4.2 Naming Text Library Modules
When the LIBRARY command adds a library module to a library, by default
it uses the file name of the input file as the name of the library module. In
the example in Figure 2–2, the LIBRARY command adds the contents of the
files APPLIC.SYM and DECLARE.FOR to the library and names the library
modules APPLIC and DECLARE.

Alternatively, you can name a module in a library with the /MODULE qualifier.
For example:

$ LIBRARY/TEXT/INSERT FORFILES DECLARE.FOR /MODULE=EXTERNAL_DECLARATIONS

Compiling HP Fortran Programs 2–95

The preceding command inserts the contents of the file DECLARE.FOR into
the library FORFILES under the name EXTERNAL_DECLARATIONS. This
library module can be included in an HP Fortran source file during compilation
with the following statement:

INCLUDE ’FORFILES(EXTERNAL_DECLARATIONS)’

For More Information:

• On the INCLUDE statement, see the HP Fortran for OpenVMS Language
Reference Manual and Section 2.2.4.1.

• On controlling the directories and libraries searched with FORTRAN
command qualifiers and the FORT$INCLUDE logical name, see
Section 2.2.4.1.

2.5 Using CDD/Repository
CDD/Repository is an optional software product available under a separate
license. The CDD/Repository product allows you to maintain shareable data
definitions (language-independent structure declarations) that are defined by a
data or repository administrator.

Note

CDD/Repository supports both the Common Data Dictionary (Version
3) and CDD/Plus (Version 4) interfaces. Older dictionary versions need
to be converted to repository (CDD/Repository) format using a supplied
conversion utility. For detailed information about CDD/Repository, see
the CDD/Repository documentation.

CDD/Repository data definitions are organized hierarchically in much the same
way that files are organized in directories and subdirectories. For example, a
repository for defining personnel data might have separate directories for each
employee type.

Descriptions of data definitions are entered into the dictionary in a special-
purpose language called CDO (Common Dictionary Operator, which replaces
the older interface called CDDL, Common Data Dictionary Language).
CDD/Repository converts the data descriptions to an internal form—making
them independent of the language used to access them—and inserts them into
the repository.

2–96 Compiling HP Fortran Programs

During the compilation of an HP Fortran program, CDD/Repository data
definitions can be accessed by means of DICTIONARY statements. If the
data attributes of the data definitions are consistent with HP Fortran
requirements, the data definitions are included in the HP Fortran program.
CDD/Repository data definitions, in the form of HP Fortran source code, appear
in source program listings if you specify the /SHOW=DICTIONARY qualifier
on the FORTRAN command line or the /LIST qualifier in the DICTIONARY
statement.

The advantage in using CDD/Repository instead of HP Fortran source
for structure declarations is that CDD/Repository record declarations are
language-independent and can be used with several supported OpenVMS
languages.

The following examples demonstrate how data definitions are written for
CDD/Repository. The first example is a structure declaration written in
CDDL. The second example shows the same structure as it would appear in a
FORTRAN output listing.

CDO Representation:
define field name

datatype is text
size is 30.

define field address
datatype is text
size is 40.

define field salesman-id
datatype is longword unsigned
size is 4.

define record payroll-record
name.
address.
salesman-id.

end record.

HP Fortran Source Code Representation:
STRUCTURE /PAYROLL_RECORD/

STRUCTURE SALESMAN
CHARACTER*30 NAME
CHARACTER*40 ADDRESS
STRUCTURE SALESMAN_ID

BYTE %FILL(4)
END STRUCTURE

END STRUCTURE
END STRUCTURE

Compiling HP Fortran Programs 2–97

2.5.1 Accessing CDD/Repository from HP Fortran Programs
A repository or data administrator uses CDO to create repositories, define
directory structures, and insert record and field definitions into the repository.
Many repositories can be linked together to form one logical repository. If the
paths are set up correctly, users can access definitions as if they were in a
single repository regardless of physical location.

CDO also creates the record paths. Once established, records can be extracted
from the repository by means of DICTIONARY statements in HP Fortran
programs. At compile time, the record definition and its attributes are
extracted from the designated repository. Then the compiler converts the
extracted record definition into an HP Fortran structure declaration and
includes it in the object module.

The DICTIONARY statement incorporates CDD/Repository data definitions
into the current HP Fortran source file during compilation. The DICTIONARY
statement can occur anywhere in an HP Fortran source file that a specification
statement (such as a STRUCTURE...END STRUCTURE block) is allowed.
The format of the DICTIONARY statement is described in the HP Fortran for
OpenVMS Language Reference Manual.

A DICTIONARY statement must appear as a statement by itself; it cannot be
used within an HP Fortran structure declaration. For example, consider the
following DICTIONARY statement:

INTEGER*4 PRICE
DICTIONARY ’ACCOUNTS’

This would result in a declaration of the following form:

INTEGER*4 PRICE
STRUCTURE /ACCOUNTS/

STRUCTURE NUMBER
CHARACTER*3 LEDGER
CHARACTER*5 SUBACCOUNT

END STRUCTURE
CHARACTER*12 DATE
.
.
.

END STRUCTURE

When you extract a record definition from the repository, you can choose to
include this translated record in the program’s listing by using the /LIST
qualifier in the DICTIONARY statement or the /SHOW=DICTIONARY
qualifier in the FORTRAN command line.

2–98 Compiling HP Fortran Programs

CDD/Repository data definitions can contain explanatory text in the
DESCRIPTION IS clause. If you specify /SHOW=DICTIONARY on the
FORTRAN command (or /LIST in the DICTIONARY statement), this text is
included in the HP Fortran output listing as comments.

Because the DICTIONARY statement generally contains only structure
declaration blocks, you will usually also need to include one or more RECORD
statements in your program to make use of these structures. (See the HP
Fortran for OpenVMS Language Reference Manual for information about
structure declaration blocks or the RECORD statement.)

2.5.2 HP Fortran and CDD/Repository Data Types
The CDD/Repository supports some data types that are not native to HP
Fortran. If a data definition contains a field declared with an unsupported
data type, HP Fortran replaces the field with one declared as an inner
STRUCTURE containing a single unnamed field (%FILL field) that is a BYTE
array with an appropriate dimension. The HP Fortran compiler does not
attempt to approximate a data type that it does not support.

For example, CDD/Repository’s data type UNSIGNED LONG is not supported
by HP Fortran. As a result, if the field FIELD1 is declared to be UNSIGNED
LONG using CDO, HP Fortran replaces the definition of FIELD1 with the
following declaration:

STRUCTURE FIELD1
BYTE %FILL(4)

END STRUCTURE

HP Fortran does not declare it as INTEGER*4, which results in signed
operations if the field was used in an arithmetic expression.

Table 2–4 summarizes the CDO data types and corresponding HP Fortran data
types.

Table 2–4 CDO Data Types and Corresponding HP Fortran Data Types

CDO Data Type HP Fortran Data Type

DATE STRUCTURE (length 8)

DATE AND TIME STRUCTURE (length n)

VIRTUAL ignored

BIT m ALIGNED STRUCTURE (length n+7/8)

(continued on next page)

Compiling HP Fortran Programs 2–99

Table 2–4 (Cont.) CDO Data Types and Corresponding HP Fortran Data Types

CDO Data Type HP Fortran Data Type

BIT m STRUCTURE (length n+7/8)

UNSPECIFIED STRUCTURE (length n)

TEXT CHARACTER*n

VARYING TEXT STRUCTURE (length n)

VARYING STRING STRUCTURE (length n)

D_FLOATING REAL*8 (/FLOAT=D_FLOAT only)

D_FLOATING COMPLEX COMPLEX*16 (/FLOAT=D_FLOAT only)

F_FLOATING REAL*4 (/FLOAT=D_FLOAT or /FLOAT=G_
FLOAT)

F_FLOATING COMPLEX COMPLEX*8 (/FLOAT=D_FLOAT or /FLOAT=G_
FLOAT)

G_FLOATING REAL*8 (/FLOAT=G_FLOAT only)

G_FLOATING COMPLEX COMPLEX*16 (/FLOAT=G_FLOAT only)

H_FLOATING STRUCTURE (length 16)

H_FLOATING COMPLEX STRUCTURE (length 32)

SIGNED BYTE LOGICAL*1

UNSIGNED BYTE STRUCTURE (length 1)

SIGNED WORD INTEGER*2

UNSIGNED WORD STRUCTURE (length 2)

SIGNED LONGWORD INTEGER*4

UNSIGNED LONGWORD STRUCTURE (length 4)

SIGNED QUADWORD STRUCTURE (length 8)

UNSIGNED QUADWORD STRUCTURE (length 8)

SIGNED OCTAWORD STRUCTURE (length 16)

UNSIGNED OCTAWORD STRUCTURE (length 16)

PACKED NUMERIC STRUCTURE (length n)

SIGNED NUMERIC STRUCTURE (length n)

UNSIGNED NUMERIC STRUCTURE (length n)

LEFT OVERPUNCHED STRUCTURE (length n)

(continued on next page)

2–100 Compiling HP Fortran Programs

Table 2–4 (Cont.) CDO Data Types and Corresponding HP Fortran Data Types

CDO Data Type HP Fortran Data Type

LEFT SEPARATE STRUCTURE (length n)

RIGHT OVERPUNCHED STRUCTURE (length n)

RIGHT SEPARATE STRUCTURE (length n)

Note

D_floating and G_floating data types cannot be mixed in one subroutine
because both types cannot be handled simultaneously. You can use
both types, each in a separate subroutine, depending on the OPTIONS
statement qualifier in effect for the individual subroutine. For a
discussion of the handling of REAL*8 data types in HP Fortran, see
the HP Fortran for OpenVMS Language Reference Manual.

The compiler issues an error message if it encounters a CDD/Repository feature
that conflicts with HP Fortran. It ignores any CDD/Repository features that it
does not support.

2.6 Compiler Limits, Diagnostic Messages, and Error
Conditions

The following sections discuss the compiler limits and error messages.

2.6.1 Compiler Limits
Table 2–5 lists the limits to the size and complexity of a single HP Fortran
program unit and to individual statements contained in it.

The amount of data storage, the size of arrays, and the total size of executable
programs are limited only by the amount of process virtual address space
available, as determined by process quotas and system parameters.

Compiling HP Fortran Programs 2–101

Table 2–5 Compiler Limits

Language Element Limit

Actual number of arguments per CALL
or function reference

255

Arguments in a function reference
in a specification expression

255

Array dimensions 7

Array elements per dimension 9,223,372,036,854,775,807 or
process limit

Constants; character and Hollerith 2000 characters

Constants; characters read in list-directed I/O 2048 characters

Continuation lines 511

DO and block IF statement nesting (combined) 128

DO loop index variable 9,223,372,036,854,775,807 or
process limit

Format group nesting 8

Fortran source line length 132 characters

INCLUDE file nesting 20 levels

Labels in computed or assigned GOTO list 500

Lexical tokens per statement 3000

Parentheses nesting in expressions 40

Structure nesting 20

Symbolic-name length 63 characters

For More Information:
On relevant process quotas and system parameters, see Section 1.2.

2.6.2 Compiler Diagnostic Messages and Error Conditions
The HP Fortran compiler identifies syntax errors and violations of language
rules in the source program.

If the compiler locates any errors, it writes messages to your default output
device; so, if you enter the FORTRAN command interactively, the messages are
displayed on your terminal. If the FORTRAN command is executed in a batch
job, the messages appear in the log file for the batch job.

2–102 Compiling HP Fortran Programs

A sample message from the compiler as it would appear on a terminal screen
follows:

40 FORMAT (I3,)
................^
%F90-W-ERROR, An extra comma appears in the format list.
at line number 13 in file DISK$:[USER]SAMP_MESS.FOR;4

This sample message consists of the following lines:

• The source file line that caused the message

• A pointer (...^ on a terminal or ...1 in a listing file) to the part of the source
line causing the error

• The actual message (facility, severity, mnemonic, and text)

• The line number and name of source file

The message line has the following format:

%F90-s-ident, message-text

The facility, F90, follows the percent sign (%). The severity of the message
(I for informational, W for warning, E for error, or F for fatal) replaces s.
A mnemonic for that message replaces ident. The explanatory text of the
message replaces message-text.

Diagnostic messages usually provide enough information for you to determine
the cause of an error and correct it. If you compile using the /OPTIMIZE
qualifier (the default) and have difficulty determining the cause of an error
(possibly because of the optimizations), consider compiling using a lower
optimization level or /NOOPTIMIZE.

If the compiler creates a listing file, it also writes the messages to the listing.
The pointer (...1) and messages follow the statement that caused the error.

2.7 Compiler Output Listing Format
A compiler output listing produced by a FORTRAN command with the /LIST
qualifier consists of the following sections:

• A source code section

• A machine code section—optional

• A storage map section (cross-reference)—optional

• A compilation summary

Section 2.7.1 through Section 2.7.5 describe the compiler listing sections in
detail.

Compiling HP Fortran Programs 2–103

For More Information:

• On the /LIST qualifier, see Section 2.3.28)

• On the /MACHINE_CODE qualifier, see Section 2.3.29.

• On the /SHOW qualifier, see Section 2.3.43.

2.7.1 Source Code Section
The source code section of a compiler output listing displays the source
program as it appears in the input file, with the addition of sequential line
numbers generated by the compiler. Example 2–1 and Example 2–2 show a
sample of a source code section of a free-form compiler output listing.

Example 2–1 Sample Listing of Source Code on OpenVMS I64

SIMPLE$MAIN$BLK Source Listing 26-OCT-2004 15:29:44 HP Fortran V8.0-48291 Page 1
26-OCT-2004 15:29:26 DISK$DKA100:[USERNAME.BUG]SIMPLE.F90;1

1 integer i
2 i = 10
3 type *,i
4 end

PROGRAM SECTIONS

Name Bytes Attributes

1 $LITERAL$ 24 PIC CON REL LCL SHR NOEXE RD NOWRT OCTA
2 $CODE$ 224 PIC CON REL LCL SHR EXE NORD NOWRT OCTA
3 $SBSS$ 12 NOPIC CON REL LCL NOSHR NOEXE RD WRT OCTA

Total Space Allocated 260

ENTRY POINTS

Address Name

2-00000000 SIMPLE$MAIN

VARIABLES

Address Type Name

3-00000008 I*4 I

2–104 Compiling HP Fortran Programs

Example 2–2 Sample Listing of Source Code on OpenVMS Alpha

RELAX2 Source Listing 19-DEC-2004 16:12:46 HP Fortran V8.x-xxxx Page 1
12-DEC-2004 10:41:04 F90$DISK:[TUCKER]LIST_EX.F90;3

1 SUBROUTINE RELAX2(EPS)
2 INTEGER, PARAMETER :: M=40
3 INTEGER, PARAMETER :: N=60
4
5 COMMON X (M,N)
6
7 LOGICAL DONE
8 10 DONE = .TRUE.
9
10 DO J=1,N-1
11 DO I=1,M-1
12 XNEW = (X(I-1,J)+X(I+1,J)+X(I,J-1)+X(I,J+1))/4
13 IF (ABS(XNEW-X(I,J)) > EPS) DONE = .FALSE.
14 X(I,J) = XNEW
15 END DO
16 END DO
17
18 IF (.NOT. DONE) GO TO 10
19 RETURN
20 END SUBROUTINE

Compiler-generated line numbers appear in the left margin and are used
with the %LINE prefix in debugger commands. These compiler-generated line
numbers are displayed by compiler-generated messages and certain run-time
error messages. (For more information on messages, see Appendix C.)

2.7.2 Machine Code Section
The machine code section of a compiler output listing provides a symbolic
representation of the compiler-generated object code. The representation of the
generated code and data is similar to that of a MACRO assembly listing.

The machine code section is optional. To receive a listing file with a machine
code section, you must specify the following:

$ FORTRAN/LIST/MACHINE_CODE

Example 2–3 shows a sample of part of a machine code section of a compiler
output listing for OpenVMS I64 systems.

Compiling HP Fortran Programs 2–105

Example 2–3 Sample (Partial) Listing of Machine Code on OpenVMS I64

SIMPLE$MAIN$BLK Machine Code Listing 26-OCT-2004 15:29:34 HP Fortran V8.0-48291 Page 2
26-OCT-2004 15:29:26 DISK$DKA100:[USERNAME.BUG]SIMPLE.F90;1

.psect $CODE$, CON, LCL, SHR, EXE, NOWRT, NOVEC, NOSHORT

.proc MAIN__

.align 32

.global MAIN__

.personality DFOR$HANDLER

.handlerdata -32
MAIN__: // 000002

{ .mii
002C0081A980 0000 alloc r38 = rspfs, 0, 8, 5, 0
0119F8C80300 0001 adds sp = -64, sp // r12 = -64, r12
0108001009C0 0002 mov r39 = gp ;; // r39 = r1

}
{ .mib

010800C40080 0010 adds r2 = 32, sp // r2 = 32, r12
000188000940 0011 mov r37 = rp // r37 = br0
004000000000 0012 nop.b 0 ;;

}
{ .mii

008CC0200000 0020 st8 [r2] = r0
0120001000C0 0021 add r3 = @ltoff($LITERAL$+16), gp // r3 = @ltoff($LITERAL$+16), r1
012000002640 0022 mov ai = 1 // r25 = 1

}
{ .mmi

012000014880 0030 mov r34 = 10 ;;
0080C03000C0 0031 ld8 r3 = $LITERAL$ // r3 = [r3]
000008000000 0032 nop.i 0 ;;

}
{ .mfb

010800300A00 0040 mov out0 = r3 // r40 = r3
000008000000 0041 nop.f 0
00A000001000 0042 br.call.sptk.many rp = DFOR$SET_FPE ;; // br0 = DFOR$SET_FPE

}
{ .mii

010802700040 0050 mov gp = r39 // r1 = r39
012000002640 0051 mov ai = 1 ;; // r25 = 1
012000100800 0052 add r32 = @ltoff($LITERAL$+8), gp ;; // r32 = @ltoff($LITERAL$+8), r1

}
{ .mfb

0080C2000A00 0060 ld8 out0 = $LITERAL$ // r40 = [r32]
000008000000 0061 nop.f 0
00A000001000 0062 br.call.sptk.many rp = // br0 = DFOR$SET_REENTRANCY

DFOR$SET_REENTRANCY ;;
}
{ .mii

010802700040 0070 mov gp = r39 // r1 = r39
010800C208C0 0071 adds r35 = 16, sp // r35 = 16, r12 // 000003
010800C40840 0072 adds r33 = 32, sp // r33 = 32, r12

}
{ .mmi

(continued on next page)

2–106 Compiling HP Fortran Programs

Example 2–3 (Cont.) Sample (Partial) Listing of Machine Code on OpenVMS I64
01200000A640 0080 mov ai = 5 ;; // r25 = 5
012000100900 0081 add r36 = @ltoffx($LITERAL$), gp // r36 = @ltoffx($LITERAL$), r1
010800C20B00 0082 adds out4 = 16, sp // r44 = 16, r12

}
{ .mlx

0119F80FCA40 0090 adds out1 = -2, r0 // r41 = -2, r0
000000000002 0091 movl out2 = 8716160 ;; // r42 = 8716160
019FF20015

}
{ .mii

0080C2400AC0 00A0 ld8.mov out3 = [r36], $LITERAL$
010800C40A00 00A1 adds out0 = 32, sp // r40 = 32, r12
000008000000 00A2 nop.i 0 ;;

}
{ .mmb

008C82344000 00B0 st4 [r35] = r34
008C82100000 00B1 st4 [r33] = r0
00A000001000 00B2 br.call.sptk.many rp = // br0 = DFOR$WRITE_SEQ_LIS

DFOR$WRITE_SEQ_LIS ;;
}
{ .mii

012000002200 00C0 mov r8 = 1 // 000004
010802700040 00C1 mov gp = r39 // r1 = r39 // 000003
00015404C000 00C2 mov.i rspfs = r38 ;; // 000004

}
{ .mib

010800C80300 00D0 adds sp = 64, sp // r12 = 64, r12
000E0014A000 00D1 mov rp = r37 // br0 = r37
000108001100 00D2 br.ret.sptk.many rp ;; // br0

}
.endp MAIN__

Routine Size: 224 bytes, Routine Base: $CODE$ + 0000

.psect $SBSS$, CON, LCL, NOSHR, NOEXE, WRT, NOVEC, SHORT

.lcomm var$0004, 1, 1

.lcomm fill$$1, 11, 16

.psect $LITERAL$, CON, LCL, SHR, NOEXE, NOWRT, NOVEC, NOSHORT
00010109 0000 string "\X09\X01\X01\X00"

00000000 0008 data8 0x0 // data8 0
00000000 000C
00200000 0010 data8 0x200000 // data8 2097152
00000000 0014

The following list explains how generated code and data are represented in
machine code listings on OpenVMS I64 systems:

• Machine instruction bundles are marked by curly braces, and the bundle
type is at the top after the open brace.

Compiling HP Fortran Programs 2–107

• Machine instructions in a bundle are shown in hexadecimal on the far
left. The next column to the right is the hexadecimal address offset of the
instruction from the routine base address. The next column is a symbolic
representation, using memnonics and symbolic operand expressions (such
as ‘‘out1’’). The actual operand registers are shown in comments in the
next column to the right (such as ‘‘r40’’).

• A predicate register controlling an instruction is shown in parentheses
before the mnemonic representation.

• Line numbers corresponding to the generated code are shown on the far
right side of the listing.

Example 2–4 shows a sample of part of a machine code section of a compiler
output listing for OpenVMS Alpha systems.

Example 2–4 Sample (Partial) Listing of Machine Code on OpenVMS Alpha

RELAX2 Machine Code Listing 19-DEC-2004 16:12:46 HP Fortran V8.x-xxxx Page 3
12-DEC-2004 10:41:04 F90$DISK:[TUCKER]LIST_EX.F90;3

.PSECT $CODE$, OCTA, PIC, CON, REL, LCL, SHR,-
EXE, NORD, NOWRT

(continued on next page)

2–108 Compiling HP Fortran Programs

Example 2–4 (Cont.) Sample (Partial) Listing of Machine Code on OpenVMS Alpha

0000 RELAX2::
23DEFFC0 0000 LDA SP, -64(SP)
80100000 0004 LDF F0, (R16) ; 000013
A41B0020 0008 LDQ R0, 32(R27) ; 000012
B77E0000 000C STQ R27, (SP) ; 000001
B75E0008 0010 STQ R26, 8(SP)
B7BE0010 0014 STQ FP, 16(SP)
9C5E0018 0018 STT F2, 24(SP)
9C7E0020 001C STT F3, 32(SP)
9C9E0028 0020 STT F4, 40(SP)
9CBE0030 0024 STT F5, 48(SP)
9CDE0038 0028 STT F6, 56(SP)
47FE041D 002C MOV SP, FP
803B0028 0030 LDF F1, 40(R27) ; 000012
2FFE0000 0034 UNOP
2FFE0000 0038 UNOP
2FFE0000 003C UNOP

0040 .10: ; 000008
2FFE0000 0040 UNOP
2FFE0000 0044 UNOP
2FFE0000 0048 UNOP
2FFE0000 004C UNOP
203FFFFF 0050 MOV -1, DONE ; -1, R1
47E77411 0054 MOV 59, var$0002 ; 59, R17 ; 000010
47F41412 0058 MOV 160, R18 ; 000014
2FFE0000 005C UNOP

0060 lab$0004: ; 000010
2FFE0000 0060 UNOP
2FFE0000 0064 UNOP
2FFE0000 0068 UNOP
2FFE0000 006C UNOP
40120413 0070 ADDQ R0, R18, R19
47E4F414 0074 MOV 39, var$0003 ; 39, R20 ; 000011
2273FF5C 0078 LDA R19, -164(R19) ; 000012
2FFE0000 007C UNOP

0080 lab$0008: ; 000011
2FFE0000 0080 UNOP
2FFE0000 0084 UNOP
2FFE0000 0088 UNOP
2FFE0000 008C UNOP
81530008 0090 LDF F10, 8(R19)
8193FF64 0094 LDF F12, -156(R19)
47FF0418 0098 CLR R24 ; 000013
81730000 009C LDF F11, (R19) ; 000012
81B300A4 00A0 LDF F13, 164(R19)
81D3000C 00A4 LDF F14, 12(R19)
8213FF68 00A8 LDF F16, -152(R19)
823300A8 00AC LDF F17, 168(R19)
82730010 00B0 LDF F19, 16(R19)
82B3FF6C 00B4 LDF F21, -148(R19)
82D300AC 00B8 LDF F22, 172(R19)
82F30014 00BC LDF F23, 20(R19)

(continued on next page)

Compiling HP Fortran Programs 2–109

Example 2–4 (Cont.) Sample (Partial) Listing of Machine Code on OpenVMS Alpha
8333FF70 00C0 LDF F25, -144(R19)
835300B0 00C4 LDF F26, 176(R19)
83730018 00C8 LDF F27, 24(R19)
.
.
.
Routine Size: 1020 bytes, Routine Base: $CODE$ + 0000

.PSECT $LINK$, OCTA, NOPIC, CON, REL, LCL,-
NOSHR, NOEXE, RD, NOWRT

0000 ; Stack-Frame invocation descriptor
Entry point: RELAX2
Entry Length: 48
Registers used: R0-R1, R16-R25, R27-FP,

F0-F6, F10-F30
Registers saved: FP, F2-F6
Fixed Stack Size: 64

00000000 0020 .ADDRESS $BLANK
00003F80 0028 .LONG X^3F80 ; .F_FLOATING 0.2500000

The following list explains how generated code and data are represented in
machine code listings on OpenVMS Alpha systems:

• Machine instructions are represented by MACRO mnemonics and syntax.
To enable you to identify the machine code that is generated from a
particular line of source code, the compiler-generated line numbers that
appear in the source code listing are also used in the machine code listing.
These numbers appear in the right margin, preceding the machine code
generated from individual lines of source code.

• The first line contains a .TITLE assembler directive, indicating the
program unit from which the machine code was generated:

For a main program, the title is as declared in a PROGRAM statement.
If you did not specify a PROGRAM statement, the main program is
titled filename$MAIN, where filename is the name of the source file.

For a subprogram, the title is the name of the subroutine or function.

For a BLOCK DATA subprogram, the title is either the name declared
in the BLOCK DATA statement or filename$DATA (by default).

• The lines following .TITLE provide information such as the contents of
storage initialized for FORMAT statements, DATA statements, constants,
and subprogram argument call lists.

2–110 Compiling HP Fortran Programs

• General registers (0 through 31) are represented by R0 through R31
and floating-point registers are represented by F0 through F31. The
relative PC for each instruction or data item is listed at the left margin, in
hexadecimal.

• Variables and arrays defined in the source program are shown as they were
defined in the program. Offsets from variables and arrays are shown in
decimal. (Optimization frequently places variables in registers, so some
names may be missing.)

• HP Fortran source labels referenced in the source program are shown with
a period prefix (.). For example, if the source program refers to label 300,
the label appears in the machine code listing as .300. Labels that appear in
the source program, but are not referenced or are deleted during compiler
optimization, are ignored. They do not appear in the machine code listing
unless you specified /NOOPTIMIZE.

• The compiler might generate labels for its own use. These labels appear
as L$n or lab$000n, where the value of n is unique for each such label in a
program unit.

• Integer constants are shown as signed integer values; real and complex
constants are shown as unsigned hexadecimal values preceded by ^X.

• Addresses are represented by the program section name plus the
hexadecimal offset within that program section. Changes from one program
section to another are indicated by PSECT lines.

2.7.3 Annotations Section
The annotations section of the compiler output listing describes special
instructions used for optimizations such as prefetching, inlining, and loop
unrolling. It is controlled by the /ANNOTATIONS qualifier. See Section 2.3.5.

Example 2–5 shows the list of annotations that is produced from the following
source code:

1 2 3 4 5 6 7 287 work1=sqrt((xlatt*real(mindex,LONGreal))
2+(ylatt*real(nindex,LONGreal))2+(q-p)**2)

8 9 10 11 12 288 work2=q-p

Compiling HP Fortran Programs 2–111

Example 2–5 Sample (Partial) Listing of Annotations

1. Software pipelining across 4 iterations; unrolling loop 2 times;
steady state estimated 180 cycles; 0 prefetch iterations

2. Unrolling loop 6 times
3. Prefetching MINDEX, 128 bytes ahead
4. Prefetching NINDEX, 128 bytes ahead
5. Prefetching Q, 128 bytes ahead
6. Write-hinting WORK1, distance 128
7. Prefetching P, 128 bytes ahead
8. Software pipelining across 2 iterations; unrolling loop 2 times;

steady state estimated 17 cycles; 0 prefetch iterations
9. Prefetching P, 192 bytes ahead
10. Write-hinting WORK2, distance 128
11. Unrolling loop 7 times
12. Prefetching Q, 192 bytes ahead

2.7.4 Storage Map Section
The storage map section of the compiler output listing is printed after each
program unit, or library module. It is not generated when a fatal compilation
error is encountered.

The storage map section summarizes information in the following categories:

• Program sections

The program section summary describes each program section (PSECT)
generated by the compiler. The descriptions include:

PSECT number (used by most of the other summaries)

Name

Size in bytes

Attributes

PSECT usage and attributes are described in Section 13.1.

• Total memory allocated

Following the program sections, the compiler prints the total memory
allocated for all program sections compiled in the following form:

Total Space Allocated nnn

• Entry points

The entry point summary lists all entry points and their addresses. If the
program unit is a function, the declared data type of the entry point is also
included.

2–112 Compiling HP Fortran Programs

• Variables

The variable summary lists all simple variables, with the data type and
address of each. If the variable is removed as a result of optimization, a
double asterisk (**) appears in place of the address.

• Records

The record summary lists all record variables and derived types. It shows
the address, the structure that defines the fields of the individual records
or types, and the total size of each record or type.

• Arrays

The array summary is similar to the variable summary. In addition to data
type and address, the array summary gives the total size and dimensions
of the array. If the array is an adjustable array or assumed-size array,
its size is shown as a double asterisk (**), and each adjustable dimension
bound is shown as a single asterisk (*).

• Record Arrays

The record array summary is similar to the record summary. The record
array summary gives the dimensions of the record or derived-type array
in addition to address, defining structure, and total size. If the record or
derived-type array is an adjustable array or assumed-size array, its size is
shown as a double asterisk (**), and each adjustable dimension bound is
shown as a single asterisk (*).

• Labels

The label summary lists all user-defined statement labels. FORMAT
statement labels are suffixed with an apostrophe (’). If the label address
field contains a double asterisk (**), the label was not used or referred to
by the compiled code.

• Functions and subroutines

The functions and subroutines summary lists all external routine
references made by the source program. This summary does not include
references to routines that are dummy arguments, because the actual
function or subroutine name is supplied by the calling program.

A heading for an information category is printed in the listing only when
entries are generated for that category.

Compiling HP Fortran Programs 2–113

Example 2–6 shows an example of a storage map section.

Example 2–6 Sample Storage Map Section

RELAX2 Source Listing 19-DEC-2004 16:12:46 HP Fortran v8.x-xxxx Page 1
12-DEC-2004 10:41:04 F90$DISK:[TUCKER]LIST_EX.F90;3

PROGRAM SECTIONS

Name Bytes Attributes

1 $CODE$ 1020 PIC CON REL LCL SHR EXE NORD NOWRT OCTA
2 $LINK$ 44 NOPIC CON REL LCL NOSHR NOEXE RD NOWRT OCTA
3 $BLANK 9600 NOPIC OVR REL GBL NOSHR NOEXE RD WRT OCTA

Total Space Allocated 10664

ENTRY POINTS

Address Name

1-00000000 RELAX2

VARIABLES

Address Type Name Address Type Name Address Type Name Address Type Name Address Type Name

** L*4 DONE ** R*4 EPS ** I*4 I ** I*4 J ** R*4 XNEW

ARRAYS

Address Type Name Bytes Dimensions

3-00000000 R*4 X 9600 (40, 60)

LABELS

Address Label

1-00000040 10

As shown in Example 2–6, a section size is specified as a number of bytes,
expressed in decimal. A data address is specified as an offset from the start of
a program section, expressed in hexadecimal.

2.7.5 Compilation Summary Section
The final entries on the compiler output listing are the compiler qualifiers and
compiler statistics.

The body of the compilation summary contains information about OPTIONS
statement qualifiers (if any), FORTRAN command line qualifiers, and
compilation statistics.

‘‘Compilation Statistics’’ shows the machine resources used by the compiler.

2–114 Compiling HP Fortran Programs

Example 2–7 shows a sample compilation summary.

Example 2–7 Sample Compilation Summary

COMMAND QUALIFIERS

/ADDRESSING_MODEL=NORMAL
/ALIGNMENT=(COMMONS=(NONATURAL,PACKED,NOSTANDARD,NOMULTILANGUAGE),

RECORDS=NATURAL,NOSEQUENCE)
/ANNOTATIONS=(NOCODE,NODETAIL,NOFEEDBACK,NOINLINING,NOLINKAGES,

NOLOOP_TRANSFORMS,NOLOOP_UNROLLING,NOPREFETCHING,
NOSHRINKWRAPPING,NOSOFTWARE_PIPELINING,NOTAIL_CALLS)

/ARCHITECTURE=GENERIC
/ASSUME=(ACCURACY_SENSITIVE,ALTPARAM,NOBUFFERED_IO,NOBYTERECL,

NODUMMY_ALIASES,NOF77RTL,NOFP_CONSTANT,NOINT_CONSTANT,
NOMINUS0,PROTECT_CONSTANTS,NOSOURCE_INCLUDE,NOUNDERSCORE)

/NOAUTOMATIC
/NOBY_REF_CALL
/CCDEFAULT=DEFAULT
/CHECK=(NOARG_TEMP_CREATED,NOBOUNDS,FORMAT,NOFP_EXCEPTIONS,OUTPUT_CONVERSION,

NOOVERFLOW,POWER,NOUNDERFLOW,NOARG_INFO,NOFP_MODE)
/CONVERT=NATIVE
/DEBUG=(NOSYMBOLS,TRACEBACK)
/NODEFINE
/DOUBLE_SIZE=64
/NOD_LINES
/ERROR_LIMIT=30
/NOEXTEND_SOURCE
/F77
/NOFAST
/FLOAT=IEEE_FLOAT
/GRANULARITY=QUADWORD
/IEEE_MODE=DENORM_RESULTS
/INTEGER_SIZE=32
/MACHINE_CODE
/MATH_LIBRARY=ACCURATE
/NOMODULE
/NAMES=UPPERCASE
/OPTIMIZE=(INLINE=SPEED,LEVEL=4,NOLOOPS,PIPELINE,TUNE=GENERIC,UNROLL=0)
/NOPAD_SOURCE
/REAL_SIZE=32
/NORECURSIVE
/REENTRANCY=NONE
/ROUNDING_MODE=NEAREST
/NOSEPARATE_COMPILATION
/SEVERITY=(WARNING=WARNING)
/SHOW=(NODICTIONARY,NOINCLUDE,MAP,NOPREPROCESSOR)
/SOURCE_FORM=FREE
/STANDARD=NONE
/NOSYNCHRONOUS_EXCEPTIONS
/NOSYNTAX_ONLY
/NOTIE
/VMS

(continued on next page)

Compiling HP Fortran Programs 2–115

Example 2–7 (Cont.) Sample Compilation Summary
/WARNINGS=(ALIGNMENT,NOARGUMENT_CHECKING,NODECLARATIONS,GENERAL,GRANULARITY,NOIGNORE_LOC,

NOTRUNCATED_SOURCE,UNCALLED,UNINITIALIZED,NOUNUSED,USAGE)
/NOANALYSIS_DATA
/NODIAGNOSTICS
/INCLUDE=FORT$INCLUDE:
/LIST=GEMI64$DKA100:[JBISHOP.BUG]SIMPLE.LIS;1
/OBJECT=GEMI64$DKA100:[JBISHOP.BUG]SIMPLE.OBJ;1
/NOLIBRARY

COMPILER: HP Fortran V8.0-xxxxx-xxxxx

COMPILATION STATISTICS

CPU time: 0.13 seconds
Elapsed time: 1.06 seconds
Pagefaults: 720
I/O Count: 28

2–116 Compiling HP Fortran Programs

3
Linking and Running HP Fortran Programs

This chapter describes:

• Section 3.1, Linker Overview

• Section 3.2, LINK Command Qualifiers and Messages

• Section 3.3, Running HP Fortran Programs

• Section 3.4, Symbol Table and Traceback Information: Locating Run-Time
Errors

3.1 Linker Overview
The primary functions of the linker are to allocate virtual memory within the
executable image, to resolve symbolic references among object modules being
linked, to assign values to relocatable global symbols, to perform relocation,
and to perform any requested special-purpose tasks. The linker creates an
executable or shareable image that you can run on an OpenVMS system.

For any HP Fortran program unit, the object file generated by the compiler
may contain calls and references to HP Fortran run-time procedures, which
the linker locates automatically in the default system object libraries, such as
IMAGELIB.OLB.

For More Information:
On linker capabilities, default system object libraries, and detailed descriptions
of LINK command qualifiers and options, see the HP OpenVMS Linker Utility
Manual.

3.2 LINK Command Qualifiers and Messages
The LINK command initiates the linking of the object file. The command has
the following form:

LINK[/command-qualifiers] file-spec[/file-qualifiers]...

Linking and Running HP Fortran Programs 3–1

/command-qualifiers
Specify output file options.

file-spec
Specifies the input object file to be linked.

/file-qualifiers
Specify input file options.

In interactive mode, you can issue the LINK command without a file
specification. The system then requests the file specifications with the
following prompt:

_File:

You can enter multiple file specifications by separating them with commas
(,) or plus signs (+). When used with the LINK command, the comma has
the same effect as the plus sign; a single executable image is created from
the input files specified. If no output file is specified, the linker produces an
executable image with the same name as that of the first object file and with a
file type of EXE.

Table 3–1 lists the linker qualifiers of particular interest to HP Fortran users.

3–2 Linking and Running HP Fortran Programs

Table 3–1 LINK Command Qualifiers

Function Qualifiers Defaults

Request output file,
define a file specification,
and specify whether to
create an executable or
shareable image.

/EXECUTABLE[=file-spec]
/SHAREABLE[=file-spec]
(see Section 3.2.1.1)

/EXECUTABLE=name.EXE
where name is the name
of the first input file.

/NOSHAREABLE

Allow the executable image
to interoperate with
nonnative shared libraries.

/[NO]NATIVE_ONLY
(see Section 3.2.1.2)

/NATIVE_ONLY
(see Section 3.2.1)

Request and specify the
contents of an image map
(memory allocation) listing.

/BRIEF
/[NO]CROSS_REFERENCE
/FULL
/[NO]MAP
(see Section 3.2.1.3)

/NOCROSS_REFERENCE
/NOMAP (interactive)
/MAP=name.MAP (batch)

where name is the name
of the first input file.

Specify the amount of
debugging information.

/[NO]DEBUG
/[NO]TRACEBACK
(see Section 3.2.2)

/NODEBUG
/TRACEBACK

Indicate the type of input
files and request the
inclusion of only
certain object modules.

/INCLUDE=(module-name...)
/LIBRARY
/SELECTIVE_SEARCH
as positional qualifier:
/SHAREABLE
(see Section 3.2.3)

Not applicable

Request or disable the
searching of default user
libraries and system
libraries.

/[NO]SYSLIB
/[NO]SYSSHR
/[NO]USERLIBRARY[=table]

/SYSLIB
/SYSSHR
/USERLIBRARY=ALL

Indicate that an input file
is a linker options file.

/OPTIONS
(see Section 3.2.5)

Not applicable

Request a symbol table. /[NO]SYMBOL_TABLE[=file-
spec]
(see Section 3.2.4)

/NOSYMBOL_TABLE

3.2.1 Linker Output File Qualifiers
You can use qualifiers on the LINK command line to control the output
produced by the linker. You can also specify whether traceback and debugging
information is included. (The /DEBUG and /TRACEBACK qualifiers are
described in Section 3.2.2.)

Linker output consists of an image file and, optionally, a map file. The
qualifiers that control image and map files are described under the headings
that follow.

Linking and Running HP Fortran Programs 3–3

3.2.1.1 Image File Qualifiers
The LINK command /[NO]EXECUTABLE and /[NO]SHAREABLE qualifiers
control whether the linker creates an executable image, a shareable image, or
no image file.

• /EXECUTABLE

If you omit /EXECUTABLE and /SHAREABLE, the default is /EXECUTABLE,
and the linker produces an executable image.

To suppress production of an image, specify /NOEXECUTABLE. For
example, in the following command, the file CIRCLE.OBJ is linked, but
no image is generated:

$ LINK/NOEXECUTABLE CIRCLE

The /NOEXECUTABLE qualifier is useful if you want to verify the results
of linking an object file without actually producing the image.

To designate a file specification for an executable image, use the
/EXECUTABLE qualifier in the following form:

/EXECUTABLE=file-spec

For example, the following command links the file CIRCLE.OBJ. The linker
generates an executable image named TEST.EXE:

$ LINK/EXECUTABLE=TEST CIRCLE

• /SHAREABLE

A shareable image has all of its internal references resolved, but must be
linked with one or more object modules to produce an executable image.
A shareable image file, for example, can contain a library of routines. To
create a shareable image, specify the /SHAREABLE qualifier, as shown in
the following example:

$ LINK/SHAREABLE CIRCLE

To include a shareable image as input to the linker, you can either use a
linker options file or insert the shareable image into a shareable-image
library and specify the library as input to the LINK command. By default,
the linker automatically searches the system-supplied shareable-image
library SYS$LIBRARY:IMAGELIB.OLB after searching any libraries you
specify on the LINK command line.

If you specify (or default to) /NOSHAREABLE, the linker creates an
executable image, which cannot be linked with other images.

You can also use the /SHAREABLE qualifier in an options file as a
positional qualifier (following a file specification).

3–4 Linking and Running HP Fortran Programs

To create a shareable-image library, use the LIBRARIAN command with
the /CREATE, /INSERT, and /SHARE qualifiers.

For More Information:

• On creating and populating libraries, see the HP OpenVMS Command
Definition, Librarian, and Message Utilities Manual.

• On libraries searched by the linker, see the HP OpenVMS Linker Utility
Manual.

3.2.1.2 /NATIVE_ONLY Qualifier
The FORTRAN command /[NO]TIE qualifier and the LINK command
/[NO]NATIVE_ONLY qualifier together control whether procedure signature
block (PSB) information is placed in the executable image.

The image activator uses the procedure signature block (PSB) information in
the executable image to build jackets that allow calls (interoperability) with
translated VAX shareable images on Alpha systems, and translated Alpha
images on I64 systems. To allow interoperability with translated shareable
images, you must:

• Specify the /TIE qualifier on the FORTRAN command line. This places the
PSB information into the object module.

• Specify /NONATIVE_ONLY on the LINK command line. This propagates
the PSB information in the object module into the executable image, so the
image activator can use it with translated images.

The following command combination creates an executable image for translated
image interoperability:

$ FORTRAN/TIE file
$ LINK/NONATIVE_ONLY file

Unless you need the PSB information for calls to translated shareable images,
avoid placing PSB information in the executable image to minimize its size for
performance reasons.

The default for the FORTRAN command, /NOTIE, results in the PSB
information not being placed in the object module. The default for the
LINK command, /NATIVE_ONLY, results in the linker not passing any PSB
information present in the object module into the executable image.

For example, the following command combination creates a executable image
for native use only (no PSB information in the executable image):

$ FORTRAN/TIE file
$ LINK file

Linking and Running HP Fortran Programs 3–5

The FORTRAN /TIE qualifier places the PSB information in the object module.
By default, the linker does not propagate the PSB information, if found in
the object module, to the executable image (default is /NATIVE_ONLY). The
same object module might be retained and used in a different application that
requires interoperability.

For More Information:
On interoperability, see Section B.6 and the manuals Migrating an Application
from OpenVMS VAX to OpenVMS Alpha and Porting Applications from HP
OpenVMS Alpha to HP OpenVMS Industry Standard 64 for Integrity Servers.

3.2.1.3 Map File Qualifiers
The LINK command /MAP qualifier and its associated qualifiers indicate
whether an image map file is to be generated and, if so, the amount of
information to be included in the image map file.

The map qualifiers are specified as follows:

/[NO]MAP[=file-spec]

�
/BRIEF
/CROSS_REFERENCE
/FULL

�

In interactive mode, the default is to suppress the map; in batch mode, the
default is to generate the map.

If you do not include a file specification with the /MAP qualifier, the map file
has the name of the first input file and a file type of MAP. It is stored on the
default device in the default directory.

The /BRIEF and /FULL qualifiers define the amount of information included in
the map file. They function as follows:

• /BRIEF produces a summary of the image’s characteristics and a list of
contributing object modules.

• /FULL produces a summary of the image’s characteristics and a list of
contributing object modules (as produced by /BRIEF). It also produces
a list, in symbol-name order, of global symbols and values (program,
subroutine, and common block names, and names declared EXTERNAL)
and a summary of characteristics of image sections in the linked image.

If neither /BRIEF nor /FULL is specified, the map file, by default, contains a
summary of the image’s characteristics, a list of contributing object modules (as
produced by /BRIEF), and a list of global symbols and values, in symbol-name
order.

3–6 Linking and Running HP Fortran Programs

You can use the /CROSS_REFERENCE qualifier with either the default or
/FULL map qualifiers to request cross-reference information for global symbols.
This cross-reference information indicates the object modules that define or
refer to global symbols encountered during linking. The default is /NOCROSS_
REFERENCE.

For More Information:
On image maps, see the HP OpenVMS Linker Utility Manual.

3.2.2 /DEBUG and /TRACEBACK Qualifiers
The /DEBUG qualifier includes the debugger and places local symbol
information (contained in the object modules) in the executable image. The
default is /NODEBUG.

When you use the /TRACEBACK qualifier, run-time error messages are
accompanied by a symbolic traceback. This shows the sequence of calls that
transferred control to the program unit in which the error occurred. If you
specify /NOTRACEBACK, this information is not produced. The default is
/TRACEBACK.

If you specify /DEBUG, the traceback capability is automatically included, and
the /TRACEBACK qualifier is ignored.

For More Information:

• On the OpenVMS debugger, see Chapter 4.

• On a sample traceback list, see Section 3.4.1.

3.2.3 Linker Input File Qualifiers
The LINK command input file qualifier /LIBRARY identifies the input file as
a library file. The LINK command /INCLUDE qualifier specifies the names
of one or more object modules in a library to be used as input files. The
/SELECTIVE_SEARCH qualifier indicates that only symbols referenced from
previous input files be taken from the specified file’s list of global symbols,
rather than all of the input file’s global symbols.

To specify a shareable image as an input file, place the /SHAREABLE
positional qualifier after the file specification in a link options file. In contrast
to the /SHAREABLE qualifier you use on a LINK command line to create a
shareable image, the /SHAREABLE positional qualifier in a link options file
specifies a shareable image input file.

Input files can be object files, previously linked shareable files, or library files.

• /LIBRARY

Linking and Running HP Fortran Programs 3–7

The /LIBRARY qualifier specifies that the input file is an object-module or
shareable-image library that is to be searched to resolve undefined symbols
referenced in other input object modules. The default file type is OLB.

The /LIBRARY qualifier has the following form:

file.type/LIBRARY

• /INCLUDE

The /INCLUDE qualifier specifies that the input file is an object-module
or shareable-image library and that the object modules named are the
only object modules in the library to be explicitly included as input. In the
case of shareable-image libraries, the object module is the shareable-image
name.

The /INCLUDE qualifier has the following form:

file.type/INCLUDE=module-name

At least one object module name is required. To specify more than one,
enclose the object module names in parentheses and separate the names
with commas.

The default file type is OLB. The /LIBRARY qualifier can also be used,
with the same file specification, to indicate that the same library is to be
searched for unresolved references.

• /SELECTIVE_SEARCH

The /SELECTIVE_SEARCH qualifier specifies that the linker only
include those global symbols already referenced from previous input
files, instead of all the global symbols defined by the specified input file.
The /SELECTIVE_SEARCH positional qualifier has the following form:

file.OBJ/SELECTIVE_SEARCH

• /SHAREABLE

When used as a positional qualifier in a linker options file, the
/SHAREABLE qualifier specifies that the input file it follows is a shareable
image. The /SHAREABLE positional qualifier has the following form:

file.EXE/SHAREABLE

3–8 Linking and Running HP Fortran Programs

For More Information:

• On defining DCL commands, creating libraries, and related topics, see
the HP OpenVMS Command Definition, Librarian, and Message Utilities
Manual.

• On linker capabilities and detailed descriptions of LINK command
qualifiers and options, see the HP OpenVMS Linker Utility Manual.

3.2.4 Linker Symbol Table Qualifier
The /SYMBOL_TABLE qualifier requests that the symbol table be written to a
file.

The qualifier has the following form:

/SYMBOL_TABLE=file-spec

If you omit the file name, the linker uses a default file type of STB.

3.2.5 Linker Options File Qualifier
The /OPTIONS qualifier identifies a file as a linker options file, which contains
additional information about the current link operation.

The qualifier has the following form:

file-spec/OPTIONS

The file specification is usually a file with default file type of OPT.

You can use an options file to specify additional information to the linker,
including a shared image as input to the linker, declare universal symbols, and
other features.

For more information on using an OPTIONS file, see the HP OpenVMS Linker
Utility Manual.

3.2.6 Other Linker Qualifiers
This chapter discusses the more frequently used linker qualifiers. Other
linker qualifiers specify additional libraries to be searched or to prevent
default libraries from being searched, control image section characteristics and
placement, creation of a global symbol table, and other linker operations.

HP Fortran programs should not be linked with certain linker qualifiers, such
as /SYSTEM and /PROTECT.

Linking and Running HP Fortran Programs 3–9

3.2.7 Linker Messages
If the linker detects any errors while linking object modules, it displays
messages about their cause and severity. If any errors or fatal conditions occur
(severities E or F), the linker does not produce an image file.

Linker messages are descriptive; you do not normally need additional
information to determine the specific error. Some of the more common errors
that occur during linking are as follows:

• An object module has compilation errors. This error occurs when you
attempt to link a object module that had warnings or errors during
compilation. Although you can usually link compiled object modules for
which the compiler generated messages, you should verify that the object
modules actually produce the expected results during program execution.

• The object modules that are being linked define more than one transfer
address. The linker generates a warning if more than one main program
has been defined. This can occur, for example, when an extra END
statement exists in the program. In this case, the image file created by the
linker can be run; the entry point to which control is transferred is the first
one that the linker finds.

• A reference to a symbol name remains unresolved. This error occurs when
you omit required object module or library names on the LINK command
line, and the linker cannot locate the definition for a specified global symbol
reference.

If an error occurs when you link object modules, you can often correct it simply
by reentering the command string and specifying the correct object files or
libraries.

You can use the OpenVMS HELP/MESSAGE facility to view error recovery
descriptions associated with messages from any OpenVMS facility.

For More Information:
On using the HELP/MESSAGE command, see OpenVMS System Messages:
Companion Guide for Help Message Users.

3.3 Running HP Fortran Programs
This section describes the following considerations for executing HP Fortran
programs on an OpenVMS operating system:

• Using the RUN command to execute programs interactively

• Passing status values to the command interpreter

3–10 Linking and Running HP Fortran Programs

3.3.1 RUN Command
The RUN command initiates execution of a program. The command has the
following form:

RUN[/[NO]DEBUG] file-spec

You must specify the file name. If you omit optional elements of the file
specification, the system automatically provides a default value. The default
file type is EXE.

The /DEBUG qualifier allows you to use the debugger, even if you omitted this
qualifier on the FORTRAN and LINK command lines. Refer to Section 3.4 for
details.

3.3.2 System Processing at Image Exit
When the main program executes an END statement, or when any program
unit in the program executes a STOP statement, the image is terminated.
With the OpenVMS operating system, the termination of an image, or image
exit, causes the system to perform a variety of clean-up operations during
which open files are closed, system resources are freed, and so on.

3.3.3 Interrupting a Program
When you execute the RUN command interactively, you cannot execute any
other program images or DCL commands until the current image completes.
However, if your program is not performing as expected—if, for instance, you
have reason to believe it is in an endless loop—you can interrupt it by using
the Ctrl/Y key sequence. (You can also use the Ctrl/C key sequence, unless
your program takes specific action in response to Ctrl/C.) For example:

$ RUN APPLIC
Ctrl/Y

$

This command interrupts the program APPLIC. After you have interrupted
a program, you can terminate it by entering a DCL command that causes
another image to be executed or by entering the DCL commands EXIT or
STOP.

Following a Ctrl/Y interruption, you can also force an entry to the debugger by
entering the DEBUG command.

Some of the other DCL commands you can enter have no direct effect on the
image. After using them, you can resume the execution of the image with the
DCL command CONTINUE. For example:

$ RUN APPLIC

Linking and Running HP Fortran Programs 3–11

Ctrl/Y

$ SHOW LOGICAL INFILE
%SHOW-S-NOTRAN, no translation for logical name INFILE

$ DEFINE INFILE 1DUA1:[TESTFILES]JANUARY.DAT
$ CONTINUE

As noted previously, you can use Ctrl/C to interrupt your program; in most
cases, the effect of Ctrl/C and Ctrl/Y is the same. However, some programs
(including programs you may write) establish particular actions to take to
respond to Ctrl/C. If a program has no Ctrl/C handling routine, then Ctrl/C is
the same as Ctrl/Y.

For More Information:

• On defining DCL commands, creating libraries, and related topics, see
the HP OpenVMS Command Definition, Librarian, and Message Utilities
Manual.

• On commands you can enter following a Ctrl/Y interruption without
affecting the current image, see the VMS DCL Concepts Manual.

• On an example of handling Ctrl/C interrupts, see Section F.2.

3.3.4 Returning Status Values to the Command Interpreter
If you run your program as part of a command procedure, it is often useful to
return a status value to the command procedure. This indicates whether the
program actually executed properly.

To return such a status value, call the EXIT system subroutine rather than
terminating execution with a STOP, RETURN, or END statement. The EXIT
subroutine can be called from any executable program unit. It terminates your
program and returns the value of the argument as the return status value of
the program.

When the command interpreter receives a status value from a terminating
program, it attempts to locate a corresponding message in a system message
file or a user-defined message file. Every message that can be issued by a
system program, command, or component, has a unique 32-bit numeric value
associated with it. These 32-bit numeric values are called condition symbols.
Condition symbols are described in Section 14.4.3.

The command interpreter does not display messages on completion of a
program under the following circumstances:

• The EXIT argument specifies the value 1, corresponding to SUCCESS.

3–12 Linking and Running HP Fortran Programs

• The program does not return a value. If the program terminates with a
RETURN, STOP, or END statement, a value of 1 is always returned and
no message is displayed.

For More Information:
On the EXIT subroutine, see the HP Fortran for OpenVMS Language Reference
Manual.

3.4 Symbol Table and Traceback Information: Locating
Run-Time Errors

Both the compiler and the OpenVMS Run-Time Library include facilities for
detecting and reporting errors. You can use the OpenVMS Debugger and
the traceback facility to help you locate errors that occur during program
execution.

3.4.1 Effects of Error-Related Command Qualifiers
At each step in compiling, linking, and executing your program, you can specify
command qualifiers that affect how errors are processed.

• At compile time, you can specify the /DEBUG qualifier on the FORTRAN
command line to ensure that symbolic information is created for use by the
debugger.

• At link time, you can also specify the /DEBUG qualifier on the LINK
command line to make the symbolic information available to the debugger.

• At run time, you can specify the /DEBUG qualifier on the RUN command
line to invoke the debugger.

Table 3–2 summarizes the /DEBUG and /TRACEBACK qualifiers.

Linking and Running HP Fortran Programs 3–13

Table 3–2 /DEBUG and /TRACEBACK Qualifiers

Command Qualifier Effect

FORTRAN /DEBUG The HP Fortran compiler creates symbolic data needed by
the debugger.

Default: /DEBUG=(NOSYMBOLS,TRACEBACK)

LINK /DEBUG Symbolic data created by the HP Fortran compiler is
passed to the debugger.

Default: /NODEBUG

/TRACEBACK Traceback information is passed to the debugger.
Traceback will be produced.

Default: /TRACEBACK

RUN /DEBUG Invokes the debugger. The DBG> prompt will be displayed.
Not needed if LINK/DEBUG was specified.

/NODEBUG If /DEBUG was specified in the LINK command line,
RUN/NODEBUG starts program execution without first
invoking the debugger.

If an exception occurs and these qualifiers are not specified at any point in the
compile-link-execute sequence, a traceback list is generated by default.

To perform symbolic debugging, you must use the /DEBUG qualifier with
both the FORTRAN and LINK command lines; you do not need to specify it
with the RUN command. If /DEBUG is omitted from either the FORTRAN or
LINK command lines, you can still use it with the RUN command to invoke
the debugger. However, any debugging you perform must then be done by
specifying virtual addresses rather than symbolic names.

If you linked your program with the debugger, but wish to execute the program
without debugger intervention, specify the following command:

$ RUN/NODEBUG program-name

If you specify LINK/NOTRACEBACK, you receive no traceback if there are
errors.

3.4.2 Sample Source Program and Traceback
Example 3–1 shows a sample source program and a traceback.

3–14 Linking and Running HP Fortran Programs

Example 3–1 Sample HP Fortran Program

PROGRAM TRACE_TEST

REAL ST
ST = 2.4E20 ! Constant inside range for REAL*4 formats

CALL SUB1(ST)

END PROGRAM TRACE_TEST

SUBROUTINE SUB1(RV)
REAL RV,RES
RV = RV * RV ! Generates overflow value
RES=LOG(RV) ! Uses + Infinity value for IEEE floating-point data

RETURN
END SUBROUTINE SUB1

The program (TRACEBK.F90) shown in Example 3–1 is compiled, linked, and
run to generate the traceback information shown after the RUN command:

$ FORTRAN/NOOPTIMIZ/DEBUG=TRACEBACK/SYNCHRONOUS_EXCEPTIONS/
FLOAT=IEEE_FLOAT TRACEBK.F90

$ LINK TRACEBK
$ RUN TRACEBK
%SYSTEM-F-HPARITH, high performance arithmetic trap, Imask=00000000,
Fmask=00000001, summary=08, PC=0002007C, PS=0000001B
-SYSTEM-F-FLTOVF, arithmetic trap,floating overflow at PC=0002007C,PS=0000001B
%TRACE-F-TRACEBACK, symbolic stack dump follows
Image Name Module Name Routine Name Line Number rel PC abs PC
LINK_TRACEBA TRACE_TEST SUB1 10 0000007C 0002007C
LINK_TRACEBA TRACE_TEST TRACE_TEST 6 00000030 00020030

0 88EEFA50 88EEFA50

On the FORTRAN command line, the following qualifiers are used:

• /NOOPTIMIZE prevents optimizations that might prevent accurate
reporting of information.

• /DEBUG=TRACEBACK, the default, ensures there is sufficient traceback
information in the object file.

• /SYNCHRONOUS_EXCEPTIONS (Alpha only) ensures that exceptions
reporting will be precise (reported at the statement line causing the error).

• /FLOAT=IEEE_FLOAT requests use of IEEE floating-point data types in
memory.

Linking and Running HP Fortran Programs 3–15

When an error condition is detected, you receive the appropriate message,
followed by the traceback information. The Run-Time Library displays a
message indicating the nature of the error and the address at which the error
occurred (user PC). This is followed by the traceback information, which is
presented in inverse order to the calls.

Values can be produced for relative and absolute PC, with no corresponding
values for routine name and line. These PC values reflect procedure calls
internal to the Run-Time Library.

Of particular interest are the values listed under ‘‘Routine Name’’ and ‘‘Line
Number’’:

• The names under ‘‘Routine Name’’ show which routine or subprogram
called the Run-Time Library, which subsequently reported the error.

• The value given for ‘‘Line Number’’ corresponds to the compiler-generated
line number in the source program listing.

With this information, you can usually isolate the error in a short time.

If you specify either LINK/DEBUG or RUN/DEBUG, the debugger assumes
control of execution and you do not receive a traceback list if an error occurs.
To display traceback information, you can use the debugger command SHOW
CALLS.

You should use the /NOOPTIMIZE qualifier on the FORTRAN command line
whenever you use the debugger.

For More Information:

• On the /OPTIMIZE qualifier, see Section 2.3.14.

• On HP Fortran run-time errors, see Chapter 7.

3–16 Linking and Running HP Fortran Programs

4
Using the OpenVMS Debugger

This chapter describes:

• Section 4.1, Debugger Overview

• Section 4.2, Getting Started with the Debugger

• Section 4.3, Sample Debugging Session

• Section 4.4, Displaying HP Fortran Variables

• Section 4.5, Debugger Command Summary

• Section 4.6, Locating an Exception

• Section 4.7, Locating Unaligned Data

4.1 Debugger Overview
A debugger is a tool that helps you locate run-time errors quickly. It is used
with a program that has already been compiled and linked successfully, but
does not run correctly. For example, the output may be obviously wrong, or the
program goes into an infinite loop or terminates prematurely. The debugger
enables you to observe and manipulate the program’s execution interactively so
you can locate the point at which the program stopped working correctly.

The OpenVMS Debugger is a symbolic debugger, which means that you can
refer to program locations by the symbols (names) you used for those locations
in your program—the names of variables, subroutines, labels, and so on. You
do not need to use virtual addresses to refer to memory locations.

By issuing debugger commands at your terminal, you can perform the following
operations:

• Start, stop, and resume the program’s execution

• Trace the execution path of the program

• Monitor selected locations, variables, or events

Using the OpenVMS Debugger 4–1

• Examine and modify the contents of variables, or force events to occur

• Test the effect of some program modifications without having to edit,
recompile, and relink the program

Such techniques allow you to isolate an error in your code much more quickly
than you could without the debugger.

Once you have found the error in the program, you can then edit the source
code and compile, link, and run the corrected version.

4.2 Getting Started with the Debugger
This section explains how to use the debugger with HP Fortran programs. The
section focuses on basic debugger functions, to get you started quickly. It also
provides any debugger information that is specific to HP Fortran.

For More Information:

• About the OpenVMS Debugger (not specific to the HP Fortran language),
see the HP OpenVMS Debugger Manual.

• On OpenVMS Debugger commands, use online HELP during debugging
sessions.

4.2.1 Compiling and Linking a Program to Prepare for Debugging
Before you can use the debugger, you must compile and link your program.
The following example shows how to compile and link a HP Fortran program
(consisting of a single compilation unit in the file INVENTORY.F90) prior to
using the debugger.

$ FORTRAN/DEBUG/NOOPTIMIZE INVENTORY
$ LINK/DEBUG INVENTORY

The /DEBUG qualifier on the FORTRAN command line causes the compiler
to write the debug symbol records associated with INVENTORY.F90 into the
object module INVENTORY.OBJ. These records allow you to use the names
of variables and other symbols declared in INVENTORY.F90 in debugger
commands. (If your program has several compilation units, each of the
program units that you want to debug must be compiled with the /DEBUG
qualifier.)

Use the /NOOPTIMIZE qualifier when you compile a program in preparation
for debugging. Otherwise, the object code is optimized (to reduce the size
of the program and make it run faster), so that the symbolic evaluation of
some program locations may be inconsistent with what you might expect from
viewing the source code. For example, a variable in an optimized program
may not be available. (After debugging the program, recompile it without

4–2 Using the OpenVMS Debugger

the /NOOPTIMIZE qualifier.) For a description of the various optimizations
performed by the compiler, see Chapter 5.

The /DEBUG qualifier on the LINK command line causes the linker to include
all symbol information that is contained in INVENTORY.OBJ in the executable
image. This qualifier also causes the OpenVMS image activator to start the
debugger at run time. (If your program has several object modules, you may
need to specify the other modules on the LINK command line.)

For More Information:
On the effects of specifying the /DEBUG qualifier on the FORTRAN, LINK,
and RUN command lines, see Section 2.3.14 and Section 3.4.

4.2.2 Establishing the Debugging Configuration and Interface
Before invoking the debugger, check that the debugging configuration is
appropriate for the kind of program you want to debug.

The configuration depends on the current value of the logical name
DBG$PROCESS. Before invoking the debugger, issue the DCL command
SHOW LOGICAL DBG$PROCESS to determine the current definition of
DBG$PROCESS.

The default configuration is appropriate for almost all programs. To request
the default debugging configuration. the logical name DBG$PROCESS is
undefined or has the value DEFAULT. For example, the following command
shows when DBG$PROCESS is undefined:

$ SHOW LOGICAL DBG$PROCESS
%SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS

To define DBG$PROCESS to have a value of DEFAULT, enter:

$ DEFINE DBG$PROCESS DEFAULT

To remove (deassign) a logical name definition, use the DEASSIGN command.

If the DECwindows Motif product is installed and running on your workstation,
by default the OpenVMS Debugger uses the DECwindows Motif interface. To
use the character cell interface on a DECwindows system, define the logical:

$ DEFINE/PROCESS DBG$DECW$DISPLAY " "

To define this logical name for multiple users, use other logical name tables.

To enable use of the DECwindows interface, deassign the logical:

$ DEASSIGN/PROCESS DBG$DECW$DISPLAY

Using the OpenVMS Debugger 4–3

The DECwindows interface provides a main window in which portions
are updated as the program executes, including the source code, entered
commands, and debugger messages. This interface provides pull-down menus
and uses the kept debugger (equivalent of DEBUG/KEEP).

The examples in this chapter show the command line (character cell) interface
to the OpenVMS Debugger.

The character cell interface to the OpenVMS Debugger provides the following
debugging interfaces:

• Screen mode

• Line-oriented mode

Screen mode is activated by pressed PF3 on the keypad (or enter the command
SET MODE SCREEN). Screen mode allows the debugger character cell
interface to simultaneously display separate groups of data similar to the
DECwindows interface. For example, your screen might show the source code
(SRC), debugger output (OUT), and debugger command input (PROMPT)
displays.

While in screen mode, use the SHOW DISPLAY command to view the
predefined displays and the DISPLAY command to define a new display.
To view the keypad definitions in screen mode, press PF2 on the keypad.

To leave screen mode and resume line-oriented mode, press PF1 PF3 (or enter
the command SET SCREEN NOSCREEN).

For More Information:
On the DECwindows Motif debugger interface (including a source browser) and
screen mode, see the HP OpenVMS Debugger Manual.

4.2.3 Invoking the Debugger
After you compile and link your program and establish the appropriate
debugging configuration, you can then invoke the debugger. To do so, enter the
DCL command RUN, specifying the executable image of your program as the
parameter. For example, enter the following command to debug the program
INVENTORY:

$ RUN INVENTORY

OpenVMS DEBUG (IA64 Debug64) Version x.x-xxx

4–4 Using the OpenVMS Debugger

%DEBUG-I-INITIAL, language is FORTRAN, module set to INVENTORY
DBG> GO
%DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG> EXAMINE N
INVENTORY\N: 4
DBG> EXIT
$

The diagnostic message that is displayed at the debugger startup indicates
that this debugging session is initialized for an HP Fortran program and that
the name of the main program unit is INVENTORY. In the initial ‘‘%DEBUG-
I-INITIAL’’ message, the OpenVMS Debugger term ‘‘module’’ is equivalent to
an HP Fortran ‘‘procedure.’’

When some qualifiers are used to compile (/WARNINGS=ALIGNMENT or
most /CHECK keywords), the debugger does not start up in the main program.
When this happens, enter GO once to get to the beginning of the main program.

The DBG> prompt indicates that you can now enter debugger commands.
At this point, if you enter the GO command, program execution begins and
continues until it is forced to pause or stop (for example, if the program
prompts you for input or an error occurs).

You can specify the DEBUG command /KEEP qualifier to use the kept
debugger. The kept debugger allows you to run one (or more) programs
with the RUN command, rerun the last program run with a RERUN command,
and connect and disconnect to a running process. For example:

$ DEBUG /KEEP

OpenVMS DEBUG (IA64 Debug64) Version x.x-xxx

DBG> RUN SQUARES
%DEBUG-I-INITIAL, language is FORTRAN, module set to SQUARES
DBG> GO
%DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG> RERUN
DBG> STEP
stepped to SQUARES\%LINE 4
4: OPEN(UNIT=8, FILE=’DATAFILE.DAT’, STATUS=’OLD’)
DBG> EXAMINE N
DEBUGEX$MAIN\N: 0
DBG> GO
%DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG> EX N
DEBUGEX$MAIN\N: 4
DBG> EXIT

For more information on using the debugger and invoking the debugger for
other display modes, see the HP OpenVMS Debugger Manual.

Using the OpenVMS Debugger 4–5

4.2.4 Debugger Commands Used Often
You can use the following debugger commands when debugging any program:

• To get help on debugger commands, enter the HELP command.

• To control program execution, enter the GO, STEP, CALL, or EXIT
commands. To control whether the STEP command steps into or over a
routine (or performs other functions), you can use the SET STEP command
or qualifiers to the STEP command (such as STEP/OVER).

• To look at the contents of a location, enter the EXAMINE command.

• To modify the contents of a location, enter the DEPOSIT command.

• To view source lines, you usually use the TYPE command.

• You can use the debugger SPAWN command (followed by the desired DCL
command) to execute a DCL command. For instance, if you have some mail
messages you need to read, enter the following:

DBG> SPAWN MAIL

For More Information:

• About the types of available debugger commands, see Section 4.5.

• On the available debugger commands, see the HP OpenVMS Debugger
Manual.

4.2.5 Debugger Breakpoints, Tracepoints, and Watchpoints
The OpenVMS Debugger supports breakpoints, tracepoints, and watchpoints to
help you find out what happens at critical points in your program.

Set a breakpoint if you want the debugger to stop program execution at a
certain point in your program (routine, line number, and so on). After you set
a breakpoint and begin program execution, execution stops at the breakpoint,
allowing you to look at the contents of program variables to see if they contain
the correct values.

Use the following commands to control breakpoints:

• To set a breakpoint, use one of the forms of the SET BREAK commands.
You can also specify an action for the breakpoint, such as displaying the
value of a variable.

• To view the currently set breakpoints, use the SHOW BREAK command.

4–6 Using the OpenVMS Debugger

• To cancel a breakpoint, use CANCEL BREAK. You can temporarily
deactivate a breakpoint with a DEACTIVATE BREAK command, which you
can later activate with an ACTIVATE BREAK command.

Set a tracepoint to request that the debugger display messages when
certain parts of your program execute. You can also specify an action for the
tracepoint, such as displaying the value of a variable. Unlike breakpoints,
execution continues past the tracepoint. For example, a tracepoint lets you see
how many times a routine gets called.

Use the following commands to control tracepoints:

• To set a tracepoint, use one of the forms of the SET TRACE commands.
You can also specify an action for the tracepoint, such as displaying the
current value of a variable.

• To view the currently set tracepoints, use a SHOW TRACE command.

• To cancel a tracepoint, use a CANCEL TRACE command. You can
temporarily deactivate a tracepoint with a DEACTIVATE TRACE
command, which you can later activate with an ACTIVATE TRACE
command.

Set a watchpoint to request that the debugger stop execution when the values
of certain variables (or memory locations) change. A breakpoint stops execution
when a certain part of program is reached. In contrast, a watchpoint stops
execution when a certain value changes.

The following commands are usually used to control watchpoints:

• To set a watchpoint, use one of the forms of the SET WATCH commands.
You can also specify an action for the watchpoint, such as displaying the
value of a variable.

• To view the currently set watchpoints, use the SHOW WATCH command.

• To cancel a watchpoint, use CANCEL WATCH command. You can
temporarily deactivate a watchpoint with a DEACTIVATE WATCH
command, which you can later activate with an ACTIVATE WATCH
command.

Before you set a breakpoint, tracepoint, or watchpoint, you can define the scope
to be used (by using the SET SCOPE or SET MODULE command, for instance)
or you can add a pathname prefix before a symbol name.

Using the OpenVMS Debugger 4–7

4.2.6 Ending a Debugging Session
To end a debugging session and return to the DCL level, enter EXIT or press
Ctrl/Z:

DBG> EXIT
$

The following message, displayed during a debugging session, indicates that
your program has completed normally:

%DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG>

To continue debugging after seeing this message, enter EXIT and start a new
debugging session with the DCL RUN command.

If you specified the DEBUG command with the /KEEP qualifier when you
invoked the debugger, you can run the same program again from within the
debugging session (RERUN) and perform other functions.

4.2.7 Notes on Debugger Support for HP Fortran
In general, the debugger supports the data types and operators of HP Fortran
and the other debugger-supported languages. However, the following are
language-specific limitations and differences:

• Although the type codes for unsigned integers (BU, WU, LU) are used
internally to describe the LOGICAL data types, the debugger treats
LOGICAL variables and values as being signed when used in language
expressions.

• The debugger prints the numeric values of LOGICAL variables or
expressions instead of .TRUE. or .FALSE. Normally, only the low-order
bit of a LOGICAL variable or value is significant (0 is .FALSE. and 1 is
.TRUE.). However, HP Fortran does allow all bits in a LOGICAL value to
be manipulated, and LOGICAL values can be used in integer expressions.
For this reason, it is sometimes necessary to see the entire integer value of
a LOGICAL variable or expression, which is what the debugger shows.

• Fortran modules (defined by a MODULE statement) are treated as
debugger modules. To see whether a module is known to the debugger, use
the SHOW MODULE command. To load the symbolic information about
the Fortran module into the debugger, use a SET MODULE command (see
Section 4.4.5).

4–8 Using the OpenVMS Debugger

• The default name for a main program unit is filename$MAIN, where
filename is the name of your source file. If filename is larger than 26
characters and a name is not specified in a PROGRAM or BLOCK DATA
statement, the name is truncated to 26 characters and $MAIN is appended
to form the program name.

• COMPLEX constants such as (1.0, 2.0) are not supported in debugger
expressions.

• Floating-point number representation depends on the specified precision
(KIND) and the FORTRAN command /FLOAT qualifier used during
compilation:

Single-precision numbers of type REAL (KIND=4) and COMPLEX
(KIND=4) can be represented by the F_float or IEEE S_float format,
depending on the FORTRAN command /FLOAT qualifier.

Double-precision numbers of type REAL (KIND=8) and COMPLEX
(KIND=8) can be represented by the D_float, G_float, or IEEE T_float
format, depending on the FORTRAN command /FLOAT qualifier.

Extended-precision numbers of type REAL (KIND=16) are always
represented in X_float format (based on IEEE).

For More Information:

• About the supported data types and operators of any of the languages,
enter the HELP LANGUAGE command at the DBG> prompt.

• On HP Fortran little endian data type representation, see Chapter 8.

• On the FORTRAN /FLOAT qualifier, see Section 2.3.22.

4.3 Sample Debugging Session
Example 4–1 shows a program called SQUARES that requires debugging. The
program was compiled and linked without diagnostic messages from either the
compiler or the linker. Compiler-assigned line numbers have been added in the
example so that you can identify the source lines referenced in the explanatory
text.

Using the OpenVMS Debugger 4–9

Example 4–1 Sample Program SQUARES

1 PROGRAM SQUARES
2 INTEGER (KIND=4) :: INARR(20), OUTARR(20)
3 ! Read the input array from the data file.
4 OPEN(UNIT=8, FILE=’datafile.dat’, STATUS=’OLD’)
5 READ(8,*,END=5) N, (INARR(I), I=1,N)
6 5 CLOSE (UNIT=8)
7 ! Square all nonzero elements and store in OUTARR.
8 K = 0
9 DO I = 1, N
10 IF (INARR(I) .NE. 0) THEN
11 OUTARR(K) = INARR(I)**2
12 ENDIF
13 END DO
14
15 ! Print the squared output values. Then stop.
16 PRINT 20, K
17 20 FORMAT (’ Number of nonzero elements is’,I4)
18 DO I = 1, K
19 PRINT 30, I, OUTARR(I)
20 30 FORMAT(’ Element’,I4,’ has value’,I6)
21 END DO
22 END PROGRAM SQUARES

The program SQUARES performs the following functions:

1. Reads a sequence of integer numbers from a data file and saves these
numbers in the array INARR (lines 4 and 5). The file DATAFILE.DAT
contains one record with the integer values 4, 3, 2, 5, and 2. The first
number (4) indicates the number of data items (array elements) that follow.

2. Enters a loop in which it copies the square of each nonzero integer into
another array OUTARR (lines 9 through 13).

3. Prints the number of nonzero elements in the original sequence and the
square of each such element (lines 16 through 21).

When you run SQUARES, it produces the following output, regardless of the
number of nonzero elements in the data file:

$ RUN SQUARES
Number of nonzero elements is 0

The error occurs because variable K, which keeps track of the current index
into OUTARR, is not incremented in the loop on lines 9 through 13. The
statement K = K + 1 should be inserted just before line 11.

4–10 Using the OpenVMS Debugger

Example 4–2 shows how to start the debugging session and use the debugger
to find the error in the program in Example 4–1. Comments keyed to the
callouts follow the example.

Example 4–2 Sample Debugging Session Using Program SQUARES

$ FORTRAN/DEBUG/NOOPTIMIZE SQUARES !
$ LINK/DEBUG SQUARES "
$ SHOW LOGICAL DBG$PROCESS #
%SHOW-S-NOTRAN, no translation for logical name DBG$PROCESS
$ RUN SQUARES $

OpenVMS DEBUG (IA64 Debug64) Version x.x-xxx

%DEBUG-I-INITIAL, language is FORTRAN, module set to SQUARES
DBG> STEP 5 %
stepped to SQUARES\%LINE 9

9: DO 10 I = 1, N
DBG> EXAMINE N,K &
SQUARES\N: 4
SQUARES\K: 0
DBG> STEP 2 ’
stepped to SQUARES\%LINE 11

11: OUTARR(K) = INARR(I)**2
DBG> EXAMINE I,K (
SQUARES\I: 1
SQUARES\K: 0
DBG> DEPOSIT K = 1)
DBG> SET TRACE/SILENT %LINE 11 DO (DEPOSIT K = K + 1) +>
DBG> GO +?
Number of nonzero elements is 4
Element 1 has value 9
Element 2 has value 4
Element 3 has value 25
Element 4 has value 4
%DEBUG-I-EXITSTATUS, is ’SYSTEM-S-NORMAL, normal successful completion’
DBG> EXIT +@

$ EDIT SQUARES.FOR +A
.
.
.

10: IF(INARR(I) .NE. 0) THEN
11: K = K + 1
12: OUTARR(K) = INARR(I)**2
13: ENDIF

(continued on next page)

Using the OpenVMS Debugger 4–11

Example 4–2 (Cont.) Sample Debugging Session Using Program SQUARES

.

.

.
$ FORTRAN/DEBUG/NOOPTIMIZE SQUARES +B
$ LINK/DEBUG SQUARES
$ RUN SQUARES +C

OpenVMS DEBUG (IA64 Debug64) Version x.x-xxx

%DEBUG-I-INITIAL, language is FORTRAN, module set to SQUARES
DBG> SET BREAK %LINE 12 DO (EXAMINE I,K) +D
DBG> SHOW BREAK
breakpoint at SQUARES\%LINE 12

do (EXAMINE I,K)
DBG> TYPE 7:14
module SQUARES

7: C ! Square all nonzero elements and store in OUTARR.
8: K = 0
9: DO I = 1, N
10: IF (INARR(I) .NE. 0) THEN
11: K = K + 1
12: OUTARR(K) = INARR(I)**2
13: ENDIF
14: END DO

DBG> GO +E
break at SQUARES\%LINE 12

12: OUTARR(K) = INARR(I)**2
SQUARES\I: 1
SQUARES\K: 1
DBG> GO
break at SQUARES\%LINE 12

12: OUTARR(K) = INARR(I)**2
SQUARES\I: 2
SQUARES\K: 2

(continued on next page)

4–12 Using the OpenVMS Debugger

Example 4–2 (Cont.) Sample Debugging Session Using Program SQUARES

DBG> GO
break at SQUARES\%LINE 12

12: OUTARR(K) = INARR(I)**2
SQUARES\I: 3
SQUARES\K: 3
DBG> GO
break at SQUARES\%LINE 12

12: OUTARR(K) = INARR(I)**2
SQUARES\I: 4
SQUARES\K: 4
DBG> GO
Number of nonzero elements is 4
Element 1 has value 9
Element 2 has value 4
Element 3 has value 25
Element 4 has value 4
%DEBUG-I-EXITSTATUS, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG> EXIT +F
$

! The /DEBUG qualifier on the DCL FORTRAN command directs the
compiler to write the symbol information associated with SQUARES into
the object module, SQUARES.OBJ, in addition to the code and data for the
program.

The /NOOPTIMIZE qualifier disables optimization by the FORTRAN
compiler, to ensure that the executable code matches the source code of the
program. Debugging optimized code can be confusing because the contents
of some program locations might be inconsistent with what you would
expect from viewing the source code.

" The /DEBUG qualifier on the DCL LINK command causes the linker to
include all symbol information that is contained in SQUARES.OBJ in the
executable image.

The SHOW LOGICAL DBG$PROCESS command shows that the logical
name DBG$PROCESS is undefined, thus the debugger starts in the default
configuration.

$ The DCL command RUN SQUARES starts the debugger, which displays
its banner and the debugger prompt, DBG>. You can now enter debugger
commands. The informational message identifies the source language
of the program (FORTRAN) and the name of the main program unit
(SQUARES).

Using the OpenVMS Debugger 4–13

After the RUN SQUARES command, execution is initially paused at the
start of the main program unit (line 1 of SQUARES, in this example).

% You decide to test the values of variables N and K after the READ
statement has been executed and the value 0 has been assigned to K.

The command STEP 5 executes 5 source lines of the program. Execution
is now paused at line 9. The STEP command ignores source lines that do
not result in executable code; also, by default, the debugger identifies the
source line at which execution is paused.

& The command EXAMINE N, K displays the current values of N and K.
Their values are correct at this point in the execution of the program.

’ The command STEP 2 executes the program into the loop (lines 9 to 11)
that copies and squares all nonzero elements of INARR into OUTARR

(The command EXAMINE I,K displays the current values of I and K.

I has the expected value, 1. But K has the value 0 instead of 1, which is
the expected value. To fix this error, K should be incremented in the loop
just before it is used in line 11.

) The DEPOSIT command assigns K the value it should have now: 1.

+> The SET TRACE command is now used to patch the program so that the
value of K is incremented automatically in the loop. The command sets a
tracepoint that triggers every time execution reaches line 11:

• The /SILENT qualifier suppresses the "trace at" message that would
otherwise appear each time line 11 is executed.

• The DO clause issues the DEPOSIT K = K + 1 command every time
the tracepoint is triggered.

+? To test the patch, the GO command starts execution from the current
location.

The program output shows that the patched program works properly. The
EXITSTATUS message shows that the program executed to completion.

+@ The EXIT command returns control temporarily to DCL level so that you
can correct the source file and recompile and relink the program.

+A The DCL command EDIT invokes an editor and the source file is edited to
add K = K + 1 after line 10, as shown. (Compiler-assigned line numbers
have been added to clarify the example.)

+B The revised program is compiled and linked.

4–14 Using the OpenVMS Debugger

+C The RUN SQUARES (DCL command) starts the debugger using the revised
program so that its correct execution can be verified.

+D The SET BREAK command sets a breakpoint that triggers every time line
12 is executed. The DO clause displays the values of I and K automatically
when the breakpoint triggers.

The SHOW BREAK command displays the currently set breakpoints.

The TYPE 7:14 command displays source lines 7 to 14.

+E The GO command starts execution.

At the first breakpoint, the value of K is 1, indicating that the program is
running correctly so far. Each additional GO command shows the current
values of I and K. After two GO commands, K is now 3, as expected.
However, I is 4, because one of the INARR elements was zero so that lines
11 and 12 were not executed (and K was not incremented) for that iteration
of the DO loop. This confirms that the program is running correctly.

+F The EXIT command ends the debugging session, returning control to DCL
level.

4.4 Displaying HP Fortran Variables
You usually display the values of variables by using the debugger EXAMINE
command, which accepts numerous qualifiers.

4.4.1 Accessing HP Fortran Common Block Variables
To display common block variables, enter the EXAMINE command followed by
the variable names that make up the common block. For example:

DBG> TYPE 1:8
1:
2: PROGRAM TEST
3: INTEGER*4 INT4
4: CHARACTER(LEN=1) CHR
5: COMMON /COM_STRA/ INT4, CHR
6: CHR = ’L’
7: INT4 = 0
8: END PROGRAM TEST

DBG> STEP 3
stepped to TEST\%LINE 8

8: END PROGRAM TEST
DBG> EXAMINE CHR, INT4
TEST\CHR: ’L’
TEST\INT4: 0

Using the OpenVMS Debugger 4–15

4.4.2 Accessing HP Fortran Derived-Type Variables
To display derived-type structure variables, enter the EXAMINE command
followed by the derived-type variable name, a period (.) (or a %), and the
member name. For example:

DBG> TYPE 1:6
1: PROGRAM TEST
2:
3: TYPE X
4: INTEGER A(5)
5: END TYPE X
6: TYPE (X) Z
7:
8: Z%A = 1

DBG> STEP 2
stepped to TEST\%LINE 10

10: END PROGRAM TEST
DBG> EXAMINE Z.A
TEST\Z.A(1:5)

(1): 1
(2): 1
(3): 1
(4): 1
(5): 1

4.4.3 Accessing HP Fortran Record Variables
To display a field in a record structure, enter the EXAMINE command followed
by the record name, a period (.), and the field name. To display the entire
record structure, enter EXAMINE followed by the record name. For example:

4–16 Using the OpenVMS Debugger

DBG> TYPE 1:9
module TEST

1: PROGRAM TEST
2: STRUCTURE /STRA/
3: INTEGER*4 INT4
4: CHARACTER(LEN=1) CHR
5: END STRUCTURE
6: RECORD /STRA/ REC
7:
8: REC.CHR = ’L’
9: END PROGRAM TEST

DBG> STEP 2
stepped to TEST\%LINE 11

11: END PROGRAM TEST
DBG> EXAMINE REC.CHR
TEST\REC.CHR: ’L’
DBG> EXAMINE REC.INT4
TEST\REC.INT4: 0
DBG> EXAMINE REC
TEST\REC

INT4: 0
CHR: ’L’

4.4.4 Accessing HP Fortran Array Variables
To display one or more array elements, enter the EXAMINE command followed
by the array name and subscripts in parentheses, as in Fortran source
statements. To display the entire array, enter EXAMINE following by the
array name. For example:

DBG> TYPE 1:5
module ARRAY1

1: PROGRAM ARRAY1
2: INTEGER (KIND=4) ARRAY1(6)
3: ARRAY1 = 0
4: ARRAY1(1) = 1
5: ARRAY1(2) = 2

DBG> STEP 5
stepped to ARRAY1\%LINE 8
DBG> EXAMINE ARRAY1(1:2)
ARRAY\ARRAY1(1): 1
ARRAY\ARRAY1(2): 2
DBG> EXAMINE ARRAY1
ARRAY\ARRAY1(1:6)

(1): 1
(2): 2
(3): 0
(4): 0
(5): 0
(6): 0

Using the OpenVMS Debugger 4–17

4.4.5 Accessing HP Fortran Module Variables
To display a variable defined in a module, enter a SET MODULE command
before examining module variables. For example, with a variable named
PINTA defined in a module named MOD1, enter the following EXAMINE
command to display its value:

DBG> SET MODULE MOD1
DBG> TYPE 1:6

1: PROGRAM USEMODULE
2: USE MOD1
3: INT4=0
4: INT4(1)=1
5: PINTA = 4
6: END PROGRAM USEMODULE

DBG> STEP 4
stepped to USEMODULE\%LINE 6

6: END PROGRAM USEMODULE
DBG> EXAMINE PINTA
USEMODULE\PINTA: 4

4.5 Debugger Command Summary
The following sections list all the debugger commands and any related DCL
commands in functional groupings, along with brief descriptions. See the
debugger’s online help for complete details on commands.

During a debugging session, you can get online HELP on any command and its
qualifiers by typing the HELP command followed by the name of the command
in question. The HELP command has the following form:

HELP command

4.5.1 Starting and Terminating a Debugging Session

$ RUN Invokes the debugger if LINK/DEBUG was used.

$ RUN/[NO]DEBUG Controls whether the debugger is invoked when
the program is executed.

DBG> Ctrl/Z or EXIT Ends a debugging session, executing all exit
handlers.

DBG> QUIT Ends a debugging session without executing any
exit handlers declared in the program.

DBG> Ctrl/C Aborts program execution or a debugger
command without interrupting the debugging
session.

4–18 Using the OpenVMS Debugger

�
DBG> SET
DBG> SHOW

ABORT_KEY

Assigns the default Ctrl/C abort function to
another Ctrl-key sequence or identifies the Ctrl-
key sequence currently defined for the abort
function.

$ Ctrl/Y DEBUG The sequence Ctrl/Y DEBUG interrupts a
program that is running without debugger
control and invokes the debugger.

DBG> ATTACH Passes control of your terminal from the current
process to another process (similar to the DCL
command ATTACH).

DBG> SPAWN Creates a subprocess; lets you issue DCL
commands without interrupting your debugging
context (similar to the DCL command SPAWN).

$ DEBUG/KEEP Invokes the kept debugger, which allows certain
additional commands to be used, including RUN
and RERUN.

DBG> RUN image-name When using the kept debugger, runs the
specified program.

DBG> RERUN When using the kept debugger, runs the last
program executed again.

4.5.2 Controlling and Monitoring Program Execution

GO Starts or resumes program execution.

STEP Executes the program up to the next line,
instruction, or specified instruction.�

SET
SHOW

STEP

Establishes or displays the default qualifiers for the
STEP command.

����
���

SET
SHOW
CANCEL
ACTIVATE
DEACTIVATE

����
��� BREAK

Sets, displays, cancels, activates, or deactivates
breakpoints.

����
���

SET
SHOW
CANCEL
ACTIVATE
DEACTIVATE

����
��� TRACE

Sets, displays, cancels, activates, or deactivates
tracepoints.

Using the OpenVMS Debugger 4–19

����
���

SET
SHOW
CANCEL
ACTIVATE
DEACTIVATE

����
��� WATCH

Sets, displays, cancels, activates, or deactivates
watchpoints.

SHOW CALLS Identifies the currently active subroutine calls.

SHOW STACK Gives additional information about the currently
active subroutine calls.

CALL Calls a subroutine.

4.5.3 Examining and Manipulating Data

EXAMINE Displays the value of a variable or the contents of a
program location

SET MODE [NO]OPERANDS Controls whether the address and contents of
the instruction operands are displayed when you
examine an instruction.

DEPOSIT Changes the value of a variable or the contents of a
program location.

EVALUATE Evaluates a language or address expression.

4.5.4 Controlling Type Selection and Symbolization
�

SET
SHOW
CANCEL

�
RADIX

Establishes the radix for data entry and display,
displays the radix, or restores the radix.

�
SET
SHOW
CANCEL

�
TYPE

Establishes the type for program locations that
are not associated with a compiler generated
type, displays the type, or restores the type.

SET MODE [NO]G_FLOAT Controls whether double-precision floating-point
constants are interpreted as G_FLOAT or D_
FLOAT.

You can also use SET TYPE or EXAMINE
commands to define untyped program locations,
such as SET TYPE S_FLOAT, EXAMINE/T_
FLOAT, or EXAMINE/X_FLOAT.

4–20 Using the OpenVMS Debugger

4.5.5 Controlling Symbol Lookup

SHOW SYMBOL Displays symbols in your program�
SET
SHOW

MODULE

Sets a module by loading its symbol records into the
debugger’s symbol table, identifies a set module, or
cancels a set module.�

SET
SHOW

IMAGE

Sets a shareable image by loading data structures
into the debugger’s symbol table, identifies a set
image, or cancels a set image.

SET MODE [NO]DYNAMIC Controls whether modules and shareable images
are set automatically when the debugger interrupts
execution.�

SET
SHOW
CANCEL

�
SCOPE

Establishes, displays, or restores the scope for
symbol lookup.

SET MODE [NO]LINE Controls whether code locations are displayed as
line numbers or routine-name + byte offset.

SET MODE [NO]SYMBOLIC Controls whether code locations are displayed
symbolically or as numeric addresses.

SYMBOLIZE Converts a virtual address to a symbolic address.

4.5.6 Displaying Source Code

TYPE Displays lines of source code.

EXAMINE/SOURCE Displays the source code at the location specified
by the address expression.�

SET
SHOW
CANCEL

�
SOURCE

Creates, displays, or cancels a source directory
search list.

SEARCH Searches the source code for the specified string.�
SET
SHOW

SEARCH

Establishes or displays the default qualifiers for
the SEARCH command.

Using the OpenVMS Debugger 4–21

SET STEP [NO]SOURCE Enables or disables the display of source code
after a STEP command has been executed or at
a breakpoint, tracepoint, or watchpoint.�

SET
SHOW

MAX_SOURCE_FILES

Establishes or displays the maximum number of
source files that may be kept open at one time.

�
SET
SHOW

MARGINS

Establishes or displays the left and right margin
settings for displaying source code.

4.5.7 Using Screen Mode

SET MODE [NO]SCREEN Enables or disables screen mode.

SET MODE [NO]SCROLL Controls whether an output display is updated line
by line or once per command.

DISPLAY Modifies an existing display.�
SET
SHOW
CANCEL

�
DISPLAY

Creates, identifies, or deletes a display.

�
SET
SHOW
CANCEL

�
WINDOW

Creates, identifies, or deletes a window definition.

SELECT Selects a display for a display attribute.

SHOW SELECT Identifies the displays selected for each of the
display attributes.

SCROLL Scrolls a display.

SAVE Saves the current contents of a display and writes
it to another display.

EXTRACT Saves a display or the current screen state and
writes it to a file.

EXPAND Expands or contracts a display.

MOVE Moves a display across the screen.�
SET
SHOW

TERMINAL

Establishes or displays the height and width of the
screen.

�
Ctrl/W
DISPLAY/REFRESH

 Refreshes the screen.

4–22 Using the OpenVMS Debugger

4.5.8 Editing Source Code

EDIT Invokes an editor during a debugging session.�
SET
SHOW

EDITOR

Establishes or identifies the editor invoked by the
EDIT command.

4.5.9 Defining Symbols

DEFINE Defines a symbol as an address, command, value, or
process group.

DELETE Deletes symbol definitions.�
SET
SHOW

DEFINE

Establishes or displays the default qualifier for the
DEFINE command.

SHOW SYMBOL/DEFINED Identifies symbols that have been defined.

4.5.10 Using Keypad Mode

SET MODE [NO]KEYPAD Enables or disables keypad mode.

DEFINE/KEY Creates key definitions.

DELETE/KEY Deletes key definitions.

SET KEY Establishes the key definition state.

SHOW KEY Displays key definitions.

4.5.11 Using Command Procedures and Log Files

DECLARE Defines parameters to be passed to command
procedures.�

SET
SHOW

LOG

Specifies or identifies the debugger log file.

SET OUTPUT [NO]LOG Controls whether a debugging session is logged.

SET OUTPUT [NO]SCREEN_LOG Controls whether, in screen mode, the screen
contents are logged as the screen is updated.

SET OUTPUT [NO]VERIFY Controls whether debugger commands are
displayed as a command procedure is executed.

Using the OpenVMS Debugger 4–23

SHOW OUTPUT Displays the current output options established
by the SET OUTPUT command.�

SET
SHOW

ATSIGN

Establishes or displays the default file
specification that the debugger uses to search for
command procedures.

@file-spec Executes a command procedure.

4.5.12 Using Control Structures

IF Executes a list of commands conditionally.

FOR Executes a list of commands repetitively.

REPEAT Executes a list of commands repetitively.

WHILE Executes a list of commands conditionally, possibly
multiple times.

EXITLOOP Exits an enclosing WHILE, REPEAT, or FOR loop.

4.5.13 Additional Commands

SET PROMPT Specifies the debugger prompt.

SET OUTPUT [NO]TERMINAL Controls whether debugger output is displayed
or suppressed, except for diagnostic messages.�

SET
SHOW

LANGUAGE

Establishes or displays the current language.

�
SET
SHOW

EVENT_FACILITY

Establishes or identifies the current run-time
facility for language-specific events.

SHOW EXIT_HANDLERS Identifies the exit handlers declared in the
program.�

SET
SHOW

TASK

Modifies the tasking environment or displays
task information.

�
DISABLE
ENABLE
SHOW

�
AST

Disables the delivery of ASTs in the program,
enables the delivery of ASTs, or identifies
whether delivery is enabled or disabled.

SET MODE [NO]SEPARATE Controls whether a separate window is created
on a workstation for debugger input and output
(this command has no effect on VT-series
terminals).

4–24 Using the OpenVMS Debugger

For More Information:

• On debugger commands and the DECwindows Motif interface, see the HP
OpenVMS Debugger Manual.

• On debugger command syntax, enter the online debugger HELP command.

4.6 Locating an Exception
The OpenVMS Debugger supports the SET BREAK/EXCEPTION and SET
TRACE/EXCEPTION commands to set a breakpoint or tracepoint when an
exception occurs. To allow precise reporting of the exception, compile the
program using:

• The FORTRAN command qualifier /SYNCHRONOUS_EXCEPTIONS
(Alpha only)

• The FORTRAN command qualifier /CHECK=ALL (in general) or
/CHECK=FP_EXCEPTIONS (if you know it is a floating-point exception)

• The FORTRAN command qualifiers /DEBUG and /NOOPTIMIZE

If you use the FORTRAN command qualifier /FLOAT=IEEE_FLOAT to specify
IEEE floating-point (S_float and T_float) data, you can also use the /IEEE_
MODE qualifier to indicate how exceptions should be handled.

For example, you might use the following commands to create the executable
program:

$ FORTRAN/DEBUG/NOOPTIMIZE/FLOAT=IEEE_FLOAT/SYNCHRONOUS_EXC/CHECK=ALL TEST !
$ LINK/DEBUG TEST
$ RUN TEST

OpenVMS DEBUG (IA64 Debug64) Version x.x-xxx

%DEBUG-I-INITIAL, language is FORTRAN, module set to SQUARES
%DEBUG-I-NOTATMAIN, enter GO to get to start of main program
DBG> GO "
break at routine TEST$MAIN

1: REAL (KIND=4) :: A,B
DBG> SET BREAK/EXCEPTION DO (SHOW CALLS) #
DBG> GO $

Using the OpenVMS Debugger 4–25

%SYSTEM-F-HPARITH, high performance arithmetic trap, Imask=00000000,
Fmask=00000002, summary=08, PC=00020050, PS=0000001B %
-SYSTEM-F-FLTOVF, arithmetic trap,floating overflow at PC=00020050,PS=0000001B
break on exception preceding TEST$MAIN\%LINE 3+20

3: B=A*A
module name routine name line rel PC abs PC
*TEST$MAIN TEST$MAIN 3 00000050 00020050

00000130 00020130
SHAREDECFORRTL

00000000 000B0A30
00000130 00020130
00000000 84F4BAD8

DBG> TYPE 1:3 &
1: REAL (KIND=4) :: A,B
2: A=2.5138E20
3: B=A*A

DBG> EXIT
$

! The FORTRAN command line specifies qualifiers that ensure reporting of
exceptions and sufficient information for debugging.

The LINK command /DEBUG qualifier requests that debug symbol
information be included in the executable image.

" The first debugger GO command is needed because run-time checking was
requested.

The debugger command SET BREAK/EXCEPTION sets a breakpoint for
exceptions. If omitted, the exception is not reported.

$ The second debugger GO command runs the program.

% The ‘‘%SYSTEM-F-HPARITH, high performance arithmetic trap’’ message
indicates an exception has occurred. The ‘‘-SYSTEM-F-FLTOVF, arithmetic
trap, floating overflow’’ message indicates the type of exception. The
remaining display (requested by the SHOW CALLS command) shows the
routine and line number where the error occurred.

& The TYPE command displays the area of source code associated with the
exception.

For More Information:

• On the /SYNCHRONOUS_EXCEPTIONS (Alpha only) qualifier, see
Section 2.3.46.

• On the /IEEE_MODE qualifier, see Section 2.3.24.

• On the /FLOAT qualifier, see Section 2.3.22.

4–26 Using the OpenVMS Debugger

• On other FORTRAN command qualifiers, see Section 2.3 or online DCL
HELP (HELP FORTRAN).

4.7 Locating Unaligned Data
The OpenVMS Debugger supports the SET BREAK/UNALIGNED command to
set a breakpoint when unaligned data is accessed. To allow precise reporting
of the source code accessing the unaligned data, compile the program using the
FORTRAN command qualifier /SYNCHRONOUS_EXCEPTIONS (Alpha only).

For example, you might use the following commands to create the executable
program:

$ FORTRAN/DEBUG/NOOPTIMIZE/SYNCHRONOUS_EXCEPT INV_ALIGN !
$ LINK/DEBUG INV_ALIGN
$ RUN INV_ALIGN

OpenVMS DEBUG (IA64 Debug64) Version x.x-xxx

%DEBUG-I-INITIAL, language is FORTRAN, module set to INV_ALIGN
DBG> SET BREAK/UNALIGNED "
DBG> GO
Unaligned data access: virtual address = 0003000A, PC = 000200A0 #
break on unaligned data trap preceding INV_ALIGN\OOPS\%LINE 10

10: end
DBG> TYPE 7:9

7: subroutine oops(i4)
8: integer*4 i4
9: i4 = 1

DBG> EXIT
$

! The FORTRAN command line specifies qualifiers that ensure reporting of
exceptions and sufficient information for debugging.

The LINK command /DEBUG qualifier requests that debug symbol
information be included in the executable image.

" The debugger command SET BREAK/UNALIGNED sets a breakpoint for
unaligned data. If omitted, the unaligned data would not be reported.

The ‘‘Unaligned data access’’ message indicate the line causing the
unaligned data was just before line 10.

The TYPE command is used to display the lines before line 10. In this
case, the integer argument whose address is passed to subroutine OOPS is
unaligned, resulting in the unaligned access.

Using the OpenVMS Debugger 4–27

For More Information:

• On unaligned data, see Section 5.3.

• On the FORTRAN command /ALIGNMENT qualifier, see Section 2.3.3.

• On other FORTRAN command qualifiers, see Section 2.3 or online DCL
HELP (HELP FORTRAN).

4–28 Using the OpenVMS Debugger

5
Performance: Making Programs Run

Faster

This chapter describes:

• Section 5.1, Software Environment and Efficient Compilation

• Section 5.2, Analyzing Program Performance

• Section 5.3, Data Alignment Considerations

• Section 5.4, Using Arrays Efficiently

• Section 5.5, Improving Overall I/O Performance

• Section 5.6, Additional Source Code Guidelines for Run-Time Efficiency

• Section 5.7, Optimization Levels: /OPTIMIZE=LEVEL=~ Qualifier

• Section 5.8, Other Qualifiers Related to Optimization

• Section 5.9, Compiler Directives Related to Performance

5.1 Software Environment and Efficient Compilation
Before you attempt to analyze and improve program performance, you should:

• Obtain and install the latest version of HP Fortran, along with performance
products that can improve application performance, such as the Compaq
Extended Mathematical Library (CXML).

• If possible, obtain and install the latest version of the OpenVMS operating
system and processor firmware for your system.

• Use the FORTRAN command and its qualifiers in a manner that lets the
HP Fortran compiler perform as many optimizations as possible to improve
run-time performance.

• Use certain performance capabilities provided by the OpenVMS operating
system.

Performance: Making Programs Run Faster 5–1

5.1.1 Install the Latest Version of HP Fortran and Performance
Products

To ensure that your software development environment can significantly
improve the run-time performance of your applications, obtain and install the
following optional software products:

• The latest version of HP Fortran

New releases of the HP Fortran compiler and its associated run-time
libraries may provide new features that improve run-time performance.
The HP Fortran run-time libraries are shipped with the OpenVMS
operating system.

If your application will be run on an OpenVMS system other than your
program development system, be sure to use the same (or later) version of
the OpenVMS operating system on those systems.

You can obtain the appropriate HP Services software product maintenance
contract to automatically receive new versions of HP Fortran (or the
OpenVMS operating system). For information on more recent HP Fortran
releases, contact the HP Customer Support Center (CSC) if you have the
appropriate support contract, or contact your local HP sales representative
or authorized reseller.

• Compaq Extended Mathematical Library (CXML) for OpenVMS Alpha
Systems

Calling the Compaq Extended Mathematical Library (CXML) routines
and installing the CXML product can make certain applications run
significantly faster on OpenVMS Alpha systems. Refer to Chapter 15 for
information on CXML.

• Performance and Coverage Analyzer (profiler part of DECset)

You can purchase the Performance and Coverage Analyzer (PCA) product,
which performs code profiling. PCA is one of a group of products
comprising a development environment available from HP known as
DECset. Other DECset products include the Language-Sensitive Editor
(LSE), Source Code Analyzer (SCA), Code Management System (CMS), and
the DEC/Test Manager (DTM).

Use of the Source Code Analyzer (SCA) is supported by using the
/ANALYSIS_DATA qualifier (see Section 2.3.4) to produce an analysis
data file.

5–2 Performance: Making Programs Run Faster

• Other system-wide performance products

Other products are not specific to a particular programming language or
application, but can improve system-wide performance, such as minimizing
disk device I/O.

Adequate process quotas and pagefile space as well as proper system
tuning are especially important when running large programs, such as
those accessing large arrays.

For More Information:
About system-wide tuning and suggestions for other performance enhance-
ments on OpenVMS systems, see the HP OpenVMS System Manager’s Manual,
Volume 2: Tuning, Monitoring, and Complex Systems.

5.1.2 Compile Using Multiple Source Files and Appropriate FORTRAN
Qualifiers

During the earlier stages of program development, you can use incremental
compilation with minimal optimization. For example:

$ FORTRAN /OPTIMIZE=LEVEL=1 SUB2
$ FORTRAN /OPTIMIZE=LEVEL=1 SUB3
$ FORTRAN /OPTIMIZE=LEVEL=1 MAIN
$ LINK MAIN SUB2 SUB3

During the later stages of program development, you should compile
multiple source files together and use an optimization level of at least
/OPTIMIZE=LEVEL=4 on the FORTRAN command line to allow more
interprocedure optimizations to occur. For instance, the following command
compiles all three source files together using the default level of optimization
(/OPTIMIZE=LEVEL=4):

$ FORTRAN MAIN.F90+SUB2.F90+SUB3.F90
$ LINK MAIN.OBJ

Compiling multiple source files using the plus sign (+) separator lets the
compiler examine more code for possible optimizations, which results in:

• Inlining more procedures

• More complete data flow analysis

• Reducing the number of external references to be resolved during linking

When compiling all source files together is not feasible (such as for very
large programs), consider compiling source files containing related routines
together with multiple FORTRAN commands, rather than compiling source
files individually.

Performance: Making Programs Run Faster 5–3

Table 5–1 shows FORTRAN qualifiers that can improve performance. Most of
these qualifiers do not affect the accuracy of the results, while others improve
run-time performance but can change some numeric results.

HP Fortran performs certain optimizations unless you specify the appropriate
FORTRAN command qualifiers. Additional optimizations can be enabled or
disabled using FORTRAN command qualifiers.

Table 5–1 lists the FORTRAN qualifiers that can directly improve run-time
performance.

Table 5–1 FORTRAN Qualifiers Related to Run-Time Performance

Qualifier Names Description and For More Information

/ALIGNMENT=keyword Controls whether padding bytes are added between data
items within common blocks, derived-type data, and Compaq
Fortran 77 record structures to make the data items naturally
aligned.

See Section 5.3.

/ASSUME=NOACCURACY_
SENSITIVE

Allows the compiler to reorder code based on algebraic
identities to improve performance, enabling certain
optimizations. The numeric results can be slightly different
from the default (/ASSUME=ACCURACY_SENSITIVE)
because of the way intermediate results are rounded. This
slight difference in numeric results is acceptable to most
programs.

See Section 5.8.8.

/ARCHITECTURE=keyword
(Alpha only)

Specifies the type of Alpha architecture code instructions to
be generated for the program unit being compiled; it uses the
same options (keywords) as used by the /OPTIMIZE=TUNE
qualifier (Alpha only) (which controls instruction scheduling).

See Section 2.3.6.

/FAST Sets the following performance-related qualifiers:
/ALIGNMENT=(COMMONS=NATURAL, RECORDS=NATURAL,
SEQUENCE) /ARCHITECTURE=HOST, /ASSUME=NOAC-
CURACY_SENSITIVE, /MATH_LIBRARY=FAST (Alpha
only), and /OPTIMIZE=TUNE=HOST (Alpha only).

See Section 5.8.3.

/INTEGER_SIZE=nn Controls the sizes of INTEGER and LOGICAL declarations
without a kind parameter.

See Section 2.3.26.

(continued on next page)

5–4 Performance: Making Programs Run Faster

Table 5–1 (Cont.) FORTRAN Qualifiers Related to Run-Time Performance

Qualifier Names Description and For More Information

/MATH_LIBRARY=FAST (Alpha
only)

Requests the use of certain math library routines (used by
intrinsic functions) that provide faster speed. Using this
option causes a slight loss of accuracy and provides less
reliable arithmetic exception checking to get significant
performance improvements in those functions.

See Section 2.3.30.

/OPTIMIZE=INLINE=keyword Specifies the types of procedures to be inlined. If omitted,
/OPTIMIZE=LEVEL=n determines the types of procedures
inlined. Certain INLINE keywords are relevant only for
/OPTIMIZE=LEVEL=1 or higher.

See Section 2.3.35.

/OPTIMIZE=LEVEL=n
(n = 0 to 5)

Controls the optimization level and thus the types of
optimization performed. The default optimization level
is /OPTIMIZE=LEVEL=4. Use /OPTIMIZE=LEVEL=5 to
activate loop transformation optimizations.

See Section 5.7.

/OPTIMIZE=LOOPS Activates a group of loop transformation optimizations (a
subset of /OPTIMIZE=LEVEL=5).

See Section 5.7.

/OPTIMIZE=PIPELINE Activates the software pipelining optimization (a subset of
/OPTIMIZE=LEVEL=4).

See Section 5.7.

/OPTIMIZE=TUNE=keyword
(Alpha only)

Specifies the target processor generation (chip) architecture
on which the program will be run, allowing the optimizer to
make decisions about instruction tuning optimizations needed
to create the most efficient code. Keywords allow specifying
one particular Alpha processor generation type, multiple
processor generation types, or the processor generation type
currently in use during compilation. Regardless of the setting
of /OPTIMIZE=TUNE=xxxx, the generated code will run
correctly on all implementations of the Alpha architecture.

See Section 5.8.6.

