
HP OpenVMS I/O User’s Reference Manual

OpenVMS I64 Version 8.2
OpenVMS Alpha Version 8.2

This manual supersedes the HP OpenVMS I/O User’s Reference Manual Version 7.3-1
Manufacturing Part Number: AA-PV6SG-TK

January 2005

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Legal Notice
Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products
and services are set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Printed in the US

ZK6136

The HP OpenVMS documentation set is available on CD-ROM.
2

Contents
1. ACP-QIO Interface
1.1 ACP Functions and Encoding. 22
1.2 File Information Block (FIB) . 23
1.3 ACP Subfunctions . 27

1.3.1 Directory Lookup . 28
1.3.2 Access . 31
1.3.3 Extend . 32
1.3.4 Truncate . 35
1.3.5 Read/Write Attributes . 36

1.4 ACP-QIO Record Attributes Area . 43
1.5 ACP-QIO Attributes Statistics Block. 45
1.6 Major Functions . 46

1.6.1 Create File. 46
1.6.2 Access File . 49
1.6.3 Deaccess File . 50
1.6.4 Modify File . 51
1.6.5 Delete File . 52
1.6.6 Movefile Subfunction . 53
1.6.7 Mount . 56
1.6.8 ACP Control . 57

1.7 I/O Status Block . 61

2. Disk Drivers
2.1 Supported Disk Devices and Controllers . 63

2.1.1 UDA50 UNIBUS Disk Adapter . 63
2.1.2 KDA50 Disk Controller . 64
2.1.3 KDB50 Disk Controller . 64
2.1.4 HSC40, HSC50, and HSC70 Controllers. 64
2.1.5 SII Integral Adapter . 64
2.1.6 KFQSA Adapter . 65
2.1.7 RQDX3 Disk Controller . 65
2.1.8 RA70 and RA90 Disk Drives . 65
2.1.9 RA60 Disk . 65
2.1.10 RA80/RB80/RM80 and RA81 Fixed-Media Disks . 65
2.1.11 RB02 and RL02 Cartridge Disk (VAX Only) . 66
2.1.12 RC25 Disk (VAX Only) . 66
2.1.13 RD53 and RD54 Disks (VAX Only) . 66
2.1.14 RF30 and RF71 Disks. 66
2.1.15 RK06 and RK07 Cartridge Disks (VAX Only) . 66
2.1.16 RM03 and RM05 Pack Disks (VAX Only) . 66
2.1.17 RP05 and RP06 Disk (VAX Only) . 67
2.1.18 RP07 Fixed-Media Disk (VAX Only) . 67
2.1.19 RRD40 and RRD50 Read-Only Memory (CD-ROM). 67
2.1.20 RX01 Console Disk (VAX Only) . 67
2.1.21 RX02 Disk (VAX Only) . 68
2.1.22 RX23 (VAX Only) . 68
3

Contents
2.1.23 RX33 (VAX Only) . 69
2.1.24 RX50 (VAX Only) . 69
2.1.25 RZ22, RZ23, and RZ55 Disks . 69
2.1.26 TU58 Magnetic Tape (DECtape II) . 69

2.2 Driver Features . 69
2.2.1 Dual-Pathed Disks . 70
2.2.2 Dual Porting MASSBUS Disks . 71
2.2.3 Dual-Pathed DSA Disks . 72
2.2.4 Dual-Porting HSC Disks . 73
2.2.5 Dual-Pathed RF-Series Disks . 73
2.2.6 Data Check . 73
2.2.7 Effects of a Failure During an I/O Write Operation . 74
2.2.8 Overlapped Seeks . 75
2.2.9 Error Recovery . 75
2.2.10 Logical-to-Physical Translation (RX01 and RX02) . 76
2.2.11 DIGITAL Storage Architecture (DSA) Devices . 76
2.2.12 VAXstation 2000 and MicroVAX 2000 Disk Driver. 78
2.2.13 SCSI Disk Class Driver . 79
2.2.14 Audio Extensions to the SCSI Disk Class Driver . 79

2.3 Disk Driver Device Information . 87
2.4 Disk Function Codes . 88

2.4.1 Read . 93
2.4.2 Write . 94
2.4.3 Sense Mode . 95
2.4.4 Set Density . 95
2.4.5 Search . 96
2.4.6 Pack Acknowledge. 96
2.4.7 Unload . 96
2.4.8 Available . 96
2.4.9 Seek . 97
2.4.10 Write Check. 97
2.4.11 Set Preferred Path . 97

2.5 I/O Status Block . 100
2.6 Disk Driver Programming Example . 100

3. Magnetic Tape Drivers
3.1 HP Magnetic Tape Controllers and Drives . 109

3.1.1 TM03 Magnetic Tape Controller (VAX Only) . 109
3.1.2 TS11 Magnetic Tape Controller (VAX Only) . 109
3.1.3 TM78 and TM79 Magnetic Tape Controllers (VAX Only) . 109
3.1.4 TU80 Magnetic Tape Subsystem (VAX Only) . 109
3.1.5 TA81 Magnetic Tape Subsystem . 109
3.1.6 TU81 Magnetic Tape Subsystem (VAX Only) . 110
3.1.7 TU81-Plus Magnetic Tape Subsystem (VAX Only) . 110
3.1.8 TA90 Magnetic Tape Subsystem . 110
3.1.9 RV20 Write-Once Optical Drive (VAX Only). 110
4

Contents
3.1.10 TK50 Cartridge Tape System (VAX Only). 110
3.1.11 TK70 Cartridge Tape System (VAX Only). 111
3.1.12 TZ30 Cartridge Tape System . 111
3.1.13 Read and Write Compatibility Between Cartridge Tape Systems. 111

3.2 Driver Features . 112
3.2.1 Dual-Path HSC Tape Drives . 112
3.2.2 Dynamic Failover and Mount Verification . 113
3.2.3 Tape Caching. 113
3.2.4 Master Adapters and Slave Formatters . 113
3.2.5 Data Check . 114
3.2.6 Error Recovery . 114
3.2.7 Streaming Tape Systems . 115

3.3 Magnetic Tape Driver Device Information . 115
3.4 Magnetic Tape Function Codes . 117

3.4.1 Read . 122
3.4.2 Write . 123
3.4.3 Rewind. 123
3.4.4 Skip File . 124
3.4.5 Skip Record . 124
3.4.6 Write End-of-File . 125
3.4.7 Rewind Offline . 126
3.4.8 Unload . 126
3.4.9 Sense Tape Mode. 126
3.4.10 Set Mode . 127
3.4.11 Multiple Tape Density Support . 130
3.4.12 Data Security Erase . 130
3.4.13 Modify . 130
3.4.14 Pack Acknowledge. 131
3.4.15 Available . 131
3.4.16 Flush . 131

3.5 I/O Status Block . 131
3.6 Magnetic Tape Drive Programming Examples . 132

4. Mailbox Driver
4.1 Mailbox Operations. 141

4.1.1 Creating Mailboxes. 141
4.1.2 Deleting Mailboxes . 143
4.1.3 Mailbox Protection . 143
4.1.4 Mailbox Message Format . 144

4.2 Mailbox Driver Device Information . 144
4.3 Mailbox Function Codes . 145

4.3.1 Read . 145
4.3.2 Write . 149
4.3.3 Write End-of-File Message . 151
4.3.4 Set Attention AST. 152
4.3.5 Wait for Writer/Reader . 154
5

Contents
4.3.6 Set Protection . 155
4.3.7 Get Mailbox Information . 155

4.4 I/O Status Block . 156
4.5 Mailbox Driver Programming Examples . 158

5. Terminal Driver
5.1 Supported Terminal Devices . 169
5.2 Terminal Driver Features. 171

5.2.1 Input Processing . 172
5.2.2 Output Processing. 178
5.2.3 Dialup Support . 181
5.2.4 Terminal/Mailbox Interaction . 186
5.2.5 Autobaud Detection . 187
5.2.6 Out-of-Band Control Character Handling. 188

5.3 Terminal Driver Device Information . 188
5.3.1 Terminal Characteristics Categories . 194

5.4 Terminal Function Codes . 196
5.4.1 Read . 196
5.4.2 Write . 205
5.4.3 Set Mode . 208
5.4.4 LAT Port Driver QIO Interface . 217
5.4.5 Sense Mode and Sense Characteristics . 246

5.5 I/O Status Block . 249
5.6 Terminal Driver Programming Examples . 252

6. Pseudoterminal Driver
6.1 Pseudoterminal Operations . 283

6.1.1 Creating a Pseudoterminal . 283
6.1.2 Canceling a Request . 284
6.1.3 Deleting a Pseudoterminal. 284

6.2 Pseudoterminal Driver Features . 284
6.3 Pseudoterminal Driver Device Information . 285
6.4 I/O Buffers . 285
6.5 Pseudoterminal Functions . 286

6.5.1 Reading Data . 286
6.5.2 Writing Data . 286
6.5.3 Using Write with Echo . 287
6.5.4 Flow Control . 287
6.5.5 Event Notification. 287

6.6 Pseudoterminal Driver Programming Example . 289
6.6.1 Design Overview . 289

7. Shadow-Set Virtual Unit Driver
7.1 Introduction. 297
7.2 Configurations. 298

7.2.1 Supported Hardware . 298
6

Contents
7.2.2 Compatible Disk Drives and Volumes . 298
7.3 Driver Functions . 298

7.3.1 Read and Write Functions . 299
7.4 Error Processing . 300

8. Using the OpenVMS Generic SCSI Class Driver
8.1 Overview of SCSI . 301
8.2 OpenVMS SCSI Class/Port Architecture. 302
8.3 Overview of the OpenVMS Generic SCSI Class Driver . 303
8.4 Accessing the OpenVMS Generic SCSI Class Driver . 305
8.5 SCSI Port Features Under Application Control . 306

8.5.1 Setting the Data Transfer Mode . 306
8.5.2 Enabling Disconnection and Reselection. 306
8.5.3 Disabling Command Retry . 307
8.5.4 Setting Command Timeouts. 307

8.6 Configuring a Device Using the Generic Class Driver . 308
8.6.1 Disabling the Autoconfiguration of a SCSI Device (VAX Only) . 308

8.7 Assigning a Channel to GKDRIVER . 309
8.8 Issuing a $QIO Request to the Generic Class Driver . 309
8.9 Generic SCSI Class Driver Device Information . 313
8.10 Call a Generic SCSI Class Driver . 314

9. Local Area Network (LAN) Device Drivers
9.1 Local Area Network (LAN) Terminology . 317
9.2 Supported LAN Devices . 319

9.2.1 OpenVMS VAX LAN Devices . 320
9.2.2 OpenVMS Alpha LAN Devices. 322
9.2.3 OpenVMS I64 LAN Devices . 328

9.3 Supported Industry Standards. 330
9.4 LAN I/O Architecture . 331

9.4.1 LAN Data Structures . 331
9.4.2 Hardware Configuration . 332
9.4.3 Software Modules . 333
9.4.4 Application APIs . 334
9.4.5 LAN Addressing . 335
9.4.6 LAN Frame Formats. 338
9.4.7 Packet Padding . 347
9.4.8 Protocol Type and PID Sharing . 347

9.5 LAN Devices . 348
9.5.1 Driver-Specific Internal Counters . 348
9.5.2 Device-Specific Functions. 349
9.5.3 Ethernet LAN Devices . 349
9.5.4 FDDI LAN Devices . 358
9.5.5 Token Ring LAN Devices . 359
9.5.6 ATM LAN Devices . 360

9.6 LAN Device Information. 366
7

Contents
9.7 LAN Function Codes. 369
9.7.1 Read . 370
9.7.2 Write . 373
9.7.3 Set Mode and Set Characteristics . 375
9.7.4 Shutdown Controller . 390
9.7.5 Enable Attention AST . 390
9.7.6 IO$M_SET_MAC Functional Modifier to IO$M_SETMODE. 391
9.7.7 IO$M_UPDATE_MAP Functional Modifier to IO$_SETMODE . 395
9.7.8 IO$M_ROUTE Functional Modifier to IO$_SETMODE . 396
9.7.9 Sense Mode and Sense Characteristics . 397
9.7.10 IO$M_SENSE_MAC Functional Modifier to IO$_SENSEMODE . 400
9.7.11 IO$M_SHOW_MAP Functional Modifier to IO$_SENSEMODE . 403
9.7.12 IO$M_SHOW_ROUTE Functional Modifier to IO$_SENSEMODE 404
9.7.13 I/O Status Block . 406

9.8 Application Programming Notes . 407
9.8.1 Promiscuous Mode . 407
9.8.2 Local Area Network Programming Examples. 407

10. Optional Features for Improving I/O Performance
10.1 Fast I/O . 415

10.1.1 Fast I/O Benefits . 415
10.1.2 Using Buffer Objects. 416
10.1.3 Differences Between Fast I/O Services and $QIO. 417
10.1.4 Using Fast I/O Services . 417
10.1.5 Additional Information. 420

10.2 Fast Path (Alpha and I64 Only) . 420
10.2.1 Using Fast Path Features. 421
10.2.2 Managing Fast Path . 422
10.2.3 Fast Path Restrictions . 425
10.2.4 Special Considerations for Fast Path on Multi-RAD Systems . 426

A. I/O Function Codes
A.1 ACP-QIO Interface Driver . 427
A.2 Disk Drivers . 428
A.3 Magnetic Tape Drivers . 429
A.4 Mailbox Driver . 431
A.5 Terminal Driver . 433
A.6 Local Area Network Device Drivers . 435
A.7 Fast I/O Function Codes and Modifiers. 436
A.8 Fast Path Function Code and Modifiers . 437

B. IO$_DIAGNOSE Function for SCSI Class Drivers

C. DEC Multinational Character Set and Terminal Escape Sequences/Modes
C.1 DEC Multinational Character Set. 447
C.2 Terminal Sequences and Modes. 456
8

Contents
D. Control Connection Routines
D.1 PDT$CANCEL — Cancel Queued Request . 461

D.1.1 Format. 461
D.1.2 Returns . 461
D.1.3 Arguments . 461
D.1.4 Return Values. 462

D.2 PDT$CREATE — Create a Pseudoterminal. 462
D.2.1 Format. 462
D.2.2 Returns . 462
D.2.3 Arguments . 462
D.2.4 Description . 464
D.2.5 Return Values. 465

D.3 PDT$DELETE — Delete a Pseudoterminal . 465
D.3.1 Format. 465
D.3.2 Returns . 465
D.3.3 Argument . 465
D.3.4 Description . 466
D.3.5 Return Values. 466

D.4 PDT$READ — Read Data from Pseudoterminal . 466
D.4.1 Format. 466
D.4.2 Returns . 466
D.4.3 Arguments . 467
D.4.4 Description . 468
D.4.5 Return Values. 468

D.5 PDT$READW — Read Data from Pseudoterminal and Wait . 468
D.5.1 Format. 469

D.6 PDT$SET_EVENT_NOTIFICATION — Enable or Disable Terminal Event Notification ASTs 469
D.6.1 Format. 469
D.6.2 Returns . 469
D.6.3 Arguments . 469
D.6.4 Description . 471
D.6.5 Return Values. 472

D.7 PDT$WRITE — Write Data to Pseudoterminal . 472
D.7.1 Format. 472
D.7.2 Returns . 472
D.7.3 Arguments . 472
D.7.4 Description . 474
D.7.5 Return Values. 474

Index . 475
9

Contents
10

Tables
Table 1-1. Contents of the FIB. 23
Table 1-2. FIB Fields (Lookup Control). 28
Table 1-3. FIB Fields (Access Control) . 31
Table 1-4. FIB Fields (Extend Control) . 33
Table 1-5. FIB Fields (Truncate Control) . 35
Table 1-6. Attribute Control Block Fields . 36
Table 1-7. ACP-QIO Attributes . 37
Table 1-8. File Characteristics Bits . 40
Table 1-9. ACP Record Attributes Values . 43
Table 1-10. Contents of the Statistics Block . 45
Table 1-11. IO$_CREATE and the FIB . 47
Table 1-12. IO$_ACCESS and the File Information Block . 50
Table 1-13. FIB Fields (Movefile) . 53
Table 1-14. IO$_ACPCONTROL and the FIB . 57
Table 1-15. Magnetic Tape Operations and the FIB . 58
Table 1-16. Disk Quota Functions (Enable/Disable) . 59
Table 1-17. Disk Quota Functions (Individual Entries) . 60
Table 2-1. SCSI Disk Class Driver Audio Commands . 79
Table 2-2. Contents of AUCB. 82
Table 2-3. Status Codes Returned to the IOSB and AUCB by the SCSI Disk Class Driver 85
Table 2-4. Disk Device Characteristics . 87
Table 2-5. Disk I/O Functions . 89
Table 3-1. Magnetic Tape Device-Independent Characteristics . 116
Table 3-2. Device-Dependent Information for Tape Devices . 116
Table 3-3. Device-Dependent Information for Tape Devices . 117
Table 3-4. Magnetic Tape I/O Functions . 118
Table 3-5. Set Mode and Set Characteristics Magnetic Tape Characteristics 129
Table 3-6. Extended Device Characteristics for Tape Devices. 129
Table 4-1. Mailbox Characteristics . 144
Table 5-1. Supported Terminal Devices . 169
Table 5-2. Terminal Control Characters . 173
Table 5-3. Control and Data Signals . 184
Table 5-4. Terminal Device-Independent Characteristics . 188
Table 5-5. Terminal Characteristics . 189
Table 5-6. Extended Terminal Characteristics . 190
Table 5-7. Read QIO Function Modifiers for the Terminal Driver . 197
Table 5-8. Item Codes for Terminal Driver Itemlist Read Operations . 200
Table 5-9. Write QIO Function Modifiers for the Terminal Driver . 205
Table 5-10. FORTRAN Write Function Carriage Control . 206
Table 5-11. Write Function Carriage Control (P4 byte 0 = 0) . 207
Table 5-12. Broadcast Requester IDs . 217
Table 5-13. LAT$C_ENT_NODE Item Codes . 221
Table 5-14. LAT$C_ENT_SERVICE Item Codes . 225
11

Tables
Table 5-15. LAT$C_ENT_LINK Item Codes. 226
Table 5-16. LAT$C_ENT_PORT Item Codes . 227
Table 5-17. LAT$C_ENT_NODE Item Codes . 229
Table 5-18. Node Service Subblock Item Codes . 232
Table 5-19. Node Counters Item Codes. 232
Table 5-20. Node Counters Item Codes. 233
Table 5-21. Protocol Error Item Codes . 234
Table 5-22. LAT$C_ENT_SERVICE Item Codes . 235
Table 5-23. Service Node Subblock Item Codes . 236
Table 5-24. Service Counters Subblock Item Codes . 237
Table 5-25. LAT$C_ENT_LINK Item Codes. 238
Table 5-26. Link Counters Item Codes . 238
Table 5-27. Additional Link Counters Item Codes . 239
Table 5-28. LAT$C_ENT_PORT Item Codes . 240
Table 5-29. LAT SENSEMODE Queue Entries . 242
Table 5-30. IO$M_LT_CONNECT Request Status . 243
Table 5-31. Byte IOSB+5 Status Information. 250
Table 5-32. LAT Rejection Codes. 251
Table 7-1. Functions of the Shadow Set Virtual Unit Driver . 298
Table 9-1. Supported OpenVMS VAX Systems LAN Devices, Part 1 . 320
Table 9-2. Supported OpenVMS VAX Systems LAN Devices, Part 2 . 321
Table 9-3. Supported OpenVMS Alpha LAN Devices, Part 1 . 322
Table 9-4. Supported OpenVMS Alpha LAN Devices, Part 2 . 325
Table 9-5. Supported OpenVMS I64 Systems LAN Devices, Part 1 . 328
Table 9-6. Supported OpenVMS I64 Systems LAN Devices, Part 2 . 329
Table 9-7. LAN Software Module . 333
Table 9-8. Address Mappings of Token Ring Drivers . 337
Table 9-9. DEMNA Characteristics. 349
Table 9-10. SGEC/TGEC Characteristics . 350
Table 9-11. LANCE Characteristics . 350
Table 9-12. DEQNA Characteristics . 351
Table 9-13. DEUNA Characteristics . 351
Table 9-14. LEMAC Characteristics . 351
Table 9-15. 3C589 Characteristics. 352
Table 9-16. Tulip Ethernet and Fast Ethernet Characteristics. 353
Table 9-17. Tulip Hardware Media Selection . 354
Table 9-18. Intel 82559 Fast Ethernet Characteristics . 355
Table 9-19. 82559 Hardware Media Selection . 355
Table 9-20. DEGPA Devices. 356
Table 9-21. Broadcom 5700 Characteristics . 356
Table 9-22. 5700 Hardware Media Selection . 357
Table 9-23. Intel 82540 Characteristics . 357
Table 9-24. DEFMA FDDI Charactertics . 358
12

Tables
Table 9-25. DEFZA FDDI Charactertics . 358
Table 9-26. PDQ FDDI Charactertics . 359
Table 9-27. TMS380 Token Ring Charactertics . 360
Table 9-28. OTTO ATM Charactertics . 361
Table 9-29. FORE ATM Charactertics . 361
Table 9-30. Components of LAN Emulation over an ATM Network . 363
Table 9-31. Ethernet Controller Device Characteristics . 367
Table 9-32. Ethernet Controller Unit and Line Status . 367
Table 9-33. Error Summary Bits . 368
Table 9-34. LAN I/O Functions . 369
Table 9-35. Maximum User Data Sizes for Ethernet, FDDI, and Token Ring 372
Table 9-36. Maximum User Data Sizes for LAN Emulation over ATM . 372
Table 9-37. Maximum Message Sizes for Ethernet, FDDI, and Token Ring 374
Table 9-38. Maximum Message Sizes for LAN Emulation over ATM. 374
Table 9-39. P2 Attributes . 377
Table 9-40. Set Mode Parameters for Packet Formats . 389
Table 9-41. Parameters of IO$M_SET_MAC for Ethernet . 391
Table 9-42. Parameters of IO$M_SET_MAC for FDDI . 392
Table 9-43. Parameters of IO$M_SET_MAC for Token Ring . 392
Table 9-44. Parameters of IO$M_SET_MAC for ATM . 394
Table 9-45. Parameters of IO$M_SENSE_MAC. 400
Table 9-46. State of the Entry . 406
Table 9-47. Rules for Promiscuous Mode Operation . 407
Table 10-1. Supported Ports for Each Version of OpenVMS Alpha and I64 421
Table 10-2. FAST_PATH_PORTS Bit Masks . 423
Table B-1. S2DGB$L_FLAGS Bit Fields . 442
Table C-1. DEC Multinational Character Set. 447
Table C-2. Sequences and Modes. 456
Table D-1. Control Connection Routines. 461
Table D-2. Symbolic Names Defined by $PTDDEF Macro . 470
13

Tables
14

Figures
Figure 1-1. ACP Device- or Function-Dependent Arguments . 22
Figure 1-2. ACP Device/Function Argument Descriptor Format . 23
Figure 1-3. Typical Short FIB . 23
Figure 1-4. Attribute Control Block Format . 36
Figure 1-5. ACP-QIO Record Attributes Area . 43
Figure 1-6. ACP-QIO Attributes Statistics Block. 45
Figure 1-7. Quota File Transfer Block . 61
Figure 1-8. IOSB Contents — ACP-QIO Functions . 61
Figure 2-1. Disk Physical Address . 68
Figure 2-2. Dual-Ported Disk Drives. 71
Figure 2-3. Audio Control Block (AUCB) . 82
Figure 2-4. Output Channel Selection and Volume Settings for CD-ROM Ports as Used by the
SET_VOLUME Function . 85
Figure 2-5. Starting Physical Address . 93
Figure 2-6. Physical Cylinder Number Format . 93
Figure 2-7. IOSB Contents . 100
Figure 2-8. IOSB Contents for the Sense Mode Function . 100
Figure 3-1. IO$_SKIPFILE Argument . 124
Figure 3-2. IO$_SKIPRECORD Argument. 125
Figure 3-3. Sense Mode P1 Buffer. 127
Figure 3-4. Set Mode Characteristics Buffer for IO$_SETMODE. 128
Figure 3-5. Set Mode Characteristics Buffer for IO$_SETCHAR . 128
Figure 3-6. IOSB Contents . 131
Figure 4-1. Multiple Mailbox Channels . 142
Figure 4-2. $QIO READ STREAM Operation . 147
Figure 4-3. Read Mailbox. 149
Figure 4-4. Write Mailbox . 151
Figure 4-5. Write Attention AST (Read Unsolicited Data) . 153
Figure 4-6. Read Attention AST . 154
Figure 4-7. Protection Mask . 155
Figure 4-8. IOSB Contents — Read Function . 157
Figure 4-9. IOSB Contents— Write Function . 157
Figure 4-10. IOSB Contents— Set Protection Function . 157
Figure 4-11. IOSB Contents — Get Mailbox Information Function . 157
Figure 5-1. Modem Control: Two-Way Simultaneous Operation. 183
Figure 5-2. Terminal Mailbox Message Format . 187
Figure 5-3. Short and Long Forms of Terminator Mask Quadwords . 199
Figure 5-4. Itemlist Read Descriptor . 200
Figure 5-5. P4 Carriage Control Specifier . 206
Figure 5-6. Write Function Carriage Control (Prefix and Postfix Coding) 209
Figure 5-7. Set Mode and Set Characteristics Buffers. 210
Figure 5-8. Relationship of Out-of-Band Function with Control Characters 214
Figure 5-9. Set Mode P1 Block . 215
15

Figures
Figure 5-10. Example SETMODE Itemlist . 220
Figure 5-11. Sense Mode Characteristics Buffer . 247
Figure 5-12. Sense Mode Characteristics Buffer (type-ahead) . 247
Figure 5-13. Sense Mode P1 Block . 248
Figure 5-14. IOSB Contents—Read Function . 249
Figure 5-15. IOSB Contents—Itemlist Read Function . 250
Figure 5-16. IOSB Contents—Write Function . 250
Figure 5-17. IOSB Contents—Set Mode, Set Characteristics, Sense Mode, and Sense Characteristics
Functions . 251
Figure 5-18. IOSB Contents—LAT Port Driver Function . 251
Figure 6-1. Buffer Layout . 286
Figure 8-1. OpenVMS SCSI Class/Port Interface. 302
Figure 8-2. Generic SCSI Class Driver Flow . 304
Figure 8-3. SCSI_NOAUTO System Parameter . 309
Figure 9-1. LAN Frame Formats. 339
Figure 9-2. Ethernet Frame with Ethernet Header . 340
Figure 9-3. Ethernet Frame with IEEE 802.3 Header. 340
Figure 9-4. FDDI Frame Format . 341
Figure 9-5. Token Ring Frame Format . 341
Figure 9-6. LAN Emulation Data Frame Format with IEEE 802.3/Ethernet Header. 342
Figure 9-7. Class I Service 802.2 Header . 344
Figure 9-8. DSAP and SSAP Format. 345
Figure 9-9. 802 Extended Header . 346
Figure 9-10. Emulated LAN Topology. 364
Figure 9-11. DVI$_DEVDEPEND Returns . 367
Figure 9-12. Read Function P5 Buffer . 371
Figure 9-13. Write Function P5 Buffer . 374
Figure 9-14. P2 Extended Characteristics Buffer . 376
Figure 9-15. Format of IO$M_UPDATE_MAP Setmode P2 Buffer. 395
Figure 9-16. Format of the IO$M_ROUTE P2 Buffer . 396
Figure 9-17. Sense Mode P1 Characteristics Buffer . 399
Figure 9-18. Sense Mode Attribute Buffer . 399
Figure 9-19. Format of IO$M_SHOW_MAP P2 Buffer . 403
Figure 9-20. Format of IO$M_SHOW_ROUTE P2 Buffer . 405
Figure 9-21. IOSB Contents . 406
Figure B-1. OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 32-Bit Layout . 440
Figure B-2. OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 64-Bit Layout . 441
Figure D-1. Device Characteristics Buffer . 463
16

Preface

Intended Audience
This manual is intended for system programmers who want to take advantage of the time and space savings
that result from direct use of I/O drivers. OpenVMS users who do not require such detailed knowledge of I/O
drivers can use the device-independent servicdes described in the OpenVMS Record Management Services
Reference Manual.

Document Structure
This manual is organized into the following chapters and appendixes:

• Chapter 1 describes the Queue I/O (QIO) interface to file system ancillary control processes (ACPs).

• Chapters 2 through 9 describe the use of file-structured and real-time I/O device drivers, the drivers for
storage devices such as disks and magnetic tapes, and supported terminal devices:

— Chapter 2 discusses the disk drivers.

— Chapter 3 discusses the magnetic tape drivers.

— Chapter 4 discusses the mailbox driver.

— Chapter 5 discusses the terminal driver.

— Chapter 6 discusses the pseudoterminal driver.

— Chapter 7 discusses the shadow-set virtual unit driver.

— Chapter 8 discusses the Generic Small Computer System Interface (SCSI) class driver.

— Chapter 9 discusses the local area network (LAN) device drivers.

• Chapter 10 describes optional features to improve OpenVMS Alpha I/O performance.

• Appendix A summarizes the QIO function codes, arguments, and function modifiers used by the drivers
listed previously.

• Appendix B describes the enhanced IO$_DIAGNOSE function for SCSI class drivers.

• Appendix C lists the DEC Multinational character set and the ANSI and DIGITAL private escape
sequences for terminals.

• Appendix D describes the calling conventions for the pseudoterminal driver's control connection routines.

Device Driver Support for OpenVMS Alpha and I64 64-Bit Addressing
The OpenVMS Alpha and I64 operating systems provide support for 64-bit virtual memory addressing, which
makes the 64-bit virtual address space defined by the architecture available to the OpenVMS Alpha and I64
operating systems and to application programs. In the 64-bit virtual address space, both process-private and
system virtual address space extend beyond 2 GB. By using 64-bit addressing features, programmers can
create images that map and access data beyond the limits of 32-bit virtual addresses.

Input and output operations can be performed directly to and from the 64-bit addressable space by means of
RMS services, the $QIO system service, and most of the device drivers supplied with OpenVMS Alpha and
I64 systems. A device driver declares support for 64-bit addresses individually by I/O function code. Disk and
tape device drivers support 64-bit addresses for data transfers to and from disk and tape devices on the
17

virtual, logical, and physical read and write functions. For example, the OpenVMS SCSI disk class driver,
SYS$DKDRIVER, supports 64-bit addresses on the IO$_READVBLK and IO$_WRITEVBLK functions, but
not on the IO$_AUDIO function. The device drivers, function codes, and $QIO arguments that support 64-bit
addressing are indicated in the appropriate chapters of this manual.

For more information about the OpenVMS device drivers that support 64-bit addressing, see the HP
OpenVMS Programming Concepts Manual. To find out how to modify a customer-written device driver to
support 64-bit addressing, see the HP OpenVMS Guide to Upgrading Privileged-Code Applications Manual.

Related Documents
The following manuals provide additional information that relates to the topics covered in this book:

• HP OpenVMS Guide to Upgrading Privileged-Code Applications

• HP OpenVMS Programming Concepts

• HP OpenVMS System Services Reference Manual: A-GETUAI

• HP OpenVMS System Services Reference Manual: GETUTC-Z

• OpenVMS Record Management Services Reference Manual

• DECnet for OpenVMS Guide to Networking (available on the Documentation CD-ROM)

• OpenVMS VAX Device Support Manual (available on the Documentation CD-ROM)

NOTE For updated hardware information, refer to the most recent Software Product Description for
the OpenVMS Operating System (SPD 82.35.xx).

Reader's Comments
HP welcomes your comments on this manual.

Please send comments to either of the following addresses:

Internet: openvmsdoc@hp.com

Postal Mail:
Hewlett-Packard Company
OSSG Documentation Group
ZKO3-4/U08
110 Spit Brook Road
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the following World Wide Web address :

 http://www.hp.com/go/openvms/doc/order

Conventions
18

The following conventions may be used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (x) or a pointing
device button.

Return In examples, a key name in bold indicates that you press that key.

… A horizontal ellipsis in examples indicates one of the following possibilities:

− Additional optional arguments in a statement have been omitted.
− The preceding item or items can be repeated one or more times.
− Additional parameters, values, or other information can be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

() In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the
command line.

bold type Bold type represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output
(Internal error number), in command lines (/PRODUCER=name), and in
command parameters in text (where (dd) represents the predefined par code
for the device type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.
19

Example This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies URLs, UNIX commands
and pathnames, PC-based commands and folders, and certain elements of
the C programming language.

– A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the
following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly
indicated.

Convention Meaning
20

ACP-QIO Interface
1 ACP-QIO Interface

An ancillary control process (ACP) is a process that interfaces between the user process and the driver,
and performs functions that supplement the driver's functions. Virtual I/O operations involving
file-structured devices (disks and magnetic tapes) often require ACP intervention. In most cases, ACP
intervention is requested by OpenVMS Record Management Services (RMS) and is transparent to the user
process; however, user processes can request ACP functions directly by issuing a Queue I/O (QIO) request and
specifying an ACP function code.

Executing physical and logical input/output (I/O) operations on a device that is managed by a file ACP
interferes with the operation of the ACP, and can result in unpredictable consequences such as system failure.

In addition to the ACP, the XQP (extended QIO processor) facility supplements the QIO driver's functions
when performing virtual I/O operations on file-structured devices; however, rather than being a separate
process, the XQP executes as a kernel-mode thread in the process of its caller.

An XQP is provided to support Files-11 ODS-2 and ODS-5 (On-Disk Structure Level 2 and 5) disks as the
base file system, and an ACP is provided for ANSI standard X3.27 magnetic tapes.

On VAX systems, an ACP is provided for supporting Files-11 ODS-1 (On-Disk Structure Level 1) disks.

There are also ACPs to support the ISO 9660 CD-ROM disk structure (Files-11 C) and High Sierra CD-ROM
disk structure (Files-11 D). Collectively, these ACPs are called Files-11 C/D.

This chapter describes the QIO interface to ACPs for disk and magnetic tape devices (file system ACPs). The
sample program in Chapter 10 performs QIO operations to the magnetic tape ACP.

This chapter also describes a number of structures and field names of the form xxx$name. A MACRO program
can define symbols of this form by invoking the $xxxDEF macro.

The following macros are available in SYS$LIBRARY:STARLET.MLB:

$IODEF

$FIBDEF

$ATRDEF

$SBKDEF

The following macros are available in SYS$LIBRARY:LIB.MLB:

$FATDEF

$DQFDEF

$FCHDEF

Programs written in BLISS-32 can use these symbols by referencing them and including the correct library,
SYS$LIBRARY:STARLET.L32 (for the macros listed under SYS$LIBRARY:STARLET.MLB), and
SYS$LIBRARY:LIB.L32 (for the macros listed under SYS$LIBRARY:LIB.MLB).

References to ANSI refer to the American National Standard Magnetic Tape Labels and File Structures for
Information Interchange, ANSI X3.27-1978.
21

ACP-QIO Interface
ACP Functions and Encoding
1.1 ACP Functions and Encoding
Ancillary control process (ACP) functions can be expressed using seven function codes and four function
modifiers. The function codes are:

• IO$_CREATE—Creates a directory entry or file

• IO$_ACCESS—Searches a directory for a specified file and accesses the file, if found

• IO$_DEACCESS—Deaccesses a file and, if specified, writes the final attributes in the file header

• IO$_MODIFY—Modifies the file attributes and file allocation

• IO$_DELETE—Deletes a directory entry and file header

• IO$_MOUNT—Informs the ACP when a volume is mounted; requires MOUNT privilege

• IO$_ACPCONTROL—Performs miscellaneous control functions

The function modifiers are:

• IO$M_ACCESS—Opens a file on the user's channel

• IO$M_CREATE—Creates a file

• IO$M_DELETE—Deletes a file or marks it for deletion

• IO$M_DMOUNT—Dismounts a volume

In addition to the function codes and modifiers, ACPs take five device- or function-dependent arguments, as
shown in Figure 1-1. The first argument, P1, is the address of the file information block (FIB) descriptor.
Section 1.2 describes the FIB in detail.

The second argument, P2, is an optional argument used in directory operations. It specifies the address of the
descriptor for the file name string to be entered in the directory.

Argument P3 is the address of a word to receive the resultant file name string length. The resultant string is
not padded. The actual length is returned in P3. Argument P4 is the address of a descriptor for a buffer to
receive the resultant file name string. Both of these arguments are optional.

Figure 1-1 ACP Device- or Function-Dependent Arguments

The fifth argument, P5, is an optional argument containing the address of the attribute control block. Section
1.3.5 describes the attribute control block in detail.

All areas of memory specified by the descriptors must be capable of being read or written to.

31 0

P1:

P2:

P3:

P4:

P5:

ZK0636GE

Address of FIB Descriptor

Address of File Name String Descriptor (Optional)

Address of Word to Receive Resultant String Length (Optional)

Address of Resultant String Descriptor (Optional)

Address of Attribute Control Block (Optional)
22

ACP-QIO Interface
File Information Block (FIB)
Figure 1-2 shows the format for the descriptors. The count field is the length in bytes of the item described.

Figure 1-2 ACP Device/Function Argument Descriptor Format

1.2 File Information Block (FIB)
The file information block (FIB) contains much of the information that is exchanged between the user process
and the ACP. The FIB must be writable.

The FIB is passed by a descriptor (see Figure 1-2). A short FIB can be used in ACP calls that do not need
arguments near the end of the FIB. The ACP treats the omitted portion of the FIB as if it were 0. Figure 1-3
shows the format of a typical short FIB that would be used to open an existing file.

Figure 1-3 Typical Short FIB

Table 1-1 gives a brief description of the FIB fields. More detailed descriptions are provided in Sections
Section 1.3 and Section 1.6.

Table 1-1 Contents of the FIB

Field Meaning

FIB$L_ACCTL Contains flag bits that control the access to the file. Sections Section
1.3.1.1, Section 1.3.2.1, Section 1.6.1.1, and Section 1.6.4.1, and Section
1.6.5 describe the FIB$L_ACCTL field flag bits.

31 16 15 0

ZK0637GE

Address

Not Used Count

31 24 23 16 15 8 7 0

FIB$B_WSIZE FIB$L_ACCTL

FIB$W_FID

FIB$W_DID

FIB$L_WCC

FIB$W_NMCTL

ZK0639GE

0

0

23

ACP-QIO Interface
File Information Block (FIB)
FIB$L_ACL_STATUS Status of the requested ACL attribute operation, if any. The ACL
attributes are included in Table 1-7. If no ACL attributes are given,
SS$_NORMAL is returned here.

FIB$L_ACLCTX Maintains position context when processing ACL attributes from the
attribute (P5) list.

FIB$B_ALALIGN Contains the interpretation mode of the allocation (FIB$W_ALLOC)
field.

FIB$W_ALLOC Contains the desired physical location of the blocks being allocated.
Interpretation of the field is controlled by the FIB$B_ALALIGN field.
The following subfields are defined:

Subfield Meaning

FIB$W_LOC_FID Three-word related file ID for RFI
placement.

FIB$W_LOC_NUM Related file number.

FIB$W_LOC_SEQ Related file sequence number.

FIB$B_LOC_RVN Related file relative volume number
(RVN) or placement RVN.

FIB$B_LOC_NMX Related file number extension.

FIB$L_LOC_ADDR Placement logical block number (LBN),
cylinder, or virtual block number (VBN).

FIB$B_ALOPTS Contains option bits that control the
placement of allocated blocks. Section
1.3.3.1 describes the FIB$B_ALOPTS
field flag bits.

FIB$L_ALT_ACCESS A 32-bit mask that represents an access mask to check against file
protection; for example, opens a file for read access and checks whether
it can be deleted. The mask has the same configuration as the standard
protection mask.

FIB$W_CNTRLFUNC In an IO$_ACPCONTROL function, this field contains the code that
specifies which ACP control function is to be performed (see Section
1.6.8). This field overlays FIB$W_EXCTL.

FIB$L_CNTRLVAL Contains a control function value used in an IO$_ACPCONTROL
function (see Section 1.6.8). The interpretation of the value depends on
the control function specified in FIB$W_CNTRLFUNC. This field
overlays FIB$L_EXSZ.

Table 1-1 Contents of the FIB (Continued)

Field Meaning
24

ACP-QIO Interface
File Information Block (FIB)
FIB$W_DID Contains the file identifier of the directory file.

For Files-11 On-Disk Structure Level 1 and Level 2, the following
subfields are defined:

Subfield Meaning

FIB$W_DID_NUM File number.

FIB$W_DID_SEQ File sequence number.

FIB$W_DID_RVN Relative volume number (only for
magnetic tape devices).

FIB$B_DID_RVN Relative volume number (only for disk
devices).

FIB$B_DID_NMX File number extension (only for disk
devices).

FIB$W_EXCTL Contains flag bits that specify extend control for disk devices. Sections
Section 1.3.3.1 and Section 1.3.4.1 describe the FIB$W_EXCTL field
flag bits.

FIB$L_EXSZ Specifies the number of blocks to be allocated in an extend operation on
a disk file.

FIB$L_EXVBN Specifies the starting disk file virtual block number at which a file is to
be truncated.

FIB$W_FID Specifies the file identification. You supply the file identifier when it is
known; the ACP returns the file identifier when it becomes known; for
example, as a result of a create or directory lookup. A 0 file identifier
can be specified when an operation is performed on a file that is already
open on a particular channel. The ACP returns the file identifier of the
open file.

For Files-11 On-Disk Structure Level 1 and Level 2, the following
subfields are defined:

Subfields Meaning

FIB$W_FID_NUM File number.

FIB$W_FID_SEQ File sequence number.

FIB$W_FID_RVN Relative volume number (only for
magnetic tape devices).

FIB$B_FID_RVN Relative volume number (only for disk
devices).

FIB$B_FID_NMX File number extension (only for disk
devices).

Table 1-1 Contents of the FIB (Continued)

Field Meaning
25

ACP-QIO Interface
File Information Block (FIB)
FIB$W_FID_DIRNUM Directory number of the file identifier.
This is the path table record number of
the directory that describes the file.

FIB$L_FID_RECNUM Record number of the first directory
record for the file within the current
directory.

FIB$B_NAME_FORMAT_IN Contains the format of the input file specification. Section 1.3.1.1
describes the FIB$B_NAME_FORMAT_IN field flag bits.

FIB$B_NAME_FORMAT_OUT Contains the format of the output file specification. Section 1.3.1.1
describes the FIB$B_NAME_FORMAT_OUT field flag bits.

FIB$W_NMCTL Contains flag bits that control the processing of a name string in a
directory operation. Sections Section 1.3.1.1 and Section 1.6.1.1
describe the FIB$W_NMCTL field flag bits.

FIB$L_STATUS Access status. Applies to all major functions. The following bits are
supported:

Subfields Meaning

FIB$V_ALT_REQ Set to indicate whether the alternate
access bit is required for the current
operation. If not set, the alternate access
bit is optional.

FIB$V_ALT_GRANTED If FIB$V_ALT_REQ = 0, the FIB bit
returned from the file system is set if the
alternate access check succeeded.

Programmers can control the security
information being propagated as well as
the source of this information by setting
the following bits (which apply only to the
IO$_CREATE and IO$_MODIFY
functions).

FIB$V_DIRACL Propagate the ACL from the parent
directory to the file, assuming the file is a
directory file.

FIB$V_EXCLPREVIOUS Set to indicate that propagation may not
occur from a previous version of the file.

FIB$V_ALIAS_ENTRY Set on any file system operation where
the directory backlink in the file header is
different (and nonzero) from the directory
id specified in the FIB.

Table 1-1 Contents of the FIB (Continued)

Field Meaning
26

ACP-QIO Interface
ACP Subfunctions
1.3 ACP Subfunctions
The operations that the ACP performs can be organized into two categories: major ACP functions and
subfunctions. Each ACP operation performs one major function. That function is specified by an I/O function
code, such as IO$_ACCESS, IO$_CREATE, or IO$_MODIFY. While executing the major function, one or more
subfunctions can be performed. A subfunction is an operation such as looking up, accessing, or extending a
file. Most subfunctions can be executed by more than one of the major functions. Sections Section 1.3.1
through Section 1.3.5 describe the following subfunctions in detail:

• Directory Lookup

• Access

• Extend

• Truncate

• Read/Write Attributes

FIB$V_NOCOPYACL Set to indicate that the ACL should not be
propagated from the parent directory (or a
previous version of the file) to the file.

FIB$V_NOCOPYOWNER Set to indicate that the owner UIC should
not be propagated from the parent
directory (or a previous version of the file)
to the file.

FIB$V_NOCOPYPROT Set to indicate that the UIC-based
protection should not be propagated from
the parent directory (or a previous version
of the file) to the file.

FIB$V_PROPAGATE Propagate attributes from the parent
directory (or previous version of the file).
If you set the FIB$V_NOCOPYACL,
FIB$V_NOCOPYOWNER, or
FIB$V_NOCOPYPROT bits, you must
also set FIB$V_PROPAGATE or a
SS$_BADPARAM error results.

FIB$W_VERLIMIT Contains the version limit of the directory entry.

FIB$L_WCC Maintains position context when processing wildcard directory
operations.

FIB$B_WSIZE Controls the size of the file window used to map a disk file. If a window
size of 255 is specified, the file is completely mapped by using
segmented windows.

Table 1-1 Contents of the FIB (Continued)

Field Meaning
27

ACP-QIO Interface
ACP Subfunctions
Section 1.6, which contains the descriptions of the major functions, lists the subfunctions available to each
major function.

1.3.1 Directory Lookup

The directory lookup subfunction is used to search for a file in a disk directory or on a magnetic tape. This
subfunction can be invoked using the major functions IO$_ACCESS, IO$_MODIFY, IO$_DELETE, and
IO$_ACPCONTROL. A directory lookup occurs if the directory file ID field in the FIB (FIB$W_DID) is a
nonzero number.

1.3.1.1 Input Parameters

Table 1-2 lists the FIB fields that control the processing of a lookup subfunction.

Table 1-2 FIB Fields (Lookup Control)

Field Subfields Meaning

FIB$W_NMCTL Name string control. The following name
control bits are applicable to a lookup
operation:

FIB$V_ALLNAM Set to match all name field values.

FIB$V_ALLTYP Set to match all field type values.

FIB$V_ALLVER Set to match all version field values.

FIB$V_CASE_SENSITIVE When set, performs case-sensitive
lookup; when clear, performs case-blind
lookup.

FIB$V_FINDFID Set to search a directory for the file ID in
FIB$W_FID.

FIB$V_NAMES_8BIT Caller can accept (8-bit) ODS-2 or ISO
Latin-1 formats.

FIB$V_NAMES_16BIT Caller can accept (16-bit) Unicode
(UCS-2) formats.

FIB$V_WILD Set if name string contains wildcards.
Setting this bit causes wildcard context
to be returned in FIB$L_WCC.

FIB$W_FID File identification. The file ID of the file
found is returned in this field.

FIB$W_DID Contains the file identifier of the
directory file. This field must be a
nonzero number.

FIB$L_WCC Maintains position context when
processing wildcard directory operations.

FIB$L_ACCTL The following access control flag is
applicable to a lookup subfunction:
28

ACP-QIO Interface
ACP Subfunctions
QIO arguments P2 through P5 (see Figure 1-1) are passed as values. The second argument, P2, specifies the
address of the descriptor for the file name string to be searched for in the directory.

The file name string must have one of the following two formats:

name.type;version name.type.version

The name and type can be any combination of alphanumeric characters, and the dollar sign ($), asterisk (*),
and percent(%) characters. The version must consist of numeric characters optionally preceded by a minus
sign (-) (only for disk devices) or a single asterisk. The total number of alphanumeric and percent characters
in the name field and in the type field must not exceed 39. Any number of additional asterisks can be present.

If any of the bits FIBV_ALLNAM, FIBV_ALLTYP, and FIB$V_ALLVER are set, then the contents of the
corresponding field in the name string are ignored and the contents are assumed to be an asterisk.

Note that the file name string cannot contain a directory string. The directory is specified by the FIB$W_DID
field (see Table 1-2). Only RMS can process directory strings.

Argument P3 is the address of a word to receive the resultant file name string length. Argument P4 is the
address of a descriptor for a buffer to receive the resultant file name string. The resultant string is not
padded. The P3 and P4 arguments are optional.

1.3.1.2 Operation

The system searches either the directory file specified by FIB$W_DID or the magnetic tape for the file name
specified in the P2 file name parameter. The actual file name found and its length are returned in the P3 and
P4 length and result string buffers. The file ID of the file found is returned in FIB$W_FID and can be used in
subsequent operations as the major function is processed.

FIB$V_REWIND Set to rewind magnetic tape before
lookup. If not set, a magnetic tape is
searched from its current position.

FIB$B_NAME_FORMAT_IN Contains the format of the input file
specification. The following formats are
valid:

FIB$C_ODS2 ODS-2 Format (default)

FIB$C_ISO_LATIN ISO Latin-1 Format

FIB$C_UCS2 Unicode (UCS-2) Format

FIB$B_NAME_FORMAT_OUT Contains the format of the output file
specification. The following formats are
valid:

FIB$C_ODS2 ODS-2 Format (default)

FIB$C_ISO_LATIN ISO Latin-1 Format

FIB$C_UCS2 Unicode (UCS-2) Format

Table 1-2 FIB Fields (Lookup Control) (Continued)

Field Subfields Meaning
29

ACP-QIO Interface
ACP Subfunctions
Zero and negative version numbers have special significance in a disk lookup operation. Specifying 0 as a
version number causes the latest version of the file to be found. Specifying -1 locates the second most recent
version, -2 the third most recent, and so forth. Specifying a version of -0 locates the lowest numbered version
of the file. For magnetic tape lookups, a version number of 0 locates the first occurrence of the file
encountered; negative version numbers are not allowed.

Wildcard lookups are performed by specifying the appropriate wildcard characters in the name string and
setting FIB$V_WILD. (The name control bits FIBV_ALLNAM, FIBV_ALLTYP, and FIB$V_ALLVER can
also be used in searching for wildcard entries, but they are intended primarily for compatibility mode use.) On
the first lookup, FIB$L_WCC should contain zero entries. On each lookup, the ACP returns a nonzero value
in FIB$L_WCC, which must be passed back on the next lookup call. In addition, you must pass the resultant
name string returned by the previous lookup using the P4 result string buffer, and its length in the P3 result
length word. This string is used together with FIB$L_WCC to continue the wildcard search at the correct
position in the directory.

To perform a lookup by file ID, set the name control bit FIB$V_FINDFID. When this bit is set, the system
searches the directory for an entry containing the file ID specified in FIB$W_FID, and the name of the entry
found is returned in the P3 and P4 result parameters. Note that if a directory contains multiple entries with
the same file ID, only the first entry can be located with this technique.

Lookups by file ID should be done only when the file name is not available, because lookups by this method
are often significantly slower than lookups by file name.

Because not all programs can handle all of the available name formats, the FIB$W_NMCTL flags govern the
name formats, and are returned as follows:

• FIB$V_ NAMES_8BIT clear

FIB$V_ NAMES_16BIT clear

Only ODS-2 format names are returned. Note that this includes specifications that were originally in ISO
Latin-1 format or Unicode (UCS-2) format but converted to ODS-2 format before being stored on the
volume. All specifications are converted to uppercase before being returned.

• FIB$V_ NAMES_8BIT set

FIB$V_ NAMES_16BIT clear

Only those file specifications stored in ODS-2 and ISO Latin-1 formats are returned. The value in the
FIB$B_NAME_FORMAT_OUT field indicates the format of the particular name being returned. ODS-2
format file specifications are not converted to uppercase before being returned.

• FIB$V_ NAMES_8BIT clear

FIB$V_ NAMES_16BIT set

All file specifications are returned in Unicode (UCS-2) format.

• FIB$V_ NAMES_8BIT set

FIB$V_ NAMES_16BIT set

File specifications are returned in the format stored on the volume. This is the simplest format compatible
with the file name syntax and the characters it contains. For example, a specification originally in
Unicode format that only contains characters that are part of the ISO Latin-1 character set are returned
in ISO Latin-1 format.
30

ACP-QIO Interface
ACP Subfunctions
1.3.1.3 Directory Entry Protection

A directory entry is protected with the same protection code as the file itself. For example, if a directory file is
protected against delete access, then the file name has the same protection. Consequently, a nonprivileged
user (that is, a user who is not the volume owner, or a user who does not have SYSPRV) cannot rename a file
because renaming a file is essentially the same as deleting the file name. This protection is applied regardless
of the protection on the directory file.

Nonprivileged users can neither write directly into a .DIR;1 directory file nor turn off the directory bit in a
directory file header.

1.3.2 Access

The access subfunction is used to open a file so that virtual read or write operations can be performed. This
subfunction can be invoked using the major functions IO$_CREATE and IO$_ACCESS (see Section 1.6.1 and
Section 1.6.2). An access subfunction is performed if the IO$M_ACCESS modifier is specified in the I/O
function code.

1.3.2.1 Input Parameters

Table 1-3 lists the FIB fields that control the processing of an access subfunction.

Table 1-3 FIB Fields (Access Control)

Field Subfields Meaning

FIB$L_ACCTL Specifies field values that control access to the file. The
following access control bits are applicable to the access
subfunction:

FIB$V_WRITE Set for write access; clear for read-only access.

FIB$V_NOREAD Set to deny read access to others. (You must have write
privilege to the file to use this option.)

FIB$V_NOWRITE Set to deny write access to others.

FIB$V_NOTRUNC Set to prevent the file from being truncated; clear to allow
truncation.

FIB$V_CONTROL Set for control access. If this bit is set, you cannot access
the file if you do not have control access.

FIB$V_NO_READ_
DATA

Set to deny read access to the file.

FIB$V_DLOCK Set to enable deaccess lock (close check). Used only for
disk devices.

Used to flag a file as inconsistent if the program currently
modifying the file terminates abnormally. If the program
deaccesses the file without performing a write attributes
operation, the file is marked as locked and cannot be
accessed until it is unlocked.

FIB$V_UPDATE Set to position at the start of a magnetic tape file when
opening a file for write; clear to position at end-of-file.
31

ACP-QIO Interface
ACP Subfunctions
1.3.2.2 Operation

The file is opened according to the access control specified (see Table 1-3).

1.3.3 Extend

The extend subfunction is used to allocate space to a disk file. This subfunction can be invoked using the
major I/O functions IO$_CREATE and IO$_MODIFY (see Sections Section 1.6.1 and Section 1.6.4). The
extend subfunction is performed if the bit FIB$V_EXTEND is set in the extend control word FIB$W_EXCTL.

FIB$V_READCK Set to enable read checking of the file. Virtual reads to
the file are performed using a data check operation.

FIB$V_WRITECK Set to enable write checking of the file. Virtual writes to
the file are performed using a data check operation.

FIB$V_EXECUTE Set to access the file in execute mode. The protection
check is made against the EXECUTE bit instead of the
READ bit. Valid only for requests issued from
SUPERVISOR, EXEC, or KERNEL mode.

FIB$V_NOLOCK Set to override exclusive access to the file, allowing you to
access the file when another user has the file open with
FIB$V_NOREAD specified. You must have SYSPRV
privilege to use this option. FIB$V_NOREAD and
FIB$V_NOWRITE must be clear for this option to work.

You must have either SYSPRV privilege or control access
to use this option.

FIB$V_NORECORD Set to inhibit recording of the file's modification and
expiration dates. If not set, the file's expiration date can
be modified, depending on the file retention parameters
of the volume.

FIB$V_SEQONLY Set to inform the file system that the file is to be
processed sequentially only.

FIB$B_WSIZE Controls the size of the file window used to map a disk
file. The ACP uses the volume default if FIB$B_WSIZE is
0. A value of 1 to 127 indicates the number of retrieval
pointers to be allocated to the window. A value of -1
indicates that the window should be as large as necessary
to map the entire file. Note that the window is charged to
the user's BYTELIM quota.

FIB$W_FID Specifies the file identification of the file to be accessed.

Table 1-3 FIB Fields (Access Control) (Continued)

Field Subfields Meaning
32

ACP-QIO Interface
ACP Subfunctions
1.3.3.1 Input Parameters

Table 1-4 lists the FIB fields that control the processing of an extend subfunction.

Table 1-4 FIB Fields (Extend Control)

Field Subfields Meaning

FIB$W_EXCTL Extend control flags. The following flags are
applicable to the extend subfunction:

FIB$V_EXTEND Set to enable extension.

FIB$V_NOHDREXT Set to inhibit generation of extension file
headers.

FIB$V_ALCON Allocates contiguous space. The extend
operation fails if the necessary contiguous
space is not available.

FIB$V_ALCONB Allocates the maximum amount of contiguous
space.

If both FIB$V_ALCON and FIB$V_ALCONB
are set, a single contiguous area, whose size is
the largest available but not greater than the
size requested, is allocated.

FIB$V_FILCON Marks the file as contiguous. This bit can only
be set if the file does not have space already
allocated to it.

FIB$V_ALDEF Allocates the extend size (FIB$L_EXSZ) or
the system default, whichever is greater.

FIB$L_EXSZ Specifies the number of blocks to allocate to
the file.

The number of blocks actually allocated for
this operation is returned in this longword.
More blocks than requested can be allocated
to meet cluster boundaries.

FIB$L_EXVBN Returns the starting virtual block number of
the blocks allocated. FIB$L_EXVBN must
initially contain 0 blocks.

FIB$B_ALOPTS Contains option bits that control the
placement of allocated blocks. The following
bits are defined:

FIB$V_EXACT Set to require exact placement; clear to specify
approximate placement. If this bit is set and
the specified blocks are not available, the
extend operation fails.
33

ACP-QIO Interface
ACP Subfunctions
FIB$V_ONCYL Set to locate allocated space within a cylinder.
This option functions correctly only when
FIB$V_ALCON or FIB$V_ALCONB is
specified.

FIB$B_ALALIGN Contains the interpretation mode of the
allocation (FIB$W_ALLOC) field. One of the
following values can be specified:

(zero) No placement data. The remainder of the
allocation field is ignored.

FIB$C_CYL Location is specified as a byte relative volume
number (RVN) in FIB$B_LOC_RVN and a
cylinder number in FIB$L_LOC_ADDR.

FIB$C_LBN Location is specified as a byte RVN in
FIB$B_LOC_RVN, followed by a longword
logical block number (LBN) in
FIB$L_LOC_ADDR.

FIB$C_VBN Location is specified as a longword virtual
block number (VBN) of the file being extended
in FIB$L_LOC_ADDR. A 0 VBN or one that
fails to map indicates the end of the file.

FIB$C_RFI Location is specified as a three-word file ID in
FIB$W_LOC_FID, followed by a longword
VBN of that file in FIB$L_LOC_ADDR. A 0
file ID indicates the file being extended. A 0
VBN or one that fails to map indicates the end
of that file.

FIB$W_ALLOC Contains the desired physical location of the
blocks being allocated. Interpretation of the
field is controlled by the FIB$B_ALALIGN
field. The following subfields are defined:

FIB$W_LOC_FID Three-word related file ID for RFI placement.

FIB$W_LOC_NUM Related file number.

FIB$W_LOC_SEQ Related file sequence number.

FIB$B_LOC_RVN Related file RVN or placement RVN.

FIB$B_LOC_NMX Related file number extension.

FIB$L_LOC_ADDR Placement LBN, cylinder, or VBN.

Table 1-4 FIB Fields (Extend Control) (Continued)

Field Subfields Meaning
34

ACP-QIO Interface
ACP Subfunctions
1.3.3.2 Operation

The specified number of blocks are allocated and appended to the file. The virtual block number assigned to
the first block allocated is returned in FIB$L_EXVBN. The actual number of blocks allocated is returned in
FIB$L_EXSZ.

The actual number of blocks allocated is also returned in the second longword of the user's I/O status block. If
a contiguous allocation (FIB$V_ALCON) fails, the size of the largest contiguous space available on the disk is
returned in the second longword of the user's I/O status block.

1.3.4 Truncate

The truncate subfunction is used to remove space from a disk file. This subfunction can be invoked by the
major I/O functions IO$_DEACCESS and IO$_MODIFY (see Sections Section 1.6.3 and Section 1.6.4). The
truncate subfunction is performed if the bit FIB$V_TRUNC is set in the extend control word FIB$W_EXCTL.

1.3.4.1 Input Parameters

Table 1-5 lists the FIB fields that control the processing of a truncate subfunction.

1.3.4.2 Operation

Blocks are deallocated from the file, starting with the virtual block specified in FIB$L_EXVBN and
continuing through the end of the file. The actual number of blocks deallocated is returned in FIB$L_EXSZ.
The virtual block number of the first block actually deallocated is returned in FIB$L_EXVBN. Because of
cluster round-up, this value might be greater than the value specified. If FIB$V_MARKBAD is specified, the
truncation VBN is rounded down instead of up, and the value returned in FIB$L_EXVBN might be less than
that specified.

Table 1-5 FIB Fields (Truncate Control)

Field Subfields Meaning

FIB$W_EXCTL Extend control flags. The following flags are
applicable to the truncate subfunction:

FIB$V_TRUNC Must be set to enable truncation.

FIB$V_MARKBAD Set to append the truncated blocks to the bad
block file, instead of returning them to the
free storage pool. Only one cluster can be
deallocated. This is most easily accomplished
by specifying the last VBN of the file in
FIB$L_EXVBN. SYSPRV privilege or
ownership of the volume is required to
deallocate blocks to the bad block file.

FIB$L_EXSZ Returns the actual number of blocks
deallocated. FIB$L_EXSZ must initially
contain a value of 0.

FIB$L_EXVBN Specifies the first virtual block number to be
removed from the file. The actual starting
virtual block number of the truncate operation
is returned in this field.
35

ACP-QIO Interface
ACP Subfunctions
The number of blocks by which FIB$L_EXVBN was rounded up is returned in the second longword of the I/O
status block.

The truncate subfunction normally requires exclusive access to the file at run time. This means, for example,
that a file cannot be truncated while multiple writers have access to it.

An exception occurs when a truncate subfunction is requested for a write-accessed file that allows other
readers. Although the truncate subfunction returns success status in this instance, the actual file truncation
(the return of the truncated blocks to free storage) is deferred until the last reader deaccesses the file. If a new
writer accesses the file after the truncate subfunction is requested, but before the last deaccess, the deferred
truncation is ignored.

Once the truncate operation has started, the file is locked from other writers for the duration of the truncate
operation. Attempts to access the file for shared write access during this time will result in an
SS$_ACCONFLICT error.

1.3.5 Read/Write Attributes

The read and write attributes subfunctions are used for operations such as reading and writing file protection
and creating and revising dates. A read or write attributes operation is invoked by specifying an attribute list
with the QIO parameter P5. A read attributes operation can be invoked by the major I/O function
IO$_ACCESS (see Section 1.6.2); a write attributes operation can be invoked by the major I/O functions
IO$_CREATE, IO$_DEACCESS, and IO$_MODIFY (see Sections Section 1.6.1, Section 1.6.3, and Section
1.6.4).

1.3.5.1 Input Parameters

The read or write attributes subfunction is controlled by the attribute list specified by P5. The list consists of
a variable number of two longword control blocks, terminated by a 0 longword, as shown in Figure 1-4. The
maximum number of attribute control blocks in one list is 30. Table 1-6 describes the attribute control block
fields.

Figure 1-4 Attribute Control Block Format

Table 1-6 Attribute Control Block Fields

Field Meaning

ATR$W_SIZE Specifies the number of bytes of the attribute to be written, or the size of the buffer
into which the attribute is to be read. Legal values for writing attributes are from 0
to the maximum size of the particular attribute (see Table 1-7 on page 37), and legal
values for the reading attributes are from 0 to the maximum unsigned 16-bit integer.

31 16 15 0

ATR$W_TYPE ATR$W_SIZE

ZK0640GE

ATR$L_ADDR

(Additional Control Blocks)

0

36

ACP-QIO Interface
ACP Subfunctions
Table 1-7 lists the valid attributes for ACP-QIO functions. The maximum size (in bytes) is determined by the
required attribute configuration. For example, the Radix-50 file name (ATR$S_FILNAM) uses only 6 bytes,
but it is always accompanied by the file type and file version, so a total of 10 bytes is required. Each attribute
has two names: one for the code (for example, ATR$C_UCHAR) and one for the size (for example,
ATR$S_UCHAR).

ATR$W_TYPE Identifies the individual attribute to be read or written.

ATR$L_ADDR Contains the buffer address of the memory space to or from which the attribute is to
be transferred. The attribute buffer must be writable.

Table 1-7 ACP-QIO Attributes

Attribute Name1 Maximum
Size (bytes) Meaning

ATR$C_ACCDATE2 8 Corresponds to POSIX st_atime and reflects the last
time a file was accessed.

ATR$C_ACCESS_MODE 1 Access mode for following attribute descriptors.

ATR$C_ACLEVEL3 4 5 6 1 File access level.

ATR$C_ACLLENGTH6 7 4 Returns the size, in bytes, of the object's ACL.

ATR$C_ADDACLENT8 6 7 255 Adds an ACE to the beginning of the ACL when the
ACE context value is 0; to the end of the ACL when the
ACE context value is -1; or at a location pointed to by a
prior ACL$C_FNDACETYP or ACL$C_FNDACLENT.

ATR$C_ALCONTROL 14 Compatibility mode allocation data.

ATR$C_ASCDATES3 9 35 Revision count (2 binary bytes), revision date, creation
date, and expiration date, in ASCII. Format:
DDMMMYY (revision date), HHMMSS (time),
DDMMMYY (creation date), HHMMSS (time),
DDMMMYY (expiration date). (The format contains no
embedded spaces or commas.)

ATR$C_ASCNAME 252 (ODS-5)
86 (ODS-2)

File name, type, and version, in ASCII, including
punctuation. Format: name.type;version.

Magnetic tape: contains 17-character file identifier
(ANSI a); no version number. Overrides all other file
name and file type specifications if supplied on input
operations. If specified on an access operation and you
want only a value to be returned, specify (in
ATR$W_SIZE) a buffer of greater than 17 bytes.

See Section 1.3.5.2 for additional information.

ATR$C_ATTDATE2 8 Corresponds to POSIX st_ctime and reflects the last
time a file attribute was modified.

Table 1-6 Attribute Control Block Fields (Continued)

Field Meaning
37

ACP-QIO Interface
ACP Subfunctions
ATR$C_BACKLINK6 6 File back link pointer.

ATR$C_BAKDATE4 5 10 6 8 64-bit backup date and time.

ATR$C_BLOCKSIZE 2 Magnetic tape block size.

ATR$C_BUFFER_OFFSET9 2 Offset length for ANSI magnetic tape header label
buffer.

ATR$C_CREDATE 8 64-bit creation date and time.

ATR$C_DELACLENT8 6 7 255 Deletes an access control entry pointed to by the buffer
address or, if the buffer address is 0, the ACE pointed to
by a prior ACL$C_FNDACETYP or
ACL$C_FNDACLENT.

ATR$C_DELETE_ALL8 6 7 255 Delete the entire ACL, including protected entries.

ATR$C_DELETEACL8 6 7 255 Deletes the entire ACL with the exception of protected
ACEs.

ATR$C_DIRSEQ6 2 Directory update sequence count.

ATR$C_ENDLBLAST 4 End of magnetic tape label processing; provides AST
control block.

ATR$C_EXPDAT3 7 Expiration date in ASCII. Format: DDMMMYY.

ATR$C_EXPDATE3 8 64-bit expiration date and time.

ATR$C_FILE_SPEC6 4098 (ODS-5)

512 (ODS-2)

Convert FID to file specification. See Section 1.3.5.2 for
additional information.

ATR$C_FILNAM 10 6-byte Radix-50 file name plus ATR$C_FILTYP and
ATR$C_FILVER. See Section 1.3.5.2 for additional
information.

ATR$C_FILTYP 4 2-byte Radix-50 file type plus ATR$C_FILVER. See
Section 1.3.5.2 for additional information.

ATR$C_FILVER 2 2-byte binary version number. See Section 1.3.5.2 for
additional information.

ATR$C_FNDACLENT6 7 255 Locates an ACE pointed to by its buffer address.

ATR$C_FNDACETYP6 7 255 Locates an ACE of the type pointed to by its buffer
address.

ATR$C_FPRO3 4 2 File protection.

ATR$C_GRANT_ACE6 7 255 Return an ACE that grants or denies access to the
object.

Table 1-7 ACP-QIO Attributes (Continued)

Attribute Name1 Maximum
Size (bytes) Meaning
38

ACP-QIO Interface
ACP Subfunctions
ATR$C_HDR1_ACC 1 ANSI magnetic tape header label accessibility
character.

ATR$C_HEADER 512 Complete file header. This attribute is read only.

ATR$C_HIGHWATER6 4 High-water mark (user read-only).

ATR$C_JOURNAL6 1 Journal control flags.

ATR$C_LINKCOUNT 2 Count of hardlinks.

ATR$C_MATCHING_ACE10 6 255 ACE used to gain access (if any). This attribute can only
be retrieved on the initial file access or create operation.

ATR$C_MODACLENT8 6 7 255 Replaces the ACE pointed to by a prior
ACL$C_FNDACETYP or ACL$C_FNDACLENT with
the ACE pointed to by its buffer address.

ATR$C_MODDATE2 8 Corresponds to POSIX st_mtime and reflects the last
time data was modified.

ATR$C_NEXT_ACE6 7 4 Advance to the next ACE in the ACL.

ATR$C_PRIVS_USED6 4 Privileges used to gain access. This attribute can only
be retrieved on the initial file access or create operation.

ATR$C_READACE6 7 255 Reads the ACE pointed to by ACL$C_FNDACETYP or
ACL$C_FNDACLENT into the buffer.

ATR$C_READACL6 7 512 Reads the entire ACL or as much as will fit in the
supplied buffer. Only complete ACEs are transferred.

ATR$C_RECATTR4 32 Record attribute area. Section 1.4 describes the record
attribute area in detail.

ATR$C_RESERVED11 380 Modifies the reserve area.

ATR$C_REVDATE3 4 8 64-bit revision date and time.

ATR$C_RPRO6 2 2-byte record protection.

ATR$C_SEMASK6 8 File security mask and limit.

ATR$C_STATBLK 32 Statistics block. This attribute is read only. Section 1.5
describes the statistics block in detail.

ATR$C_UCHAR3 9 4 4-byte file characteristics. (The file characteristics bits
are listed following this table.)

ATR$C_USERLABEL 80 User file label. This attribute is not supported for disk
devices.

ATR$C_UIC3 4 4-byte file owner UIC.

Table 1-7 ACP-QIO Attributes (Continued)

Attribute Name1 Maximum
Size (bytes) Meaning
39

ACP-QIO Interface
ACP Subfunctions
Table 1-8 lists the bits contained in the file characteristics longword, which is read with the ATR$C_UCHAR
attribute.

ATR$C_UIC_RO 4 4-byte file owner UIC. This attribute is read only.

1. Attributes with an ATR$C_ prefix have two names: one with the ATR$C prefix for the code and
one with an ATR$S_ prefix for the size, which is not included in the list.

2. Not supported by all ACPs. Maintained on ODS-5 volumes when access dates are enabled using
the DCL INITIALIZE or SET VOLUME commands. Not maintained on ODS-2 volumes.

3. Protected (can be written to only by system or owner).
4. Locked (cannot be written to while the file is locked).
5. For Files-11 C/D; returns 0.
6. Not supported for Files-11 On Disk Structure Level 1 or magnetic tapes.
7. The status from this attribute operation is returned in FIB$L_ACL_STATUS.
8. Exclusive access required. This operation does not complete successfully if other readers or

writers are allowed.
9. Not supported on writer operations to MTAACP; defaults are returned on read operations.
10.Can be written only by the system, owner, or someone holding READALL privilege.
11.The actual length available can decrease if the file is extended in a noncontiguous manner or if an

ACL is applied to the file.

Table 1-8 File Characteristics Bits

Bits Meaning

FCH$M_NOBACKUP Do not back up file.

FCH$M_READCHECK Verify all read operations.

FCH$M_WRITCHECK Verify all write operations.

FCH$M_CONTIGB Keep file as contiguous as possible.

FCH$M_LOCKED File is deaccess-locked.

FCH$M_CONTIG File is contiguous.

FCH$M_BADACL File's ACL is corrupt.

FCH$M_SPOOL File is an intermediate spool file.

FCH$M_DIRECTORY File is a directory.

FCH$M_BADBLOCK File contains bad blocks.

FCH$M_MARKDEL File is marked for deletion.

FCH$M_ERASE Erase file contents before deletion.

FCH$M_ASSOCIATED1 File has an associated file.

FCH$M_EXISTENCE1 Suppress existence of file.

Table 1-7 ACP-QIO Attributes (Continued)

Attribute Name1 Maximum
Size (bytes) Meaning
40

ACP-QIO Interface
ACP Subfunctions
1.3.5.2 Attribute Descriptions

This section contains descriptions of the following attribute codes that are listed in Table 1-7:

• ATR$C_ASCNAME

• ATR$C_FILE_SPEC

• ATR$C_FILNAM

• ATR$C_FILTYP

• ATR$C_FILVER

ATR$C_ASCNAME

The ATR$C_ASCNAME attribute allows the file specification stored in a file's primary file header to be read
and written.

Reading the ATR$C_ASCNAME Attribute

For ODS-5 volumes, the file specification is returned in the supplied buffer, and the name format is returned
in the FIB$B_ASCNAME_FORMAT cell.

The format in which the name is returned is controlled by the settings of the FIB$V_NAMES_8BIT and
FIB$V_NAMES_16BIT flags in the same way as the output file specification parameter. A pseudoname can
be returned in place of the actual file specification if the format is not one of those the calling program can
accept.

Unlike the output file specification parameter, the length of a file specification contained in the ASCNAME
attribute is not passed back explicitly. To determine the length of the file specification, the calling program
must search the attribute buffer for the first occurrence of the padding character. If neither the
FIB$V_NAMES_8BIT nor the FIB$V_NAMES_16BIT flag is set, the buffer is padded with space (note that
only ODS-2 format names are returned in this case). If one or more of the flags are set, the attribute buffer is
padded with zeros.

NOTE The file system does not enforce a minimum length on the attribute buffer. If the file
specification is longer than the attribute buffer, the value returned is truncated without
signaling an error or warning.

In contrast, the file system does enforce a maximum size for the attribute buffer. Supplying a
larger buffer returns a BADPARAM error.

Writing the ATR$C_ASCNAME Attribute

The ASCNAME attribute can only be written for files on ODS-2 or ODS-5 volumes provided that the
FIB$V_NAMES_8BIT and FIB$V_NAMES_16BIT flags are clear.

FCH$M_NOMOVE Disable movefile operations on this file.

FCH$M_NOSHELVABLE File is not shelvable.

FCH$M_SHELVED File is shelved.

1. Files-11 C/D only.

Table 1-8 File Characteristics Bits (Continued)

Bits Meaning
41

ACP-QIO Interface
ACP Subfunctions
The ability to write this attribute is only intended to provide compatibility with existing applications that do
so. New and modified programs should not write this attribute. Changing its value can prevent a file from
being permanently deleted.

In those cases where it is legal to write the attribute, the contents of the attribute buffer (up to 252 bytes) are
copied to the file name field in the file header. For ODS-5 headers, the format is set to ODS-2, and the file
name length is set to the offset of the first space character. This can be 252 bytes or the length of the supplied
buffer, whichever is the least.

ATR$C_FILE_SPEC

The FILE_SPEC attribute is a read-only attribute that returns the physical file specification in the form:

DDnn:[DIR1.DIR2_DIRn]name.type;1

The file name returned is that from the file header, which may be different from that in the directory. The
specification may be incomplete if any errors are encountered while reading the file headers of any of the
directories in the path.

For files on ODS-5 volumes, the path may contain file names that are in any of the three name formats. This
creates a number of problems; for instance, the presence of periods in a directory name could return an
ambiguous path specification. To avoid this and other problems, the file system makes use of services
provided by RMS to translate the file specification and the components of the path to their escaped form.

When you access files on an ODS-5 volume from a VAX system in a mixed architecture OpenVMS system, no
escaped forms are returned. For an ODS-2 or ISO Latin-1 file format, the name stored in the file header is
returned. For a UCS-2 file format, a pseudoname is returned, followed by the file identifier in parentheses.
For example:

DKA100:[ABC]\pUNICODE\.??? (10095,5,0)

If the escaped form of the path is longer than can be accommodated by the buffer for the attribute, one or
more directories in the path may be replaced by the DID of the rightmost of those replaced. This process is
identical to that performed by RMS.

However, if the file specification, even after DID abbreviation, is longer than can be accommodated by the
buffer, the file name is truncated. The file specification string returned to the user buffer has a 2-byte count
prefix. The count contains the number of bytes for the untruncated file specification. If the count is greater
than the size of the user buffer (minus the two bytes that contain the count), the user can conclude that the
returned file specification has been truncated.

ATRC_FILNAM, ATRC_FILTYP, and ATR$C_FILVER

The first two of these attributes allow the file name and file type to be read and written using Radix-50
encoding. This encoding scheme enables 3 characters to be packed into a 16-bit word. Only 38 characters in
the ODS-2 format set are valid for Radix-50 names, with the exceptions being dash (-) and underscore (_).

The maximum component lengths of a Radix-50 encoded file specification are:

• File name: 15 characters (10 bytes)

• File type: 6 characters (4 bytes)

As a result of the additional character and length restrictions, only a subset of legal ODS-2 file names is can
be expressed in the Radix-50 encoding.

The file system only attempts to read or write the three attributes if the format of the existing file name in
the file header is ODS-2. If this is not the case, a NORAD50 error will be returned. If the existing file name is
in ODS-2 format, but is incompatible with the Radix-50 encoding or the length limits on Radix-50 file names,
a BADFILENAME error will be returned.
42

ACP-QIO Interface
ACP-QIO Record Attributes Area
The ATR$C_FILVER attribute allows the file version number in the file header to be read or written as a
2-byte integer. As the process requires the existing file name to be converted into a Radix-50 file name, the
previous restriction also applies to this attribute.

1.4 ACP-QIO Record Attributes Area
Figure 1-5 shows the format of the record attributes area.

Figure 1-5 ACP-QIO Record Attributes Area

Table 1-9 lists the record attributes values and their meanings.

Table 1-9 ACP Record Attributes Values

Field Value Meaning

FAT$B_TYPE Record type. Contains FAT$V_RTYPE and FAT$V_FILEORG.

FAT$V_RTYPE Record type. The following bit values are defined:

FAT$C_FIXED Fixed-length record

FAT$C_VARIABLE Variable-length record

FAT$C_VFC Variable-length record with fixed control

FAT$C_UNDEFINED Undefined record format (stream binary)

FAT$C_STREAM RMS stream format

FAT$C_STREAMLF Stream terminated by LF

FAT$C_STREAMCR Stream terminated by CR

31 24 23 16 15 8 7 0

ZK-0641-AI

4

8

12

16

20

24

28

FAT$W_RSIZE FAT$B_RATTRIB FAT$B_RTYPE*

FAT$L_EFBLK

FAT$L_HIBLK

FAT$B_VFCSIZE FAT$B_BKTSIZE FAT$W_FFBYTE

FAT$W_DEFEXT FAT$W_MAXREC

FAT$W_GBC

FAT$W_VERSIONS

(6 Bytes Reserved for Future Use)

Not Used

*FAT$V_RTYPE Bits 0 - 3; FAT$V_FILEORG Bits 4 -7
43

ACP-QIO Interface
ACP-QIO Record Attributes Area
FAT$V_FILEORG File organization. The following bit values are defined:

FAT$C_DIRECT Direct file organization1

FAT$C_INDEXED Indexed file organization

FAT$C_RELATIVE Relative file organization

FAT$C_SEQUENTIAL Sequential file organization

FAT$B_RATTRIB Record attributes. The following bit values are defined:

FAT$M_FORTRANCC Fortran carriage control

FAT$M_IMPLIEDCC Implied carriage control

FAT$M_PRINTCC Print file carriage control

FAT$M_NOSPAN No spanned records

FAT$M_MSBRCW2 Record count word (RCW) is MSB formatted

FAT$W_RSIZE Record size in bytes.

FAT$L_HIBLK3 Highest allocated VBN. The ACP maintains this field when the file is extended
or truncated. Attempts to modify this field in a write attributes operation are
ignored.