/OPTIMIZE=UNROLL=n Specifies the number of times a loop is unrolled (n) when
specified with optimization level /OPTIMIZE=LEVEL=3 or
higher. If you omit /OPTIMIZE=UNROLL=n, the optimizer
determines how many times loops are unrolled.

See Section 5.7.4.1.

(continued on next page)

Performance: Making Programs Run Faster 5–5

Table 5–1 (Cont.) FORTRAN Qualifiers Related to Run-Time Performance

Qualifier Names Description and For More Information

/REENTRANCY Specifies whether code generated for the main program and
any Fortran procedures it calls will be relying on threaded or
asynchronous reentrancy.

See Section 2.3.39.

Table 5–2 lists qualifiers that can slow program performance. Some
applications that require floating-point exception handling or rounding need to
use the /IEEE_MODE and /ROUNDING_MODE qualifiers. Other applications
might need to use the /ASSUME=DUMMY_ALIASES qualifier for compatibility
reasons. Other qualifiers listed in Table 5–2 are primarily for troubleshooting
or debugging purposes.

Table 5–2 Qualifiers that Slow Run-Time Performance

Qualifier Names Description and For More Information

/ASSUME=DUMMY_ALIASES Forces the compiler to assume that dummy (formal)
arguments to procedures share memory locations with
other dummy arguments or with variables shared through
use association, host association, or common block use.
These program semantics slow performance, so you should
specify /ASSUME=DUMMY_ALIASES only for the called
subprograms that depend on such aliases.

The use of dummy aliases violates the FORTRAN-77,
Fortran 90, and Fortran 95 standards but occurs in some
older programs.

See Section 5.8.9.

/CHECK[=keyword] Generates extra code for various types of checking at
run time. This increases the size of the executable
image, but may be needed for certain programs to handle
arithmetic exceptions. Avoid using /CHECK=ALL except
for debugging purposes.

See Section 2.3.11.

(continued on next page)

5–6 Performance: Making Programs Run Faster

Table 5–2 (Cont.) Qualifiers that Slow Run-Time Performance

Qualifier Names Description and For More Information

/IEEE_MODE=keyword other
than /IEEE_MODE=DENORM_
RESULTS (on I64) or /IEEE_
MODE=FAST (on Alpha)

On Alpha systems, using /IEEE_MODE=UNDERFLOW_
TO_ZERO slows program execution (like
/SYNCHRONOUS_EXCEPTIONS (Alpha only)). Using
/IEEE_MODE=DENORM_RESULTS slows program
execution even more than /IEEE_MODE=UNDERFLOW_
TO_ZERO.

See Section 2.3.24.

/ROUNDING_MODE=DYNAMIC Certain rounding modes and changing the rounding mode
can slow program execution slightly.

See Section 2.3.40.

/SYNCHRONOUS_EXCEPTIONS Generates extra code to associate an arithmetic exception
with the instruction that causes it, slowing program
execution. Use this qualifier only when troubleshooting,
such as when identifying the source of an exception.

See Section 2.3.46.

/OPTIMIZE=LEVEL=0,
/OPTIMIZE=LEVEL=1,
/OPTIMIZE=LEVEL=2,
/OPTIMIZE=LEVEL=3

Minimizes the optimization level (and types of opti-
mizations). Use during the early stages of program
development or when you will use the debugger.

See Section 2.3.35 and Section 5.7.

/OPTIMIZE=INLINE=NONE,
/OPTIMIZE=INLINE=MANUAL

Minimizes the types of inlining done by the optimizer. Use
such qualifiers only during the early stages of program
development. The type of inlining optimizations are also
controlled by the /OPTIMIZE=LEVEL qualifier.

See Section 2.3.35 and Section 5.7.

For More Information:

• On compiling multiple files, see Section 2.2.1.

• On minimizing external references, see Section 10.2.1.

5.1.3 Process Environment and Related Influences on Performance
Certain DCL commands and system tuning can improve run-time performance:

• Specify adequate process limits and do system tuning.

Especially when compiling or running large programs, check to make sure
that process limits are adequate. In some cases, inadequate process limits
may prolong compilation or program execution. For more information, see
Section 1.2.

Performance: Making Programs Run Faster 5–7

Your system manager can tune the system for efficient use. For example,
to monitor system use during program execution or compilation, a system
manager can use the MONITOR command.

For more information on system tuning, see your operating system
documentation.

• Redirect scrolled text.

For programs that display a lot of text, consider redirecting text that is
usually displayed to SYS$OUTPUT to a file. Displaying a lot of text will
slow down execution; scrolling text in a terminal window on a workstation
can cause an I/O bottleneck (increased elapsed time) and use some CPU
time.

The following commands show how to run the program more efficiently by
redirecting output to a file and then displaying the program output:

$ DEFINE /USER FOR006 RESULTS.LIS
$ RUN MYPROG
$ TYPE/PAGE RESULTS.LIS

For More Information:
About system-wide tuning and suggestions for other performance enhance-
ments on OpenVMS systems, see the HP OpenVMS System Manager’s Manual,
Volume 2: Tuning, Monitoring, and Complex Systems.

5.2 Analyzing Program Performance
This section describes how you can:

• Analyze program performance using timings of program execution using
LIB$xxxx_TIMER routines or an equivalent DCL command procedure
(Section 5.2.1)

• Analyze program performance using the optional Performance Coverage
Analyzer tool (Section 5.2.2)

Before you analyze program performance, make sure any errors you might
have encountered during the early stages of program development have been
corrected.

5–8 Performance: Making Programs Run Faster

5.2.1 Measuring Performance Using LIB$xxxx_TIMER Routines or
Command Procedures

You can use LIB$xxxx_TIMER routines or an equivalent DCL command
procedure to measure program performance.

Using the LIB$xxxx_TIMER routines allows you to display timing and related
statistics at various points in the program as well as at program completion,
including elapsed time, actual CPU time, buffered I/O, direct I/O, and page
faults. If needed, you can use other routines or system services to obtain and
report other information.

You can measure performance for the entire program by using a DCL command
procedure (see Section 5.2.1.2). Although using a DCL command procedure
does not report statistics at various points in the program, it can provide
information for the entire program similar to that provided by the LIB$xxxx_
TIMER routines.

5.2.1.1 The LIB$xxxx_TIMER Routines
Use the following routines together to provide information about program
performance at various points in your program:

• LIB$INIT_TIMER stores the current values of specified times and counts
for use by LIB$SHOW_TIMER or LIB$STAT_TIMER routines.

• LIB$SHOW_TIMER returns times and counts accumulated since the last
call to LIB$INIT_TIMER and displays them on SYS$OUTPUT.

• LIB$STAT_TIMER returns times and counts accumulated since the last
call to LIB$INIT_TIMER and stores them in memory.

Run program timings when other users are not active. Your timing results can
be affected by one or more CPU-intensive processes also running while doing
your timings.

Try to run the program under the same conditions each time to provide the
most accurate results, especially when comparing execution times of a previous
version of the same program. Use the same CPU system (model, amount of
memory, version of the operating system, and so on) if possible.

If you do need to change systems, you should measure the time using the same
version of the program on both systems, so you know each system’s effect on
your timings.

For programs that run for less than a few seconds, repeat the timings several
times to ensure that the results are not misleading. Overhead functions might
influence short timings considerably.

Performance: Making Programs Run Faster 5–9

You can use the LIB$SHOW_TIMER (or LIB$STAT_TIMER) routine to return
elapsed time, CPU time, buffered I/O, direct I/O, and page faults:

• The elapsed time, which will be greater than the total charged actual
CPU time. Sometimes called ‘‘wall clock’’ time.

• Charged actual CPU time is the amount of actual CPU time used by the
process.

• Buffered I/O occurs when an intermediate buffer is used from the system
buffer pool, instead of a process-specific buffer.

• Direct I/O is when I/O transfer takes place directly between the process
buffer and the device.

• A page fault is when a reference to a page occurs that is not in the process
working set.

The HP Fortran program shown in Example 5–1 reports timings for the three
different sections of the main program, including accumulative statistics (for a
scalar program).

Example 5–1 Measuring Program Performance Using LIB$SHOW_TIMER
and LIB$INIT_TIMER

! Example use of LIB$SHOW_TIMER to time an HP Fortran program

PROGRAM TIMER

INTEGER TIMER_CONTEXT
DATA TIMER_CONTEXT /0/

! Initialize default timer stats to 0

CALL LIB$INIT_TIMER

! Sample first section of code to be timed

DO I=1,100
CALL MOM

ENDDO

! Display stats

TYPE *,’Stats for first section’
CALL LIB$SHOW_TIMER

! Zero second timer context

CALL LIB$INIT_TIMER (TIMER_CONTEXT)

(continued on next page)

5–10 Performance: Making Programs Run Faster

Example 5–1 (Cont.) Measuring Program Performance Using LIB$SHOW_
TIMER and LIB$INIT_TIMER

! Sample second section of code to be timed

DO I=1,1000
CALL MOM

ENDDO

! Display stats

TYPE *,’Stats for second section’
CALL LIB$SHOW_TIMER (TIMER_CONTEXT)
TYPE *,’Accumulated stats for two sections’
CALL LIB$SHOW_TIMER

! Re-Initialize second timer stats to 0

CALL LIB$INIT_TIMER (TIMER_CONTEXT)

! Sample Third section of code to be timed

DO I=1,1000
CALL MOM

ENDDO

! Display stats

TYPE *,’Stats for third section’
CALL LIB$SHOW_TIMER (TIMER_CONTEXT)
TYPE *,’Accumulated stats for all sections’
CALL LIB$SHOW_TIMER

END PROGRAM TIMER

! Sample subroutine performs enough processing so times aren’t all 0.0

SUBROUTINE MOM
COMMON BOO(10000)
DOUBLE PRECISION BOO
BOO = 0.5 ! Initialize all array elements to 0.5

DO I=2,10000
BOO(I) = 4.0+(BOO(I-1)+1)*BOO(I)*COSD(BOO(I-1)+30.0)
BOO(I-1) = SIND(BOO(I)**2)

ENDDO

RETURN

END SUBROUTINE MOM

The LIB$xxxx_TIMER routines use a single default time when called without
an argument. When you call LIB$xxxx_TIMER routines with an INTEGER
argument whose initial value is 0 (zero), you enable use of multiple timers.

Performance: Making Programs Run Faster 5–11

The LIB$INIT_TIMER routine must be called at the start of the timing. It can
be called again at any time to reset (set to zero) the values.

In Example 5–1, LIB$INIT_TIMER is:

• Called once at the start of the program without an argument. This
initializes what will become accumulated statistics and starts the collection
of the statistics. You can think of this as the first timer.

• Called once at the start of each section with the INTEGER context
argument TIMER_CONTEXT. This resets the values for the current section
to zero and starts the collection of the statistics. You can think of this as
the second timer, which gets reset for each section.

The LIB$SHOW_TIMER routine displays the timer values saved by LIB$INIT_
TIMER to SYS$OUTPUT (or to a specified routine). Your program must call
LIB$INIT_TIMER before LIB$SHOW_TIMER at least once (to start the
timing).

Like LIB$INIT_TIMER:

• Calling LIB$SHOW_TIMER without any arguments displays the default
accumulated statistics.

• Calling LIB$SHOW_TIMER with an INTEGER context variable (TIMER_
CONTEXT) displays the statistics for the current section.

The free-format source file, TIMER.F90, might be compiled and linked as
follows:

$ FORTRAN/FLOAT=IEEE_FLOAT TIMER
$ LINK TIMER

When the program is run (on a low-end Alpha system), it displays timing
statistics for each section of the program as well as accumulated statistics:

$ RUN TIMER

Stats for first section
ELAPSED: 0 00:00:02.36 CPU: 0:00:02.21 BUFIO: 1 DIRIO: 0 FAULTS: 23
Stats for second section
ELAPSED: 0 00:00:22.31 CPU: 0:00:22.09 BUFIO: 1 DIRIO: 0 FAULTS: 0
Accumulated stats for two sections
ELAPSED: 0 00:00:24.68 CPU: 0:00:24.30 BUFIO: 5 DIRIO: 0 FAULTS: 27
Stats for third section
ELAPSED: 0 00:00:22.24 CPU: 0:00:21.98 BUFIO: 1 DIRIO: 0 FAULTS: 0
Accumulated stats for all sections
ELAPSED: 0 00:00:46.92 CPU: 0:00:46.28 BUFIO: 9 DIRIO: 0 FAULTS: 27

$

5–12 Performance: Making Programs Run Faster

You might:

• Run the program multiple times and average the results.

• Use different compilation qualifiers to see which combination provides the
best performance.

Instead of the LIB$xxxx_TIMER routines (specific to the OpenVMS operating
system), you might consider modifying the program to call other routines
within the program to measure execution time (but not obtain other process
information). For example, you might use HP Fortran intrinsic procedures,
such as SYSTEM_CLOCK, DATE_AND_TIME, and TIME.

For More Information:

• On the LIB$ RTL routines, see the HP OpenVMS RTL Library (LIB$)
Manual.

• On HP Fortran intrinsic procedures, see the HP Fortran for OpenVMS
Language Reference Manual.

5.2.1.2 Using a Command Procedure
Some of the information obtained by using the LIB$xxxx_TIMER routines can
be obtained using a command procedure. You should be aware of the following:

• Using a command procedure does not require source code modification.
Using LIB$xxxx_TIMER routines requires that you modify the source
program.

• Using a command procedure can only provide performance timings and
statistics for the entire program. Using LIB$xxxx_TIMER routines provides
performance timings and statistics for individual sections of the program
and/or the entire program.

Before using a command procedure to measure performance, define a foreign
symbol that runs the program to be measured in a subprocess. In the following
example, the name of the command procedure is TIMER:

$ TIMER :== SPAWN /WAIT /NOLOG @SYS$LOGIN:TIMER

The command procedure shown in Example 5–2 uses the F$GETJPI lexical
function to measure performance statistics and the F$FAO lexical function to
report the statistics. Each output line is saved as a logical name, which can be
saved by the parent process if needed.

Performance: Making Programs Run Faster 5–13

Example 5–2 Command Procedure that Measures Program Performance

$ verify = ’f$verify(0)
$
$! Get initial values for stats (this removes SPAWN overhead or the current
$! process values).
$
$ bio1 = f$getjpi (0, "BUFIO")
$ dio1 = f$getjpi (0, "DIRIO")
$ pgf1 = f$getjpi (0, "PAGEFLTS")
$ vip1 = f$getjpi (0, "VIRTPEAK")
$ wsp1 = f$getjpi (0, "WSPEAK")
$ dsk1 = f$getdvi ("sys$disk:","OPCNT")
$ tim1 = f$time ()
$
$ set noon
$ tik1 = f$getjpi (0, "CPUTIM")
$ set noverify
$
$! User command being timed:
$
$ ’p1’ ’p2’ ’p3’ ’p4’ ’p5’ ’p6’ ’p7’ ’p8’
$
$ tik2 = f$getjpi (0, "CPUTIM")
$
$ bio2 = f$getjpi (0, "BUFIO")
$ dio2 = f$getjpi (0, "DIRIO")
$ pgf2 = f$getjpi (0, "PAGEFLTS")
$ vip2 = f$getjpi (0, "VIRTPEAK")
$ wsp2 = f$getjpi (0, "WSPEAK")
$ dsk2 = f$getdvi ("sys$disk:","OPCNT")
$ tim2 = f$time ()
$
$ tim = f$cvtime("’’f$cvtime(tim2,,"TIME")’-’’f$cvtime(tim1,,"TIME")’",,"TIME")
$ thun = ’f$cvtime(tim,,"HUNDREDTH")
$ tsec = (f$cvtime(tim,,"HOUR")*3600) + (f$cvtime(tim,,"MINUTE")*60) + -
f$cvtime(tim,,"SECOND")

$

(continued on next page)

5–14 Performance: Making Programs Run Faster

Example 5–2 (Cont.) Command Procedure that Measures Program Performance

$ bio = bio2 - bio1
$ dio = dio2 - dio1
$ pgf = pgf2 - pgf1
$ dsk = dsk2 - dsk1
$ vip = ""
$ if vip2 .le. vip1 then vip = "*" ! Asterisk means didn’t change (from parent)
$ wsp = ""
$ if wsp2 .le. wsp1 then wsp = "*"
$
$ tiks = tik2 - tik1
$ secs = tiks / 100
$ huns = tiks - (secs*100)
$ write sys$output ""
$!
$ time$line1 == -
f$fao("Execution (CPU) sec!5UL.!2ZL Direct I/O !7UL Peak working set!7UL!1AS", -

secs, huns, dio, wsp2, wsp)
$ write sys$output time$line1
$!
$ time$line2 == -
f$fao("Elapsed (clock) sec!5UL.!2ZL Buffered I/O!7UL Peak virtual !7UL!1AS", -

tsec, thun, bio, vip2, vip)
$ write sys$output time$line2
$!
$ time$line3 == -
f$fao("Process ID !AS SYS$DISK I/O!7UL Page faults !7UL", -

f$getjpi(0,"pid"), dsk, pgf)
$ write sys$output time$line3
$ if wsp+vip .nes. "" then write sys$output -
" (* peak from parent)"

$ write sys$output ""
$
$! Place these output lines in the job logical name table, so the parent
$! can access them (useful for batch jobs to automate the collection).
$
$ define /job/nolog time$line1 "’’time$line1’"
$ define /job/nolog time$line2 "’’time$line2’"
$ define /job/nolog time$line3 "’’time$line3’"
$
$ verify = f$verify(verify)

This example command procedure accepts multiple parameters, which include
the RUN command, the name of the executable image to be run, and any
parameters to be passed to the executable image.

Performance: Making Programs Run Faster 5–15

$ TIMER RUN PROG_TEST
$
$! User command being timed:
$
$ RUN PROG_TEST.EXE;

Execution (CPU) sec 45.39 Direct I/O 3 Peak working set 2224
Elapsed (clock) sec 45.96 Buffered I/O 18 Peak virtual 15808
Process ID 20A00999 SYS$DISK I/O 6 Page faults 64

If your program displays a lot of text, you can redirect the output from the
program. Displaying text increases the buffered I/O count. Redirecting output
from the program will change the times reported because of reduced screen
I/O.

For More Information:
About system-wide tuning and suggestions for other performance enhance-
ments on OpenVMS systems, see the HP OpenVMS System Manager’s Manual,
Volume 2: Tuning, Monitoring, and Complex Systems.

5.2.2 Performance and Coverage Analyzer (PCA)
To generate profiling information, you can use the optional Performance and
Coverage Analyzer (PCA) tool.

Profiling helps you identify areas of code where significant program execution
time is spent; it can also identify those parts of an application that are not
executed (by a given set of test data).

PCA has two components:

• The Collector gathers performance or test coverage data on the running
program and writes that data to a performance data file. You can
specify the image to be used (image selection) and characteristics of
the data collection (measurement and control selection). Data collection
characteristics include:

Program counter (PC) sampling

CPU sampling data

Counts of program execution at a location

Coverage of program locations

Other information

• The Analyzer reads and processes the performance data file and displays
the collected data graphically in the form of histograms, tables, and
annotated source listings.

5–16 Performance: Making Programs Run Faster

PCA works with related DECset tools LSE and the Test Manager. PCA
provides a callable routine interface, as well as a command-line and
DECwindows Motif graphical windowing interface. The following examples
demonstrate the character-cell interface.

When compiling a program for which PCA will record and analyze data, specify
the /DEBUG qualifier on the FORTRAN command line:

$ FORTRAN /DEBUG TEST_PROG.F90

On the LINK command line, specify the PCA debugging module PCA$OBJ
using the Linker /DEBUG qualifier:

$ LINK /DEBUG=SYS$LIBRARY:PCA$OBJ.OBJ TEST_PROG

When you run the program, the PCA$OBJ.OBJ debugging module invokes the
Collector and is ready to accept your input to run your program under Collector
control and gather the performance or coverage data:

$ RUN TEST_PROG
PCAC>

You can enter Collector commands, such as SET DATAFILE, SET PC_
SAMPLING, GO, and EXIT.

To run the Analyzer, type the PCA command and specify the name of a
performance data file, such as the following:

$ PCA TEST_PROG
PCAA>

You can enter the appropriate Analyzer commands to display the data in the
performance data file in a graphic representation.

For More Information:

• On the windowing interface for PCA, see the Guide to Performance and
Coverage Analyzer for VMS Systems.

• On the character-cell interface for PCA, see the Performance and Coverage
Analyzer Command-Line Reference.

5.3 Data Alignment Considerations
The HP Fortran compiler aligns most numeric data items on natural
boundaries to avoid run-time adjustment by software that can slow
performance.

Performance: Making Programs Run Faster 5–17

A natural boundary is a memory address that is a multiple of the data item’s
size (data type sizes are described in Table 8–1). For example, a REAL
(KIND=8) data item aligned on natural boundaries has an address that is a
multiple of 8. An array is aligned on natural boundaries if all of its elements
are.

All data items whose starting address is on a natural boundary are naturally
aligned. Data not aligned on a natural boundary is called unaligned data.

Although the HP Fortran compiler naturally aligns individual data items when
it can, certain HP Fortran statements (such as EQUIVALENCE) can cause
data items to become unaligned (see Section 5.3.1).

Although you can use the FORTRAN command /ALIGNMENT qualifier to
ensure naturally aligned data, you should check and consider reordering data
declarations of data items within common blocks and structures. Within each
common block, derived type, or record structure, carefully specify the order
and sizes of data declarations to ensure naturally aligned data. Start with the
largest size numeric items first, followed by smaller size numeric items, and
then nonnumeric (character) data.

5.3.1 Causes of Unaligned Data and Ensuring Natural Alignment
Common blocks (COMMON statement), derived-type data, and Compaq
Fortran 77 record structures (STRUCTURE and RECORD statements) usually
contain multiple items within the context of the larger structure.

The following declaration statements can force data to be unaligned:

• Common blocks (COMMON statement)

The order of variables in the COMMON statement determines their storage
order.

Unless you are sure that the data items in the common block will be
naturally aligned, specify either /ALIGNMENT=COMMONS=STANDARD
or /ALIGNMENT=COMMONS=NATURAL) (set by specifying /FAST),
depending on the largest data size used.

For examples and more information, see Section 5.3.3.1.

• Derived-type (user-defined) data

Derived-type data members are declared after a TYPE statement.

If your data includes derived-type data structures, you should avoid
specifying the FORTRAN command qualifier /ALIGNMENT=
RECORDS=PACKED unless you are sure that the data items in derived-
type data structures (and Compaq Fortran 77 record structures) will be
naturally aligned.

5–18 Performance: Making Programs Run Faster

If you omit the SEQUENCE statement (and /ALIGNMENT=
RECORDS=PACKED), the /ALIGNMENT=RECORDS=NATURAL
qualifier ensures all data items are naturally aligned. This is the default.

If you specify the SEQUENCE statement, the /ALIGNMENT=
RECORDS=NATURAL qualifier is prevented from adding necessary
padding to avoid unaligned data (data items are packed). When you
use the SEQUENCE statement, you should specify data declaration
order such that all data items are naturally aligned, or add the
/ALIGNMENT=RECORDS=SEQUENCE compiler qualifier.

For an example and more information, see Section 5.3.3.2.

• Compaq Fortran 77 record structures (RECORD and STRUCTURE
statements)

Compaq Fortran 77 record structures usually contain multiple data items.
The order of variables in the STRUCTURE statement determines their
storage order. The RECORD statement names the record structure.

If your data includes Compaq Fortran 77 record structures, you should
avoid specifying the FORTRAN command qualifier /ALIGNMENT=RECORDS=

PACKED unless you are sure that the data items in derived-type data
and Compaq Fortran 77 record structures will be naturally aligned.

For an example and more information, see Section 5.3.3.3.

• EQUIVALENCE statements

EQUIVALENCE statements can force unaligned data or cause data to
span natural boundaries. For more information, see the HP Fortran for
OpenVMS Language Reference Manual.

To avoid unaligned data in a common block, derived-type data, or record
structure (extension), use one or both of the following:

• For new programs or for programs where the source code declarations
can be modified easily, plan the order of data declarations with care.
For example, you should order variables in a COMMON statement such
that numeric data is arranged from largest to smallest, followed by any
character data (see the data declaration rules in Section 5.3.3).

• For existing programs where source code changes are not easily done or for
array elements containing derived-type or record structures, you can use
command line qualifiers to request that the compiler align numeric data by
adding padding spaces where needed.

Performance: Making Programs Run Faster 5–19

Other possible causes of unaligned data include unaligned actual arguments
and arrays that contain a derived-type structure or Compaq Fortran 77 record
structure.

When actual arguments from outside the program unit are not naturally
aligned, unaligned data access will occur. HP Fortran assumes all passed
arguments are naturally aligned and has no information at compile time about
data that will be introduced by actual arguments during program execution.

For arrays where each array element contains a derived-type structure or
Compaq Fortran 77 record structure, the size of the array elements may cause
some elements (but not the first) to start on an unaligned boundary.

Even if the data items are naturally aligned within a derived-type structure
without the SEQUENCE statement or a record structure, the size of an array
element might require use of the FORTRAN /ALIGNMENT qualifier to supply
needed padding to avoid some array elements being unaligned.

If you specify /ALIGNMENT=RECORDS=PACKED (or equivalent qualifiers),
no padding bytes are added between array elements. If array elements each
contain a derived-type structure with the SEQUENCE statement, array
elements are packed without padding bytes regardless of the FORTRAN
command qualifiers specified. In this case, some elements will be unaligned.

When /ALIGNMENT=RECORDS=NATURAL is in effect (default), the number
of padding bytes added by the compiler for each array element is dependent on
the size of the largest data item within the structure. The compiler determines
the size of the array elements as an exact multiple of the largest data item
in the derived-type structure without the SEQUENCE statement or a record
structure. The compiler then adds the appropriate number of padding bytes.

For instance, if a structure contains an 8-byte floating-point number followed
by a 3-byte character variable, each element contains five bytes of padding
(16 is an exact multiple of 8). However, if the structure contains one 4-byte
floating-point number, one 4-byte integer, followed by a 3-byte character
variable, each element would contain one byte of padding (12 is an exact
multiple of 4).

For More Information:
On the FORTRAN command /ALIGNMENT qualifier, see Section 5.3.4.

5–20 Performance: Making Programs Run Faster

5.3.2 Checking for Inefficient Unaligned Data
During compilation, the HP Fortran compiler naturally aligns as much data
as possible. Exceptions that can result in unaligned data are described in
Section 5.3.1.

Because unaligned data can slow run-time performance, it is worthwhile to:

• Double-check data declarations within common block, derived-type data,
or record structures to ensure all data items are naturally aligned (see the
data declaration rules in Section 5.3.3). Using modules to contain data
declarations can ensure consistent alignment and use of such data.

• Avoid the EQUIVALENCE statement or use it in a manner that cannot
cause unaligned data or data spanning natural boundaries.

• Ensure that passed arguments from outside the program unit are naturally
aligned.

• Check that the size of array elements containing at least one derived-type
data or record structure (extension) cause array elements to start on
aligned boundaries (see Section 5.3.1).

There are two ways unaligned data might be reported:

• During compilation

During compilation, warning messages are issued for any data
items that are known to be unaligned (unless you specify the
/WARN=NOALIGNMENTS qualifier).

• During program execution by using the debugger

On Alpha systems, compile the program with the /SYNCHRONOUS_
EXCEPTIONS (Alpha only) qualifier (along with /DEBUG and
/NOOPTIMIZE) to request precise reporting of any data that is detected as
unaligned.

Use the debugger (SET BREAK/UNALIGNED) command as described in
Section 4.7 to check where the unaligned data is located.

For More Information:
On the /WARNINGS qualifier, see Section 2.3.51.

Performance: Making Programs Run Faster 5–21

5.3.3 Ordering Data Declarations to Avoid Unaligned Data
For new programs or when the source declarations of an existing program can
be easily modified, plan the order of your data declarations carefully to ensure
the data items in a common block, derived-type data, record structure, or data
items made equivalent by an EQUIVALENCE statement will be naturally
aligned.

Use the following rules to prevent unaligned data:

• Always define the largest size numeric data items first.

• Add small data items of the correct size (or padding) before otherwise
unaligned data to ensure natural alignment for the data that follows.

• If your data includes a mixture of character and numeric data, place the
numeric data first.

Using the suggested data declaration guidelines minimizes the need to use the
/ALIGNMENT qualifier to add padding bytes to ensure naturally aligned data.
In cases where the /ALIGNMENT qualifier is still needed, using the suggested
data declaration guidelines can minimize the number of padding bytes added
by the compiler.

5.3.3.1 Arranging Data Items in Common Blocks
The order of data items in a COMMON statement determines the order in
which the data items are stored. Consider the following declaration of a
common block named X:

LOGICAL (KIND=2) FLAG
INTEGER IARRY_I(3)
CHARACTER(LEN=5) NAME_CH
COMMON /X/ FLAG, IARRY_I(3), NAME_CH

As shown in Figure 5–1, if you omit the appropriate FORTRAN command
qualifiers, the common block will contain unaligned data items beginning at
the first array element of IARRY_I.

5–22 Performance: Making Programs Run Faster

Figure 5–1 Common Block with Unaligned Data

ZK−6659A−GE

19 (byte offset)

1 byte per character

0

FLAG IARRY_I(1) IARRY_I(2) IARRY_I(3)

NAME_CH2 6 10 14

As shown in Figure 5–2, if you compile the program units that use the common
block with the /ALIGNMENT=COMMONS=STANDARD qualifier, data items
will be naturally aligned.

Figure 5–2 Common Block with Naturally Aligned Data

ZK−6660A−GE

21 (byte offset)

1 byte per character

0

FLAG IARRY_I(1) IARRY_I(2) IARRY_I(3)

NAME_CH2 8 12 164

Padding

Because the common block X contains data items whose size is 32 bits or
smaller, you can specify the /ALIGNMENT=COMMONS qualifier and still
have naturally aligned data. If the common block contains data items whose
size might be larger than 32 bits (such as REAL (KIND=8) data), specify
/ALIGNMENT=COMMONS=NATURAL to ensure naturally aligned data.

If you can easily modify the source files that use the common block data, define
the numeric variables in the COMMON statement in descending order of size
and place the character variable last. This provides more portability, ensures
natural alignment without padding, and does not require the FORTRAN
command /ALIGNMENT=COMMONS=NATURAL (or equivalent) qualifier:

LOGICAL (KIND=2) FLAG
INTEGER IARRY_I(3)
CHARACTER(LEN=5) NAME_CH
COMMON /X/ IARRY_I(3), FLAG, NAME_CH

As shown in Figure 5–3, if you arrange the order of variables from largest to
smallest size and place character data last, the data items will be naturally
aligned.

Performance: Making Programs Run Faster 5–23

Figure 5–3 Common Block with Naturally Aligned Reordered Data

ZK−7915A−GE

19 (byte offset)

1 byte per character

FLAGIARRY_I(1) IARRY_I(2) IARRY_I(3)

NAME_CH140 4 8 12

When modifying or creating all source files that use common block data,
consider placing the common block data declarations in a module so the
declarations are consistent. If the common block is not needed for compatibility
(such as file storage or Compaq Fortran 77 use), you can place the data
declarations in a module without using a common block.

5.3.3.2 Arranging Data Items in Derived-Type Data
Like common blocks, derived-type data may contain multiple data items
(members).

Data item components within derived-type data will be naturally aligned
on up to 64-bit boundaries, with certain exceptions related to the use of
the SEQUENCE statement and FORTRAN qualifiers. See Section 5.3.4 for
information about these exceptions.

HP Fortran stores a derived data type as a linear sequence of values, as
follows:

• If you specify the SEQUENCE statement, the first data item is in the first
storage location and the last data item is in the last storage location. The
data items appear in the order in which they are declared. The FORTRAN
qualifiers have no effect on unaligned data, so data declarations must be
carefully specified to naturally align data.

The /ALIGNMENT=SEQUENCE qualifier specifically aligns data items in
a SEQUENCE derived-type on natural boundaries.

• If you omit the SEQUENCE statement, HP Fortran adds the padding bytes
needed to naturally align data item components, unless you specify the
/ALIGNMENT=RECORDS=PACKED qualifier.

Consider the following declaration of array CATALOG_SPRING of derived-type
PART_DT:

5–24 Performance: Making Programs Run Faster

MODULE DATA_DEFS
TYPE PART_DT
INTEGER IDENTIFIER
REAL WEIGHT
CHARACTER(LEN=15) DESCRIPTION

END TYPE PART_DT
TYPE (PART_DT) CATALOG_SPRING(30)
.
.
.

END MODULE DATA_DEFS

As shown in Figure 5–4, the largest numeric data items are defined first
and the character data type is defined last. There are no padding characters
between data items and all items are naturally aligned. The trailing padding
byte is needed because CATALOG_SPRING is an array; it is inserted by the
compiler when the /ALIGNMENT=RECORDS=NATURAL qualifier (default) is
in effect.

Figure 5–4 Derived-Type Naturally Aligned Data (in CATALOG_SPRING())

ZK−6658A−GE

IDENTIFIER WEIGHT

DESCRIPTION 23 (byte offset)

1 byte per character

0 4 8

Padding

5.3.3.3 Arranging Data Items in Compaq Fortran 77 Record Structures
HP Fortran supports record structures provided by Compaq Fortran
77. Compaq Fortran 77 record structures use the RECORD statement
and optionally the STRUCTURE statement, which are extensions to the
FORTRAN-77, Fortran 90, and Fortran 95 standards. The order of data items
in a STRUCTURE statement determines the order in which the data items are
stored.

HP Fortran stores a record in memory as a linear sequence of val-
ues, with the record’s first element in the first storage location and
its last element in the last storage location. Unless you specify the
/ALIGNMENT=RECORDS=PACKED qualifier, padding bytes are added if
needed to ensure data fields are naturally aligned.

Performance: Making Programs Run Faster 5–25

The following example contains a structure declaration, a RECORD statement,
and diagrams of the resulting records as they are stored in memory:

STRUCTURE /STRA/
CHARACTER*1 CHR
INTEGER*4 INT

END STRUCTURE
.
.
.

RECORD /STRA/ REC

Figure 5–5 shows the memory diagram of record REC for naturally aligned
records.

Figure 5–5 Memory Diagram of REC for Naturally Aligned Records

Record REC

0 1

REC.INTREC.CHR

ZK−2244A−GE

2 3 4 8 (byte offset)

Padding

For More Information:
On data declaration statements, see the HP Fortran for OpenVMS Language
Reference Manual.

5.3.4 Qualifiers Controlling Alignment
The following qualifiers control whether the HP Fortran compiler adds padding
(when needed) to naturally align multiple data items in common blocks,
derived-type data, and Compaq Fortran 77 record structures:

• Unless you specify /FAST, the default is /ALIGNMENT=COMMONS=-
PACKED or arbitrary byte alignment of common block data. In this case,
unaligned data can occur unless the order of data items specified in the
COMMON statement places the largest numeric data item first, followed
by the next largest numeric data (and so on), followed by any character
data.

5–26 Performance: Making Programs Run Faster

• The /ALIGNMENT=COMMONS=STANDARD qualifier requests that data
in common blocks be aligned on up to 4-byte boundaries, by adding padding
bytes as needed.

• The /ALIGNMENT=COMMONS=NATURAL qualifier requests that data in
common blocks be aligned on up to 8-byte boundaries, by adding padding
bytes as needed.

If you specify /FAST, the default is /ALIGNMENT=COMMONS=NATURAL.

• The /ALIGNMENT=COMMONS=NATURAL qualifier is equivalent to
specifying /ALIGNMENT=(COMMONS=(NATURAL,NOMULTILANG-
UAGE), RECORDS=NATURAL).

• The /ALIGNMENT=RECORDS=PACKED qualifier requests that multiple
data items in derived-type data and record structures be aligned on
byte boundaries instead of being naturally aligned. The default is
/ALIGNMENT=RECORDS=NATURAL.

• The /ALIGNMENT=RECORDS=NATURAL qualifier (default) requests
that multiple data items in derived-type data without the SEQUENCE
statement record structures be naturally aligned, by adding padding bytes
as needed.

• The /ALIGNMENT=NOSEQUENCE qualifier controls alignment
of derived types with the SEQUENCE attribute. The default
/ALIGNMENT=NOSEQUENCE qualifier means that derived types
with the SEQUENCE attribute are packed regardless of any other
alignment rules. Note that /ALIGNMENT=NONE implies /ALIGNMENT=-
NOSEQUENCE.

On the other hand, the /ALIGNMENT=SEQUENCE qualifier means that
derived types with the SEQUENCE attribute obey whatever alignment
rules are currently in use. Consequently, since /ALIGNMENT=RECORDS
is a default value, then /ALIGNMENT=SEQUENCE alone on the
command line will cause the fields in these derived types to be
naturally aligned. Note that /FAST and /ALIGNMENT=ALL imply
/ALIGNMENT=SEQUENCE.

• The /FAST qualifier controls certain defaults, including alignment (sets
/ALIGNMENT=COMMONS=NATURAL qualifier).

The default behavior is that multiple data items in derived-type data and
record structures will be naturally aligned; data items in common blocks will
not be naturally aligned (/ALIGNMENT=(COMMONS=(PACKED, NOMULTI-
LANGUAGE), RECORDS=NATURAL).

Performance: Making Programs Run Faster 5–27

In derived-type data, using the SEQUENCE statement prevents
/ALIGNMENT=RECORDS=NATURAL from adding needed padding bytes to
naturally align data items.

For More Information:
On the /ALIGNMENT qualifier, see Section 2.3.3.

5.4 Using Arrays Efficiently
The following sections discuss these topics:

• Accessing arrays efficiently

• Passing arrays efficiently

5.4.1 Accessing Arrays Efficiently
Many of the array access efficiency techniques described in this section are
applied automatically by the HP Fortran loop transformation optimizations
(see Section 5.8.1).

Several aspects of array use can improve run-time performance. The following
sections describe these aspects.

Array Access
The fastest array access occurs when contiguous access to the whole array or
most of an array occurs. Perform one or a few array operations that access
all of the array or major parts of an array instead of numerous operations on
scattered array elements.

Rather than use explicit loops for array access, use elemental array operations,
such as the following line that increments all elements of array variable A:

A = A + 1.

When reading or writing an array, use the array name and not a DO loop
or an implied DO-loop that specifies each element number. Fortran 90/95
array syntax allows you to reference a whole array by using its name in an
expression. For example:

REAL :: A(100,100)
A = 0.0
A = A + 1. ! Increment all elements of A by 1
.
.
.

WRITE (8) A ! Fast whole array use

5–28 Performance: Making Programs Run Faster

Similarly, you can use derived-type array structure components, such as:

TYPE X
INTEGER A(5)

END TYPE X
.
.
.
TYPE (X) Z
WRITE (8) Z%A ! Fast array structure component use

Multidimensional Arrays
Make sure multidimensional arrays are referenced using proper array syntax
and are traversed in the natural ascending order (column major) for
Fortran. With column-major order, the leftmost subscript varies most rapidly
with a stride of one. Writing a whole array uses column-major order.

Avoid row-major order, as is done by C, where the rightmost subscript varies
most rapidly.

For example, consider the nested DO loops that access a two-dimension array
with the J loop as the innermost loop:

INTEGER X(3,5), Y(3,5), I, J
Y = 0
DO I=1,3 ! I outer loop varies slowest
DO J=1,5 ! J inner loop varies fastest
X (I,J) = Y(I,J) + 1 ! Inefficient row-major storage order

END DO ! (rightmost subscript varies fastest)
END DO
.
.
.
END PROGRAM

Since J varies the fastest and is the second array subscript in the expression X
(I,J), the array is accessed in row-major order.

To make the array accessed in natural column-major order, examine the array
algorithm and data being modified.

Using arrays X and Y, the array can be accessed in natural column-major order
by changing the nesting order of the DO loops so the innermost loop variable
corresponds to the leftmost array dimension:

Performance: Making Programs Run Faster 5–29

INTEGER X(3,5), Y(3,5), I, J
Y = 0

DO J=1,5 ! J outer loop varies slowest
DO I=1,3 ! I inner loop varies fastest
X (I,J) = Y(I,J) + 1 ! Efficient column-major storage order

END DO ! (leftmost subscript varies fastest)
END DO
.
.
.
END PROGRAM

The Fortran 90/95 whole array access (X = Y + 1) uses efficient column major
order. However, if the application requires that J vary the fastest or if you
cannot modify the loop order without changing the results, consider modifying
the application program to use a rearranged order of array dimensions.
Program modifications include rearranging the order of:

• Dimensions in the declaration of the arrays X(5,3) and Y(5,3)

• The assignment of X(J,I) and Y(J,I) within the DO loops

• All other references to arrays X and Y

In this case, the original DO loop nesting is used where J is the innermost
loop:

INTEGER X(5,3), Y(5,3), I, J
Y = 0
DO I=1,3 ! I outer loop varies slowest
DO J=1,5 ! J inner loop varies fastest
X (J,I) = Y(J,I) + 1 ! Efficient column-major storage order

END DO ! (leftmost subscript varies fastest)
END DO
.
.
.
END PROGRAM

Code written to access multidimensional arrays in row-major order (like C) or
random order can often make inefficient use of the CPU memory cache. For
more information on using natural storage order during record I/O operations,
see Section 5.5.3.

5–30 Performance: Making Programs Run Faster

Array Intrinsic Procedures
Use the available Fortran 90/95 array intrinsic procedures rather than create
your own.

Whenever possible, use Fortran 90/95 array intrinsic procedures instead of
creating your own routines to accomplish the same task. HP Fortran array
intrinsic procedures are designed for efficient use with the various HP Fortran
run-time components.

Using the standard-conforming array intrinsics can also make your program
more portable.

Noncontiguous Access
With multidimensional arrays where access to array elements will be
noncontiguous, avoid leftmost array dimensions that are a power of 2 (such
as 256, 512).

Since the cache sizes are a power of 2, array dimensions that are also a power
of 2 may make inefficient use of cache when array access is noncontiguous. If
the cache size is an exact multiple of the leftmost dimension, your program
will probably make little use of the cache. This does not apply to contiguous
sequential access or whole array access.

One work-around is to increase the dimension to allow some unused elements,
making the leftmost dimension larger than actually needed. For example,
increasing the leftmost dimension of A from 512 to 520 would make better use
of cache:

REAL A (512,100)
DO I = 2,511
DO J = 2,99
A(I,J)=(A(I+1,J-1) + A(I-1, J+1)) * 0.5

END DO
END DO

In this code, array A has a leftmost dimension of 512, a power of 2. The
innermost loop accesses the rightmost dimension (row major), causing
inefficient access. Increasing the leftmost dimension of A to 520 (REAL A
(520,100)) allows the loop to provide better performance, but at the expense of
some unused elements.

Because loop index variables I and J are used in the calculation, changing the
nesting order of the DO loops changes the results.

Performance: Making Programs Run Faster 5–31

5.4.2 Passing Array Arguments Efficiently
In HP Fortran, there are two general types of array arguments:

• Explicit-shape arrays used with FORTRAN 77.

These arrays have a fixed rank and extent that are known at compile time.
Other dummy argument (receiving) arrays that are not deferred-shape
(such as assumed-size arrays) can be grouped with explicit-shape array
arguments.

• Deferred-shape arrays introduced with Fortran 90.

Types of deferred-shape arrays include array pointers and allocatable
arrays. Assumed-shape array arguments generally follow the rules about
passing deferred-shape array arguments.

When passing arrays as arguments, either the starting (base) address of the
array or the address of an array descriptor is passed:

• When using explicit-shape (or assumed-size) arrays to receive an array, the
starting address of the array is passed.

• When using deferred-shape or assumed-shape arrays to receive an array,
the address of the array descriptor is passed (the compiler creates the
array descriptor).

Passing an assumed-shape array or array pointer to an explicit-shape array
can slow run-time performance. This is because the compiler needs to create an
array temporary for the entire array. The array temporary is created because
the passed array may not be contiguous and the receiving (explicit-shape)
array requires a contiguous array. When an array temporary is created, the
size of the passed array determines whether the impact on slowing run-time
performance is slight or severe.

Table 5–3 summarizes what happens with the various combinations of array
types. The amount of run-time performance inefficiency depends on the size of
the array.

5–32 Performance: Making Programs Run Faster

Table 5–3 Output Argument Array Types

Input Arguments
Array Types Explicit-Shape Arrays

Deferred-Shape and Assumed-Shape
Arrays

Explicit-Shape Arrays Very efficient. Does not
use an array temporary.
Does not pass an array
descriptor. Interface block
optional.

Efficient. Only allowed for assumed-
shape arrays (not deferred-shape
arrays). Does not use an array
temporary. Passes an array descriptor.
Requires an interface block.

Deferred-Shape and
Assumed-Shape
Arrays

When passing an
allocatable array, very
efficient. Does not use an
array temporary. Does not
pass an array descriptor.
Interface block optional.

When not passing an
allocatable array, not
efficient. Instead use
allocatable arrays whenever
possible.

Uses an array temporary.
Does not pass an array
descriptor. Interface block
optional.

Efficient. Requires an assumed-shape or
array pointer as dummy argument. Does
not use an array temporary. Passes an
array descriptor. Requires an interface
block.

For More Information:
On arrays and their data declaration statements, see the HP Fortran for
OpenVMS Language Reference Manual.

5.5 Improving Overall I/O Performance
Improving overall I/O performance can minimize both device I/O and
actual CPU time. The techniques listed in this section can greatly improve
performance in many applications.

A bottleneck determines the maximum speed of execution by being the
slowest process in an executing program. In some programs, I/O is the
bottleneck that prevents an improvement in run-time performance. The key
to relieving I/O bottlenecks is to reduce the actual amount of CPU and I/O
device time involved in I/O. Bottlenecks may be caused by one or more of the
following:

• A dramatic reduction in CPU time without a corresponding improvement
I/O time results in an I/O bottleneck.

Performance: Making Programs Run Faster 5–33

• By such coding practices as:

Unnecessary formatting of data and other CPU-intensive processing

Unnecessary transfers of intermediate results

Inefficient transfers of small amounts of data

Application requirements

Improved coding practices can minimize actual device I/O, as well as the actual
CPU time.

HP offers software solutions to system-wide problems like minimizing device
I/O delays (see Section 5.1.1).

5.5.1 Use Unformatted Files Instead of Formatted Files
Use unformatted files whenever possible. Unformatted I/O of numeric data is
more efficient and more precise than formatted I/O. Native unformatted data
does not need to be modified when transferred and will take up less space on
an external file.

Conversely, when writing data to formatted files, formatted data must be
converted to character strings for output, less data can transfer in a single
operation, and formatted data may lose precision if read back into binary form.

To write the array A(25,25) in the following statements, S1 is more efficient
than S2:

S1 WRITE (7) A

S2 WRITE (7,100) A
100 FORMAT (25(’ ’,25F5.21))

Although formatted data files are more easily ported to other systems, HP
Fortran can convert unformatted data in several formats (see Chapter 9).

5.5.2 Write Whole Arrays or Strings
The general guidelines about array use discussed in Section 5.4 also apply to
reading or writing an array with an I/O statement.

To eliminate unnecessary overhead, write whole arrays or strings at one time
rather than individual elements at multiple times. Each item in an I/O list
generates its own calling sequence. This processing overhead becomes most
significant in implied-DO loops. When accessing whole arrays, use the array
name (Fortran 90/95 array syntax) instead of using implied-DO loops.

5–34 Performance: Making Programs Run Faster

5.5.3 Write Array Data in the Natural Storage Order
Use the natural ascending storage order whenever possible. This is column-
major order, with the leftmost subscript varying fastest and striding by 1 (see
Section 5.4). If a program must read or write data in any other order, efficient
block moves are inhibited.

If the whole array is not being written, natural storage order is the best order
possible.

5.5.4 Use Memory for Intermediate Results
Performance can improve by storing intermediate results in memory rather
than storing them in a file on a peripheral device. One situation that may not
benefit from using intermediate storage is a disproportionately large amount of
data in relation to physical memory on your system. Excessive page faults can
dramatically impede virtual memory performance.

5.5.5 Defaults for Blocksize and Buffer Count
HP Fortran provides OPEN statement defaults for BLOCKSIZE and
BUFFERCOUNT that generally offer adequate I/O performance. The default
for BLOCKSIZE and BUFFERCOUNT is determined by SET RMS_DEFAULT
command default values.

Specifying a BUFFERCOUNT of 2 (or 3) allows Record Management Services
(RMS) to overlap some I/O operations with CPU operations. For sequential
and relative files, specify a BLOCKSIZE of at least 1024 bytes.

Any experiments to improve I/O performance should try to increase the amount
of data read by each disk I/O. For large indexed files, you can reduce disk I/O
by specifying enough buffers (BUFFERCOUNT) to keep most of the index
portion of the file in memory.

For More Information:

• On tuning indexed files and optimal BUFFERCOUNT and BLOCKSIZE
values, see the Guide to OpenVMS File Applications.

• On specifying BLOCKSIZE and BUFFERCOUNT, see the HP Fortran for
OpenVMS Language Reference Manual.

Performance: Making Programs Run Faster 5–35

5.5.6 Specify RECL
When creating a file, you should consider specifying a RECL value that
provides for adequate I/O performance. The RECL value unit differs for
unformatted files (4-byte units) and formatted files (1-byte units).

The RECL value unit for formatted files is always 1-byte units. For
unformatted files, the RECL unit is 4-byte units, unless you specify the
/ASSUME=BYTERECL qualifier to request 1-byte units (see Section 2.3.7).

When porting unformatted data files from non-HP systems, see Section 9.6.

For More Information:

• On optimal RECL (record length) values, see the Guide to OpenVMS File
Applications.

• On specifying RECL, see the HP Fortran for OpenVMS Language Reference
Manual.

5.5.7 Use the Optimal Record Type
Unless a certain record type is needed for portability reasons (see
Section 6.5.3), choose the most efficient type, as follows:

• For sequential files of a consistent record size, the fixed-length record type
gives the best performance.

• For sequential unformatted files when records are not fixed in size, use
variable-length or segmented records.

• For sequential formatted files when records are not fixed in size, use
variable-length records, unless you need to use Stream_LF records for data
porting compatibility (see Section 6.5.3).

For More Information:

• On HP Fortran data files and I/O, see Chapter 6.

• On OPEN statement specifiers and defaults, see Section 6.6 and the HP
Fortran for OpenVMS Language Reference Manual.

5.5.8 Enable Implied-DO Loop Collapsing
DO loop collapsing reduces a major overhead in I/O processing. Normally, each
element in an I/O list generates a separate call to the HP Fortran RTL. The
processing overhead of these calls can be most significant in implied-DO loops.

HP Fortran reduces the number of calls in implied-DO loops by replacing up
to seven nested implied-DO loops with a single call to an optimized run-time
library I/O routine. The routine can transmit many I/O elements at once.

5–36 Performance: Making Programs Run Faster

Loop collapsing can occur in formatted and unformatted I/O, but only if certain
conditions are met:

• The control variable must be an integer. The control variable cannot be
a dummy argument or contained in an EQUIVALENCE or VOLATILE
statement. HP Fortran must be able to determine that the control variable
does not change unexpectedly at run time.

• The format must not contain a variable format expression.

For More Information:

• On VOLATILE attribute and statement, see the HP Fortran for OpenVMS
Language Reference Manual.

• On loop optimizations, see Section 5.7.

5.5.9 Use of Variable Format Expressions
Variable format expressions (a Compaq Fortran 77 extension) are almost
as flexible as run-time formatting, but they are more efficient because the
compiler can eliminate run-time parsing of the I/O format. Only a small
amount of processing and the actual data transfer are required during run
time.

On the other hand, run-time formatting can impair performance significantly.
For example, in the following statements, S1 is more efficient than S2 because
the formatting is done once at compile time, not at run time:

S1 WRITE (6,400) (A(I), I=1,N)
400 FORMAT (1X, <N> F5.2)

.

.

.
S2 WRITE (CHFMT,500) ’(1X,’,N,’F5.2)’

500 FORMAT (A,I3,A)
WRITE (6,FMT=CHFMT) (A(I), I=1,N)

5.6 Additional Source Code Guidelines for Run-Time
Efficiency

Other source coding guidelines can be implemented to improve run-time
performance.

The amount of improvement in run-time performance is related to the number
of times a statement is executed. For example, improving an arithmetic
expression executed within a loop many times has the potential to improve
performance more than improving a similar expression executed once outside a
loop.

Performance: Making Programs Run Faster 5–37

5.6.1 Avoid Small or Large Integer and Logical Data Items (Alpha only)
If the target system is an Alpha processor predating EV56, avoid using integer
or logical data items whose size is less than 32 bits. On those processors, the
smallest unit of efficient single-instruction access is 32 bits, and accessing a
16-bit (or 8-bit) data type can result in a sequence of machine instructions to
access the data.

5.6.2 Avoid Mixed Data Type Arithmetic Expressions
Avoid mixing integer and floating-point (REAL) data in the same computation.
Expressing all numbers in a floating-point arithmetic expression (assignment
statement) as floating-point values eliminates the need to convert data
between fixed and floating-point formats. Expressing all numbers in an integer
arithmetic expression as integer values also achieves this. This improves
run-time performance.

For example, assuming that I and J are both INTEGER variables, expressing a
constant number (2.) as an integer value (2) eliminates the need to convert the
data:

Original Code: INTEGER I, J
I = J / 2.

Efficient Code: INTEGER I, J
I = J / 2

For applications with numerous floating-point operations, consider using the
/ASSUME=NOACCURACY_SENSITIVE qualifier (see Section 5.8.8) if a small
difference in the result is acceptable.

You can use different sizes of the same general data type in an expression
with minimal or no effect on run-time performance. For example, using REAL,
DOUBLE PRECISION, and COMPLEX floating-point numbers in the same
floating-point arithmetic expression has minimal or no effect on run-time
performance.

5.6.3 Use Efficient Data Types
In cases where more than one data type can be used for a variable, consider
selecting the data types based on the following hierarchy, listed from most to
least efficient:

• Integer (See also Section 5.6.1)

• Single-precision real, expressed explicitly as REAL, REAL (KIND=4), or
REAL*4

• Double-precision real, expressed explicitly as DOUBLE PRECISION, REAL
(KIND=8), or REAL*8

5–38 Performance: Making Programs Run Faster

• Extended-precision real, expressed explicitly as REAL (KIND=16) or
REAL*16

However, keep in mind that in an arithmetic expression, you should avoid
mixing integer and floating-point (REAL) data (see Section 5.6.2).

5.6.4 Avoid Using Slow Arithmetic Operators
Before you modify source code to avoid slow arithmetic operators, be aware
that optimizations convert many slow arithmetic operators to faster arithmetic
operators. For example, the compiler optimizes the expression H=J**2 to be
H=J*J.

Consider also whether replacing a slow arithmetic operator with a faster
arithmetic operator will change the accuracy of the results or impact the
maintainability (readability) of the source code.

Replacing slow arithmetic operators with faster ones should be reserved for
critical code areas. The following hierarchy lists the HP Fortran arithmetic
operators, from fastest to slowest:

• Addition (+), subtraction (-), and floating-point multiplication (*)

• Integer multiplication (*)

• Division (/)

• Exponentiation (**)

5.6.5 Avoid EQUIVALENCE Statement Use
Avoid using EQUIVALENCE statements. EQUIVALENCE statements can:

• Force unaligned data or cause data to span natural boundaries.

• Prevent certain optimizations, including:

Global data analysis under certain conditions (see Section 5.7.3)

Implied-DO loop collapsing when the control variable is contained in an
EQUIVALENCE statement

5.6.6 Use Statement Functions and Internal Subprograms
Whenever the HP Fortran compiler has access to the use and definition of
a subprogram during compilation, it might choose to inline the subprogram.
Using statement functions and internal subprograms maximizes the number
of subprogram references that will be inlined, especially when multiple source
files are compiled together at optimization level /OPTIMIZE=LEVEL=4 or
higher.

Performance: Making Programs Run Faster 5–39

For more information, see Section 5.1.2.

5.6.7 Code DO Loops for Efficiency
Minimize the arithmetic operations and other operations in a DO loop
whenever possible. Moving unnecessary operations outside the loop will
improve performance (for example, when the intermediate nonvarying values
within the loop are not needed).

For More Information:

• On loop optimizations, see Section 5.8.2 and Section 5.8.4.

• On HP Fortran statements, see the HP Fortran for OpenVMS Language
Reference Manual.

5.7 Optimization Levels: /OPTIMIZE=LEVEL=n Qualifier
HP Fortran performs many optimizations by default. You do not have to recode
your program to use them. However, understanding how optimizations work
helps you remove any inhibitors to their successful function.

Generally, HP Fortran increases compile time in favor of decreasing run time.
If an operation can be performed, eliminated, or simplified at compile time, HP
Fortran does so, rather than have it done at run time. The time required to
compile the program usually increases as more optimizations occur.

The program will likely execute faster when compiled at /OPTIMIZE=LEVEL=4,
but will require more compilation time than if you compile the program at a
lower level of optimization.

The size of the object file varies with the optimizations requested. Factors that
can increase object file size include an increase of loop unrolling or procedure
inlining.

Table 5–4 lists the levels of HP Fortran optimization with different
/OPTIMIZE=LEVEL=n levels. For example, /OPTIMIZE=LEVEL=0
specifies no selectable optimizations (certain optimizations always occur);
/OPTIMIZE=LEVEL=5 specifies all levels of optimizations including loop
transformation and software pipelining.

5–40 Performance: Making Programs Run Faster

Table 5–4 Types of Optimization Performed at Different
/OPTIMIZE=LEVEL=n Levels

/OPTIMIZE=LEVEL=n

Optimization Type n=0 n=1 n=2 n=3 n=4 n=5

Loop transformation �

Software pipelining � �

Automatic inlining � �

Loop unrolling � � �

Additional global
optimizations

� � �

Global optimizations � � � �

Local (minimal)
optimizations

� � � � �

The default is /OPTIMIZE=LEVEL=4.

In Table 5–4, the following terms are used to describe the levels of optimization
(described in detail in Section 5.7.1 to Section 5.7.6):

• Local (minimal) optimizations (/OPTIMIZE=LEVEL=1 or higher)
occur within the source program unit and include recognition of common
subexpressions and the expansion of multiplication and division.

• Global optimizations (/OPTIMIZE=LEVEL=2 or higher) include such
optimizations as data-flow analysis, code motion, strength reduction,
split-lifetime analysis, and instruction scheduling.

• Additional global optimizations (/OPTIMIZE=LEVEL=3 or higher)
improve speed at the cost of extra code size. These optimizations include
loop unrolling and code replication to eliminate branches.

• Automatic inlining and Software pipelining (/OPTIMIZE=LEVEL=4
or higher) applies interprocedure analysis and inline expansion of small
procedures, usually by using heuristics that limit extra code, and software
pipelining.

Software pipelining applies instruction scheduling to certain innermost
loops, allowing instructions within a loop to "wrap around" and execute in
a different iteration of the loop. This can reduce the impact of long-latency
operations, resulting in faster loop execution.

Software pipelining also enables the prefetching of data to reduce the
impact of cache misses.

Performance: Making Programs Run Faster 5–41

• Loop transformation (/OPTIMIZE=LEVEL=5 or higher) includes a group
of loop transformation optimizations.

The loop transformation optimizations apply to array references within
loops and can apply to multiple nested loops. These optimizations can
improve the performance of the memory system.

5.7.1 Optimizations Performed at All Optimization Levels
The following optimizations occur at any optimization level (0 through 5):

• Space optimizations

Space optimizations decrease the size of the object or executing program
by eliminating unnecessary use of memory, thereby improving speed of
execution and system throughput. HP Fortran space optimizations are as
follows:

Constant Pooling

Only one copy of a given constant value is ever allocated memory space.
If that constant value is used in several places in the program, all
references point to that value.

Dead Code Elimination

If operations will never execute or if data items will never be used, HP
Fortran eliminates them. Dead code includes unreachable code and
code that becomes unused as a result of other optimizations, such as
value propagation.

• Inlining arithmetic statement functions and intrinsic procedures

Regardless of the optimization level, HP Fortran inserts arithmetic
statement functions directly into a program instead of calling them
as functions. This permits other optimizations of the inlined code and
eliminates several operations, such as calls and returns or stores and
fetches of the actual arguments. For example:

SUM(A,B) = A+B
.
.
.

Y = 3.14
X = SUM(Y,3.0) ! With value propagation, becomes: X = 6.14

Most intrinsic procedures are automatically inlined.

Inlining of other subprograms, such as contained subprograms, occurs at
optimization level 4.

• Implied-DO loop collapsing

5–42 Performance: Making Programs Run Faster

DO loop collapsing reduces a major overhead in I/O processing. Normally,
each element in an I/O list generates a separate call to the HP Fortran
RTL. The processing overhead of these calls can be most significant in
implied-DO loops.

If HP Fortran can determine that the format will not change during
program execution, it replaces the series of calls in up to seven nested
implied-DO loops with a single call to an optimized RTL routine (see
Section 5.5.8). The optimized RTL routine can transfer many elements in
one operation.

HP Fortran collapses implied-DO loops in formatted and unformatted I/O
operations, but it is more important with unformatted I/O, where the cost
of transmitting the elements is a higher fraction of the total cost.

• Array temporary elimination and FORALL statements

Certain array store operations are optimized. For example, to minimize
the creation of array temporaries, HP Fortran can detect when no
overlap occurs between the two sides of an array expression. This type
of optimization occurs for some assignment statements in FORALL
constructs.

Certain array operations are also candidates for loop unrolling
optimizations (see Section 5.7.4.1).

5.7.2 Local (Minimal) Optimizations
To enable local optimizations, use /OPTIMIZE=LEVEL=1 or a higher
optimization level (LEVEL=2, LEVEL=3, LEVEL=4, LEVEL=5).

To prevent local optimizations, specify /NOOPTIMIZE (/OPTIMIZE=LEVEL=0).

5.7.2.1 Common Subexpression Elimination
If the same subexpressions appear in more than one computation and the
values do not change between computations, HP Fortran computes the result
once and replaces the subexpressions with the result itself:

DIMENSION A(25,25), B(25,25)
A(I,J) = B(I,J)

Without optimization, these statements can be compiled as follows:

t1 = ((J-1)*25+(I-1))*4
t2 = ((J-1)*25+(I-1))*4
A(t1) = B(t2)

Performance: Making Programs Run Faster 5–43

Variables t1 and t2 represent equivalent expressions. HP Fortran eliminates
this redundancy by producing the following:

t = ((J-1)*25+(I-1)*4
A(t) = B(t)

5.7.2.2 Integer Multiplication and Division Expansion
Expansion of multiplication and division refers to bit shifts that allow faster
multiplication and division while producing the same result. For example,
the integer expression (I*17) can be calculated as I with a 4-bit shift plus the
original value of I. This can be expressed using the HP Fortran ISHFT intrinsic
function:

J1 = I*17
J2 = ISHFT(I,4) + I ! equivalent expression for I*17

The optimizer uses machine code that, like the ISHFT intrinsic function, shifts
bits to expand multiplication and division by literals.

5.7.2.3 Compile-Time Operations
HP Fortran does as many operations as possible at compile time rather than
having them done at run time.

Constant Operations
HP Fortran can perform many operations on constants (including PARAMETER
constants):

• Constants preceded by a unary minus sign are negated.

• Expressions involving +, –, *, or / operators are evaluated; for example:

PARAMETER (NN=27)
I = 2*NN+J ! Becomes: I = 54 + J

Evaluation of some constant functions and operators is performed at
compile time. This includes certain functions of constants, concatenation of
string constants, and logical and relational operations involving constants.

• Lower-ranked constants are converted to the data type of the higher-ranked
operand:

REAL X, Y
X = 10 * Y ! Becomes: X = 10.0 * Y

• Array address calculations involving constant subscripts are simplified at
compile time whenever possible:

INTEGER I(10,10)
I(1,2) = I(4,5) ! Compiled as a direct load and store

5–44 Performance: Making Programs Run Faster

Algebraic Reassociation Optimizations
HP Fortran delays operations to see whether they have no effect or can be
transformed to have no effect. If they have no effect, these operations are
removed. A typical example involves unary minus and .NOT. operations:

X = -Y * -Z ! Becomes: Y * Z

5.7.2.4 Value Propagation
HP Fortran tracks the values assigned to variables and constants, including
those from DATA statements, and traces them to every place they are used.
HP Fortran uses the value itself when it is more efficient to do so.

When compiling subprograms, HP Fortran analyzes the program to ensure
that propagation is safe if the subroutine is called more than once.

Value propagation frequently leads to more value propagation. HP Fortran
can eliminate run-time operations, comparisons and branches, and whole
statements.

In the following example, constants are propagated, eliminating multiple
operations from run time:

Original Code Optimized Code

PI = 3.14
.
.
.

PIOVER2 = PI/2
.
.
.

I = 100
.
.
.

IF (I.GT.1) GOTO 10
10 A(I) = 3.0*Q

.

.

.
PIOVER2 = 1.57

.

.

.
I = 100

.

.

.
10 A(100) = 3.0*Q

5.7.2.5 Dead Store Elimination
If a variable is assigned but never used, HP Fortran eliminates the entire
assignment statement:

Performance: Making Programs Run Faster 5–45

X = Y*Z
.
.
. ! If X is not used in between, X=Y*Z is eliminated.

X = A(I,J)* PI

Some programs used for performance analysis often contain such unnecessary
operations. When you try to measure the performance of such programs
compiled with HP Fortran, these programs may show unrealistically good
performance results. Realistic results are possible only with program units
using their results in output statements.

5.7.2.6 Register Usage
A large program usually has more data that would benefit from being held in
registers than there are registers to hold the data. In such cases, HP Fortran
typically tries to use the registers according to the following descending priority
list:

1. For temporary operation results, including array indexes

2. For variables

3. For addresses of arrays (base address)

4. All other usages

HP Fortran uses heuristic algorithms and a modest amount of computation to
attempt to determine an effective usage for the registers.

Holding Variables in Registers
Because operations using registers are much faster than using memory, HP
Fortran generates code that uses 64-bit integer and floating-point registers
instead of memory locations. Knowing when HP Fortran uses registers may be
helpful when doing certain forms of debugging.

HP Fortran uses registers to hold the values of variables whenever the Fortran
language does not require them to be held in memory, such as holding the
values of temporary results of subexpressions, even if /NOOPTIMIZE (same as
/OPTIMIZE=LEVEL=0 or no optimization) was specified.

HP Fortran may hold the same variable in different registers at different
points in the program:

5–46 Performance: Making Programs Run Faster

V = 3.0*Q
.
.
.

X = SIN(Y)*V
.
.
.

V = PI*X
.
.
.

Y = COS(Y)*V

HP Fortran might choose one register to hold the first use of V and another
register to hold the second. Both registers can be used for other purposes at
points in between. There may be times when the value of the variable does not
exist anywhere in the registers. If the value of V is never needed in memory, it
is never stored.

HP Fortran uses registers to hold the values of I, J, and K (so long as there are
no other optimization effects, such as loops involving the variables):

A(I) = B(J) + C(K)

More typically, an expression uses the same index variable:

A(K) = B(K) + C(K)

In this case, K is loaded into only one register and is used to index all three
arrays at the same time.

5.7.2.7 Mixed Real/Complex Operations
In mixed REAL/COMPLEX operations, HP Fortran avoids the conversion and
performs a simplified operation on:

• Add (+), subtract (–), and multiply (*) operations if either operand is
REAL

• Divide (/) operations if the right operand is REAL

For example, if variable R is REAL and A and B are COMPLEX, no conversion
occurs with the following:

COMPLEX A, B
.
.
.

B = A + R

Performance: Making Programs Run Faster 5–47

5.7.3 Global Optimizations
To enable global optimizations, use /OPTIMIZE=LEVEL=2 or a higher
optimization level (LEVEL=3, LEVEL=4, or LEVEL=5). Using /OPTIMIZE=
LEVEL=2 or higher also enables local optimizations (LEVEL=1).

Global optimizations include:

• Data-flow analysis

• Split lifetime analysis

• Strength reduction (replaces a CPU-intensive calculation with one that
uses fewer CPU cycles)

• Code motion (also called code hoisting)

• Instruction scheduling

Data-flow and split lifetime analysis (global data analysis) traces the values
of variables and whole arrays as they are created and used in different parts
of a program unit. During this analysis, HP Fortran assumes that any pair
of array references to a given array might access the same memory location,
unless a constant subscript is used in both cases.

To eliminate unnecessary recomputations of invariant expressions in loops, HP
Fortran hoists them out of the loops so they execute only once.

Global data analysis includes which data items are selected for analysis. Some
data items are analyzed as a group and some are analyzed individually. HP
Fortran limits or may disqualify data items that participate in the following
constructs, generally because it cannot fully trace their values.

Data items in the following constructs can make global optimizations less
effective:

• VOLATILE declarations

VOLATILE declarations are needed to use certain run-time features of the
operating system. Declare a variable as VOLATILE if the variable can be
accessed using rules in addition to those provided by the Fortran 90/95
language. Examples include:

COMMON data items or entire common blocks that can change value
by means other than direct assignment or during a routine call. For
example, if a variable in COMMON can change value by means of an
OpenVMS AST, you must declare the variable or the COMMON block
to which it belongs as volatile.

Variables read or written by an AST routine or a condition handler,
including those in a common block or module.

5–48 Performance: Making Programs Run Faster

An address not saved by the %LOC built-in function.

As requested by the VOLATILE statement, HP Fortran disqualifies any
volatile variables from global data analysis.

• Subroutine calls or external function references

HP Fortran cannot trace data flow in a called routine that is not part of
the program unit being compiled, unless the same FORTRAN command
compiled multiple program units (see Section 5.1.2). Arguments passed to
a called routine that are used again in a calling program are assumed to be
modified, unless the proper INTENT is specified in an interface block (the
compiler must assume they are referenced by the called routine).

• Common blocks

HP Fortran limits optimizations on data items in common blocks. If
common block data items are referenced inside called routines, their values
might be altered. In the following example, variable I might be altered by
FOO, so HP Fortran cannot predict its value in subsequent references.

COMMON /X/ I

DO J=1,N
I = J
CALL FOO
A(I) = I

ENDDO

• Variables in Fortran 90/95 modules

HP Fortran limits optimizations on variables in Fortran 90/95 modules.
Like common blocks, if the variables in Fortran modules are referenced
inside called routines, their values might be altered.

• Variables referenced by a %LOC built-in function or variables with the
TARGET attribute

HP Fortran limits optimizations on variables indirectly referenced by a
%LOC function or variables with the TARGET attribute, because the called
routine may dereference the pointer to such a variable.

• Equivalence groups

An equivalence group is formed explicitly with the EQUIVALENCE
statement or implicitly by the COMMON statement. A program section is
a particular common block or local data area for a particular routine. HP
Fortran combines equivalence groups within the same program section and
in the same program unit.

Performance: Making Programs Run Faster 5–49

The equivalence groups in separate program sections are analyzed
separately, but the data items within each group are not, so some
optimizations are limited to the data within each group.

5.7.4 Additional Global Optimizations
To enable additional global optimizations, use /OPTIMIZE=LEVEL=3 or a
higher optimization level (LEVEL=4 or LEVEL=5). Using /OPTIMIZE=
LEVEL=3 or higher also enables local optimizations (LEVEL=1) and global
optimizations (LEVEL=2).

Additional global optimizations improve speed at the cost of longer compile
times and possibly extra code size.

5.7.4.1 Loop Unrolling
At optimization level /OPTIMIZE=LEVEL=3 or above, HP Fortran attempts
to unroll certain innermost loops, minimizing the number of branches and
grouping more instructions together to allow efficient overlapped instruction
execution (instruction pipelining). The best candidates for loop unrolling are
innermost loops with limited control flow.

As more loops are unrolled, the average size of basic blocks increases. Loop
unrolling generates multiple copies of the code for the loop body (loop code
iterations) in a manner that allows efficient instruction pipelining.

The loop body is replicated a certain number of times, substituting index
expressions. An initialization loop might be created to align the first reference
with the main series of loops. A remainder loop might be created for leftover
work.

The number of times a loop is unrolled can be determined either by the
optimizer or by using the /OPTIMIZE=UNROLL=n qualifier, which can specify
the limit for loop unrolling. Unless the user specifies a value, the optimizer
unrolls a loop four times for most loops or two times for certain loops (large
estimated code size or branches out the loop).

Array operations are often represented as a nested series of loops when
expanded into instructions. The innermost loop for the array operation is the
best candidate for loop unrolling (like DO loops). For example, the following
array operation (once optimized) is represented by nested loops, where the
innermost loop is a candidate for loop unrolling:

A(1:100,2:30) = B(1:100,1:29) * 2.0

5–50 Performance: Making Programs Run Faster

5.7.4.2 Code Replication to Eliminate Branches
In addition to loop unrolling and other optimizations, the number of branches
are reduced by replicating code that will eliminate branches. Code replication
decreases the number of basic blocks and increases instruction-scheduling
opportunities.

Code replication normally occurs when a branch is at the end of a flow of
control, such as a routine with multiple, short exit sequences. The code at the
exit sequence gets replicated at the various places where a branch to it might
occur.

For example, consider the following unoptimized routine and its optimized
equivalent that uses code replication (R4 is register 4):

Unoptimized Instructions Optimized (Replicated) Instructions

.

.

.
branch to exit1
.
.
.
branch to exit1
.
.
.

exit1: move 1 into R4
return

.

.

.
move 1 into R4
return
.
.
.
move 1 into R4
return
.
.
.
move 1 into R4
return

Similarly, code replication can also occur within a loop that contains a small
amount of shared code at the bottom of a loop and a case-type dispatch within
the loop. The loop-end test-and-branch code might be replicated at the end
of each case to create efficient instruction pipelining within the code for each
case.

Performance: Making Programs Run Faster 5–51

5.7.5 Automatic Inlining and Software Pipelining
To enable optimizations that perform automatic inlining and software
pipelining, use /OPTIMIZE=LEVEL=4 or a higher optimization level
(LEVEL=5). Using /OPTIMIZE=LEVEL=4 also enables local optimizations
(LEVEL=1), global optimizations (LEVEL=2), and additional global
optimizations (LEVEL=3).

The default is /OPTIMIZE=LEVEL=4 (same as /OPTIMIZE).

5.7.5.1 Interprocedure Analysis
Compiling multiple source files at optimization level /OPTIMIZE=LEVEL=4
or higher lets the compiler examine more code for possible optimizations,
including multiple program units. This results in:

• Inlining more procedures

• More complete global data analysis

• Reducing the number of external references to be resolved during linking

As more procedures are inlined, the size of the executable program and compile
times may increase, but execution time should decrease.

5.7.5.2 Inlining Procedures
Inlining refers to replacing a subprogram reference (such as a CALL
statement or function invocation) with the replicated code of the subprogram.
As more procedures are inlined, global optimizations often become more
effective.

The optimizer inlines small procedures, limiting inlining candidates based on
such criteria as:

• Estimated size of code

• Number of call sites

• Use of constant arguments

You can specify:

• The /OPTIMIZE=LEVEL=n qualifier to control the optimization level.
For example, specifying /OPTIMIZE=LEVEL=4 or higher enables
interprocedure optimizations.

Different /OPTIMIZE=LEVEL=n keywords set different levels of inlining.
For example, /OPTIMIZE=LEVEL=4 sets /OPTIMIZE=INLINE=SPEED.

5–52 Performance: Making Programs Run Faster

• One of the /OPTIMIZE=INLINE=xxxxx keywords to directly con-
trol the inlining of procedures (see Section 5.8.5). For example,
/OPTIMIZE=INLINE=SPEED inlines more procedures than
/OPTIMIZE=INLINE=SIZE.

5.7.5.3 Software Pipelining
Software pipelining applies instruction scheduling to certain innermost loops,
allowing instructions within a loop to "wrap around" and execute in a different
iteration of the loop. This can reduce the impact of long-latency operations,
resulting in faster loop execution.

Software pipelining also enables the prefetching of data to reduce the impact of
cache misses.

For More Information:

• On HP Fortran statements, see the HP Fortran for OpenVMS Language
Reference Manual.

• On controlling inlining using /OPTIMIZE=INLINE=keyword, see
Section 5.8.5.

• On software pipelining, see Section 5.8.2.

5.7.6 Loop Transformation
A group of optimizations known as loop transformation optimizations with
its associated additional software dependence analysis are enabled by using
the /OPTIMIZE=LEVEL=5 qualifier. In certain cases, this improves run-time
performance.

The loop transformation optimizations apply to array references within loops
and can apply to multiple nested loops. These optimizations can improve the
performance of the memory system.

For More Information:

• On loop transformations, see Section 5.8.1.

5.8 Other Qualifiers Related to Optimization
In addition to the /OPTIMIZE=LEVEL qualifiers (discussed in Section 5.7),
several other FORTRAN command qualifiers and /OPTIMIZE keywords can
prevent or facilitate improved optimizations.

Performance: Making Programs Run Faster 5–53

5.8.1 Loop Transformation
The loop transformation optimizations are enabled by using the
/OPTIMIZE=LOOPS qualifier or the /OPTIMIZE=LEVEL=5 qualifier. Loop
transformation attempts to improve performance by rewriting loops to make
better use of the memory system. By rewriting loops, the loop transformation
optimizations can increase the number of instructions executed, which can
degrade the run-time performance of some programs.

To request loop transformation optimizations without software pipelining, do
one of the following:

• Specify /OPTIMIZE=LEVEL=5 with /OPTIMIZE=NOPIPELINE (preferred
method)

• Specify /OPTIMIZE=LOOPS with /OPTIMIZE=LEVEL=4, LEVEL=3, or
LEVEL=2. This optimization is not performed at optimization levels below
LEVEL=2.

The loop transformation optimizations apply to array references within
loops. These optimizations can improve the performance of the memory
system and usually apply to multiple nested loops. The loops chosen for loop
transformation optimizations are always counted loops. Counted loops use a
variable to count iterations, thereby determining the number before entering
the loop. For example, most DO loops are counted loops.

Conditions that typically prevent the loop transformation optimizations from
occurring include subprogram references that are not inlined (such as an
external function call), complicated exit conditions, and uncounted loops.

The types of optimizations associated with /OPTIMIZE=LOOPS include the
following:

• Loop blocking—Can minimize memory system use with multidimensional
array elements by completing as many operations as possible on array
elements currently in the cache. Also known as loop tiling.

• Loop distribution—Moves instructions from one loop into separate, new
loops. This can reduce the amount of memory used during one loop so that
the remaining memory may fit in the cache. It can also create improved
opportunities for loop blocking.

• Loop fusion—Combines instructions from two or more adjacent loops that
use some of the same memory locations into a single loop. This can avoid
the need to load those memory locations into the cache multiple times and
improves opportunities for instruction scheduling.

5–54 Performance: Making Programs Run Faster

• Loop interchange—Changes the nesting order of some or all loops. This
can minimize the stride of array element access during loop execution
and reduce the number of memory accesses needed. Also known as loop
permutation.

• Scalar replacement—Replaces the use of an array element with a scalar
variable under certain conditions.

• Outer loop unrolling—Unrolls the outer loop inside the inner loop
under certain conditions to minimize the number of instructions and
memory accesses needed. This also improves opportunities for instruction
scheduling and scalar replacement.

For More Information:
On the interaction of command-line options and timing programs compiled
with the loop transformation optimizations, see Section 5.7.

5.8.2 Software Pipelining
Software pipelining and additional software dependence analysis are enabled
by using the /OPTIMIZE=PIPELINE qualifier or by the /OPTIMIZE=LEVEL=4
qualifier. Software pipelining in certain cases improves run-time performance.

The software pipelining optimization applies instruction scheduling to certain
innermost loops, allowing instructions within a loop to "wrap around" and
execute in a different iteration of the loop. This can reduce the impact of
long-latency operations, resulting in faster loop execution.

Loop unrolling (enabled at /OPTIMIZE=LEVEL=3 or above) cannot schedule
across iterations of a loop. Because software pipelining can schedule across
loop iterations, it can perform more efficient scheduling to eliminate instruction
stalls within loops.

For instance, if software dependence analysis of data flow reveals that certain
calculations can be done before or after that iteration of the loop, software
pipelining reschedules those instructions ahead of or behind that loop iteration,
at places where their execution can prevent instruction stalls or otherwise
improve performance.

Software pipelining also enables the prefetching of data to reduce the impact of
cache misses.

On Alpha systems, software pipelining can be more effective when you combine
/OPTIMIZE=PIPELINE (or /OPTIMIZE=LEVEL=4) with the appropriate
OPTIMIZE=TUNE=keyword (Alpha only) for the target Alpha processor
generation (see Section 5.8.6).

Performance: Making Programs Run Faster 5–55

To specify software pipelining without loop transformation optimizations, do
one of the following:

• Specify /OPTIMIZE=LEVEL=4 (preferred method)

• Specify /OPTIMIZE=PIPELINE with /OPTIMIZE=LEVEL=3, or
/OPTIMIZE=LEVEL=2. This optimization is not performed at optimization
levels below LEVEL=2.

For this version of HP Fortran, loops chosen for software pipelining:

• Are always innermost loops (those executed the most).

• Do not contain branches or procedure calls.

• Do not use COMPLEX floating-point data.

By modifying the unrolled loop and inserting instructions as needed before
and/or after the unrolled loop, software pipelining generally improves
run-time performance, except where the loops contain a large number of
instructions with many existing overlapped operations. In this case, software
pipelining may not have enough registers available to effectively improve
execution performance. Run-time performance using /OPTIMIZE=LEVEL=4
(or /OPTIMIZE=PIPELINE) may not improve performance, as compared to
using /OPTIMIZE=(LEVEL=4,NOPIPELINE).

For programs that contain loops that exhaust available registers,
longer execution times may result with /OPTIMIZE=LEVEL=4 or
/OPTIMIZE=PIPELINE. In cases where performance does not improve,
consider compiling with the OPTIMIZE=UNROLL=1 qualifier along with
/OPTIMIZE=LEVEL=4 or /OPTIMIZE=PIPELINE, to possibly improve the
effects of software pipelining.

For More Information:
On the interaction of command-line options and timing programs compiled
with software pipelining, see Section 5.7.

5.8.3 Setting Multiple Qualifiers with the /FAST Qualifier
Specifying the /FAST qualifier sets the following qualifiers:

• /ALIGNMENT=(COMMONS=NATURAL,RECORDS=NATURAL,SEQUENCE)
(see Section 5.3)

• /ARCHITECTURE=HOST (see Section 5.8.7)

• /ASSUME=NOACCURACY_SENSITIVE (see Section 5.8.8)

• /MATH_LIBRARY=FAST (Alpha only) (see Section 2.3.30)

5–56 Performance: Making Programs Run Faster

• /OPTIMIZE=TUNE=HOST (Alpha only) (see Section 5.8.6)

You can specify individual qualifiers on the command line to override the
/FAST defaults. Note that /FAST/ALIGNMENT=COMMONS=PACKED sets
/ALIGNMENT=NOSEQUENCE.

5.8.4 Controlling Loop Unrolling
You can specify the number of times a loop is unrolled by using the
/OPTIMIZE=UNROLL=n qualifier (see Section 2.3.35).

Using /OPTIMIZE=UNROLL=n can also influence the run-time re-
sults of software pipelining optimizations performed when you specify
/OPTIMIZE=LEVEL=5.

Although unrolling loops usually improves run-time performance, the size of
the executable program may increase.

For More Information:
On loop unrolling, see Section 5.7.4.1.

5.8.5 Controlling the Inlining of Procedures
To specify the types of procedures to be inlined, use the
/OPTIMIZE=INLINE=keyword keywords. Also, compile multiple source
files together and specify an adequate optimization level, such as
/OPTIMIZE=LEVEL=4.

If you omit /OPTIMIZE=INLINE=keyword, the optimization level
/OPTIMIZE=LEVEL=n qualifier used determines the types of procedures
that are inlined.

The /OPTIMIZE=INLINE=keyword keywords are as follows:

• NONE (same as /OPTIMIZE=NOINLINE) inlines statement functions
but not other procedures. This type of inlining occurs if you specify
/OPTIMIZE=LEVEL=0, LEVEL=1, LEVEL=2, or LEVEL=3 and omit
INLINE=keyword.

• MANUAL (same as NONE) inlines statement functions but not other pro-
cedures. This type of inlining occurs if you specify /OPTIMIZE=LEVEL=2
or LEVEL=3 and omit INLINE=keyword.

• In addition to inlining statement functions, SIZE inlines any procedures
that the HP Fortran optimizer expects will improve run-time performance
with no likely significant increase in program size.

Performance: Making Programs Run Faster 5–57

• In addition to inlining statement functions, SPEED inlines any procedures
that the HP Fortran optimizer expects will improve run-time performance
with a likely significant increase in program size. This type of inlining
occurs if you specify /OPTIMIZE=LEVEL=4 or LEVEL=5 and omit
/OPTIMIZE=INLINE=keyword.

• ALL inlines every call that can possibly be inlined while generating correct
code, including the following:

Statement functions (always inlined).

Any procedures that HP Fortran expects will improve run-time
performance with a likely significant increase in program size.

Any other procedures that can possibly be inlined and generate correct
code. Certain recursive routines are not inlined to prevent infinite
expansion.

For information on the inlining of other procedures (inlined at optimization
level /OPTIMIZE=LEVEL=4 or higher), see Section 5.7.5.2.

Maximizing the types of procedures that are inlined usually improves run-time
performance, but compile-time memory usage and the size of the executable
program may increase.

To determine whether using /OPTIMIZE=INLINE=ALL benefits your
particular program, time program execution for the same program compiled
with and without /OPTIMIZE=INLINE=ALL.

5.8.6 Requesting Optimized Code for a Specific Processor Generation
(Alpha only)

You can specify the types of optimized code to be generated by using the
/OPTIMIZE=TUNE=keyword (Alpha only) keywords. Regardless of the
specified keyword, the generated code will run correctly on all implementations
of the Alpha architecture. Tuning for a specific implementation can improve
run-time performance; it is also possible that code tuned for a specific target
may run slower on another target.

Specifying the correct keyword for /OPTIMIZE=TUNE=keyword (Alpha
only) for the target processor generation type usually slightly improves
run-time performance. Unless you request software pipelining, the
run-time performance difference for using the wrong keyword for
/OPTIMIZE=TUNE=keyword (such as using /OPTIMIZE=TUNE=EV4 for an
EV5 processor) is usually less than 5%. When using software pipelining (using
/OPTIMIZE=LEVEL=5) with /OPTIMIZE=TUNE=keyword, the difference can
be more than 5%.

5–58 Performance: Making Programs Run Faster

The combination of the specified keyword for /OPTIMIZE=TUNE=keyword and
the type of processor generation used has no effect on producing the expected
correct program results.

The /OPTIMIZE=TUNE=keyword keywords are as follows:

• GENERIC generates and schedules code that will execute well for all types
of Alpha processor generations. This provides generally efficient code for
those applications that will be run on systems using all types of processor
generations (an alternative to providing multiple versions of the application
compiled for each processor generation type).

• HOST generates and schedules code optimized for the type of processor
generation in use on the system being used for compilation.

• EV4 generates and schedules code optimized for the EV4 (21064) processor
generation.

• EV5 generates and schedules code optimized for the EV5 (21164) processor
generation. This processor generation is faster than EV4.

• EV56 generates and schedules code optimized for some 21164 Alpha
architecture implementations that use the BWX (Byte/Word manipulation)
instruction extensions of the Alpha architecture.

• PCA56 generates and schedules code optimized for 21164PC Alpha
architecture implementation that uses BWX (Byte/Word manipulation)
and MAX (Multimedia) instructions extensions.

• EV6 generates and schedules code for the 21264 chip implementation
that uses the following extensions to the base Alpha instruction set: BWX
(Byte/Word manipulation) and MAX (Multimedia) instructions, square root
and floating-point convert instructions, and count instructions.

• EV67 generates and schedules code optimized for the EV67 processor
generation. This processor generation is faster than EV4, EV5, EV56,
PCA56, and EV6.

If you omit /OPTIMIZE=TUNE=keyword, if /FAST is specified, then HOST is
used; otherwise, GENERIC is used.

Performance: Making Programs Run Faster 5–59

5.8.7 Requesting Generated Code for a Specific Processor Generation
(Alpha only)

You can specify the types of instructions that will be generated for the program
unit being compiled by using the /ARCHITECTURE qualifier. Unlike the
/OPTIMIZE=TUNE=keyword (Alpha only) option that helps with proper
instruction scheduling, the /ARCHITECTURE qualifier specifies the type of
Alpha chip instructions that can be used.

Programs compiled with the /ARCHITECTURE=GENERIC option (default) run
on all Alpha processors without instruction emulation overhead.

For example, if you specify /ARCHITECTURE=EV6, the code generated will
run very fast on EV6 systems, but may run slower on older Alpha processor
generations. Because instructions used for the EV6 chip may be present in the
program’s generated code, code generated for an EV6 system may slow program
execution on older Alpha processors when EV6 instructions are emulated by
the OpenVMS Alpha Version 7.1 (or later) instruction emulator.

This instruction emulator allows new instructions, not implemented on the
host processor chip, to execute and produce correct results. Applications using
emulated instructions will run correctly, but may incur significant software
emulation overhead at run time.

The keywords used by /ARCHITECTURE=keyword are the same as those used
by /OPTIMIZE=TUNE=keyword. If you omit /ARCHITECTURE=keyword, if
/FAST is specified then HOST is used; otherwise, GENERIC is used. For more
information on the /ARCHITECTURE qualifier, see Section 2.3.6.

5.8.8 Arithmetic Reordering Optimizations
If you use the /ASSUME=NOACCURACY_SENSITIVE qualifier, HP Fortran
may reorder code (based on algebraic identities) to improve performance. For
example, the following expressions are mathematically equivalent but may not
compute the same value using finite precision arithmetic:

X = (A + B) + C

X = A + (B + C)

The results can be slightly different from the default (ACCURACY_
SENSITIVE) because of the way intermediate results are rounded. However,
the NOACCURACY_SENSITIVE results are not categorically less accurate
than those gained by the default. In fact, dot product summations using
NOACCURACY_SENSITIVE can produce more accurate results than those
using ACCURACY_SENSITIVE.

5–60 Performance: Making Programs Run Faster

The effect of /ASSUME=NOACCURACY_SENSITIVE is important when HP
Fortran hoists divide operations out of a loop. If NOACCURACY_SENSITIVE
is in effect, the unoptimized loop becomes the optimized loop:

Unoptimized Code Optimized Code

T = 1/V

DO I=1,N DO I=1,N

. .

. .

. .

B(I) = A(I)/V B(I) = A(I)*T

END DO END DO

The transformation in the optimized loop increases performance significantly,
and loses little or no accuracy. However, it does have the potential for raising
overflow or underflow arithmetic exceptions.

5.8.9 Dummy Aliasing Assumption
Some programs compiled with HP Fortran (or Compaq Fortran 77) might
have results that differ from the results of other Fortran compilers. Such
programs might be aliasing dummy arguments to each other or to a variable
in a common block or shared through use association, and at least one variable
access is a store. Alternatively, they may be calling a user-defined procedure
with actual arguments that do not match the procedure’s dummy arguments in
order, number, or type.

This program behavior is prohibited in programs conforming to the Fortran 90
and Fortran 95 standards, but not by HP Fortran. Other versions of Fortran
allow dummy aliases and check for them to ensure correct results. However,
HP Fortran assumes that no dummy aliasing will occur, and it can ignore
potential data dependencies from this source in favor of faster execution.

The HP Fortran default is safe for programs conforming to the Fortran 90 and
Fortran 95 standards. It will improve performance of these programs, because
the standard prohibits such programs from passing overlapped variables
or arrays as actual arguments if either is assigned in the execution of the
program unit.

Performance: Making Programs Run Faster 5–61

The /ASSUME=DUMMY_ALIASES qualifier allows dummy aliasing. It
ensures correct results by assuming the exact order of the references
to dummy and common variables is required. Program units taking
advantage of this behavior can produce inaccurate results if compiled with
/ASSUME=NODUMMY_ALIASES.

Example 5–3 is taken from the DAXPY routine in the Fortran-77 version of the
Basic Linear Algebra Subroutines (BLAS).

Example 5–3 Using the /ASSUME=DUMMY_ALIASES Qualifier

SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)

! Constant times a vector plus a vector.
! uses unrolled loops for increments equal to 1.

DOUBLE PRECISION DX(1), DY(1), DA
INTEGER I,INCX,INCY,IX,IY,M,MP1,N

!
IF (N.LE.0) RETURN
IF (DA.EQ.0.0) RETURN
IF (INCX.EQ.1.AND.INCY.EQ.1) GOTO 20

! Code for unequal increments or equal increments
! not equal to 1.

.

.

.
RETURN

! Code for both increments equal to 1.
! Clean-up loop

20 M = MOD(N,4)
IF (M.EQ.0) GOTO 40
DO I=1,M

DY(I) = DY(I) + DA*DX(I)
END DO
IF (N.LT.4) RETURN

40 MP1 = M + 1
DO I = MP1, N, 4

DY(I) = DY(I) + DA*DX(I)
DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
DY(I + 3) = DY(I + 3) + DA*DX(I + 3)

END DO
RETURN
END SUBROUTINE

5–62 Performance: Making Programs Run Faster

The second DO loop contains assignments to DY. If DY is overlapped with
DA, any of the assignments to DY might give DA a new value, and this
overlap would affect the results. If this overlap is desired, then DA must be
fetched from memory each time it is referenced. The repetitious fetching of DA
degrades performance.

Linking Routines with Opposite Settings
You can link routines compiled with the /ASSUME=DUMMY_ALIASES
qualifier to routines compiled with /ASSUME=NODUMMY_ALIASES. For
example, if only one routine is called with dummy aliases, you can use
/ASSUME=DUMMY_ALIASES when compiling that routine, and compile
all the other routines with /ASSUME=NODUMMY_ALIASES to gain the
performance value of that qualifier.

Programs calling DAXPY with DA overlapping DY do not conform to the
FORTRAN-77, Fortran 90, and Fortran 95 standards. However, they are
supported if /ASSUME=DUMMY_ALIASES was used to compile the DAXPY
routine.

5.9 Compiler Directives Related to Performance
Certain compiler source directives (cDEC$ prefix) can be used in place of
some performance-related compiler options and provide more control of certain
optimizations, as discussed in the following sections:

5.9.1, Using the cDEC$ OPTIONS Directive
5.9.2, Using the cDEC$ UNROLL Directive to Control Loop Unrolling
5.9.3, Using the cDEC$ IVDEP Directive to Control Certain Loop
Optimizations

5.9.1 Using the cDEC$ OPTIONS Directive
The cDEC$ OPTIONS directive allows source code control of the alignment of
fields in record structures and data items in common blocks. The fields and
data items can be naturally aligned (for performance reasons) or they can be
packed together on arbitrary byte boundaries.

Using this directive is an alternative to the compiler option /[NO]ALIGNMENT,
which affects the alignment of all fields in record structures and data items in
common blocks in the current program unit.

For more information:
See the description of the OPTIONS directive in the HP Fortran for OpenVMS
Language Reference Manual.

Performance: Making Programs Run Faster 5–63

5.9.2 Using the cDEC$ UNROLL Directive to Control Loop Unrolling
The cDEC$ UNROLL directive allows you to specify the number of times
certain counted DO loops will be unrolled. Place the cDEC$ UNROLL directive
before the DO loop you want to control the unrolling of.

Using this directive for a specific loop overrides the value specified by the
compiler option /OPTIMIZE=UNROLL= for that loop. The value specified
by unroll affects how many times all loops not controlled by their respective
cDEC$ UNROLL directives are unrolled.

For more information:
See the description of the UNROLL directive in the HP Fortran for OpenVMS
Language Reference Manual.

5.9.3 Using the cDEC$ IVDEP Directive to Control Certain Loop
Optimizations

The cDEC$ IVDEP directive allows you to help control certain optimizations
related to dependence analysis in a DO loop. Place the cDEC$ IVDEP directive
before the DO loop you want to help control the optimizations for. Not all DO
loops should use this directive.

The cDEC$ IVDEP directive tells the optimizer to begin dependence analysis
by assuming all dependences occur in the same forward direction as their
appearance in the normal scalar execution order. This contrasts with normal
compiler behavior, which is for the dependence analysis to make no initial
assumptions about the direction of a dependence.

For more information:
See the description of the IVDEP directive in the HP Fortran for OpenVMS
Language Reference Manual.

5–64 Performance: Making Programs Run Faster

6
HP Fortran Input/Output

The following topics are addressed in this chapter:

• Section 6.1, Overview

• Section 6.2, Logical I/O Units

• Section 6.3, Types of I/O Statements

• Section 6.4, Forms of I/O Statements

• Section 6.5, Types of Files and File Characteristics

• Section 6.6, Opening Files and the OPEN Statement

• Section 6.7, Obtaining File Information: The INQUIRE Statement

• Section 6.8, Closing a File: The CLOSE Statement

• Section 6.9, Record Operations

• Section 6.10, Output Data Buffering and RMS Journaling

6.1 Overview
This chapter describes HP Fortran input/output (I/O) as implemented for HP
Fortran. It also provides information about HP Fortran I/O in relation to the
OpenVMS Record Management Services (RMS) and Run-Time Library (RTL).

HP Fortran assumes that all unformatted data files will be in the same native
little endian numeric formats used in memory. If you need to read or write
unformatted numeric data (on disk) that has a different numeric format than
that used in memory, see Chapter 9.

You can use HP Fortran I/O statements to communicate between processes on
either the same computer or different computers.

HP Fortran Input/Output 6–1

For More Information:

• On specifying the native floating-point format used in memory, see
Section 2.3.22.

• On supported data types, see Chapter 8.

• On using various HP and non-HP data formats for unformatted files, see
Chapter 9.

• On interprocess communication, see Chapter 13.

• On porting Compaq Fortran 77 for OpenVMS VAX data, see Appendix B.

• On performing I/O to the same unit with HP Fortran and Compaq Fortran
77 object files, see Appendix B.

• On using indexed files, see Chapter 12.

6.2 Logical I/O Units
In HP Fortran, a logical unit is a channel through which data transfer occurs
between the program and a device or file. You identify each logical unit with
a logical unit number, which can be any nonnegative integer from 0 to a
maximum value of 2,147,483,647 (2**31–1).

For example, the following READ statement uses logical unit number 2:

READ (2,100) I,X,Y

This READ statement specifies that data is to be entered from the device or
file corresponding to logical unit 2, in the format specified by the FORMAT
statement labeled 100.

When opening a file, use the UNIT specifier to indicate the unit number. You
can use the LIB$GET_LUN library routine to return a logical unit number not
currently in use by your program. If you intend to use LIB$GET_LUN, avoid
using logical unit numbers (UNIT) 100 to 119 (reserved for LIB$GET_LUN).

HP Fortran programs are inherently device-independent. The association
between the logical unit number and the physical file can occur at run time.
Instead of changing the logical unit numbers specified in the source program,
you can change this association at run time to match the needs of the program
and the available resources. For example, before running the program, a
command procedure can set the appropriate logical name or allow the terminal
user to type a directory, file name, or both.

Use the same logical unit number specified in the OPEN statement for other
I/O statements to be applied to the opened file, such as READ and WRITE.

6–2 HP Fortran Input/Output

The OPEN statement connects a unit number with an external file and
allows you to explicitly specify file attributes and run-time options using OPEN
statement specifiers (all files except internal files are called external files).

ACCEPT, TYPE, and PRINT statements do not refer explicitly to a logical unit
(a file or device) from which or to which data is to be transferred; they refer
implicitly to a default preconnected logical unit. The ACCEPT statement is
normally preconnected to the default input device, and the TYPE and PRINT
statements are normally preconnected to the default output device. These
defaults can be overridden with appropriate logical name assignments (see
Section 6.6.1.2).

READ, WRITE, and REWRITE statements refer explicitly to a specified logical
unit from which or to which data is to be transferred. However, to use a
preconnected device for READ (SYS$INPUT) and WRITE (SYS$OUTPUT),
specify the unit number as an asterisk (*).

Certain unit numbers are preconnected to OpenVMS standard devices. Unit
number 5 is associated with SYS$INPUT and unit 6 with SYS$OUTPUT.
At run time, if units 5 and 6 are specified by a record I/O statement (such
as READ or WRITE) without having been explicitly opened by an OPEN
statement, HP Fortran implicitly opens units 5 and 6 and associates them with
their respective operating system standard I/O files.

For More Information:
On the OPEN statement and preconnected files, see Section 6.6.

6.3 Types of I/O Statements
Table 6–1 lists the HP Fortran I/O statements.

HP Fortran Input/Output 6–3

Table 6–1 Summary of I/O Statements

Category and
Statement Name Description

File Connection

OPEN Connects a unit number with an external file and specifies file
connection characteristics.

CLOSE Disconnects a unit number from an external file.

File Inquiry

INQUIRE Returns information about a named file, a connection to a unit,
or the length of an output item list.

Record Position

BACKSPACE Moves the record position to the beginning of the previous
record (sequential access only).

ENDFILE Writes an end-of-file marker after the current record (sequential
access only).

REWIND Sets the record position to the beginning of the file (sequential
access only).

Record Input

READ Transfers data from an external file record or an internal file to
internal storage.

Record Output

WRITE Transfers data from internal storage to an external file record
or to an internal file.

PRINT Transfers data from internal storage to SYS$OUTPUT
(standard output device). Unlike WRITE, PRINT only provides
formatted sequential output and does not specify a unit
number.

HP Fortran
Extensions

ACCEPT Reads input from SYS$INPUT. Unlike READ, ACCEPT only
provides formatted sequential output and does not specify a
unit number.

(continued on next page)

6–4 HP Fortran Input/Output

Table 6–1 (Cont.) Summary of I/O Statements

Category and
Statement Name Description

DELETE Marks a record at the current record position in a relative file
as deleted (direct access only).

REWRITE Transfers data from internal storage to an external file record
at the current record position. Certain restrictions apply.

UNLOCK Releases a lock held on the current record when file sharing
was requested when the file was opened (see Section 6.9.2).

TYPE Writes record output to SYS$OUTPUT (same as PRINT).

DEFINE FILE Specifies file characteristics for a direct access relative file
and connects the unit number to the file (like an OPEN
statement). Provided for compatibility with compilers older
than FORTRAN-77.

FIND Changes the record position in a direct access file. Provided for
compatibility with compilers older than FORTRAN-77.

In addition to the READ, WRITE, REWRITE, TYPE, and PRINT statements,
other I/O record-related statements are limited to a specific file organization.
For instance:

• The DELETE statement only applies to relative and indexed files.

• The BACKSPACE and REWIND statements only apply to sequential files
open for sequential access.

• The ENDFILE statement only applies to certain types of sequential files
open for sequential access.

The file-related statements (OPEN, INQUIRE, and CLOSE) apply to any
relative or sequential file.

6.4 Forms of I/O Statements
Each type of record I/O statement can be coded in a variety of forms. The form
you select depends on the nature of your data and how you want it treated.
When opening a file, specify the form using the FORM specifier. The following
are the forms of I/O statements:

• Formatted I/O statements contain explicit format specifiers that are
used to control the translation of data from internal (binary) form within a
program to external (readable character) form in the records, or vice versa.

HP Fortran Input/Output 6–5

• List-directed and namelist I/O statements are similar to formatted
statements in function. However, they use different mechanisms to control
the translation of data: formatted I/O statements use explicit format
specifiers, and list-directed and namelist I/O statements use data types.

• Unformatted I/O statements do not contain format specifiers and
therefore do not translate the data being transferred (important when
writing data that will be read later).

Formatted, list-directed, and namelist I/O forms require translation of data
from internal (binary) form within a program to external (readable character)
form in the records. Consider using unformatted I/O for the following reasons:

• Unformatted data avoids the translation process, so I/O tends to be faster.

• Unformatted data avoids the loss of precision in floating-point numbers
when the output data will subsequently be used as input data.

• Unformatted data conserves file storage space (stored in binary form).

To write data to a file using formatted, list-directed, or namelist I/O statements,
specify FORM=’FORMATTED’ when opening the file. To write data to a file
using unformatted I/O statements, specify FORM=’UNFORMATTED’ when
opening the file.

Data written using formatted, list-directed, or namelist I/O statements is
referred to as formatted data; data written using unformatted I/O statements
is referred to as unformatted data.

When reading data from a file, you should use the same I/O statement form
that was used to write the data to the file. For instance, if data was written to
a file with a formatted I/O statement, you should read data from that file with
a formatted I/O statement.

Although I/O statement form is usually the same for reading and writing
data in a file, a program can read a file containing unformatted data (using
unformatted input) and write it to a separate file containing formatted data
(using formatted output). Similarly, a program can read a file containing
formatted data and write it to a different file containing unformatted data.

As described in Section 6.9.2, you can access records in any sequential,
relative, or indexed file using sequential access. For relative files and fixed-
length sequential files, you can also access records using direct access. For
indexed files, you can use keyed access.

6–6 HP Fortran Input/Output

Table 6–2 shows the main record I/O statements, by category, that can be used
in HP Fortran programs.

Table 6–2 Available I/O Statements and Record I/O Forms

File Type, Access,
and I/O Form Available Statements

External file,
sequential access

Formatted
List-Directed
Namelist
Unformatted

READ, WRITE, PRINT, ACCEPT, TYPE1, and REWRITE1

READ, WRITE, PRINT, ACCEPT1, TYPE1, and REWRITE1

READ, WRITE, PRINT, ACCEPT1, TYPE1, and REWRITE1

READ, WRITE, and REWRITE1

External file, direct
access

Formatted
Unformatted

READ, WRITE, and REWRITE1

READ, WRITE, and REWRITE1

External file, keyed
access

Formatted
Unformatted

READ, WRITE, and REWRITE1

READ, WRITE, and REWRITE1

Internal file2

Formatted
List-Directed
Unformatted

READ, WRITE
READ, WRITE
None

1This statement is an HP extension to the Fortran 90 and Fortran 95 standards.
2An internal file is a way to reference character data in a buffer using sequential access (see
Section 6.5.2).

6.5 Types of Files and File Characteristics
This section discusses file organization, internal and scratch files, record type,
record length, and other file characteristics.

6.5.1 File Organizations
File organization refers to the way records are physically arranged on a
storage device.

The default file organization is always ORGANIZATION=’SEQUENTIAL’ for
an OPEN statement.

HP Fortran Input/Output 6–7

HP Fortran supports three kinds of file organizations: sequential, relative,
and indexed sequential. The organization of a file is specified by means of the
ORGANIZATION specifier in the OPEN statement.

You must store relative files on a disk device. You can store sequential files on
magnetic tape or disk devices, and can use other peripheral devices, such as
terminals and line printers, as sequential files.

File characteristics, including the file organization and record type, are stored
by RMS in the disk file header and can be obtained by using the INQUIRE
statement. You can also view the organization of a file using the DCL command
DIRECTORY/FULL.

For more information on the INQUIRE statement, see Section 6.7 and the HP
Fortran for OpenVMS Language Reference Manual.

Sequential Organization
A sequentially organized file consists of records arranged in the sequence in
which they are written to the file (the first record written is the first record in
the file, the second record written is the second record in the file, and so on).
As a result, records can be added only at the end of the file.

Sequential files are usually read sequentially, starting with the first record in
the file. Sequential files stored on disk with a fixed-length record type can also
be accessed by relative record number (direct access).

Relative Organization
Within a relative file are numbered positions, called cells. These cells are of
fixed equal length and are consecutively numbered from 1 to n, where 1 is the
first cell, and n is the last available cell in the file. Each cell either contains a
single record or is empty.

Records in a relative file are accessed according to cell number. A cell number
is a record’s relative record number (its location relative to the beginning of the
file). By specifying relative record numbers, you can directly retrieve, add, or
delete records regardless of their locations (direct access).

Relative files allow you to use direct access and detect when a record has been
deleted.

When creating a relative file, specify the RECL value to determine the size of
the fixed-length cells. Within the cells, you can store variable-length records as
long as their size does not exceed the cell size.

6–8 HP Fortran Input/Output

Indexed Files
An indexed file consists of two or more separate sections: one section contains
the data records and the other sections contain indexes. When an indexed
file is created, each index is associated with a specification defining a field
within each record, called a key field or simply key. A record in an indexed file
must contain at least one key, called the primary key, which determines the
location of the records within the body of the file.

The keys of all records are collected to form one or more structured indexes,
through which records are always accessed. The structure of the indexes allows
a program to access records in an indexed file either randomly (keyed access)
or sequentially (sequential access). With keyed access, you specify a particular
key value. With sequential access, you retrieve records with increasing or
decreasing key values. You can mix keyed access and sequential access.

Indexed files are supported only on disk devices. When creating an indexed
file, specify the RECL value.

For more information on indexed files, see Chapter 12.

6.5.2 Internal Files and Scratch Files
HP Fortran also supports two other types of files that are not file
organizations—namely, internal files and scratch files.

Internal Files
You can use an internal file to reference character data in a buffer when using
sequential access. The transfer occurs between internal storage and internal
storage (unlike external files), such as between character variables and a
character array.

An internal file consists of any of the following:

• Character variable

• Character-array element

• Character array

• Character substring

• Character array section without a vector subscript

Instead of specifying a unit number for the READ or WRITE statement, use an
internal file specifier in the form of a character scalar memory reference or a
character-array name reference.

HP Fortran Input/Output 6–9

An internal file is a designated internal storage space (variable buffer) of
characters that is treated as a sequential file of fixed-length records. To
perform internal I/O, use formatted and list-directed sequential READ and
WRITE statements. You cannot use such file-related statements such as OPEN
and INQUIRE on an internal file (no unit number is used).

If an internal file is made up of a single character variable, array element,
or substring, that file comprises a single record whose length is the same as
the length of the variable, array element, or substring. If an internal file is
made up of a character array, that file comprises a sequence of records, with
each record consisting of a single array element. The sequence of records in an
internal file is determined by the order of subscript progression.

A record in an internal file can be read only if the character variable, array
element, or substring comprising the record has been defined (a value has been
assigned to the record).

Prior to each READ and WRITE statement, an internal file is always
positioned at the beginning of the first record.

Scratch Files
Scratch files are created by specifying STATUS=’SCRATCH’ on an OPEN
statement. By default, the files are created on the user’s default disk
(SYS$DISK) and are not placed in a directory or given a name that is
externally visible (accessible using the DCL command DIRECTORY).

You can create scratch files on a disk other than the default disk by using the
FILE specifier in an OPEN statement.

6.5.3 I/O Record Types
Record type refers to whether records in a file are all the same length, are of
varying length, or use other conventions to define where one record ends and
another begins.

You can use fixed-length and variable-length record types with sequential,
relative, or indexed files. You can use any of the record types with sequential
files.