FAT$W_HIBLKH High-order 16 bits

FAT$W_HIBLKL Low-order 16 bits

FAT$L_EFBLK3 4 End of file VBN

FAT$W_EFBLKH High-order 16 bits

FAT$W_EFBLKL Low-order 16 bits

FAT$W_FFBYTE First free byte in FAT$L_EFBLK.

FAT$B_BKTSIZE Bucket size, in blocks.

FAT$B_VFCSIZE Size in bytes of fixed-length control for VFC records.

FAT$W_MAXREC Maximum record size, in bytes.

FAT$W_DEFEXT Default extend quantity.

FAT$W_GBC Global buffer count.

FAT$W_VERSIONS Default version limit; valid only if the file is a directory

1. Defined but not implemented.
2. Variable-length record format (FAT$C_VARIABLE) only.
3. Inverted format field. The high- and low-order 16 bits are transposed for compatibility with

PDP-11 software.

Table 1-9 ACP Record Attributes Values (Continued)

Field Value Meaning
44

ACP-QIO Interface
ACP-QIO Attributes Statistics Block
1.5 ACP-QIO Attributes Statistics Block
Figure 1-6 shows the format of the attributes statistics block. Table 1-10 lists the contents of this block.

Figure 1-6 ACP-QIO Attributes Statistics Block

4. When the end-of-file position corresponds to a block boundary; by convention, FAT$L_EFBLK
contains the end-of-file VBN plus 1 and FAT$W_FFBYTE contains 0.

Table 1-10 Contents of the Statistics Block

 Field Subfields Meaning

SBK$L_STLBN Contains the starting LBN of the file if the file is
contiguous. If the file is not contiguous, this field
contains a value of 0. The LBN appears as an
inverted longword (the high- and low-order 16 bits
are transposed for PDP-11 compatibility). The
following subfields are defined:

SBK$W_STLBNH Starting LBN (high-order 16 bits)

SBK$W_STLBNL Starting LBN (low-order 16 bits)

SBK$L_FILESIZE Contains the size of the file in blocks. The file size
appears as an inverted longword (the high- and
low-order 16 bits are transposed for PDP-11
compatibility). The following subfields are defined:

SBK$W_FILESIZH File size (high-order 16 bits)

SBK$W_FILESIZL File size (low-order 16 bits)

SBK$B_ACNT1 Access count (low byte). Field is for PDP-11
compatibility.

31 16 15 8 7 0

ZK0642GE

SBK$L_STLBN

SBK$L_FILESIZE

SBK$B_LCNT SBK$B_ACNT

(Not Used)

SBK$W_LCNT SBK$W_ACNT

SBK$W_WCNTSBK$W_TCNT

SBK$L_READS

SBK$L_WRITES

SBK$L_FCB
45

ACP-QIO Interface
Major Functions
1.6 Major Functions
The following sections describe the operation of the major ACP functions. Each section describes the required
and optional parameters for a particular function, as well as the sequence in which the function is performed.
For clarity, when a major function invokes a subfunction, the input parameters used by the subfunction are
omitted.

1.6.1 Create File

Create file is a virtual I/O function that creates a directory entry or a file on a disk device, or a file on a
magnetic tape device.

The following is the function code:

• IO$_CREATE

The following are the function modifiers:

• IO$M_CREATE—Creates a file.

• IO$M_ACCESS—Opens the file on your channel.

• IO$M_DELETE—Marks the file for deletion (applicable only to disk devices).

SBK$B_LCNT1 Lock count (low byte). Field is for PDP-11
compatibility.

SBK$L_FCB System pool address of the file's file control block.

SBK$W_ACNT1 Access count (number of channels with file open
currently).

SBK$W_LCNT1 Lock count (the number of access operations that
have locked the file against writers).

SBK$W_WCN1 Writer count (the number of channels that currently
have the file open for write).

SBK$W_TCNT1 Truncate lock count (the number of access operations
that have locked the file against truncation).

SBK$L_READS Number of read operations executed for the file on
this channel.

SBK$L_WRITES Number of write operations executed for the file on
this channel.

1. Accesses from processes on the local node in a cluster are counted.

Table 1-10 Contents of the Statistics Block (Continued)

 Field Subfields Meaning
46

ACP-QIO Interface
Major Functions
1.6.1.1 Input Parameters

The following are the device- or function-dependent arguments for IO$_CREATE:

• P1—The address of the file information block (FIB) descriptor.

• P2—The address of the file name string descriptor (optional).

• P3—The address of the word that is to receive the length of the resultant file name string (optional).

• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (optional).

• P5—The address of a list of attribute descriptors (optional).

Table 1-11 lists fields in the FIB that are applicable to the IO$_CREATE operation.

Table 1-11 IO$_CREATE and the FIB

 Field Subfields Meaning

FIB$L_ACCTL Specifies field values that control access to the file.
The following bits are applicable to the
IO$_CREATE function:

FIB$V_REWIND Set to rewind magnetic tape before creating the file.
Any data currently on the tape is overwritten.

FIB$V_CURPOS Set to create magnetic tape file at the current tape
position. (Note: a magnetic tape file is created at the
end of the volume set if neither FIB$V_REWIND nor
FIB$V_CURPOS is set.) If the tape is not positioned
at the end of a file, FIB$V_CURPOS creates a file at
the next file position. Any data currently on the tape
past the current file position is overwritten.

FIB$V_WRITETHRU Specifies that the file header is to be written back to
the disk. If not specified and the file is opened,
writing of the file header can be deferred to some
later time.

FIB$W_CNTRLFUNC Specifies the following value, which allows you to
control actions subsequent to EOT detection on a
magnetic tape file.

FIB$W_FID Contains the file ID of the file created or entered.

FIB$W_DID Contains the file identifier of the directory file.

FIB$W_NMCTL Controls the processing of the file name in a
directory operation. The following bits are applicable
to the IO$_CREATE function:

FIB$V_NEWVER Set to create a file of the same name with the next
higher version number. Only for disk devices.

FIB$V_SUPERSEDE Set to supersede an existing file of the same name,
type, and version. Only for disk devices.

FIB$V_LOWVER Set on return if a lower numbered version of the file
exists. Only for disk devices.
47

ACP-QIO Interface
Major Functions
1.6.1.2 Disk ACP Operation

If the modifier IO$M_CREATE is specified, a file is created. The file ID of the file created is returned in
FIB$W_FID. If the modifier IO$M_DELETE is specified, the file is marked for deletion.

If a nonzero directory ID is specified in FIB$W_DID, a directory entry is created. The file name specified by
parameter P2 is entered in the directory, together with the file ID in FIB$W_FID. (Table 1-2 describes the
format for the file name string.) Wildcards are not permitted. Negative version numbers are treated as
equivalent to a 0 version number. If a result string buffer and length are specified by P3 and P4, the actual
file name entered, and its length, are returned.

The version number of the file receives the following treatment:

• If the version number in the specified file name is 0 or negative, the directory entry created gets a version
number one greater than the highest previously existing version of that file (or version 1 if the file did not
previously exist).

• If the version number in the specified file name is a nonzero number and FIB$V_NEWVER is set, the
directory entry created gets a version number one greater than the highest previously existing version of
that file, or the specified version number, whichever is greater.

• If the version number in the specified file name is a nonzero number and the directory already contains a
file of the same name, type, and version, the previously existing file is set aside for deletion if
FIB$V_SUPERSEDE is specified. If FIB$V_SUPERSEDE is not specified, the create operation fails with
a SS$_DUPFILNAM status.

• If, after creating the new directory entry, the number of versions of the file exceeds the version limit, the
lowest numbered version is set aside for deletion.

• If the file did not previously exist, the new directory entry is given a version limit as follows: the version
limit is taken from FIB$W_VERLIMIT if it is a nonzero number; if it is 0, the version limit is taken from
the default version limit of the directory file; if the default version limit of the directory file is 0, the
version limit is set to 32,767 (the highest possible number).

FIB$V_HIGHVER Set on return if a higher numbered version of the file
exists. Only for disk devices.

FIB$W_VERLIMIT Specifies the version limit for the directory entry
created. Used only for disk devices and only when
the first version of a new file is created. If 0, the
directory default is used. If a directory operation was
performed, FIB$W_VERLIMIT always contains the
actual version limit of the file.

FIB$L_ACL_STATUS Status of the requested ACL attribute operation, if
any. The ACL attributes are included in Table 1-7. If
no ACL attributes are given, SS$_NORMAL is
returned here.

FIB$L_STATUS Access status. Programmers can control the security
information being propagated as well as the source of
this information by setting the following bits.

Table 1-11 IO$_CREATE and the FIB (Continued)

 Field Subfields Meaning
48

ACP-QIO Interface
Major Functions
The file name string entered in the directory is returned using the P3 and P4 result string parameters, if
present. The file name string is also written into the header. If no directory operation was requested
(FIB$W_DID is 0), the file name string specified by P2, if any, is written into the file header.

If an attribute list is specified by P5, a write attributes subfunction is performed (see Section 1.3.5).

If the modifier IO$M_ACCESS is specified, the file is opened (see Section 1.3.2).

If the extend enable bit FIB$V_EXTEND is specified in the FIB, an extend subfunction is performed (see
Section 1.3.3).

Finally, if a file was set aside for deletion (IO$M_DELETE is specified), that file is deleted. If the file is
deleted because the FIB$V_SUPERSEDE bit was set, the alternate success status SS$_SUPERSEDE is
returned in the I/O status block. If the file is deleted because the version limit was exceeded, the alternate
success status SS$_FILEPURGED is returned.

If an error occurs in the operation of an IO$_CREATE function, all actions performed to that point are
reversed (the file is neither created nor changed), and the error status is returned to the user in the I/O status
block.

1.6.1.3 Directory Entry Creation

Creating a new version of a file eliminates default access to the previously highest version of the file. For
example, creating RESUME.TXT;4 masks RESUME.TXT;3 so the DCL command TYPE RESUME.TXT yields
the contents of version 4, not version 3. To protect the contents of the earlier version of a file, the creator of a
file must have write access to the previous version of a file of the same name.

1.6.1.4 Magnetic Tape ACP Operation

No operation is performed unless the IO$M_CREATE modifier is specified. The magnetic tape is positioned as
specified by FIB$V_REWIND and FIB$V_CURPOS, and the file is created. The name specified by the P2
parameter is written into the file header label.

If P5 specifies an attribute list, a write attributes subfunction is performed (see Section 1.3.5).

If the modifier IO$M_ACCESS is specified, the file is opened (see Section 1.3.2).

1.6.2 Access File

This virtual I/O function searches a directory on a disk device or a magnetic tape for a specified file and
accesses that file if found.

The following is the function code:

• IO$_ACCESS

The following are the function modifiers:

• IO$M_CREATE—Creates a file.

• IO$M_ACCESS—Opens the file on your channel.

1.6.2.1 Input Parameters

The following are the device- or function-dependent arguments for IO$_ACCESS:

• P1—The address of the file information block (FIB) descriptor.

• P2—The address of the file name string descriptor (optional).

• P3—The address of the word that is to receive the length of the resultant file name string (optional).
49

ACP-QIO Interface
Major Functions
• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (optional).

• P5—The address of a list of attribute descriptors (optional).

Table 1-12 lists FIB fields that are applicable to the IO$_ACCESS operation.

1.6.2.2 Operation

If a nonzero directory file ID is specified in FIB$W_DID, a lookup subfunction is performed (see Section 1.3.1.)
The version limit of the file found is returned in FIB$W_VERLIMIT.

If the directory search fails with a “file not found” condition and the IO$M_CREATE function modifier is
specified, the function is reexecuted as a CREATE. In that case, the argument interpretations for
IO$_CREATE, rather than those for IO$_ACCESS, apply.

If IO$M_ACCESS is specified, an access subfunction is performed to open the file (see Section 1.3.2).

If P5 specifies an attribute list, a read attributes subfunction is performed (see Section 1.3.5).

1.6.3 Deaccess File

Deaccess file is a virtual I/O function that deaccesses a file and, if specified, writes final attributes in the file
header.

Table 1-12 IO$_ACCESS and the File Information Block

Field Subfields Meaning

FIB$W_

CNTRLFUNC

Specifies the value that allows the user to control
actions subsequent to EOT detection on a magnetic
tape file.

FIB$W_VERLIMIT Receives the version limit for the file. Applicable only
if FIB$W_DID is a nonzero number (if a directory
lookup is done). Used only for disk devices.

FIB$L_ACL_STATUS Status of the requested ACL attribute operation, if
any. The ACL attributes are included in Table 1-7. If
no ACL attributes are given, SS$_NORMAL is
returned here. (For Files-11 C/D, this field is always
set to SS$_NORMAL.)

FIB$L_STATUS Alternate access status. The following bits are
supported:

FIB$V_ALT_REQ Set to indicate whether the alternate access bit is
required for the current operation. If not set, the
alternate access bit is optional.

FIB$V_ALT_GRANTED If FIB$V_ALT_REQ = 0 and the alternate access
check succeeded, the FIB bit returned from the file
system is set.

FIB$L_ALT_ACCESS A 32-bit mask that represents an access mask to
check against file protection; for example, to open a
file for read and to check whether it can be deleted.
The mask has the same configuration as the standard
protection mask.
50

ACP-QIO Interface
Major Functions
The following is the function code:

• IO$_DEACCESS

IO$_DEACCESS takes no function modifiers.

1.6.3.1 Input Parameters

The following are the device- or function-dependent arguments for IO$_DEACCESS:

• P1—The address of the file information block (FIB) descriptor.

• P5—The address of a list of attribute descriptors (optional).

The following FIB fields are applicable to the IO$_DEACCESS function:

1.6.3.2 Operation

For disk files, if P5 specifies an attribute control list and the file was accessed for a write operation, a write
attributes subfunction is performed (see Section 1.3.5). If the file was opened for write, no attributes were
specified, and FIB$V_DLOCK was set when the file was accessed, the deaccess lock bit is set in the file
header, inhibiting further access to that file.

For disk files, if the truncate enable bit FIB$V_TRUNC is specified in the FIB, a truncate subfunction is
performed (see Section 1.3.4).

Finally, the file is closed. Trailer labels are written for a magnetic tape file that was opened for write.

1.6.4 Modify File

Modify file is a virtual I/O function that modifies the file attributes or allocation of a disk file. The
IO$_MODIFY function is not applicable to magnetic tape; that is, the function returns success, but no action
is performed.

The following is the function code:

• IO$_MODIFY

The following is the function modifier:

• IO$M_MOVEFILE

1.6.4.1 Input Parameters

The following are the device- or function-dependent arguments for IO$_MODIFY:

• P1—The address of the file information block (FIB) descriptor.

• P2—The address of the file name string descriptor (optional). If specified, the directory is searched for the
name.

 Field Meaning

FIB$W_FID File ID of the file being deaccessed. This field can contain a value of 0. If it
does not, it must match the file identifier of the accessed file.

FIB$L_ACL_STATUS Status of the requested ACL attribute operation, if any. The ACL attributes
are included in Table 1-7. If no ACL attributes are given, SS$_NORMAL is
returned here. (For Files-11 C/D, this field is always set to SS$_NORMAL.)
51

ACP-QIO Interface
Major Functions
• P3—The address of the word that is to receive the length of the resultant file name string (optional).

• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (optional).

• P5—The address of a list of attribute descriptors (optional).

The following FIB fields are applicable to the IO$_MODIFY function:

1.6.4.2 Operation

If a nonzero directory ID is specified in FIB$W_DID, a lookup subfunction is executed (see Section 1.3.1). If a
nonzero version limit is specified in FIB$W_VERLIMIT and the directory entry found is the latest version of
that file, the version limit is set to the value specified.

If P5 specifies an attribute list, a write attributes subfunction is performed (see Section 1.3.5).

The file can be either extended or truncated. If FIB$V_EXTEND is specified in the FIB, an extend
subfunction is performed (see Section 1.3.3). If FIB$V_TRUNC is specified in the FIB, a truncate subfunction
is performed (see Section 1.3.4). Extend and truncate operations cannot be performed at the same time.

1.6.5 Delete File

Delete file is a virtual I/O function that removes a directory entry or file header from a disk volume.

The following is the function code:

• IO$_DELETE

The following is the function modifier:

• IO$M_DELETE—Deletes the file (or marks it for deletion).

The following are the device- or function-dependent arguments for IO$_DELETE:

• P1—The address of the file information block (FIB) descriptor.

• P2—The address of the file name string descriptor (optional).

• P3—The address of the word that is to receive the length of the resultant file name string (optional).

• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (optional).

Field Subfields Meaning

FIB$L_ACCTL Specifies field values that control access to the
file. The following bit is applicable to the
IO$_MODIFY function:

FIB$V_WRITETHRU Specifies that the file header is to be written
back to the disk. If not specified and the file is
currently open, writing of the file header can be
deferred to some later time.

FIB$W_VERLIMIT If a nonzero number, specifies the version limit
for the file.

FIB$L_ACL_STATUS Status of the requested ACL attribute operation.
The ACL attributes are listed in Table 1-7. If no
ACL attributes are given, SS$_NORMAL is
returned here.
52

ACP-QIO Interface
Major Functions
The following FIB fields are applicable to the IO$_DELETE function:

1.6.5.1 Operation

If a nonzero directory ID is specified in FIB$W_DID, a lookup subfunction is performed (see Section 1.3.1).
The file name located is removed from the directory.

If the function modifier IO$M_DELETE is specified, the file is marked for deletion. If the file is not currently
open, it is deleted immediately. If the file is open, it is deleted when the last accessor closes it.

1.6.6 Movefile Subfunction

The movefile subfunction permits you to move the contents of a file, or part of the contents of a file, to a new
disk location. This subfunction can, for example, form the basis of a disk defragmentation application.

You can disable movefile operations on specific user files by specifying the /NOMOVE qualifier on the SET
FILE command. Use the DIRECTORY/FULL and the DUMP/HEADER commands to find out if movefile
operations are disabled on a file.

1.6.6.1 Calling the Movefile Subfunction

A program can invoke a movefile subfunction by issuing a QIO request using the function code IO$_MODIFY
and the function modifier IO$M_MOVEFILE. This section describes the various input parameters that
control the processing of movefile operations together with an operational description.

1.6.6.1.1 Input Parameters Table 1-13 lists the FIB fields that control the processing of a movefile
subfunction.

Field Subfields Meaning

FIB$L_ACCTL Specifies field values that control access to the file.
The following bits are applicable to the
IO$_DELETE function:

FIB$V_NOLOCK
(Alpha only)

Allows the caller to mark a file for delete that is
currently open for write access. When the file is
closed, it is automatically deleted. The file cannot be
accessed by new callers after it has been marked for
delete.

FIB$V_WRITETHRU Specifies that the file header is to be written back to
the disk. If not specified and the file is currently
open, writing of the file header can be deferred to
some later time.

FIB$W_DID Contains the file identifier of the directory file. This
field must be a nonzero number.

FIB$W_FID Specifies the file identification to be deleted.

Table 1-13 FIB Fields (Movefile)

Field Subfields Meaning

FIB$L_ACCTL Movefile control flag. The following flags are
applicable:
53

ACP-QIO Interface
Major Functions
FIB$V_NOVERIFY Inhibits comparison of the moved blocks. If this flag
is clear, the movefile operation verifies that the
operation was carried out correctly by comparing
the moved blocks to the original blocks.

FIB$V_CHANGE_VOL Enables the movefile operation to move blocks from
one volume to another within a volume set.

The movefile operation clears this flag if the
specified file is a directory.

FIB$W_FID Specifies the file identification of the file to be
moved.

FIB$W_EXCTL Movefile control flags. The following flag applies to
the movefile operation. All other FIB$W_EXCTL
flags must be clear.

FIB$V_ALCON Specifies that the movefile operation must allocate
contiguous disk space to the moved blocks. If the
necessary contiguous space is not available, the
movefile operation fails.

The movefile operation sets this flag if the file was
previously marked as contiguous.

FIB$V_ALCONB Specifies that the movefile operation should attempt
to allocate contiguous disk space to the moved
blocks. That is, if the movefile operation cannot
allocate contiguous space to all the moved blocks, it
allocates contiguous space to as many of the blocks
as possible.

The movefile operation sets this flag if the file was
previously marked as contiguous best try.

FIB$V_FILCON Specifies that the entire file must be made
contiguous. Do not set this flag without also setting
the FIB$V_ALCON flag.

If the FIB$V_FILCON flag is set, and either the
FIB$V_ALCON flag is clear or the file would not be
made contiguous by moving the specified virtual
blocks, the movefile operation fails.

The movefile operation sets this flag if the file was
previously marked as contiguous.

Table 1-13 FIB Fields (Movefile) (Continued)

Field Subfields Meaning
54

ACP-QIO Interface
Major Functions
FIB$V_NOPLACE Specifies that placement information will not be
recorded in the file header.

If this flag is clear and you specify exact placement
for the moved blocks, placement information for
those blocks will be recorded in the file header. If
this flag is set, the placement information will not
be recorded.

You specify exact placement through the
FIBV_EXACT, FIBC_LBN, and
FIB$L_LOC_ADDR fields.

FIB$B_ALOPTS Flags that control the placement of the allocated
blocks. Currently, only the FIB$V_EXACT flag
applies to the movefile operation. All other
FIB$B_ALOPTS flags must be clear. The following
flag is applicable:

FIB$V_EXACT Set to require exact placement. If this flag is set and
the specified blocks are not available, the movefile
operation fails.

FIB$B_ALALIGN Contains the interpretation mode of the allocation
field (FIB$W_ALLOC). You can specify a field value
of 0 or you can specify the symbolic value
FIB$C_LBN. If you specify 0, the allocation field is
ignored.

FIB$W_ALLOC Contains the desired location of the blocks being
allocated. Interpretation of the field is controlled by
the FIB$B_ALALIGN field. The following subfields
are defined:

FIB$B_LOC_RVN Specifies the relative volume number (RVN) of the
volume to which the blocks are moved. Do not
specify a value for this field unless you have set the
FIB$V_CHANGE_VOL flag.

FIB$L_LOC_ADDR If the FIB$C_LBN and FIB$V_EXACT flags are set,
specifies the starting logical address to which the
blocks are moved.

FIB$L_MOV_SVBN Specifies the virtual block number (VBN) of the first
block to be moved.

The starting VBN must correspond to the first block
of a disk cluster. The value must be greater than 0
and it must not exceed the number of virtual blocks
allocated to the file. If you specify an invalid value,
the movefile operation fails.

Table 1-13 FIB Fields (Movefile) (Continued)

Field Subfields Meaning
55

ACP-QIO Interface
Major Functions
 Operation

A program can perform a movefile operation on a file if the following conditions are met:

• The program has write and control access to the file.

• The file is closed.

• Movefile operations are not disabled on the file.

Movefile operations are automatically disabled on critical system files. You can disable movefile operations on specific
user files by specifying the /NOMOVE qualifier with the SET FILE command.

• The operation is not interrupted.

If the movefile operation is interrupted by any other operation, such as a read or write operation, the movefile
operation aborts and the file remains in its original position.

The movefile operation moves a specified number of consecutive virtual blocks to new logical blocks on disk, beginning
with the virtual block specified in the FIB$L_SVBN field.

The number of blocks moved is specified in the FIB$L_VBNCNT field. To move an entire file, specify FIB$L_VBNCNT as
0 and FIB$L_SVBN as 1.

To specify a starting logical block for the moved blocks, specify the logical block address in the FIB$L_LOC_ADDR
subfield and set the FIB$C_LBN and the FIB$V_EXACT flags.

To move the blocks to another volume, or move blocks that span more than one volume, set the FIB$V_CHANGE_VOL
flag of the FIB$L_ACCTL field. Use the FIB$B_LOC_RVN subfield of the FIB$W_ALLOC field to specify the volume to
which the blocks are moved. If you do not specify a volume, the blocks are moved to the volume containing the first virtual
block. Note that you cannot move blocks of a directory file to another volume.

If the file was previously marked as contiguous, the movefile operation sets the FIBV_ALCON, FIBV_ALCONB, and
FIB$V_FILCON flags. This ensures that a contiguous file is not fragmented by a movefile operation.

For virtual blocks beyond the file's highwater mark, the movefile operation allocates new logical blocks but does not copy
the contents. The position of the file's highwater mark remains unchanged.

1.6.7 Mount

On VAX, Alpha, and I64 systems, mount is a virtual I/O function that informs the ACP when a disk or
magnetic tape volume is mounted. MOUNT privilege is required.

FIB$L_MOV_VBNCNT Specifies the number of consecutive virtual blocks to
be moved.

This value must be a multiple of the disk cluster
size, and it must not exceed the difference between
the greatest VBN allocated to the file and the
FIB$L_MOV_SVBN value. If you specify a value of
0, the movefile operation moves all the virtual
blocks between the FIB$L_MOV_SVBN value and
the greatest VBN.

If you specify an invalid value, the movefile
operation fails.

Table 1-13 FIB Fields (Movefile) (Continued)

Field Subfields Meaning
56

ACP-QIO Interface
Major Functions
IO$_MOUNT takes no arguments or function modifiers. This function is part of the volume mounting
operation only, and it is not meant for general use. Most of the actual processing is performed by the MOUNT
command or the Mount Volume ($MOUNT) system service.

1.6.8 ACP Control

ACP Control is a virtual I/O function that performs ancillary control functions, depending on the arguments
specified.

The following is the function code:

• IO$_ACPCONTROL

The following is the function modifier:

• IO$M_DMOUNT—Dismounts a volume.

1.6.8.1 Input Parameters

The following are the device- or function-dependent arguments for IO$_ACPCONTROL:

• P1—The address of the file information block (FIB) descriptor.

• P2—The address of the file name string descriptor (optional).

• P3—The address of the word that is to receive the length of the resultant file name string (optional).

• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (optional).

Table 1-14 lists FIB fields that control the processing of the IO$_ACPCONTROL function.

Table 1-14 IO$_ACPCONTROL and the FIB

Field Subfields Meaning

FIB$W_CNTRLFUNC Specifies the control function to be performed.
This field overlays FIB$W_EXCTL.

FIB$L_CNTRLVAL1 Specifies additional function-dependent data. This
field overlays FIB$L_EXSZ.

FIB$L_ACL_STATUS Status of the requested ACL attribute operation, if
any. The ACL attributes are included in Table 1-7.
If no ACL attributes are given, SS$_NORMAL is
returned here. For Files-11 C/D, this field is
always set to SS$_NORMAL.

FIB$L_STATUS1 Alternate access status. The following bits are
supported:

FIB$V_ALT_REQ Set to indicate whether the alternate access bit is
required for the current operation. If not set, the
alternate access bit is optional.

FIB$V_ALT_GRANTED If FIB$V_ALT_REQ = 0 and the alternate access
check succeeded, the FIB bit returned from the file
system is set.
57

ACP-QIO Interface
Major Functions
1.6.8.2 Magnetic Tape Control Functions

Table 1-15 lists the FIB field applicable to magnetic tape operations.

FIB$L_ALT_ACCESS1 A 32-bit mask that represents an access mask to
check against file protection; for example, to open
a file for read and to check whether it can be
deleted or not. The mask has the same
configuration as the standard protection mask.

1. Not supported or valid for Files-11 C/D.

Table 1-15 Magnetic Tape Operations and the FIB

Field Subfields Meaning

FIB$W_CNTRLFUNC Several ACP control functions are used for magnetic
tape positioning. These functions are specified by
supplying a FIB with P1 containing the FIB descriptor
address. Modifiers and parameters P2, P3, and P4 are
not allowed. These functions clear serious exceptions in
magnetic tape drivers. The following control functions
can be specified to control magnetic tape positioning:

FIB$C_REWINDFIL Rewind to beginning-of-file.

FIB$C_REWINDVOL Rewind to beginning-of-volume set.

FIB$C_POSEND Position to end-of-volume set.

FIB$C_NEXTVOL Force next volume.

FIB$C_SPACE Space n blocks forward or backward. The
FIB$L_CNTRLVAL field specifies the number of
magnetic tape blocks to space forward if positive or to
space backward if negative.

FIB$C_CLSEREXCP If set, clears the serious exception in the magnetic tape
driver (see FIB$C_USEREOT in Section 1.6.1 and
Section 1.6.2). If writing, allows you to write data
blocks beyond the EOT marker, which can result in the
magnetic tape not conforming to the ANSI standard for
magnetic tapes (see ANSI Standard X3.27-1978). If
reading, allows you to handle the move to the next
volume or to stop reading the tape. Do not attempt to
read past EOV.

Table 1-14 IO$_ACPCONTROL and the FIB (Continued)

Field Subfields Meaning
58

ACP-QIO Interface
Major Functions
1.6.8.3 Miscellaneous Disk Control Functions

Several ACP control functions are available for disk volume control. The following function does not use
parameters P2, P3, and P4:

The FIB$W_CNTRLFUNC field of the FIB specifies the following miscellaneous control functions (with no
modifier on the IO$_ACPCONTROL function code). These functions use no other parameters.

1.6.8.4 Disk Quotas

Disk quota enforcement is enabled by a quota file on the volume, or relative volume 1 if the file is on a volume
set. The quota file appears in the volume's master file directory (MFD) under the name QUOTA.SYS;1. This
section describes the control functions that operate on the quota file.

Table 1-16 lists the enable and disable quota control functions.

IO$M_DMOUNT Specifying the dismount modifier on the IO$_ACPCNTRL function executes
a dismount QIO. No parameters in the FIB are used; the FIB can be
omitted. This function does not perform a dismount by itself, but is used to
synchronize the ACP with the DISMOUNT command and the Dismount
Volume ($DISMOUNT) system service.

FIB$C_REMAP Remap a file. The file window for the file open on the user's channel is
remapped so that it maps the entire file.

FIB$C_LOCK_VOL Allocation lock the volume. Operations that change the file structure, such
as file creation, deletion, extension, and deaccess, are not permitted. If such
requests are queued to the file system for an allocation-locked volume, they
are not processed until the FIB$C_UNLK_VOL function is issued to unlock
the volume.

To issue the FIB$C_LOCK_VOL function, you must have either a system
UIC or SYSPRV privilege, or be the owner of the volume.

FIB$C_UNLK_VOL Unlock the volume. Cancels FIB$C_LOCK_VOL. To issue this function, you
must have either a system UIC or SYSPRV privilege, or be the owner of the
volume.

Table 1-16 Disk Quota Functions (Enable/Disable)

Value Meaning

FIB$C_ENA_QUOTA Enable the disk quota file. If a nonzero directory file ID is specified in
FIB$W_DID, a lookup subfunction is performed to locate the quota file (see
Section 1.3.1). To issue this function, you must have either a system UIC or
SYSPRV privilege, or be the owner of the volume.

The quota file specified by FIB$W_FID, if present, is accessed by the ACP,
and quota enforcement is turned on. By convention, the quota file is named
[0,0]QUOTA.SYS;1. Therefore, FIB$W_DID should contain the value 4,4,0
and the name string specified with P2 should be “QUOTA.SYS;1”.

FIB$C_DSA_QUOTA Disable the disk quota file. The quota file is deaccessed and quota
enforcement is turned off. To issue this function, you must have either a
system UIC or SYSPRV privilege, or be the owner of the volume.
59

ACP-QIO Interface
Major Functions
Table 1-17 lists the quota control functions that operate on individual entries in the quota file. Each operation
transfers quota file data to and from the ACP using a quota data block. This block has the same format as a
record in the quota file. Figure 1-7 shows the format of this block.

Table 1-17 Disk Quota Functions (Individual Entries)

Value Meaning

FIB$C_ADD_QUOTA Add an entry to the disk quota file, using the UIC and quota specified in the
P2 argument block. FIB$C_ADD_QUOTA requires write access to the quota
file.

FIB$C_EXA_QUOTA Examine a disk quota file entry. The entry whose UIC is specified in the P2
argument block is returned in the P4 argument block, and its length is
returned in the P3 argument word. Using two flags in FIB$L_CNTRLVAL, it
is possible to search through the quota file using wildcards. The two flags
are:

FIB$V_ALL_MEM Match all UIC members

FIB$V_ALL_GRP Match all UIC groups

The ACP maintains position context in FIB$L_WCC. On the first examine
call, you specify 0 in FIB$L_WCC; the ACP returns a nonzero value so that
each succeeding examine call returns the next matching entry.

Read access to the quota file is required to examine all nonuser entries.

FIB$C_MOD_QUOTA Modify a disk quota file entry. The quota file entry specified by the UIC in the
P2 argument block is modified according to the values in the block, as
controlled by the following three flags in FIB$L_CNTRLVAL:

FIB$V_MOD_PERM Change the permanent quota

FIB$V_MOD_OVER Change the overdraft quota

FIB$V_MOD_USE Change the usage data

The usage data can be changed only if the volume is locked by
FIB$C_LOCK_VOL (see Section 1.6.8.3). FIB$C_MOD_QUOTA requires
write access to the quota file.

The P3 and P4 arguments return the modified quota entry to you.

By using the flags FIB$V_ALL_MEM and FIB$V_ALL_GRP, you can search
through the quota file using wildcards just as you would with the
FIB$C_EXA_QUOTA function.

FIB$C_REM_QUOTA Remove a disk quota file entry whose UIC is specified in the P2 argument
block. FIB$C_REM_QUOTA requires write access to the quota file.

The P3 and P4 arguments return the removed quota file entry to you.

By using the flags FIB$V_ALL_MEM and FIB$V_ALL_GRP, you can search
through the quota file using wildcards just as you would with the
FIB$C_EXAQUOTA function.
60

ACP-QIO Interface
I/O Status Block
Figure 1-7 Quota File Transfer Block

IO$_ACPCONTROL functions that transfer quota file data between the caller and the ACP use the following
device- or function-dependent arguments:

• P2—The address of a descriptor for the quota data block being sent to the ACP.

• P3—The address of a word that returns the data length.

• P4—The address of a descriptor for a buffer to receive the quota data block returned from the ACP.

1.7 I/O Status Block
Figure 1-8 shows the I/O status block (IOSB) for ACP--QIO functions. Appendix A lists the status returns for
these functions. (The OpenVMS system messages documentation provides explanations and suggested user
actions for these returns.)

The file ACP returns a completion status in the first longword of the IOSB. In an extend operation, the second
longword is used to return the number of blocks allocated to the file. If a contiguous extend operation
(FIB$V_ALCON) fails, the second longword is used to return the size of the file after truncation.

Values returned in the IOSB are most useful during operations in compatibility mode. When executing
programs in the native mode, use the values returned in FIB locations.

Figure 1-8 IOSB Contents — ACP-QIO Functions

31 0

ZK0643GE

(Reserved for Future Use)

Flags Longword (DQF$L_FLAGS)

User Identification Code (DQF$L_UIC)

Current Usage (DQF$L_USAGE)

Overdraft Limit (DQF$L_OVERDRAFT)

Permanent Quota (DQF$L_PERMQUOTA)

ZK0644GE

Not Used Status
+2 IOSB

+4
61

ACP-QIO Interface
I/O Status Block
If an extend operation (including CREATE) was performed, IOSB+4 contains the number of blocks allocated,
or the largest available contiguous space if a contiguous extend operation failed. If a truncate operation was
performed, IOSB+4 contains the number of blocks added to the file size to reach the next cluster boundary.
62

Disk Drivers
Supported Disk Devices and Controllers
2 Disk Drivers

This chapter describes the use of disk drivers that support the disk devices listed in the Software Product
Description for the OpenVMS Operating System (SPD 82.35.xx). The chapter also includes descriptions of
many of the supported disks and controllers; however, not all supported devices are described here. Refer to
the Software Product Description for the OpenVMS Operating System for the definitive list of supported
devices.)

All disk drivers support Files-11 On-Disk Structure Level 1 and Level 2 file structures. Access to these file
structures is through the DCL commands INITIALIZE and MOUNT, followed by the RMS calls described in
the OpenVMS Record Management Utilities Reference Manual. Files in RT-11 format can be read or written
with the file exchange facility EXCHANGE.

2.1 Supported Disk Devices and Controllers
The following sections provide descriptions of disk devices.

To obtain more information about a device, use the DCL command SHOW DEVICE with the /FULL qualifier,
the Get Device/Volume Information ($GETDVI) system service (from a program), or the F$GETDVI lexical
function (in a command line or command procedure). Section 2.3 lists the information on disk devices
returned by $GETDVI.

2.1.1 UDA50 UNIBUS Disk Adapter

The UDA50 UNIBUS Disk Adapter is a microprocessor-based disk controller for mass storage devices that
implements the DIGITAL Storage Architecture (DSA); for more information on the DSA, see Section 2.2.3.

The UDA50 controller is used to connect any combination of four RA60, RA80, and RA81 disk drives to the
UNIBUS. Two UDA50 controllers can be attached to a single UNIBUS for a maximum of eight disk drives per
UNIBUS. On the VAX-11/780 processor, the operating system supports one UDA50 on the first UNIBUS,
which can accommodate certain other options. Adding a second UDA50 requires a second UNIBUS. With the
exception of the first UNIBUS, a maximum of two UDA50 controllers per UNIBUS are supported. If two
UDA50 controllers are on a UNIBUS, no other options can be placed on that UNIBUS. The VAX-11/730
processor supports only one UDA50 per UNIBUS.

The UDA50, in implementing DSA, takes over the control of the physical disk unit. The operating system
processes request virtual or logical I/O on disks controlled by the UDA50. The operating system maps virtual
block addresses into logical block addresses. The UDA50 then resolves logical block addresses into physical
block addresses on the disk.

The UDA50 controller corrects bad blocks on the disk by requesting that the disk class driver revector a
failing physical block to another, error-free physical block on the disk; the logical block number is not changed
(see Section 2.2.11.1). Any bad blocks that might exist on a disk attached to a UDA50 are transparent to the
operating system, which does logical or virtual I/O to such a disk. The UDA50 also corrects most data errors.
63

Disk Drivers
Supported Disk Devices and Controllers
2.1.2 KDA50 Disk Controller

The KDA50 disk controller is a two-module disk controller that allows the RA-series DSA disk drives to be
attached to Q-bus systems. The KDA50 performs the same functions as the UDA50 (see Section 2.1.1).

2.1.3 KDB50 Disk Controller

The KDB50 disk controller is a two-module disk controller that allows the RA-series DSA disk drives to be
attached to BI bus systems, such as the VAX 8200 processor. The KDB50 performs the same functions as the
UDA50 (see Section 2.1.1).

2.1.4 HSC40, HSC50, and HSC70 Controllers

HSC controllers are high-speed, high-availability controllers for mass storage devices that implement the
DIGITAL Storage Architecture (DSA); for more information about the DSA, see Section 2.2.3. An HSC
controller is connected to a processor by a Computer Interconnect (CI) bus. The operating system supports the
use of the HSC controllers in controlling the RA family of disks.

The HSC40 can support up to 12 SDI (standard disk interface) disks from the SA or RA families of disk drives
or a combination of up to 12 SDI disk drives and TA-series tape drives.

The HSC70 can support up to 32 SDI disks from the SA or RA families of disk drives or a combination of SDI
disk drives and TA-series tape drives.

HSC controllers, in implementing DSA, take over the control of the physical disk unit. System processes
request virtual or logical I/O on disks controlled by the HSC controller. The operating system maps virtual
block addresses into logical block addresses. The HSC controller then resolves logical block addresses into
physical block addresses on the disk.

HSC controllers correct bad blocks on the disk by revectoring a failing physical block to another, error-free
physical block on the disk; the logical block number is not changed. The operating system, which performs
logical or virtual I/O to such a disk, does not recognize that any bad blocks might exist on a disk attached to
an HSC controller. HSC controllers also correct most data errors.

The HSC series of controllers provides access to disks despite most hardware failures. Use of an HSC
controller permits two or more processors to access files on the same disk.

NOTE Only one system should have write access to a Files-11 On-Disk Structure Level 1 disk or to a
foreign-mounted disk; all other systems should only have read access to the disk. For Files-11
On-Disk Structure Level 2 volumes, the operating system enables read/write access to all nodes
that are members of the same cluster.

HSC-series controllers allow you to add or subtract disks from the device configuration without rebooting the
system.

2.1.5 SII Integral Adapter

The SII integral adapter on the MicroVAX 3300/3400 processor provides access through the DIGITAL Storage
Systems Interconnect (DSSI) bus to a maximum of seven storage devices.

The term dual-host refers to pairs of CPUs connected to a bus. In dual-host configurations of MicroVAX
3300/3400 CPUs, the DSSI bus must be connected between the SII integral adapters present on both CPUs.

A maximum of six devices can be connected to the EDA640 adapter, which is implemeneted by the SII chip,
DXX chip, and 128K RAM chip, in dual-host configurations.
64

Disk Drivers
Supported Disk Devices and Controllers
2.1.6 KFQSA Adapter

The KFQSA adapter allows a maximum of seven storage devices for use on Q-bus systems.

In dual-host configurations of MicroVAX 3800/3900 CPUs, the DSSI bus must be connected between KFQSA
adapters present on both CPUs.

A maximum of six devices can be connected to the KFQSA adapter in dual-host configurations.

2.1.7 RQDX3 Disk Controller

The RQDX3 controller is a Q-bus controller used with the RD series of Winchester-type disk drives and the
RX33 and RX50 flexible diskette drives.

2.1.8 RA70 and RA90 Disk Drives

The RA70 is a 5.25-inch, 280-MB high-performance DSA disk drive that uses thin-film media. It has an
average access time of 27.0 ms and average seek time of 19.5 ms. The RA70 uses the Standard Disk Interface
(SDI) and the KDA50 controller, and can be dual-ported.

The RA90 is a 1.2 GB disk drive designed with thin-film heads and 9-inch thin-film media with an average
seek time of 18.5 ms. The RA90 conforms to DSA and uses the SDI. Both the RA70 and RA90 disk drives can
be connected to medium-sized systems with the HSC-series controllers, KDB50, or UDA50 controllers.

2.1.9 RA60 Disk

The RA60 device uses high-capacity, removable media that provides 205 MB of usable storage (7.5 million bits
of data per square inch) with transfer rates of 1.9 MB per second (burst) and 950 Kb per second (sustained).
The RA60 belongs to the DIGITAL Storage Architecture (DSA) family of disk devices (see Section 2.2.3). It is
connected to either a UNIBUS Disk Adapter (UDA50) or an HSC50 controller. Up to four disk drives can be
connected to each UDA50. Up to 24 disk drives can be connected to each HSC50.

2.1.10 RA80/RB80/RM80 and RA81 Fixed-Media Disks

The R80 disk drive is a high-capacity, moving-head disk whose nonremovable media consists of 14 data
surfaces. Depending on how it is connected to the system, the R80 is identified internally as an RA80, RB80,
or RM80, as follows:

• RA80—An R80 connected to the system through a UNIBUS disk adapter (UDA50) or an HSC50
controller. Up to four disk drives can be connected to each UDA50. Up to 24 disk drives can be connected
to each HSC50.

• RB80—On VAX systems, an R80 connected to the system through an RB730 controller on a VAX-11/730
processor. Of the maximum of four drives that can be connected to an RB730 controller, only one can be an
RB80.

• RM80—On VAX and Alpha systems, an R80 connected to the system through a MASSBUS adapter
(MBA). Up to eight disk drives can be connected to each MBA.

The RA81 is a high-capacity disk drive with nonremovable media that can hold more than 890,000 blocks of
data. This translates into more than 455 MB per spindle. The RA81 is connected to a UDA50 or an HSC50
controller. Up to four disk drives can be connected to each UDA50. Up to 24 drives can be connected to each
HSC50.

The RA80 and RA81 belong to the DIGITAL Storage Architecture (DSA) family of disk devices (see Section
2.2.3).
65

Disk Drivers
Supported Disk Devices and Controllers
2.1.11 RB02 and RL02 Cartridge Disk (VAX Only)

On VAX systems, the RL02 cartridge disk is a removable, random-access mass storage device with two data
surfaces. The RL02 is connected to the system by an RL11 controller that interfaces with the UNIBUS
adapter. Up to four RL02 disk drives can be connected to each RL11 controller. For physical I/O transfers, the
track, sector, and cylinder parameters describe a physical 256-byte RL02 sector (see Section 2.4).

When the RL02 is connected to an RB730 controller on a VAX-11/730 processor, it is identified internally as
an RB02 disk drive. Disk geometry is unchanged and RL02 disk packs can be exchanged between drives on
different controllers. Up to four drives can be connected to the RB730 controller.

2.1.12 RC25 Disk (VAX Only)

On VAX systems, the RC25 disk is a self-contained, Winchester-type, mass storage device that consists of a
disk adapter module, a disk drive, and an integrated disk controller. The drive contains two 8-inch,
double-sided disks. One of the disks (RCF25) is a sealed, nonremovable, fixed-media disk. The other disk is a
removable cartridge disk that is sealed until it is loaded into the disk drive. The disks share a common drive
spindle, and together they provide 52 million bytes of storage. Adapter modules interface the RC25 with
either a UNIBUS system or a Q-bus system.

2.1.13 RD53 and RD54 Disks (VAX Only)

On VAX systems, the RD53 and RD54 are 5.25-inch, full-height, Winchester-type drives with average access
time of 38 ms and a data transfer rate of 0.625 MB per second. The RD53 and RD54 have a formatted capacity
of 71 MB and 159 MB, respectively. When used with the RQDX3 controller, the RD53 and RD54 are DSA
disks.

See Section 2.2.12 for information about using RD series disks on the VAXstation 2000.

2.1.14 RF30 and RF71 Disks

The RF30 is a 150-MB, 5.25-inch, half-height disk drive while the RF71 is a 400-MB, full-height disk drive.
The RF30 and RF71 include an embedded controller for multihost access and a mass storage control protocol
(MSCP) server. The RF71 has a peak data transfer rate of 1.5 MB per second with average seek and access
time of 21 ms and 29 ms, respectively.

Both the RF30 and RF71 disks use DIGITAL Storage System Interconnect (DSSI) bus and host adapters.

2.1.15 RK06 and RK07 Cartridge Disks (VAX Only)

On VAX systems, the RK06 cartridge disk is a removable, random-access, bulk storage device with three data
surfaces. The RK07 cartridge disk is a double-density RK06. The RK06 and RK07 are connected to the system
by an RK611 controller that interfaces to the UNIBUS adapter. Up to eight disk drives can be connected to
each RK611.

2.1.16 RM03 and RM05 Pack Disks (VAX Only)

On VAX systems, the RM03 and RM05 pack disks are removable, moving-head disks that consist of five data
surfaces for the RM03 and 19 data surfaces for the RM05. These disks are connected to the system by a
MASSBUS adapter (MBA). Up to eight disk drives can be connected to each MBA.
66

Disk Drivers
Supported Disk Devices and Controllers
2.1.17 RP05 and RP06 Disk (VAX Only)

On VAX systems, the RP05 and RP06 removable disks consist of 19 data surfaces and a moving read/write
head. The RP06 removable disk has approximately twice the capacity of the RP05. These disks are connected
to the system by an MBA. Up to eight disk drives can be connected to each MBA.

2.1.18 RP07 Fixed-Media Disk (VAX Only)

On VAX systems, the RP07 is a 516-MB, fixed-media disk drive that attaches to the MASSBUS of the
VAX-11/780 system. The RP07 transfers data at 1.3 million bytes per second or as an option at a peak rate of
2.2 million bytes per second. The nine platters rotate at 3600 rpm and their data is accessed at an average
speed of 31.3 ms. These disks are connected to the system by an MBA. Up to eight disk drives can be
connected to each MBA.

2.1.19 RRD40 and RRD50 Read-Only Memory (CD-ROM)

The RRD40 and RRD50 are compact disc read-only memory (CD-ROM) devices that use replicated media
with a formatted capacity of approximately 600 MB.

The RRD40 is a 5.25-inch half-height, front-loading tabletop or embedded device that attaches to the system
using either the Small Computer System Interface (SCSI) or Q-bus interface.

The RRD50 is a 5.25-inch, top-loading tabletop device that attaches to the system using a Q-bus interface.

The RRD40 has an average access time of 0.5 second while the average access time for the RRD50 is 1.5
seconds. Both the RRD40 and RRD50 have a data transfer rate of 150 KB per second.

The media for the RRD40 and the RRD50 are removable 4.7-inch (120-mm) compact discs. However, the
media for the RRD40 are enclosed in protective self-loading carriers. The RRD40 with a SCSI interface is also
available as an embedded unit. The RRD40 and RRD50 Q-bus subsystems are standard disk MSCP devices.

2.1.20 RX01 Console Disk (VAX Only)

On VAX systems, the RX01 disk uses a diskette. The disk is connected to the LSI console on the VAX-11/780,
which the driver accesses using the MTPR and MFPR privileged instructions.

For logical and virtual block I/O operations, data is accessed with one block resolution (four sectors). The
sector numbers are interleaved to expedite data transfers. Section 2.2.10 describes sector interleaving in
greater detail.
67

Disk Drivers
Supported Disk Devices and Controllers
For physical block I/O operations, the track, sector, and cylinder parameters describe a physical, 128-byte
RX01 sector (see Figure 2-1 and Section 2.4). Note that the driver does not apply track-to-track skew, cylinder
offset, or sector interleaving to this physical medium address.

Figure 2-1 Disk Physical Address

2.1.21 RX02 Disk (VAX Only)

On VAX systems, the RX02 disk is a mass storage device that uses removable diskettes. The RX02 supports
existing single-density, RX01-compatible diskettes. A double-density mode allows diskettes to be recorded at
twice the linear density. An entire diskette must be formatted in either single or double density. Mixed mode
diskettes are not allowed.

The RX02 is connected to the system by an RX211 controller that interfaces with the UNIBUS adapter. Up to
two disk drives can be controlled by each RX211.

For logical and virtual block I/O operations, data is accessed with single block resolution (four single-density
sectors or two double-density sectors). The sector numbers are interleaved to expedite data transfers. Section
2.2.10 describes this feature in greater detail.

For physical block I/O operations, the track and sector parameters shown in Figure 2-1 describe a physical
sector (128 bytes in single density; 256 bytes in double density). The driver does not apply track-to-track
skew, cylinder offset, or sector interleaving to the physical medium address.

2.1.22 RX23 (VAX Only)

On VAX systems, the RX23 device is a 1-inch high, flexible diskette drive that uses 3.5-inch microfloppy
diskettes. The RX23 drive can access standard- and high-density media. The following table summarizes
capacities for standard- and high-density media:

The RX23 is backward compatible in that it can read 1-MB media. It can also read and write 2.0-MB
double-sided, high-density (135 tracks per inch) media.

The RX23 communicates with the controller using the ST506 fixed-disk interconnect (FDI).

Density Unformatted Formatted

Standard 1.0 MB 700 KB

High 2.0 MB 1.4 MB

31 16 15 0

ZK0652GE

Cylinder Track Sector

8 7

(Except RX01 and RX02)

Track Sector

31 0

P3:

P3:

(RX01 and RX02 Only)

1516
68

Disk Drivers
Driver Features
2.1.23 RX33 (VAX Only)

On VAX systems, the RX33 is a 1.2-MB, 5.25-inch, half-height diskette drive. The RX33 can record in either
standard- or high-density mode. High-density mode provides 1.2 MB of storage using 96 tracks per inch using
double-sided, high-density diskettes.

In standard-density mode, the RX33 drive is read- and write-compatible with single-sided, standard-density
RX50 diskettes.

2.1.24 RX50 (VAX Only)

On VAX systems, the RX50 dual-diskette drive stores data in fixed-length blocks on 5.25-inch 0.8-MB, flexible
diskettes using preformatted headers. The RX50 can accommodate two diskettes simultaneously.

2.1.25 RZ22, RZ23, and RZ55 Disks

The RZ22 and RZ23 are 3.5-inch, half-height SCSI drives with an average seek rate of 33 ms and an average
data transfer rate of 1.25 MB per second. The RZ22 and RZ23 have capacities of 52 MB and 104 MB,
respectively.

The RZ55 is a 332-MB, 5.25-inch, full-height SCSI drive with an average access rate of 24 ms.

2.1.26 TU58 Magnetic Tape (DECtape II)

The TU58 is a random-access, mass storage magnetic tape device capable of reading and writing 256 KB per
drive of data on block-addressable, preformatted cartridges at 800 bpi. Unlike conventional magnetic tape
systems, which store information at variable positions on the tape, the TU58 stores information at fixed
positions on the tape, as do magnetic disk or floppy disk devices. Therefore, blocks of data can be placed on
tape in a random fashion, without disturbing previously recorded data. In its physical geometry, the tape is
conceptually viewed as having one cylinder, four tracks per cylinder, and 128 sectors per track. Each sector
contains one 512-byte block.

The TU58 uses two vectors. NUMVEC=2 is required on the CONNECT command when specifying system
parameters.

The TU58 interfaces with the UNIBUS adapter through a DL11-series interface device. Both the TU58 and
the DL11 should be set to 9600 baud. (Because the TU58 is attached to a DL11, the user cannot directly
access the TU58 registers if the TU58 is on the UNIBUS.) The TU58, which has its own controller, can access
either one or two tape drives.

2.2 Driver Features
Disk drivers provide the following features:

• Multiple controllers of the same type (except RB730), for example, more than one MBA or RK611 can be
used on the system

• Multiple disk drives per controller (the exact number depends on the controller)

• Different types of disk drives on a single controller

• Static dual porting (MBA drives only)
69

Disk Drivers
Driver Features
• Overlapped seeks (except RL02, RX01, RX02, and TU58)

• Data checks on a per-request, per-file, or per-volume basis (except RX01 and RX02)

• Full recovery from power failure for online disk drives with volumes mounted

• Extensive error recovery algorithms, such as error code correction and offset (except RB02, RL02, RX01,
RX02, and TU58); for DSA disks, these algorithms are implemented in the controller

• Dynamic, as well as static, bad block handling

• Logging of device errors in a file that can be displayed by field service personnel or customer personnel

• Online diagnostic support for drive level diagnostics

• Multiple-block, noncontiguous, virtual I/O operations at the driver level

• Logical-to-physical sector translation (RX01 and RX02 only)

The following sections describe these features in greater detail.

2.2.1 Dual-Pathed Disks

A dual-pathed disk is a dual-ported disk that is accessible to all the CPUs in the cluster, not just to the
CPUs that are connected physically to the disk. Dual-pathed disks can be any of the following:

• Dual-ported MASSBUS disks

• Dual-ported HSC disks

• Dual-pathed DSA disks on local UDA50, KDA50, and KDB50 controllers

• Dual-ported RF-series disks

The term dual-pathed refers to the two paths through which clustered CPUs can access a disk to which they
are not directly connected. If one path fails, the disk is accessed over the other path. (Note that with a
dual-ported MASSBUS disk, a CPU directly connected to the disk always accesses it locally.)
70

Disk Drivers
Driver Features
2.2.2 Dual Porting MASSBUS Disks

The MASSBUS disk drivers, DBDRIVER and DRDRIVER, support static dual porting. Dual porting allows
two MASSBUS controllers to access the same disk drive. Figure 2-2 shows this configuration. The RP05,
RP06, RP07, RM03, RM05, and RM80 disk drives can be ordered, or upgraded in the field, with the
MASSBUS dual-port option.

Figure 2-2 Dual-Ported Disk Drives

2.2.2.1 Port Selection and Access Modes

The port select switches, on each disk drive, select the ports from which the drive can be accessed. A drive can
be in one of the following access modes:

• Locked on Port A—The drive is in a single-port mode (Port A). It does not respond to any request on Port
B.

• Locked on Port B—The drive is in a single-port mode (Port B). It does not respond to any request on Port
A.

• Programmable A/B—The drive is capable of responding to requests on either Port A or Port B. In this
mode, the drive is always in one of the following states:

— The drive is connected and responding to a request on Port A. It is closed to requests on Port B.

— The drive is connected and responding to a request on Port B. It is closed to requests on Port A.

— The drive is in a neutral state. It is equally available to requests on either port on a first-come,
first-serve basis.

The operational condition of the drive cannot be changed with the port select switches after the drive becomes
ready. To change from one mode to another, the drive must be in a nonrotating condition. After the new mode
selection has been made, the drive must be restarted.

If a drive is in the neutral state and a disk controller either reads or writes to a drive register, the drive
immediately connects a port to the requesting controller. For read operations, the drive remains connected for
the duration of the operation. For write operations, the drive remains connected until a release command is
issued by the device driver or a 1-second timeout occurs. After the connected port is released from its
controller, the drive checks the other port's request flag to determine whether there has been a request on
that port. If no request is pending, the drive returns to the neutral state.

Controller

ZK0650GE

VAX
CPU BCPU A

VAX

Controller

Disk
Drive
71

Disk Drivers
Driver Features
2.2.2.2 Disk Use and Restrictions

If the volume is mounted foreign, read/write operations can be performed at both ports provided the user
maintains control of where information is stored on the disk.

The Autoconfigure utility currently may not be able to locate the nonactive port. For example, if a dual-ported
disk drive is connected and responding at Port A, the CPU attached to Port B might not be able to find Port B
with the Autoconfigure utility. If this problem occurs, execute the AUTOCONFIGURE ALL/LOG command
after the system is running.

2.2.2.3 Restriction on Dual-Ported Non-DSA Disks in a Cluster

Do not use SYSGEN to AUTOCONFIGURE or CONFIGURE a dual-ported, non-DSA disk that is already
available on the system through use of an MSCP server. Establishing a local connection to the disk when a
remote path is already known creates two uncoordinated paths to the same disk. Use of these two paths may
corrupt files and data on any volume mounted on the drive.

NOTE If the disk is not dual-ported or is never served by an MSCP server on the remote host, this
restriction does not apply.

In a cluster, dual-ported non-DSA disks (MASSBUS or UNIBUS) can be connected between two nodes of the
cluster. These disks can also be made available to the rest of the cluster using the MSCP server on either or
both of the hosts to which a disk is connected.

If the local path to the disk is not found during the bootstrap, then the MSCP server path from the other host
will be the only available access to the drive. The local path will not be found during a boot if any of the
following conditions exist:

• The port select switch for the drive is not enabled for this host.

• The disk, cable, or adapter hardware for the local path is broken.

• There is sufficient activity on the other port to hide the existence of the port.

• The system is booted in such a way that the SYSGEN AUTOCONFIGURE ALL command in the
SYS$SYSTEM:STARTUP.COM procedure was not executed.

Use of the disk is still possible through the MSCP server path.

After the configuration of the disk has reached this state, it is important not to add the local path back into
the system I/O database. Because the operating system does not provide an automatic method for adding this
local path, the only possible way that you can add this local path is to use the System Generation utility
(SYSGEN) qualifiers AUTOCONFIGURE or CONFIGURE to configure the device. SYSGEN is currently not
able to detect the presence of the disk's MSCP path, and will incorrectly build a second set of data structures
to describe it. Subsequent events could lead to incompatible and uncoordinated file operations, which might
corrupt the volume.

To recover the local path to the disk, it is necessary to reboot the system connected to that local path.

2.2.3 Dual-Pathed DSA Disks

A dual-ported DSA disk can be failed over between the two CPUs that serve it to the cluster under the
following conditions: (1) the same disk controller letter and allocation class are specified on both CPUs and (2)
both CPUs are running the MSCP server.

CAUTION Failure to observe these requirements can endanger data integrity.
72

Disk Drivers
Driver Features
However, because a DSA disk can be on line to only one controller at a time, only one of the CPUs can use its
local connection to the disk. The second CPU accesses the disk through the MSCP server. If the CPU that is
currently serving the disk fails, the other CPU detects the failure and fails the disk over to its local
connection. The disk is thereby made available to the cluster once more.

NOTE A dual-ported DSA disk may not be used as a system disk.

2.2.4 Dual-Porting HSC Disks

By design, HSC disks are cluster accessible; therefore, if they are dual-ported, they are automatically
dual-pathed. CI-connected CPUs can access a dual-pathed HSC disk by way of a path through either
HSC-connected device.

For each dual-ported HSC disk, you can control failover to a specific port using the port select buttons on the
front of each drive. By pressing either port select button (A or B) on a particular drive, you can cause the
device failover to the specified port.

With the port select button, you can select alternate ports to balance the disk controller workload between
two HSC subsystems. For example, you could set half of your disks to use port A and set the other half to use
port B.

The port select buttons also allow you to fail over all the disks to an alternate port manually when you
anticipate the shutdown of one of the HSC subsystems.

2.2.5 Dual-Pathed RF-Series Disks

In a dual-path configuration of MicroVAX 3300/3400 CPUs or MicroVAX 3800/3900 CPUs using RF-series
disks, CPUs have concurrent access to any disk on the DSSI bus. A single disk is accessed through two paths
and can be served to all satellites by either CPU.

If either CPU fails, satellites can access their disks through the remaining CPU. Note that failover occurs in
the following situations: (1) when the DSSI bus is connected between SII integral adapters on both MicroVAX
3300/3400 CPUs or (2) when the DSSI bus is connected between the KFQSA adapters on pairs of MicroVAX
3300/3400s or pairs of MicroVAX 3800/3900s.

NOTE The DSSI bus should not be connected between a KFQSA adapter on one CPU and an SII
integral adapter on another.

2.2.6 Data Check

A data check is made after successful completion of a read or write operation and, except for the TU58,
compares the data in memory with the data on disk to make sure they match.

Disk drivers support data checks at the following levels:

• Per request—You can specify the data check function modifier (IO$M_DATACHECK) on a read logical
block, write logical block, read virtual block, write virtual block, read physical block, or write physical
block operation. IO$M_DATACHECK is not supported for the RX01 and RX01 drivers.

• Per volume—You can specify the characteristics “data check all reads” and “data check all writes” when
the volume is mounted. The HP OpenVMS DCL Dictionary describes volume mounting and dismounting.
The HP OpenVMS System Services Reference Manual describes the Mount Volume ($MOUNT) and
Dismount Volume ($DISMOU) system services.
73

Disk Drivers
Driver Features
• Per file—You can specify the file access attributes “data check on read” and “data check on write.” File
access attributes are specified when the file is accessed. Chapter 1 of this manual and the OpenVMS
Record Management Services Reference Manual describe file access.

 Offset recovery is performed during a data check, but error code correction (ECC) is not performed (see
Section 2.2.9). For example, if a read operation is performed and an ECC correction is applied, the data check
would fail even though the data in memory is correct. In this case, the driver returns a status code indicating
that the operation was completed successfully, but the data check could not be performed because of an ECC
correction.

Data checks on read operations are extremely rare, and you can either accept the data as is, treat the ECC
correction as an error, or accept the data but immediately move it to another area on the disk volume.

A data check operation directed to a TU58 does not compare the data in memory with the data on tape.
Instead, either a read check or a write check operation is performed (see Sections Section 2.4.1 and Section
2.4.2).

2.2.7 Effects of a Failure During an I/O Write Operation

The operating system ensures that when an I/O write operation returns a successful completion status, the
data is available on the disk or tape media. Applications that must guarantee the successful completion of a
write operation can verify that the data is on the media by specifying the data check function modifier
IO$M_DATACHECK. Note that the IO$M_DATACHECK data check function, which compares the data in
memory with the data on disk, affects performance because the function incurs the overhead of an additional
read operation to the media.

If a system failure occurs while a multiple-block write operation is in progress, the operating system does not
guarantee the successful completion of the write operation. (OpenVMS does guarantee single-block write
operations to DSA drives.) When a failure interrupts a write operation, the data may be left in any one of the
following conditions:

• The new data is written completely to the disk blocks on the media, but a completion status was not
returned before the failure.

• The new data is partially written to the media so that some of the disk blocks involved in the I/O contain
the data from the write operation in progress, and the remainder of the blocks contain the data that was
present before the write operation.

• The new data was never written to the disk blocks on the media.

To guarantee that a write operation either finishes successfully or (in the event of failure) is redone or rolled
back as if it were never started, use additional techniques to ensure data correctness and recovery. For
example, using database journaling and recovery techniques allows applications to recover automatically
from failures such as the following:

• Permanent loss of the path between a CPU data buffer containing the data being written and the disk
being written to during a multiple-block I/O operation. Communication path loss can occur due to node or
controller failure or a failure of node-to-node communications.

• Failure of a CPU (such as a system failure, system halt, power failure, or system shutdown) during a
multiple-block write operation.

• Mistaken deletion of a file.

• Corruption of file system pointers.

• File corruption due to a software error or incomplete bucket write operation to an indexed file.

• Cancellation of an in-progress multiple-block write operation.
74

Disk Drivers
Driver Features
2.2.8 Overlapped Seeks

A seek operation involves moving the disk read/write heads to a specific place on the disk without any
transfer of data. All transfer functions, including data checks, are preceded by an implicit seek operation
(except when the seek is inhibited by the physical I/O function modifier IO$M_INHSEEK). Seek operations
can be overlapped except on RL02, RX01, RX02, TU58 drives, MicroVAX 2000, VAXstation 2000, or on
controllers with diskettes (for example, RQDX3) when the disk is executing I/O requests. That is, when one
drive performs a seek operation, any number of other drives can also perform seek operations.

During the seek operation, the controller is free to perform transfers on other units. Therefore, seek
operations can also overlap data transfer operations. For example, at any one time, seven seeks and one data
transfer could be in progress on a single controller.

This overlapping is possible because, unlike I/O transfers, seek operations do not require the controller once
they are initiated. Therefore, seeks are initiated before I/O transfers and other functions that require the
controller for extended periods.

All DSA controllers perform extensive seek optimization functions as part of their operation;
IO$M_INHSEEK has no effect on these controllers.

2.2.9 Error Recovery

Error recovery in the operating system is aimed at performing all possible operations to complete an I/O
operation successfully. Error recovery operations fall into the following categories:

• Handling special conditions such as power failure and interrupt timeout.

• Retrying nonfatal controller and drive errors. For DSA and SCSI disks, this function is implemented by
the controller.

• Applying error correction information (not applicable for RB02, RL02, RX01, RX02, and TU58 drives). For
DSA and SCSI disks, error correction is implemented by the controller.

• Offsetting read heads to try to obtain a stronger recorded signal (not applicable for RB02, RL02, RB80,
RM80, RX01, RX02, and TU58 drives). For DSA and SCSI disks, this function is implemented by the
controller.

The error recovery algorithm uses a combination of these four types of error recovery operations to complete
an I/O operation:

• Power failure recovery consists of waiting for mounted drives to spin up and come on line, followed by
reexecution of the I/O operation that was in progress at the time of the power failure.

• Device timeout is treated as a nonfatal error. The operation that was in progress when the timeout
occurred is reexecuted up to eight times before a timeout error is returned.

• Nonfatal controller/drive errors are executed up to eight times before a fatal error is returned.

• All normal error recovery procedures (nonspecial conditions) can be inhibited by specifying the inhibit
retry function modifier (IO$M_INHRETRY). If any error occurs and this modifier is specified, the virtual,
logical, or physical I/O operation is immediately terminated, and a failure status is returned. This
modifier has no effect on power recovery and timeout recovery.

2.2.9.1 Skip Sectoring

Skip sectoring is a bad block treatment technique implemented on R80 disk drives (the RB80 and RM80
drives). In each track of 32 sectors, one sector is reserved for bad block replacement. Consequently, an R80
drive has available only 31 sectors per track. The Get Device/Volume Information ($GETDVI) system service
returns this value.
75

Disk Drivers
Driver Features
You can detect bad blocks when a disk is formatted. Most formatters place these blocks in a bad block file. On
an R80 drive, the first bad block encountered on a track is designated as a skip sector. This is accomplished by
setting a flag in the sector header on the disk and placing the block in the skip sector file.

When a skip sector is encountered during a data transfer, it is skipped over, and all remaining blocks in the
track are shifted by one physical block. For example, if block number 10 is a skip sector, and a transfer
request was made beginning at block 8 for four blocks, then blocks 8, 9, 11, and 12 will be transferred. Block
10 will be skipped.

Because skip sectors are implemented at the device driver level, they are not visible to you. The device
appears to have 31 contiguous sectors per track. Sector 32 is not directly addressable, although it is accessed
if a skip sector is present on the track.

2.2.10 Logical-to-Physical Translation (RX01 and RX02)

Logical-block-to-physical-sector translation on RX01 and RX02 drives adheres to the standard format. For
each 512-byte logical block selected, the driver reads or writes four 128-byte physical sectors (or two 256-byte
physical sectors if an RX02 is in double-density mode). To minimize rotational latency, the physical sectors
are interleaved. Interleaving allows the processor time to complete a sector transfer before the next sector in
the block reaches the read/write heads. To allow for track-to-track switch time, the next logical sector that
falls on a new track is skewed by six sectors. (There is no interleaving or skewing on read physical block and
write physical block I/O operations.) Logical blocks are allocated starting at track 1; track 0 is not used.

The translation procedure, in more precise terms, is as follows:

1. Compute an uncorrected medium address using the following dimensions:

Number of sectors per track = 26 Number of tracks per cylinder = 1 Number of cylinders per disk = 77

2. Correct the computed address for interleaving and track-to-track skew (in that order) as shown in the
following HP Fortran for OpenVMS statements. ISECT is the sector address and ICYL is the cylinder
address computed in Step 1.

Interleaving:

ITEMP = ISECT*2

IF (ISECT .GT. 12) ITEMP = ITEMP-25

ISECT = ITEMP

Skew:

ISECT = ISECT+(6*ICYL)

ISECT = MOD (ISECT, 26)

3. Set the sector number in the range of 1 through 26 as required by the hardware:

ISECT = ISECT+1

4. Adjust the cylinder number to cylinder 1 (cylinder 0 is not used):

ICYL = ICYL+1

2.2.11 DIGITAL Storage Architecture (DSA) Devices

The DIGITAL Storage Architecture (DSA) is a collection of specifications that cover all aspects of a mass
storage product. The specifications are grouped into the following general categories:

• Media format—Describes the structure of sectors on a disk and the algorithms for replacing bad blocks
76

Disk Drivers
Driver Features
• Drive-to-controller interconnect—Describes the connection between a drive and its controller

• Controller-to-host communicationsë—Describes how hosts request controllers to transfer data

Because the operating system supports all DSA disks, it supports all controller-to-host aspects of DSA. Some
of these disks, such as the RA60, RA80, and RA81, use the standard drive-to-controller specifications. Other
disks, such as the RC25, RD51, RD52, RD53, and RX50, do not. Disk systems that use the standard
drive-to-controller specifications employ the same hardware connections and use the HSC50, KDA50, KDB50,
and UDA50 interchangeably. Disk systems that do not use the drive-to-controller specifications provide their
own internal controller, which conforms to the controller-to-host specifications.

DSA disks differ from MASSBUS and UNIBUS disks in the following ways:

• DSA disks contain no bad blocks. The hardware and the disk class driver (DUDRIVER) function to ensure
a logically contiguous range of good blocks. If any block in the user area of the disk develops a defective
area, all further access to that block is revectored to a spare good block. Consequently, it is never
necessary to run the Bad Block Locator utility (BAD) on DSA disks. There is no manufacturer's bad block
list and the file BADBLK.SYS is empty. (The Verify utility, which is invoked by the ANALYZE
/DISK_STRUCTURE /READ_CHECK command, can be used to check the integrity of newly received
disks.) See Section 2.2.11.1 for more information about bad block replacement for DSA disks.

• Insert a WAIT statement in your SYSTARTUP_V5.COM file on VAX systems, or your
SYSTARTUP_VMS.COM file on Alpha systems, prior to the first MOUNT statement for a DSA disk. The
wait period should be about 2 to 4 seconds for the UDA50 and about 30 seconds for the HSC50. The wait
time is controller-dependent and can be as much as several minutes if the controller is offline or otherwise
inoperative. If this wait is omitted, the MOUNT request may fail with a “no such device” status.

• The DUDRIVER and the DSA device controllers allow multiple, concurrently outstanding QIO requests.
The order in which these requests complete might not be in the order in which they were issued.

• All DSA disks can be dual-ported, but only one HSC/UDA controller can control a disk at a time (see
Section 2.2.3).

• In many cases, you can attach a DSA disk to its controller on a running system and then use it without
manual intervention.

• DSA disks and the DUDRIVER do not accept physical QIO data transfers or seek operations.

2.2.11.1 Bad Block Replacement and Forced Errors for DSA Disks

Disks that are built according to the DSA specifications appear to be error free. Some number of logical blocks
are always capable of recording data. When a disk is formatted, every user-addressable logical block is
mapped to a functioning portion of the actual disk surface, which is known as a physical block. The physical
block has the true data storage capacity represented by the logical block.

Additional physical blocks are set aside to replace blocks that fail during normal disk operations. These extra
physical blocks are called replacement blocks. Whenever a physical block to which a logical block is
mapped begins to fail, the associated logical block is remapped (revectored) to one of the replacement blocks.
The process that revectors logical blocks is called a bad block replacement operation. Bad block
replacement operations use data stored in a special area of the disk called the Replacement and Caching
Table (RCT).

When a drive-dependent error threshold is reached, the need for a bad block replacement operation is
declared. Depending on the controller involved, the bad block replacement operation is performed either by
the controller itself (as is the case with HSCs) or by the host (as is the case with UDAs). In either case, the
same steps are performed. After inspecting and altering the RCT, the failing block is read and its contents are
stored in a reserved section of the RCT.
77

Disk Drivers
Driver Features
The design goal of DSA disks is that this read operation proceeds without error and that the RCT copy of the
data is correct (as it was originally written). The failing block is then tested with one or more data patterns. If
no errors are encountered in this test, the original data is copied back to the original block and no further
action is taken. If the data-pattern test fails, the logical block is revectored to a replacement block. After the
block is revectored, the original data is copied back to the revectored logical block. In all these cases, the
original data is preserved and the bad block replacement operation occurs without the user being aware that
it happened.

However, if the original data cannot be read from the failing block, a best-attempt copy of the data is stored in
the RCT and the bad block replacement operation proceeds. When the time comes to write back the original
data, the best-attempt data (stored in the RCT) is written back with the forced error flag set. The forced
error flag is a signal that the data read is questionable. Reading a block that contains a forced error flag
causes the status SS$_FORCEDERROR to be returned. This status is displayed by the following message:

%SYSTEM-F-FORCEDERROR, forced error flagged in last sector read

Writing into a block always clears the forced error flag.

Note that most utilities and DCL commands treat the forced error flag as a fatal error and terminate
operation when they encounter it. However, the Backup utility (BACKUP) continues to operate in the
presence of most errors, including the forced error. BACKUP continues to process the file, and the forced error
flag is lost. Thus, data that was formerly marked as questionable may become correct data.

System managers (and other users of BACKUP) should assume that forced errors reported by BACKUP
signal possible degradation of the data.

To determine what, if any, blocks on a given disk volume have the forced error flag set, use the ANALYZE
/DISK_STRUCTURE /READ_CHECK command, which invokes the Verify utility. The Verify utility reads
every logical block allocated to every file on the disk and then reports (but ignores) any forced error blocks
encountered.

2.2.12 VAXstation 2000 and MicroVAX 2000 Disk Driver

The VAXstation 2000 and MicroVAX 2000 disk driver supports some DSA disk operation. In particular, the
driver supports block revectoring and bad block replacement. This provides the system with a logically perfect
disk medium.

Like other DSA disks, if a serious error occurs during a replacement operation, the disk is write-locked to
prevent further changes. This is done to preserve data integrity and minimize damage that could be caused
by failing hardware. Unlike other DSA disks, there is no visible indication on the drive itself that the disk is
write-locked. However, the following indicators help you determine that the disk has become write-protected:

• ERRFMT messages show that the disk is write-locked.

• The disk enters mount verification and hangs.

• DCL command SHOW DEVICE output shows that the disk is write-locked.

• Error messages occur from programs and utilities attempting to write to the disk.

If the disk becomes write-locked, you should use the following procedure:

1. Shut down the system.

2. Use standalone BACKUP to create a full backup of the disk.

3. Format the disk with the disk formatter.

4. Restore the disk from the backup using standalone BACKUP. Note that any files with sectors flagged
with a forced error may be corrupted and may need to be restored from a previous backup.
78

Disk Drivers
Driver Features
If errors occurring during replacement operations persist, call HP Customer Services.

2.2.13 SCSI Disk Class Driver

The VAXstation 3100, 3520, and 3540 contain a SCSI bus that provides access to as many as seven SCSI
disks. The SCSI disk class driver controls SCSI disks on all of the above systems. Although SCSI disks do not
conform to DSA, they do support the following error recovery features:

• Static and dynamic bad block replacement (BBR)

• Error correction code (ECC)

• Reexecution of read or write operations within the SCSI drive

• Reexecution of read or write operations by the SCSI disk class driver

All SCSI disks supplied by HP implement the REASSIGN BLOCKS command, which relocates data for a
specific logical block to a different physical location on the disk. The SCSI disk class driver reassigns the block
in the following instances: (1) when the retry threshold is exceeded during an attempt to read or write a block
of data on the disk or (2) when an irrecoverable error occurs during a write operation.

Unlike DSA, there is no forced error flag in SCSI. Blocks that produce irrecoverable errors during read
operations are not reassigned in order to prevent undetected loss of user data. Instead, the SCSI disk class
driver returns the SS$_PARITY status whenever a read operation results in an irrecoverable error.

2.2.14 Audio Extensions to the SCSI Disk Class Driver

This section describes SCSI disk class driver audio commands and the $QIO interface by which the operating
system provides audio functionality to the SCSI disk.

Table 2-1 lists the SCSI audio commands supported by the SCSI disk class driver.

Table 2-1 SCSI Disk Class Driver Audio Commands

Command Audio Function Code1 Description

Play Audio
MSF

AUDIO_PLAY_AUDIO_MSF (5) Requests the CD-ROM to begin an audio playback
operation. The two required command arguments
specify absolute starting and ending addresses of the
playback in terms of minutes, seconds, and frame
(MSF).

Play Audio
Track

AUDIO_PLAY_AUDIO_TRACK
(6)

Requests the CD-ROM to begin an audio playback
operation. The two required command arguments
specify the starting and ending tracks of the playback
in terms of track number and index.

Play Audio AUDIO_PLAY_AUDIO (4) Requests the CD-ROM to begin an audio playback
operation. The two required command arguments
specify the starting logical block address (LBA) and
the transfer count, in blocks, of the playback.

Pause AUDIO_PAUSE (0) Requests the CD-ROM to suspend any active audio
operations. In response, the CD-ROM enters the
hold-track state, muting the audio output after
playing the current block.
79

Disk Drivers
Driver Features
2.2.14.1 $QIO Interface to Audio Functionality of the SCSI Disk Class Driver

To employ the audio functions of the RRD42 CD-ROM reader, the application program issues a call to the
$QIO system service using the following format:

status=SYS$QIO ([efn] ,[chan] ,func [,iosb] [,astadr] [,astprm] [,p1] [,p2] [,p3] [,p4] [,p5]
[,p6])

Arguments

[efn]

[chan]

Resume AUDIO_RESUME (1) Requests the CD-ROM to resume any active audio
operations. In response, the CD-ROM exits the
hold-track state and resumes playback at the block
following the last block played.

Get Status AUDIO_GET_STATUS (9) Requests from the CD-ROM the status of the
currently active playback operation, as well as the
state of the current block. The Get Status command
corresponds to the SCSI II Read Sub-channel
command (READ SUBQ).

Set Volume AUDIO_SET_VOLUME (11) Requests the CD-ROM to adjust the output channel
selection and volume settings for ports 0 through 3.
The Set Volume command corresponds to the SCSI II
Mode Select command for the CD-ROM Audio
Control Parameters page.

Get Volume AUDIO_GET_VOLUME (12) Requests from the CD-ROM the output channel
selection and volume settings for ports 0 through 3.
The Get Volume command corresponds to the SCSI II
Mode Sense command for the CD-ROM Audio
Control Parameters page.

Prevent
Removal

AUDIO_PREVENT_REMOVAL
(2)

Prevents the removal of the CD caddy from the
CD-ROM drive.

Allow
Removal

AUDIO_ALLOW_REMOVAL (3) Allows the removal of the CD caddy from the
CD-ROM drive.

Get TOC AUDIO_GET_TOC (10) Requests from the CD-ROM a list of each track on
the disk, including information about the audio or
data contents of each track. Applications that require
a detailed knowledge of the organization of a
CD-ROM can use this function to obtain that
information. The Get TOC command corresponds to
the SCSI II Read TOC command.

1. Symbolic values for the function codes of SCSI audio commands are defined in
SYS$EXAMPLES:CDVERIFY.C. Numeric values appear within parentheses in this table column.