Records are stored in one of the following record types:

• Fixed-length

• Variable-length

• Segmented

• Stream

6–10 HP Fortran Input/Output

• Stream_CR

• Stream_LF

You can use fixed-length and variable-length record types with sequential,
relative, or indexed files.

Before you choose a record type, consider whether your application will use
formatted or unformatted data. If you will be using formatted data, you can
use any record type except segmented. When using unformatted data, you
should avoid using the stream, stream_CR, and stream_LF record types.

The segmented record type is unique to HP Fortran products; it is not used
by other OpenVMS-supported languages. It can only be used for unformatted
sequential access with sequential files. You should not use segmented records
for files that are read by programs written in languages other than Fortran.

The stream, stream_CR, stream_LF, and segmented record types can only be
used with sequential files.

6.5.3.1 Portability Considerations of Record Types
Consider the following portability needs when choosing a record type:

• Data files from HP Fortran and Compaq Fortran 77 on OpenVMS systems
are interchangeable.

• You can use any any record type except segmented with other non-Fortran
OpenVMS languages.

HP Fortran indexed files are portable only to other OpenVMS systems.
However, a conversion program can read the records from an indexed file
and write them to another file, such as a sequential (or relative) file.

6.5.3.2 Fixed-Length Records
When you create a file that uses the fixed-length record type, you must specify
the record size. When you specify fixed-length records, all records in the
file must contain the same number of bytes. (The HP Fortran for OpenVMS
Language Reference Manual discusses fixed-length records.)

A sequential file opened for direct access must contain fixed-length records, to
allow the record position in the file to be computed correctly.

You can obtain the record length (RECL) before opening the file with unformat-
ted data by using a form of the INQUIRE statement (see Section 6.7.3).

HP Fortran Input/Output 6–11

6.5.3.3 Variable-Length Records
Variable-length records can contain any number of bytes, up to a specified
maximum. These records are prefixed by a count field, indicating the number
of bytes in the record. The count field comprises two bytes on a disk device and
four bytes on magnetic tape. The value stored in the count field indicates the
number of data bytes in the record.

Variable-length records in relative files are actually stored in fixed-length cells,
the size of which must be specified by means of the RECL specifier in an OPEN
statement (see the HP Fortran for OpenVMS Language Reference Manual for
details). This RECL value specifies the largest record that can be stored in the
file.

The count field of a formatted variable-length record is available when you
read the record by issuing a READ statement with a Q format descriptor. You
can then use the count field information to determine how many bytes should
be in an I/O list.

6.5.3.4 Segmented Records
A segmented record is a single logical record consisting of one or more variable-
length, unformatted records in a sequential file. Each variable-length record
constitutes a segment. The length of a segmented record is arbitrary.

Segmented records are useful when you want to write exceptionally long
records but cannot or do not wish to define one long variable-length record.
When writing unformatted data to a sequential file using sequential access, the
default record type is segmented.

As shown in Figure 6–1, the layout of segmented records consists of control
information followed by the user data. On disk, the control information
consists of four bytes for compatibility with other HP Fortran platforms.
However, OpenVMS RMS removes the first two length bytes when the record
is read, so each record has two control bytes (flags) in memory.

Figure 6–1 Segmented Records

ZK−7916A−GE

0 4

FLAGS ACTUAL DATA

LENGTH (n)

LENGTH (n)

2

6–12 HP Fortran Input/Output

The control information consists of a 2-byte integer record size count (includes
the two bytes used by the segment identifier), followed by a 2-byte integer
segment identifier that identifies this segment as one of the following:

Identifier Value Segment Identified

0 One of the segments between the first and last segments.

1 First segment.

2 Last segment.

3 Only segment.

When you wish to access an unformatted sequential file that contains variable-
length records, you must specify FORM=’UNFORMATTED’ when you open
the file. If the unformatted data file was not created using an HP Fortran
product, specify RECORDTYPE=’VARIABLE’. If the unformatted data file
was created using the segmented record type using an HP Fortran Fortran
product, specify RECORDTYPE=’SEGMENTED’.

Otherwise, the first two bytes of each record will be mistakenly interpreted as
control information, and errors will probably result.

You can obtain the record length (RECL) before opening the file with
unformatted data using a form of the INQUIRE statement (see Section 6.7.3).

6.5.3.5 Stream Records
A stream record is a variable-length record whose length is indicated by explicit
record terminators embedded in the data, not by a count.

Stream files use the 2-character sequence consisting of a carriage-return and a
line-feed as the record terminator. These terminators are automatically added
when you write records to a stream file and removed when you read records.

Stream records resemble the Stream_CR or Stream_LF records shown in
Figure 6–2, but use a 2-byte record terminator (carriage-return and line-feed)
instead of a 1-byte record terminator.

6.5.3.6 Stream_CR and Stream_LF Records
A Stream_CR or Stream_LF record is a variable-length record whose length
is indicated by explicit record terminators embedded in the data, not by a
count. These terminators are automatically added when you write records to a
stream-type file and are removed when you read records.

Each variety uses a different 1-byte record terminator:

• Stream_CR files use only a carriage-return as the terminator, so Stream_
CR files must not contain embedded carriage-return characters.

HP Fortran Input/Output 6–13

• Stream_LF files use only a line-feed (new line) as the terminator, so
Stream_LF files must not contain embedded line-feed (new line) characters.

The layout of Stream_CR and Stream_LF records appears in Figure 6–2.

Figure 6–2 Stream_CR and Stream_LF Records

ZK−9823−GE

User Data

Record length (RECL=value) 1

6.5.4 Other File Characteristics
Other file characteristics include:

• Carriage control attributes of each record (CARRIAGECONTROL specifier)

• Whether formatted or unformatted data is contained in the records (FORM
specifier)

• The record length (RECL specifier)

• Whether records can span block boundaries (NOSPANBLOCK specifier)

• For an indexed file being created, the key number, its location, and its data
type (KEY specifier)

The units used for specifying record length depend on the form of the data:

• For formatted files (FORM=’FORMATTED’), specify the record length in
bytes.

• For unformatted files (FORM=’UNFORMATTED’), specify the record
length in 4-byte units, unless you specify the /ASSUME=BYTERECL
qualifier to request 1-byte units (see Section 2.3.7).

For More Information:

• On statement syntax and specifier values (including defaults), see the HP
Fortran for OpenVMS Language Reference Manual.

• On file characteristics, see Section 6.6.3 and the OPEN statement in the
HP Fortran for OpenVMS Language Reference Manual.

• On I/O performance considerations, see Section 5.5.

6–14 HP Fortran Input/Output

6.6 Opening Files and the OPEN Statement
You can choose to open files by:

• Using default values, such as a preconnected unit. In the following
example, the PRINT statement is associated with a preconnected unit
(SYS$OUTPUT) by default:

PRINT *,100

Implicitly opening a file by omitting an OPEN statement prevents you
from specifying the file connection characteristics and other information
provided by the OPEN statement. You might use implicit opening of a file
for terminal I/O.

The following READ statement associates the logical unit 7 with the file
FOR007.DAT (because the FILE specifier was omitted) by default:

OPEN (UNIT=7,STATUS=’OLD’)
READ (7,100)

• Using default logical names, which allows you to specify which file or files
are used at run time. If the following example uses an implicit OPEN, the
READ statement causes the logical name FOR007 to be associated with the
file FOR007.DAT by default. The TYPE statement causes the logical unit
FOR$TYPE to be associated with SYS$OUTPUT by default.

READ (7,100)
.
.
.

TYPE 100

• Using logical names without an OPEN statement. You can also use DCL
commands to set the appropriate logical names to a value that indicates a
directory (if needed) and a file name to associate a unit with an external
file.

• Specifying a logical name in an OPEN statement. This allows you to
specify which file or files are used at run time, but the appropriate logical
names must be defined before the program is run. For example:

OPEN (UNIT=7, FILE=’LOGNAM’, STATUS=’OLD’)

• Specifying a file specification in an OPEN statement. The file or files are
specified at compile time, so the program may need to be recompiled to
specify a different file (or the default device and directory changed if these
are not specified by the program). For example:

HP Fortran Input/Output 6–15

OPEN (UNIT=7, FILE=’FILNAM.DAT’, STATUS=’OLD’)

If you choose to specify a logical name with the FILE specifier in an OPEN
statement, that logical name must be associated with a file specification
and the character expression specified for the logical name must contain no
punctuation marks.

6.6.1 Preconnected Files and Fortran Logical Names
You can use OpenVMS logical names to associate logical units with file
specifications. A logical name is a string up to 255 characters long that you
can use as part of a file specification.

Table 6–3 lists the OpenVMS process logical names for standard I/O devices
already associated with particular file specifications.

Table 6–3 Predefined System Logical Names

OpenVMS Logical
Name Meaning Default

SYS$COMMAND Default command stream For an interactive user, the default is the
terminal; for a batch job, the default is the
batch job input command file.

SYS$DISK Default disk device As specified by user.

SYS$ERROR Default error stream For an interactive user, the default is the
terminal; for a batch job, the default is the
batch job log file.

SYS$INPUT Default input stream For an interactive user, the default is the
terminal; for a batch job, the default is the
batch command file.

SYS$OUTPUT Default output stream For an interactive user, the default is the
terminal; for a batch job, the default is the
batch log file.

You can dynamically create a logical name and associate it with a file
specification by means of the DCL commands ASSIGN or DEFINE. For
example, before program execution, you can define each logical name
recognized by your program with a file specification appropriate to your
needs without recompiling and relinking the program. For example:

$ DEFINE LOGNAM USERD:[SMITH]TEST.DAT;2

The preceding command creates the logical name LOGNAM and associates
it with the file specification USERD:[SMITH]TEST.DAT;2. As a result, this
file specification is used whenever the logical name LOGNAM is encountered
during program execution.

6–16 HP Fortran Input/Output

The following statement opens the file associated with the current definition of
the logical name LOGNAM:

OPEN (UNIT=7, FILE=’LOGNAM’, STATUS=’OLD’)

Logical names provide great flexibility because they can be associated with
either a partial or complete file specification (with either a device or a device
and a directory), or even another logical name.

6.6.1.1 Preconnected Files
ACCEPT, TYPE, and PRINT statements do not refer explicitly to a logical unit
(a file or device) from which or to which data is to be transferred; they refer
implicitly to a default preconnected logical unit. ACCEPT refers to the default
input device SYS$INPUT. TYPE and PRINT refer to the default output device
SYS$OUTPUT. These defaults can be overridden with appropriate logical name
assignments (see Section 6.6.1.2).

READ, WRITE, and REWRITE usually refer to explicit unit numbers. If you
do not use an OPEN statement to open logical unit 5 or 6 without setting
the appropriate logical name (FORnnn), unit number 5 is associated with
SYS$INPUT and unit 6 with SYS$OUTPUT.

At run time, if units 5 and 6 are specified by a record I/O statement (such
as READ or WRITE) without having been explicitly opened by an OPEN
statement, HP Fortran implicitly opens units 5 and 6 and associates them with
their respective operating system standard I/O files if the corresponding logical
name is not set.

To redirect I/O to an external disk file instead of these preconnected files, you
can either use an OPEN statement to unit 5 and 6 or set the appropriate
logical name. If you set the corresponding HP Fortran logical name, the file
specified by that HP Fortran logical name is used.

The order of precedence when you open a file is:

• When you explicitly open a preconnected file by using an OPEN statement
with a file name for that unit, the Fortran logical name and OpenVMS
standard I/O device are not used. The file is no longer considered
preconnected.

If the file name is not present in the OPEN statement, the unit is still
preconnected as shown in Table 6–4.

• If the appropriate Fortran logical name is defined, its definition is used
instead of the OpenVMS standard I/O logical name.

• If the Fortran logical name is not defined, the OpenVMS standard I/O
logical name is used.

HP Fortran Input/Output 6–17

• For units not associated with a preconnected OpenVMS standard I/O
device, if you omit the file name and file type, the system supplies certain
defaults, such as a file name and type of FORnnn.DAT (see Section 6.6.1.2.

Table 6–4 shows the I/O statements and their associated Fortran logical names
and OpenVMS standard I/O logical names.

Table 6–4 Implicit Fortran Logical Units

Statement Fortran Logical Name1 Equivalent OpenVMS Logical Name

READ (*,f) iolist FOR$READ SYS$INPUT

READ f,iolist FOR$READ SYS$INPUT

ACCEPT f,iolist FOR$ACCEPT SYS$INPUT

WRITE (*,f) iolist FOR$PRINT SYS$OUTPUT

PRINT f,iolist FOR$PRINT SYS$OUTPUT

TYPE f,iolist FOR$TYPE SYS$OUTPUT

READ (5),iolist FOR005 SYS$INPUT

WRITE (6),iolist FOR006 SYS$OUTPUT

1If the Fortran logical name is defined, it is used; if the Fortran logical name is not defined, the
OpenVMS standard I/O logical names are used.

You can change the file specifications associated with these Fortran logical
names by using the DCL commands DEFINE or ASSIGN.

6.6.1.2 HP Fortran Logical Names
HP Fortran I/O is usually performed by associating a logical unit number
with a device or file. OpenVMS logical names provide an additional level of
association; a user-specified logical name can be associated with a logical unit
number.

HP Fortran provides predefined logical names in the following form:

FORnnn

The notation nnn represents a logical unit number, any non-negative 4-byte
integer (maximum value is 2,147,483,647). For example, for logical unit 12, the
predefined logical name would be FOR012; for logical unit 1024, the predefined
logical name would be FOR1024.

By default, each Fortran logical name is associated with a file named
FORnnn.DAT on your default disk under your default directory. For example:

WRITE (17,200)

6–18 HP Fortran Input/Output

If you enter the preceding statement without including an explicit file
specification, the data is written to a file named FOR017.DAT on your default
disk under your default directory.

You can change the file specification associated with a Fortran logical unit
number by using the DCL commands ASSIGN or DEFINE to change the file
associated with the corresponding Fortran logical name. For example:

$ DEFINE FOR017 USERD:[SMITH]TEST.DAT;2

The preceding command associates the Fortran logical name FOR017 (and
therefore logical unit 17) with file TEST.DAT;2 on device USERD in directory
[SMITH].

You can also associate the Fortran logical names with any of the predefined
system logical names, as shown in the following examples:

• The following command associates logical unit 10 with the default output
device (for example, the batch output stream):

$ DEFINE FOR010 SYS$OUTPUT

• The following command associates the default command stream with the
default input device (for example, the batch input stream):

$ DEFINE SYS$COMMAND SYS$INPUT

For More Information:
On the DCL commands you can use to assign or deassign logical names, see
Appendix D.

6.6.2 Disk Files and File Specifications
Most I/O operations involve a disk file, keyboard, or screen display. You
can access the terminal screen or keyboard by using preconnected files, as
described in Section 6.6. Otherwise, this chapter discusses disk files.

HP Fortran recognizes logical names for each logical I/O unit number in the
form of FORnnn, where nnn is the logical I/O unit number, with leading
zeros for fewer than three digits. If a file name is not specified in the OPEN
statement and the corresponding FORnnn logical name is not set for that unit
number, HP Fortran generates a file name in the form FORnnn.DAT, where n
is the logical unit number.

Certain HP Fortran logical names are recognized and preconnected files exist
for certain unit numbers. Performing an implied OPEN means that the FILE
and DEFAULTFILE specifier values are not specified and a logical name is
used, if present.

HP Fortran Input/Output 6–19

A complete OpenVMS file specification has the form:

node::device:[directory]filename.filetype;version

For example:

BOSTON::USERD:[SMITH]TEST.DAT;2

You can associate a file specification with a logical unit by using a logical
name assignment (see Section 6.6.1) or by using an OPEN statement (see
Section 6.6.2). If you do not specify such an association or if you omit elements
of the file specification, the system supplies default values, as follows:

• If you omit the node, the local computer is used.

• If you omit the device or directory, the current user default device or
directory is used.

• If you omit the file name, the system supplies FORnnn (where nnn is the
logical unit number, with leading zeros for one- or two-digit numbers)

• If you omit the file type, the system supplies DAT.

• If you omit the version number, the system supplies either the highest
current version number (for input) or the highest current version number
plus 1 (for output).

For example, if your default device is USERD and your default directory is
SMITH, and you specified the following statements:

READ (8,100)
.
.
.
WRITE (9,200)

The default input file specification would be:

USERD:[SMITH]FOR008.DAT;n

The default output file specification would be:

USERD:[SMITH]FOR009.DAT;m

In these examples, n equals the highest current version number of
FOR008.DAT and m is 1 greater than the highest existing version number
of FOR009.DAT.

6–20 HP Fortran Input/Output

You can use the FILE and DEFAULTFILE specifiers in an OPEN statement
to specify the complete definition of a particular file to be opened on a logical
unit. For example:

OPEN (UNIT=4, FILE=’USERD:[SMITH]TEST.DAT;2’, STATUS=’OLD’)

In the preceding example, the existing file TEST.DAT;2 on device USERD in
directory SMITH is to be opened on logical unit 4. Neither the default file
specification (FOR004.DAT) nor the Fortran logical name FOR004 is used. The
value of the FILE specifier can be a character constant, variable, or expression.

HP Fortran provides the following possible ways of specifying all or part of a
file specification (directory and file name), such as DISK2:[PROJECT.DATA]:

• The FILE specifier in an OPEN statement typically specifies only a file
name (such as TESTDATA) or contains both a directory and file name
(such as DISK2:[PROJECT.DATA]TESTDATA).

• The DEFAULTFILE specifier (an HP extension) in an OPEN statement
typically specifies a device and/or directory without a file name or a device
and/or directory with a file name (such as
DISK2:[PROJECT.DATA]TESTDATA).

• If you used an implied OPEN or if the FILE specifier in an OPEN
statement did not specify a file name, you can use a logical name to specify
a file name or a device and/or directory that contains both a directory and
file name (see Section 6.6.1).

In the following interactive example, the file name is supplied by the
user and the DEFAULTFILE specifier supplies the default values for the
file specification string. The file to be opened is in device and directory
DISK4:[PROJ] and is merged with the file name typed by the user into the
variable DOC:

CHARACTER(LEN=40) DOC
WRITE (6,*) ’Type file name ’
READ (5,*) DOC
OPEN (UNIT=2, FILE=DOC, DEFAULTFILE=’DISK4:[PROJ]’,STATUS=’OLD’)

The DEFAULTFILE specification overrides your process default device and
directory.

You can also specify a logical name as the value of the FILE specifier, if
the logical name is associated with a file specification. If the logical name
LOGNAM is defined to be the file specification USERD:[SMITH]TEST.DAT, the
logical name can then be used in an OPEN statement, as follows:

OPEN (UNIT=19, FILE=’LOGNAM’, STATUS=’OLD’)

HP Fortran Input/Output 6–21

When an I/O statement refers to logical unit 19, the system uses the file
specification associated with logical name LOGNAM.

If the value specified for the FILE specifier has no associated file specification,
it is regarded as a true file name rather than as a logical name. Suppose
LOGNAM had not been previously associated with the file specification by
using an ASSIGN or DEFINE command. The OPEN statement would indicate
that a file named LOGNAM.DAT is located on the default device, in the default
directory.

For an example program that reads a typed file name, uses the typed name
to open a file, and handles such errors as the ‘‘file not found’’ error, see
Example 7–1.

For a detailed description of OpenVMS file specifications, see the Guide to
OpenVMS File Applications.

For More Information:

• On a list of HP Fortran I/O statements, see Table 6–1.

• On record I/O, see Section 6.9.

• On HP Fortran I/O statements and specifier values, including defaults, see
Table 6–1.

• On statement syntax, see the HP Fortran for OpenVMS Language
Reference Manual.

• On the ERR and IOSTAT specifiers, see Chapter 7.

• On closing files, see Section 6.8.

6.6.3 OPEN Statement Specifiers
The OPEN statement connects a unit number with an external file and allows
you to explicitly specify file attributes and run-time options using OPEN
statement specifiers. Once you open a file, you should close it before opening it
again unless it is a preconnected file.

If you open a unit number that was opened previously (without being closed),
one of the following occurs:

• If you specify a file specification that does not match the one specified for
the original open, the HP Fortran run-time system closes the original file
and then reopens the specified file.

This resets the current record position for the second file.

6–22 HP Fortran Input/Output

• If you specify a file specification that does match the one specified for the
original open, the file is reconnected without the internal equivalent of the
CLOSE and OPEN.

This lets you change one or more OPEN statement run-time specifiers
while maintaining the record position context.

You can use the INQUIRE statement (see Section 6.7) to obtain information
about a whether or not a file is opened by your program.

Especially when creating a new file using the OPEN statement, examine the
defaults (see the description of the OPEN statement in the HP Fortran for
OpenVMS Language Reference Manual) or explicitly specify file attributes with
the appropriate OPEN statement specifiers.

The OPEN statement functions and their specifiers are:

• Identify File and Unit

\UNIT specifies the logical unit number.

\FILE (or NAME1) and DEFAULTFILE1 specify the directory and/or file
name of an external file.

\STATUS or TYPE1 indicates whether to create a new file, overwrite an
existing file, open an existing file, or use a scratch file.

\STATUS or DISPOSE1 specifies the file existence status after CLOSE.

• File and Record Characteristics

\ORGANIZATION1 indicates the file organization (sequential, relative, or
indexed).

\RECORDTYPE1 indicates which record type to use.

\FORM indicates whether records are formatted or unformatted. See
Section 6.5.4 and Section 6.4.

\CARRIAGECONTROL1 indicates the terminal control type.

\KEY1 indicates (when creating an indexed file) the key number, its type,
and its location.

\NOSPANBLOCKS1 indicates that the records should not span block
boundaries.

\RECL or RECORDSIZE1 specifies the record size. See Section 6.5.4.

• Special File Open Routine

1 This specifier is an HP Fortran extension.

HP Fortran Input/Output 6–23

\USEROPEN1 names the routine that will open the file to establish special
context that changes the effect of subsequent HP Fortran I/O statements
(see Chapter 11).

• File Access, Processing, and Position

\ACCESS indicates the access mode (direct, keyed, or sequential). See
Section 6.9.2.

\ACTION or READONLY1 indicates whether statements will be used
to only read records, only write records, or read and write records. See
Section 6.9.3.

\POSITION indicates whether to position the file at the beginning of file,
before the end-of-file record, or leave it as is (unchanged). See Section 6.9.4.

\SHARED1 indicates that other users can access the same file and
activates record locking. See Section 6.9.3.

\MAXREC1 specifies the maximum record number for direct access.

\ASSOCIATEVARIABLE1 specifies the variable containing next record
number for direct access.

• File Allocation

\INITIALSIZE1 indicates the allocation unit (in blocks) when creating a
file.

\EXTENDSIZE1 indicates the allocation unit (in blocks) when allocation
additional file space.

• Record Transfer Characteristics

\BLANK indicates whether to ignore blanks in numeric fields.

\DELIM specifies the delimiter character for character constants in
list-directed or namelist output.

\PAD, when reading formatted records, indicates whether padding
characters should be added if the item list and format specification require
more data than the record contains.

\BLOCKSIZE1 specifies the block physical I/O buffer size.

\BUFFERCOUNT1 specifies the number of physical I/O buffers.

\CONVERT1 specifies the format of unformatted numeric data. See
Chapter 9.

• Error Handling Capabilities

\ERR specifies a label to branch to if an error occurs. See Chapter 7.

6–24 HP Fortran Input/Output

• \IOSTAT specifies the integer variable to receive the error (IOSTAT)
number if an error occurs. See Chapter 7.

• File Close Action

\DISPOSE1 identifies the action to take when the file is closed.

For More Information:

• On specifier syntax and complete information, see the HP Fortran for
OpenVMS Language Reference Manual.

• On the FORM specifier, see Section 6.4.

• On file organizations, see Section 6.5.1.

• On available record types, see Section 6.5.3.

• On the CARRIAGECONTROL specifier, see Section 6.5.4.

• On the RECL (record length) specifier, see Section 6.5.4.

• On shared access to files, see Section 6.9.3.

• On the ERR and IOSTAT specifiers, see Chapter 7.

• On obtaining file information using the INQUIRE statement, see
Section 6.7.

• On closing files, see Section 6.8.

• Record I/O transfer, see Section 6.9.6.

• Record advancement, see Section 6.9.5.

• Record positioning, see Section 6.9.4.

• On I/O performance considerations, see Section 5.5.

6.7 Obtaining File Information: The INQUIRE Statement
The INQUIRE statement returns information about a file and has three forms:

• Inquiry by unit

• Inquiry by file name

• Inquiry by output item list

HP Fortran Input/Output 6–25

6.7.1 Inquiry by Unit
An inquiry by unit is usually done for an opened (connected) file. An inquiry
by unit causes the HP Fortran RTL to check whether the specified unit is
connected or not. One of the following occurs:

• If the unit is connected:

The EXIST and OPENED specifier variables indicate a true value.

The file specification is returned in the NAME specifier variable (if the
file is named).

Other information requested on the previously connected file is
returned.

Default values are usually returned for the INQUIRE specifiers also
associated with the OPEN statement (see Section 6.6.3)

The RECL value unit for connected formatted files is always 1-byte
units. For unformatted files, the RECL unit is 4-byte units, unless you
specify the /ASSUME=BYTERECL qualifier to request 1-byte units (see
Section 2.3.7).

• If the unit is not connected:

The OPENED specifier indicates a false value.

The unit NUMBER specifier variable is returned as a value of –1.

Any other information returned will be undefined or default values for
the various specifiers.

For example, the following INQUIRE statement shows whether unit 3 has a
file connected (OPENED specifier) in logical variable I_OPENED, the name
(case sensitive) in character variable I_NAME, and whether the file is opened
for READ, WRITE, or READWRITE access in character variable I_ACTION:

INQUIRE (3, OPENED=I_OPENED, NAME=I_NAME, ACTION=I_ACTION)

6.7.2 Inquiry by File Name
An inquiry by name causes the HP Fortran RTL to scan its list of open files for
a matching file name. One of the following occurs:

• If a match occurs:

The EXIST and OPENED specifier variables indicate a true value.

The full file specification is returned in the NAME specifier variable.

The UNIT number is returned in the NUMBER specifier variable.

6–26 HP Fortran Input/Output

Other information requested on the previously connected file is
returned.

Default values are usually returned for the INQUIRE specifiers also
associated with the OPEN statement (see Section 6.6.3).

The RECL value unit for connected formatted files is always 1-byte
units. For unformatted files, the RECL unit is 4-byte units, unless you
specify the /ASSUME=BYTERECL qualifier to request 1-byte units (see
Section 2.3.7).

• If no match occurs:

The OPENED specifier variable indicates a false value.

The unit NUMBER specifier variable is returned as a value of –1.

The EXIST specifier variable indicates (true or false) whether the
named file exists on the device or not.

If the file does exist, the NAME specifier variable contains the full file
specification.

Any other information returned will be file characteristics maintained
in the file header or default values for the various specifiers, based on
any information specified when calling INQUIRE.

The following INQUIRE statement returns whether the file named LOG_FILE
is a file connected in logical variable I_OPEN, whether the file exists in logical
variable I_EXIST, and the unit number in integer variable I_NUMBER.

INQUIRE (FILE=’log_file’, OPENED=I_OPEN, EXIST=I_EXIST, NUMBER=I_NUMBER)

6.7.3 Inquiry by Output Item List
Unlike inquiry by unit or inquiry by name, inquiry by output item list does not
attempt to access any external file. It returns the length of a record for a list of
variables that would be used for unformatted WRITE, READ, and REWRITE
statements (REWRITE is an HP Fortran extension).

The following INQUIRE statement returns the maximum record length of the
variable list in integer variable I_RECLENGTH. This variable is then used to
specify the RECL value in the OPEN statement:

INQUIRE (IOLENGTH=I_RECLENGTH) A, B, H
OPEN (FILE=’test.dat’, FORM=’UNFORMATTED’, RECL=I_RECLENGTH, UNIT=9)

For an unformatted file, the RECL value is returned using 4-byte units, unless
you specify the /ASSUME=BYTERECL qualifier to request 1-byte units.

HP Fortran Input/Output 6–27

For More Information:

• On the INQUIRE statement and its specifiers, see the HP Fortran for
OpenVMS Language Reference Manual.

• On record I/O, see Section 6.9.

• On OPEN statement specifiers, see Section 6.6.3.

• On the /ASSUME=BYTERECL qualifier, see Section 2.3.7.

6.8 Closing a File: The CLOSE Statement
Usually, any external file opened should be closed by the same program before
it completes. The CLOSE statement disconnects the unit and its external file.
You must specify the unit number (UNIT specifier) to be closed.

You can also specify:

• Whether the file should be deleted or kept (STATUS specifier).

• Error handling information (ERR and IOSTAT specifiers).

To delete a file when closing it:

• In the OPEN statement, specify the ACTION keyword (such as
ACTION=’READ’). Avoid using the READONLY keyword, because a
file opened using the READONLY keyword cannot be deleted when it is
closed.

• In the CLOSE statement, specify the keyword STATUS=’DELETE’. (Other
STATUS keyword values include ’SUBMIT’ and ’PRINT’.)

If you opened an external file and did an inquire by unit, but do not like the
default value for the ACCESS specifier, you can close the file and then reopen
it, explicitly specifying the ACCESS desired.

There usually is no need to close preconnected units. Internal files are neither
opened nor closed.

For More Information:

• On a list of HP Fortran I/O statements, see Table 6–1.

• On changing default I/O characteristics before using HP Fortran I/O
statements, see Chapter 11.

• On OPEN statement specifiers, see Section 6.6.3.

• On statement syntax and specifier values (such as other STATUS values),
see the HP Fortran for OpenVMS Language Reference Manual.

6–28 HP Fortran Input/Output

6.9 Record Operations
After you open a file or use a preconnected file, you can use the following
statements:

• READ, WRITE and PRINT to perform record I/O.

• BACKSPACE, ENDFILE, REWIND to set record position within the file.

• ACCEPT, DELETE, REWRITE, TYPE, DEFINE FILE, and FIND to
perform various operations. These statements are HP extensions.

These statements are described in Section 6.3 and the HP Fortran for
OpenVMS Language Reference Manual.

The record I/O statement must use the appropriate record I/O form (formatted,
list-directed, namelist, or unformatted), as described in Section 6.4.

6.9.1 Record I/O Statement Specifiers
You can use the following specifiers with the READ and WRITE record I/O
statements:

• UNIT specifies the unit number to or from which input or output will occur.

• END specifies a label to branch to if an error occurs; only applies to input
statements like READ.

• ERR specifies a label to branch to if an error occurs.

• IOSTAT specifies an integer variable to contain the IOSTAT number if an
error occurs.

• FMT specifies a label of a FORMAT statement.

• NML specifies the name of a NAMELIST group.

• For direct access, REC specifies a record number.

• For keyed access:

KEYID specifies the key of reference.

KEY, KEYNXT, KEYNXTNE, KEYLT, KEYEQ, KEYLE, and KEYGT
specify the key value and key match characteristics.

When using nonadvancing I/O, use the ADVANCE, EOR, and SIZE specifiers,
as described in Section 6.9.5.

When using the REWRITE statement (an HP Fortran extension), you can use
the UNIT, FMT, ERR, and IOSTAT specifiers.

HP Fortran Input/Output 6–29

For More Information

• On specifier syntax and complete information, see the HP Fortran for
OpenVMS Language Reference Manual.

• On available record types, see Section 6.5.3.

• On the error-related record I/O specifiers ERR, END, and IOSTAT, see
Chapter 7.

• On the ADVANCE, EOR, and SIZE specifiers, see Section 6.9.5.

• On record positioning, see Section 6.9.4.

• On record I/O transfer, see Section 6.9.6.

• On record advancement, see Section 6.9.5.

6.9.2 Record Access Modes
Record access refers to how records will be read from or written to a file,
regardless of its organization. Record access is specified each time you open a
file; it can be different each time.

The type of record access permitted is determined by the combination of file
organization and record type. Access mode is the method a program uses to
retrieve and store records in a file. The access mode is specified as part of each
I/O statement.

HP Fortran supports three record access modes:

• Sequential access—transfers records sequentially to or from files
(sequential, relative, or indexed) or I/O devices such as terminals.

• Direct access—transfers records selected by record number to and from
fixed-length sequential files or relative organization files.

• Keyed access—transfers records to and from indexed files, based on data
values (keys) contained in the records, using the current key-of-reference.

Your choice of record access mode is affected by the organization of the file
to be accessed. For example, the keyed access mode can be used only with
indexed organization files.

Table 6–5 shows all of the valid combinations of access mode and file
organization.

6–30 HP Fortran Input/Output

Table 6–5 Valid Combinations of File Organization and Record Access Mode

File Organization Sequential Direct Keyed

Sequential Yes Yes1 No

Relative Yes Yes No

Indexed Yes No Yes

1Fixed-length records only.

6.9.2.1 Sequential Access
If you select the sequential access mode for sequential or relative files, records
are written to or read from the file starting at the beginning and continuing
through the file, one record after another. For indexed files, sequential access
can be used to read or write all records according to the direction of the key
and the key values. Sequential access to indexed files can also be used with
keyed access to read or write a group of records at a specified point in the file.

When you use sequential access for sequential and relative files, a particular
record can be retrieved only after all of the records preceding it have been read.

Writing records by means of sequential access also varies according to the file
organization:

• For sequential files, new records can be written only at the end of the file.

• For relative files, a new record can be written at any point, replacing the
existing record in the specified cell. For example, if two records are read
from a relative file and then a record is written, the new record occupies
cell 3 of the file.

• For indexed files, records must be written in primary key order, and READ
operations refer to the next record meeting the key selection criteria.

6.9.2.2 Direct Access
If you select direct access mode, you determine the order in which records are
read or written. Each READ or WRITE statement must include the relative
record number, indicating the record to be read or written.

You can access relative files directly. You can also access a sequential disk
file directly if it contains fixed-length records. Because direct access uses cell
numbers to find records, you can issue successive READ or WRITE statements
requesting records that either precede or follow previously requested records.
The following statements read record 24, then read record 10.

HP Fortran Input/Output 6–31

READ (12,REC=24) I
READ (12,REC=10) J

6.9.2.3 Keyed Access
If you select keyed access mode, you determine the order in which records are
read or written by means of character values or integer values called keys.
Each READ statement contains the key that locates the record. The key value
in the I/O statement is compared with index entries until the record is located.

When you insert a new record, the values contained in the key fields of the
record determine the record’s placement in the file; you do not have to indicate
a key.

You can use keyed access only for indexed files.

Your program can mix keyed access and sequential access I/O statements
on the same file. You can use keyed I/O statements to position the file to a
particular record, then use sequential I/O statements to access records with
either increasing or decreasing key values (depending on the key chosen).

For More Information
On using indexed files, see Chapter 12.

6.9.3 Shared File Use
With the RMS file-sharing capability, you can allow file access by more than
one program at a time or by the same program on more than one logical unit.
There are two kinds of file sharing:

• Read sharing occurs when multiple programs are reading a file at the same
time.

• Write sharing takes place when at least one program is writing a file and
at least one other program is either reading or writing the same file.

All three file organizations—relative, indexed, and sequential—permit read
and write access to shared files.

The extent to which file sharing can take place is determined by two factors:
the type of device on which the file resides and the explicit information
supplied by the user. These factors have the following effects:

• Device type—Sharing is possible only on disk files.

• Explicit file-sharing information supplied by accessing programs—Whether
file sharing actually takes place depends on information provided to
OpenVMS RMS by each program accessing the file. In HP Fortran
programs, this information is supplied by the ACTION specifier (or HP

6–32 HP Fortran Input/Output

extension READONLY specifier) and the SHARED specifier in the OPEN
statement.

Read sharing is accomplished when the OPEN statement specifies the
ACTION=’READ’ (or READONLY) specifier by all programs accessing the
file.

Write sharing is accomplished when the program specifies SHARED
with either ACTION=’WRITE’ or ACTION=’READWRITE’ (the default
is ACTION=’READWRITE’ unless you specify ACTION=’READ’ or
READONLY).

Programs that specify ACTION=’READ’ (or READONLY) or ’SHARED’
can access a file simultaneously, with the exception that a file opened for
ACTION=’READ’ (READONLY) cannot be accessed by a program that
specifies SHARED.

Depending on the value specified by the ACTION (or READONLY) specifier
in the OPEN statement, the file will be opened by your program for reading,
writing, or both reading and writing records. This simply checks that the
program itself executes the type of statements intended, unless the OPEN
statement specifies the SHARED specifier.

To allow other users to access the same file once you have opened it, specify
the OPEN statement SHARED specifier when you open the file. If you specify
the SHARED specifier when opening a file that is already opened by another
process, your program will be allowed to access the file.

If you omit the SHARED specifier when opening a file that is already opened
by another process, your program will be denied access to the file. If you omit
the SHARED specifier and are the first to open that files, file access might be
denied to other users later requesting access to the file.

For performance reasons, when writing records to the file, avoid specifying the
SHARED qualifier when you are certain that no other processes will access
that file. Similarly, unless you will be writing records when specifying the
SHARED qualifier, specify ACTION=’READ’.

When two or more programs are write sharing a file, each program should use
one of the error-processing mechanisms described in Chapter 14.

Use of one of these controls, the RMS record-locking facility, prevents program
failure due to a record-locking error.

The RMS record-locking facility, along with the logic of the program, prevents
two processes from accessing the same record at the same time. Record locking
ensures that a program can add, delete, or update a record without having to

HP Fortran Input/Output 6–33

check whether the same record is simultaneously being accessed by another
process.

When a program opens a relative, sequential, or indexed file specifying
SHARED, RMS locks each record as it is accessed. When a record is locked,
any program attempting to access it fails with a record-locked error. A
subsequent I/O operation on the logical unit unlocks the previously accessed
record, so no more than one record on a logical unit is ever locked.

In the case of a WRITE to a sequential or relative organization file opened
for shared access, HP Fortran uses an RMS option that causes the record to
be updated if it already exists in the file. This option has the side-effect of
momentarily releasing the record lock, if any, and then relocking the target
record. There is a small possibility that if another program is trying to access
the same record at the same time, it may succeed in locking the record while
it is unlocked by the first program, resulting in a record-locked error for the
WRITE statement.

Locked records can be explicitly unlocked by means of HP Fortran’s UNLOCK
statement. The use of this statement minimizes the amount of time that a
record is locked against access by other programs. The UNLOCK statement
should be used in programs that retrieve records from a shared file but do not
attempt to update them.

For More Information

• On the UNLOCK statement and its syntax, see the HP Fortran for
OpenVMS Language Reference Manual.

• On record locking for shared files, see the Guide to OpenVMS File
Applications.

• On how to handle record locking for indexed files, see Section 12.8.

• On specifier syntax and complete information, see the HP Fortran for
OpenVMS Language Reference Manual.

• On file sharing and record locking, see the Guide to OpenVMS File
Applications.

6–34 HP Fortran Input/Output

6.9.4 Specifying the Initial Record Position
When you open a disk file, you can use the OPEN statement’s POSITION
specifier to request one of the following initial record positions within the file:

• The initial position before the first record (POSITION=’REWIND’). A
sequential access READ or WRITE statement will read or write the first
record in the file.

• A point beyond the last record in the file (POSITION=’APPEND’), just
before the end-of-file record, if one exists. For a new file, this is the initial
position before the first record (same as ’REWIND’). You might specify
’APPEND’ before you write records to an existing sequential file using
sequential access.

• The current position (ASIS). This is usually used only to maintain the
current record position when reconnecting a file. The second OPEN
specifies the same unit number and specifies the same file name (or omits
it), which leaves the file open, retaining the current record position.

However, if a second OPEN statement specifies a different file name for the
same unit number, the file will be closed and then opened, causing a loss of
current record position.

The following I/O statements allow you to change the current record position:

• REWIND sets the record position to the initial position before the first
record. A sequential access READ or WRITE statement would read or
write the first record in the file.

• BACKSPACE sets the record position to the previous record in a file. Using
sequential access, if you wrote record 5, issued a BACKSPACE to that unit,
and then read from that unit, you would read record 5.

• ENDFILE writes an end-of-file marker. This is typically done after writing
records using sequential access just before you close the file.

Unless you use nonadvancing I/O (see Section 6.9.5), reading and writing
records usually advances the current record position by one record. As
discussed in Section 6.9.6, more than one record might be transferred using a
single record I/O statement.

HP Fortran Input/Output 6–35

6.9.5 Advancing and Nonadvancing Record I/O
After you open a file, if you omit the ADVANCE specifier (or specify
ADVANCE=’YES’) in READ and WRITE statements, advancing I/O (normal
FORTRAN-77 I/O) will be used for record access. When using advancing I/O:

• Record I/O statements transfer one entire record (or multiple records).

• Record I/O statements advance the current record position to a position
before the next record.

You can request nonadvancing I/O for the file by specifying the ADVANCE=
’NO’ specifier in a READ and WRITE statement. You can use nonadvancing
I/O only for sequential access to external files using formatted I/O (not
list-directed or namelist).

When you use nonadvancing I/O, the current record position does not change,
and part of the record might be transferred, unlike advancing I/O where one
entire record or records are always transferred.

You can alternate between advancing and nonadvancing I/O by specifying
different values for the ADVANCE specifier (’YES’ and ’NO’) in the READ
and WRITE record I/O statements.

When reading records with either advancing or nonadvancing I/O, you can use
the END branch specifier to branch to a specified label when the end of the file
is read.

Because nonadvancing I/O might not read an entire record, it also supports
an EOR branch specifier to branch to a specified label when the end of the
record is read. If you omit the EOR and the IOSTAT specifiers when using
nonadvancing I/O, an error results when the end-of-record is read.

When using nonadvancing input, you can use the SIZE specifier to return the
number of characters read. For example, in the following READ statement,
SIZE=X (where variable X is an integer) returns the number of characters read
in X and an end-of-record condition causes a branch to label 700:

150 FORMAT (F10.2, F10.2, I6)
READ (UNIT=20, FMT=150, SIZE=X, ADVANCE=’NO’, EOR=700) A, F, I

6–36 HP Fortran Input/Output

6.9.6 Record Transfer
I/O statements transfer all data as records. The amount of data that a record
can contain depends on the following circumstances:

• With formatted I/O (except for fixed-length records), the number of items in
the I/O statement and its associated format specifier jointly determine the
amount of data to be transferred.

• With namelist and list-directed output, the items listed in the NAMELIST
statement or I/O statement list (in conjunction with the NAMELIST
or list-directed formatting rules) determine the amount of data to be
transferred.

• With unformatted I/O (except for fixed-length records), the I/O statement
alone specifies the amount of data to be transferred.

• When you specify fixed-length records (RECORDTYPE=’FIXED’), all
records are the same size. If the size of an I/O record being written is less
than the record length (RECL), extra bytes are added (padding).

Typically, the data transferred by an I/O statement is read from or written to
a single record. It is possible, however, for a single I/O statement to transfer
data from or to more than one record, depending on the form of I/O used.

Input Record Transfer
When using advancing I/O, if an input statement specifies fewer data fields
(less data) than the record contains, the remaining fields are ignored.

If an input statement specifies more data fields than the record contains, one
of the following occurs:

• For formatted input using advancing I/O, if the file was opened with
PAD=’YES’, additional fields are read as spaces. If the file is opened with
PAD=’NO’, an error occurs (the input statement should not specify more
data fields than the record contains).

For formatted input using nonadvancing I/O (ADVANCE=’NO’ specifier),
an end-of-record (EOR) condition is returned. If the file was opened with
PAD=’YES’, additional fields are read as spaces.

• For list-directed input, another record is read.

• For namelist input, another record is read.

• For unformatted input, an error occurs.

HP Fortran Input/Output 6–37

Output Record Transfer
If an output statement specifies fewer data fields than the record contains (less
data than required to fill a record), the following occurs:

• With fixed-length records (RECORDTYPE=’FIXED’), all records are the
same size. If the size of an I/O record being written is less than the record
length (RECL), extra bytes are added (padding) in the form of spaces (for a
formatted record) or zeros (for an unformatted record).

• With other record types, the fields present are written and those omitted
are not written (might result in a short record).

If the output statement specifies more data than the record can contain, an
error occurs, as follows:

• With formatted or unformatted output using fixed-length records

If the items in the output statement and its associated format specifier
result in a number of bytes that exceed the maximum record length
(RECL), an error occurs.

• With formatted or unformatted output not using fixed-length records

If the items in the output statement and its associated format specifier
result in a number of bytes that exceed the maximum record length
(RECL), an error (OUTSTAOVE) occurs.

• For list-directed output and namelist output, if the data specified exceeds
the maximum record length (RECL), another record is written.

For More Information:

• On HP Fortran I/O statements, see Table 6–1.

• On record I/O specifiers, see Section 6.9.1.

• On statement syntax and specifier values, see the HP Fortran for
OpenVMS Language Reference Manual.

• On improving HP Fortran I/O performance, see Section 5.5.

• On user-supplied OPEN Procedures (the USEROPEN specifier), see
Section 11.4.

6–38 HP Fortran Input/Output

6.10 Output Data Buffering and RMS Journaling
When an HP Fortran output statement is executed, the record data may not be
written immediately to the file or device.

To enhance performance, HP Fortran uses the OpenVMS RMS ‘‘write-behind’’
and ‘‘multibuffering’’ features, which group records together in a memory buffer
and delays the actual device write operation until the buffers are full or the file
is closed. In most cases, this is desirable (for instance, to minimize disk I/O).

For those applications that depend on data being written to the physical device
immediately, ‘‘write-behind’’ and ‘‘multibuffering’’ can result in incomplete data
in the case of a power loss or other severe problem that prevents the data
being written.

For applications that require guaranteed file consistency for disaster recovery
or transactional integrity, the RMS Journaling product is recommended. RMS
Journaling provides three types of journaling:

• After-Image journaling, in which journaled transactions allow you to redo
record operations.

• Before-Image journaling, in which journaled transactions allow you to undo
record operations.

• Recovery Unit (RU) for transactional integrity (multiple operations treated
as one transaction)

Both After-Image and Before-Image journaling can be used without modifying
the application.

Other applications that do not need the degree of safety provided by RMS
journaling can use RMS features to cause data to be written to the file or
device more frequently. The simplest method is to use the SYS$FLUSH system
service to cause RMS to perform all pending writes immediately to disk. This
also has the effect of updating the file’s end-of-file pointer so that all of the
data written up to that point becomes accessible. An application might choose
to call SYS$FLUSH at an interval of every hundred records, for example. The
more often SYS$FLUSH is called, the more often the file is updated, but the
more performance is affected.

When calling SYS$FLUSH, the RMS Record Access Block (RAB) for the file
must be passed as an argument. For files opened by HP Fortran (or Compaq
Fortran 77), the FOR$RAB intrinsic function may be used to obtain the RAB.
For example:

HP Fortran Input/Output 6–39

INTEGER (KIND=4) :: FOR$RAB, IUNIT
.
.
.
IREC_COUNT = 0
DO WHILE (....)
.
.
.
WRITE (IUNIT) DATA
IREC_COUNT = IREC_COUNT + 1
IF (IREC_COUNT .EQ. 100) THEN

CALL SYS$FLUSH(%VAL(FOR$RAB(IUNIT)))
IREC_COUNT = 0
END IF

END DO

For More Information:

• On RMS Journaling, see the RMS Journaling for OpenVMS Manual.

• On SYS$FLUSH and other RMS features, see Chapter 11, the Guide
to OpenVMS File Applications, and the OpenVMS Record Management
Services Reference Manual.

• On using the FOR$RAB intrinsic function, see Section 11.2.3.

• On improving HP Fortran I/O performance, see Section 5.5.

6–40 HP Fortran Input/Output

7
Run-Time Errors

This chapter describes:

• Section 7.1, Run-Time Error Overview

• Section 7.2, HP Fortran RTL Default Error Processing

• Section 7.3, Handling Errors

• Section 7.4, List of Run-Time Messages

7.1 Run-Time Error Overview
During execution, your program may encounter errors or exception conditions.
These conditions can result from errors that occur during I/O operations, from
invalid input data, from argument errors in calls to the mathematical library,
from arithmetic errors, or from system-detected errors.

The HP Fortran Run-Time Library (RTL) provides default processing for error
conditions, generates appropriate messages, and takes action to recover from
errors whenever possible. However, you can explicitly supplement or override
default actions by using the following methods:

• To transfer control to error-handling code within the program, use the error
(ERR), end-of-record (EOR), and end-of-file (END) branch specifiers in I/O
statements.

• To identify Fortran-specific errors based on the value of IOSTAT, use the
I/O status specifier (IOSTAT) in I/O statements.

• To tailor error processing to the special requirements of your applications,
use the OpenVMS condition-handling facility (including user-written
condition handlers). (For information on user-written condition handlers,
see Chapter 14.)

Run-Time Errors 7–1

7.2 HP Fortran RTL Default Error Processing
The HP Fortran RTL contains condition handlers that process a number of
errors that may occur during HP Fortran program execution. A default action
is defined for each Fortran-specific error recognized by the HP Fortran RTL.
The default actions described throughout this chapter occur unless overridden
by explicit error-processing methods.

Unless you specify the /SYNCHRONOUS_EXCEPTIONS (Alpha only) qualifier
when you compile the program, error reporting of exceptions may be inexact;
the exception may not be reported until a few instructions after the one that
caused the exception. This makes continuation from an exception trap not
feasible.

The way in which the HP Fortran RTL actually processes errors depends on
several factors:

• The severity of the error

• Whether an I/O error-handling specifier or a condition handler was used

The following FORTRAN command qualifiers are related to handling errors
and exceptions:

• The /CHECK=BOUNDS, /CHECK=OVERFLOW, and /CHECK=UNDERFLOW
qualifiers generate extra code to catch certain conditions. For example,
the /CHECK=OVERFLOW qualifier generates extra code to catch integer
overflow conditions.

• The /CHECK=ARG_INFO (I64 only) qualifier controls whether run-time
checking of the actual argument list occurs.

• The /CHECK=FP_MODE (I64 only) qualifier controls whether run-time
checking of the current state of the processor’s floating-point status register
(FPSR) occurs.

• The /CHECK=NOFORMAT, /CHECK=NOOUTPUT_CONVERSION, and
/CHECK=NOPOWER qualifiers reduce the severity level of the associated
run-time error to allow program continuation.

• The /CHECK=NOFP_EXCEPTIONS qualifier and the /CHECK=UNDERFLOW
qualifier control the handling and reporting of floating-point arithmetic
exceptions at run time.

• The /SYNCHRONOUS_EXCEPTIONS (Alpha only) qualifier (and certain
/IEEE_MODE keywords) influence the reporting of floating-point arithmetic
exceptions at run time.

7–2 Run-Time Errors

• The /WARNINGS qualifier controls compile-time warning messages, which
in some circumstances can help determine the cause of a run-time error.

For More Information:

• On the FORTRAN command qualifier /CHECK, see Section 2.3.11.

• On other /CHECK qualifier keywords, see Section 2.3.11.

• On the FORTRAN qualifiers that control compile-time warning messages,
see Section 2.3.51.

• On IEEE floating-point data types and exceptional values, see Section 2.3.24.

• On FORTRAN command qualifiers and their categories, see Table 2–1.

• On HP Fortran intrinsic data types and their ranges, see Chapter 8.

7.2.1 Run-Time Message Format
The general form of HP Fortran run-time messages follows:

%FOR-severity-mnemonic, message-text

The contents of the fields in run-time messages follow:

% The percent sign identifies the line as a message.

FOR The facility code for Compaq Fortran 77 and HP Fortran.

severity A single character that determines message severity. The types of
run-time messages are: Fatal (F), Error (E), and Informational (I).

mnemonic A 6- to 9-character name that uniquely identifies that message.

message_text Explains the event or reason why the message appears.

For example, the following message has a severity of Fatal, a mnemonic of
ADJARRDIM, and message text of ‘‘adjustable array dimension error’’:

%FOR-F-ADJARRDIM, adjustable array dimension error

7.2.2 Run-Time Message Severity Levels
In order of greatest to least severity, the classes of run-time diagnostic
messages are as follows:

Run-Time Errors 7–3

Severity
Code Description

F Fatal (severe)

This must be corrected. The program cannot complete execution and is
terminated when the error is encountered, unless for I/O statements the
program uses the END, EOR, or ERR branch specifiers to transfer control,
perhaps to a routine that uses the IOSTAT specifier (see Section 7.3.1 and
Section 7.3.2). You can also continue from certain fatal-level messages by
using a condition handler.

E Error

This should be corrected. The program may continue execution, but the
output from this execution may be incorrect.

I Informational

This should be investigated. The program continues executing, but output
from this execution may be incorrect.

The severity depends on the source of the message. In some cases, certain
FORTRAN command qualifiers can change the severity level or control
whether messages are displayed (such as the /CHECK and /IEEE_MODE
keywords).

7.3 Handling Errors
Whenever possible, the HP Fortran RTL does certain error handling, such as
generating appropriate messages and taking necessary action to recover from
errors.

When no recovery method is specified for a statement and a fatal-level error
occurs, a message appears and the program terminates. To prevent program
termination, you must include either an appropriate I/O error-handling
specifier (see Section 7.3) or a condition handler that performs an unwind (see
Chapter 14). The I/O error-handling specifier or condition handler might also
handle error-level messages.

You can explicitly supplement or override default actions by using the following
HP Fortran methods:

• To transfer control to error-handling code within the program, use the ERR,
EOR, and END branch specifiers in I/O statements (see Section 7.3.1).

• The ERR, EOR, and END branch specifiers transfer control to a part of
your program designed to handle specific errors. The error-handling code
associated with the ERR branch usually handles multiple types of errors.

7–4 Run-Time Errors

To identify Fortran-specific I/O errors based on the value of HP Fortran
RTL error codes, use the I/O status specifier (IOSTAT) in I/O statements
(or call the ERRSNS subroutine) (see Section 7.3.2).

When a fatal error occurs during program execution, the HP Fortran RTL
default action is to print an error message and terminate the program. You can
establish an OpenVMS condition handler that performs an unwind for certain
fatal errors.

These error-processing methods are complementary; you can use all of them
within the same program. However, before attempting to write a condition
handler, you should be familiar with the OpenVMS condition-handling facility
(CHF) and with the condition-handling description in Chapter 14.

Using the END, EOR, or ERR branch specifiers in I/O statements prevent
signaling (display) of errors, including secondary return values for file system
errors, such as RMS errors. Using these specifiers prevent the transfer of
control to a condition handler.

There are certain file system errors where no handler (condition handler or
vector exception handler) exists. To obtain the secondary file system errors in
these cases, remove the END, EOR, and ERR specifiers, recompile, relink, and
rerun the program.

You do not need to remove the ERR or IOSTAT specifiers if you use a vectored
exception handler (established using SYS$SETEXV), which will receive control
instead of the ERR and IOSTAT specifiers. The ERRSNS subroutine allows you
to obtain secondary return values for file system errors (see the HP Fortran for
OpenVMS Language Reference Manual).

7.3.1 Using the ERR, EOR, and END Branch Specifiers
When an error, end-of-record, or end-of-file condition occurs during program
execution, the HP Fortran RTL default action is to display a message and
terminate execution of the program.

You can use the ERR, EOR, and END specifiers in I/O statements to override
this default by transferring control to a specified point in the program. To
override this default action, there are three branch specifiers you can use in
I/O statements to transfer control to a specified point in the program:

• The END branch specifier handles an end-of-file condition.

• The EOR branch specifier handles an end-of-record condition for
nonadvancing reads.

Run-Time Errors 7–5

• The ERR branch specifier handles all error conditions. Note that end-of-
file and end-of-record are not considered error conditions by the Fortran
language standard.

If an END, EOR, or ERR branch specifier is present, and the corresponding
condition occurs, no message is displayed and execution continues at the
statement designated in the appropriate specifier.

For example, consider the following READ statement:

READ (8, 50, END=400) X,Y,Z

If an end-of-file condition occurs during execution of this statement, the
contents of variables X, Y, and Z become undefined, and control is transferred
to the statement at label 400. You can also add an ERR specifier to transfer
control if an error condition occurs. Note that an end-of-file or end-of-record
condition does not cause an ERR specifier branch to be taken.

When using nonadvancing I/O, use the EOR specifier to handle the end-of-
record condition. For example:

150 FORMAT (F10.2, F10.2, I6)
READ (UNIT=20, FMT=150, SIZE=X, ADVANCE=’NO’, EOR=700) A, F, I

You can also specify ERR as a keyword to such I/O statements as OPEN,
CLOSE, or INQUIRE statement. For example:

OPEN (UNIT=10, FILE=’FILNAM’, STATUS=’OLD’, ERR=999)

If an error is detected during execution of this OPEN statement, control
transfers to statement 999.

For More Information:

• On the IOSTAT specifier, see Section 7.3.2).

• On detailed descriptions of errors processed by the HP Fortran RTL, see
Table C–1 or online FORTRAN HELP.

• On user-written condition handlers, see Chapter 14.

7.3.2 Using the IOSTAT Specifier
You can use the IOSTAT specifier to continue program execution after an I/O
error and to return information about I/O operations. It can supplement or
replace the END, EOR, and ERR transfers. Execution of an I/O statement
containing the IOSTAT specifier suppresses printing of an error message and
causes the specified integer variable, array element, or scalar field reference to
be defined as one of the following:

• A value of –2 if an end-of-record condition occurs (nonadvancing reads).

7–6 Run-Time Errors

• A value of –1 if an end-of-file condition occurs.

• A value of 0 if neither an error condition nor an end-of-file condition occurs.

• A positive integer value if an error condition occurs (this value is one of the
Fortran-specific IOSTAT numbers listed in Table 7–1).

Following execution of the I/O statement and assignment of an IOSTAT value,
control transfers to the END, EOR, or ERR statement label, if any. If there is
no control transfer, normal execution continues.

Your program can include the $FORIOSDEF library module from the
FORSYSDEF library (automatically searched during compilation) to obtain
symbolic definitions for the values of IOSTAT.

The values of the IOSTAT symbols from the $FORIOSDEF library module
are not the same as the values of the Fortran condition symbols from the
$FORDEF library module.

The symbolic names in the $FORIOSDEF library module have a form similar
to the Fortran condition symbols:

Fortran Condition Symbol
($FORDEF) IOSTAT Symbolic Name ($FORIOSDEF)

FOR$_mnemonic FOR$IOS_mnemonic

Example 7–1 uses the ERR and IOSTAT specifiers to handle an OPEN
statement error (in the FILE specifier). Condition symbols are included from
the $FORIOSDEF library module (in FORSYSDEF).

Example 7–1 Handling OPEN Statement File Name Errors

CHARACTER(LEN=40) :: FILNM ! Typed file specification
INCLUDE ’($FORIOSDEF)’ ! Include condition symbol definitions

DO I=1,4 ! Allow four tries
FILNM = ’’
WRITE (6,*) ’Type file name ’
READ (5,*) FILNM
OPEN (UNIT=1, FILE=FILNM, STATUS=’OLD’, IOSTAT=IERR, ERR=100)
WRITE (6,*) ’Opening file: ’, FILNM
.
. ! Process records
.

(continued on next page)

Run-Time Errors 7–7

Example 7–1 (Cont.) Handling OPEN Statement File Name Errors

CLOSE (UNIT=1)
STOP

100 IF (IERR .EQ. FOR$IOS_FILNOTFOU) THEN
WRITE (6,*) ’File: ’, FILNM, ’ does not exist ’

ELSE IF (IERR .EQ. FOR$IOS_FILNAMSPE) THEN
WRITE (6,*) ’File: ’, FILNM, ’ was bad, enter new file name’

ELSE
PRINT *, ’Unrecoverable error, code =’, IERR
STOP

END IF
END DO

! After four attempts or a Ctrl/Z on the READ statement, allow program restart

WRITE (6,*) ’File not found. Type DIRECTORY to find file and run again’
END PROGRAM

For More Information:

• On user-written condition handlers, see Chapter 14.

• On the END, EOR, or ERR branch specifiers, see Section 7.3.1.

• On detailed descriptions of errors processed by the HP Fortran RTL, see
Table C–1 or online FORTRAN HELP.

• On the ERRSNS subroutine, see the HP Fortran for OpenVMS Language
Reference Manual.

• On including library modules from text libraries, see Section 10.8.1.

7.4 List of Run-Time Messages
Table 7–1 lists the Fortran-specific errors processed by the HP Fortran RTL.
For each error, the table shows the Fortran-specific message mnemonic
(follows either FOR$_ or FOR$IOS_ for condition symbols), the Fortran-specific
message number, the severity (fatal, error, or informational), the message text.
For more detailed descriptions of errors processed by the HP Fortran RTL, see
Table C–1.

7–8 Run-Time Errors

Table 7–1 Summary of Run-Time Errors

Mnemonic Number1 Severity Message Text

NOTFORSPE2 1 F not a Fortran-specific error

BUG_CHECK 8 F internal consistency check failure

SYNERRNAM 17 F syntax error in NAMELIST input

TOOMANVAL 18 F too many values for NAMELIST variable

INVREFVAR 19 F invalid reference to variable in NAMELIST input

REWERR 20 F REWIND error

DUPFILSPE 21 F duplicate file specifications

INPRECTOO 22 F input record too long

BACERR 23 F BACKSPACE error

ENDDURREA 24 F end-of-file during read

RECNUMOUT 25 F record number outside range

OPEDEFREQ 26 F OPEN or DEFINE FILE required

TOOMANREC 27 F too many records in I/O statement

CLOERR 28 F CLOSE error

FILNOTFOU 29 F file not found

OPEFAI 30 F open failure

MIXFILACC 31 F mixed file access modes

INVLOGUNI 32 F invalid logical unit number

ENDFILERR 33 F ENDFILE error

UNIALROPE 34 F unit already open

SEGRECFOR 35 F segmented record format error

ATTACCNON 36 F attempt to access non-existent record

INCRECLEN 37 F inconsistent record length

ERRDURWRI 38 F error during write

1Although most error numbers are returned as IOSTAT values, the following are not: 1, 24 (END specifier),
41, 58, 70–75, 77, 80-89, 95, 140–150, 151, 153, 173, 175–177, 179, 266, 268 (EOR specifier), 297, 298, 299,
300. You can use condition symbols (FOR$_mnemonic or FOR$IOS_mnemonic) to obtain the number (see
Section 7.3.2). Some of these error numbers are returned as STAT= values in either the ALLOCATE (41, 151,
179) or DEALLOCATE (41, 153, 173) Fortran statement.
2The FOR$_NOTFORSPE error (number 1) indicates an error not reportable through any other message. If
you call ERRSNS, an error of this kind returns a value of 1. Use the fifth argument of the call to ERRSNS
(condval) to obtain the unique system condition value that identifies the error.

(continued on next page)

Run-Time Errors 7–9

Table 7–1 (Cont.) Summary of Run-Time Errors

Mnemonic Number1 Severity Message Text

ERRDURREA 39 F error during read

RECIO_OPE 40 F recursive I/O operation

INSVIRMEM 41 F insufficient virtual memory

NO_SUCDEV 42 F no such device

FILNAMSPE 43 F file name specification error

INCRECTYP 44 F inconsistent record type

KEYVALERR 45 F keyword value error in OPEN statement

INCOPECLO 46 F inconsistent OPEN/CLOSE parameters

WRIREAFIL 47 F write to READONLY file

INVARGFOR 48 F invalid argument to Fortran Run-Time Library

INVKEYSPE 49 F invalid key specification

INCKEYCHG 50 F inconsistent key change or duplicate key

INCFILORG 51 F inconsistent file organization

SPERECLOC 52 F specified record locked

NO_CURREC 53 F no current record

REWRITERR 54 F REWRITE error

DELERR 55 F DELETE error

UNLERR 56 F UNLOCK error

FINERR 57 F FIND error

FMYSYN 58 I format syntax error at or near xxx

LISIO_SYN3 59 F list-directed I/O syntax error

INFFORLOO 60 F infinite format loop

FORVARMIS3 61 F or I4 format/variable-type mismatch

1Although most error numbers are returned as IOSTAT values, the following are not: 1, 24 (END specifier),
41, 58, 70–75, 77, 80-89, 95, 140–150, 151, 153, 173, 175–177, 179, 266, 268 (EOR specifier), 297, 298, 299,
300. You can use condition symbols (FOR$_mnemonic or FOR$IOS_mnemonic) to obtain the number (see
Section 7.3.2). Some of these error numbers are returned as STAT= values in either the ALLOCATE (41, 151,
179) or DEALLOCATE (41, 153, 173) Fortran statement.
3For error numbers 59, 61, 63, 64, and 68, the ERR transfer is taken after completion of the I/O statement.
The resulting file status and record position are the same as if no error had occurred. Other I/O errors take
the ERR transfer as soon as the error is detected, and file status and record position are undefined.
4For errors 61 and 63, the severity depends on the /CHECK keywords in effect during compilation (see
Section 2.3.11). If no ERR address is defined for error number 63, the program continues and the entire
overflowed field is filled with asterisks to indicate the error in the output record.

(continued on next page)

7–10 Run-Time Errors

Table 7–1 (Cont.) Summary of Run-Time Errors

Mnemonic Number1 Severity Message Text

SYNERRFOR 62 F syntax error in format

OUTCONERR3�4 63 E or I4 output conversion error

INPCONERR3 64 F input conversion error

FLTINV 65 E floating invalid

OUTSTAOVE 66 F output statement overflows record

INPSTAREQ 67 F input statement requires too much data

VFEVALERR3 68 F variable format expression value error

INTOVF 70 F integer overflow

INTDIV 71 F integer divide by zero

FLTOVF 72 E floating overflow

FLTDIV 73 E floating divide by zero

FLTUND 74 E floating underflow

SUBRNG 77 F subscript out of range

WRONUMARG 80 F wrong number of arguments

INVARGMAT 81 F invalid argument to math library

UNDEXP5 82 F undefined exponentiation

LOGZERNEG5 83 F logarithm of zero or negative value

SQUROONEG5 84 F square root of negative value

SIGLOSMAT5 87 F significance lost in math library

FLOOVEMAT5 88 F floating overflow in math library

FLOUNDMAT 89 E floating underflow in math library

1Although most error numbers are returned as IOSTAT values, the following are not: 1, 24 (END specifier),
41, 58, 70–75, 77, 80-89, 95, 140–150, 151, 153, 173, 175–177, 179, 266, 268 (EOR specifier), 297, 298, 299,
300. You can use condition symbols (FOR$_mnemonic or FOR$IOS_mnemonic) to obtain the number (see
Section 7.3.2). Some of these error numbers are returned as STAT= values in either the ALLOCATE (41, 151,
179) or DEALLOCATE (41, 153, 173) Fortran statement.
3For error numbers 59, 61, 63, 64, and 68, the ERR transfer is taken after completion of the I/O statement.
The resulting file status and record position are the same as if no error had occurred. Other I/O errors take
the ERR transfer as soon as the error is detected, and file status and record position are undefined.
4For errors 61 and 63, the severity depends on the /CHECK keywords in effect during compilation (see
Section 2.3.11). If no ERR address is defined for error number 63, the program continues and the entire
overflowed field is filled with asterisks to indicate the error in the output record.
5Function return values for error numbers 82, 83, 84, 87, 88, and 89 can be modified by means of user-written
condition handlers. (See Chapter 14 for information about user-written condition handlers.)

(continued on next page)

Run-Time Errors 7–11

Table 7–1 (Cont.) Summary of Run-Time Errors

Mnemonic Number1 Severity Message Text

ADJARRDIM6 93 F adjustable array dimension error

INVMATKEY 94 F invalid key match specifier for key direction

FLOCONFAI 95 E floating point conversion failed

FLTINE 140 E floating inexact

ROPRAND 144 F reserved operand

ASSERTERR 145 F assertion error

NULPTRERR 146 F null pointer error

STKOVF 147 F stack overflow

STRLENERR 148 F string length error

SUBSTRERR 149 F substring error

RANGEERR 150 F range error

INVREALLOC 151 F allocatable array is already allocated

RESACQFAI 152 F unresolved contention for HP Fortran RTL global
resource

INVDEALLOC 153 F allocatable array is not allocated

INVDEALLOC2 173 F A pointer passed to DEALLOCATE points to an
array that cannot be deallocated

SHORTDATEARG 175 F DATE argument to DATE_AND_TIME is too short
(LEN=n), required LEN=8

SHORTTIMEARG 176 F TIME argument to DATE_AND_TIME is too short
(LEN=n), required LEN=10

SHORTZONEARG 177 F ZONE argument to DATE_AND_TIME is too short
(LEN=n), required LEN=5

DIV 178 F divide by zero

ARRSIZEOVF 179 F cannot allocate array — overflow on array size
calculation

UNFIO_FMT 256 F unformatted I/O to unit open for formatted transfers

1Although most error numbers are returned as IOSTAT values, the following are not: 1, 24 (END specifier),
41, 58, 70–75, 77, 80-89, 95, 140–150, 151, 153, 173, 175–177, 179, 266, 268 (EOR specifier), 297, 298, 299,
300. You can use condition symbols (FOR$_mnemonic or FOR$IOS_mnemonic) to obtain the number (see
Section 7.3.2). Some of these error numbers are returned as STAT= values in either the ALLOCATE (41, 151,
179) or DEALLOCATE (41, 153, 173) Fortran statement.
6If error number 93 (FOR$_ADJARRDIM) occurs and a user-written condition handler causes execution to
continue, any reference to the array in question may cause an access violation.

(continued on next page)

7–12 Run-Time Errors

Table 7–1 (Cont.) Summary of Run-Time Errors

Mnemonic Number1 Severity Message Text

FMTIO_UNF 257 F formatted I/O to unit open for unformatted transfers

DIRIO_KEY 258 F direct-access I/O to unit open for keyed access

SEQIO_DIR 259 F sequential-access I/O to unit open for direct access

KEYIO_DIR 260 F keyed-access I/O to unit open for direct access

OPERREQDIS 264 F operation requires file to be on disk or tape

OPEREQSEQ 265 F operation requires sequential file organization and
access

ENDRECDUR 268 F end of record during read

FLOINEEXC 296 I nn floating inexact traps

FLOINCEXC 297 I nn floating invalid traps

FLOOVREXC 298 I nn floating overflow traps

FLODIV0EXC 299 I nn divide-by-zero traps

FLOUNDEXC 300 I nn floating underflow traps

1Although most error numbers are returned as IOSTAT values, the following are not: 1, 24 (END specifier),
41, 58, 70–75, 77, 80-89, 95, 140–150, 151, 153, 173, 175–177, 179, 266, 268 (EOR specifier), 297, 298, 299,
300. You can use condition symbols (FOR$_mnemonic or FOR$IOS_mnemonic) to obtain the number (see
Section 7.3.2). Some of these error numbers are returned as STAT= values in either the ALLOCATE (41, 151,
179) or DEALLOCATE (41, 153, 173) Fortran statement.

The message mnemonic shown in the first column is part of the condition
status code symbols signaled by the HP Fortran RTL I/O support routines.
You can define these symbolic values in your program by including the library
module $FORDEF or $FORIOSDEF from the system-supplied default library
FORSYSDEF.TLB:

• The symbolic values defined in library module $FORDEF have the form
FOR$_mnemonic.

• The condition symbols defined in $FORIOSDEF have the form FOR$IOS_
mnemonic.

If you will be using the IOSTAT specifier for error handling, you should
include the $FORIOSDEF library module (instead of $FORDEF) from the
FORSYSDEF.TLB library (see Section 7.3.2).

The standard HP Fortran error numbers that are generally compatible with
other versions of HP Fortran are shown in the second column. Most of these
error values are returned to IOSTAT variables when an I/O error is detected.

Run-Time Errors 7–13

The codes in the third column indicate the severity of the error conditions (see
Section 7.2.2).

For more detailed descriptions of errors processed by the HP Fortran RTL, see
Table C–1 or type the following DCL command to obtain a list of mnemonics
(such as ADJARRDIM):

$ HELP FORTRAN ERROR RUN_TIME

For More Information:

• On user-written condition handlers, see Chapter 14.

• On the END, EOR, or ERR branch specifiers, see Section 7.3.1.

• On the IOSTAT specifier, see Section 7.3.2.

• On detailed descriptions of errors processed by the HP Fortran RTL, see
Table C–1 or online FORTRAN HELP.

• On the ERRSNS subroutine, see the HP Fortran for OpenVMS Language
Reference Manual.

• On the Alpha architecture, see the Alpha Architecture Reference Manual.

• On locating exceptions within the debugger, see Section 4.6.

7–14 Run-Time Errors

8
Data Types and Representation

This chapter describes:

• Section 8.1, Summary of Data Types and Characteristics

• Section 8.2, Integer Data Representations

• Section 8.3, Logical Data Representations

• Section 8.4, Native Floating-Point Representations and IEEE Exceptional
Values

• Section 8.5, Character Representation

• Section 8.6, Hollerith Representation

Note

In figures in this chapter, the symbol :A specifies the address of the
byte containing bit 0, which is the starting address of the represented
data element.

HP Fortran expects numeric data to be in native little endian order,
in which the least-significant, rightmost bit (bit 0) or byte has a lower
address than the most-significant, leftmost bit (or byte).

For More Information:

• On using nonnative big endian and VAX floating-point formats, see
Chapter 9.

• On HP Fortran I/O, see Chapter 6.

Data Types and Representation 8–1

8.1 Summary of Data Types and Characteristics
Table 8–1 lists the intrinsic data types provided by HP Fortran, the storage
required, and valid numeric ranges.

Table 8–1 HP Fortran Intrinsic Data Types, Storage, and Numeric Ranges
.
Data Type Bytes Description

BYTE
(INTEGER*1)

1 (8 bits) A BYTE declaration is a signed integer data type
equivalent to INTEGER*1 or INTEGER (KIND=1).

INTEGER 1, 2, 4, or 8 Signed integer whose size is controlled by a kind type
parameter or, if a kind type parameter (or size specifier)
is omitted, certain FORTRAN command qualifiers (see
Section 8.2.1).

INTEGER (KIND=1)
INTEGER*1

1 (8 bits) Signed integer value from –128 to 127 (–2**7 to 2**7–1).
Unsigned values from 0 to 255 (2**8-1)

INTEGER (KIND=2)
INTEGER*2

2 (16 bits) Signed integer value from –32,768 to 32,767 (–2**15 to
2**15–1). Unsigned values from 0 to 65535 (2**16-1)1.

INTEGER (KIND=4)
INTEGER*4

4 (32 bits) Signed integer value from –2,147,483,648 to
2,147,483,647 (–2**31 to 2**31–1). Unsigned values from
0 to 4,294,967,295 (2**32-1)1.

INTEGER (KIND=8)
INTEGER*8

8 (64 bits) Signed integer value from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 (–2**63 to 2**63–1).

LOGICAL 1, 2, 4, or 8 Logical value whose size is controlled by a kind type
parameter or, if a kind type parameter (or size specifier)
is omitted, certain FORTRAN command qualifiers (see
Section 8.3).

LOGICAL (KIND=1)
LOGICAL*1

1 (8 bits) Logical values .TRUE. or .FALSE.

LOGICAL (KIND=2)
LOGICAL*2

2 (16 bits) Logical values .TRUE. or .FALSE.2

LOGICAL (KIND=4)
LOGICAL*4

4 (32 bits) Logical values .TRUE. or .FALSE.2

LOGICAL (KIND=8)
LOGICAL*8

8 (64 bits) Logical values .TRUE. or .FALSE.2

1This range is allowed for assignment to variables of this type, but the data type is treated as signed in
arithmetic operations.
2Logical data type ranges correspond to their comparable integer data type ranges. For example, in LOGICAL
(KIND=2) L, the range for L is the same as the range for INTEGER (KIND=2) integers.

(continued on next page)

8–2 Data Types and Representation

Table 8–1 (Cont.) HP Fortran Intrinsic Data Types, Storage, and Numeric Ranges

Data Type Bytes Description

REAL 4 or 8 Real floating-point numbers whose size is controlled by a
kind type parameter or, if a kind type parameter (or size
specifier) is omitted, by using the FORTRAN command
/REAL_SIZE qualifier. To control the floating-point
format used in memory, use the FORTRAN command
/FLOAT qualifier.

REAL (KIND=4)
REAL*4

4 (32 bits) Single-precision real floating-point values in IEEE S_float
or VAX F_float formats.

IEEE S_float normalized values range from 1.17549435E–
38 to 3.40282347E38. Values between 1.17549429E–38
and 1.40129846E–45 are denormalized3.

VAX F_float values range from 0.293873588E–38 to
1.7014117E38.

DOUBLE PRECISION

REAL (KIND=8)
REAL*8

8 (64 bits) Double-precision real floating-point values in IEEE T_
float, VAX G_float, or VAX D_float formats.

IEEE T_float normalized values range from
2.2250738585072013D–308 to 1.7976931348623158D308.
Values between 2.2250738585072008D–308 and
4.94065645841246544D–324 are denormalized3.

VAX G_float values range from 0.5562684646268004D–
308 to 0.89884656743115785407D308.

VAX D_float values range from 0.2938735877055719D–38
to 1.70141183460469229D38.

You can change the data size of DOUBLE PRECISION
declarations from REAL (KIND=8) to REAL (KIND=16)
with the FORTRAN command /DOUBLE_SIZE qualifier.

REAL (KIND=16)
REAL*16

16 (128 bits) Extended-precision real floating-point values in IEEE-
like X_float format ranging from
6.4751751194380251109244389582276465524996Q-4966
to
1.189731495357231765085759326628007016196477Q4932.
The smallest normalized number is
3.362103143112093506262677817321753Q-4932.

3You cannot write a constant for a denormalized number. For more information on floating-point underflow,
see Section 2.3.24.

(continued on next page)

Data Types and Representation 8–3

Table 8–1 (Cont.) HP Fortran Intrinsic Data Types, Storage, and Numeric Ranges

Data Type Bytes Description

COMPLEX 8, 16, or 32 Complex floating-point numbers whose size is controlled
by a kind type parameter or, if a kind type parameter
(or size specifier) is omitted, the FORTRAN command
/REAL_SIZE qualifier. To control the floating-point
format used in memory, use the FORTRAN command
/FLOAT qualifier.

COMPLEX
(KIND=4)
COMPLEX*8

8 (64 bits) Single-precision complex floating-point values in a pair of
floating-point parts: real and imaginary. Use the IEEE
S_float or VAX F_float format.

IEEE S_float real and imaginary parts range from
1.17549435E–38 to 3.40282347E38. Values between
1.17549429E–38 and 1.40129846E–45 are denormalized3.

VAX F_float real and imaginary parts range from
0.293873588E–38 to 1.7014117E38.

DOUBLE COMPLEX
COMPLEX
(KIND=8)
COMPLEX*16

16 (128 bits) Double-precision complex floating-point values in a pair
of parts: real and imaginary. Use the IEEE T_float, VAX
G_float, or VAX D_float format.

IEEE T_float format real and imaginary parts
each range from 2.2250738585072013D-308 to
1.7976931348623158D308. Values between
2.2250738585072008D–308 and
4.94065645841246544D–324 are denormalized3.

VAX G_float format real and imaginary parts each range
from 0.5562684646268004D–308 to
0.89884656743115785407D308.

VAX D_float format real and imaginary parts each range
from 0.2938735877055719D–38 to
1.70141183460469229D38.

COMPLEX
(KIND=16)
COMPLEX*32

32 (256 bits) Extended-precision complex floating-point values in a
pair of IEEE X_float format parts: real and imaginary.
The real and imaginary parts each range from
6.4751751194380251109244389582276465524996Q-4966
to
1.189731495357231765085759326628007016196477Q4932.

3You cannot write a constant for a denormalized number. For more information on floating-point underflow,
see Section 2.3.24.

(continued on next page)

8–4 Data Types and Representation

Table 8–1 (Cont.) HP Fortran Intrinsic Data Types, Storage, and Numeric Ranges

Data Type Bytes Description

CHARACTER 1 byte (8
bits) per
character

Character data represented by character code con-
vention. Character declarations can be in the
form CHARACTER(LEN=n), CHARACTER(n), or
CHARACTER*n, where n is the number of bytes or n
can be (*) to indicate passed-length format.

HOLLERITH 1 byte (8
bits) per
Hollerith
character

Hollerith constants.

In addition to the intrinsic numeric data types, you can define nondecimal
(binary, octal, or hexadecimal) constants as explained in the HP Fortran for
OpenVMS Language Reference Manual.

8.2 Integer Data Representations
Integer data lengths can be one, two, four, or eight bytes in length.

Integer data is signed with the sign bit being 0 (zero) for positive numbers and
1 for negative numbers.

To improve performance, avoid using 2-byte or 1-byte integer declarations (see
Chapter 5).

8.2.1 Integer Declarations and FORTRAN Command Qualifiers
The default size used for an INTEGER data declaration without a kind
parameter (or size specifier) is INTEGER (KIND=4) (same as INTEGER*4),
unless you do one of the following:

• Explicitly declare the length of an INTEGER by using a kind parameter,
such as INTEGER (KIND=8). HP Fortran provides intrinsic INTEGER
kinds of 1, 2, 4, and 8. Each INTEGER kind number corresponds to the
number of bytes used by that intrinsic representation.

To obtain the kind of a variable, use the KIND intrinsic function. You
can also use a size specifier, such as INTEGER*4, but be aware this is an
extension to the Fortran 90 standard.

• Use the FORTRAN command /INTEGER_SIZE=nn qualifier to control the
size of all default (without a kind parameter or size specifier) INTEGER
and LOGICAL declarations (see Section 2.3.26).

Data Types and Representation 8–5

8.2.2 INTEGER (KIND=1) or INTEGER*1 Representation
Intrinsic INTEGER (KIND=1) or INTEGER*1 signed values range from –128
to 127 and are stored in a two’s complement representation. For example:

+22 = 16(hex)
-7 = F9(hex)

INTEGER (KIND=1) or INTEGER*1 values are stored in one byte, as shown
in Figure 8–1.

Figure 8–1 INTEGER (KIND=1) or INTEGER*1 Representation

7

N
G
I
S

06

:ABINARY NUMBER

ZK−9814−GE

8.2.3 INTEGER (KIND=2) or INTEGER*2 Representation
Intrinsic INTEGER (KIND=2) or INTEGER*2 signed values range from
–32,768 to 32,767 and are stored in a two’s complement representation. For
example:

+22 = 0016(hex)
-7 = FFF9(hex)

INTEGER (KIND=2) or INTEGER*2 values are stored in two contiguous bytes,
as shown in Figure 8–2.

Figure 8–2 INTEGER (KIND=2) or INTEGER*2 Representation

15

N
G
I
S

014

:ABINARY NUMBER

ZK−0798−GE

8.2.4 INTEGER (KIND=4) or INTEGER*4 Representation
Intrinsic INTEGER (KIND=4) or INTEGER*4 signed values range from
–2,147,483,648 to 2,147,483,647 and are stored in a two’s complement
representation. INTEGER (KIND=4) or INTEGER*4 values are stored in
four contiguous bytes, as shown in Figure 8–3.

8–6 Data Types and Representation

Figure 8–3 INTEGER (KIND=4) or INTEGER*4 Representation

BINARY NUMBER :A

0

N
G
I
S
31 30

ZK−0799−GE

8.2.5 INTEGER (KIND=8) or INTEGER*8 Representation
Intrinsic INTEGER (KIND=8) or INTEGER*8 signed values range from
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 and are stored in a
two’s complement representation. INTEGER*8 or INTEGER (KIND=8) values
are stored in eight contiguous bytes, as shown in Figure 8–4.

Figure 8–4 INTEGER (KIND=8) or INTEGER*8 Representation

:A

0

N
G
I
S
63 62

ZK−5299A−GE

For More Information:

• On defining constants and assigning values to variables, see the HP
Fortran for OpenVMS Language Reference Manual.

• On intrinsic functions related to the various data types, such as KIND
and SELECTED_INT_KIND, see the HP Fortran for OpenVMS Language
Reference Manual.

• On the FORTRAN command qualifiers that control the size of default
INTEGER declarations, see Section 2.3.26.

8.3 Logical Data Representations
Logical data can be one, two, four, or eight bytes in length.

The default size used for a LOGICAL data declaration without a kind
parameter (or size specifier) is LOGICAL (KIND=4) (same as LOGICAL*4),
unless you do one of the following:

• Explicitly declare the length of a LOGICAL declaration by using a kind
parameter, such as LOGICAL (KIND=4). HP Fortran provides intrinsic

Data Types and Representation 8–7

LOGICAL kinds of 1, 2, 4, and 8. Each LOGICAL kind number corresponds
to number of bytes used by that intrinsic representation.

You can also use a size specifier, such as LOGICAL*4, but be aware this is
an extension to the Fortran 90 standard.

• Use the FORTRAN command /INTEGER_SIZE=nn qualifier to control the
size of default (without a kind parameter or size specifier) LOGICAL and
INTEGER declarations (see Section 2.3.26).

To improve performance, avoid using 2-byte or 1-byte logical declarations (see
Chapter 5).

Intrinsic LOGICAL*1 or LOGICAL (KIND=1) values are stored in a single
byte.

Logical (intrinsic) values can also be stored in the following sizes of contiguous
bytes starting on an arbitrary byte boundary:

• Two bytes (LOGICAL (KIND=2) or LOGICAL*2)

• Four bytes (LOGICAL (KIND=4) or LOGICAL*4)

• Eight bytes (LOGICAL (KIND=8) or LOGICAL*8)

The low-order bit determines whether the logical value is true or false. Logical
variables can also be interpreted as integer data (an extension to the Fortran
90 standard). For example, in addition to having logical values .TRUE. and
.FALSE., LOGICAL*1 data can also have values in the range –128 to 127.

LOGICAL*1, LOGICAL*2, LOGICAL*4, and LOGICAL*8 data representations
appear in Figure 8–5.

8–8 Data Types and Representation

Figure 8–5 LOGICAL Representations

TRUE: :A1UNDEFINED BITS

n 1 0

:A0UNDEFINED BITS

n 1 0

FALSE:

ZK−5300A−GE

Key: n = 7, 15, 31, or 63 depending on LOGICAL declaration size

For More Information:

• On defining constants and assigning values to variables, see the HP
Fortran for OpenVMS Language Reference Manual.

• On intrinsic functions related to the various data types, see the HP Fortran
for OpenVMS Language Reference Manual.

• On the FORTRAN command qualifiers that control the size of default
LOGICAL declarations, see Section 2.3.26.

8.4 Native Floating-Point Representations and IEEE
Exceptional Values

Floating-point numbers are stored on OpenVMS systems in one of the following
IEEE or VAX little endian binary floating-point formats, as follows:

• REAL (KIND=4) or REAL*4 declarations are stored in little endian IEEE
S_float format or VAX F_float format.

• REAL (KIND=8) or REAL*8 declarations are stored in little endian IEEE
T_float format, VAX G_float format, or VAX D_float format.

• REAL (KIND=16) or REAL*16 declarations always are stored in little
endian Alpha IEEE-like X_float format.

COMPLEX numbers use a pair of little endian REAL values to denote the real
and imaginary parts of the data, as follows:

• COMPLEX (KIND=4) or COMPLEX*8 declarations are stored in IEEE
S_float or VAX F_float format using two REAL (KIND=4) or REAL*4
values.

Data Types and Representation 8–9

• COMPLEX (KIND=8) or COMPLEX*16 declarations are stored in IEEE
T_float, VAX G_float, or VAX D_float format using two REAL (KIND=8) or
REAL*8 values.

• COMPLEX (KIND=16) or COMPLEX*32 declarations are stored in IEEE
X_float format using two REAL (KIND=16) or REAL*16 values.

To specify the floating-point format used in memory, use the FORTRAN
command /FLOAT qualifier. If you do not specify the /FLOAT qualifier, the
following formats are used:

• VAX F_float for REAL (KIND=4) and COMPLEX (KIND=4) data

• VAX G_float for REAL (KIND=8) and COMPLEX (KIND=8) data

• X_float for REAL (KIND=16)

To change the default size for REAL and COMPLEX declarations, use the
FORTRAN command /REAL_SIZE qualifier.

To change the default size for DOUBLE PRECISION declarations, use the
FORTRAN command /DOUBLE_SIZE qualifier.

All floating-point formats represent fractions using sign-magnitude notation,
with the binary radix point to the left of the most significant bit for F_floating,
D_floating, and G_floating, and to the right for S_floating and T_floating.
Fractions are assumed to be normalized, and therefore the most significant bit
is not stored. This is called ‘‘hidden bit normalization’’.

With IEEE data, the hidden bit is assumed to be 1 unless the exponent is 0. If
the exponent equals 0, then the value represented is denormalized (subnormal)
or plus or minus 0 (zero).

With VAX data, the hidden bit is assumed to be 1.

For an explanation of the representation of NaN, Infinity, and related IEEE
exceptional values, see Section 8.4.8.

8.4.1 REAL, COMPLEX, and DOUBLE PRECISION Declarations and
FORTRAN Qualifiers

The default size for REAL, COMPLEX, and DOUBLE PRECISION data
declarations are as follows:

• For REAL data declarations without a kind parameter (or size specifier),
the default size is REAL (KIND=4) (same as REAL*4). To change the
default REAL (and COMPLEX) size to (KIND=8), use the FORTRAN
command /REAL_SIZE qualifier (see Section 2.3.37).

8–10 Data Types and Representation

• For COMPLEX data declarations without a kind parameter (or size
specifier), the default data size is COMPLEX (KIND=4) (same as
COMPLEX*8). To change the default COMPLEX (and REAL) size to
(KIND=8), use the FORTRAN command /REAL_SIZE qualifier (see
Section 2.3.37).

• For a DOUBLE PRECISION data declarations, the default size is REAL
(KIND=8) (same as REAL*8). To change the default DOUBLE PRECISION
size to REAL (KIND=16), use the FORTRAN command /DOUBLE_SIZE
qualifier (see Section 2.3.17).

You can explicitly declare the length of a REAL or a COMPLEX declaration
using a kind parameter or specify DOUBLE PRECISION or DOUBLE
COMPLEX.

Intrinsic REAL kinds are 4 (single precision) and 8 (double precision); intrinsic
COMPLEX kinds are also 4 (single precision) and 8 (double precision). For
example, REAL (KIND=4) requests single-precision floating-point data.

You can also use a size specifier, such as REAL*4, but be aware this is an
extension to the Fortran 90 standard.

8.4.2 REAL (KIND=4) or REAL*4 Representations
REAL (KIND=4) or REAL*4 data can be in IEEE S_float or VAX F_float
formats. This is the default data size for REAL declarations.

8.4.2.1 IEEE S_float Representation
Intrinsic REAL (KIND=4) or REAL*4 (single precision REAL) data occupies
four contiguous bytes stored in IEEE S_float format. Bits are labeled from the
right, 0 through 31, as shown in Figure 8–6.

Figure 8–6 IEEE S_float REAL (KIND=4) or REAL*4 Representation

EXPONENT :A

0

N
G
I
S
31 30

ZK−9815−GE

FRACTION

23 22

The form of REAL (KIND=4) or REAL*4 data is sign magnitude, with:

• Bit 31 the sign bit (0 for positive numbers, 1 for negative numbers)

• Bits 30:23 a binary exponent in excess 127 notation

Data Types and Representation 8–11

• Bits 22:0 a normalized 24-bit fraction including the redundant most-
significant fraction bit not represented.

The value of data is in the approximate range: 1.17549435E–38 (normalized)
to 3.40282347E38. The IEEE denormalized limit is 1.40129846E–45.

The precision is approximately one part in 2**23, typically seven decimal
digits.

8.4.2.2 VAX F_float Representation
Intrinsic REAL (KIND=4) or REAL*4 F_float data occupies four contiguous
bytes. Bits are labeled from the right, 0 through 31, as shown in Figure 8–7.

Figure 8–7 VAX F_float REAL (KIND=4) or REAL*4 Representation

EXPONENT :A

631

ZK−5301A−GE

FRACTIONFRACTION

015 14

N
G
I
S

The form of REAL (KIND=4) or REAL*4 F_float data is sign magnitude, where:

• Bit 15 is the sign bit (0 for positive numbers, 1 for negative numbers).

• Bits 14:7 are a binary exponent in excess 128 notation (binary exponents
from –127 to 127 are represented by binary 1 to 255).

• Bits 6:0 and 31:16 are a normalized 24-bit fraction with the redundant
most significant fraction bit not represented.

The value of data is in the approximate range: 0.293873588E–38 to
1.7014117E38.

The precision is approximately one part in 2**23, typically seven decimal
digits.

8.4.3 REAL (KIND=8) or REAL*8 Representations
REAL (KIND=8) or REAL*8 data can be in IEEE T_float, VAX G_float, or VAX
D_float formats.

8–12 Data Types and Representation

8.4.3.1 IEEE T_float Representation
Intrinsic REAL (KIND=8) or REAL*8 (same as DOUBLE PRECISION) data
occupies eight contiguous bytes stored in IEEE T_float format. Bits are labeled
from the right, 0 through 63, as shown in Figure 8–8.

Figure 8–8 IEEE T_float REAL (KIND=8) or REAL*8 Representation

EXPONENT :A

0

N
G
I
S
63 62

ZK−9816−GE

FRACTION

52 51

The form of REAL (KIND=8) or REAL*8 data is sign magnitude, with:

• Bit 63 the sign bit (0 for positive numbers, 1 for negative numbers)

• Bits 62:52 a binary exponent in excess 1023 notation

• Bits 51:0 a normalized 53-bit fraction including the redundant most-
significant fraction bit not represented.

The value of data is in the approximate range: 2.2250738585072013D-308
(normalized) to 1.7976931348623158D308. The IEEE denormalized limit is
4.94065645841246544D-324.

The precision is approximately one part in 2**52, typically 15 decimal digits.

8.4.3.2 VAX G_float Representation
Intrinsic REAL (KIND=8) or REAL*8 (same as DOUBLE PRECISION) G_float
data occupies eight contiguous bytes. The bits are labeled from the right, 0
through 63, as shown in Figure 8–9.

Figure 8–9 VAX G_float REAL (KIND=8) or REAL*8 Representation

EXPONENT :A

063

ZK−5302A−GE

FRACTION FRAC−
TION

31415

N
G
I
S

The form of REAL (KIND=8) or REAL*8 G_float data is sign magnitude,
where:

• Bit 15 is the sign bit (0 for positive numbers, 1 for negative numbers).

Data Types and Representation 8–13

• Bits 14:4 are a binary exponent in excess 1024 notation (binary exponents
from –1023 to 1023 are represented by the binary 1 to 2047).

• Bits 3:0 and 63:16 are a normalized 53-bit fraction with the redundant
most significant fraction bit not represented.

The value of data is in the approximate range: 0.5562684646268004D–308 to
0.89884656743115785407D308.

The precision of G_float data is approximately one part in 2**52, typically 15
decimal digits.

8.4.3.3 VAX D_float Representation
Intrinsic REAL (KIND=8) or REAL*8 (same as DOUBLE PRECISION) D_float
data occupies eight contiguous bytes. Bits are labeled from the right,
0 through 63, as shown in Figure 8–10.

Figure 8–10 VAX D_float REAL (KIND=8) or REAL*8 Representation

EXPONENT :A

663

ZK−5303A−GE

FRACTION

15 14

FRACTION
N
G
I
S

0

The form of REAL (KIND=8) or REAL*8 D_float data is identical to an F_float
real number, except for an additional 32 low-significance fraction bits. The
exponent conventions and approximate range of values are the similar to those
for F_float.

The value of data is in the approximate range: 0.2938735877055719D–38 to
1.70141183460469229D38.

The precision is approximately one part in 2**55, typically 16 decimal digits.
Calculations with D_float data on Alpha systems use G_float precision (53-bit
instead of 56-bit fraction).

For information about how D_float and G_float calculations are done on I64
systems, see Appendix A.

8–14 Data Types and Representation

8.4.4 REAL (KIND=16) or REAL*16 X_float Representation
REAL*16 data occupies 16 contiguous bytes stored in X_float format. Bits are
labeled from the right, 0 through 127, as shown in Figure 8–11.

Figure 8–11 X_float REAL (KIND=16) Floating-Point Data Representation

EXPONENT :A

0

N
G
I
S

127 126

ZK−7420A−GE

FRACTION

112 111

The form of REAL (KIND=16) data is sign magnitude, with:

• Bit 127 the sign bit (0 for positive numbers, 1 for negative numbers)

• Bits 126:112 a binary exponent in excess 16383 notation

• Bits 111:0 a normalized 113-bit fraction including the redundant most-
significant fraction bit not represented.

The value of data is in the approximate range:
6.4751751194380251109244389582276465524996Q-4966 to
1.189731495357231765085759326628007016196477Q4932. The smallest
normalized number is 3.362103143112093506262677817321753Q-4932.

In contrast to other floating-point formats, there is little if any performance
penalty from using denormalized extended-precision numbers. This is because
accessing denormalized REAL (KIND=16) numbers does not result in an
arithmetic trap (the extended-precision format is emulated in software).

The precision is approximately one part in 2**112 or typically 33 decimal
digits.

8.4.5 COMPLEX (KIND=4) or COMPLEX*8 Representations
COMPLEX (KIND=4) or COMPLEX*4 data can be in IEEE S_float or VAX
F_float formats. This is the default data size for COMPLEX declarations.

Intrinsic COMPLEX (KIND=4) or COMPLEX*8 (single-precision COMPLEX)
data is eight contiguous bytes containing a pair of REAL (KIND=4) or REAL*4
values stored in IEEE S_float format or VAX F_float format.

The low-order four bytes contain REAL (KIND=4) data that represents the
real part of the complex number. The high-order four bytes contain REAL
(KIND=4) data that represents the imaginary part of the complex number,

Data Types and Representation 8–15

The limits (and underflow characteristics for S_float numbers) for REAL
(KIND=4) or REAL*4 apply to the two separate real and imaginary parts
of a COMPLEX (KIND=4) or COMPLEX*8 number. Like REAL (KIND=4)
numbers, the sign bit representation is 0 (zero) for positive numbers and 1 for
negative numbers.

Figure 8–12 shows the IEEE S_float representation of COMPLEX
(KIND=4) or COMPLEX*8 numbers.

Figure 8–12 IEEE S_float COMPLEX (KIND=4) or COMPLEX*8 Representation

031 30

ZK−9817−GE

23 22

EXPONENT :A
N
G
I
S

FRACTION

EXPONENT :A+4
N
G
I
S

FRACTION

REAL
PART

IMAGINARY
PART

Figure 8–13 shows the VAX F_float representation of COMPLEX
(KIND=4) or COMPLEX*8 numbers.

Figure 8–13 VAX F_float COMPLEX (KIND=4) or COMPLEX*8 Representation

031

ZK−5304A−GE

15 14

EXPONENT :AFRACTION

:A+4

REAL
PART

IMAGINARY
PART

N
G
I
S

FRACTION

6

EXPONENTFRACTION
N
G
I
S

FRACTION

8.4.6 COMPLEX (KIND=8) or COMPLEX*16 Representations
COMPLEX (KIND=8) or COMPLEX*16 data can be in IEEE T_float, VAX
G_float, or VAX D_float formats.

Intrinsic COMPLEX (KIND=8) or COMPLEX*16 (same as DOUBLE
COMPLEX) data is 16 contiguous bytes containing a pair of REAL*8 values
stored in IEEE T_float format, VAX G_float, or VAX D_float formats.

The low-order eight bytes contain REAL (KIND=8) data that represents the
real part of the complex data. The high-order eight bytes contain REAL
(KIND=8) data that represents the imaginary part of the complex data.

8–16 Data Types and Representation

Like REAL (KIND=8) or REAL*8 numbers, the sign bit representation is
0 (zero) for positive numbers and 1 for negative numbers. The limits (and
underflow characteristics for T_float numbers) apply to the two separate real
and imaginary parts of a COMPLEX (KIND=8) or COMPLEX*16 number.

Figure 8–14 shows the IEEE T_float COMPLEX (KIND=8) or COMPLEX*16
representation.

Figure 8–14 IEEE T_float COMPLEX (KIND=8) or COMPLEX*16 Representation

063 62

ZK−9818−GE

52 51

EXPONENT :A
N
G
I
S

FRACTION

EXPONENT :A+8
N
G
I
S

FRACTION

REAL
PART

IMAGINARY
PART

Figure 8–15 (G_float) and Figure 8–16 (D_float) show the representation of the
VAX COMPLEX (KIND=8) or COMPLEX*16 numbers.

Figure 8–15 VAX G_float COMPLEX (KIND=8) or COMPLEX*16 Representation

063

ZK−5305A−GE

15 14

EXPONENT :AFRACTION

:A+8

REAL
PART

IMAGINARY
PART

N
G
I
S

3

FRAC−
TION

EXPONENTFRACTION
N
G
I
S

FRAC−
TION

Data Types and Representation 8–17

Figure 8–16 VAX D_float COMPLEX (KIND=8) or COMPLEX*16 Representation

063

ZK−5306A−GE

15 14

EXPONENT :AFRACTION

:A+8

REAL
PART

IMAGINARY
PART

N
G
I
S

FRACTION

6

EXPONENTFRACTION
N
G
I
S

FRACTION

8.4.7 COMPLEX (KIND=16) or COMPLEX*32 Representation
Intrinsic COMPLEX (KIND=16) or COMPLEX*32 (extended precision) data is
32 contiguous bytes containing a pair of REAL*16 values stored in IEEE-style
X_float.

The low-order 16 bytes contain REAL (KIND=16) data that represents the real
part of the complex data. The high-order 16 bytes contain REAL (KIND=16)
data that represents the imaginary part of the complex data, as shown in
Figure 8–17.

Figure 8–17 COMPLEX (KIND=16) or COMPLEX*32 Representation

0127 126 112 111

EXPONENT :A
N
G
I
S

FRACTION

EXPONENT :A+16
N
G
I
S

FRACTION

REAL
PART

IMAGINARY
PART

LJ−06690

The limits and underflow characteristics for REAL (KIND=16) apply to
the two separate real and imaginary parts of a COMPLEX (KIND=16)
or COMPLEX*32 number. Like REAL (KIND=16) numbers, the sign bit
representation is 0 (zero) for positive numbers and 1 for negative numbers.

8–18 Data Types and Representation

For More Information:

• On converting unformatted data, see Chapter 9.

• On defining constants and assigning values to variables, see the HP
Fortran for OpenVMS Language Reference Manual.

• On intrinsic functions related to the various data types, such as
SELECTED_REAL_KIND, see the HP Fortran for OpenVMS Language
Reference Manual.

• On OpenVMS VAX floating-point data types (provided for those converting
OpenVMS data), see Section B.8.

• On the FORTRAN command qualifiers that control the size of REAL and
COMPLEX declarations (without a kind parameter or size specifier), see
Section 2.3.37.

• On the FORTRAN command qualifiers that control the size of DOUBLE
PRECISION declarations, see Section 2.3.17.

• On IEEE binary floating-point, see the IEEE Standard for Binary Floating-
Point Arithmetic (ANSI/IEEE Standard 754-1985).

8.4.8 Exceptional IEEE Floating-Point Representations
Exceptional values usually result from a computation and include plus
infinity, minus infinity, NaN, and denormalized numbers. Exceptional values
and the representation of zero are associated only with IEEE S_float, T_float,
and X_float formats (/FLOAT=IEEE_FLOAT qualifier), not with VAX floating-
point formats. (VAX floating-point representation of minus (–) zero causes a
reserved operand fault on VAX systems.)

Floating-point numbers can be one of the following:

• Finite number—A floating-point number that represents a valid number
(bit pattern) within the normalized ranges of a particular data type,
including –max to –min,—zero, +zero, +min to +max.

For any native floating-point data type, the values of min or max are listed
in Section 8.4.2 (single precision), Section 8.4.3 (double precision), and
Section 8.4.4 (extended precision).

For native VAX floating-point data types, finite numbers do not include
reserved operand or dirty zero values.

Special bit patterns that are not finite numbers represent exceptional
values.

Data Types and Representation 8–19

• Infinity—An IEEE floating-point bit pattern that represents plus or minus
infinity. HP Fortran identifies infinity values with the letters ‘‘Infinity’’ or
asterisks (******) in output statements (depends on field width) or certain
hexadecimal values (fraction of 0 and exponent of all 1 values).

• Not-a-Number (NaN)—An IEEE floating-point bit pattern that represents
something other than a number. HP Fortran identifies NaN values with
the letters ‘‘NaN’’ in output statements. A NaN can be a signaling NaN or
a quiet NaN:

A quiet NaN might occur as a result of a calculation, such as 0./0. It
has an exponent of all 1 values and initial fraction bit of 1.

A signaling NaN must be set intentionally (does not result from
calculations) and has an exponent of all 1 values and initial fraction bit
of 0 (with one or more other fraction bits of 1).

• Denormal—Identifies an IEEE floating-point bit pattern that represents a
number whose value falls between zero and the smallest finite (normalized)
number for that data type. The exponent field contains all zeros.

For negative numbers, denormalized numbers range from the next
representable value larger than minus zero to the representable value
that is one bit less than the smallest finite (normalized) negative
number. For positive numbers, denormalized numbers range from the
next representable value larger than positive zero to the representable
value that is one bit less than the smallest finite (normalized) positive
number.

• Zero—Can be the value +0 (all zero bits, also called true zero) or -0 (all
zero bits except the sign bit, such as Z’8000000000000000’).

A NaN or infinity value might result from a calculation that contains a divide
by zero, overflow, or invalid data.

A denormalized number occurs when the result of a calculation falls within the
denormalized range for that data type (subnormal value).

To control floating-point exception handling at run time for the main program,
use the appropriate /IEEE_MODE qualifier keyword. For example, if an
exceptional value is used in a calculation, an unrecoverable exception can
occur unless you specify the appropriate /IEEE_MODE qualifier keyword.
Denormalized numbers can be processed as is, set equal to zero with
program continuation or a program stop, and generate warning messages
(see Section 2.3.24).

8–20 Data Types and Representation

Table 8–2 lists the hexadecimal (hex) values of the IEEE exceptional floating-
point numbers for S_float (single precision), T_float (double precision), and
X_float (extended precision) formats:

Table 8–2 IEEE Exceptional Floating-Point Numbers

Exceptional Number Hex Value

S_float Representation

Infinity (+) Z’7F800000’

Infinity (-) Z’FF800000’

Zero (+0) Z’00000000’

Zero (-0) Z’80000000’

Quiet NaN (+) From Z’7FC00000’ to Z’7FFFFFFF’

Signaling NaN (+) From Z’7F800001’ to Z’7FBFFFFF’

T_float Representation

Infinity (+) Z’7FF0000000000000’

Infinity (-) Z’FFF0000000000000’

Zero (+0) Z’0000000000000000’

Zero (-0) Z’8000000000000000’

Quiet NaN (+) From Z’7FF8000000000000’ to Z’7FFFFFFFFFFFFFFF’

Signaling NaN (+) From Z’7FF0000000000001’ to Z’7FF7FFFFFFFFFFFF’

X_float Representation

Infinity (+) Z’7FFF0000000000000000000000000000’

Infinity (-) Z’FFFF0000000000000000000000000000’

Zero (+0) Z’000000000000000000000000000000000’

Zero (-0) Z’800000000000000000000000000000000’

Quiet NaN (+) From Z’7FFF80000000000000000000000000000’
to Z’7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF’

Signaling NaN (+) From Z’7FFF00000000000000000000000000001’
to Z’7FFF7FFFFFFFFFFFFFFFFFFFFFFFFFFFF’

HP Fortran supports IEEE exception handling, allowing you to test for
infinity by using a comparison of floating-point data (such as generating
positive infinity by using a calculation such as x=1.0/0 and comparing x to the
calculated number).

Data Types and Representation 8–21

The appropriate FORTRAN command /IEEE_MODE qualifier keyword allows
program continuation when a calculation results in a divide by zero, overflow,
or invalid data arithmetic exception, generating an exceptional value (a NaN
or Infinity (+ or –)).

To test for a NaN when HP Fortran allows continuation for arithmetic
exception, you can use the ISNAN intrinsic function. Example 8–1 shows
how to use the ISNAN intrinsic function to test whether a REAL*8 (DOUBLE
PRECISION) value contains a NaN.

Example 8–1 Testing for a NaN Value

DOUBLE PRECISION A, B, F
A = 0.
B = 0.

! Perform calculations with variables A and B
.
.
.

! f contains the value to check against a particular NaN

F = A / B

IF (ISNAN(F)) THEN
WRITE (6,*) ’--> Variable F contains a NaN value <--’

ENDIF

! Inform user that f has the hardware quiet NaN value
! Perform calculations with variable F (or stop program early)

END

To allow continuation when a NaN (or other exceptional value) is encountered
in a calculation, this program might be compiled with /FLOAT=IEEE_FLOAT
and /IEEE_MODE=UNDERFLOW_TO_ZERO (or /IEEE_MODE=DENORM_
RESULTS) qualifiers:

$ FORTRAN/FLOAT=IEEE_FLOAT/IEEE_MODE=UNDERFLOW_TO_ZERO ISNAN
$ LINK ISNAN
$ RUN ISNAN
--> Variable F contains a NaN value <--

To enable additional run-time message reporting with traceback information
(source line correlation), use the FORTRAN command qualifier /CHECK=FP_
EXCEPTIONS.

The FP_CLASS intrinsic function is also available to check for exceptional
values (see the HP Fortran for OpenVMS Language Reference Manual).

8–22 Data Types and Representation

For More Information:

• On using the FORTRAN command /IEEE_MODE qualifier keywords to
control arithmetic exception handling, see Section 2.3.24.

• On floating-point architecture, see the Intel Itanium Architecture Software
Developer’s Manual, Volume 1: Application Architecture.

• On Alpha exceptional values, see the Alpha Architecture Reference Manual.

• On IEEE binary floating-point exception handling, see the IEEE Standard
for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985).

8.5 Character Representation
A character string is a contiguous sequence of bytes in memory, as shown in
Figure 8–18.

Figure 8–18 CHARACTER Data Representation

:ACHAR 1

CHAR L :A+L−1

ZK−0809−GE

A character string is specified by two attributes: the address A of the first byte
of the string, and the length L of the string in bytes. The length L of a string
is in the range 1 through 65,535.

For More Information:

• On defining constants and assigning values to variables, using substring
expressions and concatenation, see the HP Fortran for OpenVMS Language
Reference Manual.

• On intrinsic functions related to the various data types, see the HP Fortran
for OpenVMS Language Reference Manual.

Data Types and Representation 8–23

8.6 Hollerith Representation
Hollerith constants are stored internally, one character per byte. When
Hollerith constants contain the ASCII representation of characters, they
resemble the storage of character data (see Figure 8–18).

When Hollerith constants store numeric data, they usually have a length of
one, two, four, or eight bytes and resemble the corresponding numeric data
type.