Table 2-1 SCSI Disk Class Driver Audio Commands (Continued)

Command Audio Function Code1 Description
80

Disk Drivers
Driver Features
[iosb]

[astadr]

[astprm]

These arguments apply to the $QIO system service completion, not to device interrupt actions. For an
explanation of these arguments, refer to the description of the $QIO system service in the HP OpenVMS
System Services Reference Manual.

func

The IO$_AUDIO function code allows the SCSI disk class driver to process SCSI audio commands.

p1

Address of an audio control block (AUCB). The $QIO system service passes a SCSI audio command and
command-specific control information to the SCSI disk class driver in the AUCB structure (see Section
2.2.14.2).

p2

Size of the AUCB.

2.2.14.2 Defining an Audio Control Block (AUCB)

An application program that issues a call to the $QIO system service that specifies the IO$_AUDIO function
code in the func argument must supply the address of an AUCB structure in the p1 argument and its size in
the p2 argument.
81

Disk Drivers
Driver Features
An AUCB defines a specific SCSI audio command and provides the SCSI disk class driver with
command-specific arguments and control information. Table 2-2 defines the fields that appear in an AUCB;
these fields are shown in Figure 2-3. See SYS$EXAMPLES:CDROM_AUDIO.C for a code example that shows
how an AUCB is defined in the C programming language.

Figure 2-3 Audio Control Block (AUCB)

Table 2-2 Contents of AUCB

Field Use

Audio Function
Code

Numeric or symbolic code representing the audio function desired by the application
program. (See Table 2-1.) The application program must provide a valid audio function
code for each operation.

AUCB Version
Number

Version of the AUCB and SCSI disk class driver audio interface. For the current version
of the interface the value of this field should be 1. This field must never contain a zero.

Argument 1 This field is audio command-specific and contains the first argument of the function as
follows:

Audio Function Code1 Field Contents

AUDIO_PLAY_AUDIO_MSF (5) Starting Frames|(Sec shifted left 8 bits)|(Min
shifted left 16 bits)

AUDIO_PLAY_AUDIO_TRACK (6) Starting (Track shifted left 8 bits) |Index

AUDIO_PLAY_AUDIO (4) Starting logical block address.

AUDIO_GET_STATUS (9) 0 if LBA format, 1 if MSF format. Refer to the
SCSI II specification for information about these
formats.

AUCB Version Number

Argument 1

Argument 2

Argument 3

Reserved

Destination Buffer Address

Destination Buffer Count

Audio Function Code

Destination Buffer Transfer Count

Operating System Command Status

SCSI Command Status (optional)

Sense Data Buffer Address (optional)

Sense Data Buffer Count (optional)

Sense Data Buffer Transfer Count (optional)

Reserved

0

4

8

12

16

20

24

28

32

36

40

44

48

52

ZK4625A
82

Disk Drivers
Driver Features
AUDIO_SET_VOLUME (11) Longword representing the values to be used to
determine the new output channel selection and
volume settings for CD-ROM ports 0 through 3.
Figure 2-4 shows the format of this longword.
Note that many CD-ROM drives do not support
ports 2 and 3.

AUDIO_GET_VOLUME (12) Longword to receive the current values
determining output channel selection and volume
settings for CD-ROM ports 0 through 3. Figure 2-4
shows the format of this longword. Note that
many CD-ROM drives do not support ports 2 and
3.

AUDIO_GET_TOC (10) 0 if LBA format, 1 if MSF format. Refer to the
SCSI II specification for information about these
formats.

Argument 2 This field is audio command-specific and contains the second argument of the function as
follows:

Audio Function Code1 Field Contents

AUDIO_PLAY_AUDIO_MSF (5) Starting frames|(sec shifted left 8 bits)|(min
shifted left 16 bits)

AUDIO_PLAY_AUDIO_TRACK (6) Ending(track shifted left 8 bits)|index

AUDIO_PLAY_AUDIO (4) Transfer count in number of contiguous blocks to
be played

AUDIO_GET_TOC (10) Starting track

Reserved Must be zero.

Destination
Buffer Address

Address of the application program's buffer from which the status from a GET_STATUS
or GET_TOC function is returned.

Destination
Buffer Count

Size, in bytes, of the destination buffer specified in the Destination Buffer Address field.
For the GET_STATUS function, this field must contain the value 48 to receive complete
status information. For the GET_TOC function, this field must contain the value 804 to
receive full status. The SCSI disk class driver truncates the status data, if the
destination buffer size is smaller than the size of the data.

Destination
Buffer
Transfer Count

The SCSI disk class driver returns to this field the actual number of bytes transferred to
the buffer specified in the Destination Buffer Address field.

Before accessing data returned by the GET_TOC or GET_STATUS commands, an
application program must check the contents of this field to determine precisely how
many bytes were returned by the CD-ROM.

The application program initializes this field to zero.

Table 2-2 Contents of AUCB (Continued)

Field Use
83

Disk Drivers
Driver Features
The output channel selection and volume settings for CD-ROM ports as used by the SET_VOLUME function
appear as shown in Figure 2-4.

2.2.14.3 Error Handling in Applications Using SCSI Audio Functions

As indicated in Table 2-2, the AUCB provides for three levels of error status reporting:

• Condition values, returned in the Operating System Command Status field of the AUCB, as well as in the
I/O status block of specified in the iosb argument to the $QIO system service call. (See Table 2-3 for a
description of these status codes.)

Operating
System
Command
Status

Completion status of the SCSI audio function. This value is also returned in the I/O
status block of specified in the iosb argument to the $QIO system service call. See
Table 2-3 for a description of these status codes.

The application program initializes this field to zero.

SCSI
Command
Status
(optional)

SCSI status of the current operation. The SCSI disk class driver returns the SCSI status
byte for the SCSI audio command described by this AUCB in the low byte of the
low-order word of this field. It returns the sense key in the low byte of the high-order
word. Refer to the SCSI specification for information regarding SCSI status and SCSI
sense keys.

The application program initializes this field to zero.

Sense Data
Buffer Address
(optional)

Address of buffer to which the SCSI disk class driver returns sense data when errors
occur during audio function execution. When this field is specified, in the event of a check
condition on an Audio command, the SCSI disk class driver automatically issues a
Request Sense command to retrieve the Sense Key/Sense Data from the target. The
target returns this data to the buffer specified in this field before the failing $QIO audio
function completes.

Sense Data
Buffer Count
(optional)

Size, in bytes, of the buffer specified in the Sense Data Buffer Address field. During
request sense processing, the target device truncates the sense data to fit in this buffer.

Sense Data
Buffer
Transfer Count
(optional)

Actual number of bytes of sense data returned to the application in the buffer specified in
the Sense Data Buffer Address field.

The application program initializes this field to zero.

Reserved Must be zero.

1. For any function code not listed in this table, this field contains a zero.

Table 2-2 Contents of AUCB (Continued)

Field Use
84

Disk Drivers
Driver Features
If this status is SS$_NORMAL, the function has completed without error. If the status is not
SS$_NORMAL, the application program should check the SCSI Command Status field and the Sense
Data buffer to fully determine the cause of the failure.

Figure 2-4 Output Channel Selection and Volume Settings for CD-ROM Ports as
Used by the SET_VOLUME Function

• SCSI command status, returned in the SCSI Command Status field of the AUCB. The SCSI disk class
driver returns to this field SCSI status as well as the sense key in the event of a check condition SCSI
status. The sense key can be used to determine the first level of error reporting supported by SCSI. See
the SCSI specification for further information.

• Sense data, returned in the buffer specified in the Sense Data Buffer Address field of the AUCB. Sense
data bytes are assigned as defined in the SCSI II specification. Sophisticated programmers can use the
data in this to obtain detailed information about the error-causing condition.

If the CD-ROM device is currently software-enabled (that is, the volume has been mounted) and a unit
attention is detected, then mount verification will be initiated by the driver. However, if the CD-ROM is not
software-enabled, the event will simply be returned to the application issuing the Audio $QIO function.

Table 2-3 Status Codes Returned to the IOSB and AUCB by the SCSI Disk Class
Driver

Code Meaning

SS$_NORMAL AUCB command completed successfully.

SS$_ABORT Returned by the SCSI disk port driver. In general, you should retry
commands that fail with this status.

SS$_BADPARM The driver detected an illegal value or missing value in the AUCB.

SS$_CTRLERR CD-ROM failed some part of its initialization sequence. When this status is
returned, it is unlikely that the CD-ROM is usable.

SS$_DEVOFFLINE Device returned a not-ready sense key or failed the TEST UNIT
READY/START sequence.

output selectionvolume output selectionvolume

31 23 15 7 0

Port 1 or 3 Port 0 or 2

volume = 00 (muted) to FF (maximum)
output selection <7:4> = 0
output selection <3:0> = 0000 (output muted on this channel)

ZK4626A

 0001 (connect audio channel 0 to this output port)
0010 (connect audio channel 1 to this output port)
0011 (connect audio channels 0 and 1 to this port)
85

Disk Drivers
Driver Features
2.2.14.4 Using CD-ROM to Store Both Data and Audio Information

To make effective use of mixed data and audio CDs, an application program requires detailed knowledge of
the particular CD being played. The application program must know which tracks include data and which
tracks include audio so it can use commands appropriate to the different track types. Issuing an audio
command on a data track results in the command failing with a status of SS$_DRVERR.

By default, the SCSI disk class driver transfers all requests issued to a CD-ROM in blocks of 512 bytes. This
byte amount is referred to as the default block size. Before attempting to issue READ operations to the
CD-ROM, you must ensure that the CD-ROM has been mounted as foreign or as a Files-11 volume. The
application program can then determine, by issuing a GET_TOC function, which tracks (and, therefore, which
logical blocks) contain data and which contain audio information.

2.2.14.5 Programming Audio Applications

The following list contains information useful in avoiding problems when writing code using the SCSI audio
interfaces:

• If you do not know the type of file system on the CD-ROM, you should mount the CD-ROM as foreign and
issue a $QIO request with the logical block I/O read function (IO$_READLBLK) to read individual data
blocks. The default block size for all CD-ROMs is 512 bytes.

SS$_DRVERR CD-ROM failed to execute the command, either because the drive has failed
or an illegal command was issued. Such a command could be a command
that requested the drive to issue an audio command to a data track or
attempted to perform a play operation on nonexistent tracks.

SS$_ILLIOFUNC Illegal I/O function was specified in the func argument of the $QIO request.

SS$_IVADDR Specified block number is larger than UCB$L_MAXBLOCK.

SS$_MEDOFL Last command failed because the drive detected the removal and
replacement of the CD carrier, or the unsuccessful completion of a Request
Sense command after a check condition error. In general, you should not
retry commands that fail with this status.

SS$_NOPRIV Caller does not have sufficient privileges to execute this function. If the
CD-ROM has not been mounted before an IO$_READVBLK function is
issued, this status may be returned.

SS$_OPINCOMPL Number of bytes requested is less than the number of bytes returned.

SS$_PARITY Nonrecoverable media error (does not apply to audio functions).

SS$_RECOVERR Recovered media error (does not apply to audio functions).

SS$_VOLINV CD-ROM has not been mounted.

SS$_WRITLCK Write operations not permitted on read-only devices.

Table 2-3 Status Codes Returned to the IOSB and AUCB by the SCSI Disk Class
Driver (Continued)

Code Meaning
86

Disk Drivers
Disk Driver Device Information
• When using the GET_TOC command to obtain CD-ROM address information in LBA format, be advised
that the byte ordering of the returned data is in big-endian form. Because VAX byte ordering is
little-endian, you must switch the LBA data bytes to get a logical block address that is valid on a VAX
computer. SYS$EXAMPLES:CDROM_AUDIO.C contains an example of how to perform this exchange.

• Before attempting to issue a $QIO request with the virtual block I/O read function (IO$_READVBLK) to
the CD-ROM, ensure that the CD-ROM has been mounted. Typically, you have to foreign mount
non-Files-11 disks. If an IO$_READVBLK $QIO request is issued to an unmounted CD, the request fails
with a status of SS$_NOPRIV.

2.2.14.6 Application Program Example Using SCSI Audio Capabilities (VAX only)

The file SYS$EXAMPLES:CDROM_AUDIO.C contains an example of an application program that performs
the following tasks:

• Defines standard symbolic names for the audio function codes representing SCSI audio commands.

• Defines representative AUCBs for each audio function code supported by the SCSI disk class driver.

• Issues a series of $QIO system service requests, each specifying the IO$_AUDIO function, that exercise
the SCSI disk class driver to test its support for CD-ROM drives with audio capabilities.

• Converts LBA data returned by a GET_STATUS command in big-endian byte-ordering form to VAX
little-endian byte-ordering form.

2.3 Disk Driver Device Information
 You can obtain information on all disk device characteristics by using the Get Device/Volume Information
($GETDVI) system service (refer to the HP OpenVMS System Services Reference Manual).

$GETDVI returns disk characteristics when you specify the item codes DVI$_DEVCHAR and
DVI$_DEVCHAR2. Table 2-4 lists the possible characteristics for disk devices.

Table 2-4 Disk Device Characteristics

Characteristic1 Meaning

 Dynamic Bits (Conditionally Set)

DEV$M_AVL Device is on line and available.

DEV$M_CDP2 3 Dual-path device with two unit control blocks (UCBs).

DEV$M_CLU2 Device is available clusterwide.

DEV$M_2P2 Device is dual-pathed.

DEV$M_FOR Device is foreign.

DEV$M_MNT Volume is mounted.

DEV$M_RCK Perform data check on all reads.
87

Disk Drivers
Disk Function Codes
DVI$_DEVBUFSIZ returns the buffer size. The buffer size is the default to be used for disk transfers (this
default is normally 512 bytes). DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and class
names, which are defined by the $DCDEF macro. The disk model determines the device type. For example,
the device type for the RA81 is DT$_RA81. (Foreign device types take the form DT$_FD1 through DT$_FD8.)
The device class for disks is DC$_DISK.

DVI$_CYLINDERS returns the number of cylinders per volume (that is, per disk), DVI$_TRACKS returns
the number of tracks per cylinder, and DVI$_SECTORS returns the number of sectors per track. Values are
returned as 4-byte decimal numbers.

DVI$_MAXBLOCK returns the maximum number of blocks (1 block = 512 bytes) that can be contained on the
volume (that is, on the disk). Values are returned as 4-byte decimal numbers. This information can be used,
for example, to determine the density of an RX02 diskette (single density = 494 blocks, double density = 988
blocks).

2.4 Disk Function Codes
Disk drivers can perform logical, virtual, and physical I/O functions. Foreign-mounted devices do not require
privilege to perform logical and virtual I/O requests.

Logical and physical I/O functions allow access to volume storage and require only that the issuing process
have access to the volume; however, DSA disks and the disk class driver (DUDRIVER) do not accept physical
QIO data transfers or seek operations.

DEV$M_WCK Perform data check on all writes.

DEV$M_MSCP2 Device is accessed using the mass storage control protocol.

DEV$M_RCT Disk contains replacement and caching table.

DEV$M_SRV2 For a cluster, device is served by the MSCP server.

 Static Bits (Always Set)

DEV$M_FOD Device is file-oriented.

DEV$M_IDV Device is capable of input.

DEV$M_ODV Device is capable of output.

DEV$M_RND Device is capable of random access.

DEV$M_SHR Device is shareable.

1. Defined by the $DEVDEF macro.
2. These bits are located in DVI$_DEVCHAR2.
3. MASSBUS only.

Table 2-4 Disk Device Characteristics (Continued)

Characteristic1 Meaning
88

Disk Drivers
Disk Function Codes
NOTE The results of logical and physical I/O operations are unpredictable if an ancillary control
process (ACP) or extended QIO processing (XQP) is present.

Virtual I/O functions require an ACP for Files-11 On-Disk Structure Level 1 files or an XQP for Files-11
On-Disk Structure Level 2 files. Virtual I/O functions must be executed in a prescribed order. First, you create
and access a file, then you write information to that file, and lastly you deaccess the file. Subsequently, when
you access the file, you read the information and then deaccess the file. Delete the file when the information is
no longer useful.

Non-DSA disk devices can read or write up to 65,535 bytes in a single request. DSA devices connected to an
HSC50 can transfer up to 4 billion bytes in a single request. In all cases, the maximum size of the transfer is
limited by the number of pages that can be faulted into the process' working set, and then locked into physical
memory. (The disk driver is responsible for any memory management functions of this type.) The size of the
transfer does not affect the applicable quotas (direct I/O count, buffered I/O count, and asynchronous system
trap (AST) count limit). These quotas refer to the number of outstanding I/O operations of each type, not the
size of the I/O operation being performed.

The volume to which a logical or virtual function is directed must be mounted for the function actually to be
executed. If it is not mounted, either a “device not mounted” or “invalid volume” status is returned in the I/O
status block.

Table 2-5 lists the logical, virtual, and physical disk I/O functions and their function codes. Chapter 1
describes the QIO level interface to the disk device ACP.

Table 2-5 Disk I/O Functions

Function Code Arguments Type1 Function Modifiers Function

IO$_ACCESS P1, [P2],[P3],
[P4], [P5]

V IO$M_CREATE
IO$M_ACCESS

Search a directory for a
specified file and access the
file if found.

IO$_ACPCONTROL P1,[P2],[P3],
[P4],[P5]

V IO$M_DMOUNT Perform miscellaneous
control functions.

IO$_AVAILABLE P Clear volume valid; make
DSA units available.

IO$_CREATE P1,[P2],[P3],
[P4],[P5]

V IO$M_CREATE
IO$M_ACCESS
IO$M_DELETE

Create a directory entry or
a file.

IO$_DEACCESS P1,[P2],[P3],
[P4],[P5]

V Deaccess a file and, if
specified, write final
attributes in the file
header.

IO$_DELETE P1,[P2],[P3],[
P4],[P5]

V IO$M_DELETE Remove a directory entry
or file header, or both.

IO$_FORMAT P1 P Set density (RX02 only).

IO$_MODIFY P1,[P2],[P3],
[P4],[P5]

V Modify the file attributes
or allocation, or both.
89

Disk Drivers
Disk Function Codes
IO$_PACKACK P Update UCB fields if RX02;
initialize volume valid on
other devices. Bring DSA
units on line.

IO$_READLBL2 P1,P2,P3 L IO$M_DATACHECK3
IO$M_INHRETRY

Read logical block.

IO$_READPBLK2 P1,P2,P3 P IO$M_DATACHECK3
IO$M_INHRETRY
IO$M_INHSEEK4

Read physical block.5

IO$_READVBLK2 P1,P2,P3 V IO$M_DATACHECK3
IO$M_INHRETRY

Read virtual block.

IO$_SEARCH P1 P Search for specified block
or sector (only for TU58).

IO$_SEEK P1 P Seek to specified cylinder.5

IO$_SENSECHAR P Sense the
device-dependent
characteristics and return
them in the I/O status
block.

IO$_SENSEMODE L Sense the
device-dependent
characteristics and return
them in the I/O status
block.

IO$_SETPRFPATH P1 P IO$M_FORCEPTH Specifies a preferred path
for DSA disks.

IO$_UNLOAD P Clear volume valid; make
DSA units available and
spin down the volume.

IO$_WRITECHECK 2 P1,P2,P3 P Verify data written to disk
by a previous write QIO.3

IO$_WRITELBLK2 P1,P2,P3 L IO$M_DATACHECK3
IO$M_ERASE
IO$M_INHRETRY

Write logical block.

Table 2-5 Disk I/O Functions (Continued)

Function Code Arguments Type1 Function Modifiers Function
90

Disk Drivers
Disk Function Codes
The function-dependent arguments for IO$_CREATE, IO$_ACCESS, IO$_DEACCESS, IO$_MODIFY, and
IO$_DELETE are as follows:

• P1—The address of the file information block (FIB) descriptor.

• P2—The address of the file name string descriptor (optional). If specified, the name is entered in the
directory specified by the FIB.

• P3—The address of the word that is to receive the length of the resulting file name string (optional).

• P4—The address of a descriptor for a buffer that is to receive the resulting file name string (optional).

• P5—The address of a list of attribute descriptors (optional). If specified, the indicated attributes are read
(IO$_ACCESS) or written (IO$_CREATE, IO$_DEACCESS, and IO$_MODIFY).

See Chapter 1 for more information on these functions.

The function-dependent arguments for IO$_READVBLK, IO$_READLBLK, IO$_WRITEVBLK, and
IO$_WRITELBLK are as follows:

• P1—The starting virtual address of the buffer that is to receive the data from a read operation; or, in the
case of a write operation, the virtual address of the buffer that is to be written on the disk. On OpenVMS
Alpha, P1 can be a 64-bit address.

• P2—The number of bytes that are to be read from the disk, or written from memory to the disk. An even
number must be specified if the controller is an RK611, RL11, RX211, or UDA50.

• P3—The starting virtual/logical disk address of the data to be transferred in a read operation; or, in a
write operation, the disk address of the area that is to receive the data.

In a virtual read or write operation, the address is expressed as a block number within the file, that is,
block 1 of the file is virtual block 1. (Virtual block numbers are converted to logical block numbers using
mapping windows that are set up by the file system ACP process.)

In a logical read or write operation, the address is expressed as a block number relative to the start of the
disk. For example, the first sector on the disk contains block 0 (or at least the beginning of block 0).

IO$_WRITEPBLK2 P1,P2,P3 P IO$M_DATACHECK3
IO$M_ERASE
IO$M_INHRETRY
IO$M_INHSEEK4
IO$M_DELDATA6

Write physical block.5

IO$_WRITEVBLK2 P1,P2,P3 V IO$M_DATACHECK3
IO$M_ERASE
IO$M_INHRETRY

Write virtual block.

1. V = virtual; L = logical; P = physical.
2. On OpenVMS Alpha, P1 supports a 64-bit address.
3. Not for RX01 and RX02 disks.
4. Not for TU58, TX01, RX02, RB02 and RL02 drives.
5. Not for DSA and SCSI disks.
6. RX02 only.

Table 2-5 Disk I/O Functions (Continued)

Function Code Arguments Type1 Function Modifiers Function
91

Disk Drivers
Disk Function Codes
The function-dependent arguments for IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK
functions that include the IO$M_ERASE function modifier are as follows:

• P1——The starting virtual address of the buffer that contains a 4-byte, user-specified erase pattern. If the
P1 address is 0, a longword of 0 will be used for the erase pattern. If the P1 address is nonzero, the
contents of the 4 bytes starting at that address will be used as the erase pattern. Compaq recommends
that the user specify a P1 address of 0 to lower system overhead. On OpenVMS Alpha, P1 can be a 64-bit
address.

NOTE DSA disk controllers provide controlled, assisted erasing for the IO$M_ERASE modifier
(with virtual and logical write functions) only when the erase pattern is all zeros. If a
nonzero erase pattern is used, there is a significant performance degradation with these
disks. DSA disks do not accept physical QIO transfers.

• P2—The number of bytes of erase pattern to write to the disk. The number specified is rounded up to the
next highest block boundary (512 bytes).

• P3—The starting virtual, logical, or physical disk address of the data to be erased.

The function-dependent arguments for IO$_WRITECHECK, IO$_READPBLK, and IO$_WRITEPBLK are as
follows:

• P1—The starting virtual address of the buffer that is to receive the data in a read operation; or, in a write
operation, the starting virtual address of the buffer that is to be written on the disk. Passed by reference.
On OpenVMS Alpha and OpenVMS I64, P1 can be a 64-bit address.

• P2—The number of bytes that are to be read from the disk, or written from memory to the disk. Passed by
value. An even number must be specified if the controller is an RK611, RL11, or UDA50.

• P3—The starting physical disk address of the data to be read in a read operation; or, in a write operation,
the starting physical address of the disk area that is to receive the data. Passed by value. The address is
expressed as sector, track, and cylinder in the format shown in Figure 2-5. (On the RX01 and RX02, the
high word specifies the track number rather than the cylinder number.) Check the UCB of a currently
mounted device to determine the maximum physical address value for that type of device.

NOTE On the RB80 and RM80, do not address cylinders 560 and 561. These two cylinders are
used for diagnostic testing only.

The function-dependent argument for IO$_SEARCH is as follows:
92

Disk Drivers
Disk Function Codes
P1—The physical disk address where the tape is positioned. The address is expressed as sector, track, and
cylinder in the format shown in Figure 2-5.

Figure 2-5 Starting Physical Address

 The function-dependent argument for IO$_SEEK is as follows:

P1—The physical cylinder number where the disk heads are positioned. The address is expressed in the
format shown in Figure 2-6.

Figure 2-6 Physical Cylinder Number Format

The function-dependent argument for IO$_FORMAT is as follows:

P1—The density at which an RX02 diskette is reformatted (see Section 2.4.4).

2.4.1 Read

The read function reads data into a specified buffer from disk starting at a specified disk address.

The operating system provides the following read function codes:

• IO$_READVBLK—Read virtual block

• IO$_READLBLK—Read logical block

• IO$_READPBLK—Read physical block

If a read virtual block function is directed to a volume that is mounted foreign, that function is converted to
read logical block. If a read virtual block function is directed to a volume that is mounted structured, the
volume is handled in the same way as for a file-structured device.

Three function-dependent arguments are used with these codes: P1, P2, and P3. These arguments are
described in Section 2.4.

31 16 15 0

ZK0652GE

Cylinder Track Sector

8 7

(Except RX01 and RX02)

Track Sector

31 0

P3:

P3:

(RX01 and RX02 Only)

1516

ZK0653GE

Not Used Cylinder

31 16 15 0
93

Disk Drivers
Disk Function Codes
The data check function modifier (IO$M_DATACHECK) can be used with all read functions. If this modifier
is specified, a data check operation is performed after the read operation completes. A data check operation is
also performed if the volume that has been read, or the volume on which the file resides (virtual read) has the
characteristic “data check all reads.” Furthermore, a data check is performed after a virtual read if the file
has the attribute “data check on read.” The RX01 and RX02 drivers do not support the data check function.

If IO$M_DATACHECK is specified with a read function code to a TU58, or if the volume read has the
characteristic “data check all reads,” a read check operation is performed. This alters certain TU58 hardware
parameters when the tape is read. (The read threshold in the data recovery circuit is increased; if the tape
has any weak spots, errors are detected.)

The data check function modifier to a disk or tape can return five error codes in the I/O status block:

If no errors are detected, the disk or tape data is considered reliable.

The inhibit retry function modifier (IO$M_INHRETRY) can be used with all read functions. If this modifier is
specified, all error recovery attempts are inhibited. IO$M_INHRETRY takes precedence over
IO$M_DATACHECK. If both are specified and an error occurs, there is no attempt at error recovery and no
data check operation is performed. If an error does not occur, the data check operation is performed.

2.4.2 Write

The write function writes data from a specified buffer to disk starting at a specified disk address.

The operating system provides the following write function codes:

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITELBLK—Write logical block

• IO$_WRITEPBLK—Write physical block

If a write virtual block function is directed to a volume that is mounted foreign, the function is converted to
write logical block. If a write virtual block function is directed to a volume that is mounted structured, the
volume is handled in the same way as for a file-structured device.

Three function-dependent arguments are used with these codes: P1, P2, and P3. These arguments are
described in Section 2.4.

The data check function modifier (IO$M_DATACHECK) can be used with all write operations. If this modifier
is specified, a data check operation is performed after the write operation completes. A data check operation is
also performed if the volume written, or the volume on which the file resides (virtual write), has the
characteristic “data check all writes.” Furthermore, a data check is performed after a virtual write if the file
has the attribute “data check on write.” The RX01 and RX02 drivers do not support the data check function.

If IO$M_DATACHECK is specified with a write function code to a TU58, or if the volume written has the
characteristic “data check all writes,” a write check operation is performed. The write check verifies data
written on the tape. First, the specified data is written on the tape. Then the tape is reversed and the TU58
controller reads the data internally to perform a checksum verification. If the checksum verification is
unsuccessful after eight attempts, the write check operation is aborted and an error status is returned.

SS$_CTRLERR SS$_DRVERR SS$_MEDOFL

SS$_NONEXDRV SS$_NORMAL
94

Disk Drivers
Disk Function Codes
The inhibit retry function modifier (IO$M_INHRETRY) can be used with all write functions. If that modifier
is specified, all error recovery attempts are inhibited. IO$M_INHRETRY takes precedence over
IO$M_DATACHECK. If both IO$M_INHRETRY and IO$M_DATACHECK are specified and an error occurs,
there is no attempt at error recovery, and no data check operation is performed. If an error does not occur, the
data check operation is performed. IO$M_INHRETRY has no effect on DSA disks.

The write deleted data function modifier (IO$M_DELDATA) can be used with the write physical block
(IO$_WRITEPBLK) function to the RX02. If this modifier is specified, a deleted data address mark instead of
the standard data address mark is written preceding the data. Otherwise, the operation of the
IO$_WRITEPBLK function is the same; write data is transferred to the disk. When a successful read
operation is performed on this data, the status code SS$_RDDELDATA is returned in the I/O status block
rather than the usual SS$_NORMAL status code.

The IO$M_ERASE function modifier can be used with all write function codes to erase a user-selected part of
a disk. This modifier propagates an erase pattern through the specified range. Section 2.4 describes the write
function arguments to be used with IO$M_ERASE.

2.4.3 Sense Mode

Sense mode operations obtain current disk device-dependent characteristics that are returned to the caller in
the second longword of the I/O status block (see Figure 2-8). The operating system provides the following
function codes:

• IO$_SENSEMODE—Sense characteristics

• IO$_SENSECHAR—Sense characteristics

IO$_SENSEMODE is a logical function. IO$_SENSECHAR is a physical I/O function and requires the access
privilege necessary to perform physical I/O. No device- or function-dependent arguments are used with either
function.

2.4.4 Set Density

The set density function assigns a new density to an entire RX02 diskette. The diskette is also reformatted:
new data address marks are written (single or double density) and all data fields are zeroed. Set density is a
physical I/O function and requires the access privilege necessary to perform physical I/O. The following
function code is provided:

IO$_FORMAT

IO$_FORMAT takes the following function-dependent argument:

P1—The density at which the diskette is reformatted:

0 = single density (default)

1 = single density

2 = double density

The set density operation should not be interrupted before it is completed (about 15 seconds). If the operation
is interrupted, the resulting diskette might contain illegal data address marks in both densities. The diskette
must then be completely reformatted and the function reissued.
95

Disk Drivers
Disk Function Codes
2.4.5 Search

The search function positions a TU58 magnetic tape to the block specified. Search is a physical I/O function
and requires the access privilege necessary to perform physical I/O. The operating system provides a single
function code:

IO$_SEARCH

This function code takes the following function-dependent argument:

P1—Specifies the block where the read/write head will be positioned. The low byte contains the sector
number in the range 0 to 127; the high byte contains the track number in the range 0 to 3.

IO$_SEARCH can save time between read and write operations. For example, nearly 30 seconds are required
to completely rewind a tape. If the last read or write operation is near the end of the tape and the next
operation is near the beginning of the tape, the search operation can begin after the last operation completes,
and the tape will rewind while the process is otherwise occupied. (The search QIO is not completed until the
search is completed. Consequently, if a $QIOW system service request is issued, the process will be held up
until the search is completed.)

2.4.6 Pack Acknowledge

The pack acknowledge function sets the volume valid bit for all disk devices. Pack acknowledge is a physical
I/O function and requires the access privilege to perform physical I/O. If directed to an RX02 disk, pack
acknowledge also determines the diskette density and updates the device-dependent information returned by
$GETDVI item codes DVI$_CYLINDERS, DVI$_TRACKS, DVI$_SECTORS, DVI$_DEVTYPE,
DVI$_CLASS, and DVI$_MAXBLOCK. If directed to a DSA disk, pack acknowledge also sends the online
packet to the controller. The following function code is provided:

IO$_PACKACK

This function code takes no function-dependent arguments.

IO$_PACKACK must be the first function issued when a volume (pack, cartridge, or diskette) is placed in a
disk drive. IO$_PACKACK is issued automatically when the DCL commands INITIALIZE or MOUNT are
issued.

For DSA disks, the IO$_PACKACK function locks the drive's port selector on the port that initiated the pack
acknowledge function.

In addition, the IO$_PACKACK function updates device-dependent information about DSA disks returned by
$GETDVI.

2.4.7 Unload

 The unload function clears the volume valid bit for all disk drives, makes DSA disks available, and issues an
unload command to the drive (spins down the volume). The unload function reverses the function performed
by pack acknowledge (see Section 2.4.6). The following function code is provided:

IO$_UNLOAD

This function takes no function-dependent arguments.

2.4.8 Available

The available function clears the volume valid bit for all disk drives; that is, it reverses the function
performed by pack acknowledge (see Section 2.4.6). No unload function is issued to the drive; therefore, those
drives capable of spinning down do not spin down. The following function code is provided:
96

Disk Drivers
Disk Function Codes
IO$_AVAILABLE

This function takes no function-dependent arguments.

2.4.9 Seek

The seek function directs the read/write heads to move to the cylinder specified in the P1 argument (see
Sections Section 2.2.8, Section 2.4, and Figure 2-6).

2.4.10 Write Check

The write check function verifies that data was written to disk correctly. The data to be checked is addressed
using physical disk addressing (sector, track, and cylinder) (see Figure 2-5). If the request is directed to a DSA
disk, you must specify a logical block number, even though IO$_WRITECHECK is a physical I/O function.
The following function code is provided:

IO$_WRITECHECK

A write QIO must be used to write data to disk before you enter this command. IO$_WRITECHECK then
reads the same block of data and compares it with the data in the specified buffer. Three function-dependent
arguments are used with this code: P1, P2, and P3. These arguments are described in Section 2.4.

IO$_WRITECHECK is similar to the IO$M_DATACHECK function modifier for write QIOs, except that
IO$_WRITECHECK does not write the data to disk; it is specified after data is written by a separate write
QIO. Nonprivileged processes can use the IO$M_DATACHECK modifier with IO$_WRITEVBLK (which does
not require access privilege) to determine whether data is written correctly. The RX01 and RX02 drivers do
not support the write check function.

The write check function and the data check function modifier to a TU58 can return six error codes in the I/O
status block: SS$_NORMAL, SS$_CTRLERR, SS$_DRVERR, SS$_MEDOFL, SS$_NONEXDRV, and
SS$_WRTLCK.

2.4.11 Set Preferred Path

The set preferred path function specifies a preferred path for DSA disks. This includes RA-series disks and
disks accessed through the MSCP server. If a preferred path is specified for a disk, the MSCP disk class
drivers (DUDRIVER and DSDRIVER) use the path as their first attempt to locate the disk and bring it on
line as a result of a DCL command MOUNT or failover of an already mounted disk.

In addition, you can initiate failover of a mounted disk to force the disk to the preferred path, or to use
load-balancing information for disks accessed through MSCP servers.

The function code is:

IO$_SETPRFPATH

 The following is the function modifier:

IO$M_FORCEPATH—Causes the disk class driver to select the server path with the highest load
available rating.

The P1 parameter contains the address of a counted ASCII string (.ASCIC). This string is the node name of
the HSC or system that is the preferred path. The node name must match an existing node that is known to
the local node and if the node is a VAX or Alpha system, it must be running the MSCP server. This function
does not move the disk to the preferred path.

The PHYS_IO privilege is required for IO$_SETPRFPATH and IO$M_FORCEPATH.

The following example shows the use of IO$_SETPRFPATH:
97

Disk Drivers
Disk Function Codes
 $assigndef
 $qiodef
 $iodef
 $exitdef

dev: .ascid /254DUA48:/

chnl: .word 0

node: .ascic /HSC001/

 .entry start,0

 $assign_s devnam=dev,-
 chan=chnl
 blbc r0,done

 $qiow_s chan=chnl,-
 func=#IO$_SETPRFPATH,-
 p1=node

done:
 $exit_s r0

 .end start

This updates the local node I/O database to indicate that node HSC001 is the preferred path for DUA48.

2.4.11.1 Forcing a Path Change

You can move a disk that is already mounted to its preferred path by specifying the IO$M_FORCEPATH
modifier. If a preferred path has not been specified for a disk that is accessed through the MSCP server, the
IO$M_FORCEPATH function causes the disk class driver to use load-balancing information to select the
server path with the highest-load-available rating.

IO$M_FORCEPATH does not accept any arguments. If you intend to move a disk to its preferred path, you
must specify the preferred path in a separate $QIO function.

The following example shows a use of the IO$M_FORCEPATH function modifier:

 $assigndef
 $qiodef
 $iodef
 $exitdef

dev: .ascid /254DUA197:/

chnl: .word 0

 .entry start,0

 $assign_s devnam=dev,-
 chan=chnl
 blbc r0,done
98

Disk Drivers
Disk Function Codes
 $qiow_s chan=chnl,-
 func=#$_SETPRFPATH!IO$M_FORCEPATH>

done:
 $exit_s r0

 .end start

Note that forcing a path change places the disk in mount verification. New I/O requests are suspended until
mount verification is complete.

2.4.11.2 Using IO$_SETPRFPATH with Disks Dual-Pathed Between HSCs

You can use the IO$_SETPRFPATH and IO$M_FORCEPATH functions to load balance disks that are
dual-pathed between HSCs. The IO$M_FORCEPATH function initiates failover of the disk on all nodes that
have it mounted and that have a direct path to the HSCs. Because the node that issues the
IO$M_FORCEPATH might not be the first one to attempt failover of the disk, it is essential that all nodes
with direct connections to the HSCs specify the same preferred path for the disk. Only one node should issue
the IO$M_FORCEPATH request.

2.4.11.3 Using IO$_SETPRFPATH with Disks Dual-Pathed Between Systems

You can use IO$M_FORCEPATH to load balance RA-series disks that are dual-pathed between systems
running the MSCP server. Both serving nodes should specify the same preferred path. To move the disk
between systems, the system that currently has the disk on line through its local controller should issue the
IO$M_FORCEPATH request. The disk must be mounted on both serving nodes.

2.4.11.4 Using IO$_SETPRFPATH with Disks Accessed Through MSCP Servers

You can specify a preferred path for disks that are accessed through MSCP servers; however, this
specification overrides any load-balancing decisions.

Note that if a disk can be accessed through both HSC and MSCP servers, you need not specify the HSC as a
preferred path. HSC paths are always preferred to server paths.

Using IO$M_FORCEPATH without a preferred path causes the disk class driver to move the disk to the
server with the highest available capacity.

2.4.11.5 Using IO$_SETPRFPATH with Phase I Volume Shadowing

You can specify IO$_SETPRFPATH for shadow set members, but not for virtual units. IO$M_FORCEPATH is
not supported for shadow set members or virtual units.

2.4.11.6 Using IO$_SETPRFPATH with Phase II Volume Shadowing

IO$_SETPRFPATH and IO$M_FORCEPATH are supported for shadow set members but not for virtual units.
99

Disk Drivers
I/O Status Block
2.5 I/O Status Block
Figure 2-7 shows the I/O status block (IOSB) for all disk device QIO functions except sense mode. Figure 2-8
shows the I/O status block for the sense mode function. Figure 2-8 lists the status messages for all functions
and devices. (The OpenVMS system messages documentation provides explanations and suggested user
actions for these messages.)

Figure 2-7 IOSB Contents

The byte count is a 32-bit integer that gives the actual number of bytes transferred to or from the process
buffer.

Figure 2-8 IOSB Contents for the Sense Mode Function

The second longword of the I/O status block for the sense mode function returns information about the
cylinder, track, and sector configurations for the particular device.

2.6 Disk Driver Programming Example
 A sample VAX MACRO disk driver program, DISK_DRIVER.MAR, is shown in Example 2-1. This sample
program provides an example of optimizing access time to a disk file. The program creates a file using Record
Management Services (RMS), stores information concerning the file, and closes the file. The program then
accesses the file and reads and writes to the file using the Queue I/O ($QIO) system service.

Example 2-1 DISK_DRIVER.MAR Disk Driver Programming Example

; **
;

 .TITLE Disk Driver Programming Example
 .IDENT /01/

ZK0656GE

31 16 15 0

Status

0
(HighOrder Word)

Byte Count

(LowOrder Word)
Byte Count

31 16 15 0

ZK0657GE

Status

Cylinders Tracks Sectors

8 7

0

100

Disk Drivers
Disk Driver Programming Example
;
; Define necessary symbols.
;

 $FIBDEF ;Define file information block Offsets
 $IODEF ;Define I/O function codes
 $RMSDEF ;Define RMS-32 Return Status Values
;
; Local storage
;
; Define number of records to be processed.
;

NUM_RECS=100 ;One hundred records

;
; Allocate storage for necessary data structures.
;
; Allocate File Access Block.
;
; A file access block is required by RMS-32 to open and close a
; file.
;
FAB_BLOCK: ;
 $FAB ALQ = 100,- ;Initial file size is to be
 - ;100 blocks
 FAC = PUT,- ;File Access Type is output
 FNA = FILE_NAME,- ;File name string address
 FNS = FILE_SIZE,- ;File name string size
 FOP = CTG,- ;File is to be contiguous
 MRS = 512,- ;Maximum record size is 512
 - ;bytes
 NAM = NAM_BLOCK,- ;File name block address
 ORG = SEQ,- ;File organization is to be
 - ;sequential
 REM = FIX ;Record format is fixed length
;
; Allocate file information block.
;
; A file information block is required as an argument in the
; Queue I/O system service call that accesses a file.
;
FIB_BLOCK: ;
 .BLKB FIB$K_LENGTH ;

;
; Allocate file information block descriptor.
;

FIB_DESCR: ;
 .LONG FIB$K_LENGTH ;Length of the file
 ;information block
 .LONG FIB_BLOCK ;Address of the file
 ;information block
;

101

Disk Drivers
Disk Driver Programming Example
; Allocate File Name Block
;
; A file name block is required by RMS-32 to return information
; concerning a file (for example, the resultant file name string
; after logical name translation and defaults have been applied).
;

NAM_BLOCK: ;
 $NAM ;

;
; Allocate Record Access Block
;
; A record access block is required by RMS-32 for record
; operations on a file.
;
RAB_BLOCK:
 $RAB FAB = FAB_BLOCK,- ;File access block address
 RAC = SEQ,- ;Record access is to be
 - ;sequential
 RBF = RECORD_BUFFER,- ;Record buffer address
 RSZ = 512 ;Record buffer size
;
; Allocate direct address buffer
;

BLOCK_BUFFER:
 .BLKB 1024 ;Direct access buffer is 1024
 ;bytes

;
; Allocate space to store channel number returned by the $ASSIGN
; Channel system service.
;
DEVICE_CHANNEL: ;
 .BLKW 1 ;

;
; Allocate device name string and descriptor.
;

DEVICE_DESCR: ;
 .LONG 20-10 ;Length of device name string
 .LONG 10$;Address of device name string
10$: .ASCII /SYS$DISK/ ;Device on which created file
 ;will reside
20$: ;Reference label to calculate
 ;length
;
; Allocate file name string and define string length symbol.
;

FILE_NAME: ;
 .ASCII /SYS$DISK:MYDATAFIL.DAT/ ;File name string

FILE_SIZE=.-FILE_NAME ;File name string length
102

Disk Drivers
Disk Driver Programming Example
;
; Allocate I/O status quadword storage.
;

IO_STATUS: ;
 .BLKQ 1 ;
;
; Allocate output record buffer.
;

RECORD_BUFFER: ;
 .BLKB 512 ;Record buffer is 512 bytes
;
; **
;
; Start Program
;
; **

;
; The purpose of the program is to create a file called MYDATAFIL.DAT
; using RMS-32; store information concerning the file; write 100
; records, each containing its record number in every byte;
; close the file; and then access, read, and write the file directly,
; using the Queue I/O system service. If any errors are detected, the
; program returns to its caller with the final error status in
; register R0.

 .ENTRY DISK_EXAMPLE,^M,R3,R4,R5,R6> ;Program starting
 ;address

;
; First create the file and open it, using RMS-32.
;
PART_1: ;First part of example
 $CREATE FAB = FAB_BLOCK ;Create and open file
 BLBC R0,20$;If low bit = 0, creation
 ;failure

;
; Second, connect the record access block to the created file.
;

 $CONNECT RAB = RAB_BLOCK ;Connect the record access
 ;block
 BLBC R0,30$;If low bit = 0, creation
 ;failure
;
; Now write 100 records, each containing its record number.
;

 MOVZBL #NUM_RECS,R6 ;Set record write loop count
103

Disk Drivers
Disk Driver Programming Example
;
; Fill each byte of the record to be written with its record number.
;

10$: SUBB3 R6,#NUM_RECS+1,R5 ;Calculate record number

 MOVC5 #0,(R6),R5,#512,RECORD_BUFFER ;Fill record buffer

;
; Now use RMS-32 to write the record into the newly created file.
;

 $PUT RAB = RAB_BLOCK ;Put record in file
 BLBC R0,30$;If low bit = 0, put failure
 SOBGTR R6,10$;Any more records to write?
;
; The file creation part of the example is almost complete. All that
; remains to be done is to store the file information returned by
; RMS-32 and close the file.
;

 MOVW NAM_BLOCK+NAM$W_FID,FIB_BLOCK+FIB$W_FID ;Save file
 ;identification
 MOVW NAM_BLOCK+NAM$W_FID+2,FIB_BLOCK+FIB$W_FID+2 ;Save
 ;sequence number
 MOVW NAM_BLOCK+NAM$W_FID+4,FIB_BLOCK+FIB$W_FID+4 ;Save
 ;relative volume
 $CLOSE FAB = FAB_BLOCK ;Close file
 BLBS R0,PART_2 ;If low bit set, successful
 ;close
20$ RET ;Return with RMS error status
;
; Record stream connection or put record failure.
;
; Close file and return status.
;
30$: PUSHL R0 ;Save error status
 $CLOSE FAB = FAB_BLOCK ;Close file
 POPL R0 ;Retrieve error status
 RET ;Return with RMS error status
;
; The second part of the example illustrates accessing the previously
; created file directly using the Queue I/O system service, randomly
; reading and writing various parts of the file, and then deaccessing
; the file.
;
; First, assign a channel to the appropriate device and access the
; file.
PART_2: ;
 $ASSIGN_S DEVNAM = DEVICE_DESCR,- ;Assign a channel to file
 CHAN = DEVICE_CHANNEL ;device
 BLBC R0,20$;If low bit = 0, assign
 ;failure
 MOVL #FIB$M_NOWRITE!FIB$M_WRITE,- ;Set for read/write
 FIB_BLOCK+FIB$L_ACCTL ;access
 $QIOW_S CHAN = DEVICE_CHANNEL,- ;Access file on device channel
104

Disk Drivers
Disk Driver Programming Example
 FUNC = #IO$_ACCESS!IO$M_ACCESS,- ;I/O function is
 - ;access file
 IOSB = IO_STATUS,- ;Address of I/O status
 - ;quadword
 P1 = FIB_DESCR ;Address of information block
 ;descriptor
 BLBC R0,10$;If low bit = 0, access
 ;failure
 MOVZWL IO_STATUS,R0 ;Get final I/O completion
 ;status

 BLBS R0,30$;If low bit set, successful
 ;I/O function
10$: PUSHL R0 ;Save error status
 $DASSGN_S CHAN = DEVICE_CHANNEL ;Deassign file device channel
 POPL R0 ;Retrieve error status
20$: RET ;Return with I/O error status
;
; The file is now ready to be read and written randomly. Since the
; records are fixed length and exactly one block long, the record
; number corresponds to the virtual block number of the record in the
; file. Thus a particular record can be read or written simply by
; specifying its record number in the file.
;
; The following code reads two records at a time and checks to see
; that they contain their respective record numbers in every byte.
; The records are then written back into the file in reverse order.
; This results in record 1 having the old contents of record 2 and
; record 2 having the old contents of record 1, and so forth. After
; the example has been run, it is suggested that the file dump
; utility be used to verify the change in data positioning.
;

30$ MOVZBL #1,R6 ;Set starting record (block)
 ;number
;
; Read next two records into block buffer.
;

40$: $QIO_S CHAN = DEVICE_CHANNEL,- ;Read next two records from
 - ;file channel
 FUNC = #IO$_READVBLK,- ;I/O function is read virtual
 - ;block
 IOSB = IO_STATUS,- ;Address of I/O status
 - ;quadword
 P1 = BLOCK_BUFFER,- ;Address of I/O buffer
 P2 = #1024,- ;Size of I/O buffer
 P3 = R6 ;Starting virtual block of
 ;transfer
 BSBB 50$;Check I/O completion status
;
; Check each record to make sure it contains the correct data.
;

 SKPC R6,#512,BLOCK_BUFFER ;Skip over equal record
 ;numbers in data
105

Disk Drivers
Disk Driver Programming Example
 BNEQ 60$;If not equal, data match
 ;failure
 ADDL3 #1,R6,R5 ;Calculate even record number

 SKPC R5,#512,BLOCK_BUFFER+512 ;Skip over equal record
 ;numbers in data
 BNEQ 60$;If not equal, data match
 ;failure
;
; Record data matches.
;
; Write records in reverse order in file.
;

 $QIOW_S CHAN = DEVICE_CHANNEL,- ;Write even-numbered record in
 - ;odd slot
 FUNC = #IO$_WRITEVBLK,- ;I/O function is write virtual
 - ;block
 IOSB = IO_STATUS,- ;Address of I/O status
 - ;quadword
 P1 = BLOCK_BUFFER+512,- ;Address of even record buffer
 P2 = #512,- ;Length of even record buffer
 P3 = R6 ;Record number of odd record
 BSBB 50$;Check I/O completion status
 ADDL3 #1,R6,R5 ;Calculate even record number
 $QIOW_S CHAN = DEVICE_CHANNEL,- ;Write odd numbered record in
 - ;even slot
 FUNC = #IO$_WRITEVBLK,- ;I/O function is write virtual
 - ;block
 IOSB = IO_STATUS,- ;Address of I/O status
 - ;quadword
 P1 = BLOCK_BUFFER,- ;Address of odd record buffer
 P2 = #512,- ;Length of odd record buffer
 P3 = R5 ;Record number of even record
 BSBB 50$;Check I/O completion status
 ACBB #NUM_RECS-1,#2,R6,40$;Any more records to be read?

 BRB 70$;

;
; Check I/O completion status.
;

50$: BLBC R0,70$;If low bit = 0, service
 ;failure
 MOVZWL IO_STATUS,R0 ;Get final I/O completion
 ;status
 BLBC R0,70$;If low bit = 0, I/O function
 RSB ;failure
;
; Record number mismatch in data.
;

60$: MNEGL #4,R0 ;Set dummy error status value
106

Disk Drivers
Disk Driver Programming Example
;
; All records have been read, verified, and odd/even pairs inverted
;
70$: PUSHL R0 ;Save final status
 $QIOW_S CHAN = DEVICE_CHANNEL,- ;Deaccess file
 FUNC = #IO$_DEACCESS ;I/O function is deaccess file
 $DASSGN_S CHAN = DEVICE_CHANNEL ;Deassign file device channel
 POPL R0 ;Retrieve final status
 RET ;

 .END DISK_EXAMPLE
107

Disk Drivers
Disk Driver Programming Example
108

Magnetic Tape Drivers
HP Magnetic Tape Controllers and Drives
3 Magnetic Tape Drivers

 This chapter describes the use of magnetic tape drivers, drives, and controllers.

3.1 HP Magnetic Tape Controllers and Drives
The following sections describe magnetic tape controllers and drives; however, note that not all supported
devices are described here. Refer to the Software Product Description for the OpenVMS Operating System
(SPD 82.35.xx) for the definitive list of supported devices.

3.1.1 TM03 Magnetic Tape Controller (VAX Only)

On VAX systems, the TM03 magnetic tape controller supports up to eight TE16, TU45, or TU77 tape drives.
These dual-density (800 or 1600 bit/inch) drives differ in speed: the TE16, TU45, and TU77 read and write
data at 45, 75, and 125 inches per second (ips), respectively. Each drive can hold one 2400-foot, 9-track reel
with a capacity of approximately 40 million characters. The TM03 controller is connected to the MASSBUS
through a MASSBUS adapter.

3.1.2 TS11 Magnetic Tape Controller (VAX Only)

On VAX systems, the TS11 magnetic tape controller connects to the UNIBUS through a UNIBUS adapter and
supports one TS04 tape drive. The TS11/TS04 is a single-density tape system that supports 1600-bit/inch,
phase-encoded recording.

The TSU05 and the TSV05 magnetic tape drives are used with UNIBUS and Q-bus systems, respectively.

3.1.3 TM78 and TM79 Magnetic Tape Controllers (VAX Only)

On VAX systems, the TM78 and TM79 magnetic tape controllers support up to four TU78 tape drives. These
high-performance, dual-density drives (1600 or 6250 bit/inch) operate at 125 ips using a 2400-foot reel of tape
with a capacity of approximately 146 million characters when recorded in the GCR (6250 bit/inch) mode. The
TM78 and TM79 controllers are connected to the MASSBUS through a MASSBUS adapter.

3.1.4 TU80 Magnetic Tape Subsystem (VAX Only)

On VAX systems, the TU80 is a single-density, dual-speed (25 or 100 ips) magnetic tape subsystem that uses
streaming tape technology (see Section 3.2.7). It supports one drive per subsystem. The TU80 connects to the
UNIBUS through a UNIBUS adapter and completely emulates the TS11 magnetic tape controller.

3.1.5 TA81 Magnetic Tape Subsystem

On VAX and Alpha systems, the TA81 is a high-performance, dual-density (1600 or 6250 bit/inch), dual-speed
(25 or 75 ips) magnetic tape subsystem that uses streaming tape technology (see Section 3.2.7). It attaches to
an HSC50 controller, and is managed with the TMSCP control protocol for tape mass storage.
109

Magnetic Tape Drivers
HP Magnetic Tape Controllers and Drives
3.1.6 TU81 Magnetic Tape Subsystem (VAX Only)

On VAX systems, the TU81 is a high-performance, dual-density (1600 or 6250 bit/inch), dual-speed (25 or 75
in/s) magnetic tape subsystem that uses streaming tape technology (see Section 3.2.7). It connects to the
UNIBUS through a UNIBUS adapter, and is managed with the TMSCP control protocol for tape mass
storage.

3.1.7 TU81-Plus Magnetic Tape Subsystem (VAX Only)

On VAX systems, the TU81-Plus is an enhanced version of the TU81 streaming tape subsystem. It is a
9-track, dual-speed, dual-density, ANSI-standard, half-inch magnetic tape subsystem. In addition, it has a
256-KB cache buffer that temporarily stores commands and data moving to and from the tape unit. The
buffer increases the amount of time the tape drive is able to stream, thereby increasing performance. The
TU81-Plus connects to all VAXBI, UNIBUS, and Q-bus systems using the KLESI-B, KLESI-U, and KLESI-Q
adapters.

3.1.8 TA90 Magnetic Tape Subsystem

On VAX and Alpha systems, the TA90 is a 5- by 4-inch, 200-MB cartridge tape, fully read- and
write-compatible with the IBM 3480 format. The TA90 includes a master controller and a dual transport unit.
As many as three additional dual transport slave units can be connected to a single TA90 master controller
for a total of eight drives. The controller connects to the HSC 5X-DA high-speed channel card in the HSC.

TA90 tape drives can be equipped with optional stack loaders for unattended backup operations. Each TA90
master has two dual-port STI connections to the HSC. Such dual pathing allows each control unit to service
two HSC controllers, which significantly increases tape drive availability. The TA90 subsystem includes a
2-MB cache that allows the controller to prefetch upcoming commands and store them while completing
current data transfers. This behavior helps optimize performance. The TA90 is a TMSCP device.

3.1.9 RV20 Write-Once Optical Drive (VAX Only)

On VAX systems, the RV20, a 2 GB, double-sided, write-once optical (WORM) disk drive, is accessed
sequentially similar to a tape. A 100-bit error correction code (ECC) protects user data. The controller
performs bad block replacement. Three RV20 slaves can be daisy-chained to the subsystem controller in the
RV20 master for a total of four drives.

RV02 cartridges can be used on any HP RV20 optical subsystem.

The average access time is 212.5 ms with an average seek rate of 150 ms. The maximum data transfer rate is
262 KB per second (formatted and sustained) with a burst rate of 1.33 MB per second.

3.1.10 TK50 Cartridge Tape System (VAX Only)

On VAX systems, the TK50 is a 95-MB, 5.25-inch cartridge tape system that uses streaming tape technology
(see Section 3.2.7). The TK50 records data serially on 22 tracks using serpentine recording, rather than on
separate (parallel) tracks. Data written to tape is automatically read as it is written. A cyclic redundancy
check (CRC) is performed and the controller is notified immediately if an error occurs on the tape.

The TQK50 is a dual-height Q-bus controller for the TK50 tape drive. The TUK50 is a UNIBUS controller for
the same drive. The TZK50 is a SCSI controller for the TK50 tape. Both the TQK50 and the TUK50 are
TMSCP devices.

Section 3.1.13 describes compatibility among the TK50, TK70, and TZ30 magnetic cartridge tape systems.
110

Magnetic Tape Drivers
HP Magnetic Tape Controllers and Drives
3.1.11 TK70 Cartridge Tape System (VAX Only)

On VAX systems, the TK70 is a 295-MB, 5.25-inch, streaming cartridge tape system. (See Section 3.2.7 for
information about streaming tape technology.) The TK70 tape drive records data serially on 48 tracks using
serpentine recording, rather than separate (parallel) tracks. Data written to the tape is automatically read as
it is written. A CRC check is performed and the controller is notified immediately if an error occurs on the
tape.

The TQK70 is a dual-height, Q-bus controller for the TK70 magnetic tape drive. The TK70 subsystem
includes a 38-KB cache to optimize performance. The TBK70 is a VAXBI-bus controller for the same drive.
Section 3.1.13 describes compatibility between the TK50 and TK70 magnetic cartridge tape systems.

3.1.12 TZ30 Cartridge Tape System

On VAX and Alpha systems, the TZ30 is a 95-MB, 5.25-inch, half-height cartridge streaming tape drive with
an embedded SCSI controller. See Section 3.2.7 for information about streaming tape technology. The TZ30
uses TK50 cartridge tapes. It records data serially on 22 tracks using serpentine recording, rather than
separate parallel tracks. Section 3.1.13 describes compatibility between the TK50, TK70, and TZ30 magnetic
cartridge tape systems.

3.1.13 Read and Write Compatibility Between Cartridge Tape Systems

When you insert a cartridge tape into the TZ30, TK50, and TK70 tape drives, the hardware initializes the
media to a device-specific recording density automatically.

Depending on the type of cartridge and the type of drive on which it is formatted (inserted and initialized),
full read and write access to tape cartridges may not be permitted.

Formatting a Blank TK50 Cartridge Tape

A blank, unformatted TK50 cartridge can be formatted on the TK50, TK70, and TZ30 cartridge systems. For
example, a TK70 tape drive has full read and write access to a TK50 cartridge formatted on a TK70 drive.
Once the cartridge tape is formatted on a particular tape drive, the tape drive has full read and write access
to the cartridge tape.

Formatting a Previously Initialized TK50 Cartridge Tape

If a TK50 cartridge tape is formatted on a TZ30 or TK50 cartridge tape drive, the TZ30 and TK50 drives
initialize the TK50 cartridge to TK50 density. The following table summarizes the types of access available:

The TK70 tape drive can read data on a TK50 cartridge formatted on a TK50 or TZ30 tape drive.

 TK50

Controller Read Write

TZ301

1. Has an internal controller.

Yes Yes

TQK50 Yes Yes

TQK70 Yes No
111

Magnetic Tape Drivers
Driver Features
3.1.13.1 Formatting a TK50 or TK52 Cartridge Tape on a TK70 Tape Drive

If a TK50 or TK52 cartridge tape is formatted on a TK70 tape drive, the TK70 cartridge tape drive initializes
the TK50 or TK52 cartridge tape to TK70 density. The following table summarizes the types of access
available:

The TK50 and TZ30 tape drives cannot read or write data on a TK50 cartridge tape formatted on a TK70
drive.

3.2 Driver Features
The magnetic tape drivers provide the following features:

• Multiple master adapters and slave formatters

• Different types of devices on a single MASSBUS adapter; for example, an RP05 disk and a TM03 tape
formatter

• Reverse read function (except for the TZ30 and TK50 on TUK50 and TQK50 controllers)

• Reverse data check function (except for the TZ30, TS11, and TK50 on TUK50 and TQK50 controllers)

• Data checks on a per-request, per-file, or per-volume basis (except for the TS11)

• Full recovery from power failure for online drives with volumes mounted, including repositioning by the
driver (except on VAXstation 2000 and MicroVAX 2000 systems)

• Extensive error-recovery algorithms; for example, nonreturn-to-zero-inverted (NRZI) error correction

• Logging of device errors in a file that may be displayed by field service or customer personnel

• Online diagnostic support for drive-level diagnostics

The following sections describe master and slave controllers, and data check and error recovery capabilities in
greater detail.

3.2.1 Dual-Path HSC Tape Drives

A dual-path HSC tape drive is a drive that connects to two HSCs, both of which have the same nonzero tape
allocation class. The operating system recognizes the dual-pathed capability of such a tape drive under the
following circumstances: (1) the operating system has access to both HSCs and (2) select buttons for both
ports are depressed on the tape drive.

TK50 TK52

Controller Read Write Read Write

TZ301

1. Has an internal controller.

No No No No

TQK50 No No No No

TQK70 Yes Yes Yes Yes
112

Magnetic Tape Drivers
Driver Features
If one port fails, the operating system switches access to the operational port automatically, provided that the
allocation class information has been defined correctly.

3.2.2 Dynamic Failover and Mount Verification

Dynamic failover occurs on dual-pathed tape drives if mount verification is unable to recover on the current
path and an alternate path is available. The failover occurs automatically and transparently and then mount
verification proceeds.

A device enters mount verification when an I/O request fails because the device has become inoperative. This
might occur in the following instances:

• The device is accidentally placed off line.

• The active port of an HSC-connected drive fails.

• A hardware error occurs.

• The device is set to write protected during a write operation.

When the device comes back on line, either through automatic failover or operator intervention, the operating
system validates the volume, restores the tape to the position when the I/O failure occurred, and retries the
failed request.

3.2.3 Tape Caching

The RV20, TA90, TK70, and TU81-Plus contain write-back volatile caches. The host enables write-back
volatile caches explicitly, either on a per-unit basis or on a per-command basis. To enable caching on a per-unit
basis, enter the DCL MOUNT command specifying the qualifier /CACHE=TAPE_DATA.

The Backup utility enables caching on a per-command basis. The user can implement caching on a
per-command basis at the QIO level by using the IO$M_NOWAIT function modifiers on commands where it is
legal (see Table 3-4). In the unlikely event that cached data is lost, the system returns a fatal error and the
device accepts no further I/O requests. Use the IO$M_FLUSH function code to ensure that all
write-back-cached data is written out to the specified tape unit. The IO$_PACKACK, IO$_UNLOAD,
IO$_REWINDOFF, and IO$_AVAILABLE function codes also flush the cache.

3.2.4 Master Adapters and Slave Formatters

The operating system supports the use of many master adapters of the same type on a system. For example,
more than one MASSBUS adapter (MBA) can be used on the same system. A master adapter is a device
controller capable of performing and synchronizing data transfers between memory and one or more slave
formatters.

The operating system also supports the use of multiple slave formatters per master adapter on a system. For
example, more than one TM03 or TM78 magnetic tape formatter per MBA can be used on a system. A slave
formatter accepts data and commands from a master adapter and directs the operation of one or more slave
drives. The TM03 and the TM78 are slave formatters. The TE16, TU45, TU77, and TU78 magnetic tape
drives are slave drives.
113

Magnetic Tape Drivers
Driver Features
3.2.5 Data Check

After successful completion of an I/O operation, a data check is made to compare the data in memory with
that on the tape. After a write or read (forward) operation, the tape drive spaces backward and then performs
a write-check data operation. After a read operation in the reverse direction, the tape drive spaces forward
and then performs a write-check data reverse operation. With the exception of TS04 and TU80 drives,
magnetic tape drivers support data checks at the following three levels:

• Per request—You can specify the data-check function modifier (IO$M_DATACHECK) on a read logical
block, write logical block, read virtual block, write virtual block, read physical block, or write physical
block I/O function.

• Per volume—You can specify the characteristics “data check all reads” and “data check all writes” when
the volume is mounted. The HP OpenVMS DCL Dictionary describes volume mounting and dismounting.
The HP OpenVMS System Services Reference Manual describes the Mount Volume ($MOUNT) and
Dismount Volume ($DISMOU) system services.

• Per file—You can specify the file attributes “data check on read” or “data check on write.” File access
attributes are specified when the file is accessed. Chapter 1 of this manual and the OpenVMS Record
Management Services Reference Manual both describe file access.

Data check is distinguished from a BACKUP/VERIFY operation, which writes an entire save set, rewinds,
and then compares the tape to the original tape.

See Section 3.1.10 for information on TK50 data check.

NOTE Read and write operations with data check can result in very slow performance on streaming
tape drives.

3.2.6 Error Recovery

Error recovery is aimed at performing all possible operations that enable an I/O operation to complete
successfully. Magnetic tape error recovery operations fall into the following two categories:

• Handling special conditions, such as power failure and interrupt timeout

• Retrying nonfatal controller or drive errors

The error recovery algorithm uses a combination of these types of error recovery operations to complete an I/O
operation.

Power failure recovery consists of repositioning the reel to the position held at the start of the I/O operation in
progress at the time of the power failure, and then reexecuting this operation. This repositioning might or
might not require operator intervention to reload the drives. When such operator intervention is required,
“device not ready” messages are sent to the operator console to solicit reloading of mounted drives. Power
failure recovery is not supported on VAXstation 2000 and MicroVAX 2000 systems.

Device timeout is treated as a fatal error, with a loss of tape position. A tape on which a timeout has occurred
must be dismounted and rewound before the drive position can be established.

If a nonfatal controller/drive error occurs, the driver (or the controller, depending on the type of drive)
attempts to reexecute the I/O operation up to 16 times before returning a fatal error. The driver repositions
the tape before each retry.
114

Magnetic Tape Drivers
Magnetic Tape Driver Device Information
The inhibit retry function modifier (IO$M_INHRETRY) inhibits all normal (nonspecial conditions) error
recovery. If an error occurs, and the request includes that modifier, the operation is terminated immediately
and the driver returns a failure status. IO$M_INHRETRY has no effect on power failure and timeout
recovery.

The driver can write up to 16 extended interrecord gaps during the error recovery for a write operation. For
the TE16, TU45, and TU77 magnetic tape drives, writing these gaps can be suppressed by specifying the
inhibit extended interrecord gap function modifier (IO$M_INHEXTGAP). This modifier is ignored for the
other magnetic tape drives.

3.2.7 Streaming Tape Systems

Streaming tape systems, such as the TK50, TK70, TU80, TU81, TU81-Plus, TA81, and TZ30, use the supply
and takeup reel mechanisms to control tape speed and tension directly, which eliminates the need for more
complex and costly tension and drive components. Streaming tapes have a very simple tape path, much like
an audio reel-to-reel recorder.

NOTE Read and write operations with data check can result in very slow performance on streaming
tape drives.

Because the motors driving the reels are low-powered and because there is no tape buffering, streaming tape
drives are not capable of starting and stopping in the interrecord gaps like conventional tape drives. When a
streaming tape does have to stop, the following events occur:

1. The tape slowly coasts forward to a stop.

2. It backs up over a section previously processed.

3. It halts to await the next command.

4. It accelerates so that, when the original interrecord gap is encountered, the tape is moving at full speed.

These steps, allowing the tape to reposition, require approximately one-half second to complete on TU8x tapes
and about 3 seconds on TK50 tapes. If the operating system is not capable of writing to, or reading from, a
streaming tape drive at a rate that will keep the drive in constant motion (streaming) the drive repositions
itself when it runs out of commands to execute. That produces a situation known as thrashing, in which the
relatively long reposition times exceed the time spent processing data and the result is lower-than-expected
data throughput.

Thrashing is entirely dependent on how fast the system can process data relative to the tape drive speed
while streaming. Consequently, the greatest efficiency is obtained when you provide sufficient buffering to
ensure continuous tape motion. Some streaming tape drives such as the TU80, TU81, TU81-Plus, and TA81
are dual-speed devices that automatically adjust the tape speed to maximize data throughput and minimize
thrashing.

The TK50 writes up to seven filler records to keep the tape in motion. These records are ignored when the
data is read.

3.3 Magnetic Tape Driver Device Information
You can obtain information on all magnetic tape device characteristics by using the Get Device/Volume
Information ($GETDVI) system service. (Refer to the HP OpenVMS System Services Reference Manual.)
115

Magnetic Tape Drivers
Magnetic Tape Driver Device Information
$GETDVI returns magnetic tape characteristics when you specify the item codes DVI$_DEVCHAR,
DVI$_DEVCHAR2, DVI$_DEVDEPEND, and DVI$_DEVDEPEND2. Tables Table 3-1, Table 3-2, and
Table 3-4 list these characteristics. The $DEVDEF macro defines the device-independent characteristics, the
$MTDEF macro defines the device-dependent characteristics, and the $MT2DEF macro defines the extended
device characteristics. The extended device characteristics apply only to the TU81-Plus tape drive.

Table 3-1 Magnetic Tape Device-Independent Characteristics

Characteristic1

1. Defined by the $DEVDEF macro.

Meaning

 Dynamic Bits (Conditionally Set)

DEV$M_AVL Device is on line and available.

DEV$M_FOR Volume is foreign.

DEV$M_MNT Volume is mounted.

DEV$M_RCK Perform data check on all read operations.

DEV$M_WCK Perform data check on all write operations.

 Static Bits (Always Set)

DEV$M_FOD Device is file-oriented.

DEV$M_IDV Device is capable of input.

DEV$M_ODV Device is capable of output.

DEV$M_SQD Device is capable of sequential access.

DEV$M_WBC2

2. This bit is located in DVI$_DEVCHAR2.

Device is capable of write-back caching.

Table 3-2 Device-Dependent Information for Tape Devices

Characteristic1 Meaning

MT$M_LOST If set, the current tape position is unknown.

MT$M_HWL If set, the selected drive is hardware write-locked.

MT$M_EOT If set, an end-of-tape (EOT) condition was encountered by the last
operation to move the tape in the forward direction.

MT$M_EOF If set, a tape mark was encountered by the last operation to move the tape.

MT$M_BOT If set, a beginning-of-tape (BOT) marker was encountered by the last
operation to move the tape in the reverse direction.

MT$M_PARITY If set, all data transfers are performed with even parity. If clear (normal
case), all data transfers are performed with odd parity. Only
nonreturn-to-zero-inverted recording at 800 bits/inch can have even parity.

MT$V_DENSITY
MT$S_DENSITY

Specifies the density at which all data transfer operations are performed.
Possible density values are as follows:
116

Magnetic Tape Drivers
Magnetic Tape Function Codes
DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and class names, which are defined by the
$DCDEF macro. DVI$_DEVBUFSIZ returns the buffer size. The buffer size is the default to be used for tape
transfers (normally 2048 bytes). The device class for magnetic tapes is $DCTAPE, and the device type is
determined by the magnetic tape model. For example, the device type for the TA78 is DT$_TA78; for the TA81
it is DT$_TA81.

This function code takes no function-dependent arguments.

3.4 Magnetic Tape Function Codes
 The magnetic tape driver can perform logical, virtual, and physical I/O functions. Foreign-mounted devices
do not require privileges to perform logical and virtual I/O requests.

MT$K_GCR_6250 Group-coded recording, 6250 bits/inch

MT$K_PE_1600 Phase-encoded recording, 1600 bits/inch

MT$K_NRZI_800 Nonreturn-to-zero-inverted recording, 800
bits/inch

MT$K_BLK_833 Cartridge block mode recording2

MT$V_FORMAT
MT$S_FORMAT

Specifies the format in which all data transfers are performed. A possible
format value is as follows:

MT$K_NORMAL11 Normal PDP-11 format. Data bytes are recorded
sequentially on tape with each byte occupying
exactly one frame.

MT$_FASTSKIP_USED If set, the most recent IO$_SKIPFILE function was performed using the
optimized SCSI space-by-file-marks algorithm. (See Section 3.4.4 for more
information about the IO$M_ALLOWFAST modifier to the IO$_SKIPFILE
function.)

1. Defined by the $MTDEF macro.
2. Only for the TK50 and TZ30 tape drives.

Table 3-3 Device-Dependent Information for Tape Devices

 Characteristic1 Meaning

MT2$V_WBC_ENABLE If set, write-back caching is enabled for this unit.

MT2$V_RDC_DISABLE If set, read caching is disabled for this unit.

1. Defined by the $MT2DEF macro. Only for the TU81-Plus. Initial device status will show both of
these bits cleared; write-back caching will be disabled, read caching will be enabled.

Table 3-2 Device-Dependent Information for Tape Devices (Continued)

Characteristic1 Meaning
117

Magnetic Tape Drivers
Magnetic Tape Function Codes
Logical and physical I/O functions to magnetic tape devices allow sequential access to volume storage and
require only that the requesting process have direct access to the device. The results of logical and physical
I/O operations are unpredictable if an ACP is present.

Virtual I/O functions require intervention by an ACP and must be executed in a prescribed order. The normal
order is to create and access a file, write information to that file, and deaccess the file. Subsequently, when
you access the file, you read the information and then deaccess the file. You can write over the file when the
information it contains is no longer useful and the file has expired.

Any number of bytes (from a minimum of 14 to a maximum of 65,535) can be read from or written into a
single block by a single request. The number of bytes itself has no effect on the applicable quotas (direct I/O,
buffered I/O, and AST). Reading or writing any number of bytes subtracts the same amount from a quota.

The volume to which a logical or virtual function is directed must be mounted for the function actually to be
executed. If it is not, either a “device not mounted” or “invalid volume” status is returned in the I/O status
block.

Table 3-4 lists the logical, virtual, and physical magnetic tape I/O functions and their function codes. These
functions are described in more detail in the following paragraphs. Chapter 1 describes the QIO level
interface to the magnetic tape device ACP. Chapter 10 describes features to improve performance for larger
file transfers.

Table 3-4 Magnetic Tape I/O Functions

Function Code Arguments Type1 Function Modifiers Function

IO$_ACCESS P1,[P2],[P3],
[P4],[P5]

V IO$M_CREATE
IO$M_ACCESS

Search a tape for a
specified file and access
the file if found and
IO$M_ACCESS is set. If
the file is not found and
IO$M_CREATE is set,
create a file at end-of-tape
(EOT) marker.

IO$_ACPCONTROL P1,[P2],[P3],
[P4], [P5]

V IO$M_DMOUNT Perform miscellaneous
control functions. 2

IO$_AVAILABLE P Clear volume valid bit.

IO$_CREATE P1,[P2][,[P3],
[P4],[P5]

V IO$M_CREATE
IO$M_ACCESS

Create a file.

IO$_DEACCESS P1,[P2],[P3],
[P4],[P5]

V Deaccess a file and, if the
file has been written, write
out trailer records.

IO$_DSE3 P IO$M_NOWAIT Erase a prescribed section
of the tape.

IO$_FLUSH L Flush the controller cache
to tape.

IO$_MODIFY P1,[P2],[P3],
[P4],[P5]

V Write user labels.

IO$_PACKACK P Initialize volume valid bit.
118

Magnetic Tape Drivers
Magnetic Tape Function Codes
IO$_READLBLK 4 P1,P2 L IO$M_DATACHECK5
IO$M_INHRETRY
IO$M_REVERSE6

Read logical block.

IO$_READPBLK P1,P2 P IO$M_DATACHECK5
IO$M_INHRETRY
IO$M_REVERSE6

Read physical block.

IO$_READVBLK P1,P2 V IO$M_DATACHECK5
IO$M_INHRETRY
IO$M_REVERSE6

Read virtual block.

IO$_REWIND L IO$M_INHRETRY
IO$M_NOWAIT
IO$M_RETENSION

Reposition tape to the
beginning-of-tape (BOT)
marker.

IO$_REWINDOFF L IO$M_INHRETRY
IO$M_NOWAIT
IO$M_RETENSION

Rewind and unload the
tape on the selected drive.

IO$_SENSECHAR [P1],[P2]7 P IO$M_INHRETRY Sense the tape
characteristics and return
them in the I/O status
block.

IO$_SENSEMODE [P1],[P2]7 L IO$M_INHRETRY Sense the tape
characteristics and return
them in the I/O status
block.

IO$_SETCHAR P1,[P2]7 P Set tape characteristics for
subsequent operations.

IO$_SETMODE P1,[P2]7 L Set tape characteristics for
subsequent operations.

IO$_SKIPFILE P1 L IO$M_INHRETRY
IO$M_NOWAIT8
IO$M_ALLOWFAST

Skip past a specified
number of tape marks in
either a forward or reverse
direction.

IO$_SKIPRECORD P1 L IO$M_INHRETRY
IO$M_NOWAIT8

Skip past a specified
number of blocks in either
a forward or reverse
direction.

IO$_UNLOAD L IO$M_INHRETRY
IO$M_NOWAIT

Rewind and unload the
tape on the selected drive.

Table 3-4 Magnetic Tape I/O Functions (Continued)

Function Code Arguments Type1 Function Modifiers Function
119

Magnetic Tape Drivers
Magnetic Tape Function Codes
The function-dependent arguments for IO$_CREATE, IO$_ACCESS, IO$_DEACCESS, IO$_MODIFY,
IO$_ACPCONTROL are as follows:

• P1—The address of the file information block (FIB) descriptor.

• P2—Optional. The address of the file name string descriptor. If specified with IO$_ACCESS, the name
identifies the file being sought. If specified with IO$_CREATE, the name is the name of the created file.

• P3—Optional. The address of the word that is to receive the length of the resultant file name string.

• P4—Optional. The address of a descriptor for a buffer that is to receive the resultant file name string.

• P5—Optional. The address of a list of attribute descriptors. If specified with IO$_ACCESS, the attributes
of the file are returned to the user. If specified with IO$_CREATE, P5 is the address of the attribute
descriptor list for the new file. All file attributes for IO$_MODIFY are ignored.

See Chapter 1 for more information on these functions.

IO$_WRITELBLK P1,P2 L IO$M_ERASE9
IO$M_DATACHECK5
IO$M_INHRETRY
IO$M_INHEXTGAP10
IO$M_NOWAIT8

Write logical block.

IO$_WRITEOF L IO$M_INHRETRY
IO$M_INHEXTGAP10
IO$M_NOWAIT

Write an extended
interrecord gap followed
by a tape mark.

IO$_WRITEPBLK P1,P2 P IO$M_ERASE9
IO$M_DATACHECK5
IO$M_INHRETRY
IO$M_INHEXTGAP10
IO$M_NOWAIT8

Write physical block.

IO$_WRITEVBLK P1,P2 V IO$M_DATACHECK5
IO$M_INHRETRY
IO$M_INHEXTGAP10
IO$M_NOWAIT8

Write virtual block.

1. V = virtual; L = logical; P = physical.
2. See Section 1.6.8.
3. Only for TMSCP drives, and TZK50, and TZ30 tape devices.
4. On OpenVMS Alpha, P1 supports a 64-bit address.
5. Not for TS04 and TU80 tape devices.
6. Not for TUK50 and TQK50 tape devices.
7. The P1 and P2 arguments for IO$_SENSEMODE and IO$_SENSECHAR and the P2 argument for

IO$_SETMODE and IO$_SETCHAR are for TMSCP drives only.
8. Only for RV20, TA90, and TU81-Plus drives.
9. Takes no arguments; valid only for TMSCP drives, and TZK50 and TZ30 tape devices.
10.Only for TE16, TU45, and TU77 tape devices.

Table 3-4 Magnetic Tape I/O Functions (Continued)

Function Code Arguments Type1 Function Modifiers Function
120

Magnetic Tape Drivers
Magnetic Tape Function Codes
The function-dependent arguments for IO$_READVBLK, IO$_READLBLK, IO$_READPBLK,
IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK are as follows:

• P1—The starting virtual address of the buffer that is to receive the data in the case of a read operation;
or, in the case of a write operation, the virtual address of the buffer that is to be written on the tape. On
OpenVMS Alpha, P1 can be a 64-bit address.

• P2—The length of the buffer specified by P1.

The function-dependent argument for IO$_SKIPFILE and IO$_SKIPRECORD is:

P1—The number of tape marks to skip over in the case of a skip file operation; or, in the case of a skip
record operation, the number of blocks to skip over. If a positive number is specified, the tape moves
forward; if a negative number is specified, the tape moves in reverse. (The maximum number of tape
marks or records that P1 can specify is 32,767.)