For More Information:

• On defining constants and assigning values to variables, see the HP
Fortran for OpenVMS Language Reference Manual.

• On intrinsic functions related to the various data types, see the HP Fortran
for OpenVMS Language Reference Manual.

8–24 Data Types and Representation

9
Converting Unformatted Numeric Data

This chapter describes:

• Section 9.1, Overview of Converting Unformatted Numeric Data

• Section 9.2, Endian Order of Numeric Formats

• Section 9.3, Native and Supported Nonnative Numeric Formats

• Section 9.4, Limitations of Numeric Conversion

• Section 9.5, Methods of Specifying the Unformatted Numeric Format

• Section 9.6, Additional Information on Nonnative Data

9.1 Overview of Converting Unformatted Numeric Data
You specify the floating-point format in memory with the /FLOAT qualifier. HP
Fortran supports the following little endian floating-point formats in memory
(default is /FLOAT=G_FLOAT):

Floating-Point
Size /FLOAT=IEEE_FLOAT /FLOAT=D_FLOAT /FLOAT=G_FLOAT

KIND=4 S_float F_float F_float

KIND=8 T_float D_float G_float

KIND=16 X_float X_float X_float

If your program needs to read or write unformatted data files containing a
floating-point format that differs from the format in memory for that data size,
you can request that the unformatted data be converted.

For example, if your program primarily uses IEEE little endian floating-point
data, specify /FLOAT=IEEE_FLOAT to specify use of the S_float, T_float,
and X_float formats in memory. If your program needs to read a data file
containing a different format (VAX or big endian), you need to specify which

Converting Unformatted Numeric Data 9–1

VAX or big endian floating-point format to use for conversion into the native
IEEE memory format for that file.

Converting unformatted data is generally faster than converting formatted
data and is less likely to lose precision for floating-point numbers.

9.2 Endian Order of Numeric Formats
Data storage in different computers use a convention of either little endian
or big endian storage. The storage convention generally applies to numeric
values that span multiple bytes, as follows:

• Little endian storage occurs when:

The least significant bit (LSB) value is in the byte with the lowest
address.

The most significant bit (MSB) value is in the byte with the highest
address.

The address of the numeric value is the byte containing the LSB.
Subsequent bytes with higher addresses contain more significant bits.

• Big endian storage occurs when:

The least significant bit (LSB) value is in the byte with the highest
address.

The most significant bit (MSB) value is in the byte with the lowest
address.

The address of the numeric value is the byte containing the MSB.
Subsequent bytes with higher addresses contain less significant bits.

Figure 9–1 shows the difference between the two byte-ordering schemes.

9–2 Converting Unformatted Numeric Data

Figure 9–1 Little and Big Endian Storage of an INTEGER Value

ZK−6654A−GE

M
S
B

L
S
B

Little Endian
Byte Order

Big Endian
Byte Order

1003

1000 1002

1002 1001 1000

1001 1003

0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1

M
S
B

L
S
B

0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1

Moving data files between big endian and little endian computers requires that
the data be converted.

9.3 Native and Supported Nonnative Numeric Formats
HP Fortran provides the capability for programs to read and write unformatted
data (originally written using unformatted I/O statements) in several nonnative
floating-point formats and in big endian INTEGER or floating-point format.

When reading a nonnative unformatted format, the nonnative format on
disk must be converted to native format in memory. Similarly, native data
in memory can be written to a nonnative unformatted format. If a converted
nonnative value is outside the range of the native data type, a run-time
message appears (listed in Section 7.2).

Supported native and nonnative floating-point formats include:

• Standard IEEE little endian floating-point formats1 and little endian
integers. This format is found on HP OpenVMS I64 systems, HP OpenVMS
Alpha systems, HP Tru64 UNIX systems, and Microsoft Windows operating
systems (for IBM-compatible PC systems).

1 IEEE floating-point formats are defined in the IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, Institute of Electrical and
Electronics Engineers, August 1985.

Converting Unformatted Numeric Data 9–3

• Standard IEEE big endian floating-point formats1 and big endian integers
found on most Sun systems, HP-UX systems, and IBM RISC System/6000
systems.

• VAX little endian floating-point formats and little endian integers
supported by Compaq Fortran 77 and HP Fortran for OpenVMS I64
and Alpha systems and Compaq Fortran 77 for OpenVMS VAX systems.
(OpenVMS VAX systems use a different 16-byte REAL format.)

• Big endian proprietary floating-point formats and big endian integers
associated with CRAY (CRAY systems).

• Big endian proprietary floating-point formats and big endian integers
associated with IBM (the IBM’s System\370 and similar systems).

The native memory format uses little endian integers and little endian
floating-point formats, as follows:

• INTEGER and LOGICAL declarations of one, two, four, or eight bytes
(intrinsic kinds 1, 2, 4, and 8). You can specify the integer data length
by using an explicit data declaration (kind parameter or size specifier).
All INTEGER and LOGICAL declarations without a kind parameter or
size specifier will be four bytes in length. To request an 8-byte size for all
INTEGER and LOGICAL declarations without a kind parameter or size
specifier, use a FORTRAN command qualifier (see Section 8.2.1).

• The following floating-point sizes and formats are available:

Single-precision 4-byte REAL and 8-byte COMPLEX declarations
(KIND=4) in either IEEE S_float or VAX F_float formats. This is the
default size for all REAL or COMPLEX declarations without a kind
parameter or size specifier.

Double-precision 8-byte REAL and 16-byte COMPLEX declarations
(KIND=8) in IEEE T_float, VAX G_float, or VAX D_float formats. This
is the default size for all DOUBLE PRECISION declarations.

Extended-precision 16-byte REAL declarations and 32-byte COMPLEX
declarations (KIND=16) in IEEE-like X_float format.

You can specify the real or complex data length by using an explicit data
declaration (kind parameter or size specifier). You can change the default
size for REAL, COMPLEX, and DOUBLE PRECISION declarations by
using FORTRAN command qualifiers (/REAL_SIZE or /DOUBLE_SIZE).

9–4 Converting Unformatted Numeric Data

Table 9–1 lists the keywords for the supported unformatted file data formats.
Use the appropriate keyword after the /CONVERT qualifier (such as
/CONVERT=CRAY) or as an logical name value (see Section 9.5).

Table 9–1 Unformatted Numeric Formats, Keywords, and Supported Data
Types

Recognized
Keyword Description

BIG_ENDIAN Big endian integer data of the appropriate INTEGER size (one,
two, or four bytes) and big endian IEEE floating-point formats
for REAL and COMPLEX single- and double-precision numbers.
INTEGER (KIND=1) or INTEGER*1 data is the same for little
endian and big endian.

CRAY Big endian integer data of the appropriate INTEGER size (one,
two, four, or eight bytes) and big endian CRAY proprietary
floating-point format for REAL and COMPLEX single- and
double-precision numbers.

IBM Big endian integer data of the appropriate INTEGER size (one,
two, or four bytes) and big endian IBM proprietary floating-point
format for REAL and COMPLEX single- and double-precision
numbers.

FDX Native little endian integers of the appropriate INTEGER size
(one, two, four, or eight bytes) and the following native little
endian proprietary floating-point formats:

F_float for REAL (KIND=4) and COMPLEX (KIND=4)
D_float for REAL (KIND=8) and COMPLEX (KIND=8)
IEEE-like X_float for REAL (KIND=16) and COMPLEX
(KIND=16)

For information on these native OpenVMS formats, see Table 8–1
and Section 8.4.

FGX Native little endian integers of the appropriate INTEGER size
(one, two, four, or eight bytes) and the following native little
endian proprietary floating-point formats:

F_float for REAL (KIND=4) and COMPLEX (KIND=4)
G_float for REAL (KIND=8) and COMPLEX (KIND=8)
IEEE-like X_float for REAL (KIND=16) and COMPLEX
(KIND=16)

For information on these native OpenVMS formats, see Table 8–1
and Section 8.4.

(continued on next page)

Converting Unformatted Numeric Data 9–5

Table 9–1 (Cont.) Unformatted Numeric Formats, Keywords, and Supported
Data Types

Recognized
Keyword Description

LITTLE_ENDIAN Little endian integers of the appropriate INTEGER size (one,
two, four, or eight bytes) and the following native little endian
IEEE floating-point formats:

S_float for REAL (KIND=4) and COMPLEX (KIND=4)
T_float for REAL (KIND=8) and COMPLEX (KIND=8)
IEEE-like X_float for REAL (KIND=16) and COMPLEX
(KIND=16)

For information on these native OpenVMS formats, see Table 8–1
and Section 8.4.

NATIVE No conversion occurs between memory and disk. This is the
default for unformatted files.

VAXD Native little endian integers of the appropriate INTEGER size
(one, two, four, or eight bytes) and the following little endian
VAX proprietary floating-point formats:

F_float for REAL (KIND=4) and COMPLEX (KIND=4)
D_float for REAL (KIND=8) and COMPLEX (KIND=8)
H_float for REAL (KIND=16)

For information on the F_float and D_float formats, see Table 8–1
and Section 8.4. For information on the H_float format (available
only on VAX systems), see Section B.8.

VAXG Native little endian integers of the appropriate INTEGER size
(one, two, four, or eight bytes) and the following little endian
VAX proprietary floating-point formats:

F_float format for REAL (KIND=4) and COMPLEX
(KIND=4)
G_float format for REAL (KIND=8) and COMPLEX
(KIND=8)
H_float format for REAL (KIND=16)

For information on the F_float and D_float formats, see Table 8–1
and Section 8.4. For information on the H_float format (available
only on VAX systems), see Section B.8.

While this solution is not expected to fulfill all floating-point conversion needs,
it provides the capability to read and write various types of unformatted
nonnative floating-point data.

9–6 Converting Unformatted Numeric Data

For More Information:

• On ranges and the format of native IEEE floating-point data types, see
Table 8–1 and Section 8.4.

• On ranges and the format of VAX floating-point data types, see Section B.8.

• On specifying the size of INTEGER declarations (without a kind) using an
FORTRAN command qualifier, see Section 8.2.1.

• On specifying the size of LOGICAL declarations (without a kind) using an
FORTRAN command qualifier, see Section 8.3.

• On specifying the size of REAL or COMPLEX declarations (without a kind)
using an FORTRAN command qualifier, see Section 8.4.1.

• On data declarations and other HP Fortran language information, see the
HP Fortran for OpenVMS Language Reference Manual.

9.4 Limitations of Numeric Conversion
The HP Fortran floating-point conversion solution is not expected to fulfill all
floating-point conversion needs.

Data (variables) in record structures (specified in a STRUCTURE statement)
and data components of derived types (TYPE statement) are not converted.
When variables are later examined as separate fields by the program, they will
remain in the binary format they were stored in on disk, unless the program is
modified.

If a program reads an I/O record containing multiple floating-point fields into
an integer array (instead of their respective variables), the fields will not be
converted. When they are later examined as separate fields by the program,
they will remain in the binary format they were stored in on disk, unless the
program is modified. To convert floating-point formats for individual fields,
consider using the CVT$CONVERT_FLOAT routine (see Example B–1).

With EQUIVALENCE statements, the data type of the variable named in the
I/O statement is used.

9.5 Methods of Specifying the Unformatted Numeric Format
The methods you can use to specify the type of numeric floating-point format
are as follows:

• Set a logical name for a specific unit number before the file is opened. The
logical name is named FOR$CONVERTnnn, where nnn is the unit number.

Converting Unformatted Numeric Data 9–7

• Set a logical name for a specific file name extension before the
file is opened. The logical name is named FOR$CONVERT.ext (or
FOR$CONVERT_ext), where ext is the file name extension (suffix).

• Add the CONVERT specifier to the OPEN statement for a specific unit
number.

• Compiling the program with an OPTIONS statement that specifies the
/CONVERT=keyword qualifier. This method affects all unit numbers using
unformatted data specified by the program.

• Compiling the program with the FORTRAN command /CONVERT=keyword
qualifier. This method affects all unit numbers using unformatted data
specified by the program.

If you specify more than one method, the order of precedence when you open a
file with unformatted data is:

1. Check for a logical name for a specific unit number

2. Check for a FOR$CONVERT.ext logical name and then for a
FOR$CONVERT_ext logical name (if the former logical name is not
found)

3. Check for the OPEN statement CONVERT specifier

4. Check whether an OPTIONS statement with a /CONVERT=(keyword)
qualifier was present when the program was compiled

5. Check whether the FORTRAN command /CONVERT=(keyword) qualifier
was used when the program was compiled

If none of these methods are specified, no conversion occurs between disk and
memory. Data should therefore be in the native memory format (little endian
integer and little endian IEEE or VAX format) or otherwise translated by the
application program.

Any keyword listed in Table 9–1 can be used with any of these methods.

9.5.1 Logical Name FOR$CONVERTnnn Method
You can use the logical name method to specify multiple formats in a single
program, usually one format for each unit number. You specify the numeric
format at run time by setting the appropriate logical name before you open
that unit number. For unit numbers that contain fewer than three digits, use
leading zeros.

9–8 Converting Unformatted Numeric Data

For example, to specify the numeric format for unit 9, set logical name
FOR$CONVERT009 to the appropriate value (such as BIG_ENDIAN) before
you run the program. For unit 125, set the logical name FOR$CONVERT125
before you run the program.

When you open the file, the logical name is always used, since this method
takes precedence over the FORTRAN command qualifier methods. For
instance, you might use this method to specify that different unformatted
numeric formats for different unit numbers (perhaps in a command procedure
that sets the logical name before running the program).

For example, assume you have a previously compiled program that reads
numeric data from unit 28 and writes it to unit 29 using unformatted I/O
statements. You want the program to read nonnative big endian (IEEE
floating-point) format from unit 28 and write that data in native little endian
format to unit 29.

In this case, the data is converted from big endian IEEE format to native little
endian IEEE memory format (S_float and T_float) when read from unit 28, and
then written without conversion in native little endian IEEE format to unit 29.
The FORTRAN command qualifier /FLOAT specifies the IEEE floating-point
format in memory and the LINK command creates the executable program:

$ FORTRAN/FLOAT=IEEE_FLOAT CONV_IEEE
$ LINK CONV_IEEE

Without requiring source code modification of recompilation of this program,
the following DCL command sequence sets the appropriate logical name and
then runs the program CONV_IEEE.EXE:

$ DEFINE FOR$CONVERT028 BIG_ENDIAN
$ DEFINE FOR$CONVERT029 NATIVE
$ RUN CONV_IEEE

Figure 9–2 shows the data formats used on disk and in memory when the
example file conv_ieee.exe is run after the logical names are set with DCL
commands.

Converting Unformatted Numeric Data 9–9

Figure 9–2 Sample Unformatted File Conversion

ZK−6655A−GE

Unit 28: Read
Big Endian IEEE
and Convert to
Native Formats

Unit 29: Do Not Convert;
Write Native Memory Formats

(Little Endian IEEE)

Unformatted Data Files on Disk

Native Memory Formats

Little Endian Integers and
Little Endian IEEE S_float,

T_float, and X_float Formats

For information on the DCL commands you can use to define and deassign
logical names, see Appendix D.

9.5.2 Logical Name FOR$CONVERT.ext (and FOR$CONVERT_ext)
Method

You can use this method to specify formats in a single program, usually one
format for each specified file name extension (suffix). You specify the numeric
format at run time by setting the appropriate logical name before an implicit
or explicit OPEN statement to one or more unformatted files.

For example, assume you have a previously compiled program that reads
floating-point numeric data from one file and writes to another file using
unformatted I/O statements. You want the program to read nonnative big
endian (IEEE floating-point) format from a file with a .dat file extension suffix
and write that data in native little endian format to a file with a suffix of .data.
You would DEFINE FOR$CONVERT.DAT BIG_ENDIAN.

In this case, the data is converted from big endian IEEE format to native little
endian IEEE memory format when read from file.dat, and then written without
conversion in native little endian IEEE format to the file with a suffix of .data,
assuming that logical names FOR$CONVERT.DATA and FOR$CONVERTnnn
(for that unit number) are not defined.

9–10 Converting Unformatted Numeric Data

The FOR$CONVERTnnn method takes precedence over this method. When the
appropriate logical name is set when you open the file, the FOR$CONVERT.ext
logical name is used if a FOR$CONVERTnnn logical name is not set for the
unit number.

The FOR$CONVERTnnn and FOR$CONVERT.ext (or FOR$CONVERT_ext)
logical name methods take precedence over the other methods. For instance,
you might use this method to specify that a unit number will use a particular
format instead of the format specified in the program (perhaps for a one-time
file conversion).

See Example 9–1.

Example 9–1 Example Showing the Use of the FOR$CONVERT.ext Method

Source program:

program p
integer i
real r
open(file=’convert_in.txt’, unit=10)
open(file=’convert_out.big’, unit=11, form="unformatted")
open(file=’convert_out.dat’, unit=12, form="unformatted")
do i = 1, 10

read(10,*) r ! In text
type *,r
write(11) r ! In BIG_ENDIAN
write(12) r ! In NATIVE

enddo
close(10)
close(11)
close(12)
end

Assume the following data in the file convert_in.txt:

1
2
3
4
5
6
7
8
9
10

(continued on next page)

Converting Unformatted Numeric Data 9–11

Example 9–1 (Cont.) Example Showing the Use of the FOR$CONVERT.ext
Method

Define the following symbols:

$ def for$convert.big big_endian
$ def for$convert.dat native

Then after you run the compiled source program, you get the following output:

1.000000
2.000000
3.000000
4.000000
5.000000
6.000000
7.000000
8.000000
9.000000
10.00000

And the following data in the big endian output file convert_out.big:

?
@
@@
@
@
@À
@à
A
A
A

And the following data in the native output file convert_out.dat:

@
A
@A
A
A
ÀA
àA
B
B
B

9–12 Converting Unformatted Numeric Data

9.5.3 OPEN Statement CONVERT=’keyword’ Method
You can use the OPEN statement method to specify multiple formats in a
single program, usually one format for each specified unit number. This
method requires an explicit file OPEN statement to specify the numeric format
of the file for that unit number.

This method takes precedence over the /CONVERT=keyword method (see
Section 9.5.5), but has a lower precedence than the logical name method.

The following source code shows an OPEN statement coded for unformatted
VAXD numeric data (read from unit 15), and an OPEN statement coded for
unformatted native little endian format (written to unit 20). The absence
of the CONVERT specifier (in the second OPEN statement) or logical name
FOR$CONVERT020 indicates native little endian data for unit 20:

OPEN (CONVERT=’VAXD’, FILE=’graph3.dat’, FORM=’UNFORMATTED’, UNIT=15)
.
.
.
OPEN (FILE=’graph3_ieee.dat’, FORM=’UNFORMATTED’, UNIT=20)

A hard-coded OPEN statement CONVERT specifier keyword value cannot be
changed after compile time. However, to allow selection of a particular format
at run time, you can equate the CONVERT specifier to a variable and provide
the user with a menu that allows selection of the appropriate format (menu
choice sets the variable) before the OPEN occurs.

You can also select a particular format for a unit number at run time by using
the logical name method (see Section 9.5.1), which takes precedence over the
OPEN statement CONVERT specifier method.

You can issue an INQUIRE statement (by unit number) to an opened file to
obtain the current CONVERT method in use.

9.5.4 OPTIONS Statement /CONVERT=keyword Method
You can only specify one numeric file format for all unit numbers using this
method, unless you also use the logical name or OPEN statement CONVERT
specifier method.

You specify the numeric format at compile time and must compile all routines
under the same OPTIONS statement CONVERT=keyword qualifier. You could
use one source program and compile it using different FORTRAN commands to
create multiple executable programs that each read a certain format.

Converting Unformatted Numeric Data 9–13

The logical name or OPEN CONVERT specifier methods take precedence
over this method. For instance, you might use the logical name or OPEN
CONVERT specifier method to specify each unit number that will use a format
other than that specified using the FORTRAN command qualifier method. This
method takes precedence over the FORTRAN command /CONVERT qualifier
method.

You can use OPTIONS statements to specify the appropriate floating-
point formats (in memory and in unformatted files) instead of using the
corresponding FORTRAN command qualifiers. For example, to use G_float
as both the memory format and as the unformatted file format, specify the
following OPTIONS statements:

OPTIONS /FLOAT=G_FLOAT
OPTIONS /CONVERT=NATIVE

Because this method affects all unit numbers, you cannot read data in one for-
mat and write it in another format using the FORTRAN/CONVERT=keyword
method alone, unless you use it in combination with the logical name method
or the OPEN statement CONVERT keyword method to specify a different
format for a particular unit number.

For More Information:
On the OPTIONS statement, see the HP Fortran for OpenVMS Language
Reference Manual.

9.5.5 FORTRAN Command /CONVERT=keyword Qualifier Method
You can specify only one numeric format for all unit numbers by using
the FORTRAN command qualifier method, unless you also use the logical
name method or CONVERT specifier method. You specify the numeric
format at compile time and must compile all routines under the same
/CONVERT=keyword qualifier (or the equivalent OPTIONS statement).
If needed, you can use one source program and compile it using different
FORTRAN commands to create multiple executable programs that each read a
certain format.

The other methods take precedence over this method. For instance, you might
use the logical name or OPEN CONVERT specifier method to specify each unit
number that will use a format other than that specified using the FORTRAN
command qualifier method.

For example, the following DCL commands compile program FILE.F90 to
use VAX D_float and F_float data. Data is converted between the file format
and the little endian memory format (little endian integers, S_float and
T_float little endian IEEE floating-point format). The created file, VAXD_
CONVERT.EXE, is then run:

9–14 Converting Unformatted Numeric Data

$ FORTRAN/FLOAT=IEEE_FLOAT
/CONVERT=VAXD/OBJECT=VAXD_CONVERT.OBJ FILE.F90
$ LINK VAXD_CONVERT
$ RUN VAXD_CONVERT

Because this method affects all unit numbers, you cannot read or write data in
different formats if you only use the FORTRAN /CONVERT=keyword method.
To specify a different format for a particular unit number, use the FORTRAN
/CONVERT=keyword method in combination with the logical name method or
the OPEN statement CONVERT specifier method.

9.6 Additional Information on Nonnative Data
The following notes apply to porting nonnative data:

• When porting source code along with the unformatted data, vendors might
use different units for specifying the record length (RECL specifier, see
Section 2.3.7) of unformatted files. While formatted files are specified in
units of characters (bytes), unformatted files are specified in longword
units (unless /ASSUME=BYTERECL is specified) for Compaq Fortran 77,
HP Fortran, and some other vendors. The Fortran 90 standard, in Section
9.3.4.5, states: ‘‘If the file is being connected for unformatted input/output,
the length is measured in processor-dependent units.’’1

• Certain vendors apply different OPEN statement defaults to determine the
record type. The default record type (RECORDTYPE) with HP Fortran
depends on the values for the ACCESS and FORM specifiers for the
OPEN statement, as described in the HP Fortran for OpenVMS Language
Reference Manual.

• Certain vendors use a different identifier for the logical data types, such as
hex FF instead of 01 to denote ‘‘true.’’

• Source code being ported might be coded specifically for big endian use.

For More Information:

• On OPEN statement specifiers, see the HP Fortran for OpenVMS Language
Reference Manual.

• On HP Fortran file characteristics, see Section 6.5.

• On HP Fortran record types, see Section 6.5.3.

1 American National Standard Fortran 90, ANSI X3.198-1991, and International
Standards Organization standard ISO/IEC 1539:1991

Converting Unformatted Numeric Data 9–15

10
Using HP Fortran in the Common

Language Environment

This chapter describes:

• Section 10.1, Overview

• Section 10.2, HP Fortran Procedures and Argument Passing

• Section 10.3, Argument-Passing Mechanisms and Built-In Functions

• Section 10.4, Using the cDEC$ ALIAS and cDEC$ ATTRIBUTES Directives

• Section 10.5, OpenVMS Procedure-Calling Standard

• Section 10.6, OpenVMS System Routines

• Section 10.7, Calling Routines: General Considerations

• Section 10.8, Calling OpenVMS System Services

• Section 10.9, Calling Between Compaq Fortran 77 and HP Fortran

• Section 10.10, Calling Between HP Fortran and HP C

10.1 Overview
HP Fortran provides you with a variety of mechanisms for gaining access to
procedures and system services external to your HP Fortran programs. By
including CALL statements or function references in your source program, you
can use procedures such as mathematical functions, OpenVMS system services,
and routines written in such languages as Compaq Fortran 77 and HP C.

The HP Fortran compiler operates within the OpenVMS common language
environment, which defines certain calling procedures and guidelines.
These guidelines allow you to use HP Fortran to call OpenVMS system or
library routines and routines written in different languages (usually called
mixed-language programming).

Using HP Fortran in the Common Language Environment 10–1

This chapter provides information on the OpenVMS procedure-calling standard
and how to access OpenVMS system services.

For More Information:
About calling and using the RMS (Record Management Services) system
services, see Chapter 11.

10.2 HP Fortran Procedures and Argument Passing
The bounds of the main program are usually defined by using PROGRAM
and END or END PROGRAM statements. Within the main program, you can
define entities related to calling a function or subroutine, including modules
and interface blocks.

A function or subroutine is considered a subprogram. A subprogram can
accept one or more data values passed from the calling routine; the values are
called arguments.

There are two types of arguments:

• Actual arguments are specified in the subprogram call.

• Dummy arguments are variables within the function or subroutine that
receive the values (from the actual arguments).

The following methods define the interface between procedures:

• Declare and name a function with a FUNCTION statement and terminate
the function definition with an END FUNCTION statement. Set the value
of the data to be returned to the calling routine by using the function name
as a variable in an assignment statement (or by specifying RESULT in a
FUNCTION statement).

Reference a function by using its name in an expression.

• Declare and name a subroutine with a SUBROUTINE statement
and terminate the subroutine definition with an END SUBROUTINE
statement. No value is returned by a subroutine.

Reference a subroutine by using its name in a CALL statement (or use a
defined assignment statement).

• For an external subprogram, depending on the type of arguments or
function return values, you may need to declare an explicit interface to the
arguments and function return value by using an interface block.

Declare and name an interface block with an INTERFACE statement and
terminate the interface block definition with an END INTERFACE
statement. The interface body that appears between these two
statements consists of function or subroutine specification statements.

10–2 Using HP Fortran in the Common Language Environment

• You can make data, specifications, definitions, procedure interfaces, or
procedures globally available to the appropriate parts of your program by
using a module (use association).

Declare a module with a MODULE statement and terminate the module
definition with an END MODULE statement. Include the definitions and
other information contained within the module in appropriate parts of
your program with a USE statement. A module can contain interface
blocks, function and subroutine declarations, data declarations, and other
information.

For More Information:
On the HP Fortran language, including statement functions and defined
assignment statements not described in this manual, see the HP Fortran for
OpenVMS Language Reference Manual.

10.2.1 Explicit and Implicit Interfaces
An explicit interface occurs when the properties of the subprogram interface
are known within the scope of the function or subroutine reference. For
example, the function reference or CALL statement occurs at a point where
the function or subroutine definition is known through host or use association.
Intrinsic procedures also have an explicit interface.

An implicit interface occurs when the properties of the subprogram interface
are not known within the scope of the function or subroutine reference. In this
case, the procedure data interface is unknown to the compiler. For example,
external routines (EXTERNAL statement) that have not been defined in an
interface block have an implicit interface.

In most cases, you can use a procedure interface block to make an implicit
interface an explicit one. An explicit interface provides the following
advantages over an implicit interface:

• Better compile-time argument checking and fewer run-time errors

• In some cases, faster run-time performance

• Ease of locating problems in source files since the features help to make
the interface self-documenting

• Allows use of some language features that require an explicit interface,
such as array function return values.

• When passing certain types of arguments between HP Fortran and non-
Fortran languages, an explicit interface may be needed. For example,
detailed information about an assumed-shape array argument can
be obtained from the passed array descriptor. The array descriptor is

Using HP Fortran in the Common Language Environment 10–3

generated when an appropriate explicit interface is used for certain types
of array arguments.

For More Information:
On HP Fortran array descriptors, see Section 10.2.7.

10.2.2 Types of HP Fortran Subprograms
There are three major types of subprograms:

• A subprogram might be local to a single program unit (known only
within its host). Since the subprogram definition and all its references
are contained within the same program unit, it is called an internal
subprogram.

An internal subprogram has an explicit interface.

• A subprogram needed in multiple program units should be placed within
a module. To create a module subprogram within a module, add
a CONTAINS statement followed by the subprogram code. A module
subprogram can also contain internal subprograms.

A module subprogram has an explicit interface in those program units
that reference the module with a USE statement (unless it is declared
PRIVATE).

• External subprograms are needed in multiple program units but cannot
be placed in a module. This makes their procedure interface unknown
in the program unit in which the reference occurs. Examples of external
subprograms include general-purpose library routines in standard libraries
and subprograms written in other languages, like C or Ada.

Unless an external subprogram has an associated interface block, it has
an implicit interface. To provide an explicit interface for an external
subprogram, create a procedure interface block (see Section 10.2.3).

For subprograms with no explicit interface, declare the subprogram name
as external using the EXTERNAL statement within the program unit
where the external subprogram reference occurs. This allows the linker to
resolve the reference.

An external subprogram must not contain PUBLIC or PRIVATE
statements.

10–4 Using HP Fortran in the Common Language Environment

10.2.3 Using Procedure Interface Blocks
Procedure interface blocks allow you to specify an explicit interface for a
subprogram as well as to define generic procedure names. This section limits
discussion to those interface blocks used to provide an explicit subprogram
interface. For complete information on interface blocks, see the HP Fortran for
OpenVMS Language Reference Manual.

The components of a procedure interface block follow:

• Begin a procedure interface block with an INTERFACE statement. Unless
you are defining a generic procedure name, user-defined operator, or
user-defined assignment, only the word INTERFACE is needed.

• To provide the interface body, copy the procedure specification statements
from the actual subprogram, including:

The FUNCTION or SUBROUTINE statements.

The interface body. For a procedure interface block, this includes
specification (declaration) statements for the dummy arguments and a
function return value (omit data assignment, FORMAT, ENTRY, DATA,
and related statements).

The interface body can include USE statements to obtain definitions.

The END FUNCTION or END SUBROUTINE statements.

• Terminate the interface block with an END INTERFACE statement.

• To make the procedure interface block available to multiple program units,
you can do one of the following:

Place the procedure interface block in a module. Reference the module
with a USE statement in each program unit that references the
subprogram (use association).

Place the procedure interface block in each program unit that
references the subprogram.

For an example of a module that contains a procedure interface block, see
Section 1.4.

Using HP Fortran in the Common Language Environment 10–5

10.2.4 Passing Arguments and Function Return Values
HP Fortran uses the same argument-passing conventions as Compaq Fortran
77 on OpenVMS Alpha systems for non-pointer scalar variables and explicit-
shape and assumed-size arrays.

When calling HP Fortran subprograms, be aware that HP Fortran expects to
receive arguments the same way it passes them.

The main points about argument passing and function return values are as
follows:

• Arguments are generally passed by reference (arguments contain an
address).

An argument contains the address of the data being passed, not the
data itself (unless explicitly specified otherwise, such as with the cDEC$
ATTRIBUTES directive or the %VAL built-in function).

Assumed-shape arrays and deferred-shape arrays are passed by array
descriptor.

Character data is passed by character descriptor.1

Arguments omitted by adding an extra comma (,) are passed as a zero by
immediate value (see Section 10.8.4). Such arguments include OPTIONAL
arguments that are not passed.

Any argument specified using the %DESCR built-in function is also passed
by descriptor (see Section 10.3).

• Function return data is usually passed by immediate value (function return
contains a value). Certain types of data (such as array-valued functions)
are passed by other means.

The value being returned from a function call usually contains the actual
data, not the address of the data.

• Character variables, explicit-shape character arrays, and assumed-size
character arrays are passed by a character descriptor (except for character
constant actual arguments when /BY_REF_CALL is used).

Dummy arguments for character data can use an assumed length.

When passing character arguments to a C routine as strings, the character
argument is not automatically null-terminated by the compiler. To null-
terminate a string from HP Fortran, use the CHAR intrinsic function
(described in the HP Fortran for OpenVMS Language Reference Manual).

1 For compatibility with older Compaq Fortran 77 OpenVMS VAX programs, character
constant actual arguments (string literals) can be passed by reference if the HP
Fortran program was compiled with the /BY_REF_CALL qualifier (see Section 2.3.9).

10–6 Using HP Fortran in the Common Language Environment

The arguments passed from a calling routine must match the dummy
arguments declared in the called function or subroutine (or other procedure),
as follows:

• Arguments must be in the same order, unless argument keywords are used.

Arguments are kept in the same position as they are specified by the user.
The exception to same position placement is the use of argument keywords
to associate dummy and actual arguments.

• Each corresponding argument or function return value must at least match
in data type, kind, and rank, as follows:

The primary HP Fortran intrinsic data types are character, integer,
logical, real, and complex.

To convert data from one data type to another, use the appropriate
intrinsic procedures described in the HP Fortran for OpenVMS
Language Reference Manual.

Also, certain attributes of a data item may have to match. For
example, if a dummy argument has the POINTER attribute, its
corresponding actual argument must also have the POINTER attribute
(see Section 10.2.6).

You can use the kind parameter to specify the length of each numeric
intrinsic type, such as INTEGER (KIND=8). For character lengths,
use the LEN specifier, perhaps with an assumed length for dummy
character arguments (LEN=*).

The rank (number of dimensions) of the actual argument is usually
the same (or less than) the rank of the dummy argument, unless an
assumed-size dummy array is used.

When using an explicit interface, the rank of the actual argument must
be the same as the rank of the dummy argument.

For example, when passing a scalar actual argument to a scalar
dummy argument (no more than one array element or a nonarray
variable), the rank of both is 0.

Other rules which apply to passing arrays and pointers are described
in Section 10.2.5, Section 10.2.6, and in the HP Fortran for OpenVMS
Language Reference Manual.

• The means by which the argument is passed and received (passing
mechanism) must match.

By default, HP Fortran arguments are passed by reference. (See
Table 10–1 for information about passing arguments with the C property.)

Using HP Fortran in the Common Language Environment 10–7

When calling functions or other routines that are intended to be called
from another language (such as C), be aware that these languages may
require data to be passed by other means, such as by value.

Most HP Fortran function return values are passed by value. Certain types
of data (such as array-valued functions) are passed by other means.

In most cases, you can change the passing mechanism of actual arguments
by using the following HP extensions:

cDEC$ ATTRIBUTES directive (see Section 10.4.2)

Built-in functions (see Section 10.3)

• To explicitly specify the procedure (argument or function return) interface,
provide an explicit interface.

You can use interface blocks and modules to specify INTENT and other
attributes of actual or dummy arguments.

For More Information:

• On passing arguments, function return values, and the contents of registers
on OpenVMS systems, see the HP OpenVMS Calling Standard.

• On intrinsic data types, see Chapter 8 and the HP Fortran for OpenVMS
Language Reference Manual.

• On intrinsic procedures and attributes available for array use, see the HP
Fortran for OpenVMS Language Reference Manual.

• On explicit interfaces and when they are required, see the HP Fortran for
OpenVMS Language Reference Manual.

• On an HP Fortran example program that uses an external subprogram and
a module that contains a procedure interface block, see Example 1–3.

10.2.5 Passing Arrays as Arguments
Certain arguments or function return values require the use of an explicit
interface, including assumed-shape dummy arguments, pointer dummy
arguments, and function return values that are arrays. This is discussed in
the HP Fortran for OpenVMS Language Reference Manual.

When passing arrays as arguments, the rank and the extents (number of
elements in a dimension) should agree, so the arrays have the same shape and
are conformable. If you use an assumed-shape array, the rank is specified
and extents of the dummy array argument are taken from the actual array
argument.

10–8 Using HP Fortran in the Common Language Environment

If the rank and extent (shape) do not agree, the arrays are not conformable.
The assignment of elements from the actual array to the noncomformable
(assumed-size or explicit-shape) dummy array is done by using array element
sequence association.

Certain combinations of actual and dummy array arguments are disallowed.

For More Information:

• On the types of arrays and passing array arguments, see the HP Fortran
for OpenVMS Language Reference Manual.

• On explicit interfaces and when they are required, see the HP Fortran for
OpenVMS Language Reference Manual.

• On array descriptors, see Section 10.2.7.

10.2.6 Passing Pointers as Arguments
Previous sections have discussed the case where the actual and dummy
arguments have neither the POINTER attribute nor the TARGET attribute.

The argument passing rules of like type, kind, and rank (for conformable
arrays) or array element sequence association (for noncomformable arrays)
apply when:

• Both actual and dummy arguments have the POINTER attribute (and
must be conformable)

• Dummy arguments have the TARGET attribute

• Both actual and dummy arguments have neither attribute

If you specify an actual argument of type POINTER and a dummy argument of
type POINTER, the dummy argument receives the correct pointer value if you
specify (in the code containing the actual argument) an appropriate explicit
interface that defines the dummy argument with the POINTER attribute and
follows certain rules.

However, if you specify an actual argument of type POINTER and do not
specify an appropriate explicit interface (such as an interface block), it is
passed as actual (target) data.

For More Information:
On using pointers and pointer arguments, see the HP Fortran for OpenVMS
Language Reference Manual.

Using HP Fortran in the Common Language Environment 10–9

10.2.7 HP Fortran Array Descriptor Format
When using an explicit interface (by association or procedure interface block),
HP Fortran will generate a descriptor for the following types of dummy
argument data structures:

• Pointers to arrays (array pointers)

• Assumed-shape arrays

To allow calling between Compaq Fortran 77 and HP Fortran, certain data
structure arguments also supported by Compaq Fortran 77 do not use a
descriptor, even when an appropriate explicit interface is provided. For
example, since explicit-shape and assumed-size arrays are supported by both
Compaq Fortran 77 and HP Fortran, an array descriptor is not used.

When calling between HP Fortran and a non-Fortran language (such as C),
you can specify an appropriate explicit interface or use an implicit interface.

However, for cases where the called routine needs the information in the
array descriptor, declare the routine with an assumed-shape argument and an
explicit interface.

The array descriptor used by HP Fortran is the OpenVMS Noncontiguous
Array Descriptor as described in the HP OpenVMS Calling Standard. In the
DSC$B_AFLAGS byte, bit DSC$V_FL_UNALLOC specifies whether storage
has or has not been set for this array. If this bit is set, the array has not yet
been allocated.

For example, for 32-bit address access, consider the following array declaration:

INTEGER,TARGET :: A(10,10)
INTEGER,POINTER :: P(:,:)
P => A(9:1:-2,1:9:3)
CALL F(P)
.
.
.

The descriptor for actual argument P (using 32-bit addresses) would contain
the following values:

• length (DSC$W_LENGTH) contains 4.

• dtype (DSC$B_DTYPE) contains DSC$K_DTYPE_L.

• class (DSC$B_CLASS) contains DSC$K_CLASS_NCA.

• pointer (DSC$A_POINTER) contains the address of A (9,1).

• scale (DSC$B_SCALE) contains 0.

10–10 Using HP Fortran in the Common Language Environment

• digits (DSC$B_DIGITS) contains 0.

• aflags (DSC$B_AFLAGS) contains 0, since A is allocated, the
V_FL_UNALLOC bit is clear.

• dimen (DSC$B_DIMEN) contains 2.

• arsize (DSC$L_ARSIZE) contains 60.

• DSC$A_A0 contains the address of A(0,0).

• DSC$L_Si contains the stride of dimension i.

• DSC$L_Li contains the lower bound of dimension i.

• DSC$L_Ui contains the upper bound of dimension i.

For information about the Noncontiguous Array Descriptor when 64-bit
addressing is requested (cDEC$ ATTRIBUTES ADDRESS64 directive), see the
HP OpenVMS Calling Standard.

10.3 Argument-Passing Mechanisms and Built-In Functions
The OpenVMS procedure-calling standard defines three mechanisms by which
arguments are passed to procedures:

• By immediate value: The argument list entry contains the value.

• By reference: The argument list entry contains the address of the value.

• By descriptor: The argument list entry contains the address of a descriptor
of the value.

By default, HP Fortran uses the reference and descriptor mechanisms to pass
arguments, depending on each argument’s data type:

• The reference mechanism is used to pass all actual arguments that are
numeric: logical, integer, real, and complex.

• The descriptor mechanism is used to pass all actual arguments that are
character, Fortran 90 pointers, assumed-shape arrays, and deferred-shape
arrays (except for character constant actual arguments when the HP
Fortran program was compiled with /BY_REF_CALL).

When an HP Fortran program needs to call a routine written in a different
language (or in some cases a Fortran 90 subprogram), there may be a need to
use a form other the HP Fortran default mechanisms. For example, OpenVMS
system services may require that certain numeric arguments be passed by
immediate value instead of by reference.

Using HP Fortran in the Common Language Environment 10–11

For cases where you cannot use the default passing mechanisms, HP Fortran
provides three built-in functions for passing arguments. It also provides a
built-in function for computing addresses for use in argument lists. These
built-in functions are:

• %VAL, %REF, %DESCR: Argument list built-in functions

• %LOC: General usage built-in function

Except for the %LOC built-in function, which can be used in any arithmetic
expression, these functions can appear only as unparenthesized arguments in
argument lists. The three argument list built-in functions and %LOC built-in
function are rarely used to call a procedure written in HP Fortran.

The use of these functions in system service calls is described in Section 10.8.4.
The sections that follow describe their use in general.

Instead of using the HP Fortran built-in functions, you can use the cDEC$
ATTRIBUTES directive to change the HP Fortran default passing mechanisms
(see Section 10.4.2).

10.3.1 Passing Arguments by Descriptor—%DESCR Function
The %DESCR function passes its argument by descriptor. It has the following
form:

%DESCR(arg)

The argument generated by the compiler is the address of a descriptor of the
argument (arg). The argument value can be any Fortran 90 expression. The
argument value must not be a derived type, record name, record array name,
or record array element. The compiler can generate OpenVMS descriptors for
all Fortran data types.

In HP Fortran, the descriptor mechanism is the default for passing character
arguments, Fortran 90 pointers, assumed-shape arrays, and deferred-shape
arrays. This is because the subprogram may need to know the length or other
information about the character, pointer, or array argument. HP Fortran
always generates code to refer to character dummy arguments through the
addresses in their character descriptors.

For More Information:
On HP Fortran array descriptors, see Section 10.2.7.

10–12 Using HP Fortran in the Common Language Environment

10.3.2 Passing Addresses—%LOC Function
The %LOC built-in function computes the address of a storage element
as an INTEGER (KIND=8) (64-bit) value. With 64-bit addressing (cDEC$
ATTRIBUTE ADDRESS64 directive specified), all 64-bits are used. With
32-bit addressing (cDEC$ ATTRIBUTE ADDRESS64 directive omitted), only
the lower 32 bits are used. You can then use this value in an arithmetic
expression. It has the following form:

%LOC(arg)

The %LOC function is particularly useful for certain system services or non-
Fortran procedures that may require argument data structures containing the
addresses of storage elements. In such cases, the data structures should be
declared volatile to protect them from possible optimizations.

For More Information:

• On declaring volatile data structures, see the HP Fortran for OpenVMS
Language Reference Manual.

• On optimization and declaring volatile data, see Section 5.7.3.

• On an example that uses the %LOC function, see Example 10–4.

10.3.3 Passing Arguments by Immediate Value—%VAL Function
The %VAL function passes the argument list entry as a 64-bit immediate value.
It has the following form:

%VAL(arg)

The argument-list entry generated by the compiler is the value of the argument
(arg). The argument value can be a constant, variable, array element, or
expression of type INTEGER, LOGICAL, REAL (KIND=4), REAL (KIND=8),
COMPLEX (KIND=4), or COMPLEX (KIND=8).

If a COMPLEX (KIND=4) or COMPLEX (KIND=8) argument is passed
by value, two REAL arguments (one contains the real part; the other the
imaginary part) are passed by immediate value. If a COMPLEX parameter
to a routine is specified as received by value (or given the C attribute), two
REAL parameters are received and stored in the real and imaginary parts of
the COMPLEX parameter specified.

If the value is a byte, word, or longword, it is sign-extended to a quadword
(eight bytes).

To produce a zero-extended value rather than a sign-extended value, use the
ZEXT intrinsic function.

Using HP Fortran in the Common Language Environment 10–13

For More Information:

• On intrinsic procedures, see the HP Fortran for OpenVMS Language
Reference Manual.

• On an example of passing integer data by value (using %VAL) and by
reference (default) to a C function, see Section 10.10.7.

• On the ZEXT intrinsic function, see HP Fortran for OpenVMS Language
Reference Manual.

• On the %VAL built-in function, see the HP Fortran for OpenVMS Language
Reference Manual.

10.3.4 Passing Arguments by Reference—%REF Function
The %REF function passes the argument by reference. It has the following
form:

%REF(arg)

The argument-list entry generated by the compiler will contain the address of
the argument (arg). The argument value can be a record name, a procedure
name, or a numeric or character expression, array, character array section, or
array element. In HP Fortran, passing by reference is the default mechanism
for numeric values, so the %REF call is usually not needed.

10.3.5 Examples of Argument Passing Built-in Functions
The following examples demonstrate the use of the argument list built-in
functions.

1. In this example, the first constant is passed by reference. The second
constant is passed by immediate value:

CALL SUB(2,%VAL(2))

2. In this example, the first character variable is passed by character
descriptor. The second character variable is passed by reference:

CHARACTER(LEN=10) A,B
CALL SUB(A,%REF(B))

3. In this example, the first array is passed by reference. The second array is
passed by descriptor:

INTEGER IARY(20), JARY(20)
CALL SUB(IARY,%DESCR(JARY))

10–14 Using HP Fortran in the Common Language Environment

10.4 Using the cDEC$ ALIAS and cDEC$ ATTRIBUTES
Directives

This section provides reference information about the following directives:

• The cDEC$ ALIAS (or !DEC$ ALIAS or *DEC$ ALIAS) directive allows
you to specify a name for an external subprogram that differs from the
name used by the calling subprogram.

• The cDEC$ ATTRIBUTES (or !DEC$ ATTRIBUTES or *DEC$
ATTRIBUTES) directive allows you to specify the properties for external
data objects and procedures. This includes using C language rules,
specifying how an argument is passed (passing mechanism), and specifying
an alias for an external routine.

10.4.1 The cDEC$ ALIAS Directive
HP Fortran now supports the cDEC$ ALIAS directive in the same manner as
Compaq Fortran 77. Use this directive to specify that the external name of an
external subprogram is different from the name by which the calling procedure
references it.

The syntax is:

cDEC$ ALIAS internal-name, external-name

The internal-name is the name of the subprogram as used in the current
program unit.

The external-name is either a quoted character constant (delimited by single
quotation marks) or a symbolic name.

If external-name is a character constant, the value of that constant is used
as the external name for the specified internal name. The character constant
is used as it appears, with no modifications for case. The default for the HP
Fortran compiler is to force the name into uppercase.

If external-name is a symbolic name, the symbolic name (in uppercase) is used
as the external name for the specified internal name. Any other declaration of
the specified symbolic name is ignored for the purposes of the ALIAS directive.

For example, in the following program (free source form):

Using HP Fortran in the Common Language Environment 10–15

PROGRAM ALIAS_EXAMPLE
!DEC$ ALIAS ROUT1, ’ROUT1A’
!DEC$ ALIAS ROUT2, ’routine2_’
!DEC$ ALIAS ROUT3, rout3A

CALL ROUT1
CALL ROUT2
CALL ROUT3

END PROGRAM ALIAS_EXAMPLE

The three calls are to external routines named ROUT1A, routine2_, and
ROUT3A. Use single quotation marks (character constant) to specify a case-
sensitive name.

This feature can be useful when porting code to systems where different
routine naming conventions are in use. By adding or removing the cDEC$
ALIAS directive, you can specify an alternate routine name without recoding
the application.

10.4.2 The cDEC$ ATTRIBUTES Directive
Use the cDEC$ ATTRIBUTES directive to specify properties for data objects
and procedures. These properties let you specify how data is passed and the
rules for invoking procedures. The cDEC$ ATTRIBUTES directive is intended
to simplify mixed-language calls with HP Fortran routines written in C or
Assembler.

The cDEC$ ATTRIBUTES directive takes the following form:

cDEC$ ATTRIBUTES att [,att]... :: object [,object]...

In this form:

c

Is the letter or character (c, C, *, !) that introduces the directive (see HP
Fortran for OpenVMS Language Reference Manual.)

att

Is one of the keywords listed in the HP Fortran for OpenVMS Language
Reference Manual. For example, C, ALIAS, REFERENCE, VALUE,
EXTERN, VARYING, and ADDRESS64

object

Is the name of a data object used as an argument or procedure. Only one
object is allowed when using the C and ALIAS properties.

The HP Fortran for OpenVMS Language Reference Manual explains the valid
combinations of properties with the various types of objects.

10–16 Using HP Fortran in the Common Language Environment

The ATTRIBUTES properties are described in the following sections:

• C Property, Section 10.4.2.1

• ALIAS Property, Section 10.4.2.2

• REFERENCE and VALUE Properties, Section 10.4.2.3

• EXTERN and VARYING Properties, Section 10.4.2.4

• ADDRESS64 Property, Section 10.4.2.5

10.4.2.1 C Property
The C property provides a convenient way for HP Fortran to interact with
routines written in C.

When applied to a subprogram, the C property defines the subprogram as
having a specific set of calling conventions.

The C property affects how arguments are passed, as described in Table 10–1.

Table 10–1 C Property and Argument Passing

Argument Variable Type Fortran Default
C Property Specified
for Routine

Scalar (includes derived types) Passed by reference Passed by value (large
derived type variables
may be passed by
reference)

Scalar, with VALUE specified Passed by value Passed by value

Scalar, with REFERENCE
specified

Passed by reference Passed by reference

String Passed by character
descriptor

Passes the first
character of the string,
padded to a full integer

String, with VALUE specified Error Passes the first
character of the string,
padded to a full integer

String, with REFERENCE
specified

Passed by reference Passed by reference

Arrays, including pointers to
arrays

Always passed by
reference

Always passed by
reference

Using HP Fortran in the Common Language Environment 10–17

If C is specified for a subprogram, arguments (except for arrays and characters)
are passed by value. Subprograms using standard Fortran conventions pass
arguments by reference.

Character arguments are passed as follows:

• If C is specified without REFERENCE for the arguments, the first
character of the string is passed (padded with zeros out to INTEGER*4
length).

• If C is specified with REFERENCE for the argument (or if only
REFERENCE is specified), the starting address of the string is passed
with no descriptor.

Example 10–1 shows HP Fortran code that calls the C function PNST by using
the cDEC$ ATTRIBUTES C directive and C language passing conventions.

Example 10–1 Calling C Functions and Passing Integer Arguments

! Using !DEC$ ATTRIBUTES to pass argument to C. File: pass_int_cdec.f90

interface
subroutine pnst(i)
!DEC$ ATTRIBUTES C :: pnst
integer i

end subroutine
end interface

integer :: i
i = 99
call pnst(i) ! pass by value
print *,"99==",i

end

Example 10–2 shows the C function called PNST that is called by the example
program shown in Example 10–1

Example 10–2 Calling C Functions and Passing Integer Arguments

/* get integer by value from Fortran. File: pass_int_cdec_c.c */

void pnst(int i) {
printf("99==%d\n",i);

i = 100;
}

10–18 Using HP Fortran in the Common Language Environment

The files (shown in Example 10–1 and Example 10–2) might be compiled,
linked, and run as follows:

$ CC PASS_INT_CDEC_C.C
$ FORTRAN PASS_INT_CDEC.F90
$ LINK/EXECUTABLE=PASS_CDEC PASS_INT_CDEC, PASS_INT_CDEC_C
$ RUN PASS_CDEC
99==99
99== 99

10.4.2.2 ALIAS Property
You can specify the ALIAS property as cDEC$ ALIAS or as cDEC$
ATTRIBUTES ALIAS; they are equivalent, except that using cDEC$ ALIAS
allows symbol names (see Section 10.4.1).

The ALIAS property allows you to specify that the external name of an
external subprogram is different from the name by which the calling procedure
references it (see Section 10.4.1).

10.4.2.3 REFERENCE and VALUE Properties
The following cDEC$ ATTRIBUTES properties specify how a dummy argument
is to be passed:

• REFERENCE specifies a dummy argument’s memory location is to be
passed, not the argument’s value.

• VALUE specifies a dummy argument’s value is to be passed, not the
argument’s memory location.

Character values, substrings, and arrays cannot be passed by value. When
REFERENCE is specified for a character argument, the string is passed with
no descriptor.

VALUE is the default if the C property is specified in the subprogram definition
(for scalar data only).

Consider the following free-form example, which passes an integer by value:

interface
subroutine foo (a)
!DEC$ ATTRIBUTES value :: a

integer a
end subroutine foo

end interface

Using HP Fortran in the Common Language Environment 10–19

This subroutine can be invoked from HP Fortran using the name foo:

integer i
i = 1
call foo(i)

end program

This is the actual subroutine code:

subroutine foo (i)
!DEC$ ATTRIBUTES value :: i

integer i
i = i + 1
.
.

end subroutine foo

10.4.2.4 EXTERN and VARYING Properties
The EXTERN property specifies that a variable is allocated in another source
file. EXTERN can be used in global variable declarations, but it must not be
applied to dummy arguments.

You must use EXTERN when accessing variables declared in other languages.

The VARYING directive allows a variable number of calling arguments. If
VARYING is specified, the C property must also be specified.

When using the VARYING directive, either the first argument must be a
number indicating how many arguments to process, or the last argument
must be a special marker (such as ��) indicating it is the final argument. The
sequence of the arguments, and types and kinds, must be compatible with the
called procedure.

For More Information:
See the HP Fortran for OpenVMS Language Reference Manual.

10.4.2.5 ADDRESS64 Property
Specifies that the object has a 64-bit address. This property can be specified
for any variable or dummy argument, including ALLOCATABLE and deferred-
shape arrays. However, variables with this property cannot be data-initialized.

It can also be specified for COMMON blocks or for variables in a COMMON
block. If specified for a COMMON block variable, the COMMON block
implicitly has the ADDRESS64 property.

ADDRESS64 is not compatible with the AUTOMATIC attribute.

10–20 Using HP Fortran in the Common Language Environment

For More Information:

• On requirements and the use of 64-bit virtual addresses, see the online
release notes.

• On the memory layout of process and system memory, see the OpenVMS
Alpha Guide to 64-Bit Addressing and VLM Features.

• On passing arguments, argument types, function return values, and the
contents of registers on OpenVMS systems, see the HP OpenVMS Calling
Standard.

• On HP Fortran intrinsic data types, see Chapter 8.

• On the HP Fortran language, see the HP Fortran for OpenVMS Language
Reference Manual.

• On the HP C language, see the HP C Language Reference Manual.

• On the CC command, see the HP C User’s Guide for OpenVMS Systems.

10.5 OpenVMS Procedure-Calling Standard
Programs compiled by the HP Fortran compiler conform to the standard
defined for OpenVMS procedure calls (see the OpenVMS Programming
Interfaces: Calling a System Routine and HP OpenVMS Calling Standard).
This standard prescribes how registers and the system-maintained call stack
can be used, how function values are returned, how arguments are passed, and
how procedures receive and return control.

When writing routines that can be called from HP Fortran programs,
you should give special consideration to the argument list descriptions in
Section 10.5.3.

10.5.1 Register and Stack Usage
For information about register and stack usage on I64, see the HP OpenVMS
Calling Standard.

10.5.1.1 Register and Stack Usage on Alpha
The Alpha architecture provides 32 general purpose integer registers (R0-R31)
and 32 floating-point registers (F0-F31), each 64 bits in length. The OpenVMS
Programming Interfaces: Calling a System Routine defines the use of these
registers, as listed in Table 10–2.

Using HP Fortran in the Common Language Environment 10–21

Table 10–2 OpenVMS Alpha Register Usage

Register Use

R0 Function value return registers; also see F0, F1

R1 Conventional scratch register

R2-R15 Conventional saved registers

R16-R21 Argument registers (one register per argument, additional
arguments are placed on the stack)

R22-R24 Conventional scratch registers

R25 Argument information (AI); contains argument count and
argument type

R26 Return address (RA) register

R27 Procedure value (PV) register

R28 Volatile scratch register

R29 Frame pointer (FP)

R30 Stack pointer (SP)

R31 Read As Zero/Sink (RZ) register

PC Program counter (PC), a special register that addresses the
instruction stream, which is not accessible as an integer register

F0, F1 Function value return registers (F1 is used for the imaginary
part of COMPLEX)

F2-F9 Conventional saved registers

F10-F15 Conventional scratch registers

F16-F21 Argument registers (one per argument, additional arguments are
placed on the stack)

F22-F30 Conventional scratch registers

F31 Read As Zero/Sink (RZ) register

A stack is defined as a LIFO (last-in/first-out) temporary storage area that the
system allocates for every user process.

Each time you call a routine, the system places information on the stack in the
form of procedure context structures, as described in the HP OpenVMS Calling
Standard.

10–22 Using HP Fortran in the Common Language Environment

10.5.2 Return Values of Procedures
A procedure is an HP Fortran subprogram that performs one or more
computations for other programs. Procedures can be either functions or
subroutines. Both functions and subroutines can return values by storing them
in variables specified in the argument list or in common blocks.

A function, unlike a subroutine, can also return a value to the calling program
by assigning the value to the function’s name. The method that function
procedures use to return values depends on the data type of the value, as
summarized in Table 10–3.

Table 10–3 OpenVMS Alpha Function Return Values

Data Type Return Method�
Logical
Integer

R0

REAL (KIND=4) F0

REAL (KIND=8) F0

REAL (KIND=16) F0 and F1

COMPLEX (KIND=4)
(COMPLEX*8)

F0 (real part), F1 (imaginary part)

COMPLEX (KIND=8)
(COMPLEX*16)

F0 (real part), F1 (imaginary part)

COMPLEX (KIND=16)
(COMPLEX*32)

In addition to the arguments, an entry is added to the
beginning of the argument list. This additional entry contains
the address of the character string descriptor. At run time,
before the call, the calling program allocates enough storage
to contain the result and places the storage address in the
descriptor.

Character In addition to the arguments, an entry is added to the
beginning of the argument list. This additional entry contains
the address of the character string descriptor. At run time,
before the call, the calling program allocates enough storage
to contain the result and places the storage address in the
descriptor.

Pointers R0 contains the address of the array descriptor (see
Section 10.2.6).

Assumed-shape arrays,
Deferred-shape arrays

R0 contains the address of the array descriptor (see
Section 10.2.5).

Using HP Fortran in the Common Language Environment 10–23

For More Information:

• On HP Fortran array descriptors, see Section 10.2.7.

• On defining and invoking subprograms, see the HP Fortran for OpenVMS
Language Reference Manual.

10.5.3 Argument Lists
Use an argument list to pass information to a routine and receive results.

The HP OpenVMS Calling Standard defines an argument list as an argument
item sequence, consisting of the first six arguments occupying six integer and
six floating-point registers (R16-R21 and F16-F21), with additional arguments
placed on the stack. The argument information is contained in R25 (AI
register). The stack pointer is contained in R30. For more details on argument
lists, see the HP OpenVMS Calling Standard.

Memory for HP Fortran argument lists and for OpenVMS Alpha descriptors is
allocated dynamically on the stack.

OpenVMS Alpha descriptors are generated from the use of the %DESCR
function or by passing CHARACTER data, Fortran 90 pointers, and certain
types of arrays (see Section 10.2.7).

Omitted arguments—for example, CALL X(A, ,B)—are represented by an
argument passed by value that has a value of zero. This is an HP extension to
the Fortran 90 standard.

Fortran optional arguments (OPTIONAL attribute) are also represented by an
argument passed by value that has a value of zero.

For More Information:
On using Fortran language standards to specify arguments, see the HP Fortran
for OpenVMS Language Reference Manual.

10.6 OpenVMS System Routines
System routines are OpenVMS routines that perform common tasks, such as
finding the square root of a number or allocating virtual memory. You can call
any system routine from your program, provided that HP Fortran supports the
data structures required to call the routine (in a FORSYSDEF library module)
or you define them yourself.

The system routines used most often are OpenVMS Run-Time Library routines
and system services. System routines are documented in detail in the VMS
Run-Time Library Routines Volume and the HP OpenVMS System Services
Reference Manual.

10–24 Using HP Fortran in the Common Language Environment

10.6.1 OpenVMS Run-Time Library Routines
The OpenVMS Run-Time Library provides commonly-used routines that
perform a wide variety of functions. These routines are grouped according to
the types of tasks they perform, and each group has a prefix that identifies
those routines as members of a particular OpenVMS Run-Time Library facility.
Table 10–4 lists all of the language-independent Run-Time Library facility
prefixes and the types of tasks each facility performs.

Table 10–4 Run-Time Library Facilities

Facility Prefix Types of Tasks Performed

CVT$ Library routines that handle floating-point data conversion

DTK$ DECtalk routines that are used to control HP’s DECtalk device

LIB$ Library routines that:

Obtain records from devices
Manipulate strings
Convert data types for I/O
Allocate resources
Obtain system information
Signal exceptions
Establish condition handlers
Enable detection of hardware exceptions
Process cross-reference data

MATH$ Mathematics routines that perform arithmetic, algebraic, and
trigonometric calculations

OTS$ General-purpose routines that perform such tasks as data type
conversions as part of a compiler’s generated code

PPL$ Parallel processing routines that help you implement concurrent
programs on single-CPU and multiprocessor systems

SMG$ Screen-management routines that are used in designing, composing,
and keeping track of complex images on a video screen

STR$ String manipulation routines that perform such tasks as searching for
substrings, concatenating strings, and prefixing and appending strings

10.6.2 OpenVMS System Services Routines
System services are system routines that perform a variety of tasks, such as
controlling processes, communicating among processes, and coordinating I/O.

Using HP Fortran in the Common Language Environment 10–25

Unlike the OpenVMS Run-Time Library routines, which are divided into
groups by facility, all system services share the same facility prefix (SYS$).
However, these services are logically divided into groups that perform similar
tasks. Table 10–5 describes these groups.

Table 10–5 System Services

Group Types of Tasks Performed

AST Allows processes to control the handling of ASTs

Change Mode Changes the access mode of particular routines

Condition Handling Designates condition handlers for special purposes

Event Flag Clears, sets, reads, and waits for event flags, and associates
with event flag clusters

Input/Output Performs I/O directly, without going through OpenVMS
RMS

Lock Management Enables processes to coordinate access to shareable system
resources

Logical Names Provides methods of accessing and maintaining pairs of
character string logical names and equivalence names

Memory Management Increases or decreases available virtual memory, controls
paging and swapping, and creates and accesses shareable
files of code or data

Process Control Creates, deletes, and controls execution of processes

Process Information Returns information about processes

Security Enhances the security of OpenVMS systems

Timer and Time
Conversion

Schedules events, and obtains and formats binary time
values

10.7 Calling Routines: General Considerations
The basic steps for calling routines are the same whether you are calling a
routine written in HP Fortran, a routine written in some other OpenVMS
language, a system service, or an HP Fortran RTL routine.

To call a subroutine, use the CALL statement.

To call a function, reference the function name in an expression or as an
argument in another routine call.

10–26 Using HP Fortran in the Common Language Environment

In any case, you must specify the name of the routine being called and all non-
optional arguments required for that routine. Make sure the data types and
passing mechanisms for the actual arguments you are passing coincide with
those declared in the routine. (See Table 10–6 for information on OpenVMS
data types or OpenVMS Programming Interfaces: Calling a System Routine for
data types needed for mixed language programming.)

If you do not want to specify a value for a required parameter, you can pass
a null argument by inserting a comma (,) as a placeholder in the argument
list. If the routine requires any passing mechanism other than the default, you
must specify the passing mechanism in the CALL statement or the function
call.

Example 10–3 illustrates calling an OpenVMS RTL LIB$ routine. This
example uses the LIB$GET_VM RTL routine and the Compaq Fortran 77
POINTER statement to allocate memory for an array, and uses HP extensions
(POINTER statement and LIB$ routine) to allocate virtual memory.

Example 10–3 Use of LIB$GET_VM and POINTER

! Program accepts an integer and displays square root values

INTEGER (KIND=4) N
READ (5,*) N ! Request typed integer value
CALL MAT(N)
END

! Subroutine MAT uses the typed integer value to display the square
! root values of numbers from 1 to N (the typed number)

SUBROUTINE MAT(N)
REAL I(1000) ! Fixed 1000 dimension allows bounds checking
INTEGER SIZE,STATUS
POINTER (P,I) ! Compaq Fortran 77 POINTER statement establishes

! P as the pointer and array variable I as the
! pointee. P will receive memory base address
! from LIB$GET_VM.

SIZE=SIZEOF(I(1)) * N ! Array I contains values calculated in loop below.
! Intrinsic SIZEOF returns size of memory
! to allocate.

STATUS = LIB$GET_VM(SIZE,P) ! Allocate memory
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

(continued on next page)

Using HP Fortran in the Common Language Environment 10–27

Example 10–3 (Cont.) Use of LIB$GET_VM and POINTER

DO J=1,N
I(J) = SQRT(FLOAT(J)) ! Intrinsic FLOAT converts integer to REAL.

ENDDO
TYPE *, (I(J),J=1,N) ! Display calculated values

STATUS = LIB$FREE_VM(SIZE,P) ! Deallocate memory
IF (.NOT. STATUS) CALL LIB$SIGNAL(%VAL(STATUS))

END SUBROUTINE MAT

The following commands show how to compile, link, and run the program and
how it displays the square root of numbers from 1 to 4 during execution:

$ FORTRAN SQUARE_ROOT
$ LINK SQUARE_ROOT
$ RUN SQUARE_ROOT
4

1.000000 1.414214 1.732051 2.000000

The call to LIB$GET_VM as a function reference allocates memory and returns
the starting address in variable P. The return status (variable STATUS) is
tested to determine whether an error should be signaled using a subroutine
call to LIB$SIGNAL, passing the value of the variable status (not its address)
using the %VAL built-in function.

For More Information:

• On intrinsic procedures (such as FLOAT, SQRT, and SIZEOF) and the HP
Fortran language, see the HP Fortran for OpenVMS Language Reference
Manual.

• On the %VAL built-in function, see Section 10.3.3.

• On an example of memory allocation using Fortran 90 standard-conforming
allocatable arrays, see the HP Fortran for OpenVMS Language Reference
Manual.

10.8 Calling OpenVMS System Services
You can invoke system services in an HP Fortran program with a function
reference or a subroutine CALL statement that specifies the system service you
want to use. To specify a system service, use the form:

SYS$service-name(arg,...,arg)

10–28 Using HP Fortran in the Common Language Environment

You pass arguments to the system services according to the requirements of the
particular service you are calling; the service may require an immediate value,
an address, the address of a descriptor, or the address of a data structure.
Section 10.8.4 describes the HP Fortran syntax rules for each of these cases.
See the HP OpenVMS System Services Reference Manual for a full definition of
individual services.

The basic steps for calling system services are the same as those for calling
any external routine. However, when calling system services (or Run-Time
Library routines), additional information is often required. The sections that
follow describe these requirements.

10.8.1 Obtaining Values for System Symbols
OpenVMS uses symbolic names to identify the following values or codes for
system services:

• Return status values are used for testing the success of system service
calls.

• Condition values are used for error recovery procedures (see Chapter 14).

• Function codes are the symbolic values used as input arguments to system
service calls.

The values chosen determine the specific action performed by the service.

The HP OpenVMS System Services Reference Manual describes the symbols
that are used with each system service. The HP OpenVMS I/O User’s
Reference Manual describes the symbols that are used with I/O-related
services.

The HP Fortran symbolic definition library FORSYSDEF contains HP Fortran
source definitions for related groups of system symbols. Each related group of
system symbols is stored in a separate text library module; for example, the
library module $IODEF in FORSYSDEF contains PARAMETER statements
that define the I/O function codes.

The library modules in FORSYSDEF correspond to the symbolic definition
macros that OpenVMS MACRO programmers use to define system symbols.
The library modules have the same names as the macros and contain HP
Fortran source code, which is functionally equivalent to the MACRO source
code. To determine whether you need to include other symbol definitions
for the system service you want to use, refer to the documentation for that
particular system service. If the documentation states that values are defined
in a macro, you must include those symbol definitions in your program.

Using HP Fortran in the Common Language Environment 10–29

For example, the description for the flags argument in the SYS$MGBLSC (Map
Global Section) system service states that ‘‘Symbolic names for the flag bits are
defined by the $SECDEF macro.’’ Therefore, when you call SYS$MGBLSC, you
must include the definitions provided in the $SECDEF macro.

Library module $SYSSRVNAM in FORSYSDEF contains declarations for all
system-service names. It contains the necessary INTEGER and EXTERNAL
declarations for the system-service names. (The library module, once extracted
from FORSYSDEF.TLB, also contains comments describing the arguments for
each of the system services.) Also, library module $SSDEF contains system-
service return status codes and is generally required whenever you access any
of the services.

The library modules in FORSYSDEF contain definitions for constants, bit
masks, and data structures. See Section 10.8.4.4 for a description of how to
create data structure arguments in HP Fortran. Refer to Appendix E for a list
of library modules that are in FORSYSDEF.

You can access the library modules in the FORSYSDEF library with the
INCLUDE statement, using the following format:

INCLUDE ’(library-module-name)’

The notation library-module-name represents the name of a library module
contained in FORSYSDEF. The library FORSYSDEF is searched if the specified
library module was not found in a previously searched library.

10.8.2 Calling System Services by Function Reference
In most cases, you should check the return status after calling a system
service. Therefore, you should invoke system services by function reference
rather than by issuing a call to a subroutine.

For example:

INCLUDE ’($SSDEF)’
INCLUDE ’($SYSSRVNAM)’
INTEGER (KIND=2) CHANNEL

.

.

.
MBX_STATUS = SYS$CREMBX(,CHANNEL,,,,,’MAILBOX’)
IF (MBX_STATUS .NE. SS$_NORMAL) GO TO 100

In this example, the system service referenced is the Create Mailbox system
service. An INTEGER (KIND=2) variable (CHANNEL) is declared to receive
the channel number.

10–30 Using HP Fortran in the Common Language Environment

The function reference allows a return status value to be stored in the variable
MBX_STATUS, which can then be checked for correct completion on return.
If the function’s return status is not SS$_NORMAL, failure is indicated and
control is transferred to statement 100. At that point, some form of error
processing can be undertaken.

You can also test the return status of a system service as a logical value.
The status codes are defined so that when they are tested as logical values,
successful codes have the value true and error codes have the value false. The
last line in the preceding example could then be changed to the following:

IF (.NOT. MBX_STATUS) GO TO 100

Refer to the HP OpenVMS System Services Reference Manual for information
concerning return status codes. The return status codes are included in the
description of each system service.

10.8.3 Calling System Services as Subroutines
Subroutine calls to system services are made like other subroutine calls.
For example, to call the Create Mailbox system service, issue a call to
SYS$CREMBX, passing the appropriate arguments to it, as follows:

CALL SYS$CREMBX(,CHANNEL,,,,,’MAILBOX’)

This call corresponds to the function reference described in Section 10.8.2.
The main difference is that the status code returned by the system service is
not tested. For this reason, you should avoid this method and use a function
reference when calling system services whenever the service could fail for any
reason.

10.8.4 Passing Arguments to System Services
The description of each system service in the HP OpenVMS System Services
Reference Manual specifies the argument-passing method for each argument.
Four methods are supported:

• By immediate value

• By address: this is the HP Fortran default and is termed ‘‘by reference’’

• By descriptor: this is the HP Fortran default for CHARACTER arguments,
Fortran 90 pointers, and certain types of arrays (see Section 10.2.7)

• By data structure

These methods are discussed separately in Section 10.8.4.1 through
Section 10.8.4.4.

Using HP Fortran in the Common Language Environment 10–31

You can determine the arguments required by a system service from the
service description in the HP OpenVMS System Services Reference Manual.
Each system service description indicates the service name, the number of
arguments required, and the positional dependency of each argument.

Table 10–6 lists the HP Fortran declarations that you can use to pass any of
the standard OpenVMS data types as arguments. OpenVMS data types are
defined in OpenVMS Programming Interfaces: Calling a System Routine.

Instead of using record structure declarations for most standard OpenVMS
data types, you can consider using derived-type structures if you use the
SEQUENCE statement and are careful of alignment. However, RMS
control block structures must be declared as record structures (STRUCTURE
statement).

Table 10–6 HP Fortran Implementation of OpenVMS Data Types

OpenVMS Data Type HP Fortran Declaration

access_bit_names INTEGER (KIND=4) (2,32)
or
STRUCTURE /access_bit_names/

INTEGER (KIND=4) access_name_len
INTEGER (KIND=4) access_name_buf

END STRUCTURE !access_bit_names
RECORD /access_bit_names/ my_names(32)

access_mode BYTE or INTEGER (KIND=1)

address INTEGER (KIND=4)

address_range INTEGER (KIND=4) (2)
or
STRUCTURE /address_range/

INTEGER (KIND=4) low_address
INTEGER (KIND=4) high_address

END STRUCTURE

arg_list INTEGER (KIND=4)(n)

ast_procedure EXTERNAL

boolean LOGICAL (KIND=4)

byte_signed BYTE or INTEGER (KIND=1)

byte_unsigned BYTE or INTEGER (KIND=1)1

1Unsigned data types are not directly supported by HP Fortran. However, in most cases you can
substitute the signed equivalent, provided you do not exceed the range of the signed data structure.

(continued on next page)

10–32 Using HP Fortran in the Common Language Environment

Table 10–6 (Cont.) HP Fortran Implementation of OpenVMS Data Types

OpenVMS Data Type HP Fortran Declaration

channel INTEGER (KIND=2)

char_string CHARACTER (LEN=n)2

complex_number COMPLEX (KIND=4)3

COMPLEX (KIND=8)3

cond_value INTEGER (KIND=4)

context INTEGER (KIND=4)

date_time INTEGER (KIND=8)

device_name CHARACTER (LEN=n)

ef_cluster_name CHARACTER (LEN=n)

ef_number INTEGER (KIND=4)

exit_handler_block STRUCTURE /exhblock/
INTEGER (KIND=4) flink
INTEGER (KIND=4) exit_handler_addr
BYTE(3) %FILL
BYTE arg_count
INTEGER (KIND=4) cond_value
! .
! .(optional arguments . . .
! . one argument per longword)
!

END STRUCTURE !cntrlblk

RECORD /exhblock/ myexh_block

fab INCLUDE ’($FABDEF)’
RECORD /FABDEF/ myfab

file_protection INTEGER (KIND=4)

floating_point REAL (KIND=4)3

REAL (KIND=8)3

DOUBLE PRECISION3

REAL (KIND=16)3

function_code INTEGER (KIND=4)

identifier INTEGER (KIND=4)

2Where n can range from 1 to 65535.
3The format used by floating-point (KIND=4) and (KIND=8) data in memory is determined by the
FORTRAN command qualifier /FLOAT.

(continued on next page)

Using HP Fortran in the Common Language Environment 10–33

Table 10–6 (Cont.) HP Fortran Implementation of OpenVMS Data Types

OpenVMS Data Type HP Fortran Declaration

invo_context_blk INCLUDE ’($LIBICB)’
RECORD /INVO_CONTEXT_BLK/ invo_context_blk

invo_handle INTEGER (KIND=4)

io_status_block STRUCTURE /iosb/
INTEGER (KIND=2) iostat, ! return status
INTEGER (KIND=2) term_offset, ! Loc. of terminator
INTEGER (KIND=2) terminator, ! terminator value
INTEGER (KIND=2) term_size ! terminator size

END STRUCTURE

RECORD /iosb/ my_iosb

item_list_2 STRUCTURE /itmlst/
UNION
MAP
INTEGER (KIND=2) buflen,code
INTEGER (KIND=4) bufadr
END MAP
MAP
INTEGER (KIND=4) end_list /0/
END MAP
END UNION

END STRUCTURE !itmlst

RECORD /itmlst/ my_itmlst_2(n)
(Allocate n records, where n is the number item codes
plus an extra element for the end-of-list item.)

item_list_3 STRUCTURE /itmlst/
UNION
MAP
INTEGER (KIND=2) buflen,code
INTEGER (KIND=4) bufadr,retlenadr
END MAP
MAP
INTEGER (KIND=4) end_list /0/
END MAP
END UNION

END STRUCTURE !itmlst

RECORD /itmlst/ my_itmlst_3(n)
(Allocate n records where n is the number item codes
plus an extra element for the end-of-list item.)

(continued on next page)

10–34 Using HP Fortran in the Common Language Environment

Table 10–6 (Cont.) HP Fortran Implementation of OpenVMS Data Types

OpenVMS Data Type HP Fortran Declaration

item_list_pair STRUCTURE /itmlist_pair/
UNION
MAP

INTEGER (KIND=4) code
INTEGER (KIND=4) value

END MAP
MAP

INTEGER (KIND=4) end_list /0/
END MAP
END UNION

END STRUCTURE !itmlst_pair

RECORD /itmlst_pair/ my_itmlst_pair(n)
(Allocate n records where n is the number item codes
plus an extra element for the end-of-list item.)

item_quota_list STRUCTURE /item_quota_list/
MAP
BYTE quota_name
INTEGER (KIND=4) quota_value
END MAP
MAP
BYTE end_quota_list
END MAP

END STRUCTURE !item_quota_list

lock_id INTEGER (KIND=4)

lock_status_block STRUCTURE/lksb/
INTEGER (KIND=2) cond_value
INTEGER (KIND=2) unused
INTEGER (KIND=4) lock_id
BYTE(16)

END STRUCTURE !lksb

RECORD /lksb/ my_lksb

lock_value_block BYTE(16)

logical_name CHARACTER (LEN=n)

longword_signed INTEGER (KIND=4)

longword_unsigned INTEGER (KIND=4)1

1Unsigned data types are not directly supported by HP Fortran. However, in most cases you can
substitute the signed equivalent, provided you do not exceed the range of the signed data structure.

(continued on next page)

Using HP Fortran in the Common Language Environment 10–35

Table 10–6 (Cont.) HP Fortran Implementation of OpenVMS Data Types

OpenVMS Data Type HP Fortran Declaration

mask_byte INTEGER (KIND=1) ! (or BYTE)

mask_longword INTEGER (KIND=4)

mask_quadword INTEGER (KIND=8)

mask_word INTEGER (KIND=2)

mechanism_args INCLUDE ’($CHFDEF)’
RECORD /CHFDEF2/ mechargs
! (For more information, see Section 14.6.)

null_arg %VAL(0) ! (or an unspecified optional argument)

octaword_signed INTEGER (KIND=4)(4)

octaword_unsigned INTEGER (KIND=4)(4)1

page_protection INTEGER (KIND=4)

procedure INTEGER (KIND=4)

process_id INTEGER (KIND=4)

process_name CHARACTER (LEN=n)

quadword_signed INTEGER (KIND=8)

quadword_unsigned INTEGER (KIND=8)1

rights_holder STRUCTURE /rights_holder/
INTEGER (KIND=4) rights_id
INTEGER (KIND=4) rights_mask

END STRUCTURE !rights_holder

RECORD /rights_holder/ my_rights_holder

rights_id INTEGER (KIND=4)

rab INCLUDE ’($RABDEF)’
RECORD /RABDEF/ myrab

section_id INTEGER (KIND=4)(2) or INTEGER (KIND=8)

section_name CHARACTER (LEN=n)

system_access_id INTEGER (KIND=4)(2) or INTEGER (KIND=8)

time_name CHARACTER (LEN=23)

transaction_id INTEGER (KIND=4)(4)

1Unsigned data types are not directly supported by HP Fortran. However, in most cases you can
substitute the signed equivalent, provided you do not exceed the range of the signed data structure.

(continued on next page)

10–36 Using HP Fortran in the Common Language Environment

Table 10–6 (Cont.) HP Fortran Implementation of OpenVMS Data Types

OpenVMS Data Type HP Fortran Declaration

uic INTEGER (KIND=4)

user_arg Any longword quantity

varying_arg Any appropriate type

vector_byte_signed BYTE(n)

vector_byte_unsigned BYTE(n)1

vector_longword_signed INTEGER(KIND=4) (n)

vector_longword_unsigned INTEGER(KIND=4) (n) 1

vector_quadword_signed INTEGER(KIND=8) (n)

vector_quadword_unsigned INTEGER (KIND=8) (n) 1

vector_word_signed INTEGER (KIND=2) (n)

vector_word_unsigned INTEGER (KIND=2) (n)1

word_signed INTEGER (KIND=2) (n)

word_unsigned INTEGER (KIND=2) (n)1

1Unsigned data types are not directly supported by HP Fortran. However, in most cases you can
substitute the signed equivalent, provided you do not exceed the range of the signed data structure.

Many arguments to system services are optional. However, if you omit an
optional argument, you must include a comma (,) to indicate the absence of
that argument. For example, the SYS$TRNLNM system service takes five
arguments. If you omit the first and the last two arguments, you must include
commas to indicate their existence, as follows:

ISTAT = SYS$TRNLNM(,’LNM$FILE_DEV’,’LOGNAM’,,)

An invalid reference results if you specify the arguments as follows:

ISTAT = SYS$TRNLNM(’LOGNAM’,LENGTH,BUFFA)

This reference provides only three arguments, not the required five.

When you omit an optional argument by including an extra comma, the
compiler supplies a default value of zero (passed by immediate value).

Using HP Fortran in the Common Language Environment 10–37

10.8.4.1 Immediate Value Arguments
Value arguments are typically used when the description of the system service
specifies that the argument is a ‘‘number,’’ ‘‘mask,’’ ‘‘mode,’’ ‘‘value,’’ ‘‘code,’’
or ‘‘indicator.’’ You must use either the cDEC$ ATTRIBUTES VALUE (see
Section 10.4.2.3) or the %VAL built-in function (see Section 10.3.3) whenever
this method is required.

Immediate value arguments are used for input arguments only.

10.8.4.2 Address Arguments
Use address arguments when the description of the system service specifies
that the argument is ‘‘the address of.’’ (However, refer to Section 10.8.4.3 to
determine what to do when ‘‘the address of a descriptor’’ is specified.) In HP
Fortran, this argument-passing method is called ‘‘by reference.’’

Because this method is the HP Fortran default for passing numeric arguments,
you need to specify the cDEC$ ATTRIBUTES REFERENCE directive (see
Section 10.4.2.3) or the %REF built-in function only when the data type of the
argument is character.

The argument description also gives the hardware data type required.

For arguments described as ‘‘address of an entry mask’’ or ‘‘address of a
routine,’’ declare the argument value as an external procedure. For example,
if a system service requires the address of a routine and you want to specify
the routine HANDLER3, include the following statement in the declarations
portion of your program:

EXTERNAL HANDLER3

This specification defines the address of the routine for use as an input
argument.

Address arguments are used for both input and output:

• For input arguments that refer to byte, word, longword, or quadword
values, you can specify either constants or variables. If you specify a
variable, you must declare it to be equal to or longer than the data type
required. Table 10–7 lists the variable data type requirements for both
input and output arguments.

• For output arguments you must declare a variable of exactly the length
required to avoid including extraneous data. If, for example, the system
returns a byte value in a word-length variable, the leftmost eight bits of
the variable are not overwritten on output. The variable, therefore, might
not contain the data you expect.

10–38 Using HP Fortran in the Common Language Environment

To store output produced by system services, you must allocate sufficient
space to contain the output. You make this allocation by declaring variables
of the proper size. For an illustration, refer to the Translate Logical Name
system service example in Section 10.8.4.3. This service returns the length
of the equivalent name string as a 2-byte value.

If the output is a quadword value, you must declare a variable of the
proper dimensions. For example, to use the Get Time system service
(SYS$GETTIM), which returns the time as a quadword binary value,
declare the following:

INCLUDE ’($SYSSRVNAM)’
INTEGER (KIND=8) SYSTIM

.

.

.
ISTAT = SYS$GETTIM(SYSTIM)

The type declaration INTEGER (KIND=8) SYSTIM establishes a variable
consisting of one quadword, which is then used to store the time value.

Table 10–7 Variable Data Type Requirements

OpenVMS Type Required Input Argument Declaration
Output Argument
Declaration

Byte BYTE, INTEGER (KIND=1),
INTEGER (KIND=2), INTEGER
(KIND=4)

BYTE, INTEGER
(KIND=1)

Word INTEGER (KIND=2), INTEGER
(KIND=4)

INTEGER (KIND=2)

Longword INTEGER (KIND=4) INTEGER (KIND=4)

Quadword INTEGER (KIND=8) or INTEGER
(KIND=4) (2) or properly dimen-
sioned array

INTEGER (KIND=8) or
INTEGER (KIND=4) (2)
or properly dimensioned
array

Indicator LOGICAL

Character string descriptor CHARACTER (LEN=n) CHARACTER (LEN=n)

Entry mask or routine EXTERNAL

Using HP Fortran in the Common Language Environment 10–39

10.8.4.3 Descriptor Arguments
Descriptor arguments are used for input and output of character strings. Use
a descriptor argument when the argument description specifies ‘‘address of
a descriptor.’’ Because this method is the HP Fortran default for character
arguments, you need to specify the %DESCR built-in function only when the
data type of the argument is not character.

On input, a character constant, variable, array element, or expression is passed
to the system service by descriptor. On output, two items are needed:

• The character variable or array element to hold the output string

• An INTEGER (KIND=2) variable that is set to the actual length of the
output string

In the following example of the Translate Logical Name system service
(SYS$TRNLNM), the logical name LOGNAM is translated to its associated
name or file specification. The output string and string length are stored in the
variables EQV_BUFFER and W_NAMELEN, respectively:

INCLUDE ’($LNMDEF)’
INCLUDE ’($SYSSRVNAM)’

STRUCTURE /LIST/
INTEGER (KIND=2) BUF_LEN/255/
INTEGER (KIND=2) ITEM_CODE/LNM$_STRING/
INTEGER (KIND=4) TRANS_LOG
INTEGER (KIND=4) TRANS_LEN
INTEGER (KIND=4) END_ENTRY/0/

END STRUCTURE !LIST

CHARACTER (LEN=255) EQV_BUFFER
INTEGER (KIND=2) W_NAMELEN

RECORD/LIST/ ITEM_LIST
ITEM_LIST.TRANS_LOG = %LOC(EQV_BUFFER)
ITEM_LIST.TRANS_LEN = %LOC(W_NAMELEN)

ISTAT = SYS$TRNLNM(, ’LNM$FILE_DEV’, ’FOR$SRC’, ,ITEM_LIST)
IF (ISTAT) PRINT *, EQV_BUFFER(:W_NAMELEN)
END

10–40 Using HP Fortran in the Common Language Environment

10.8.4.4 Data Structure Arguments
Data structure arguments are used when the argument description specifies
‘‘address of a list,’’ ‘‘address of a control block,’’ or ‘‘address of a vector.’’ The
data structures required for these arguments are constructed in HP Fortran
with structure declaration blocks and the RECORD statement. The storage
declared by a RECORD statement is allocated in exactly the order given
in the structure declaration, with no space between adjacent items. For
example, the item list required for the SYS$GETJPI (or SYS$GETJPIW)
system service requires a sequence of items of two words and two longwords
each. By declaring each item as part of a structure, you ensure that the fields
and items are allocated contiguously:

STRUCTURE /GETJPI_STR/
INTEGER (KIND=2) BUFLEN, ITMCOD
INTEGER (KIND=4) BUFADR, RETLEN

END STRUCTURE
...
RECORD /GETJPI_STR/ LIST(5)

If a given field is provided as input to the system service, the calling program
must fill the field before the system service is called. You can accomplish this
with data initialization (for fields with values that are known at compile time)
and with assignment statements (for fields that must be computed).

When the data structure description requires a field that must be filled with an
address value, use the %LOC built-in function to generate the desired address
(see Section 10.3.2). When the description requires a field that must be filled
with a symbolic value (system-service function code), you can define the value
of the symbol by the method described in Section 10.8.1.

10.8.4.5 Examples of Passing Arguments
Example 10–4 shows a complete subroutine that uses a data structure
argument to the SYS$GETJPIW system service.

Example 10–4 Subroutine Using a Data Structure Argument

! Subroutine to obtain absolute and incremental values of process parameters:
! CPU time, Buffered I/O count, Direct I/O count, Page faults.

SUBROUTINE PROCESS_INFO(ABS_VALUES, INCR_VALUES)

! Declare the arguments and working storage

INTEGER (KIND=4) ABS_VALUES(4), INCR_VALUES(4), LCL_VALUES(4)
INTEGER (KIND=4) STATUS, I

(continued on next page)

Using HP Fortran in the Common Language Environment 10–41

Example 10–4 (Cont.) Subroutine Using a Data Structure Argument

! Declare the SYS$GETJPIW item list data structure in a structure declaration

STRUCTURE /GETJPI_STR/
INTEGER (KIND=2) BUFLEN /4/, ITMCOD /0/
INTEGER (KIND=4) BUFADR, RETLEN /0/

END STRUCTURE

! Create a record with the fields defined in the structure declaration

RECORD /GETJPI_STR/ LIST(5)

! Declare the structure of an I/O Status Block

STRUCTURE /IOSB_STR/
INTEGER (KIND=4) STATUS, RESERVED

END STRUCTURE

! Declare the I/O Status Block

RECORD /IOSB_STR/ IOSB

! Assign all static values in the item list

LIST(1).ITMCOD = JPI$_CPUTIM
LIST(2).ITMCOD = JPI$_BUFIO
LIST(3).ITMCOD = JPI$_DIRIO
LIST(4).ITMCOD = JPI$_PAGEFLTS

! Assign all item fields requiring addresses

LIST(1).BUFADR = %LOC(LCL_VALUES(1))
LIST(2).BUFADR = %LOC(LCL_VALUES(2))
LIST(3).BUFADR = %LOC(LCL_VALUES(3))
LIST(4).BUFADR = %LOC(LCL_VALUES(4))

STATUS = SYS$GETJPIW(,,,LIST,IOSB,,) ! Perform system service call

IF (STATUS) STATUS = IOSB.STATUS ! Check completion status
IF (.NOT. STATUS) CALL EXIT (STATUS)

! Assign the new values to the arguments

DO I=1,4
INCR_VALUES(I) = LCL_VALUES(I) - ABS_VALUES(I)
ABS_VALUES(I) = LCL_VALUES(I)

END DO
RETURN

END SUBROUTINE PROCESS_INFO

10–42 Using HP Fortran in the Common Language Environment

Example 10–5 is an example of the typical use of an I/O system service. The
program invokes SYS$QIOW to enable Ctrl/C trapping. When the program
runs, it prints an informational message whenever it is interrupted by a
Ctrl/C, and then it continues execution.

Example 10–5 Ctrl/C Trapping Example

PROGRAM TRAPC
INCLUDE ’($SYSSRVNAM)’
INTEGER (KIND=2) TT_CHAN
COMMON TT_CHAN
CHARACTER (LEN=40) LINE

! Assign the I/O channel. If unsuccessful stop; otherwise
! initialize the trap routine.

ISTAT = SYS$ASSIGN (’TT’,TT_CHAN,,)
IF (.NOT. ISTAT) CALL LIB$STOP(%VAL(ISTAT))
CALL ENABLE_CTRLC

! Read a line of input and echo it

10 READ (5,’(A)’,END=999) LINE
TYPE *, ’LINE READ: ’, LINE
GO TO 10

999 END

SUBROUTINE ENABLE_CTRLC
INTEGER (KIND=2) TT_CHAN
COMMON TT_CHAN
EXTERNAL CTRLC_ROUT

! Include I/O symbols

INCLUDE ’($IODEF)’
INCLUDE ’($SYSSRVNAM)’

! Enable Ctrl/C trapping and specify CTRLC_ROUT
! as routine to be called when Ctrl/C occurs

ISTAT = SYS$QIOW(,%VAL(TT_CHAN), %VAL(IO$_SETMODE .OR. IO$M_CTRLCAST),&
,,,CTRLC_ROUT,,%VAL(3),,,)

IF (.NOT. ISTAT) CALL LIB$STOP(%VAL(ISTAT))
RETURN
END SUBROUTINE ENABLE_CTRLC

(continued on next page)

Using HP Fortran in the Common Language Environment 10–43

Example 10–5 (Cont.) Ctrl/C Trapping Example

SUBROUTINE CTRLC_ROUT
PRINT *, ’Ctrl/C pressed’
CALL ENABLE_CTRLC
RETURN

END SUBROUTINE CTRLC_ROUT

For more examples of calling system services and RTL routines, see
Appendix F and the HP Fortran Web site.

10.9 Calling Between Compaq Fortran 77 and HP Fortran
On OpenVMS Alpha systems, you can call a Compaq Fortran 77 subprogram
from HP Fortran or call an HP Fortran subprogram from Compaq Fortran 77
(with very few exceptions). A Compaq Fortran 77 procedure and a HP Fortran
procedure can also perform I/O to the same unit number.

10.9.1 Argument Passing and Function Return Values
The recommended rules for passing arguments and function return values
between Compaq Fortran 77 and HP Fortran procedures are as follows:

• If possible, express the following HP Fortran features with the Compaq
Fortran 77 language:

Function references

CALL statements

Function definitions

Subroutine definitions

Avoid using HP Fortran language features not available in Compaq Fortran
77. Since HP Fortran is a superset of Compaq Fortran 77, specifying the
procedure interface using the Compaq Fortran 77 language helps ensure
that calls between the two languages will succeed.

• Not all data types in HP Fortran have equivalent Compaq Fortran 77
data types. The following HP Fortran features should not be used between
HP Fortran and Compaq Fortran 77 procedures, because they are not
supported by Compaq Fortran 77:

Derived-type (user-defined) data, which has no equivalents in Compaq
Fortran 77.

10–44 Using HP Fortran in the Common Language Environment

HP Fortran record structures are supported by Compaq Fortran 77
and HP Fortran as an extension to the Fortran 90 standard. Thus, you
can use Compaq Fortran 77 record structures in both HP Fortran and
Compaq Fortran 77.

HP Fortran data with the POINTER attribute, which has no
equivalents in Compaq Fortran 77. The pointer data type supported by
Compaq Fortran 77 is not equivalent to Fortran 90 pointer data.

Because HP Fortran supports the pointer data type supported by
Compaq Fortran 77, you can use Compaq Fortran 77 pointer data types
in both HP Fortran and Compaq Fortran 77. (In some cases, you can
create Compaq Fortran 77 pointer data in an HP Fortran procedure
using the %LOC function.)

HP Fortran arrays with the POINTER attribute are passed by array
descriptor. A program written in Compaq Fortran 77 needs to interpret
the array descriptor format generated by an HP Fortran array with the
POINTER attribute (see Section 10.2.7).

HP Fortran assumed-shape arrays.

HP Fortran assumed-shape arrays are passed by array descriptor. A
program written in Compaq Fortran 77 needs to interpret the array
descriptor format generated by an HP Fortran assumed-shape array
(see Section 10.2.7).

For more information on how HP Fortran handles arguments and function
return values, see Section 10.2.4.

• Make sure the sizes of INTEGER, LOGICAL, REAL, and COMPLEX
declarations match.

For example, HP Fortran declarations of REAL (KIND=4) and INTEGER
(KIND=4) match Compaq Fortran 77 declarations of REAL*4 and
INTEGER*4. For COMPLEX values, an HP Fortran declaration of
COMPLEX (KIND=4) matches a Compaq Fortran 77 declaration of
COMPLEX*8; COMPLEX (KIND=8) matches COMPLEX*16.

Your source programs may contain INTEGER, LOGICAL, REAL, or
COMPLEX declarations without a kind parameter (or size specifier).
In this case, when compiling the HP Fortran procedures (FORTRAN
command) and Compaq Fortran 77 procedures (FORTRAN/OLDF77
command), either omit or specify the equivalent qualifiers for controlling
the sizes of these declarations.

For more information on these qualifiers, see Section 2.3.26 for INTEGER
and LOGICAL declarations, Section 2.3.37 for REAL and COMPLEX
declarations, and Section 2.3.17 for DOUBLE PRECISION declarations.

Using HP Fortran in the Common Language Environment 10–45

• HP Fortran uses the same argument-passing conventions as Compaq
Fortran 77 on OpenVMS Alpha systems (see Section 10.2.4).

• You can return nearly all function return values from an HP Fortran
function to a calling Compaq Fortran 77 routine, with the following
exceptions:

You cannot return HP Fortran pointer data from HP Fortran to a
Compaq Fortran 77 calling routine.

You cannot return HP Fortran user-defined data types from an HP
Fortran function to a Compaq Fortran 77 calling routine.

Example 10–6 and Example 10–7 show passing an array from an HP Fortran
program to a Compaq Fortran 77 subroutine that prints its value.

Example 10–6 shows the HP Fortran program (file ARRAY_TO_F77.F90).
It passes the same argument as a target and a pointer. In both cases, it
is received by reference by the Compaq Fortran 77 subroutine as a target
(regular) argument. The interface block in Example 10–6 is not needed, but
does allow data type checking.

Example 10–6 HP Fortran Program Calling a Compaq Fortran 77 Subroutine

! Pass arrays to f77 routine. File: ARRAY_TO_F77.F90

! This interface block is not required, but must agree
! with actual procedure. It can be used for type checking.

INTERFACE ! Procedure interface block
SUBROUTINE MEG(A)
INTEGER :: A(3)
END SUBROUTINE

END INTERFACE

INTEGER, TARGET :: X(3)
INTEGER, POINTER :: XP(:)

X = (/ 1,2,3 /)
XP => X

CALL MEG(X) ! Call f77 implicit interface subroutine twice.
CALL MEG(XP)
END

10–46 Using HP Fortran in the Common Language Environment

Example 10–7 shows the Compaq Fortran 77 program called by the HP Fortran
program (file ARRAY_F77.FOR).

Example 10–7 Compaq Fortran 77 Subroutine Called by an HP Fortran
Program

! Get array argument from F90. File: ARRAY_F77.FOR

SUBROUTINE MEG(A)
INTEGER A(3)
PRINT *,A
END

These files (shown in Example 10–6 and Example 10–7) might be compiled,
linked, and run as follows:

$ FORTRAN ARRAY_TO_F77.F90
$ FORTRAN /OLD_F77 ARRAY_F77.FOR
$ LINK/EXECUTABLE=ARRAY_TO_F77 ARRAY_TO_F77, ARRAY_F77
$ RUN ARRAY_TO_F77

1 2 3
1 2 3

In Example 10–6, because array A is not defined as a pointer in the interface
block, the HP Fortran pointer variable XP is passed as target data by reference
(address of the target data).

However, if the interface to the dummy argument had the POINTER attribute,
the variable XP would be passed by descriptor. This descriptor would not work
with the Compaq Fortran 77 program shown in Example 10–7.

For More Information:

• On how HP Fortran handles arguments and function return values, see
Section 10.2.4.

• On explicit interfaces, see the HP Fortran for OpenVMS Language
Reference Manual.

• On compatibility between the HP Fortran and Compaq Fortran 77
languages, see Appendix B.

• On use association, see the HP Fortran for OpenVMS Language Reference
Manual.

• On other aspects of the HP Fortran language, see the HP Fortran for
OpenVMS Language Reference Manual.

Using HP Fortran in the Common Language Environment 10–47

• On calling the Fortran 77 compiler with the /OLD_F77 compiler option, see
Section 2.3.34.

10.9.2 Using Data Items in Common Blocks
To make global data available across HP Fortran and Compaq Fortran 77
procedures, use common blocks.

Common blocks are supported by both HP Fortran and Compaq Fortran 77,
but modules are not supported by Compaq Fortran 77. Some suggestions about
using common blocks follow:

• Use the same COMMON statement to ensure that the data items match in
order, type, and size.

If multiple HP Fortran procedures will use the same common block, declare
the data in a module and reference that module with a USE statement
where needed.

If Compaq Fortran 77 procedures use the same common block as the HP
Fortran procedures and the common block is declared in a module, consider
modifying the Compaq Fortran 77 source code as follows:

Replace the common block declaration with the appropriate USE
statement.

Recompile the Compaq Fortran 77 source code with the FORTRAN
command (HP Fortran compiler).

• Specify the same alignment characteristics with the /ALIGNMENT
qualifier when compiling both HP Fortran procedures (FORTRAN
command) and Compaq Fortran 77 procedures (FORTRAN/OLDF77
command).

When compiling the source files with both the FORTRAN and
FORTRAN/OLDF77 commands, consistently use the /ALIGN=COMMONS
qualifier. This naturally aligns data items in a common block and ensures
consistent format of the common block.

• Make sure the sizes of INTEGER, LOGICAL, REAL, and COMPLEX
declarations match.

For example, HP Fortran declarations of REAL (KIND=4) and INTEGER
(KIND=4) match Compaq Fortran 77 declarations of REAL*4 and
INTEGER*4. For COMPLEX values, an HP Fortran declaration of
COMPLEX (KIND=4) matches a Compaq Fortran 77 declaration of
COMPLEX*8; COMPLEX (KIND=8) matches COMPLEX*16.

10–48 Using HP Fortran in the Common Language Environment

Your source programs may contain INTEGER, LOGICAL, REAL, or
COMPLEX declarations without a kind parameter or size specifier. In this
case, either omit or specify the same qualifiers that control the sizes of
these declarations when compiling the procedures with multiple commands
(same rules as Section 10.9.1).

10.9.3 I/O to the Same Unit Number
HP Fortran and Compaq Fortran 77 share the same run-time system, so you
can perform I/O to the same unit number by HP Fortran and Compaq Fortran
77 procedures. For instance, a HP Fortran main program can open the file,
a Compaq Fortran 77 function can issue READ or WRITE statements to the
same unit, and the HP Fortran main program can close the file.

For More Information:

• On the HP Fortran language, see the HP Fortran for OpenVMS Language
Reference Manual.

• On passing arguments, function return values, and the contents of registers
on OpenVMS systems, see the HP OpenVMS Calling Standard.

• On HP Fortran intrinsic data types, see Chapter 8.

• On HP Fortran I/O, see Chapter 6.

10.10 Calling Between HP Fortran and HP C
Before creating a mixed-language program that contains procedures written in
HP Fortran and C, you need to know how to:

• Compile and link the program

• Use equivalent data arguments passed between the two languages

10.10.1 Compiling and Linking Files
Use the FORTRAN command to compile HP Fortran source files and CC to
compile C source files. Link the object files using a LINK command.

For example, the following FORTRAN command compiles the HP Fortran main
program EX1.F90 and the called C function UPEN.C:

$ FORTRAN EX1.F90
$ CC UPEN.C

The following LINK command creates the executable program:

$ LINK EX1, UPEN

Using HP Fortran in the Common Language Environment 10–49

10.10.2 Procedures and External Names
When designing a program that will use HP Fortran and C, be aware of the
following general rules and available HP Fortran capabilities:

• The OpenVMS Linker only allows one main program. Declare either the
HP Fortran or the C program, but not both, as the main program.

In HP Fortran, you can declare a main program:

With the PROGRAM and END PROGRAM statements

With an END statement

To create a HP Fortran subprogram, declare the subprogram with such
statements as FUNCTION and END FUNCTION or SUBROUTINE and
END SUBROUTINE.

In C, you need to use a main() declaration for a main program. To create
a C function (subprogram), declare the appropriate function name and omit
the main() declaration.

• External names in C and HP Fortran are usually converted to uppercase.

Because both HP Fortran and C make external names uppercase by
default, external names should be uppercase unless requested otherwise.

Consistently use the CC qualifier /NAMES and the FORTRAN qualifier
/NAMES to control the way C and HP Fortran treat external names (see
Section 2.3.32).

• You can consider using the following HP Fortran facility provided to
simplify the HP Fortran and C language interface.

You can use the cDEC$ ALIAS and cDEC$ ATTRIBUTES directives
to specify alternative names for routines and change default passing
mechanisms (see Section 10.4).

10.10.3 Invoking a C Function from HP Fortran
You can use a function reference or a CALL statement to invoke a C function
from an HP Fortran main or subprogram.

If a value will be returned, use a function reference:

C Function Declaration HP Fortran Function Invocation

data-type calc(argument-list)
{
...
} ;

EXTERNAL CALC
data-type :: CALC, variable-name
...
variable-name=CALC(argument-list)
...

10–50 Using HP Fortran in the Common Language Environment

If no value is returned, use a void return value and a CALL statement:

C Function Declaration HP Fortran Subroutine Invocation

void calc(argument-list)
{
...
} ;

EXTERNAL CALC
...
CALL CALC(argument-list)

10.10.4 Invoking an HP Fortran Function or Subroutine from C
A C main program or function can invoke an HP Fortran function or subroutine
by using a function prototype declaration and invocation.

If a value is returned, use a FUNCTION declaration:

HP Fortran Declaration C Invocation

FUNCTION CALC(argument-list)
data-type :: CALC
...
END FUNCTION CALC

extern data-type calc(argument-list)
data-type variable-name;
variable-name=calc(argument-list);
...

If no value is returned, use a SUBROUTINE declaration and a void return
value:

HP Fortran Declaration C Invocation

SUBROUTINE CALC(argument-list)
...
END SUBROUTINE CALC

extern void calc(argument-list)

calc(argument-list);
...

10.10.5 Equivalent Data Types for Function Return Values
Both C and HP Fortran pass most function return data by value, but
equivalent data types must be used. The following table lists a sample of
equivalent function declarations in HP Fortran and C. See Table 10–8 for a
complete list of data declarations.

Using HP Fortran in the Common Language Environment 10–51

C Function Declaration HP Fortran Function Declaration

float rfort() FUNCTION RFORT()
REAL (KIND=4) :: RFORT

double dfort() FUNCTION DFORT()
REAL (KIND=8) :: DFORT

int ifort() FUNCTION IFORT()
INTEGER (KIND=4) :: IFORT

Because there are no corresponding data types in C, you should avoid calling
HP Fortran functions of type COMPLEX and DOUBLE COMPLEX, unless you
pass a struct of two float (or double float) C values (see Section 10.10.9).

The floating-point format used in memory is determined by the /FLOAT
qualifier for both the FORTRAN and CC commands. When floating-point
data is passed as an argument or is globally available, the same floating-point
format must be used in memory by both the C and HP Fortran parts of your
program.

The HP Fortran LOGICAL data types contain a zero if the value is false and a
–1 if the value is true, which works with C conditional and if statements.

For More Information:

• On using the CC command, see the HP C User’s Guide for OpenVMS
Systems.

• On using the FORTRAN command, see Chapter 2.

• On HP Fortran intrinsic data types, see Chapter 8.

• On the HP Fortran language, see the HP Fortran for OpenVMS Language
Reference Manual.

• On the HP C language, see the HP C Language Reference Manual.

10.10.6 Argument Association and Equivalent Data Types
HP Fortran follows the argument-passing rules described in Section 10.2.4.
These rules include:

• Passing arguments by reference (address)

• Receiving arguments by reference (address)

• Passing character data using a character descriptor (address and length)

10–52 Using HP Fortran in the Common Language Environment

10.10.6.1 HP Fortran Intrinsic Data Types
HP Fortran lets you specify the lengths of its intrinsic numeric data types with
the following:

• The kind parameter, such as REAL (KIND=4), which is sometimes
abbreviated as REAL(4). Intrinsic integer and logical kinds are 1, 2, 4,
and 8. Intrinsic real and complex kinds are 4 (single-precision) and 8
(double-precision).

• A default-length name without a kind parameter, such as REAL or
INTEGER. Certain FORTRAN command qualifiers can change the
default kind, as described in Section 2.3.26 (for INTEGER and LOGICAL
declarations), Section 2.3.37 (for REAL and COMPLEX declarations), and
Section 2.3.17 (for DOUBLE PRECISION declarations).

• The HP Fortran extension of appending a *n size specifier to the default-
length name, such as INTEGER*8.

• For double-precision real or complex data, the word DOUBLE followed by
the default-length name without a kind parameter (specifically DOUBLE
PRECISION and DOUBLE COMPLEX).

The following declarations of the integer An are equivalent (unless you
specified the appropriate FORTRAN command qualifier):

INTEGER (KIND=4) :: A1
INTEGER (4) :: A2
INTEGER :: A3
INTEGER*4 :: A4

Character data in HP Fortran is passed and received by character descriptor.
Dummy character arguments can use assumed-length for accepting character
data of varying length.

For More Information:
On HP Fortran intrinsic data types, see Chapter 8.

10.10.6.2 Equivalent HP Fortran and C Data Types
The calling routine must pass the same number of arguments expected by the
called routine. Also, for each argument passed, the manner (mechanism) of
passing the argument and the expected data type must match what is expected
by the called routine. For instance, C usually passes data by value and HP
Fortran typically passes argument data by reference.

Using HP Fortran in the Common Language Environment 10–53

You must determine the appropriate data types in each language that are
compatible. When you call a C routine from a HP Fortran main program,
certain Fortran cDEC$ ATTRIBUTES directives may be useful to change the
default passing mechanism (such as cDEC$ ATTRIBUTES C) as discussed in
Section 10.4.2.

If the calling routine cannot pass an argument to the called routine because of
a language difference, you may need to rewrite the called routine. Another
option is to create an interface jacket routine that handles the passing
differences.

When a C program calls an HP Fortran subprogram, all arguments must be
passed by reference because this is what the HP Fortran routine expects. To
pass arguments by reference, the arguments must specify addresses rather
than values. To pass constants or expressions, their contents must first be
placed in variables; then the addresses of the variables are passed.

When you pass the address of the variable, the data types must correspond as
shown in Table 10–8.

Table 10–8 HP Fortran and C Data Types

HP Fortran Data Declaration C Data Declaration

integer (kind=2) x short int x;

integer (kind=4) x int x;

integer (kind=8) x _ _int64 x;

logical x unsigned x;

real x float x;

double precision x double x;

real (kind=16) x long double x;1

complex (kind=4) x struct { float real, float imag; } x;

complex (kind=8) x struct { double dreal, double dimag } x;

complex (kind=16) x struct { long double dreal; long double dimag } x;2

character(len=5) char x[5]

1HP C interprets this as either a 128-bit IEEE X_FLOAT or a 64-bit floating-point number,
depending on the value specified in the CC /L_DOUBLE-SIZE qualifier. The default is /L_
DOUBLE-SIZE=128.
2The equivalent C declaration is long double (may not support X_floating).

10–54 Using HP Fortran in the Common Language Environment

Be aware of the various sizes supported by HP Fortran for integer, logical, and
real variables (see Chapter 8), and use the size consistent with that used in the
C routine.

HP Fortran LOGICAL data types contain a zero if the value is false and a –1 if
the value is true, which works with C language conditional and if statements.