Example 3-1 shows the correct method of defining the P1 parameter in an IO$_SKIPRECORD QIO.

Example 3-1 Defining the P1 Parameter in a IO$_SKIPRECORD QIO

.

.

.

TAPE_CHAN:
 .WORD 0
IOSB: .WORD 0
 .WORD 0
 .LONG 0
DEVICE: .ASCID /127MUA0:/
RECORD: .LONG 2000
;
 .PSECT CODE,EXE,NOWRT
;
 .ENTRY MT_IO,^M

;
 $ASSIGN_S CHAN=TAPE_CHAN,-
 DEVNAM=DEVICE
 BLBC R0,EXIT_ERROR
;
 $QIOW_S CHAN=TAPE_CHAN,-
 FUNC=#IO$_SKIPRECORD,-
 IOSB=IOSB,-
 P1=RECORD
 BLBC R0,EXIT_ERROR
 $EXIT_S R0

.

.

.

EXIT_ERROR:
 $EXIT_S R0
 .END MT_IO
121

Magnetic Tape Drivers
Magnetic Tape Function Codes
3.4.1 Read

The read function reads data into a specified buffer in the forward or reverse direction starting at the next
block position.

The operating system provides the following read function codes:

• IO$_READVBLK—Read virtual block

• IO$_READLBLK—Read logical block

• IO$_READPBLK—Read physical block

If a read virtual block function is directed to a volume that is mounted foreign, it is converted to a read logical
block function. If a read virtual block function is directed to a volume that is mounted structured, the volume
is handled the same way as a file-structured device.

Two function-dependent arguments are used with these codes: P1 and P2. These arguments are described in
Section 3.4.

 If the read function code includes the reverse function modifier (IO$M_REVERSE), the drive reads the tape
in the reverse direction instead of the forward direction. IO$M_REVERSE cannot be specified for the TUK50
and TQK50 devices.

The data check function modifier (IO$M_DATACHECK) can be used with all read functions. If this modifier
is specified, a data check operation is performed after the read operation completes. (The drive performs a
space reverse or space forward between the read and data check operations.) A data check operation is also
performed if the volume that was read, or the volume on which the file resides (virtual read), has the
characteristic “data check all reads.” Furthermore, a data check is performed after a virtual read if the file
has the attribute “data check on read.” The TS04 and TU80 tape drives do not support the data check
function.

For read physical block and read logical block functions, the drive returns the status SS$_NORMAL (not
end-of-tape status) if either of the following conditions occurs and no other error condition exists:

• The tape is positioned past the end-of-tape (EOT) position at the start of the read (forward or reverse)
operation.

• The tape enters the EOT region as a result of the read (forward) operation.

The transferred byte count reflects the actual number of bytes read.

If the drive reads a tape mark during a logical or physical read operation in either the forward or reverse
direction, any of the following conditions can return an end-of-file (EOF) status:

• The tape is positioned past the EOT position at the start of the read operation.

• The tape enters the EOT region as a result of the read operation.

• The drive reads a tape mark as a result of a read operation but the tape does not enter the EOT region.

An EOF status is also returned if the drive attempts a read operation in the reverse direction when the tape
is positioned at the beginning-of-tape (BOT) marker. All conditions that cause an EOF status result in a
transferred byte count of zero.

If the drive attempts to read a block that is larger than the specified memory buffer during a logical or
physical read operation, a data overrun status is returned. The buffer receives only the first part of the block.
On a read in the reverse direction (on drives other than the TK50 and TZ30) the buffer receives only the latter
part of the block. The transferred byte count is equal to the actual size of the block. Read reverse starts at the
top of the buffer. Therefore, the start of the block is at P1 plus P2 minus the length read. The TUK50 and
TZ30 cannot actually perform read reverse operations; they must be simulated by the driver. Therefore, the
data returned are those that would have been returned had the block been read in the forward direction.
122

Magnetic Tape Drivers
Magnetic Tape Function Codes
It is not possible to read a block that is less than 14 bytes in length. Records that contain less than 14 bytes
are termed “noise blocks” and are completely ignored by the driver.

3.4.2 Write

The write function writes data from a specified buffer to tape in the forward direction starting at the next
block position.

The operating system provides the following write function codes:

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITELBLK—Write logical block

• IO$_WRITEPBLK—Write physical block

If a write virtual block function is directed to a volume that is mounted foreign, the function is converted to a
write logical block. If a write virtual block function is directed to a volume that is mounted structured, the
volume is handled the same way as a file-structured device.

Two function-dependent arguments are used with these codes: P1 and P2. These arguments are described in
Section 3.4.

The IO$M_ERASE function modifier can be used with the IO$_WRITELBLK and IO$_WRITEPBLK function
codes to erase a user-selected part of a tape. This modifier propagates an erase pattern of all zeros from the
current tape position to 10 feet past the EOT position and then rewinds to the BOT marker.

The data check function modifier (IO$M_DATACHECK) can be used with all write functions. If this modifier
is specified, a data check operation is performed after the write operation completes. (The drive performs a
space reverse between the write and the data check operations.) The driver forces a data check operation
when an error occurs during a write operation. This ensures that the data can be reread. A data check
operation is also performed if the volume written, or the volume on which the file resides (virtual write), has
the characteristic “data check all writes.” Furthermore, a data check is performed after a virtual write if the
file has the attribute “data check on write.” The TS04 and TU80 tape drives do not support the data check
function.

If the IO$M_NOWAIT function modifier is specified, write-back caching is enabled on a per-command basis.
IO$M_NOWAIT is applicable only to TU81-Plus drives.

If the drive performs a write physical block or a write logical block operation, an EOT status is returned if
either of the following conditions occurs and no other error condition exists:

• The tape is positioned past the EOT position at the start of the write operation.

• The tape enters the EOT region as a result of the write operation.

The transferred byte count reflects the size of the block written. It is not possible to write a block less than 14
bytes in length. An attempt to do so results in the return of a bad parameter status for the QIO request.

3.4.3 Rewind

The rewind function repositions the tape to the beginning-of-tape (BOT) marker.

If the IO$M_NOWAIT function modifier is specified, the I/O operation is completed when the rewind is
initiated. Otherwise, I/O completion does not occur until the tape is positioned at the BOT marker.

If the IO$M_RETENSION function modifier is specified and the device supports the retension operation, the
rewind function positions the tape to the physical-end-of-tape (EOT) marker and rewinds the tape to the BOT
marker. If the tape does not support the IO$M_RETENSION modifer, a SS$_ILLIOFUNC error is returned.
123

Magnetic Tape Drivers
Magnetic Tape Function Codes
IO$_REWIND has no function-dependent arguments.

3.4.4 Skip File

The skip file function (IO$_SKIPFILE) skips past a specified number of tape marks in either a forward or
reverse direction. A function-dependent argument (P1) is provided to specify the number of tape marks to be
skipped, as shown in Figure 3-1. If a positive file count is specified, the tape moves forward; if a negative file
count is specified, the tape moves in reverse. (The actual number of files skipped is returned as an unsigned
number in the I/O status block.)

Figure 3-1 IO$_SKIPFILE Argument

Only tape marks (when the tape moves in either direction) and the BOT marker (when the tape moves in
reverse) are counted during a skip file operation. The BOT marker terminates a skip file function in the
reverse direction. The end-of-tape (EOT) marker does not terminate a skip file function in either the forward
or reverse direction. A negative skip file function leaves the tape positioned just before a tape mark (at the
end of a file) unless the BOT marker is encountered, whereas a positive skip file function leaves the tape
positioned just past the tape mark.

A skip file function in the forward direction can also be terminated if two consecutive tape marks are
encountered. Section 3.4.5.1 describes this feature.

The IO$M_ALLOWFAST modifier can be used with the IO$_SKIPFILE function to provide better
performance on SCSI tape drives that support the SCSI space-by-file-marks command and the SCSI read
position command.

When the IO$M_ALLOWFAST modifier is specified, a tape operation skips over consecutive tape marks that
are not immediately before the end-of-data position on the medium. However, if two consecutive tape marks
are detected immediately before the end-of-data position on the tape, the tape is positioned between these two
tape marks and the SS$_ENDOFVOLUME status is returned.

The IO$M_ALLOWFAST modifier allows a SCSI tape subsystem to use the optimized IO$_SKIPFILE if it is
capabable. If a specific tape device does not adequately support the optimized IO$_SKIPFILE that uses the
SCSI space-by-file-marks command, the tape subsystem will use the standard space-by-records algorithm.

3.4.5 Skip Record

The skip record function skips past a specified number of physical tape blocks in either a forward or reverse
direction. A device- or function-dependent argument (P1) specifies the number of blocks to skip, as shown in
Figure 3-2. If a positive block count is specified, the tape moves forward; if a negative block count is specified,

File Count

31 16 15 0

ZK0671GE

Not UsedP1:
124

Magnetic Tape Drivers
Magnetic Tape Function Codes
the tape moves in reverse. The actual number of blocks skipped is returned as an unsigned number in the I/O
status block. If a tape mark is detected, the count is the number of blocks skipped, plus 1 (forward tape
motion) or minus 1 (reverse tape motion).

Figure 3-2 IO$_SKIPRECORD Argument

A skip record operation is terminated by the end-of-file (EOF) marker when the tape moves in either
direction, by the BOT marker when the tape moves in reverse, and by the EOT marker when the tape moves
forward.

A skip record function in the forward direction can also be terminated if the tape was originally positioned
between two tape marks. Section 3.4.5.1 describes this feature.

3.4.5.1 Logical End-of-Volume (EOV) Detection

A skip file or skip record operation that uses the standard space-by-records algorithm is terminated when two
consecutive tape marks are encountered when the tape moves in the forward direction. After the operation
terminates, the tape remains positioned between the two tape marks that were detected. The I/O status block
(IOSB) returns the status SS$_ENDOFVOLUME and the actual number of files (or records) skipped during
the operation prior to the detection of the second tape mark. The skip count is returned in the high-order
word of the first longword of the IOSB.

An optimized skip file that uses the IO$M_ALLOWFAST modifier is terminated when the end-of-data
position is encountered. If two consecutive tape marks immediately precede the end-of-data position on the
tape, the tape is positioned between these two tape marks. The SS$_ENDOFVOLUME status and the skip
count are returned in the IOSB.

Subsequent skip record (or skip file) requests terminate immediately when the tape is positioned between the
two tape marks, producing no net tape movement and returning the SS$_ENDOFVOLUME status with a
skip count of zero.

To move the tape beyond the second tape mark, you must employ another I/O function. For example, the
IO$_READLBLK function, if issued after receipt of the SS$_ENDOFVOLUME status return, terminates with
an SS$_ENDOFFILE status and with the tape positioned just past the second tape mark. From this new
position, other skip functions could be issued to produce forward tape motion (assuming there is additional
data on the tape).

If three consecutive tape marks are encountered during a skip file function, you must issue two
IO$_READLBLK functions, the first to get the SS$_ENDOFFILE return and the second to position the tape
past the third tape mark.

3.4.6 Write End-of-File

The write end-of-file (EOF) function writes an extended interrecord gap (of approximately 3 inches for
nonreturn-to-zero-inverted (NRZI) recording and 1.5 inches for phase-encoded (PE) recording) followed by a
tape mark. No device- or function-dependent arguments are used with IO$_WRITEOF.

An end-of-tape (EOT) status is returned in the I/O status block if either of the following conditions is present
and no other error conditions occur:

Block Count

31 16 15 0

ZK0672GE

Not UsedP1:
125

Magnetic Tape Drivers
Magnetic Tape Function Codes
• A write EOF function is executed while the tape is positioned past the EOT marker.

• A write EOF function causes the tape position to enter the EOT region.

3.4.7 Rewind Offline

The rewind offline function rewinds and unloads the tape on the selected drive.

The I/O operation is completed as soon as the tape movement is initiated. The actual finish of the mechanical
rewind or unload operation may occur long after the I/O operation completes.

If the IO$M_RETENSION function modifier is specified and the device supports the retension operation, the
rewind offline function positions the tape to the physical end-of-tape (EOT) marker and rewinds the tape to
the beginning-of-tape (BOT) marker. If the tape does not support the IO$M_RETENSION modifer, a
SS$_ILLIOFUNC error is returned.

No device- or function-dependent arguments are used with IO$_REWINDOFF.

3.4.8 Unload

The unload function rewinds and unloads the tape on the selected drive. The unload function is functionally
the same as the rewind offline function. If the IO$M_NOWAIT function modifier is specified, the I/O
operation is completed as soon as the rewind operation is initiated. No device- or function-dependent
arguments are used with IO$_UNLOAD.

3.4.9 Sense Tape Mode

The sense tape mode function senses the current device-dependent and extended device characteristics (see
Tables Table 3-2 and Table 3-4).

The operating system provides the following function codes:

• IO$_SENSEMODE—Sense mode

• IO$_SENSECHAR—Sense characteristics

Sense mode requires logical I/O privilege. Sense characteristics requires physical I/O privilege. For TMSCP
drives, the sense mode function returns magnetic tape information in a user-supplied buffer, which is
specified by the following function-dependent arguments:

• P1—Optional. Address of a user-supplied buffer.

• P2—Optional. Length of a user-supplied buffer.
126

Magnetic Tape Drivers
Magnetic Tape Function Codes
If P1 is not zero, the sense mode buffer returns the tape characteristics. (If P2=8, the second longword of the
buffer contains the device-dependent characteristics. If P2=12, the second longword contains the
device-dependent characteristics and the third longword contains the tape densities that the drive supports
and the extended tape characteristics.) The extended characteristics are identical to the information returned
by DVI$_DEVDEPEND2 (see Table 3-4). Figure 3-3 shows the contents of the P1 buffer.

Figure 3-3 Sense Mode P1 Buffer

3.4.10 Set Mode

Set mode operations affect the operation and characteristics of the associated magnetic tape device. The
operating system defines two types of set mode functions: set mode and set characteristics.

Set mode requires logical I/O privilege. Set characteristics requires physical I/O privilege. The following
function codes are provided:

• IO$_SETMODE—Set mode

• IO$_SETCHAR—Set characteristics

These functions take the following device- or function-dependent arguments (other arguments are ignored):

• P1—The address of a characteristics buffer.

• P2—Optional. The length of the characteristics buffer. The default is 8 bytes. If a length of 12 bytes is
specified, the third longword (which is for TMSCP drives only) specifies the extended tape characteristics.

31 16 15 0

31 16 15 0

ZK4854GE

Buffer Size

Tape Characteristics *

Extended Tape Characteristics * * Supported Densities * *

Buffer Size

Tape Characteristics *

Type Class

8 7

78

ClassType

* From UCB$L_DEVDEPEND

* From UCB$L_DEVDEPEND

P2=8:

P2=12:

** From UCB$L_DEVDEPND2
127

Magnetic Tape Drivers
Magnetic Tape Function Codes
Figure 3-4 shows the P1 characteristics buffer for IO$_SETMODE. Figure 3-5 shows the same buffer for
IO$_SETCHAR.

Figure 3-4 Set Mode Characteristics Buffer for IO$_SETMODE

Figure 3-5 Set Mode Characteristics Buffer for IO$_SETCHAR

The first longword of the P1 buffer for the set characteristics function contains information on device class
and type, and the buffer size. The device class for tapes is DC$_TAPE.

31 16 15 0

31 16 15 0

ZK4856GE

Buffer Size Not Used

Tape Characteristics

Extended Tape Characteristics Reserved

Buffer Size Not Used

Tape Characteristics

P2=8:

P2=12:

31 16 15 0

31 16 15 0

ZK4855GE

Buffer Size

Tape Characteristics

Extended Tape Characteristics Reserved

Buffer Size

Tape Characteristics

Type Class

8 7

78

ClassType

P2=8:

P2=12:
128

Magnetic Tape Drivers
Magnetic Tape Function Codes
The $DCDEF macro defines the device type and class names. The buffer size is the default to be used for tape
transfers (this default is normally 2048 bytes).

The second longword of the P1 buffer for both the set mode and set characteristics functions contains the tape
characteristics. Table 3-5 lists the tape characteristics and their meanings. The $MTDEF macro defines the
symbols listed. If P2=12, the third longword contains the extended tape characteristics for TMSCP drives,
which are listed in Table 3-6. The extended tape characteristics are defined by the $MT2DEF macro and are
identical to the information returned by DVI$_DEVDEPEND2.

Table 3-5 Set Mode and Set Characteristics Magnetic Tape Characteristics

Characteristic1

1. Defined by the $MTDEF macro.

Meaning

MT$M_PARITY If set, all data transfers are performed with even parity. If clear (normal
case), all data transfers are performed with odd parity. Even parity can
be selected only for nonreturn-to-zero-inverted recording at 800
bits/inch. Even parity cannot be selected for phase-encoded recording
(tape density is MT$K_PE_1600) or group-coded recording (tape
density is MT$K_GCR_6250) and is ignored.

MT$V_DENSITY
MT$S_DENSITY

Specifies the density at which all data transfers are performed. Tape
density can be set only when the selected drive's tape position is at the
BOT marker. Possible density values are as follows:

MT$K_DEFAULT Default system density.

MT$K_GCR_6250 Group-coded recording, 6250 bits/inch.

MT$K_PE_1600 Phase-encoded recording, 1600 bits/inch.

MT$K_NRZI_800 Nonreturn-to-zero-inverted recording, 800
bits/inch.

MT$K_BLK_833 Cartridge block mode recording.2

2. Only for the TK50 and TZ30.

MT$V_FORMAT
MT$S_FORMAT

Specifies the format in which all data transfers are performed. Possible
format values are as follows:

MT$K_DEFAULT Default system format.

MT$K_NORMAL11 Normal PDP-11 format. Data bytes are
recorded sequentially on tape with each
byte occupying exactly one frame.

Table 3-6 Extended Device Characteristics for Tape Devices

Characteristic1

1. Defined by the $MT2DEF macro. Only for TU81-Plus drives.

Meaning

MT2$V_WBC_ENABLE Enable write-back caching on a per-unit basis.

MT2$V_RDC_DISABLE Disable read caching on a per-unit basis.
129

Magnetic Tape Drivers
Magnetic Tape Function Codes
Application programs that change specific magnetic tape characteristics should perform the following steps,
as shown in Example 3-2 in Section 3.6:

1. Use the IO$_SENSEMODE function to read the current characteristics.

2. Modify the characteristics.

3. Use the set mode function to write back the results.

Failure to follow this sequence will result in clearing any previously set characteristic.

3.4.11 Multiple Tape Density Support

As of Version 7.2, OpenVMS Alpha permits the selection of any density and any compression supported by a
tape drive. You can write to tapes using any density and any compression algorithm supported by the tape
drive. Exchanging tapes among tape drives with different default settings for density or compression is much
easier with this enhancement.

Mutiple tape density support is provided by changes in the QIO interface. These changes are guided by
device/density tables in system libraries and the corresponding class drivers. This enhancement functions
with tape drives that support multiple tape density switching via the standard MODE_SENSE and
MODE_SELECT mechanisms. All density and compression options available for a given drive will be
accessible by the system. The QIO interface uses MT3DEF to identify the drives, and to match them with
their density and compression code options. Some newer drives may not be included in the module.

NOTE After the media has been initialized to a specific density, it will remain that density until the
media is initialized to a different density. For example, if an HP media has been initialized with
TK86 density, the DCL command MOUNT/DENSITY=TK85 will have no effect because the
media is initialized at TK86 density. Likewise, BACKUP/DENSITY=TK85 will have no effect if
the media is initialized at TK86 density. However, BACKUP/DENS=TK85/INITIALIZE will
initialize the media to TK85 density.

These enhancements allow IO$_SETMODE and IO$_SENSEMODE to function with most density values and
a wider variety of drives. The system management utilities BACKUP and MOUNT take advantage of this
added functionality. For more information about multiple tape density support with these utilities, refer to
the HP OpenVMS System Management Utilities Reference Manual. For more information about
enchancements in INITIALIZE, refer to the HP OpenVMS DCL Dictionary.

3.4.12 Data Security Erase

The data security erase function erases all data from the current position of the volume to 10 feet beyond the
EOT reflective strip, and then rewinds the tape to the BOT marker. It is a physical I/O function and requires
the access privilege necessary to perform physical I/O functions. The following function code is provided:

IO$_DSE

If the function is issued when a tape is positioned at the BOT marker, all data on the tape will be erased.

IO$_DSE takes no device- or function-dependent arguments.

3.4.13 Modify

Specifying the ATR$C_USERLABEL or ATR$C_ENDLBLAST attributes with IO$_MODIFY results in a bad
attribute error. If any other attributes are specified, the IO$_MODIFY function is treated as a no-operation;
that is, the function returns success, but no action is performed.
130

Magnetic Tape Drivers
I/O Status Block
3.4.14 Pack Acknowledge

The pack acknowledge function sets the volume valid bit for all magnetic tape devices. It is a physical I/O
function and requires the access privilege to perform physical I/O. The following function code is provided:

IO$_PACKACK

IO$_PACKACK must be the first function issued when a volume is placed in a magnetic tape drive.
IO$_PACKACK is issued automatically when the DCL commands INITIALIZE or MOUNT are issued.

3.4.15 Available

The available function clears the volume valid bit for all magnetic tape drives, that is, it reverses the function
performed by the pack acknowledge function (see the Section 3.4.14). A rewind of the tape is performed
(applicable to all tape drives). No unload function is issued to the drive. The following function code is
provided:

IO$_AVAILABLE

This function takes no function-dependent arguments.

3.4.16 Flush

The flush function is used to ensure that all previously issued cached commands have fully completed.
Normally, hosts use this function to establish or maintain synchronization with write-back cached commands
issued to the specified tape unit. The I/O request does not complete until all cached data is written
successfully to the media in the exact order that the user specified.

IO$_FLUSH

This function code takes no function-dependent arguments.

3.5 I/O Status Block
The I/O status block (IOSB) for QIO functions on magnetic tape devices is shown in Figure 3-6. Appendix A
lists the status returns for these functions. (The OpenVMS system messages documentation provides
explanations and suggested user actions for these returns.) Table 3-2 (in Section 3.3) lists the
device-dependent data returned in the second longword. The IO$_SENSEMODE function can be used to
return that data.

Figure 3-6 IOSB Contents

Status

31 16 15 0

ZK0675GE

Byte Count

DeviceDependent Data
131

Magnetic Tape Drivers
Magnetic Tape Drive Programming Examples
The byte count is the actual number of bytes transferred to or from the process buffer or the number of files or
blocks skipped. (If an IO$_SKIPRECORD function is terminated by the detection of a tape mark, the count
returned in the IOSB is an unsigned number reflecting the number of blocks skipped, plus 1.

3.6 Magnetic Tape Drive Programming Examples
This section presents magnetic tape driver VAX MACRO programming examples.

Example 3-2 shows the recommended sequence for changing a device characteristic. It retrieves the current
characteristics using an IO$_SENSEMODE request, sets the new characteristics bits, and then uses
IO$_SETMODE to set the new characteristics.

Example 3-3 shows ways of specifying sense mode and set mode, both with and without a user buffer
specified, and with user buffers of different lengths.

In addition, Example 3-4 shows how data is written to and read from magnetic tape through the magnetic
tape ACP.

Example 3-2 Device Characteristic Program Example

$QIOW_S - ; Get current characteristics.
 FUNC = #IO$_SENSEMODE,- ; - Sense mode
 CHAN = CHANNEL,- ; - Channel
 IOSB = IO_STATUS,- ; - IOSB
 P1 = BUFFER,- ; - User buffer supplied
 P2 = #12 ; - Buffer length = 12
 .
 .
 .
(Check for errors)
 .
 .
 .
(Set desired characteristics bits)
 .
 .
 .

$QIOW_S - ; Set new characteristics.
 FUNC = #IO$_SETMODE,- ; - Set Mode
 CHAN = CHANNEL,- ; - Channel
 IOSB = IO_STATUS,- ; - IOSB
 P1 = BUFFER,- ; - User buffer address
 P2 = #12 ; - Buffer length = 12
 .
 .
 .
(Check for errors)
 .
 .
 .
132

Magnetic Tape Drivers
Magnetic Tape Drive Programming Examples
Example 3-3 Set Mode and Sense Mode Program Example

 .PSECT IMPURE, NOEXE, NOSHR

 $IODEF

DEVICE_NAME: ; Name of device
 .ASCID /MUA0/ ;

CHANNEL: ; Channel to device
 .WORD 0 ;

BUFFER: .BLKL 3 ; Set/Sense characteristics
 ; buffer

IO_STATUS: ; Final I/O status
 .QUAD 0 ;

 .PSECT CODE, RD, NOWRT, EXE

 .ENTRY MAIN,^M

$ASSIGN_S - ; Assign a channel to device
 DEVNAM = DEVICE_NAME,- ;
 CHAN = CHANNEL ;

BSBW ERR_CHECK2 ; Check for errors

$QIOW_S - ; Get current characteristics
 FUNC = #IO$_SENSEMODE,-; No user buffer supplied
 CHAN = CHANNEL,- ;
 IOSB = IO_STATUS ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S - ; Get current characteristics
 FUNC = #IO$_SENSEMODE,-; User buffer supplied, length
 CHAN = CHANNEL,- ; defaulted
 IOSB = IO_STATUS,- ;
 P1 = BUFFER ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S - ; Get current characteristics
 FUNC = #IO$_SENSEMODE,-; User buffer supplied, length
 CHAN = CHANNEL,- ; = 8
 IOSB = IO_STATUS,- ;
 P1 = BUFFER,- ;
 P2 = #8 ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S - ; Get extended characteristics
 FUNC = #IO$_SENSEMODE,-; User buffer supplied, length
 CHAN = CHANNEL,- ; = 12
 IOSB = IO_STATUS,- ;
 P1 = BUFFER,- ;
133

Magnetic Tape Drivers
Magnetic Tape Drive Programming Examples
 P2 = #12 ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S

 FUNC = #IO$_SETMODE,- ; Length defaulted
 CHAN = CHANNEL,- ;
 IOSB = IO_STATUS,- ;
 P1 = BUFFER ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S - ; Set new characteristics
 FUNC = #IO$_SETMODE,- ; Length = 8
 CHAN = CHANNEL,- ;
 IOSB = IO_STATUS,- ;
 P1 = BUFFER,- ;
 P2 = #8 ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S - ; Set extended characteristics
 FUNC = #IO$_SETMODE,- ; Length = 12
 CHAN = CHANNEL,- ;
 IOSB = IO_STATUS,- ;
 P1 = BUFFER,- ;
 P2 = #12 ;

BSBW ERR_CHECK ; Check for errors

RET

 .ENABLE LSB

ERR_CHECK:
 BLBS IO_STATUS,ERR_CHECK2 ; Continue if good IOSB
 MOVZWL IO_STATUS,-(SP) ; Otherwise, set up for stop
 BRB 10$; Branch to common code

ERR_CHECK2:
 BLBS R0,20$; Continue if good status
 PUSHL R0 ; Otherwise, set up for stop
10$: CALLS #1,G^LIB$STOP ; Stop execution

20$: RSB

 .DISABLE LSB

 .END MAIN

Example 3-4 MAGNETIC_TAPE.MAR Device Characteristic Program Example

; ***
;

 .TITLE MAGTAPE PROGRAMMING EXAMPLE
 .IDENT /01/
134

Magnetic Tape Drivers
Magnetic Tape Drive Programming Examples
;
; Define necessary symbols.
;

 $FIBDEF ;Define file information block
 ;symbols
 $IODEF ;Define I/O function codes
;
; Allocate storage for the necessary data structures.
;

;
; Allocate magtape device name string and descriptor.
;

TAPENAME: ;
 .LONG 20-10 ;Length of name string
 .LONG 10$;Address of name string
10$: .ASCII /TAPE/ ;Name string
20$: ;Reference label

;
; Allocate space to store assigned channel number.
;

TAPECHAN: ;
 .BLKW 1 ;Tape channel number
;
; Allocate space for the I/O status quadword.
;

IOSTATUS: ;
 .BLKQ 1 ;I/O status quadword
;
; Allocate storage for the input/output buffer.
;

BUFFER: ;
 .REPT 256 ;Initialize buffer to
 .ASCII /A/ ;contain 'A'
 .ENDR ;
;
; Now define the file information block (FIB), which the ACP uses
; in accessing and deaccessing the file. Both the user and the ACP
; supply the information required in the FIB to perform these
; functions.
;

FIB_DESCR: ;Start of FIB
 .LONG ENDFIB-FIB ;Length of FIB
 .LONG FIB ;Address of FIB
FIB: .LONG FIB$M_WRITE!FIB$M_NOWRITE ;Read/write access allowed
 .WORD 0,0,0 ;File ID
 .WORD 0,0,0 ;Directory ID
 .LONG 0 ;Context
 .WORD 0 ;Name flags
135

Magnetic Tape Drivers
Magnetic Tape Drive Programming Examples
 .WORD 0 ;Extend control
ENDFIB: ;Reference label

;
; Now define the file name string and descriptor.
;

NAME_DESCR: ;
 .LONG END_NAME-NAME ;File name descriptor
 .LONG NAME ;Address of name string
NAME: .ASCII "MYDATA.DAT;1" ;File name string
END_NAME: ;Reference label
;
; ***
;
; Start Program
;
; ***
;

; The program first assigns a channel to the magnetic tape unit and
; then performs an access function to create and access a file called
; MYDATA.DAT. Next, the program writes 26 blocks of data (the letters
; of the alphabet) to the tape. The first block contains all A's, the
; next, all B's, and so forth. The program starts by writing a block of
; 256 bytes, that is, the block of A's. Each subsequent block is reduced
; in size by two bytes so that by the time the block of Z's is written,
; the size is only 206 bytes. The magtape ACP does not allow the reading
; of a file that has been written until one of three events occurs:
; 1. The file is deaccessed.
; 2. The file is rewound.
; 3. The file is backspaced.
; In this example the file is backspaced zero blocks and then read in
; reverse (incrementing the block size every block); the data is
; checked against the data that is supposed to be there. If no data
; errors are detected, the file is deaccessed and the program exits.
;

 .ENTRY MAGTAPE_EXAMPLE,^M,R4,R5,R6,R7,R8>

;
; First, assign a channel to the tape unit.
;

 $ASSIGN_S TAPENAME,TAPECHAN ;Assign tape unit
 CMPW #SS$_NORMAL,R0 ;Success?
 BSBW ERRCHECK ;Find out

;
; Now create and access the file MYDATA.DAT.
;

 $QIOW_S CHAN=TAPECHAN,- ;Channel is magtape
 FUNC=#IO$_CREATE!IO$M_ACCESS!IO$M_CREATE,-;Function
136

Magnetic Tape Drivers
Magnetic Tape Drive Programming Examples
 - ;is create
 IOSB=IOSTATUS,- ;Address of I/O status
 - ;word
 P1=FIB_DESCR,- ;FIB descriptor
 P2=#NAME_DESCR ;Name descriptor
 CMPW #SS$_NORMAL,R0 ;Success?
 BSBW ERRCHECK ;Find out

;
; LOOP1 consists of writing the alphabet to the tape (see previous
; description).
;

 MOVL #26,R5 ;Set up loop count
 MOVL #256,R3 ;Set up initial byte count
 ;in R3
LOOP1: ;Start of loop
 $QIOW_S CHAN=TAPECHAN,- ;Perform QIOW to tape channel
 FUNC=#IO$_WRITEVBLK,- ;Function is write virtual
 - ;block
 P1=BUFFER,- ;Buffer address
 P2=R3 ;Byte count
 CMPW #SS$_NORMAL,R0 ;Success?
 BSBW ERRCHECK ;Find out
;
; Now decrement the byte count in preparation for the next write
; operation and set up a loop count for updating the character
; written; LOOP2 performs the update.

 SUBL2 #2,R3 ;Decrement byte count for
 ;next write
 MOVL R3,R8 ;Copy byte count to R8 for
 ;LOOP2 count
 MOVAL BUFFER,R7 ;Get buffer address in R7
LOOP2: INCB (R7)+ ;Increment character
 SOBGTR R8,LOOP2 ;Until finished
 SOBGTR R5,LOOP1 ;Repeat LOOP1 until alphabet
 ;complete

;
; The alphabet is now complete. Fall through LOOP1 and update the
; byte count so that it reflects the actual size of the last block
; written to tape.
;

 ADDL2 #2,R3 ;Update byte count

;
; The tape is now read, but first the program must perform one of
; the three functions described previously before the ACP allows
; read access. The program performs an ACP control function,
; specifying skip zero blocks. This is a special case of skip reverse
; and causes the ACP to allow read access.
;

 CLRL FIB+FIB$L_CNTRLVAL ;Set up to space zero blocks
137

Magnetic Tape Drivers
Magnetic Tape Drive Programming Examples
 MOVW #FIB$C_SPACE,FIB+FIB$W_CNTRLFUNC ;Set up for space
 ;function
 $QIOW_S CHAN=TAPECHAN,- ;Perform QIOW to tape channel
 FUNC=#IO$_ACPCONTROL,- ;Perform an ACP control
 - ;function
 P1=FIB_DESCR ;Define the FIB
 CMPW #SS$_NORMAL,R0 ;Success?
 BSBW ERRCHECK ;Find out

;
; Read the file in reverse.
;

 MOVL #26,R5 ;Set up loop count
 MOVB #^A/Z/,R6 ;Get first character in R6
LOOP3: ;
 MOVAL BUFFER,R7 ;And buffer address to R7
 $QIOW_S CHAN=TAPECHAN,- ;Channel is magtape
 FUNC=#IO$_READVBLK!IO$M_REVERSE,- ;Function is read
 - ;reverse
 IOSB=IOSTATUS,- ;Define I/O status quadword
 P1=BUFFER,- ;And buffer address
 P2=R3 ;R3 bytes
 CMPW #SS$_NORMAL,R0 ;Success?
 BSBW ERRCHECK ;Find out

;
; Check the data read to verify that it matches the data written.
;

 MOVL R3,R4 ;Copy R3 to R4 for loop count
CHECKDATA: ;
 CMPB (R7)+,R6 ;Check each character
 BNEQ MISMATCH ;If error, print message
 SOBGTR R4,CHECKDATA ;Continue until finished
 DECB R6 ;Go through alphabet in reverse
 ADDL2 #2,R3 ;Update byte count by 2 for
 ;next block
 SOBGTR R5,LOOP3 ;Read next block
;
; Now deaccess the file.
;

 $QIOW_S CHAN=TAPECHAN,- ;Channel is magtape
 FUNC=#IO$_DEACCESS,- ;Deaccess function
 P1=FIB_DESCR,- ;File information block (required)
 IOSB=IOSTATUS ;I/O status

;
; Deassign the channel and exit.
;

EXIT: $DASSGN_S CHAN=TAPECHAN ;Deassign channel
 RET ;Exit

;

138

Magnetic Tape Drivers
Magnetic Tape Drive Programming Examples
; If an error had been detected, a program would normally
; generate an error message here. But for this example the
; program simply exits.
;

MISMATCH: ;
 BRB EXIT ;Exit

ERRCHECK: ;
 BNEQ EXIT ;If not success, exit
 RSB ;Otherwise, return

 .END MAGTAPE_EXAMPLE
139

Magnetic Tape Drivers
Magnetic Tape Drive Programming Examples
140

Mailbox Driver
Mailbox Operations
4 Mailbox Driver

The operating system supports a virtual device, called a mailbox, that is used for communication between
processes. Mailboxes provide a controlled, synchronized method for processes to exchange data. Although
mailboxes transfer information much like other I/O devices, they are not hardware devices. Rather, mailboxes
are a software-implemented way to perform read and write operations between processes.

The HP OpenVMS Programming Concepts and the HP OpenVMS System Services Reference Manual contain
additional information about using mailboxes.

4.1 Mailbox Operations
 This section describes the following mailbox operations:

• Creating mailboxes

• Deleting mailboxes

• Protecting mailboxes

4.1.1 Creating Mailboxes

To create a mailbox and assign a channel and logical name to it, a process uses the Create Mailbox and Assign
Channel ($CREMBX) system service. A logical name can optionally be associated with the mailbox. If a
logical name is specified for the mailbox, the system enters the logical name in a logical name table and gives
it an equivalence name of MBAn, where n is a unique unit number.

$CREMBX also establishes the characteristics of the mailbox. These characteristics include a protection
mask, a permanence indicator, maximum message size, buffer quota, and direction in which I/O can be
performed (read, write, or read/write). A mailbox is created as either temporary or permanent; both types
require privilege to create. Applications and restrictions on how to use temporary and permanent mailboxes
are described in the following sections. (Refer to the HP OpenVMS System Services Reference Manual for
additional information on creating mailboxes.)

Other processes can assign additional channels to a mailbox using either the $CREMBX or the Assign I/O
Channel ($ASSIGN) system service. The mailbox is identified by its logical name both when it is created and
when it is assigned channels by cooperating processes. Channels assigned to the mailbox can specify the
direction that I/O can be performed on the channel.
141

Mailbox Driver
Mailbox Operations
Figure 4-1 shows the use of $CREMBX and $ASSIGN.

Figure 4-1 Multiple Mailbox Channels

If sufficient dynamic memory for the mailbox data structure is not available when a mailbox is created, a
resource wait occurs if resource wait mode is enabled.

When a mailbox is created, a certain amount of space is specified for buffering messages that have been
written to the mailbox but have not yet been read. The bufquo argument to the $CREMBX system service
specifies this amount or quota. If that argument is omitted, its value defaults to the system parameter
DEFMBXBUFQUO.

A message written to a mailbox, in the absence of an outstanding read request, is queued to the mailbox, and
the size of the message (the QIO P2 argument) is subtracted from the available buffering space. After the
message is read, it is added back to the available buffering space.

If a process attempts to write to a mailbox that is full or has insufficient buffering space and if the process has
resource wait enabled (which is the default case), the process is placed in miscellaneous resource wait mode
until sufficient space is available in the mailbox. If resource wait is not enabled, the I/O completes with the
status return SS$_MBFULL in the I/O status block (IOSB).

Channels can be assigned to mailboxes as bidirectional (read/write), read only, or write only. This allows for
greater synchronization between users of the mailbox. To specify a unidirectional channel to the mailbox,
specify the flags argument for the $CREMBX or $ASSIGN system services.

Mailbox

channels.
to define additional

$ASSIGN or $CREMBX
processes use
Cooperating

ZK0676GE

channel.
assigns

$CREMBX

Process

Process

Process

mailbox.
creates
process
system
User or
142

Mailbox Driver
Mailbox Operations
The flags argument is a longword bit mask that enables you to specify that the channel assigned to the
mailbox is a read-only or write-only channel. If the flags argument is not specified, the default channel
behavior is read/write. A channel assigned to the mailbox as read only is considered a reader. A channel
assigned to the mailbox as write only is considered a writer. A channel assigned to the mailbox as read/write
is considered both a reader and a writer.

For the $ASSIGN system service, the $AGNDEF macro defines a symbolic name for each flag bit. These flags
are as follows:

• AGN$M_READONLY— When this flag is specified, $ASSIGN assigns a read-only channel to the mailbox
device. An attempt to issue a $QIO WRITE operation on the mailbox channel causes an illegal I/O
operation error.

• AGN$M_WRITEONLY— When this flag is specified, $ASSIGN assigns a write-only channel to the
mailbox device. An attempt to issue a $QIO READ operation on the mailbox channel causes an illegal I/O
operation error.

For the $CREMBX system service, the $CMBDEF macro defines a symbolic name for each flag bit. These
flags are as follows:

• CMB$M_READONLY— When this flag is specified, $CREMBX assigns a read-only channel to the
mailbox device. An attempt to issue a $QIO WRITE operation on the mailbox channel causes an illegal
I/O operation error.

• CMB$M_WRITEONLY— When this flag is specified, $CREMBX assigns a write-only channel to the
mailbox device. An attempt to issue a $QIO READ operation on the mailbox channel causes an illegal I/O
operation error.

Refer to the HP OpenVMS System Services Reference Manual for a syntax description of the $CREMBX and
$ASSIGN system services.

The programming examples at the end of this section (Section 4.5) show mailbox creation, interprocess
communication, and synchronization.

4.1.2 Deleting Mailboxes

As each process finishes using a mailbox, it deassigns the channel using the Deassign I/O Channel
($DASSGN) system service. Temporary mailboxes or permanent mailboxes that have been marked for
deletion are actually deleted when no more channels are assigned to them.

If a mailbox channel is deassigned, any incomplete I/O requests on the mailbox channel for the process
deassigning the channel are removed.

Permanent mailboxes that have not been marked for deletion must be explicitly deleted using the Delete
Mailbox ($DELMBX) system service. An explicit deletion can occur at any time. As is true for temporary
mailboxes, the mailbox is deleted when no processes have channels assigned to it.

When a temporary mailbox is deleted, its message buffer quota is returned to the process that created it. (No
quota charge is made for permanent mailboxes.)

4.1.3 Mailbox Protection

Mailboxes (both temporary and permanent) are protected by a code, or mask, that is similar to the code used
in protecting volumes. As with volumes, four types of users (defined by UIC) can gain access to a mailbox:
SYSTEM, OWNER, GROUP, and WORLD; however, only three types of access—logical I/O, read, and
write—are meaningful to users of a mailbox. Therefore, when creating a mailbox, you can specify logical I/O,
143

Mailbox Driver
Mailbox Driver Device Information
read, and write access to the mailbox separately for each type of user. Logical I/O access is required for any
mailbox operation. The set protection function modifier provides additional control of mailbox access (see
Section 4.3.6).

For additional information on temporary mailboxes and mailbox protection, see the description of the
$CREMBX system service in the HP OpenVMS System Services Reference Manual.

4.1.4 Mailbox Message Format

 There is no standardized format for mailbox messages and none is imposed on users.

4.2 Mailbox Driver Device Information
 You can obtain information on mailbox characteristics by using the Get Device/Volume Information
($GETDVI) system service. (Refer to the HP OpenVMS System Services Reference Manual.)

$GETDVI returns mailbox characteristics when you specify the item code DVI$_DEVCHAR. Table 4-1 lists
these characteristics, which are defined by the $DEVDEF macro.

DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device type names, which are defined by
the $DCDEF macro. The device class for mailboxes is DC$_MAILBOX. The device type is DT$_MBX (or
DT$_SHRMBX if the mailbox is a shared memory mailbox). DVI$_DEVBUFSIZ returns the buffer size, which
is the maximum message size in bytes.

DVI$_DEVDEPEND returns a longword field in which the two low-order bytes contain the number of
messages in the mailbox. (The two high-order bytes are not used and should be ignored.)

DVI$_UNIT returns the mailbox unit number. Using mailbox to hold a termination message for a subprocess
or a detached process requires that the parent process obtain this number to pass to the mbxunt argument of
the $CREPRC system service.

Table 4-1 Mailbox Characteristics

Characteristic1

1. Defined by the $DEVDEF macro.

Meaning

 Dynamic Bits (Conditionally Set)

DEV$M_SHR Device is shareable.

DEV$M_AVL Device is available.

 Static Bits (Always Set)

DEV$M_REC Device is record-oriented.

DEV$M_IDV Device is capable of input.

DEV$M_ODV Device is capable of output.

DEV$M_MBX Device is a mailbox.
144

Mailbox Driver
Mailbox Function Codes
4.3 Mailbox Function Codes
 The mailbox I/O functions are:

• read

• write

• write end-of-file

• set attention AST

• wait for writer/reader

• set protection

• get mailbox information

No buffered I/O byte count quota checking is performed on mailbox I/O messages. Instead, the byte count or
buffer quota of the mailbox is checked for sufficient space to buffer the message being sent. The buffered I/O
quota and AST quota are also checked.

4.3.1 Read

Read mailbox functions are used to obtain messages written to the mailbox. The operating system provides
the following mailbox function codes:

• IO$_READVBLK—Read virtual block

• IO$_READLBLK—Read logical block

• IO$_READPBLK—Read physical block

IO$_READLBLK, IO$_READVBLK, and IO$_READPBLK all perform the same operation. To issue a read
request, a process can specify any of the read function codes.

The following device- or function-dependent arguments are used with these codes:

• P1—The starting virtual address of the buffer that is to receive the message. If P2 specifies a zero-length
buffer, P1 is ignored. On OpenVMS Alpha and I64, P1 can be a 64-bit address.

• P2—The size of the buffer in bytes (limited by the maximum message size for the mailbox). A zero-length
buffer may be specified. If a message longer than the buffer is read, the alternate success status
SS$_BUFFEROVF is returned in the I/O status block. In such cases, the message is truncated to fit the
buffer. The driver does not provide a means for recovering the deleted portion of the message.

The following function modifiers can be specified with a read request:

• IO$M_WRITERCHECK—Completes the I/O operation with SS$_NOWRITER status if the mailbox is
empty and no write channels are assigned to the mailbox. If no writer is assigned to the mailbox when the
$QIO is issued and no data is in the mailbox, the $QIO completes immediately. If no data is in the
mailbox but a writer is assigned, the $QIO operation completes when either a message is written or all
writers deassign their channels to the mailbox. IO$M_WRITERCHECK is ignored if the channel on
which it is issued is read/write because a writer is always assigned.

• IO$M_NOW—Completes the I/O operation immediately with no wait for a write request from another
process.
145

Mailbox Driver
Mailbox Function Codes
• IO$M_STREAM—Ignores QIO record boundaries. The read operation transfers message data to the
user's buffer until either P2 bytes are transferred, all message data currently in the mailbox is
transferred, or an end-of-file message is encountered. If a WRITEOF message is within the records
required to be read in order to fulfill the request for P2 bytes, the read request terminates successfully
with the bytes it was able to read before finding the WRITEOF message and the end-of-file message
becomes the first message in the mailbox. The next read request processes the end-of-file message. If the
read request is a READ STREAM, then the request must be for greater than 0 bytes. $QIO READ
STREAM can return fewer than P2 bytes with a return value of SS$_NORMAL if the mailbox is emptied
by the $QIO READ STREAM request or a WRITEOF message is encountered.
146

Mailbox Driver
Mailbox Function Codes
Figure 4-2 shows $QIO READ STREAM operations.

Figure 4-2 $QIO READ STREAM Operation

Diagram reflects state of Mailbox after specified operation has been performed.

1.

2.

3.

4.

5.

6.

7.

8.

CREMBX

WRITE 20 bytes

READ (Record) 10 bytes

WRITE 20 bytes

READ STREAM 10 bytes

WRITE 50 bytes

READ STREAM 30 bytes

Read (Record) 40 bytes

Empty Mailbox

Mailbox contains 1 record, 20 bytes long

Empty Mailbox

Mailbox contains 1 record, 20 bytes long

Mailbox contains 1 record, 10 bytes long

Mailbox contains 2 records, 10 and 50 bytes long

Mailbox contains 1 record, 30 bytes long

Empty Mailbox

ZK3853AGE
147

Mailbox Driver
Mailbox Function Codes
A READ IO$M_STREAM (without IO$M_NOW specified) on an empty mailbox waits until some data has
been written to the mailbox. It terminates with:

— 0 bytes read if the next data written is an end-of-file message.

— Fewer than P2 bytes read if the next data written is less than P2 bytes but greater than 0 bytes.
(READ IO$M_STREAM ignores writes of 0 bytes.)

— P2 bytes read if the next data written is greater than or equal to P2 bytes.

If a $QIO READ STREAM is fulfilled by multiple $QIO WRITE requests, the sender PID returned in the
IOSB of the $QIO READ STREAM reflects the first write request. A $QIO READ STREAM is charged
BUFQUO for the request. This BUFQUO is released when the read request is met. A $QIO READ
STREAM request that would cause BUFQUO to be exceeded for the mailbox when the mailbox has no
writes pending returns an SS$_EXQUOTA error.

A $QIO READ STREAM issued to a mailbox that would cause BUFQUO to be exceeded because
BUFQUO is occupied by write requests still executes. This happens because by allowing the mailbox to
temporarily exceed BUFQUO, BUFQUO is freed. Similarly, a $QIO WRITE that is issued to a mailbox
that would cause BUFQUO to be exceeded, because the BUFQUO is occupied by read stream requests,
still executes.

Reads of 0 bytes are handled differently depending on which functional modifiers are specified. If
IO$M_STREAM is specified, then the $QIO returns SS$_NORMAL with 0 bytes read. The contents of the
mailbox remain exactly as they were before the $QIO was issued. A $QIO READ STREAM of 0 bytes does not
remove a 0 byte record, nor does it remove an end-of-file marker. If IO$M_STREAM is not specified, then
$QIO returns one of the following:

• SS$_NORMAL (if 0 bytes were written with the corresponding $QIO WRITE performed)

• SS$_BUFFEROVF (if the corresponding $QIO WRITE wrote more than 0 bytes with 0 bytes read)

• SS$_ENDOFFILE (if a WRITEOF function was performed as the corresponding $QIO write function)

For a 0-byte nonstream read, a record is actually removed from the mailbox to meet the $QIO READ request.
Note that the use of the word “immediately” does not imply that synchronization of the $QIO request should
not be performed.
148

Mailbox Driver
Mailbox Function Codes
Figure 4-3 shows the read mailbox functions. In this figure, Process A reads a mailbox message written by
Process B. As the figure indicates, a mailbox read request requires a corresponding mailbox write request
(except in the case of an error). The requests can be made in any sequence; the read request can either
precede or follow the write request.

Figure 4-3 Read Mailbox

If Process A issues a read request before Process B issues a write request, one of two events can occur. If
Process A did not specify the function modifier IO$M_NOW, Process A's request is queued before Process B
issues the write request. When Process B's write request occurs, the data is transferred from Process B,
through the system buffers, to Process A to complete the I/O operation.

However, if Process A did specify the IO$M_NOW function modifier, the read operation is completed
immediately. That is, no data is transferred from Process B to Process A, and Process A's request is not
queued until Process B issues the write request. In this case, the I/O status returned to Process A is
SS$_ENDOFFILE.

If Process B sends a message (with no function modifier; see Section 4.3.2) before Process A issues a read
request (with or without a function modifier), Process A finds a message in the mailbox. The data is
transferred and the I/O operation is completed immediately, regardless of whether IO$M_NOW is specified on
the read request.

4.3.2 Write

Write mailbox functions are used to transfer data from a process to a mailbox. The operating system provides
the following mailbox function codes:

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITELBLK—Write logical block

• IO$_WRITEPBLK—Write physical block

or

Data

Note: Numbers indicate order of events.

Read QIO Write QIO

1

4 3

2

B
Process

A
Process Mailbox

1 2 or

Data

ZK0679GE
149

Mailbox Driver
Mailbox Function Codes
IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK all perform the same operation. To issue a
write request, a process can specify any of the write function codes.

These function codes take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer that contains the message being written. If P2 specifies a
zero-length buffer, P1 is ignored. On OpenVMS Alpha and I64, P1 can be a 64-bit address.

• P2—The size of the buffer in bytes (limited by the maximum message size for the mailbox). A zero-length
buffer produces a zero-length message to be read by the mailbox reader.

The following function modifiers can be specified with a write request:

• IO$M_READERCHECK—Completes the I/O operation immediately, with SS$_NOREADER status, if no
read channels are assigned to the mailbox. If a $QIO WRITE with IO$M_READERCHECK is issued and
is outstanding and all read channels assigned to the mailbox are then deassigned, the $QIO completes
with SS$_NOREADER status. IO$M_READERCHECK is ignored if the channel on which it is issued is
bidirectional read/write, because there is always a reader assigned. If SS$_NOREADER is returned for a
write request, the $QIO WRITE operation does not place any data in the mailbox. If SS$_NOREADER is
returned for a write end-of-file message request, the $QIO WRITE operation does not place the end-of-file
marker in the mailbox.

• IO$M_NOW—Completes the I/O operation immediately without waiting for another process to read the
mailbox message. $QIO WRITE, without IO$M_NOW specified, does not complete until the data is read.
$QIO WRITE NOW completes when the data is in the mailbox. If both IO$M_READERCHECK and
IO$M_NOW are specified and no read channel is assigned to the mailbox, a status of SS$_NOREADER is
returned and the data is not placed in the mailbox. If a read channel is assigned, the
IO$M_READERCHECK modifier is ignored.

• IO$M_NORSWAIT—If the mailbox is full, the I/O operation fails with a status return of SS$_MBFULL
rather than placing the process in resource wait mode. Note that IO$M_NORSWAIT does not disable
resource waits that may occur elsewhere in the $QIO operation. For example, IO$M_NORSWAIT does not
affect any resource waiting that occurs when I/O processing routines try to allocate an I/O request packet
while passing the I/O request to the mailbox driver.

A $QIO WRITE of 0 bytes causes a 0-byte long message to be placed in the mailbox. When this data is read by
a $QIO READ without IO$M_STREAM specified, the $QIO READ returns an SS$_NORMAL status and 0
bytes. When this data is read by a $QIO READ STREAM in an attempt to read P2 bytes (P2 being greater
than 0), the data is ignored. However, a $QIO READ STREAM of 0 bytes has no effect on the mailbox. A $QIO
WRITE READERCHECK of 0 bytes, when no read channel is assigned to the mailbox, returns an
SS$_NOREADER error and the 0-byte record is not placed in the mailbox. A message that is 0 bytes long is
charged 1 byte of mailbox BUFQUO.

Figure 4-4 shows the write mailbox function. In this figure, Process A writes a message to be read by Process
B. As in the read request example, a mailbox write request requires a corresponding mailbox read request
(unless an error occurs) and the requests can be made in any sequence.

If Process A issues a write request before Process B issues a read request, one of two events can occur. If
Process A did not specify the function modifier IO$M_NOW, Process A's write request is queued before
Process B issues a read request. When this request occurs, the data is transferred from Process A to Process B
to complete the I/O operation.

However, if Process A did specify the IO$M_NOW function modifier, the write operation is completed
immediately. The data is available to Process B and is transferred when Process B issues a read request.
150

Mailbox Driver
Mailbox Function Codes
If Process B issues a read request (with no function modifier) before Process A issues a write request (with or
without the function modifier), Process A finds a request in the mailbox. The data is transferred and the I/O
operation is completed immediately.

Figure 4-4 Write Mailbox

4.3.3 Write End-of-File Message

Write end-of-file message functions are used to insert a special message in the mailbox. The process that
reads the end-of-file message is returned the status code SS$_ENDOFFILE in the I/O status block. The
message count of the Get Mailbox Information function reflects this end-of-file message; however, the mailbox
byte count of this function does not include end-of-file markers. An end-of-file message is charged 1 byte of
mailbox BUFQUO.

This function takes no arguments. The operating system provides the following function code:

IO$_WRITEOF—Write end-of-file message

The following function modifiers can be specified with a write end-of-file request:

• IO$M_READERCHECK—Completes the I/O operation immediately, with SS$_NOREADER status, if no
read channels are assigned to the mailbox. If a $QIO WRITEOF with IO$M_READERCHECK is issued
and is outstanding and all read channels assigned to the mailbox are then deassigned, the $QIO
completes with SS$_NOREADER status. IO$M_READERCHECK is ignored if the channel on which it is
issued is bidirectional read/write, because there is always a reader assigned. If SS$_NOREADER is
returned for a write end-of-file message request, the $QIO WRITEOF operation does not place the
end-of-file marker in the mailbox.

• IO$M_NOW—Completes the I/O operation immediately without waiting for another process to read the
mailbox message. If both IO$M_READERCHECK and IO$M_NOW are specified, and no read channel is
assigned to the mailbox, a status of SS$_NOREADER is returned and the end-of-file message is not
placed in the mailbox.

Note: Numbers indicate order of events.

B
Process

A
Process Mailbox

ZK0680GE

4

Data

3

Data

Write QIO

2or1

Read QIO

or1 2
151

Mailbox Driver
Mailbox Function Codes
• IO$M_NORSWAIT—If the mailbox is full, the I/O operation fails with a status return of SS$_MBFULL
instead of placing the process in resource wait mode. Note that IO$M_NORSWAIT does not disable
resource waits that may occur elsewhere in the $QIO operation. For example, IO$M_NORSWAIT does not
affect any resource waiting that occurs when I/O processing routines try to allocate an I/O request packet
while passing the I/O request to the mailbox driver.

4.3.4 Set Attention AST

Set attention AST functions specify that an asynchronous system trap (AST) be delivered to the requesting
process in the following cases:

• When a cooperating process places a read request for which no write request is pending in a designated
mailbox. This is called an unsolicited read request.

• When a cooperating process places a write request for which no read request is pending in a designated
mailbox. This is called an unsolicited write request.

• When room becomes available in the mailbox.

If a message exists in the mailbox when a request to enable a write attention AST is issued, the AST routine
is activated immediately. If no message exists, the AST is delivered when a write request message arrives;
therefore, the requesting process need not repeatedly check the mailbox status. You must have both logical
I/O and read access to the mailbox prior to performing a set attention AST function.

The operating system provides the following function codes:

• IO$_SETMODE!IO$M_READATTN—Read attention AST

• IO$_SETMODE!IO$M_WRTATTN—Write attention AST

• IO$_SETMODE!IO$M_MB_ROOM_NOTIFY—Room in the mailbox attention AST

These function codes take the following device- or function-dependent arguments:

• P1—AST address (request notification is disabled if the address is 0)

• P2—AST parameter returned in the argument list when the AST service routine is called

• P3—Access mode to deliver AST; maximized with requester's mode

These functions are enabled only once; they must be explicitly reenabled after the AST has been delivered if
you desire repeat notification. All types of enable functions, and more than one of each type, can be set at the
same time. The number of enable functions is limited only by the AST quota for the process.
152

Mailbox Driver
Mailbox Function Codes
Figure 4-5 shows the write attention AST function. In this figure, an AST is set to notify Process A when
Process B sends an unsolicited message.

Figure 4-5 Write Attention AST (Read Unsolicited Data)

Process A uses the IO$_SETMODE!IO$M_WRTATTN function to request an AST. When Process B sends a
message to the mailbox, the AST is delivered to Process A. Process A responds to the AST by issuing a read
request to the mailbox. The data is then transferred to complete the I/O operation.

If several requesting processes have set ASTs for unsolicited messages at the same mailbox, all ASTs are
delivered when the first unsolicited message is placed in the mailbox; however, only the first process to
respond to the AST with a read request receives the data. Therefore, when the next process to respond to an
AST issues a read request to the mailbox, it might find the mailbox empty. If this request does not include the
function modifier IO$M_NOW, it is queued before the next message arrives in the mailbox.

Note: Numbers indicate order of events.

B
Process

A
Process Mailbox

ZK0681GE

5

+IO$M_NOW
Read QIO

Write QIO
Unsolicited

2

Data

26

Data

3

4

!IO$M_WRTATTN
IO$_SETMODE

AST Specified by

1

AST
153

Mailbox Driver
Mailbox Function Codes
Figure 4-6 shows the read attention AST function. In this figure, an AST is set to notify Process A when
Process B issues a read request for which no message is available.

Figure 4-6 Read Attention AST

Process A uses the IO$_SETMODE!IO$M_READATTN function to specify an AST. When Process B issues a
read request to the mailbox, the AST is delivered to Process A. Process A responds to the AST by sending a
message to the mailbox. The data is then transferred to complete the I/O operation.

If several requesting processes set ASTs for read requests for the same mailbox, all ASTs are delivered when
the first read request is placed in the mailbox. Only the first process to respond with a write request is able to
transfer data to Process B.

4.3.5 Wait for Writer/Reader

The wait for writer/reader mailbox driver function waits until a channel is assigned to the mailbox with the
requested access direction. This function returns immediately if a channel is already assigned to the mailbox
with the proper access direction. This function always returns immediately if issued on a bidirectional
mailbox channel. Any channel assigned bidirectionally to the mailbox satisfies both types of wait requests.

The wait function requires the same synchronization techniques as all other $QIO functions. $QIO Wait
should not be issued without any synchronization of its completion. If no synchronization is performed, the
program behaves as if no $QIO Wait function had been issued (except for the small delay caused by issuing
the $QIO Wait).

The following function codes and modifiers are provided:

Note: Numbers indicate order of events.

B
Process

A
Process Mailbox

ZK0682GE

5

+IO$M_NOW
Write QIO Read QIO

2

Data

65

Data

3

4

!IO$M_READATTN
IO$_SETMODE
AST Specified by

1

AST

154

Mailbox Driver
Mailbox Function Codes
• IO$_SETMODE!IO$M_READERWAIT—Waits for a read channel to be assigned to the mailbox.

• IO$_SETMODE!IO$M_WRITERWAIT—Waits for a write channel to be assigned to the mailbox.

These function codes require no function-dependent arguments.

These functions are enabled only once. Once the $QIO operation completes, these functions must be explicitly
reenabled.

4.3.6 Set Protection

The set protection functions allow the user to set volume protection on a mailbox (see Section 4.1.3). The
requester must either be the owner of the mailbox or have BYPASS privilege. The OpenVMS operating
system provides the following function code:

IO$_SETMODE!IO$M_SETPROT—Set protection

This function code takes the following device- or function-dependent argument:

P2—A volume protection mask

The protection mask specified by P2 is a 16-bit mask with 4 bits for each class of owner: SYSTEM, OWNER,
GROUP, and WORLD, as shown in Figure 4-7.

Figure 4-7 Protection Mask

Only logical I/O, read, and write functions have meaning for mailboxes. A clear (0) bit implies that access is
allowed. If P2 is 0 or unspecified, the mask is set to allow all read, write, and logical operations.

The I/O status block for the set protection function (see Figure 4-10) returns SS$_NORMAL in the first word
if the request was successful. If the request was not successful, the $QIO system service returns
SS$_NOPRIV and both longwords of the I/O status block are returned as zeros.

4.3.7 Get Mailbox Information

The get mailbox information function allows the user to find out the number of unread messages and bytes in
the mailbox. The following function code is provided:

World Group Owner System

Log I/O * Write Read

15 11 7 3 0

11 10 9 8

* Not Used

ZK0683GE
155

Mailbox Driver
I/O Status Block
IO$_SENSEMODE—Get mailbox contents information

The following function codes and modifiers are provided:

• IO$_SENSEMODE!IO$M_READERCHECK—If a $QIO SENSEMODE with IO$M_READERCHECK is
issued and no read channels are assigned to the mailbox, then the SS$_NOREADER condition value is
returned in the IOSB.

• IO$_SENSEMODE!IO$M_WRITERCHECK—If a $QIO SENSEMODE with IO$M_WRITERCHECK is
issued and no write channels are assigned to the mailbox, then the SS$_NOWRITER condition value is
returned in the IOSB.

These function codes require no function-dependent arguments.

4.4 I/O Status Block
,The I/O status blocks (IOSB) for mailbox read, write, set protection, and get mailbox information QIO
functions are shown in Figures Figure 4-8, Figure 4-9, Figure 4-10, and Figure 4-11.

Appendix A lists the I/O status returns for these functions. In addition to the IOSB return values, the
following statuses can be returned in R0 by the call to the system service:

SS$_ACCVIO

SS$_EXQUOTA

SS$_ILLIOFUNC

SS$_INSFMEM

SS$_MBFULL

SS$_MBTOOSML

SS$_NOPRIV

SS$_NORMAL
156

Mailbox Driver
I/O Status Block
(The OpenVMS system messages documentation provides explanations and suggested user actions for both
types of returns.)

Figure 4-8 IOSB Contents — Read Function

Figure 4-9 IOSB Contents— Write Function

Figure 4-10 IOSB Contents— Set Protection Function

Figure 4-11 IOSB Contents — Get Mailbox Information Function

Status

+4

+2 IOSB

ZK0684GE

Byte Count

Sender Process Identification (PID) *

* 0 if the sender was a system process.

Status
+4

+2 IOSB

ZK0685GE

Byte Count *

Receiver Process Identification (PID) * *

* Equals P2 buffer size if successful request.

* * 0 if IO$M_NOW was specified.

Status

+2

0

ZK1201GE

Protection Mask (P2) Value

IOSB

+4

ZK3797A

31 16 15 0

Number of Messages in Mailbox Condition Value

Number of Message Bytes in Mailbox
157

Mailbox Driver
Mailbox Driver Programming Examples
4.5 Mailbox Driver Programming Examples
This section contains the following programming examples:

• Example 4-1 shows a MACRO32 program that creates a mailbox and puts mail into it.

• Example 4-2 assigns a read-only channel to the mailbox.

• Example 4-3 assigns a write-only channel to the mailbox.

Example 4-1 creates a mailbox and puts mail into it; no matching read is pending on the mailbox. First, the
program shows that if the function modifier IO$M_NOW is not used when mail is deposited, the write
function waits until a read operation is performed. In this case, IO$M_NOW is specified and the program
continues after the mail is left in the mailbox.

Next, the mailbox is read. If there is no mail in the mailbox, the program waits because IO$M_NOW is not
specified. IO$M_NOW should be specified if there is any doubt about the availability of data in the mailbox,
and it is important for the program not to wait.

It is up to the user to coordinate the data that goes into and out of mailboxes. In this example, the process
reads its own message. Normally, two mailboxes are used for interprocess communication: one for sending
data from process A to process B, and one for sending data from process B to process A. If a program is
arranged in this manner, there is no possibility of a process reading its own message.

NOTE The table for temporary mailbox names can be redfined to be a group table. This allows the
processes in other jobs with same group number to use the samelogical name to access the
mailbox. For example, LNM$TEMPORARY_MAILBOX can be redefined to any shareable table
that the process has write access to. In this case, it could be redefined to LNM$GROUP if the
process has GRPNAM privlege or if the group table allows the process to write to it. See the
description of the $CREMBX service in the System Services Reference Manual for more
information.

Example 4-2 and Example 4-3 work together from two separate processes and show the unidirectional
mailbox synchronization features. With the default definition of LNM$TEMPORARY_MAILBOX, the logical
name for the mailbox is created in the job logical name table. The processes running both example programs
should be in the same job.

Example 4-2 performs the following functions:

1. Assigns a read-only channel to the mailbox.

2. Waits for another program to assign a writable channel to the mailbox.

3. Reads, using the IO$M_WRITERCHECK function modifier, what has been written to the mailbox. Each
record is echoed to SYS$OUTPUT.

4. When SS$_NOWRITER is returned from the read operation, goes back to Step 2 and waits for another
writer.

Example 4-3 is a writer to the mailbox. It performs the following functions:

1. Assigns a write-only channel to the mailbox.

2. Waits for a reader.

3. Gathers user input until the user enters Ctrl/Z, then writes that input to the mailbox.
158

Mailbox Driver
Mailbox Driver Programming Examples
Example 4-1 Mailbox Driver Program Example 1

; ***
;

 .TITLE MAILBOX DRIVER PROGRAM EXAMPLE
 .IDENT /01/

;
; Define necessary symbols.
;

 $IODEF ;Define I/O function codes

;
; Allocate storage for necessary data structures.
;

;
; Allocate output device name string and descriptor.
;

DEVICE_DESCR: ;
 .LONG 20-10 ;Length of name string
 .LONG 10$;Address of name string
10$: .ASCII /SYS$OUTPUT/ ;Name string of output device
20$: ;Reference label

;
; Allocate space to store assigned channel number.
;

DEVICE_CHANNEL: ;
 .BLKW 1 ;Channel number

;
; Allocate mailbox name string and descriptor.
;

MAILBOX_NAME: ;
 .LONG ENDBOX-NAMEBOX ;Length of name string
 .LONG NAMEBOX ;Address of name string
NAMEBOX: .ASCII /146_MAIN_ST/ ;Name string
ENDBOX: ;Reference label

;
; Allocate space to store assigned channel number.
;

MAILBOX_CHANNEL: ;
 .BLKW 1 ;Channel number

;
; Allocate space to store the outgoing and incoming messages.
;

IN_BOX_BUFFER: ;
 .BLKB 40 ;Allocate 40 bytes for
159

Mailbox Driver
Mailbox Driver Programming Examples
 ;received message
 IN_LENGTH=.-IN_BOX_BUFFER ;Define input buffer length

OUT_BOX_BUFFER: ;
 .ASCII /SHEEP ARE VERY DIM/ ;Message to send
 OUT_LENGTH=.-OUT_BOX_BUFFER ;Define length of message to
 ;send

;
; Finally, allocate space for the I/O status quadword.
;

STATUS: ;
 .QUAD 1 ;I/O status quadword

;
; ***
;
; Start Program
;
; ***
;

;
; The program first creates a mailbox and assigns a channel to the
; process output device. Then a message is placed in the mailbox and
; a message is received from the mailbox (the same message). Finally,
; the program prints the contents of the mailbox on the process output
; device.
;

START: .WORD 0 ;Entry mask
 $CREMBX_S CHAN=MAILBOX_CHANNEL,- ;Channel is the mailbox
 PROMSK=#^X0000,- ;No protection
 BUFQUO=#^X0060,- ;Buffer quota is hex 60
 LOGNAM=MAILBOX_NAME,- ;Logical name descriptor
 MAXMSG=#^X0060 ;Maximum message is hex 60
 CMPW #SS$_NORMAL,R0 ;Successful mailbox creation?
 BSBW ERROR_CHECK ;Find out
 $ASSIGN_S - ;Assign channel
 DEVNAM=DEVICE_DESCR,- ;Device descriptor
 CHAN=DEVICE_CHANNEL ;Channel
 CMPW #SS$_NORMAL,R0 ;Successful channel assign?
 BSBW ERROR_CHECK ;Find out

;
; The program now writes to the mailbox using a write request that
; includes the function modifier IO$M_NOW so that it need not wait for
; a read request to the mailbox before continuing to the next step in
; the program.
;

 $QIOW_S FUNC=#IO$_WRITEVBLK!IO$M_NOW,- ;Write message NOW
 CHAN=MAILBOX_CHANNEL,- ;to the mailbox channel
 P1=OUT_BOX_BUFFER,- ;Write buffer
 P2=#OUT_LENGTH ;Buffer length
 CMPW #SS$_NORMAL,R0 ;Successful write request?
 BSBW ERROR_CHECK ;Find out
160

Mailbox Driver
Mailbox Driver Programming Examples
;
; Read the mailbox.
;

 $QIOW_S FUNC=#IO$_READVBLK,- ;Read the message
 CHAN=MAILBOX_CHANNEL,- ;in the mailbox channel
 IOSB=STATUS,- ;Define status block to
 - ;receive message length
 P1=IN_BOX_BUFFER,- ;Read buffer
 P2=#IN_LENGTH ;Buffer length
 CMPW #SS$_NORMAL,R0 ;Successful read request?
 BSBW ERROR_CHECK ;Find out

;
; The program now determines how much mail is in the mailbox (this
; information is in STATUS+2) and then prints the mailbox message on
; the process output device.
;

 MOVZWL STATUS+2,R2 ;Byte count into R2
 $QIOW_S FUNC=#IO$_WRITEVBLK,- ;Write function to the
 CHAN=DEVICE_CHANNEL,- ;output device channel
 P1=IN_BOX_BUFFER,- ;Address of buffer to write
 P2=R2,- ;How much to write
 P4=#32 ;Carriage control

;
; Finally, deassign the channel and exit.
;

EXIT: $DASSGN_S CHAN=DEVICE_CHANNEL ;Deassign channel
 RET ;Return

;
; This is the error-checking part of the program. Normally, some kind
; of error recovery would be attempted at this point if an error was
; detected. However, this example program simply exits.
;

ERROR_CHECK: ;
 BNEQ EXIT ;System service failure, exit
 RSB ;Otherwise, return

 .END START

Example 4-2 assigns a read-only channel to the mailbox.

Example 4-2 Mailbox Driver Program Example 2

/*
 * MAILBOX_READER.C
 * C program to demonstrate features of the Mailbox driver.
 * This program is a Mailbox READER. It assigns a READ_ONLY channel to the
 * mailbox. Its partner program is a Mailbox WRITER.
 * Compile with Compaq C on VAX or Alpha systems: * $ CC MAILBOX_READER * $ LINK MAILBOX_READER
 * /
#include <stdio.h> /* Standard C I/O */
#include <descrip.h> /* Descriptor structure definitions */
161

Mailbox Driver
Mailbox Driver Programming Examples
#include <lib$routines.h> /* LIB$ RTL function definitions */
#include <starlet.h> /* System service definitions */
#include <ssdef.h> /* System Service status code definitions */
#include <cmbdef.h> /* CREMBX definitions */
#include <efndef.h> /* Event Flag definitions */
#include <iodef.h> /* I/O definitions */

#define $ARRAY_DESCRIPTOR(name,size,array_name) \
 static char array_name[size]; \
 struct dsc$descriptor_s name = \
 { size, DSCK_DTYPE_T, DSCK_CLASS_S, array_name }
int main(void)
{
/*
 * Message limits are intentionally small to facilitate demonstration of
 * error conditions.
 */
#define max_msg_len 64 /* Maximum output string size */
#define mailbox_maxmsg 64 /* Maximum mailbox message size */
#define mailbox_bufquo 128 /* Total buffer space in mailbox */
$DESCRIPTOR(mailbox_name_desc,"MAILBOX_EXAMPLE");
$DESCRIPTOR(EOF_string_desc,
 "End of file read ... waiting for another WRITER");
$ARRAY_DESCRIPTOR(read_buffer_desc,max_msg_len,read_buffer);

#pragma member_alignment save
#pragma nomember_alignment LONGWORD

struct io_status_block { /* I/O status block */
 unsigned short int condition;
 unsigned short int count;
 unsigned int dev;
 } iosb;
#pragma member_alignment restore

int status, mailbox_channel;

/*
 * Create a temporary mailbox with a READONLY channel. Its logical name
 * will be entered into the LNM$TEMPORARY_MAILBOX logical name table.
 */

 status = sys$crembx(0,&mailbox_channel,mailbox_maxmsg,mailbox_bufquo,
 0,0,&mailbox_name_desc,CMB$M_READONLY);
 if (status != SS$_NORMAL)
 (void) lib$signal(status);

/*
 * Mark the mailbox for deletion. This step is not necessary for a temporary
 * mailbox, but is included as an illustration.
 */
 (void) sys$delmbx(mailbox_channel);
/*
 * Loop forever, first waiting until a WRITE channel is assigned to the mailbox
 * and then reading data from it until the WRITER deassigns.
 */
 while (TRUE)
 {
162

Mailbox Driver
Mailbox Driver Programming Examples
 /* First, check to see if there is a WRITER assigned to the mailbox */
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_SENSEMODE|IO$M_WRITERCHECK,

 &iosb,
 0,0,
 0,0,0,0,0,0);

 /* If there was no WRITER, then wait for one.*/
 if ((unsigned int) iosb.condition == SS$_NOWRITER)
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_SETMODE|IO$M_WRITERWAIT,
 &iosb,
 0,0,
 0,0,0,0,0,0);

 /*
 * While the status is good, READ from the mailbox, and echo the
 * data to SYS$OUTPUT.
 */
 while (status == SS$_NORMAL)
 {
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_READVBLK|IO$M_WRITERCHECK,
 &iosb,
 0,0,
 read_buffer_desc.dsc$a_pointer,max_msg_len,
 0,0,0,0);
 if (status != SS$_NORMAL)
 (void) lib$signal(status);
 status = iosb.condition;

 if (status == SS$_NORMAL)
 {
 read_buffer_desc.dsc$w_length = iosb.count;
 (void) lib$put_output(&read_buffer_desc);
 }
 else if (status == SS$_ENDOFFILE)
 {
 (void) lib$put_output(&EOF_string_desc);
 }
 }
 }
}

Example 4-3 assigns a write-only channel to the mailbox.

Example 4-3 Mailbox Driver Program Example 3

/*
 * MAILBOX_WRITER.C
 * C program to demonstrate features of the Mailbox driver.
 * This program is a Mailbox WRITER. It assigns a WRITE_ONLY channel to the
 * mailbox. It's partner program is a Mailbox READER.
163

Mailbox Driver
Mailbox Driver Programming Examples
 * Compile with Compaq C on VAX or Alpha systems:
 * $ CC MAILBOX_WRITER
 * $ LINK MAILBOX_WRITER
 */

#include <stdio.h> /* Standard C I/O */
#include <descrip.h> /* Descriptor structure definitions */
#include <lib$routines.h> /* LIB$ RTL function definitions */
#include <rmsdef.h> /* RMS status code definitions */
#include <starlet.h> /* System service definitions */
#include <ssdef.h> /* System Service status code definitions */
#include <cmbdef.h> /* CREMBX definitions */
#include <efndef.h> /* Event Flag definitions */
#include <iodef.h> /* I/O definitions */

#define $ARRAY_DESCRIPTOR(name,size,array_name) \
 static char array_name[size]; \
 struct dsc$descriptor_s name = \
 { size, DSCK_DTYPE_T, DSCK_CLASS_S, array_name }

void enable_room_ast(int mailbox_channel, int efn);
void more_room_ast(int efn);

volatile int ast_enabled = FALSE;
int main(void)
{
/*
 * Message limits are intentionally small to facilitate demonstration of
 * error conditions.
 */
#define max_msg_len 128 /* Maximum input string size */
#define mailbox_maxmsg 64 /* Maximum mailbox message size */
#define mailbox_bufquo 128 /* Total buffer space in mailbox */
$DESCRIPTOR(mailbox_name_desc,"MAILBOX_EXAMPLE");
$DESCRIPTOR(prompt_string_desc,
 "DATA TO SEND TO MAILBOX (<CTRL Z> to terminate) >>>");
$ARRAY_DESCRIPTOR(write_buffer_desc,max_msg_len,write_buffer);

#pragma member_alignment save
#pragma nomember_alignment LONGWORD
struct io_status_block { /* I/O status block */
 unsigned short int condition;
 unsigned short int count;
 unsigned int dev;
 } iosb;
#pragma member_alignment restore

int status, mailbox_channel, wait_efn;

/*
 * Create a temporary mailbox with a WRITEONLY channel. Its logical name
 * will be entered into the LNM$TEMPORARY_MAILBOX logical name table.
 */

 status = sys$crembx(0,&mailbox_channel,mailbox_maxmsg,mailbox_bufquo,
 0,0,&mailbox_name_desc,CMB$M_WRITEONLY);
if (status != SS$_NORMAL) (void) lib$signal(status);

/*
 * Mark the mailbox for deletion. This step is not necessary for a temporary
 * mailbox, but is included as an illustration.
 */
 (void) sys$delmbx(mailbox_channel);

164

Mailbox Driver
Mailbox Driver Programming Examples
/*
 * Reserve an event flag to use with "room in malbox" AST notifications.
 */
 status = lib$get_ef(&wait_efn);
 if (status != SS$_NORMAL)
 (void) lib$signal(status);

/*
 * Loop forever, first waiting until a READ channel is assigned to the mailbox
 * and then write data until there is no more data to write.
 */
 while (TRUE)
 {
 /*
 * Wait for a READER to assign a channel. If a READER is already
 * assigned, this will return immediatly.
 */
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_SETMODE|IO$M_READERWAIT,
 &iosb,
 0,0,
 0,0,0,0,0,0);
 while (status)
 {
 write_buffer_desc.dsc$w_length = max_msg_len;
 status = lib$get_input(
 &write_buffer_desc,
 &prompt_string_desc,
 &write_buffer_desc.dsc$w_length);

 /* If at end of file (user typed <CTRL Z>) then write EOF to
 * the mailbox, deassign the channel, and exit.
 * The writer should not deassign the channel while the write EOF
 * operation is pending, since the write would be cancelled and
 * the reader would never receive the EOF. Omitting IO$M_NOW in
 * this QIOW insures that it will not complete until the reader
 * has actually read the EOF from the mailbox.
 */
 if (status == RMS$_EOF)
 {

 (void) sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_WRITEOF|IO$M_READERCHECK,
 &iosb,
 0,0,0,0,
 0,0,0,0);
 (void) sys$dassgn(mailbox_channel);
 (void) sys$exit(SS$_NORMAL);
 }

 /* Write the message into the mailbox. If there isn't enough
 * room, try again until it fits.
 * Note that if the NORSWAIT function modifier had been eliminated
 * below, then the ROOM_NOTIFY and the retry loop could have been
 * removed. ROOM_NOTIFY was used in this example simply to show
 * its use. It would be more appropriately used when the program
 * has other things it can be working on, as opposed to the
 * example below in which the program is not doing anything except
 * WAITING for room in the mailbox.
 */
165

Mailbox Driver
Mailbox Driver Programming Examples
 do
 {
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_WRITEVBLK|IO$M_READERCHECK|IO$M_NOW|IO$M_NORSWAIT,
 &iosb,
 0,0,
 write_buffer_desc.dsc$a_pointer,
 write_buffer_desc.dsc$w_length,
 0,0,0,0);
 if (status == SS$_NORMAL)
 {
 /* If there is no longer a reader, just exit. */
 if ((unsigned int) iosb.condition == SS$_NOREADER)
 {
 (void) sys$dassgn(mailbox_channel);
 (void) sys$exit(iosb.condition);
 }
 }
 else if (status == SS$_MBFULL)
 {
 if (ast_enabled)
 /*
 * Wait here until the AST routine sets the event
 * flag. A read might have already occured, in which
 * case the wait will return immediately.
 */
 (void) sys$waitfr(wait_efn);
 else
 /*
 * The mailbox was full a moment ago at the time of
 * write, but a read might have already occured and
 * the mailbox might be empty now. It is possible
 * that no more reads will complete (and deliver
 * the AST) before the next write. So enable the AST
 * and try the write one more time before waiting for
 * the event flag.
 */
 enable_room_ast(mailbox_channel, wait_efn);
 } else /* An unexpected error condition */
 (void) lib$signal(status);
 }
 while (status != SS$_NORMAL);
 }
 }
}
void enable_room_ast(int mailbox_channel, int efn)
/*
 * This routine requests AST delivery when there is room in the mailbox.
 * AST delivery may be triggered by a read or a cancelled I/O.
 */
{
 int status;

 ast_enabled = TRUE;
 status = sys$clref(efn);

 /*
 * This QIOW returns immediately, whether there is room in the mailbox
 * or not. Even if there is room in the mailbox now, the AST is
 * NOT delivered immediately, but only later when a read or cancel
 * I/O occurs on the mailbox.
 */
166

Mailbox Driver
Mailbox Driver Programming Examples
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_SETMODE|IO$M_MB_ROOM_NOTIFY,
 0,0,0,
 more_room_ast,efn,0,0,0,0);
}
void more_room_ast(int efn)
/*
 * This AST routine is called when there is room to write more data into
 * the mailbox.
 */
{
 ast_enabled = FALSE;
 (void) sys$setef(efn);
}

167

Mailbox Driver
Mailbox Driver Programming Examples
168

Terminal Driver
Supported Terminal Devices
5 Terminal Driver

This chapter describes the use of the terminal driver (TTDRIVER) and the LAT port driver (LTDRIVER). The
terminal driver supports the asynchronous, serial line multiplexers listed in Table 5-1. The terminal driver
also supports the console terminal. The LAT port driver accommodates I/O requests from application
programs; for example to make connections to remote devices, such as a printer, on a server (see Section
5.4.4).