The floating-point format used in memory is determined by the /FLOAT
qualifier for both the FORTRAN and CC commands. When floating-point
data is passed as an argument or is globally available, the same floating-point
format must be used in memory both by the C and HP Fortran parts of your
program.

Any character string passed by HP Fortran is not automatically null-
terminated. To null-terminate a string from HP Fortran, use the CHAR
intrinsic function (described in the HP Fortran for OpenVMS Language
Reference Manual).

10.10.7 Example of Passing Integer Data to C Functions
Example 10–8 shows C code that declares the two functions HLN and MGN.
These functions display the arguments received. The function HLN expects
the argument by value, whereas MGN expects the argument by reference
(address).

Example 10–8 C Functions Called by an HP Fortran Program

/* get integer by value from Fortran. File: PASS_INT_TO_C.C */

void hln(int i) {
printf("99==%d\n",i);

i = 100;
}

/* get integer by reference from Fortran */

void mgn(int *i) {
printf("99==%d\n",*i);

*i = 101;
}

Example 10–9 shows the HP Fortran (main program) code that calls the two C
functions HLN and MGN.

Using HP Fortran in the Common Language Environment 10–55

Example 10–9 Calling C Functions and Passing Integer Arguments

! Using %REF and %VAL to pass argument to C. File: PASS_INT_TO_CFUNCS.F90
INTEGER :: I
I = 99
CALL HLN(%VAL(I)) ! pass by value
PRINT *,"99==",I

CALL MGN(%REF(I)) ! pass by reference
PRINT *,"101==",I
I = 99
CALL MGN(I) ! pass by reference
PRINT *,"101==",I
END

The files (shown in Example 10–8 and Example 10–9) might be compiled,
linked, and run as follows:

$ FORTRAN PASS_INT_TO_CFUNCS.F90
$ CC PASS_INT_TO_C.C
$ LINK/EXECUTABLE=PASS_INT PASS_INT_TO_CFUNCS, PASS_INT_TO_C
$ RUN PASS_INT
99==99
99== 99
99==99
101== 101
99==99
101== 101

10.10.8 Example of Passing Complex Data to C Functions
Example 10–10 shows HP Fortran code that passes a COMPLEX (KIND=4)
value (1.0,0.0) by immediate value to subroutine foo. To pass COMPLEX
arguments by value, the compiler passes the real and imaginary parts of the
argument as two REAL arguments by immediate value.

10–56 Using HP Fortran in the Common Language Environment

Example 10–10 Calling C Functions and Passing Complex Arguments

! Using !DEC$ATTRIBUTES to pass COMPLEX argument by value to F90 or C.
! File: cv_main.f90

interface
subroutine foo(cplx)
!DEC$ATTRIBUTES C :: foo

complex cplx
end subroutine

end interface

complex(kind=4) c
c = (1.0,0.0)
call foo(c) ! pass by value

end

If subroutine foo were written in HP Fortran, it might look similar to the
following example. In this version of subroutine foo, the COMPLEX parameter
is received by immediate value. To accomplish this, the compiler accepts two
REAL parameters by immediate value and stores them into the real and
imaginary parts, respectively, of the COMPLEX parameter cplx.

! File: cv_sub.f90

subroutine foo(cplx)
!DEC$ATTRIBUTES C :: foo
complex cplx

print *, ’The value of the complex number is ’, cplx

end subroutine

If subroutine foo were written in C, it might look similar to the following
example in which the complex number is explicitly specified as two arguments
of type float.

/* File: cv_sub.c */

#include <stdio.h>

typedef struct {float c1; float c2;} complex;

void foo(complex c)
{

printf("The value of the complex number is (%f,%f)\n", c1, c2);
}

Using HP Fortran in the Common Language Environment 10–57

The main routine (shown in Example 10–10) might be compiled and linked to
the object file created by the compilation of the HP Fortran subroutine and
then run as follows:

$ FORTRAN CV_MAIN.F90
$ FORTRAN CV_SUB.F90
$ LINK/EXECUTABLE=CV.EXE CV_MAIN.OBJ, CV_SUB.OBJ
$ RUN CV
1.000000,0.0000000E+00

The main routine might also be compiled and linked to the object file created
by the compilation of the C subroutine and then run as follows:

$ CC CV_SUB.C
$ LINK/EXECUTABLE=CV2.EXE CV_MAIN.OBJ CV_SUB.OBJ
$ RUN CV2
1.000000,0.000000

10.10.9 Handling User-Defined Structures
User-defined derived types in HP Fortran and user-defined C structures can be
passed as arguments if the following conditions are met:

• The elements of the structures use the same alignment conventions
(same amount of padding bytes, if any). The default alignment for C
structure members is natural alignment. You can use the CC /MEMBER_
ALIGNMENT qualifier (or pragma) to alter that alignment.

Derived-type data in HP Fortran is naturally aligned (the compiler adds
needed padding bytes) unless you specify the /ALIGNMENT=RECORDS=-
PACKED (or equivalent) qualifier (see Section 2.3.3).

• All elements of the structures are in the same order.

HP Fortran orders elements of derived types sequentially. However, those
writing standard-conforming programs should not rely on this sequential
order because the standard allows elements to be in any order unless the
SEQUENCE statement is specified.

• The respective elements of the structures have the same data type and
length (kind), as described in Section 10.10.6.

• The structure must be passed by reference (address).

10–58 Using HP Fortran in the Common Language Environment

10.10.10 Handling Scalar Pointer Data
When HP Fortran passes scalar numeric data with the POINTER attribute,
how the scalar numeric data gets passed depends on whether or not an
interface block is provided:

• If you do not provide an interface block to pass the actual pointer, HP
Fortran dereferences the HP Fortran pointer and passes the actual data
(the target of the pointer) by reference.

• If you do provide an interface block to pass the actual pointer, HP Fortran
passes the HP Fortran pointer by reference.

When passing scalar numeric data without the pointer attribute, HP Fortran
passes the actual data by reference. If the called C function declares the
dummy argument for the passed data to be passed by a pointer, it accepts the
actual data passed by reference (address) and handles it correctly.

Similarly, when passing scalar data from a C program to an HP Fortran
subprogram, the C program can use pointers to pass numeric data by reference.

Example 10–11 shows an HP Fortran program that passes a scalar (nonarray)
pointer to a C function. Variable X is a pointer to variable Y.

The function call to IFUNC1 uses a procedure interface block, whereas the
function call to IFUNC2 does not. Because IFUNC1 uses a procedure interface
block (explicit interface), the pointer is passed. Without an explicit interface
IFUNC2, the target data is passed.

Using HP Fortran in the Common Language Environment 10–59

Example 10–11 Calling C Functions and Passing Pointer Arguments

! Pass scalar pointer argument to C. File: SCALAR_POINTER_FUNC.F90

INTERFACE
FUNCTION IFUNC1(A)
INTEGER, POINTER :: A
INTEGER IFUNC1
END FUNCTION

END INTERFACE

INTEGER, POINTER :: X
INTEGER, TARGET :: Y

Y = 88
X => Y
PRINT *,IFUNC1(X) ! Interface block visible, so pass

! pointer by reference. C expects "int **"

PRINT *,IFUNC2(X) ! No interface block visible, so pass
! value of "y" by reference. C expects "int *"

PRINT *,Y
END

Example 10–12 shows the C function declarations that receive the HP Fortran
pointer or target arguments from the example in Example 10–11.

Example 10–12 C Functions Receiving Pointer Arguments

/* C functions Fortran 90 pointers. File: SCALAR_POINTER.C */

int ifunc1(int **a) {
printf("a=%d\n",**a);
**a = 99;
return 100;
}

int ifunc2(int *a) {
printf("a=%d\n",*a);
*a = 77;
return 101;

}

The files (shown in Example 10–11 and Example 10–12) might be compiled,
linked, and run as follows:

10–60 Using HP Fortran in the Common Language Environment

$ CC SCALAR_POINTER.C
$ FORTRAN SCALAR_POINTER_FUNC.F90
$ LINK/EXECUTABLE=POINTER SCALAR_POINTER, SCALAR_POINTER_FUNC
$ RUN POINTER
a=88

100
a=99

101
77

10.10.11 Handling Arrays
There are two major differences between the way the C and HP Fortran
languages handle arrays:

• HP Fortran stores arrays with the leftmost subscript varying the fastest
(column-major order). With C, the rightmost subscript varies the fastest
(row-major order).

• Although the default for the lower bound of an array in HP Fortran is 1,
you can specify an explicit lower bound of 0 (zero) or another value. With
C the lower bound is 0.

Because of these two factors:

• When a C routine uses an array passed by an HP Fortran subprogram, the
dimensions of the array and the subscripts must be interchanged and also
adjusted for the lower bound of 0 instead of 1 (or a different value).

• When an HP Fortran program uses an array passed by a C routine, the
dimensions of the array and the subscripts must be interchanged. You also
need to adjust for the lower bound being 0 instead of 1, by specifying the
lower bound for the HP Fortran array as 0.

HP Fortran orders arrays in column-major order. The following HP Fortran
array declaration for a 2 by 3 array creates elements ordered as y(1,1), y(2,1),
y(1,2), y(2,2), y(1,3), y(2,3):

integer y(2,3)

The HP Fortran declaration for a 2 by 3 array can be modified as follows to
have the lowest bound 0 and not 1, resulting in elements ordered as y(0,0),
y(1,0), y(0,1), y(1,1), y(0,2), y(1,2):

integer y(0:1,0:2)

The following C array declaration for a 3 by 2 array has elements in row-major
order as z[0,0], z[0,1], z[1,0], z[1,1], z[2,0], z[2,1]:

int z[3][2]

Using HP Fortran in the Common Language Environment 10–61

To use C and HP Fortran array data:

• Consider using a 0 (zero) as the lowest bounds in the HP Fortran array
declaration.

You may need to specify the HP Fortran declaration with a lowest
bound 0 (not 1) for maintenance with C arrays or because of algorithm
requirements.

• Reverse the dimensions in one of the array declaration statements. For
example, declare an HP Fortran array as 2 by 3 and the C array as 3 by 2.
Similarly, when passing array row and column locations between C and HP
Fortran, reverse the dimension numbers (interchange the row and column
numbers in a two-dimensional array).

When passing certain array arguments, if you use an explicit interface that
specifies the dummy argument as an array with the POINTER attribute or
an assumed-shape array, the argument is passed by array descriptor (see
Section 10.2.7).

For information about performance when using multidimensional arrays, see
Section 5.4.

Example 10–13 shows a C function declaration for function EXPSHAPE, which
prints the passed explicit-shape array.

Example 10–13 C Function That Receives an Explicit-Shape Array

/* Get explicit-shape arrays from Fortran. File: EXPARRAY_FUNC.C */

void expshape(int x[3][2]) {
int i,j;

for (i=0;i<3;i++)
for (j=0;j<2;j++) printf("x[%d][%d]=%d\n",i,j,x[i][j]);

}

Example 10–14 shows an HP Fortran program that calls the C function
EXPSHAPE (shown in Example 10–13).

10–62 Using HP Fortran in the Common Language Environment

Example 10–14 HP Fortran Program That Passes an Explicit-Shape Array

! Pass an explicit-shape array from Fortran to C. File: EXPARRAY.F90

INTEGER :: X(2,3)
X = RESHAPE((/(I,I=1,6)/), (/2,3/))

CALL EXPSHAPE(X)
END

The files (shown in Example 10–13 and Example 10–14) might be compiled,
linked, and run as follows:

$ FORTRAN EXPARRAY.F90
$ CC EXPARRAY_FUNC.C
$ LINK/EXECUTABLE=EXPARRAY EXPARRAY, EXPARRAY_FUNC
$ RUN EXPARRAY
x[0][0]=1
x[0][1]=2
x[1][0]=3
x[1][1]=4
x[2][0]=5
x[2][1]=6

For information on the use of array arguments with HP Fortran, see
Section 10.2.5.

10.10.12 Handling Common Blocks of Data
The following notes apply to handling common blocks of data between HP
Fortran and C:

• In HP Fortran, you declare each common block with the COMMON
statement. In C, you can use any global variable defined as a struct.

• Data types must match unless you desire implicit equivalencing. If so, you
must adhere to the alignment restrictions for HP Fortran data types.

• If there are multiple routines that declare data with multiple COMMON
statements and the common blocks are of unequal length, the largest of the
sizes is used to allocate space.

• A blank common block has a name of $BLANK.

• You should specify the same alignment characteristics in C and HP
Fortran. To specify the alignment of common block data items, specify the
/ALIGN=COMMONS=NATURAL or /ALIGN=COMMONS=STANDARD
qualifiers when compiling HP Fortran procedures using the FORTRAN
command or specify data declarations carefully (see Section 5.3).

Using HP Fortran in the Common Language Environment 10–63

The following examples show how C and HP Fortran code can access common
blocks of data. The C code declares a global structure, calls the f_calc HP
Fortran function to set the values, and prints the values:

struct S {int j; float k;}r;
main() {
f_calc();
printf("%d %f\n", r.j, r.k);

}

The HP Fortran function then sets the data values:

SUBROUTINE F_CALC()
COMMON /R/J,K
REAL K
INTEGER J
J = 356
K = 5.9
RETURN
END SUBROUTINE F_CALC

The C program then prints the structure member values 356 and 5.9 set by the
HP Fortran function.

10–64 Using HP Fortran in the Common Language Environment

11
Using OpenVMS Record Management

Services

This chapter describes:

• Section 11.1, Overview of OpenVMS Record Management Services

• Section 11.2, RMS Data Structures

• Section 11.3, RMS Services

• Section 11.4, User-Written Open Procedures

• Section 11.5, Example of Block Mode I/O

11.1 Overview of OpenVMS Record Management Services
You can call OpenVMS Record Management Services (RMS) directly from
HP Fortran programs. RMS is used by all utilities and languages for their
I/O processing, allowing files to be accessed efficiently, flexibly, with device
independence, and taking full advantage of the capabilities of the OpenVMS
operating system.

You need to know the basic concepts concerning files on OpenVMS systems
and system-service calling conventions before reading this chapter. Basic
file concepts are covered in the Guide to OpenVMS File Applications, and
system-service calling conventions are covered in Chapter 10.

You should also have access to the OpenVMS Record Management Services
Reference Manual. Although not written specifically for HP Fortran
programmers, it is the definitive reference source for all information on
the use of RMS.

This chapter will help you understand the material in the OpenVMS Record
Management Services Reference Manual in terms of Fortran concepts and
usage. You should also be able to more fully understand the material in the
Guide to OpenVMS File Applications, which covers more areas of RMS in
greater detail than this chapter.

Using OpenVMS Record Management Services 11–1

The easiest way to call RMS services directly from HP Fortran is to use a
USEROPEN routine, which is a subprogram that you specify in an OPEN
statement. The HP Fortran Run-Time Library (RTL) I/O support routines call
the USEROPEN routine in place of the RMS services at the time a file is first
opened for I/O.

The HP Fortran RTL sets up the RMS data structures on your behalf with
initial field values that are based on parameters specified in your OPEN
statement. This initialization usually eliminates most of the code needed to set
up the proper input to RMS Services. If you specify the USEROPEN keyword
in the OPEN statement, control transfers to the specified USEROPEN routine
that can further change RMS data structures and then call the appropriate
RMS services, including SYS$OPEN (or SYS$CREATE) and SYS$CONNECT.

When you use USEROPEN routines, you can take advantage of the power
of RMS without most of the declarations and initialization code normally
required. Section 11.4 describes how to use USEROPEN routines and gives
examples. You should be familiar with the material in Section 11.2 before
reading Section 11.4.

11.2 RMS Data Structures
RMS system services have so many options and capabilities that it is
impractical to use anything other than several large data structures to
provide their arguments. You should become familiar with all of the RMS data
structures before using RMS system services.

The RMS data structures are:

• File Access Block (FAB): used to describe files in general.

• Record Access Block (RAB): used to describe the records in files.

• Name Block (NAM): used to give supplementary information about the
name of files beyond that provided with the FAB.

• Extended Attributes Blocks (XABs): a family of related blocks that are
linked to the FAB or RAB to communicate to RMS any file attributes
beyond those expressed in the FAB.

The RMS data structures are used both to pass arguments to RMS services and
to return information from RMS services to your program. In particular, an
auxiliary structure, such as a NAM or XAB block, is commonly used explicitly
to obtain information optionally returned from RMS services.

11–2 Using OpenVMS Record Management Services

The OpenVMS Record Management Services Reference Manual describes how
each of these data structures is used in calls to RMS services. In this section,
a brief overview of each block is given, describing its purpose and how it is
manipulated in HP Fortran programs.

In general, there are six steps to using the RMS control blocks in calls to RMS
system services:

1. Declare the structure of the blocks and the symbolic parameters used in
them by including the appropriate definition library modules from the
Fortran default library FORSYSDEF.TLB.

2. Declare the memory allocation for the blocks that you need with a
RECORD statement.

3. Declare the system service names by including the library module
$SYSSRVNAM from FORSYSDEF.TLB.

4. Initialize the values of fields needed by the service you are calling. The
structure definitions provided for these blocks in the FORSYSDEF library
modules provide only the field names and offsets needed to reference the
RMS data structures. You must assign all of the field values explicitly in
your HP Fortran program.

Two fields of each control block are mandatory; they must be filled in with
the correct values before they are used in any service call. These are the
block id (BID, or COD in the case of XABs) and the block length (BLN).
These are checked by all RMS services to ensure that their input blocks
have proper form.

These fields must be assigned explicitly in your HP Fortran programs,
unless you are using the control blocks provided by the Fortran RTL I/O
routines, which initialize all control block fields. See Table 11–1 for a list
of the control field values provided by the Fortran RTL I/O routines.

5. Invoke the system service as a function reference, giving the control blocks
as arguments according to the specifications in the RMS reference manual.

6. Check the return status to ensure that the service has completed
successfully.

Steps 1-4 are described for each type of control block in Section 11.2.2 to
Section 11.2.5. See Section 11.3 for descriptions of steps 5 and 6.

Using OpenVMS Record Management Services 11–3

11.2.1 Using FORSYSDEF Library Modules to Manipulate RMS Data
Structures
The definition library FORSYSDEF.TLB contains the required Fortran
declarations for all of the field offsets and symbolic values of field contents
described in the OpenVMS Record Management Services Reference Manual.
The appropriate INCLUDE statement needed to access these declarations for
each structure is described wherever appropriate in the text that follows.

In general, you need to supply one or more RECORD statements to
allocate the memory for the structures that you need. See the OpenVMS
Record Management Services Reference Manual for a description of the
naming conventions used in RMS service calls. Only the convention for the
PARAMETER declarations is described here.

The FORSYSDEF library modules contain several different kinds of
PARAMETER declarations. The declarations are distinguished from each
other by the letter following the dollar sign ($) in their symbolic names. Each
is useful in manipulating field values, but the intended use of the different
kinds of PARAMETER declarations is as follows:

• Declarations that define only symbolic field values are identified by the
presence of a ‘‘C_’’ immediately after the block prefix in their names. For
example, the RAB$B_RAC field has three symbolic values, one each for
sequential, keyed, and RFA access modes. The symbolic names for these
values are RABC_SEQ, RABC_KEY, and RAB$C_RFA. You use these
symbolic field values in simple assignment statements. For example:

INCLUDE ’($RABDEF)’
RECORD /RABDEF/ MYRAB
. . .
MYRAB.RAB$B_RAC = RAB$C_SEQ
. . .

• Declarations that use mask values instead of explicit values to define
bit offsets are identified by the presence of ‘‘M_’’ immediately after the
block prefix in their names. For example, the FAB$L_FOP field is an
INTEGER*4 field with the individual bits treated as flags. Each flag has a
mask value for specifying a particular file processing option. For instance,
the MXV bit specifies that RMS should maximize the version number of
the file when it is created. The mask value associated with this bit has the
name FAB$M_MXV.

11–4 Using OpenVMS Record Management Services

In order to use these parameters, you must use .AND. and .OR. to turn
off and on specific bits in the field without changing the other bits. For
example, to set the MXV flag in the FOP field, you would use the following
program segment:

INCLUDE ’($FABDEF)’
RECORD /FABDEF/ MYFAB
. . .
MYFAB.FAB$L_FOP = MYFAB.FAB$L_FOP .OR. FAB$M_MXV

• Two types of declarations that define symbolic field values are used to
define flag fields within a larger named field. These are identified by the
presence of ‘‘S_’’ or ‘‘V_’’ immediately after the block prefix in their names.

The ‘‘S_’’ form of the name defines the size of that flag field (usually the
value 1, for single bit flag fields), and the ‘‘V_’’ form defines the bit offset
from the beginning of the larger field. These forms can be used with
the symbolic bit manipulation functions to set or clear the fields without
destroying the other flags. To perform the same operation as the previous
example, but using the ‘‘V_’’ and ‘‘S_’’ flags, specify the following:

INCLUDE ’($FABDEF)’
RECORD /FABDEF/ MYFAB
. . .
MYFAB.FAB$L_FOP = IBSET(MYFAB.FAB$L_FOP,FAB$V_MXV)
. . .

For most of the FAB, RAB, NAM, and XAB fields that are not supplied with
symbolic values, you will need to supply sizes or pointers. For sizes, you can
use ordinary numeric constants or other numeric scalar quantities. To set
the maximum record number into the FAB$L_MRN field, you could use the
following statement:

MYFAB.FAB$L_MRN = 5000

To supply the required pointers, usually from one block to another, you must
use the %LOC built-in function to retrieve addresses. To fill in the FAB$L_
NAM field in a FAB block with the address of the NAM block that you want to
use, you can use the following program fragment:

INCLUDE ’($FABDEF)’
INCLUDE ’($NAMDEF)’
. . .
RECORD /FABDEF/ MYFAB, /NAMDEF/ MYNAM
. . .
MYFAB.FAB$L_NAM = %LOC(MYNAM)

Using OpenVMS Record Management Services 11–5

11.2.2 File Access Block (FAB)
The File Access Block (FAB) is used for calling the following services:

SYS$CLOSE
SYS$CREATE
SYS$DISPLAY
SYS$ENTER
SYS$ERASE
SYS$EXTEND

SYS$OPEN
SYS$PARSE
SYS$REMOVE
SYS$RENAME
SYS$SEARCH

The purpose of the FAB is to describe the file being manipulated by these
services. In addition to the fields that describe the file directly, there are
pointers in the FAB structure to auxiliary blocks used for more detailed
information about the file. These auxiliary blocks are the NAM block and one
or more of the XAB blocks.

To declare the structure and parameter values for using FAB blocks, include
the $FABDEF library module from FORSYSDEF. For example:

INCLUDE ’($FABDEF)’

To examine the fields and values declared, use the /LIST qualifier after the
right parenthesis. Each field in the FAB is described at length in the OpenVMS
Record Management Services Reference Manual.

If you are using a USEROPEN procedure, the actual allocation of the FAB is
performed by the Fortran Run-Time Library I/O support routines, and you only
need to declare the first argument to your USEROPEN routine to be a record
with the FAB structure. For example:

Calling program:
. . .
EXTERNAL MYOPEN
. . .
OPEN (UNIT=8, . . . , USEROPEN=MYOPEN)
. . .

USEROPEN routine:

INTEGER FUNCTION MYOPEN(FABARG, RABARG, LUNARG)
INCLUDE ’($FABDEF)’
. . .
RECORD /FABDEF/ FABARG
. . .

Usually, you need to declare only one FAB block, but some situations you need
to use two. For example, the SYS$RENAME service requires one FAB block to
describe the old file name and another to describe the new file name. In any of
these cases, you can declare whatever FAB blocks you need with a RECORD
statement. For example:

11–6 Using OpenVMS Record Management Services

INCLUDE ’($FABDEF)’
. . .
RECORD /FABDEF/ OLDFAB, NEWFAB

If you use any of the above service calls without using a USEROPEN routine,
you must initialize the required FAB fields in your program. The FAB fields
required for each RMS service are listed in the descriptions of the individual
services in the OpenVMS Record Management Services Reference Manual.
Most services also fill in output values in the FAB or one of its associated
blocks. Descriptions of these output fields are also provided with the service
descriptions.

In the example programs in the OpenVMS Record Management Services
Reference Manual, these initial field values are described as they would be
used in MACRO programs, where the declaration macros allow initialization
arguments. In each case where the MACRO example shows a field being
initialized in a macro, you must have a corresponding initialization at run time
in your program.

The OpenVMS Record Management Services Reference Manual contains an
example that shows the use of the ALQ parameter for specifying the initial
allocation size of the file in blocks:

! Program that uses XABDAT and XABDAT_STORE
.
.
.

MYFAB: $FAB ALQ=500, FOP=CBT, FAC=<PUT>, -
FNM=<DISK$:[PROGRAM]SAMPLE_FILE.DAT>, -
ORG=SEQ, RAT=CR, RFM=VAR, SHR=<NIL>, MRS=52, XAB=MYXDAT

.

.

.

As described in the section on the XAB$L_ALQ field (in the same manual), this
parameter sets the FAB field FAB$L_ALQ. To perform the same initialization
in HP Fortran, you must supply a value to the FAB$L_ALQ field using a
run-time assignment statement. For example:

MYFAB.FAB$L_ALQ = 500

The FAB$B_BID and FAB$B_BLN fields must be filled in by your program
prior to their use in an RMS service call, unless they have already been
supplied by the HP Fortran RTL I/O routines. You should always use the
symbolic names for the values of these fields; for example:

Using OpenVMS Record Management Services 11–7

INCLUDE ’($FABDEF)’
. . .
RECORD /FABDEF/ MYFAB
. . .
MYFAB.FAB$B_BID = FAB$C_BID
MYFAB.FAB$B_BLN = FAB$C_BLN
. . .
STATUS = SYS$OPEN(. . .)
. . .

11.2.3 Record Access Block (RAB)
The Record Access Block (RAB) is used for calling the following services:

SYS$CONNECT SYS$READ
SYS$DELETE SYS$RELEASE
SYS$DISCONNECT SYS$REWIND
SYS$FIND SYS$SPACE
SYS$FLUSH SYS$TRUNCATE
SYS$FREE SYS$UPDATE
SYS$GET SYS$WAIT
SYS$NXTVOL SYS$WRITE
SYS$PUT

The purpose of the RAB is to describe the record being manipulated by these
services. The RAB contains a pointer to the FAB used to open the file being
manipulated, making it unnecessary for these services to have a FAB in their
argument lists. Also, a RAB can point to certain types of XABs.

Using the FOR$RAB Intrinsic Function
To declare the structure and parameter values for using RAB blocks, include
the $RABDEF library module from FORSYSDEF. For example:

INCLUDE ’($RABDEF)’

To examine the fields and values declared, use the /LIST qualifier after
the right parenthesis. Each field in the RAB is described at length in the
OpenVMS Record Management Services Reference Manual.

If you are using a USEROPEN procedure, the actual allocation of the RAB is
performed by the HP Fortran Run-Time Library I/O support routines, and you
only need to declare the second argument to your USEROPEN routine to be a
record with the RAB structure. For example:

Calling program:

11–8 Using OpenVMS Record Management Services

. . .
EXTERNAL MYOPEN
. . .
OPEN (UNIT=8, . . . , USEROPEN=MYOPEN)
. . .

USEROPEN routine:

INTEGER FUNCTION MYOPEN(FABARG, RABARG, LUNARG)
. . .
INCLUDE ’($RABDEF)’
. . .
RECORD /RABDEF/ RABARG
. . .

If you need to access the RAB used by the Fortran I/O system for one of the
open files in your program, you can use the FOR$RAB intrinsic function (do
not declare it as EXTERNAL). You can use FOR$RAB even if you did not use
a USEROPEN routine to open the file. The FOR$RAB intrinsic function takes
a single INTEGER*4 variable (or constant) argument, the unit number of the
open file for which you want to obtain the RAB address. The function result is
the address of the RAB for that unit.

If you use the FOR$RAB function in your program, you should declare it to be
INTEGER*4 if you assign the result value to a variable. If you do not, your
program will assume that it is a REAL function and will perform an improper
conversion to INTEGER.

To use the result of the FOR$RAB call, you must pass it to a subprogram
as an actual argument using the %VAL built-in function. This allows the
subprogram to access it as an ordinary HP Fortran record argument. For
example, the main program for calling a subroutine to print the RAB fields
could be coded as follows:

INTEGER (KIND=4) RABADR, FOR$RAB
. . .
OPEN(UNIT=14, FILE=’TEST.DAT’, STATUS=’OLD’)
. . .
RABADR = FOR$RAB(14)
. . .
CALL DUMPRAB(%VAL(RABADR))
. . .

If you need to access other control blocks in use by the RMS services for that
unit, you can obtain their addresses using the link fields they contain. For
example:

Using OpenVMS Record Management Services 11–9

SUBROUTINE DUMPRAB(RAB)
. . .
INTEGER (KIND=4) FABADR
INCLUDE ’($RABDEF)’
RECORD /RABDEF/ RAB
. . .
FABADR = RAB.RAB$L_FAB
. . .
CALL DUMPFAB(%VAL(FABADR))
. . .

In this example, the routine DUMPRAB obtains the address of the associated
FAB by referencing the RAB$L_FAB field of the RAB. Other control blocks
associated with the FAB, such as the NAM and XAB blocks, can be accessed
using code similar to this example.

Usually, you need to declare only one RAB block. Sometimes, however, you
may need to use more than one. For example, the multistream capability of
RMS allows you to connect several RABs to a single FAB. This allows you to
simultaneously access several records of a file, keeping a separate context for
each record. You can declare whatever RAB blocks you need with a RECORD
statement. For example:

INCLUDE ’($RABDEF)’
. . .
RECORD /RABDEF/ RAB1, RABARRAY(10)

If you use any of the above service calls without using a USEROPEN routine,
you must initialize the required RAB fields in your program. The RAB fields
required for each RMS service are listed in the descriptions of individual
services in the OpenVMS Record Management Services Reference Manual.
Most services also fill in output values in the RAB. Descriptions of these output
fields are provided with the service descriptions.

In the example programs supplied in the OpenVMS Record Management
Services Reference Manual, these initial field values are described as they
would be used in MACRO programs, where the declaration macros allow
initialization arguments. Thus, in each case where the MACRO example shows
a field being initialized in a declaration macro, you must have a corresponding
initialization at run time in your program.

For example, the OpenVMS Record Management Services Reference Manual
contains an example that shows the use of the RAC parameter for specifying
the record access mode to use:

11–10 Using OpenVMS Record Management Services

.

.

.

SRC_FAB:
$FAB FAC=<GET>,- ; File access for GET only

FOP=<SQO>,- ; DAP file transfer mode
FNM=<SRC:> ; Name of input file

SRC_RAB:
$RAB FAB=SRC_FAB,- ; Address of associated FAB

RAC=SEQ,- ; Sequential record access
UBF=BUFFER,- ; Buffer address
USZ=BUFFER_SIZE ; Buffer size

.

.

.

In this example, sequential access mode is used. As described in the section on
the RAC field (in the same manual), this parameter sets the RAB$B_RAC field
to the value RAB$C_SEQ. This means that to perform the same initialization
in Fortran, you must supply RAC field values by a run-time assignment
statement. For example:

MYRAB.RAB$B_RAC = RAB$C_SEQ

The RAB$B_BID and RAB$B_BLN fields must be filled in by your program
prior to their use in an RMS service call, unless they have been supplied by the
Fortran RTL I/O routines. You should always use the symbolic names for the
values of these fields. For example:

INCLUDE ’($RABDEF)’
. . .
RECORD /RABDEF/ MYRAB
. . .
MYRAB.RAB$B_BID = RAB$C_BID
MYRAB.RAB$B_BLN = RAB$C_BLN
. . .
STATUS = SYS$CONNECT(MYRAB)
. . .

11.2.4 Name Block (NAM)
The Name Block (NAM) can be used with the FAB in most FAB-related services
in order to supply to or receive from RMS more detailed information about a
file name. The NAM block is never given directly as an argument to an RMS
service; to supply it you must link to it from the FAB. See Section 11.2.1 for an
example of this.

Using OpenVMS Record Management Services 11–11

To declare the structure and parameter values for using NAM blocks, include
the $NAMDEF library module from FORSYSDEF. For example:

INCLUDE ’($NAMDEF)’

To examine the fields and values declared, use the /LIST qualifier after the
right parenthesis. Each field in the NAM is described in the OpenVMS Record
Management Services Reference Manual.

If you are using a USEROPEN procedure, the actual allocation of the NAM
is performed by the HP Fortran Run-Time Library I/O support routines.
Because the NAM block is linked to the FAB, it is not explicitly given in the
USEROPEN routine argument list.

To access the NAM, you need to call a subprogram, passing the pointer by
value and accessing the NAM in the subprogram as a structure. For example:

Calling program:

. . .
EXTERNAL MYOPEN
. . .
OPEN (UNIT=8, . . . , USEROPEN=MYOPEN)
. . .

USEROPEN routine:

INTEGER FUNCTION MYOPEN(FABARG, RABARG, LUNARG)
. . .
INCLUDE ’($FABDEF)’
. . .
RECORD /FABDEF/ FABARG
. . .
CALL NAMACCESS(%VAL(FABARG.FAB$L_NAM))
. . .

NAM accessing routine:

SUBROUTINE NAMACCESS(NAMARG)
. . .
INCLUDE ’($NAMDEF)’
. . .
RECORD /NAMDEF/ NAMARG
. . .
IF (NAMARG.NAM$B_ESL .GT. 132) GO TO 100
. . .

11–12 Using OpenVMS Record Management Services

Usually, you only need to declare one NAM block. You can declare whatever
NAM blocks you need with a RECORD statement. For example:

INCLUDE ’($NAMDEF)’
. . .
RECORD /NAMDEF/ NAM1, NAM2

Most often, you use the NAM block to pass and receive information about
the components of the file specification, such as the device, directory, file
name, and file type. For this reason, most of the fields of the NAM block are
CHARACTER strings and lengths. When using the NAM block, you should be
familiar with the argument passing mechanisms for CHARACTER arguments
described in Section 10.8.4.3.

Your program must fill in the NAM$B_BID and NAM$B_BLN fields prior to
their use in an RMS service call, unless they have been supplied by the HP
Fortran RTL I/O routines. You should always use the symbolic names for the
values of these fields. For example:

INCLUDE ’($NAMDEF)’
. . .
RECORD /NAMDEF/ MYNAM
. . .
MYNAM.NAM$B_BID = NAM$C_BID
MYNAM.NAM$B_BLN = NAM$C_BLN
. . .

11.2.5 Extended Attributes Blocks (XABs)
Extended Attributes Blocks (XABs) are a family of related structures for
passing and receiving additional information about files. There are different
kinds of XABs:

• Allocation Control (XABALL)

• Date and Time (XABDAT)

• File Header Characteristics (XABFHC)

• Item List (XABITM)

• Journaling (XABJNL)

• Key Definition (XABKEY)

• Protection (XABPRO)

• Recovery Unit (XABRU)

• Revision Date and Time (XABRDT)

• Summary (XABSUM)

Using OpenVMS Record Management Services 11–13

• Terminal (XABTRM)

The XABs are described in the OpenVMS Record Management Services
Reference Manual. XABs are generally smaller and simpler than the FAB,
RAB, and NAM blocks because each describes information about a single
aspect of the file. You do not have to use all of them; for any given call to an
RMS service routine, use only those that are required.

Often the XAB fields override the corresponding fields in the FAB. For example,
the allocation XAB describes the file’s block allocation in more detail than the
FAB$L_ALQ field can. For this reason, XAB$L_ALQ (the allocation field in the
XABALL structure) always overrides the FAB$L_ALQ value.

The XABs used for any given RMS service call are connected to the FAB in
a linked list. The head of the list is the FAB$L_XAB field in the FAB. This
field contains the address of the first XAB to be used. Each successive XAB in
the list links to the next using the XAB$L_NXT field. This field contains the
address of the next XAB in the list. The order of the XABs in the list does not
matter, but each kind of XAB must not appear more than once in the list.

The only kind of XAB that can be connected to a RAB instead of a FAB is the
terminal XAB. It is linked to the RAB with the RAB$L_XAB field. This is
needed because the terminal control information is dynamic and potentially
changes with each record operation performed.

To declare the structure and parameter values for using the different
XAB blocks, include the appropriate XAB definition library module from
FORSYSDEF. (The names of the XAB definition library modules are listed
previously in this section.) Also, because the XABs are a family of related
control blocks, you need to include the $XABDEF library module from
FORSYSDEF.TLB in order to declare the fields common to all XABs. For
example, to declare the fields used in the Date and Time XAB, use the
following declarations:

INCLUDE ’($XABDATDEF)’
INCLUDE ’($XABDEF)’

To examine the fields and values declared, use the /LIST qualifier after the
right parenthesis. All of the fields in the XABs are described in the OpenVMS
Record Management Services Reference Manual.

If you are using a USEROPEN procedure, the actual allocation of the XABs
used by the open operation is performed by the HP Fortran Run-Time Library
I/O support routines. Because the XAB blocks are linked to the FAB, the XAB
block addresses are not explicitly given in the USEROPEN routine argument
list.

11–14 Using OpenVMS Record Management Services

To access the XABs, you need to call a subprogram and pass a pointer to it
using the %VAL built-in function or a pointer argument. For an example of
this method, see Section 11.2.3.

To allocate space for an XAB block in your program, you need to declare it with
a RECORD statement. For example:

INCLUDE ’($XABDATDEF)’
INCLUDE ’($XABPRODEF)’
. . .
RECORD /XABDATDEF/ MYXABDAT, /XABPRODEF/ MYXABPRO
. . .

For each XAB that you declare in your program, you must supply the correct
COD and BLN fields explicitly. These field offsets are common to all XABs
and are contained in the $XABDEF library module in FORSYSDEF.TLB. The
block id and length are unique for each kind of XAB and the symbolic values
for them are contained in the separate XAB declaration library modules in
FORSYSDEF.TLB. For example, to properly initialize a Date and Time XAB,
you could use the following code segment:

INCLUDE ’($XABDEF)’
INCLUDE ’($XABDATDEF)’
RECORD /XABDEF/ MYXABDAT
. . .
MYXABDAT.XAB$B_COD = XAB$C_DAT
MYXABDAT.XAB$B_BLN = XAB$C_DATLEN
. . .

11.3 RMS Services
In general, you need to do the same things when calling an RMS service
that you need to do when calling any OpenVMS service: declare the name,
pass arguments, and check status values. However, RMS services have some
additional conventions and ease-of-use features that you should be aware of.

For More Information:

• On calling OpenVMS system services, see Section 10.8.

• On each RMS service, see the OpenVMS Record Management Services
Reference Manual.

Using OpenVMS Record Management Services 11–15

11.3.1 Declaring RMS System Service Names
As with the other system services, you should use the $SYSSRVNAM library
module in FORSYSDEF to declare the names of all of the RMS services. For
example:

INCLUDE ’($SYSSRVNAM)’

This library module contains comments describing each OpenVMS system
service, including all of the RMS services, and INTEGER*4 and EXTERNAL
declarations for each. Including the library module allows you to use the
names of the RMS services in your programs without further declaration.

11.3.2 Arguments to RMS Services
Most RMS services require three arguments:

• The first is the control block to be used, generally a RAB or FAB, and is
mandatory.

• The second and third arguments are the addresses of routines to be called
if the RMS service fails or succeeds, and these are optional.

Some RMS services take other arguments, but these services are rarely needed.
You should always refer to the documentation for the specific service that you
are calling for detailed information on its arguments.

Most RAB and FAB fields are ignored by most RMS services. The
documentation of each service in the OpenVMS Record Management Services
Reference Manual describes which fields are input for that service and which
are output, for each control block used. Services that take a FAB as an
argument are called the File Control services. Services that take a RAB as an
argument are called the Record Control services. Typically, you need to use
both when doing RMS I/O in your program.

In general, fields that are not documented as required for input to a service are
ignored and can be left uninitialized. The exceptions are the Block Id (BID or
COD) and Block Length (BLN) fields; these must always be initialized. See the
preceding sections about the respective blocks for examples of how to initialize
these fields.

The output of many RMS services provides the values required for input to
other RMS services. For this reason, you usually only need to initialize a few
fields in each block to their nondefault values. This is especially true when
using RMS blocks declared with the HP Fortran RTL I/O routines as when
using USEROPEN routines or the FOR$RAB function.

For More Information:
On passing arguments to system services, see Section 10.8.4.

11–16 Using OpenVMS Record Management Services

11.3.3 Checking Status from RMS Services
You should always invoke RMS services as functions, rather than calling them
as subroutines (see Section 10.8.2 for a general discussion of this topic). It
is particularly important to check the status of RMS services because they
usually do not cause an error when they fail. If the status is not checked
immediately, the failure will go undetected until later in the program where it
will be difficult to diagnose.

In most cases, you only need to check for success or failure by testing whether
the returned status is true or false. Some services have alternate success-
status possibilities. You should always check for these in cases where the
program depends on the correct operation of the services.

The RMS services have a unique set of status return symbols not used by
any of the other OpenVMS system services. You should always use these
symbols whenever you check the individual status values returned. To obtain
the declarations for these symbols, include the $RMSDEF library module from
FORSYSDEF.TLB. For example:

INCLUDE ’($RMSDEF)’

This statement includes in your program the declarations for all of the symbolic
RMS return values.

The OpenVMS Record Management Services Reference Manual documents the
symbolic values, both success and failure, that can be returned from each of the
services. Your program should always test each service-result status against
these symbolic values and take appropriate action when a failure status is
detected. You should always declare status variables as INTEGER*4 type
in order to avoid unexpected numeric conversions. The recommended action
depends on whether you are using RMS services in a USEROPEN routine.

The HP Fortran RTL I/O routines that invoke your USEROPEN routine are
expecting an RMS status as an output value. For this reason, you need to
return the RMS status value as the function value for both failure and success
conditions. For example:

INTEGER FUNCTION MYOPEN(FAB,RAB,LUN)
. . .
INCLUDE ’($SYSSRVNAM)’ ! Declare RMS service names
. . .
MYOPEN = SYS$OPEN(FAB)
IF (.NOT. MYOPEN) RETURN
. . .
RETURN
END

Using OpenVMS Record Management Services 11–17

In this case, if the SYS$OPEN service fails, it returns an error status into the
function result variable MYOPEN. If the test of MYOPEN does not indicate
success, the function returns the actual RMS status as its value. Then the
RTL I/O routines will signal the appropriate Fortran error normally, as if a
USEROPEN routine had not been used.

If the SYS$OPEN call succeeds, the program continues, and the RMS$_
NORMAL success status will ultimately be returned to the Fortran RTL. This
value will cause the OPEN statement that specifies MYOPEN to complete
successfully.

If you are not using a USEROPEN routine, your program must indicate the
error status directly, unless it is prepared to deal with it. Often, the easiest
way to indicate an error and issue a helpful message is to signal the RMS
condition directly with LIB$SIGNAL or LIB$STOP. For example:
. . .
INCLUDE ’($SYSSRVNAM)’ ! Declare RMS service names
INTEGER (KIND=4) STATUS ! Declare a status variable
. . .
STATUS = SYS$GET(MYRAB)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

For More Information:
On the use of LIB$SIGNAL and LIB$STOP, see Chapter 14.

11.3.4 Opening a File
To perform input or output operations on a file, your program must first open
the file and establish an active RMS I/O stream. To open a file, your program
generally needs to call either the SYS$CREATE or SYS$OPEN services,
followed by the SYS$CONNECT service. When your program uses an OPEN
statement without a USEROPEN routine, the HP Fortran RTL I/O routines
call these RMS services.

You can use these options related to opening a file:

• Use the SYS$OPEN service to open an existing file. SYS$OPEN returns
an error status if the file cannot be found.

• Use the SYS$CREATE service to intentionally create a new file.

• Use SYS$CREATE with the CIF bit in the FAB$L_FOP field to open a
file that may or may not exist. The SYS$CREATE service will either open
the file (if it exists) or create a new one (if it does not exist). You can use
the SUP bit to force SYS$CREATE to create a new file even if one already
exists.

11–18 Using OpenVMS Record Management Services

The value of the FAB$B_FAC field of the FAB indicates to RMS what record
operations are to be done on the file being opened. If a record operation that
was not indicated by the FAC field (such as a SYS$PUT) is attempted, the
record service will not perform the operation and will return a failure status.
This file protection feature prevents you from accidentally corrupting a file
when you use the wrong RMS service.

The SYS$CONNECT service establishes an active I/O stream, using a RAB,
to a file that has been previously opened by your program. RMS identifies all
active I/O streams by a unique identifier, called the Internal Stream Identifier
(ISI). This value is stored in the RAB$W_ISI field of the RAB for each active
stream being processed.

This field must always be zero when calling SYS$CONNECT. The
SYS$CONNECT service initializes this field, so that subsequent operations
using that RAB can be uniquely identified. Under some circumstances, you
can establish more than one simultaneously active I/O stream to the same file.
See the OpenVMS Record Management Services Reference Manual for more
information on this topic.

11.3.5 Closing a File
To close a file, use the SYS$CLOSE service. This terminates all active I/O
streams under way on that file and frees all RMS resources being used for
processing that file. Use the SYS$DISCONNECT service if you want to end
one active I/O stream, but continue processing the file using another stream.
This service sets the RAB$W_ISI value to zero so that the RAB can be reused
for another stream.

11.3.6 Writing Data
To write data to a file, use the SYS$PUT or SYS$WRITE service. Your
program must set the PUT bit in the FAB$B_FAC field when the file is opened;
otherwise, the service attempting the write operation will fail.

Use the SYS$PUT service when you want to write data in record mode (the
default). In record mode, RMS buffers data automatically and performs the
actual output operation for a whole group of records at a time. This is the
mode used for all HP Fortran WRITE statements. Because most programs and
utilities can read data written in record mode, this mode should be used when
the data being written is to be read and processed by a general program or
utility.

Using OpenVMS Record Management Services 11–19

Use the SYS$WRITE service when you want to bypass the record management
capabilities of RMS and write blocks of data directly to the device without
additional buffering. This mode is called block mode I/O and is generally
much faster and uses less CPU resources than record mode. For this reason,
it is the preferred mode for writing large amounts of unformatted data to a
device.

Block mode should only be used when the program that needs to read the
data can also use block mode. If the program that is to read the data cannot
use block mode, you must use some other means to guarantee that the data
being written can be accessed. For instance, it is not generally possible to read
data written with SYS$WRITE using ordinary HP Fortran READ statements.
Before using SYS$WRITE, read the special restrictions on using block mode
in the OpenVMS Record Management Services Reference Manual, because
SYS$WRITE (block mode) may have different device dependencies than
SYS$PUT (record mode).

11.3.7 Reading Data
To read data from a file, use the SYS$GET or SYS$READ service. Your
program must set the GET bit in the FAB$B_FAC field when the file is opened;
otherwise, the service attempting the read operation will fail.

Use the SYS$GET service when you want to read data in record mode (the
default). In this mode, RMS buffers data automatically and performs the
actual input operation for a whole group of records at a time. This is the
mode used for all HP Fortran READ statements. This mode should be used
whenever the program or utility that wrote the data used record mode, unless
your reading program can buffer and deblock the data itself.

Use the SYS$READ service when you want to read data using block mode I/O
(see Section 11.3.6. Using SYS$READ is the preferred mode for reading large
amounts of unformatted data from a device, but it should only be used when
the data was written by a utility or program that wrote the data in block mode.

If the file was written using record mode, RMS control information may
be intermixed with the data, making it difficult to process. Before using
SYS$READ, read the special restrictions on using block mode in the OpenVMS
Record Management Services Reference Manual, because SYS$READ (block
mode) may have different device dependencies than SYS$GET (record mode).

11–20 Using OpenVMS Record Management Services

11.3.8 Other Services
RMS provides many other file and record processing services beyond just
opening, closing, reading, and writing. Other file processing services include:

• SYS$PARSE and SYS$SEARCH: process wildcard and incomplete file
specifications and search for a sequence of files to be processed.

• SYS$DISPLAY: retrieves file attribute information.

• SYS$ENTER: inserts a file name into a directory file.

• SYS$ERASE: deletes a file and removes the directory entry used to specify
it.

• SYS$EXTEND: increases the amount of disk space allocated to the file.

• SYS$REMOVE: removes directory entries for a file.

• SYS$RENAME: removes a directory entry for a file and inserts a new one
in another directory.

Other record processing services include:

• SYS$FIND: positions the record stream at the desired record for later
reading or writing.

• SYS$DELETE: deletes a record from the file.

• SYS$SPACE: skips over one or more blocks in block I/O mode.

• SYS$TRUNCATE: truncates a file after a given record.

• SYS$UPDATE: updates the value of an existing record.

For More Information:
On the RMS services, see the OpenVMS Record Management Services Reference
Manual.

11.4 User-Written Open Procedures
The USEROPEN keyword in an OPEN statement provides you with a way to
access RMS facilities that are otherwise not available to HP Fortran programs.
It specifies a user-written external procedure (USEROPEN procedure) that
controls the opening of a file. The USEROPEN keyword has the form:

USEROPEN = procedure-name

The procedure-name represents the symbolic name of a user-written open
procedure. The procedure must be declared in an EXTERNAL statement, and
should be a FUNCTION that returns an INTEGER*4 result.

Using OpenVMS Record Management Services 11–21

When an OPEN statement—with or without the USEROPEN keyword—is
executed, the Run-Time Library uses the OPEN statement keywords to
establish the RMS File Access Block (FAB) and the Record Access Block
(RAB), as well as its own internal data structures. If a USEROPEN keyword
is included in the OPEN statement, the Run-Time Library then calls your
USEROPEN procedure instead of opening the file according to its normal
defaults. The procedure can then provide additional parameters to RMS and
can obtain results from RMS.

The three arguments passed to a user-written open procedure by the Run-Time
Library are:

1. Address of the FAB

2. Address of the RAB

3. Address of a longword integer containing the unit number

Using this information, your USEROPEN procedure can then perform the
following operations:

• Modify the FAB and RAB (optional).

• Issue SYS$OPEN and SYS$CONNECT functions or SYS$CREATE and
SYS$CONNECT functions when HP Fortran I/O is to be performed
(required).

Your USEROPEN procedure should invoke the RMS SYS$OPEN routine
if the file to be opened already exists (STATUS=’OLD’) or should call
the RMS SYS$CREATE routine for any other file type (STATUS=’NEW’,
’UNKNOWN’, or not specified). The status value specified in the OPEN
statement is not represented in either the FAB or RAB.

• Check status indicators returned by RMS services (required).

Your procedure should return immediately if an RMS service returns a
failure status.

• Obtain information returned by RMS in the FAB and RAB by storing FAB
and RAB values in program variables (optional).

• Return a success or failure status value to the Run-Time Library (required).

The RMS services SYS$CREATE, SYS$OPEN, and SYS$CONNECT return
status codes. Thus, it is not necessary to set a separate status value as
the procedure output if execution of one of these macros is the final step in
your procedure.

11–22 Using OpenVMS Record Management Services

A USEROPEN routine can set FAB fields before the corresponding file is
opened (or created). However, once the file is open (except if the FAB$V_UFO
bit is set), the user should not alter any of the FAB fields.

A USEROPEN routine can likewise set RAB fields before the record stream
has been connected (SYS$CONNECT). However, once the file is connected to
the record stream, the user should not alter any of the RAB fields.

Once a FAB or RAB is used by the Fortran RTL, it should be treated as
read-only by the user, because the Fortran RTL may need to set and alter
those fields as needed to complete the user Fortran I/O statements. Any user
modification of a FAB or RAB after its initial use may not have the intended
effect for subsequent Fortran I/O statements.

For More Information:
On the FAB and RAB, see the OpenVMS Record Management Services
Reference Manual.

11.4.1 Examples of USEROPEN Routines
The following OPEN statement either creates a 1000-block contiguous file or
returns an error. (The default HP Fortran interpretation of the INITIALSIZE
keyword is to allocate the file contiguously on a best-effort basis, but not to
generate an error if the space is not completely contiguous.)

EXTERNAL CREATE_CONTIG
OPEN (UNIT=10, FILE=’DATA’, STATUS=’NEW’, INITIALSIZE=1000, &
USEROPEN=CREATE_CONTIG)

User-written open procedures are often coded in BLISS or MACRO; however,
they can also be coded in HP Fortran using HP Fortran’s record handling
capability.

The following function creates a file after setting the RMS FOP bit (FAB$V_
CTG) to specify contiguous allocation.

! UOPEN1
!
! Program to demonstrate the use of a simple USEROPEN routine
!

PROGRAM UOPEN1
EXTERNAL CREATE_CONTIG

! OPEN the file specifying the USEROPEN routine

OPEN (UNIT=10, FILE=’DATA’, STATUS=’NEW’, INITIALSIZE=1000, &
USEROPEN=CREATE_CONTIG)

STOP
END PROGRAM UOPEN1

Using OpenVMS Record Management Services 11–23

! CREATE_CONTIG

! Sample USEROPEN function to force RMS to allocate contiguous
! blocks for the initial creation of a file.

INTEGER FUNCTION CREATE_CONTIG(FAB,RAB,LUN)

! Required declarations

INCLUDE ’($FABDEF)’ ! FAB Structure
INCLUDE ’($RABDEF)’ ! RAB Structure
INCLUDE ’($SYSSRVNAM)’ ! System service name declarations
RECORD /FABDEF/ FAB, /RABDEF/ RAB

! Clear the "Contiguous-best-try" bit, set the "Contiguous" bit

FAB.FAB$L_FOP = FAB.FAB$L_FOP .AND. .NOT. FAB$M_CBT
FAB.FAB$L_FOP = FAB.FAB$L_FOP .OR. FAB$M_CTG

! Perform the create and connect, and return status

CREATE_CONTIG = SYS$CREATE(FAB)
IF (.NOT. CREATE_CONTIG) RETURN
CREATE_CONTIG = SYS$CONNECT(RAB)
RETURN
END FUNCTION CREATE_CONTIG

11.4.2 RMS Control Structures
Use of the USEROPEN keyword has some restrictions. The Run-Time Library
constructs the following RMS control structures before calling the USEROPEN
procedure:

FAB File Access Block

RAB Record Access Block

NAM Name Block

XAB Extended Attributes Blocks

ESA Expanded String Area

RSA Resultant String Area

A USEROPEN procedure should not alter the allocation of these structures,
although it can modify the contents of many of the fields. Your procedure can
also add additional XAB control blocks by linking them anywhere into the XAB
chain. You must exercise caution when changing fields that have been set as
a result of HP Fortran keywords, because the Run-Time Library may not be
aware of the changes. For example, do not attempt to change the record size
in your USEROPEN procedure; instead, use the HP Fortran keyword RECL.
Always use an OPEN statement keyword if one is available.

11–24 Using OpenVMS Record Management Services

Although the FAB, RAB, and NAM blocks remain defined during the time that
the unit is opened, the XAB blocks are present only until the file has been
successfully opened. The locations of the ESA and RSA strings are changed
after the file is opened, so your USEROPEN procedure should not store the
addresses of the RMS control structures. Instead, have your program call
FOR$RAB to obtain the address of the RAB once the file is opened and then
access the other structures through the RAB.

Note

Future releases of the Run-Time Library may alter the use of some
RMS fields. Therefore, you may have to alter your USEROPEN
procedures accordingly.

Table 11–1 shows which FAB and RAB fields are either initialized before
your USEROPEN procedure is called or examined upon return from your
USEROPEN procedure. All fields are initialized in response to OPEN
statement keywords or default to zero. Fields labeled with a hyphen (-)
are initialized to zero. Fields labeled with an asterisk (*) are returned by
RMS.

Table 11–1 RMS Fields Available with USEROPEN

Field Name Description HP Fortran OPEN Keyword and Value

FAB$B_ACMODES File access modes Contains FAB$V_CHAN_MODE and FAB$V_
LNM_MODE.

FAB$L_ALQ Allocation quantity n if INITIALSIZE=n

FAB$B_BKS Bucket size (BLOCKSIZE + 511)/512

FAB$W_BLS Block size n if BLOCKSIZE=n

FAB$V_CHAN_
MODE

Channel access mode protection
(2-bit subfield in FAB$B_
ACMODES)

0=usermode

FAB$L_CTX Context –

FAB$W_DEQ Default file extension quantity n if EXTENDSIZE=n

FAB$L_DEV Device characteristics *

(continued on next page)

Using OpenVMS Record Management Services 11–25

Table 11–1 (Cont.) RMS Fields Available with USEROPEN

Field Name Description HP Fortran OPEN Keyword and Value

FAB$L_DNA Default file specification string
address

UNIT=nnn
Set to FORnnn.DAT or FORREAD.DAT,
FORACCEPT.DAT, FORTYPE.DAT, or
FORPRINT.DAT or to default file specification
string

FAB$B_DNS Default file specification string
size

Set to length of default file specification string

FAB$B_FAC File access READONLY
Set to 0 if READONLY (RMS default), else set
to FAB$M_GET + FAB$M_PUT + FAB$M_
UPD + FAB$M_TRN + FAB$M_DEL

FAB$L_FNA File specification string address FILE=filename if FILE present, else set
to FORnnn, FOR$READ, FOR$ACCEPT,
FOR$TYPE, FOR$PRINT, SYS$INPUT, or
SYS$OUTPUT

FAB$B_FNS File specification string size Set to length of file specification string

FAB$L_FOP File processing options

FAB$V_ASY Asynchronous operation – (not used)

FAB$V_CBT Contiguous best try 1 if INITIALSIZE=n

FAB$V_CIF Create if nonexistent 1 if READONLY not specified and
STATUS=’UNKNOWN’ or STATUS omitted

FAB$V_CTG Contiguous allocation –

FAB$V_DFW Deferred write 1

FAB$V_DLT Delete on close service Set at Fortran close, depending upon DISP
keyword in OPEN or CLOSE, or STATUS
keyword in CLOSE

FAB$V_KFO Known file open –

FAB$V_MXV Maximize version number –

FAB$V_NAM Name block inputs –

FAB$V_NEF Not positioned at end of file 1 unless ACCESS= ’APPEND’

FAB$V_NFS Not file structured –

FAB$V_OFP Output file parse –

FAB$V_POS Current position (after closed file) –

FAB$V_PPF Process permanent file –

(continued on next page)

11–26 Using OpenVMS Record Management Services

Table 11–1 (Cont.) RMS Fields Available with USEROPEN

Field Name Description HP Fortran OPEN Keyword and Value

FAB$V_RCK Read check –

FAB$V_RWC Rewind on close service –

FAB$V_RWO Rewind on open service –

FAB$V_SCF Submit command (when closed) Set at Fortran close, depending upon DISP
keyword in OPEN or CLOSE, or STATUS
keyword in CLOSE

FAB$V_SPL Spool to printer Set at Fortran close, depending upon DISP
keyword in OPEN or CLOSE, or STATUS
keyword in CLOSE

FAB$V_SQO Sequential only 1 if a network file and ACCESS=
’SEQUENTIAL’ or ’APPEND’, else 0

FAB$V_SUP Supersede –

FAB$V_SYNCSTS Immediate asynchronous
completion

* (not used)

FAB$V_TEF Truncate at end-of-file –

FAB$V_TMD Temporary, marked for delete 1 if STATUS= ’SCRATCH’, else 0

FAB$V_TMP Temporary (file with no directory
entry)

–

FAB$V_UFO User file open or create file only –

FAB$V_WCK Write check –

FAB$B_FSZ Fixed control area size –

FAB$W_IFI Internal file identifier *

FAB$W_GBC Global buffer count –

FAB$B_JOURNAL Journal flags status –

FAB$V_LNM_MODE Logical name translation access
mode (subfield in FAB$B_
ACMODES)

–

FAB$L_MRN Maximum record number n if MAXREC=n

FAB$W_MRS Maximum record size n if RECORDTYPE=’FIXED’ or
ORGANIZATION=’RELATIVE’ or =’INDEXED’,
else 0

FAB$L_NAM Name block address Set to address of name block; both the
expanded and resultant string areas are set
up, but the related filename string is not

(continued on next page)

Using OpenVMS Record Management Services 11–27

Table 11–1 (Cont.) RMS Fields Available with USEROPEN

Field Name Description HP Fortran OPEN Keyword and Value

FAB$B_ORG File organization FAB$C_IDX if ORGANIZATION=
’INDEXED’
FAB$C_REL if ORGANIZATION=
’RELATIVE’
FAB$C_SEQ if ORGANIZATION=
’SEQUENTIAL’ or omitted

FAB$B_RAT Record attributes

FAB$V_FTN Fortran carriage control 1 if CARRIAGECONTROL=’FORTRAN’ or
not specified

FAB$V_CR Print LF and CR 1 if CARRIAGECONTROL=’LIST’

FAB$V_BLK Do not cross block boundaries – (1 if NOSPANBLOCKS)

FAB$B_RFM Record format FAB$C_FIX if RECORDTYPE=’FIXED’
FAB$C_VAR if RECORDTYPE=’VARIABLE’
FAB$C_VAR if RECORDTYPE=
’SEGMENTED’
FAB$C_STM if RECORDTYPE=’STREAM’
FAB$C_STMCR if RECORDTYPE=
’STREAM_CR’
FAB$C_STMLF if RECORDTYPE=
’STREAM_LF’

FAB$B_RTV Retrieval window size –

FAB$L_SDC Spooling device characteristics *

FAB$B_SHR File sharing

FAB$V_SHRPUT Allow other PUTs 1 if SHARED

FAB$V_SHRGET Allow other GETs 1 if SHARED

FAB$V_SHRDEL Allow other DELETEs 1 if SHARED

FAB$V_SHRUPD Allow other UPDATEs 1 if SHARED

FAB$V_NIL Allow no other operations –

FAB$V_UPI User-provided interlock –

FAB$V_MSE Multistream allowed –

FAB$L_STS Completion status code *

FAB$L_STV Status value *

(continued on next page)

11–28 Using OpenVMS Record Management Services

Table 11–1 (Cont.) RMS Fields Available with USEROPEN

Field Name Description HP Fortran OPEN Keyword and Value

FAB$L_XAB Extended attribute block address The XAB chain always has a File Header
Characteristics (FHC) extended attribute block
in order to get longest record length (XAB$W_
LRL). If the KEY=keyword is specified, key
index definition blocks will also be present.
HP may add additional XABs in the future.
Your USEROPEN procedure may insert XABs
anywhere in the chain.

RAB$L_BKT Bucket code –

RAB$L_CTX Context –

RAB$L_FAB FAB address Set to address of FAB

RAB$W_ISI Internal stream ID *

RAB$L_KBF Key buffer address Set to address of longword containing logical
record number if ACCESS=’DIRECT’

RAB$B_KRF Key of reference 0

RAB$B_KSZ Key size –

RAB$B_MBC Multiblock count If BLOCKSIZE=n, use (n + 511)/512

RAB$B_MBF Multibuffer count n if BUFFERCOUNT=n

RAB$L_PBF Prompt buffer address –

RAB$B_PSZ Prompt buffer size –

RAB$B_RAC Record access mode

RAB$C_KEY If ACCESS=’DIRECT’ or
’KEYED’

RAB$C_SEQ If ACCESS=’SEQUENTIAL’ or
’APPEND’, or ACCESS omitted

RAB$C_RFA –

RAB$L_RBF Record buffer address Set later

RAB$L_RFA Record file address Set later

RAB$L_RHB Record header buffer –

RAB$L_ROP Record processing options

RAB$V_ASY Asynchronous –

RAB$V_BIO Block I/O –

RAB$V_CCO Cancel CTRL/O –

(continued on next page)

Using OpenVMS Record Management Services 11–29

Table 11–1 (Cont.) RMS Fields Available with USEROPEN

Field Name Description HP Fortran OPEN Keyword and Value

RAB$V_CVT Convert to uppercase –

RAB$V_EOF End-of-file 1 if ACCESS=’APPEND’

RAB$V_ETO Extended terminal (XABTRM)
operation

–

RAB$V_FDL Fast delete –

RAB$V_KGE or
RAB$V_EQNXT

Key greater than or equal to –

RAB$V_KGT or
RAB$V_NXT

Key greater than –

RAB$V_LIM Limit –

RAB$V_LOA Load buckets according to fill size –

RAB$V_LOC Locate mode 1

RAB$V_NLK No lock –

RAB$V_NXR Nonexistent record –

RAB$V_PMT Prompt –

RAB$V_PTA Purge type-ahead –

RAB$V_RAH Read-ahead 1

RAB$V_REA Lock record for read –

RAB$V_RLK Lock record for write –

RAB$V_RNE Read no echo –

RAB$V_RNF Read no filter –

RAB$V_RRL Read regardless of lock –

RAB$V_SYNCSTS Immediate asynchronous
completion

* (not used)

RAB$V_TMO Timeout –

RAB$V_TPT Truncate on PUT 1

RAB$V_UIF Update if 1 if ACCESS=’DIRECT’

RAB$V_ULK Manual unlocking –

RAB$V_WAT Wait for locked record –

RAB$V_WBH Write-behind 1

(continued on next page)

11–30 Using OpenVMS Record Management Services

Table 11–1 (Cont.) RMS Fields Available with USEROPEN

Field Name Description HP Fortran OPEN Keyword and Value

RAB$W_RSZ Record size Set later

RAB$L_STS Completion status code *

RAB$L_STV Status value *

RAB$B_TMO Timeout period –

RAB$L_UBF User record area address Set later

RAB$W_USZ User record area size Set later

RAB$L_XAB Extended attribute block address The XAB chain allows you to set or obtain
additional information about an I/O operation.

RMS does not allow multiple instances of the same type XAB. To be compatible
with future releases of the Run-Time Library, your procedure should scan the
XAB chain for XABs of the type to be inserted. If one is found, it should be
used instead.

11.5 Example of Block Mode I/O
The following example shows a complete application that calls the RMS
block I/O services SYS$WRITE and SYS$READ directly from HP Fortran. A
complete program called BIO.F90 writes out an array of REAL*8 values to a
file using SYS$WRITE, closes the file, and then reads the data back in using
SYS$READ operations with a different I/O transfer size. This program consists
of five routines:

BIO Main control program

BIOCREATE USEROPEN routine to create the file

BIOREAD USEROPEN routine to open the file for READ access

OUTPUT Function that actually outputs the array

INPUT Function that actually reads the array and checks it

Using OpenVMS Record Management Services 11–31

11.5.1 Main Block Mode I/O Program—BIO
The following main program specifies the USEROPEN specifier in its OPEN
statements.

! File: BIO.F90
!
! Program to demonstrate the use of RMS Block I/O operations
! from HP Fortran

PROGRAM BIO

! Declare the Useropen routines as external

EXTERNAL BIOCREATE, BIOREAD

! Declare status variable, functions, and unit number

LOGICAL (KIND=4) STATUS, OUTPUT, INPUT
INTEGER (KIND=4) IUN/1/

! Open the file !

OPEN(UNIT=IUN, FILE=’BIODEMO.DAT’, FORM=’UNFORMATTED’, &
STATUS=’NEW’, RECL=128, BLOCKSIZE=512, ORGANIZATION=’SEQUENTIAL’, &
IOSTAT=IOS, ACCESS=’SEQUENTIAL’, RECORDTYPE=’FIXED’, &
USEROPEN=BIOCREATE, INITIALSIZE=100)

IF (IOS .NE. 0) STOP ’Create failed’ "

! Now perform the output

STATUS = OUTPUT(%VAL(FOR$RAB(IUN))) #
IF (.NOT. STATUS) STOP ’Output failed’ "

! Close the file for output

CLOSE (UNIT=IUN)

! Confirm output complete

TYPE *, ’Output complete, file closed’

! Now open the file for input "

OPEN(UNIT=IUN, FILE=’BIODEMO.DAT’, FORM=’UNFORMATTED’, &
STATUS=’OLD’, IOSTAT=IOS, USEROPEN=BIOREAD, DISP=’DELETE’)

IF (IOS .NE. 0) STOP ’Open for read failed’ "

! Now read the file back

STATUS = INPUT(%VAL(FOR$RAB(IUN))) #
IF (.NOT. STATUS) STOP ’Input failed’ "

! Success, output that all is well

STOP ’Correct completion of Block I/O demo’
END PROGRAM BIO

11–32 Using OpenVMS Record Management Services

! Most of the necessary OPEN options for the file are specified with
OPEN statement parameters. This is recommended whenever an OPEN
statement qualifier exists to perform the desired function because it allows
the HP Fortran RTL I/O processing routines to issue appropriate error
messages when an RMS routine returns an error status.

Note the discrepancy between RECL and BLOCKSIZE in the first OPEN
statement. Both keywords specify 512 bytes, but the number given for
RECL is 128. This is because the unit implied in the RECL keyword is
longwords for unformatted files.

When using Block I/O mode, the blocksize used in the I/O operations is
determined by the routine that actually does the operation. The OUTPUT
routine actually transfers two 512-byte blocks at a time; the INPUT routine
actually transfers four 512-byte blocks at once (see Section 11.5.2).

In general, the larger the transfers, the more efficiently the I/O is
performed. The maximum I/O transfer size allowed by RMS is 65535
bytes.

" The error processing in this example routine is very crude; the program
simply stops with an indicator of where the problem occurred. In real
programs, you should provide more extensive error processing and
reporting functions.

The intrinsic function FOR$RAB is used to supply the appropriate RAB
address to the OUTPUT and INPUT routines. The %VAL function is used
to transform the address returned by the FOR$RAB intrinsic function
to the proper argument passing mechanism. This allows the dummy
argument RAB in INPUT and OUTPUT to be addressed properly.

11.5.2 Block Mode I/O USEROPEN Functions—BIOCREATE and
BIOREAD
The only condition required for block I/O is the setting of the BIO bit in the
File Access field of the FAB, using the normal declarations needed to define
the symbols properly. If you wish to perform both block and record I/O on
the file without closing it, you need to set the BRO bit as well. For more
information on mixing block and record mode I/O, see the OpenVMS Record
Management Services Reference Manual. Note that the only difference between
BIOCREATE and BIOREAD is the use of SYS$CREATE and SYS$OPEN
services, respectively.

Using OpenVMS Record Management Services 11–33

! Procedure name: BIOCREATE

! USEROPEN routine to set the Block I/O bit and create the BLOCK I/O file.

INTEGER FUNCTION BIOCREATE(FAB, RAB, LUN)
INTEGER LUN

! Declare the necessary interface names

INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’
INCLUDE ’($SYSSRVNAM)’

! Declare the FAB and RAB blocks

RECORD /FABDEF/ FAB, /RABDEF/ RAB

! Set the Block I/O bit in the FAC (GET and PUT bits set by RTL)

FAB.FAB$B_FAC = FAB.FAB$B_FAC .OR. FAB$M_BIO

! Now do the Create and Connect

BIOCREATE = SYS$CREATE(FAB)
IF (.NOT. BIOCREATE) RETURN
BIOCREATE = SYS$CONNECT(RAB)
IF (.NOT. BIOCREATE) RETURN

! Nothing more to do at this point, just return

RETURN
END FUNCTION BIOCREATE

! Procedure name: BIOREAD

! USEROPEN routine to set the Block I/O bit and open the Block I/O demo
! file for reading

INTEGER FUNCTION BIOREAD(FAB, RAB, LUN)
INTEGER LUN

! Declare the necessary interface names

INCLUDE ’($FABDEF)’
INCLUDE ’($RABDEF)’
INCLUDE ’($SYSSRVNAM)’

! Declare the FAB and RAB blocks

RECORD /FABDEF/ FAB, /RABDEF/ RAB

! Set the Block I/O bit in the FAC (GET and PUT bits set by RTL)

FAB.FAB$B_FAC = FAB.FAB$B_FAC .OR. FAB$M_BIO

! Now do the Open and Connect

11–34 Using OpenVMS Record Management Services

BIOREAD = SYS$OPEN(FAB)
IF (.NOT. BIOREAD) RETURN
BIOREAD = SYS$CONNECT(RAB)
IF (.NOT. BIOREAD) RETURN

! Nothing more to do at this point, just return

RETURN
END FUNCTION BIOREAD

11.5.2.1 OUTPUT Routine
The following routine initializes the array A and performs the SYS$WRITE
operations. Beyond the normal RTL initialization, only the RSZ and RBF
fields in the RAB need to be initialized in order to perform the SYS$WRITE
operations. The %LOC function is used to create the address value required in
the RBF field.

One of the main reasons that block mode I/O is so efficient is that it avoids
copy operations by using the data areas of the program directly for the output
buffer. When writing to a disk device, the program must specify a value for
RSZ that is a multiple of 512 or else the final block would be only partly filled.

! Procedure name: OUTPUT

! Function to output records in block I/O mode

LOGICAL FUNCTION OUTPUT(RAB)

! Declare RMS names

INCLUDE ’($RABDEF)’
INCLUDE ’($SYSSRVNAM)’

! Declare the RAB

RECORD /RABDEF/ RAB

! Declare the Array to output

REAL(KIND=8) A(6400)

! Declare the status variable

INTEGER(KIND=4) STATUS

! Initialize the array

DO I=6400,1,-1
A(I) = I

ENDDO

! Now, output the array, two 512-byte (64 elements) blocks at a time

OUTPUT = .FALSE.
RAB.RAB$W_RSZ = 1024
DO I=0,99,2

Using OpenVMS Record Management Services 11–35

! For each block, set the buffer address to the proper array element

RAB.RAB$L_RBF = %LOC(A(I*64+1))
STATUS = SYS$WRITE(RAB)
IF (.NOT. STATUS) RETURN

ENDDO

! Successful output completion

OUTPUT = .TRUE.
RETURN
END FUNCTION OUTPUT

11.5.2.2 INPUT Routine
The following routine reads the array A from the file and verifies its values.
The USZ and UBF fields of the RAB are the only fields that need to be
initialized. The I/O transfer size is twice as large as the OUTPUT routine.
This can be done because the OUTPUT routine writes an integral number of
512-byte blocks to a disk device. This method cannot be used if the writing
routine either specifies an RSZ that is not a multiple of 512 or attempts to
write to a magnetic tape device.

! Procedure name: INPUT
!
! Function to input records in block I/O mode

LOGICAL FUNCTION INPUT(RAB)

! Declare RMS names

INCLUDE ’($RABDEF)’
INCLUDE ’($SYSSRVNAM)’

! Declare the RAB

RECORD /RABDEF/ RAB

! Declare the Array to output

REAL(KIND=8) A(6400)

! Declare the status variable

INTEGER(KIND=4) STATUS

! Now, read the array, four 512-byte (64 elements) blocks at a time

INPUT = .FALSE.
RAB.RAB$W_USZ = 2048
DO I=0,99,4

! For each block, set the buffer address to the proper array element

RAB.RAB$L_UBF = %LOC(A(I*64+1))
STATUS = SYS$READ(RAB)
IF (.NOT. STATUS) RETURN

ENDDO

11–36 Using OpenVMS Record Management Services

! Successful input completion if data is correct

DO I=6400,1,-1
IF (A(I) .NE. I) RETURN

ENDDO

INPUT = .TRUE.
RETURN
END FUNCTION INPUT

Using OpenVMS Record Management Services 11–37

12
Using Indexed Files

This chapter describes:

• Section 12.1, Overview of Indexed Files

• Section 12.2, Creating an Indexed File

• Section 12.3, Writing Records to an Indexed File

• Section 12.4, Reading Records from an Indexed File

• Section 12.5, Updating Records in an Indexed File

• Section 12.6, Deleting Records from an Indexed File

• Section 12.7, Current Record and Next Record Pointers

• Section 12.8, Exception Conditions When Using Indexed Files

12.1 Overview of Indexed Files
Sequential and direct access have traditionally been the only file access modes
available to Fortran programs. To overcome some of the limitations of these
access modes, HP Fortran supports a third access mode, called keyed access,
which allows you to retrieve records, at random or in sequence, based on key
fields that are established when you create a file with indexed organization.
(See Section 6.9.2 for details about keyed access mode.)

You can access files with indexed organization using sequential access or keyed
access, or a combination of both.

• Keyed access retrieves records randomly based on the particular key fields
and key values that you specify.

• Sequential access retrieves records in a sequence based on the direction of
the key and on the values within the particular key field that you specify.

Using Indexed Files 12–1

Once you have read a record by means of an indexed read request, you can
then use a sequential read request to retrieve records with ascending key field
values, beginning with the key field value in the record retrieved by the initial
read request.

Indexed organization is especially suitable for maintaining complex files in
which you want to select records based on one of several criteria. For example,
a mail-order firm could use an indexed organization file to store its customer
list. Key fields could be a unique customer order number, the customer’s zip
code, and the item ordered. Reading sequentially based on the zip-code key
field would enable you to produce a mailing list sorted by zip code. A similar
operation based on customer-order-number key field or item-number key field
would enable you to list the records in sequences of customer order numbers or
item numbers.

12.2 Creating an Indexed File
You can create a file with an indexed organization by using either of these
methods:

• Use the Fortran OPEN statement to specify the file options supported by
HP Fortran.

• Use the RMS EDIT/FDL Utility to select features not directly supported by
HP Fortran.

Any indexed file created with EDIT/FDL can be accessed by HP Fortran I/O
statements.

When you create an indexed file, you define certain fields within each record as
key fields. The primary key, identified as key number zero, must be present
as a field in every record. Alternate keys are numbered from 1 through 254.
An indexed file can have as many as 255 key fields (1 primary key and up
to 254 alternate keys) defined. In practice, however, few applications require
more than 3 or 4 key fields.

The data types used for key fields must be INTEGER (KIND=1), INTEGER
(KIND=2), INTEGER (KIND=4), INTEGER (KIND=8), or CHARACTER.

In designing an indexed file, you must decide the byte positions of the key
fields. For example, in creating an indexed file for use by a mail-order firm,
you might define a file record to consist of the following fields:

12–2 Using Indexed Files

STRUCTURE /FILE_REC_STRUCT/
INTEGER(KIND=4) ORDER_NUMBER ! Positions 1:4, key 0
CHARACTER(LEN=20) NAME ! Positions 5:24
CHARACTER(LEN=20) ADDRESS ! Positions 25:44
CHARACTER(LEN=19) CITY ! Positions 45:63
CHARACTER(LEN=2) STATE ! Positions 64:65
CHARACTER(LEN=9) ZIP_CODE ! Positions 66:74, key 1
INTEGER(KIND=2) ITEM_NUMBER ! Positions 75:76, key 2

END STRUCTURE
.
.
.

RECORD /FILE_REC_STRUCT/ FILE_REC

Instead of using a record structure, you can define a the fields of a record using
a derived-type definition with the SEQUENCE statement:

TYPE FILE_REC
SEQUENCE
INTEGER(KIND=4) ORDER_NUMBER ! Positions 1:4, key 0
CHARACTER(LEN=20) NAME ! Positions 5:24
CHARACTER(LEN=20) ADDRESS ! Positions 25:44
CHARACTER(LEN=19) CITY ! Positions 45:63
CHARACTER(LEN=2) STATE ! Positions 64:65
CHARACTER(LEN=9) ZIP_CODE ! Positions 66:74, key 1
INTEGER(KIND=2) ITEM_NUMBER ! Positions 75:76, key 2

END TYPE FILE_REC
.
.
.

Given this record definition, you can use the following OPEN statement to
create an indexed file:

OPEN (UNIT=10, FILE=’CUSTOMERS.DAT’, STATUS=’NEW’, &
ORGANIZATION=’INDEXED’, ACCESS=’KEYED’, RECORDTYPE=’VARIABLE’, &
FORM=’UNFORMATTED’, RECL=19, &
KEY=(1:4:INTEGER, 66:74:CHARACTER, 75:76:INTEGER), &
IOSTAT=IOS, ERR=9999)

This OPEN statement establishes the attributes of the file, including the
definition of a primary key and two alternate keys. The definitions of the
integer keys do not explicitly state INTEGER (KIND=4) and INTEGER
(KIND=2). The data type sizes are determined by the number of character
positions allotted to the key fields (4- and 2-digit positions in this case
respectively).

If you specify the KEY keyword when opening an existing file, the key
specification that you give must match that of the file.

Using Indexed Files 12–3

HP Fortran uses RMS default key attributes when creating an indexed file.
These defaults are as follows:

• The values in primary key fields cannot be changed when a record is
rewritten. Duplicate values in primary key fields is prohibited.

• The values in alternate key fields can be changed. Duplicate values in
alternate key fields is permitted.

You can use the EDIT/FDL Utility or a USEROPEN routine to override these
defaults and to specify other values not supported by HP Fortran, such as null
key field values, null key names, and key data types other than integer and
character.

For More Information:

• On the use of the USEROPEN keyword in OPEN statements, see the HP
Fortran for OpenVMS Language Reference Manual.

• On indexed file options, see the OpenVMS Record Management Services
Reference Manual.

• On the EDIT/FDL Utility, see the VMS File Definition Language Facility
Manual and the Guide to OpenVMS File Applications.

12.3 Writing Records to an Indexed File
You can write records to an indexed file with either formatted or unformatted
indexed WRITE statements. Each write operation inserts a new record into
the file and updates the key indexes so that the new record can be retrieved in
a sequential order based on the values in the respective key fields.

For example, you could add a new record to the file for the mail-order firm (see
Section 12.2) with the following statement:

WRITE (UNIT=10,IOSTAT=IOS,ERR=9999) FILE_REC

12.3.1 Duplicate Values in Key Fields
It is possible to write two or more records with the same value in a single
key field. The attributes specified for the file when it was created determine
whether this duplication is allowed. By default, HP Fortran creates files that
allow duplicate alternate key field values and prohibit duplicate primary key
field values. If duplicate key field values are present in a file, the records with
equal values are retrieved on a first-in/first-out basis.

12–4 Using Indexed Files

For example, assume that five records are written to an indexed file in this
order (for clarity, only key fields are shown):

ORDER_NUMBER ZIP_CODE ITEM_NUMBER

1023 70856 375

942 02163 2736

903 14853 375

1348 44901 1047

1263 33032 690

If the file is later opened and read sequentially by primary key (ORDER_
NUMBER), the order in which the records are retrieved is not affected by
the duplicated value (375) in the ITEM_NUMBER key field. In this case, the
records would be retrieved in the following order:

ORDER_NUMBER ZIP_CODE ITEM_NUMBER

903 14853 375

942 02163 2736

1023 70856 375

1263 33032 690

1348 44901 1047

However, if the read operation is based on the second alternate key (ITEM_
NUMBER), the order in which the records are retrieved is affected by the
duplicate key field value. In this case, the records would be retrieved in the
following order:

ORDER_NUMBER ZIP_CODE ITEM_NUMBER

1023 70856 375

903 14853 375

1263 33032 690

1348 44901 1047

942 02163 2736

The records containing the same key field value (375) are retrieved in the order
in which they were written to the file.

Using Indexed Files 12–5

12.3.2 Preventing the Indexing of Alternate Key Fields
When writing to an indexed file that contains variable-length records, you
can prevent entries from being added to the key indexes for any alternate key
fields. This is done by omitting the names of the alternate key fields from the
WRITE statement. The omitted alternate key fields must be at the end of the
record; another key field cannot be specified after the omitted key field.

For example, the last record (ORDER_NUMBER 1263) in the mail-order
example could be written with the following statement:

WRITE (UNIT=10,IOSTAT=IOS,ERR=9999) FILE_REC.ORDER_NUMBER, FILE_REC.NAME, &
FILE_REC.ADDRESS, FILE_REC.CITY, FILE_REC.STATE, FILE_REC.ZIP_CODE

Because the field name FILE_REC.ITEM_NUMBER is omitted from the
WRITE statement, an entry for that key field is not created in the index. As
a result, an attempt to read the file using the alternate key ITEM_NUMBER
would not retrieve the last record and would produce the following listing:

ORDER_NUMBER ZIP_CODE ITEM_NUMBER

1023 70856 375

903 14853 375

1348 44901 1047

942 02163 2736

You can omit only trailing alternate keys from a record; the primary key must
always be present.

12.4 Reading Records from an Indexed File
You can read records in an indexed file with either sequential or indexed
READ statements (formatted or unformatted) under the keyed mode of access.
By specifying ACCESS=’KEYED’ in the OPEN statement, you enable both
sequential and keyed access to the indexed file.

Indexed READ statements position the file pointers (see Section 12.7) at a
particular record, determined by the key field value, the key-of-reference, and
the match criterion. Once you retrieve a particular record by an indexed READ
statement, you can then use sequential access READ statements to retrieve
records with increasing key field values.

12–6 Using Indexed Files

The form of the external record’s key field must match the form of the value
you specify in the KEY keyword. If the key field contains character data, you
should specify the KEY keyword value as a CHARACTER data type. If the key
field contains binary data, then the KEY keyword value should be of INTEGER
data type.

If you write a record to an indexed file with formatted I/O, the data type is
converted from its internal representation to an external representation. As a
result, the key value must be specified in the external form when you read the
data back with an indexed read. Otherwise, a match will occur when you do
not expect it.

The following HP Fortran program segment prints the order number and zip
code of each record where the first five characters of the zip code are greater
than or equal to ’10000’ but less than ’50000’:

! Read first record with ZIP_CODE key greater than or equal to ’10000’.

READ (UNIT=10,KEYGE=’10000’,KEYID=1,IOSTAT=IOS,ERR=9999) FILE_REC

! While the zip code previously read is within range, print the
! order number and zip code, then read the next record.

DO WHILE (FILE_REC.ZIP_CODE .LT. ’50000’)
PRINT *, ’Order number’, FILE_REC.ORDER_NUMBER, ’has zip code’, &

FILE_REC.ZIP_CODE
READ (UNIT=10,IOSTAT=IOS,END=200,ERR=9999) FILE_REC

! END= branch will be taken if there are no more records in the file.

END DO
200 CONTINUE

The error branch on the keyed READ in this example is taken if no record is
found with a zip code greater than or equal to ’10000’; an attempt to access a
nonexistent record is an error. If the sequential READ has accessed all records
in the file, an end-of-file status occurs, as with other file organizations.

If you want to detect a failure of the keyed READ, you can examine the I/O
status variable, IOS, for the appropriate error number (see Table 7–1 for a list
of the returned error codes).

12.5 Updating Records in an Indexed File
The REWRITE statement updates existing records in an indexed file. You
cannot replace an existing record simply by writing it again; a WRITE
statement would attempt to add a new record.

An update operation is accomplished in two steps:

1. You must read the record in order to make it the current record.

Using Indexed Files 12–7

2. You execute the REWRITE statement.

For example, to update the record containing ORDER_NUMBER 903 (see prior
examples) so that the NAME field becomes ’Theodore Zinck’, you might use
the following Fortran code segment:

READ (UNIT=10,KEY=903,KEYID=0,IOSTAT=IOS,ERR=9999) FILE_REC
FILE_REC.NAME = ’Theodore Zinck’
REWRITE (UNIT=10,IOSTAT=IOS,ERR=9999) FILE_REC

When you rewrite a record, key fields may change. The attributes specified
for the file when it was created determine whether this type of change is
permitted. The primary key value can never change on a REWRITE operation.
If necessary, delete the old record and write a new record.

12.6 Deleting Records from an Indexed File
The DELETE statement allows you to delete records from an indexed file. The
DELETE and REWRITE statements are similar; a record must first be locked
by a READ statement before it can be operated on.

The following Fortran code segment deletes the second record in the file with
ITEM_NUMBER 375 (refer to previous examples):

READ (UNIT=10,KEY=375,KEYID=2,IOSTAT=IOS,ERR=9999)
READ (UNIT=10,IOSTAT=IOS,ERR=9999) FILE_REC
IF (FILE_REC.ITEM_NUMBER .EQ. 375) THEN

DELETE (UNIT=10, IOSTAT=IOS, ERR=9999)
ELSE

PRINT *, ’There is no second record.’
END IF

Deletion removes a record from all defined indexes in the file.

12.7 Current Record and Next Record Pointers
The RMS file system maintains two pointers into an open indexed file:

• The next record pointer indicates the record to be retrieved by a
sequential read. When you open an indexed file, the next record pointer
indicates the record with the lowest primary key field value. Subsequent
sequential read operations cause the next record pointer to be the one with
the next higher value in the same key field. In case of duplicate key field
values, records are retrieved in the order in which they were written.

• The current record pointer indicates the record most recently retrieved
by a READ operation; it is the record that is locked from access by other
programs sharing the file.

12–8 Using Indexed Files

The current record is the one operated on by the REWRITE statement
and the DELETE statement. The current record is undefined until a read
operation is performed on the file. Any file operation other than a read
causes the current record pointer to become undefined. Also, an error
results if a rewrite or delete operation is performed when the current
record pointer is undefined.

12.8 Exception Conditions When Using Indexed Files
You can expect to encounter certain exception conditions when using indexed
files. The two most common of these conditions involve valid attempts to read
locked records and invalid attempts to create duplicate keys. Provisions for
handling both of these situations should be included in a well-written program.

When an indexed file is shared by several users, any read operation may
result in a ‘‘specified record locked’’ error. One way to recover from this error
condition is to ask if the user would like to reattempt the read. If the user’s
response is positive, then the program can go back to the READ statement.
For example:

INCLUDE ’($FORIOSDEF)’
.
.
.

100 READ (UNIT=10,IOSTAT=IOS) DATA

IF (IOS .EQ. FOR$IOS_SPERECLOC) THEN
TYPE *, ’That record is locked. Press RETURN’
TYPE *, ’to try again, or Ctrl/Z to discontinue’
READ (UNIT=*,FMT=*,END=900)
GO TO 100

ELSE IF (IOS .NE. 0) THEN
CALL ERROR (IOS)

END IF

You should avoid looping back to the READ statement without first providing
some type of delay (caused by a request to try again, or to discontinue, as in
this example). If your program reads a record but does not intend to modify
the record, you should place an UNLOCK statement immediately after the
READ statement. This technique reduces the time that a record is locked and
permits other programs to access the record.

The second exception condition, creation of duplicate keys, occurs when your
program tries to create a record with a key field value that is already in
use. When duplicate key field values are not desirable, you might have your
program prompt for a new key field value whenever an attempt is made to
create a duplicate. For example:

Using Indexed Files 12–9

INCLUDE ’($FORIOSDEF)’

200 WRITE (UNIT=10,IOSTAT=IOS) KEY_VAL, DATA

IF (IOS .EQ. FOR$IOS_INCKEYCHG) THEN
TYPE *, ’This key field value already exists. Please’
TYPE *, ’enter a different key field value, or press’
TYPE *, ’Ctrl/Z to discontinue this operation.’
READ (UNIT=*,FMT=300,END=999) KEY_VAL
GO TO 200

ELSE IF (IOS .NE. 0) THEN
CALL ERROR (IOS)

END IF

12–10 Using Indexed Files

13
Interprocess Communication

This chapter describes how to exchange and share data between local and
remote processes:

• Section 13.1, HP Fortran Program Section Usage

• Section 13.2, Local Processes: Sharing and Exchanging Data

• Section 13.3, Remote Processes: Sharing and Exchanging Data

Local processes involve a single OpenVMS processor, and remote processes
involve separate processors that are interconnected by means of DECnet.

13.1 HP Fortran Program Section Usage
You may need to change program section attributes to allow shared access to
an installed shareable image.

The storage required by an HP Fortran program unit is allocated in contiguous
areas called program sections (PSECTs). The HP Fortran compiler implicitly
declares these PSECTs:

• $CODE$

• $DATA$

• BSS

• $LITERAL$

• $LINK$

Each common block you declare causes allocation of a PSECT with the
same name as the common block. (The unnamed common block PSECT is
named $BLANK.) Memory allocation and sharing are controlled by the linker
according to the attributes of each PSECT; PSECT names and attributes are
listed in Table 13–1.

Interprocess Communication 13–1

Each procedure in your program is named according to the name specified in
the PROGRAM, BLOCK DATA, FUNCTION, or SUBROUTINE statement used
in creating the object module. The defaults applied to PROGRAM and BLOCK
DATA statements are source-file-name$MAIN and source-file-name$DATA,
respectively.

Table 13–1 PSECT Names and Attributes

PSECT
Name Use Attributes

$CODE$ Executable code PIC, CON, REL, LCL, SHR, EXE, NORD,
NOWRT, OCTA

$LINK$ Linkage information (procedure
descriptors, linkage pairs, and
literals)

NOPIC, CON, REL, LCL, NOSHR, NOEXE,
RD, NOWRT, OCTA

$DATA$ Initialized user local static variables
and compiler temporary variables

NOPIC, CON, REL, LCL, NOSHR, NOEXE,
RD, WRT, OCTA

BSS Uninitialized user local variables
and compiler temporary variables

NOPIC, CON, REL, LCL, NOSHR, NOEXE,
RD, WRT, OCTA

$LITERAL$ Literals used in FORMAT
statements

NOPIC, CON, REL, LCL, NOSHR, NOEXE,
RD, WRT, OCTA

$BLANK Blank common block NOPIC, OVR, REL, GBL, NOSHR, NOEXE,
RD, WRT, OCTA

names Named common blocks NOPIC, OVR, REL, GBL, NOSHR, NOEXE,
RD, WRT, OCTA

You can use the cDEC$ PSECT (such as !DEC$ PSECT) directive or use a
linker options file to change some of the attributes of a common block.

Table 13–2 describes the meanings of HP Fortran PSECT attributes.

13–2 Interprocess Communication

Table 13–2 HP Fortran PSECT Attributes

Attribute Meaning

PIC/NOPIC Position independent or position dependent code

CON/OVR Concatenated or overlaid

REL/ABS Relocatable or absolute

GBL/LCL Global or local scope

SHR/NOSHR Shareable or nonshareable

EXE/NOEXE Executable or nonexecutable

RD/NORD Readable or nonreadable (reserved by HP)

WRT/NOWRT Writable or nonwritable

LONG/QUAD/OCTA Longword, quadword, or octaword alignment

When the linker constructs an executable image, it divides the executable
image into sections. Each image section contains PSECTs that have the same
attributes. By arranging image sections according to PSECT attributes, the
linker is able to control memory allocation. The linker allows you to allocate
memory to your own specification by means of commands you include in an
options file that is input to the linker.

For More Information:

• On the cDEC$ PSECT (!DEC$ PSECT) compiler directive statement, see
the HP Fortran for OpenVMS Language Reference Manual.

• On examples of linker options files used for shared installed common data,
see Section 13.2.2.

• On the linker options file and special program sections, see the HP
OpenVMS Linker Utility Manual.

13.2 Local Processes: Sharing and Exchanging Data
Interprocess communication mechanisms provided for local processes include
the following capabilities:

• Program image sharing in shareable image libraries

• Data sharing in installed common areas

• Information passing by means of mailboxes

• Information passing over DECnet network links

These capabilities are discussed in the sections that follow.

Interprocess Communication 13–3

VOLATILE declarations are required when you use certain run-time features
of the operating system, including values that can be read or written by
methods other than direct assignment, or during a routine call.

If a variable can be accessed using rules in addition to those provided by
the standard Fortran 90/95 language, declare the variable as VOLATILE.
For example, if a variable in COMMON can change value by means of an
OpenVMS AST routine or condition handler, you must declare that common
block variable or the entire COMMON block as volatile.

Consider the following uses of variables as candidates for a VOLATILE
declaration if asynchronous access might occur:

• Variables in common blocks

• Variables in modules

• Addresses not saved by the %LOC built-in function

• Variables with the TARGET attribute

• Variables declared with the SAVE statement in recursive routines

• Dummy arguments

Alternatively, if the only local accesses occur when the variable is passed as
a dummy argument, the command-line option /ASSUME=DUMMY_
ALIASES can be used instead of a VOLATILE declaration (see
Section 5.8.9).

• Variables in shared global sections

13.2.1 Sharing Images in Shareable Image Libraries
If you have a routine that is invoked by more than one program, you should
consider establishing it as a shareable image and installing it on your system.

Establishing a routine as a shareable image provides the following benefits:

• Saves disk space: The executable images to which the shareable image is
linked do not actually include the shareable image. Only one copy of the
shareable image exists.

• Simplifies maintenance: If you use symbol vectors, you can modify,
recompile, and relink a shareable image without having to relink the
executable images that reference it.

Installing a shareable image as shared (INSTALL command, /SHARED
qualifier) can also save memory.

13–4 Interprocess Communication

The steps to creating and installing a shareable image are:

1. Compile the source file containing that routine that you want to establish
as a shareable image.

2. Link the shareable image object file that results from step 1, specifying any
object files that contain routines referenced by the shareable image object
file.

The OpenVMS Linker provides a variety of options that you should
consider before performing the link operation. For detailed information on
shareable images and linker options, see the HP OpenVMS Linker Utility
Manual.

3. Create a shareable image library using the Library Utility’s LIBRARY
command. For detailed information on creating shareable image libraries,
see the Guide to Creating OpenVMS Modular Procedures.

4. Install the shareable image (the results of step 3) on your system as a
shared image by using the Install Utility’s INSTALL command (with the
/SHARED qualifier). For detailed information on how to perform this
operation, see the VMS Install Utility Manual.

Any programs that access a shareable image must be linked with that image.
When performing the link operation, you must specify one of the following
items on your LINK command:

• The name of the shareable image library containing the symbol table of the
shareable image. Use the /LIBRARY qualifier to identify a library file.

• A linker options file that contains the name of the shareable image file.
Use the /SHAREABLE qualifier to identify a shareable image file. (If you
specify the /SHAREABLE qualifier on the LINK command line and you
do not specify an options file, the linker creates a shareable image of the
object file you are linking.)

The resulting executable image contains the contents of each object module
and a pointer to each shareable image.

13.2.2 Sharing Data in Installed Common Areas
Sharing the same data among two or more processes can be done using
installed common areas.

Typically, you use an installed common area for interprocess communication or
for two or more processes to access the same data simultaneously.

Interprocess Communication 13–5

13.2.2.1 Creating and Installing the Shareable Image Common Area
To communicate between processes using a common area, first install the
common area as a shareable image:

1. Create the common area: Write an HP Fortran program that declares the
variables in the common area and defines the common area. This program
should not contain executable code. For example:

COMMON /WORK_AREA/ WORK_ARRAY(8192)
END

This common area can use the BLOCK DATA statement.

When compiling the source file that contains the common block
declarations, consistently use the /ALIGNMENT and /GRANULARITY
qualifiers (see Section 13.2.2.3). For example:

$ FORTRAN/ALIGN=COMMONS=NATURAL/GRANULARITY=LONGWORD INC_COMMON.F90

2. Make the common area a shareable image: Compile the program
containing the common area and use the LINK/SHAREABLE command
to create a shareable image containing the common area. You need to
specify a linker options file (shown here as SYS$INPUT to allow typed
input) to specify the PSECT attributes of the COMMON block PSECT and
include it in the global symbol table:

$ LINK/SHAREABLE INC_COMMON ,SYS$INPUT/OPTION
SYMBOL_VECTOR=(WORK_AREA=PSECT)
PSECT_ATTR=WORK_AREA,SHR

Ctrl/Z

With HP Fortran on OpenVMS Alpha systems, the default PSECT attribute
for a common block is NOSHR (see Section 13.1). To use a shared installed
common block, you must specify one of the following:

• The SHR attribute in a cDEC$ PSECT directive in the source file

• The SHR attribute in the linker options file for the shareable image to
be installed and for each executable image that references the installed
common block

If the !DEC$ PSECT (same as cDEC$ PSECT) directive specified the SHR
attribute, the LINK command is as follows:

$ LINK/SHAREABLE INC_COMMON ,SYS$INPUT/OPTION
SYMBOL_VECTOR=(WORK_AREA=PSECT)

Ctrl/Z

The source line containing the !DEC$ PSECT directive is as follows:

!DEC$ PSECT /INC_COMMON/ SHR

13–6 Interprocess Communication

3. Copy the shareable image: Once created, you should copy the shareable
image into SYS$SHARE: before it is installed. The file protection of the
.EXE file must allow write access for the processes running programs that
will access the shareable image (shown for Group access in the following
COPY command):

$ COPY/LOG DISK$:[INCOME.DEV]INC_COMMON.EXE SYS$SHARE:*.*/PROTECTION=G:RWE

If you do not copy the installed shareable image to SYS$SHARE, before
running executable images that reference the installed shareable common
image, you must define a logical name that specifies the location of that
image.

4. Install the shareable image: Using an account with CMKRNL privilege,
invoke the interactive Install Utility. When the INSTALL> prompt
appears, type a line containing the following:

a. The CREATE (or ADD) command

b. The complete file specification of the shareable image that contains the
common area (file type defaults to EXE)

c. The qualifiers /WRITABLE and /SHARED

The Install utility installs your shareable image and reissues the
INSTALL> prompt. Type EXIT to exit. For example:

$ INSTALL
INSTALL> CREATE SYS$SHARE:INC_COMMON/WRITABLE/SHARED
INSTALL> EXIT
$

A disk containing an installed image cannot be dismounted until you
invoke the Install Utility and type DELETE, followed by the complete file
specification of the image.

For More Information:

• On default PSECT attributes, see Section 13.1.

• On the !DEC$ PSECT (cDEC$ PSECT) compiler directive statement, see
the HP Fortran for OpenVMS Language Reference Manual.

• On the Install Utility, see the VMS Install Utility Manual.

• On synchronizing access to a common block installed as a shareable image,
see Section 13.2.2.3.

• On the linker, see Chapter 3 and the HP OpenVMS Linker Utility Manual.

• On sharing common block data using a global section, see Section F.4 and
the HP OpenVMS Programming Concepts Manual.

Interprocess Communication 13–7

• On page size differences between OpenVMS VAX and OpenVMS Alpha
systems, see Migrating an Application from OpenVMS VAX to OpenVMS
Alpha.

13.2.2.2 Creating Programs to Access the Shareable Image Common Area
After the common area has been installed as a shareable image, use the
following steps to access the data from any executable program:

1. Include the same variable declarations and common area declarations in
the accessing program or programs.

All common block data declarations must be compatible wherever the
common block is referenced.

2. Compile the program.

When compiling the program that contains the common block declarations,
consistently use the same /ALIGNMENT and /GRANULARITY qualifiers
used to compile the common block data declaration program that has been
installed as a shareable image (see Section 13.2.2.3).

For example, assume the two programs named INCOME and REPORT
that will access a common block WORK_AREA in the installed shareable
image INC_COMMON:

$ FORTRAN/ALIGN=COMMONS=NATURAL/GRANULARITY=LONGWORD INCOME.F90
$ FORTRAN/ALIGN=COMMONS=NATURAL/GRANULARITY=LONGWORD REPORT.F90

3. Link the accessing program against the installed common area program.

You must use an options file to specify the common area program as a
shareable image.

The following are LINK commands:

$ LINK INCOME, INCOME/OPTION
$ LINK REPORT, INCOME/OPTION

The linker options file INCOME.OPT contains the following lines:

INC_COMMON/SHAREABLE
PSECT_ATTR=WORK_AREA, SHR

If a !DEC$ PSECT (cDEC$ PSECT) directive specified the SHR PSECT
attribute, the linker options file INCOME.OPT would contain the following
line:

INC_COMMON/SHAREABLE

The source line containing the !DEC$ PSECT directive would be as follows:

!DEC$ PSECT /INC_COMMON/ SHR

13–8 Interprocess Communication

For each executable image that references the installed shareable image
containing the shared common area, you must specify the SHR PSECT
attribute by using either of these:

• !DEC$ PSECT (cDEC$ PSECT) directive

• Linker options file

The two programs access the same area of memory through the installed
common block (program section name) WORK_AREA in the installed
shareable image INC_COMMON.

4. If the installed image is not located in SYS$SHARE, you must define a
logical name that specifies the location of that image. The logical name (in
this example INC_COMMON) is the name of the installed image.

5. Execute the accessing program.

In the previous series of examples, the two programs INCOME and
REPORT access the same area of memory through the installed common
block WORK_AREA in the installed shareable image INC_COMMON.

For More Information:

• On the /ALIGNMENT qualifier, see Section 2.3.3.

• On the /GRANULARITY qualifier, see Section 2.3.23.

• On intrinsic data types, see Chapter 8.

• On the Alpha architecture, see the Alpha Architecture Reference Manual.

• On the Itanium architecture, see the Intel Itanium Architecture Software
Developer’s Manual, Volume 1: Application Architecture.

13.2.2.3 Synchronizing Access
If more than one process or thread will write to a shared global section
containing COMMON block data, the user program may need to synchronize
access to COMMON block variables.

Compile all programs referencing the shared common area with the same value
for the /ALIGNMENT and /GRANULARITY qualifiers. For example:

$ FORTRAN/ALIGN=COMMONS=NATURAL /GRANULARITY=LONGWORD INC_COMMON

Using /GRANULARITY=LONGWORD for 4-byte variables or
/GRANULARITY=QUADWORD for 8-byte variables ensures that adjacent
data is not accidentally affected. To ensure access to 1-byte variables, specify
/GRANULARITY=BYTE. Because accessing data items less than four bytes
slows run-time performance, you might want to consider synchronizing read
and write access to the data on the same node.

Interprocess Communication 13–9

Typically, programs accessing shared data use common event flag clusters
to synchronize read and write access to the data on the same node. In the
simplest case, one event flag in a common event flag cluster might indicate
that a program is writing data, and a second event flag in the cluster might
indicate that a program is reading data. Before accessing the shared data, a
program must examine the common event flag cluster to ensure that accessing
the data does not conflict with an operation already in progress.

Other ways of synchronizing access on a single node include the OpenVMS lock
manager system services (SYS$ENQ and SYS$DEQ), the hibernate and wake
system services (SYS$HIBER and SYS$WAKE), or using Assembler code.

For More Information:

• On the use of event flags, see the HP OpenVMS System Services Reference
Manual.

• On sharing common block data using a global section, see Section F.4 and
the HP OpenVMS Programming Concepts Manual.

• On page size differences between OpenVMS VAX and OpenVMS Alpha
systems, see Migrating an Application from OpenVMS VAX to OpenVMS
Alpha.

• On the /ALIGNMENT qualifier, see Section 2.3.3.

• On the /GRANULARITY qualifier, see Section 2.3.23.

• On intrinsic data types, see Chapter 8.

• On the Alpha architecture, see the Alpha Architecture Reference Manual.

• On the Itanium architecture, see the Intel Itanium Architecture Software
Developer’s Manual, Volume 1: Application Architecture.

13.2.3 Creating and Using Mailboxes to Pass Information
It is often useful to exchange data between processes, as when synchronizing
execution or sending messages.

A mailbox is a record-oriented pseudo I/O device that allows you to pass data
from one process to another. Mailboxes are created by the Create Mailbox
system service (SYS$CREMBX). The following sections describe how to create
mailboxes and how to send and receive data using mailboxes.

13–10 Interprocess Communication

13.2.3.1 Creating a Mailbox
SYS$CREMBX creates the mailbox and returns the number of the I/O channel
assigned to the mailbox. You must specify a variable for the I/O channel. You
should also specify a logical name to be associated with the mailbox. The
logical name identifies the mailbox for other processes and for HP Fortran I/O
statements.

The SYS$CREMBX system service also allows you to specify the message and
buffer sizes, the mailbox protection code, and the access mode of the mailbox;
however, the default values for these arguments are usually sufficient.

The following segment of code creates a mailbox named MAILBOX. The
number of the I/O channel assigned to the mailbox is returned in ICHAN.

INCLUDE ’($SYSSRVNAM)’
INTEGER (KIND=2) ICHAN
ISTATUS = SYS$CREMBX(,ICHAN,,,,,’MAILBOX’)

Note

Do not use MAIL as the logical name for a mailbox. If you do so, the
system will not execute the proper image in response to the OpenVMS
command MAIL.

13.2.3.2 Sending and Receiving Data Using Mailboxes
Sending data to and receiving data from a mailbox is like other forms of HP
Fortran I/O. The mailbox is simply treated as a record-oriented I/O device.

Use HP Fortran formatted sequential READ and WRITE statements to send
and receive messages. The data transmission is performed synchronously; a
program that writes a message to a mailbox waits until the message is read,
and a program that reads a message from a mailbox waits until the message is
written before it continues transmission. When the writing program closes the
mailbox, an end-of-file condition is returned to the reading program.

Do not attempt to write a record of zero length to a mailbox; the program
reading the mailbox interprets this record as an end-of-file. Zero-length records
are produced by consecutive slashes in FORMAT statements.

The following sample program creates a mailbox assigned with the logical
name MAILBOX. The program then performs an open operation specifying the
logical name MAILBOX as the file to be opened. It then reads file names from
FNAMES.DAT and writes them to the mailbox until all of the records in the
file have been transmitted.

Interprocess Communication 13–11

CHARACTER (LEN=64) FILENAME
INCLUDE ’($SYSSRVNAM)’
INTEGER (KIND=2) ICHAN
INTEGER (KIND=4) STATUS

STATUS = SYS$CREMBX(,ICHAN,,,,,’MAILBOX’)
IF (.NOT. STATUS) GO TO 99

OPEN (UNIT=9, FILE=’MAILBOX’, STATUS=’NEW’, &
CARRIAGECONTROL=’LIST’, ERR=99)

OPEN (UNIT=8, FILE=’FNAMES.DAT’, STATUS=’OLD’)

10 READ (8,100,END=98) FILENAME
WRITE (9,100) FILENAME

100 FORMAT(A)
GO TO 10

98 CLOSE (UNIT=8)
CLOSE (UNIT=9)
STOP

99 WRITE (6,*) ’Mailbox error’
STOP
END

The following sample program reads messages from a mailbox that was
assigned the logical name MAILBOX when it was created. The messages
comprise file names, which the program reads. The program then types the
files associated with the file names.

CHARACTER(LEN=64) FILNAM
CHARACTER(LEN=123) TEXT

OPEN (UNIT=1, FILE=’MAILBOX’, STATUS=’OLD’)
1 READ (1,100,END=12) FILNAM

100 FORMAT (A)
OPEN (UNIT=2, FILE=FILNAM, STATUS=’OLD’)
OPEN (UNIT=3, FILE=’SYS$OUTPUT’, STATUS=’NEW’)

2 READ (2,100,END=10) TEXT
WRITE (3,100) TEXT
GO TO 2

10 CLOSE (UNIT=2)
CLOSE (UNIT=3)
GO TO 1

12 END

13–12 Interprocess Communication

For More Information:

• On calling system services, see Chapter 10.

• On the arguments supplied to the Create Mailbox system service, see the
HP OpenVMS System Services Reference Manual.

13.3 Remote Processes: Sharing and Exchanging Data
If your computer is a node in a DECnet network, you can communicate with
other nodes in the network by means of standard HP Fortran I/O statements.
These statements let you exchange data with a program at the remote
computer (task-to-task communication) and access files at the remote computer
(resource sharing). There is no apparent difference between these intersystem
exchanges and the local interprocess and file access exchanges.

Remote file access and task-to-task communications are discussed separately
in the sections that follow.

The system manager at the remote system needs to create the necessary
network objects and security controls (such as proxy access). Network file
specifications might need to use access control strings, depending on how the
remote system access has been implemented.

For More Information:

• On OpenVMS system management, see the HP OpenVMS System
Manager’s Manual.

• On accessing files across networks, see the OpenVMS User’s Manual.

13.3.1 Remote File Access
To access a file on a remote system, include the remote node name in the file
name specification. For example:

BOSTON::DBA0:[SMITH]TEST.DAT;2

To make a program independent of the physical location of the files it accesses,
you can assign a logical name to the network file specification as shown in the
following example:

$ DEFINE INVFILE MIAMI::DR4:[INV]INVENT.DAT

The logical name INVFILE now refers to the remote file and can be used in the
program. For example:

OPEN (UNIT=10, FILE=’INVFILE’, STATUS=’OLD’)

Interprocess Communication 13–13

To process a file on the local network node, reassign the logical name; you do
not need to modify the source program.

13.3.2 Network Task-to-Task Communication
Network task-to-task communication allows a program running on one
network node to interact with a program running on another network node.
This interaction is accomplished with standard HP Fortran I/O statements and
looks much like an interactive program/user session.

The steps involved in network task-to-task communications are:

1. Request the network connection. The originating program initiates
task-to-task communication. It opens the remote task file with a special
file name syntax: the name of the remote task file is preceded with TASK=
and surrounded with quotation marks. For example:

BOSTON::"TASK=UPDATE"

Unless the remote task file is contained in the default directory for the
remote node’s DECnet account, you must specify the pertinent account
information (a user name and password) as part of the node name:

BOSTON"username password"::"TASK=UPDATE"

The form of the remote task file varies, depending on the remote computer’s
operating system. For OpenVMS systems, this task file is a command file
with a file type of COM. The network software submits the command file
as a batch job on the remote system.

2. Complete the network connection. When the remote task starts, it
must complete the connection back to the host. On OpenVMS systems, the
remote task completes this connection by performing an open operation
on the logical name SYS$NET. When opening the remote task file or
SYS$NET, specify either FORM=’UNFORMATTED’ or the combination of
FORM=’FORMATTED’ and CARRIAGECONTROL=’NONE’.

3. Exchange messages. When the connection is made between the two
tasks, each program performs I/O using the established link.

Task-to-task communication is synchronous. This means that when one
task performs a read, it waits until the other task performs a write before
it continues processing.

4. Terminate the network connection. To prevent losing data, the
program that receives the last message should terminate the network
connection using the CLOSE statement. When the network connection is
terminated, the cooperating image receives an end-of-file error.

13–14 Interprocess Communication

The following is a complete example showing how HP Fortran programs can
exchange information over a network. The originating program prompts for an
integer value and sends the value to the remote program. The remote program
then adds one to the value and returns the value to the originating program.
It is assumed that the remote operating system is an OpenVMS system.

The originating program on the local node contains the following source code:

OPEN (UNIT=10, FILE=’PARIS::"TASK=REMOTE"’, STATUS=’OLD’, &
FORM=’UNFORMATTED’, ACCESS=’SEQUENTIAL’, IOSTAT=IOS, ERR=999)

! Prompt for a number
PRINT 101

101 FORMAT ($,’ ENTER A NUMBER: ’)
ACCEPT *,N

! Perform the network I/O
WRITE (UNIT=10, IOSTAT=IOS, ERR=900) N
READ (UNIT=10, IOSTAT=IOS, ERR=900) N

! Display the number and process errors

PRINT 102, N
102 FORMAT (’ The new value is ’,I11)

GO TO 999

900 PRINT *, ’Unexpected I/O Error Number ’, IOS
999 CLOSE (UNIT=10)

END PROGRAM

The task file REMOTE.COM on the remote node contains the following
OpenVMS DCL commands:

$ DEFINE SYS$PRINT NL: ! Inhibit printing of log
$ RUN DB0:[NET]REMOTE.EXE ! Run remote program
$ PURGE/KEEP=2 REMOTE.LOG ! Delete old log files

The remote program PARIS::DB0:[NET]REMOTE.EXE contains the following
source code:

OPEN (UNIT=10, FILE=’SYS$NET’, FORM=’UNFORMATTED’, &
ACCESS=’SEQUENTIAL’, STATUS=’OLD’)

READ (UNIT=10) N
N = N + 1
WRITE (UNIT=10) N
CLOSE (UNIT=10)
END PROGRAM

For More Information:
On using DECnet, refer to the DECnet for OpenVMS Networking Manual and
DECnet for OpenVMS Guide to Networking.

Interprocess Communication 13–15

14
Condition-Handling Facilities

This chapter describes:

• Section 14.1, Overview of Condition-Handling Facilities

• Section 14.2, Overview of the Condition-Handling Facility

• Section 14.3, Default Condition Handler

• Section 14.4, User-Program Interactions with the CHF

• Section 14.5, Operations Performed in Condition Handlers

• Section 14.6, Coding Requirements of Condition Handlers

• Section 14.7, Returning from a Condition Handler

• Section 14.8, Matching Condition Values to Determine Program Behavior

• Section 14.9, Changing a Signal to a Return Status

• Section 14.10, Changing a Signal to a Stop

• Section 14.11, Checking for Arithmetic Exceptions

• Section 14.12, Checking for Data Alignment Traps

• Section 14.13, Condition Handler Example

14.1 Overview of Condition-Handling Facilities
An exception condition, as the term is used in this chapter, is an event,
usually an error, that occurs during the execution of a program and is detected
by system hardware or software or by logic in a user application program. To
resolve exception conditions, you can create a condition-handler routine.

This chapter addresses error handling only as it relates to the creation and use
of condition-handler routines. Condition-handler routines are specific to the
OpenVMS operating system. For a general discussion of error handling, see
Chapter 7.

Condition-Handling Facilities 14–1

Examples of the types of exception conditions detected by system hardware
and software are:

• Hardware exceptions, such as memory access violations.

• Software exceptions, such as output conversion errors, end-of-file
conditions, and invalid arguments to mathematical procedures.

When an exception condition is detected by system hardware or software or
by your program, that condition is signaled (by means of a signal call) to
the OpenVMS Condition-Handling Facility (CHF). The CHF then invokes
one or more condition-handler routines that will attempt to either resolve the
condition or terminate the processing in an orderly fashion.

The CHF allows a main program and each subprogram that follows it,
regardless of call depth, to establish a condition-handler routine (one per
program unit). Each of these condition-handler routines can potentially handle
any or all software or hardware events that are treated as exception conditions
by the user program or by the system hardware or software. More than one
condition handler for a given condition can be established by different program
units in the call stack (see the HP OpenVMS Programming Concepts Manual).

The address of the condition handler for a particular program unit is placed in
the call frame for that unit in the run-time call stack.

When the program unit returns to its caller, the call frame is removed and the
condition handler for that program unit can no longer be accessed by the CHF.
Multiple condition handlers can be accessed by the CHF in the processing of
a single exception condition signal. A process-wide handler can be established
using the SYS$SETEXV system service.

Throughout this chapter, the term program unit refers to an executable
Fortran main program, subroutine, or function.

For More Information:

• On multiple condition handlers, see Section 14.7.

• On condition handling concepts, see the HP OpenVMS Programming
Concepts Manual.

14–2 Condition-Handling Facilities

14.2 Overview of the Condition-Handling Facility
The Condition-Handling Facility (CHF) receives control and coordinates
processing of all exception conditions that are signaled to it. The signals are
issued under the following circumstances:

• When a user program detects an application-dependent exception condition

• When system hardware or an HP Fortran software component detects a
system-defined exception condition

In cases where the default condition handling is insufficient (see Section 14.3),
you can develop your own handler routines and use the HP Fortran intrinsic
function LIB$ESTABLISH to identify your handlers to the CHF. Typically,
your needs for special condition handling are limited to the following types of
operations:

• To respond to condition codes that are signaled instead of being returned,
as in the case of integer overflow errors. (Section 14.9 describes the
system-defined handler LIB$SIG_TO_RET, which allows you to treat
signals as return values.)

• To add additional messages to those messages associated with the
originally signaled condition code or to log the occurrence of various
application-specific or system-specific conditions.

When an exception condition is detected by a system hardware or software
component or by a component in the user application program, the component
calls the CHF by means of a signal routine (LIB$SIGNAL or LIB$STOP),
passing a value to the CHF that identifies the condition. The CHF takes
program control away from the routine that is currently executing and begins
searching for a condition-handler routine to call. If it finds one, it establishes
a call frame on the run-time call stack and then invokes the handler. The
handler routine then attempts to deal with the condition.

The sections that follow describe the CHF in detail—how it operates, how
user programs can interact with it, and how users can code their own
condition-handling routines:

• Section 14.3 describes default condition handlers established by the system.

• Section 14.4 describes how a user program makes a condition handler
known to the CHF and how it signals a condition and passes arguments.

• Section 14.5, Section 14.6, and Section 14.7 contain information about
writing a condition-handling routine.

• Section 14.8, Section 14.9, and Section 14.10 describe using the RTL
routines LIB$MATCH_COND, LIB$SIG_TO_RET, and LIB$SIG_TO_STOP.

Condition-Handling Facilities 14–3

• Section 14.11 contains information on checking for arithmetic exceptions.

• Section 14.12 contains information on checking for data alignment traps.

• Section 14.13 contains some examples of the use of condition handlers.

14.3 Default Condition Handler
When the system creates an HP Fortran user process, it establishes a system-
defined condition handler that will be invoked by the CHF under the following
circumstances:

• No user-established condition handlers exist in the call stack. (Any user-
established condition handlers in the call stack are always invoked before
the default handler is invoked.)

• All of the user-established condition handlers in the call stack return
the condition code SS$_RESIGNAL to the CHF. (The SS$_RESIGNAL
condition code causes the CHF to search for another condition handler. See
Section 14.7.)

When establishing the default handler, the system has two handlers to choose
from: the traceback handler and the catchall handler.

• Traceback Handler. Displays the message associated with the:

Signaled condition code

Traceback message

Program unit name and line number of the statement that resulted in
the exception condition

Relative and absolute program counter values

In addition, the traceback handler displays the names of the program
units in the current calling sequence and the line number of the invocation
statements. (For exception conditions with a severity level of warning or
error, the number of the next statement to be executed is also displayed.)

After displaying the error information, the traceback handler continues
program execution or, if the error is severe, terminates program execution.
If the program terminates, the condition value becomes the program exit
status.

• Catchall Handler. Displays the message associated with the condition
code and then either continues program execution or, if the error is severe,
terminates execution. If the program terminates, the condition value
becomes the program exit status. In user mode, the catchall handler can
be a list of handlers.

14–4 Condition-Handling Facilities

The /DEBUG and /TRACEBACK qualifiers—on the FORTRAN and LINK
command lines, respectively—determine which default handler is enabled. If
you take the defaults for these qualifiers, the traceback handler is established
as the default handler. To establish the catchall handler as the default, specify
/NODEBUG or /DEBUG=NOTRACEBACK on the FORTRAN command line
and /NOTRACEBACK on the LINK command line.

Use the FORTRAN command /SYNCHRONOUS_EXCEPTIONS (Alpha only)
qualifier to ensure precise exception reporting.

For More Information:

• On condition values, see Table 7–1.

• On the FORTRAN command /SYNCHRONOUS_EXCEPTIONS (Alpha
only) qualifier, see Section 2.3.46.

14.4 User-Program Interactions with the CHF
User-program interactions with the CHF are strictly optional and application-
dependent. In each program unit, you have the option of establishing (and
removing) a single condition handler to handle exceptions that may occur in
that program unit or in subsequent subprograms (regardless of call depth).
Once a program unit returns to its caller, its call frame is removed and any
condition handler that the program unit has established becomes inaccessible.

The condition handler established by the user program can be coded to handle
an exception condition signaled either by system hardware, a HP Fortran
system software component, or the user program itself. User-program signals
are issued by means of the LIB$STOP and LIB$SIGNAL routines described in
Section 14.4.2.

Although condition handlers offer a convenient and structured approach to
handling exception conditions, they can have a significant impact on run-
time performance when a condition handler is actually used. For commonly
occurring application-specific conditions within a loop, for example, it may
be wise to use other methods of dealing with the conditions. The best use of
the facility is in large applications in which occasional exception conditions
requiring special handling are anticipated.

The following sections describe how to establish and remove condition handlers
and how to signal exception conditions.

Condition-Handling Facilities 14–5

14.4.1 Establishing and Removing Condition Handlers
To establish a condition handler, call the LIB$ESTABLISH intrinsic function.
(For compatibility with Compaq Fortran 77 for OpenVMS VAX Systems, HP
Fortran provides the LIB$ESTABLISH and LIB$REVERT routines as intrinsic
functions.)

The form of the call can be as a subroutine or a function reference:

CALL LIB$ESTABLISH (new-handler)

old-handler=LIB$ESTABLISH(new-handler)

new-handler
Specifies the name of the routine to be set up as a condition handler.

old-handler
Receives the address of the previously established condition handler.

LIB$ESTABLISH moves the address of the condition-handling routine into the
appropriate process context and returns the previous address of a previously
established condition handler.

The handler itself could be user-written or selected from a list of utility
functions provided with HP Fortran. The following example shows how a call
to establish a user-written handler might be coded:

EXTERNAL HANDLER
CALL LIB$ESTABLISH(HANDLER)

In the preceding example, HANDLER is the name of a Fortran function
subprogram that is established as the condition handler for the program unit
containing these source statements. A program unit can remove an established
condition handler in two ways:

• Issue another LIB$ESTABLISH call specifying a different handler.

• Issue the LIB$REVERT call.

The LIB$REVERT call has no arguments and can be a subroutine or a function
reference:

CALL LIB$REVERT

old-handler=LIB$REVERT()

The use of old-handler for the LIB$REVERT call is the same as for the
LIB$ESTABLISH call.

14–6 Condition-Handling Facilities

This call removes the condition handler established in the current program
unit. Like LIB$ESTABLISH, LIB$REVERT is provided as an intrinsic
function.

When the program unit returns to its caller, the condition handler associated
with that program unit is automatically removed (the program unit’s stack
frame, which contains the condition handler address, is removed from the
stack).

14.4.2 Signaling a Condition
When a prescribed condition requiring special handling by a condition handler
is detected by logic in your program, you issue a condition signal in your
program in order to invoke the CHF. A condition signal consists of a call to one
of the two system-supplied signal routines in the following forms:

EXTERNAL LIB$SIGNAL, LIB$STOP

CALL LIB$SIGNAL(condition-value, arg, ..., arg)

CALL LIB$STOP(condition-value, arg, ..., arg)

condition-value
An INTEGER (KIND=4) value that identifies a particular exception condition
(see Section 14.4.3) and can only be passed using the %VAL argument-passing
mechanism.

arg
Optional arguments to be passed to user-established condition handlers and
the system default condition handlers. These arguments consist of messages
and formatted-ASCII-output arguments (see the VMS Run-Time Library
Routines Volume).

The CHF uses these parameters to build the signal argument array SIGARGS
(see Section 14.6) before passing control to a condition handler.

Whether you issue a call to LIB$SIGNAL or LIB$STOP depends on the
following considerations:

• If the current program unit can continue after the signal is made, call
LIB$SIGNAL. The condition handler can then determine whether program
execution continues. After the signal is issued, control is not returned
to the user program until one of the condition handlers in the call stack
resolves the exception condition and indicates to the CHF that program
execution should continue.

Condition-Handling Facilities 14–7

• If the condition does not allow the current program unit to continue, call
LIB$STOP. (The only way to override a LIB$STOP signal is to perform an
unwind operation. See Section 14.7.)

Figure 14–1 lists all of the possible effects of a LIB$SIGNAL or LIB$STOP
call.

Figure 14–1 Effects of Calls to LIB$SIGNAL or LIB$STOP

Call to:

(stack bad)
Is Found

No Handler

UNWIND
Specifies
Handler

Continue
Specifies
Handler

Gets Control
Handler
Default

<2:0>
Severity
Condition
Signaled

LIB$STOP

<4

=4

RET

RET

UNWIND

UNWINDUNWIND

EXIT
handler
chance

last
Call

EXIT
continue"
"cannot

EXIT
message
condition

EXIT
message
condition

RET
message
condition

(=4)
force

exception
hardware

or
LIB$SIGNAL

EXIT
handler
chance

last
Call

EXIT
handler
chance

last
Call

UNWIND

ZK−5162−GE

In Figure 14–1, ‘‘cannot continue’’ indicates an error that results in the
following message:

IMPROPERLY HANDLED CONDITION, ATTEMPT TO CONTINUE FROM STOP

14–8 Condition-Handling Facilities

To pass the condition value, you must use the %VAL argument-passing
mechanism (see Section 10.3.3). Condition values are usually expressed as
condition symbols (see Section 10.8.1). Condition symbols have either of the
following forms:

fac$_symbol (HP-defined)

fac_ _symbol (user-defined)

fac
A facility name prefix.

symbol
Identifies a specific condition. (See Table 7–1 for a list of HP Fortran condition
symbols.)

In the following example, a signal call passes a condition symbol used to report
a missing required privilege.

CALL LIB$SIGNAL(%VAL(SS$_NOSYSPRV))

You can include additional arguments to provide supplementary information
about the error. System symbols such as SS$_NOSYSPRV are defined in the
library module $SSDEF.

When your program issues a condition signal, the CHF searches for a condition
handler by examining the preceding call frames, in order, until it either finds a
procedure that handles the signaled condition or reaches the default condition
handler. Condition handling procedures should use SS$_RESIGNAL for
conditions they are not intended to handle.

14.4.3 Condition Values and Symbols Passed to CHF
The OpenVMS system uses condition values to indicate that a called procedure
has either executed successfully or failed, and to report exception conditions.
Condition values are INTEGER (KIND=4) values (see the HP OpenVMS
Programming Concepts Manual and the HP OpenVMS Calling Standard
for details). They consist of fields that indicate which software component
generated the value, the reason the value was generated, and the severity of
the condition. A condition value has the following fields:

Condition-Handling Facilities 14–9

31 28 27 16 15 3 2 0

control bits facility number message number severity code

condition identification

condition value

ZK−7459−GE

The facility number field identifies the software component that generated
the condition value. Bit 27 = 1 indicates a user-supplied facility; bit 27 = 0
indicates a system facility.

The message number field identifies the condition that occurred. Bit 15 = 1
indicates that the message is specific to a single facility; bit 15 = 0 indicates a
system-wide message.

Table 14–1 gives the meanings of values in the severity code field.

Table 14–1 Severity Codes for Exception Condition Values

Code (Symbolic Name) Severity Response

0 (STS$K_WARNING) Warning Execution continues, unpre-
dictable results

1 (STS$K_SUCCESS) Success Execution continues, expected
results

2 (STS$K_ERROR) Error Execution continues, erroneous
results

3 (STS$K_INFORMATION) Information Execution continues, informa-
tional message displayed

4 (STS$K_SEVERE) Severe error Execution terminates, no output

5 - 7 – Reserved for use by HP

The symbolic names for the severity codes are defined in the $STSDEF library
module in the HP Fortran Symbolic Definition Library, FORSYSDEF.

A condition handler can alter the severity code of a condition value—either to
allow execution to continue or to force an exit, depending on the circumstances.

14–10 Condition-Handling Facilities

The condition value is passed in the second element of the array SIGARGS.
(See Section 14.6 for detailed information about the contents and use of the
array SIGARGS.) In some cases, you may require that a particular condition
be identified by an exact match; each bit of the condition value (31:0) must
match the specified condition. For example, you may want to process a floating
overflow condition only if its severity code is still 4 (that is, only if a previous
handler has not changed the severity code).

In many cases, however, you may want to respond to a condition regardless
of the value of the severity code. To ignore the severity and control fields of a
condition value, use the LIB$MATCH_COND routine (see Section 14.8).

The FORSYSDEF library contains library modules that define condition
symbols. When you write a condition handler, you can specify any of the
following library modules, as appropriate, with an INCLUDE statement:

• $CHFDEF—This library module contains structure definitions for the
primary argument list (CHFDEF), the signal array (CHFDEF1), and the
mechanism array (CHFDEF2). These symbols have the following form:

CHF$_xxxxxxx

For example:

CHF$_IH_MCH_SAVR0

• $FORDEF—This library module contains definitions for all condition
symbols from the HP Fortran library routines. See Table 7–1 for a list
of the HP Fortran error numbers (IOSTAT values) associated with these
symbols. These symbols have the following form:

FOR$_error

For example:

FOR$_INPCONERR

• $LIBDEF—This library module contains definitions for all condition
symbols from the OpenVMS general utility library facility. These symbols
have the following form:

LIB$_condition

For example:

LIB$_INSVIRMEM

Condition-Handling Facilities 14–11

• $MTHDEF—This library module contains definitions for all condition
symbols from the mathematical procedures library. These symbols have
the following form:

MTH$_condition

For example:

MTH$_SQUROONEG

• $SSDEF—This library module contains definitions for system services
status codes, which are frequently used in HP Fortran condition handlers.
These symbols have the following form:

SS$_status

For example:

SS$_BADPARAM

For More Information:

• On performing an unwind operation, see Section 14.7.

• On a list of HP Fortran condition symbols, see Table 7–1.

• On the signal array SIGARGS, see Section 14.6.

14.5 Operations Performed in Condition Handlers
A condition handler responds to an exception by analyzing arguments passed
to it and by taking appropriate action. Possible actions taken by condition
handlers are:

• Condition correction

• Condition reporting

• Execution control

First, the handler must determine whether it can correct the condition
identified by the condition code passed by the signal call. If possible, the
handler takes the appropriate corrective action and execution continues. If
it cannot correct the condition, the handler can resignal the condition; it can
request that another condition handler (associated with an earlier program
unit in the call stack) attempt to process the exception.

Condition reporting performed by handlers can involve one or more of the
following actions:

• Maintaining a count of exceptions encountered during program execution.

14–12 Condition-Handling Facilities

• Signaling the same condition again (resignaling) in order to send the
appropriate message to your terminal or log file.

• Changing the severity field of the condition value and resignaling the
condition.

• Signaling a different condition, such as producing a message appropriate
to a specific application. (The condition handler must establish the
application-specific condition handler using LIB$ESTABLISH and then
signal the condition using LIB$SIGNAL.)

Execution can be affected in a number of ways, such as:

• Continuing from the point of exception. However, if the signal was issued
by means of a call to LIB$STOP, the program exits.

• Returning control (unwinding) to the program unit that established the
handler. Execution resumes at the point of the call that resulted in the
exception. The handler establishes the function value to be returned by the
called procedure.

• Returning control (unwinding) to the establisher’s caller (to the program
unit that called the program unit that established the handler). The
handler establishes the function value to be returned by the program unit
that established the handler.

For More Information:

• On returning from condition handlers, see Section 14.7.

• On condition handler examples, see Section 14.13.

14.6 Coding Requirements of Condition Handlers
An HP Fortran condition handler is an INTEGER (KIND=4) function that has
two argument arrays passed to it by the CHF. To meet these requirements, you
could define a condition handler as follows:

INCLUDE ’($CHFDEF)’
INTEGER (KIND=4) FUNCTION HANDLER(SIGARGS,MECHARGS)
INTEGER (KIND=4) SIGARGS(*)
RECORD /CHFDEF2/ MECHARGS

The CHF creates the signal and mechanism argument arrays SIGARGS
and MECHARGS and passes them to the condition handler. Note that the
mechanism vector block differs on OpenVMS I64 and OpenVMS Alpha systems
(see the HP OpenVMS Calling Standard).

Condition-Handling Facilities 14–13

The signal array (SIGARGS) is used by condition handlers to obtain
information passed as arguments in the LIB$SIGNAL or LIB$STOP signal
call.

Table 14–2 shows the contents of SIGARGS.

Table 14–2 Contents of SIGARGS

Array Element CHFDEF1 Field Name Contents

SIGARGS(1) CHF$IS_SIG_ARGS Argument count (n)

SIGARGS(2) CHF$IS_SIG_NAME Condition code

SIGARGS(3 to n-1)
.
.

CHF$IS_SIG_ARG1
(first argument)

Zero or more additional arguments,
specific to the condition code in
SIGARGS(2)

SIGARGS(n) None PC (program counter)

SIGARGS(n+1) None PS (processor status), lower 32-bits
of the 64-bit OpenVMS processor
status

• The notation n represents the argument count, that is, the number of
elements in SIGARGS, not including the first element.

• The first array element SIGARGS(1) or CHF$IS_SIG_ARGS indicates how
many additional arguments are being passed in this array. The count does
not include this first element.

• SIGARGS(2) or CHF$IS_SIG_NAME indicates the signaled condition
(condition value) specified by the call to LIB$SIGNAL or LIB$STOP. If
more than one message is associated with the exception condition, the
condition value in SIGARGS(2) belongs to the first message.

• SIGARGS(3) or CHF$IS_SIG_ARG1 varies with the type of condition
code in SIGARGS(2). This could contain the message description for the
message associated with the condition code in SIGARGS(2), including
secondary messages from RMS and system services. The format of the
message description varies depending on the type of message being
signaled. For more information, see the SYS$PUTMSG description in the
HP OpenVMS System Services Reference Manual.

Additional arguments, SIGARGS(n-1), can be specified in the call to
LIB$SIGNAL or LIB$STOP (see Section 14.4.2).

• The second-to-last element, SIGARGS(n), contains the value of the program
counter (PC).

14–14 Condition-Handling Facilities

If the condition that caused the signal was a fault (occurring during the
instruction’s execution), the PC contains the address of that instruction.

If the condition that caused the signal was a trap (occurring at the end of
the instruction), the PC contains the address of the instruction following
the call that signaled the condition code.

• The last element, SIGARGS(n+1), reflects the value of the processor status
(PS) at the time the signal was issued.

A condition handler is usually written in anticipation of a particular condition
code or set of condition codes. Because handlers are invoked as a result of any
signaled condition code, you should begin your handler routine by comparing
the condition code passed to the handler (element 2 of SIGARGS) with the
condition codes expected by the handler. If the signaled condition code is
not an expected code, you should resignal the condition code by equating
the function value of the handler to the global symbol SS$_RESIGNAL (see
Section 14.7).

The mechanism array (MECHARGS) is used to obtain information about
the procedure activation of the program unit that established the condition
handler. MECHARGS is a 90-element array, but only integer registers (Rn)
and floating-point registers (Fn) are contained beyond element 12 (R0 is in
elements 13 and 14 and all registers are 64 bits).

Table 14–3 shows the contents of MECHARGS on OpenVMS Alpha systems.

The contents are essentially the same on I64 and Alpha up to the CHF$IL_
MCH_SAVR10_HIGH field name. After that, the I64 registers are saved in the
I64 order and the contents of MECHARGS become different. For information
about the additional field names for I64, see the HP OpenVMS System Services
Reference Manual.

Condition-Handling Facilities 14–15

Table 14–3 Contents of MECHARGS on OpenVMS Alpha Systems

INTEGER (KIND=4) Array Element CHFDEF2 Field Name Contents

MECHARGS(1) CHF$IS_MCH_ARGS Argument count

MECHARGS(2) CHF$IS_MCH_FLAGS Flags

MECHARGS(3), MECHARGS(4) CHF$PH_MCH_FRAME Frame address pointer

MECHARGS(5) CHF$IS_MCH_DEPTH Call depth

MECHARGS(6) CHF$IS_MCH_RESVD1 Not used

MECHARGS(7), MECHARGS(8) CHF$PH_MCH_DADDR Handler data address

MECHARGS(9), MECHARGS(10) CHF$PH_MCH_ESF_ADDR Exception stack frame
address

MECHARGS(11), MECHARGS(12) CHF$PH_MCH_SIG_ADDR Signal array address

MECHARGS(13), MECHARGS(14) CHF$IH_MCH_SAVR0
CHF$IL_MCH_SAVR0_LOW
CHF$IL_MCH_SAVR0_HIGH

R0
low-order 32 bits
high-order 32 bits

MECHARGS(15), MECHARGS(16) CHF$IH_MCH_SAVR1
CHF$IL_MCH_SAVR1_LOW
CHF$IL_MCH_SAVR10_HIGH

R1
low-order 32 bits
high-order 32 bits

MECHARGS(17) to MECHARGS(42) CHF$IH_MCH_SAVRnn R16-R28

MECHARGS(43), MECHARGS(44) CHF$FH_MCH_SAVF0(2) F0

MECHARGS(45), MECHARGS(46) CHF$FH_MCH_SAVF1(2) F1

MECHARGS(47) to MECHARGS(88) CHF$IH_MCH_SAVFnn(2) F10-F30

MECHARGS(89), MECHARGS(90) CHF$PH_MCH_SIG64_ADDR Address of 64-bit form
of signal arrray

• CHF$IS_MCH_ARGS or MECHARGS(1) contains the argument count of
this array in quadwords, not including this first quadword (the value 43).

• CHF$IS_MCH_FLAGS or MECHARGS(2) contains various flags to
communicate additional information. For instance, if bit zero (0) is
set, this indicates that the process has already performed a floating-
point operation and that the floating-point registers are valid (CHF$S_
FPRREGS_VALID=1 and CHF$V_FPRREGS_VALID=0).

• CHF$PH_MCH_FRAME or MECHARGS(3) and MECHARGS(4) contains
the address of the call frame on the stack for the program unit that
established the handler.

• CHF$IS_MCH_DEPTH or MECHARGS(5) contains the number of calls
made between the program unit that established the handler and the
program unit that signaled the condition code.

14–16 Condition-Handling Facilities

• MECHARGS(6) is not used.

• CHF$PH_MCH_DADDR or MECHARGS(7) and MECHARGS(8) contain
the address of the handler data quadword.

• CHF$PH_MCH_ESF_ADDR or MECHARGS(9) and MECHARGS(10)
contain the address of the handler stack frame.

• CHF$PH_MCH_SIG_ADDR or MECHARGS(11) and MECHARGS(12)
contains the address of the signal array.

• CHF$IH_MCH_SAVRnn to CHF$IH_MCH_SAVFnn (2) or MECHARGS(13)
to MECHARGS(88) contain certain integer and floating-point registers.

• MECHARGS(89), MECHARGS(90): for information about 64-bit signal
arrays, see HP OpenVMS Calling Standard.

Inside a condition handler, you can use any other variables that you need. If
they are shared with other program units (for example, in common blocks),
make sure that they are declared volatile. This will ensure that compiler
optimizations do not invalidate the handler actions. See Section 5.7.3 and the
HP Fortran for OpenVMS Language Reference Manual for more information on
the VOLATILE statement.

For More Information:

• On condition values, see Section 14.4.3.

• On the Itanium architecture, see the Intel Itanium Architecture Software
Developer’s Manual, Volume 1: Application Architecture.

• On register use, see the Alpha Architecture Reference Manual and the HP
OpenVMS Calling Standard.

• On condition handler examples, see Section 14.13.

14.7 Returning from a Condition Handler
One way that condition handlers control subsequent execution is by specifying
a function return value (symbols defined in library module $SSDEF). Function
return values and their effects are defined in Table 14–4.

Condition-Handling Facilities 14–17

Table 14–4 Condition-Handler Function Return Values

Symbolic Values Effects

SS$_CONTINUE If you assign SS$_CONTINUE to the function value of
the condition handler, the handler returns control to the
program unit at the statement that signaled the condition
(fault) or the statement following the one that signaled the
condition (trap).

SS$_RESIGNAL If you assign SS$_RESIGNAL to the function value of
the condition handler, or do not specify a function value
(function value of zero), the CHF will search for another
condition handler in the call stack. If you modify SIGARGS
or MECHARGS before resignaling, the modified arrays are
passed to the next handler.

A condition handler can also request a call stack unwind by calling
SYS$UNWIND before returning. Unwinding the call stack:

• Removes call frames, starting with the call frame for the program unit in
which the condition occurred

• Returns control to an earlier program unit in the current calling sequence

In this case, any function return values established by condition handlers are
ignored by the CHF.

You can unwind the call stack whether the condition was detected by hardware
or signaled by means of LIB$SIGNAL or LIB$STOP. Unwinding is the only
way to continue execution after a call to LIB$STOP.

A stack unwind is typically made to one of two places:

• To the establisher of the condition handler that issues the SYS$UNWIND.
You pass the call depth (first half of the third element of the MECHARGS
array) as the first argument in the call to SYS$UNWIND. Do not specify a
second argument. For example:

INCLUDE ’($CHFDEF)’
RECORD /CHFDEF2/ MECHARGS
CALL SYS$UNWIND(MECHARGS.CHF$IS_MCH_DEPTH,)

Control returns to the establisher and execution resumes at the point of
the call that resulted in the exception.

• To the establisher’s caller. Do not specify either of the arguments in the
call to SYS$UNWIND. For example:

CALL SYS$UNWIND(,)

14–18 Condition-Handling Facilities

Control returns to the program unit that called the establisher of the
condition handler that issues the call to SYS$UNWIND.

The actual stack unwind is not performed immediately after the condition
handler issues the call to SYS$UNWIND. It occurs when a condition handler
returns control to the CHF.

During the actual unwinding of the call stack, SYS$UNWIND examines
each frame in the call stack to determine whether a condition handler was
declared. If a handler was declared, SYS$UNWIND calls the handler with the
condition value SS_$UNWIND (indicating that the stack is being unwound) in
the condition name argument of the signal array. When a condition handler
is called with this condition value, that handler can perform any procedure-
specific clean-up operations that may be required. After the condition handler
returns, the call frame is removed from the stack.

The system service SYS$GOTO_UNWIND performs a similar function.

For More Information:
On an example that uses SYS$UNWIND, see Section 14.13.

14.8 Matching Condition Values to Determine Program
Behavior

In many condition-handling situations, you may want to respond to an
exception condition regardless of the value of the severity code passed in the
condition value. To ignore the severity and control fields of a condition value,
use the LIB$MATCH_COND routine as a function in the following form:

index = LIB$MATCH_COND(SIGARGS(2),con-1,...con-n)

index
An integer variable that is assigned a value for use in a subsequent computed
GOTO statement.

con
A condition value.

The LIB$MATCH_COND function compares bits 27:3 of the value in
SIGARGS(2) with bits 27:3 of each specified condition value. If it finds a
match, the function assigns the index value according to the position of the
matching condition value in the list.

Condition-Handling Facilities 14–19

If the match is with the third condition value following SIGARGS(2), then
index = 3. If no match is found, index = 0. The value of the index can then be
used to transfer control, as in the following example:

INTEGER (KIND=4) FUNCTION HANDL(SIGARGS,MECHARGS)
INCLUDE ’($CHFDEF)’
INCLUDE ’($FORDEF)’
INCLUDE ’($SSDEF)’
INTEGER (KIND=4) SIGARGS(*)
RECORD /CHFDEF2/ MECHARGS

INDEX=LIB$MATCH_COND(SIGARGS(2), FOR$_FILNOTFOU, &
FOR$_NO_SUCDEV, FOR$_FILNAMSPE, FOR$_OPEFAI)

GO TO (100,200,300,400), INDEX
HANDL=SS$_RESIGNAL
RETURN
...

100 ! Handle FOR$_FILNOTFOU
...

200 ! Handle FOR$_NO_SUCDEV
...

300 ! Handle FOR$_FILNAMSPE
...

400 ! Handle FOR$_OPEFAI
.
.
.

If no match is found between the condition value in SIGARGS(2) and any
of the values in the list, then INDEX = 0 and control transfers to the next
executable statement after the computed GOTO. A match with any of the
values in the list transfers control to the corresponding statement in the GOTO
list.

If SIGARGS(2) matches the condition symbol FOR$_OPEFAI, control transfers
to statement 400.

For More Information:

• On a list of HP Fortran condition symbols, see Table 7–1.

• On an example that uses LIB$MATCH_COND, see Section 14.13.

14–20 Condition-Handling Facilities

14.9 Changing a Signal to a Return Status
When it is preferable to detect errors by signaling, but the calling procedure
expects a returned status, LIB$SIG_TO_RET may be used by the procedure
that signals. LIB$SIG_TO_RET is a condition handler that converts any
signaled condition to a return status. The status is returned to the caller of
the procedure that established LIB$SIG_TO_RET.

The arguments for LIB$SIG_TO_RET are:

LIB$SIG_TO_RET (sig-args,mch-args)

sig-args
Contains the address of the signal argument array (see Section 14.6).

mch-args
Contains the address of the mechanism argument array (see Section 14.6).

You can establish LIB$SIG_TO_RET as a condition handler by specifying it
in a call to LIB$ESTABLISH. You can also establish it by calling it from a
user-written condition handler. If LIB$SIG_TO_RET is called from a condition
handler, the signaled condition is returned as a function value to the caller of
the establisher of that handler when the handler returns to the CHF. When
a signaled exception condition occurs, LIB$SIG_TO_RET procedure does the
following:

• Places the signaled condition value in the image of R0 that is saved as part
of the mechanism argument vector.

• Calls the unwind system service (SYS$UNWIND) with the default
arguments. After returning from LIB$SIG_TO_RET (when it is established
as a condition handler) or after returning from the condition handler that
called LIB$SIG_TO_RET (when LIB$SIG_TO_RET is called from within a
condition handler), the stack is unwound to the caller of the procedure that
established the handler.

Your calling procedure is then able to test R0 and R1 as if the called procedure
had returned a status. Then the calling procedure can specify an error recovery
action.

Condition-Handling Facilities 14–21

14.10 Changing a Signal to a Stop
The routine LIB$SIG_TO_STOP causes a signal to appear as though it had
been signaled by a call to LIB$STOP.

LIB$SIG_TO_STOP can be established as a condition handler or called from
within a user-written condition handler.

The argument that you passed to LIB$STOP is a 4-byte condition value (see
Section 14.4.3). The argument must be passed using the %VAL argument-
passing mechanism.

When a signal is generated by LIB$STOP, the severity code is forced to severe
(STS$K_SEVERE) and control cannot be returned to the procedure that
signaled the condition.

14.11 Checking for Arithmetic Exceptions
On OpenVMS I64 systems, arithmetic exceptions are indicated by specific
condition codes. Examples are SS$_FLTDIV or SS$_INTOVR.

On OpenVMS Alpha systems, arithmetic exceptions are indicated by the
condition code SS$_HPARITH. The signal array for arithmetic exceptions
(condition code SS$_HPARITH) is unique to OpenVMS Alpha systems and
contains seven longwords (seven INTEGER (KIND=4) array elements):

• SIGARRAY(1) contains the argument count.

• SIGARRAY(2) contains the condition code SS$_HPARITH.

• SIGARRAY(3) contains the integer register write mask.

• SIGARRAY(4) contains the floating-point register write mask.

• SIGARRAY(5) contains the exception summary.

• SIGARRAY(6) contains the exception PC (program counter).

• SIGARRAY(7) contains the exception PS (processor status).

In the integer register write mask and the floating-point register write mask,
where each bit represents a register, any bits set indicate the registers that
were targets of the exception. The exception summary indicates the type of
exception or exceptions in the first seven bits of that longword, as follows:

14–22 Condition-Handling Facilities

Bit Meaning

0 Software completion.

1 Invalid floating arithmetic, conversion, or comparison.

2 Invalid attempt to perform a floating-point divide with a divisor of zero.
(Integer divide-by-zero is not reported.)

3 Floating-point exponent overflow (arithmetic or conversion).

4 Floating-point exponent underflow (arithmetic or conversion).

5 Floating-point inexact result (arithmetic or conversion).

6 Integer arithmetic overflow or precision overflow during conversion from
floating-point to integer.

To allow precise reporting of exceptions, specify the /SYNCHRONOUS_
EXCEPTIONS (Alpha only) qualifier on the FORTRAN command line.

If you omit /SYNCHRONOUS_EXCEPTIONS, instructions beyond the
instruction causing the exception may have been executed by the time the
exception is reported. This causes the PC to be located at a subsequent
instruction (inexact exception reporting). Specifying /SYNCHRONOUS_
EXCEPTIONS drains the instruction pipeline after appropriate arithmetic
instructions, but this slows performance.

For More Information:

• On the /CHECK qualifier, see Section 2.3.11.

• On the /SYNCHRONOUS_EXCEPTIONS (Alpha only) qualifier, see
Section 2.3.46.

14.12 Checking for Data Alignment Traps
Although HP Fortran naturally aligns local variables and provides the
/ALIGNMENT qualifier to control alignment of fields in a record structures,
derived-type structures, or a common block, certain conditions can result in
unaligned data (see Section 5.3).

Unaligned data can result in a data alignment trap, which is an exception
indicated by the condition code SS$_ALIGN. The OpenVMS operating system
fixes up data alignment traps and does not report them to the program unless
requested.

To obtain data alignment trap information, your program can call the
SYS$START_ALIGN_FAULT_REPORT service.

Condition-Handling Facilities 14–23

You can also run the program within the OpenVMS debugger environ-
ment to detect the location of any unaligned data by using the SET
BREAK/UNALIGNED debugger command (see Section 4.7).

Use the FORTRAN command /SYNCHRONOUS_EXCEPTIONS (Alpha only)
qualifier to ensure precise exception reporting.

Depending on the type of optimizations that might be applied, use the
FORTRAN command /NOOPTIMIZE qualifier to ensure exception reporting.

For More Information:

• On alignment, see Section 5.3.

• On using the OpenVMS Debugger to detect unaligned data, see Section 4.7.

• On the SYS$START_ALIGN_FAULT_REPORT service, see the HP
OpenVMS System Services Reference Manual.

• On the /CHECK qualifier, see Section 2.3.11.

• On the /SYNCHRONOUS_EXCEPTIONS (Alpha only) qualifier, see
Section 2.3.46.

14.13 Condition Handler Example
The example in this section demonstrates the use of condition handlers in
typical Fortran procedures.

The following example creates a function HANDLER that tests for integer
overflow. The program needs to be compiled using the /CHECK=OVERFLOW,
/SYNCHRONOUS_EXCEPTIONS (Alpha only), and (if fixed source form)
/EXTEND_SOURCE qualifiers.

! This program types a maximum value for a 4-byte integer and
! then causes an exception with integer overflow, transferring
! control to a condition handler named HANDLER.
!
! Compile with: /CHECK=OVERFLOW
! /SYNCHRONOUS_EXCEPTIONS
! (and if fixed format, /EXTEND_SOURCE)
!
! File: INT_OVR.F90
!

INTEGER (KIND=4) INT4

EXTERNAL HANDLER !

14–24 Condition-Handling Facilities

CALL LIB$ESTABLISH (HANDLER) "
int4=2147483645
WRITE (6,*) ’ Beginning DO LOOP, adding 1 to ’, int4
DO I=1,10

INT4=INT4+1 #
WRITE (6,*) ’ INT4 NUMBER IS ’, int4

END DO
WRITE (6,*) ’ The end ...’
END PROGRAM

! The function HANDLER that handles the condition SS$_HPARITH

INTEGER (KIND=4) FUNCTION HANDLER (SIGARGS, MECHARGS) $

INTEGER (KIND=4) SIGARGS(*),MECHARGS(*) %
INCLUDE ’($CHFDEF)’
INCLUDE ’($SSDEF)’
RECORD /CHFDEF1/ SIGARGS
RECORD /CHFDEF2/ MECHARGS
INTEGER INDEX
INTEGER LIB$MATCH_COND

INDEX = LIB$MATCH_COND(SIGARGS(2), SS$_HPARITH) &
IF (INDEX .EQ. 0) THEN

HANDLER = SS$_RESIGNAL
ELSE IF (INDEX .GT. 0) THEN

WRITE (6,*) ’--> Arithmetic exception detected. Now in HANDLER’
CALL LIB$STOP(%VAL(SIGARGS(2)),) ’

END IF

RETURN
END FUNCTION HANDLER

The program is compiled, linked, and executed:

$ FORTRAN/CHECK=OVERFLOW/SYNCHRONOUS_EXCEPTIONS INT_OVR (
$ LINK INT_OVR
$ RUN INT_OVR

Condition-Handling Facilities 14–25

Beginning DO LOOP, adding 1 to 2147483645
INT4 NUMBER IS 2147483646
INT4 NUMBER IS 2147483647 #
--> Arithmetic exception detected. Now in HANDLER
%SYSTEM-F-HPARITH, high performance arithmetic trap, Imask=00000000,
Fmask=0002023C, summary=1B, PC=00000001, PS=00000001
-SYSTEM-F-FLTINV, floating invalid operation, PC=00000001, PS=00000001
-SYSTEM-F-FLTOVF, arithmetic trap, floating overflow at PC=00000001,
PS=00000001
-SYSTEM-F-FLTUND, arithmetic trap, floating underflow at PC=00000001,
PS=00000001
TRACE-F-TRACEBACK, symbolic stack dump follows ’
Image Name Module Name Routine Name Line Number rel PC abs PC
INT_OVR INT_OVR$MAIN HANDLER 1718 0000023C 0002023C
DEC$FORRTL 0 000729F4 000A49F4
----- above condition handler called with exception 00000504:
%SYSTEM-F-HPARITH, high performance arithmetic trap, Imask=00000002,
Fmask=00000000, summary=40, PC=000200CC, PS=0000001B
-SYSTEM-F-INTOVF, arithmetic trap,integer overflow at PC=000200CC, PS=0000001B
----- end of exception message

0 84C122BC 84C122BC
INT_OVR INT_OVR$MAIN INT_OVR$MAIN 19 000000CC 000200CC

0 84D140D0 84D140D0

! The routine HANDLER is declared as EXTERNAL.

" The main program calls LIB$ESTABLISH to establish the condition
handler named HANDLER.

Within the DO loop, the value of variable INT4 is incremented. When the
overflow occurs, control transfers to the condition handler.

$ The condition handler (function HANDLER) is declared as an integer
function accepting the signal array and mechanism array arguments.

% The library modules $SSDEF and $CHFDEF from FORSYSDEF.TLB are
included and the SIGARGS and MECHARGS variables are declared as
records. In this case, the structure definitions for the MECHARGS array
are not needed, so the $CHFDEF library module is not included.

& The condition handler is only intended to handle the condition code SS$_
HPARITH. For other conditions, SS$_RESIGNAL is returned, allowing the
CHF to look for another condition handler.

’ If the exception is SS$_HPARITH, the condition handler makes a call to
LIB$STOP to:

Display the %SYSTEM-F-HPARITH message.

14–26 Condition-Handling Facilities

Display the traceback information. Note that the PC address is the
address of the HANDLER routine. To obtain the approximate address
where the exception occurred, the CALL LIB$ESTABLISH line can be
commented out in the routine causing the exception and recompiled,
relinked, and rerun.

Stop program execution. This is not a continuable error.

(The program must be compiled using /CHECK=OVERFLOW. Using
/SYNCHRONOUS_EXCEPTIONS (Alpha only) allows more precise
exception reporting. If the program is compiled as fixed-form file, specify
the /EXTEND_SOURCE qualifier.

Condition-Handling Facilities 14–27

15
Using the Compaq Extended Math Library

(CXML) (Alpha Only)

This chapter describes:

• Section 15.1, What Is CXML?

• Section 15.2, CXML Routine Groups

• Section 15.3, Using CXML from Fortran

• Section 15.4, CXML Program Example

Note

This entire chapter pertains only to HP Fortran on OpenVMS Alpha
systems only.

15.1 What Is CXML?
The Compaq Extended Math Library (CXML) provides a comprehensive
set of mathematical library routines callable from Fortran and other
languages. CXML contains a set of over 1500 high-performance mathematical
subprograms designed for use in many different types of scientific and
engineering applications. It significantly improves the run-time performance of
certain HP Fortran programs.

CXML is included with HP Fortran for OpenVMS Alpha Systems and can
be installed using the instructions in the HP Fortran Installation Guide for
OpenVMS Alpha Systems.

The CXML reference guide is available in both online and hardcopy formats.
You can obtain this documentation by accessing the following files:

• SYS$HELP:CXMLREF-VMS.PDF (online)—view with the Adobe Acrobat
Reader

Using the Compaq Extended Math Library (CXML) (Alpha Only) 15–1

• SYS$HELP:CXMLREF-VMS.PS (hardcopy)—print to a PostScript printer

Example programs are also provided with CXML. These programs are located
in the following directory:

SYS$COMMON:[SYSHLP.EXAMPLES.CXML]

15.2 CXML Routine Groups
CXML provides a comprehensive set of highly efficient mathematical
subroutines designed for use in many different types of scientific and
engineering applications. CXML includes the following functional groups
of subroutines:

• Basic linear algebra

• Linear system and Eigenproblem solvers

• Sparse linear system solvers

• Signal processing

• Utility subprograms

The routines are described in Table 15–1.

15–2 Using the Compaq Extended Math Library (CXML) (Alpha Only)

Table 15–1 CXML Routine Groups

Name Description

Basic Linear Algebra The Basic Linear Algebra Subprograms (BLAS) library includes the
industry-standard Basic Linear Algebra Subprograms for Level 1
(vector-vector, BLAS1), Level 2 (matrix-vector, BLAS2), and Level 3
(matrix-matrix, BLAS3). Also included are subprograms for BLAS
Level 1 Extensions, and Sparse BLAS Level 1.

Signal Processing The Signal Processing library provides a basic set of signal processing
functions. Included are one-, two-, and three-dimensional Fast Fourier
Transforms (FFT), group FFTs, Cosine/Sine Transforms (FCT/FST),
Convolution, Correlation, and Digital Filters.

Sparse Linear System The Sparse Linear System library provides both direct and iterative
sparse linear system solvers. The direct solver package supports both
symmetric and symmetrically shaped sparse matrices stored using
the compressed row storage scheme. The iterative solver package
supports a basic set of storage schemes, preconditioners, and iterative
solvers.

LAPACK LAPACK is an industry-standard subprogram package offering an
extensive set of linear system and eigenproblem solvers. LAPACK
uses blocked algorithms that are better suited to most modern
architectures, particularly ones with memory hierarchies.

Utility subprograms Utility subprograms include random number generation, vector math
functions, and sorting subprograms.

Where appropriate, each subprogram has a version to support each
combination of real or complex and single- or double-precision arithmetic.
In addition, selected key CXML routines are available in parallel form as well
as serial form on HP OpenVMS Alpha systems.

15.3 Using CXML from Fortran
To use CXML, you need to make the CXML routines and their interfaces
available to your program and specify the appropriate libraries when linking.

The CXML routines can be called explicitly by your program. There are
separate CXML libraries for the IEEE and the VAX floating-point formats.
You must compile your program for one of these float formats and then link to
the matching CXML library (either IEEE or VAX), depending upon how you
compiled the program.

Either the IEEE or VAX CXML library can be established as the systemwide
default by the system startup procedure. Individual users can select between
the VAX and IEEE version by executing the SYS$LIBRARY:CXML$SET_LIB

Using the Compaq Extended Math Library (CXML) (Alpha Only) 15–3

command procedure. For example, the following command alters the default
CXML link library for the current user to the VAX format library:

$ @SYS$LIBRARY:CXML$SET_LIB VAX

For more details, see the section about CXML post-installation startup options
in the HP Fortran Installation Guide for OpenVMS Alpha Systems.

If needed, you can instead specify the appropriate CXML library or libraries
on the LINK command line (use the /LIBRARY qualifier after each library
file name). You must compile your program and then link to the appropriate
CXML library (either IEEE or VAX), depending upon how you compiled the
program. The following examples show the corresponding CXML commands
for compiling and linking for cases where the CXML default library is not used:

$ FORTRAN /FLOAT=IEEE_FLOAT MYPROG.F90
$ LINK MYPROG.OBJ, SYS$LIBRARY:CXML$IMAGELIB_TS/LIBRARY

The link command uses the name of the CXML library for IEEE floating-point
data, cxml$imagelib_ts. To use VAX floating-point data, specify the CXML
library name as cxml$imagelib_gs.

If you are using an older version of CXML, use dxml$xxxxx instead of
cxml$xxxxx as the library name. For more information on using CXML and
specifying the correct object libraries on the LINK command, see the Compaq
Extended Mathematical Library Reference Manual.

15.4 CXML Program Example
The free-form Fortran 90 example program below invokes the function SAXPY
from the BLAS portion of the CXML libraries. The SAXPY function computes
� � �� �.

15–4 Using the Compaq Extended Math Library (CXML) (Alpha Only)

PROGRAM example
!
! This free-form example demonstrates how to call
! CXML routines from Fortran.
!

REAL(KIND=4) :: a(10)
REAL(KIND=4) :: x(10)
REAL(KIND=4) :: alpha
INTEGER(KIND=4) :: n
INTEGER(KIND=4) :: incx
INTEGER(KIND=4) :: incy
n = 5 ; incx = 1 ; incy = 1 ; alpha = 3.0
DO i = 1,n
a(i) = FLOAT(i)
x(i) = FLOAT(2*i)

ENDDO
PRINT 98, (a(i),i=1,n)
PRINT 98, (x(i),i=1,n)

98 FORMAT(’ Input = ’,10F7.3)
CALL saxpy(n, alpha, a, incx, x, incy)
PRINT 99, (x(i),I=1,n)

99 FORMAT(/,’ Result = ’,10F7.3)
STOP
END PROGRAM example

Using the Compaq Extended Math Library (CXML) (Alpha Only) 15–5

A
Differences Between HP Fortran on
OpenVMS I64 and OpenVMS Alpha

Systems

This appendix describes:

• Section A.1, HP Fortran Commands on OpenVMS I64 That Are Not
Available on OpenVMS Alpha

• Section A.2, HP Fortran Commands on OpenVMS Alpha That Are Not
Available on OpenVMS I64

• Section A.3, Differences in Default Values

• Section A.4, Support for VAX-Format Floating-Point

• Section A.5, Changes in Exception Numbers and Places

• Section A.6, Changes in Exception-Mode Selection

A.1 HP Fortran Commands on OpenVMS I64 That Are Not
Available on OpenVMS Alpha

• /CHECK=ARG_INFO

• /CHECK=FP_MODE

A.2 HP Fortran Commands on OpenVMS Alpha That Are Not
Available on OpenVMS I64

• /ARCHITECTURE

• /MATH_LIBRARY

• /OLD_F77

Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems A–1

• /OPTIMIZE=TUNE

• /SYNCHRONOUS_EXCEPTIONS

A.3 Differences in Default Values
The differences are:

• Because the Itanium architecture supports IEEE directly, the default
floating-point format on OpenVMS I64 systems is /FLOAT=IEEE_FLOAT.
On OpenVMS Alpha systems, the default is /FLOAT=G_FLOAT. See
Section 2.3.22.

• The default floating-point exception handling mode on OpenVMS I64
systems is /IEEE_MODE=DENORM_RESULTS). On OpenVMS Alpha
systems, the default is /IEEE_MODE=FAST. See Section 2.3.24.

A.4 Support for VAX-Format Floating-Point
Because there is no direct hardware support for VAX-format floating-point on
OpenVMS I64 systems, the VAX-format floating-point formats (F, D, and G) are
supported indirectly by a three-step process:

1. Conversion from VAX-format variable to IEEE floating-point temporary
(using the denormalized number range)

2. Computation in IEEE floating-point

3. Conversion back to VAX-format floating-point and storage into the target
variable

There are a number of implications for this approach:

• Exceptions might move, appear, or disappear, because the calculation is
done in a different format with a different range of representable values.

• Because there are very small numbers representable in VAX format
that can only be represented in IEEE format using the IEEE denorm
range, there is a potential loss of accuracy if an intermediate result of the
calculation is one of those numbers.

At worst, the two bits with the least significance will be set to zero. Note
that further calculations might result in magnifying the magnitude of this
loss of accuracy.

Note that this small loss of accuracy does not raise signal FOR$_
SIGLOSMAT (or FOR$IOS_SIGLOSMAT).

A–2 Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems

• Expressions that are used to drive control flow but are not stored back
into a variable will not be converted back into VAX format. This can cause
exceptions to disappear.

• There can be a significant performance cost for the use of VAX-format
floating-point.

Note that floating-point query built-ins (such as TINY and HUGE) will return
values appropriate to the floating-point format that you select, despite the fact
that all formats are supported by IEEE.

A.5 Changes in Exception Numbers and Places
There will be changes in the number of exceptions raised and in the code
location at which they are raised.

This is particularly true for VAX-format floating-point calculations, because
many exceptions will only be raised at the point where a result is converted
from IEEE format to VAX format. Some valid IEEE-format numbers will be too
large or too small to convert and will thus raise underflow or overflow. IEEE
exceptional values (such as Infinity and NaN) produced during the evaluation
of an expression will not generate exceptions until the final conversion to VAX
format is done.

If a VAX-format floating-point calculation has intermediate results (such as the
X * Y in the expression (X * Y)/ Z), and the calculation of that intermediate
result raised an exception on OpenVMS Alpha systems, it is not guaranteed
that an exception will be raised on OpenVMS I64 systems. An exception will
only be raised if the IEEE calculation produces an exception.

A.5.1 Ranges of Representable Values
In general, the range of VAX-format floating-point numbers is the same as
the range for IEEE-format. However, the smallest F- or G-format value is one
quarter the size of the smallest normal IEEE number, while the largest F- or
G-format number is about half that of the largest IEEE number. There are
therefore nonexceptional IEEE values that would raise overflows in F- or G-
format. There are also nonexceptional F- or G-format values that would raise
underflow in IEEE-format in those modes in which denormalized numbers are
not supported.

Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems A–3

A.5.2 Underflow in VAX Format with /CHECK=UNDERFLOW
OpenVMS Alpha and VAX Fortran applications do not report underflows
for VAX-format floating-point operations unless you specifically enable
underflow traps by compiling with the /CHECK=UNDERFLOW qualifier
(see Section 2.3.11).

The same is true on OpenVMS I64 systems, but with an important caveat:
Since all I64 floating-point operations are implemented by means of IEEE-
format operations, enabling underflow traps with /CHECK=UNDERFLOW
causes exceptions to be raised when values underflow the IEEE-format
representation, not the VAX-format one.

This can result in an increased number of underflow exceptions seen with
/CHECK=UNDERFLOW when compared with equivalent Alpha or VAX
programs, as the computed values may be in the valid VAX-format range, but
in the denormalized IEEE-format range.

If your application requires it, a user-written exception handler could catch
the IEEE-format underflow exception, inspect the actual value, and determine
whether it represented a VAX-format underflow or not.

See Section 8.4 for exact ranges of VAX-format and IEEE-format floating
point.

A.6 Changes in Exception-Mode Selection
On OpenVMS Alpha systems, the exception-handling mode and the rounding
mode can be chosen on a per-routine basis. This lets you set a desired
exception mode and rounding mode using compiler qualifiers. Thus, a single
application can have different modes during the execution of different routines.

This is not as easy to do on OpenVMS I64 systems. While the modes can be
changed during the execution of a program, there is a significant performance
penalty for doing so.

As a result, the HP Fortran compiler and the OpenVMS linker implement a
‘‘whole-program’’ rule for exception handling and rounding modes. The rule
says that the whole program is expected to run in the same mode, and that all
compilations will have been done using the same mode qualifiers. To assist in
enforcing this rule, the compiler, linker and loader work together:

• The compiler tags each compiled object file with a code specifying the modes
selected by the user (directly or using the default) for that compilation.

• The linker tags the generated executable file with a code specifying the
mode selected by the user.

A–4 Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems

• The loader initializes the floating-point status register of the process based
on the linker code.

A.6.1 How to Change Exception-Handling or Rounding Mode
If you are using an OpenVMS I64 system and want to change the exception-
handling or rounding mode during the execution of a program, use a call to
either of the following:

• Fortran routines DFOR$GET_FPE and DFOR$SET_FPE

• System routines SYS$IEEE_SET_FP_CONTROL, SYS$IEEE_SET_
PRECISION_MODE, and SYS$IEEE_SET_ROUNDING_MODE

Note

HP does not encourage users to change the exception-handling
or rounding mode within a program. This practice is particularly
discouraged for an application using VAX-format floating-point.

A.6.1.1 Calling DFOR$GET_FPE and DFOR$SET_FPE
If you call DFOR$GET_FPE and DFOR$SET_FPE, you need to construct a
mask using the literals in SYS$LIBRARY:FORDEF.FOR, module FOR_FPE_
FLAGS.

The calling format is:

INTEGER*4 OLD_FLAGS, NEW_FLAGS
INTEGER*4 DFOR$GET_FPE, DFOR$GET_FPE

EXTERNAL DFOR$GET_FPE, DFOR$GET_FPE

! Set the new mask, return old mask.
OLD_FLAGS = DFOR$GET_FPE(NEW_FLAGS)

! Return the current FPE mask.
OLD_FLAGS = DFOR$GET_FPE ()

An example (which does no actual computations) follows. For a more complete
example, see Example A–1.

Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems A–5

subroutine via_fortran
include ’sys$library:fordef.for’
include ’($IEEEDEF)’
integer new_flags, old_flags
old_flags = dfor$get_fpe()
new_flags = FOR_K_FPE_CNT_UNDERFLOW + FPE_M_TRAP_UND
call dfor$set_fpe(new_flags)
!
! Code here uses new flags
!
call dfor$set_fpe(old_flags)
return
end subroutine

A.6.1.2 Calling SYS$IEEE_SET_FP_CONTROL, SYS$IEEE_SET_PRECISION_MODE,
and SYS$IEEE_SET_ROUNDING_MODE
If you call SYS$IEEE_SET_FP_CONTROL, SYS$IEEE_SET_PRECISION_
MODE, and SYS$IEEE_SET_ROUNDING_MODE, you need to construct a
set of masks using the literals in SYS$LIBRARY:FORSYSDEF.TLB, defined
in module IEEEDEF.H (in STARLET). For information about the signature of
these routines, see the HP OpenVMS System Services Reference Manual.

An example (which does no actual computations) follows. For a more complete
example, see Example A–1.

subroutine via_system(rr)
real rr
include ’($IEEEDEF)’
integer*8 clear_flags, set_flags, old_flags, new_flags
clear_flags = IEEE$M_MAP_DNZ + IEEE$M_MAP_UMZ
set_flags = IEEE$M_TRAP_ENABLE_UNF + IEEE$M_TRAP_ENABLE_DNOE
call sys$ieee_set_fp_control(%ref(clear_flags),
%ref(set_flags),%ref(old_flags))
!
! Code here uses new flags
!
clear_flags = set_flags
call sys$ieee_set_fp_control(%ref(clear_flags),%ref(old_flags),%ref(new_flags))
return

A.6.1.3 Additional Rules That You Should Follow
If you decide to change the exception-handling or rounding mode, be careful to
observe the following rules to maintain the ‘‘whole-program’’ rule. Failure to do
so might cause unexpected errors in other parts of your program:

• The preexisting mode must be restored at the end of the execution of the
section in which the new mode is used. This includes both normal endings,
such as leaving a code block, and exits by means of exception handlers.

A–6 Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems

• It is a good idea to establish a handler to restore the old mode on unwinds,
because called code can cause exceptions to be raised (including exceptions
not related to floating point).

• The code should be compiled with the same mode qualifiers as the other,
‘‘normal’’ parts of the application, not with the mode that will be set by the
call to the special function.

• Be aware that VAX-format expressions are actually calculated in IEEE
format, and any change to the modes will impact a calculation in IEEE
format, not a calculation in VAX format.

• Consider adding the VOLATILE attribute to the declaration of all the
variables used in the calculation in the different mode. This will prevent
optimizations that might move all or part of the calculation out of the
region in which the different mode is in effect.

A.6.1.4 Whole-Program Mode and Library Calls
System libraries that need to use an alternate mode (for example, the math
library) accomplish this by using an architectural mechanism not available to
user code: the .sf1 flags of the floating-point status register (user code uses
the .sf0 flags).

Therefore, a user’s choice of exception-handling or rounding mode will not have
an impact on any system library used by the program.

A.6.2 Example of Changing Floating-Point Exception-Handling Mode
Example A–1 shows both methods of changing the floating-point exception-
handling mode. However, for a real program, you should pick just one of the
two methods.

Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems A–7

Example A–1 Changing Floating-Point Exception Mode

! SET_FPE.F90: Change floating-point exception handling mode,
! and check that it worked.
!
! Compile and link like this:
!
! $ f90 set_fpe
! $ lin set_fpe,SYS$LIBRARY:VMS$VOLATILE_PRIVATE_INTERFACES.OLB/lib
! $ run set_fpe
!
! The library is needed to bring in the code for LIB$I64_INS_DECODE,
! which we call for its side-effect of incrementing the PC in the
! correct manner for I64.
!

! This is a place to save the old FPE flags.
!
module saved_flags
integer saved_old_flags
end module

! Turn on underflow detection for one routine
! Using the FORTRAN library function FOR_SET_FPE.
!
subroutine via_fortran(rr)
real rr
include ’sys$library:fordef.for’
include ’($IEEEDEF)’
integer new_flags, old_flags
old_flags = dfor$get_fpe()
new_flags = FPE_M_TRAP_UND
call dfor$set_fpe(new_flags)
!
! Code here uses new flags
!
rr = tiny(rr)
type *,’ Expect a catch #1’
rr = rr / huge(rr)
!
call dfor$set_fpe(old_flags)
return
end subroutine

(continued on next page)

A–8 Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems

Example A–1 (Cont.) Changing Floating-Point Exception Mode

! Alternatively, do the same using the system routine.
!
subroutine via_system(rr)
real rr
include ’($IEEEDEF)’
integer*8 clear_flags, set_flags, old_flags, new_flags
clear_flags = IEEE$M_MAP_DNZ + IEEE$M_MAP_UMZ
set_flags = IEEE$M_TRAP_ENABLE_UNF + IEEE$M_TRAP_ENABLE_DNOE
call sys$ieee_set_fp_control(%ref(clear_flags), %ref(set_flags), %ref(old_flags))
!
! Code here uses new flags
!
rr = tiny(rr)
type *,’ Expect a catch #2’
rr = rr / huge(rr)
!
clear_flags = set_flags
call sys$ieee_set_fp_control(%ref(clear_flags),%ref(old_flags),%ref(new_flags))
return
end subroutine

! Main program
!
program tester
use saved_flags
real, volatile :: r
!
! Establish an exception handler.
!
external handler
call lib$establish(handler)
!
! Save the initial setting of the exception mode flags.
!
saved_old_flags = dfor$get_fpe()
!
! This expression underflows, but because this program has
! been compiled with /IEEE=DENORM (by default) underflows
! do not raise exceptions.
!
write (6,100)

100 format(1x,’ No catch expected’)
r = tiny(r);
r = r / huge(r)

(continued on next page)

Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems A–9

Example A–1 (Cont.) Changing Floating-Point Exception Mode

!
! Call a routine to turn on underflow and try that expression
! again. After the call, verify that underflow detection has
! been turned off.
!
call via_fortran(r)
write (6,100)
r = tiny(r)
r = r / huge(r)
!
! Ditto for the other approach
!
call via_system(r)
write (6,100)
r = tiny(r)
r = r / huge(r)
end program

! A handler is needed to catch any exceptions.
!
integer (kind=4) function handler(sigargs, mechargs)
use saved_flags
include ’($CHFDEF)’
include ’($SSDEF)’
integer sigargs(100)
record /CHFDEF2/ mechargs
integer lib$match_cond
integer LIB$I64_INS_DECODE
!
integer index
integer status
integer no_loop / 20 /
logical int_over
logical int_div
logical float_over
logical float_div
logical float_under
logical float_inval
logical float_denorm
logical hp_arith
logical do_PC_advance
integer pc_index
integer*8 pc_value
!
! Don’t loop forever between handler and exception
! (in case something goes wrong).

(continued on next page)

A–10 Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems

Example A–1 (Cont.) Changing Floating-Point Exception Mode
!
no_loop = no_loop - 1
if(no_loop .le. 0) then

handler = ss$_resignal
return

endif
!
! We’ll need the PC value of the instruction if
! this turns out to have been a fault rather than
! a trap.
!
pc_index = sigargs(1)
pc_value = sigargs(pc_index)
!
! Figure out what kind of exception we have, and
! whether it is a fault and we need to advance the
! PC before continuing.
!
do_PC_advance = .false.
int_over = .false.
int_div = .false.
float_over = .false.
float_div = .false.
float_under = .false.
float_inval = .false.
float_denorm = .false.
hp_arith = .false.
!
index = lib$match_cond(sigargs(2), SS$_INTOVF)
if(index .eq. 0) then

int_over = .true.
endif
!
index = lib$match_cond(sigargs(2), SS$_INTDIV)
if(index .eq. 0) then

int_div = .true.
endif
!
index = lib$match_cond(sigargs(2), SS$_FLTOVF)
if(index .eq. 0) then

float_over = .true.
endif
!
index = lib$match_cond(sigargs(2), SS$_FLTDIV)
if(index .eq. 0) then

float_div = .true.
endif

(continued on next page)

Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems A–11

Example A–1 (Cont.) Changing Floating-Point Exception Mode

!
index = lib$match_cond(sigargs(2), SS$_FLTUND)
if(index .eq. 0) then

float_under = .true.
endif
!
index = lib$match_cond(sigargs(2), SS$_FLTOVF_F)
if(index .eq. 0) then

float_over = .true.
do_PC_advance = .true.

endif
!
index = lib$match_cond(sigargs(2), SS$_FLTDIV_F)
if(index .eq. 0) then

float_div = .true.
do_PC_advance = .true.

endif
!
index = lib$match_cond(sigargs(2), SS$_FLTUND_F)
if(index .eq. 0) then

float_under = .true.
do_PC_advance = .true.

endif
!
index = lib$match_cond(sigargs(2), SS$_FLTINV)
if(index .eq. 0) then

float_inval = .true.
do_PC_advance = .true.

endif
!
index = lib$match_cond(sigargs(2), SS$_INTOVF_F)
if(index .eq. 0) then

int_over = .true.
do_PC_advance = .true.

endif
!
index = lib$match_cond(sigargs(2), SS$_FLTDENORMAL)
if(index .eq. 0) then

float_denorm = .true.
endif
!
index = lib$match_cond(sigargs(2), SS$_HPARITH)
if(index .eq. 0) then

hp_arith = .true.
endif
!
! Tell the user what kind of exception this is.

(continued on next page)

A–12 Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems

Example A–1 (Cont.) Changing Floating-Point Exception Mode
!
handler = ss$_continue
if(float_over) then

write(6,*) ’ - Caught Floating overflow’

else if (int_over) then
write(6,*) ’ - Caught Integer overflow’

else if (int_div) then
write(6,*) ’ - Caught Integer divide by zero’

else if (float_div) then
write(6,*) ’ - Caught Floating divide by zero’

else if (float_under) then
write(6,*) ’ - Caught Floating underflow’

else if (float_inval) then
write(6,*) ’ - Caught Floating invalid’

else if (hp_arith) then
write(6,*) ’ - Caught HP arith error’

else
write(6,*) ’ - Caught something else: resignal ’
!
! Here we have to restore the initial floating-point
! exception processing mode in case the exception
! happened during one of the times we’d changed it.
!
call dfor$set_fpe(saved_old_flags)
!
handler = ss$_resignal

endif
!
! If this was a fault, and we want to continue, then
! the PC has to be advanced over the faulting instruction.
!
if(do_PC_advance .and. (handler .eq. ss$_continue)) then

status = lib$i64_ins_decode (pc_value)
sigargs(pc_index) = pc_value

endif
!
return
end function handler

Differences Between HP Fortran on OpenVMS I64 and OpenVMS Alpha Systems A–13

B
Compatibility: Compaq Fortran 77 and HP

Fortran

This appendix describes:

• Section B.1, HP Fortran and Compaq Fortran 77 Compatibility on Various
Platforms

• Section B.2, Major Language Features for Compatibility with Compaq
Fortran 77 for OpenVMS Systems

• Section B.3, Language Features and Interpretation Differences Between
Compaq Fortran 77 and HP Fortran on OpenVMS Systems

• Section B.4, Improved HP Fortran Compiler Diagnostic Detection

• Section B.5, Compiler Command-Line Differences

• Section B.6, Interoperability with Translated Shared Images

• Section B.7, Porting Compaq Fortran 77 for OpenVMS VAX Systems Data

• Section B.8, VAX H_float Representation

B.1 HP Fortran and Compaq Fortran 77 Compatibility on
Various Platforms

Table B–1 summarizes the compatibility of HP Fortran (HF, which supports
the Fortran 95, 90, 77, and 66 standards) and Compaq Fortran 77 (CF77) on
multiple platforms (architecture/operating system pairs).

HP Fortran is available on OpenVMS I64 systems, OpenVMS Alpha Systems,
Tru64 UNIX Alpha systems, Linux Alpha systems, and as Compaq Visual
Fortran (CVF) on Windows systems.

Compatibility: Compaq Fortran 77 and HP Fortran B–1

Table B–1 Summary of Language Compatibility

Language Feature

HF
UNIX
Alpha

HF
Linux
Alpha

CVF
Windows
x86

HF
OpenVMS
I64 and
Alpha

CF77
OpenVMS
Alpha

CF77
OpenVMS
VAX

Linking against static and shared
libraries

� � � � � �

Create code for shared libraries � � � � � �

Recursive code support � � � � � �

AUTOMATIC and STATIC statements � � � � � �

STRUCTURE and RECORD declara-
tions

� � � � � �

INTEGER*1, *2, *4 � � � � � �

LOGICAL*1, *2, *4 � � � � � �

INTEGER*8 and LOGICAL*8 � � � �

REAL*4, *8 � � � � � �

REAL*161
� � � � �

COMPLEX*8, *16 � � � � � �

COMPLEX*322
� � � �

POINTER (CRAY-style) � � � � � �

INCLUDE statements � � � � � �

IMPLICIT NONE statements � � � � � �

Data initialization in type declarations � � � � � �

Automatic arrays � � � � �

VOLATILE statements � � � � � �

NAMELIST-directed I/O � � � � � �

31-character names including $ and _ � � � � � �

Source listing with machine code � � � � � �

Debug statements in source � � � � � �

Bit constants to initialize data and use
in arithmetic

� � � � � �

1For REAL*16 data, OpenVMS VAX systems use H_float format, and I64 and Alpha systems use IEEE style
X_float format.
2For COMPLEX*32 data, I64 and Alpha systems use IEEE style X_float format for both REAL*16 parts.

(continued on next page)

B–2 Compatibility: Compaq Fortran 77 and HP Fortran

Table B–1 (Cont.) Summary of Language Compatibility

Language Feature

HF
UNIX
Alpha

HF
Linux
Alpha

CVF
Windows
x86

HF
OpenVMS
I64 and
Alpha

CF77
OpenVMS
Alpha

CF77
OpenVMS
VAX

DO WHILE and END DO statements � � � � � �

Built-in functions %LOC, %REF, %VAL � � � � � �

SELECT CASE construct � � � � �

EXIT and CYCLE statements � � � � �

Variable FORMAT expressions (VFEs) � � � � � �

! marks end-of-line comment � � � � � �

Optional run-time bounds checking for
arrays and substrings

� � � � � �

Binary (unformatted) I/O in IEEE big
endian, IEEE little endian, VAX, IBM,
and CRAY floating-point formats

� � � � � �

Fortran 90/95 standards checking � � � �

FORTRAN-77 standards checking � �

IEEE exception handling � � � � �

VAX floating data type in memory � � �

IEEE floating data type in memory � � � � �

CDD/Repository DICTIONARY support � � �

KEYED access and INDEXED files � � �

Parallel decomposition � �

OpenMP parallel directives �

Conditional compilation using IF . . .
DEF constructs

� � � �

Vector code support �

Direct inlining of Basic Linear Algebra
Subroutines (BLAS)3

3 3 3 3
�

DATE_AND_TIME returns 4-digit year � � � � � �

FORALL statement and construct � � � �

3BLAS and other routines are available with the Compaq Extended Mathematical Library (CXML). See
Chapter 15.

(continued on next page)

Compatibility: Compaq Fortran 77 and HP Fortran B–3

Table B–1 (Cont.) Summary of Language Compatibility

Language Feature

HF
UNIX
Alpha

HF
Linux
Alpha

CVF
Windows
x86

HF
OpenVMS
I64 and
Alpha

CF77
OpenVMS
Alpha

CF77
OpenVMS
VAX

Automatic deallocation of ALLOCATABLE
arrays

� � � �

Dim argument to MAXLOC and
MINLOC

� � � �

PURE user-defined subprograms � � � �

ELEMENTAL user-defined subpro-
grams

� � � �

Pointer initialization (initial value) � � � �

The NULL intrinsic to nullify a pointer � � � �

Derived-type structure initialization � � � �

CPU_TIME intrinsic subroutine � � � �

Kind argument to CEILING and
FLOOR intrinsics

� � � �

Nested WHERE constructs, masked
ELSEWHERE statement, and named
WHERE constructs

� � � �

Comments allowed in namelist input � � � �

Generic identifier in END INTERFACE
statements

� � � �

Minimal FORMAT edit descriptor field
width

� � � �

Detection of obsolescent and/or deleted
features4

� � � �

4HP Fortran flags these deleted and obsolescent features but fully supports them.

B.2 Major Language Features for Compatibility with Compaq
Fortran 77 for OpenVMS Systems

To simplify porting Compaq Fortran 77 applications from OpenVMS VAX
systems to HP Fortran on OpenVMS I64 or OpenVMS Alpha systems, the
following features (extensions) are provided with HP Fortran:

• HP Fortran provides LIB$ESTABLISH and LIB$REVERT as intrinsic
functions for compatibility with Compaq Fortran 77 for OpenVMS VAX
Systems condition handling; see Chapter 14.

B–4 Compatibility: Compaq Fortran 77 and HP Fortran

• HP Fortran provides FOR$RAB as an intrinsic function and it should not
be declared as EXTERNAL; see Section 11.2.3.

• FORSYSDEF parameter definitions for use with OpenVMS system services
(see Appendix E).

• The /VMS qualifier (the default) makes the run-time environment
behave more like Compaq Fortran 77 for OpenVMS VAX Systems (see
Section 2.3.50).

• Compaq Fortran 77 extensions not part of the Fortran 90 standard that
are supported as extensions by HP Fortran for OpenVMS Alpha Systems
include the following:

Record structures (STRUCTURE and RECORD statements)

Indexed sequential files, relative files, and keyed access

USEROPEN routines for RMS control block access

I/O statements, including PRINT, ACCEPT, TYPE, DELETE, and
UNLOCK

I/O statement specifiers, such as the INQUIRE statement specifiers
CARRIAGECONTROL, CONVERT, ORGANIZATION, and
RECORDTYPE

Certain data types, including 8-byte INTEGER and LOGICAL
variables (available on Alpha systems) and 16-byte REAL variables.
REAL (KIND=16) data is provided in Alpha X_float format (not VAX
H_float format)

Size specifiers for data declaration statements, such as INTEGER*4, in
addition to the KIND type parameter

The POINTER statement and its associated data type (CRAY pointers)

The typeless PARAMETER statement

The VOLATILE statement

The AUTOMATIC and STATIC statements

Built-in functions used in argument lists, such as %VAL and %LOC

Hollerith constants

Variable-format expressions

Certain intrinsic functions

The tab source form (resembles fixed-source form)

Compatibility: Compaq Fortran 77 and HP Fortran B–5

I/O formatting descriptors

Additional language features, including the DEFINE FILE, ENCODE,
DECODE, and VIRTUAL statements

For More Information:

• On the HP Fortran language, see the HP Fortran for OpenVMS Language
Reference Manual.

B.3 Language Features and Interpretation Differences
Between Compaq Fortran 77 and HP Fortran on
OpenVMS Systems

This section lists Compaq Fortran 77 extensions to the FORTRAN-77 standard
that are interpretation differences or are not included in HP Fortran for
OpenVMS I64 or OpenVMS Alpha systems. Where appropriate, this list
indicates equivalent HP Fortran language features.

HP Fortran conforms to the Fortran 90 and Fortran 95 standards. The Fortran
90 standard is a superset of the FORTRAN-77 standard. The Fortran 95
standard deletes some FORTRAN-77 features from the Fortran 90 standard.
HP Fortran fully supports all of these deleted features (see the HP Fortran for
OpenVMS Language Reference Manual).

HP Fortran provides many but not all of the FORTRAN-77 extensions provided
by Compaq Fortran 77.

B.3.1 Compaq Fortran 77 for OpenVMS Language Features Not
Implemented
The following FORTRAN-77 extensions provided by Compaq Fortran 77 on
OpenVMS systems (both Alpha and VAX hardware) are not provided by HP
Fortran for OpenVMS I64 or OpenVMS Alpha systems:

• Octal notation for integer constants is not part of the HP Fortran language.
Compaq Fortran 77 for OpenVMS Alpha Systems supports this feature
only when the /VMS qualifier is in effect (default). For example:

I = "0014 ! Assigns 12 to I, not supported by HP Fortran

• The HP Fortran language prohibits dummy arguments with nonconstant
bounds from being a namelist item. For example:

B–6 Compatibility: Compaq Fortran 77 and HP Fortran

SUBROUTINE FOO(A,N)
DIMENSION A(N),B(10)
NAMELIST /N1/ A ! Incorrect
NAMELIST /N2/ B ! Correct

END SUBROUTINE

• HP Fortran does not recognize certain hexadecimal and octal constants in
DATA statements, such as those used in the following program:

INTEGER I, J
DATA I/O20101/, J/Z20/
TYPE *, I, J
END

B.3.2 Compaq Fortran 77 for OpenVMS VAX Systems Language
Features Not Implemented
Certain language features are available in Compaq Fortran 77 for OpenVMS
VAX systems, but are not supported in HP Fortran for OpenVMS I64 or
OpenVMS Alpha systems. These features include features supported by the
VAX architecture, VAX hardware support, and older language extensions:

• Automatic decomposition features of FORTRAN /PARALLEL=
(AUTOMATIC). For information on a performance preprocessor that allows
parallel execution, see Section 5.1.1.

• Manual (directed) decomposition features of FORTRAN /PARALLEL=
(MANUAL) using the CPAR$ directives, such as CPAR$ DO_PARALLEL.
For information on a performance preprocessor that allows parallel
execution, see Section 5.1.1.

• The following I/O and error subroutines for PDP-11 compatibility:

ASSIGN
CLOSE
ERRSET

ERRTST
FDBSET
IRAD50

RAD50
R50ASC
USEREX

When porting existing programs, calls to ASSIGN, CLOSE, and FBDSET
should be replaced with the appropriate OPEN statement. (You might
consider converting DEFINE FILE statements at the same time, even
though HP Fortran does support the DEFINE FILE statement.)

In place of ERRSET and ERRTST, OpenVMS condition handling might be
used.

• Radix-50 constants in the form nRxxx

For existing programs being ported, radix 50 constants and the IRAD50,
RAD50 and R50ASC routines should be replaced by data encoded in ASCII
using CHARACTER declared data.

Compatibility: Compaq Fortran 77 and HP Fortran B–7

• Numeric local variables are usually (but not always) initialized to a zero
value, depending on the level of optimization used. To guarantee that a
value will be initialized to zero under all circumstances, use an explicit
assignment or DATA statement.

• Character constant actual arguments must be associated with character
dummy arguments, not numeric dummy arguments, if source program
units are compiled separately. (Compaq Fortran 77 for OpenVMS VAX
Systems passed ’A’ by reference if the dummy argument was numeric.)

To allow character constant actual arguments to be associated with
numeric dummy arguments, specify the /BY_REF_CALL qualifier on the
FORTRAN command line (see Section 2.3.9).

The following language features are available in Compaq Fortran 77 for
OpenVMS VAX systems, but are not supported in HP Fortran because of
architectural differences between OpenVMS I64 and OpenVMS Alpha systems
and OpenVMS VAX systems:

• Certain FORSYSDEF symbol definition library modules might be
specific to the VAX or Itanium or Alpha architecture. For information
on FORSYSDEF text library modules, see Appendix E.

• Precise exception control

Compaq Fortran 77 for OpenVMS VAX Systems provides precise reporting
of run-time exceptions. For performance reasons on OpenVMS I64 and
OpenVMS Alpha systems, the default FORTRAN command behavior
is that exceptions are usually reported after the instruction causing
the exception. You can request precise exception reporting using the
FORTRAN command /SYNCHRONOUS_EXCEPTIONS (Alpha only)
qualifier (see Section 2.3.46). For information on error and condition
handling, see Chapter 7 and Chapter 14.

• The REAL*16 H_float data type supported on OpenVMS VAX systems

The REAL (KIND=16) floating-point format on OpenVMS I64 and
OpenVMS Alpha systems is X_float (see Chapter 8). For information
on the VAX H_float data type, see Section B.8.

• VAX support for D_float, F_float, and G_float

The OpenVMS Alpha instruction set does not support D_float
computations, and the OpenVMS I64 instruction set does not support
D_float, F_float or G_float computations. As a result, any data stored in
those formats is converted to a native format for arithmetic computations
and then converted back to its original format. On Alpha systems, the
native format used for D_float is G_float. On I64 systems, S_float is used
for F_float data, and T_float is used for D_float and G_float data.

B–8 Compatibility: Compaq Fortran 77 and HP Fortran

This means that for programs that perform many floating-point
computations, using D_float data on Alpha systems is slower than using
G_float or T_float data. Similarly, using D_float, F_float, or G_float data
on I64 systems is slower than using S_float or T_float data. Additionally,
due to the conversions involved, the results might differ from native VAX
D_float, F_float, and G_float computations and results.

Use the /FLOAT qualifier to specify the floating-point format (see
Section 2.3.22).

To create an HP Fortran application program to convert D_float data to
G_float or T_float format, use the file conversion methods described in
Chapter 9.

• Vectorization capabilities

Vectorization, including /VECTOR and its related qualifiers, and the
CDEC$ INIT_DEP_FWD directive are not supported. The Alpha
processor provides instruction pipelining and other features that resemble
vectorization capabilities.

B.3.3 Compaq Fortran 77 for OpenVMS Language Interpretation
Differences
The following FORTRAN-77 extensions provided by Compaq Fortran 77 on
OpenVMS systems (both Alpha and VAX hardware) are interpreted differently
by HP Fortran.

• The HP Fortran compiler discards leading zeros for "disp" in the STOP
statement. For example:

STOP 001 ! Prints 1 instead of 001

• When a single-precision constant is assigned to a double-precision variable,
Compaq Fortran 77 evaluates the constant in double precision, whereas HP
Fortran evaluates the constant in single precision (by default).

You can request that a single-precision constant assigned to a double-
precision variable be evaluated in double precision, specify the FORTRAN
command /ASSUME=FP_CONSTANT qualifier. The Fortran 90 standard
requires that the constant be evaluated in single precision, but this
can make calculated results differ between Compaq Fortran 77 and HP
Fortran.

In the example below, Compaq Fortran 77 assigns identical values to D1
and D2, whereas HP Fortran obeys the standard and assigns a less precise
value to D1.

Compatibility: Compaq Fortran 77 and HP Fortran B–9

For example:

REAL*8 D1,D2
DATA D1 /2.71828182846182/ ! Incorrect - only REAL*4 value
DATA D2 /2.71828182846182D0/ ! Correct - REAL*8 value

• The names of intrinsics introduced by HP Fortran may conflict with the
names of existing external procedures if the procedures were not specified
in an EXTERNAL declaration. For example:

EXTERNAL SUM
REAL A(10),B(10)
S = SUM(A) ! Correct - invokes external function
T = DOT_PRODUCT(A,B) ! Incorrect - invokes intrinsic function

• When writing namelist external records, HP Fortran uses the syntax for
namelist external records specified by the Fortran 90 standard, rather than
the Compaq Fortran 77 syntax (an extension to the FORTRAN-77 and
Fortran 90 standards).

Consider the following program:

INTEGER I
NAMELIST /N/ I
I = 5
PRINT N
END

When this program is run after being compiled by the FORTRAN
command, the following output appears:

$ FORTRAN TEST.F
$ LINK TEST
$ RUN TEST
&N
I = 5
/

When this program is run after being compiled by the FORTRAN command
with the /OLDF77 qualifier, the following output appears:

$ FORTRAN /OLDF77 TEST.F
$ LINK TEST
$ RUN TEST
$N
I = 5
$END

HP Fortran accepts Fortran 90 namelist syntax and Compaq Fortran 77
namelist syntax for reading records.

B–10 Compatibility: Compaq Fortran 77 and HP Fortran

• HP Fortran does not support C-style escape sequences in standard
character literals. Use the C string literal syntax extension or the CHAR
intrinsic instead. For example:

CHARACTER*2 CRLF
CRLF = ’\r\n’ ! Incorrect
CRLF = ’\r\n’C ! Correct
CRLF = CHAR(13)//CHAR(10) ! Standard-conforming alternative

• HP Fortran inserts a leading blank when doing list-directed I/O to an
internal file. Compaq Fortran 77 does this only when the /VMS qualifier is
in effect (default) on OpenVMS Alpha Systems. For example:

CHARACTER*10 C
WRITE(C,*) ’FOO’ ! C = ’ FOO’

• Compaq Fortran 77 and HP Fortran produce different output for a real
value whose data magnitude is 0 with a G field descriptor. For example:

X = 0.0
WRITE(*,100) X ! Compaq Fortran 77 prints 0.0000E+00

100 FORMAT(G12.4) ! HP Fortran prints 0.000

• HP Fortran does not allow certain intrinsic procedures (such as SQRT) in
constant expressions for array bounds. For example:

REAL A(SQRT(31.5))
END

• Compaq Fortran 77 returns UNKNOWN while HP Fortran returns
UNDEFINED when the ACCESS, BLANK, and FORM characteristics
cannot be determined. For example:

INQUIRE(20,ACCESS=acc,BLANK=blk,FORM=form)

• HP Fortran does not allow extraneous parentheses in I/O lists. For
example:

write(*,*) ((i,i=1,1),(j,j=1,2))

• HP Fortran does not allow control characters within quoted strings, unless
you use the C-string extension. For example:

character*5 c
c = ’ab\nef’ ! not allowed
c = ’ab\nef’C ! allowed
end

• HP Fortran, like Compaq Fortran 77, supports the use of character literal
constants (such as ’ABC’ or "ABC") in numeric contexts, where they are
treated as Hollerith constants.

Compatibility: Compaq Fortran 77 and HP Fortran B–11

Compaq Fortran 77 also allows character PARAMETER constants (typed
and untyped) and character constant expressions (using the // operator) in
numeric constants as an undocumented extension.

HP Fortran does allow character PARAMETER constants in numeric
contexts, but does not allow character expressions. For example, the
following is valid for Compaq Fortran 77, but will result in an error
message from HP Fortran:

REAL*8 R
R = ’abc’ // ’def’
WRITE (6,*) R
END

HP Fortran does allow PARAMETER constants:

PARAMETER abcdef = ’abc’ // ’def’
REAL*8 R
R = abcdef
WRITE (6,*) R
END

• Compaq Fortran 77 namelist output formats character data delimited with
apostrophes. For example, consider:

CHARACTER CHAR4*4
NAMELIST /CN100/ CHAR4

CHAR4 = ’ABCD’
WRITE(20,CN100)
CLOSE (20)

This produces the following output file:

$CN100
CHAR4 = ’ABCD’
$END

This file is read by:

READ (20, CN100)

In contrast, HP Fortran produces the following output file by default:

&CN100
CHAR4 = ABCD
/

When read, this generates a syntax error in NAMELIST input error.
To produce delimited strings from namelist output that can be read by
namelist input, use DELIM="’" in the OPEN statement of an HP Fortran
program.

B–12 Compatibility: Compaq Fortran 77 and HP Fortran

For More Information:

• On argument passing between HP Fortran and Compaq Fortran 77, see
Section 10.9.

• On the HP Fortran language, see the HP Fortran for OpenVMS Language
Reference Manual.

B.3.4 Compaq Fortran 77 for OpenVMS VAX Systems Interpretation
Differences
The following language features are interpreted differently in Compaq Fortran
77 for OpenVMS VAX Systems and HP Fortran for OpenVMS I64 or OpenVMS
Alpha systems:

• Random number generator (RAN)

The RAN function generates a different pattern of numbers in HP Fortran
than in Compaq Fortran 77 for OpenVMS VAX Systems for the same
random seed. (The RAN and RANDU functions are provided for Compaq
Fortran 77 for OpenVMS VAX Systems compatibility. See the HP Fortran
for OpenVMS Language Reference Manual.)

• INQUIRE(RECL) for unformatted files

INQUIRE(RECL) for unformatted files with the default RECL unit
(longwords) gives different answers for Compaq Fortran 77 for OpenVMS
VAX Systems and HP Fortran if the existing file has a record length
that is not a multiple of 4 bytes. To prevent this difference, use
/ASSUME=BYTERECL and specify the proper RECL in bytes in the
OPEN statement.

• Hollerith constants in formatted I/O statements

Compaq Fortran 77 for OpenVMS VAX Systems and HP Fortran behave
differently if either of the following occurs:

Two different I/O statements refer to the same CHARACTER
PARAMETER constant as their format specifier, for example:

CHARACTER*(*) FMT2
PARAMETER (FMT2=’(10Habcdefghij)’)
READ (5, FMT2)
WRITE (6, FMT2)

Two different I/O statements use the identical character constant as
their format specifier, for example:

READ (5, ’(10Habcdefghij)’)
WRITE (6, ’(10Habcdefghij)’)

Compatibility: Compaq Fortran 77 and HP Fortran B–13

In Compaq Fortran 77 for OpenVMS VAX Systems, the value obtained
by the READ statement is the output of the WRITE statement (FMT2 is
ignored). However, in HP Fortran, the output of the WRITE statement is
"abcdefghij". (The value read by the READ statement has no effect on the
value written by the WRITE statement.)

B.4 Improved HP Fortran Compiler Diagnostic Detection
The following language features are detected differently by HP Fortran than
Compaq Fortran 77:

• The HP Fortran compiler enforces the constraint that the ‘‘nlist’’ in an
EQUIVALENCE statement must contain at least two variables. For
example:

EQUIVALENCE (X) ! Incorrect
EQUIVALENCE (Y,Z) ! Correct

• The HP Fortran compiler enforces the constraint that entry points in a
SUBROUTINE must not be typed. For example:

SUBROUTINE ABCXYZ(I)
REAL ABC
I = I + 1
RETURN
ENTRY ABC ! Incorrect
BAR = I + 1
RETURN
ENTRY XYZ ! Correct
I = I + 2
RETURN

END SUBROUTINE

• The HP Fortran compiler enforces the constraint that a type must appear
before each list in an IMPLICIT statement. For example:

IMPLICIT REAL (A-C), (D-H) ! Incorrect
IMPLICIT REAL (O-S), REAL (T-Z) ! Correct

• The HP Fortran language disallows passing mismatched actual arguments
to intrinsics with corresponding integer formal arguments. For example:

R = REAL(.TRUE.) ! Incorrect
R = REAL(1) ! Correct

• The HP Fortran compiler enforces the constraint that a simple list element
in an I/O list must be a variable or an expression. For example:

READ (10,100) (I,J,K) ! Incorrect
READ (10,100) I,J,K ! Correct

B–14 Compatibility: Compaq Fortran 77 and HP Fortran

• The HP Fortran compiler enforces the constraint that if two operators are
consecutive, the second operator must be a plus or a minus. For example:

I = J -.NOT.K ! Incorrect
I = J - (.NOT.K) ! Correct

• The HP Fortran compiler enforces the constraint that character entities
with a length greater than 1 cannot be initialized with a bit constant in a
DATA statement. For example:

CHARACTER*1 C1
CHARACTER*4 C4
DATA C1/’FF’X/ ! Correct
DATA C4/’FFFFFFFF’X/ ! Incorrect

• The HP Fortran compiler enforces the requirement that edit descriptors in
the FORMAT statement must be followed by a comma or slash separator.
For example:

1 FORMAT (SSF4.1) ! Incorrect
2 FORMAT (SS,F4.1) ! Correct

• The HP Fortran compiler enforces the constraint that the number and
types of actual and formal statement function arguments must match (such
as incorrect number of arguments). For example:

CHARACTER*4 C,C4,FUNC
FUNC()=C4
C=FUNC(1) ! Incorrect
C=FUNC() ! Correct

• The HP Fortran compiler detects the use of a format of the form Ew.dE0 at
compile time. For example:

1 format(e16.8e0) ! HP Fortran detects error at compile time
write(*,1) 5.0 ! Compaq Fortran 77 compiles but an output

! conversion error occurs at run time

• HP Fortran detects passing of a statement function to a routine. For
example:

foo(x) = x * 2
call bar(foo)
end

• The HP Fortran compiler enforces the constraint that a branch to a
statement shared by one more DO statements must occur from within the
innermost loop. For example:

Compatibility: Compaq Fortran 77 and HP Fortran B–15

DO 10 I = 1,10
IF (L1) GO TO 10 ! Incorrect
DO 10 J = 1,10

IF (L2) GO TO 10 ! Correct
10 CONTINUE

• The HP Fortran compiler enforces the constraint that a file must contain
at least one program unit. For example, a source file containing only
comment lines results in an error at the last line (end-of-file).

The Compaq Fortran 77 compiler compiles files containing less than one
program unit.

• The HP Fortran compiler correctly detects misspellings of the
ASSOCIATEVARIABLE keyword to the OPEN statement. For example:

OPEN(1,ASSOCIATEVARIABLE = I) ! Correct
OPEN(2,ASSOCIATEDVARIABLE = J) ! Incorrect (extra D)

• The HP Fortran language enforces the constraint that the result of an
operation is determined by the data types of its operands. For example:

INTEGER*8 I8
I8 = 2147483647+1 ! Incorrect. Produces less accurate

! INTEGER*4 result from integer overflow
I8 = 2147483647_8 + 1_8 ! Correct

• The HP Fortran compiler enforces the constraint that an object can be
typed only once. Compaq Fortran 77 issues a warning message and uses
the first type. For example:

LOGICAL B,B ! Incorrect (B multiply declared)

• The HP Fortran compiler enforces the constraint that certain intrinsic
procedures defined by the Fortran 95 standard cannot be passed as
actual arguments. For example, Compaq Fortran 77 allows most intrinsic
procedures to be passed as actual arguments, but the HP Fortran compiler
only allows those defined by the Fortran 95 standard (issues an error
message).

Consider the following program:

program tstifx

intrinsic ifix,int,sin

call a(ifix)
call a(int)
call a(sin)
stop
end

B–16 Compatibility: Compaq Fortran 77 and HP Fortran

subroutine a(f)
external f
integer f
print *, f(4.9)
return
end

The IFIX and INT intrinsic procedures cannot be passed as actual
arguments (the compiler issues an error message). However, the SIN
intrinsic is allowed to be passed as an actual argument by the Fortran 90
standard.

• HP Fortran reports character truncation with an error-level message, not
as a warning.

The following program produces an error message during compilation with
HP Fortran, whereas Compaq Fortran 77 produces a warning message:

INIT5 = ’ABCDE’
INIT4 = ’ABCD’
INITLONG = ’ABCDEFGHIJKLMNOP’
PRINT 10, INIT5, INIT4, INITLONG

10 FORMAT (’ ALL 3 VALUES SHOULD BE THE SAME: ’ 3I)
END

• If your code invokes HP Fortran intrinsic procedures with the wrong
number of arguments or an incorrect argument type, HP Fortran reports
this with an error-level message, not with a warning. Possible causes
include:

An HP Fortran intrinsic has been added with the same name as a
user-defined subprogram and the user-defined subprogram needs to be
declared as EXTERNAL.

An intrinsic that is an extension to an older Fortran standard is
incompatible with a newer standard-conforming intrinsic (for example,
the older RAN function that accepted two arguments).

The following program produces an error message during compilation with
HP Fortran, whereas Compaq Fortran 77 produces a warning message:

Compatibility: Compaq Fortran 77 and HP Fortran B–17

INTEGER ANOTHERCOUNT
ICOUNT=0

100 write(6,105) (ANOTHERCOUNT(ICOUNT), INT1=1,10)
105 FORMAT(’ correct if print integer values 1 through 10’ /10I7)

Q = 1.
R = .23
S = SIN(Q,R)
WRITE (6,110) S

110 FORMAT(’ CORRECT = 1.23 RESULT = ’,f8.2)
END

!
INTEGER FUNCTION ANOTHERCOUNT(ICOUNT)
ICOUNT=ICOUNT+1
ANOTHERCOUNT=ICOUNT
RETURN
END

REAL FUNCTION SIN(FIRST, SECOND)
SIN = FIRST + SECOND
RETURN
END

• HP Fortran reports missing commas in FORMAT descriptors with an
error-level message, not as a warning.

The following program produces an error message during compilation with
HP Fortran, whereas Compaq Fortran 77 produces a warning message:

LOGICAL LOG/111/
TYPE 1,LOG

1 FORMAT(’ ’23X,’LOG=’O12)
END

In the preceding example, the correct coding (adding the missing comma)
for the FORMAT statement is:

1 FORMAT(’ ’,23X,’LOG=’O12)

• HP Fortran generates an error when it encounters a 1-character source
line containing a Ctrl/Z character, whereas Compaq Fortran 77 allows such
a line (which is treated as a blank line).

• HP Fortran does not detect an extra comma in an I/O statement when the
/STANDARD qualifier is specified, whereas Compaq Fortran 77 with the
same qualifier identifies an extra comma as an extension. For example:

WRITE(*,*) , P(J)

B–18 Compatibility: Compaq Fortran 77 and HP Fortran

• HP Fortran detects the use of a character variable within parentheses in
an I/O statement. For example:

CHARACTER*10 CH/’(I5)’/
INTEGER I

READ CH,I ! Acceptable

READ (CH),I ! Generates error message, interpreted as an internal READ

END

• HP Fortran evaluates the exponentiation operator at compile time only if
the exponent has an integer data type. Compaq Fortran 77 evaluates the
exponentiation operator even when the exponent does not have an integer
data type. For example:

PARAMETER (X = 4.0 ** 1.1)

• HP Fortran detects an error when evaluating constants expressions that
result in an NaN or Infinity exceptional value, while Compaq Fortran 77
allows such expressions. For example:

PARAMETER (X = 4.0 / 0.0)

For More Information:

• On passing arguments and returning function values between HP Fortran
and Compaq Fortran 77, see Section 10.9.

• On HP Fortran procedure calling and argument passing, see Section 10.2.

• On the HP Fortran language, see the HP Fortran for OpenVMS Language
Reference Manual.

B.5 Compiler Command-Line Differences
This section summarizes the differences between HP Fortran and Compaq
Fortran 77 for OpenVMS Systems command lines.

The following commands initiate compilation on OpenVMS systems:

Platform Language Command

OpenVMS I64 systems HP Fortran FORTRAN

OpenVMS Alpha systems HP Fortran FORTRAN

OpenVMS Alpha systems Compaq Fortran 77 FORTRAN/OLD_F77

OpenVMS VAX systems Compaq Fortran 77 FORTRAN

Compatibility: Compaq Fortran 77 and HP Fortran B–19

Most qualifiers are the same between HP Fortran for OpenVMS Alpha systems
and Compaq Fortran 77 for OpenVMS Alpha systems.

B.5.1 Qualifiers Not Available on OpenVMS VAX Systems
Table B–2 lists HP Fortran compiler qualifiers that have no equivalent Compaq
Fortran 77 Version 6.4 for OpenVMS VAX Systems qualifiers.

Table B–2 HP Fortran Qualifiers Without Equivalents in Compaq Fortran 77 for
OpenVMS VAX Systems

Qualifier Description

/ALIGNMENT=
[NO]SEQUENCE

Specifies that components of derived types with the SEQUENCE
attribute will obey whatever alignment rules are currently in use
(see Section 2.3.3).

/ANNOTATION Controls whether an annotated listing showing optimizations is
included with the listing file (see Section 2.3.5).

/ARCHITECTURE=keyword Specifies the type of Alpha architecture code instructions
generated for a particular program unit being compiled (see
Section 2.3.6).

/ASSUME=ALT_PARAM1 Allows the alternate syntax for PARAMETER statements. The
alternate form has no parentheses surrounding the list, and
the form of the constant, rather than implicit or explicit typing,
determines the data type of the variable (see Section 2.3.7).

/ASSUME=FP_CONSTANT1 Controls whether constants are evaluated in single or double
precision (see Section 2.3.7). Compaq Fortran 77 always
evaluates single-precision constants in double precision.

/ASSUME=MINUS01 Controls whether the compiler uses Fortran 95 standard
semantics for the IEEE floating-point value of -0.0 (minus zero)
in the SIGN intrinsic, if the processor is capable of distinguishing
the difference between -0.0 and +0.0 (see Section 2.3.7).

/ASSUME=PROTECT_
CONSTANTS

Specifies whether constant actual arguments can be changed (see
Section 2.3.7).

/BY_REF_CALL Allows character constant actual arguments to be associated with
numeric dummy arguments (allowed by Compaq Fortran 77 for
OpenVMS VAX Systems; see Section 2.3.9).

/CHECK=ARG_INFO (I64
only)

Controls whether run-time checking of the actual argument list
occurs (see Section 2.3.11).

1This qualifier applies only to HP Fortran and does not apply to Compaq Fortran 77 on any platform.

(continued on next page)

B–20 Compatibility: Compaq Fortran 77 and HP Fortran

Table B–2 (Cont.) HP Fortran Qualifiers Without Equivalents in Compaq Fortran 77 for
OpenVMS VAX Systems

Qualifier Description

/CHECK=ARG_TEMP_
CREATED

Issues a run-time warning message and continues execution
if a temporary is created for an array actual argument (see
Section 2.3.11).

/CHECK=FP_EXCEPTIONS Controls whether messages about IEEE floating-point exceptional
values are reported at run time (see Section 2.3.11).

/CHECK=FP_MODE (I64
only)

Controls whether run-time checking of the current state of the
processor’s floating-point status register (FPSR) occurs (see
Section 2.3.11).

/CHECK=POWER Controls whether the compiler evaluates and returns a result for
certain arithmetic expressions containing floating- point numbers
and exponentiation (see Section 2.3.11).

/DOUBLE_SIZE Makes DOUBLE PRECISION declarations REAL (KIND=16)
instead of REAL (KIND=8) (see Section 2.3.17).

/FAST Sets several qualifiers that improve run-time performance (see
Section 2.3.21).

/FLOAT Controls the format used for floating-point data (REAL or
COMPLEX) in memory, including the selection of either VAX
F_float or IEEE S_float for KIND=4 data and VAX G_float, VAX
D_float, or IEEE T_float for KIND=8 data (see Section 2.3.22).
Compaq Fortran 77 for OpenVMS VAX Systems provides the
/[NO]G_FLOAT qualifier.

/GRANULARITY Controls the granularity of data access for shared data (see
Section 2.3.23).

/IEEE_MODE Controls how floating-point exceptions are handled for IEEE data
(see Section 2.3.24).

/INTEGER_SIZE Controls the size of INTEGER and LOGICAL declarations (see
Section 2.3.26).

/MODULE Controls where module files (.F90$MOD) are placed. If you omit
this qualifier or specify /NOMODULE, the .F90$MOD files are
placed in your current default directory (see Section 2.3.31).

/NAMES Controls whether external names are converted to uppercase,
lowercase, or as is (see Section 2.3.32).

/OPTIMIZE Most keywords are not available on Compaq Fortran 77 for
OpenVMS VAX Systems, including INLINE, LOOPS, PIPELINE,
TUNE, and UNROLL (see Section 2.3.35).

(continued on next page)

Compatibility: Compaq Fortran 77 and HP Fortran B–21

Table B–2 (Cont.) HP Fortran Qualifiers Without Equivalents in Compaq Fortran 77 for
OpenVMS VAX Systems

Qualifier Description

/REAL_SIZE Controls the size of REAL and COMPLEX declarations (see
Section 2.3.37).

/REENTRANCY Specifies whether code generated for the main program and
Fortran procedures it calls will rely on threaded or asynchronous
reentrancy (see Section 2.3.39).

/ROUNDING_MODE Controls how floating-point calculations are rounded for IEEE
data (see Section 2.3.40).

/SEPARATE_COMPILATION Controls whether the HP Fortran compiler:

• Places individual compilation units as separate modules in
the object file like Compaq Fortran 77 for OpenVMS VAX
Systems (/SEPARATE_COMPILATION)

• Groups compilation units as a single module in the object file
(/NOSEPARATE_COMPILATION, the default), which allows
more interprocedure optimizations.

For more information, see Section 2.3.41.

/SEVERITY1 Changes compiler diagnostic warning messages to have a
severity of error instead of warning (see Section 2.3.42).

/SOURCE_FORM Controls whether the compiler expects free or fixed form source
(see Section 2.3.44).

/STANDARD Flags extensions to the Fortran 90 or Fortran 95 standards (see
Section 2.3.45).

/SYNTAX_ONLY Requests that only syntax checking occurs and no object file is
created (see Section 2.3.47).

/WARNINGS Certain keywords are not available on Compaq Fortran 77 for
OpenVMS VAX Systems (see Section 2.3.51).

/VMS Requests that HP Fortran use certain Compaq Fortran 77 for
OpenVMS VAX Systems conventions (see Section 2.3.50).

1This qualifier applies only to HP Fortran and does not apply to Compaq Fortran 77 on any platform.

B.5.2 Qualifiers Specific to Compaq Fortran 77 for OpenVMS VAX
Systems
This section summarizes Compaq Fortran 77 for OpenVMS VAX Systems
compiler options that have no equivalent HP Fortran options.

B–22 Compatibility: Compaq Fortran 77 and HP Fortran

Table B–3 lists compilation options that are specific to Compaq Fortran 77 for
OpenVMS VAX Systems Version 6.4.

Table B–3 Compaq Fortran 77 for OpenVMS VAX Systems Options Not in HP Fortran

Compaq Fortran 77 for OpenVMS
VAX Systems Qualifier Description

/BLAS=(INLINE,MAPPED) Specifies whether Compaq Fortran 77 for OpenVMS VAX
Systems recognizes and inlines or maps the Basic Linear
Algebra Subroutines (BLAS).

/CHECK=ASSERTIONS Enables or disables assertion checking.

/DESIGN=[NO]COMMENTS
/DESIGN=[NO]PLACEHOLDERS

Analyzes program for design information.

/DIRECTIVES=DEPENDENCE Specifies whether specified compiler directives are used
at compilation.

/PARALLEL=(MANUAL or
AUTOMATIC)

Supports parallel processing.

/SHOW=(DATA_DEPENDENCIES,
LOOPS)

Control whether the listing file includes:

• Diagnostics about loops that are ineligible for
dependence analysis and data dependencies that
inhibit vectorization or autodecomposition (DATA_
DEPENDENCIES)

• Reports about loop structures after compilation
(LOOPS)

/VECTOR Requests vector processing.

/WARNINGS=INLINE Controls whether the compiler prints informational
diagnostic messages when it is unable to generate
inline code for a reference to an intrinsic routine. Other
/WARNINGS keywords are only available with Compaq
Fortran 77 for OpenVMS VAX Systems, including
TRUNCATED_SOURCE.