5.1 Supported Terminal Devices
In addition to the multiplexers listed in Table 5-1, the terminal driver supports serial line interfaces. At least
one such interface is always provided and is used to attach the system console terminal. This interface does
not allow the setting of multiple terminal speeds, parity, or any maintenance functions, with the exception of
the interface included with the VAX 8200 processor. The terminal devices supported by the operating system
for this interface are listed in Table 5-1.

The remote command terminal, used by the DCL command SET HOST, also makes use of the features listed
in Section 5.2.

Table 5-1 Supported Terminal Devices

Terminal
Interfaces

No. of
Lines Output Split Speed Bus International

Modem Control

Silo DMA

CXY08 8 Yes1 Yes Yes Q-bus Full

CXA16 16 Yes1 Yes Yes Q-bus No

CXB16 16 Yes1 Yes Yes Q-bus No

DZQ11 4 No No Yes Q-bus No

DZQ11-CR 4 No No Yes Q-bus No

MicroVAX 2000 4 No No Yes None No

MicroVAX 3100 4 No No Yes None No

DZV11 4 No No No Q-bus No

DHQ11 8 Yes Yes Yes Q-bus Full

DHU11 16 Yes1 Yes Yes UNIBUS Full

DHV11 8 No Yes Yes Q-bus Full

DMB32 8 No Yes Yes VAXBI bus Full
169

Terminal Driver
Supported Terminal Devices
DHB32 16 No Yes Yes VAXBI bus Full

DSH32 8 Yes No Yes MicroVAX
2000,
MicroVAX
3100

No

DMF32 8 Yes Yes2 Yes2 UNIBUS Yes

DMZ32 24 Yes Yes Yes UNIBUS Full

DZ11 8/16 No No No UNIBUS No

DZ32 8 No No Limited UNIBUS No

LAT 3 No Yes 3 N/A 3

VAX 8200 serial
lines

4 No No No4 None No

VAXstation 3100 4 No No Yes None No

VAXstation 4000 2 No No Yes None No

DEC 2000 Model
300

2 No No No None Full

DEC 2000

Model 3005

4, 8 Yes No No EISA Full

AlphaServer 2100 2 No No No None Full

AlphaServer5 4, 8 Yes No No EISA Full

DEC 3000 Model
300

3 No Yes6 No None Full

DEC 3000 Model
400

4 No Yes7 No None Full

DEC 3000 Model
500

4 No Yes7 No None Full

DEC 4000 Model
600

2 No No No None Full

1. Depends on whether the DHV or DHU mode is selected when the board is installed
2. Lines 0 and 1.
3. Server-dependent.

Table 5-1 Supported Terminal Devices (Continued)

Terminal
Interfaces

No. of
Lines Output Split Speed Bus International

Modem Control

Silo DMA
170

Terminal Driver
Terminal Driver Features
5.2 Terminal Driver Features
The terminal driver provides the following features:

• Input processing

— Command-line editing and command recall

— Control characters and special keys

— Input character validation (read verify)

— American National Standard Institute (ANSI) escape sequence detection

— Type-ahead feature

— Specifiable or default input terminators

— Special operating modes, such as NOECHO and PASTHRU

• Output processing

— Efficiency

— Limited full-duplex operation

— Formatted or unformatted output

• Dialup support

— Modem control

— Hangup on logout

— Preservation of process across hangups

• Miscellaneous

— Terminal/mailbox interaction

— Autobaud detection

— Out-of-band control character handling

4. The operating system always supports the first serial line as a console interface. The first serial
line and the remaining three serial lines are also supported as user terminal interfaces at a
maximum speed of 1200 baud in configurations that can include a LAT terminal interface, but do
not include other terminal interfaces.

5. Optional multifunctional serial/parallel PC4XD-AA adapter card. You can daisy-chain up to four
boards in one system, resulting in 14, 32, or 64 ports.

6. Communications only if not booted as an alternate console.
7. Communications only.
171

Terminal Driver
Terminal Driver Features
5.2.1 Input Processing

The terminal driver defines many terminal characteristics and read function modifiers, which provide a wide
range of options to an application program. These options allow multiple levels of control over the terminal
driver's input process, ranging from the default of command-line editing that provides a highly flexible user
interface, to the PASTHRU mode, which inhibits input process interpretation of data.

5.2.1.1 Command-Line Editing and Command Recall

The terminal driver input process defines a bounded set of line editing functions. You can access these
functions with control keys on all keyboards, and with some special keys on certain keyboards as well. You
can move the cursor in single-character increments (left arrow or Ctrl/D, right arrow or Ctrl/F) or in
multicharacter increments, to the beginning of the line (Ctrl/H) or end of the line (Ctrl/E). The terminal driver
supports both insert character and overstrike character modes. The insert or overstrike mode is the
terminal's default characteristic1 at the beginning of a read operation, but you can change it with the toggle
insert/overstrike key (Ctrl/A). You can delete characters in word increments (Ctrl/J or line feed) and
beginning-of-the-line increments (Ctrl/U).

When you use the terminal driver's editing functions, the following restrictions result:

• You cannot move the cursor to a previous line after a line wrap.

• You cannot insert a character if the insertion would force a line wrap or if a tab follows the current cursor
position.

• You cannot delete a word at the beginning of a line after a line wrap.

• You cannot assign the line editing function to other keys.

Command recall, initiated by Ctrl/B or the up arrow, returns the last line entered to the command-line buffer.
At this point, you edit or reenter the line by pressing the Return key. DCL extends command recall to the last
20 commands by using the TRM$M_TM_NORECALL modifier to disable the terminal driver's recall
mechanism.

Any control key that is not defined by line editing is ignored. For application programs that require control
key input but do not perform QIO functions with special read modifiers, the SET TERMINAL/NOLINE_EDIT
DCL command restores most of the terminal driver behavior described under OpenVMS Versions 3.0 through
3.7.

5.2.1.2 Control Characters and Special Keys

A control character is a character that controls action at the terminal rather than passing data to a process.
An ASCII control character has a code between 0 and 31, and 127 (hexadecimal 0 through 1F, and 7F); that is,
all normal control characters plus DELETE. (Table C-1 lists the numeric values for all control characters.)

You enter some control characters at the terminal by simultaneously pressing the Ctrl key and a character
key, such as Ctrl/x. Table 5-2 lists the terminal control characters. You can change control character echo
strings (Ctrl/C, Ctrl/Y, Ctrl/O, and Ctrl/Z) on a systemwide basis (refer to the HP OpenVMS System
Management Utilities Reference Manual). You enter special keys, such as Return, Line Feed, and Escape, by
pressing a single key.

1. HP suggests that new users specify overstrike mode.
172

Terminal Driver
Terminal Driver Features
Several of the control characters do not function as described if the DCL command SET
TERMINAL/LINE_EDIT is not specified. Refer to the HP OpenVMS DCL Dictionary for information on line
editing function keys and the SET TERMINAL command.

Table 5-2 Terminal Control Characters

Control Character Meaning

Cancel(Ctrl/C) Gains the attention of the enabling process if the user program has enabled a
Ctrl/C AST. If a Ctrl/C AST is not enabled, Ctrl/C is converted to Ctrl/Y (see
Section 5.4.3.2).

The terminal performs a carriage-return/line-feed combination (carriage
return followed by a line feed), echoes CANCEL, and performs another
carriage-return/line-feed combination. If the terminal has the ReGIS
characteristic or if Ctrl/Y is pressed, the cancel ReGIS escape sequence is
sent.

Additional consequences of Ctrl/C are as follows:

• The type-ahead buffer is emptied.

• Ctrl/S and Ctrl/O are reset.

• All queued and in-progress write operations and all in-progress read
operations are successfully completed. The status return is
SS$_CONTROLC, or SS$_CONTROLY if Ctrl/C is converted to Ctrl/Y.

The F6 key maps to Ctrl/C on the following terminal types: LK201, LK46W,
LK461, LK463, and other compatible LK-series keyboards.

Note that Ctrl/C is generally translated to Ctrl/Y for processing within DCL,
unless you have a Ctrl/C handler. Use LIB$ENABLE_CTRL and
LIB$DISABLE_CTRL to get Ctrl/C and Ctrl/Y handled within your
application. Example 5-4 shows a programming example that demonstrates
Ctrl/Y and Ctrl/C handling under OpenVMS.

Delete Character
(DELETE)

Removes the last character entered from the input stream.

DELETE (decimal 127 or hexadecimal 7F) is ignored if there are currently
no input characters. Hardcopy terminals echo the deleted character enclosed
in backslashes. For example, if the character z is deleted, \z\is echoed (the
second backslash is echoed after the next non-DELETE character is
entered). Terminals that have the TT$M_SCOPE characteristic echo
DELETE by removing the character.

Delete line (Ctrl/U) Purges current input data. When Ctrl/U is entered before the end of a read
operation, the current input line is deleted. (In the case of a line wrap, Ctrl/U
deletes only a line at a time.) If line editing is enabled (SET
TERMINAL/LINE_EDIT is specified), the data from the beginning of the
line to the current cursor position is deleted.

Delete word (Ctrl/J or F13)
(Line feed)

Deletes the word before the cursor. Word terminators are all control
characters, space, comma, dash, period, and ! ' # $ & ' () + @ [\] ̂ {| ~ /
: ; = ? (see Appendix C).
173

Terminal Driver
Terminal Driver Features
Discard output (Ctrl/O) Discards output. Action is immediate. All output is discarded until the next
read operation, the next write operation with a IO$M_CANCTRLO modifier,
or the receipt of the next Ctrl/O. The terminal echoes OUTPUT OFF. The
current write operation (if any) and write operations performed while Ctrl/O
is in effect are completed with a status return of SS$_CONTROLO.

A second Ctrl/O, which reenables output, echoes OUTPUT ON. Ctrl/C, Ctrl/Y,
and Ctrl/T cancel Ctrl/O.

End of line (Ctrl/E) Moves the cursor to the end of the line.

Exit (Ctrl/Z or F10) Echoes EXIT when Ctrl/Z is entered as a read terminator. By convention,
Ctrl/Z constitutes end-of-file.

Interrupt (Ctrl/Y) Ctrl/Y is a special interrupt or attention character that is used to invoke the
command interpreter for a logged-in process. Ctrl/Y can be enabled with an
IO$M_CTRLYAST function modifier to a IO$_SETCHAR or IO$_SETMODE
function code. The command interpreter's Ctrl/Y AST handler always takes
precedence over a user program's Ctrl/Y AST handler

Entering Ctrl/Y results in an AST to an enabled process to signify that the
user entered Ctrl/Y from the terminal. The terminal performs a
carriage-return/line-feed combination, echoes INTERRUPT, and performs
another carriage-return/line-feed combination if the AST and echo are
enabled. Ctrl/Y is ignored (and not echoed) if the process is not enabled for
the AST.

Additional consequences of Ctrl/Y are as follows:

• The type-ahead buffer is flushed.

• Ctrl/S and Ctrl/O are reset.

• All queued and in-progress write operations and all in-progress read
operations are successfully completed with a 0 transfer count. The status
return is SS$_CONTROLY.

• The cancel ReGIS escape sequence is sent.

Move cursor left (Ctrl/D) Moves the cursor one position to the left.

Move cursor right (Ctrl/F) Moves the cursor one position to the right.

Move cursor to beginning of
line (Ctrl/H or F12)
(Backspace)

Moves the cursor to the beginning of the line.

Purge type-ahead (Ctrl/X) Purges the type-ahead buffer and performs a Ctrl/U operation. Action is
immediate. If a read operation is in progress, the operation is equivalent to
Ctrl/U.

Recall (Ctrl/B or up arrow) Recalls the last command entered. DCL extends recall to several commands.

Table 5-2 Terminal Control Characters (Continued)

Control Character Meaning
174

Terminal Driver
Terminal Driver Features
5.2.1.3 Read Verify

The read verify instructions provided by the terminal driver allow validation of data as each character is
entered. Invalid characters are not echoed and terminate the operation. The terminal driver does not support
full function field processing. Large data entry applications should use one of the DECforms, FMS, or TDMS
layered products, which support the entire data entry environment.

Redisplay input (Ctrl/R) Redisplays current input. When Ctrl/R is entered during a read operation, a
carriage-return/line-feed combination is echoed on the terminal, and the
current contents of the input buffer are displayed. If the current operation is
a read with prompt (IO$_READPROMPT) operation, the current prompt
string is also displayed. Ctrl/R has no effect if the characteristic
TT$M_NOECHO is set.

Restart output (Ctrl/Q) Controls data flow; used by terminals and the driver. Restarts data flow to
and from a terminal if previously stopped by Ctrl/S. The action occurs
immediately with no echo. Ctrl/Q is also used to solicit read operations.

Ctrl/Q is meaningless if the line does not have the characteristic
TT$M_TTSYNC, the characteristic TT$M_READSYNC, or is not currently
stopped by Ctrl/S.

RET (Return) If used during a read (input) operation, RET echoes a
carriage-return/line-feed combination. All carriage returns are filled on
terminals with TT$M_CRFILL specified.

Stop output (Ctrl/S) Controls data flow; used by both terminals and the terminal driver. Ctrl/S
stops all data flow; the action occurs immediately with no echo. Ctrl/S is also
used to stop read operations. Ctrl/S is meaningful only if the terminal has
either the TT$M_TTSYNC characteristic or the TT$M_READSYNC
characteristic.

TAB(Ctrl/I) Tabs horizontally. Advances to the next tab stop on terminals with the
characteristic TT$M_MECHTAB, but the terminal driver assumes tab stops
on MODULO 8 (multiples of 8) cursor positions. On terminals without this
characteristic, enough spaces are output to move the cursor to the next
MODULO 8 position.

Status (Ctrl/T) Displays the current time. Ctrl/T also displays the current node and user
name, the name of the image that is running, and information about system
resources that have been used during the current terminal session.

Toggle insert/overstrike
(Ctrl/A or F14)

Changes current edit mode from insert to overstrike, or from overstrike to
insert. The default mode (as set with SET TERMINAL/LINE_EDIT) is reset
at the beginning of each line.

Table 5-2 Terminal Control Characters (Continued)

Control Character Meaning
175

Terminal Driver
Terminal Driver Features
5.2.1.4 Escape and Control Sequences

Escape and control sequences provide additional terminal control not furnished by the control characters and
special keys (see Section 5.2.1.2). Escape sequences are strings of two or more characters, beginning with the
escape character (decimal 27 or hexadecimal 1B), which indicate that control information follows. Many
terminals send and respond to such escape sequences to request special character sets or to indicate the
position of a cursor.

The set mode characteristic TT$M_ESCAPE (see Table 5-5) is used to specify that terminal lines can generate
valid escape sequences. Also, the read function modifier IO$M_ESCAPE allows any read operation to
terminate on an escape sequence regardless of whether TT$M_ESCAPE is set. If either TT$M_ESCAPE or
IO$M_ESCAPE is set, the terminal driver verifies the syntax of the escape sequences. The sequence is always
considered a read function terminator and is returned in the read buffer; a read buffer can contain other
characters that are not part of an escape sequence, but a complete escape sequence always terminates a read
operation. The return information in the read buffer and the I/O status block includes the position and size of
the terminating escape sequence in the data record (see Section 5.4.1.4).

 Any escape sequence received from a terminal is checked for correct syntax. If the syntax is not correct,
SS$_BADESCAPE is returned as the status of the I/O. If the escape sequence does not fit in the user buffer,
SS$_PARTESCAPE is returned. If SS$_PARTESCAPE is returned, the application program must issue
enough single-character read requests, without timeout, to read the remaining characters in the escape
sequence, while parsing the syntax of the rest of the escape sequence. Use of the TRM$_ESCTRMOVR item
code prevents SS$_PARTESCAPE errors. No syntax integrity is guaranteed across read operations. Escape
sequences are never echoed. Valid escape sequences take any of the following forms (hexadecimal notation):

ESC <int>...<int><fin> (7-bit environment)

CSI <int>...<int><fin> (8-bit environment)

The keywords in the escape sequences indicate the following:

Three additional escape sequence forms are as follows:

ESC <;> <20-2F>...<30-7E>
ESC <20-2F>...<30-7E>
ESC <O><20-2F>...<40-7E>

Control sequences, as defined by the ANSI standard, are escape sequences that include control parameters.
Control sequences have the following format:

ESC [<par>...<par><int>...<int><fin> (7-bit environment)

CSI <par>...<par><int>...<int><fin> (8-bit environment)

ESC The ESC key, a byte (character) of 1B. This character introduces the escape sequence in a 7-bit
environment.

CSI The control sequence introducer, a byte (character) of 9B. This character introduces the escape
sequence in a 8-bit environment.

<int> An “intermediate character” in the range of 20 to 2F. This range includes the space character
and 15 punctuation marks. An escape sequence can contain any number of intermediate
characters, or none.

<fin> A “final character” in the range of 30 to 7E. This range includes uppercase and lowercase
letters, numbers, and 13 punctuation marks.
176

Terminal Driver
Terminal Driver Features
The keywords in the control sequences indicate the following:

For example, the position cursor control sequence is ESC [Pl ; Pc H where Pl is the desired line position and
Pc is the desired column position.

The user guides for the various terminals list valid escape and control sequences. For example, the VT100
User Guide lists the escape and control sequences for VT100 terminals.

Section 5.2.1.2 describes control character functions during escape sequences.

Table C-2 lists the valid ANSI and DIGITAL private escape sequences for terminals that have the
TT2$M_ANSICRT, TT2$M_DECCRT, TT2$M_DECCRT2, TT2$M_AVO, TT2$M_EDIT, and TT2$M_BLOCK
characteristics (see Table 5-6). Table C-2 also lists assumed and selectable ANSI modes and selectable
DIGITAL private modes. Only the names of the escape sequences and modes are listed (for more information,
refer to the specific user guide for the various terminals). Unless otherwise noted, the operation of escape
sequences and modes is identical to the particular terminals that implement these features.

5.2.1.5 Type-Ahead Feature

Input (data received) from a terminal is always independent of concurrent output (data sent) to a terminal.
This feature is called type-ahead. Type-ahead is allowed on all terminals, unless explicitly disabled by the set
mode characteristic, inhibit type-ahead (TT$M_NOTYPEAHD; see Table 5-5 and Section 5.4.3).

Data entered at the terminal is retained in the type-ahead buffer until the user program issues an I/O request
for a read operation. At that time, the data is transferred to the program buffer and echoed at the terminal
where it was typed.

Deferring the echo until the read operation is active allows the user process to specify function code modifiers
that modify the read operation. These modifiers can include, for example, noecho (IO$M_NOECHO) and
convert lowercase characters to uppercase (IO$M_CVTLOW) (see Table 5-7).

If a read operation is already in progress when the data is typed at the terminal, the data transfer and echo
are immediate.

The action of the driver when the type-ahead buffer fills depends on the set mode characteristic
TT$M_HOSTSYNC (see Table 5-5 and Section 5.4.3). If TT$M_HOSTSYNC is not set, Ctrl/G (bell) is
returned to inform you that the type-ahead buffer is full. The buffer must then be emptied, at which time a
status of SS$_DATAOVERUN is returned. If TT$M_HOSTSYNC is set, the driver stops input by sending a
Ctrl/S and the terminal responds by sending no more characters. These warning operations begin eight
characters before the type-ahead buffer fills unless the TT2$M_ALTYPEAHD characteristic is set. In that
case, the system generation parameter TTY_ALTALARM is used. The driver sends a Ctrl/Q to restart
transmission when the type-ahead buffer empties completely, and the user has posted another READ QIO.

The type-ahead buffer length is variable, with possible values in the range of 0 through 32,767. The length
can be set on a systemwide basis through use of the system generation parameter TTY_TYPAHDSZ.
Terminal lines that do a large amount of bulk input should use the characteristic TT2$M_ALTYPEAHD,

ESC The ESC key, a byte (character) of 1B.

[A control sequence, a byte (character) of 5B.

CSI The control sequence introducer, a byte (character) of 9B.

<par> A parameter specifier in the range of 30 to 3F.

<int> An “intermediate character” in the range of 20 to 2F.

<fin> A “final character” in the range of 40 to 7E.
177

Terminal Driver
Terminal Driver Features
which allows the use of a larger type-ahead buffer specified by the system generation parameters
TTY_ALTYPAHD and TTY_ALTALARM. (TTY_ALTYPAHD specifies the total size of the alternate
type-ahead buffer; TTY_ALTALARM specifies the threshold at which a Ctrl/S is sent.)

Certain input-intensive applications, such as block mode input terminals, can take advantage of an
optimization in the driver. If a terminal has the characteristic TT2$M_PASTHRU and the read function
IO$M_NOECHO is specified, data is placed directly into the read buffer and thereby eliminates the overhead
for moving the data from the type-ahead buffer.

5.2.1.6 Line Terminators

A line terminator is the control sequence that you type at the terminal to indicate the end of an input line.
Optionally, the application can specify a particular line terminator or class of terminators for read operations.

Terminators are specified by an argument to the QIO request for a read operation. By default, they can be any
ASCII control character except FF, VT, LF, TAB, or BS (see Appendix C). If line editing is enabled, the only
terminators are CR, Ctrl/Z, or an escape sequence. Control keys that do not have an editing function are
nonfunctioning keys. If included in the request, the argument is a user-selected group of characters (see
Section 5.4.1.2).

All characters are 7-bit ASCII characters unless data is input on an 8-bit terminal (see Section 5.4.1). The
characteristic TT$M_EIGHTBIT determines whether a terminal uses the 7-bit or 8-bit character set; see
Table 5-5. All input characters (except some special keys; see Section 5.2.1.2) are tested against the selected
terminators. The input is terminated when a match occurs or your input buffer fills.

The terminal driver notifies the job controller to initiate login when it detects a carriage-return terminator on
a line with no current process (provided the line is not a secure server or the type-ahead feature has not been
disabled). A bell character is sent when the notification occurs. A notification character other than the bell
character may be specified by setting the system generation parameter TTY_AUTOCHAR.

5.2.1.7 Special Operating Modes

The terminal driver supports many special operating modes for terminal lines. (Table 5-5 and Table 5-6 list
these modes.) All special modes are enabled or disabled by the set mode and set characteristics functions (see
Section 5.4.3).

5.2.2 Output Processing

Output handling is designed to be very efficient in the terminal driver. For example, on multiplexers that
support both silo and direct memory access (DMA) ouput, the driver considers record size to decide
dynamically which mode will result in the least overhead. The block size specified by the system generation
parameter TTY_DMASIZE is the minimum size block that can be used in a DMA operation.

5.2.2.1 Duplex Modes

The terminal driver can execute in either half- or full-duplex mode. These modes describe the terminal driver
software, specifically the ordering algorithms used to service read and write requests, not the terminal
communication lines.

In half-duplex mode, all read and write requests are inserted onto one queue. The terminal driver removes
requests from the head of this queue and executes them one at a time; all requests are executed sequentially
in the order in which they were issued.
178

Terminal Driver
Terminal Driver Features
In full-duplex mode, read requests (and all other requests except write requests) are inserted onto one queue
and write requests onto another. The existence of two queues allows the driver to recognize the presence of
two requests, such as a read request and a write request at the same time. However, the driver does not
execute the read request and the write request simultaneously. When it is ready to service a request, the
driver decides which request—the read request or the write request—to process next.

The following terms describe the state of a read request:

• A read request is active when the terminal driver removes that request from the head of the I/O queue.

• A read request is started when the terminal driver moves the first character into the read buffer.

In the terminal driver, write requests usually have priority. A write request can interrupt an active, but not
started, read request.

The terminal driver does not start a read request until all outstanding writes are completed. This means that
a read request could be removed from the head of the read queue while write requests are outstanding, but
the first character is not moved into the read buffer until all outstanding writes are completed.

Once a read request is started, all write requests are queued until the read completes. However, during a read
operation many write requests can be executed before the first input character is entered at the terminal.
Terminal lines that have the TT$M_NOECHO characteristic, or read functions that include the
IO$M_NOECHO function modifier, do not inhibit write operations in full-duplex mode.

If a write function specifies the IO$M_BREAKTHRU modifier, the write operation is not blocked, even by an
active read operation. IO$M_BREAKTHRU does not change the order in which write operations are queued.

When all I/O requests are entered using the Queue I/O Request and Wait ($QIOW) system service, there can
be only one current I/O request at a time. In this case, the order in which requests are serviced is the same for
both half- and full-duplex modes.

The type-ahead buffer always buffers input data for which there is no current read request, in both half- and
full-duplex modes.

5.2.2.2 Formatting of Output

By default, output data is subject to formatting by the terminal driver. This formatting includes actions such
as wrapping, tab expansion, uppercase, and fallback conversions. Applications that do not require formatting
of data can write with the IO$M_NOFORMAT modifier and thereby reduce overhead. IO$M_NOFORMAT
overrides all formatting except fallback translation. Setting the PASTHRU mode (TT2$M_PASTHRU) is
equivalent to writing with the noformat modifier.

Fallback conversions occur regardless of formatting mode.

5.2.2.3 SET HOST Facility and Output Buffering

 The SET HOST facility emulates the terminal driver in the way it writes data to the terminal by stopping the
display as soon as the abort character is entered. However, the SET HOST facility behaves differently from
the terminal driver in that it buffers output data from the program that is executing. Occasionally, this causes
a perception problem for the user when the program is aborted with a Ctrl/C, Ctrl/Y, or an out-of-band abort
character. The user expects the program to terminate and the display to stop immediately.

CTDRIVER and RTPAD

When used between two systems, the SET HOST facility consists of two components: RTPAD on the local
node and CTDRIVER on the remote node. Both components buffer output data to enhance performance when
using wide area networks. CTDRIVER performs the initial buffering, queues the buffers for network transfer,
and returns a successful write status. The user should note that the local terminal display reflects the output
of the executing program after the data has been buffered and transferred over the network—not as the
output buffers are filled on the remote node.
179

Terminal Driver
Terminal Driver Features
The delay between execution of an application and the display of its output can lead to several anomalies in
the effects of Ctrl/C, Ctrl/Y, and out-of-band abort characters.

Output Line Not in Sequence Following an Abort Character

After you enter an abort character (Ctrl/C, Ctrl/Y, or an out-of-band abort character) that causes the input or
output to be aborted, it is possible to receive an additional line of output. This occurs when the application
program calls $QIO (either directly or indirectly through RMS or language support routines) to output data to
a buffer at the same time the abort character is entered.

When CTDRIVER receives the abort character (Ctrl/C, Ctrl/Y, or an out-of-band abort character) from the
network, it flushes the current output buffers and aborts any pending read operations. However, if the
application program calls $QIO with a write operation when the abort character is entered, the $QIO write
data is still buffered and then displayed. The data may not be the next output in sequence from the user's
point of view, since all the previous output buffers in CTDRIVER were flushed and the data in them was not
displayed.

When using the terminal driver, the effect of an abort character on the display screen is different. The
terminal driver does not buffer output from the application during program execution. If the application
program has just called $QIO with a write operation when the abort character is entered, then the $QIO
write data is displayed. Because all write operations are sequential and do not complete until the output is
actually displayed, the additional line displayed is in sequence. There is no break in the data. Normally, the
user will not notice that there is an additional line.

Extra Input Prompt Following an Abort Character

For connections between systems, the CTERM protocol allows CTDRIVER to synchronize with RTPAD before
displaying any more data on the terminal.

NOTE Prior to VAX VMS Version 5.2, a control character entered during program execution to abort
input and output could cause the system to display more than one input prompt.

If the SET HOST facility is used between systems running VMS Version 5.2 and an earlier
version, the extra input prompt is still displayed.

Processing Abort Characters

The abort character AST is delivered after the message describing the aborted read operation has been
received. Therefore, the read status should be set very shortly after the abort character AST is delivered to
the application. Note, however, these are still two asynchronous events, and the application must still
synchronize with the completing read operation.

NOTE Prior to VAX VMS Version 5.2, if an application had a read operation pending and had queued
a Ctrl/C, Ctrl/Y, or out-of-band abort character AST, it was possible to queue multiple read
operations unknowingly when the read operation was aborted.

Captive Command Procedures and Ctrl/Y

CTDRIVER and RTPAD emulate the terminal driver in that the current read operation and all pending write
operations abort when Ctrl/Y is entered. However, the pending write operations also include all the buffered
output that occurred and that would have been output before the Ctrl/Y was entered but due to the buffering
was not.
180

Terminal Driver
Terminal Driver Features
The effect of the buffering can be confusing if a Ctrl/Y is entered when a captive command procedure is
executing. During execution of captive command procedures, DCL has a Ctrl/Y pending. When this AST is
delivered, DCL only reenables it; no other action is performed. In that case, if the program being executed
only performs output, it appears that the program was aborted by the Ctrl/Y. Actually, the program completed
execution before the Ctrl/Y was entered, and the Ctrl/Y merely discarded all the buffered output.

5.2.3 Dialup Support

The operating system supports modem control (for example, Bell 103A, Bell 113, or equivalent) for all
supported multiplexers in autoanswer, full-duplex mode. The terminal driver does not support half-duplex
operations on modems such as the Bell 202. Also not supported are modems that use circuit 108/1 (connect
data set to line signal) in place of the data terminal ready (DTR) signal. Most U.S. and European modems use
the data terminal ready signal, which is the signal supported by the operating system.

5.2.3.1 Modem Signal Control

Dialup lines with the characteristic TT$M_MODEM are monitored periodically to detect a change in the
modem carrier signals data set ready (DSR), calling indicator (RING), or request to send (RTS). The system
generation parameter TTY_SCANDELTA establishes the dialup monitoring period for multiplexers that do
not support modem signal transition interrupts (see Table 5-1).

If a line's carrier signal is lost, the driver waits 2 seconds for the carrier signal to return. If bit 0 of the system
generation parameter TTY_DIALTYPE is set to 1, the driver does not wait. Bit 0 is 0 by default for countries
with Bell System standards, but that bit should be set to 1 for countries with International Telegraph and
Telephone Consultative Committee (CCITT) standards. If the carrier signal is not detected during this time,
the line is hung up. The hangup action can signal the owner of the line, through a mailbox message, that the
line is no longer in use. (No dial-in message is sent; the unsolicited character message is sufficient when the
first available data is received.) The line is not available for a minimum of 2 seconds after the hangup
sequence begins. The hangup sequence is not reversible. If the line hangs up, all enabled Ctrl/Y and
out-of-band ASTs are delivered; the Ctrl/Y AST P2 argument is overwritten with SS$_HANGUP. The I/O
operation in progress is canceled, and the status value SS$_HANGUP is returned in the I/O status block.
DCL is responsible for process deletion after Ctrl/Y is delivered. If the process is suspended, DCL cannot run,
and therefore deletion cannot occur, until the process is resumed.

NOTE Some systems, such as the VAXstation 3100, provide built-in serial lines using 6-pin modular
jacks. These lines do not provide the minimum required modem signals. Although the
hardware may allow a dial-out connection to be established, hangup cannot be detected and
process deletion will not occur on these lines.

For terminals with the TT$M_MODEM characteristic, TT$M_REMOTE reflects the state of the carrier
signal. TT$M_REMOTE is set when the carrier signal changes from off to on, and cleared when the carrier
signal is lost.

A line that does not have TT$M_MODEM set does not respond to modem signals or set the DTR signal.
Modem signals can be set and sensed manually through use of the IO$M_MAINT function modifier (see
Section 5.4.3.3).

The terminal driver default modem protocol meets the requirements of the United States and of European
countries. This protocol is capable of working in automatic answer mode and can also perform manually
dialed outgoing calls. The protocol supports the requirements of most known international telephone
networks. Enhanced modem features are used on multiplexers that support them; processor polling is not
necessary. The protocol also functions in a subset mode for the multiplexers that do not support full modem
signals (see Table 5-1).
181

Terminal Driver
Terminal Driver Features
Table 5-3 lists the control and data signals used in a full modem control mode configuration (in a two-way
simultaneous, symmetrical transmit mode). Figure 5-1 is a flowchart that shows a typical signal sequence for
a terminal operation in this mode. The flowchart shows the states that the modem transition code goes
182

Terminal Driver
Terminal Driver Features
through to detect different types of transitions in modem state. These transitions allow the driver to detect
loss of lines that have been idle for several minutes. Modem states do not affect the ability of the system to
transmit characters.

Figure 5-1 Modem Control: Two-Way Simultaneous Operation

TX MARK
RTS OFF
DTR OFF

Idle

Delay 2 sec

Delay 1 sec

ONRTS

DTR ON
Wait

DTR ON
RTS ON

Start 30sec timer

Start 30sec timer

Transmit and receive data

Start 2sec timer

Transmit1

Timeout

Shutdown DTR OFF

Delay 1 sec

Start 2sec timer

Shut1

OFFDSR

ONDSR

ONCARRIER + CTS + DSR

Init2

Reference Count>0

DZ11 Wait

RING Wait
TTY_DIALTYPE=2

DZ11

ONCARRIER

ONRING

ONRING

TTY_DIALTYPE=4

ONCARRIER

OFFCARRIER

OFFDSR

Count=0
Reference

Timeout

OFFDSR

ZK0687GE

Timeout

TTY_DIALTYPE=1

Init1

Transmit0

PORT_RESUME

Transmit
183

Terminal Driver
Terminal Driver Features
Set mode function modifiers are provided to allow a process to activate or deactivate modem control signals
(see Section 5.4.3.3).

Bit 1 of the system generation parameter TTY_DIALTYPE enables alternate modem protocol on a
systemwide basis. If bit 1 is 0 (the default), the RING signal is not used. If bit 1 is 1, the modem protocol
delays setting the DTR signal until the RING signal is detected.

Remote terminal connections have a timeout feature for the security of dialup lines. If no channel is assigned
to the port within 30 seconds, or a port with an assigned channel is not allocated, the DTR signal is dropped.
Such action prevents an unused terminal from tying up a line. However, there are configurations (such as a
printer connected to a remote line) in which the line should not be dropped even though it is not being used
interactively. To bypass the 30-second timeout, set the system generation parameter TTY_DIALTYPE to 4.
(Note that if TTY_DIALTYPE is equal to 4, all dialup lines will skip the timeout waiting for a channel to be
assigned.)

Table 5-3 Control and Data Signals

Signal Source MUX1 Meaning

Transmitted data
(TxD)

Computer All The data originated by the computer and
transmitted through the modem to one or more
remote terminals.

Received data (RxD) Modem All The data generated by the modem in response to
telephone line signals received from a remote
terminal and transferred to the computer.

Request to send
(RTS)

Computer Full If present (ON condition), RTS directs the modem
to assume the transmit mode. If not present(OFF
condition), RTS directs the modem to assume the
nontransmit mode after all transmit data has
been transmitted.

Clear to send (CTS) Modem Full Indicates whether the modem is ready (ON
condition) or not ready (OFF condition) to
transmit data on the telephone line.

Data set ready (DSR) Modem Full If present (ON condition), DSR indicates that the
modem is ready to transmit and receive; that is,
the modem is connected to the line and is ready to
exchange further control signals with the
computer to initiate the exchange of data.

If DSR is not present (OFF condition), the modem
is not ready to transmit and receive. If DSR is
detected, the operating system initiates a
30-second timer. This ensures that the phone line
will be disconnected if CARRIER is not detected.

Data channel
received line signal
detector (CARRIER)

Modem All If present (ON condition), CARRIER indicates
that the received data channel line signal is
within appropriate limits, as specified by the
modem. If not present (OFF condition), the
received signal is not within appropriate limits.
184

Terminal Driver
Terminal Driver Features
5.2.3.2 Hangup on Logging Out

By default, logging out on a line with modem signals will not break the connection. If TT2$M_HANGUP is
set, modem signals are dropped when the process logs out. If TT2$M_MODHANGUP is set, no privilege is
required to change the state of TT2$M_HANGUP. By setting TT2M_HANGUP, system managers can prevent
nonprivileged users who are not logged in from tying up a dial-in line.

5.2.3.3 Preservation of a Process Across Hangups

Disconnectable terminals allow a connection to a physical terminal line to be broken without losing the job.

On VAX systems, the following SYSGEN command allows terminals to be disconnectable terminals:

SYSGEN> CONNECT VTA0/NOADAPTER/DRIVER=TTDRIVER

On Alpha and I64 systems, the following SYSMAN command allows terminals to be disconnectable terminals:

SYSMAN> IO CONNECT VTA0/NOADAPTER/DRIVER=SYS$TTDRIVER

After this command is entered, a terminal with the TT2$M_DISCONNECT characteristic logs in as VTAn:,
rather than with the physical terminal name. When a terminal is set up in this manner, no input or output
operations are allowed to the physical device; I/O is automatically redirected to the appropriate virtual
terminal.

Following are four ways in which a terminal can become disconnected:

• Modem signals between the host and the terminal are lost.

• A user presses the BREAK key on a terminal that has the TT2$M_SECURE characteristic.

• A user enters the DCL command DISCONNECT.

• A user enters the DCL command CONNECT/CONTINUE.

Data terminal ready
(DTR)

Computer All If present (ON condition), DTR indicates that the
computer is ready to operate, prepares the modem
to connect to the telephone line, and maintains
the connection after it has been made by other
means. DTR can be present whenever the
computer is ready to transmit or receive data. If
DTR is not present (OFF condition), the modem
disconnects the modem from the line.

Calling indicator
(RING)

Modem All Indicates whether a calling signal is being
received by the modem. Bit 1 of the system
generation parameter TTY_DIALTYPE must be
set (=1). If RING is detected, the operating system
initiates a 30-second timer. This ensures that the
phone line will be disconnected if CARRIER is not
detected.

1. Multiplexers (All = any supported controller; Full = DZ32, DMF32, DMB32, DMZ32, DHU11,
DHV11, and CXY08).

Table 5-3 Control and Data Signals (Continued)

Signal Source MUX1 Meaning
185

Terminal Driver
Terminal Driver Features
After validated as a user, you can connect to a disconnected process in either of the following ways:

• Allow the login process to make the connection.

• Enter the DCL command CONNECT.

5.2.4 Terminal/Mailbox Interaction

Mailboxes are virtual I/O devices used to communicate between processes. The terminal I/O driver can use a
mailbox to communicate with a user process. Chapter 4 describes the mailbox driver.

A user program can use the Assign I/O Channel ($ASSIGN) system service to associate a mailbox with one or
more terminals. The terminal driver sends messages to this mailbox when terminal-related events that
require the attention of the user image occur.

Mailboxes used in this way carry status messages, not terminal data, from the driver to the user program. For
example, when data is received from a terminal for which no read request is outstanding (unsolicited data), a
message is sent to the associated mailbox to indicate data availability. On receiving this message, the user
program reads the channel assigned to the terminal to obtain the data. Messages are sent to mailboxes under
the following conditions:

• Unsolicited data in the type-ahead buffer. The use of the associated mailbox can be enabled and disabled
as a subfunction of the read and write requests (see Sections Section 5.4.1 and Section 5.4.2). (Initially,
mailbox messages are enabled on all terminals. This is the default state.) Therefore, the user process can
enter into a dialogue with the terminal after an unsolicited data message arrives. Then, after the dialogue
is over, the user process can reenable the unsolicited data message function on the last I/O exchange. Only
one message is sent between read operations.

• Terminal hangup. When a remote line loses the carrier signal, it hangs up; a message is sent to the
mailbox. When hangup occurs on lines that have the characteristic TT$M_REMOTE set, the line returns
to local mode.

• Broadcast messages. If the characteristic TT2$M_BRDCSTMBX is set, broadcasts sent to a terminal are
placed in the mailbox (this is independent of the state of TT$M_NOBRDCST).

Messages placed in the mailbox have the following content and format (see Figure 5-2):

• Message type. The codes MSG$_TRMUNSOLIC (unsolicited data), MSG$_TRMHANGUP (hangup), and
MSG$_TRMBRDCST (terminal broadcast) identify the type of message. Message types are identified by
the $MSGDEF macro.

• Device unit number to identify the terminal that sent the message.

• Counted string to specify the device name.

• Controller name.
186

Terminal Driver
Terminal Driver Features
• Message (for broadcasts).

Figure 5-2 Terminal Mailbox Message Format

Interaction with a mailbox associated with a terminal occurs through standard QIO functions and ASTs.
Therefore, the process need not have outstanding read requests to an interactive terminal to respond to the
arrival of unsolicited data. The process need only respond when the mailbox signals the availability of
unsolicited data. Chapter 4 contains an example of mailbox programming.

The ratio of terminals to mailboxes is not always one to one. One user process can have many terminals
associated with a single mailbox.

5.2.5 Autobaud Detection

 If you specify the /AUTOBAUD qualifier with the SET TERMINAL command, automatic baud rate detection
is enabled, allowing the terminal baud rate to be set when you log in. The baud rate is set at login by pressing
the Return key two or more times separated by an interval of at least one second. (Pressing a key other than
Return might detect the wrong baud rate; if this occurs, wait for the login procedure to time out before
continuing.) The supported baud rates are 110, 150, 300, 600, 1200, 1800, 2400, 3600, 4800, 9600, and 19,200.
Newer Alpha systems can autobaud up to 57600. Parity is allowed on these lines.

The autobaud function works with either even parity or no parity, but not with odd parity. If a line is set to
even parity and has 7 bits of data, the line automatically switches to no parity if a terminal not generating
parity attempts to log in.

The SET TERMINAL qualifier /EIGHT_BIT specifies that the terminal uses 8-bit ASCII code.
/NOEIGHT_BIT, which is the default, specifies 7-bit ASCII code. (If parity is specified, the parity bit is
separate from the data bits.) The optimal settings for automatic baud rate detection on HP terminals are
/NOEIGHT_BIT/PARITY=EVEN or /EIGHT_BIT/NOPARITY, although automatic baud rate detection also
works with other combinations, such as /NOEIGHT_BIT/NOPARITY.

Table 5-6 describes the terminal characteristic TT2$M_AUTOBAUD, which allows the baud rate to be set
automatically at login.

HP does not usually recommend specifying the /FRAME qualifier with the SET TERMINAL command. The
terminal driver selects the frame size (the number of data bits that the device can transmit) based on how the
/PARITY and /EIGHT_BIT qualifiers are set. It might be necessary to change these values if the terminal is
not made by HP.

31 16 15 8 7 0

Unit Number Message Type

ZK0686GE

Counted StringController Name *

Broadcast Message Length

* Does not include the colon (:) character.

0

4

8

12

16

20

Message
Broadcast
187

Terminal Driver
Terminal Driver Device Information
5.2.6 Out-of-Band Control Character Handling

All control characters (0 through 1F hexadecimal) can be enabled as out-of-band characters. Typing one of
these characters immediately delivers an AST to the requesting process. DCL uses this mechanism to sense
whether Ctrl/T has been entered. Out-of-band character options allow using the IO$M_INCLUDE function
modifier to include the character in the data stream and the IO$M_TT_ABORT function modifier to abort the
current input or output operation.

5.3 Terminal Driver Device Information
You can obtain information on terminal characteristics by using the Get Device/Volume Information
($GETDVI) system service. (Refer to the HP OpenVMS System Services Reference Manual.) The sense mode
function provides an alternative means to obtain terminal characteristics; see Section 5.4.5.

$GETDVI returns terminal characteristics when you specify the item codes DVI$_DEVCHAR,
DVI$_DEVDEPEND, and DVI$_DEVDEPEND2. Table 5-4, Table 5-5, and Table 5-6 list these characteristics.
Terminal characteristics are normally set during system generation to any one of, or a combination of, the
values listed in Table 5-5. DVI$_DEVDEPEND returns a longword field in which the three low-order bytes
contain the device-dependent characteristics and the high-order byte contains the page length. Page length
can have a value in the range of 0 through 255. The $DEVDEF macro defines the device-independent
characteristics, the $TTDEF macro defines the device-dependent characteristics, and the $TT2DEF macro
defines the extended device-dependent characteristics.

DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device type names, which are defined by
the $DCDEF and $TTDEF macros, respectively. The device class for terminals is DC$_TERM. The terminal
model determines the device type. For example, the device type for the VT240 is TT$_VT200_SERIES.
DVI$_DEVBUFSIZ returns the page width, which can be a value in the range of 1 through 511. The driver
does not accept a value of 0.

Table 5-4 Terminal Device-Independent Characteristics

Characteristic Meaning

DEV$M_AVL Terminal is on line and available.

DEV$M_CCL Carriage control is enabled.

DEV$M_DET Terminal is detached.

DEV$M_IDV Terminal is capable of input.

DEV$M_ODV Terminal is capable of output.

DEV$M_OPR Terminal is enabled as an operator console.

DEV$M_REC Device is record-oriented.

DEV$M_RTT Terminal has remote terminal UCB extension.

DEV$M_SPL Device is spooled.

DEV$M_TRM Device is a terminal.

DEV$M_NET Terminal line is allocated for DECnet use.
188

Terminal Driver
Terminal Driver Device Information
Table 5-5 Terminal Characteristics

Value1 Meaning

TT$M_CRFILL Terminal requires fill after the Return key is pressed (the fill type can be
specified by the set mode function P4 argument).

TT$M_EIGHTBIT Terminal uses the 8-bit ASCII character set (see Appendix C). Terminals
without this characteristic use the 7-bit ASCII code. In this case, the
eighth bit is masked out on received characters and is ignored on output
characters. The eighth bit is meaningful only if TT$M_EIGHTBIT is set.

TT$M_ESCAPE Terminal generates escape sequences (see Section 5.2.1.4). Escape
sequences are validated for syntax.

TT$M_HALFDUP Terminal is in half-duplex mode (see Section 5.2.2.1). All read and write
requests are executed sequentially.

TT$M_HOSTSYNC The host system is synchronized to the terminal. Ctrl/Q and Ctrl/S are
used to control data flow and thus keep the type-ahead buffer from
filling. TT$M_HOSTSYNC should always be set on LAT terminals.

TT$M_LFFILL Terminal requires fill after the line-feed character is processed. (The fill
can be specified by the set mode P4 argument.)

TT$M_LOWER Terminal has the lowercase character set. Unless the terminal is in the
PASTHRU mode or IO$M_NOFORMAT is specified, all input and
echoed lowercase characters (hexadecimal 61 to 7A) are converted to
uppercase if TT$M_LOWER is not set. (The character ALTMODE
(decimal 125 and 126, or hexadecimal 7D and 7E) converts to ESCAPE
on terminals that do not have the lowercase characteristic
TT$M_LOWER set.)

TT$M_MBXDSABL Mailboxes associated with the terminal do not receive notification of
unsolicited input or hangup (see Section 5.2.3). This bit can be set by
tshe IO$M_DSABLMBX function modifier for read requests and cleared
by the IO$M_ENABLMBX function modifier for write requests.

TT$M_MECHFORM Terminal has mechanical form feed. The terminal driver passes form
feeds directly to the terminal instead of expanding to line feeds.

TT$M_MECHTAB Terminal has mechanical tabs and is capable of tab expansion. To
accomplish correct line wrapping, the terminal driver assumes there are
eight spaces between tab stops.

TT$M_MODEM Terminal line is connected to a modem. If TT$M_MODEM is set, the
terminal driver automatically handles modem control. If
TT$M_MODEM is not set, all modem signals are ignored. If
TT$M_MODEM is set and then cleared, a hangup is declared on the
terminal line if that line is in the remote state (TT$M_REMOTE is set).
If DTR and RTS are set with
IO$_SETMODE!IO$M_SET_MODEM!IO$M_MAINT on a nonmodem
port, DTR and RTS goes off and then back on when the port is set for
modem.

TT$M_MODEM is not supported for LAT devices.
189

Terminal Driver
Terminal Driver Device Information
TT$M_NOBRDCST Terminal does not receive any broadcast messages.

TT$M_NOECHO Input characters are not echoed on this terminal line (see Section
5.2.1.5).

TT$M_NOTYPEAHD Data must be solicited by a read operation. Data is lost if received in the
absence of an outstanding read request (if it is unsolicited data).
Disables type-ahead feature (see Section 5.2.1.5). If this characteristic is
set, login attempts on this line are disabled. See Section 5.2.3.1 for
information on modem signal control.

TT$M_READSYNC Read synchronization is enabled. The host explicitly solicits all read
operations by entering a Ctrl/Q and terminates the operation by
entering a Ctrl/S. TT$M_READSYNC is not applicable to LAT
terminals.

TT$M_REMOTE Dialup characteristic is enabled. The terminal returns to local mode
when a hangup occurs on the terminal line (see Section Section 5.2.3).
This characteristic cannot be changed; it is only informational.

TT$M_SCOPE Terminal is a video screen display (CRT terminal), for example, the
VT100 or VT240 terminals.

TT$M_TTSYNC The terminal is synchronized to the host system. Output to the terminal
is controlled by terminal-generated Ctrl/Q or Ctrl/S. TT$M_TTSYNC is
not applicable to LAT terminals unless TT$M_PASTHRU is set and
TT$M_TTSYNC is disabled, in which case the LAT session is placed in
PASSALL mode.

TT$M_WRAP A carriage-return/line-feed combination should be inserted if the cursor
moves beyond the right margin. If TT$M_WRAP is not set, no
carriage-return/line-feed combination is sent. The operating system does
not support hardware-provided wrapping functions.

1. Defined by the $TTDEF macro. The prefix can be TT$M_ or TT$V_. TT$M_ is a bit mask whose
bit corresponds to the specific field; TT$V_ is a bit number.

Table 5-6 Extended Terminal Characteristics

 Value1 Meaning

TT2$M_ALTYPEAHD Alternate type-ahead buffer size is enabled. Use the alternate
type-ahead buffer size specified during system generation (see Section
5.2.1.5). If a type-ahead buffer already exists for a terminal line, there
is no effect when this characteristic is set for that line.
TT2$M_ALTYPEAHD should be set prior to using the terminal, such
as in the startup command procedure. You can only set
TT2$M_ALTYPEAHD; this characteristic cannot be cleared until the
system is rebooted.

Table 5-5 Terminal Characteristics (Continued)

Value1 Meaning
190

Terminal Driver
Terminal Driver Device Information
TT2$M_ANSICRT ANSI CRT terminal is enabled. This characteristic is set by the SET
TERMINAL command. TT2$M_ANSICRT is a subset of the ANSI
standard with no DIGITAL private escape sequences (see
Appendix C). It is also a subset of the VT100 family terminals
(because TT2$M_ANSICRT is a subset of TT2$M_DECCRT) and the
VT100. Terminals with this characteristic must provide a display of
at least 24 lines, each with 80 columns.

TT2$M_APP_KEYPAD Notifies application programs of state to set the keypad to when
exiting.

TT2$M_AUTOBAUD Automatic baud rate detection is enabled. This characteristic allows
the baud rate to be set automatically when you log in. (The baud rate
is set when one or more carriage returns are entered during the login
procedure.) Terminals are set to a permanent speed of 9600 baud. If
TT2$M_AUTOBAUD is specified, the permanent speed must not be
changed while this characteristic is in use on a given terminal line.
See Section 5.2.5 for additional information on automatic baud rate
detection.

TT2$M_AVO Advanced video is enabled. This characteristic provides the terminal
with blink, bold, and flashing fields as well as a full screen of 132
character lines. TT2$M_AVO is set by the SET TERMINAL
command. Appendix C lists the valid escape sequences for terminals
with the TT2$M_AVO characteristic.

TT2$M_BLOCK Block mode is enabled. This characteristic is set by the SET
TERMINAL command. TT2$M_BLOCK defines additional
ANSI-defined and DIGITAL private escape sequences (see
Appendix C). Terminals with this characteristic are capable of local
editing and block mode transmission (XON/XOFF flow control must
be honored), and have protected fields. If the terminal is used for
large amounts of block input, TT2$M_ALTYPEAHD should also be
specified.

TT2$M_BRDCSTMBX Mailbox broadcasts messages. Broadcast messages are sent to an
associated mailbox, if one exists.

Table 5-6 Extended Terminal Characteristics (Continued)

 Value1 Meaning
191

Terminal Driver
Terminal Driver Device Information
TT2$M_COMMSYNC Enables devices such as asynchronous printers to be connected to
terminal ports. Flow control is handled by EIA modem signals instead
of XON/XOFF. Setting TT2$M_COMMSYNC activates the DTR and
RTS signals; data is sent once the DSR and CTS signals are also
present. If either of these signals is not present, printing stops. When
both signals are present again, printing resumes.

Do not set TT2$M_COMMSYNC on a line connected to a modem that
is intended for interactive use. TT2$M_COMMSYNC disables the
modem terminal characteristic that disconnects a user process from
the terminal line in case of a modem phone line failure. With
TT2$M_COMMSYNC set, the next call on the terminal line could be
attached to the previous user's process. TT2$M_COMMSYNC should
also not be used in combination with XON/XOFF, TT$M_TTSYNC, or
TT$M_HOSTSYNC. TT2$M_COMMSYNC and TT$M_MODEM are
mutually exclusive.

TT2$M_DECCRT DIGITAL CRT terminal. This characteristic is set by the SET
TERMINAL command for all terminals that are upward-compatible
with VT100 family terminals. TT2$M_DECCRT is a superset of
TT2$M_ANSICRT. Additional ANSI-defined as well as most
DIGITAL private escape sequences are allowed for terminals with
this characteristic (see Appendix C); maintenance modes, VT52 mode,
and the use of the LED displays are not defined by TT2$M_DECCRT.
Not all VT100 family terminals implement these features. The
presence of the advanced video feature cannot be assumed because it
is a VT100 option. This restricts the use of graphics attributes.
However, the TT2$M_AVO characteristic can be used to determine
whether additional graphic attributes are available.

TT2$M_DECCRT2 DIGITAL CRT terminal. This characteristic is set by the SET
TERMINAL command for all terminals that are upward-compatible
with VT200 family terminals. TT2$M_DECCRT2 is a superset of
TT2$M_DECCRT.

TT2$M_DECCRT3 DIGITAL CRT terminal. This characteristic is set by the SET
TERMINAL command for all terminals that are upward-compatible
with VT300 family terminals. TT2$M_DECCRT3 is a superset of
TT2$M_DECCRT2.

TT2$M_DECCRT4 DIGITAL CRT terminal. This characteristic is set by the SET
TERMINAL command for all terminals that are upward-compatible
with VT400 family terminals. TT2$M_DECCRT4 is a superset of
TT2$M_DECCRT3.

TT2$M_DIALUP Terminal is a dialup line. Used by LOGINOUT for the disable dialup
control.

Table 5-6 Extended Terminal Characteristics (Continued)

 Value1 Meaning
192

Terminal Driver
Terminal Driver Device Information
TT2$M_DISCONNECT Allows terminal disconnect when a hangup occurs (that is, when
modem signals are lost, when the DCL commands DISCONNECT or
CONNECT/CONTINUE are entered, or when the BREAK key is
pressed on a terminal that has the TT2$M_SECURE characteristic).
These terminals are created as VTAn:. (Refer to the description for
the DCL command CONNECT/DISCONNECT in the HP OpenVMS
DCL Dictionary.)

TT2$M_DMA Direct memory access (DMA) mode. This characteristic enables the
use of DMA mode for asynchronous DMA multiplexers. It is ignored
by non-DMA controllers.

TT2$M_DRCS Terminal supports loadable character fonts. This characteristic is set
with the DCL command SET TERMINAL/SOFT_CHARACTERS.

TT2$M_EDIT Terminal edit. This characteristic is set by the SET TERMINAL
command for all terminals that support ANSI-defined advanced
editing functions. These functions include the ability to insert or
delete a line and the ability to insert or delete characters in an
existing line. Terminals with this characteristic are a superset of
TT2$M_DECCRT. Appendix Clists the valid escape sequences for
terminals with the TT2$M_EDIT characteristic.

TT2$M_EDITING Line editing is allowed.

TT2$M_FALLBACK2 Output is transformed from the 8-bit multinational character set to a
7-bit ASCII character set on terminals that do not support the 8-bit
character set (see Appendix C).

TT2$M_HANGUP Terminal hangup. Terminal lines connected through modems are
hung up when a process logs out or is deleted. The state of this
characteristic cannot be changed unless TT2$M_MODHANGUP is
enabled or the process has either LOG_IO or PHY_IO privilege.

TT2$M_INSERT Sets default mode for insert or overstrike at the beginning of each
read operation.

TT2$M_LOCALECHO Local echo. This characteristic is used with TT$M_NOECHO. If both
characteristics are set, only terminators and special control
characters are echoed. Use of this mode is restricted to command-line
read operations. Application programs that use the IO$M_NOECHO
function modifier will not necessarily work if TT2$M_LOCALECHO
is set. Local echo is also not compatible with line editing
(TT2$M_EDITING).

TT2$M_MODHANGUP Modify hangup. If specified, TT2$M_HANGUP can be modified
without privilege. Otherwise, logical or physical I/O privilege is
required.

Table 5-6 Extended Terminal Characteristics (Continued)

 Value1 Meaning
193

Terminal Driver
Terminal Driver Device Information
5.3.1 Terminal Characteristics Categories

The set mode and set characteristics functions (see Section 5.4.3) and the DCL command SET TERMINAL
are used to change terminal characteristics. The HP OpenVMS DCL Dictionary describes the SET
TERMINAL command.

To customize terminal behavior and usage, the operating system divides terminal characteristics into the
following categories:

TT2$M_PASTHRU Terminal is in PASTHRU mode; all input and output data is in 7- or
8-bit binary format (no data interpretation occurs). Data is
terminated when the buffer is full or when the data that is read
matches the specified terminator. If the characteristic
TT$M_TTSYNC is set, Ctrl/S and Ctrl/Q interpretation does occur.

TT2$M_PRINTER DIGITAL CRT terminal with a local printer port.

TT2$M_REGIS ReGIS graphics. The terminal supports the ReGIS graphics
instruction set.

TT2$M_SIXEL SIXEL graphics. The terminal supports the SIXEL graphics
instruction set.

TT2$M_SECURE For use with nonmodem, nonautobaud lines. This characteristic
guarantees that no process is connected to the terminal after the
BREAK key is pressed. If TT2$M_SECURE is not set, BREAK is a
null key.

TT2$M_SETSPEED Set speed. If specified, either LOG_IO or PHY_IO privilege is
required to change terminal speed. TT2$M_SETSPEED is not
supported for LAT devices.

TT2$M_SYSPWD System password. This characteristic specifies that the login
procedure should require the system password before the user name
prompt is displayed.

TT2$M_XON XON/XOFF control. If a set mode function is performed on a terminal
in the Ctrl/S state, and if TT2$M_XON is set, output is resumed.
Users should note that the driver will attempt to resume stopped
(XOFF) output on the line. However, restarting the output may not be
successful in all cases. The XON/XOFF feature does not work on all
terminals, for example, the VT220.

1. Defined by the $TT2DEF macro. The prefix can be TT2$M_ or TT2$V_. TT2$M_ is a bit mask in
which the bit set corresponds to the specific field; TT2$V_ is a bit number.

2. If an attempt is made to turn on TT2$V_FALLBACK for a disconnected virtual terminal (_VTAx:)
or if the Terminal Fallback Facility (TFF) has not been activated, the status code
SS$_BADPARAM is returned. For more information on TFF, refer to the OpenVMS Terminal
Fallback Utility (available on the Documentation CD-ROM).

Table 5-6 Extended Terminal Characteristics (Continued)

 Value1 Meaning
194

Terminal Driver
Terminal Driver Device Information
• Format effectors—The following characteristics allow you to specify terminal-dependent formatting
requirements:

• Generic terminal capabilities—The following characteristics specify generic terminal features available to
applications programs:

Their use allows execution of these programs without knowledge of the actual terminal type. For example,
a program should check for TT2$M_DECCRT rather than for VT100 or VT101.

• Protocol—The following characteristics control protocols used by the terminal:

• System management—The following characteristics, normally set only at system startup, allow the
system manager to regulate terminal usage:

• User preference—The following characteristics allow you to customize the terminal operating mode:

• Miscellaneous—The following characteristics provide greater program control of terminal operations:

TT$M_CRFILL TT$M_EIGHTBIT TT$M_LFFILL

TT$M_LOWER TT2$M_LOCALECHO TT$M_MECHFORM

TT$M_MECHTAB TT$M_NOECHO TT$M_SCOPE

TT$M_WRAP

TT2$M_ANSICRT TT2$M_AVO TT2$M_BLOCK

TT2$M_DECCRT TT2$M_DECCRT2 TT2$M_DECCRT3

TT2$M_DECCRT4 TT2$M_DRCS TT2$M_EDIT

TT2$M_PRINTER TT2$M_REGIS TT2$M_SIXEL

TT$M_ESCAPE TT$M_HALFDUP TT$M_HOSTSYNC

TT2$M_PASTHRU TT$M_TTSYNC

TT2$M_ALTYPEAHD TT2$M_AUTOBAUD TT2$M_DIALUP

TT2$M_DISCONNECT TT2$M_DMA TT2$M_HANGUP

TT$M_MODEM TT$M_NOTYPEAHD TT2$M_MODHANGUP

TT2$M_SECURE TT2$M_SETSPEED TT2$M_SYSPWD

TT2$M_COMMSYNC

TT2$M_APP_KEYPAD TT2$M_FALLBACK TT2$M_EDITING

TT2$M_INSERT TT$M_NOBRDCST

TT2$M_BRDCSTMBX TT$M_MBXDSABL TT2$M_XON
195

Terminal Driver
Terminal Function Codes
5.4 Terminal Function Codes
The basic terminal I/O functions are read, write, set mode, set characteristics, sense mode, and sense
characteristics. All I/O functions can take function modifiers.

5.4.1 Read

When a read function code is issued, the user-specified buffer is filled with characters from the associated
terminal. The operating system provides the following read function codes:

• IO$_READVBLK—Read virtual block

• IO$_READLBLK—Read logical block

• IO$_READPROMPT—Read with prompt

Read operations are terminated if either of the following two conditions occurs:

• The user buffer is full.

• The received character is included in a specified terminator mask (see Section 5.4.1.2).

The following device- or function-dependent arguments are used with the read function codes. The codes can
take all six arguments (P1 through P6) on QIO requests. The descriptions for these arguments differ when
itemlist read operations are performed (see Section 5.4.1.3).

• P1—The starting virtual address of the buffer that is to receive the data read.

• P2—The size of the buffer that is to receive the data read in bytes. (The system generation parameter,
MAXBUF, and the terminal driver limit the maximum size of the buffer. The terminal driver will only
function with buffer sizes less than 32718 bytes.)

• P3—Read with timeout, timeout count (see Table 5-7, IO$M_TIMED).

• P4—The read terminator descriptor block address (see Section 5.4.1.2).

• P5—The starting virtual address of the prompt buffer that is to be written to the terminal; for read with
prompt operations using the IO$_READPROMPT function code. (This argument is specified as a value
rather than an address as in the P1 argument.)

• P6—The size of the prompt buffer that is to be written to the terminal; for read with prompt operations
using the IO$_READPROMPT function code.

In a read with prompt operation, the P5 and P6 arguments specify the address and size of a prompt string
buffer containing data to be written to the terminal before the input data is read. In a read with prompt
operation, both read and write operations are performed on the specified terminal. The prompt string buffer
is formatted like any other write buffer. If cursor position specifiers are supplied, they are not interpreted by
the driver but passed to the terminal.

During a read with prompt operation, pressing Ctrl/O (which is turned off at the start of any read operation)
stops the prompt string. If you press either Ctrl/U or Ctrl/X, the entire prompt string is written out again, and
the current input is ignored. If you press Ctrl/R, the current prompt string and input are written to the
terminal.

Depending on the terminal type and your input, the prompt string can be very simple or quite complex—from
single command prompts to screen fills followed by input data. HP recommends that prompt strings contain
only one leading line feed.
196

Terminal Driver
Terminal Function Codes
In PASTHRU mode, data received from the associated terminal is placed in the user buffer as binary
information without interpretation. (Prompts are not refreshed after a broadcast in PASTHRU mode.)

5.4.1.1 Function Modifier Codes for Read QIO Functions

Eight function modifiers can be specified with IO$_READVBLK, IO$_READLBLK, and IO$_READPROMPT.
Table 5-7 lists these function modifiers and IO$_EXTEND, which is described in Section Section 5.4.1.3. All
read function modifiers are supported for LAT devices.

Table 5-7 Read QIO Function Modifiers for the Terminal Driver

Code Consequence

IO$M_CVTLOW Lowercase alphabetic characters (hexadecimal 61 to 7A) are
converted to uppercase when transferred to the user buffer or echoed.
This characteristic is used only for IO$_READLBLK,
IO$_READVBLK, and IO$_READPROMPT.

IO$M_DSABLMBX The mailbox is disabled for unsolicited data.

IO$M_ESCAPE A valid ANSI escape sequence is recognized as a valid delimiter for
the read operation. The TT$M_ESCAPE characteristic is overridden
by this modifier for the current read operation.

IO$M_EXTEND This characteristic provides additional functionality for read
operations (see Section 5.4.1.3). Do not specify IO$M_EXTEND with
other function modifiers.

IO$M_NOECHO Characters are not echoed as they are entered at the keyboard. The
terminal line can also be set to a “no echo” mode by the set mode
characteristic TT$M_NOECHO, which inhibits all read operation
echoing. Setting IO$M_NOECHO also disables line editing.

IO$M_NOFILTR The terminal does not interpret Ctrl/U, Ctrl/R, or DEL. They are
passed to the user. IO$M_NOFILTR explicitly disables line editing.

IO$M_PURGE The type-ahead buffer is purged before the read operation begins.
197

Terminal Driver
Terminal Function Codes
5.4.1.2 Read Function Terminators

The P4 argument to a read QIO function either specifies the terminator set for the read function or points to
the location containing the terminator set. If P4 is 0, all ASCII characters with a code in the range 0 through
31 (hexadecimal 0 through 1F), except LF, VT, FF, TAB, and BS, are terminators (see Appendix C). This is the
RMS standard terminator set. The delete character (hexadecimal 7F) and 8-bit controls in the range 128
through 159, and 255 (hexadecimal 80 through 9F, and FF) are also terminators. If line editing is enabled,
only Return, Ctrl/Z, or an escape sequence terminates a read operation.

If P4 does not equal 0, it contains the address of a quadword that either specifies a terminator character bit
mask or points to a location containing that mask. (Note that if P4 references an address in a MACRO
program, a number sign (#) must precede the address; for example, P4=#TMASK.) The quadword has a short
form and a long form, as shown in Figure 5-3. In the short form, the correspondence is between the bit
number and the binary value of the character; the character is a terminator if the bit is set. For example, if bit
0 is set, NULL is a terminator; if bit 9 is set, TAB is a terminator. If a character is not specified, it is not a
terminator. Since ASCII control characters are in the range 0 through 31, the short form can be used in most
cases.

IO$M_TIMED The P3 argument specifies the maximum time (seconds) that can
elapse between characters received from the terminal (the timeout
value for the operation), only if IO$M_TIMED is specified as a
modifier on the read function code.

Note that if you are using a timeout in an item list of a $QIO read to
a terminal driver, the timeout on an extend read must go into the
item list.

Because driver timing operates on a 1-second timer, a 2-second
timeout must be specified to guarantee a 1-second wait. The timer
starts when the prompt echo is started. If the read time exceeds the
time specified in P3, a timeout error (SS$_TIMEOUT) is returned in
the read IOSB. All input characters received before the read
operation timed out are returned in the user's buffer.

A read with timeout operation, in which the timeout value is 0,
empties the type-ahead buffer into the user buffer until the proper
termination condition is reached (buffer full, termination character
detected, or type-ahead buffer empty). The read operation then
returns the count of characters read and, if a terminator is read,
SS$_NORMAL; SS$_TIMEOUT is returned if no terminator is read.
In either case the offset to terminator in the IOSB always indicates
the number of characters read.

If a write request is active and there is no prompt string, the read
request generally times out with zero bytes of data being returned.

If a read operation is interrupted by either a broadcast write or a
synchronous write request, the timer operation is restarted.

IO$M_TRMNOECHO The termination character (if any) is not echoed. There is no formal
terminator if the buffer is filled before the terminator is typed.

Table 5-7 Read QIO Function Modifiers for the Terminal Driver (Continued)

Code Consequence
198

Terminal Driver
Terminal Function Codes
The long form allows use of a more comprehensive set of terminator characters. Any mask equal to or greater
than 1 byte is acceptable. For example, a mask size of 16 bytes allows all 7-bit ASCII characters to be used as
terminators; a mask size of 32 bytes allows all 8-bit characters to be used as terminators for 8-bit terminals.

If the terminator mask is all zeros, there are no specified terminators. The read operation ends when the
specified number of bytes (characters) have been transferred to the input buffer.

Certain control keys will not act as terminators unless IO$M_NOFILTR is specified or the line has the
TT2$M_PASTHRU characteristic (see Section 5.2.1.2).

Figure 5-3 Short and Long Forms of Terminator Mask Quadwords

5.4.1.3 Itemlist Read Operations

 Itemlist read operations provide expanded software features to read QIO requests. The operating system
provides the following combination of function code and modifier:

IO$_READVBLK!IO$M_EXTEND—Itemlist read virtual block

No other function modifiers can be specified in an itemlist read request.

NOTE Itemlist read features supported by the terminal driver are not supported by all DECnet
terminal emulators.

The itemlist read function code and modifier combination takes the following device- or function-dependent
arguments:

• P1—The starting virtual address of the buffer that is to receive the data read.

• P2—The size of the buffer that is to receive the data read in bytes. If required, the P2 size includes
additional space for an overflow buffer to hold an escape sequence terminator (see item code
TRM$_ESCTRMOVR in Table 5-8).

Mask Size in Bytes

31 16 15 0

ZK0689GE

(Not Used)

Address of Mask

LONG:

SHORT:

031

0

Terminator Character Bit Mask
199

Terminal Driver
Terminal Function Codes
NOTE The IO$_READxBLK and IO$_WRITExBLK are limited by the system parameter
MAXBUF as well as the terminal driver. The terminal driver will only function with buffer
sizes less than 32718 bytes.

• P3—The access mode at which the itemlist is to be probed (optional).

• P5—The address of the itemlist buffer.

• P6—The length in bytes of the itemlist buffer.

P4 is not meaningful for itemlist read operations. P5 points to a series of item descriptors. Figure 5-4 shows
the format for these descriptors. You cannot repeat the same item code in the same item list.

Figure 5-4 Itemlist Read Descriptor

Table 5-8 lists the item codes that can be specified in the first longword of the item descriptors.

Table 5-8 Item Codes for Terminal Driver Itemlist Read Operations

Item Code Meaning

TRM$_ALTECHSTR Alternate echo string. The buffer length word contains the length of the
string. The data address word contains the address of the string. The
alternate echo string is written to the terminal after the first character
is entered.

This item code for character validating read mode
(TRM$K_EM_RDVERIFY) editing only.

TRM$_EDITMODE Extended editing modes. The immediate data longword specifies
extended editing mode values. The buffer length word must be zero. The
following editing modes are supported:

TRM$K_EM_DEFAULT Normal read mode. This is the default
if TRM_EDITMODE is not present in
the itemlist.

TRM$K_EM_RDVERIFY Character Validating read mode. See
“Read Verify Function” on page 204.

Buffer Length

31 16 15 0

ZK-1305-AI

Item Code

Return Address *

Buffer Address or Immediate Data

* Must be zero.

Itemlist Read P5 Buffer
200

Terminal Driver
Terminal Function Codes
TRM$_ESCTRMOVR Escape terminator overflow size. Specifies the number of bytes that may
be used to hold an escape sequence terminator. This number should be
included in P2, the buffer size argument, in addition to the space
required for the data to be read. Note that this overflow area is for the
terminator only; it is not available for user data.

TRM$_ESCTRMOVR is useful in preventing partial escape errors,
which return SS$_PARTESCAPE. This overflow buffer ensures that all
the characters in an escape sequence terminator will fit in the user
buffer, thus eliminating the need for additional single-character read
operations.

TRM$_FILLCHR A 2-byte value that indicates the fill and clear character for
TRM$K_EM_RDVERIFY. The first byte of the immediate data longword
specifies the clear character; the second byte specifies the fill character.

This item code is for character validating read mode
(TRM$K_EM_RDVERIFY) editing only.

TRM$_INIOFFSET Indicates the character in the initial string where echoing starts. The
immediate data longword specifies the character.

TRM$_INISTRNG Specifies a string to preload into the read buffer (P1). The buffer length
word contains the length of the string. The data longword contains the
address of the string. TRM$_INISTRNG must be specified if the edit
mode is TRM$K_EM_RDVERIFY, and must be the same length as
specified by TRM$_PICSTRNG.

TRM$_MODIFIERS Read modifiers. The immediate data longword contains a 32-bit value
that specifies modifiers to read operations. The read operations are
defined in $TRMDEF. The buffer length word must be zero. The
following bits are defined:

TRM$M_TM_ARROWS The terminal interprets the left and
right arrow keys
(TRM$K_EM_RDVERIFY mode only).
The arrow keys are not put in the
buffer and do not terminate the read.
TRM$_ESCTRMOVR must be greater
than or equal to 5.

TRM$M_TM_AUTO_TAB This bit creates an autotab mode field
(TRM$K_EM_RDVERIFY mode only).

TRM$M_TM_CVTLOW Lowercase alphabetic characters
(hexadecimal 61 to 7A) are converted
to uppercase when transferred to the
user buffer or echoed.

TRM$M_TM_DSABLMBX The mailbox is disabled for unsolicited
data and for receiving hangup
messages.

Table 5-8 Item Codes for Terminal Driver Itemlist Read Operations (Continued)

Item Code Meaning
201

Terminal Driver
Terminal Function Codes
TRM$M_TM_ESCAPE A valid ANSI escape sequence is
recognized as a valid delimiter for the
read operation.

TRM$M_TM_NOCLEAR Fill characters are not replaced with
clear characters after a nonfill
character occurs
(TRM$K_EM_RDVERIFY mode only).

TRM$M_TM_NOECHO Characters are not displayed as they
are entered at the keyboard.

TRM$M_TM_NOEDIT This bit inhibits advanced editing for
this read operation.

TRM$M_TM_NOFILTR The terminal does not interpret DEL,
Ctrl/U, or Ctrl/R, but passes them to
you. This characteristic explicitly
disables line editing.

TRM$M_TM_NORECALL This bit inhibits command recall
(Ctrl/B) by the terminal driver.

TRM$M_TM_OTHERWAY This bit sets left-justify fields to insert
mode and right-justify fields to
overstrike mode
(TRM$K_EM_RDVERIFY mode only).
TRM$M_TM_TOGGLE must equal 1.

TRM$M_TM_PURGE The type-ahead buffer is purged before
the read operation begins.

TRM$M_TM_R_JUST This bit creates a right-justified field
(TRM$K_EM_RDVERIFY mode only).

TRM$M_TM_TERM_ARROW The read operation is terminated when
the left arrow key is pressed at the left
margin or when the right arrow key is
pressed at the right margin
(TRM$K_EM_RDVERIFY mode only).
TRM$M_TM_ARROWS must be
enabled.

TRM$M_TM_TERM_DEL The read operation is terminated when
the DELETE key is pressed at the left
margin (TRM$K_EM_RDVERIFY
mode only).

Table 5-8 Item Codes for Terminal Driver Itemlist Read Operations (Continued)

Item Code Meaning
202

Terminal Driver
Terminal Function Codes
TRM$M_TM_TOGGLE Enables Ctrl/A to function as a toggle
key between insert mode and
overstrike mode
(TRM$K_EM_RDVERIFY mode only).
Left-justify insert mode shifts
characters to the right; right-justify
insert mode shifts characters to the
left. Shifted characters are not checked
for validity in their new positions.

TRM$M_TM_TIMED TRM$_TIMEOUT specifies the
maximum time (seconds) that can
elapse between characters received
from the terminal; that is, the timeout
value for the operation.
TRM$M_TM_TIMED is assumed set if
TRM$_TIMEOUT is included in the
itemlist. See the description of
IO$M_TIMED in Table 5-7.

TRM$M_TM_TRMNOECHO The termination character (if any) is
not displayed. There is no formal
terminator if the buffer is filled before
the terminator is typed.

All other bits must be zero.

TRM$_PICSTRNG Character validation string. The buffer length word contains the length
of the string, which must be the same as the length specified by
TRM$_INISTRNG. The data address word contains the address of the
string. TRM$_PICSTRNG must be specified if the edit mode is
TRM$K_EM_RDVERIFY.

Note that this item code is for character validating read mode
(TRM$K_EM_RDVERIFY) editing only.

The format of the character validation string is 1 byte per input
character. Each byte is a bit mask. The following values are provided:

Value Meaning

TRM$M_CV_UPPER Uppercase alphabetic

TRM$M_CV_LOWER Lowercase alphabetic

TRM$M_CV_NUMERIC Numeric (0-9)

TRM$M_CV_NUMPUNC Numeric punctuation (+ - .)

TRM$M_CV_PRINTABLE Printable ASCII character

TRM$M_CV_ANY Any character

Table 5-8 Item Codes for Terminal Driver Itemlist Read Operations (Continued)

Item Code Meaning
203

Terminal Driver
Terminal Function Codes
5.4.1.4 Read Verify Function

When using the read verify function, the terminal driver performs input validation based on character
attributes. (Read verification bypasses the optionally specified termination mask (TRM$_TERM).) Validation
is performed one character at a time as data is entered. Invalid characters are not echoed, and cause the read
operation to complete. It is then up to the application program to handle the error appropriately.

The initial string describes the initial contents of the input field. This string may consist of data and marker
characters. The clear character is displayed on the screen for each occurrence of the fill character in the initial
string buffer.

The picture string is a string of bytes where each byte corresponds to one character of the field being entered.
Each byte specifies a mask of legal character types for that character position. If the byte is left as zero, then
that position is a marker character, and the character from the initial string is echoed for that position.

For left-justified fields, the prompt data is output to the terminal, followed by an optional number
(TRM$_INIOFFSET) of initial string characters. Leading marker characters are always output following the
prompt, leaving the cursor at the leftmost data position. As each character is entered, it is validated and then
echoed, advancing the cursor position. Additional marker characters are skipped as they are encountered. If
an input character fails the validation, the read operation is completed with the invalid character as the
terminator.

For right-justified fields, the prompt is output and is followed by the initial string. (In general,
TRM$_INIOFFSET is set to the length of TRM$_INISTRNG for right-justified fields.) The cursor position
remains one position to the right of the initial string. For proper operation, right-justified fields cannot have
mixed picture definitions. After each character is input, the entire prompt and input fields are output.
Therefore, the prompt should include a cursor positioning escape sequence.

The definition of full field is different for left- and right-justified read operations. For left-justified fields, full
field is detected when the character corresponding to the last nonmarker position in the picture string has
been entered. For right-justified fields, full field is detected when a character other than the fill character is
shifted into the leftmost, nonmarker position in the field.

If the modifier TRM$M_TM_AUTO_TAB is set in TRM$_MODIFIERS, then detection of a full field
terminates the read operation. In the event of autotab termination, the terminator character in the IOSB is
null. If the autotab option is not selected, then termination occurs when one more character is typed to a full

If no values are set, the corresponding character specified by
TRM$_INISTRNG is used. Appendix C lists the multinational character
set.

TRM$_PROMPT Specifies a prompt string. The buffer length word contains the length of
the prompt. The data address word contains the address of the prompt
string. See Section 5.4.1 for information on how carriage control
specifiers in a prompt string are handled.

TRM$_TERM The buffer length word determines the format of the nondefault
terminator mask. If the buffer length word is zero, then the data
longword is used as a short form mask. If the buffer length word is
nonzero, then a mask n bytes long is available at the specified address.

TRM$_TIMEOUT Read timeout. See the description of IO$M_TIMED in Table 5-7.

Table 5-8 Item Codes for Terminal Driver Itemlist Read Operations (Continued)

Item Code Meaning
204

Terminal Driver
Terminal Function Codes
field. Applications can detect this condition when the terminating character index is one character beyond the
end of the field. The extra character is reported as the terminator. In a left-justified field, the IOSB index to
the terminator is zero-based; in a right-justified field, this index is one-based.

If a read verify function is interrupted by an asynchronous write operation, the read verify is completed with
status SS$_OPINCOMPL.

No line editing functions other than the delete character function are supported for read verify.

5.4.2 Write

Write operations display the contents of a user-specified buffer on the associated terminal. The operating
system provides the following write I/O functions, which are listed with their function codes:

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITELBLK—Write logical block

• IO$_WRITEPBLK—Write physical block

The write function codes can take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer that is to be written to the terminal.

• P2—The number of bytes that are to be written to the terminal. (The system generation parameter,
MAXBUF, and the terminal driver limit the maximum size of the buffer. The terminal driver will only
function with buffer sizes less than 32718 bytes.)

• P4—Carriage control specifier except for write physical block operations. (Write function carriage control
is described in Section 5.4.2.2.)

P3, P5, and P6 are not meaningful for terminal write operations.

In write virtual block and write logical block operations, the buffer (P1 and P2) is formatted for the selected
terminal and includes the carriage control information specified by P4.

Unless TT$M_MECHFORM is specified, multiple line feeds are generated for form feeds. The number of line
feeds generated depends on the current page position and the length of the page. By producing a carriage
return after the last line feed, a form feed also moves the cursor to the left margin. Multiple spaces are
generated for tabs if the characteristics of the selected terminal do not include TT$M_MECHTAB (this does
not apply to write physical block operations). Tab stops occur every eight characters or positions.

CTDRIVER and Buffered Output

CTDRIVER, a component of the SET HOST facility, buffers output from remote terminals in order to package
multiple output requests into a single network transfer. As a result, control is returned early to the user with
a status of SS$_NORMAL when the output buffer has been filled and successfully queued.

Note that this output might not be displayed if the user enters an abort character or a Ctrl/O.

5.4.2.1 Function Modifier Codes for Write QIO Functions

Five function modifiers can be specified with IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK.
Table 5-9 lists these function modifiers. All write function modifiers are supported for LAT devices.

Table 5-9 Write QIO Function Modifiers for the Terminal Driver

Code Consequence

IO$M_BREAKTHRU Allows breakthrough read regardless of the current active state.
205

Terminal Driver
Terminal Function Codes
5.4.2.2 Write Function Carriage Control

The P4 argument is a longword that specifies carriage control. Carriage control determines the next printing
position on the terminal. P4 is ignored in a write physical block operation. Figure 5-5 shows the P4 longword
format.

Figure 5-5 P4 Carriage Control Specifier

Only bytes 0, 2, and 3 in the longword are used. Byte 1 is ignored. If the low-order byte (byte 0) is not 0, the
contents of the longword are interpreted as a FORTRAN carriage control specifier. Table 5-10 lists the
possible byte 0 values (in hexadecimal) and their meanings.

IO$M_CANCTRLO Turns off Ctrl/O (if it is in effect) before the write operation.
Otherwise, the data cannot be displayed.

IO$M_ENABLMBX Enables use of the mailbox associated with the terminal for
notification that unsolicited data is available.

IO$M_NOFORMAT Allows you to specify write functions without interpretation or
format; in effect, the terminal line is in a temporary PASTHRU
mode.

IO$M_REFRESH If a read operation is interrupted by a write operation (by either a
write breakthrough1 or any other type of write), the terminal
displays the current read data when the read function is restarted.

1. Any interruption caused by the execution of the $BRDCST or the $BRKTHRU system service
broadcasting messages to terminals is referred to as a “write breakthrough.”

Table 5-10 FORTRAN Write Function Carriage Control

Byte 0 Value
(hexadecimal)

ASCII
Character Meaning

20 (space) Single-space carriage control (sequence:
carriage-return/line-feed combination, print buffer contents,
return1).

30 0 Double-space carriage control (sequence:
carriage-return/line-feed combination,
carriage-return/line-feed combination, print buffer contents,
return1).

31 1 Page eject carriage control (sequence: form feed, print buffer
contents, return).

Table 5-9 Write QIO Function Modifiers for the Terminal Driver (Continued)

Code Consequence

POSTFIX PREFIX (Not Used) FORTRANP4:

3 2 1 0

ZK0690GE
206

Terminal Driver
Terminal Function Codes
If the low-order byte (byte 0) is 0, bytes 2 and 3 of the P4 longword are interpreted as the prefix and postfix
carriage control specifiers. The prefix (byte 2) specifies the carriage control before the buffer contents are
printed. The postfix (byte 3) specifies the carriage control after the buffer contents are printed. The sequence
is as follows:

1. Prefix carriage control

2. Print

3. Postfix carriage control

The prefix and postfix bytes, although interpreted separately, use the same encoding scheme. Table 5-11
shows this encoding scheme in hexadecimal.

With several exceptions, Figure 5-6 shows the prefix and postfix hexadecimal coding that produces the
carriage control functions listed in Table 5-10. Prefix and postfix coding provides an alternative way to
achieve these controls.

In the first example in Figure 5-6, the prefix/postfix hexadecimal coding for a single-space carriage control
(carriage-return/line-feed combination, print buffer contents, return) is obtained by placing the value 1 in the
second (prefix) byte and the sum of the bit 7 value (80) and the return value (D) in the third postfix byte.

 80 (bit 7 = 1)
+ D (return)
—-
 8D (postfix = return)

2B + Overprint carriage control; allows double printing for
emphasis or special effects (sequence: print buffer contents,
return).

24 $ Prompt carriage control (sequence: carriage-return/line-feed
combination, print buffer contents).

All other values Same as ASCII space character: single-space carriage
control.

1. A carriage-return/line-feed combination is a carriage return followed by a line feed.

Table 5-11 Write Function Carriage Control (P4 byte 0 = 0)

Prefix/Postfix Bytes (Hexadecimal)

Bit 7 Bits 0—6 Meaning

0 0 No carriage control is specified (NULL).

0 1—7F Bits 0 through 6 are a count of
carriage-return/line-feed combinations.

Table 5-10 FORTRAN Write Function Carriage Control (Continued)

Byte 0 Value
(hexadecimal)

ASCII
Character Meaning
207

Terminal Driver
Terminal Function Codes
5.4.3 Set Mode

Set mode operations affect the operation and characteristics of the associated terminal line. The operating
system provides two types of set mode functions: set mode and set characteristics.

The set mode function affects the mode and temporary characteristics of the associated terminal line. Set
mode is a logical I/O function and requires no privilege. (If you do not have LOG_IO or PHY_IO privilege, the
terminal driver does not accept a set mode request to a terminal that does not have the extended terminal
characteristic TT2$M_SETSPEED—even if no request for a change of speed is made. Privilege is not required
if TT2$M_SETSPEED is set but no attempt to change the speed is made.) The following function code is
provided:

• IO$_SETMODE

The set characteristics function affects the permanent characteristics of the associated terminal line. Set
characteristics is a physical I/O function and requires the privilege necessary to perform physical I/O. The
following function code is provided:

Bit 7 Bit 6 Bit 5 Bits 0—4 Meaning

1 0 0 0—1F Output the single ASCII control character
specified by the configuration of bits 0 through 4
(7-bit character set).

1 1 0 0—1F Output the single ASCII control character
specified by the configuration of bits 0 through 4,
which are translated as ASCII characters 128
through 159 (8-bit character set; see Appendix C).

1 1 1 0—1F Reserved.

Table 5-11 Write Function Carriage Control (P4 byte 0 = 0) (Continued)

Prefix/Postfix Bytes (Hexadecimal)
208

Terminal Driver
Terminal Function Codes
• IO$_SETCHAR

Figure 5-6 Write Function Carriage Control (Prefix and Postfix Coding)

The set mode and set characteristics functions take the following device- or function-dependent arguments if
no function modifiers are specified:

• P1—Address of characteristics buffer

• P2—Length of characteristics buffer (default length is 8 bytes)

• P3—Speed specifier (bits 0 through 7 = transmit; 8 through 15 = receive)

• P4—Fill specifier (bits 0 through 7 = CR fill count; bits 8 through 15 = LF fill count)

• P5—Parity flags

(Space)

P4: 8D 1

2

0

8C

18

Example: Skip 24 lines before printing.

ZK0665GE

Postfix = CR
Print
Prefix = NL

Sequence:

Postfix = CR
Print
Prefix = NL, NL

Sequence:

Postfix = CR
Print
Prefix = FF

Sequence:

Postfix = CR
Print
Prefix = NULL

Sequence:

Postfix = NULL
Print
Prefix = NL

Sequence:

Postfix = CR
Print
Prefix = 24NL

Sequence:

8D

8D

8D

8D

P4:

P4:

P4:

P4:

P4:

"0"

"1"

"+"

"$"

1

0

0

0

0

0

0

0

209

Terminal Driver
Terminal Function Codes
The P1 argument points to a variable-length block, as shown in Figure 5-7. With the exception of terminal
characteristics, the contents of the block are the same for both the set mode and set characteristics functions.

Figure 5-7 Set Mode and Set Characteristics Buffers

In the buffer, the device class is DC$_TERM, which is defined by the $DCDEF macro. The terminal type is
defined by the $TTDEF macro; for example, TT$_LA36. The page width is a value in the range of 1 through
511. The page length is a value in the range of 0 through 255. Table 5-5 lists the values for terminal
characteristics. Table 5-6 lists the extended terminal characteristics. Characteristics values are defined by
the $TTDEF and $TT2DEF macros.

NOTE Make sure that the selected device is a terminal before performing any set mode function,
particularly when using SYS$INPUT or SYS$OUTPUT.

The P3 argument defines the device speed, such as TT$C_BAUD_300. The low eight bits specify the transmit
speed, and the high eight bits specify the receive speed. If no receive speed is specified, the indicated transmit
speed is used for both transmitting and receiving. If neither the transmit nor the receive speed is specified (P3
= 0), the baud rate is not changed. The terminal driver ignores the receive speed bits for interfaces that do not
support split-speed operation. While speeds up to 19.2 K baud can be specified, not all controllers support all
speed combinations. Refer to the associated hardware documentation to determine which speeds are
supported by your controller.

P4 contains fill counts for the carriage-return and line-feed characters. Bits 0 through 7 specify the number of
fill characters used after a carriage return. Bits 8 through 15 specify the number of fill characters used after a
line feed.

P4 is applicable only if TT$M_CRFILL or TT$M_LFFILL is specified as a terminal characteristic for the
current QIO request; see Table 5-5.

Several parity flags can be specified in the P5 argument:

31 16 15 0

Page Width Type Class

Page Length Basic Terminal Characteristics

24 23 8 7

31 16 15 0

Page Width Type Class

Page Length Basic Terminal Characteristics

24 23 8 7

Extended Terminal Characteristics

ZK0691GE

P2 = 8 (Default)

P2 = 12
210

Terminal Driver
Terminal Function Codes
• TT$M_ALTRPAR—Alter parity. If set, check the state of TT$M_PARITY and TT$M_ODD and, if
indicated, change the parity. Otherwise, ignore these bits.

• TT$M_PARITY—Enable parity on terminal line if set, disable if clear.

• TT$M_ODD—Parity is odd if set.

• TT$M_ALTDISPAR—Alter dismiss parity errors. If set, check the state of TT$M_DISPARERR.

• TT$M_DISPARERR—Dismiss parity errors. If this mode is set, a character with a parity error is passed
to the reader. An error message is not reported.

NOTE If parity is enabled, the DZ11 generates a parity check bit to detect parity mismatch.
Unless TT$M_DISPARERR is enabled, parity errors that occur during an I/O read
operation are fatal to the operation. Parity errors that occur on input characters (that is,
keys pressed on the keyboard) when no I/O operation is in progress might result in a
character loss.

• TT$M_BREAK—Generate a break if set. The break is in effect until this bit is turned off. TT$M_BREAK
is supported by the LTDRIVER for terminal servers that support the break capability, such as the
DECserver 200 and DECserver 500. However, in the case of LAT terminals, the terminal server controls
the duration of the break.

• TT$M_ALTFRAME—If set, the four low-order bits of P5 become the frame size. Note that the frame size
is for data bits only and is exclusive of parity. TT$M_ALTFRAME is supported for frame sizes of 7 and 8
for LAT devices.

To take the existing parity settings, modify them, and use them in the set mode or set characteristic function,
move the byte starting at the second nibble of the buffer that is going to be used in the P5 argument. For
example, the following instructions change the parity from even to odd:

insv iosb+6, #4, #8, flags
bisl #tt$m_altrpar!tt$m_odd!tt$m_parity, flags

The following instruction then resets the parity to its original state:

bicl #tt$m_odd!tt$m_parity, flags

See Section 5.2.5 for information about the SET TERMINAL/FRAME command.

Application programs that change terminal characteristics should perform the following steps:

1. Use the IO$_SENSEMODE function to read the current characteristics.

2. Modify the characteristics.

3. Use the set mode function to write back the results.

4. If the characteristic is intended to be reset when the image exits, the application must perform this
operation.

Failure to follow this sequence will result in clearing any previously set characteristic.

Two stop bits are used only for data rates less than or equal to 150 baud; higher data rates default to one stop
bit.

The set mode and set characteristics functions can take the enable Ctrl/C AST, enable Ctrl/Y AST, enable
out-of-band AST, hangup, set modem, broadcast, and loopback function modifiers that are described in the
following sections.
211

Terminal Driver
Terminal Function Codes
NOTE If an attempt is made to turn on TT2$V_FALLBACK for a disconnected virtual terminal
(_VTAx:) or if the Terminal Fallback facility has not been activated, the status code
SS$_BADPARAM will be returned. For more information on TFF, refer to the OpenVMS
Terminal Fallback Utility Manual (available on the Documentation CD-ROM).

5.4.3.1 Hangup Function Modifier

The hangup function disconnects a terminal that is on a dialup line. (Dialup lines are described in Section
5.4.3.) The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_HANGUP

• IO$_SETCHAR!IO$M_HANGUP

The hangup function modifier takes no arguments. SS$_NORMAL is returned in the I/O status block.

NOTE For remote terminals, the hangup function breaks the network connection to the local system,
ending the remote terminal session.

5.4.3.2 Enable Ctrl/C AST and Enable Ctrl/Y AST Function Modifiers

Both set mode functions can take the enable Ctrl/C AST and enable Ctrl/Y AST function modifiers. These
function modifiers request the terminal driver to queue an AST for the requesting process when you press
Ctrl/C or Ctrl/Y. The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_CTRLCAST—Enable Ctrl/C AST

• IO$_SETMODE!IO$M_CTRLYAST—Enable Ctrl/Y AST

These function code modifier pairs take the following device- or function-dependent arguments:

• P1—Address of the AST service or 0 if the corresponding AST is disabled

• P2—AST parameter

• P3—Access mode to deliver AST (maximized with caller's access mode)

If the respective enabling is in effect, pressing Ctrl/C or Ctrl/Y gains the attention of the enabling process (see
Table 5-2).

Enable Ctrl/C and Ctrl/Y AST are one-time enabling function modifiers. After the AST occurs, it must be
explicitly reenabled by one of the two function code combinations before an AST can occur again. This
function code is also used to disable the AST. The function is subject to AST quotas.

You can have more than one Ctrl/C or Ctrl/Y enabled; pressing Ctrl/C, for example, results in the delivery of
all Ctrl/C ASTs. ASTs are queued and delivered to the user process on a first-in/first-out basis for each access
mode. However, ASTs are processed in the reverse order of the Ctrl/C AST or Ctrl/Y AST requests that have
been issued to the terminal driver (on a last-in/first-out basis).

If no enable Ctrl/C AST is present, the holder of an enable Ctrl/Y AST receives an AST when Ctrl/C is
pressed; carriage-return/line-feed combination, Ctrl/Y, and Return are echoed.

Figure 5-8 shows the relationship of Ctrl/C and Ctrl/Y with the out-of-band function. If Ctrl/C or Ctrl/Y is an
enabled out-of-band character, any out-of-band ASTs specified for this character are delivered. If
IO$M_INCLUDE function modifier is included in the out-of-band AST request for this character, an enabled
Ctrl/C or Ctrl/Y AST is also delivered.
212

Terminal Driver
Terminal Function Codes
Enable Ctrl/C AST requests are flushed by the Cancel I/O on the Channel ($CANCEL) system service. Enable
Ctrl/Y AST requests are flushed by the Deassign I/O Channel ($DASSGN) system service.

Ctrl/Y is normally used to gain the attention of the command interpreter and to input special commands such
as DEBUG, STOP, and CONTINUE. Programs that are run from a command interpreter should not enable
Ctrl/Y. Because ASTs are delivered on a first-in/first-out basis, the command interpreter's AST routine gets
control first, and might not allow the program's AST to be delivered at all. Programs that require the use of
Ctrl/Y should use the LIB$DISABLE_CTRL RTL routine to disable DCL recognition of Ctrl/Y.

See Example 5-4 for a programming example that demonstrates Ctrl/Y and Ctrl/C handling under OpenVMS.

Section 5.2.1.2 describes other effects of Ctrl/C and Ctrl/Y.

5.4.3.3 Set Modem Function Modifier

The set modem function modifier is used in maintenance operations to allow a process to activate and
deactivate modem control signals. Both set mode and set characteristics functions can take the set modem
function modifier. The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_SET_MODEM!IO$M_MAINT

• IO$_SETCHAR!IO$M_SET_MODEM!IO$M_MAINT

NOTE For LAT devices, the set modem field for maintenance operations of the
IO$M_SET_MODEM!IO$M_MAINT function modifier is unsupported and may return
unpredictable results.

These function code modifier pairs take the following device- or function-dependent argument:

• P1—The address of a quadword block that specifies which modem control signals to activate or deactivate
213

Terminal Driver
Terminal Function Codes
Figure 5-9 shows the format of this block.

Figure 5-8 Relationship of Out-of-Band Function with Control Characters

The modem on and modem off fields, in combination or separately, can specify one or more of the following
values:

on Keyboard
Character Typed

of character.
not set, strip bit 7
If TT$M_EIGHTBIT

set?
TT2$M_PASTHRU

Is

?
character

outofband
an enabled

Is this
?

CTRL/Q
or

CTRL/S

Yes

No

Yes

No

Yes

AST.
outofband

Deliver

AST.
reenable

Automatically

AST?
outofband

character in any
set for this

IO$M_INCLUDE

No

Yes

CTRL/C CTRL/Y CTRL/O CTRL/S CTRL/Q CTRL/X Other

?
enabled

Control/C

?
enabled

Control/Y

OneShot

AST.
Control/C

Deliver

Yes

No

Done

Done

OneShot

No

Done

output.
continue

Discard output/

Done

stream.
Stop output

Done

Yes

No

?
set

TT$M_TTSYNC
Is

?
set

TT$M_TTSYNC
Is

No

Done

Yes

Done

stream.
output
Resume

buffer.
typeahead

Flush

buffer.
in typeahead
Put character

No

ZK1202GE

AST.
Control/Y

Deliver

214

Terminal Driver
Terminal Function Codes
• TT$M_DS_RTS—Request to send (RTS)

• TT$M_DS_DTR—Data terminal ready (DTR)

Figure 5-9 Set Mode P1 Block

• TT$M_DS_SECTX—Transmitted backward channel data (Sec Txd)

The $TTDEF macro defines the values for these values. These values can only be specified if the terminal
characteristic TT$M_MODEM is not set. Otherwise, an error (SS$_ABORT) will result.

NOTE The set modem function is not supported for remote terminals. The status SS$_DEVREQERR
is returned in the I/O status block.

Because the DMF32 does not provide the secondary transmitted data signal (Sec Txd), the
driver sets the secondary request to send the signal. Users should connect a jumper cable
between pins 14 and 19 on the DMF32.

5.4.3.4 Loopback Function Modifier

The loopback function modifier is used in maintenance operations to place the terminal line in a hardware
loopback mode. Data transmitted to a line in this mode is returned as receive data. If the controller does not
support loopback mode or the terminal line has the TT$M_MODEM characteristic set, an error status
(SS$_ABORT) is returned. Both set mode functions can take the loopback function modifier.

NOTE The loopback function is not supported for remote terminals. The status SS$_DEVREQERR is
returned in the I/O status block.

The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_LOOP!IO$M_MAINT

• IO$_SETCHAR!IO$M_LOOP!IO$M_MAINT

Data transmitted in the loopback mode should only be written in records less than or equal to the size of the
type-ahead buffer (see Section 5.2.1.5). Programs that use the loopback function modifier should incorporate a
1-second delay to allow the controller to enable the loopback mode after the request is posted. Write requests
should also include the IO$M_NOFORMAT function modifier to prevent terminal driver from formatting
input or output data.

NOTE The serial line interfaces for the VAX 8200 processor implement an internal loopback bus that
is common to all four serial lines. The hardware allows all serial lines operating in loopback
mode to transmit data to the bus at the same time. If more than one serial line writes data to
the bus, all of the transmitted data is combined and made available to the receiving end of

31 16 15 024 23 8 7

ZK0692GE

Modem Off Modem On
215

Terminal Driver
Terminal Function Codes
those same serial lines. Therefore, the received data may be different from the transmitted
data if more than one serial line is operating in loopback mode at the same time. To prevent
receiving such spurious data, you must not operate multiple serial lines in loopback mode.

The operating system provides another function modifier to reset a terminal line previously placed in
loopback mode. The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_UNLOOP!IO$M_MAINT

• IO$_SETCHAR!IO$M_UNLOOP!IO$M_MAINT

Programs that use the unloop function modifier should incorporate a 1-second delay to allow the controller to
reset the loopback mode after the request is posted.

NOTE IO$M_LOOP and IO$M_UNLOOP are not supported for LAT devices.

5.4.3.5 Enable Out-of-Band AST Function Modifier

The enable out-of-band AST function modifier requests that the terminal driver queue an AST for the
requesting process when you enter any one of 32 control characters. The following combinations of function
code and modifier are provided:

• IO$_SETMODE!IO$M_OUTBAND—Enable out-of-band AST

• IO$_SETCHAR!IO$M_OUTBAND—Enable out-of-band AST

These function code modifier pairs take the following device- or function-dependent arguments:

• P1—Address of the AST service or 0 if the AST entered on this channel is to be canceled. (The AST
parameter will be the out-of-band character.)

• P2—Address of a character mask with the same format as the short form terminator mask (see Section
5.4.1.2).

• P3—Access mode to deliver AST (maximized with the caller's access mode).

The IO$_SETMODE!IO$M_OUTBAND function can optionally take the following function modifiers:

• IO$M_INCLUDE—Include the character typed in the data stream.

• IO$M_TT_ABORT—Allow current read and write operations to be aborted. (The IOSB for aborted
operations returns the status SS$_CONTROLC.)

If an out-of-band AST is in effect, pressing any control character specified in the P2 mask gains the attention
of the enabling process. Figure 5-8 shows the relationship of the out-of-band function with some of the control
characters.

You can have only one out-of-band AST enabled per channel.

Out-of-band ASTs are repeating ASTs; they continue to be delivered until specifically disabled. Out-of-band
AST enables are flushed by the Cancel I/O on Channel ($CANCEL) system service.

5.4.3.6 Broadcast Function Modifier

 The broadcast function modifier allows you to turn on or turn off selected broadcast requester identifiers
(IDs). The following combination of function code and modifier is provided:

IO$_SETMODE!IO$M_BRDCST

This function code modifier pair takes the following device- or function-dependent arguments:
216

Terminal Driver
Terminal Function Codes
• P1—A buffer that contains the bits that specify the requester IDs to be broadcast

• P2—The length of the P1 buffer (default is 8 bytes)

The first longword of P1 is reserved for use by HP facilities, as shown in Table 5-12. The symbols are defined
in the system macro library ($BRKDEF). The second longword is for customer use to specify selected bits. If
any bit is set in the P1 buffer, that particular requester ID is turned off for broadcast.

5.4.4 LAT Port Driver QIO Interface

 The LAT port driver (LTDRIVER) accommodates I/O requests from application programs for connections to
remote devices on one or more terminal servers; for connections to remote services; and for configuring
LTDRIVER and retrieving configuration information about LTDRIVER. A remote device, such as a printer,
can be shared in a LAT configuration. Before an application program can access a remote device, the system
manager must create logical devices and map them to physical devices connected to terminal servers.
Creating and mapping these logical devices can be done either with the LAT Control Program (LATCP) utility
or with a $QIO request from a program that has OPER privilege. Once mapped, application programs can
establish and terminate connections to these remote devices.

This section describes the capabilities of the QIO interface to the LAT port driver (LTDRIVER). The QIO
interface allows application programs to access and modify information contained in the LTDRIVER data
structures and to initiate events and obtain status information. You must use these QIO functions to
establish a connection to a remote device or service from an application program. HP does not support any
other methods of connection.

The LTDRIVER responds to TEST SERVICE commands issued at terminal servers that support the TEST
SERVICE command, such as the DECserver 200 and DECserver 500 servers.

LAT devices can use all read and write function modifiers listed for the terminal driver function codes except
those modifiers that apply to modems (see Sections Section 5.4.1 and Section 5.4.2).

The operating system does not support the following set mode or set characteristics function code modifiers
for LAT devices:

• IO$M_LOOP

• IO$M_UNLOOP

Table 5-12 Broadcast Requester IDs

 Bit Meaning

BRK$C_DCL Disables broadcasts by Ctrl/T

BRK$C_GENERAL Disables broadcasts by the DCL command REPLY and the
SYS$BRDCST system service

BRK$C_MAIL Disables broadcasts by the Mail utility

BRK$C_PHONE Disables broadcasts by the Phone utility

BRC$C_QUEUE Disables broadcasts about batch and print queues

BRK$C_SHUTDOWN Disables broadcasts about system shutdown

BRK$C_URGENT Disables broadcasts labeled URGENT by the REPLY command

BRK$C_USERn Disables broadcasts by images associated with the specified value; n
can be any decimal integer between 1 and 16
217

Terminal Driver
Terminal Function Codes
• TT$M_ALTRPAR

• TT$M_ALTFRAME

• TT$M_MODEM

• TT$M_READSYNC

• TT2$M_SETSPEED

With LAT devices, the terminal server, rather than the host, handles flow control to the physical device. A
separate flow control mechanism exists between the server and the host.

5.4.4.1 LAT Port Types

QIO functions can be used to create the following LAT port types:

• Application Port. This type of port can be used to connect to a remote device (typically a printer) on a
terminal server or to a dedicated port on another LAT service node. This is the default port type. See
Section 5.4.4.5 for a description of programming an application port.

• Dedicated Port. This type of port specifies that the logical port on your node is dedicated to an application
service. When users on a terminal server (or on another node that supports outgoing connections) request
a connection to this service name, they are connected to a dedicated port. See Section 5.4.4.6 for a
description of programming a dedicated port and application service.

• Forward Port. This type of port is used for outgoing LAT connections (to remote services) and is created by
assigning a channel to the LAT template device _LTA0: with the $ASSIGN system service.

QIO functions can also be used to configure and read information about these ports; for more information:

— See Section 5.4.4.3 for a description of configuring a LAT port

— See Section 5.4.4.4 for a description of reading configuration information about a LAT port

— See Section 5.4.4.7 for a description of programming a forward port in order to make a connection to a
LAT service

5.4.4.2 LAT Port Driver Functions

The operating system provides the following combinations of function code and modifier:

• IO$_TTY_PORT!IO$M_LT_CONNECT. Requests that the LAT port driver make a connection to a remote
device on a server (or dedicated port on another LAT service node) or to a remote service, depending on
whether the port is an application port or a forward port respectively. For dedicated ports, this QIO
completes when an incoming connection to the port is established. See Section 5.4.4.5 for a description of
programming an application port, Section 5.4.4.6 for a description of programming a dedicated port, and
Section 5.4.4.7 for a description of programming a forward port.

• IO$_TTY_PORT!IO$M_LT_DISCON. Depending on the port type, requests that the LAT port driver
terminate the LAT connection to the remote device, service, or local application service.
IO$M_FLUSH_DATA can be specified in the P2 argument to IO$M_LT_DISCON. The flush flag indicates
that any data not delivered to the remote device is to be flushed when the disconnect is issued.

• IO$_TTY_PORT!IO$M_LT_SETMODE. Requests that the LAT port driver create or configure a LAT
entity. See Section 5.4.4.3 for more information.

• IO$_TTY_PORT!IO$M_LT_SENSEMODE. Requests that the LAT port driver return configuration
information about a LAT entity. See Section 5.4.4.4 for more information.
218

Terminal Driver
Terminal Function Codes
5.4.4.3 Creating and Configuring LAT Entities

The LAT SETMODE $QIO function (IO$_TTY_PORT!IO$M_LT_SETMODE) is used to create, delete, and
modify LAT nodes, services, ports, and links.

Creation, deletion, or modification of any entity requires the OPER privilege.

The LAT SETMODE $QIO function accepts four arguments: P1, P2, P3, and P4. P1 is the address of an item
list; P2 is the length of this item list.

P3 specifies the type of entity to which the SETMODE operation applies. The entity type can be one of five
types:

• Node (LAT$C_ENT_NODE). Only the local node name may be specified, with the exception of a
SETMODE itemlist containing no item codes other than LAT$_ITM_COUNTERS.

• Service (LAT$C_ENT_SERVICE). Only local service names may be specified, with the exception of a
SETMODE itemlist containing no item codes other than LAT$_ITM_COUNTERS.

• Link (LAT$C_ENT_LINK). The data link associated with the LAN.

• Port (LAT$C_ENT_PORT).

• Queue Entry (LAT$C_ENT_QUEUE_ENTRY). Indicates queue entry entities. When this entity is used,
the only valid SETMODE operation is delete.

The value for the entity type occupies the low-order 16 bits (bits 0--15) of the P3 parameter. For all four entity
types, bits 16--19 are used as a status field to indicate the expected current status of the entity. These bits are
used to decide whether the entity needs to be created before its characteristics are set. The possible values for
this field are:

• LAT$C_ENTS_OLD—The entity must already exist. An SS$_NOSUCHDEV error is returned if the
entity does not exist.

• LAT$C_ENTS_NEW—The entity must be created. An SS$_DUPLNAM error is returned if the entity
already exists.

• LAT$C_ENTS_UNK—If the entity does not exist, it is created. If it does exist, its characteristics are
modified.

• LAT$C_ENTS_DEL—If the entity exists, delete it. Otherwise, an SS$_NOSUCHDEV error is returned
and the item list is not used.

P4 may contain the address of an entity name string descriptor. If this parameter is omitted (contains a 0 or
the address of a descriptor that points to an empty buffer), a default may be used in some cases. The defaults
for each entity type are as follows:

• LAT$C_ENT_NODE—The local node.

• LAT$C_ENT_SERVICE—No default; you must specify the service name.

• LAT$C_ENT_LINK—The string LAT$LINK.

• LAT$C_ENT_PORT—The device name associated with the currently assigned channel (the CHAN
parameter of the $QIO function).

SETMODE can return the following status codes:

• SS$_NOPRIV—No privilege to complete the desired operation.

• SS$_ACCVIO—Part of the argument list or itemlist is not addressable.

• SS$_BADPARAM—One of the parameters in the itemlist is in error. If this value is returned, the second
longword of the IOSB contains the item code of the parameter in error.
219

Terminal Driver
Terminal Function Codes
SETMODE Item Codes

Each item in the itemlist consists of a one-word (16-bit) item code, followed by a value associated with the
item.

Item codes in which the bit named LAT$V_STRING is zero take a longword value. The associated value is
contained in the longword immediately following the item code in the itemlist. Item codes in which this bit is
1 take a counted string for their value. The byte immediately following the item code contains a byte count,
which describes the length of the string that immediately follows it.

If you set bit LAT$V_CLEAR in the item code to 1, the current value associated with the item code is cleared
or set to its default value. In this case, the actual value specified in the itemlist is ignored, although the byte
count field skips to the next item in the itemlist.

Figure 5-10 shows an example of a SETMODE itemlist.

Figure 5-10 Example SETMODE Itemlist

This SETMODE itemlist is the P1 parameter for a $QIO SETMODE function on the local node. P4 is omitted,
and P3 is #LAT$C_ENT_NODE!$C_ENTS_OLD@16>. P2 is the length of the itemlist (52). A $QIO
SETMODE function for this itemlist would perform the following operations:

1. Set the state of the node to on.

2. Set the LAT keepalive timer to 40 seconds.

3. Set the node identification to LTC CLUSTER.

4. Set the LAT circuit timer to 160 milliseconds.

5. Enable LAT outbound connections.

6. Turn on user groups 2, 8, 10, 11, 12, 16, and 19. LAT$_ITM_USER_GROUPS is represented by a bit field.

7. Set the outgoing session limit to five sessions.

31 16 15 0

LAT$C_ON LAT$_ITM_STATE

40

LAT$_ITM_KEEPALIVE_TIMER

’ T ’

11

’ ’

’ S ’

LAT$_ITM_IDENTIFICATION

’ C ’

’ U ’

’ R ’

’ T ’

’ L ’

’ E ’LAT$_ITM_CIRCUIT_TIMER

LAT$C_ENABLED LAT$_ITM_SERVER_MODE

LAT$_ITM_USER_GROUPS

5

4

9

5

1

13 0

LAT$_OUTGOING_SES_LIMIT

ZK3798A

160

’ C ’

’ L ’
220

Terminal Driver
Terminal Function Codes
For each entity type, only a subset of item codes may be set. Table 5-13 lists the item codes that may be set for
the LAT$C_ENT_NODE entity type.

Table 5-13 LAT$C_ENT_NODE Item Codes

Item Code Meaning

LAT$_ITM_STATE Operating state of the LAT protocol. The following values are
allowed:

LAT$C_OFF Turns off LAT protocol processing. No
new connections allowed in either
direction. Existing connections are
terminated immediately. This is the
default.

LAT$C_SHUT Disallows new LAT connections in either
direction. Existing connections are
allowed to remain active.

LAT$C_ON Turns on LAT protocol processing.

LAT$_ITM_CIRCUIT_TIMER Circuit timer value in milliseconds. Valid values are 10 to 1000
milliseconds. The default is 80 milliseconds.

LAT$_ITM_CPU_RATING CPU rating. Valid values are 0 to 100. If this value is 0, then the
CPU rating value is not used in the rating calculation. Refer to
the HP OpenVMS System Management Utilities Reference
Manual for a complete description of this feature.

LAT$_ITM_DEVICE_SEED Overrides the default lower boundary for new LTA devices. Valid
values are 0 to 9999; the default is 0. Refer to the HP OpenVMS
System Management Utilities Reference Manual for more
information on this feature.

LAT$_ITM_KEEPALIVE_TIMER Keepalive timer value in seconds. Valid values are 10 to 255
seconds. The default is 20 seconds.

LAT$_ITM_MULTICAST_TIMER Multicast timer value in seconds. Valid values are 10 to 180
seconds. The default is 60 seconds.

LAT$_ITM_NODE_LIMIT Maximum number of nodes in LAT database. The default is 0,
where the maximum is determined by system resources.

LAT$_ITM_RETRANSMIT_LIMIT LAT retransmit limit. Valid values are 4 to 120 retransmissions.
The default is 8 retransmissions.

LAT$_ITM_SERVER_MODE Controls whether the node allows the use of the MASTER side of
the LAT protocol for outbound connections. Valid values are:

LAT$C_DISABLED Server mode disabled (this is the default).

LAT$C_ENABLED Server mode enabled.
221

Terminal Driver
Terminal Function Codes
LAT$_ITM_SERVICE_RESPONDER Indicates whether the node is to respond to service inquiries
originating from a remote system. These inquiries are not
necessarily directed at services being offered by the node. Refer to
the HP OpenVMS System Management Utilities Reference
Manual for a complete description of this feature. Valid values
are:

LAT$C_DISABLED Service responder disabled (this is the
default).

LAT$C_ENABLED Service responder enabled.

LAT$_ITM_OUTGOING_SES_LIMIT Maximum number of outgoing LAT sessions. A value of 0, which
is the default, indicates that the limit is determined by system
resources.

LAT$_ITM_INCOMING_SES_LIMIT Maximum number of interactive LAT sessions. A value of 0,
which is the default, indicates that the limit is determined by
system resources.

LAT$_ITM_CONNECTIONS Controls whether inbound connections can be accepted. Valid
values are:

LAT$C_DISABLED Inbound connections disabled.

LAT$C_ENABLED Inbound connections enabled (this is the
default).

LAT$_ITM_NODE_NAME Causes the LAT node name to be set to the given name. This item
code may be specified only if the entity status field of the P3
parameter is LAT$C_ENTS_NEW; otherwise, a
LAT$_ENTNOTFOU error results.

LAT$_ITM_IDENTIFICATION Node identification string. The default is the translation of
SYS$ANNOUNCE.

LAT$_ITM_SERVICE_GROUPS Specifies a default service group code bit mask. This mask is then
used when creating new local services. The default is group code 0
enabled and all others disabled when the LAT software is
initialized.

Note that the use of the LAT$V_CLEAR bit is an exception for
this parameter code. If you clear bit LAT$V_CLEAR, group codes
corresponding to the group code mask, as specified in the itemlist,
are set. Alternatively, if you set LAT$V_CLEAR, group codes
corresponding to the group code mask, as specified in the itemlist,
are cleared.

Table 5-13 LAT$C_ENT_NODE Item Codes (Continued)

Item Code Meaning
222

Terminal Driver
Terminal Function Codes
LAT$_ITM_USER_GROUPS LAT group codes to be used when attempting outbound
connections using the MASTER side of the LAT protocol. The
default is all group codes disabled when the LAT software is
initialized.

Note that the use of the LAT$V_CLEAR bit is an exception for
this parameter code. If you clear bit LAT$V_CLEAR, group codes
corresponding to the group code mask, as specified in the itemlist,
are set. Alternatively, if you set LAT$V_CLEAR, group codes
corresponding to the group code mask, as specified in the itemlist,
are cleared.

LAT$_ITM_COUNTERS Node counters block. Allows for zeroing of all node counters. This
item code may be specified only if the entity status field of the P3
parameter is LAT$C_ENTS_OLD and the LAT$V_CLEAR bit is
set. Violating either of these two rules results in a returned
status of SS$_BADPARAM.

LAT$_ITM_MAXIMUM_UNITS Maximum unit number. Sets the highest value for a LTA unit
number. Must be between 1 and 9999; defaults to 9999.

LAT$_ITM_HI_CIRCUITS1 Indicates the highest number the resource attained since the host
was initialized for LAT connections to node.

 LAT$_ITM_CUR_CIRCUITS1 Indicates current count of active connections to node.

LAT$_ITM_MAX_CIRCUITS1 Indicates maximum allowed virtual circuits to node.

 LAT$_ITM_HI_SESSIONS1 Indicates highest number the resource attained since the host
was initialized for LAT sessions.

LAT$_ITM_CUR_SESSIONS1 Indicates current number of active sessions.

LAT$_ITM_MAX_SESSIONS1 Indicates maximum possible sessions.

LAT$_ITM_HI_OUT_QUEUE1 Indicates highest number the resource attained since the host
was initialized of outgoing queued connect requests.

LAT$_ITM_CUR_OUT_QUEUE1 Indicates current count of outgoing queued connect requests.

LAT$_ITM_MAX_OUT_QUEUE1 Indicates maximum number of simultaneous outgoing queued
connect requests.

LAT$_TIM_HI_IN_QUEUE1 Indicates highest number the resource attained since the host
was initialized of incoming queued requests.

LAT$_ITM_CUR_IN_QUEUE1 Indicates current number of entries in the incoming connect
queue.

LAT$_ITM_CUR_IN_QUEUE1 Indicates maximum number of entries allowed on the incoming
connect queue.

Table 5-13 LAT$C_ENT_NODE Item Codes (Continued)

Item Code Meaning
223

Terminal Driver
Terminal Function Codes
LAT$_ITM_HI_SAMS_QUEUED1 Indicates highest number the resource attained since the host
was initialized of outstanding, unprocessed service
announcement messages by LATACP.

LAT$_ITM_CUR_SAMS_QUEUED1 Indicates current number of outstanding, unprocessed service
announcement messages on LATACP's queue.

LAT$_ITM_MAX_SAMS_QUEUED1 Indicates maximum number of outstanding, unprocessed service
announcement messages allowed on LATACP's queue. If this
limit is ever reached, subsequent service announcement
messages are not delivered or processed by LATACP.

LAT$_ITM_HI_SOL_QUEUED1 Indicates highest number the resource attained since the host
was initialized of outstanding, unprocessed solicit information
messages by LATACP.

LAT$_ITM_CUR_SOL_QUEUED Indicates current number of outstanding, unprocessed solicit
information messages on LATACP's queue.

LAT$_ITM_MAX_SOL_QUEUED1 Indicates maximum number of outstanding, unprocessed solicit
information messages allowed on LATACP's queue. If this limit is
ever reached, subsequent solicit information messages are not
delivered or processed by LATACP.

LAT$_ITM_HI_AVAIL_SVCS1 Indicates highest number the resource attained since the host
was initialized by the number of available services in LATACP
database.

LAT$_ITM_CUR_AVAIL_SVCS1 Indicates count of currently available LAT services in LATACP
database.

LAT$_ITM_MAX_AVAIL_SVCS1 Indicates maximum number of available services possible in
LATACP database.

LAT$_ITM_HI_REACH_NODES1 Indicates highest number the resource attained since the host
was initialized of reachable nodes in LATACP database.

LAT$_ITM_CUR_REACH_NODES1 Indicates current number of reachable nodes in LATACP
database.

LAT$_ITM_MAX_REACH_NODES1 Indicates maximum number of nodes allowed in LATACP
database.

LAT$_ITM_HI_LCL_SVCS Indicates highest number the resource attained since the host
was initialized of locally offered services.

LAT$_ITM_CUR_LCL_SVCS1 Indicates current count of locally offered service.

LAT$_ITM_MAX_LCL_SVCS1 Indicates maximum number of locally offered services.

LAT$_ITM_DISCARDED_NODES1 Indicates number of discarded service announcement messages.

Table 5-13 LAT$C_ENT_NODE Item Codes (Continued)

Item Code Meaning
224

Terminal Driver
Terminal Function Codes
Table 5-14 lists the item codes that may be set for the LAT$C_ENT_SERVICE entity type.

LAT$_ITM_SERVICE_CLASSES1 Indicates returned service class bit mask for supported service
classes on node. It is returned for bothlocal and remote nodes. If
service class 1 is enabled, then bit 1 is set in this mask. When bit
setting equals 1, this indicates the corresponding service class for
that bit is enabled. That is, when bit 3 equal 1, then service class
3 is enabled.

LAT$_ITM_LARGE_BUFFERS Indicates in Boolean logic whether or not the LAT software is
using large packet support by default.

LAT$_ITM_ANNOUNCEMENTS Indicates in Boolean logic whether or not the LAT software is
transmitting LAT service advertisement messages.

1. Alpha and I64 specific

Table 5-14 LAT$C_ENT_SERVICE Item Codes

Item Code Meaning

LAT$_ITM_RATING Static LAT service rating. The default is the dynamic rating
calculation. Static ratings can be between 0 and 255.

LAT$_IETEM_IDENTIFICATION Service identification string. The default is the translation of
SYS$ANNOUNCE.

LAT$_ITM_SERVICE_TYPE Defines the type of service. Valid values are:

LAT$C_ST_GENERAL Creates a general timesharing service.

LAT$C_ST_APPLICATION Creates a special application service
that must then be associated with
ports dedicated to accepting
connections to this service (dedicated
ports).

LAT$C_ST_LIMITED1 Indicates that the service is limited.

LAT$_ITM_COUNTERS Service counters block. Allows for zeroing of all service counters. This
item code may be specified only if the entity status field is
LAT$C_ENTS_OLD and the LAT$V_CLEAR bit is set. Violating
either of these two rules results in a returned status of
SS$_BADPARAM.

LAT$_ITM_PASSWORD1 Indicates that if a value of LAT$C_ENABLED is indicated, then the
service is password protected. Indicates that if a value of
LAT$C_DISABLED is indicated, then the service is not password
protected.

Table 5-13 LAT$C_ENT_NODE Item Codes (Continued)

Item Code Meaning
225

Terminal Driver
Terminal Function Codes
Table 5-15 lists the item codes that may be set for the LAT$C_ENT_LINK entity type.

LAT$_ITM_LIM_PORT_BLOCK1 Indicates a subblock contained in an itemlist, which has a list of
limited ports associated with the named service. This subblock may
be repeated several times; that is, once for each limited LAT device
associated with the specified service.

1. Alpha and I64 specific

Table 5-15 LAT$C_ENT_LINK Item Codes

Item Code Meaning

LAT$_ITM_STATE Operating state of the LAT protocol. Valid values are:

LAT$C_OFF Turns off LAT protocol processing. No new
connections allowed in either direction.
Existing connections are terminated
immediately.

LAT$C_SHUT Disallows new LAT connections in either
direction. Existing connections are allowed to
remain active.

LAT$C_ON Turns on LAT protocol processing. This is the
default.

LAT$_ITM_DEVICE_NAME The name of the local area network (LAN) device to be used for this
link. The default is hardware-dependent.

LAT$_ITM_DECNET_ADDRESS Specifies whether to use the DECnet address when starting the LAT
protocol on the LAN controller associated with this link. Valid values
are:

LAT$C_DISABLED DECnet address use disabled.

LAT$C_ENABLED DECnet address use enabled (this is the
default).

LAT$_ITM_COUNTERS Link counters block. Allows for zeroing of all link counters. This item
code may be specified only if the entity status field is
LAT$C_ENTS_OLD and the LAT$V_CLEAR bit is set. Violating
either of these two rules results in a returned status of
SS$_BADPARAM.

Table 5-14 LAT$C_ENT_SERVICE Item Codes (Continued)

Item Code Meaning
226

Terminal Driver
Terminal Function Codes
Table 5-16 lists the item codes that may be set for the LAT$C_ENT_PORT entity type.

Table 5-16 LAT$C_ENT_PORT Item Codes

Item Code Meaning

LAT$_ITM_PORT_TYPE Type of port. Valid values are:

LAT$C_PT_APPLICATION Application port for
solicited connections.

LAT$C_PT_DEDICATED Dedicated port
associated with a local
application service.

LAT$C_PT_LIMITED1 Indicates that the port
type is limited.

LAT$_ITM_QUEUED Controls whether the solicited connection requests queued or
nonqueued access. Valid values are:

LAT$C_DISABLED Queued access disabled.

LAT$C_ENABLED Queued access enabled
(this is the default).

LAT$_ITM_SERVICE_CLASS Controls the class driver that the LAT driver communicates
with when a connection is established. This item code can be
used only with an entity status of LAT$C_ENTS_NEW.
Therefore, the service class must be specified when the device
is created. An attempt to change the service class of an
existing device returns SS$_BADPARAM. Valid values are:

LAT$C_SERVCLASS_INTERACT
IVE

Service class 1,
TTDRIVER (this is the
default).

LAT$C_SERVCLASS_XTRANSPO
RT

Service class 3, X
Protocol.

LAT$C_SERVCLASS_FONT Service class 4, X fonts.

LAT$_ITM_DISPLAY_NUMBER For X devices, this is the binary value of the display number,
which may need to be transmitted in some LAT messages.
Values range from 0--255, with a default of 0. This item code
has meaning only when used with service classes 3 and 4
(LAT$C_SERVCLASS_XTRANSPORT AND
LAT$C_SERVCLASS_FONT).

LAT$_ITM_TARGET_NODE_NAME Target node name for connection. This parameter must be
specified for application ports and may optionally be specified
for forward ports.

LAT$_ITM_TARGET_SERVICE_NAME Target service name for connection. This parameter must be
specified for forward ports and may optionally be specified for
application ports. For dedicated ports, this parameter specifies
the local application service to which the port should be
associated.
227

Terminal Driver
Terminal Function Codes
5.4.4.4 Obtaining Information About LAT Entities

The LAT SENSEMODE $QIO function (IO$_TTY_PORT!IO$M_LT_SENSEMODE) is used to obtain
information about LAT nodes, services, ports, and links.

The LAT SENSEMODE $QIO function accepts four arguments: P1, P2, P3, and P4. P1 is the address of a
buffer into which information about the desired entity is returned. The information is returned in the form of
an item list. Unlike system services such as $GETDVI or $GETJPI, you do not select which items of
information are returned. P2 is the length of the buffer specified in P1, in bytes. The number of bytes of
information returned in the P1 buffer is returned in IOSB+2.

P3 specifies the type of entity to which the SENSEMODE operation applies. The entity type can be one of five
types:

• Node (LAT$C_ENT_NODE). Node, including the local node.

• Service (LAT$C_ENT_SERVICE). Service, including local services.

• Link (LAT$C_ENT_LINK). Data link associated with the LAN.

• Port (LAT$C_ENT_PORT).

• Queue Entry (LAT$C_ENT_QUEUE_ENTRY). Indicates queue entry entities.

The value for the entity type occupies the low-order 16 bits (bits 0--15) of the P3 parameter. Bits 16--23 are
used as a flag field. Two bits are currently defined within this field: LAT$V_SENSE_NEXT and
LAT$V_SENSE_FULL. If the LAT$V_SENSE_NEXT bit is 0, information about the current entity described
by the P3 and P4 parameters is returned to the user; if this bit is 1, information about the next entity that
logically follows the one described by P4 is returned. If LAT$V_SENSE_FULL is 0, only those item codes
marked SUMMARY in the following tables are returned; if this bit is 1, all item codes that describe the entity
specified by the P3 and P4 parameters are returned.

P4 may contain the address of an entity name string descriptor. If this parameter is omitted (contains a zero
or the address of a descriptor that points to an empty string) and the LAT$V_SENSE_NEXT bit is set,
information about the first entity that matches the entity type supplied by P3 is returned.

If P4 is omitted and the LAT$V_SENSE_NEXT bit is 0, a default entity name may be used in some cases. The
defaults for each entity type are as follows:

LAT$_ITM_TARGET_PORT_NAME Target port name for connection. This parameter may
optionally be specified for application ports or forward ports; it
is ignored for all other kinds of ports.

LAT$_ITM_SERVICE_PASSWORD Password string for remote service on forward ports. This
parameter must be specified to access services that are
protected with a password. This parameter is ignored if it is
specified for a service that is not protected with a password.

LAT$_ITM_DIALUP1 Indicates if an LTA device tells a remote node that the
connection is coming from a dialin source. Possible values are
LAT$C_ENABLED or LAT$C_DISABLED.

LAT$_ITM_AUTOPROMPT1 Indicates if a connect request has autoprompt enabled.
Possible values are LAT$C_ENABLED or LAT$C_DISABLED.

1. Alpha and I64 specific.

Table 5-16 LAT$C_ENT_PORT Item Codes (Continued)

Item Code Meaning
228

Terminal Driver
Terminal Function Codes
• LAT$C_ENT_NODE—The local node.

• LAT$C_ENT_SERVICE—No default; you must specify the service name.

• LAT$C_ENT_LINK—The string LAT$LINK.

• LAT$C_ENT_PORT—The device name associated with the currently assigned channel (the CHAN
parameter of the $QIO function.)

SENSEMODE can return the following failure return codes:

• SS$_NOPRIV—No privilege to complete the desired operation

• SS$_ACCVIO—Part of the argument list or item list is not addressable

5.4.4.4.1 SENSEMODE Item Codes

Each item in the itemlist starts with a one-word (16-bit) item code that describes the type of information
contained in the item. The item code is followed by a value associated with the item.

Item codes in which the bit named LAT$V_STRING is 0 take a longword value. The associated value is
contained in the longword immediately following the item code in the itemlist. Item codes in which this bit is
1 take a counted string for their value. The byte immediately following the item code contains a byte count,
which describes the length of the string that immediately follows it.

Table 5-17 lists the item codes that are returned for the LAT$C_ENT_NODE entity type. Item codes noted as
LOCAL are returned only if the information being returned is for the local node. Item codes noted as
REMOTE are returned only if the information being returned is for a remote node. Item codes noted as BOTH
are returned for both types of nodes.

Table 5-17 LAT$C_ENT_NODE Item Codes

Item Code Meaning

LAT$_ITM_NODE_NAME (BOTH,
SUMMARY)

LAT node name for the node.

LAT$_ITM_IDENTIFICATION
(BOTH, SUMMARY)

Node identification string.

LAT$_ITM_NODE_TYPE (BOTH,
SUMMARY)

Type of node. Possible values are:

LAT$C_NT_LOCAL Node is local node.

LAT$C_NT_REMOTE Node is remote node.

LAT$_ITM_STATE
(LOCAL,SUMMARY)

Operating state of the LAT protocol. Possible values are:

LAT$C_ON New connections are allowed and
the LAT protocol is running.

LAT$C_OFF New connections are not allowed.
The LAT protocol is not running.
229

Terminal Driver
Terminal Function Codes
No new connections are allowed.
Currently active connections are
still maintained. The LAT protocol
remains running only until the last
active session is disconnected, at
which time the node is placed in the
OFF state.

LAT$_ITM_NODE_STATUS
(REMOTE, SUMMARY)

Current status of remote node. This item code is present only if a
LAT virtual circuit does not currently exist between the local
node and this remote node. Possible values are:

LAT$C_REACHABLE Remote node is reachable.

LAT$C_UNREACHABLE Remote node is unreachable.

LAT$C_UNKNOWN Remote node status is unknown.

LAT$_ITM_CONNECTED_COUNT
(REMOTE, SUMMARY)

Number of LAT sessions from the local node to this remote node.
This item code replaces the LAT$_ITM_NODE_STATUS item
code for remote nodes to which a LAT virtual circuit currently
exists.

LAT$_ITM_SERVICE_GROUPS
(BOTH)

A bit mask of LAT group codes that are serviced by the node.

LAT$_ITM_PROTOCOL_VERSION
(BOTH)

LAT protocol version string.

LAT$_ITM_DATALINK_

ADDRESS (REMOTE)

LAN address uesed by the node.

LAT$_ITM_NODE_LIMIT Maximum number of nodes in LAT database. The default is 0,
where the maximum is determined by system resources.

LAT$_ITM_RETRANSMIT_

LIMIT

LAT retransmit limit. Possible values are 4 to 120
retransmissions. The default is 8 retransmissions.

LAT$_ITM_MAXIMUM_UNITS
(LOCAL)

Maximum LTA unit number.

LAT$_ITM_SERVER_MODE
(LOCAL)

Controls whether the node allows the use of the MASTER side of
the LAT protocol for outbound connections. Possible values are:

LAT$C_DISABLED Server mode disabled (this is the
default).

LAT$C_ENABLED Server mode enabled.

Table 5-17 LAT$C_ENT_NODE Item Codes (Continued)

Item Code Meaning
230

Terminal Driver
Terminal Function Codes
LAT$_ITM_SERVICE_RESPONDER
(LOCAL)

Indicates whether the node is to respond to service inquiries
originating from a remote system. These inquiries are not
necessarily directed at services being offered by the node. Refer to
the HP OpenVMS System Management Utilities Reference
Manual for more information on this feature. Possible values are:

LAT$C_DISABLED Service responder disabled (this is
the default).

LAT$C_ENABLED Service responder enabled.

LAT$_ITM_OUTGOING_SES_LIMIT
(LOCAL)

Maximum number of outgoing LAT sessions. A value of 0, which
is the default, indicates that the limit is determined by system
resources.

LAT$_ITM_INCOMING_SES_LIMIT
(LOCAL)

Maximum number of interactive LAT sessions. A value of 0,
which is the default, indicates that the limit is determined by
system resources.

LAT$_ITM_USER_GROUPS (LOCAL) Bit mask of LAT group codes to be used when attempting
outbound connections using the MASTER side of the LAT
protocol.

LAT$_ITM_CIRCUIT_TIMER (BOTH) Circuit timer value in milliseconds. Possible values are 10 to 1000
milliseconds. The default is 80 milliseconds.

LAT$_ITM_CPU_RATING (LOCAL) CPU rating.

LAT$_ITM_KEEPALIVE_TIMER
(LOCAL)

Keepalive timer value in seconds. Possible values are 10 to 255
seconds. The default is 20 seconds.

LAT$_ITM_MULTICAST_TIMER
(BOTH)

Multicast timer value in seconds. Possible values are 10 to 180
seconds. The default is 20 seconds.

LAT$_ITM_CONNECTIONS (BOTH) Indicates whether inbound connections (interactive sessions) can
be accepted. Possible values are:

LAT$C_DISABLED Inbound connections disabled.

LAT$C_ENABLED Inbound connections enabled (this
is the default).

LAT$C_ITM_LARGE_BUFFERS Indicates in Boolean logic whether the LAT software is using
large packet support by default.

LAT$C_ITM_

ANNOUNCEMENTS

Indicates in Boolean logic whether the LAT software is
transmitting LAT service advertisement messages.

Table 5-17 LAT$C_ENT_NODE Item Codes (Continued)

Item Code Meaning
231

Terminal Driver
Terminal Function Codes
Node service information is presented as a list of node service subblocks, with each subblock containing
information about one particular service offered by the node. The subblock item code
LAT$_ITM_NODE_SVC_BLOCK has the LAT$V_STRING bit set to 1, and the string length byte actually
contains the length of the entire subblock. Each subblock itself is an itemlist and consists of the item codes
listed in Table 5-18.

On Alpha and I64 systems, port counters information is presented as a counters subblock. The subblock item
code LAT$_ITM_COUNTERS has the LAT$V_STRING bit set to 1, and the string length byte actually
contains the length of the entire subblock. The subblock itself is an itemlist and consists of the item codes
listed in Table 5-19.

Table 5-18 Node Service Subblock Item Codes

Item Code Meaning

LAT$_ITM_SERVICE_NAME
(BOTH)

Name of a LAT service offered by the node.

LAT$_ITM_SERVICE_STATUS
(BOTH)

Status of the service. Possible values are:

LAT$C_AVAILABLE Service available.

LAT$C_UNAVAILABLE Service unavailable.

LAT$_ITM_SERVICE_TYPE
(LOCAL)

Type of service. Possible values are:

LAT$C_ST_GENERAL Creates a general timesharing service.

LAT$C_ST_APPLICATION Creates a special application service
that must then be associated with ports
dedicated to accepting connections to
this service (dedicated ports).

LAT$_ITM_RATING (BOTH) LAT service rating associated with the service.

LAT$_ITM_RATING_TYPE
(LOCAL)

Type of LAT rating calculation being done by this node. Possible values
are:

LAT$C_STATIC Static rating calculation

LAT$C_DYNAMIC Dynamic rating calculation

LAT$_ITM_IDENTIFICATION
(BOTH)

Identification string associated with the service.

Table 5-19 Node Counters Item Codes

Item Codes Meaning

LAT$_ITM_CTPRT_LCL Indicates number of local accesses to port.

LAT$_ITM_CTPRT_SLCA Indicates number of solicitations accepted.

LAT$_ITM_CTPRT_SLCR Indicates number of solicitations rejected.

LAT$_ITM_CTPRT_ISOLA Indicates number of incoming solicitations accepted.
232

Terminal Driver
Terminal Function Codes
Node counters information is presented as a counters subblock. The subblock item code
LAT$_ITM_COUNTERS has the LAT$V_STRING bit set to 1, and the string length byte actually contains
the length of the entire subblock. The subblock itself is an itemlist and consists of the item codes listed in
Table 5-20.

LAT$_ITM_CTPRT_ISOLR Indicates number of incoming solicitations rejected.

LAT$_ITM_CTPRT_FRAMERR Indicates number of framing errors for named port.
Returned in port counter subblock.

LAT$_ITM_CTPRT_PARERR Indicates number of parity errors for named port. Returned
in port counter subblock.

LAT$_ITM_CTPRT_OVERRUN Indicates number of data overruns for named port.
Returned in port counter subblock.

LAT$_ITM_PASSWORD_FAILURES Indicates password failures.

Table 5-20 Node Counters Item Codes

Item Codes Meaning

LAT$_ITM_CTNOD_SSZ (BOTH) Seconds since zeroed

LAT$_ITM_CTNOD_MSGR (BOTH) Messages received

LAT$_ITM_CTNOD_MSGT (BOTH) Messages transmitted

LAT$_ITM_CTNOD_SLTR (BOTH) Slots received

LAT$_ITM_CTNOD_SLTT (BOTH) Slots transmitted

LAT$_ITM_CTNOD_BYTR (BOTH) Bytes received

LAT$_ITM_CTNOD_MNA (BOTH) Multiple node addresses

LAT$_ITM_CTNOD_DUP (BOTH) Duplicates received

LAT$_ITM_CTNOD_MRT (BOTH) Messages retransmitted

LAT$_ITM_CTNOD_ILM (BOTH) Illegal messages received

LAT$_ITM_CTNOD_ILS (BOTH) Illegal slots received

LAT$_ITM_CTNOD_SLCA (BOTH) Solicitations accepted

LAT$_ITM_CTNOD_SLCR (BOTH) Solicitations rejected

LAT$_ITM_CTNOD_TER (LOCAL) Transmit errors

LAT$_ITM_CTNOD_RES (LOCAL) Resource errors

LAT$_ITM_CTNOD_NTB (LOCAL) No transmit buffer

LAT$_ITM_CTNOD_TMO (LOCAL) Virtual circuit timeout

Table 5-19 Node Counters Item Codes (Continued)

Item Codes Meaning
233

Terminal Driver
Terminal Function Codes
Several protocol errors are also included in a separate subblock. The protocol errors item code is
LAT$_ITM_PROTOCOL_ERRORS and has LAT$V_STRING set (the size of the subblock is contained in the
first byte following the item code). The item codes and the events they represent are listed in Table 5-21.

LAT$_ITM_CTNOD_DOB (LOCAL) Discarded output bytes

LAT$_ITM_CTNOD_LSTER (LOCAL) Last transmit error

LAT$_ITM_CTNOD_MCBXMT (LOCAL) Number of multicast bytes transmitted

LAT$_ITM_CTNOD_MCBRCV (LOCAL) Number of multicast bytes received

LAT$_ITM_CTNOD_MCMXMT (LOCAL) Number of multicast messages transmitted

LAT$_ITM_CTNOD_MCMRCV (LOCAL) Number of multicast messages received

LAT$_ITM_CTNOD_SOLFAIL (LOCAL) Number of solicitation failures

LAT$_ITM_CTNOD_ATLOS (LOCAL) Number of times attention slot data was lost

LAT$_ITM_CTNOD_DATLOS (LOCAL) Number of times user data was lost

LAT$_ITM_CTNOD_NOREJ (LOCAL) Number of times a reject slot could not be sent

LAT$_ITM_CTNOD_LOSCT (LOCAL) Number of times remote node counters were lost

LAT$_ITM_CTNOD_LOSSAM (LOCAL) Number of service announcement messages lost

LAT$_ITM_CTNOD_NOSAM (LOCAL) Number of times a service announcement message could
not be sent

LAT$_ITM_CTNOD_NOSTS (LOCAL) Number of times node status was lost

LAT$_ITM_CTNOD_NOXMT (LOCAL) Number of times no link was available for a transmit

LAT$_ITM_CTNOD_CTLERR (LOCAL) Number of controller errors

LAT$_ITM_CTNOD_CERRCOD (LOCAL) Lost controller error

LAT$_ITM_CTNOD_ISOLA (LOCAL) Number of incoming solicitations accepted

LAT$_ITM_CTNOD_ISOLR (LOCAL) Number of incoming solicitations rejected

LAT$_ITM_CTNOD_PROTO (LOCAL) Protocol error count

LAT$_ITM_CTNOD_XSTR (REMOTE)1 Indicates that the node attempted to start up too many LAT
sessions for a specific virtual circuit

1. Alpha and I64 specific.

Table 5-21 Protocol Error Item Codes

 Item Codes Meaning

LAT$_ITM_CTPRO_IVM (LOCAL) Invalid message type received.

LAT$_ITM_CTPRO_ISM (LOCAL) Invalid start message received.

Table 5-20 Node Counters Item Codes (Continued)

Item Codes Meaning
234

Terminal Driver
Terminal Function Codes
Table 5-22 lists the item codes that are returned for the LAT$C_ENT_SERVICE entity type. As in Table 5-17,
item codes noted as LOCAL are returned only if the information being returned is for a locally offered service.
Item codes noted as REMOTE are returned only if the information being returned is for a service offered by a
remote node. Item codes noted as BOTH are returned for both types of services.

LAT$_ITM_CTPRO_IVS (LOCAL) Invalid sequence number received.

LAT$_ITM_CTPRO_NIZ (LOCAL) Zero-node index received.

LAT$_ITM_CTPRO_ICI (LOCAL) Node circuit index out of range.

LAT$_ITM_CTPRO_CSI (LOCAL) Node circuit sequence invalid.

LAT$_ITM_CTPRO_NLV (LOCAL) Node circuit index no longer valid.

LAT$_ITM_CTPRO_HALT (LOCAL) Circuit was forced to halt.

LAT$_ITM_CTPRO_MIZ (LOCAL) Invalid master slot index.

LAT$_ITM_CTPRO_SIZ (LOCAL) Invalid slave slot index.

LAT$_ITM_CTPRO_CRED
(LOCAL)

Invalid credit field.

LAT$_ITM_CTPRO_RCSM
(LOCAL)

Repeat creation of slot by master.

LAT$_ITM_CTPRO_RDSM
(LOCAL)

Repeat disconnection of slot by master.

LAT$_ITM_CTPRO_INVCLASS
(LOCAL)

Indicates the number of times a LAT message was received with
an invalid service class specified in that message (local node only).

LAT$_ITM_CTPRO_EXCSTART
(LOCAL)1

Indicates that a remote node attempted to start up too many LAT
sessions. When a virtual circuit is started between two LAT nodes,
the maximum number of sessions on that virtual circuit is
negotiated. If the master node attempts to create more sessions
than the maximum number of sessions on a virtual circuit, then
the operating system rejects the excess connections and
increments this counter.

1. Alpha and I64 specific.

Table 5-22 LAT$C_ENT_SERVICE Item Codes

Item Code Meaning

LAT$_ITM_SERVICE_NAME
(BOTH, SUMMARY)

Service name.

LAT$_ITM_SERVICE_STATUS
(BOTH, SUMMARY)

Status of the specified service. Possible values are:

LAT$C_AVAILABLE Service available.

Table 5-21 Protocol Error Item Codes (Continued)

 Item Codes Meaning
235

Terminal Driver
Terminal Function Codes
Service node information is presented as a list of service node subblocks, with each subblock containing
information about one particular node that offers the service. The subblock item code
LAT$_ITM_SVC_NODE_BLOCK has the LAT$V_STRING bit set to 1, and the string length byte actually
contains the length of the entire subblock. Each subblock itself is an itemlist and consists of the item codes
listed in Table 5-23.

LAT$C_UNAVAILABLE Service unavailable.

LAT$_ITM_SERVICE_TYPE
(LOCAL,SUMMARY)

Type of service. Possible
values are:

LAT$C_ST_GENERAL General timesharing service.

LAT$C_ST_APPLICATION Special application service associated
with ports dedicated to accepting
connections to this service.

LAT$_ITM_IDENTIFICATION
(BOTH, SUMMARY)

Service identification string, as advertised by the highest rated node
that currently offers the service.

Table 5-23 Service Node Subblock Item Codes

Item Code Meaning

LAT$C_ITM_NODE_NAME
(BOTH)

Name of a LAT node that offers the selected service.

LAT$_ITM_STATE (LOCAL) Current state of the LAT protocol on the local node. Possible values
are:

LAT$C_ON New connections are allowed, and the
LAT protocol is running.

LAT$C_OFF New connections are not allowed, and
any current connections are
abnormally terminated. The LAT
protocol is not running.

LAT$C_SHUT No new connections are allowed.
Currently active connections are still
maintained. The LAT protocol remains
running only until the last active
sessions is disconnected, at which time
the node is placed in the OFF state.

LAT$_ITM_NODE_STATUS
(REMOTE)

Current status of the remote node. This item code is present only if a
LAT virtual circuit does not currently exist to the remote node.
Possible values are:

LAT$C_REACHABLE Remote node is reachable.

LAT$C_UNREACHABLE Remote node is unreachable.

Table 5-22 LAT$C_ENT_SERVICE Item Codes (Continued)

Item Code Meaning
236

Terminal Driver
Terminal Function Codes
Service counters information is presented as a counters subblock. The subblock item code
LAT$_ITM_COUNTERS has the LAT$V_STRING bit set, and the string length byte actually contains the
length of the entire subblock. Each subblock itself is an itemlist and consists of the item codes listed
inTable 5-24 Table 5-24.

LAT$C_UNKNOWN Remote node status is unknown.

LAT$_ITM_CONNECTED_COUNT
(REMOTE)

Number of LAT sessions from the local node to this remote node.
This item code replaces the LAT$_ITM_NODE_STATUS item code
for remote nodes to which a LAT virtual circuit currently exists.

LAT$_ITM_RATING (BOTH) LAT service rating associated with the service.

LAT$_ITM_RATING_TYPE
(LOCAL)

Type of LAT rating calculation being done by this node. Possible
values are LAT$C_STATIC and LAT$C_DYNAMIC.

LAT$_ITM_IDENTIFICATION
(BOTH)

Identification string associated with the service.

Table 5-24 Service Counters Subblock Item Codes

Item Codes Meaning

LAT$_ITM_CTSRV_SSZ (BOTH) Seconds since zeroed.

LAT$_ITM_CTSRV_MCNA
(BOTH)

Outgoing connections attempted (the number of times the local node
has attempted to connect to the service offered on a remote node).

Outgoing connections completed (the number of times the local node
successfully connected to the service offered on a remote node).

LAT$_ITM_CTSRV_MCNC
(BOTH)

LAT$_ITM_CTSRV_SCNA
(BOTH)

Incoming connections accepted (the number of times the local node has
accepted a connection request from a remote node to the locally offered
service).

LAT$_ITM_CTSRV_SCNR
(BOTH)

Incoming connections rejected (the number of times the local node
rejected a connection request from a remote node to the locally offered
service).

LAT$_ITM_DED_PORT_BLOCK
(LOCAL)

If the selected service is an application service offered by the local node,
a list of one or more port subblocks is included in the itemlist. These
subblocks describe the dedicated port or ports associated with this
application service, with each subblock describing one particular port.
The subblock item code LAT$_ITM_DED_PORT_BLOCK has the
LAT$V_STRING bit set, and the string length byte actually contains
the length of the entire subblock. Each subblock itself is an itemlist and
currently consists only of the following item code:

LAT$_ITM_PORT_
NAME (LOCAL)

Name of the dedicated port.

LAT$_ITM_PASSWORD_

FAILURE

Indicates password failures.

Table 5-23 Service Node Subblock Item Codes (Continued)

Item Code Meaning
237

Terminal Driver
Terminal Function Codes
Table 5-25 lists the item codes that are returned for the LAT$C_ENT_LINK entity type.

Link counters information is presented as a counters subblock. The subblock item code
LAT$_ITM_COUNTERS has the LAT$V_STRING bit set, and the string length byte actually contains the
length of the entire subblock. Because the link counters are independent of the protocol type, they include not
only LAT messages and events, but also all other protocol messages and events (that is, DECnet) associated
with the same LAN device. The counters are actually maintained by the LAN device driver and are identified
within the subblock by the nonprotocol-specific item codes listed in Table 5-26.

Table 5-25 LAT$C_ENT_LINK Item Codes

Item Codes Meaning

LAT$_ITM_LINK_NAME
(SUMMARY)

Link name (such as LAT$LINK).

LAT$_ITM_STATE (SUMMARY) State of the link. Possible values are:

LAT$C_ON New connections are allowed, and the LAT
protocol is running.

LAT$C_OFF New connections are not allowed, and any
current connections are abnormally
terminated. The LAT protocol is not running.

LAT$C_SHUT No new connections are allowed. Currently
active connections are still maintained. The
LAT protocol remains running only until the
last active session is disconnected, at which
time the node is placed in the OFF state.

LAT$_ITM_DEVICE_NAME
(SUMMARY)

The name of the LAN device used for the link.

LAT$_ITM_DATALINK_ADDRESS The LAN device's current physical address for the link.

LAT$_ITM_DECNET_ADDRESS Indicates whether the link attempts to use the default DECnet LAN
address when starting the data link controller (enabling the LAT
protocol). Possible values are:

LAT$C_DISABLED DECnet LAN address use disabled.

LAT$C_ENABLED DECnet LAN address use enabled (this is the
default.

Table 5-26 Link Counters Item Codes

Item Codes Meaning

NMA$C_CTLIN_ZER Seconds since zeroed

NMA$C_CTLIN_DBR Messages received

NMA$C_CTLIN_DBS Messages transmitted

NMA$C_CTLIN_MBL Multicast messages received

NMA$C_CTLIN_MBS Multicast messages transmitted
238

Terminal Driver
Terminal Function Codes
Table 5-27 lists additional link counter item codes of the LINK entity.

NMA$C_CTLIN_BRC Bytes received

NMA$C_CTLIN_BSN Bytes transmitted

NMA$C_CTLIN_MBY Multicast bytes received

NMA$C_CTLIN_MSN Multicast bytes transmitted

NMA$C_CTLIN_RFL Receive errors

NMA$C_CTLIN_SFL Transmit errors

NMA$C_CTLIN_OVR Data overrun

NMA$C_CTLIN_UBU User buffer unavailable

NMA$C_CTLIN_SBU System buffer unavailable

NMA$C_CTLIN_LBE Local buffer errors

NMA$C_CTLIN_BS1 Messages sent, single collisions

NMA$C_CTLIN_BSM Messages sent, multiple collisions

NMA$C_CTLIN_BID Messages sent, initially deferred

NMA$C_CTLIN_CDC Transmit collision detection check failure

Table 5-27 Additional Link Counters Item Codes

 Item Codes Meaning

LAT$_ITM_CTLAT_RMSG Count of LAT messages received through link

LAT$_ITM_CTLAT_RBYT Count of bytes for LAT received through link

LAT$_ITM_CTLAT_XMSG Count of LAT messages transmitted through link

LAT$_ITM_CTLAT_XBYT Count of bytes for LAT transmitted through link

LAT$_ITM_CTLAT_MUL_RMSG Count of LAT multicast messages received through link

LAT$_ITM_CTLAT_MUL_RBYT Count of multicast bytes for LAT received through link

LAT$_ITM_CTLAT_MUL_XMSG Count of LAT multicast messages transmitted through link

LAT$_ITM_CTLAT_MUL_XBYT Count of multicast bytes for LAT transmitted through link

LAT$_ITM_LAT_DEV_CTR_BLOCK This block contains the LAT-specific counters for the
specified link. Counters returned in this block are the ones
defined above (with CTLAT in their name). These counters
are LAT-specific for the link (device). They do not include
counts from other protocols using the same adapter.

Table 5-26 Link Counters Item Codes (Continued)

Item Codes Meaning
239

Terminal Driver
Terminal Function Codes
The counter item codes listed in Table 5-27 are used by LATCP in the display generated by the command:

$ SHOW LINK /COUNTER

The display looks similiar to the following:

Link Name: LAT$LINK
Device Name: _XQA1:

Seconds Since Zeroed: 65535
Messages Received: 7080630 Messages Sent: 2135394
LAT Messages Received: 1484817 LAT Messages Sent: 2086167
Multicast Msgs Received: 5578139 Multicast Msgs Sent: 10775
LAT Multicast Msgs Received: 5093417 LAT Multicast Msgs Sent: 9142
Bytes Received: 678189475 Bytes Sent: 1312778402
LAT Bytes Received: 107809441 LAT Bytes Sent: 1278118808
Multicast Bytes Received: 602984574 Multicast Bytes Sent: 1696264
LAT Multicast Bytes Received: 565264261 LAT Multicast Bytes Sent: 1448342
System Buffer Unavailable: 1638401 User Buffer Unavailable: 1
Unrecognized Destination: 65537 Data Overrun: 1
Receive Errors: 7 Transmit Errors: 1

Receive Errors (bitmask = 001) - Transmit Errors (bitmask = 001) -
 Block Check Error: Yes Excessive Collisions: Yes
 Framing Error: No Carrier Check Failure: No
 Frame Too Long: No Short Circuit: No
 Frame Status Error: No Open Circuit: No
 Frame Length Error: No Frame Too Long: No
 Remote Failure To Defer: No
 Transmit Underrun: No
 Transmit Failure: No

CSMACD Specific Counters
————————

Transmit CDC Failure: 1

Messages Transmitted -
 Single Collision: 5208
 Multiple Collisions: 4732
 Initially Deferred: 0

Table 5-28 lists the item codes that are returned for the LAT$C_ENT_PORT entity type.

Table 5-28 LAT$C_ENT_PORT Item Codes

Item Code Meaning

LAT$_ITM_PORT_NAME_SUMMARY Name of the port (such as _LTA15:).

LAT$_ITM_PORT_TYPE_SUMMARY Type of port.

Possible values are:
240

Terminal Driver
Terminal Function Codes
LAT$_PT_FORWARD Forward port used for outgoing LAT connections or for
management functions.

LAT$_PT_INTERACTIVE Interactive port created as the result of an incoming
LAT connection request.

LAT$_PT_APPLICATION Application port for solicited connections.

LAT$_PT_DEDICATED Dedicated port associated with a local service.

LAT$_ITM_QUEUED Controls whether the solicited connection requests
queued or nonqueued access.

Possible values are:

LAT$C_DISABLED Queued access disabled.

LAT$C_ENABLED Queued access enabled (this is the default).

LAT$_ITM_SERVICE_CLASS Indicates the class driver with which the device is
communicating. This item code can be used only with
an entity status of LAT$C_ENTS_NEW. Therefore, the
service class must be specified when the device is
created. An attempt to change the service class of an
existing device returns SS$_BADPARAM.

Possible values are:

LAT$C_SERVCLASS_INTERACTIVE Service class 1, TTDRIVER (this is the default).

LAT$C_SERVCLASS_TESTSERVICE Service class 2, TEST SERVICE.

LAT$C_SERVCLASS_XTRANSPORT Service class 3, X Protocol.

LAT$C_SERVCLASS_FONT Service class 4, X fonts.

LAT$_ITM_DISPLAY_NUMBER Display number value for the device. This field has
meaning for services classes 3 and 4 (X) only. It returns
a value of 0 for all other service classes.

LAT$_ITM_DISCONNECT_REASON Reason (if any) for the last disconnect on the port. If it
is not a 0--19 LAT rejection code, it is a LAT message
code. The 0--19 LAT rejection code meanings are listed
in Table 5-32.