All CPAR$ directives and certain CDEC$ directives associated with directed
(manual) decomposition and their associated qualifiers or keywords are also
specific to Compaq Fortran 77 for OpenVMS VAX Systems.

For More Information:

• On the FORTRAN command and qualifiers, see Chapter 2.

• On the Compaq Fortran 77 compilation commands and options, see the
appropriate Compaq Fortran 77 user manual.

Compatibility: Compaq Fortran 77 and HP Fortran B–23

B.6 Interoperability with Translated Shared Images
HP Fortran provides the ability to interoperate with translated shared images.
That is, when creating a native HP Fortran image, you can add certain
qualifiers to the FORTRAN and LINK command lines to allow the resulting
image to interoperate with translated shared images at image activation (run
time).

To allow the use of translated shared images:

• On the FORTRAN command line, specify the /TIE qualifier.

• On the LINK command line, specify the /NONATIVE_ONLY qualifier
(default).

The created executable image contains code that allows the resulting
executable image to interoperate with shared (installed) images, including
allowing the Compaq Fortran 77 for OpenVMS VAX Systems RTL (FORRTL_
TV) to work with the HP Fortran RTL (DEC$FORRTL).

For More Information:
On porting, see Migrating an Application from OpenVMS VAX to OpenVMS
Alpha.

B.7 Porting Compaq Fortran 77 for OpenVMS VAX Systems
Data

Record types are identical for Compaq Fortran 77 on OpenVMS VAX Systems
and HP Fortran on OpenVMS I64 or OpenVMS Alpha systems.

If you need to convert unformatted floating-point data, keep in mind that
Compaq Fortran 77 for OpenVMS VAX Systems programs (VAX hardware)
stores:

• REAL*4 or COMPLEX*8 data in F_float format

• REAL*8 or COMPLEX*16 data in either D_float or G_float format

• REAL*16 data in H_float format.

HP Fortran programs (running on OpenVMS I64 or OpenVMS Alpha systems)
store REAL*4, REAL*8, COMPLEX*8, and COMPLEX*16 data in one of the
formats shown in Table B–4 and REAL*16 data in X_float format.

B–24 Compatibility: Compaq Fortran 77 and HP Fortran

Table B–4 Floating-Point Data Formats on OpenVMS VAX and OpenVMS I64
and Alpha Systems

Data Declaration OpenVMS VAX Formats OpenVMS I64 and Alpha Formats

REAL*4 and
COMPLEX*8

VAX F_float VAX F_float or IEEE S_float

REAL*8 and
COMPLEX*16

VAX D_float or
VAX G_float

VAX D_float1, VAX G_float, or IEEE
T_float

REAL*16 VAX H_float X_float format. You can convert VAX
H_float REAL*16 data to Alpha X_float
format.

1The D_float format on I64 and Alpha systems has less precision during computations than on VAX
systems.

The floating-point data types supported by HP Fortran on OpenVMS systems
are described in Chapter 8.

Example B–1 shows the use of the CVT$CONVERT_FLOAT RTL routine to
convert VAX S_float data to VAX F_float format. This allows the converted
value to be used as an argument to the LIB$WAIT routine.

The parameter definitions used in the CVT$CONVERT_FLOAT argument list
(such as CVT$K_IEEE_S) are included from the $CVTDEF library module
in FORSYSDEF. The S_float value read as an argument is contained in the
variable F_IN; the F_float value is returned by CVT$CONVERT_FLOAT to
variable F_OUT.

Example B–1 Using the CVT$CONVERT_FLOAT Routine

! This program converts IEEE S_float data to VAX F_float format
!
! Compile with: $ F90/FLOAT=IEEE_FLOAT
!

PROGRAM CONVERT
INCLUDE ’($CVTDEF)’
REAL(KIND=4) F_IN
REAL(KIND=4) F_OUT
INTEGER ISTAT

F_IN = 20.0

PRINT *,’ Sample S_float input value is ’, F_IN

(continued on next page)

Compatibility: Compaq Fortran 77 and HP Fortran B–25

Example B–1 (Cont.) Using the CVT$CONVERT_FLOAT Routine

ISTAT=CVT$CONVERT_FLOAT(F_IN, %VAL(CVT$K_IEEE_S), F_OUT, &
%VAL(CVT$K_VAX_F), %VAL(CVT$M_ROUND_TO_NEAREST))

PRINT *,’Return status ISTAT’,ISTAT

! IF (.NOT. ISTAT) CALL LIB$SIGNAL(%VAL(ISTAT))

PRINT *, ’ Waiting for specified time ’

CALL LIB$WAIT (F_OUT)
STOP
END PROGRAM CONVERT

B.8 VAX H_float Representation
This section describes the REAL*16 VAX H_float data formats used on
OpenVMS VAX systems. On OpenVMS I64 and OpenVMS Alpha systems,
REAL*16 (extended precision) data is always stored in IEEE X_float format.

With VAX floating-point data types, the binary radix point is to the left of the
most-significant bit.

The REAL*16 H_float format is available only on OpenVMS VAX systems;
REAL*16 on OpenVMS I64 and OpenVMS Alpha systems use X_float format
(see Section 8.4.4).

As shown in Figure B–1, REAL*16 H_float data is 16 contiguous bytes starting
on an arbitrary byte boundary. The bits are labeled from the right, 0 through
127.

The form of a REAL*16 (H_float) data is sign magnitude with bit 15 the
sign bit, bits 14:0 an excess 16384 binary exponent, and bits 127:16 a
normalized 113-bit fraction with the redundant most significant fraction bit not
represented.

The value of H_float data is in the approximate range 0.84*10**–4932 through
0.59*10**4932. The precision of H_float data is approximately one part in
2**112 or typically 33 decimal digits.

B–26 Compatibility: Compaq Fortran 77 and HP Fortran

Figure B–1 VAX H_float REAL*16 Representation (VAX Systems)

EXPONENT

FRACTION

FRACTION

15

N
G
I
S

0

:A

:A+2

:A+4

14

:A+6FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

112

ZK−0805−GE

:A+8

:A+10

:A+12

:A+14

127

Compatibility: Compaq Fortran 77 and HP Fortran B–27

C
Diagnostic Messages

This appendix describes:

• Section C.1, Overview of Diagnostic Messages

• Section C.2, Diagnostic Messages from the HP Fortran Compiler

• Section C.3, Messages from the HP Fortran Run-Time System

C.1 Overview of Diagnostic Messages
Diagnostic messages related to an HP Fortran program can come from the
compiler, the linker, or the HP Fortran run-time system:

• The HP Fortran compiler detects syntax errors in the source program,
such as unmatched parentheses, invalid characters, misspelled specifiers,
and missing or invalid parameters. HP Fortran compiler messages are
described in Section C.2.

• The linker detects errors in object file format and source program
errors such as undefined symbols. Linker messages are described in the
OpenVMS System Messages and Recovery Procedures Reference Manual.
Or you can use the DCL command HELP/MESSAGE.

• The HP Fortran run-time system reports errors that occur during program
execution. HP Fortran run-time messages are listed and described in
Section C.3 and DCL HELP (enter HELP FORTRAN).

These messages are displayed on your terminal or in your log file. The format
of the messages is:

%facility-severity-mnemonic, message_text

Diagnostic Messages C–1

The contents of the fields of information in diagnostic messages are as follows:

% The percent sign identifies the line as a message.

facility A 2-, 3-, or 4-letter facility code that identifies the origin of the message,
whether it came from the compiler (F90), the linker (LINK), or the
run-time system (FOR, SS, or MTH).

severity A single character that determines message severity. The four levels
of error message severity are: Fatal (F), Error (E), Warning (W), and
Informational (I). The definition of each severity level depends on the
facility issuing the message.

mnemonic A 6- to 9-character name that uniquely identifies that message.

message_text Explains the event that caused the message to be generated.

C.2 Diagnostic Messages from the HP Fortran Compiler
A diagnostic message issued by the compiler describes the detected error and,
in some cases, contains an indication of the action taken by the compiler in
response to the error.

Besides reporting errors detected in source program syntax, the compiler issues
messages indicating errors that involve the compiler itself, such as I/O errors.

C.2.1 Source Program Diagnostic Messages
The severity level of source program diagnostic messages, in order of greatest
to least severity, are as follows:

Severity
Code Description

F Fatal; must be corrected before the program can be compiled. No object file
is produced if an F-severity error is detected during compilation.

E Error; should be corrected. No object file is produced if an F-severity error
is detected during compilation.

W Warning; should be investigated by checking the statements to which W-
severity diagnostic messages apply. Warnings are issued for statements
that use acceptable, but nonstandard, syntax and for statements corrected
by the compiler. An object file is produced, but the program results may be
incorrect.

Note that W-severity messages are produced unless the /NOWARNINGS
qualifier is specified in the FORTRAN command.

I Information; not an error message and does not call for corrective action.
However, the I-severity message informs you that either a correct HP
Fortran statement may have unexpected results or you have used an HP
Fortran extension to the Fortran 90 or Fortran 95 standard.

C–2 Diagnostic Messages

Typing mistakes are a likely cause of syntax errors; they can cause the
compiler to generate misleading diagnostic messages. Beware especially of the
following:

• Missing comma or parenthesis in a complicated expression or FORMAT
statement.

• Misspelled variable names or (depending on the compilation qualifiers
used) case-mismatched variable names. The compiler may not detect this
error, so execution can be affected.

• Inadvertent line continuation mark. This can cause a diagnostic message
for the preceding line.

• When compiling using fixed-form source files, if the statement line extends
past column 72, this can cause the statement to terminate early (unless
you specified the /EXTEND_SOURCE qualifier).

• Confusion between the digit 0 and the uppercase letter O. This can result
in variable names that appear identical to you but not to the compiler.

• Nonprinting ASCII characters encountered in HP Fortran programs
are generally interpreted as a space character and a warning message
appears. For more information on valid nonprinting space characters, see
Section 2.3.28.

Because a diagnostic message indicates only the immediate cause, you should
always check the entire source statement carefully.

The following examples show how source program diagnostic messages are
displayed in interactive mode on your screen.

40 FORMAT (I3,)
..................^
%F90-E-ERROR, An extra comma appears in the format list.
at line number 13 in file DISK$:[USER]SAMP_MESS.FOR;4

GO TO 66
..............^
%F90-E-ERROR, This label is undefined. [66]
at line number 18 in file DISK$:[USER]SAMP_MESS.FOR;4

Example C–1 shows how these messages appear in listings.

Diagnostic Messages C–3

Example C–1 Sample Diagnostic Messages (Listing Format)

MORTGAGE 30-MAR-1995 14:19:21 HP Fortran Xn.n-xxx Page 1
30-MAR-1995 14:18:48 DISK$:[USER]SAMP_MESS.F90;1

1 ! Program to calculate monthly mortgage payments
2
3 PROGRAM MORTGAGE
4
5 TYPE 10
6 10 FORMAT (’ ENTER AMOUNT OF MORTGAGE ’)
7 ACCEPT 20, IPV
8 20 FORMAT (I6)
9
10 TYPE 30
11 30 FORMAT (’ ENTER LENGTH OF MORTGAGE IN MONTHS ’)
12 ACCEPT 40, IMON
13 40 FORMAT (I3,)

................1
%F90-E-ERROR, An extra comma appears in the format list.
at line number 13 in file DISK$:[USER]SAMP_MESS.F90;1

14 TYPE 50
15 50 FORMAT (’ ENTER ANNUAL INTEREST RATE ’)
16 ACCEPT 60, YINT
17 60 FORMAT (F6.4)
18 GO TO 66

............1
%F90-E-ERROR, This label is undefined. [66]
at line number 18 in file DISK$:[USER]SAMP_MESS.F90;1

19 65 YI = YINT/12 ! Get monthly rate
20 IMON = -IMON
21 FIPV = IPV * YI
22 YI = YI + 1
23 FIMON = YI**IMON
24 FIMON = 1 - FIMON
25 FMNTHLY = FIPV/FIMON
26
27 TYPE 70, FMNTHLY
28 70 FORMAT (’ MONTHLY PAYMENT EQUALS ’,F7.3)
29 STOP
30 END PROGRAM MORTGAGE

C.2.2 Compiler-Fatal Diagnostic Messages
Conditions can be encountered of such severity that compilation must be
terminated at once. These conditions are caused by hardware errors, software
errors, and errors that require changing the FORTRAN command. Printed
messages have the form:

%F90-F-MNEMONIC, error_text

C–4 Diagnostic Messages

The first line of the message contains the appropriate file specification or
keyword involved in the error. The operating system supplies more specific
information about the error whenever possible. For example, a file read error
might produce the following error message:

%F90-F-ERROR, error reading _DBA0:[SMITH]MAIN.FOR;3
-RMS-W-RTB, 512 byte record too big for user’s buffer
-F90-F-ABORT, abort

The secondary operating system (in this case the RMS facility) message
provides helpful information about the actual cause of the error, as described
in the OpenVMS System Messages and Recovery Procedures Reference Manual
or the equivalent OpenVMS HELP/MESSAGE facility.

C.3 Messages from the HP Fortran Run-Time System
Errors that occur during execution of your HP Fortran program are reported
by diagnostic messages from the HP Fortran Run-Time Library (RTL).
These messages may result from hardware conditions, file system errors,
errors detected by RMS, errors that occur during transfer of data between
the program and an internal record, computations that cause overflow
or underflow, incorrect calls to the HP Fortran RTL, problems in array
descriptions, and conditions detected by the operating system.

As described in Section 7.2, the severity of run-time diagnostic messages can
be fatal (F), error (E), warning (W), and informational (I).

The following example shows how run-time messages appear:

%FOR-F-ADJARRDIM, adjustable array dimension error

Table C–1 is an alphabetical list of run-time diagnostic messages, without
the message prefixes FOR, SS, and MTH. (Refer to Table 7–1 for a list of the
messages in error-number sequence.) For each message, Table C–1 gives a
mnemonic, the message number, the severity of the message, the message text,
and an explanation of the message.

Diagnostic Messages C–5

You can also view a description of specified messages using the following
command:

$ HELP FORTRAN RUN_TIME

This displays the mnemonics of all HP Fortran run-time diagnostic messages.
You can abbreviate the HELP command words and specify a specific error
mnemonic, such as:

$ HELP FORTRAN RUN FILNOTFOU

Table C–1 Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

ADJARRDIM 93 F, adjustable array dimension error

Upon entry to a subprogram, one of the following errors was
detected during the evaluation of dimensioning information:

• An upper-dimension bound was less than a lower-dimension
bound.

• The dimensions implied an array that was larger than
addressable memory.

ARRSIZEOVF 179 F, Cannot allocate array — overflow on array size calculation

An attempt to dynamically allocate storage for an array failed
because the required storage size exceeds addressable memory.

ASSERTERR 145 F, assertion error

The HP Fortran RTL encountered an assertion error. Please
report the problem to HP.

ATTACCNON 36 F, attempt to access non-existent record

One of the following conditions occurred:

• A direct access READ, FIND, or DELETE statement
attempted to access a nonexistent record from a relative
organization file.

• A direct access READ or FIND statement attempted to access
beyond the end of a sequential organization file.

• A keyed access READ statement attempted to access a
nonexistent record from an indexed organization file.

(continued on next page)

C–6 Diagnostic Messages

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

BACERR 23 F, BACKSPACE error

During execution of a BACKSPACE statement, One of the
following conditions occurred:

• The file was not a sequential organization file.

• The file was not opened for sequential access. (A unit opened
for append access must not be backspaced until a REWIND
statement is executed for that unit.)

• RMS (Record Management Services) detected an error
condition during execution of a BACKSPACE statement.

BUG_CHECK 8 F, internal consistency check failure

Internal severe error. Please check that the program is correct.
Recompile if an error existed in the program.

If this error persists, report the problem to HP.

CLOERR 28 F, CLOSE error

An error condition was detected by RMS during execution of a
CLOSE statement.

DELERR 55 F, DELETE error

During execution of a DELETE statement, one of the following
conditions occurred:

• On a direct access DELETE, the file that did not have
relative organization.

• On a current record DELETE, the file did not have relative or
indexed organization, or the file was opened for direct access.

• RMS detected an error condition during execution of a
DELETE statement.

DIRIO_KEY 258 F, direct-access I/O to unit open for keyed access

The OPEN statement for this unit number specified keyed access
and the I/O statement specifies direct access. Check the OPEN
statement and make sure the I/O statement uses the correct unit
number and type of access. (For more information on statements,
see the HP Fortran for OpenVMS Language Reference Manual.)

(continued on next page)

Diagnostic Messages C–7

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

DIV 178 F, divide by zero

A floating point or integer divide by zero exception occurred.

DUPFILSPE 21 F, duplicate file specifications

Multiple attempts were made to specify file attributes without
an intervening close operation. A DEFINE FILE statement was
followed by another DEFINE FILE statement or by an OPEN
statement.

ENDDURREA 24 F, end-of-file during read

One of the following conditions occurred:

• An RMS end-of-file condition was encountered during
execution of a READ statement that did not contain an
END, ERR, or IOSTAT specification.

• An end-of-file record written by the ENDFILE statement was
encountered during execution of a READ statement that did
not contain an END, ERR, or IOSTAT specification.

• An attempt was made to read past the end of an internal
file character string or array during execution of a READ
statement that did not contain an END, ERR, or IOSTAT
specification.

ENDFILERR 33 F, ENDFILE error

One of the following conditions occurred:

• The file was not a sequential organization file with variable-
length records.

• The file was not opened for sequential or append access.

• An unformatted file did not contain segmented records.

• RMS detected an error during execution of an ENDFILE
statement.

ENDRECDUR 268 F, end of record during read

An end-of-record condition was encountered during execution of a
nonadvancing I/O READ statement that did not specify the EOR
branch specifier.

(continued on next page)

C–8 Diagnostic Messages

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

ERRDURREA 39 F, error during read

RMS detected an error condition during execution of a READ
statement.

ERRDURWRI 38 F, error during write

RMS detected an error condition during execution of a WRITE
statement.

FILNAMSPE 43 F, file name specification error

A file-name specification given to an OPEN or INQUIRE
statement was not acceptable to RMS.

FILNOTFOU 29 F, file not found

A file with the specified name could not be found during an open
operation.

FINERR 57 F, FIND error

RMS detected an error condition during execution of a FIND
statement.

(continued on next page)

Diagnostic Messages C–9

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

FLOCONFAI 95 E, floating point conversion failed

The attempted unformatted read or write of nonnative floating-
point data failed. One of the following conditions occurred for a
nonnative floating-point value:

• When using VAX data types in memory (/FLOAT=G_FLOAT
or /FLOAT=D_FLOAT), the value exceeded the allowable
maximum value for the equivalent native format and was set
equal to invalid.

• When using VAX data types in memory (/FLOAT=G_FLOAT
or /FLOAT=D_FLOAT), the value was infinity (plus or
minus), Not-a-Number (NaN), or otherwise invalid and
was set to invalid.

• When using IEEE data types in memory (/FLOAT=IEEE_
FLOAT), the value exceeded the allowable maximum value
for the equivalent native format and was set equal to infinity
(plus or minus).

• When using IEEE data types in memory (/FLOAT=IEEE_
FLOAT), the value was infinity (plus or minus) and was set
to infinity (plus or minus).

• When using IEEE data types in memory (/FLOAT=IEEE_
FLOAT), the value was invalid and was set to Not-a-Number
(NaN).

Make sure the correct file was specified. Make sure the record
layout matches the format HP Fortran is expecting. Check that
the correct nonnative floating-point data format was specified, as
described in Chapter 9.

FLODIV0EXC 299 I, nn divide-by-zero traps

The total number of floating-point divide-by-zero traps
encountered during program execution was nn. This summary
message appears at program completion.

FLOINCEXC 297 I, nn floating invalid traps

The total number of floating-point invalid data traps encountered
during program execution was nn. This summary message
appears at program completion.

(continued on next page)

C–10 Diagnostic Messages

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

FLOINEEXC 296 I, nn floating inexact traps

The total number of floating-point inexact data traps encountered
during program execution was nn. This summary message
appears at program completion.

FLOOVEMAT 88 F, floating overflow in math library

A floating overflow condition was detected during execution of a
math library procedure.

FLOOVREXC 298 I, nn floating overflow traps

The total number of floating-point overflow traps encountered
during program execution was nn. This summary message
appears at program completion.

FLOUNDEXC 300 I, nn floating underflow traps

The total number of floating-point underflow traps encountered
during program execution was nn. This summary message
appears at program completion.

FLOUNDMAT 89 E, floating underflow in math library

A floating underflow condition was detected during execution of a
math library procedure. The result returned was zero.

FLTDIV 73 E, zero divide

During a floating-point or decimal arithmetic operation, an
attempt was made to divide by 0.0.

FLTINE 140 E, floating inexact

A floating-point arithmetic or conversion operation gave a result
that differs from the mathematically exact result. This trap is
reported if the rounded result of an IEEE operation is not exact.

FLTINV 65 E, floating invalid

During an arithmetic operation, the floating-point values used in
a calculation were invalid for the type of operation requested, or
invalid exceptional values. For example, when requesting a log of
the floating-point values 0.0 or a negative number.

For certain arithmetic expressions, specifying the
/CHECK=NOPOWER qualifier can suppress this message (see
Section 2.3.11). For information on allowing exceptional IEEE
values, see Section 2.3.24.

(continued on next page)

Diagnostic Messages C–11

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

FLTOVF 72 E, arithmetic trap, floating overflow

During an arithmetic operation, a floating-point value exceeded
the largest representable value for that data type. The result
returned was the reserved operand, –0 for VAX-format floating-
point and NaN for IEEE-format floating-point.

FLTUND 74 E, floating underflow

During an arithmetic operation, a floating-point value became
less than the smallest finite value for that data type and was
replaced with a value of zero. When using the /FLOAT=IEEE_
FLOAT, depending on the values of the /IEEE_MODE qualifier,
the underflowed result was either set to zero or allowed to
gradually underflow. See Chapter 8 for ranges of the various
data types.

FMTIO_UNF 257 F, formatted I/O to unit open for unformatted transfers

Attempted formatted I/O (such as list-directed or namelist I/O)
to a unit where the OPEN statement indicated the file was
unformatted (FORM specifier). Check that the correct unit (file)
was specified.

If the FORM specifier was not specified in the OPEN state-
ment and the file should contain formatted data, specify
FORM=’FORMATTED’ in the OPEN statement. Otherwise, if
appropriate, use unformatted I/O.

FMYSYN 58 I, format syntax error at or near xxx

Check the statement containing xx, a character substring from
the format string, for a format syntax error. For information
about FORMAT statements, refer to the HP Fortran for
OpenVMS Language Reference Manual.

(continued on next page)

C–12 Diagnostic Messages

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

FORVARMIS 61 F or I, format/variable-type mismatch

An attempt was made either to read or write a real variable with
an integer field descriptor (I, L, O, Z, B), or to read or write an
integer or logical variable with a real field descriptor (D, E, or
F). If /CHECK=NOFORMAT is in effect (see Section 2.3.11), the
severity is I (program continues). If execution continues, the
following actions occurred:

• If I, L, O, Z, B, conversion as if INTEGER (KIND=4).

• If D, E, or F, conversion as if REAL (KIND=4).

To suppress this error message, see Section 2.3.11.

INCFILORG 51 F, inconsistent file organization

One of the following conditions occurred:

• The file organization specified in an OPEN statement did not
match the organization of the existing file.

• The file organization of the existing file was inconsistent
with the specified access mode; that is, direct access was
specified with an indexed organization file, or keyed access
was specified with a sequential or relative organization file.

INCKEYCHG 50 F, inconsistent key change or duplicate key

A WRITE or REWRITE statement accessing an indexed
organization file caused a key field to change or be duplicated.
This condition was not allowed by the attributes of the file, as
established when the file was created.

(continued on next page)

Diagnostic Messages C–13

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

INCOPECLO 46 F, inconsistent OPEN/CLOSE parameters

Specifications in an OPEN or CLOSE statement were inconsis-
tent. Some invalid combinations follow:

• ACTION=’READ’ or READONLY with STATUS=’NEW’ or
STATUS=’SCRATCH’

• ACCESS=’APPEND’ with READONLY, ACTION=’READ’,
STATUS=’NEW’, or STATUS=’SCRATCH’

• DISPOSE=’SAVE’, ’PRINT’, or ’SUBMIT’ with
STATUS=’SCRATCH’

• DISPOSE=’DELETE’ with READONLY or ACTION=’READ’

• ACCESS=’APPEND’ with STATUS=’REPLACE’

• ACCESS=’DIRECT’ or ’KEYED’ with
POSITION=’APPEND’, ’ASIS’, or ’REWIND’

INCRECLEN 37 F, inconsistent record length

One of the following occurred:

• An attempt was made to create a new relative, indexed, or
direct access file without specifying a record length.

• An existing file was opened in which the record length did
not match the record size given in an OPEN or DEFINE
FILE statement.

• An attempt was made to write to a relative, indexed, or direct
access file that was not correctly created or opened.

INCRECTYP 44 F, inconsistent record type

The RECORDTYPE value in an OPEN statement did not match
the record type attribute of the existing file that was opened.

INFFORLOO 60 F, infinite format loop

The format associated with an I/O statement that included an I/O
list had no field descriptors to use in transferring those values.

(continued on next page)

C–14 Diagnostic Messages

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

INPCONERR 64 F, input conversion error

During a formatted input operation, an invalid character was
detected in an input field, or the input value overflowed the range
representable in the input variable. The value of the variable was
set to zero.

INPRECTOO 22 F, input record too long

A record was read that exceeded the explicit or default record
length specified when the file was opened. To read the file, use an
OPEN statement with a RECL value of the appropriate size.

INPSTAREQ 67 F, input statement requires too much data

Attempted to read more data than exists in a record with an
unformatted READ statement or with a formatted sequential
READ statement from a file opened with a PAD specifier value of
’NO’.

INSVIRMEM 41 F, insufficient virtual memory

The HP Fortran Run-Time Library attempted to exceed its virtual
page limit while dynamically allocating space. Inform your
system manager that process quotas and/or system parameters
need to be increased. For information about virtual memory
use, see Section 1.2 and the HP Fortran Installation Guide for
OpenVMS I64 Systems or HP Fortran Installation Guide for
OpenVMS Alpha Systems.

INTDIV 71 F, integer zero divide

During an integer arithmetic operation, an attempt was made
to divide by zero. The result of the operation was set to the
dividend, which is equivalent to division by one (1).

INTOVF 70 F, integer overflow

During an arithmetic operation, an integer value exceeded its
range. The result of the operation was the correct low-order
part. Consider specifying a larger integer data size (or use the
/INTEGER_SIZE qualifier for INTEGER declarations without a
kind or specifier.) See Chapter 8 for ranges of the various integer
data types.

INVARGFOR 48 F, invalid argument to Fortran Run-Time Library

The HP Fortran compiler passed an invalid coded argument to
the Run-Time Library. This can occur if the compiler is newer
than the HP Fortran RTL in use.

(continued on next page)

Diagnostic Messages C–15

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

INVARGMAT 81 F, invalid argument to math library

One of the mathematical procedures detected an invalid
argument value.

INVDEALLOC 153 F, allocatable array is not allocated

A Fortran allocatable array or pointer must already be allocated
when you attempt to deallocate it. You must allocate the array or
pointer before it can again be deallocated.

INVDEALLOC2 173 F, A pointer passed to DEALLOCATE points to an array that
cannot be deallocated

A pointer that was passed to DEALLOCATE pointed to an explicit
array, an array slice, or some other type of memory that could not
be deallocated in a DEALLOCATE statement. Only whole arrays
previously allocated with an ALLOCATE statement can be validly
passed to DEALLOCATE.

INVKEYSPE 49 F, invalid key specification

A key specification in an OPEN statement or in a keyed access
READ statement was invalid. For example, the key length may
have been zero or greater than 255 bytes, or the key length may
not conform to the key specification of the existing file.

INVLOGUNI 32 F, invalid logical unit number

A logical unit number less than zero or greater than 2,147,483,647
was used in an I/O statement.

INVMATKEY 94 F, invalid key match specifier for key direction

A keyed READ used an invalid key match specifier for the
direction of that key. Use KEYGE and KEYGT only on ascending
keys. Use KEYLE and KEYLT only on descending keys. Use
KEYNXT and KEYNXTNE to avoid enforcement of key direction
and match specifier.

INVREALLOC 151 F, allocatable array is already allocated

A Fortran allocatable array must not already be allocated when
you attempt to allocate it. You must deallocate the array before it
can again be allocated.

(continued on next page)

C–16 Diagnostic Messages

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

INVREFVAR 19 F, invalid reference to variable in NAMELIST input

The variable in error is shown as ‘‘varname’’ in the message text.
One of the following conditions occurred:

• The variable was not a member of the namelist group.

• An attempt was made to subscript the scalar variable.

• A subscript of the array variable was out-of-bounds.

• An array variable was specified with too many or too few
subscripts for the variable.

• An attempt was made to specify a substring of a noncharacter
variable or array name.

• A substring specifier of the character variable was out-of-
bounds.

• A subscript or substring specifier of the variable was not an
integer constant.

• An attempt was made to specify a substring using an
unsubscripted array variable.

KEYIO_DIR 260 F, keyed-access I/O to unit open for direct access

The OPEN for this unit number specified direct access and the
I/O statement specifies keyed access. Check the OPEN statement
and make sure the I/O statement uses the correct unit number
and type of access. (For more information on statements, see the
HP Fortran for OpenVMS Language Reference Manual.)

KEYVALERR 45 F, keyword value error in OPEN statement

An improper value was specified for an OPEN or CLOSE
statement keyword specifier requiring a value.

LISIO_SYN 59 F, list-directed I/O syntax error

The data in a list-directed input record had an invalid format, or
the type of the constant was incompatible with the corresponding
variable. The value of the variable was unchanged.

(continued on next page)

Diagnostic Messages C–17

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

LOGZERNEG 83 F, logarithm of zero or negative value

An attempt was made to take the logarithm of zero or a negative
number. The result returned was –0 for VAX-format floating-
point and NaN for IEEE-format floating-point.

MIXFILACC 31 F, mixed file access modes

One of the following conditions occurred:

• An attempt was made to use both formatted and unformatted
operations on the same unit.

• An attempt was made to use an invalid combination of access
modes on a unit, such as direct and sequential. The only
valid combination is sequential and keyed access on a unit
opened with ACCESS=’KEYED’.

• An attempt was made to execute a Fortran I/O statement
on a logical unit that was opened by a program coded in a
language other than Fortran.

NOTFORSPE 1 F, not a Fortran-specific error

An error occurred in the user program or in the HP Fortran RTL
that was not a Fortran-specific error.

NO_CURREC 53 F, no current record

A REWRITE or current record DELETE operation was attempted
when no current record was defined. To define the current
record, execute a successful READ statement. You can optionally
perform an INQUIRE statement on the logical unit after the
READ statement and before the REWRITE statement. No other
operations on the logical unit may be performed between the
READ and REWRITE statements.

NO_SUCDEV 42 F, no such device

A file specification included an invalid or unknown device name
when an OPEN operation was attempted.

NULPTRERR 146 F, null pointer error

Attempted to use a pointer that does not contain an address.
Modify the source program, recompile, and relink.

(continued on next page)

C–18 Diagnostic Messages

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

OPEDEFREQ 26 F, OPEN or DEFINE FILE required for keyed or direct access

One of the following conditions occurred:

• A direct access READ, WRITE, FIND, or DELETE statement
specified a file that was not opened with a DEFINE
FILE statement or with an OPEN statement specifying
ACCESS=’DIRECT’.

• A keyed access READ statement specified a file that
was not opened with an OPEN statement specifying
ACCESS=’KEYED’.

OPEFAI 30 F, open failure

An error was detected by RMS while attempting to open a file
in an OPEN, INQUIRE, or other I/O statement. This message is
issued when the error condition is not one of the more common
conditions for which specific error messages are provided. It can
occur when an OPEN operation was attempted for one of the
following:

• Segmented file that was not on a disk or a raw magnetic tape

• Standard process I/O file that had been closed

OPEREQSEQ 265 F, operation requires sequential file organization and access

Attempted BACKSPACE operation for a unit that is not
connected to a sequential file opened for sequential access. Make
sure the BACKSPACE statement specified the right unit number
and the OPEN statement specified the correct file and access.

OPERREQDIS 264 F, operation requires file to be on disk or tape

Attempted BACKSPACE operation for a unit that is not
connected to a disk or tape device. Make sure the BACKSPACE
statement specified the right unit number and the OPEN
statement specified the correct device.

(continued on next page)

Diagnostic Messages C–19

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

OUTCONERR 63 E or I, output conversion error

During a formatted output operation, the value of a particular
number could not be output in the specified field length
without loss of significant digits. If /CHECK=NOOUTPUT_
CONVERSION is in effect (see Section 2.3.11), the severity
is I (program continues). When /CHECK=NOOUTPUT_
CONVERSION is in effect or if no ERR address is defined for
the I/O statement encountering this error, the program continues
and the entire overflowed field is filled with asterisks to indicate
the error in the output record.

OUTSTAOVE 66 F, output statement overflows record

An output statement attempted to transfer more data than would
fit in the maximum record size.

RANGEERR 150 F, range error

An integer value appears in a context where the value of the
integer is outside the permissible range.

RECIO_OPE 40 F, recursive I/O operation

While processing an I/O statement for a logical unit, another I/O
operation on the same logical unit was attempted. One of the
following conditions may have occurred:

• A function subprogram that performs I/O to the same logical
unit was referenced in an expression in an I/O list or variable
format expression.

• An I/O statement was executed at AST level for the same
logical unit.

• An exception handler (or a procedure it called) executed an
I/O statement in response to a signal from an I/O statement
for the same logical unit.

RECNUMOUT 25 F, record number outside range

A direct access READ, WRITE, or FIND statement specified a
record number outside the range specified when the file was
created.

(continued on next page)

C–20 Diagnostic Messages

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

RESACQFAI 152 F, unresolved contention for HP Fortran RTL global resource.

Failed to acquire an HP Fortran RTL global resource for a
reentrant routine.

For a multithreaded program, the requested global resource is
held by a different thread in your program.

For a program using asynchronous handlers, the requested global
resource is held by the calling part of the program (such as the
main program) and your asynchronous handler attempted to
acquire the same global resource.

REWERR 20 F, REWIND error

One of the following conditions occurred:

• The file was not a sequential organization file.

• The file was not opened for sequential or append access.

• RMS detected an error condition during execution of a
REWIND statement.

REWRITERR 54 F, REWRITE error

RMS detected an error condition during execution of a REWRITE
statement.

ROPRAND 144 F, reserved operand

The HP Fortran encountered a reserved operand. Please report
the problem to HP.

SEGRECFOR 35 F, segmented record format error

An invalid segmented record control data word was detected in an
unformatted sequential file. The file was probably either created
with RECORDTYPE=’FIXED’ or ’VARIABLE’ in effect, or was
created by a program written in a language other than Fortran.

SEQIO_DIR 259 F, sequential-access I/O to unit open for direct access

The OPEN for this unit number specified direct access and the
I/O statement specifies sequential access. Check the OPEN
statement and make sure the I/O statement uses the correct unit
number and type of access. (For more information on statements,
see the HP Fortran for OpenVMS Language Reference Manual.)

(continued on next page)

Diagnostic Messages C–21

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

SHORTDATEARG 175 F, DATE argument to DATE_AND_TIME is too short (LEN=n),
required LEN=8

The number of characters associated with the DATE argument
to the DATE_AND_TIME intrinsic was shorter than the required
length. You must increase the number of characters passed in
for this argument to be at least 8 characters in length. Verify
that the TIME and ZONE arguments also meet their minimum
lengths.

SHORTTIMEARG 176 F, TIME argument to DATE_AND_TIME is too short (LEN=n),
required LEN=10

The number of characters associated with the TIME argument to
the DATE_AND_TIME intrinsic was shorter than the required
length. You must increase the number of characters passed in
for this argument to be at least 10 characters in length. Verify
that the DATE and ZONE arguments also meet their minimum
lengths.

SHORTZONEARG 177 F, ZONE argument to DATE_AND_TIME is too short (LEN=n),
required LEN=5

The number of characters associated with the ZONE argument
to the DATE_AND_TIME intrinsic was shorter than the required
length. You must increase the number of characters passed in
for this argument to be at least 5 characters in length. Verify
that the TIME and DATE arguments also meet their minimum
lengths.

SIGLOSMAT 87 F, significance lost in math library

The magnitude of an argument or the magnitude of the ratio of
the arguments to a math library function was so large that all
significance in the result was lost. The result returned was the
reserved operand, -0.

SPERECLOC 52 F, specified record locked

A read operation or direct access write, find, or delete operation
was attempted on a record that was locked by another user.

SQUROONEG 84 F, square root of negative value

An argument required the evaluation of the square root of a
negative value. The result returned was the reserved operand,
–0 for VAX-format floating-point and NaN for IEEE-format
floating-point.

(continued on next page)

C–22 Diagnostic Messages

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

STKOVF 147 F, stack overflow

The HP Fortran RTL encountered a stack overflow while
executing your program.

STRLENERR 148 F, string length error

During a string operation, an integer value appears in a context
where the value of the integer is outside the permissible string
length range. Try recompiling with /CHECK=BOUNDS or
examine source code.

SUBRNG 77 F, subscript out of range

An array reference was detected outside the declared array
bounds.

SUBSTRERR 149 F, substring error

An array subscript is outside the dimensioned boundaries of
an array. Try recompiling with /CHECK=BOUNDS or examine
source code.

SYNERRFOR 62 F, syntax error in format

A syntax error was encountered while the HP Fortran RTL was
processing a format stored in an array or character variable.

SYNERRNAM 17 F, syntax error in NAMELIST input ‘‘text’’

The syntax of input to a namelist-directed READ statement was
incorrect. (The part of the record in which the error was detected
is shown as ‘‘text’’ in the message text.)

TOOMANREC 27 F, too many records in I/O statement

One of the following conditions occurred:

• An attempt was made to read or write more than one record
with an ENCODE or DECODE statement.

• An attempt was made to write more records than existed.

TOOMANVAL 18 F, too many values for NAMELIST variable ‘‘varname’’

An attempt was made to assign too many values to a variable
during a namelist-directed READ statement. (The name of the
variable is shown as ‘‘varname’’ in the message text.)

(continued on next page)

Diagnostic Messages C–23

Table C–1 (Cont.) Run-Time Error Messages and Explanations

Mnemonic Number Severity Code, Message Text, and Explanation

UNDEXP 82 F, undefined exponentiation

An exponentiation that is mathematically undefined was
attempted, for example, 0.**0. The result returned for floating-
point operations was –0 for VAX-format floating-point and NaN
for IEEE-format floating-point. For integer operations, zero is
returned.

UNFIO_FMT 256 F, unformatted I/O to unit open for formatted transfers

Attempted unformatted I/O to a unit where the OPEN statement
indicated the file was formatted (FORM specifier). Check that the
correct unit (file) was specified.

If the FORM specifier was not specified in the OPEN state-
ment and the file should contain unformatted data, specify
FORM=’UNFORMATTED’ in the OPEN statement. Otherwise,
if appropriate, use formatted I/O (such as list-directed or namelist
I/O).

UNIALROPE 34 F, unit already open

A DEFINE FILE statement specified a logical unit that was
already opened.

UNLERR 56 F, UNLOCK error

RMS detected an error condition during execution of an UNLOCK
statement.

VFEVALERR 68 F, variable format expression value error

The value of a variable format expression was not within the
range acceptable for its intended use; for example, a field width
was less than or equal to zero. A value of one was assumed,
except for a P edit descriptor, for which a value of zero was
assumed.

WRIREAFIL 47 F, write to READONLY file

A write operation was attempted to a file that was declared
ACTION=’READ’ or READONLY in the OPEN statement that
is currently in effect.

WRONUMARG 80 F, wrong number of arguments

An improper number of arguments was used to call a math
library procedure.

C–24 Diagnostic Messages

D
HP Fortran Logical Names

This appendix describes:

• Section D.1, Commands for Assigning and Deassigning Logical Names

• Section D.2, Compile-Time Logical Names

• Section D.3, Run-Time Logical Names

D.1 Commands for Assigning and Deassigning Logical
Names

HP Fortran recognizes certain logical names at compile time and run time.

A logical name specified must not contain brackets, semicolons, or periods.
The system treats any name containing these punctuation marks as a file
specification, not as a logical name.

To view the previously set logical names, use the SHOW LOGICAL command
(see HELP SHOW LOGICAL):

$ SHOW LOGICAL PROJ_DIR
%SHOW-S-NOTRAN, no translation for logical name PROJ_DIR

Use a DEFINE command to set (define) a logical name:

$ DEFINE logical-name equivalence-value

For example, to associate the process logical name PROJ_DIR with the
directory DISK2:[PROJ], type a DEFINE command:

$ DEFINE PROJ_DIR DISK2:[PROJ]
$ SHOW LOGICAL PROJ_DIR

"PROJ_DIR" = "DISK2:[PROJ]" (LNM$PROCESS_TABLE)

To use logical name tables other than the process table, specify qualifiers to the
DEFINE (or ASSIGN) command. A system manager can define logical names
system-wide, perhaps in a system startup procedure.

HP Fortran Logical Names D–1

To remove the association of a logical name and its value, use the DEASSIGN
command:

$ DEASSIGN logical-name

D.2 Compile-Time Logical Names
Table D–1 describes the logical names that HP Fortran recognizes at compile
time.

Table D–1 HP Fortran Compile-Time Logical Names

Logical Name Description

FORT$LIBRARY Specifies a default text library to be searched for included library modules
(INCLUDE statements that specify library modules) that are not explicitly
specified.

FORT$LIBRARY is recognized by both Compaq Fortran 77 and HP Fortran.

For more information, see Section 2.2.4.

FORT$INCLUDE Specifies an additional directory to be searched for included source files
(INCLUDE statements that specify files). For more information, see
Section 2.3.25.

D.3 Run-Time Logical Names
Table D–2 describes the logical names HP Fortran recognizes at run time.

D–2 HP Fortran Logical Names

Table D–2 HP Fortran Run-Time Logical Names

Logical Name Description

FORnnn Allows the user to specify the directory and file name at run time for
a logical unit (nnn) for which the OPEN statement does not specify
a file name (leading zeros are required). If the appropriate logical
name is not set and the OPEN statement does not specify a file name
for that logical unit, a default file name of FORnnn.DAT is used. For
more information, see Section 6.6.1.

FOR$READ Specifies the name of a file to receive input from a READ statement
instead of SYS$INPUT. For more information, see Section 6.6.1.

FOR$ACCEPT Specifies the name of a file instead of SYS$INPUT to receive input
from an ACCEPT statement. For more information, see Section 6.6.1.

FOR$PRINT Specifies the name of a file instead of SYS$OUTPUT to receive output
from a PRINT statement. For more information, see Section 6.6.1.

FOR$TYPE Specifies the name of a file instead of SYS$OUTPUT to receive output
from a TYPE statement. For more information, see Section 6.6.1.

FOR$CONVERTnnn For an unformatted file, specifies the nonnative numeric format of the
data at run time for a logical unit (nnn). Otherwise, the nonnative
numeric format of the unformatted data must be specified at compile
time by using the FORTRAN command /CONVERT qualifier. For
more information, see Chapter 9.

FOR$CONVERT.ext
and FOR$CONVERT_
ext

For an unformatted file, specifies the nonnative numeric format of
the data at run time for a file whose suffix is ext. Otherwise, the
nonnative numeric format of the unformatted data must be specified
at compile time by using the FORTRAN command /CONVERT
qualifier. For more information, see Chapter 9.

HP Fortran Logical Names D–3

E
Contents of the HP Fortran System Library

FORSYSDEF

Table E–1 lists the library modules contained in the HP Fortran system library
FORSYSDEF.TLB, a text library.

The library modules consist of definitions, in Fortran source code, of related
groups of system symbols that can be used in calling OpenVMS system
services. FORSYSDEF also contains library modules that define the condition
symbols and the entry points for Run-Time Library procedures.

Each new version of the operating system may add new FORSYSDEF library
modules to the text library FORSYSDEF. To determine whether a particular
library module is installed on your system, use the LIBRARY/LIST command.

For example, the following command sequence searches for the library module
named $SMGDEF:

$ LIBRARY/LIST/ONLY=$SMGDEF SYS$LIBRARY:FORSYSDEF.TLB

For More Information:

• On including files and text library modules and INCLUDE statement
forms, see Section 2.2.4.

• On including FORSYSDEF library modules, see Section 10.8.1.

• On condition values and symbols, see Section 14.4.3.

• On example programs that use system services, see Appendix F.

Contents of the HP Fortran System Library FORSYSDEF E–1

Table E–1 Contents of System Library FORSYSDEF

Module Name Description

$ACCDEF Accounting manager request type codes

$ACEDEF Access control list entry structure definitions

$ACLDEF Access control list interface definitions

$ACRDEF Accounting record definitions

$AFRDEF Alignment fault reporting

$AGNDEF $ASSIGN flags bit definitions

$ALPHADEF Alpha system hardware model identification

$ARGDEF Argument descriptor for object language procedure records

$ARMDEF Access rights mask longword definitions

$ATRDEF File attribute list description—used to read and write file attributes

$BRKDEF Breakthru ($BRKTHRU) system service input definitions

$CHFDEF Condition handling argument list offsets

$CHKPNTDEF Create checkpointable processes flag definitions

$CHPDEF Check protection ($CHKPRO) system service definitions

$CLIDEF Command language interface definitions—define the offset values for
structures used to communicate information to CLI

$CLIMSGDEF Command language interface message definitions

$CLISERVDEF CLI service request code definitions

$CLIVERBDEF CLI generic verb codes definitions

$CLSDEF Security classification mask block—contains security and integrity level
categories for nondiscretionary access controls

$CLUEVTDEF Cluster Event Notification Services definitions

$CMBDEF $CREMBX flags bit definitions

$CQUALDEF Common qualifier package definitions

$CRDEF Card reader status bits

$CREDEF Create options table definitions for library facility

$CRFDEF CRF$_INSRTREF argument list

$CRFMSG Return status codes for cross reference program

$CVTDEF RTL floating-point conversion routines

(continued on next page)

E–2 Contents of the HP Fortran System Library FORSYSDEF

Table E–1 (Cont.) Contents of System Library FORSYSDEF

Module Name Description

$CVTMSG RTL floating-point conversion routines messages

$DCDEF Device adapter, class, and type definitions

$DDTMDEF DECdtm transaction manager services structure definitions

$DEVDEF I/O device characteristics

$DIBDEF Device information block definitions

$DMTDEF Flag bits for the Dismount ($DISMOU) system service

$DSCDEF Descriptor type definitions

$DSTDEF Debug symbol table definitions

$DTIDEF Distributed Transaction Information flag definitions

$DTKDEF Definitions for RTL DECtalk management facility

$DTKMSG Return status codes for RTL DECtalk management facility

$DVIDEF Device and volume information data identifier definitions

$DVSDEF Device scan data identifier definitions

$EEOMDEF End of module record

$EGPSDEF Global section descriptor entry - program section definition

$EGSDEF Global symbol definition record

$EGSTDEF Universal symbol definition (used by Linker)

$EGSYDEF Global symbol definition entry

$EIDCDEF Random entity ident consistency check

$EMHDEF Module header record

$ENVDEF Environment definitions in object file

$EOBJRECDEF Object file record formats

$EOMDEF End of module record in object/image files

$EOMWDEF End of module record in object/image with word of psect value

$EPMDEF Global symbol definition record in object file—entry point definitions

$EPMMDEF Global section string descriptor entry point definition, version mask
symbols

$EPMVDEF Global section string descriptor entry point definition, vectored symbols

(continued on next page)

Contents of the HP Fortran System Library FORSYSDEF E–3

Table E–1 (Cont.) Contents of System Library FORSYSDEF

Module Name Description

$EPMWDEF Global symbol definition record in object file—entry point definitions
with word of psect value

$ERADEF Erase type code definitions

$ESDFDEF Universal symbol definition (used by linker)

$ESDFMDEF Symbol definition for version mask symbols

$ESDFVDEF Symbol definition for vectored symbols

$ESGPSDEF Global section descriptor entry - program section definition in shareable
image

$ESRFDEF Symbol reference

$ETIRDEF Text, information, and relocation record

$EVAX_INSTRDEF Instruction class definition

$EVX_OPCODES Alpha instruction format definitions

$FABDEF RMS File access block definitions

$FALDEF Messages for the FAL (File Access Listener) facility

$FDLDEF File Definition Language call interface control flags

$FIBDEF File identification block definitions

$FIDDEF File ID structure

$FLTDEF Flag bits for $SETFLT system service

$FMLDEF Formal argument definitions appended to procedure definitions in
global symbol definition record in object file

$FOR_FP_CLASS Return values for HP Fortran FP_CLASS intrinsic procedure

$FORDEF Condition symbols for HP Fortran Run-Time Library

$FORIOSDEF HP Fortran IOSTAT error numbers

$FSCNDEF Descriptor codes for SYS$FILESCAN

$GPSDEF Global symbol definition record in object file—psect definitions

$GSDEF Global symbol definition (GSD) record in object file

$GSYDEF Global symbol definition record in object file—symbol definitions

$HLPDEF Data structures for help processing

$HWDEF Architecture identification

$IACDEF Image activation control flags

(continued on next page)

E–4 Contents of the HP Fortran System Library FORSYSDEF

Table E–1 (Cont.) Contents of System Library FORSYSDEF

Module Name Description

$IDCDEF Object file IDENT consistency check structures

$IEEEDEF IEEE floating-point control register definitions

$IMPDEF $PERSONA_xxx service definitions

$INITDEF Values for INIT$_DENSITY item code (media format)

$IODEF I/O function codes

$JBCMSGDEF Job controller message definition

$JPIDEF Job/process information request type codes

$KGBDEF Key grant block definitions—formats of records in rights database file

$LADEF Laboratory peripheral accelerator device types

$LATDEF LAT facility definitions

$LATMSGDEF Error messages for LAT facility

$LBRCTLTBL Librarian control table definitions

$LBRDEF Library type definitions

$LCKDEF Lock manager definitions

$LEPMDEF Global symbol definition record in object file—module local entry point
definitions

$LHIDEF Library header information array offsets

$LIBCLIDEF Definitions for LIB$ CLI callback procedures

$LIBDCFDEF Definitions for LIB$DECODE_FAULT procedure

$LIBDEF Condition symbols for the general utility library

$LIBDTDEF Interface definitions for LIB$DT (date/time) package

$LIBFISDEF LIB$FIND_IMAGE_SYMBOL flags

$LIBICB LIB$GET_INVO_CONTEXT definitions

$LIBVMDEF Interface definitions for LIB$VM (virtual memory) package

$LICENSEDEF License Management Facility definitions

$LKIDEF Get lock information data identifier definitions

$LMFDEF License Management Facility definitions

$LNKDEF Linker option record definition in object file

$LNMDEF Logical name flag definitions

(continued on next page)

Contents of the HP Fortran System Library FORSYSDEF E–5

Table E–1 (Cont.) Contents of System Library FORSYSDEF

Module Name Description

$LPDEF Line printer characteristic codes

$LPRODEF Global symbol definition record in object file—module local procedure
definition in object file

$LSDFDEF Module local symbol definition in object file

$LSRFDEF Module local symbol reference in object file

$LSYDEF Module local symbol definition

$MAILDEF Callable mail definitions

$MHDDEF Main header record definitions

$MHDEF Module header record definition in object file

$MMEDEF Media management extensions definitions

$MMEMSGDEF Media management extensions messages

$MMIDEF Media management interface definitions

$MNTDEF Flag bits and function codes for the MOUNT system service

$MSGDEF Symbolic names to identify mailbox message senders

$MSGHLPDEF Message help values

$MT2DEF Extended magnetic tape characteristic bit definition

$MTADEF Magnetic tape accessibility routine codes

$MTDEF Magnetic tape characteristic codes

$MTHDEF Condition symbols from the mathematical procedures library

$NAMDEF RMS name block field definitions

$NCSDEF Interface definitions for National Character set package

$NETDEF DECnet-VAX identification definitions

$NSADEF Security auditing packet header and record type definitions

$NSARECDEF Security auditing record definitions

$OBJRECDEF Object language record definition

$OPCDEF Operator communication manager request type codes–return status
codes

$OPCMSG OPCOM message definitions

$OPRDEF Operator communications message types and values

(continued on next page)

E–6 Contents of the HP Fortran System Library FORSYSDEF

Table E–1 (Cont.) Contents of System Library FORSYSDEF

Module Name Description

$OSSDEF Object security service definitions

$OTSDEF Language-independent support procedure (OTS$) return status codes

$PAGEDEF Page size and limit definitions

$PQLDEF Quota types for process creation quota list

$PRCDEF Create process ($CREPRC) system service status flags and item codes

$PRDEF Processor register definitions

$PRODEF Global symbol definition record in object file—procedure definition

$PROMDEF Global section string descriptor entry: procedure definition, version
mask symbols

$PROVDEF Global section string descriptor entry: procedure definition, vectored
symbols

$PROWDEF Global symbol definition record in object file—procedure definition with
word of psect value

$PRTDEF Protection field definitions

$PRVDEF Privilege bit definitions

$PSCANDEF Process scan item code definitions

$PSIGDEF Signature block offset definitions for calling standard

$PSLDEF Processor status longword (PSL) mask and symbolic names for access
modes

$PSMMSGDEF Print symbiont message definitions

$PTDDEF Processor status word mask and field definitions

$QUIDEF Get queue information service definitions

$RABDEF RMS record access block definitions

$RMEDEF RMS escape definitions

$RMSDEF RMS return status codes

$RNHBLKDEF Get Queue Information Service ($GETQUI) definitions, item codes

$SBKDEF Open file statistics block

$SCRDEF Screen package interface definitions

$SDFDEF Symbol record in object file

$SDFMDEF Symbol definitions

(continued on next page)

Contents of the HP Fortran System Library FORSYSDEF E–7

Table E–1 (Cont.) Contents of System Library FORSYSDEF

Module Name Description

$SDFVDEF Symbol definitions for vectored symbols

$SDFWDEF Symbol record in object file with word of psect value

$SECDEF Attribute flags for private/global section creation and mapping

$SGPSDEF Global symbol definition record in object file—P-section definition in
shareable image

$SHRDEF Definitions for shared messages

$SJCDEF Send to job controller service definitions

$SMBMSGDEF Symbiont manager message definitions

$SMGDEF Definitions for RTL screen management

$SMGMSG Messages for the Screen Management facility

$SMGTRMPTR Terminal capability pointers for RTL SMG$ facility

$SMRDEF Define symbiont manager request codes

$SNAPEVTDEF System snapshot/reboot status definitions

$SORDEF Messages for the Sort/Merge facility

$SRFDEF Global symbol definition record in object file—symbol reference
definitions

$SRMDEF SRM hardware symbol definitions

$SSDEF System service failure and status codes

$STENVDEF Assign symbiont manager print job/record option codes

$STRDEF String manipulation procedures (STR$) return status codes

$STSDEF Status codes and error codes

$SYIDEF Get system information data identifier definitions

$SYSSRVNAM System service entry point descriptions

$TIRDEF Text information and relocation record in object file

$TPADEF TPARSE control block

$TPUDEF TPU callable interface definitions

$TRMDEF Define symbols to the item list QIO format

$TT2DEF Terminal special symbols

$TT3DEF Terminal special symbols

(continued on next page)

E–8 Contents of the HP Fortran System Library FORSYSDEF

Table E–1 (Cont.) Contents of System Library FORSYSDEF

Module Name Description

$TTCDEF Character code format

$TTDEF Terminal device characteristic codes

$UAIDEF User Authorization Information data identifier definitions

$UICDEF Format of user identification code (UIC)

$UIDDEF Universal identifier definitions

$USGDEF Disk usage accounting file produced by ANALYZE/DISK_STRUCTURE

$USRIDEF User image bit definitions

$VAXDEF VAX model definitions

$XABALLDEF Allocation XAB definitions

$XABCXFDEF RMS context XAB associated with FAB

$XABCXRDEF RMS context XAB associated with RAB

$XABDATDEF Date/time XAB definitions

$XABDEF Definitions for all XABs

$XABFHCDEF File header characteristics XAB definitions

$XABITMDEF Item list XAB

$XABJNLDEF Journal XAB definitions

$XABKEYDEF Key definitions XAB field definitions

$XABPRODEF Protection XAB field definitions

$XABRDTDEF Revision date/time XAB definitions

$XABRUDEF Recovery unit XAB

$XABSUMDEF Summary XAB field definitions

$XABTRMDEF Terminal control XAB field definitions

$XADEF DR11-W definitions for device specific characteristics

$XKDEVDEF 3271 device status block

$XKSTSDEF Definitions for 3271 line status block (returned by IO$_RDSTATS)

$XMDEF DMC-11 device characteristic codes

$XWDEF System definition for software DDCMP

CMA$DEF DECthreads definitions

CVT$ROUTINES Floating-point conversion routines

(continued on next page)

Contents of the HP Fortran System Library FORSYSDEF E–9

Table E–1 (Cont.) Contents of System Library FORSYSDEF

Module Name Description

DTK$ROUTINES Routine definitions for DECtalk facility

LIB$ROUTINES Routine definitions for general purpose run-time library procedures

MTH$ROUTINES Routine definitions for mathematics run-time library procedures

NCS$ROUTINES Routine definitions for National Character set procedure

OTS$ROUTINES Routine definitions for language-independent support procedures

PPL$DEF Definitions for Parallel Processing library facility

PPL$MSG Message definitions for Parallel Processing library facility

PPL$ROUTINES Routine definitions for Parallel Processing library facility

SMG$ROUTINES Routine definitions for Screen Management procedures

SOR$ROUTINES Routine definitions for Sort/Merge procedures

STR$ROUTINES Routine definitions for string manipulation procedures

E–10 Contents of the HP Fortran System Library FORSYSDEF

F
Using System Services: Examples

This appendix contains examples that involve accessing OpenVMS system
services from HP Fortran programs. The individual examples address the
following operations:

• Section F.1, Calling RMS Procedures

• Section F.2, Using an AST Routine

• Section F.3, Accessing Devices Using Synchronous I/O

• Section F.4, Communicating with Other Processes

• Section F.5, Sharing Data

• Section F.6, Displaying Data at Terminals

• Section F.7, Creating, Accessing, and Ordering Files

• Section F.8, Measuring and Improving Performance

• Section F.9, Accessing Help Libraries

• Section F.10, Creating and Managing Other Processes

Each example includes the free-form source program (with comments), a
sample use of the program, and explanatory notes.

See the HP Fortran Web site at http://www.hp.com/software/fortran for
more examples.

F.1 Calling RMS Procedures
When you explicitly call an RMS system service, the order of the arguments
in the call must correspond with the order shown in the OpenVMS Record
Management Services Reference Manual. You must use commas to reserve a
place in the call for every argument. If you omit an argument, the procedure
uses a default value of zero.

Using System Services: Examples F–1

When calling an RMS routine from HP Fortran, the procedure name format
is SYS$procedure_name. The following example shows a call to the RMS
procedure SYS$SETDDIR. This RMS procedure sets the default directory for a
process.

Source Program:
! File: SETDDIR.F90
!
! This program calls the RMS procedure $SETDDIR to change
! the default directory for the process.

IMPLICIT INTEGER (A - Z)
CHARACTER(LEN=17) DIR /’[EX.PROG.FOR]’/ !
STAT = SYS$SETDDIR (DIR,,) "
IF (.NOT. STAT) TYPE *, ’ERROR’
END PROGRAM

Sample Use:
$ DIRECTORY #

Directory WORK$:[EX.PROG.FOR.CALL]

BASSUM.BAS;1 BASSUM.OBJ;1 COBSUM.COM;1 DOCOMMAND.F90;2
GETMSG.EXE;1 GETMSG.F90;4 GETMSG.LIS;2 GETMSG.OBJ;1
SETDDIR.F90;3 SETDDIR.LIS;1

Total of 10 files.

$ FORTRAN SETDDIR
$ LINK SETDDIR
$ RUN SETDDIR
$ DIRECTORY $

Directory WORK$:[EX.PROG.FOR]

CALL.DIR;1 COMU.DIR;1 DEVC.DIR;1 FIL.DIR;1
HAND.DIR;1 INTR.DIR;1 LNKR.DIR;1 MNAG.DIR;1
RMS.DIR;1 SHAR.DIR;1 SYNC.DIR;1 TERM.DIR;1

Total of 12 files.

! The default directory name is initialized into a CHARACTER variable.

" The call to $SETDDIR contains one argument, the directory name, which
is passed by descriptor, the default argument passing mechanism for
CHARACTERs. The omitted arguments are optional, but commas are
necessary to reserve places in the argument list.

The DIRECTORY command executed before the SETDDIR program is run
shows that the following directory is the default:

WORK$:[EX.V4PROG.FOR.CALL]

This directory contains the file SETDDIR.F90.

F–2 Using System Services: Examples

$ Another DIRECTORY command after the SETDDIR program is run shows
that the default directory has changed. The following directory is the new
default directory:

WORK$:[EX.PROG.FOR]

For More Information:
On calling RMS system services, see Chapter 11.

F.2 Using an AST Routine
The following example demonstrates how to request and declare an AST
procedure. It consists of the following:

• The main program CTRLC defines a common block AST_COM that
contains the logical variable CTRLC_FLAG and integer channel number,
calls the ENABLE_AST routine to set up Ctrl/C trapping, and contains a
DO loop that allows Ctrl/C interruption.

• A subroutine named ENABLE_AST that enables Ctrl/C trapping using
the SYS$QIOW system service. It is called by the main program and the
AST_ROUTINE subroutine.

• A subroutine named AST_ROUTINE that gets called when a Ctrl/C
is pressed. It resets the logical variable CTRLC_FLAG and calls the
ENABLE_AST subroutine to allow repetitive Ctrl/C use.

For More Information:
On AST routines, see the HP OpenVMS System Services Reference Manual.

Source Programs:
! Sample program to show enabling of an AST in Fortran
!
! The program uses a Ctrl/C AST to interrupt a work loop in the
! main program.
!

PROGRAM CTRLC
IMPLICIT NONE

LOGICAL CTRLC_FLAG ! Set to TRUE when Ctrl/C is pressed
INTEGER (KIND=2) CHANNEL ! Channel for terminal
COMMON /AST_COM/ CTRLC_FLAG,CHANNEL
VOLATILE CTRLC_FLAG ! Required because variable !

! can change at any time
INTEGER ITERATIONS,I

! Do first-time initialization

Using System Services: Examples F–3

CHANNEL = 0
CTRLC_FLAG = .FALSE.
CALL ENABLE_AST

! Read iteration count

100 WRITE (*,’($,A)’) ’ Enter iteration count (0 to exit): ’
READ (*,*) ITERATIONS
DO I=1,ITERATIONS

IF (CTRLC_FLAG) GOTO 200 ! Was Ctrl/C pressed?
WRITE (*,*) ’Count is ’,I
CALL LIB$WAIT (2.0) ! Pause 2 seconds

END DO
IF (ITERATIONS .EQ. 0) GOTO 999
GOTO 100 ! Loop back

200 WRITE (*,*) ’Ctrl/C pressed’
CTRLC_FLAG = .FALSE.
GOTO 100

999 END PROGRAM CTRLC

! Subroutine ENABLE_AST

SUBROUTINE ENABLE_AST "
IMPLICIT NONE

INCLUDE ’($SYSSRVNAM)’ ! System services
INCLUDE ’($IODEF)’ ! $QIO function codes

LOGICAL CTRLC_FLAG
VOLATILE CTRLC_FLAG !
INTEGER (KIND=2) CHANNEL
COMMON /AST_COM/ CTRLC_FLAG,CHANNEL

EXTERNAL AST_ROUTINE

INTEGER ASSIGN_STATUS, QIO_STATUS, IOSB(2)

! Assign channel if not already assigned

IF (CHANNEL .EQ. 0) THEN
ASSIGN_STATUS = SYS$ASSIGN (’TT:’, CHANNEL,,,)
IF (.NOT. ASSIGN_STATUS) CALL LIB$SIGNAL(%VAL(ASSIGN_STATUS))

END IF

! Enable AST so that AST_ROUTINE is called when Ctrl/C is pressed.

QIO_STATUS = SYS$QIOW (, & #
%VAL(CHANNEL), &
%VAL(IO$_SETMODE .OR. IO$M_CTRLCAST), &
IOSB,,, &
AST_ROUTINE,,,,,)

IF (.NOT. QIO_STATUS) CALL LIB$SIGNAL(%VAL(QIO_STATUS))

F–4 Using System Services: Examples

RETURN
END SUBROUTINE ENABLE_AST

! Subroutine AST_ROUTINE

SUBROUTINE AST_ROUTINE $
IMPLICIT NONE

LOGICAL CTRLC_FLAG
VOLATILE CTRLC_FLAG !
INTEGER (KIND=2) CHANNEL
COMMON /AST_COM/ CTRLC_FLAG,CHANNEL

! Indicate that a CTRL/C has been pressed

CTRLC_FLAG = .TRUE.

! Reenable the AST. This must be done by calling ENABLE_AST rather than
! doing it here as we would need a recursive reference to AST_ROUTINE,
! which is disallowed unless /RECURSIVE is used.

CALL ENABLE_AST %

RETURN
END SUBROUTINE AST_ROUTINE

Sample Use:
$ RUN CTRLC
Enter iteration count (0 to exit):
9
Count is 1
Count is 2
Count is 3
Ctrl/C %
Cancel

Ctrl/C pressed
Enter iteration count (0 to exit):
0
$

! The CTRLC_FLAG logical variable is declared volatile in the routines that
reference it because its value could change at any point during program
execution (other than an assignment statement or subroutine argument).

" By providing two subroutines, you allow the Ctrl/C AST routine to be
executed repeatedly, rather than just once. The ENABLE_AST subroutine
is called by the main program and the AST_ROUTINE subroutine. It
enables Ctrl/C trapping using the SYS$QIOW system service and sets the
CTRLC_FLAGS logical variable. For a subroutine to call itself, it must be
recursive.

Using System Services: Examples F–5

The call to the SYS$QIOW system service enables Ctrl/C AST use by
specifying that the subroutine AST_ROUTINE be called when Ctrl/C is
pressed.

$ When the AST is delivered, the AST_ROUTINE receives control, resets the
CTRLC_FLAG logical variable, and returns control back to where Ctrl/C
was pressed (main program), which eventually displays ‘‘Ctrl/C pressed’’.

The arguments to AST_ROUTINE are platform dependent.

% The example shows the program executing within the DO loop in the main
program (with a two second delay between DO loop executions). When
the user types Ctrl/C, control is transferred briefly to the AST_ROUTINE
subroutine and it then returns back to the main program. Within the DO
loop, the main program tests the value of logical variable CTRLC_FLAG
and, if set to .TRUE., transfers control to label 200 which displays ‘‘Ctrl/C
pressed’’.

For More Information:
On the VOLATILE statement, see the HP Fortran for OpenVMS Language
Reference Manual.

F.3 Accessing Devices Using Synchronous I/O
The following example performs output to a terminal via the SYS$QIOW
system service.

Source Program:
! File: QIOW.F90
!
! This program demonstrates the use of the $QIOW system service to
! perform synchronous I/O to a terminal.

IMPLICIT INTEGER (KIND=4) (A - Z)
INCLUDE ’($SYSSRVNAM)’
INCLUDE ’($IODEF)’
CHARACTER(LEN=24) TEXT_STRING /’This is from a SYS$QIOW.’/ !
CHARACTER(LEN=11) TERMINAL /’SYS$COMMAND’/
INTEGER KIND=2) TERM_CHAN
STRUCTURE /TT_WRITE_IOSB/

INTEGER (KIND=2) STATUS
INTEGER (KIND=2) BYTES_WRITTEN
INTEGER (KIND=4) %FILL

END STRUCTURE
RECORD /TT_WRITE_IOSB/ IOSB

! Assign the channel number

STAT = SYS$ASSIGN (TERMINAL, TERM_CHAN,,)
IF (.NOT. STAT) CALL LIB$STOP (%VAL(STAT)) "

F–6 Using System Services: Examples

! Initialize STATUS to zero (0)

STATUS = 0

! Output the message twice

DO I=1,2
STAT = SYS$QIOW (%VAL(1),%VAL(TERM_CHAN), & #

%VAL(IO$_WRITEVBLK),IOSB,,, &
%REF(TEXT_STRING), &
%VAL(LEN(TEXT_STRING)),, &
%VAL(32),,)

IF (.NOT. STAT) CALL LIB$STOP (%VAL(STATUS))
IF (.NOT. IOSB.STATUS) CALL LIB$STOP (%VAL(IOSB.STATUS))

ENDDO
END PROGRAM

Sample Use:

$ FORTRAN QIOW
$ LINK QIOW
$ RUN QIOW
This is from a SYS$QIOW.
This is from a SYS$QIOW.

! If SYS$QIO and a SYS$WAITFR are used instead of SYS$QIOW, you must
use a VOLATILE declaration for any program variables and arrays that
can be changed while the operation is pending.

" TERM_CHAN receives the channel number from the SYS$ASSIGN system
service.

The process permanent logical name SYS$COMMAND is assigned to your
terminal when you log in. The SYS$ASSIGN system service translates the
logical name to the actual device name.

SYS$QIO and SYS$QIOW accept the CHAN argument by immediate value,
unlike SYS$ASSIGN, which requires that it be passed by reference. Note
the use of %VAL in the call to SYS$QIOW but not in the previous call to
SYS$ASSIGN.

The function IO$_WRITEVBLK requires values for parameters P1, P2, and
P4.

• P1 is the starting address of the buffer containing the message. So,
TEXT_STRING is passed by reference.

• P2 is the number of bytes to be written to the terminal. A 24 is passed,
since it is the length of the message string.

• P4 is the carriage control specifier; a 32 indicates single space carriage
control.

Using System Services: Examples F–7

A SYS$QIOW is issued, ensuring that the output operation will be
completed before the program terminates.

F.4 Communicating with Other Processes
The following example shows how to create a global pagefile section and how
two processes can use it to access the same data. One process executes the
program PAGEFIL1, which must first be installed. When run, PAGEFIL1
creates and writes to a global pagefile section. PAGEFIL1 then waits for a
second process to update the section. The second process executes PAGEFIL2,
which maps and updates the pagefile section.

Because PAGEFIL2 maps to the temporary global pagefile section created in
PAGEFIL1, PAGEFIL1 must be run first. The two processes coordinate their
activity through common event flags.

Source Program: PAGEFIL1.F90
! File: PAGEFIL1.F90
!
! This program creates and maps a global page frame section.
! Data in the section is accessed through an array.

IMPLICIT INTEGER (KIND=4) (A-Z)
INCLUDE ’($SECDEF)’
INCLUDE ’($SYSSRVNAM)’
INCLUDE ’($SYIDEF)’
DIMENSION MY_ADR(2),OUT_ADR(2)
COMMON /MYCOM/ IARRAY(50) !
CHARACTER(LEN=4) NAME/’GSEC’/
VOLATILE /MYCOM/ "

! Associate with common cluster MYCLUS

STATUS = SYS$ASCEFC (%VAL(64),’MYCLUS’,,) #

! To calculate the ending address of the page boundary, call
! LIB$GETSYIW to get the processor-specific page size, PAGE_MAX

STATUS = LIB$GETSYI(SYI$_PAGE_SIZE,PAGE_MAX,,,,)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

MY_ADR(1) = %LOC(IARRAY(1)) !
MY_ADR(2) = MY_ADR(1) + PAGE_MAX -1

! Flags for call to SYS$CRMPSC

SEC_FLAGS = SEC$M_PAGFIL.OR.SEC$M_GBL.OR.SEC$M_WRT.OR.SEC$M_DZRO

! Create and map the temporary global section

F–8 Using System Services: Examples

STATUS = SYS$CRMPSC(MY_ADR,OUT_ADR,,%VAL(SEC_FLAGS), & $
NAME,,,,%VAL(1),,,)

IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

! Manipulate the data in the global section %

DO 10 I = 1,50
IARRAY(I) = I

END DO

STATUS = SYS$SETEF(%VAL(72))
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
TYPE *,’Waiting for PAGEFIL2 to update section’
STATUS = SYS$WAITFR(%VAL(73))

! Print the array modified by PAGEFIL2 in the global section

TYPE *, ’Modified data in the global section:’
WRITE (6,100) (IARRAY(I), I=1,50)

100 FORMAT(10I5)
END PROGRAM

Source Program: PAGEFIL2.F90

! File: PAGEFIL2.F90
!
! This program maps and modifies a global section after PAGEFIL1
! creates the section. Programs PAGEFIL1 and PAGEFIL2 synchronize
! the processing of the global section through the use of common
! event flags.

IMPLICIT INTEGER (KIND=4) (A - Z)
INCLUDE ’($SECDEF)’
INCLUDE ’($SYSSRVNAM)’
INCLUDE ’($SYIDEF)’
DIMENSION MY_ADR(2) !
COMMON /MYCOM/ IARRAY(50)
VOLATILE /MYCOM/ "

! Call LIB$GETSYIW to get page size, PAGE_MAX

STATUS = LIB$GETSYI(SYI$_PAGE_SIZE,PAGE_MAX,,,,)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

MY_ADR(1) = %LOC(IARRAY(1)) !
MY_ADR(2) = MY_ADR(1) + PAGE_MAX -1

! Associate with common cluster MYCLUS and wait for
! event flag to be set

STATUS = SYS$ASCEFC(%VAL(64),’MYCLUS’,,) #
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))
STATUS = SYS$WAITFR (%VAL(72))
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

! Set flag to allow section to be written

Using System Services: Examples F–9

FLAGS = SEC$M_WRT

! Map the global section

STATUS = SYS$MGBLSC(MY_ADR,,,%VAL(FLAGS),’GSEC’,,) &
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

! Print out the data in the global section and ’
! multiply each value by two

TYPE *, ’Original data in the global section:’
WRITE (6,100) (IARRAY(I), I=1,50)

100 FORMAT (10I5)
DO I=1,50 (
IARRAY(I) = IARRAY(I) * 2

END DO

! Set an event flag to allow PAGEFIL1 to continue execution

STATUS = SYS$SETEF(%VAL(73))
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))
END PROGRAM

The options file PAGEFIL.OPT contains the following line of source text:

PSECT_ATTR=MYCOM,PAGE,SHR,WRT,SOLITARY !

COLLECT=SHARED_CLUS,MYCOM)

Sample Use:
$ FORTRAN /ALIGN=NATURAL PAGEFIL1
$ FORTRAN/ALIGN=NATURAL PAGEFIL2
$ LINK PAGEFIL1,PAGEFIL/OPTIONS !
$ LINK PAGEFIL2,PAGEFIL/OPTIONS !

$ RUN PAGEFIL1 !***Process 1***
Waiting for PAGEFIL2 to update section +>

Modified data in the global section:
2 4 6 8 10 12 14 16 18 20

22 24 26 28 30 32 34 36 38 40
42 44 46 48 50 52 54 56 58 60
62 64 66 68 70 72 74 76 78 80
82 84 86 88 90 92 94 96 98 100

$
$ RUN PAGEFIL2 !***Process 2***
Original data in the global section: +>

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

$

! PAGEFIL1 and PAGEFIL2 are linked with the same options file, which

F–10 Using System Services: Examples

specifies that the COMMON block program section is shareable, can be
written to, and starts on a page boundary. The first argument to the
SYS$CRMPSC (and SYS$MGBLSC) system service is a two-element array
MYADR which specifies the starting and ending address.

" If any variables or arrays are used or modified, you should declare them as
volatile in the other routines that reference them.

Associate to a common event flag cluster to coordinate activity. The
processes must be in the same UIC group.

$ The $CRMPSC system service creates and maps a global pagefile section.

The starting and ending process virtual addresses of the section are placed
in MY_ADR. The SEC$M_PAGFIL flag requests a temporary pagefile
section. The flag SEC$M_GBL requests a global section. The flag SEC$M_
WRT indicates that the pages should be writable as well as readable. The
SEC$M_DZRO flag requests pages filled with zeros.

% Data is written to the pagefile section by PAGEFIL1.

& PAGEFIL2 maps the existing section as writable by specifying the SEC$M_
WRT flag.

’ PAGEFIL2 reads from the pagefile section.

(PAGEFIL2 modifies the data in the pagefile section.

) The COLLECT option instructs the linker to create a cluster named
SHARED_CLUS and to put the PSECT MYCOM into that cluster. This
prevents the problem of inadvertently mapping another PSECT in a page
containing all or part of MYCOM. Clusters are always positioned on page
boundaries.

+> After PAGEFIL1 is run, creates the global section, writes out the data, and
then displays:

Waiting for PAGEFIL2 to update section

A separate terminal is used to run PAGEFIL2, which displays the original
data written by PAGEFIL1 and then modifies that data and exits. Once
modified, PAGEFIL1 displays the data modified by PAGEFIL2 and exits.

For More Information:
On the VOLATILE statement, see the HP Fortran for OpenVMS Language
Reference Manual.

Using System Services: Examples F–11

F.5 Sharing Data
The program called SHAREDFIL is used to update records in a relative file.
The SHARE qualifier is specified on the OPEN statement to invoke the RMS
file sharing facility. In this example, the same program is used to access the
file from two processes:

Source Program:
! File: SHAREDFIL.F90
!
! This program can be run from two or more processes to demonstrate the
! use of an RMS shared file to share data. The program requires the
! relative file named REL.DAT.

IMPLICIT INTEGER (KIND=4) (A - Z)
CHARACTER(LEN=20) RECORD
INCLUDE ’($FORIOSDEF)’ !

OPEN (UNIT=1, FILE=’REL’, STATUS=’OLD’, SHARED, & "
ORGANIZATION=’RELATIVE’, ACCESS=’DIRECT’, FORM=’FORMATTED’) #

! Request record to be examined

100 TYPE 10
10 FORMAT (’$Record number (Ctrl/Z to quit): ’)

READ (*,*, END=999) REC_NUM

! Get record from file

READ (1,20, REC=REC_NUM, IOSTAT=STATUS), REC_LEN, RECORD
20 FORMAT (Q, A)

! Check I/O status

IF (STATUS .EQ. 0) THEN
TYPE *, RECORD(1:REC_LEN) %

ELSE IF (STATUS .EQ. FOR$IOS_ATTACCNON) THEN
TYPE *, ’Nonexistent record.’
GOTO 100

ELSE IF (STATUS .EQ. FOR$IOS_RECNUMOUT) THEN
TYPE *, ’Record number out of range.’
GOTO 100

ELSE IF (STATUS .EQ. FOR$IOS_SPERECLOC) THEN
TYPE *, ’Record locked by someone else.’ $
GOTO 100

ELSE
CALL ERRSNS (, RMS_STS, RMS_STV,,)
CALL LIB$SIGNAL (%VAL(RMS_STS), %VAL(RMS_STV))

ENDIF

! Request updated record

F–12 Using System Services: Examples

TYPE 30
30 FORMAT (’$New Value or CR: ’)

READ (*,20) REC_LEN, RECORD
IF (REC_LEN .NE. 0) THEN
WRITE (1,40, REC=REC_NUM, IOSTAT=STATUS) RECORD(1:REC_LEN)

40 FORMAT (A)
IF (STATUS .NE. 0) THEN
CALL ERRSNS (, RMS_STS, RMS_STV,,)
CALL LIB$SIGNAL(%VAL(RMS_STS),%VAL(RMS_STV))

ENDIF
ENDIF

! Loop

GOTO 100

999 END PROGRAM

Sample Use:
$ FORTRAN SHAREDFIL
$ LINK SHAREDFIL
$ RUN SHAREDFIL
Record number (Ctrl/Z to quit): 2
MSPIGGY
New Value or CR: FOZZIE
Record number (Ctrl/Z to quit): 1
KERMIT
New Value or CR:
Record number (Ctrl/Z to quit): Ctrl/Z
$
$ RUN SHAREDFIL
Record number (Ctrl/Z to quit): 2 $
Record locked by someone else.
Record number (Ctrl/Z to quit): 2
Record locked by someone else.
Record number (Ctrl/Z to quit): 2
FOZZIE
New Value or CR: MSPIGGY
Record number (Ctrl/Z to quit): Ctrl/Z %
$

! The library module FORIOSDEF must be included to define the symbolic
status codes returned by HP Fortran I/O statements.

" This program requires a relative file named REL.DAT.

The SHARED qualifier is used on the OPEN statement to indicate that
the file can be shared. Because manual locking was not specified, RMS
automatically controls access to the file. Only read and update operations
are allowed in this example. No new records can be written to the file.

$ The second process is not allowed to access record #2 while the first process
is accessing it.

Using System Services: Examples F–13

% Once the first process has finished with record #2, the second process can
update it.

F.6 Displaying Data at Terminals
The following example calls SMG routines to format screen output.

No sample run is included for this example because the program requires a
video terminal in order to execute properly.

Source Program:
! File: SMGOUTPUT.F90
!
! This program calls Run-Time Library Screen Management routines
! to format screen output.

IMPLICIT INTEGER (KIND=4) (A-Z)
INCLUDE ’($SMGDEF)’ !

! Establish terminal screen as pasteboard

STATUS = SMG$CREATE_PASTEBOARD (NEW_PID,,,) "
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

! Establish a virtual display region

STATUS = SMG$CREATE_VIRTUAL_DISPLAY (15,30,DISPLAY_ID,,,) #
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

! Paste the virtual display to the screen, starting at
! row 2, column 15

STATUS = SMG$PASTE_VIRTUAL_DISPLAY(DISPLAY_ID,NEW_PID,2,15) $
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

! Put a border around the display area

STATUS = SMG$LABEL_BORDER(DISPLAY_ID,’This is the Border’,,,,,) %
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

! Write text lines to the screen

STATUS = SMG$PUT_LINE (DISPLAY_ID,’ ’,,,,,)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
STATUS = SMG$PUT_LINE (DISPLAY_ID,’Howdy, pardner’,2,,,,) &
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
STATUS = SMG$PUT_LINE (DISPLAY_ID,’Double spaced lines...’,2,,,,) &
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

F–14 Using System Services: Examples

STATUS = SMG$PUT_LINE (DISPLAY_ID,’This line is blinking’,2, & ’
SMG$M_BLINK,0,,)

IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
STATUS = SMG$PUT_LINE (DISPLAY_ID,’This line is reverse video’,2, & ’

SMG$M_REVERSE,0,,)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))
DO I = 1, 5 (
STATUS = SMG$PUT_LINE (DISPLAY_ID,’Single spaced lines...’,,,,,)
IF (.NOT. STATUS) CALL LIB$STOP(%VAL(STATUS))

ENDDO

END PROGRAM

! The INCLUDE statement incorporates the $SMGDEF library module from
FORSYSDEF.TLB into the source program. This library module contains
symbol definitions used by the screen management routines.

" The call to SMG$CREATE_PASTEBOARD creates a pasteboard upon
which output will be written. The pasteboard ID is returned in the variable
NEW_PID.

No value is specified for the output device parameter, so the output device
defaults to SYS$OUTPUT. Also, no values are specified for the PB_ROWS
or PB_COLS parameters, so the pasteboard is created with the default
number of rows and columns. The defaults are the number of rows and
the number of columns on the physical screen of the terminal to which
SYS$OUTPUT is assigned.

The created virtual display is 15 lines long and 30 columns wide. The
virtual display initially contains blanks.

$ The virtual display is pasted to the pasteboard, with its upper left corner
positioned at row 2, column 15 of the pasteboard. Pasting the virtual
display to the pasteboard causes all data written to the virtual display to
appear on the pasteboard’s output device, which is SYS$OUTPUT—the
terminal screen.

At this point, nothing appears on the screen because the virtual display
contains only blanks. However, because the virtual display is pasted to
the pasteboard, the program statements described below cause text to be
written to the screen.

% A labeled border is written to the virtual display.

& Using a call to the RTL routine SMG$PUT_LINE, the text line (‘‘Howdy,
pardner’’ is written to the virtual display.

To specify double spacing, a call to SMG$PUT_LINE displays ‘‘Double
spaced lines...’’ by specifying the line-adv (third) argument to SMG$PUT_
LINE as 2.

Using System Services: Examples F–15

’ Two subsequent calls to SMG$PUT_LINE specify the SMG$M_BLINK
and SMG$M_REVERSE parameters (rendition-set argument) display
the double-spaced lines ‘‘This line is blinking’’ as blinking and ‘‘This
line is reverse video’’ in reverse video. The parameter mask constants
like SMG$M_BLINK are defined in the $SMGDEF library module in
FORSYSDEF.TLB.

(The program displays single-spaced text by omitting a value for the line-
adv argument (third argument) to SMG$PUT_LINE. The DO loop displays
the line ‘‘Single spaced lines...’’ five times.

F.7 Creating, Accessing, and Ordering Files
In the following example, each record in a relative file is assigned to a specific
cell in that file. On sequential write operations, the records are written to
consecutive empty cells. Random write operations place the records into cell
numbers as provided by the REC=n parameter.

Source Program:
! File: RELATIVE.F90
!
! This program demonstrates how to access a relative file
! randomly. It also performs some I/O status checks.

IMPLICIT INTEGER (KIND=4) (A - Z)
STRUCTURE /EMPLOYEE_STRUC/
CHARACTER(LEN=5) ID_NUM
CHARACTER(LEN=6) NAME
CHARACTER(LEN=3) DEPT
CHARACTER(LEN=2) SKILL
CHARACTER(LEN=4) SALARY

END STRUCTURE
RECORD /EMPLOYEE_STRUC/ EMPLOYEE_REC
INTEGER (KIND=4) REC_LEN
INCLUDE ’($FORIOSDEF)’ !

OPEN (UNIT=1, FILE=’REL’, STATUS=’OLD’, ORGANIZATION=’RELATIVE’, & "
ACCESS=’DIRECT’, FORM=’UNFORMATTED’,RECORDTYPE=’VARIABLE’)

! Get records by record number until e-o-f
! Prompt for record number

100 TYPE 10
10 FORMAT (’$Record number: ’)

READ (*,*, END=999) REC_NUM #

! Read record by record number

READ (1,REC=REC_NUM,IOSTAT=STATUS) EMPLOYEE_REC

! Check I/O status

F–16 Using System Services: Examples

IF (STATUS .EQ. 0) THEN
WRITE (6) EMPLOYEE_REC $

ELSE IF (STATUS .EQ. FOR$IOS_ATTACCNON) THEN
TYPE *, ’Nonexistent record.’

ELSE IF (STATUS .EQ. FOR$IOS_RECNUMOUT) THEN
TYPE *, ’Record number out of range.’

ELSE
CALL ERRSNS (, RMS_STS, RMS_STV,,) %
CALL LIB$SIGNAL (%VAL(RMS_STS), %VAL(RMS_STV))

ENDIF

! Loop

GOTO 100
999 END

Sample Use:
$ FORTRAN RELATIVE
$ LINK RELATIVE
$ RUN RELATIVE
Record number: 7
08001FLANJE119PL1920
Record number: 1
07672ALBEHA210SE2100
Record number: 30
Nonexistent record.
Record number: Ctrl/Z
$

! The INCLUDE statement defines all Fortran I/O status codes.

" The OPEN statement defines the file and record processing characteristics.
Although the file organization is specified as relative, RMS would in fact
obtain the file organization from an existing file. If the file’s organization
were not relative, the file OPEN statement would fail.

The file is being opened for unformatted I/O because the data records will
be read into an HP Fortran record (EMPLOYEE_REC), and HP Fortran
does not allow records to be used in formatted I/O.

The READ statement reads the record specified in REC_NUM, rather than
the next consecutive record. The status code for the record operation is
returned in the variable STATUS.

$ These statements test the record operation status obtained in comment
3. Note, the status codes returned by RMS and HP Fortran are not
numerically or functionally similar.

% RMS status codes actually require two parameters. These values can be
obtained using the ERRSNS subroutine.

Using System Services: Examples F–17

F.8 Measuring and Improving Performance
This example demonstrates how to adjust the size of the process working set
from a program.

Source Program:
! File: ADJUST.F90
!
! This program demonstrates how a program can control
! its working set size using the $ADJWSL system service.

IMPLICIT INTEGER (A-Z)
INCLUDE ’($SYSSRVNAM)’
INTEGER (KIND=4) ADJUST_AMT /0/
INTEGER (KIND=4) NEW_LIMIT /0/

CALL LIB$INIT_TIMER

DO ADJUST_AMT= -50,70,10

! Modify working set limit

RESULT = SYS$ADJWSL(%VAL(ADJUST_AMT), NEW_LIMIT) !
IF (.NOT. RESULT) CALL LIB$STOP(%VAL(RESULT))

TYPE 50, ADJUST_AMT, NEW_LIMIT
50 FORMAT(’ Modify working set by’, I4, ’ New working set size =’, I5)

END DO
CALL LIB$SHOW_TIMER
END PROGRAM

Sample Use:
$ SET WORKING_SET/NOADJUST "
$ SHOW WORKING_SET
Working Set /Limit=2000 /Quota=4000 /Extent=98304
Adjustment disabled Authorized Quota=4000 Authorized Extent=98304

Working Set (8Kb pages) /Limit=125 /Quota=250 /Extent=6144
Authorized Quota=250 Authorized Extent=6144

$ FORTRAN ADJUST
$ LINK ADJUST

F–18 Using System Services: Examples

$ RUN ADJUST
Modify working set by -50 New working set size = 1936 #
Modify working set by -40 New working set size = 1888
Modify working set by -30 New working set size = 1856
Modify working set by -20 New working set size = 1824
Modify working set by -10 New working set size = 1808
Modify working set by 0 New working set size = 1808
Modify working set by 10 New working set size = 1824
Modify working set by 20 New working set size = 1856
Modify working set by 30 New working set size = 1888
Modify working set by 40 New working set size = 1936
Modify working set by 50 New working set size = 2000
Modify working set by 60 New working set size = 2064
Modify working set by 70 New working set size = 2144
ELAPSED: 0 00:00:00.01 CPU: 0:00:00.01 BUFIO: 13 DIRIO: 0 FAULTS: 24
$

! The call to SYS$ADJWSL call uses a function invocation.

" The DCL SHOW WORKING_SET command displays the current working
set limit and the maximum quota.

The SYS$ADJWSL is used to increase or decrease the number of pages in
the process working set.

The program cannot decrease the working set limit beneath the minimum
established by the operating system, nor can the process working set be
expanded beyond the authorized quota.

F.9 Accessing Help Libraries
The following example demonstrates how to obtain text from a help library.
After the initial help request has been satisfied, the user is prompted and can
request additional information.

Source Program:
! File: HELPOUT.F90
!
! This program satisfies an initial help request and enters interactive
! HELP mode. The library used is SYS$HELP:HELPLIB.HLB.

IMPLICIT INTEGER (KIND=4) (A - Z)
CHARACTER(LEN=32) KEY
EXTERNAL LIBPUT_OUTPUT,LIBGET_INPUT !

! Request a HELP key

WRITE (6,200)
200 FORMAT(1X,’What Topic would you like HELP with? ’,$)

READ (5,100) KEY
100 FORMAT (A32)

Using System Services: Examples F–19

! Locate and print the help text

STATUS = LBR$OUTPUT_HELP(LIB$PUT_OUTPUT,,KEY, & "
’HELPLIB’,,LIB$GET_INPUT)

IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))
END PROGRAM

Sample Use:
$ FORTRAN HELPOUT
$ LINK HELPOUT
$ RUN HELPOUT
What topic would you like HELP with? TYPE

TYPE
Displays the contents of a file or a group of files on the
current output device.

Format:

TYPE file-spec[,...]

Additional information available:

Parameters Qualifiers
/BACKUP /BEFORE /BY_OWNER /CONFIRM /CONTINUOUS /CREATED
/EXACT /EXCLUDE /EXPIRED /HEADER /HIGHLIGHT /MODIFIED /OUTPUT
/PAGE /SEARCH /SINCE /TAIL /WRAP
Examples

TYPE Subtopic? /HIGHLIGHT

TYPE

/HIGHLIGHT

/HIGHLIGHT[=keyword]
/NOHIGHLIGHT (default)

Use with the /PAGE=SAVE and /SEARCH qualifiers to specify the
type of highlighting you want when a search string is found. When
a string is found, the entire line is highlighted. You can use
the following keywords: BOLD, BLINK, REVERSE, and UNDERLINE. BOLD
is the default highlighting.

TYPE Subtopic? Ctrl/Z
$

! To pass the address of LIB$PUT_OUTPUT and LIB$GET_INPUT, they
must be declared as EXTERNAL. You can supply your own routines for
handling input and output.

" The address of an output routine is a required argument. When requesting
prompting mode, the default mode, an input routine must be specified.

F–20 Using System Services: Examples

F.10 Creating and Managing Other Processes
The following example demonstrates how a created process can use the
SYS$GETJPIW system service to obtain the PID of its creator process. It also
shows how to set up an item list to translate a logical name recursively.

Source Program:
! File: GETJPI.F90
! This program demonstrates process creation and control.
! It creates a subprocess then hibernates until the subprocess wakes it.

IMPLICIT INTEGER (KIND=4) (A - Z)
INCLUDE ’($SSDEF)’
INCLUDE ’($LNMDEF)’
INCLUDE ’($SYSSRVNAM)’
CHARACTER(LEN=255) TERMINAL /’SYS$OUTPUT’/
CHARACTER(LEN=9) FILE_NAME /’GETJPISUB’/
CHARACTER(LEN=5) SUB_NAME /’OSCAR’/
INTEGER (KIND=4) PROCESS_ID /0/
CHARACTER(LEN=17) TABNAM /’LNM$PROCESS_TABLE’/
CHARACTER(LEN=255) RET_STRING
CHARACTER(LEN=2) ESC_NULL
INTEGER (KIND=4) RET_ATTRIB
INTEGER (KIND=4) RET_LENGTH /10/
STRUCTURE /ITMLST3_3ITEMS/
STRUCTURE ITEM(3)
INTEGER (KIND=2) BUFFER_LENGTH
INTEGER (KIND=2) CODE
INTEGER (KIND=4) BUFFER_ADDRESS
INTEGER (KIND=4) RETLEN_ADDRESS

END STRUCTURE
INTEGER (KIND=4) END_OF_LIST

END STRUCTURE
RECORD /ITMLST3_3ITEMS/ TRNLST

! Translate SYS$OUTPUT
! Set up TRNLST, the item list for $TRNLNM

TRNLST.ITEM(1).CODE = LNM$_STRING
TRNLST.ITEM(1).BUFFER_LENGTH = 255
TRNLST.ITEM(1).BUFFER_ADDRESS = %LOC(RET_STRING)
TRNLST.ITEM(1).RETLEN_ADDRESS = 0

TRNLST.ITEM(2).CODE = LNM$_ATTRIBUTES
TRNLST.ITEM(2).BUFFER_LENGTH = 4
TRNLST.ITEM(2).BUFFER_ADDRESS = %LOC(RET_ATTRIB)
TRNLST.ITEM(2).RETLEN_ADDRESS = 0

TRNLST.ITEM(3).CODE = LNM$_LENGTH
TRNLST.ITEM(3).BUFFER_LENGTH = 4
TRNLST.ITEM(3).BUFFER_ADDRESS = %LOC(RET_LENGTH)
TRNLST.ITEM(3).RETLEN_ADDRESS = 0

Using System Services: Examples F–21

TRNLST.END_OF_LIST = 0

! Translate SYS$OUTPUT

100 STATUS = SYS$TRNLNM (,TABNAM,TERMINAL(1:RET_LENGTH),,TRNLST)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))
IF (IAND(LNM$M_TERMINAL, RET_ATTRIB).EQ. 0) THEN

TERMINAL = RET_STRING(1:RET_LENGTH)
GO TO 100

ENDIF

! Check if process permanent file

ESC_NULL(1:2) = char(’1B’x)//char(’00’x)
IF (RET_STRING(1:2) .EQ. ESC_NULL) THEN

RET_STRING = RET_STRING(5:RET_LENGTH)
RET_LENGTH = RET_LENGTH - 4

ENDIF

! Create the subprocess

STATUS = SYS$CREPRC (PROCESS_ID, FILE_NAME,, & !
RET_STRING(1:RET_LENGTH),,,, &
SUB_NAME,%VAL(4),,,)

IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))
TYPE 10, PROCESS_ID

10 FORMAT (’ PID of subprocess OSCAR is ’, Z)

! Wait for wakeup by subprocess

STATUS = SYS$HIBER () "
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

TYPE *, ’GETJPI has been awakened.’
END PROGRAM

! File: GETJPISUB.F90
! This separately compiled program is run in the subprocess OSCAR
! which is created by GETJPI. It obtains its creator’s PID and then
! wakes it.

F–22 Using System Services: Examples

IMPLICIT INTEGER (KIND=4) (A - Z) #
INCLUDE ’($JPIDEF)’
INCLUDE ’($SYSSRVNAM)’
STRUCTURE /GETJPI_IOSB/
INTEGER(KIND=4) STATUS
INTEGER(KIND=4) %FILL

END STRUCTURE
RECORD /GETJPI_IOSB/ IOSB
STRUCTURE /ITMLST3_1ITEM/
STRUCTURE ITEM
INTEGER (KIND=2) BUFFER_LENGTH
INTEGER (KIND=2) CODE
INTEGER (KIND=4) BUFFER_ADDRESS
INTEGER (KIND=4) RETLEN_ADDRESS

END STRUCTURE
INTEGER (KIND=4) END_OF_LIST

END STRUCTURE
RECORD /ITMLST3_1ITEM/ JPI_LIST

! Set up buffer address for GETJPI

JPI_LIST.ITEM.CODE = JPI$_OWNER $
JPI_LIST.ITEM.BUFFER_LENGTH = 4
JPI_LIST.ITEM.BUFFER_ADDRESS = %LOC(OWNER_PID)
JPI_LIST.ITEM.RETLEN_ADDRESS = 0

! Get PID of creator

STATUS = SYS$GETJPIW (%VAL(1),,, JPI_LIST,IOSB,,) %
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))
IF (.NOT. IOSB.STATUS) CALL LIB$STOP (%VAL(IOSB.STATUS))

! Wake creator

TYPE *, ’OSCAR is waking creator.’
STATUS = SYS$WAKE (OWNER_PID,)
IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

END PROGRAM

Sample Use:
$ FORTRAN GETJPI,GETJPISUB
$ LINK GETJPI
$ LINK GETJPISUB
$ RUN GETJPI
PID of subprocess OSCAR is 2120028A
OSCAR is waking creator.
GETJPI has been awakened.

! The subprocess is created using SYS$CREPRC.

" The process hibernates.

Using System Services: Examples F–23

The INCLUDE statement defines the value of all JPI$ codes including
JPI$_OWNER. JPI$_OWNER is the item code which requests the PID of
the owner process. If there is no owner process (that is, if the process about
which information is requested is a detached process), the system service
$GETJPIW returns a PID of zero.

$ Because of the item code JPI$_OWNER in the item list, $GETJPIW returns
the PID of the owner of the process about which information is requested.
If the item code were JPI$_PID, $GETJPIW would return the PID of the
process about which information is requested.

Because the default value of 0 is used for arguments PIDADR and
PRCNAM, the process about which information is requested is the
requesting process, namely, OSCAR.

% The item list for SYS$GETJPIW consists of a single item descriptor
followed by a zero longword.