LAT$C_PT_STATE_DISCONNECTING1 Name of service to which this port is connected. For
forward and application ports, this is the name of the
remote service to which the port is connected (if any).
For interactive and dedicated ports, this is the name of
the local service that accepted the remote-initiated
connection.

LAT$_ITM_CONNECTED_NODE_NAME1 Name of remote node to which this port is connected.

Table 5-28 LAT$C_ENT_PORT Item Codes (Continued)

Item Code Meaning
241

Terminal Driver
Terminal Function Codes
On Alpha and I64 systems, the item codes for queue entries are listed in Table 5-29.

LAT$_ITM_CONNECTED_PORT_NAME1 Name of remote port to which this port is connected.

LAT$_ITM_CONNECTED_LINK_NAME1 Name of the link on which the LAT connection exists.

LAT$_ITM_TARGET_SERVICE_NAME2 Target service name for connection of forward or
application ports. For dedicated ports, this item code
specifies the local service with which the port is
associated.

LAT$_ITM_TARGET_NODE_NAME2 Target node name for connection of forward or
application ports.

LAT$_ITM_TARGET_PORT_NAME2 Target port name for connection of forward or
application ports.

LAT$_ITM_NODE_QUEUE_POSITION3 Indicates current node queue position for connect
request. Returned during SENSEMODE of port entity.

LAT$_ITM_SERVICE_QUEUE_POSITION3 Indicates current service queue position for connect
request. Returned during SENSEMODE of port entity.

LAT$_ITM_PORT_STATE Current port state.

Possible values are:

LAT$C_PT_STATE_INACTIVE Port is inactive.

LAT$C_PT_STATE_CONNECTING Port connection in progress but not complete.

LAT$C_PT_STATE_ACTIVE Port has active LAT connection.

LAT$C_PT_STATE_DISCONNECTING Port LAT connection in process of terminating.

1. Returned only when the LTA port has an active LAT connection.
2. Shows information about how the port is set up. May be returned even if there is no current LAT

connection.
3. Alpha and I64 specific.

Table 5-29 LAT SENSEMODE Queue Entries

Item Code Meaning

LAT$_ITM_QUEUED_ENTRY_ID
(SUMMARY)

Indicates by string the queue entry ID name.

LAT$_ITM_NODE_QUEUE_POSITION
(SUMMARY)

Indicates the current position of entry in node wide queue.

LAT$_ITM_SERVICE_QUEUE_POSITION
(SUMMARY)

Indicates the current position of entry in service wide
queue.

Table 5-28 LAT$C_ENT_PORT Item Codes (Continued)

Item Code Meaning
242

Terminal Driver
Terminal Function Codes
5.4.4.5 Programming Application Ports

An application port is used to connect to a remote device (typically a printer) on a terminal server or to a
dedicated port on another LAT service node. The LAT port driver can only connect to a remote device if the
device is currently not in use. Table 5-30 lists the conditions that can occur when an application program
issues an IO$M_LT_CONNECT request for a connection to a remote device. After a request is queued on the
terminal server (or dedicated port on another LAT service node), the QIO request is not completed until the
connection is established, rejected, or times out.

LAT$_ITM_NODE_NAME (SUMMARY) Indicates where the remote node name queue entry came
from.

LAT$_ITM_SERVICE_NAME (SUMMARY) Indicates the target service name to which the queue entry
is queued (if specified).

LAT$_ITM_PORT_NAME (SUMMARY) Indicates the target port name to which the entry is queued
(if specified).

LAT$_ITM_LINK_NAME Returns the link name on which the queued request is
active.

LAT$_ITM_DATALINK_ADDRESS Returns the remote node that issued the request’s data link
address.

Table 5-30 IO$M_LT_CONNECT Request Status

Event IOSB Status Explanation

Connection established SS$_NORMAL The connection is successful, and the port
is ready for use.

Connection timeout SS$_TIMEOUT The connection did not complete because
communication was never established with
the remote end. IOSB+2 contains
LAT$_CONTIMEOUT.

Connection rejected SS$_ABORT. IOSB+2
contains LAT rejection
code or LAT facility
message code.

The connection cannot be made. The LAT
port driver updates the I/O status block.
The LAT rejection codes (0--19) are listed
in Table 5-32.

Connection request SS$_ILLIOFUNC The QIO request is not to an application,
dedicated, or forward port. The LAT port
driver rejects the request immediately.

Connection already established
on port

SS$_DEVACTIVE The QIO request is for a port already in
use. The LAT port driver rejects the
request immediately.

Table 5-29 LAT SENSEMODE Queue Entries (Continued)

Item Code Meaning
243

Terminal Driver
Terminal Function Codes
Before the application port can be used, it must be mapped to a remote node name, and either the port name
or the service name of the remote terminal server port. (These names must be defined locally on the terminal
server.) The application port is mapped with the IO$M_LT_SETMODE modifier, specifying the following
items in the P1 itemlist parameter:

• LAT$_ITM_TARGET_NODE_NAME—The node name. The node name is the name of the terminal server
where the application device is located.

• LAT$_ITM_TARGET_PORT_NAME—The port name.

• LAT$_ITM_TARGET_SERVICE_NAME—The service name.

The queued status of the connection can also be mapped to the port by specifying the LAT$_ITM_QUEUED
item in the P1 itemlist parameter. Valid values for this item are:

• LAT$C_ENABLED—Port has queued status. This is the default.

• LAT$C_DISABLED—The port does not have queued status.

5.4.4.6 Programming Application Services and Dedicated Ports

Rather than the normal timesharing service offered by the operating system, application programs can make
use of LAT application services that allow terminal server users (or users on sytems with outgoing
connections) to connect to a specialized application. To do this, the system manager must create LAT ports
that are dedicated to a particular application service. (Alternatively, this LAT port creation can be done from
a program using the QIOs discussed in previous sections, providing OPER privilege.) When the remote user
makes the connection to the application service, the connection is directly to the application program that
controls a LAT port (LTA device) associated with the service. In this case the prompt, Username:, is not
received. HP recommends that you follow these steps to create an application service:

1. Define the dedicated ports in LAT$SYSTARTUP.COM and execute the command procedure in
SYSTARTUP_VMS.COM. (Refer to the HP OpenVMS System Management Utilities Reference Manual
and the HP OpenVMS System Manager’s Manual for additional information.)

2. Run the application program. Within the application program, allocate dedicated ports with the same
name as those defined in LAT$SYSTARTUP.COM. Use the Assign I/O Channel ($ASSIGN) system
service to assign service channels to the ports.

3. Post a read request to the dedicated ports. When the terminal user connects to the service and presses the
Return key, the application program can perform I/O to the dedicated port.

Incorrectly configured LAT
port

SS$_DEVREQERR The LAT port is incorrectly configured.
This may mean that the port type was
neither forward nor application nor
dedicated, because a forward port had no
service name mapped or because an
application port had no node name
mapped.

Insufficient resources SS$_INSFMEM The QIO request failed because the LAT
port driver could not get system memory to
complete the connection.

Table 5-30 IO$M_LT_CONNECT Request Status (Continued)

Event IOSB Status Explanation
244

Terminal Driver
Terminal Function Codes
4. To break the connection, use the Deassign I/O Channel ($DASSGN) system service to deassign the
channel and the Deallocate Device ($DALLOC) system service to deallocate the device. The application
program must reallocate the port and reassign the channel in preparation for the next connection.

An example of the application service concept is a program that provides the time of day. For this example,
the system manager includes the following lines in LAT$SYSTARTUP.COM (or enters them manually in the
LATCP program):

CREATE SERVICE TIME/ID="At the tone, the time will be"/APPLICATION
CREATE PORT LTA99:/DEDICATED
SET PORT LTA99:/SERVICE=TIME

An application program then assigns a channel to device LTA99. When a terminal server user types
CONNECT TIME, the user is connected to this application program, and the program prints out the time of
day. The program then deassigns the channel, which disconnects the server user.

A system manager may associate more than one LAT port with the same service. In that case, the application
program that offers the service should assign channels to all of the LTA devices created for that service.

5.4.4.7 Programming Forward Ports

An outbound LAT connection to a remote service node can be made using a forward port. The LAT port driver
can connect to a remote service node only if outgoing connections are enabled on the local node. Outgoing
connections can be enabled with LATCP or with a LAT SETMODE QIO to the local node. In addition, user
group codes on the local node must match the service group codes of the service to which they are being
connected. LATCP can list the services to which the local node can connect. (Refer to the HP OpenVMS
System Management Utilities Reference Manual for additional information.) Before the forward port can be
used to make an outbound LAT connection, it must be mapped to a service and optionally, a node and port.
The forward port is mapped with the IO$M_LT_SETMODE modifier, specifying the following items in the P1
item list parameter:

• LAT$_ITM_TARGET_SERVICE_NAME—The service name. The service name is the name of the service
to which to connect.

• LAT$_ITM_TARGET_NODE_NAME—The node name. The node name is the name of a specific service
node offering the service.

• LAT$_ITM_TARGET_PORT_NAME—The port name. The port name is the name of a specific port on the
target node. The LAT$_ITM_TARGET_NODE_NAME item must be supplied when supplying this item.

• LAT$_ITM_SERVICE_PASSWORD—The password. The password is required for access to a
password-protected service.

A LAT SETMODE QIO on a forward port does not require OPER privilege if the port name is not specified in
the P4 parameter. In other words, the LAT SETMODE QIO must be to the port corresponding to the CHAN
parameter (the forward port attained by assigning a channel to _LTA0:). Note that SS$_NOPRIV is returned
if you attempt to change the port type by specifying the LAT$_ITM_PORT_TYPE item code in the P1 itemlist
parameter. If the P4 parameter is specified, the LAT port driver also returns SS$_NOPRIV.

Table 5-30 lists the conditions that can occur when an application program issues an IO$M_LT_CONNECT
request for a connection to a remote service node. The QIO request is completed when a session is established
with the service node. Once the connection completes, data can be read and written to the port with the QIO
read and write functions.

5.4.4.8 Queue Change Notification

On Alpha and I64 systems, the IO$M_LT_QUE_CHG_NOTIF function modifier for $QIO allows a process to
enable an attention asynchronous system trap (AST), which is used with the LAT $QIO connect request. The
IO$M_LT_QUE_CHG_NOTIF function is available only for APPLICATION and FORWARD LAT devices.
245

Terminal Driver
Terminal Function Codes
If a $QIO connect request has been issued to a remote node and that request has been queued, this attention
AST will be set each time the queue position changes. This AST can be used as long as the $QIO connect
request is queued. Like a Ctrl/Y AST, it is set only once; it must be reenabled after each completion.

If the LAT $QIO connect succeeds or if a LAT connection exists for the intended service, the AST completes
with the SS$_DEVACTIVE status code.

If the LAT device does not have the queued characteristic, issuing the IO$M_LT_QUE_CHG_NOTIF function
results in the return of SS$_DEVREQERR status code.

The implementation of IO$M_LT_QUE_CHG_NOTIF is shown in the following C example:

status - sys$qiow (
 0, /* efn */
 ltchannel, /* channel */
 IO$_TTY_PORT|IO$M_LT_QUE_CHG_NOTIF,
 /* function */
 q_iosb, /* iosb */
 0, /* astadr */
 0, /* astprm */
 queue_pos_change, /* P1 = ast routine */
 0, 0, 0, 0, 0); /* P2 through P6 not used */

When a queue position change occurs, the AST routine is called with a 32-bit value. If this value is 0, then the
LAT connect $QIO is about to complete, if it has not already. If the value is not 0, the lower word of 16 bits
indicates the service queue position, and the upper word of 16 bits indicates the node queue position.

5.4.4.9 Hangup Notification

 To allow notification by the terminal driver of abnormal termination during I/O operations, enable a Ctrl/Y
AST on the channel. This ensures that the terminal driver notifies application programs of an abnormal
connection termination. Note that the operating system does not return an AST parameter to the Ctrl/Y AST
routine.

When an application with a pending read or write request has an abnormal LAT connection completion, the
terminal driver returns a SS$_HANGUP status in the first word of the IOSB. The reason for the abnormal
LAT connection completion can be attained with a LAT SENSEMODE QIO request to the port. Search the
resulting P1 itemlist for the value corresponding to the LAT$_ITM_DISCONNECT_REASON item code. The
value is either a LAT reject code or a LAT facility message. The LAT$V_SENSE_FULL bit must be set in the
P3 parameter in order to receive this information.

If IOSB indicates an abnormal completion (SS$_ABORT, see Table 5-30) on a IO$M_LT_CONNECT modifier
QIO, the LAT port driver returns the reason for the abnormal completion in IOSB+2. The reason can also be
attained with the LAT SENSEMODE QIO function.

5.4.5 Sense Mode and Sense Characteristics

The sense mode and sense characteristics functions sense the characteristics of the terminal and return them
to the caller in the I/O status block. The following function codes are provided:

• IO$_SENSEMODE

• IO$_SENSECHAR
246

Terminal Driver
Terminal Function Codes
IO$_SENSEMODE returns the temporary characteristics of the terminal (the characteristics associated with
the current process), and IO$_SENSECHAR returns the permanent characteristics of the terminal.
IO$_SENSEMODE is a logical I/O function and requires no privilege. IO$_SENSECHAR is a physical I/O
function and requires the privilege necessary to perform physical I/O.

These function codes take the following device- or function-dependent arguments:

• P1—Address of a characteristics buffer

• P2—Length of characteristics buffer (default length is 8 bytes)

For remote terminals, specify a P2 value of 8 or 12 only.

The P1 argument points to a variable-length block, as shown in Figure 5-11.

Figure 5-11 Sense Mode Characteristics Buffer

In the buffer, the device class is DC$_TERM, which is defined by the $DCDEF macro. The terminal type is
defined by the $TTDEF macro, such as TT$_LA36. The maximum entry for the buffer size (page width) is
255. Table 5-5 lists the values for terminal characteristics. Table 5-6 lists the extended terminal
characteristics. Characteristics values are defined by the $TTDEF macro.

The sense mode and sense characteristics functions can take the type-ahead count, read modem, and
broadcast function modifiers described in the following sections.

5.4.5.1 Type-ahead Count Function Modifier

The type-ahead count function modifier returns the count of characters presently in the type-ahead buffer
and a copy of the first character in the buffer. In this case, the P1 argument points to a characteristics buffer
returned by IO$M_TYPEAHDCNT. Figure 5-12 shows the format of this buffer.

Figure 5-12 Sense Mode Characteristics Buffer (type-ahead)

5.4.5.2 Read Modem Function Modifier

The read modem function modifier allows access to controller-dependent information. The following
combinations of function code and modifier are provided:

31 16 15 0

Buffer Size * Type Class

Page Length Basic Terminal Characteristics

24 23 8 7

Extended Terminal Characteristics

ZK0693GE

* Page Width P2 = 12

31 16 15 024 23

ZK0694GE

(Reserved) First Character Number of Characters in TypeAhead Buffer

(Reserved)
247

Terminal Driver
Terminal Function Codes
• IO$_SENSEMODE!IO$M_RD_MODEM

• IO$_SENSECHAR!IO$M_RD_MODEM

These function code modifier pairs take the following device- or function-dependent argument:

• P1—The address of a quadword block

Figure 5-13 shows the format of this block.

Figure 5-13 Sense Mode P1 Block

The receive modem field returns the value of the current input modem signals. Any or all of the following
signals can be returned:

• TT$M_DS_DSR—Data set ready (DSR)

• TT$M_DS_RING—Calling indicator (RING)

• TT$M_DS_CARRIER—Data channel received line signal detector (CARRIER)

• TT$M_DS_CTS—Ready for sending (CTS)

• TT$M_DS_SECREC—Received backward channel data (Sec RxD)

The $TTDEF macro defines the symbols for the receive modem field.

The controller type field returns the type of terminal controller in use by the currently active terminal line.
The $DCDEF macro defines the symbols for the following types of controllers:

• DT$_DZ11—DZ11 and DZV11

• DT$_DZ32—DZ32

• DT$_DMF32—DMF32

• DT$_DMB32—DMB32

• DT$_DMZ32—DMZ32

• DT$_DHV—DHV11

• DT$_DHU—DHU11

• DT$_LAT—LAT server

NOTE For LAT devices, the receive modem field of the IO$M_RD_MODEM function modifier does not
return any valid modem signal data.

The IO$M_RD_MODEM function modifier is not supported for remote terminals. The status
SS$_DEVREQERR is returned in the I/O status block.

31 16 15 024 23 8 7

ZK0695GE

Controller TypeReceive ModemP1:
248

Terminal Driver
I/O Status Block
5.4.5.3 Broadcast Function Modifier

The broadcast function modifier returns those bits that have been set by the set mode function modifier
IO$M_BRDCST (see Table 5-12 in Section 5.4.3.6). The following combination of function code and modifier is
provided:

• IO$_SENSEMODE!IO$M_BRDCST

This function code modifier pair takes the following device- or function-dependent arguments:

P1—A buffer that contains the bits that specify the requester IDs to be broadcast. (If the bit is set in the
first longword, that particular command is turned off for broadcast.)

P2—The length of the P1 buffer.

5.5 I/O Status Block
The I/O status block (IOSB) formats for the read, write, set mode, set characteristics, sense mode, sense
characteristics, and LAT port driver I/O functions are shown in Figures Figure 5-14, Figure 5-16, Figure 5-17,
and Figure 5-18. Figure 5-15 shows the IOSB format for the itemlist read function. Appendix A lists the
status returns for these functions. (The OpenVMS system messages documentation provides explanations
and suggested user actions for these returns.)

In Figure 5-14, the offset to terminator at IOSB+2 is the count of characters before the terminator character
(see Section 5.4.1.2). The terminator character is in the buffer at the offset specified in IOSB+2. When the
buffer is full, the offset at IOSB+2 is equal to the requested buffer size. At the same time, IOSB+4 is equal to
0. In the case of multiple character escape sequences that act as terminators, the terminator at IOSB+4 is the
first character (ESC) of the escape sequence. IOSB+6 contains the size of the terminator string, usually 1.
However, in an escape sequence, IOSB+6 contains the size of the validated escape sequence (see Section
5.2.1.4). The sum of IOSB+2 and IOSB+6 is the number of characters in the buffer.

Figure 5-14 IOSB Contents—Read Function

Status

+4

+2 IOSB

ZK0696GE

+6

Offset to Terminator

TerminatorTerminator Size
249

Terminal Driver
I/O Status Block
In Figure 5-15 the terminator position word contains a number, the character of which is determined by the
mode of operation. For itemlist read operations that do not specify TRM$K_EM_RDVERIFY, this word
contains the number of characters from the end of the buffer to the cursor location at the time the terminator
character was received. If TRM$K_EM_RDVERIFY is specified, the terminator position word contains the
offset into the buffer from the nonverified character.

Figure 5-15 IOSB Contents—Itemlist Read Function

The byte at IOSB+5 passes the status information, listed in Table 5-31, on TRM$K_EM_RDVERIFY
operations in which TRM$M_TM_ARROWS or TRM$M_TM_TOGGLE is set in TRM$_MODIFIERS.

In Figure 5-16, the remote terminal driver does not return the number of lines output or the cursor position.

Figure 5-16 IOSB Contents—Write Function

Table 5-31 Byte IOSB+5 Status Information

Bit Interpretation

7 (sign bit) 0 to indicate rest of bits valid. This applies to
insert/overstrike and arrow key read verify functionality
only.

6-2 Always 0 if bit 7 is equal to 0. Not used; reserved for future
use.

1 TRM$V_ST_OTHERWAY Set to indicate that read is terminated in left-justify insert
mode or right-justify overstrike mode.

0 TRM$V_ST_FIELD_FULL Read terminated on an autotab field full condition. IOSB+7
contains an index to the cursor.

Status

ZK1306GE

Offset to Terminator

IOSB Contents: Itemlist Read Function

(Reserved)from EOL
Cursor Position

Length
Terminator

Character
Terminator

Status

ZK1307GE

Byte Count

IOSB Contents: Write Function

00
250

Terminal Driver
I/O Status Block
In Figure 5-17, the TT driver attempts to return the correct data in IOSB after a SETMODE or SETCHAR. To
be sure the returned data is correct, the user should follow the SETMODE or SETCHAR with a
SENSEMODE or SENSECHAR.

Figure 5-17 IOSB Contents—Set Mode, Set Characteristics, Sense Mode, and Sense
Characteristics Functions

When an application program makes an I/O request for a connection to a remote device on a terminal server,
the LAT port driver places status information about the request into the first word of the I/O status block, as
shown in Figure 5-18. Table 5-30 lists the possible status returns.

If the server rejects the request, the LAT port driver returns a numeric LAT rejection code in the second word
of the I/O status block. Table 5-32 lists the LAT rejection codes.

Figure 5-18 IOSB Contents—LAT Port Driver Function

Table 5-32 LAT Rejection Codes

Value Reason

0 Reason is unknown.

1 User requested disconnect.

2 System shutdown in progress.

3 Invalid slot received.

4 Invalid service class received.

5 Insufficient resources to satisfy request.

6 Service in use.

7 No such service.

8 Service is disabled.

9 Service is not offered on the requested port.

10 Port name is unknown.

Status

ZK0698GE

Receive Speed * Transmit Speed

0 Parity Flags LF Fill Count CR Fill Count

* Only specified if different than transmit speed.

Status

+2 0

ZK6135GE

Rejection Code

(Reserved) (Reserved)
251

Terminal Driver
Terminal Driver Programming Examples
5.6 Terminal Driver Programming Examples
The VAX C program LAT.C shown in Example 5-1 initiates and maintains an outbound LAT session from the
local node. It demonstrates the following LAT $QIO functions:

• Cloning the LAT template device (LTA0:)

• IO$M_LT_SETMODE

• IO$M_LT_CONNECT (on forward port)

• IO$M_LT_SENSEMODE

Example 5-1 LAT.C Terminal Driver Programming Example

#module LAT_FORWARD_CONNECT "X1.0-001"/*
**++
**
** MODULE DESCRIPTION:
**
** In initiating and maintaining an outbound LAT session from the local
** node, this program demonstrates the following LAT $QIO functions:
**
** o Cloning the LAT template device (LTA0:)
** o IO$M_LT_SETMODE
** o IO$M_LT_CONNECT (on forward port)
** o IO$M_LT_SENSEMODE
**
**--
*/

/*

11 Invalid password.

12 Entry is not in queue.

13 Immediate access rejected (server queue full).

14 Access denied (group code mismatch).

15 Corrupted solicit request.

16 COMMAND_TYPE code is illegal/not supported.

17 Start slot cannot be sent.

18 Queue entry deleted by local node.

19 Inconsistent or illegal request parameters.

Table 5-32 LAT Rejection Codes (Continued)

Value Reason
252

Terminal Driver
Terminal Driver Programming Examples
**
** INCLUDE FILES
**
*/
#include /* VMS Descriptor Definitions */
#include /* I/O Function Codes Definitions */
#include /* LAT Definitions */
#include /* System Service Return Status */
 /* Code Definitions */
#include /* Terminal Characteristics */
#include /* Terminal Extended */
 /* Characteristics */
/*
**
** MACRO DEFINITIONS
**
*/

/*
** Service name which the session will be to.
*/

#define SERVICE_NAME "LAT_SERVICE"

#define SERVICE_NAME_LENGTH 11

/*
** For the sake of clarity, the sizes of the buffers used for reading from
** and writing to the LTA and TT devices are set to the values below. In
** order to gain maximum throughput from this program, the following system
** parameters can be set:
**
** o TTY_ALTYPAHD - 1500
** o TTY_TYPAHDSZ - 80
**
** To get the best performance from this program without touching these
** system parameters on your system, modify the program to set the size of
** the buffers to the following:
**
** o LTA_BUFFER_SIZE = MIN(TTY_ALTYPAHD, 1500)
** o TT_BUFFER_SIZE = MIN(TTY_TYPAHDSZ, 132)
*/

#define LTA_MAXBUF 1500
#define TT_MAXBUF 80

/*
** Size of the LAT SENSEmode itemlist.
*/

#define MAX_SENSE_ITEMLIST_SIZE 1500

/*
** Character user can press to terminate the LAT connection (CTRL+\).
*/

#define CONNECTION_TERMINATOR 0x1C
253

Terminal Driver
Terminal Driver Programming Examples
/*
**
** FUNCTION PROTOTYPES
**
*/

unsigned long SetDeviceChars(void);
void ConnectAST(void);
void LTAreadChannelAST(void);
void TTreadChannelAST(void);
void LTAhangupHandler(void);
void EndSession(void);
void ExitHandler(void);

/*
**
** GLOBAL DATA
**
*/

char *LTAbuffer, /* LTA device I/O buffer */
 TTbuffer, / TT device I/O buffer */

 /*
 ** Text for LAT reject codes. Note that some LAT
 ** implementations will return a 0 reject code to
 ** indicate a normal disconnect.
 */

 *LATrejectTable[] = {
 "Unknown",
 "User requested disconnect",
 "System shutdown in progress",
 "Invalid slot received",
 "Invalid service class received",
 "Insufficient resources at server",
 "Port or service in use",
 "No such service",
 "Service is disabled",
 "Service is not offeredon the requested port",
 "Port name is unknown",
 "Invalid service password",
 "Remote entry is not in queue",
 "Immediate access rejected",
 "Access denied",
 "Corrupted request",
 "Requested function is not supported",
 "Session cannot be started",
 "Queue entry deleted by server",
 "Illegal request parameters" };

unsigned short LTAchannel, /* LTA device I/O channel */
 TTchannel, /* TT device I/O channel */
 LTA_QIOiosb[4], /* IOSB for LTA device functions */
 TT_QIOiosb[4]; /* IOSB for TT device functions */
254

Terminal Driver
Terminal Driver Programming Examples
unsigned long ReadTerminatorMask[2] = { 0, 0 },
 /* $QIO read terminator mask */
 SavedTTdeviceChar[3],
 /* Saved TT device characteristics */
 DeviceCharBuffSize = sizeof(SavedTTdeviceChar);
 /* Size of device characteristics buffer*/
 ExitConditionValue, /* Exit condition value of program */
 LATrejectTableSize =/* Number of elements in LAT reject tbl */
 sizeof(LATrejectTable) / sizeof(LATrejectTable[0]);

/*
** Itemlist for setting LAT port with the target service name.
*/

struct {
 unsigned short item_code;
 char item_byte_count;
 char item_value[SERVICE_NAME_LENGTH];
} PortSetmodeItemlist = {
 LAT$_ITM_TARGET_SERVICE_NAME, SERVICE_NAME_LENGTH, SERVICE_NAME
};

/*
** Exit handler block.
*/

struct {
 unsigned long flink;
 void (*exit_handler)();
 unsigned long arg_count;
 unsigned long *exit_status;
} ExitHandlerBlock = { 0, ExitHandler, 1, };

/*
** Devices which channels are assigned to.
*/

$DESCRIPTOR(LTAtemplateDSC, "LTA0:");
$DESCRIPTOR(TTchannelDSC, "SYS$COMMAND");

main()
{
 /*
 ** Local Variables:
 */

 unsigned long status,
 portSetmodeItemlistSize = sizeof(PortSetmodeItemlist);

 /*
 ** BEGIN:
 **
 ** Declare an exit handler.
 */
255

Terminal Driver
Terminal Driver Programming Examples
 if (!((status = sys$dclexh()) & 1))
 lib$signal(status);

 /*
 ** Assign a channel to LTA0: to get a forward LAT port and assign a
 ** channel to the terminal.
 */

 if (!((status = sys$assign(, , 0, 0)) & 1))
 lib$signal(status);
 if (!((status = sys$assign(, , 0, 0)) & 1))
 lib$signal(status);

 /*
 ** Allocate memory for the channel data buffers.
 */

 LTAbuffer = malloc(LTA_MAXBUF);
 TTbuffer = malloc(TT_MAXBUF);

 /*
 ** Set device characteristics for the two channels.
 */

 if (!((status = SetDeviceChars()) & 1))
 lib$signal(status);

 /*
 ** Do SETmode $QIO to set the port entity with the target service name
 ** specified in the item list.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_TTY_PORT|IO$M_LT_SETMODE,
 _QIOiosb, 0, 0,
 ,
 portSetmodeItemlistSize,
 LAT$C_ENT_PORT|(LAT$C_ENTS_OLD << 0x10),
 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Enable a CTRL+Y AST on the LAT channel.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_SETMODE|IO$M_CTRLYAST,
 _QIOiosb, 0, 0,
 LTAhangupHandler,
 0, 0, 0, 0, 0)) & 1))
 lib$signal(status);
256

Terminal Driver
Terminal Driver Programming Examples
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Post the first read (with AST) on the LTA device to ensure that the
 ** first burst of data from the target service is not lost. It is very
 ** important that the first read is queued before doing the connect
 ** $QIO to ensure no data lossage.
 */

 if (!((status = sys$qio(
 0,
 LTAchannel,
 IO$_READVBLK|IO$M_NOECHO,
 _QIOiosb,
 LTAreadChannelAST, 0,
 LTAbuffer,
 1, 0, , 0, 0)) & 1))
 lib$signal(status);

 /*
 ** Do the LAT connect $QIO and hibernate until program exit. The
 ** ConnectAST will execute when the connection completes and post the
 ** initial read on the TT channel.
 */

 if (!((status = sys$qio(
 0,
 LTAchannel,
 IO$_TTY_PORT|IO$M_LT_CONNECT,
 _QIOiosb,
 ConnectAST, 0, 0, 0, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 sys$hiber();

} /* END - main() */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This routine sets device characteristics of the LTA and TT devices.
** The HOSTSYNC, NOBRDCST, EIGHTBIT and PASTHRU characteristics are set
** on the LTA device. The ESCAPE and TTSYNC characteristics are cleared.
**
** The TTSYNC, HOSTSYNC, EIGHTBIT, and PASTHRU characteristics are set
** on the TT device. The ESCAPE characteristic is cleared. The TT
** characterisitcs are also saved for restoration at program exit.
**
**--
*/

unsigned long SetDeviceChars(void)
{
 /*
257

Terminal Driver
Terminal Driver Programming Examples
 ** Local Variables:
 */

 unsigned long status,
 deviceChar[3];

 /*
 ** BEGIN:
 **
 ** Mask and set the characteristics of the LTA device. Sense the
 ** current characteristics, and mask in and set the new ones.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_SENSEMODE,
 _QIOiosb, 0, 0,
 ,
 DeviceCharBuffSize, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 deviceChar[1] =
 (deviceChar[1] | (TT$M_HOSTSYNC | TT$M_NOBRDCST | TT$M_EIGHTBIT))
 & ~TT$M_ESCAPE & ~TT$M_TTSYNC;
 deviceChar[2] |= TT2$M_PASTHRU;

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_SETMODE,
 &TT_QIOiosb, 0, 0,
 &deviceChar
 DeviceCharBuffSize, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Repeat the procedure for TT device characteristics. However, save
 ** the current characteristics for restoration at program exit.
 */

 if (!((status = sys$qiow(
 0,
 TTchannel,
 IO$_SENSEMODE,
 $TT_QIOiosb, 0, 0,
 &SavedTTdeviceChar
 DeviceCharBuffSize, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(TT_QIOiosb[0] & 1))
 lib$signal(TT_QIOiosb[0]);

 deviceChar[0] = SavedTTdeviceChar[0];
258

Terminal Driver
Terminal Driver Programming Examples
 deviceChar[1] = (SavedTTdeviceChar[1] |
 (TT$M_TTSYNC | TT$M_HOSTSYNC | TT$M_EIGHTBIT)) & ~TT$M_ESCAPE;
 deviceChar[2] = SavedTTdeviceChar[2] | TT2$M_PASTHRU;

 if (!((status = sys$qiow(
 0,
 TTchannel,
 IO$_SETMODE,
 &TT_QIOiosb, 0, 0,
 &deviceChar
 DeviceCharBuffSize, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(TT_QIOiosb[0] & 1))
 lib$signal(TT_QIOiosb[0]);

 return(status);

} /* END - SetDeviceChars */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This routine is an AST which executes when the connect $QIO completes.
** First the IOSB is checked. If the connection timed out or was aborted,
** simply end the session. Any other abnormal status causes the program
** to exit.
**
** Otherwise the connection completed successfully and a read on the TT
** channel is posted.
**
**--
*/

void ConnectAST()
{
 /*
 ** Local Variables:
 */

 unsigned long status;

 /*
 ** BEGIN:
 **
 ** If the status in the IOSB indicates that the connection timed out
 ** or aborted, call the session end routine. Any other abnormal
 ** status causes program exit.
 */

 if ((LTA_QIOiosb[0] == SS$_TIMEOUT) || (LTA_QIOiosb[0] == SS$_ABORT))
 EndSession();

 if (!(LTA_QIOiosb[0] & 1))
259

Terminal Driver
Terminal Driver Programming Examples
 sys$exit(LTA_QIOiosb[0]);

 /*
 ** The connection completed successfully! Post a read (with AST) on
 ** the TT device and return.
 */

 if (!((status = sys$qio(
 0,
 TTchannel,
 IO$_READVBLK|IO$M_NOECHO,
 &TT_QIOiosb,
 TTreadChannelAST, 0,
 TTbuffer,
 1, 0, &ReadTerminatorMask 0, 0)) & 1))
 lib$signal(status);

 return;

} /* END - ConnectAST */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This routine is an AST which executes when the first character read on
** the LTA channel completes. It does a "flush" read of the channel to
** drain any data out of the ALTYPAHD buffer and writes the data to the
** TT channel. It then posts another read on the channel.
**
**--
*/

void LTAreadChannelAST(void)
{
 /*
 ** Local Variables:
 */

 unsigned long status;

 /*
 ** BEGIN:
 **
 ** If the status in the IOSB indicates channel hangup, simply end the
 ** session. Signal any other abnormal status.
 */

 if (LTA_QIOiosb[0] == SS$_HANGUP)
 EndSession();
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Do a "flush" read of the LTA device. This is done by doing a timed
260

Terminal Driver
Terminal Driver Programming Examples
 ** read with a 0 timeout. There may or may not be any data to drain.
 ** This method is more efficient than using single character reads.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_READVBLK|IO$M_TIMED|IO$M_NOECHO,
 _QIOiosb, 0, 0,
 LTAbuffer+1,
 LTA_MAXBUF-1, 0,
 &ReadTerminatorMask, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1) && (LTA_QIOiosb[0] != SS$_TIMEOUT))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** The second word of the IOSB contains the number of characters
 ** read. Write the characters plus 1 for the initial read to the
 ** TT device.
 */

 if (!((status = sys$qiow(
 0,
 TTchannel,
 IO$_WRITEVBLK,
 _QIOiosb, 0, 0,
 LTAbuffer,
 LTA_QIOiosb[1]+1, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(TT_QIOiosb[0] & 1))
 lib$signal(TT_QIOiosb[0]);

 /*
 ** Post another read on the LTA device.
 */

 if (!((status = sys$qio(
 0,
 LTAchannel,
 IO$_READVBLK|IO$M_NOECHO,
 <A_QIOiosb,
 LTAreadChannelAST, 0,
 LTAbuffer,
 1, 0, &ReadTerminatorMask, 0, 0)) & 1))
 lib$signal(status);

 return;

} /* END - LTAreadChannelAST */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
261

Terminal Driver
Terminal Driver Programming Examples
** This routine is an AST which executes when the first character read on
** the TT channel completes. It does a "flush" read of the channel to
** drain any data out of the TYPAHD buffer and writes the data to the
** LTA channel. It then posts another read on the channel.
**
**--
*/

void TTreadChannelAST(void)
{
 /*
 ** Local Variables:
 */

 unsigned long status;

 /*
 ** BEGIN:
 **
 ** If the user pressed the connection terminator character, do a LAT
 ** disconnect $QIO and exit.
 */

 if (*TTbuffer == CONNECTION_TERMINATOR)
 {
 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_TTY_PORT|IO$M_LT_DISCON,
 _QIOiosb, 0, 0, 0, 0, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);
 return;
 }

 /*
 ** Do a "flush" read of the TT device. This is done by doing a timed
 ** read with a 0 timeout. There may or may not be any data to drain.
 */

 if (!((status = sys$qiow(
 0,
 TTchannel,
 IO$_READVBLK|IO$M_TIMED|IO$M_NOECHO,
 _QIOiosb, 0, 0,
 TTbuffer+1,
 TT_MAXBUF-1, 0,
 &ReadTerminatorMask, 0, 0)) & 1))
 lib$signal(status);
 if (!(TT_QIOiosb[0] & 1) && (TT_QIOiosb[0] != SS$_TIMEOUT))
 lib$signal(TT_QIOiosb[0]);

 /*
 ** The second word of the IOSB contains the number of characters
 ** read. Write the characters plus 1 for the initial read to the
262

Terminal Driver
Terminal Driver Programming Examples
 ** TT device.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_WRITEVBLK,
 _QIOiosb, 0, 0,
 TTbuffer,
 TT_QIOiosb[1]+1, 0, 0, 0, 0)) & 1))
 lib$signal(status);

 /*
 ** If the status in the IOSB indicates channel hangup, simply end
 ** the session. Signal any other abnormal status.
 */

 if (LTA_QIOiosb[0] == SS$_HANGUP)
 EndSession();
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Post another read on the LTA device.
 */

 if (!((status = sys$qio(
 0,
 TTchannel,
 IO$_READVBLK|IO$M_NOECHO,
 _QIOiosb,
 TTreadChannelAST, 0,
 TTbuffer,
 1, 0, &ReadTerminatorMask, 0, 0)) & 1))
 lib$signal(status);

 return;

} /* END - TTreadChannelAST */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This routine is the CTRL+Y AST for the LTA channel. It executes when
** a hangup on the LTA channel is recognized (connection timed out or
** aborted). It will call the session end routine if it hasn't already
** been called by ConnectAST.
**
** NOTE: CTRL+Y ASTs for application ports will NOT execute when the
** connection is disconnected.
**
**--
*/
263

Terminal Driver
Terminal Driver Programming Examples
void LTAhangupHandler(void)
{
 /*
 ** BEGIN:
 **
 ** Call the session end routine and return.
 */

 EndSession();
 return;

} /* END - LTAhanghupHandler */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This routine is executed at session end. It will do a $QIO SENSEmode
** and search the resulting itemlist to find the reason for the LAT
** disconnect. The reason for the disconnect is displayed on the
** terminal and the image exits.
**
**--
*/

void EndSession(void)
{

 /*
 ** Local Variables:
 */

 struct ITEM_ENTRY *itemlistEntry;
 unsigned long status;
 char *senseItemlist = malloc(MAX_SENSE_ITEMLIST_SIZE),
 *itemlistEntryPointer;

 /*
 ** BEGIN:
 **
 ** Do the SENSEmode on the port.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_TTY_PORT|IO$M_LT_SENSEMODE,
 <A_QIOiosb, 0, 0,
 senseItemlist,
 MAX_SENSE_ITEMLIST_SIZE,
 LAT$C_ENT_PORT|(LAT$M_SENSE_FULL << 0x10),
 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);
264

Terminal Driver
Terminal Driver Programming Examples
 /*
 ** Set up two pointers used to traverse the itemlist.
 */

 itemlistEntry = (struct ITEM_ENTRY *) senseItemlist;
 itemlistEntryPointer = senseItemlist;

 /*
 ** Search the itemlist for the LAT$_ITM_DISCONNECT_REASON code to find
 ** out why the connection terminated.
 */

 while (itemlistEntry->LAT$R_ITM_CODE.LAT$W_ITEMCODE !=
 LAT$_ITM_DISCONNECT_REASON)
 {
 /*
 ** If the current itemcode being checked has a string value,
 ** advance the pointer to the next itemcode by skipping
 ** BCNT bytes plus 3 bytes for the BCNT byte itself and the
 ** 2 byte itemcode.
 */

 if (itemlistEntry->
 LAT$R_ITM_CODE.LAT$R_ITM_BITS.LAT$V_STRING)
 itemlistEntryPointer +=
 itemlistEntry->LAT$R_ITEM_VALUE.
 LAT$R_ITEM_COUNTED_STRING.LAT$B_ITEM_BCNT + 3;

 /*
 ** If the current itemcode being checked has a scalar value,
 ** advance the pointer to the next itemcode by skipping 6
 ** bytes for the itemcode and the 4 byte scalar.
 */

 else
 itemlistEntryPointer += 6;
 itemlistEntry = (struct ITEM_ENTRY *) itemlistEntryPointer;
 }

 /*
 ** If the disconnect reason is a LAT reject code, print out the
 ** text corresponding to the code and set the exit condition value
 ** to SS$_NORMAL.
 */

 if (itemlistEntry->LAT$R_ITEM_VALUE.LAT$L_ITEM_SCALAR_VALUE <=
 LATrejectTableSize)
 {
 printf("\nSession disconnected. Reason: %s\n\n\n",
 LATrejectTable[itemlistEntry->LAT$R_ITEM_VALUE.
 LAT$L_ITEM_SCALAR_VALUE]);
 ExitConditionValue = SS$_NORMAL;
 }

 /*
 ** The scalar value is a LAT facility message code. Set the exit
265

Terminal Driver
Terminal Driver Programming Examples
 ** condition value to be the scalar. Upon image exit, the
 ** corresponding LAT facility message will be displayed.
 */

 else
 ExitConditionValue =
 itemlistEntry->LAT$R_ITEM_VALUE.LAT$L_ITEM_SCALAR_VALUE;

 sys$exit(ExitConditionValue);

} /* END - EndSession */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This is the program exit handler which is executed upon image exit.
** It will cancel all pending I/O on the two channels and restore the
** TT channel characteristics.
**
**--
*/

void ExitHandler(void)
{
 /*
 ** Local Variables:
 */

 unsigned long status;

 /*
 ** BEGIN:
 **
 ** Cancel I/O on the channels, reset terminal characteristics and
 ** return.
 */

 if (!((status = sys$cancel(LTAchannel)) & 1))
 lib$signal(status);
 if (!((status = sys$cancel(TTchannel)) & 1))
 lib$signal(status);

 if (!((status = sys$qiow(
 0,
 TTchannel,
 IO$_SETMODE,
 &TT_QIOiosb, 0, 0,
 &SavedTTDeviceChar,
 DeviceCharBuffSize, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(TT_QIOiosb[0] & 1))
 lib$signal(TT_QIOiosb[0]);

 return;
266

Terminal Driver
Terminal Driver Programming Examples
} /* END - ExitHandler */

The VAX MACRO program FULL_DUPLEX_TERMINAL.MAR (Example 5-2) shows several I/O operations
using the full-duplex capabilities of the terminal. This program shows some important concepts about
terminal driver programming: assigning an I/O channel, performing full-duplex I/O operations, enabling
Ctrl/C AST requests, and itemlist read operations. The program is designed to run with a terminal set to
full-duplex mode.

The initialization code queues a read request to the terminal and enables Ctrl/C AST requests. The main loop
then prints out a random message every three seconds. When you enter a message on the terminal, the read
AST routine prints an acknowledgment message and queues another read request. If you press Ctrl/C, the
associated AST routine cancels the I/O operation on the assigned channel and exits to the command
interpreter.

Example 5-2 FULL_DUPLEX_TERMINAL.MAR Terminal Driver Programming Example

 .TITLE FULL_DUPLEX TERMINAL PROGRAMMING EXAMPLE
 .IDENT /05/

; **
;
; TERMINAL PROGRAM
;
; **

 .SBTTL DECLARATIONS
 .DISABLE GLOBAL

;
; Declare the external symbols and MACRO libraries.
;

 .EXTERNAL LIB$GET_EF
 .LIBRARY 'SYS$LIBRARY:LIB.MLB'
 .LIBRARY 'SYS$LIBRARY:STARLET.MLB'
;
; Define symbols
;

 $IODEF ; Define I/O function codes
 $QIODEF ; Define QIO definition codes
 $SSDEF ; Define the system service status codes
 $TRMDEF ; Define itemlist read codes
 $TTDEF ; Terminal characteristic definitions

;
; Define macros
;
 .SHOW
 .MACRO ITEM LEN=0,CODE,VALUE
 .WORD LEN
 .WORD TRM$_'CODE'
 .LONG VALUE
 .LONG 0
267

Terminal Driver
Terminal Driver Programming Examples
 .ENDM ITEM
 .NOSHOW

;
; Declare exit handler control block
;
EXIT_HANDLER_BLOCK:
 .LONG 0 ; System uses this for pointer
 .LONG EXIT_HANDLER ; Address of exit handler
 .LONG 1 ; Argument count for handler
 .LONG STATUS ; Destination of status code
STATUS: .BLKL 1 ; Status code from $EXIT

;
; Allocate terminal descriptor and channel number storage
;

TT_DESC:
 .ASCID /SYS$INPUT/ ; Logical name of terminal
TT_CHAN:
 .BLKW 1 ; TT channel number storage

;
; Define acknowledgment message. This is done right above input buffer
; so that we can concatenate the two together when the acknowledgment
; message is issued.
;

ACK_MSG:
 .ASCII <CR> /Following input acknowledged: /
ACK_MSGLEN=.-ACK_MSG ; Calculate length of message

;
; Allocate input buffer
;

IN_BUFLEN = 20 ; Set length of buffer
IN_BUF:
 .BLKB IN_BUFLEN ; Allocate character buffer
IN_IOSB:
 .BLKQ 1 ; Input I/O status block
;
; Define out-of-band ast character mask
;
CNTRLA_MASK:
 .LONG 0
 .LONG ^B0010 ; Control A mask

;
; Define old terminal characteristics buffer
;
OLDCHAR_BUF_LEN = 12
OLDCHAR_BUF:
 .BLKB OLDCHAR_BUF_LEN

;

268

Terminal Driver
Terminal Driver Programming Examples
; Define new terminal characteristics buffer
;
NEWCHAR_BUF_LEN = 12
NEWCHAR_BUF:
 .BLKB NEWCHAR_BUF_LEN

;
; Define carriage control symbols
;

 CR=^X0D ; Carriage return
 LF=^X0A ; Line feed

;
; Define output messages
;
; Output messages are accessed by indexing into a table of
; longwords with each message described by a message address and
; message length
;

ARRAY: ; Table of message addresses and
 ; lengths
 .LONG 10$; First message address
 .LONG 15$; First message length
 .LONG 20$
 .LONG 25$
 .LONG 30$
 .LONG 35$
 .LONG 40$
 .LONG 45$
;
; Define messages
;

10$: .ASCII <CR>/RED ALERT! RED ALERT!/
15$=.-10$
;
20$: .ASCII <CR>/ALL SYSTEMS GO/
25$=.-20$
;
30$: .ASCII <CR>/WARNING..INTRUDER ALARM/
35$=.-30$
;
40$: .ASCII <CR>/** SYSTEM OVERLOAD **/
45$=.-40$
;
; Static QIO packet for message output using QIO$_G form
;

WRITE_QIO:
 $QIO EFN=SYNC_EFN, - ; QIO packet
 FUNC=IO$_WRITEVBLK!IO$M_BREAKTHRU!IO$M_REFRESH, -
 IOSB=SYNC_IOSB

;
; Declare the required I/O status blocks.
269

Terminal Driver
Terminal Driver Programming Examples
;
SYNC_IOSB:: .BLKQ 1 ; I/O status block for synchronous terminal processing.

;
; Declare the required event flags.
;
ASYNC_EFN:: .BLKL 1 ; Event flag for asynchronous terminal processing.
SYNC_EFN == WRITE_QIO + 4 ; Event flag for sync terminal processing.
TIMER_EFN:: .BLKL 1 ; Event flag for timer processing.

;
; Timer storage
;

WAITIME:
 .LONG -10*1000*1000*3,-1 ; 3 second delta time
TIME:
 .BLKQ 1 ; Current storage time used for
 ; random number

 .PAGE
 .SBTTL START - MAIN ROUTINE
 .ENABLE LOCAL_BLOCK
;++
;
; Functional description:
;
; **
;
; Start program
;
; **
;
; The following code performs initialization functions.
; It is assumed that the terminal is already in
; FULL-DUPLEX mode.
;
; NOTE: When doing QIO_S calls, parameters P1 and P3-P6 should be
; passed by value, while P2 should be passed by reference.
;
; Input parameters:
; None
;
; Output parameters:
; None
;
;--
 .ENTRY START ^M < >

; Get the required event flags.

 PUSHAL ASYNC_EFN
 CALLS # 1, G^ LIB$GET_EF ; Get EFN for async terminal operations.
 BLBC R0, 10$; Error - branch.
 PUSHAL SYNC_EFN
 CALLS # 1, G^ LIB$GET_EF ; Get EFN for sync terminal operations.
 BLBC R0, 10$; Error - branch.
270

Terminal Driver
Terminal Driver Programming Examples
 PUSHAL TIMER_EFN
 CALLS # 1, G^ LIB$GET_EF ; Get EFN for timer operations.
 BLBC R0, 10$; Error - branch.

; Initialize the terminal characteristics.

 $ASSIGN_S DEVNAM=TT_DESC,-; Assign terminal channel using
 CHAN=TT_CHAN ; logical name and channel number
 BLBC R0, 10$; Error - branch.
 BSBW CHANGE_CHARACTERISTICS ; Change the characteristics of
 ; terminal
 BSBW ENABLE_CTRLCAST ; Allow Ctrl/C traps
 BSBW ENABLE_OUTBANDAST ; Enable Ctrl/A out-of-band AST
 BSBW ENABLE_READ ; Queue read
 MOVZWL TT_CHAN, WRITE_QIO+8 ; Insert channel into
 BRB LOOP ; static QIO packet

10$:
 BRW ERROR

;
; This loop outputs a message based on a random number and then
; delays for 3 seconds
;

LOOP:
 $GETTIM_S TIMADR=TIME ; Get random time
 BLBC R0, 10$; Error - branch.
 EXTZV #6, #2, TIME, R0 ; Load random bits into switch
 MOVQ ARRAY[R0], - ; Load message address
 WRITE_QIO+QIO$_P1 ; and size into QIO
 ; packet

;
; Issue QIO write using packet defined in data area
;

 $QIOW_G WRITE_QIO
 BLBC R0, 10$; QIO error - branch.
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Terminal driver error - branch.

;
; Delay for 3 seconds before issuing next message
;

 $SETIMR_S EFN=TIMER_EFN,- ; Timer service
 DAYTIM=WAITIME ; will set event flag
 ; in 3 seconds
 BLBC R0, 10$; Error - branch.
 $WAITFR_S EFN=TIMER_EFN ; Wait for event flag
 BLBS R0, LOOP ; No error if set
 BRB 10$; Error - branch.

 .DISABLE LOCAL_BLOCK
271

Terminal Driver
Terminal Driver Programming Examples
 .PAGE
 .SBTTL CHANGE_CHARACTERISTICS - CHANGE CHARACTERISTICS OF TERMINAL
;++
;
; Functional description:
;
; Routine to change the characteristics of the terminal.
;
; Input parameters:
; None
;
; Output parameters:
; R0 - status from $QIO call.
; R1 - R5 destroyed
;
;--
;

CHANGE_CHARACTERISTICS:
 $QIOW_S EFN=SYNC_EFN, - ; Get current terminal characteristics
 CHAN=TT_CHAN, -
 FUNC=#IO$_SENSEMODE, -
 IOSB=SYNC_IOSB, -
 P1=OLDCHAR_BUF, -
 P2=#OLDCHAR_BUF_LEN
 BLBC R0, 10$; Error if clear
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Error - branch

 $DCLEXH_S EXIT_HANDLER_BLOCK ; Declare exit handler to reset
 ; characteristics
 BLBC R0, 10$; Error - branch.
 MOVC3 #OLDCHAR_BUF_LEN, - ; Move old characteristics into
 OLDCHAR_BUF, - ; new characteristics buffer
 NEWCHAR_BUF
 BISL2 #TT$M_NOBRDCST, - ; Set nobroadcast bit
 NEWCHAR_BUF+4 ; ...
 $QIOW_S EFN=SYNC_EFN, - ; Set current terminal characteristics
 CHAN=TT_CHAN, -
 FUNC=#IO$_SETMODE, -
 IOSB=SYNC_IOSB, -
 P1=NEWCHAR_BUF, -
 P2=#NEWCHAR_BUF_LEN
 BLBC R0, 10$; QIO error - branch.
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Terminal driver error - branch.
 RSB
10$:
 BRW ERROR

 .PAGE
 .SBTTL ENABLE_CTRLCAST - ENABLE Ctrl/C AST
;++
;
; Functional description:
272

Terminal Driver
Terminal Driver Programming Examples
;
; Routine to allow Ctrl/C recognition.
;
; Input parameters:
; None
;
; Output parameters:
; None
;
;--
;

ENABLE_CTRLCAST:
 $QIOW_S EFN=SYNC_EFN, -
 CHAN=TT_CHAN, -
 FUNC=#IO$_SETMODE!IO$M_CTRLCAST, -
 IOSB=SYNC_IOSB, -
 P1=CTRLCAST, - ; AST routine address
 P3=#3 ; User mode
 BLBC R0, 10$; Error - branch.
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Terminal driver error - branch.
 RSB

10$:
 BRW ERROR

 .PAGE
 .SBTTL ENABLE_OUTBANDAST - ENABLE Ctrl/A AST
;++
;
; Functional description:
;
; Routine to allow CNTRL/A recognition.
;
; Input parameters:
; None
;
; Output parameters:
; None
;

ENABLE_OUTBANDAST:
 $QIOW_S EFN=SYNC_EFN, -
 CHAN=TT_CHAN, -
 FUNC=#IO$_SETMODE!IO$M_OUTBAND, -
 IOSB=SYNC_IOSB, -
 P1=CTRLAAST, - ; AST routine address
 P2=#CNTRLA_MASK, - ; Character mask
 P3=#3 ; User mode
 BLBC R0, 10$; QIO error - branch.
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Terminal driver error - branch.
 RSB

10$:
273

Terminal Driver
Terminal Driver Programming Examples
 BRW ERROR

 .PAGE
 .SBTTL ENABLE_READ - QUEUE A READ TO THE TERMINAL.
;++
;
; Functional description:
;
; Routine to queue a read operation to the terminal.
;
; Input parameters:
; None
;
; Output parameters:
; None
;
; Define item list for itemlist read
;
ITEM_LST:
 ITEM 0, MODIFIERS, - ; Convert lowercase to
 TRM$M_TM_CVTLOW!TRM$M_TM_NOEDIT ; upper and inhibit line
 ITEM 6, TERM,MASK_ADDR ; editing
 ; Set up terminator mask

ITEM_LEN = . - ITEM_LST
MASK_ADDR:
 .LONG 1@^XD ; Terminator mask is
 ; <CR>

 .WORD 1@4 ; and "$"ENABLE_READ:
 $QIO_S EFN=ASYNC_EFN, - ; Must not be QIOW form or read will block
 CHAN=TT_CHAN, - ; process
 FUNC=#IO$_READVBLK!IO$M_EXTEND, -
 IOSB=IN_IOSB, -
 ASTADR=READAST, - ; AST routine to execute
 P1=IN_BUF, - ; on
 P2=#IN_BUFLEN, -
 P5=#ITEM_LST, - ; Itemlist read address
 P6=#ITEM_LEN ; Itemlist read size
 BLBC R0, 10$; QIO error - branch.

; The queued read operation will not affect write operations due
; to the fact that breakthru has been set for the write operations.

 RSB

10$:
 BRW ERROR

 .PAGE
 .SBTTL READAST - AST ROUTINE FOR READ COMPLETION
 .ENABLE LOCAL_BLOCK
;++
;
; Functional description:
;
; AST routine to execute on read completion.
274

Terminal Driver
Terminal Driver Programming Examples
;
; Input parameters:
; None
;
; Output parameters:
; None
;
;--
;

10$:
 MOVZWL IN_IOSB, R0 ; Get the terminal driver status
20$:
 BRW ERROR ; Exit with error status.

 .ENTRY READAST ^M < R2, R3, R4, R5 > ; Procedure entry mask

 BLBC IN_IOSB, 10$; Terminal driver error - branch
 MOVZWL IN_IOSB+2, R0 ; Get number of characters read into R0
 ADDL2 #ACK_MSGLEN, R0 ; Add size of fixed acknowledge message
 $QIO_S EFN=ASYNC_EFN, - ; Issue acknowledge message
 CHAN=TT_CHAN, - ; Note, ACK must be asynchronous (QIO)
 FUNC=#IO$_WRITEVBLK, - ; and the terminal driver write status
 P1=ACK_MSG, - ; is ignored (no IOSB and AST routine).
 P2=R0 ; Specify IOSB and AST routine if output
 ; must be displayed on the terminal.
 BLBC R0, 20$; QIO error - branch

;
; Process read message
;
; .
; .
; .
;(user-provided code to decode command inserted here)
; .
; .
; .

 BSBW ENABLE_READ ; Queue next read
 RET ; Return to mainline loop

 .DISABLE LOCAL_BLOCK

 .PAGE
 .SBTTL CTRLAAST - AST ROUTINE FOR Ctrl/A
 .SBTTL CTRLCAST - AST ROUTINE FOR Ctrl/C
 .SBTTL ERROR - EXIT ROUTINE
;++
;
; Functional description:
;
; AST routine to execute when Ctrl/C or Ctrl/A is entered.
;
; Input parameters:
; None
275

Terminal Driver
Terminal Driver Programming Examples
;
; Output parameters:
; None
;

CTRLCAST::
CTRLAAST::
 .WORD ^M < > ; Procedure entry mask
 MOVL #SS$_NORMAL, R0 ; Put success in R0

ERROR::
 $EXIT_S R0 ; Exit
 RSB

 .PAGE
 .SBTTL EXIT_HANDLER - EXIT HANDLER ROUTINE
;++
;
; Functional description:
;
; Exit handler routine to execute when image exits. It cancels
; any outstanding I/O on this channel and resets the terminal
; characteristics to their original state.
;
; Input parameters:
; None
;
; Output parameters:
; None
;
;--
;

 .ENTRY EXIT_HANDLER ^M< >
 $CANCEL_S CHAN=TT_CHAN ; Flush any I/O on queue
 $QIOW_S EFN=SYNC_EFN, - ; Reset terminal characteristics
 CHAN=TT_CHAN, -
 FUNC=#IO$_SETMODE, -
 IOSB=SYNC_IOSB, -
 P1=OLDCHAR_BUF, -
 P2=#OLDCHAR_BUF_LEN
 BLBC R0, 10$; QIO error - branch.
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.

10$:
 RET

 .END START

The VAX MACRO program READ_VERIFY.MAR (Example 5-3) shows the read verify function. The program
shows a typical build of itemlists (both the right and left fields), channel assignment, a right- and left-justified
read verify operation, and then the read QIO operation.
276

Terminal Driver
Terminal Driver Programming Examples
Example 5-3 READ_VERIFY.MAR Terminal Driver Programming Example

 .TITLE READ_VERIFY - Read Verify Coding Example
 .IDENT 'V05-000'

 .SBTTL DECLARATIONS
 .DISABLE GLOBAL

;
; Declare the external system routines and MACRO libraries.
;
 .EXTERNAL LIB$GET_EF
 .EXTERNAL SCR$ERASE_PAGE

 .LIBRARY 'SYS$LIBRARY:LIB.MLB'
 .LIBRARY 'SYS$LIBRARY:STARLET.MLB'
;
; Include files:
;
 $IODEF
 $TRMDEF
;
; Macros:
;
.MACRO ITEM LEN=0,CODE,VALUE
 .WORD LEN
 .WORD TRM$_'CODE'
 .LONG VALUE
 .LONG 0
.ENDM ITEM

;
; Equated symbols:
;
INBUF_LEN = 20
ESC = ^X1B

;
; Own storage:
;
; Build item lists for the read verify QIO
;

;
; Right-justified field
;
R_ITEM_LIST:
 ITEM CODE = MODIFIERS, -
 VALUE = TRM$M_TM_R_JUST ; Right justify

 ITEM CODE = EDITMODE, -
 VALUE = TRM$K_EM_RDVERIFY ; Enable read verify

 ITEM CODE = PROMPT, -
 VALUE = R_PROMPT_ADDR, -
 LEN = R_PROMPT_LEN ; Set up prompt
277

Terminal Driver
Terminal Driver Programming Examples
 ITEM CODE = INISTRNG, -
 VALUE = R_INISTR_ADDR, -
 LEN = R_INISTR_LEN ; Set up initial string

 ITEM CODE = INIOFFSET, -
 VALUE = R_INISTR_LEN

 ITEM CODE = PICSTRNG, -
 VALUE = R_PICSTR_ADDR, -
 LEN = R_PICSTR_LEN ; Set up picture string

 ITEM CODE = FILLCHR, -
 VALUE = <^A/* /> ; clear = *, fill = space

R_ITEM_LIST_LEN = .-R_ITEM_LIST

R_PROMPT_ADDR:
 .ASCII /[12;12H$/
R_PROMPT_LEN = .-R_PROMPT_ADDR

R_INISTR_ADDR:
 .ASCII / , /
R_INISTR_LEN = .-R_INISTR_ADDR

MASK = TRM$M_CV_NUMERIC!TRM$M_CV_NUMPUNC

R_PICSTR_ADDR:
 .BYTE MASK
 .BYTE MASK
 .BYTE MASK
 .BYTE 0 ; Marker character
 .BYTE MASK
 .BYTE MASK
 .BYTE MASK
R_PICSTR_LEN = .-R_PICSTR_ADDR
;
; Left-justified field
;
L_ITEM_LIST:
 ITEM CODE = MODIFIERS, -
 VALUE = TRM$M_TM_CVTLOW!TRM$M_TM_AUTO_TAB
 ; Upcase input and
 ; complete on field full

 ITEM CODE = EDITMODE, -
 VALUE = TRM$K_EM_RDVERIFY ; Enable read verify

 ITEM CODE = PROMPT, -
 VALUE = L_PROMPT_ADDR, -
 LEN = L_PROMPT_LEN ; Set up prompt

 ITEM CODE = INISTRNG, -
 VALUE = L_INISTR_ADDR, -
 LEN = L_INISTR_LEN ; Set up initial string

 ITEM CODE = INIOFFSET, -
 VALUE = 0
278

Terminal Driver
Terminal Driver Programming Examples
 ITEM CODE = PICSTRNG, -
 VALUE = L_PICSTR_ADDR, -
 LEN = L_PICSTR_LEN ; Set up picture string

 ITEM CODE = FILLCHR, -
 VALUE = <^A/* /> ; clear = *, fill = space

L_ITEM_LIST_LEN = .-L_ITEM_LIST

L_PROMPT_ADDR:
 .ASCII /[13;12H Enter Date: /
L_PROMPT_LEN = .-L_PROMPT_ADDR

L_INISTR_ADDR:
 .ASCII / - - /
L_INISTR_LEN = .-L_INISTR_ADDR

MASK1 = TRM$M_CV_NUMERIC
MASK2 = TRM$M_CV_UPPER!TRM$M_CV_LOWER

L_PICSTR_ADDR:
 .BYTE MASK1
 .BYTE MASK1
 .BYTE 0 ; Marker character
 .BYTE MASK2
 .BYTE MASK2
 .BYTE MASK2
 .BYTE 0 ; marker character
 .BYTE MASK1
 .BYTE MASK1
L_PICSTR_LEN = .-L_PICSTR_ADDR

IN_IOSB: .BLKL 2
TT_CHAN: .BLKW 1
INBUF: .BLKB INBUF_LEN
SYSINPUT: .ASCID /SYS$INPUT/
SYNC_EFN: .BLKL 1

 .PAGE

 .ENTRY READ_VERIFY ^M < >

;
; Get the required event flags.
;

 PUSHAL SYNC_EFN
 CALLS # 1, G^ LIB$GET_EF
 BLBC R0, ERROR ; Error - branch
;
; Assign the channel to SYS$INPUT
;

 $ASSIGN_S -
 CHAN = TT_CHAN -
 DEVNAM = SYSINPUT ; SYS$INPUT
 BLBC R0, ERROR ; Branch on error
279

Terminal Driver
Terminal Driver Programming Examples
;
; Clear the screen
;

 CLRQ -(SP)
 CALLS #2, G^ SCR$ERASE_PAGE
 BLBC R0, ERROR

;
; Do the right-justified read operation
;

 PUSHL #R_ITEM_LIST_LEN
 PUSHAB R_ITEM_LIST
 CALLS #2, DO_READ
 BLBC R0, ERROR

;
; Do the left-justified read operation
;

 PUSHL #L_ITEM_LIST_LEN
 PUSHAB L_ITEM_LIST
 CALLS #2, DO_READ
 BLBC R0, ERROR

ERROR:
 RET

 .PAGE
;++
;
; DO_READ - do the actual QIO
;
; Inputs:
;
; 4(AP) the address of the itemlist
; 8(AP) the length of the itemlist
;
;--

 .ENTRY DO_READ, ^M

 $QIOW_S EFN=SYNC_EFN, -
 CHAN = TT_CHAN, -
 FUNC = #$_READVBLK!IO$M_EXTEND>, -
 IOSB = IN_IOSB, -
 p1 = inbuf, -
 p2 = #inbuf_len, -
 p5 = 4(AP), -
 P6 = 8(AP)
 BLBC R0, 10$; QIO error - branch
 MOVZWL IN_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Terminal driver error - branch

; Handle the input...
280

Terminal Driver
Terminal Driver Programming Examples
10$:
 RET
 .END READ_VERIFY

Example 5-4 LIB$XXABLE_CTRL.C Terminal Driver Programming Example

//Demonstrates CTRL/Y and CTRL/C handling under OpenVMS, as well as
//some basic dynamic string descriptor operations and a few other
//string-related operations.
////To build and use:
//$ CC/DECC LIB$XXABLE_CTRL
//$ LINK LIB$XXABLE_CTRL
//$ RUN LIB$XXABLE_CTRL
*/#include <descrip.h>>#include <iodef.h>>#include <libclidef.h>>#include
<lib$routines.h>>#include <ssdef.h>>#include <starlet.h>>#include <stdio.h>>#include
<stsdef.h
>>void CtrlYHandler()
 {
 int RetStat;
 $DESCRIPTOR(Y, "<CTRL/Y>>was detected");
 RetStat = lib$put_output();
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return;
 RetStat = lib$enable_ctrl($M_CLI_CTRLY);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return;
 return;
 }

void CtrlCHandler()
 {
 int RetStat;
 $DESCRIPTOR(Y, "<CTRL/C>>was detected");
 RetStat = lib$put_output();
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return;
 RetStat = lib$enable_ctrl($M_CLI_CTRLY);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return;
 return;
 }

main()
 {
 int RetStat;
 unsigned short int IOChan;
 unsigned short int GotLen;
 struct dsc$descriptor GotDsc = { 0, DSCK_DTYPE_T, DSCK_CLASS_D, NULL };
 $DESCRIPTOR(Prompt, "Enter CTRL/Y, CTRL/C, or any characters and RETURN:");
 $DESCRIPTOR(Exiting, "Exiting");
 $DESCRIPTOR(TTDsc, "TT:");

 RetStat = lib$disable_ctrl($M_CLI_CTRLY);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = sys$assign(, , 0, 0);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = sys$qiow(0, IOChan, IO$_SETMODE|IO$M_CTRLYAST, 0, 0, 0,
281

Terminal Driver
Terminal Driver Programming Examples
 CtrlYHandler, 0, 0, 0, 0, 0);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = sys$qiow(0, IOChan, IO$_SETMODE|IO$M_CTRLCAST, 0, 0, 0,
 CtrlCHandler, 0, 0, 0, 0, 0);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = lib$get_input(, ,);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = sys$dassgn(IOChan);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = lib$enable_ctrl($M_CLI_CTRLY);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = lib$put_output();
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = lib$sfree1_dd();
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 return SS$_NORMAL;
 }
282

Pseudoterminal Driver
Pseudoterminal Operations
6 Pseudoterminal Driver

This chapter describes the use of the pseudoterminal driver (FTDRIVER) and the pseudoterminal software.

A pseudoterminal is a software device that appears as a real terminal to an application communicating with
it, but does not require the existence of a physical terminal. A pseudoterminal consists of two components: the
pseudoterminal device and a control program. The control program acts like a keyboard; that is, anything
written to the control program appears on the pseudoterminal device as if the keystrokes had been typed in at
a physical terminal. The control program also acts like a viewport to the pseudoterminal device; that is, the
control program reads anything that is written by the system to the pseudoterminal device.

A pseudoterminal allows an application to be set up on the control side of the link to communicate with
another application that is on the pseudoterminal side. This arrangement allows development of applications
that either simulate users or monitor the communication between a real user (at a physical terminal) and an
application. As with other devices, the work of the pseudoterminal is performed by a device driver and is
tightly coupled to the operating system.

The pseudoterminal driver software includes a set of control connection routines. Applications can use these
routines to perform pseudoterminal operations and functions. Appendix D provides the calling conventions
for these routines.

6.1 Pseudoterminal Operations
This section contains information on the following pseudoterminal operations:

• Creating a pseudoterminal

• Canceling a request

• Deleting a pseudoterminal

6.1.1 Creating a Pseudoterminal

To create a pseudoterminal, use the PTD$CREATE routine described in Appendix D. When a pseudoterminal
is created, it inherits the current system terminal default attributes unless you specify an alternate set of
characteristics. In either case, you cannot use PTD$CREATE to alter the following startup attributes:

• TT$M_CRFILL is cleared. To change this attribute, issue the SET MODE $QIO function.

• TT$M_LFFILL is cleared. To change this attribute, issue the SET MODE $QIO function.

• TT$M_MODEM is cleared. This attribute cannot be changed.

• TT$M_REMOTE is cleared. This attribute cannot be changed.

• TT$M_HOSTSYNC is set. To change this attribute, issue the SET MODE $QIO function.

• TT$M_TTSYNC is set. To change this attribute, issue the SET MODE $QIO function.

• TT2$M_DMA is cleared. To change this attribute, issue the SET MODE $QIO function. Changing it does
not alter the behavior of TTDRIVER or the pseudoterminal.
283

Pseudoterminal Driver
Pseudoterminal Driver Features
• TT2$M_AUTOBAUD is cleared. To change this attribute, issue the SET MODE $QIO function. Changing
it does not alter the behavior of TTDRIVER or the pseudoterminal.

• TT2$M_FALLBACK is cleared. To change this attribute, issue the SET MODE $QIO function.

• TT2$M_HANGUP is cleared. To change this attribute, issue the SET MODE $QIO function.

• TT2$M_DCL_MAILBX is cleared. This attribute cannot be changed.

When you create a pseudoterminal, you can specify a repeating asynchronous system trap (AST) to be
delivered when the terminal connection is freed. This AST can be supplied only when the pseudoterminal is
created, and it cannot be deleted. A terminal is freed when a process logs out or deassigns the last channel to
the device. The AST allows the control program to determine whether or not a user of a pseudoterminal is
using it. At this point, the control program can reuse or delete the pseudoterminal by deassigning the control
channel.

6.1.2 Canceling a Request

To cancel a queued control connection request, the control program uses the PTD$CANCEL routine. This
routine enables the pseudoterminal driver to differentiate between control requests and terminal requests
that are being canceled. This routine cannot be used to flush event notification ASTs.

6.1.3 Deleting a Pseudoterminal

To delete the pseudoterminal, the control program uses the PTD$DELETE routine. When a pseudoterminal
is deleted, any process that is using the pseudoterminal (except the control process) is disconnected. If you
have the TT2$M_DISCONNECT bit set in the default terminal characteristics parameter (TTY_DEFCHAR2)
and virtual terminals have been enabled (see Section 5.2.2.3), you get a virtual terminal upon logging in to a
pseudoterminal. In this case, the process is not logged out, but the virtual terminal is disconnected from the
pseudoterminal.

The PTD$DELETE request causes any pending I/O for the control program to be aborted. It deletes any
queued event notification ASTs and returns the I/O buffers to the application. It also causes the
pseudoterminal unit control block (UCB) to be deleted once the reference count returns to zero.

NOTE If an application exits without calling PTD$DELETE, the pseudoterminal is still deleted.

6.2 Pseudoterminal Driver Features
The terminal portion of a pseudoterminal is similar to a regular terminal. The pseudoterminal driver
provides the following features:

• Type-ahead buffer

• Specifiable or default line terminators

• Special operating modes, such as NOECHO and PASTHRU

• Escape sequence detection

• Terminal/mailbox interaction
284

Pseudoterminal Driver
Pseudoterminal Driver Device Information
• Terminal control characters, such as Ctrl/S and Ctrl/Q for starting and stopping output, Ctrl/O for
discarding output, and all other special characters that are handled by the standard terminal driver

• Limited full-duplex operation (simultaneously active read and write requests)

For more information on these features, see Section 5.2.

6.3 Pseudoterminal Driver Device Information
The pseudoterminal inherits its device characteristics from the system default parameters, with the following
exceptions:

• The device inherits initial device characteristics from the SYSGEN-supplied default values. You can
modify the device characteristics during device creation by supplying new characteristics.

• The HOSTSYNC terminal characteristic is always set.

• The device is set to NOMODEM and cannot be set to MODEM.

• The device is set not to time output character transmission. Hardware controllers time output character
transmission to determine whether the controller is broken.

You can obtain information on pseudoterminal characteristics by using the Get Device/Volume Information
($GETDVI) system service, as described in Section 5.3 and the HP OpenVMS System Services Reference
Manual.

Applications should assign a channel other than the control channel to read data from, write data to, read, or
alter the pseudoterminal characteristics. An attempt to perform such I/O with the control channel, or any
other attempt to queue an illegal or unsafe I/O request, results in an SS$_CHANINTLK error.

6.4 I/O Buffers
When you create a pseudoterminal, you must provide at least one page to be used as an I/O buffer.

On Alpha and I64 systems, you can allocate one page and divide it into I/O buffers as needed.

On VAX systems, each page becomes one I/O buffer. You should allocate no more than six I/O buffers for each
pseudoterminal.

No read or write request should reference more than one I/O buffer at a time. The I/O buffers must be page
aligned; therefore, you should create these pages with the $EXPREG system service or the
LIB$GET_VM_PAGE routine. The pages are owned by the driver until you delete the pseudoterminal. The
application is responsible for managing the pages and cannot use buffers that are owned by another
pseudoterminal. The application must decide whether to delete the buffers when they are freed by the driver
or to reuse them.

The I/O buffers must be valid pages in virtual address space. Creating or deleting an I/O buffer does not alter
the contents of the pages.

The low-order word of the status information longword contains the status of the request. The high-order
word of the status information longword contains the actual number of bytes that are read or written.
285

Pseudoterminal Driver
Pseudoterminal Functions
Assume that an I/O buffer starting at 200 hexadecimal is available for use. If you want to read 20 bytes from
the pseudoterminal, the readbuf address would be 200, and the readbuf_len would be 20. An application
can use the rest of this buffer for other purposes, including reading or writing to the pseudoterminal.
Figure 6-1 shows how the buffer would look.

Figure 6-1 Buffer Layout

6.5 Pseudoterminal Functions
This section discusses the following pseudoterminal functions:

• Reading data

• Writing data

• Using write with echo

• Flow control

• Event notification

6.5.1 Reading Data

To read data from the pseudoterminal, the control program uses the PTD$READ routine. The read request
may complete even when there are no characters available to output. The read operation completes when the
pseudoterminal has characters to output. If a read request is issued and no data is available, the read request
is queued and then completed at a later time.

An application that issues an asynchronous pseudoterminal read can use the $SYNCH system service to find
out when the read completed. The efn argument for the $SYNCH service must be the same as the efn
specified in the original PTD$READ call, and the iosb for the $SYNCH service must match the readbuf of
the PTD$READ call.

6.5.2 Writing Data

To write data to the pseudoterminal, the control program uses the PTD$WRITE routine. The write request
allows you to specify a buffer to receive any output that the write request generates; you do not need to issue
a separate read request to read this data. When you use an echo buffer, the control application can
significantly reduce the number of I/O requests required.

ZK9656G E

Byte Count Status

Data

20016
20416

21816
286

Pseudoterminal Driver
Pseudoterminal Functions
An application can issue only one write request at a time. Once the write request completes, the application
must check the write buffer status longword to see whether all the data supplied was written. If not, the
application must issue additional write requests until all the data has been accepted.

6.5.3 Using Write with Echo

If a read request is pending when a write-with-echo request is issued, the echo data is placed in the echo
buffer. If more data is echoed than can fit in the echo buffer, the remaining data is placed in the pending read
requests buffer. If no pending read exists, the data is held by the driver until another request that can take
the data is issued. Both the read and the write with echo must use completion ASTs to allow the driver to
report request completions to the application in the correct order.

If an application is not using the write-with-echo capability, the application should avoid using completion
ASTs if possible. Unnecessary use of completion ASTs significantly increases the number of instructions
needed to complete a read or write operation.

When using write with echo, both the wrtbuf and echobuf arguments contain I/O status information. An
application must check both of these status longwords if the PTD$WRITE completes successfully. If a write
operation wrote no characters, characters might still be in the echo buffer. If no data was echoed, the status in
the echobuf is SS$_NORMAL with zero bytes transferred.

6.5.4 Flow Control

By default, the driver attempts to notify the control program of data overrun or loss. The pseudoterminal
sends an XOFF AST when the type-ahead buffer is getting full. Once the pseudoterminal delivers an XOFF
AST, the pseudoterminal also returns a status of SS$_DATAOVERUN with the actual number of characters
input. This prevents a single request from flooding the type-ahead buffer. If a control program makes
repeated attempts to insert data after receiving the SS$_DATAOVERUN message, it can flood the terminal
type-ahead buffer. When the type-ahead buffer has filled, the pseudoterminal returns the status of
SS$_DATALOST.

If the control program is writing to the terminal or terminal driver, it should let the terminal and terminal
driver handle flow control. To do this, the application should enable all three input flow control notification
ASTs. The control program should write a DC1 to the terminal if an XON AST is delivered. It should write a
DC3 to a terminal if an XOFF AST is delivered, and write a BELL character to the terminal if the BELL AST
is delivered. These signals allow the terminal to decide what to do with the flow control data. The application
should ignore the SS$_DATAOVERUN and SS$_DATALOST return status and continue writing data to the
pseudoterminal.

6.5.5 Event Notification

This section describes how the pseudoterminal driver provides notification of important driver events.

6.5.5.1 Input Flow Control

The driver provides three ways to indicate when the class driver wants to stop input and one way to signal
when it is safe to resume output:

• The driver returns a status of SS$_DATAOVERUN and the number of characters input for the control
program write.

• The control program can enable a BELL attention AST to be delivered when the class driver calls the
PTD$SET_TERMINAL_NOTIFICATION routine. This AST is delivered if the pseudoterminal does not
have the HOSTSYNC attribute set. If only a BELL or only an XOFF AST event is enabled and an XOFF
or a BELL AST needs to be delivered, the AST that is available is delivered.
287

Pseudoterminal Driver
Pseudoterminal Functions
• The control program can enable an XOFF attention AST to be delivered when the class driver calls the
PTD$SET_TERMINAL_NOTIFICATION routine. This AST is delivered if the pseudoterminal has the
HOSTSYNC attribute set.

• The control program can enable an XON attention AST to be delivered when the class driver calls the
PTD$SET_TERMINAL_NOTIFICATION routine. This AST is delivered only if the pseudoterminal has
the HOSTSYNC attribute set.

6.5.5.2 Output Stop

The Output Stop AST tells the control program that the terminal driver is stopping output. This keeps the
control program from having to determine whether an XOFF written to the control side is being treated by
the terminal driver as flow control or data.

6.5.5.3 Output Resume

The Output Resume AST tells the control program that the terminal driver wants to resume output. This
AST can be delivered at any time, even if output is active or has previously been stopped. The control program
should always restart output processing when it receives this AST.

6.5.5.4 Characteristics Changed

The Characteristics Changed AST tells the control program that the terminal driver has called the
pseudoterminal CHANGE CHARACTERISTICS routine. This routine is called whenever the terminal driver
has changed the device characteristics. The control program should then read the pseudoterminal
characteristics to determine what has changed.

6.5.5.5 Output Abort

The Output Abort AST tells the control program that the terminal driver has called the pseudoterminal
ABORT OUTPUT routine. This routine is called when the terminal driver wants to flush any outstanding
output data. The control program should flush any internally buffered data when this AST is received.

6.5.5.6 Terminal Driver Read Events

Three special event types notify the control program when a terminal read request starts and finishes. By
default, the pseudoterminal does not deliver the read notification ASTs associated with these events. The
PTD$SET_EVENT_NOTIFICATION routine must be used explicitly to enable or disable their delivery.