F–24 Using System Services: Examples

Index

A
Abort

See Ctrl/C; Ctrl/Y
ACCEPT statement, 6–4

See also LRM
Access modes

See Record access mode
ACCESS specifier, 6–24, 6–30

See also LRM
Accuracy

and dummy aliases, 5–61
hoisting divide operations, 5–61
numerical data I/O

formatted and unformatted, 5–34
qualifiers affecting

argument use, 2–38, 5–61
constants, 2–38
floating-point, 2–36, 2–38, 2–42,

2–65, 2–79, 5–60
floating-point underflow, 2–42

source code changes affecting calculations,
5–39

ACTION specifier, 6–24
See also LRM

Actual arguments, 10–2
See also Arguments

Address correlation table
effect of /DEBUG qualifier, 2–49

Addresses
64-bit (cDEC$ ATTRIBUTES ADDRESS64

directive), 10–20

ADVANCE specifier, 6–36
See also LRM

Advancing I/O, 6–36
AIMAG intrinsic function

See also LRM
qualifier controlling size returned, 2–76

Alignment
argument passing, 5–20

HP Fortran and C structures, 10–58
array elements, 5–20
cDEC$ OPTIONS directive, 2–31
checking for unaligned data, 2–90, 5–21
common block data, 5–22
derived-type data, 5–24
detecting unaligned data (compile-time),

2–89, 5–21
detecting unaligned data (run-time), 5–21

condition handler, 14–23
debugger, 4–27

effect of declaration statements, 5–18 to
5–26

locating unaligned data (debugger), 4–27
naturally aligned data (definition), 5–17
of data types, 2–27, 5–17 to 5–28
qualifiers controlling, 2–27 to 2–31, 5–26

to 5–28
messages (compile-time), 2–89, 5–21
warnings for unaligned data, 2–90

record structures, 5–26
SEQUENCE statement

effect on derived-type data, 5–24,
5–27

unaligned data (definition), 5–18
warning messages for unaligned data,

2–90

Index–1

/ALIGNMENT=COMMONS qualifier, 2–27
effect of /FAST qualifier, 2–31, 5–26

/ALIGNMENT=NOSEQUENCE qualifier,
5–24, 5–27

/ALIGNMENT qualifier, 2–27, 5–26
[NO]SEQUENCE keyword, 2–30

Allocating disk space
SYS$EXTEND (RMS), 11–21

Allocating virtual memory
See also LRM
LIB$GET_VM, 10–27

Allocation control block
XABALL (RMS), 11–13

Allocation listing, memory
linker output, 3–3, 3–6 to 3–7

Alpha processor generation
specifying code generation instruction

types, 2–33, 5–60
specifying for optimization, 2–74, 5–58

Alternate key fields (indexed files)
definition, 12–2
discussion of use, 12–2 to 12–6

ANA file type, 2–32
Analysis file

created by FORTRAN command, 2–31
/ANALYSIS_DATA qualifier, 2–31
Annotations

example, 2–111
/ANNOTATIONS qualifier, 2–32
APPEND specifier, 6–35

See also LRM
/ARCHITECTURE (Alpha only) qualifier,

2–33
/ARCHITECTURE qualifier, 5–60
Argument passing

alignment of data passed, 5–20
64-bit addressing (cDEC$ ATTRIBUTES),

10–16
C and HP Fortran, 10–16 to 10–21,

10–49
alignment of structures, 10–58
arrays, 10–61
cDEC$ ATTRIBUTES C directive,

10–15

Argument passing
C and HP Fortran (cont’d)

changing default mechanisms, 10–15,
10–16, 10–55

common block values, 10–63
complex data example, 10–56
data types, 10–51 to 10–55
examples, 10–55, 10–59, 10–62
integer data example, 10–55
pointer data, 10–59 to 10–61
structures, 10–58
using C conventions, 10–18

character constant actual arguments,
2–40

characters, 10–6
null terminated, 10–55

Compaq Fortran 77 and HP Fortran,
10–44 to 10–49, B–6 to B–9
alignment qualifiers, 10–48
common block values, 10–48
data type sizes, 10–45
data types to avoid, 10–44
derived-type data, 10–45
differences, B–14 to B–16
examples, 10–46
function values, 10–44, 10–46
I/O compatibility, 10–49
mechanisms, 10–45
passing target or pointer data, 10–47
pointer data, 10–45
similarities, 10–6
using Compaq Fortran 77 features,

10–44
directives (cDEC$ ATTRIBUTES), 10–16
efficient array use, 5–28
HP Fortran, 10–2 to 10–9

array descriptor format, 10–10
arrays, 10–8
array temporary creation, 5–32
built-in functions, 10–11 to 10–14
by address (%LOC), 10–13
by descriptor (%DESCR), 10–12
by reference (%REF), 10–14
by value (%VAL), 10–13

Index–2

Argument passing
HP Fortran (cont’d)

changing default mechanisms, 10–11,
10–15, 10–16

characters, 10–6
default passing mechanism, 10–6
explicit interface, 10–3 to 10–5
implicit interface, 10–3
omitted arguments (extra comma),

10–6
pointers, 10–9
rules, 10–6 to 10–9

OpenVMS calling standard, 10–24
OpenVMS mechanisms, 10–11
RMS arguments, 11–16
when temporary array copy is created,

5–28
Arguments, 10–2

See also Argument passing; LRM
actual, 10–2

character constant, 2–40
differences between Compaq Fortran

77 and HP Fortran, B–16
dummy, 10–2

aliasing and accuracy, 2–35, 5–61
and implied-DO loop collapsing, 5–37

maximum allowed
in a function reference, 2–102
on CALL statement, 2–102

memory allocation, 10–24
OpenVMS standard for, 10–24
qualifier controlling warning messages,

2–90
Arithmetic exception handling

See also Condition-handler routines
causes of exceptions, 14–2
compiler options

/CHECK, 2–42 to 2–45
/FAST, 2–53
/FLOAT, 2–54
/IEEE_MODE qualifier, 2–58
/MATH_LIBRARY, 2–65
/SYNCHRONOUS_EXCEPTIONS,

2–86
continuation, 7–2

Arithmetic exception handling (cont’d)
controlling reporting of exceptions, 2–43,

2–45, 2–86
error reporting, 7–2
exceptional value message reporting,

2–43
floating point

array bounds checking, 2–42
certain exponentiation expressions,

2–44
control IEEE exceptions, 2–58
controlling reporting of exceptions,

2–43, 2–58, 2–86
exceptional values, 2–43, 2–58, 8–19

to 8–23
handling of minus zero, 2–39
math library used, 2–53, 2–65
reporting underflow messages, 2–45
types used in memory, 2–54
underflow, 2–45, 2–58, 8–20

IEEE NaN values (quiet and signaling),
8–20

infinity values, 8–20
integer overflow, 2–42, 2–44
locating exceptions in debugger, 4–25
qualifiers needed to obtain traceback

information, 3–14
setting breakpoints in the debugger, 4–25
using a condition handler routine, 14–22,

14–24
Arithmetic exceptions

See Arithmetic exception handling;
Exception conditions

Arithmetic operators
for efficient run-time performance, 5–39

Array references
/CHECK options at compilation, 2–42

Arrays
See also Argument passing; LRM
accessing in debugger, 4–17
alignment, 5–20
allocatable, 10–10
and explicit interface, 10–7, 10–8, 10–10
arguments, 2–42, 10–8, 10–10

See also LRM

Index–3

Arrays
arguments (cont’d)

Compaq Fortran 77 and HP Fortran
similarities, 10–6

example, 1–6, 10–47
example (C and HP Fortran), 10–62

array temporary creation, 5–32
assumed-shape, 10–6, 10–10, 10–11,

10–45
bounds run-time checking, 2–42
character, 10–6
column-major order, 5–29, 10–61
compiler checking for out-of-bounds

references, 2–42
conformable, 10–8
declaring

See LRM
deferred-shape, 10–6, 10–11
differences between HP Fortran and C,

10–61
dimension limits, 2–102
efficient combinations of input and output

arguments, 5–28
efficient syntax in I/O list, 5–34
efficient use, 5–28
element sequence association, 10–9
explicit-shape, 10–10

example passing, 10–46, 10–62
natural storage order, 5–29
optimizations, 5–43, 5–50
output listing information, 2–113
passing as arguments

example, 1–7
row-major order, 5–29, 10–61
syntax for run-time efficiency, 5–28
using efficiently, 5–28
when temporary copy is created for

argument passing, 5–28
writing for efficiency, 5–35

Assembly code
used to represent object code, 2–65

ASSIGN command (DCL), D–1
ASSOCIATEVARIABLE specifier, 6–24

See also LRM

Association
host, 10–4
procedure interface, 10–5
use, 10–3

procedure interface block, 1–6 to 1–8,
10–5

/ASSUME qualifier, 2–35
ALTPARAM keyword, 2–37
BUFFERED_IO keyword, 2–37
BYTERECL keyword, 2–37
DUMMY_ALIASES keyword, 2–38, 5–61

to 5–63
FP_CONSTANT keyword, 2–38, 2–39
MINUS0 keyword, 2–39
NOACCURACY_SENSITIVE keyword,

2–36, 5–60
PROTECT_CONSTANTS keyword, 2–39
SOURCE_INCLUDE keyword, 2–39

Asynchronous reentrancy
effect on RTL, 2–79

Asynchronous System Trap (AST) procedures
example use, F–3 to F–6

/AUTOMATIC qualifier, 2–40, 2–78
Automatic storage

arguments, 10–7
of variables on run-time stack, 2–78

B
BACKSPACE statement, 6–4, 6–35
Basic linear algebra routines (Compaq

Extended Math Library), 15–2
Batch job

compiler errors during, 2–102
effect on /LIST qualifier default, 2–14

Bit manipulation functions
See LRM

$BLANK program section
use and attributes, 13–2

BLANK specifier, 6–24
See also LRM
Compaq Fortran 77 differences, B–10

Index–4

BLAS routines (Compaq Extended Math
Library), 15–2

Block IF statement
See also LRM
nesting limit, 2–102

BLOCKSIZE specifier, 5–35, 6–24
See also LRM

Bottleneck
reduction of I/O, 5–33

BSS program section
use and attributes, 13–2

BUFFERCOUNT specifier, 5–35, 6–24
See also LRM

Buffers
for record I/O, 5–35

Built-in functions
See also LRM; cDEC$ ATTRIBUTES
%DESCR function, 10–12
%LOC function, 10–13
%REF function, 10–14
used in passing arguments, 10–11 to

10–14
%VAL function, 10–13

/BY_REF_CALL qualifier, 2–40

C
Calling interface

See Argument passing; Language interface
Call stack

use by CHF, 14–2
CALL statement, 10–2

See also LRM
maximum arguments allowed, 2–102
used to call system services, 10–31

CARRIAGECONTROL specifier, 2–41, 6–14,
6–23

See also LRM
effect of /CCDEFAULT qualifier, 2–41

Case sensitive
external names in C

controlling with cDEC$ directives,
10–15, 10–16

Case-sensitive names
flagging lowercase (/STANDARD), 2–84
option controlling, 2–67

Catchall condition handler, 14–5
/CCDEFAULT qualifier, 2–41
CDD

See also CDDL
CDD/Repository, 2–96 to 2–101

See also CDDL (Common Data Dictionary
Language)

See also CDO (Common Data Dictionary
Operator)

accessing from HP Fortran programs,
2–98

CDD records
including in source listing, 2–83

data types, 2–99
CDDL (Common Data Dictionary Language),

2–96
cDEC$ ALIAS directive, 10–15
cDEC$ ATTRIBUTES

ADDRESS64 directive, 10–20
ALIAS directive, 10–19
C directive, 10–17

example, 10–18
EXTREN directive, 10–20
REFERENCE directive, 10–19
VALUE directive, 10–19
VARYING directive, 10–20

cDEC$ ATTRIBUTES directive, 10–16
cDEC$ directives, 5–63, 10–15
cDEC$ OPTIONS directive

and alignment, 2–31
cDEC$ PSECT directive

changing attributes, 13–2
CDO (Common Data Dictionary Operator)

data types, 2–99
definition, 2–96
using, 2–98

Cells
in relative files, 6–8

CHARACTER
See also LRM
data type

representation, 8–23

Index–5

Character arguments
constant actual arguments, 2–40
passing between HP Fortran and C, 10–6

Character data
checking for out-of-bounds references,

2–42
constant actual arguments, 2–40
using whole character string operations

for run-time efficiency, 5–34
Characters

flagging lowercase (/STANDARD), 2–84
Character set

See LRM
CHAR intrinsic, B–11
CHAR intrinsic procedure

to null-terminate a C string, 10–6
/CHECK qualifier, 2–42

ALL keyword, 2–45
ARG_INFO (I64 only) keyword, 7–2
ARG_INFO keyword (I64 only), 2–42
ARG_TEMP_CREATED keyword, 2–42
BOUNDS keyword, 2–42
FORMAT keyword, 2–43
FP_EXCEPTIONS keyword, 2–43
FP_MODE (I64 only) keyword, 7–2
FP_MODE keyword (I64 only), 2–43
NONE keyword, 2–45
OUTPUT_CONVERSION keyword, 2–44
OVERFLOW keyword, 2–44
POWER keyword, 2–44
UNDERFLOW keyword, 2–45

CHF
See Condition-Handling Facility (CHF);

Condition-handler routines
$CHFDEF library module

in FORSYSDEF, 14–11, 14–13
C language

See also Argument passing; Language
interfaces

argument passing with HP Fortran
examples, 10–55, 10–59, 10–62

calling between HP Fortran and C, 10–16
to 10–21, 10–49

compiling programs, 10–49
example array passing, 10–62

C language (cont’d)
example of function call by HP Fortran,

10–55, 10–59, 10–62
handling arrays, 10–61

Close operations
CLOSE statement, 6–4, 6–28
closing a file using RMS, 11–19

CLOSE statement, 6–4, 6–28
See also LRM

CMPLX intrinsic function
See also LRM
qualifier controlling size returned, 2–76

$CODE$ program section
use and attributes, 13–2

Code generation
for specific Alpha processor generation,

5–60
Code hoisting

in divide operations, 5–61
in optimization, 5–48

COM file type, 13–14
Command line

See also Compiler options; FORTRAN
command; LINK command; DEBUG
command; DEFINE command;
DEASSIGN command

abbreviating list of input files, 2–3
abbreviating qualifier names and

keywords, 2–18
consistent use of qualifiers for multiple

compilations, 2–5
differences from Compaq Fortran 77 for

OpenVMS VAX Systems, B–19 to
B–23

specifying multiple keywords for a
qualifier, 2–18

Command procedures
returning status values to, 3–12
to measure run-time performance, 5–13

Comment lines
See also LRM
D in column 1 (/D_LINES), 2–49

Common blocks
See also LRM
accessing variables in debugger, 4–15

Index–6

Common blocks (cont’d)
alignment of data in, 5–22
causes of misalignment, 5–18
changing program section attributes,

13–2
installed

creation, installation, and use, 13–5
to 13–9

synchronizing access, 13–9 to 13–10
order of data in, 5–22
program section (PSECT) attributes,

13–6
qualifiers controlling alignment, 5–26
shared interprocess

example, F–8
use of VOLATILE statement, 13–4

Common Data Dictionary
See CDD; CDDL

COMMON statement
See also LRM; Common block
and data-flow and split lifetime analysis,

5–49
causes of misalignment, 5–18
data alignment, 2–27, 5–26

Common subexpression elimination, 5–43
Communications, network task-to-task,

13–13 to 13–15
Compaq Extended Math Library

See CXML
Compaq Fortran 77

compiler diagnostic detection differences,
B–14

for OpenVMS Alpha systems
argument passing, 10–44
calling between HP Fortran, 10–44

to 10–49
I/O to same unit number, 10–49
passing aligned data, 10–48
passing common block values, 10–48
passing pointers, 10–45
passing same size data, 10–48

for OpenVMS I64 and Alpha systems
compiler detection differences, B–14
language features not supported, B–6

for OpenVMS VAX systems

Compaq Fortran 77
for OpenVMS VAX systems (cont’d)

compatibility, B–19 to B–26
equivalent record types, B–24
floating-point format differences, B–8
FORTRAN command qualifier, 2–88
language features not supported, B–6
porting data, B–24
VAX H_float representation, B–26

other platforms
language compatibility (summary),

B–1
record type portability, 6–11
request Fortran 77 compiler (/OLD_F77),

2–68
Compaq Fortran 77 OpenVMS Alpha

systems
mixed language example, 10–46

Compatibility
See also LRM
DO loop minimum iteration count

(/NOF77), 2–53
OPEN statement specifier defaults

(/NOF77), 2–53
PARAMETER syntax (/ASSUME), 2–37
request Compaq Fortran 77 compiler

(/OLD_F77), 2–68
translated images

FORTRAN command, 2–88
LINK command, 3–3, 3–5

unformatted files record length unit,
RECL (/ASSUME), 2–37

with Compaq Fortran 77 for OpenVMS
Alpha Systems
command line, B–19 to B–23
feature summary, B–1
I/O compatibility, 10–49
language features, B–4, B–6, B–9
request Fortran 77 compiler

(/OLD_F77), 2–68
with Compaq Fortran 77 for OpenVMS

VAX systems
architectural differences, B–8

with Compaq Fortran 77 for OpenVMS
VAX Systems

Index–7

Compatibility
with Compaq Fortran 77 for OpenVMS

VAX Systems (cont’d)
command line, B–19 to B–23
converting data, 9–3
feature summary, B–1
interpretation differences, B–13
language features, B–4, B–6, B–9
porting data, B–24
record types, 6–11
translated images, B–24
/VMS qualifier, 2–88

with Compaq Visual Fortran (CVF)
feature summary, B–1

with HP Fortran for Tru64 UNIX systems
feature summary, B–1
record types, 6–11

with HP Fortran on other platforms, B–1
Compiler

See also FORTRAN command
assumptions (/ASSUME), 2–35
coding restrictions summary of, 2–101
data format assumptions (/CONVERT),

2–45
data format assumptions (/FLOAT), 2–54
data porting assumptions, 2–45
default file names, 6–18
effect of directives on performance, 5–63
effect of optimization level on compilation

time and object file size, 5–40
functions, 2–1 to 2–2
input to linker, 2–1 to 2–2
limits, 2–101
messages issued by

compiler-fatal messages, C–4
general description, 2–102
limiting, 2–52
source program messages, C–2 to

C–4
process memory size, 1–3
process open file limit, 1–3
request Compaq Fortran 77 compiler

(/OLD_F77), 2–68
request threaded run-time execution,

2–78

Compiler (cont’d)
using latest version for run-time

efficiency, 5–1
Compiler directives, 5–63

See also LRM
cDEC$ ALIAS, 10–15
cDEC$ ATTRIBUTES, 10–15
cDEC$ OPTIONS directive, 2–31
cDEC$ PSECT, 13–2
OPTIONS statement, 2–18, 9–13

Compiler options
See also FORTRAN command
accuracy

checking overflow, bounds, underflow
(/CHECK), 2–42

dummy variable use (/ASSUME),
2–35

floating-point calculations
(/ASSUME), 2–36

floating-point format (/FLOAT), 2–54
handling of single-precision constants

(/ASSUME), 2–38
IEEE exception handling (/IEEE_

MODE), 2–58
IEEE rounding mode (/ROUNDING_

MODE), 2–79
math routines used (/MATH_

LIBRARY), 2–65
REAL and COMPLEX declarations

(/REAL_SIZE), 2–76
set multiple qualifiers (/FAST), 2–53
size of DOUBLE PRECISION

declarations (/DOUBLE_SIZE),
2–51

Alpha processor code generation
(/ARCHITECTURE), 2–33

arguments
case sensitivity of external names

(/NAMES), 2–67
character constant actual arguments,

2–40
dummy variable use (/ASSUME),

2–35
code generation for Alpha processor

(/ARCHITECTURE), 2–33

Index–8

Compiler options (cont’d)
Compaq Fortran 77 for OpenVMS VAX

Systems specific, B–22
compatibility

Compaq Fortran 77 compiler
(/OLD_F77), 2–68

Compaq Fortran 77 for OpenVMS
VAX Systems (/VMS), 2–88

data alignment errors, 2–27
dummy arguments (/ASSUME), 2–38
floating-point constants (/ASSUME),

2–38
FORTRAN 66 processing (/F77),

2–53
Fortran 90 standard conformance

(/STANDARD), 2–84
Fortran 95 standard conformance

(/STANDARD), 2–84
integer constants (/ASSUME), 2–39
pad source lines with spaces

(/PAD_SOURCE), 2–76
PARAMETER syntax (/ASSUME),

2–37
requesting compiler diagnostics

(/WARNINGS), 2–89
translated images (/TIE), 2–88
unformatted files record length unit,

RECL (/ASSUME), 2–37
compatibility with Compaq Fortran 77 for

OpenVMS VAX Systems, B–19 to
B–23

data
alignment (/ALIGNMENT), 2–27
automatic storage (/AUTOMATIC),

2–78
DOUBLE PRECISION declaration

size (/DOUBLE_SIZE), 2–51
floating-point constants (/ASSUME),

2–38
IEEE exception handling (/IEEE_

MODE), 2–58
IEEE floating-point value of -0.0

(/ASSUME), 2–39
IEEE rounding mode (/ROUNDING_

MODE), 2–79

Compiler options
data (cont’d)

INTEGER and LOGICAL declaration
size (/INTEGER_SIZE), 2–62

integer constants (/ASSUME), 2–39
memory floating-point data type

(/FLOAT), 2–54
REAL and COMPLEX declaration

size (/REAL_SIZE), 2–76
recursive procedures (/RECURSIVE),

2–78
shared memory granularity

(/GRANULARITY), 2–57
unformatted file data types

(/CONVERT), 2–45
unformatted files record length unit,

RECL (/ASSUME), 2–37
debugging

fixed-form source (/D_LINES), 2–49
/OPTIMIZE, 2–68
suggested /OPTIMIZE use, 2–50
symbol table and traceback

(/DEBUG), 2–49
files

directory search for include or module
files (/INCLUDE), 2–60

directory to place module files, 2–67
DML preprocessing (/DML), 2–51
locating and placing include files,

2–8
object file (/OBJECT), 2–68
requesting analysis file (/ANALYSIS_

DATA), 2–31
requesting diagnostic file

(/DIAGNOSTICS), 2–50
request listing file (/LIST), 2–63
specify text library file (/LIBRARY),

2–63
using module (F90$MOD) files, 2–5

fixed-form source
D in column 1 (/D_LINES), 2–49
pad source lines with spaces

(/PAD_SOURCE), 2–76
source line length (/EXTEND_

SOURCE), 2–53

Index–9

Compiler options
fixed-form source (cont’d)

specify source form (/SOURCE_
FORM), 2–84

functional groups of qualifiers, 2–24
listing file

controlling contents of (/SHOW),
2–83

object code listing (/MACHINE_
CODE), 2–65

request listing file (/LIST), 2–63
messages

accurate reporting of exceptions
(/SYNCHRONOUS_
EXCEPTIONS), 2–86

changing severity of (/SEVERITY),
2–82

limiting (/ERROR_LIMIT qualifier),
2–52

requesting additional (/WARNINGS),
2–89

requesting fewer (/WARNINGS),
2–89

run-time checking (/CHECK), 2–42
standard conformance (/STANDARD),

2–84
not available in Compaq Fortran 77 for

OpenVMS VAX Systems, B–20
object file

name (/OBJECT), 2–68
one or multiple modules in object file

(/SEPARATE_COMPILATION),
2–81

prevent creation of (/NOOBJECT),
2–68

symbol table and traceback
(/DEBUG), 2–49

translated images (/TIE), 2–88
only check for syntax (/SYNTAX_ONLY),

2–87
optimization (/OPTIMIZE), 2–68
output buffer use (/ASSUME), 2–37
pad source lines with spaces (/PAD_

SOURCE), 2–76
performance

Compiler options
performance (cont’d)

alignment (/ALIGNMENT), 2–27
controlling Alpha code generation

(/ARCHITECTURE), 2–33
floating-point calculations

(/ASSUME), 2–36
floating-point format (/FLOAT), 2–54
IEEE exception handling (/IEEE_

MODE), 2–58
INTEGER and LOGICAL defaults

(/INTEGER_SIZE), 2–62
math routines used (/MATH_

LIBRARY), 2–65
optimization (/OPTIMIZE), 2–68
set multiple qualifiers (/FAST), 2–53
summary, 5–4

recursive procedures (/RECURSIVE),
2–78

reentrancy during RTL calls
(/REENTRANCY), 2–78

run-time checking
accurate reporting of exceptions

(/SYNCHRONOUS_
EXCEPTIONS), 2–86

IEEE exception handling (/IEEE_
MODE), 2–58

requesting additional (/CHECK),
2–42

version number (/VERSION), 2–87
Compiler summary

output listing section, 2–114
Compile-time operations, 5–44, 5–45
Compiling C language programs, 10–49
Completion status values

returning to command procedure, 3–12
Complex data types, 2–54, 8–9, 8–15 to

8–18
See also LRM
declarations and qualifiers, 8–10
native representation, 8–15 to 8–18
ranges, 8–4
VAX representation, 8–16 to 8–18

Index–10

COMPLEX declarations
option to control size of, 2–76

Condition-handler routines
See also Condition-Handling Facility

(CHF); Error handling
catchall condition handler, 14–4
checking for arithmetic exceptions,

14–22, 14–24
checking for data alignment traps, 14–23
coding requirements, 14–13
converting signal to return status

LIB$SIG_TO_RET, 14–21
definition of, 14–1
establishing handlers

LIB$ESTABLISH, 14–6 to 14–7
examples of use, 14–24 to 14–27
matching condition values

LIB$MATCH_COND, 14–19
removing handlers

LIB$REVERT, 14–6 to 14–7
returning from a handler, 14–17
return values

SS$_CONTINUE, 14–18
SS$_RESIGNAL, 14–18

signaling exception conditions
LIB$SIGNAL or LIB$STOP, 14–7 to

14–9
terminating handling for signals

LIB$SIG_TO_STOP, 14–22
traceback condition handler, 14–4
unwinding the call stack

SYS$UNWIND, 14–18 to 14–19
user written, 14–12 to 14–19

use of variables, 14–17
values and symbols passed, 14–9 to

14–12
Condition-Handling Facility (CHF), 14–2

See also Condition-handler routines
default condition handlers, 14–4 to 14–5
overview, 14–3
use of call stack, 14–2

Condition signals
changing to return status

LIB$SIG_TO_RET, 14–21

Condition symbols, Fortran
summary of, 7–8 to 7–14

Constant operation
See Compile-time operations

Constants
See also LRM
alternate PARAMETER syntax

(/ASSUME), 2–37
character actual arguments, 2–40
floating-point

double precision, 2–38
maximum size, 2–102
ranges, 8–2 to 8–5

CONTAINS statement, 10–4
See also LRM

Continuation lines
See also LRM
maximum allowed, 2–102

CONTINUE command (DCL), 3–11
/CONVERT qualifier, 2–45, 9–5, 9–14

BIG_ENDIAN keyword, 2–46
CRAY keyword, 2–46
FDX keyword, 2–46
FGX keyword, 2–47
IBM keyword, 2–47
LITTLE_ENDIAN keyword, 2–47
NATIVE keyword, 2–47
VAXD keyword, 2–48
VAXG keyword, 2–48

CONVERT specifier, 6–24, 9–4
See also LRM

Cross-reference information
linking

/CROSS_REFERENCE qualifier, 3–3
Ctrl/C

handling
example routine, 10–43, F–3

handling routine, 3–12
interrupting interactive program

execution, 3–11 to 3–12
Ctrl/Y

interrupting interactive program
execution, 3–11 to 3–12

Index–11

CVT$CONVERT_FLOAT
example use, B–25

CXML, 15–1 to 15–5
example program, 15–4
groups of routines, 15–2
linking, 15–3
types of libraries provided, 15–3

CXML library
for efficient run-time performance, 5–2

D
D, in column 1

qualifier controlling debugging indicator,
2–49

Data
See also Data types; Files; I/O; LRM
alignment, 2–27

checking for unaligned data, 5–21
definition, 5–17
detecting unaligned data, 2–90, 4–27
effect of FORTRAN command

qualifiers, 5–26
effect of statements, 5–22
placing declaration statements to

avoid unaligned data, 5–22
unaligned arguments, 5–22

big endian
definition, 9–2
numeric formats, 9–3 to 9–6
unformatted file formats, 2–45

comparison of formatted and unformatted,
6–5

COMPLEX
setting default lengths, 2–76

converting unformatted files, 2–45, 9–2 to
9–15

DOUBLE PRECISION
setting default lengths, 2–51

equivalent types for C and HP Fortran,
10–53

exchanging
using mailboxes (SYS$CREMBX),

13–10 to 13–12

Data
exchanging (cont’d)

using network task-to-task
communications, 13–13 to 13–15

floating-point formats used in memory,
2–54

formats for unformatted files, 2–45, 9–3
to 9–6

formatted I/O statements, 6–5
Compaq Fortran 77 differences, B–10

granularity of shared access, 2–57
INTEGER

setting default lengths, 2–62
items in common blocks

controlling alignment, 2–27, 5–22
items in derived-type data

controlling alignment, 2–27, 5–22
items in record structures

controlling alignment, 2–27, 5–22
list-directed I/O

Compaq Fortran 77 differences, B–11
statements, 6–6

little endian
definition, 9–2

LOGICAL
setting default lengths, 2–62

namelist I/O statements, 6–6
Compaq Fortran 77 differences, B–10

nonnative numeric formats, 9–3 to 9–6
nonnative VAX H_float formats, B–26
porting between HP Fortran and Compaq

Fortran 77 for OpenVMS VAX
Systems, B–24

REAL
setting default lengths, 2–76

representation, 8–1 to 8–24
shared memory access, 2–57, 13–4
sharing

in files, 6–32 to 6–34
in installed common areas, 13–8 to

13–9
in shareable image libraries, 13–4 to

13–5
using global pagefile section, F–8 to

F–11

Index–12

Data (cont’d)
size and handling

qualifiers for DOUBLE PRECISION
declarations, 2–51, 2–77

qualifiers for INTEGER and
LOGICAL declarations, 2–62

qualifiers for REAL and COMPLEX
declarations, 2–76

storage (automatic or static), 2–78
stored by HP Fortran, 8–1 to 8–24
translation of formatted, 6–6
unformatted I/O statements, 6–6
use of VOLATILE statement, 13–4
VAX floating-point formats, 9–3 to 9–6
zero-extended and sign-extended values,

10–13
$DATA$ program section

use and attributes, 13–2
Data file

advancing and nonadvancing I/O, 6–36
big endian

porting notes, 9–15
unformatted numeric formats, 9–3 to

9–6
characteristics, 6–7 to 6–14
CLOSE statement, 6–28
comparison of formatted and unformatted,

6–5
converting unformatted files, 9–2 to 9–15

limitations, 9–3
efficient run-time performance, 5–33
handling I/O errors, 7–4
I/O unit, 6–2
INQUIRE statement, 6–25
internal, 6–9
nonnative

VAX H_float format, B–26
obtaining file characteristics (INQUIRE

statement), 6–25
opening using

OPEN statement, 6–15 to 6–25
preconnected files, 6–15
SYS$OPEN, 11–22, 11–33
USEROPEN routine, 11–21

OPEN statement, 6–15 to 6–25

Data file (cont’d)
organization, 6–7
RECL units for unformatted files, 2–37
record

I/O statements, 6–29
position, 6–35
transfer, 6–37
types, 6–10

scratch, 6–9
unformatted nonnative numeric formats,

9–3 to 9–15
VAX floating-point formats, 9–3 to 9–6

Data-flow and split lifetime analysis, 5–48
to 5–50

DATA statement
See also LRM
and value propagation, 5–45

Data structures
See Derived-type data; Records; RMS data

structures; Structures
Data types

See also Floating-point data types; Integer
data type; Logical data type; LRM

alignment of, 2–27, 5–17 to 5–28
Alpha IEEE X_float representation

REAL*16, 8–15
big endian

definition, 9–2
unformatted file formats, 2–45, 9–3

to 9–6
character representation, 8–23
common block handling between HP

Fortran and C, 10–63
comparison of VAX and Alpha

floating-point formats, B–24
COMPLEX

representation, 8–9, 8–15
setting default lengths, 2–76

derived-type data alignment, 5–24
differences between HP Fortran and C,

10–54
differences between HP Fortran and

Compaq Fortran 77 for OpenVMS
VAX Systems, B–24

DOUBLE PRECISION declarations

Index–13

Data types
DOUBLE PRECISION declarations

(cont’d)
qualifiers controlling size, 2–51, 2–77

equivalent in C and HP Fortran, 10–53
exceptional floating-point numbers, 8–21
for efficient run-time performance, 5–38
formats for unformatted files, 2–45, 9–3

to 9–6
Hollerith representation, 8–24
IEEE S_float representation

COMPLEX*8, 8–15
REAL*4, 8–11

IEEE T_float representation
COMPLEX*16, 8–16
REAL*8, 8–13

IEEE X_float representation
COMPLEX*32, 8–18

INTEGER
representation, 8–5 to 8–7
setting default lengths, 2–62

little endian
definition, 9–2
unformatted file formats, 2–45, 9–3

to 9–6
LOGICAL

representation, 8–7
setting default lengths, 2–62

methods of using nonnative formats, 9–7
mixed operations and run-time

performance, 5–38
native data representation, 8–1 to 8–24
native IEEE floating-point representation,

8–9 to 8–17
nonnative

formats for unformatted file
conversion, 9–3 to 9–6

VAX H_float representation, B–26
OpenVMS calling standard, 10–32
ranges

denormalized native floating-point
data, 8–3

native numeric types, 8–2 to 8–5
VAX floating-point types, 8–12 to

8–14
REAL

Data types
REAL (cont’d)

representation, 8–9 to 8–15
setting default lengths, 2–76

sizes for efficient run-time performance,
5–38

VAX D_float representation
COMPLEX*16, 8–18
REAL*8, 8–14

VAX F_float representation
COMPLEX*8, 8–16
REAL*4, 8–12

VAX G_float representation
COMPLEX*16, 8–18
REAL*8, 8–13

VAX H_float representation, B–26
equivalent on Alpha systems, B–8

Date and time control block
XABDAT (RMS), 11–13

DBG$PROCESS, 4–3
Dead store elimination, 5–45
Deallocating virtual memory

LIB$FREE_VM, 10–27
DEASSIGN command (DCL), D–1
DEBUG command, 3–11
Debugger

accessing
array variables, 4–17
common block variables, 4–15
derived-type variables, 4–16
record structure variables, 4–16
variables in modules, 4–18

breakpoints, 4–6
character-cell interface

line mode, 4–4
screen mode, 4–4

commands
call, 4–6
changing values, 4–6
controlling execution, 4–6
deposit, 4–6
displaying source lines, 4–6
displaying values, 4–6
examine, 4–6
exit, 4–6

Index–14

Debugger
commands (cont’d)

for breakpoints, 4–6
for kept debugger, 4–8
for tracepoints, 4–7
for watchpoints, 4–7
go, 4–6
help, 4–6
spawn, 4–6
step, 4–6
stop, 4–6
type, 4–6
used often, 4–6

command summary, 4–18 to 4–24
compiler qualifier, 2–49
debugging configuration, 4–3
detecting an exception, 4–25
detecting unaligned data, 4–27
displaying

online help, 4–6
values, 4–6

examining variables, 4–15
executing DCL commands, 4–6
exiting, 4–8
getting started, 4–1
HP Fortran support, 4–8
invoking, 3–11, 4–4
/KEEP qualifier, 4–5
kept debugger, 4–5
locating an exception, 4–25
locating unaligned data, 4–27
logical names, 4–3
Motif windowing interface, 4–3
restarting, 4–8
sample FORTRAN command, 1–10, 4–2
sample session, 4–9
windowing interface, 4–3

Debugging statement indicator
in fixed-form source code, 2–49

/DEBUG qualifier, 3–13, 3–14
ALL keyword, 2–49
NONE keyword, 2–50
on FORTRAN command, 2–49 to 2–50,

4–2
on LINK command, 3–3, 3–13 to 3–16,

4–2

/DEBUG qualifier (cont’d)
on RUN command, 3–11
SYMBOLS keyword, 2–49
TRACEBACK keyword, 2–49

Declarations
See also LRM
misalignment and COMMON,

STRUCTURE, TYPE statements,
5–18

DECnet
using to share and exchange data, 13–13

to 13–15
DECwindows Motif

windowing interface to the OpenVMS
Debugger, 1–10

Default
file names, 6–18
logical I/O unit names, 6–17 to 6–19

DEFAULTFILE specifier, 6–15, 6–23
See also LRM

DEFINE command (DCL), D–1
DEFINE FILE statement, 6–5

See also LRM
DELETE statement, 6–5

See also LRM
DELIM specifier, 6–24

See also LRM
Denormalized numbers (IEEE), 8–20

double-precision range, 8–3
exponent value of, 8–10
/IEEE_MODE qualifier, 2–58
single-precision range, 8–3
S_float range, 8–3
T_float range, 8–3
X_float range (IEEE Alpha), 8–15

Derived-type data
See also LRM
accessing variables in debugger, 4–16
causes of misalignment, 5–18
controlling alignment of multiple data

items, 5–22, 5–24
data alignment, 2–27
order of members, 5–19, 5–20, 5–24
qualifiers controlling alignment, 5–18,

5–26

Index–15

Derived-type data (cont’d)
SEQUENCE statement, 5–19, 5–24,

5–27, 10–58
%DESCR function, 10–12

See also Argument passing
Descriptor

array format, 10–10, 10–11
character, 10–40
HP Fortran built-in functions, 10–11
memory allocation, 10–24
types of arguments generating, 10–24
used for different argument types, 10–6

DIA file type, 2–50
Diagnostic file

created by FORTRAN command, 2–50
Diagnostic Messages

See Messages; Warning messages
/DIAGNOSTICS qualifier, 2–50
DICTIONARY parameter (/SHOW), 2–83
/DICTIONARY statement

using for CDD/Repository, 2–97
Differences

between OpenVMS I64 and OpenVMS
Alpha, A–1 to A–13

Direct access, 6–31
Direct access file

RECL values, 5–36
Direct access mode

See also Relative file
relative files, 6–8
requirements for sequential files, 6–11

Directives
See LRM; OPTIONS statement; cDEC$
cDEC$, 5–63
cDEC$ ALIAS, 10–15
cDEC$ ATTRIBUTES, 10–15, 10–16

ADDRESS64, 10–16
ALIAS, 10–16
C, 10–16
REFERENCE, 10–16
STRUCT, 10–16
VALUE, 10–16

related to performance, 5–63

Directory
application of defaults, 6–19 to 6–22
default for OPEN statement, 6–19
effect of DEFAULTFILE specifier, 6–19
I/O statements default use, 6–16 to 6–20
in I/O statements, 6–19 to 6–22
OPEN statement specifiers, 6–19, 6–23
searched for module and include files,

2–5 to 2–13, 2–60
searched for text library files, 2–9

Directory entries
system services affecting

list of, 11–21
Disk space allocation

SYS$EXTEND (RMS), 11–21
DISPOSE specifier, 6–23, 6–25

See also LRM
DML

See Data Manipulation Language (DML)
DML (Data Manipulation Language), 2–51
/DML qualifier, 2–51
Documentation

sending comments to HP, xxvii
DO loops

See also LRM
blocking optimization, 2–70, 2–72
distribution optimization, 2–70, 2–72
fusion optimization, 2–70, 2–72
interchange optimization, 2–70, 2–72
limiting loop unrolling, 5–50
outer loop unrolling optimization, 2–70,

2–72
qualifier controlling minimum iteration

count (/NOF77), 2–53
scalar replacement optimization, 2–70,

2–72
software pipelining optimization, 2–70,

2–73, 5–53, 5–55
transformation optimizations, 2–70, 2–72,

5–54
use for efficient run-time performance,

5–40
DO statement

See also LRM
nesting limit, 2–102

Index–16

Dot product operation
and /ASSUME=NOACCURACY_

SENSITIVE qualifier, 5–60
DOUBLE PRECISION declarations

option to control size of, 2–51
qualifiers to control size of, 2–77

/DOUBLE_SIZE qualifier, 2–51
Dummy arguments, 10–2, 13–4

See also LRM
and accuracy, 5–61
and implied-DO loop collapsing, 5–37
qualifier for aliasing, 2–35, 5–61

DXML
See CXML

D_float data
See Floating-point data types

/D_LINES qualifier, 2–49

E
Edit descriptors

See LRM
END branch specifier, 6–29, 6–36, 7–1, 7–5

See also LRM
ENDFILE statement, 6–4, 6–35

See also LRM
Endian

big and little types, 9–2
END statement, 3–13

effect on program execution, 3–11
when not to use, 3–12

Entry point
main, 3–10
output listing information, 2–112

ENTRY statement
See LRM

EOR branch specifier, 6–36, 7–5
See also LRM

Equivalenced structures
in data-flow and split lifetime analysis,

5–49
EQUIVALENCE statement

See also LRM; Program section
and data alignment, 5–18

EQUIVALENCE statement (cont’d)
and implied-DO loop collapsing, 5–37
causing data spanning natural

boundaries, 5–19
causing unaligned data, 5–19, 5–26
preventing implied-DO loop collapsing,

5–37
preventing optimizations, 5–49

ERR branch specifier, 6–29, 7–1, 7–5
See also LRM
example, 7–7

Error handling
See also END; EOR; ERR; IOSTAT;

Run-time messages
arithmetic exception handling, 2–44,

2–58
condition handlers, 7–4, 14–1 to 14–27
list of run-time errors (numeric order),

7–8 to 7–14
obtaining secondary status codes, 7–5
processing performed by HP Fortran RTL,

7–2 to 7–14
run-time error explanations, C–5 to C–24
user controls in I/O statements, 6–23,

6–29, 7–4, 7–6
See also LRM
END, EOR, ERR, and IOSTAT

specifiers, 6–29, 7–1
Error-related command qualifiers

FORTRAN, LINK, RUN (DCL)
summary, 3–13

Errors
See also Error handling; Messages;

Condition-handler routines
compiler, 2–102

See also Messages
effect on linker, 3–10
/ERROR_LIMIT qualifier, 2–52
fatal, C–4
format, C–1
severity, C–2
source messages, C–2

linker, 3–10
operating system, xxvii, 7–5

Index–17

Errors (cont’d)
run-time system, 7–1 to 7–14, C–5 to

C–24
format, 7–3
handling, 7–4
requesting precise reporting, 2–86
requesting traceback information

(FORTRAN), 2–49
requesting traceback information

(LINK), 3–7
severity, 7–3
symbols, 7–6
using debugger to locate, 4–1

/ERROR_LIMIT qualifier, 2–52
ERRSNS (compatibility)

example use, F–12, F–16
obtaining secondary status codes, 7–5

Escape sequences, B–11
Event handling

See Condition-handler routines
Exceptional IEEE floating-point values,

2–43, 8–19
Exception condition

See also Condition-handler routines; Error
handling

common when using indexed files, 12–4
to 12–10

definition, 14–1
Exception handling

See Arithmetic exception handling
/EXECUTABLE option (LINK), 3–3, 3–4
Executable programs

See also Program
creating, 1–6, 3–1
effect of optimization level on size, 5–40
naming, 3–4
running, 3–10

Execution
interrupting execution of program, 3–11

to 3–12
example of handling Ctrl/C, 10–43,

F–3

EXE file type, 3–2
EXIT command (DCL), 3–11
EXIT system subroutine, 3–12
Expanded String Area (ESA)

RMS control structure, 11–24, 11–25
Explicit interface

See also LRM
and array descriptors, 10–10
calling non-Fortran subprograms, 10–3
passing arrays, 10–7, 10–8, 10–10
passing pointers, 10–9, 10–10, 10–59
procedure interface block, 10–5
types of subprograms, 10–3
when calling C subprograms, 10–10

Expressions
See also LRM
parentheses in

maximum allowed, 2–102
Extended Attributes Block (XAB)

general description of use, 11–13 to 11–15
initialized after open, 11–25
kinds of XABs

listing of, 11–13
EXTENDSIZE specifier, 6–24
/EXTEND_SOURCE qualifier, 2–53
Extensions

See also LRM
compatibility with Compaq Fortran 77,

B–6
External names

case-sensitivity, 10–15
cDEC$ ALIAS directive, 10–15, 10–50
controlling with cDEC$ directives, 10–15,

10–16
in C, 10–50
passed between C and HP Fortran,

10–15, 10–16, 10–50
specifying alias names, 10–15

External procedures
name passing rule, 10–50
references and optimization, 5–49

EXTERNAL statement, 10–4
See also LRM
for C language functions, 10–50

Index–18

EXTERNAL statement (cont’d)
qualifier controlling compatibility

(/NOF77), 2–53
when to use for FOR$RAB function, 11–9

F
/F77 qualifier, 2–53
F90 command

See FORTRAN command
F90 file type, 2–3
FAB

See File Access Block (FAB)
$FABDEF library module

in FORSYSDEF, 11–6
/FAST qualifier, 2–53

effect on
/ALIGNMENT=COMMONS=keyword,
2–31, 5–26

FDML
See Data Manipulation Language (DML)

Feedback on documentation
sending comments to HP, xxvii

F file type, 2–3
Field descriptors

See LRM
Fields

in common blocks
causes of misalignment, 5–18
controlling alignment, 5–18, 5–26

in derived-type data and record structures
causes of misalignment, 5–18
controlling alignment, 5–18, 5–22,

5–26
File access, remote, 13–13 to 13–14
File Access Block (FAB)

fields for use by USEROPEN, 11–25 to
11–29

general description, 11–6 to 11–8
symbol naming conventions, 11–6 to 11–8

File format
See also Record type; File organization;

Formatted data; Unformatted files

File handling, 6–4, 6–15 to 6–28
examples of, F–16 to F–17

File header characteristics
control block for

XABFHC (RMS), 11–13
File name

See also File specifications
application of defaults, 6–19 to 6–22
compiler defaults, 6–18
I/O statements default use, 6–16 to 6–20
in I/O statements, 6–15 to 6–22
OPEN statement specifiers, 6–19, 6–23
using logical names to specify, 6–15

File organization, 6–7
See also Sequential files; Relative files
available record types, 6–10
available storage media, 6–8
default, 6–7
I/O statement limitations, 6–5
I/O statements for, 6–5
obtaining, 6–8

INQUIRE statement, 6–25
overview, 6–7 to 6–9
stored in file header, 6–8

Files
assigning to logical units

default names, 6–15, 6–17 to 6–19
preconnected, 6–15, 6–16
summary of methods, 6–15 to 6–16
using logical name, 6–15, 6–18, 6–19
using OPEN statement, 6–15, 6–19

to 6–25
closing, 6–28

using RMS, 11–19
compiler source checking only (no object

file) (FORTRAN), 2–15
compiler source listing (FORTRAN), 2–15
compiling multiple input files

(FORTRAN), 2–16
controlling include file searching, 2–60
created by FORTRAN command, 2–14
created by LINK command, 3–4, 3–6
external, definition, 6–3
input to FORTRAN command, 2–3
input to LINK command, 3–7

Index–19

Files (cont’d)
inquiry, 6–25 to 6–28
internal, 6–9
naming object file (FORTRAN), 2–15
opening, 6–2 to 6–3, 6–15 to 6–25

using RMS, 11–18
organization and characteristics, 6–7
preconnected, 6–16

Compaq Fortran 77 differences, B–10
relative organization, 6–8
RMS journaling, 6–39
RMS services

list of, 11–21
scratch, 6–10
sequential organization, 6–8
specifying file specification, 6–19

example program, 7–7
File sharing, 6–32 to 6–34

accessing remote files, 13–13 to 13–14
OPEN statement, SHARED specifier,

6–32
RMS file-sharing capability, 6–32 to 6–34

example, F–12 to F–14
shareable image libraries, 13–5

File specifications
defining logical names for, 6–16 to 6–17
general DCL rules (FORTRAN command),

2–3
OPEN statement specifiers, 6–19 to 6–22
use in INQUIRE statement, 6–25
use in OPEN statements, 6–15, 6–19 to

6–22
FILE specifier, 6–15, 6–23

See also LRM
example, 7–7

File type
EXE, 3–2
executable program, 3–2
F, 2–3
F90, 2–3
F90$MOD, 2–5
FOR, 2–3
for listing files, 2–15
for module files, 2–5
for object files, 2–14

File type (cont’d)
LIS, 2–15
OBJ, 2–14
OLB, 3–7
OPT, 3–9
recognized by compiler, 2–3
STB, 3–9
TLB, 2–63

%FILL
example use, F–6

FIND statement, 6–5
See also LRM

Fixed-length records, 6–11
data transferred by I/O statements, 6–37
use for optimal performance, 5–36

FLOAT function
example use, 10–27

Floating-point data types
accuracy-sensitive optimization, 2–36
Alpha IEEE X_float, 8–15
arithmetic exception handling, 2–44,

2–58
array out-of-bounds checking, 2–42
comparison of VAX and Alpha types,

B–24
constants

request double precision, 2–38
controlling size of

COMPLEX declarations, 2–76
DOUBLE PRECISION declarations,

2–51
REAL declarations, 2–76

controlling type in unformatted files,
2–45

conversion, 9–3 to 9–15
limitations, 9–3

converting H_float data, B–25
CRAY big endian formats, 9–5
CVT$CONVERT_FLOAT RTL routine,

B–25
declarations and qualifiers, 8–10
declaring, 8–10

See also LRM
denormal values, 8–20

Index–20

Floating-point data types (cont’d)
differences between Compaq Fortran 77

for OpenVMS VAX Systems and HP
Fortran, B–24

digits of precision, 8–11 to 8–15
D_float

differences between VAX and Alpha
systems, 2–55

endian (big and little), 9–2
endian order of native formats, 8–1
exceptional values, 2–58, 8–19 to 8–23
formats used in memory, 2–54
handling of certain exponentiation

expressions, 2–44
handling of minus zero (IEEE), 2–39
handling of single-precision constants,

2–38
IBM big endian formats, 9–5
IEEE

big endian formats (conversion), 9–5
controlling exceptions (/IEEE_MODE),

2–58
denormalized values, 8–20
native little endian formats, 8–1
reporting exceptional values, 2–43
rounding modes, 2–79
selecting memory format (/FLOAT),

2–54
S_float, 8–9, 9–6
T_float, 8–9, 9–6
X_float, 8–9, 9–6

infinity, 8–20
in memory and on disk, 9–1
math library used, 2–53, 2–65
methods of specifying nonnative formats,

9–7
minus zero use (IEEE), 2–39
NaN values, 8–20

detecting, 8–22
nonnative formats, 9–3 to 9–6
normal and denormalized values of native

formats, 8–3
precision, 8–11 to 8–15
qualifiers controlling size of DOUBLE

PRECISION declarations, 2–77

Floating-point data types (cont’d)
qualifiers related to accuracy, 2–35, 2–38,

2–42, 2–51, 2–53, 2–65, 2–76, 2–79
qualifiers related to exceptions, 2–44
ranges, 8–3, 8–9 to 8–15
reporting exceptional values, 2–43
reporting exceptions more precisely, 2–86
reporting underflow messages, 2–43,

2–45
representation of native IEEE and VAX

formats, 8–9 to 8–18
representation of VAX H_float format,

B–26
representation of zero, 8–20
rounding modes (IEEE), 2–79
selecting memory format, 2–54 to 2–56
selecting optimal, 2–55
setting default length (/DOUBLE_SIZE),

2–51
setting default length (/REAL_SIZE),

2–76
shared memory granularity, 2–57
underflow run-time checking, 2–42
values for constants, 8–3
VAX D_float format, 9–5, 9–6
VAX F_float format, 9–5, 9–6
VAX little endian formats, B–24
zero values, 8–20

FLOAT intrinsic function
See also LRM
qualifier controlling size returned, 2–76

/FLOAT qualifier, 2–54
D_FLOAT keyword, 2–55
G_FLOAT keyword, 2–56
IEEE_FLOAT keyword, 2–56

Flushing data
output record buffering, 6–39

FMT specifier, 6–29
See also LRM

FOR$
prefix for condition symbols

for run-time errors, 7–8 to 7–11
FOR$CONVERT.ext logical name

use with nonnative numeric data, 9–10

Index–21

FOR$CONVERTnnn logical name
use with nonnative numeric data, 9–8

FOR$CONVERT_ext logical name, 9–10
FOR$IOS

prefix for condition symbols
for run-time errors, 7–7, 7–13

FOR$RAB function, 11–8, 11–9
Compaq Fortran 77 for OpenVMS VAX

Systems compatibility, B–5
when to declare EXTERNAL, 11–9

FORALL statement
See also LRM
array optimizations, 5–43

$FORDEF library module
in FORSYSDEF, 7–13, 14–11

FOR file type, 2–3
$FORIOSDEF library module

in FORSYSDEF, 7–7, 7–13
Format descriptors

See LRM
Format groups

nesting limits, 2–102
FORMAT statement

See also LRM
and implied-DO loop collapsing, 5–37

Formatted data, 6–6
and DO loop collapsing, 5–43
and variable format expressions, 5–37
Compaq Fortran 77 differences, B–10
effect on run-time performance, 5–34
I/O statements for, 6–7

Formatted I/O statements, 6–5
See also LRM
Compaq Fortran 77 differences, B–10
controlling format mismatch handling,

2–43
controlling format truncation handling,

2–44
FORM specifier, 6–5 to 6–7, 6–14, 6–23

See also LRM
FORnnn logical name, 6–16, 6–18
FORSYSDEF

$CHFDEF library module, 14–11, 14–13
condition symbol values, 7–13

FORSYSDEF (cont’d)
example of including a module, 7–7
$FABDEF library module, 11–6
$FORDEF library module, 7–13, 14–11
$FORIOSDEF library module, 7–7, 7–13
$LIBDEF library module, 14–11
library search order, 2–9, 2–13
list of library modules, E–1 to E–10
$MTHDEF library module, 14–12
$NAMDEF library module, 11–12
overview of library module contents,

10–30
$RABDEF library module, 11–8
$SSDEF library module, 14–12
symbol naming conventions

PARAMETER declarations, 11–4 to
11–5

use with RMS services, 11–3, 11–4 to
11–5

FORT$LIBRARY, 2–12 to 2–13
Fortran

HP Fortran implementation of
PSECT use and attributes, 13–1 to

13–3
FORTRAN-66

See FORTRAN IV
Fortran 90

Standard, 1–1
and RECL units for unformatted files,

9–15
checking (/STANDARD), 2–84

Fortran 90/95
See also FORTRAN command;

Compatibility; LRM
condition symbols

See FORSYSDEF
logical names

See Logical names
reusing source file code, 1–5
source file contents, 1–4
source form

file type, 1–4
Standard

See also LRM

Index–22

Fortran 90/95
Standard (cont’d)

/ASSUME=DUMMY_ALIASES
qualifier, 2–38, 5–61

statements
See LRM; appropriate statement

name
Fortran 95

Standard, 1–1
and RECL units for unformatted files,

9–15
checking (/STANDARD), 2–84

FORTRAN command, 2–2 to 2–92
See also Compiler options
abbreviating qualifier names and

keywords, 2–18
alignment qualifiers, 5–26
and other software components, 1–8 to

1–12
C language main program

example, 10–49
command qualifiers for efficient run-time

performance, 5–3
comma or plus signs between file names,

2–4
consistent use of qualifiers for multiple

compilations, 2–5
controlling arithmetic exception handling,

2–58
controlling arithmetic exception reporting,

2–42, 2–86
creating module files, 2–5
CXML library for efficient run-time

performance, 5–2
debugging qualifiers, 2–49
directories searched for module and

include files, 2–7 to 2–13, 2–60
directories searched for text library files,

2–9
effect of compiler directives on qualifiers,

2–18, 2–31
effect of file type on source form, 2–3
effect of OPTIONS statement on

qualifiers, 2–18
examples

FORTRAN command
examples (cont’d)

application with modules, 1–8
compiling multiple files, 5–3
for debugging, 1–10
module subprogram, 1–8
multiple source files, 2–16, 5–3
naming object files, 2–15
preventing object file creation, 2–15
requesting additional checking, 2–17
requesting additional optimizations,

2–17
requesting Fortran Standard

conformance checking, 2–17
request listing file, 2–15
single file, 1–5
source checking only, 2–15
using module files, 1–8, 2–7

file type search order, 2–3
for efficient run-time performance, 5–3
format of, 2–2
for translated shared images, B–24
functional groups of qualifiers, 2–24
multiple source files

effect on optimizations, 5–3
one or multiple object files per command

line, 2–4, 5–3
specifying

directory for module files, 2–6
files, 2–2 to 2–16
include files, 2–7 to 2–13
input files, 2–3
library files, 2–4, 2–9 to 2–13, 2–63
listing, 2–14
listing of include file, 2–8, 2–11, 2–13
multiple keywords for a qualifier,

2–18
object files, 2–14
output files, 2–14
source form, 2–3

summary of qualifiers, 2–18 to 2–27
using

include files, 2–7
module files, 2–6, 2–62
multiple FORTRAN commands, 2–4

Index–23

Fortran Data Manipulation Language
See Data Manipulation Language (DML)

FORTRAN IV
/F77 qualifier (FORTRAN), 2–53

FPSR (floating-point status register), 2–43
/FULL qualifier (LINK), 3–3, 3–6
Functions

See also LRM; Intrinsic procedures
C language

invoking, 10–50
declaration statements, 10–2
%DESCR, %LOC, %REF, and %VAL,

10–11
example

C language, 10–55, 10–59, 10–62
declaration, 1–8
interface block in module, 1–7
with module, 1–6
with system service, 10–43

explicit interface, 10–3
output listing information, 2–113
return values, 10–6, 10–23

changing default passing mechanisms,
10–11

passing rules, 10–6, 10–7
passing with HP Fortran, 10–6
with C, 10–51
with Compaq Fortran 77, 10–46

setting return values, 10–2
using function reference to call system

services, 10–30
FUNCTION statement, 10–2

See also LRM
F_float data

See Floating-point data types

G
General directives

See LRM
General-purpose register

See Register usage

Global pagefile section
example use, F–8 to F–11

GOTO statement
See also LRM
computed or assigned

maximum labels allowed, 2–102
Granularity

and unaligned data, 2–57
importance of VOLATILE declarations,

2–57
qualifier controlling warning messages,

2–91
shared memory access, 2–57

/GRANULARITY qualifier, 2–57
BYTE keyword, 2–57
LONGWORD keyword, 2–57
QUADWORD keyword, 2–57

G_float data
See Floating-point data types

/G_FLOATING qualifier (obsolete), 2–56

H
Help (DEBUG)

HELP command, 4–18
Help (online)

FORTRAN command qualifiers, xxvi, 1–2
HP Fortran language, xxvi
HP Fortran release notes, xxv
HP Fortran run-time messages, xxvi,

7–14
operating system messages, xxvii

HELP command
for FORTRAN command, 1–2

Help libraries
displaying linker message explanations,

C–1
displaying run-time message explanations,

C–6
obtaining text from

example of, F–19 to F–20
Hollerith constants

See also LRM
maximum size, 2–102
representation, 8–24

Index–24

HP Fortran
array temporary creation, 5–32
condition symbols

for run-time errors, 7–8 to 7–14
for OpenVMS systems

compatibility, B–1
extensions not supported, B–1

logical names
defaults and use, 6–18 to 6–19
FOR$ACCEPT, FOR$READ,

FOR$PRINT, FOR$TYPE, 6–18
summary of, D–1 to D–3

logical unit numbers, 6–17 to 6–19
online help, xxvi, 7–14
online language help, xxvi
online release notes, xxv
sample main and subprogram, 1–5, 1–6
software patch kits, xxvii
statements

coding restrictions and limits
summary, 2–101

version number
obtaining from command line, 2–87
obtaining from listing file, 2–64
obtaining from object file, 1–11

Web page, xxvii

I
I/O

See also Files; Record I/O; I/O statements
advancing and nonadvancing, 6–36
block mode I/O

example of using RMS, 11–31 to
11–37

choosing optimal record type, 5–36
closing files, 6–28
Compaq Fortran 77 and HP Fortran

compatibility, 10–49
converting unformatted files, 9–2 to 9–15
data formats for unformatted files, 9–2 to

9–6
device and buffer use for efficient run-time

performance, 5–35
eliminating bottlenecks, 5–33

I/O (cont’d)
file operations, 6–16
files and file characteristics, 6–7
flushing data, 6–39
guidelines for efficient run-time

performance, 5–33 to 5–37
logical units, 6–2 to 6–3
obtaining file information, 6–25
output record buffering, 6–39
performance, 5–35
preconnected files, 6–16

Compaq Fortran 77 differences, B–10
reading data using RMS, 11–20
record

access, 6–30
buffer use, 5–35, 6–39
deleting records from a file

(DELETE), 12–4
for internal files, 6–9
general description, 6–37
indexed file record pointers (current

and next), 12–4
operations, 6–29
record operations on indexed files,

12–4 to 12–8
specifiers, 6–29
specifying initial position, 6–35
transfer, 6–37

record-processing RMS services
list of, 11–21

record types, 6–10
comparison with Compaq Fortran 77,

6–11
portability considerations, 6–11

specifying files, 6–19
specifying record length for efficiency,

5–36
summary of statements, 6–3
synchronous

accessing devices using SYS$QIOW,
F–6 to F–8

writing data using RMS, 11–19 to 11–20
I/O statements

See also LRM
advancing and nonadvancing I/O, 6–36

Index–25

I/O statements (cont’d)
auxiliary, 6–5
available for sequential and direct access,

6–7
CLOSE statement, 6–28
default devices, 6–3, 6–17
file connection, 6–4
file operations, 6–16
for indexed files, 6–5
forms of, 6–5
for relative files, 6–5
for sequential files, 6–5
HP Fortran extensions, 6–4
implicit logical I/O unit, 6–16
INQUIRE statement, 6–25
list of, 6–3
OPEN statement

See also OPEN statement
CONVERT specifier, 9–4

OPEN statement interdependencies
file specification, 6–19 to 6–22

preconnected units, 6–3, 6–17
record

access modes, 6–30 to 6–32
input, 6–4
operations, 6–29
output, 6–4
position, 6–4
transfer, 6–37

with formatted, unformatted, list-directed,
and namelist records, 6–7

/I4 qualifier (obsolete), 2–62
I64 and Alpha differences, A–1 to A–13
IEEE

See also Floating-point data types
controlling exceptions (/IEEE_MODE),

2–58
exceptional floating-point numbers, 2–43,

8–21
exception handling, 2–58
floating-point data

exceptional values, 8–19 to 8–23
native, 8–2, 8–9 to 8–17
nonnative big endian, 9–3, 9–5
representation of zero, 8–20

IEEE (cont’d)
nonnative big endian data, 9–3, 9–5
reporting exceptional values, 2–43
rounding modes

floating-point calculations, 2–79
selecting memory floating-point format

(/FLOAT), 2–54
S_float data, 8–10, 8–11

ranges, 8–3
T_float data, 8–10, 8–13

ranges, 8–3
X_float data, 8–10

ranges, 8–3
IEEE, Alpha

X_float data, 8–15
/IEEE_MODE qualifier, 2–58 to 2–60

DENORM_RESULTS keyword, 2–59
FAST keyword, 2–59
UNDERFLOW_TO_ZERO keyword, 2–59

IF statement
See LRM

Image files
creating, 3–1

Image termination, 3–11
Implicit interface

types of subprograms, 10–3
IMPLICIT NONE statement

See also LRM
and /WARNINGS=DECLARATIONS

qualifier, 2–90
Implied-DO loop

and I/O performance, 5–34
collapsing, 5–36, 5–42

INCLUDE files
directory search order, 2–9
including in output listing

/SHOW qualifier, 2–83
locating, 2–7
locating in source libraries, 2–9
specifying directory, 2–8

/INCLUDE qualifier, 2–60
/INCLUDE qualifier (LINK), 3–3, 3–7
INCLUDE statement

See also LRM
and modules, 10–4

Index–26

INCLUDE statement (cont’d)
file nesting limit, 2–102
forms for include files, 2–8
forms for text library modules, 2–9
library modules in text library, 2–93
specifying directories to search, 2–8 to

2–13
text file library search, 2–11
using on OpenVMS systems, 2–7

Indexed sequential (keyed) access, 12–2
Indexed sequential files, 6–9

See also Keyed access mode
creating, 12–2 to 12–4
deleting records, 12–4
exception conditions, 12–4 to 12–10
keyed access, 12–2
reading operations, 12–6 to 12–7
record access, 12–2
record access modes for, 6–30, 12–1
record pointers

next and last, 12–4
record types for, 6–10
RMS pointers, 12–8
sequential access, 12–2
specifying, 6–7
specifying RECL when creating, 6–9
updating records, 12–4
writing operations, 12–4 to 12–6

Infinity values
representation in Alpha floating-point

data, 8–20
Initialization

debugger, 4–5
INITIALSIZE specifier, 6–24
Inline expansion, 5–52

of statement functions and intrinsics,
5–42

subprograms, 2–71, 5–39, 5–52, 5–57
INQUIRE statement, 6–4, 6–8, 6–25 to 6–28

See also LRM
by file name, 6–26
by output item list, 6–27
by unit number, 6–26
Compaq Fortran 77 differences, B–11
default values returned, 6–26

INQUIRE statement (cont’d)
OPENED specifier, 6–26
RECL specifier

qualifier to specify units, 2–37
to an opened file, 9–13

INSTALL command (VMS)
use to install shareable images, 13–4,

13–5
Installed common areas

creation, installation, and use, 13–5 to
13–9

synchronizing access, 13–9 to 13–10
Integer data type

array out-of-bounds checking, 2–42
declarations and qualifiers, 8–5
declaring, 8–5

See also LRM
endian order of native formats, 8–1
methods of specifying the format, 9–7
nonnative formats, 9–3 to 9–6
overflow run-time checking, 2–42
ranges, 8–2, 8–6 to 8–7
representation, 8–6 to 8–7
setting default length, 2–62

/INTEGER_SIZE qualifier, 2–62
Interactive program execution

continuing, 3–11
interrupting, 3–11 to 3–12

Interface block, 10–2
See also LRM
components of, 10–5
declaration statements, 10–2
example, 1–7
for explicit procedure interface, 10–4

INTERFACE statement, 1–7, 10–2, 10–5
See also LRM

Internal file
See also LRM
I/O, 6–9 to 6–10
I/O forms and statements, 6–7

Internal subprograms, 10–4
Interoperability with translated images

FORTRAN command, 2–88, B–24
LINK command, 3–3, 3–5, B–24
summary, B–24

Index–27

Interprocess communication, 13–1 to 13–15
mechanisms supporting, 13–1 to 13–15

Interrupt from terminal user
See Ctrl/C; Ctrl/Y

Intrinsic procedures
See also LRM
argument passing

differences between Compaq Fortran
77 and HP Fortran, B–16

CHAR, B–11
to null-terminate a C string, 10–6

FLOAT, 10–28
FOR$RAB, 11–8, 11–9
for timing program execution, 5–13
inline expansion of, 5–42
ISNAN, 8–22
LIB$ESTABLISH, 14–6
LIB$REVERT, 14–6
qualifier controlling size returned, 2–51,

2–76
qualifiers controlling DOUBLE

PRECISION size returned, 2–77
requesting faster, less accurate versions,

2–65
RESHAPE, 10–62
SIZEOF, 10–28
SQRT, 10–28
SUM, 1–8
UBOUND, 1–8
using array, 5–28
using existing HP Fortran, 5–31
ZEXT, 10–13

IOSTAT specifier, 6–29, 7–1, 7–5, 7–6 to 7–8
See also LRM
example, 7–7

ISHFT intrinsic, 5–44
See also LRM

ISNAN intrinsic, 8–22
See also LRM

Item List control block
XABITM (RMS), 11–13

J
Journaling (RMS), 6–39
Journaling control block

XABJNL (RMS), 11–13

K
Key definition control block

XABKEY (RMS), 11–13
Keyed access mode, 6–32

See also Indexed sequential files
exception handling, 12–9 to 12–10
general discussion, 12–2 to 12–10
indexed files, 6–9

KEYEQ specifier, 6–29
Key fields

primary and alternate
definition, 12–2
discussion of use, 12–2, 12–3, 12–4

KEYGE specifier, 6–29
KEYGT specifier, 6–29
KEYID specifier, 6–29
KEYLE specifier, 6–29
KEYLT specifier, 6–29
KEYNXTNE specifier, 6–29
KEYNXT specifier, 6–29
Keys, primary and alternate

See Key fields
KEY specifier, 6–23, 6–29
Keyword options (command line)

abbreviating, 2–18
specifying multiple, 2–18

Kind type parameter
See also LRM
COMPLEX declarations, 8–10
INTEGER declarations, 8–5
LOGICAL declarations, 8–7
REAL declarations, 8–10

Index–28

L
Labels

See also LRM
in computed or assigned GOTO list

maximum allowed, 2–102
Language compatibility

See Compatibility; Language extensions
Language dialects

HP Fortran compatibility information,
B–1 to B–14

Language extensions
See also LRM
compatibility with Compaq Fortran 77,

B–6
compatibility with Compaq Fortran 77 on

other platforms, B–1
Language features

Compaq Fortran 77 on other platforms
(summary), B–1

Language interface
C and HP Fortran

arrays, 10–61
calling subroutines, 10–53
changing default argument passing

mechanisms, 10–15, 10–55
changing default mechanisms, 10–16
C language main program, 10–49
complex arguments, 10–56
handling common blocks, 10–63
integer arguments, 10–55
invoking a C function from HP

Fortran, 10–50
invoking an HP Fortran subprogram

from C, 10–51
passing arguments between, 10–16

to 10–21, 10–49 to 10–64
using C conventions, 10–18
using FORTRAN command, 10–49

character constant actual arguments,
2–40

Compaq Fortran 77 and HP Fortran
alignment qualifiers, 10–48
common block values, 10–48

Language interface
Compaq Fortran 77 and HP Fortran

(cont’d)
data types to avoid, 10–44
derived-type data, 10–45
example, 10–46
function values, 10–44
I/O compatibility, 10–49
mechanisms, 10–45
passing arguments, 10–44 to 10–49
passing target or pointer data, 10–47
pointer data, 10–45
similarities, 10–6

differences from Compaq Fortran 77 for
OpenVMS VAX Systems, B–4 to
B–24

external names
controlling with cDEC$ directives,

10–15, 10–16
HP Fortran

See also LRM
argument passing rules, 10–6
array descriptor format, 10–10
changing default argument passing

mechanisms, 10–11, 10–15
default argument passing mechanism,

10–6
explicit interface, 10–3, 10–5
passing arguments, 10–2 to 10–9,

10–16 to 10–21
passing arrays, 10–8
passing character arguments, 10–6
passing pointers, 10–9

OpenVMS calling standard, 10–21 to
10–24

passing character data between HP
Fortran and C, 10–6

Language Sensitive Editor
diagnostic file, 2–50

LAPACK routines (Compaq Extended Math
Library), 15–2

LBR$OUTPUT_HELP
example use, F–19

Index–29

Length
DOUBLE PRECISION declarations

qualifiers controlling size, 2–77
source line length

/WARNINGS=TRUNCATED_
SOURCE qualifier, 2–91

source line length (fixed form)
/EXTEND_SOURCE qualifier, 2–53

Length, record
See Fixed-length records; Variable-length

records; Segmented records; Stream
records

LEN specifier, 10–7
See also LRM

Lexical tokens per statement
maximum, 2–102

LIB$DATE_TIME
example use, F–6

LIB$ESTABLISH
Compaq Fortran 77 for OpenVMS VAX

Systems compatibility, B–4
example use, 14–24 to 14–27
general description, 14–6 to 14–7

LIB$FREE_VM
example use, 10–27

LIB$GET_INPUT
example use, F–19

LIB$GET_VM
example use, 10–27

LIB$INIT_TIMER, 5–9 to 5–12
example use, F–18

LIB$MATCH_COND, 14–19
example use, 14–24

LIB$PUT_OUTPUT
example use, F–19

LIB$REVERT
general description, 14–6 to 14–7

LIB$SHOW_TIMER, 5–9 to 5–12
example use, F–18

LIB$SIGNAL
changing to a stop, 14–22
example use, 10–27, F–3, F–12, F–16
general description, 14–7 to 14–9

LIB$SIG_TO_RET, 14–21
LIB$SIG_TO_STOP, 14–22
LIB$STAT_TIMER, 5–9
LIB$STOP

continuing execution after LIB$STOP,
14–18

example use, 10–43, 11–18, 14–24, F–6,
F–8

general description, 14–7 to 14–9
LIB$WAIT

example use, B–25, F–3
$LIBDEF library module

in FORSYSDEF, 14–11
Library

See also Text file libraries
creating and maintaining, 1–11
INCLUDE files, 2–9
obtaining information about, 1–11
search order

during compilation, 2–9 to 2–13
LIBRARY command, 2–95
/LIBRARY qualifier

on FORTRAN command, 2–4, 2–63
on LINK command, 3–3, 3–7

$LINK$ program section
use and attributes, 13–2

LINK command
creating image map file, 3–6
/DEBUG, 3–13, 3–14
/DEBUG and /TRACEBACK qualifiers,

3–7
errors, 3–10
format, 3–1
for translated shared images, B–24
input file qualifiers, 3–7
messages, 3–10
options file

/OPTIONS qualifier, 3–9
shared common area (installed

shareable image), 13–6
shared common area (mapped global

section), F–10
output file qualifiers, 3–3
qualifiers and options file use, 3–1 to 3–9
qualifier summary, 3–2

Index–30

LINK command (cont’d)
sample use with FORTRAN command,

1–6, 1–8
symbol table qualifier, 3–9

Linker
See also LINK command
FORTRAN option controlling

case-sensitive names, 2–67
functions performed by, 3–1
one or multiple modules in object files

(/SEPARATE_COMPILATION), 2–81
options file, 3–9
routines with opposition settings, 5–63

LINPACK benchmark, 5–63
LIS file type, 2–63
List-directed I/O statements, 6–6

See also LRM
Compaq Fortran 77 differences, B–11

Listing file
See also Source code listing
contents, 2–103 to 2–116
controlling lines per page, 2–64
example requesting listing file, 2–15,

2–16
requesting, 2–63

/LIST qualifier, 2–14, 2–63
effect of batch mode, 2–14

$LITERAL$ program section
use and attributes, 13–2

Local processes
sharing and exchanging data, 13–3 to

13–12
%LOC function, 10–13

See also Argument passing
Logical data type

See also LRM
converting nonnative data, 9–15
declarations and qualifiers, 8–5
declaring, 8–7
differences with nonnative formats, 9–15
ranges, 8–8
representation, 8–7
setting default length, 2–62
use of all bits, 4–8

Logical I/O units, 6–2
See also System logical names
connection method

implicitly by system default, 6–17 to
6–19

default Fortran logical unit numbers,
6–17 to 6–19

for preconnected devices, 6–3
INQUIRE statement, 6–25
OPEN statement options, 6–19 to 6–22
summary, 6–15
system unit numbers and names, 6–16 to

6–17
Logical names

See also DEFINE command; DEASSIGN
command; Logical I/O units

associating with file specifications, 6–16
to 6–17

commands for setting and unsetting, D–1
converting nonnative numeric data, 9–8,

9–10
displaying values of, D–1
FOR$ACCEPT, D–3
FOR$ACCEPT, FOR$READ, FOR$PRINT,

FOR$TYPE, 6–18
FOR$CONVERT.ext, 9–10, D–3
FOR$CONVERTnnn, 9–8, D–3
FOR$CONVERT_ext, 9–10
FOR$PRINT, D–3
FOR$READ, D–3
FOR$TYPE, D–3
FORnnn, 6–16, 6–18, D–3
FORT$INCLUDE, D–2
FORT$LIBRARY, D–2
recognized at compile time, D–2
recognized at run time, D–2
setting in LOGIN.COM or setting

system-wide, 1–4
used by OPEN statement, 6–19

Loop control variable
and implied-DO loop collapsing, 5–37

Loops
See also DO loops; Optimization
and register use, 5–47
blocking optimization, 2–70, 2–72

Index–31

Loops (cont’d)
controlling number of times unrolled,

5–57
distribution optimization, 2–70, 2–72
efficient coding suggestions, 5–28, 5–34,

5–36, 5–40
fusion optimization, 2–70, 2–72
interchange optimization, 2–70, 2–72
limiting loop unrolling, 5–50
loop transformation optimizations, 5–53
optimizations for, 5–42, 5–48, 5–50 to

5–57
outer loop unrolling optimization, 2–70,

2–72
scalar replacement optimization, 2–70,

2–72
software pipelining optimization, 2–70,

2–73, 5–53, 5–55
transformation optimizations, 2–70, 2–72,

5–54
Loop transformation, 5–53
Lowercase characters

option controlling case-sensitive names,
2–67

LRM
The acronym LRM in this index refers

to the HP Fortran for OpenVMS
Language Reference Manual

M
Machine code listing

MACRO representation, 2–65
output listing section, 2–105 to 2–111

/MACHINE_CODE qualifier, 2–65
Mailboxes

SYS$CREMBX, 13–10 to 13–12
MAIN option

program transfer address, 3–10
Main program

statements for, 10–2
MAP file type, 3–6
MAP parameter

on LINK command, 3–3, 3–6 to 3–7
/SHOW qualifier (FORTRAN command),

2–83

/MATH_LIBRARY qualifier, 2–65
MAXREC specifier, 6–24

See also LRM
Mechanism array

contents and use, 14–15
Memory

floating-point formats used (/FLOAT),
2–54

for intermediate storage, 5–35
process limits, 1–2
system virtual memory limits, 1–2
very large (64-bit) access, 10–20

Messages
See also Message severity; Warning

messages
compiler-fatal diagnostic messages, C–4
issued by compiler

general description, 2–102
limiting the number, 2–52

linker messages, 3–10
run-time messages, 7–3 to 7–14, C–5 to

C–24
detecting exceptional values, 2–43
displaying online HELP, 7–14
displaying secondary system errors,

7–5
explanations, C–6 to C–24
list, condition symbol order, C–6 to

C–24
list, numeric order, 7–8 to 7–13

source program diagnostic messages, C–2
to C–4

warning and error
/SEVERITY qualifier, 2–82

warning and informational
changing severity to error

(/SEVERITY), 2–82
/STANDARD qualifier, 2–84
/WARNING qualifier, 2–89

Message severity
meaning to compiler, C–2
meaning to linker, 3–10
meaning to run-time system, 7–3

Index–32

Minus zero (IEEE) handling, 2–39
Misaligned data

See also Unaligned data; Alignment
Mixed real/complex operation, 5–47
/MODULE qualifier, 2–67
Modules, 10–3

See also LRM
accessing module variables in debugger,

4–8, 4–18
compiler use of process open file limit,

1–3
creating with FORTRAN command, 2–5
declaration example, 1–7
example compilation, 1–8
F90$MOD file type, 2–5
files created and used by compiler, 2–5
subprograms, 10–4
to contained subprograms, 10–5
use association, 10–5
use of VOLATILE statement for module

variables, 13–4
using with FORTRAN command, 2–5 to

2–7
specifying object file, 2–6

MODULE statement, 1–7, 2–5, 10–3
See also LRM

$MTHDEF library module
in FORSYSDEF, 14–12

N
$NAMDEF library module

in FORSYSDEF, 11–12
Name (NAM) block

general description of use, 11–11 to 11–13
Name length, symbolic

maximum, 2–102
Namelist I/O statements, 6–6

See also LRM
Compaq Fortran 77 differences, B–10

NAME specifier, 6–23
See also LRM

/NAMES qualifier, 2–67
NaN values (IEEE)

See also ISNAN intrinsic
/CHECK qualifier, 2–43
detecting, 2–43, 2–58, 8–22
/IEEE_MODE qualifier, 2–58
ISNAN intrinsic function, 8–22
representation in Alpha floating-point

data, 8–20
/NATIVE_ONLY qualifier (LINK), 3–3, 3–5,

B–24
Natural boundaries (alignment)

See also Alignment
definition of, 5–17

Natural storage order (arrays), 5–35
Nesting limits

source code, 2–102
Networking environments

sharing and exchanging data in, 13–13 to
13–15

NML specifier, 6–29
See also LRM

Nodes
file specification default, 6–20

/NOG_FLOATING qualifier (obsolete), 2–55
/NOI4 qualifier (obsolete), 2–62
Nonadvancing I/O, 6–36
/NOOPTIMIZE qualifier

effect on debugging, 4–3
NOSPANBLOCKS specifier, 6–23
Null-terminating string

CHAR intrinsic procedure, 10–6
Numerical data

output of, 5–34
Numeric range

See Data type

O
Object code listing

See Machine code listing
Object files

See also Compilation options

Index–33

Object files (cont’d)
effect of /SEPARATE_COMPILATION

qualifier, 2–81
effect of optimization level on size, 5–40,

5–42, 5–57
naming

/OBJECT qualifier, 2–68
obtaining information about, 1–11
one or multiple modules in

/SEPARATE_COMPILATION
qualifier, 2–81

prevent creation of, 2–68
with module files

when needed on FORTRAN command
line, 2–6

/OBJECT qualifier, 2–14, 2–68
OBJ file type, 2–14, 2–68
OLB file type, 3–7
/OLD_F77 qualifier, 2–68
OPENED specifier, 6–26

See also LRM
Open file limit

increasing number per process, 1–3
Open operations

opening a file using RMS, 11–18 to 11–19
user-written

See USEROPEN routines
OPEN statement, 6–4

See also LRM
access mode, 6–30
ACCESS specifier, 6–24, 6–30
ACTION specifier, 6–24
APPEND specifier, 6–35
ASSOCIATEVARIABLE specifier, 6–24
BLANK specifier, 6–24
BLOCKSIZE specifier, 5–35, 6–24
BUFFERCOUNT specifier, 5–35, 6–24
CARRIAGECONTROL specifier, 6–23
CONVERT specifier, 6–24, 9–4, 9–13
DEFAULTFILE specifier, 6–15, 6–19,

6–21, 6–23
defaults

See LRM
converting nonnative data, 9–15
units for preconnected files, 6–17

OPEN statement (cont’d)
DELIM specifier, 6–24
directory and file name defaults, 6–19 to

6–22
DISPOSE specifier, 6–23, 6–25
effect of opening previously open file,

6–22
error handling example, 7–7
ERR specifier, 6–24

example, 7–7
EXTENDSIZE specifier, 6–24
file organization, 6–8
file-sharing parameters, 6–32 to 6–33
FILE specifier, 6–15, 6–19, 6–23

example, 7–7
file status, 6–23
FORM specifier, 6–5 to 6–7, 6–23
I/O statement interdependencies, 6–3,

6–20
file specification, 6–22

implied and explicit file open, 6–2
importance of examining defaults, 6–23
INITIALSIZE specifier, 6–24
IOSTAT specifier, 6–25

example, 7–7
KEY specifier, 6–23
MAXREC specifier, 6–24
NAME specifier, 6–23
NOSPANBLOCKS specifier, 6–23
ORGANIZATION specifier, 6–8, 6–23
PAD specifier, 6–24, 6–37
POSITION specifier, 6–24, 6–35
qualifier controlling BLANK specifier

default (/NOF77), 2–53
qualifier controlling STATUS specifier

default (/NOF77), 2–53
READONLY specifier, 6–24
RECL specifier, 6–8, 6–23

and record data transfer, 6–37, 6–38
for fixed-length records, 6–11
for variable-length records, 6–12
obtaining value for unformatted files,

6–27
qualifier to specify units, 2–37
units, 6–14, 9–15

Index–34

OPEN statement (cont’d)
RECORDSIZE specifier, 6–23
RECORDTYPE specifier, 6–23
SHARED specifier, 6–24, 6–32
specifiers for efficient I/O, 5–35
specifiers identifying

error handling capabilities, 6–24
file access and position, 6–24
file allocation, 6–24
file and record characteristics, 6–23
file and unit, 6–23
file close action, 6–25
record transfer characteristics, 6–24

specifying file specification, 6–19
STATUS specifier, 6–10, 6–21, 6–23
summary of specifiers, 6–22
TYPE specifier, 6–23
UNIT specifier, 6–2 to 6–3, 6–15, 6–21,

6–23
USEROPEN specifier, 6–24
use with USEROPEN routines, 11–2
using preconnected files, 6–16

OpenVMS calling standard, 10–21 to 10–24
argument lists, 10–24
argument-passing mechanisms, 10–11
general calling considerations, 10–26
OpenVMS data types, 10–32
register and stack usage, 10–21

OpenVMS Debugger
See Debugger

OpenVMS library routines
See RTL; LIB$name

OpenVMS RMS
See RMS

OpenVMS system services
See SYS$name; System services

OpenVMS Web site, xxvii
Operations

mixed real/complex, 5–47
Operators

See also LRM
arithmetic

for efficient run-time performance,
5–39

OPT file type, 3–9
Optimization, 5–40 to 5–63

additional global, 5–50
and performance measurement, 5–46
automatic inlining, 5–52
code hoisting, 5–48
code replication to eliminate branches,

5–51
common subexpression elimination, 5–43
compiler option summary, 5–4
compile-time operations, 5–44
compiling multiple files for efficient

run-time performance, 5–3
constant pooling, 5–42
controlling procedure inlining, 5–57
data-flow and split lifetime analysis,

5–48
dead code, 5–42
dead store elimination (unused variables),

5–45
effect on

compilation time, 5–40
debugging, 2–50
object file size, 5–40
output file size, 2–68
program execution, 2–68

for specific Alpha processor generation,
2–74, 5–58

global, 5–48
implied DO loop collapsing, 5–36, 5–42
inline expansion, 5–42
inlining procedures, 2–71, 5–52
instruction scheduling, 5–50, 5–51, 5–53,

5–55
interprocedure analysis, 5–52
level, 2–69
limiting loop unrolling, 5–57
local, 5–43
loop blocking, 2–70, 2–72
loop distribution, 2–70, 2–72
loop fusion, 2–70, 2–72
loop interchange, 2–70, 2–72
loop outer loop unrolling, 2–70, 2–72
loops, 2–70, 2–73
loop scalar replacement, 2–70, 2–72

Index–35

Optimization (cont’d)
loop transformation, 2–70, 2–72, 5–53,

5–54
loop unrolling, 5–50
mixed real/complex operations, 5–47
multiplication and division expansion,

5–44
of loops, 5–50 to 5–57
of statement functions and intrinsics,

5–42
/OPTIMIZE=INLINE=keyword, 5–57
/OPTIMIZE=TUNE=keyword, 5–58
/OPTIMIZE=UNROLL=n, 5–50
/OPTIMIZE qualifier, 2–68 to 2–75

INLINE=keyword, 2–71
LEVEL=n, 2–69
LOOPS, 2–72
PIPELINE, 2–73
TUNE=keyword, 2–74
UNROLL=n, 2–75

overview of levels, 5–40
qualifiers for, 2–68, 5–40

summary, 5–3
register use, 5–46
removal optimizations, 5–45
reordering floating-point operations, 5–60
software pipelining, 2–70, 2–73, 5–53,

5–55
source code guidelines for (check list),

5–17 to 5–40
summary of /OPTIMIZE=LEVEL=n, 5–40
to reduce program size (space

optimizations), 5–42
using dummy aliases, 5–61
value propagation, 5–45

Optimization techniques, user
adjustments to process working set, F–18

to F–19
/OPTIMIZE qualifier, 2–68 to 2–75

INLINE=keyword, 2–71, 5–57
LEVEL=n, 2–69, 5–40 to 5–42
LOOPS, 2–72
NOINLINE, 2–72
PIPELINE, 2–73
TUNE=keyword, 5–58

/OPTIMIZE qualifier (cont’d)
TUNE=keyword (Alpha only), 2–74
UNROLL=n, 2–75, 5–50, 5–57

OPTIONS (MAIN)
as program transfer address, 3–10

/OPTIONS qualifier (LINK), 3–3, 3–9
OPTIONS statement

See also LRM
specifying unformatted file floating-point

format, 9–14
use, 2–18

Order of subscript progression
in I/O, 5–35

ORGANIZATION specifier, 6–8, 6–23
See also LRM

Output, screen
formatting example, F–14 to F–16

Output listing, 2–102 to 2–116
See also Compilation options
compilation summary section, 2–114
lines per page, 2–64
machine code section, 2–105 to 2–111
storage map section, 2–112 to 2–114

Overflow
See also Arithmetic exception handling
array bounds, 2–42
floating-point, 2–42
integer, 2–42, 14–24

P
PAD specifier, 6–24, 6–37

See also LRM
/PAD_SOURCE qualifier, 2–76
Page fault

and temporary storage, 5–35
PARAMETER statement

See also LRM
compiler option for alternate

PARAMETER syntax, 2–37
Parentheses in expressions

maximum allowed, 2–102
Passed-length character arguments

See also LRM

Index–36

PCA
See Performance and Coverage Analyzer

(PCA)
Performance

/ALIGNMENT qualifier, 2–27
arithmetic operators and run-time

performance, 5–39
array use efficiency, 5–28, 5–34
/ASSUME=DUMMY_ALIASES qualifier,

2–38, 5–61
/ASSUME=NOACCURACY_SENSITIVE

qualifier, 2–36, 5–60
/ASSUME qualifier, 2–35
checking

for unaligned data, 4–27, 5–21
process limits, 1–3, 5–7

choosing optimal record type, 5–36
compilation, 1–3, 5–7
compilation times and optimization levels,

5–40
controlling procedure inlining, 5–57
data alignment efficiency, 2–27, 5–17 to

5–26
data types and run-time performance,

5–38
DO loop coding and run-time performance,

5–40
effect of formatted files on run-time

performance, 5–34
equivalence and run-time performance,

5–39
internal subprograms and run-time

performance, 5–39
limiting loop unrolling, 5–57
measuring, 5–8 to 5–17

HP Fortran intrinsic procedures,
5–13

LIB$xxxx_TIMER routines, 5–9
optimized programs, 5–46
Performance and Coverage Analyzer,

5–16
using command procedures, 5–13

mixed data type operations and run-time
performance, 5–38

Performance (cont’d)
OPEN statement specifiers for efficient

I/O, 5–35 to 5–36
optimization for Alpha processor

generation, 2–74, 5–58
optimization levels, 5–40 to 5–53
/OPTIMIZE qualifier, 2–68
profiling code, 5–16
qualifiers

controlling code generation
(/ARCHITECTURE), 2–33

controlling optimizations, 2–68, 5–4
data alignment efficiency, 2–27
dummy alias assumption, 2–38
floating-point calculations, 2–36
for run-time efficiency, 5–3
math library use, 2–65
selecting floating-point data types,

2–55
summary, 2–26
that improve performance, 5–4
that slow performance, 5–6

realistic measurements, 5–46
record I/O buffers, 5–35, 6–39
redirecting scrolled output and run-time

performance, 5–8
reordering floating-point operations, 5–60
run-time, 5–1 to 5–63, 15–1 to 15–5

I/O efficiency, 5–33 to 5–37
selecting floating-point data types, 2–55
size of INTEGER and LOGICAL data,

2–62
source code guidelines for run-time

efficiency, 5–17 to 5–40
statement functions and run-time

performance, 5–39
timings, 5–8 to 5–16

Performance and Coverage Analyzer (PCA),
5–16

Pointers
See also LRM
C language, 10–59
effect of explicit interface, 10–9
passed between HP Fortran and C, 10–59
passing as arguments, 10–9

Index–37

Pointers (cont’d)
passing between C and HP Fortran,

10–60
use with Compaq Fortran 77, 10–45

Porting information
See Compatibility

POSITION specifier, 6–24, 6–35
See also LRM

Precision
floating-point data types, 8–11 to 8–15

Preconnected files
I/O statements, 6–3
OPEN statement, 6–15 to 6–18

PREPROCESSOR parameter (/SHOW),
2–84

Primary key fields (indexed files)
definition, 12–2

PRINT statement, 6–4
See also LRM

Procedure-based signal handling
See CHF

Procedure-calling standard (OpenVMS),
10–21 to 10–24

Procedure interface
See also LRM
argument passing rules, 10–6
array arguments, 10–8
changing default passing mechanisms,

10–11, 10–15
Compaq Fortran 77 and HP Fortran

passing arguments, 10–44 to 10–49
explicit interface, 10–3, 10–4, 10–5
HP Fortran and C, 10–16 to 10–21,

10–49 to 10–64
HP Fortran array descriptor format,

10–10
HP Fortran subprograms, 10–2 to 10–14
implicit interface, 10–3
modules, 10–3, 10–5
pointer arguments, 10–9
procedure interface block, 10–2, 10–5
types of subprograms, 10–4

Procedures
See also LRM
analyzing performance, 5–16

Procedures (cont’d)
inlining, 2–71, 5–39, 5–42, 5–52, 5–57

compiling multiple files, 5–3
run-time

linking, 3–1
types of subprograms, 10–4

Procedure signature block (PSB), 3–5
Process

creation and management of, F–21 to
F–24

example of adjusting process memory
limits, F–18 to F–19

for large programs, 1–3
interprocess communication

example, F–8 to F–11
limits

checking, 1–3, 5–7
increasing memory-limiting SYSGEN

parameters, 1–2
increasing memory size, 1–3
increasing open file limit, 1–3

sharing and exchanging data, 13–3 to
13–15, F–8 to F–11

Profiling code
command procedures, 5–13
LIB$xxxx_TIMER routines, 5–9
PCA, 5–16

Program
See also Executable program
compiling, 2–1
compiling (example), 1–6
execution, 3–10 to 3–13
linking (example), 1–8
name

default in debugger, 4–8
section, 5–49, 13–1 to 13–3

mapped global pagefile section, F–8
shareable common area, 13–6

size
effect of optimization levels, 5–40
limitations, 2–102
process memory size, 1–3
space optimizations, 5–42

threaded execution
related qualifiers, 2–78

Index–38

Program (cont’d)
transportability

See Compatibility
units

creating modules for, 10–4
Program counter (PC), 10–22
Program section (PSECT)

attributes in listing file, 2–112
changing attributes, 13–2
characteristics, 13–1 to 13–3
compile-time attributes, 13–1 to 13–3
link-time attributes (LINK/MAP), 3–6
mapped global pagefile section, F–8
shareable common area, 13–6

PROGRAM statement, 1–5, 10–2
See also LRM

Program transportability, B–1 to B–14
data, B–24

Prompt
debugger (DBG>), 4–5

Protection control block
XABPRO (RMS), 11–13

PSB
See Procedure signature block (PSB)

PSECT
See Program section (PSECT)

Q
QIO services

See also SYS$QIOW
example use, F–8

Qualifier names
See also Compiler options
abbreviating, 2–18

Quotation mark character
See also LRM

R
RAB

See Record access block

$RABDEF library module
in FORSYSDEF, 11–8

Random number generation (Compaq
Extended Math Library), 15–2

RAN function (compatibility), B–13
See also LRM

Ranges
for complex constants, 8–4
for integer constants, 8–2
for logical constants, 8–2
for real constants, 8–3

READONLY specifier, 6–24
See also LRM

Read operations
See I/O operations

READ statement, 6–4
See also LRM
ADVANCE specifier, 6–36

Real data types, 2–54, 8–9, 8–11 to 8–15
See also LRM
declarations and qualifiers, 8–10
native representation, 8–10 to 8–15
ranges, 8–3, 8–11
VAX representation, 8–12 to 8–14

REAL declarations
option to control size of, 2–76

Real exponentiation (/CHECK), 2–44
REAL intrinsic function

See LRM
/REAL_SIZE qualifier, 2–76
RECL specifier, 6–23

See also LRM
for fixed-length records, 6–11
for variable-length records, 6–12
INQUIRE statement

/ASSUME=BYTERECL qualifier,
2–37

obtaining value for unformatted files,
6–27

OPEN statement
/ASSUME=BYTERECL qualifier,

2–37
qualifier to specify units, 2–37
units for formatted files, 6–14

Index–39

RECL specifier (cont’d)
units for unformatted files, 6–14

Record
length

See also RECL specifier
INQUIRE statement, 6–25

locking, 6–32
memory diagrams of, 5–26

Record Access Block (RAB)
fields for use by USEROPEN, 11–29 to

11–31
general description of use, 11–8 to 11–11
obtaining address of, 11–9

Record access mode, 6–30 to 6–32
available for file organizations, 6–30
direct, 6–30 to 6–32
direct access to sequential files, 6–11
for indexed sequential files, 12–2
keyed, 6–30 to 6–32
limitations by file organizations and

record types, 6–30
OPEN statement specifiers, 6–30
sequential, 6–30 to 6–31

Record arrays
See also Array
output listing information, 2–113

Record I/O
See also I/O; LRM
ADVANCE specifier, 6–36
advancing, 6–36
amount of data transferred by I/O

statements, 6–37
available I/O statements and forms, 6–7
buffers and disk I/O, 5–35, 6–39, 11–19,

11–20
data transfer, 6–37
deleting records from a file (DELETE),

12–4
END branch specifier, 6–36
EOR branch specifier, 6–36
flushing buffers, 6–39
indexed file record pointers (current and

next), 12–4
in internal files, 6–10
length

Record I/O
length (cont’d)

See also LRM
effect on performance, 5–36
obtaining using INQUIRE

(unformatted), 6–27
nonadvancing, 6–36
performance, 5–35
position, 6–35
record operations on indexed files, 12–4

to 12–8
record types, 6–10
SIZE branch specifier, 6–36
statement specifiers, 6–29

Record length value
qualifiers

byte record length value assumption,
2–37

Record locking
RMS facility, 6–33 to 6–34

Record Management Services (RMS)
data structures

constructed by RTL, 11–24 to 11–31
FAB, 11–6 to 11–8
field use by USEROPEN, 11–25 to

11–31
list of, 11–2
NAM, 11–11 to 11–13
RAB, 11–8 to 11–11
steps to using, 11–3
use by USEROPEN, 11–24 to 11–31
XAB, 11–13 to 11–15

error signaling
example, F–12 to F–14

example of calling, F–1 to F–3
file sharing capability, 6–32 to 6–34
output record buffering, 6–39
overview of how to use RMS services,

11–15 to 11–21
pointers into indexed files, 12–8
record locking facility, 6–32, 6–33 to 6–34

Records
See also Record type; RECORD statement
output listing information, 2–113
record types, 6–11 to 6–14
structured data items

Index–40

Records
structured data items (cont’d)

data alignment, 2–27
RECORD statement

See also LRM
causes of misalignment, 5–18
data alignment, 2–27, 5–26

Record structures
See also LRM
accessing variables in debugger, 4–16
alignment of, 5–26
order of data in, 5–25
qualifiers controlling alignment, 2–27,

5–26
storage of, 5–26

Record type, 6–10 to 6–14
available file organizations, 6–11
choosing for optimal run-time

performance, 5–36
converting nonnative data

See also LRM
OPEN statement defaults, 9–15

declaring
See also LRM
RECORDTYPE specifier, 6–23

fixed-length, 6–11
obtaining, 6–8

INQUIRE statement, 6–25
portability considerations, 6–11
segmented, 6–12
stored in file header, 6–8
stream, 6–13
stream_CR, 6–13
stream_LF, 6–13
variable-length, 6–12

RECORDTYPE specifier, 6–23
See also LRM

Recovery unit control block
XABRU (RMS), 11–13

REC specifier, 6–29
See also LRM

Recursion
See also LRM
qualifier controlling, 2–78

/RECURSIVE qualifier, 2–78
Reentrancy

asynchronous
RTL behavior, 2–79

RTL calls
qualifier controlling, 2–78

threaded
RTL behavior, 2–79

/REENTRANCY qualifier, 2–78
Reentrant program

threaded execution, 2–78
References

See also LRM
unresolved (Linker), 3–10

%REF function, 10–14
See also Argument passing

Register usage
array index, 5–47
effect of optimization, 5–46
effect of VOLATILE statement, 5–48
holding variables, 5–46
loops that exhaust available registers,

2–71, 2–74, 5–50
on OpenVMS Alpha systems, 10–21

Relational operators
See also LRM

Relative file
See also Direct access mode
See also LRM
general description, 6–8
record access modes for, 6–30
record types for, 6–10
specifying, 6–7
specifying RECL when creating, 6–8

Remote file access, 13–13 to 13–14
Remote processes

sharing and exchanging data, 13–13 to
13–15

Removal optimizations, 5–45 to 5–46
RESHAPE intrinsic procedure, 10–62
Resultant String Area (RSA)

RMS control structure, 11–24, 11–25

Index–41

Returning completion status values
to a command procedure, 3–12

RETURN statement, 3–13
when not to use, 3–12

Return values, function, 10–23
Revision date and time control block

XABRDT (RMS), 11–13
REWIND statement, 6–4, 6–35

See also LRM
REWRITE statement, 6–5

See also LRM
RMS

See Record Management Services (RMS)
$RMSDEF library module, 11–17
Rounding modes

IEEE floating-point calculations, 2–79
/ROUNDING_MODE qualifier, 2–79
RSA

See Resultant string area (RSA)
RTL

See Run-Time Library (RTL)
RUN command (DCL), 3–11, 4–4

continuing, 3–11
effect of /DEBUG, 3–13, 3–14
interrupting, 3–11

Run-time call stack
See Call stack

Run-time checking
of argument list, 2–42
of FPSR, 2–43

Run-Time Library (RTL)
See also LIB$name
and implied-DO loop collapsing, 5–36,

5–42
error processing performed by, 7–2 to

7–14
Fortran I/O support routines

used as result of USEROPEN, 11–2
general calling considerations, 10–26
OpenVMS data types, 10–32
overview of library routines, 10–25
requesting threaded execution, 2–78
using latest version for run-time

efficiency, 5–1

Run-time messages
description of each, C–5 to C–24
displaying secondary system errors, 7–5
format, 7–3
format mismatches, 2–43
format truncation, 2–44
handling, 7–4
list, number sequence, 7–2 to 7–14
severity levels, 7–3
using online help, 7–14

Run-time procedures
linking, 3–1

S
Scratch files, 6–10

See also LRM
SCRATCH specifier, 6–10

See also LRM
Screen management subroutines

See also SMG$name
examples, F–14 to F–16

Screen output
formatting example, F–14 to F–16

Segmented records, 6–12
/SELECTIVE_SEARCH qualifier (LINK),

3–7
/SEPARATE_COMPILATION qualifier, 2–81
SEQUENCE statement

See also LRM
derived-type data order, 5–19, 5–24,

5–27, 10–58
Sequential access, 6–30 to 6–31
Sequential access mode

for indexed organization files, 12–1
optimal record types, 5–36

Sequential file
See also LRM
general description, 6–8
record access modes for, 6–30
record types for, 6–10
requirements for direct access mode, 6–11
specifying, 6–7

Index–42

/SEVERITY qualifier, 2–82
Shareable image

common area (interprocess
communication), 13–6

creating, 3–4
debugger commands, 4–21
input to linker, 3–4, 3–7
installing, 13–7
libraries

benefits, 13–4
creating and installing, 13–5
general discussion, 13–4
input to linker, 3–4, 3–7

program section (PSECT) attribute, 13–2,
13–6

/SHAREABLE qualifier (LINK), 3–3, 3–4,
3–7

Shared memory access
See also VOLATILE statement
granularity, 2–57
installed common areas, 13–5
mapped global pagefile section, F–8
requesting threaded program execution,

2–78
SHARED specifier, 6–24, 6–32

See also LRM
Sharing data

See Data; File sharing; Shared memory
access

Sharing files, 6–32 to 6–34
See also File sharing
OPEN statement, 6–32

SHOW LOGICAL command (DCL), D–1
viewing logical names, D–1

/SHOW qualifier, 2–83
ALL keyword, 2–83
INCLUDE keyword, 2–83
MAP keyword, 2–83
NONE keyword, 2–84

Signal array
contents and use, 14–14

Signal handling routines
See Condition-handler routines

Signal processing routines (Compaq
Extended Math Library), 15–2

Signals, condition
changing to return status

LIB$SIG_TO_RET, 14–21
SIZE branch specifier, 6–36
SIZEOF function

example use, 10–27
using

See LRM
SIZE specifier

See LRM
SMG$CREATE_PASTEBOARD

example use, F–14
SMG$CREATE_VIRTUAL_DISPLAY

example use, F–14
SMG$LABEL_BORDER

example use, F–14
SMG$PASTE_VIRTUAL_DISPLAY

example use, F–14
SMG$PUT_LINE

example use, F–14
SMG routines

examples, F–14 to F–16
SNGL intrinsic function

See also LRM
qualifier controlling size returned, 2–76

Software pipelining, 5–53, 5–55
Sorting (Compaq Extended Math Library),

15–2
Source code

See also Source lines; Source code listing
checking standards conformance of, 2–84
coding restrictions, 2–101
columns

See LRM
diagnostic messages, C–2 to C–4
D in column 1 (/D_LINES), 2–49
file type conventions, 2–3
include files, 2–7
include text library modules, 2–9
limits, 2–101
lines

pad with spaces, 2–76

Index–43

Source code (cont’d)
listing, 2–102

controlling contents of (/MACHINE_
CODE), 2–65

controlling contents of (/SHOW),
2–83

general description, 2–104 to 2–105
requesting (/LIST), 2–63

maximum line length (fixed form), 2–53
module files, 2–5
option controlling case-sensitive names,

2–67
questionable

controlling warning message, 2–92
source forms, 2–3

Source Code Analyzer
analysis file, 2–31

Source files
building using OpenVMS tools, 1–11
creating and revising, 1–6, 1–8
input to compiler, 2–3 to 2–5
managing, 1–11

Source form
See also LRM
file types recognized, 1–4, 2–3
fixed-form source compiler options, 2–49,

2–53, 2–76
qualifiers for specifying, 2–84

Source lines
coding restrictions, 2–102
continuation character

See LRM
controlling in listing file (/SHOW), 2–83
controlling messages in listing file

(/STANDARD), 2–84
controlling truncation messages

(/WARNINGS), 2–91
D in column 1 (/D_LINES), 2–49
extending length (fixed form), 2–53
form-feed effect on listing file, 2–64

Source programs
compile options

detecting truncated lines, 2–91

/SOURCE_FORM qualifier, 2–84
Sparse linear system routines (Compaq

Extended Math Library), 15–2
Specifier options (Fortran)

See I/O statements; LRM
SQRT function

example use, 10–27
SS$_CONTINUE

use in condition handlers, 14–18
SS$_RESIGNAL

use in condition handlers, 14–18
$SSDEF library module

in FORSYSDEF, 14–12
Standard I/O file

I/O statements default use, 6–16
/STANDARD qualifier, 2–84
Standards

ANSI FORTRAN-77 and FORTRAN 66,
1–1

Fortran 90, 1–1
checking (/STANDARD), 2–84

Fortran 95, 1–1
checking (/STANDARD), 2–84

Statement functions
See also LRM
efficient run-time performance, 5–39
in data-flow analysis, 5–42
inline expansion of, 5–42
never called

controlling warning messages, 2–91
Statement labels

See also LRM; Labels; Source code
output listing information, 2–113

Statements
continuation character

See LRM
maximum line length (fixed form), 2–53
truncation during compilation, 2–91

STATUS specifier, 6–23
See also LRM

Status values, completion
returning to a command procedure, 3–12

Index–44

STB file type, 3–9
STOP command (DCL), 3–11
STOP statement, 3–13

effect on program execution, 3–11
when not to use, 3–12

Storage map listing
general description, 2–112 to 2–114

Stream (Stream_CRLF) records, 6–13
Stream_CR records, 6–13 to 6–14
Stream_LF records, 6–13 to 6–14

use for optimal performance, 5–36
Structures

See also Derived-types data; Record
structures; LRM

nesting limit, 2–102
STRUCTURE statement

See also LRM
and data alignment, 2–27
causes of misalignment, 5–18

Subprogram
See also LRM; Procedure interface
arguments, 10–2, 10–44

See also LRM
C and Fortran, 10–16, 10–49

Compaq Fortran 77 and HP Fortran,
10–44

definition of, 10–2
explicit interface, 10–3
external, 10–4
inlining, 5–39, 5–52, 5–57

compiling multiple files, 5–3
internal (host association), 10–4
module (use association), 10–4
passing arguments and function return

values, 10–6, 10–21
procedure interface block, 10–5
requiring a procedure interface block for

explicit interface, 10–4
types of, 10–4

Subroutine calls
between HP Fortran and C, 10–53
in data-flow and split lifetime analysis,

5–49

Subroutines
See also LRM
declaration statements, 10–2
explicit interface, 10–3
output listing information, 2–113

SUBROUTINE statement, 10–2
See also LRM

Substring references
checking boundaries

FORTRAN command option, 2–42
SUM intrinsic, 1–8
Summary control block

XABSUM (RMS), 11–13
Summary listing, compilation, 2–114
Symbol

records (DEBUG), 4–2
Symbolic names

See also LRM; FORSYSDEF
maximum length, 2–102

Symbol map
/SHOW qualifier

affect of MAP parameter, 2–83
Symbol table

created by compiler, 2–2, 2–49
/DEBUG qualifier, 2–49

created by linker
/DEBUG qualifier, 3–9

overview of creation and use, 3–13 to
3–14

/SYMBOL_TABLE qualifier (LINK), 3–3,
3–9

Synchronizing access
system routines for, 13–10

Synchronous I/O
accessing devices using SYS$QIOW, F–6

to F–8
/SYNCHRONOUS_EXCEPTIONS qualifier

(Alpha only), 2–86
/SYNTAX_ONLY qualifier, 2–87
SYS$ADJWSL

example use, F–18
SYS$ASCEFC

example use, F–9

Index–45

SYS$ASSIGN
example use, 10–43, F–3, F–8

SYS$CLOSE (RMS), 11–19
data structure needed to use, 11–6

SYS$CONNECT (RMS)
data structure needed to use, 11–8
use to open a file, 11–18, 11–19

example of, 11–33
SYS$CREATE (RMS)

data structure needed to use, 11–6
use to open a file, 11–18

example of, 11–23, 11–33
SYS$CREMBX, 13–10 to 13–12

example use, 13–11
SYS$CREPRC

example use, F–21
SYS$CRMPSC

example use, F–8
SYS$DELETE (RMS), 11–21

data structure needed to use, 11–8
SYS$DEQ

synchronizing access, 13–10
SYS$DISCONNECT (RMS), 11–19

data structure needed to use, 11–8
SYS$DISPLAY (RMS), 11–21

data structure needed to use, 11–6
SYS$ENQ

synchronizing access, 13–10
SYS$ENTER (RMS), 11–21

data structure needed to use, 11–6
SYS$ERASE (RMS), 11–21

data structure needed to use, 11–6
SYS$EXTEND (RMS), 11–21

data structure needed to use, 11–6
SYS$FIND (RMS), 11–21

data structure needed to use, 11–8
SYS$FLUSH (RMS)

data structure needed to use, 11–8
output record buffering, 6–39

SYS$FREE (RMS)
data structure needed to use, 11–8

SYS$GET (RMS), 11–20
data structure needed to use, 11–8

SYS$GETJPIW
example use, 10–41, F–21

SYS$HIBER
example use, F–21
synchronizing access, 13–10

SYS$IEEE_SET_ROUNDING_MODE
routine, 2–80

SYS$INPUT
default logical unit number, 6–3, 6–17

SYS$LIBRARY, 2–13
SYS$LP_LINES

redefining, 2–64
SYS$MGBLSC

example use, F–9
SYS$NXTVOL (RMS)

data structure needed to use, 11–8
SYS$OPEN (RMS)

data structure needed to use, 11–6
example of use, 11–17
when to use, 11–18

SYS$OUTPUT
default logical unit number, 6–3, 6–17

SYS$PARSE (RMS), 11–21
data structure needed to use, 11–6

SYS$PUT (RMS), 11–19
data structure needed to use, 11–8

SYS$QIO
example use, F–8

SYS$QIOW
See also QIO
example use, 10–43, F–3, F–6, F–8

SYS$READ (RMS), 11–20
data structure needed to use, 11–8
example of use, 11–36

SYS$RELEASE (RMS)
data structure needed to use, 11–8

SYS$REMOVE (RMS), 11–21
data structure needed to use, 11–6

SYS$RENAME (RMS)
data structure needed to use, 11–6

SYS$REWIND (RMS)
data structure needed to use, 11–8

SYS$SEARCH (RMS), 11–21
data structure needed to use, 11–6

Index–46

SYS$SETDDIR
example use, F–2

SYS$SETEF
example use, F–8

SYS$SETEXV, 14–2
SYS$SPACE (RMS), 11–21

data structure needed to use, 11–8
SYS$TRNLNM

example use, 10–40, F–21
SYS$TRUNCATE (RMS), 11–21

data structure needed to use, 11–8
SYS$UNWIND, 14–21

use in condition handlers, 14–18 to 14–19
SYS$UPDATE (RMS), 11–21

data structure needed to use, 11–8
SYS$WAIT (RMS)

data structure needed to use, 11–8
SYS$WAITFR

example use, F–8
SYS$WAKE

example use, F–21
synchronizing access, 13–10

SYS$WRITE (RMS), 11–20
data structure needed to use, 11–8
example of use, 11–35

/SYSLIB qualifier (LINK), 3–3
/SYSSHR qualifier (LINK), 3–3
System definition library modules, 2–13
System services

See also SYS$name
closing file, 11–19
example programs using, F–1 to F–24
flushing record buffers, 6–39
functional groups, 10–26
general calling considerations, 10–26 to

10–32
opening file, 11–18
OpenVMS data types, 10–32
overview, 10–25
record operations, 11–19
summary of RMS services, 11–21
used for synchronizing access, 13–10
used in condition handler routines, 14–18

System symbols
conventions in FORSYSDEF

PARAMETER declarations, 11–4 to
11–5

S_float data
See Floating-point data types

T
Task-to-task communications, network,

13–13 to 13–15
Terminal control block

XABTRM (RMS), 11–13
Terminal I/O

See also Ctrl/C; Ctrl/Y
Compaq Fortran 77 differences, B–10
example of SYS$QIOW, F–6 to F–8
formatting screen output, F–14 to F–16
interrupting interactive program

execution, 3–11 to 3–12
example of handling Ctrl/C, 10–43,

F–3
Text file libraries

creating and modifying
LIBRARY command, 2–93 to 2–95

defining defaults, 2–12 to 2–13
general discussion, 2–13, 2–93
INCLUDE searches, 2–11
/LIBRARY qualifier, 2–63
search order (compilation), 2–11
specifying, 2–10 to 2–13

on command line (/LIBRARY), 2–63
system-supplied default library

FORSYSDEF.TLB, 2–13
Threaded program execution

related qualifiers, 2–78
requesting, 2–78

Threaded reentrancy
effect on RTL, 2–79

Thread locking
reentrancy during RTL calls, 2–79

/TIE qualifier, 2–88, B–24
TLB file type, 2–63, 2–93

Index–47

Traceback condition handler, 14–4
Traceback mechanism

effect of /DEBUG
on LINK command, 3–3, 3–7, 3–13 to

3–16
effect of /DEBUG qualifier, 2–49

/TRACEBACK qualifier (LINK), 3–3, 3–7,
3–13 to 3–16

Translated images interoperability
FORTRAN command, 2–88, B–24
LINK command, 3–3, 3–5, B–24
summary, B–24

Transportability
See also Compatibility; Data; Record

types; Unformatted files
TYPE specifier, 6–23

See also LRM
TYPE statement, 6–5

See also LRM
T_float data

See Floating-point data types

U
UBOUND intrinsic, 1–8
Unaligned data, 5–18

causes, 5–18 to 5–20
checking for, 5–21
compiler, 5–21
derived-type

effect of SEQUENCE statement,
2–28

error messages
compiler, 2–90
run-time, 5–21

using debugger to locate, 4–27
Underflow

See also Denormalized numbers (IEEE)
controlling handling (/IEEE_MODE

qualifier), 2–58
denormalized numbers, 8–3, 8–20
run-time checking (/CHECK), 2–42

Unformatted data, 6–6
and DO loop collapsing, 5–43
and nonnative numeric formats, 9–3
efficient run-time performance, 5–34
I/O statements for, 6–7
inquiry by output item list, 6–27

Unformatted files
converting nonnative data

record type, 9–15
methods of specifying the format, 9–7
specifying format, 9–3 to 9–6
specifying record type, 6–13
supported numeric formats, 2–45, 9–3
using command qualifier to specify RECL

units, 2–37
using FORTRAN /CONVERT qualifier to

specify format, 2–45
using logical name method to specify

format, 9–8, 9–10
using OPEN Statement

CONVERT=’keyword’ method
to specify format, 9–13

using OPTIONS statement /CONVERT to
specify format, 9–13

Unformatted I/O statements, 6–6
See also LRM

Units, logical I/O
See Logical I/O units

UNIT specifier, 6–2 to 6–3, 6–15, 6–23
See also LRM

UNLOCK statement, 6–5, 6–34
See also LRM

Unresolved references, 3–10
Unwind operations

See also SYS$UNWIND
User-defined data types

See Derived-type data
/USERLIBRARY qualifier (LINK), 3–3
USEROPEN routines

block mode I/O example, 11–33 to 11–35
description of use, 11–2
in-depth discussion of, 11–21 to 11–31
restrictions on use, 11–24 to 11–25

Index–48

USEROPEN specifier, 6–24
See also LRM

User-written open procedures
See USEROPEN routines

USE statement, 1–6, 2–7, 10–3
See also LRM

Utility routines (Compaq Extended Math
Library), 15–2

V
%VAL function, 10–13

See also Argument passing
Value propagation, 5–45
Variable format expression, 5–37

See also LRM
Variable-length records, 6–12

use for optimal performance, 5–36
Variables

See also LRM
alignment, 5–17 to 5–28
assigned but never used, 5–45
declared but not used

controlling warning message, 2–92
never declared

controlling warning messages, 2–90
output listing information, 2–113
used before value assigned

controlling warning message, 2–92
Variables declared in other languages,

accessing, 10–20
VAX FORTRAN

See Compaq Fortran 77; VAX systems
VAX systems

Compaq Fortran 77 (OpenVMS)
H_float data representation, B–26

converting data to IEEE formats, 9–2,
9–3

floating-point data
COMPLEX, 8–16
COMPLEX*16, 8–18
converting, 9–2, 9–3
D_float, 8–14
F_float, 8–12

VAX systems
floating-point data (cont’d)

G_float, 8–13
H_float, B–26

Vector mathematics (Compaq Extended Math
Library), 15–2

Version number
obtaining from command line, 2–87
obtaining from listing file, 2–64

/VERSION qualifier, 2–87
Very Large Memory (cDEC$ ATTRIBUTES

ADDRESS64 directive), 10–20
Virtual memory

allocating (LIB$GET_VM), 10–27
64-bit (cDEC$ ATTRIBUTES ADDRESS64

directive), 10–20
deallocating (LIB$FREE_VM), 10–27
system and process limits, 1–2 to 1–4

VMS
See OpenVMS

/VMS qualifier, 2–88
VOLATILE statement, 13–4

See also LRM
and data-flow and split lifetime analysis,

5–48
and granularity, 2–57
and implied-DO loop collapsing, 5–37
use with %LOC, 10–13
use with shared memory access, 2–57
when to use, 5–48

W
Warning messages

argument mismatches, 2–90
arithmetic exception handling (run-time),

2–44
changing severity of (/SEVERITY), 2–82
controlling all messages, 2–91
data granularity, 2–91
exceptional values at run time (/CHECK),

2–43
flagging HP extensions (/STANDARD),

2–84

Index–49

Warning messages (cont’d)
flagging HP extensions as error severity

(/SEVERITY), 2–82
floating-point underflow at run time

(/CHECK), 2–43, 2–45
format mismatches at run time (/CHECK),

2–43
format truncation mismatches at run time

(/CHECK), 2–44
integer overflow at run time (/CHECK),

2–44
limiting at compile-time (/ERROR_

LIMIT), 2–52
misalignment (compile-time), 2–90
misalignment (run-time), 5–21
nonprinting ASCII characters, 2–64
questionable programming practices,

2–92
standards conformance (/STANDARD),

2–84
statement functions never called, 2–91
substring references at run time

(/CHECK), 2–42
truncated lines, 2–91
undeclared variable use, 2–90
unused, declared variables, 2–92
use of two-digit year by intrinsic

functions, 2–92
variables used before value assigned,

2–92
year 2000 (two-digit year), 2–92

/WARNINGS=ALIGNMENT qualifier, 2–90
/WARNINGS=ALL qualifier, 2–92
/WARNINGS=ARGUMENT_CHECKING

qualifier, 2–90
/WARNINGS=DECLARATIONS qualifier,

2–90
/WARNINGS=GENERAL qualifier, 2–91
/WARNINGS=GRANULARITY qualifier,

2–91
/WARNINGS=IGNORE_LOC qualifier, 2–91
/WARNINGS=NONE qualifier, 2–92
/WARNINGS=UNCALLED qualifier, 2–91

/WARNINGS=UNINITIALIZED qualifier,
2–92

/WARNINGS=UNUSED qualifier, 2–92
/WARNINGS=USAGE qualifier, 2–92
/WARNINGS qualifier, 2–89
Web site

OpenVMS, xxvii
Working set, process

example of how to adjust, F–18 to F–19
Write operations

See I/O operations
WRITE statement, 6–4

See also LRM
ADVANCE specifier, 6–36

X
XAB

See Extended access block (XAB)
XABALL (RMS)

allocation control block, 11–13
XABDAT (RMS)

date and time control block, 11–13
XABFHC (RMS)

file header characteristics control block,
11–13

XABITM (RMS)
item list control block, 11–13

XABJNL (RMS)
journaling control block, 11–13

XABKEY (RMS)
key definition control block, 11–13

XABPRO (RMS)
protection control block, 11–13

XABRU (RMS)
recovery unit block, 11–13

XABSUM (RMS)
summary control block, 11–13

XABTRM (RMS)
terminal control block, 11–13

X edit descriptor
See also LRM

Index–50

Z
Zero

representation in Alpha floating-point
data, 8–20

ZEXT function, 10–13
See also LRM

Index–51