• Start Read—Tells the control program that the terminal driver is starting a read request. Some
applications require this in order to know when to start inputting a logged session script. The special
event types are:

• Middle Read—Tells the control program that the terminal driver has finished writing the prompt string if
one was supplied.

• End Read—Tells the control program that the terminal driver has finished a read request.

Once an event notification AST is enabled, it continues to be delivered until it is canceled, or until the device
is deleted. This characteristic allows the control program to enable the AST once, which greatly reduces the
risk of missing multiple rapid occurrences of an event. If the driver cannot get sufficient resources to deliver
the notification AST, that report is lost. Only one AST per event is allowed, and attempts to specify multiple
ASTs result in use of the last one specified.

To enable or disable event notification, the control program uses the PTD$SET_EVENT_NOTIFICATION
routine, which is described in Appendix D.
288

Pseudoterminal Driver
Pseudoterminal Driver Programming Example
6.6 Pseudoterminal Driver Programming Example
Example 6-1 shows how to use the pseudoterminal. (The example is also included in the SYS$EXAMPLES
directory.) This section begins with a brief overview of the example. The example itself briefly discusses each
module; the pseudocode for that module follows its discussion.

The scenario chosen for this example is a simple terminal session logging utility that uses most of the
pseudoterminal capabilities. This example also shows how to use the write-with-echo capability, which
provides a significant gain in performance.

6.6.1 Design Overview

The design approach writes the log record in a main loop that hibernates when it has no work to do. The loop
uses ASTs to read keystrokes from the terminal, write to the pseudoterminal, and write data to the terminal.
When a block of characters is written to the terminal, that block is placed into a queue of blocks to be written
to the log file, and a wake request is issued. Logging is stopped if you log out of the subprocess, if you enter the
stop logging character Ctrl\, or if a severe error occurs during data processing. When any of these events
occur, all outstanding log records are written before the program exits.

One major design consideration is how flow control should be handled — either by attempting to enforce flow
control, or by letting the terminal and terminal driver handle it. In this example, the terminal and terminal
driver handle flow control; the driver sends XON, XOFF, or BELL characters to the terminal as necessary.

One of the six I/O buffers is permanently reserved as the terminal read buffer. This buffer is passed directly to
the terminal read $QIO. This eliminates having to move data that is read from the terminal into the read
buffer. The other five buffers are placed in a queue and are allocated and deallocated as needed. This pool of
buffers reserves the first two longwords to be used as queue headers and traditional IOSBs. The third
longword and the I/O status longwords are used by the pseudoterminal driver.

Example 6-1 Sample Pseudocode for Pseudoterminal Driver Program

/*
** Main Routine
**
** Function: Intitializes the environment and then hibernates, waiting
** to be awakened. When awakened, the program checks to see whether it
** is exiting, or whether more log data is available. If more data is
** available, the data is appended to the current log record and checked
** to see whether a log record should be written. A log record is written
** either when maxbuf characters are in the log buffer,
** or when it finds a <CR>character pair. The algorithm
** allows an unlimited number of <NULL> fill characters to occur
** between the <CR>and the <LF>. If the program is
** exiting, it closes the log file, deletes the pseudoterminal, resets the
** terminal, and exits.
*/
Initialize environments (This includes creating pseudoterminal, the log file
 and starting up the subprocess.)

If (Initialization OK) Then
 Do
 while (I/O buffer to log)
 Data size = number of bytes in I/O buff
 For all data in I/O buffer
 If (cr_seen) Then
289

Pseudoterminal Driver
Pseudoterminal Driver Programming Example
 If (current char == <LF>) Then
 write current log buffer
 reset cr_seen
 point to start of log buffer
 Else if (current char != <NULL>) Then
 insert <CR>and current char into log buffer
 move log buffer ptr over 2 characters
 reset cr_seen
 Endif
 Else if (current character != <CR>) Then
 insert character into log buffer
 move log buffer ptr over 1 character
 Else
 set cr_seen
 Endif

 If (log buffer ptr >= IOC$GW_MAX-48) Then
 write log buffer
 reset log buffer pointer
 reset cr_seen
 Endif
 Endloop
 Free I/O buffer call free_io_buffers
 Endwhile
 If (not exiting) Then
 Wait for more to do call SYS$HIBER
 Endif
 Until ((exiting) and (no I/O buffers to log))

 close log file
 If ((close failed) and (exit reason is SS$_NORMAL)) Then
 set exit to status to failure reason
 Endif
 If (subprocess still running) Then
 call SYS$FORCEX to run down the subprocess
 Endif
 call PTD$CANCEL to flush all pending pseudoterminal read requests
 call SYS$CANCEL to flush all terminal requests
 call PTD$DELETE to delete the pseudoterminal
 If ((delete failed) and (exit reason is SS$_NORMAL)) Then
 set exit to status to failure reason
 Endif
 reset terminal to startup condition using SYS$QIOW
 If ((terminal reset failed) and (exit reason is SS$_NORMAL)) Then
 exit to status to failure reason
 Endif
Endif
call LIB$SIGNAL and report exit reason
Exit

/*
**
** Initialization Code
**
** Function: This routine sets the terminal characteristics, creates the
** pseudoterminal, starts up the subprocess, and opens the log file. If
** any of these steps fail, the program undoes any steps already done and
** returns to the main routine.
290

Pseudoterminal Driver
Pseudoterminal Driver Programming Example
**
*/

read the maximum buffer size from IOC$GW_MAXBUF
Assign a channel to SYS$INPUT
If (assign ok) Then
 Read the terminal characteristics from the terminal
 If (read of terminal characteristics ok) Then
 Open log file with maximum record size of IOC$GW_MAXBUF
 If (open ok) Then
 Create the pseudoterminal with characteristics of terminal
 If (create ok) then
 Place 4 of the buffers on the queue of free I/O buffers
 Copy terminal characteristics and modify them to NOECHO and PASTHRU
 Set the terminal characteristics use modified value
 If (set ok) Then
 Get device name of pseudoterminal use SYS$GETDVI
 If (get ok) Then
 Create subprocess
 If (create ok) Then
 Enable XON, XOFF, BELL, SET_LINE event notification ASTs
 If (AST setup OK) Then
 Call PTD$READ to start reading from the pseudoterminal
 ASTADR = ft_read_ast
 ASTPRM = buffer address
 READBUF = I/O buffer + 8
 READBUF_LEN = 500
 If (read ok) Then
 Call SYS$QIO and read a single character from the
 keyboard ASTADR = kbd_read_ast
 If (read failed) Then
 Call PTD$CANCEL to flush queued pseudoterminal read
 Call PTD$DELETE to delete pseudoterminal
 Reset terminal to original state
 Close log file and delete it
 Endif
 Else
 Call PTD$DELETE to delete pseudoterminal
 Reset terminal to original state
 Close log file and delete it
 Endif
 Else
 Call PTD$DELETE to delete pseudoterminal
 Reset terminal to original state
 Close log file and delete it
 Endif
 Else
 Call PTD$DELETE to delete pseudoterminal
 Reset terminal to original state
 Close log file and delete it
 Endif
 Else
 Call PTD$DELETE to delete pseudoterminal
 Reset terminal to original state
 Close log file and delete it
 Endif
 Else
 Call PTD$DELETE to delete pseudoterminal
291

Pseudoterminal Driver
Pseudoterminal Driver Programming Example
 Close log file and delete it
 Endif
 Else
 Close log file and delete it
 Endif
 Endif
 Endif
Endif

/*
** kbd_read_ast
**
** Function: This routine is called every time data is read from the terminal.
** If the program is exiting, then the routine exits without restarting the
** read. The character read is checked to see if the terminate processing
** character Ctrl\ was entered. If the terminate processing character was
** entered, the exiting state is set and a SYS$WAKE is issued to start the
** main routine. Now an attempt is made to obtain an I/O buffer in which
** to store echoed output. If an I/O buffer is unavailable, a simple
** PTD$WRITE is issued; a PTD$WRITE with echo is issued if a buffer is
** available. If the write completes successfully, another read is issued
** to the keyboard.
**
*/

If (not exiting) Then
 If (read ok) Then
 Search input data for Ctrl\
 Allocate a read buffer call allocate_io_buffer
 If (got a buffer) Then
 Call PTD$WRITE to write characters to pseudoterminal
 ASTADR = ft_echo_ast
 ASTPRM = allocated I/O buffer
 WRTBUF = read I/O buffer
 WRTBUF_LEN = number of characters read
 ECHOBUF = allocated I/O buffer
 ECHOBUF_LEN = 500
 Else
 Call PTD$WRITE to write characters to pseudoterminal
 WRTBUF = read I/O buffer
 WRTBUF_LEN = number of characters read
 Endif
 If (write setup ok)
 If ((write status is ok) or (write status is SS$_DATALOST))
 Issue another single character read to terminal with
 ASTADR = kbd_read_ast, with data going to read I/O buffer
 If (read setup failed) Then
 Set exit flag
 Set exiting reason to SS$_NORMAL
 Endif
 Else
 Set exit flag
 Set exiting reason to SS$_NORMAL
 Endif
 Else
 Set exit flag
 Set exiting reason to SS$_NORMAL
 Endif
292

Pseudoterminal Driver
Pseudoterminal Driver Programming Example
 Else
 Set exit flag
 Set exiting reason to read failure status
 Endif
 If (exiting) Then
 Wake the mainline call SYS$WAKE
 Endif
Endif

/*
** terminal_output_ast
**
** Function: This routine is called every time an I/O buffer is written
** to the terminal. If the terminal write request completes successfully,
** it inserts the I/O buffer into the queue of I/O buffers to be logged.
** If the I/O buffer is the only entry on the queue, it issues a SYS$WAKE
** to start the main routine. To prevent spurious wake requests,
** SYS$WAKE is not issued if multiple entries are already on
** the queue. If a terminal write error occurs, the routine sets the
** exit flag and wakes the main routine.
**
*/
If (terminal write completed ok) Then
 insert I/O buffer onto logging queue
 If (this is only entry on queue) Then
 wake the mainline call SYS$WAKE
 Endif
Else
 set exit flag
 set exiting reason to terminal write error reason
 wake the mainline call SYS$WAKE
Endif

/*
**
** ft_read_ast
**
** Function: This routine is called when a pseudoterminal read request
** completes. It writes the buffer to the terminal and attempts to start
** another read from the pseudoterminal. If the program is not exiting,
** this routine writes the buffer to the terminal and does not start another
** pseudoterminal read.
**
*/
If (not exiting)
 If (Pseudoterminal read ok) Then
 write buffer to the terminal ASTADR = terminal_output_ast
 If (write setup ok) Then
 Allocate another read buffer call allocate_io_buffer
 If (got a buffer) Then
 Call PTD$READ to restart reads from the pseudoterminal.
 ASTADR = ft_read_ast
 ASTPRM = buffer address
 READBUF = I/O buffer + 8
 READBUF_LEN = 500
 If (read setup failed) Then
 Set exit flag
 Set exiting reason to read failure reason
293

Pseudoterminal Driver
Pseudoterminal Driver Programming Example
 Wake the mainline call SYS$WAKE
 Endif
 Else
 Set read stopped flag
 Endif
 Else
 Set exit flag
 Set exiting reason to terminal write failure reason
 Wake the mainline call SYS$WAKE
 Endif
 Else
 Set exit flag
 Set exiting reason to terminal read failure reason
 Wake the mainline call SYS$WAKE
 Endif
Endif

/*
**
** ft_echo_ast
**
** Function: This routine is called if a write to the pseudoterminal used
** an ECHO buffer. If any data was echoed, the output is written to the
** terminal. If no data was echoed, the I/O buffer is freed so it can be
** used later. If the program is exiting, this routine exits.
**
*/
If (not exiting) Then
 If (ECHO buffer has data) Then
 Write the buffer to the terminal with ASTADR = terminal_output_ast
 If (error setting up write) Then
 Set exit flag
 Set exiting reason to write failure reason
 Wake mainline call SYS$WAKE
 Endif
 Else
 Free I/O buffer call free_io_buffers
 Endif
Endif

/*
** free_io_buffers
**
** Function: This routine places a free I/O buffer on the queue of available
** I/O buffers. It also restarts any stopped read operations from the
** pseudoterminals. This routine disables AST delivery while it is running
** in order to synchronize reading and resetting the read stopped flag.
**
*/
If (not exiting) Then
 Disable AST deliver using SYS$SETAST
 If (Pseudoterminal reads not stopped) Then
 Insert I/O buffer on the interlocked queue of free I/O buffers
 Else
 Call PTD$READ to restart reads from the pseudoterminal.
 ASTADR = ft_read_ast
 ASTPRM = buffer address
 READBUF = I/O buffer + 8
294

Pseudoterminal Driver
Pseudoterminal Driver Programming Example
 READBUF_LEN = 500
 If (no error starting read) Then
 Clear read stopped flag
 Else
 Set exit flag
 Set exit reason to read setup reason
 Endif
 Endif
 Enable AST delivery using SYS$SETAST
Endif

/*
**
** allocate_io_buffer
**
** Function: This routine obtains a free I/O buffer from the queue of
** available I/O buffers. If the program is exiting, this routine
** returns an SS$_FORCEDEXIT error.
**
*/
If (not exiting) Then
 remove a I/O buffer from the interlocked queue of I/O buffers
 If (queue empty) Then
 exit with reason LIB$_QUEWASEMP
else
 exit with reason SS$_FORCEDEXIT
Endif

/*
** subprocess_exit
**
** Function: This routine is called when the subprocess has completed
** and exited. This routine checks whether the program is already exiting.
** If not, then the routine indicates that the program is exiting and wakes
** up the main program.
**
*/
If (not exiting) Then
 indicate subprocess no longer running
 set exit status to SS$_NORMAL
 indicate exiting
 call SYS$WAKE to start up main loop
Endif

/*
** xon_ast
**
** Function: This routine is called for the pseudoterminal driver to signal
** that it is ready to accept keyboard input. The routine attempts to send
** an XON character to the terminal by sending XON DC1 using SYS$QIO.
** If the attempt fails, it is not retried.
**
*/
If (not exiting) Then
 call SYS$QIO to send a <DC1>character to the terminal
Endif

/*
295

Pseudoterminal Driver
Pseudoterminal Driver Programming Example
** bell_ast
**
** Function: This routine is called when the pseudoterminal driver wants
** to warn the user to stop sending keyboard data. The routine attempts
** to ring the terminal bell by sending the BELL character to the terminal
** using SYS$QIO. If the attempt fails, it is not retried.
**
*/
If (not exiting) Then
 call SYS$QIO to send a <BELL>character to the terminal
Endif

/*
** xoff_ast
**
** Function: This routine is called when the pseudoterminal driver wants to
** signal that it will stop accepting keyboard input. The routine attempts
** to send an XOFF character to the terminal by sending XOFF DC3 to the
** terminal using SYS$QIO. If the attempt fails, it is not retried.
**
*/
If (not exiting) Then
 call SYS$QIO to send a <DC3>character to the terminal
Endif

/*
** set_line_ast
**
** Function: This routine is called when the pseudoterminal device
** characteristics change. The routine reads the current pseudoterminal
** characteristics, changes the characteristics to set PASTHRU and NOECHO,
** and applies the characteristics to the input terminal. If the attempt
** to alter the terminal characteristics fails, it is not retried.
**
*/
If (not exiting) Then
 call SYS$QIOW to read the pseudoterminals characteristics
 If (not error) Then
 Set the alter the just read characteristics to have PASTHRU and NOECHO
 attributes
 call SYS$QIO to set the terminal characteristics.
 Endif
Endif
296

Shadow-Set Virtual Unit Driver
Introduction
7 Shadow-Set Virtual Unit Driver

This chapter provides an overview of HP Volume Shadowing for OpenVMS and describes the use of the
shadow-set virtual unit driver (SHDRIVER).

7.1 Introduction
HP Volume Shadowing for OpenVMS ensures that data is available for applications and end users by
duplicating data on multiple disks. Because the same data is recorded on multiple disk volumes, if one disk
fails, the remaining disk or disks can continue to service I/O requests. This ability to shadow disk volumes is
sometimes referred to as disk mirroring.

Volume shadowing supports the clusterwide shadowing of DIGITAL SCSI and DSA storage systems. Volume
shadowing also supports shadowing of all mass storage control protocol (MSCP) served DSA disks and
DIGITAL SCSI disks. For more information about Volume Shadowing supported devices, refer to the Volume
Shadowing for OpenVMS Software Product Description.

You can mount one, two or three compatible disk volumes, including the system disk, to form a shadow set.
Each disk in the shadow set is known as a shadow set member. Volume Shadowing for OpenVMS logically
binds the shadow set devices together and represents them as a single virtual device called a virtual unit.
This means that multiple members of the shadow set, represented by the virtual unit, appear to applications
and users as a single, highly available disk.

Volume Shadowing features include:

• Controller independence. Shadow set members can be located on any node in an OpenVMS Cluster that
has Volume Shadowing enabled.

• Clusterwide, homogeneous shadow-set maintenance functions.

• Ability to survive controller, disk, and media failures transparently.

• Shadowing functions that do not affect application I/O.

Applications and users read and write data to and from a shadow set using the same commands and program
language syntax and semantics that are used for nonshadowed I/O operations. Volume shadowed sets are
managed and monitored using the same commands and utilities that are used for nonshadowed disks. The
only difference is that access is through the virtual unit, not to individual devices.

SHDRIVER, the driver that controls the virtual unit functions, is described in Section 7.3.

For more detailed information on HP Volume Shadowing for OpenVMS, refer to the Volume Shadowing for
OpenVMS manual.
297

Shadow-Set Virtual Unit Driver
Configurations
7.2 Configurations
HP Volume Shadowing for OpenVMS does not depend on specific hardware in order to operate. All shadowing
functions can be performed on VAX and Alpha systems running the OpenVMS operating system. Shadow set
members must have the same physical geometry (that is, the same number of identical logical blocks [LBNs])
and members can be located anywhere in an OpenVMS Cluster.

7.2.1 Supported Hardware

Volume shadowing requires a minimum of one VAX computer, one mass storage controller, and DSA
(DIGITAL Storage Architecture) or Small Computer System Interface (SCSI) disk drives.

Refer to the most recent Volume Shadowing for OpenVMS Software Product Descriptions (SPD 27.29.xx) for
additional information about hardware requirements.

7.2.2 Compatible Disk Drives and Volumes

Volume shadowing requires compatibility among the physical units (disk drives and volumes) that form a
shadow set. For example:

• Units must be Files-11 On-Disk Structure Level 2 (ODS-2) data disks.

• Units and controllers must conform to DSA and OpenVMS MSCP, or must be SCSI compliant.

• Units should not have hardware write protection enabled. Hardware write protection stops the volume
shadowing software from maintaining identical volumes. However, the shadow set virtual unit may be
mounted software write-locked with the /NOWRITE qualifier to MOUNT.

7.3 Driver Functions
This section describes the major virtual unit functions supported by SHDRIVER. In addition to the virtual
unit functions described in this section, SHDRIVER supports all OpenVMS disk functions. SHDRIVER
receives QIO operations from application programs and is a client of the disk class drivers DUDRIVER.
Applications access the shadow set as they would access a standard OpenVMS disk.

Table 7-1 summarizes the major SHDRIVER functions.

NOTE The MOUNTSHAD, ADDSHADMBR, COPYSHAD, and REMSHADMBR functions are
reserved for HP internal use. Use of these functions by customer or third-party provided
software may cause unpredictable results including system crashes and data corruption.

Table 7-1 Functions of the Shadow Set Virtual Unit Driver

 Function Description

MOUNTSHAD Creates a virtual unit

ADDSHAD Evaluates a physical member and adds members
298

Shadow-Set Virtual Unit Driver
Driver Functions
7.3.1 Read and Write Functions

With minor changes, the read and write functions for SHDRIVER operate the same as for the disk class
driver (see Section 2.4.1 and Section 2.4.2).

During an SHDRIVER read operation, the host directs the read to the member volume with the shortest
path.

During a write operation, SHDRIVER directs the write to each member volume. The write operations for each
member volume usually proceed in parallel; the virtual unit write operation terminates when all writes have
completed. The write function for SHDRIVER takes the IO$M_VUEX_FC function modifier; this modifier
should not be used by application programs.

The read and write SHDRIVER functions, as well as all user functions, are issued by user programs. All other
SHDRIVER functions are invoked by MOUNT and DISMOUNT commands, or the $MOUNT and
$DISMOUNT system services.

Remember that volume shadowing provides data availability by protecting against hardware problems or
communication path problems that might cause a disk volume to be a single point of failure. If a write request
is made to a shadow set, but the system fails before a completion status is returned from all of the shadow set
members, it is possible that:

• All members might contain the new data.

• All members might contain the old data.

• Some members might contain new data and others might contain old data.

When the system recovers, volume shadowing performs a merge or copy operation to ensure that the
corresponding blocks on each shadow set member contain the same data (right or wrong); therefore, the goal
here is not one of data correctness but of data availability. Volume shadowing is designed to make the data on
all disks identical, then, if necessary, incorrect data can be reconciled either by the user reentering the data or
by an application automatically employing database or journaling techniques.

For example, when used with volume shadowing, OpenVMS RMS journaling allows you to develop
applications that can automatically recover from failures such as:

• Permanent loss of the path between a CPU data buffer containing the data being written and the disk
being written to during a multiple block I/O operation. Communication path loss can occur due to node
failure or a failure of node-to-node communications.

• Failure of a CPU (such as a system crash, halt, power failure, or system shutdown) during a multiple
block write I/O operation.

COPYSHAD Triggers and controls copy operations

REMSHAD Removes a physical member

AVAILABLE Virtual unit dissolution

SENSECHAR Verifies shadow set status

READ Directs I/O to a physical member

WRITE Propagates a write operation to all physical members

Table 7-1 Functions of the Shadow Set Virtual Unit Driver (Continued)

 Function Description
299

Shadow-Set Virtual Unit Driver
Error Processing
• Mistaken deletion of a file.

• Corruption of file system pointers.

• OpenVMS RMS file corruption due to a software error or incomplete bucket write operation to an indexed
file.

• Cancellation of an in-progress multiple block write operation.

Refer to the Volume Shadowing for OpenVMS manual for more information about shadowing merge and copy
operations.

7.4 Error Processing
Shadow set recovery and repair are handled by volume processing, which replaces mount verification for
shadow sets. Membership failure decisions are made by the VAX hosts. Device errors that result in
inaccessibility of physical member units first utilize the class driver's connection walking algorithm. If that
fails, a local decision is made on the shadow set membership. The rules are:

• If some, but not all, members of the set are accessible, then the local node sequentially adjusts the
membership and notifies the other hosts.

• If no members are accessible, no modifications to the set membership are made.

There are two types of volume processing: active and passive. Active volume processing handles error
processing on a local node. Triggered by a failed I/O operation, active volume processing also controls mount
verification functions, member removal, and failover. Passive volume processing is triggered by lock messages
or by a cluster event. Passive volume processing revalidates shadow set membership, ensures that the
shadow set reflects changes made outside the shadow set, and handles the following functions:

• Member additions from other nodes

• Member removals from other nodes

• A new node mounting the shadow set

• A node dismounting the shadow set

• A system crash on a node that has the shadow set mounted

For more information, refer to the Volume Shadowing for OpenVMS manual.
300

Using the OpenVMS Generic SCSI Class Driver
Overview of SCSI
8 Using the OpenVMS Generic SCSI Class
Driver

This chapter describes the use of the OpenVMS Generic Small Computer System Interface (SCSI) class
driver.

8.1 Overview of SCSI
The American National Standard for information systems — Small Computer System Interface-2 (SCSI-2)
specification defines mechanical, electrical, and functional requirements for connecting small computers to a
wide variety of intelligent devices, such as rigid disks, flexible disks, magnetic tape devices, printers, optical
disks, and scanners. It specifies standard electrical bus signals, timing, and protocol, as well as a standard
packet interface for sending commands to devices on the SCSI bus.

Certain OpenVMS systems employ the SCSI bus as an I/O bus. For these systems, HP offers SCSI-compliant
disk and tape drives, such as the RZ55 300 MB read/write disk, the RRD40 600 MB compact disk, and the
TZK50 95 MB streaming tape drive. The operating system also allows devices including disk drives, tape
drives, and scanners, supplied by sources other than HP, to be connected to the SCSI bus of such a system.

SCSI has been widely adopted by manufacturers for a variety of peripheral devices; however, because the
ANSI SCSI standard is broad in scope, not all devices that implement its specifications can fully interrelate
on the bus. HP fully supports SCSI-compliant equipment sold or supplied by HP. Proper operation of products
not sold or supplied by HP cannot be assured.

For more information, refer to the following documents:

• American National Standard for Information Systems — Small Computer System Interface-2 (SCSI-2)
specification (X3T9.2/86-109)

Copies of this document can be purchased from: Global Engineering Documents, 2805 McGaw, Irvine,
California 92714, United States; or (800) 854-7179 or (714) 261-1455. Please refer to document
X3.131-198X.

• American National Standard for Information Systems — Small Computer System Interface specification
(X3.131-1986)

Copies of this document can be obtained from: American National Standards Institute, Inc., 1430
Broadway, New York, New York, 10018. This document is now known as the SCSI-1 standard.

HP publishes two additional documents to help third-party vendors prepare SCSI peripherals and peripheral
software for use with DIGITAL workstations.

• The Small Computer System Interface: An Overview (EK-SCSISOV-001) provides a general description of
the DIGITAL SCSI third-party support program.

• The Small Computer System Interface: A Developer's Guide (EK-SCSIS-SP-001) presents the details of
implementation of SCSI within DIGITAL operating systems.
301

Using the OpenVMS Generic SCSI Class Driver
OpenVMS SCSI Class/Port Architecture
8.2 OpenVMS SCSI Class/Port Architecture
The operating system employs a class/port driver architecture to communicate with devices on the SCSI bus.
The class/port design allows the responsibilities for communication between the operating system and the
device to be cleanly divided between two separate driver modules (see Figure 8-1).

Figure 8-1 OpenVMS SCSI Class/Port Interface

The SCSI port driver transmits and receives SCSI commands and data. It knows the details of transmitting
data from the local processor's SCSI port hardware across the SCSI bus. Although it understands SCSI bus
phases, protocol, and timing, it has no knowledge of which SCSI commands the device supports, what status
messages it returns, or the format of the packets in which this information is delivered. Strictly speaking, the
port driver is a communications path. When directed by a SCSI class driver, the port driver forwards
commands and data from the class driver onto the SCSI bus to the device. On any given OpenVMS system, a
single SCSI port driver handles bus-level communications for all SCSI class drivers that may exist on the
system.

The SCSI class driver acts as an interface between the user and the SCSI port, translating an I/O function
as specified in a user's $QIO request to a SCSI command targeted to a device on the SCSI bus. Although the
class driver knows about SCSI command descriptor buffers, status codes, and data, it has no knowledge of

$QIO

SCSI Port Interface

Port Hardware

Port
Driver

Class
Driver

ZK1366AGE

DeviceLevel Operations
 Handles SCSI commands
 Handles SCSI status

 Handles data movement
 Handles SCSI messages
 Handles SCSI phases and timing

BusLevel Operations
302

Using the OpenVMS Generic SCSI Class Driver
Overview of the OpenVMS Generic SCSI Class Driver
underlying bus protocols or hardware, command transmission, bus phases, timing, or messages. A single class
driver can run on any given OpenVMS system, in conjunction with the SCSI port driver that supports that
system. The operating system supplies a standard SCSI disk class driver and a standard SCSI tape class
driver to support its disk and tape SCSI devices.

8.3 Overview of the OpenVMS Generic SCSI Class Driver
The OpenVMS generic SCSI class driver provides a mechanism by which an application program can control
a SCSI device, supplied by a source other than HP, that cannot be controlled by the standard OpenVMS disk
and tape class drivers. By means of a Queue I/O Request ($QIO) system service call, a program can pass to
the generic SCSI class driver a preformatted SCSI command descriptor block. The generic SCSI class driver,
in conjunction with the standard OpenVMS SCSI port driver, delivers this SCSI command to the device,
manages any transfer of data from the device to a user buffer, and returns SCSI status to the application.

In effect, an application using the generic SCSI class driver implements details of device control usually
managed within device driver code. The programmer of such an application must understand which SCSI
commands the device supports and which SCSI status values the device returns. The programmer must also
be aware of the device's timeout requirements, data transfer capabilities, and command retry behavior.

The application program sets up the characteristics of the connection the generic SCSI class driver uses when
delivering commands to, exchanging data with, and receiving status from the device. The program associates
each I/O operation the device can perform with a specific SCSI command. When it receives a request for a
particular operation, the application program creates the specific command descriptor block that, when
passed to the device, causes it to perform that operation.

The application initiates all transactions to the SCSI device by means of a $QIO call to the generic SCSI class
driver, supplying the address and length of the SCSI command descriptor block, plus the parameters of any
data transfer operation, in the call. When the transaction completes and the application program regains
control, it interprets the returned status value, processes any returned data, and services any failure. To
avoid conflicts with other applications accessing the same device, an application may need to explicitly
allocate the device.

Because the generic SCSI class driver has no knowledge of specific device errors, it neither logs device errors
nor implements error recovery. An application using the driver must manage device-specific errors itself. To
service an error returned on a single transaction, the application must issue additional $QIO requests and
initiate further transactions to the device. If more precise or more efficient error recovery is required for a
device, the developer should consider writing a third-party SCSI class driver, as described in the OpenVMS
VAX Device Support Manual (available on the Documentation CD-ROM). A third-party SCSI class driver can
log errors associated with device activity by using the method described in the OpenVMS VAX Device Support
Manual (available on the Documentation CD-ROM).

A third-party class driver is the only means of supporting devices that themselves generate transactions on
the SCSI bus, such as notification of a device selection event to the host processor. Refer to the description of
asynchronous event notification (AEN) in the OpenVMS VAX Device Support Manual (available on the
Documentation CD-ROM).
303

Using the OpenVMS Generic SCSI Class Driver
Overview of the OpenVMS Generic SCSI Class Driver
Figure 8-2 shows the flow of a $QIO request through the generic SCSI class driver and the port driver.

Figure 8-2 Generic SCSI Class Driver Flow

Class

Port

ZK1370AGE

User
Interface

Application
Program

$QIO

GKDRIVER

SCSI Port Interface

Port
Driver

Port Hardware
304

Using the OpenVMS Generic SCSI Class Driver
Accessing the OpenVMS Generic SCSI Class Driver
When direct access to a target device on the SCSI bus is required, the generic SCSI class driver is loaded for
that device, as described in Section 8.6. An application program using the generic class driver performs the
following tasks to issue a command to the target device:

1. Calls the Assign I/O Channel ($ASSIGN) system service to assign a channel to the generic SCSI class
driver, and to allocate the device for the application's exclusive use.

2. Formats a SCSI command descriptor block.

3. Formats any data to be transferred to the device.

4. Calls the Queue I/O Request ($QIO) system service to request the generic SCSI class driver to send the
SCSI command descriptor block to the port driver.

5. Upon completion of the I/O request, interprets the SCSI status byte and any data returned from the
target device.

These operations are described in following sections.

NOTE Because incorrect or malicious use of the generic SCSI class driver can result in SCSI bus
hangs and lead to SCSI bus resets, DIAGNOSE and PHY_IO or LOG_IO privileges are
required to access the driver. An application program can be designed in such a way as to filter
user I/O requests, which allows nonprivileged users access to some device functions.

8.4 Accessing the OpenVMS Generic SCSI Class Driver
Interactive commands and procedure calls can use the OpenVMS generic SCSI class driver to access devices
on the SCSI bus. However, it is unlikely that a user application would access a device on the SCSI bus by
directly using the $QIO interface of the generic SCSI class driver. First of all, any user process directly using
the $QIO interface would require DIAGNOSE and PHY_IO or LOG_IO privileges. Under normal
circumstances, it would be a system security risk to grant DIAGNOSE and PHY_IO or LOG_IO privileges to
many system users. Secondly, it would be cumbersome for end users of the device to identify, format, and issue
SCSI commands to the device. Rather, it would be more efficient to develop an interface that hides these
details.

A utility program, installed with the DIAGNOSE and PHY_IO or LOG_IO privileges, can provide
nonprivileged users with a command-line interface to a SCSI device. The utility translates interactive
commands provided by the user into the appropriate set of SCSI commands and sends them to the device
using the $QIO interface provided by the generic SCSI class driver. The utility checks user commands to
ensure that only valid SCSI commands are sent to the device. Refer to the HP OpenVMS System Manager’s
Manual and the HP OpenVMS System Management Utilities Reference Manual for information about
installing images with privileges.

A privileged shareable image can provide system applications with a procedure interface to a SCSI device.
The image contains a set of procedures that translate operations specified by the caller into the appropriate
set of SCSI commands. The SCSI commands are sent to the device through the $QIO interface of the generic
SCSI class driver. The privileged shareable image checks its caller's parameters to ensure that only valid
SCSI commands are sent to the device. Refer to the HP OpenVMS Programming Concepts manual for
information about creating shareable images.
305

Using the OpenVMS Generic SCSI Class Driver
SCSI Port Features Under Application Control
8.5 SCSI Port Features Under Application Control
The standard OpenVMS SCSI port driver provides mechanisms by which the generic SCSI class driver can
control the nature of data transfers and command transmission across the SCSI bus. An application uses the
$QIO interface to tailor these mechanisms to the specific device it supports. Among the features under
application program control are the following:

• Data transfer mode

• Disconnection and reselection

• Command retry

• Command timeouts

The following sections discuss these features.

8.5.1 Setting the Data Transfer Mode

The SCSI bus defines two data transfer modes, asynchronous and synchronous. In asynchronous mode, for
each REQ from a target there is an ACK from the host prior to the next REQ from the target. Synchronous
mode allows higher data transfer rates by allowing a pipelined data transfer mechanism where, for short
bursts (defined by the REQ-ACK offset), the target can pipeline data to an initiator without waiting for the
initiator to respond.

Whether or not a port or a target device allows synchronous data transfers, it is harmless for the program to
set up the connection to use such transfers. If synchronous mode is not supported, the port driver
automatically uses asynchronous mode.

For example, to use synchronous mode in a transfer, a programmer using the generic SCSI class driver must
ensure that both the SCSI port and the SCSI device involved in the transfer support synchronous mode. The
SCSI port of the VAXstation 3520/3540 system allows both synchronous and asynchronous transfers, whereas
that of OpenVMS 3100 systems supports only asynchronous transfers.

To set up a connection to use synchronous data transfer mode, a program using the generic SCSI class driver
sets the syn bit in the flags field of the generic SCSI descriptor, the address of which is passed to the driver in
the p1 argument to the $QIO request.

8.5.2 Enabling Disconnection and Reselection

The ANSI SCSI specification defines a disconnection facility that allows a target device to yield ownership of
the SCSI bus while seeking or performing other time-consuming operations. When a target disconnects from
the SCSI bus, it sends a sequence of messages to the initiator that cause it to save the state of the I/O transfer
in progress. Once this is done, the target releases the SCSI bus. When the target is ready to complete the
operation, it reselects the initiator and sends to it another sequence of messages. This sequence uniquely
identifies the target and allows the initiator to restore the context of the suspended I/O operation.

Whether disconnection should be enabled or disabled on a given connection depends on the nature and
capabilities of the device involved in the transfer, as well as on the configuration of the system. In
configurations where there is a slow device present on the SCSI bus, enabling disconnection on connections
that transfer data to the device can increase bus throughput. By contrast, systems where most of the I/O
activity is directed towards a single device for long intervals can benefit from disabling disconnection. By
disabling disconnection when there is no contention on the SCSI bus, port drivers can increase throughput
and decrease the processor overhead for each I/O request.
306

Using the OpenVMS Generic SCSI Class Driver
SCSI Port Features Under Application Control
By default, the OpenVMS class/port interface disables the disconnect facility on a connection. To enable
disconnection, an application program using the generic SCSI class driver sets the dis bit of the

flags field of the generic SCSI descriptor, the address of which is passed to the driver in the p1 argument to
the $QIO call.

8.5.3 Disabling Command Retry

The SCSI port driver implements a command retry mechanism, which is enabled on a given connection by
default.

When the command retry mechanism is enabled, the port driver retries up to three times any I/O operation
that fails during the COMMAND, Message, Data, or STATUS phases. For instance, if the port driver detects a
parity error during the Data phase, it aborts the I/O operation, logs an error, and retries the I/O operation. It
repeats this sequence twice more, if necessary. If the I/O operation completes successfully during a retry
attempt, the port driver returns success status to the class driver. However, if all retry attempts fail, the port
driver returns failure status to the class driver.

An application may need to disable the command retry mechanism under certain circumstances. For example,
repeated execution of a command on a sequential device may produce different results than are intended by a
single command request. A tape drive could perform a partial write and then repeat the write without
resetting the tape position.

An application program using the generic SCSI class driver can disable the command retry mechanism by
setting the dpr bit of the flags field of the generic SCSI descriptor, the address of which is passed to the
driver in the p1 argument to the $QIO request.

8.5.4 Setting Command Timeouts

The SCSI port driver implements several timeout mechanisms, some governed by the ANSI SCSI
specification and others required by OpenVMS. The timeouts required by OpenVMS include the following:

An application program using the generic SCSI class driver is responsible for maintaining both of these
timeout values. It has the following options:

• Accepting a connection's default value. The default value for both timeouts is 20 seconds.

• Altering the connection's default value. To modify the default values, the class driver specifies nonzero
values for the phase change timeout and disconnect timeout fields of the generic SCSI descriptor,
the address of which is passed to the driver in the p1 argument to the $QIO system service call.

 Timeout Description

Phase change timeout Maximum number of seconds for a target to change the SCSI bus phase or
complete a data transfer. (This value is also known as the DMA timeout.)

Upon sending the last command byte, the port driver waits this many
seconds for the target to change the bus phase lines and assert REQ
(indicating a new phase). Or, if the target enters the DATA IN or DATA
OUT phase, the transfer must be completed within this interval.

Disconnect timeout Maximum number of seconds, from the time the initiator receives the
DISCONNECT message, for a target to reselect the initiator so that it can
proceed with the disconnected I/O transfer
307

Using the OpenVMS Generic SCSI Class Driver
Configuring a Device Using the Generic Class Driver
8.6 Configuring a Device Using the Generic Class Driver
On VAX systems, the System Generation utility (SYSGEN) loads the generic SCSI class driver into system
virtual memory, creates additional data structures for the device unit, and calls the driver's controller
initialization routine and unit initialization routine. SYSGEN automatically loads and autoconfigures the
SCSI port driver at system initialization. As part of autoconfiguration, SYSGEN polls each device on each
SCSI bus. If the device identifies itself as a direct-access device, direct-access CD-ROM device, or flexible disk
device, SYSGEN automatically loads the disk class driver (DKDRIVER). If the device identifies itself as a
sequential-access device, SYSGEN automatically loads the tape class driver (MKDRIVER). If the
autoconfiguration facility does not recognize the type of the SCSI device, it does not load a driver.

If a third-party-supplied SCSI device requires that the generic class driver be loaded, it must be configured by
an explicit SYSGEN CONNECT command, as follows:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT GKpd0u /NOADAPTER

SYSMAN performs the same functions that SYSGEN performs on VAX systems. If a third-party-supplied
SCSI device requires that the generic class driver be loaded, the device must be configured by an explicit
SYSMAN CONNECT command, as follows:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> IO CONNECT GKpd0u /NOADAPTER/DRIVER=SYS$GKDRIVER

On VAX and Alpha systems, GK is the device mnemonic for the generic SCSI class driver (GKDRIVER); p
represents the SCSI port ID (for instance, the controller ID A or B); d represents the SCSI device ID (a digit
from 0 to 7); 0 signifies the digit zero; and u represents the SCSI logical unit number (a digit from 0 to 7).

Multiple devices residing on any SCSI bus in the system can share GKDRIVER as a class driver, as long as a
CONNECT command is issued for each target device that requires the driver.

Because just one connection can exist through the SCSI port driver to each target, the generic class driver
cannot be used for a target if a different SCSI class driver is already connected to that target. For example, if
the SCSI disk class driver has a connection to device ID 2 on the SCSI bus identified by SCSI port ID B
(DKB200), the generic class driver cannot be used to communicate with this disk. An attempt to connect
GKDRIVER for this target results in GKB200 being placed off line.

8.6.1 Disabling the Autoconfiguration of a SCSI Device (VAX Only)

On VAX systems, in special cases you may need to prevent the autoconfiguration facility from loading the disk
or tape class driver for a device with a specific port ID and device ID. This would be the case if a SCSI device,
supplied by a source other than HP, should identify itself as either a random-access or sequential-access
device and were to be controlled by the generic SCSI class driver.

To disable the loading of a disk or tape driver for any given device ID, OpenVMS defines the special system
parameter SCSI_NOAUTO.

The SCSI_NOAUTO system parameter, as shown in Figure 8-3, stores a bit mask of 32 bits in which the
low-order byte corresponds to the first SCSI bus (PKA0), the second byte corresponds to the second SCSI bus
(PKB0), and so on. For each SCSI bus, setting the low-order bit inhibits automatic configuration of the device
with SCSI device ID 0; setting the second low-order bit inhibits automatic configuration of the device with
308

Using the OpenVMS Generic SCSI Class Driver
Assigning a Channel to GKDRIVER
SCSI device ID 1, and so forth. For instance, the value 0000200016 would prevent the device with SCSI ID 5
on the bus identified by SCSI port ID B from being configured. By default, all of the bits in the mask are
cleared, allowing all devices to be configured.

Figure 8-3 SCSI_NOAUTO System Parameter

8.7 Assigning a Channel to GKDRIVER
An application program assigns a channel to the generic SCSI class driver using the standard call to the
$ASSIGN system service, as described in the HP OpenVMS System Services Reference Manual. The
application program specifies a device name and a word to receive the channel number.

8.8 Issuing a $QIO Request to the Generic Class Driver
The format of the Queue I/O Request ($QIO) system service that initiates a request to the SCSI generic class
driver is as follows. This explanation concentrates on the special elements of a $QIO request to the SCSI
generic class driver. For a detailed description of the $QIO system service, refer to the HP OpenVMS System
Services Reference Manual.

VAX MACRO Format

$QIO [efn] ,chan ,func ,iosb ,[astadr] ,[astprm] ,p1 ,p2 [,p3] [,p4] [,p5] [,p6]

High-Level Language Format

SYS$QIO ([efn] ,chan ,func ,iosb ,[astadr] ,[astprm] ,p1 ,p2 [,p3] [,p4] [,p5] [,p6])

Arguments

chan I/O channel assigned to the device to which the request is directed. The
chan argument is a word value containing the number of the channel, as
returned by the Assign I/O Channel ($ASSIGN) system service.

func Longword value containing the IO$_DIAGNOSE function code. Only the
IO$_DIAGNOSE function code is implemented in the generic SCSI class
driver.

7 0

D

 SCSI Device ID

ZK1371AGE

SCSI Port IDC B A

777 000
309

Using the OpenVMS Generic SCSI Class Driver
Issuing a $QIO Request to the Generic Class Driver
iosb I/O status block. The iosb argument is required in a request to the generic
SCSI class driver; it has the following format:

The status code provides the final status indicating the success or failure
of the SCSI command. The SCSI status byte contains the status value
returned from the target device, as defined in the ANSI SCSI
specification. The transfer count field specifies the actual number of bytes
transferred during the SCSI bus DATA IN or DATA OUT phase

[efn]
[astadr]
[astprm] These arguments apply to $QIO system service completion. For an

explanation of these arguments, refer to the HP OpenVMS System
Services Reference Manual.

ZK1372AGE

SCSI STS IOSB 2
Transfer count
(highorder)

IOSB 1VMS status code
Transfer count
(loworder)

31 16 15 0

31 24 23 16 15 0
310

Using the OpenVMS Generic SCSI Class Driver
Issuing a $QIO Request to the Generic Class Driver
p1 Address of a generic SCSI descriptor of the following format:

p2 Length of the generic SCSI descriptor.

Descriptor Fields

opcode Currently, the only supported opcode is 1, indicating a pass-through
function. Other opcode values are reserved for future expansion.

flags Bit map having the following format:

ZK1373AGE

opcode

flags

SCSI command address

SCSI command length

SCSI data address

SCSI data length

SCSI pad length

phase change timeout

disconnect timeout

reserved

31 0

0

4

8

12

16

20

24

28

32

36

56

ZK1374AGE

reserved dpr syn dis dir

31 4 3 2 1 0
311

Using the OpenVMS Generic SCSI Class Driver
Issuing a $QIO Request to the Generic Class Driver
Bits in the flags bit map are defined as follows:

SCSI command address Address of a buffer containing a SCSI command.

SCSI command length Length of the SCSI command. The maximum length of the SCSI command
is 128 bytes.

SCSI data address Address of a data buffer associated with the SCSI command.

If the dir bit is set in the flags field, data is written into this buffer during
the execution of the command. Otherwise, data is read from this buffer
and sent to the target device.

If the SCSI command requires no data to be transferred, then the SCSI
data address field should be clear.

 Field Definition

dir Direction of transfer.

If this bit is set, the target is expected at some time to enter the DATA IN phase to send
data to the host. To facilitate this, the port driver maps the specified data buffer for write
access.

If this bit is clear, the target is expected at some time to enter the DATA OUT phase to
receive data from the host. To facilitate this, the port driver maps the specified data buffer
for read access.

The generic SCSI class driver ignores the dir flag if either the SCSI data address or
SCSI data length field of the generic SCSI descriptor is zero.

dis Enable disconnection.

If this bit is set, the target device is allowed to disconnect during the execution of the
command.

If this bit is clear, the target cannot disconnect during the execution of the command.

Note that targets that hold on to the bus for long periods of time without disconnecting can
adversely affect system performance. See Section 8.5.2 for additional information.

syn Enable synchronous mode.

If this bit is set, the port driver uses synchronous mode for data transfers, if both the host
and target allow this mode of operation.

If this bit is clear, or synchronous mode is not supported by either the host or target, the
port driver uses asynchronous mode for data transfers.

See Section 8.5.1 for additional information.

dpr Disable port retry.

If this bit is clear, the port driver retries, up to three times, any command that fails with a
timeout, bus parity, or invalid phase transition error.

If this bit is set, the port driver does not retry commands for which it detects failure.

See Section 8.5.3 for additional information.
312

Using the OpenVMS Generic SCSI Class Driver
Generic SCSI Class Driver Device Information
SCSI data length Length, in bytes, of the data buffer pointed to by the SCSI data address
field. The maximum data buffer size is 65,535 bytes.

If the SCSI command requires no data to be transferred, then this field
should be clear.

SCSI pad length This field is used to accommodate SCSI device classes that require that
the transfer length be specified in terms of a larger data unit than the
count of bytes expressed in the SCSI data length field. If the total
amount of data requested in the SCSI command does not match that
specified in the SCSI data length field, this field must account for the
difference.

For example, suppose an application program is using the generic class
driver to read the first 2 bytes of a disk block. The length field in the SCSI
READ command contains 1 (indicating one logical block, or 512 bytes),
while the SCSI data length field contains a 2. The SCSI pad length
field must contain the difference, 510 bytes.

For most transfers, this field should contain 0. Failure to initialize the
SCSI pad length field properly causes port driver timeouts and SCSI bus
resets.

phase change timeout Maximum number of seconds for a target to change the SCSI bus phase or
complete a data transfer. A value of 0 causes the SCSI port driver's default
phase change timeout value of 4 seconds to be used.

See Section 8.5.4 for additional information.

disconnect timeout Maximum number of seconds for a target to reselect the initiator to
proceed with a disconnected I/O transfer. A value of 0 causes the SCSI port
driver's default disconnect timeout value of 4 seconds to be used.

See Section 8.5.4 for additional information.

8.9 Generic SCSI Class Driver Device Information
A call to the Get Device/Volume Information ($GETDVI) system service returns the following information for
any device serviced by the generic SCSI class driver. (Refer to the description of the $GETDVI system service
in the HP OpenVMS System Services Reference Manual.)

$GETDVI returns the following device characteristics when you specify the item code DVI$_DEVCHAR:

DEV$M_AVL Available device

DEV$M_IDV Input device

DEV$M_ODV Output device

DEV$M_SHR Shareable device
313

Using the OpenVMS Generic SCSI Class Driver
Call a Generic SCSI Class Driver
DVI$DEVCLASS returns the device class, which is DC$_MISC; DVI$DEVTYPE returns the device type,
which is DT$_GENERIC_SCSI.

8.10 Call a Generic SCSI Class Driver
Example 8-1 is an application that uses the generic SCSI class driver to send a SCSI INQUIRY command to a
device.

Example 8-1 Generic SCSI Class Driver Call Example

/*
GKTEST.C

This program uses the SCSI generic class driver to send an inquiry command
to a device on the SCSI bus.

*/

#include ctype

/* Define the descriptor used to pass the SCSI information to GKDRIVER */

#define OPCODE 0
#define FLAGS 1
#define COMMAND_ADDRESS 2
#define COMMAND_LENGTH 3
#define DATA_ADDRESS 4
#define DATA_LENGTH 5
#define PAD_LENGTH 6
#define PHASE_TIMEOUT 7
#define DISCONNECT_TIMEOUT 8

#define FLAGS_READ 1
#define FLAGS_DISCONNECT 2

#define GK_EFN 1

#define SCSI_STATUS_MASK 0X3E

#define INQUIRY_OPCODE 0x12
#define INQUIRY_DATA_LENGTH 0x30

globalvalue
 IO$_DIAGNOSE;

short
 gk_chan,
 transfer_length;

int

DEV$M_RND Random-access device
314

Using the OpenVMS Generic SCSI Class Driver
Call a Generic SCSI Class Driver
 i,
 status,
 gk_device_desc[2],
 gk_iosb[2],
 gk_desc[15];

char
 scsi_status,
 inquiry_command[6] = {INQUIRY_OPCODE, 0, 0, 0, INQUIRY_DATA_LENGTH, 0},
 inquiry_data[INQUIRY_DATA_LENGTH],
 gk_device[] = {"GKA0"};

main ()
{

/* Assign a channel to GKA0 */

 gk_device_desc[0] = 4;
 gk_device_desc[1] = _device[0];
 status = sys$assign (_device_desc[0], _chan, 0, 0);
 if (!(status & 1)) sys$exit (status);

/* Set up the descriptor with the SCSI information to be sent to the target */

 gk_desc[OPCODE] = 1;
 gk_desc[FLAGS] = FLAGS_READ + FLAGS_DISCONNECT;
 gk_desc[COMMAND_ADDRESS] = _command[0];
 gk_desc[COMMAND_LENGTH] = 6;
 gk_desc[DATA_ADDRESS] = _data[0];
 gk_desc[DATA_LENGTH] = INQUIRY_DATA_LENGTH;
 gk_desc[PAD_LENGTH] = 0;
 gk_desc[PHASE_TIMEOUT] = 0;
 gk_desc[DISCONNECT_TIMEOUT] = 0;
 for (i=9; i<15; i++) gk_desc[i] = 0; /* Clear reserved fields */

/* Issue the QIO to send the inquiry command and receive the inquiry data */

 status = sys$qiow (GK_EFN, gk_chan, IO$_DIAGNOSE, gk_iosb, 0, 0,
 _desc[0], 15*4, 0, 0, 0, 0);

/* Check the various returned status values */

 if (!(status & 1)) sys$exit (status);
 if (!(gk_iosb[0] & 1)) sys$exit (gk_iosb[0] & 0xffff);
 scsi_status = (gk_iosb[1] >> 24) & SCSI_STATUS_MASK;
 if (scsi_status) {
 printf ("Bad SCSI status returned: %02.2x\n", scsi_status);
 sys$exit (1);
 }

/* The command succeeded. Display the SCSI data returned from the target */

 transfer_length = gk_iosb[0] >> 16;
 printf ("SCSI inquiry data returned: ");
 for (i=0; i<transfer_length; i++) {
 if (isprint (inquiry_data[i]))
 printf ("%c", inquiry_data[i]);
 else
315

Using the OpenVMS Generic SCSI Class Driver
Call a Generic SCSI Class Driver
 printf (".");
 }
 printf ("\n");
}

316

Local Area Network (LAN) Device Drivers
Local Area Network (LAN) Terminology
9 Local Area Network (LAN) Device Drivers

This chapter describes the use of LAN drivers that support the LAN devices listed in the Software Product
Description for the OpenVMS Operating System (SPD 82.35.xx). Most of the LAN devices are described here,
but refer to the Software Product Description for the OpenVMS Operating System for the definitive list of
supported devices.

The LAN drivers support two user interfaces or APIs, QIO and VCI (VMS Communications Interface). This
chapter describes the QIO interface to the LAN drivers, primarily. But most of the QIO functionality applies
to the VCI interface as well. And the description of the other features and characteristics of the LAN devices
and LAN drivers applies equally to either interface.

The LAN drivers are composed of a set of LAN common routines that implement the user interfaces plus a
LAN port driver for each different type of LAN device. The LAN drivers comprise the Data Link layer as
defined by the OSI Model defined in Section 9.1.

9.1 Local Area Network (LAN) Terminology
The following is a list of terms relevant to local area networks:

• Ethernet — A network communications technology using coaxial or twisted-pair cable, originally
developed by Intel, Xerox, and Digital. It has a data transmission rate of 10 megabits/second. It is
characterized by the use of the CSMA/CD network access method. It is described by the IEEE 802.3
standard. Ethernet is also used as an adjective to describe Ethernet characteristics, such as an Ethernet
address, or an Ethernet application..

• Fast Ethernet — Ethernet upgraded to 100 megabits/second over twisted-pair cable or multimode fiber.
Fast Ethernet devices support 10 and 100 megabit/second operation over twisted-pair media.

• Gigabit Ethernet — Ethernet upgraded to 1000 megabits/second over twisted-pair cable or multimode
fiber. Gigabit Ethernet devices support 10, 100, and 1000megabit/second operation over twisted-pair
media.

• FDDI — Fiber Distributed Data Interface, a token-passing network communications technology
characterized by use of a dual ring configuration to improve availability upon failure of a node or
connection. It has a data transmission rate of 100 megabits/second. It operates over multimode fiber or
twisted-pair cable. It is described by the American National Standards Institute (ANSI) standard
X3T9.5.

• Token Ring — A token-passing network communications technology characterized by a star topology in
most implementations. It has a data transmission rate of 4 or 16 megabits/second. It operates over
twisted-pair cable. It is described by the IEEE 802.5 standard.

• ATM — Asynchronous Transfer Mode, a cell-based network communications technology, where network
data is divided into 48-byte chunks and transfered across the network with a 5-byte header that contains
addressing and control information. The ATM Forum describes the communications protocol, and
specifies how it is to be used to interoperate with Ethernet networks, in the LAN Emulation (LANE)
317

Local Area Network (LAN) Device Drivers
Local Area Network (LAN) Terminology
standard. To interoperate with Ethernet, the ATM device hardware transparently breaks transmit
packets into 48-byte chunks plus a 5-byte header and transmits the cells onto the ATM network. On
receive, it transparently re-assembles the 48-byte chunks to construct each receive packet.

• IEEE — Institute of Electical and Electronics Engineers, an organization that, among other activities,
develops and maintains standards for the computer and electronics industries, including the 802
standards that cover local area networking.

• ANSI — American Natioanl Standards Institute, an organization that develops and maintains standards
for the computer and communications industries

• 802.3 — The IEEE standard for Ethernet network technology, including 802.3u for Fast Ethernet, and
802.3z for Gigabit Ethernet.

• 802.5 — The IEEE standard for Token Ring network technology.

• CSMA/CD — Carrier Sense Multiple Access with Collision Detection, the network access protocol used on
Ethernet networks to resolve contention between nodes competing for access to the network medium.

• NIC — Network Interface Card. Other terms that may be used interchangeably include Adapter,
Controller, Device, Card, Port. LAN On Motherboard (LOM) is a variant where the NIC hardware is
included on the system board. A combo adapter consists of multiple adapters on one card, so, for example,
a quad Ethernet NIC may be referred to as a 4-port card.

• Bus — Data and control paths that connect the functional units of a computer. In relation to LAN devices,
it refers to the hardware interface between the CPU and the I/O devices. Each LAN device connects to a
particular type of bus, such as PCI, PCI-X, EISA, ISA, XMI, TurboChannelTurboChannel, each of which
typically has multiple slots to accomodate several I/O devices.

• Duplex — A characteristic of a 2-way communication channel that indicates whether the channel can
allow transmission in both directions at the same time (full-duplex) or not (half-duplex).

• Flow Control — A technique where the flow of data along a communications channel is adjusted to ensure
that the receiving side can handle incoming data without loss. Many network applications implement
flow control techniques in software. Here, this term refers to the implementation of flow control in
hardware independent of the network application or protocol, as specified by the IEEE 802.3x standard.
The receiver side hardware sends special packets, called pause frames, that asks the transmitting side to
stop transmitting for a specific amount of time. When the receiver has caught up, it sends a pause frame
with a zero time to re-enable the transmitter.

• Packet — A unit of data transmission on the network, also called frame. It consists of a header, body of
data, and a Cyclic Redundancy Check (CRC). The frame may be encapsulated by additional data needed
for the particular network technology. Note that LAN Emulation over ATM imposes packet concepts over
the underlying cell-based network technology.

• Jumbo Frames — Oversize Ethernet packets, where the range of sizes on Ethernet is from 64-1518 bytes,
jumbo frames are packets ranging in size from 1519 to 9216 bytes depending on the hardware and
software implementation.

• Link Up/Down — Network connection state, for Ethernet devices. Most Ethernet devices that connect to
twisted-pair cables have the ability to detect if an active link connection exists. When both ends of the
network connection can exchange valid link pulses, the link is considered to be 'up' and the Ethernet
device is capable of using the network channel to transmit and receive packets. When the Ethernet device
cannot detect valid link pulses from the other end of the link, the link is considered 'down' and the device
will not transmit or receive over the network communications path. For Fast Ethernet and Gigabit
Ethernet, the link connection state is determined by the presence of a carrier signal, for both twisted-pair
and fiber cabling.

• Ring Available/Unavailable — Network connection state, for FDDI, Token Ring, or ATM devices.
318

Local Area Network (LAN) Device Drivers
Supported LAN Devices
• Open Systems Interconnect (OSI) Model - Defines seven layers in a networking framework consisting of:

— (7) Application Layer

— (6) Presentation Layer

— (5) Session Layer

— (4) Transport Layer

— (3) Network Layer

— (2) Data Link Layer

— (1) Physical Layer

• Port - One end of a communications channel, or the channel itself. When correlated to the OSI Model,
port may refer to a communications channel at various layers. At the physical layer, a port is a LAN
device, so a quad Ethernet device is said to be a 4-port card. At the data link layer, the LAN drivers allow
multiple applications to run on one LAN device. Each application will have opened a port to the LAN
driver. At the application layer, an application may allow multiple ports to be opened to it, with the
application itself doing the multiplexing of the ports through itself to the underlying network. An
example of this would be a network application written to send and receive data over a TCP/IP UDP port.

In this chapter, applications open a port to the LAN driver to communicate over a particular LAN device.
In VMS terms, opening a port is done by assigning a channel.

• User — Refers to the application that has opened a port to the LAN driver. A LAN device may be
described as having a number of different users. Each user would have opened a port to the LAN device.
Examples of users are LAT, TCP/IP, DECnet, Clusters (NISCA).

 In this chapter, the terms application and user may be used interchangeably.

9.2 Supported LAN Devices
Table 9-1, Table 9-2, Table 9-3,Table 9-4, Table 9-5, and Table 9-6 show the LAN devices supported by the
OpenVMS operating system. Most of the LAN devices are described here, but refer to the Software Product
Description for the OpenVMS Operating System (SPD 82.35.xx) for the definitive list of supported devices.
319

Local Area Network (LAN) Device Drivers
Supported LAN Devices
9.2.1 OpenVMS VAX LAN Devices

Table 9-1 and Table 9-2 list the supported devices on OpenVMS VAX systems. Table 9-2 lists additional
information for the devices listed in Table 9-1.

Table 9-1 Supported OpenVMS VAX Systems LAN Devices, Part 1

Medium Medium
Type I/O Bus Device OpenVMS

Name
DECnet
Name Device Type

Ethernet 10Base5 XMI DEMNA EXc0 MNA DT$_EX_DEMNA

Ethernet 10Base2 System SGEC
(LOM)

EZc0 ISA DT$_EZ_SGEC

Ethernet 10Base2 System LANCE
(LOM)

ESc0 SVA DT$_ES_LANCE

Ethernet 10Base5 TurboChannel PMAD ECc0 MXE DT$_EC_PMAD

Ethernet 2 x 10Base5 TurboChannel DELTA ECc0 MXE DT$_EC_PMAD

Ethernet 10Base5 QBUS DESQA ESc0 SVA DT$_ES_LANCE

Ethernet 10Base5 QBUS DELQA XQc0 QNA DT$_XQ_DELQA

Ethernet 10Base2/5 QBUS DEQTA XQc0 QNA DT$_XQ_DEQTA

Ethernet 10Base2/5 QBUS DEQNA XQc0 QNA DT$_DEQNA

Ethernet 10Base5 QBUS KFE52 EFc0 KFE DT$_FT_NI

Ethernet 10Base5 XMI DEUNA XEc0 UNA DT$_DEUNA

Ethernet 10Base5 UNIBUS DELUA XEc0 UNA DT$_DELUA

Ethernet 10Base5 BI DEBNA ETc0 BNA DT$_ET_DEBNA

Ethernet 10Base5 BI DEBNK ETc0 BNA DT$_ET_DEBNA

Ethernet 10Base5 BI DEBNT ETc0 BNA DT$_ET_DEBNA

Ethernet 10Base5 BI DEBNI ETc0 BNA DT$_ET_DEBNI

FDDI 100 mmf XMI DEMFA FXc0 MFA DT$_FX_DEMFA

FDDI 100 mmf TurboChannel DEFZA FCc0 FZA DT$_FC_DEFZA

FDDI 100 mmf TurboChannel DEFTA FCc0 FZA DT$_FC_DEFTA

FDDI 100 mmf QBUS DEFQA FQc0 FQA DT$_FQ_DEFQA
320

Local Area Network (LAN) Device Drivers
Supported LAN Devices
NOTE DEQTA is also known as the DELQA-YM.
PMAD is a single LANCE device.
DELTA is a dual LANCE device.
10Base2 is also known as BNC or Thinwire.
10Base5 is also known as AUI or Thickwire.
100 mmf is 100 megabits/second multimode fiber.

Table 9-2 Supported OpenVMS VAX Systems LAN Devices, Part 2

Device Device Type Version Driver Name

DEMNA DT$_EX_DEMNA V5.3 EXDRIVER.EXE

SGEC DT$_EZ_SGEC V5.3 EZDRIVER.EXE

LANCE DT$_ES_LANCE V4.4 ESDRIVER.EXE

PMAD DT$_EC_PMAD V5.5-2HW ECDRIVER.EXE

DELTA DT$_EC_PMAD V5.5-2HW ECDRIVER.EXE

DESQA DT$_ES_LANCE V5.0 ESDRIVER.EXE

DELQA DT$_XQ_DELOA V5.0 XQDRIVER.EXE

DEQTA DT$_XQ_DEQTA V5.3 XQDRIVER.EXE

DEQNA DT$_DEQNA V4.0 XQDRIVER.EXE

KFE52 DT$_FT_NI V5.4 EFDRIVER.EXE/EPDRIVER.EXE

DEUNA DT$_DEUNA V4.0 XEDRIVER.EXE

DELUA DT$_DELUA V4.0 XEDRIVER.EXE

DEBNA DT$_ET_DEBNA V4.4 ETDRIVER.EXE

DEBNK DT$_ET_DEBNA V4.4 ETDRIVER.EXE

DEBNT DT$_ET_DEBNA V4.4 ETDRIVER.EXE

DEBNI DT$_ET_DEBNI V5.2 ETDRIVER.EXE

DEMFA DT$_FX_DEMFA V5.4-3 FXDRIVER.EXE

DEFZA DT$_FC_DEFZA V5.5-2HW FCDRIVER.EXE

DEFTA DT$_FC_DEFTA V6.0 FCDRIVER.EXE

DEFQA DT$_FQ_DEFQA V6.1 FQDRIVER.EXE
321

Local Area Network (LAN) Device Drivers
Supported LAN Devices
9.2.2 OpenVMS Alpha LAN Devices

Table 9-3 and Table 9-4 list LAN devices supported on OpenVMS Alpha. Table 9-4 lists additional
information for the devices listed in Table 9-3.

Table 9-3 Supported OpenVMS Alpha LAN Devices, Part 1

Medium Medium
Type I/O Bus Device OpenVMS

Name
DECnet
Name Device Type

Ethernet 10Base5 XMI DEMNA EX MNA DT$_EX_DEMNA

Ethernet 10Base2/5 CBUS TGEC
(LOM)

EZ ISA DT$_EZ_TGEC

Ethernet 10Base2 TurboChannel COREIO
(COM)

ES SVA DT$_ES_LANCE

Ethernet 10Base5 TurboChannel PMAD EC MXE DT$_EC_PMAD

Ethernet 2 x 10Base5 TurboChannel DELTA EC MXE DT$_EY_NITC2

Ethernet 10Base2/T EISA DE422 ER ERA DT$_ER_DE422

Ethernet 10Base2/5/T EISA DE425 ER ETA DT$_ER_TULIP

Ethernet 10Base2/5 ISA DE200 ER ERA DT$_ER_LANCE

Ethernet 10BaseT ISA DE201 ER ERA DT$_ER_LANCE

Ethernet 10Base2/T ISA DE202 ER ERA DT$_ER_LANCE

Ethernet 10Base2/5/T ISA DE203 ER ERA DT$_ER_LEMAC

Ethernet 10BaseT ISA DE204 ER ERA DT$_ER_LEMAC

Ethernet 10Base2/5/T ISA DE205 ER ERA DT$_ER_LEMAC

Ethernet 10BaseT PCI Tulip
(LOM)

EW EWA DT$_EW_TULIP

Ethernet 10BaseT PCI DE434 EW EWA DT$_EW_DE435

Ethernet 10Base2/5/T PCI DE435 EW EWA DT$_EW_DE435

Ethernet 4 x 10BaseT PCI DE436 EW EWA DT$_EW_DE435

Ethernet 10Base2/5/T PCI DE450 EW EWA DT$_EW_DE450

Ethernet 100BaseTX PCI DE500-XA EW EWA DT$_EW_DE500

Ethernet 100BaseTX PCI DE500-AA EW EWA DT$_EW_DE500

Ethernet 100BaseTX PCI DE500-BA EW EWA DT$_EW_DE500

Ethernet 100BaseFX PCI DE500-FA EW EWA DT$_EW_DE500

Ethernet 4 x
100BaseTX

PCI P2SE+ EW EWA DT$_EW_DE500
322

Local Area Network (LAN) Device Drivers
Supported LAN Devices
Ethernet 10BaseT PCI 21142
(LOM)

EW EWA DT$_EW_DE500

Ethernet 100BaseTX PCI DE504-BA EW EWA DT$_EW_DE500

Ethernet 10Base2/5/T,
100BaseTX

PCI P2SE EW EWA DT$_EW_DE500

Ethernet 10Base2/5/T,
100BaseTX

PCI 21143
(LOM)

EW EWA DT$_EW_DE500

Ethernet 100BaseTX PCI DE600-AA EI EIA DT$_EI_82558

Ethernet 100BaseTX PCI DE602-AA EI EIA DT$_EI_82558

Ethernet 2 x
100BaseTX

PCI DE602-BA EI EIA DT$_EI_82558

Ethernet 2 x
100BaseTX

PCI DE602-BB EI EIA DT$_EI_82559

Ethernet 2 x
100BaseTX

DE602
daughter card

DE602-TA EI EIA DT$_EI_82559

Ethernet 100BaseFX DE602
daughter card

DE602-FA EI EIA DT$_EI_82558

Ethernet 100BaseTX PCI Trifecta EI EIA DT$_EI_82558

Ethernet 100BaseTX PCI 82559ER
(LOM)

EI EIA DT$_EI_82559

Ethernet 1000BaseSX PCI DEGPA-SA EW EWA DT$_EW_DEGPA

Ethernet 1000BaseTX PCI DEGPA-TA EW EWA DT$_EW_DEGPA

Ethernet 1000BaseSX PCI DEGXA-SA EW EWA DT$_EW_BCM5703

Ethernet 1000BaseTX PCI DEGXA-TA EW EWA DT$_EW_BCM5703

Ethernet 1000BaseSX PCI-X DEGXA-SB EW EWA DT$_EW_BCM5703

Ethernet 1000BaseTX PCI-X DEGXA-TB EW EWA DT$_EW_BCM5703

Ethernet 1000BaseTX PCI BCM5703
(LOM)

EW EWA DT$_EW_BCM5703

Ethernet 10Base2/T PCMCIA 3C589B EO CEC DT$_EO_3C589

Ethernet 10Base2/T PCMCIA 3C589D EO CEC DT$_EO_3C589

Ethernet N/A Memory Galaxy
Shared
Memory

EB EBA DT$_EB_SMLAN

Table 9-3 Supported OpenVMS Alpha LAN Devices, Part 1 (Continued)

Medium Medium
Type I/O Bus Device OpenVMS

Name
DECnet
Name Device Type
323

Local Area Network (LAN) Device Drivers
Supported LAN Devices
FDDI 100 mmf XMI DEMFA FX MFA DT$_FX_DEMFA

FDDI 100 mmf FutureBus+ DEFAA FA FAA DT$_FA_DEFAA

FDDI 100 mmf TurboChannel DEFZA FC FZA DT$_FC_DEFZA

FDDI 100 mmf -
SAS

TurboChannel DEFTA-AA FC FZA DT$_FC_DEFTA

FDDI 100 mmf -
DAS

TurboChannel DEFTA-DA FC FZA DT$_FC_DEFTA

FDDI UTP - SAS TurboChannel DEFTA-UA FC FZA DT$_FC_DEFTA

FDDI 100 mmf -
SAS

EISA DEFEA-AA FR FEA DT$_FR_DEFEA

FDDI 100 mmf -
DAS

EISA DEFEA-DA FR FEA DT$_FR_DEFEA

FDDI UTP - SAS EISA DEFEA-UA FR FEA DT$_FR_DEFEA

FDDI UTP - DAS EISA DEFEA-MA FR FEA DT$_FR_DEFEA

FDDI 100 mmf -
SAS

PCI DEFPZ-AA FW FPA DT$_FW_DEFPA

FDDI UTP - SAS PCI DEFPZ-UA FW FPA DT$_FW_DEFPA

FDDI 100 mmf -
SAS

PCI DEFPA-AA/
AB/AC

FW FPA DT$_FW_DEFPA

FDDI 100 mmf -
DAS

PCI DEFPA-DA/
DB/DC

FW FPA DT$_FW_DEFPA

FDDI UTP - SAS PCI DEFPA-UA/
UB/UC

FW FPA DT$_FW_DEFPA

FDDI UTP - DAS PCI DEFPA-MA
/MB/MC

FW FPA DT$_FW_DEFPA

TokenRing 4/16
STP/UTP

TurboChannel DETRA IC TRA DT$_IC_DETRA

TokenRing 4/16
STP/UTP

EISA DW300 IR TRE DT$_IR_DW300

TokenRing 4/16
STP/UTP

ISA DW110 IR TRE DT$_IR_DW300

TokenRing 4/16
STP/UTP

PCI TC4048 IW TRE DT$_IW_TI380PCI

Table 9-3 Supported OpenVMS Alpha LAN Devices, Part 1 (Continued)

Medium Medium
Type I/O Bus Device OpenVMS

Name
DECnet
Name Device Type
324

Local Area Network (LAN) Device Drivers
Supported LAN Devices
TokenRing 4/16
STP/UTP

PCI M8154 IW TRE DT$_IW_TI380PCI

ATM 155 mmf TurboChannel DGLTA HC/EL ELA DT$_HC_OTTO

ATM 155 mmf PCI DGLPB HW/EL ELA DT$_HW_OTTO

ATM 155 mmf PCI DGLPA-FA HW/EL ELA DT$_HW_METEOR

ATM UTP PCI DAPBA-UA HW/EL ELA DT$_HW_HE155

ATM 155 mmf PCI DAPBA-FA HW/EL ELA DT$_HW_HE155

ATM UTP PCI DAPBA-UA HW/EL ELA DT$_HW_HE155

ATM 622 mmf PCI DAPCA-FA HW/EL ELA DT$_HW_HE622

Table 9-4 Supported OpenVMS Alpha LAN Devices, Part 2

Device Device Type Version Driver Name

DEMNA DT$_EX_DEMNA V1.0 SYS$EXDRIVER.EXE

TGEC (LOM) DT$_EZ_TGEC V1.0 SYS$EZDRIVER.EXE

COREIO (LOM) DT$_ES_LANCE V1.0 SYS$ESDRIVER.EXE

PMAD DT$_EC_PMAD V1.0 SYS$ECDRIVER.EXE

DELTA DT$_EY_NITC2 V6.1 SYS$ECDRIVER.EXE

DE422 DT$_ER_DE422 V1.5 SYS$ERDRIVER.EXE

DE425 DT$_ER_TULIP V6.1 SYS$ERDRIVER.EXE

DE200 DT$_ER_LANCE V6.1 SYS$ERDRIVER.EXE

DE201 DT$_ER_LANCE V6.1 SYS$ERDRIVER.EXE

DE202 DT$_ER_LANCE V6.1 SYS$ERDRIVER.EXE

DE203 DT$_ER_LEMAC V6.2 SYS$ERDRIVER.EXE

DE204 DT$_ER_LEMAC V6.2 SYS$ERDRIVER.EXE

DE205 DT$_ER_LEMAC V6.2 SYS$ERDRIVER.EXE

Tulip (LOM) DT$_EW_TULIP V6.1 SYS$EWDRIVER.EXE

DE434 DT$_EW_DE435 V6.1 SYS$EWDRIVER.EXE

DE435 DT$_EW_DE435 V6.1 SYS$EWDRIVER.EXE

DE436 DT$_EW_DE435 V6.1 SYS$EWDRIVER.EXE

DE450 DT$_EW_DE450 V6.2 SYS$EWDRIVER.EXE

Table 9-3 Supported OpenVMS Alpha LAN Devices, Part 1 (Continued)

Medium Medium
Type I/O Bus Device OpenVMS

Name
DECnet
Name Device Type
325

Local Area Network (LAN) Device Drivers
Supported LAN Devices
DE500-XA DT$_EW_DE500 V6.2 SYS$EWDRIVER.EXE

DE500-AA DT$_EW_DE500 V7.1 SYS$EWDRIVER.EXE

DE500-BA DT$_EW_DE500 V7.1-1H1 SYS$EWDRIVER_DE500BA.EXE

DE500-FA DT$_EW_DE500 V7.1-1H1 SYS$EWDRIVER.EXE

DE504-BA DT$_EW_DE500 V7.1-1H1 SYS$EWDRIVER_DE500BA.EXE

P2SE DT$_EW_DE500 V7.1-1H1 SYS$EWDRIVER.EXE

P2SE+ DT$_EW_DE500 V7.1-1H1 SYS$EWDRIVER.EXE

21142 (LOM) DT$_EW_DE500 V7.1-1H1 SYS$EWDRIVER_DE500BA.EXE

21143 (LOM) DT$_EW_DE500 V7.1-1H1 SYS$EWDRIVER_DE500BA.EXE

DE600-AA DT$_EI_82558 V7.2 SYS$EIDRIVER.EXE

DE602-AA DT$_EI_82558 V7.2 SYS$EIDRIVER.EXE

DE602-BA DT$_EI_82558 V7.2 SYS$EIDRIVER.EXE

DE602-BB DT$_EI_82559 V7.2 SYS$EIDRIVER.EXE

DE602-TA DT$_EI_82559 V7.2 SYS$EIDRIVER.EXE

DE602-FA DT$_EI_82558 V7.2 SYS$EIDRIVER.EXE

Trifecta DT$_EI_82558 V7.2 SYS$EIDRIVER.EXE

82559ER (LOM) DT$_EI_82559 V7.3-1 SYS$EIDRIVER.EXE

DEGPA-SA DT$_EW_DEGPA V7.1-2 SYS$EW1000A.EXE

DEGPA-TA DT$_EW_DEGPA V7.1-2 SYS$EW1000A.EXE

DEGXA-SA DT$_EW_BCM5703 V7.2-2 SYS$EW5700.EXE

DEGXA-TB DT$_EW_BCM5703 V7.2-2 SYS$EW5700.EXE

DEGXA-SB DT$_EW_BCM5703 V7.2-2 SYS$EW5700.EXE

DEGXA-TB DT$_EW_BCM5703 V7.2-2 SYS$EW5700.EXE

BCM5703 (LOM) DT$_EW_BCM5703 V7.3-1 SYS$EW5700.EXE

3C589B DT$_EO_3C589 V6.2-1H2 SYS$EODRIVER.EXE

3C589D DT$_EO_3C589 V6.2-1H2 SYS$EODRIVER.EXE

Galaxy Shared
Memory

DT$_EB_SMLAN V7.2 SYS$EBDRIVER.EXE

DEMFA DT$_FX_DEMFA V1.0 SYS$FXDRIVER.EXE

DEFAA DT$_FA_DEFAA V1.0 SYS$FADRIVER.EXE

Table 9-4 Supported OpenVMS Alpha LAN Devices, Part 2 (Continued)

Device Device Type Version Driver Name
326

Local Area Network (LAN) Device Drivers
Supported LAN Devices
NOTE PMAD is a single LANCE device.
DELTA is a dual LANCE device.
DE436 is a quad Tulip device.
DE504 is a quad DE500 device.

DEFZA DT$_FC_DEFZA V1.0 SYS$FCDRIVER.EXE

DEFTA-AA DT$_FC_DEFTA V1.0 SYS$FCDRIVER.EXE

DEFTA-DA DT$_FC_DEFTA V1.0 SYS$FCDRIVER.EXE

DEFTA-UA DT$_FC_DEFTA V6.1 SYS$FCDRIVER.EXE

DEFEA-AA DT$_FR_DEFEA V1.5 SYS$FRDRIVER.EXE

DEFEA-DA DT$_FR_DEFEA V6.1 SYS$FRDRIVER.EXE

DEFEA-UA DT$_FR_DEFEA V6.1 SYS$FRDRIVER.EXE

DEFEA-MA DT$_FR_DEFEA V6.1 SYS$FRDRIVER.EXE

DEFPZ-AA DT$_FW_DEFPA V6.1 SYS$FWDRIVER.EXE

DEFPZ-UA DT$_FW_DEFPA V6.2 SYS$FWDRIVER.EXE

DEFPA-AA/AB/AC DT$_FW_DEFPA V6.2 SYS$FWDRIVER.EXE

DEFPA-DA/DB/DC DT$_FW_DEFPA V6.2 SYS$FWDRIVER.EXE

DEFPA-UA/UB/UC DT$_FW_DEFPA V6.1 SYS$FWDRIVER.EXE

DEFPA-MA/MB/MC DT$_FW_DEFPA V6.1 SYS$FWDRIVER.EXE

DETRA DT$_IC_DETRA V6.1 SYS$ICDRIVER.EXE

DW300 DT$_IR_DW300 V6.1 SYS$IRDRIVER.EXE

DW110 DT$_IR_DW300 V6.2 SYS$IRDRIVER.EXE

TC4048 DT$_IW_TI380PCI V6.2 SYS$IWDRIVER.EXE

M8154 DT$_IW_TI380PCI V7.1 SYS$IWDRIVER.EXE

DGLTA DT$_HC_OTTO V7.1-1H1 SYS$HCDRIVER.EXE

DGLPB DT$_HW_OTTO V7.1-1H1 SYS$HWDRIVER.EXE

DGLPA-FA DT$_HW_METEOR V7.1-1H1 SYS$ATMWORKS351.EXE

DAPBA-UA DT$_HW_HE155 V7.1-1H1 SYS$HWDRIVER4.EXE

DAPBA-FA DT$_HW_HE155 V7.1-1H1 SYS$HWDRIVER4.EXE

DAPBA-UA DT$_HW_HE155 V7.1-1H1 SYS$HWDRIVER4.EXE

DAPCA-FA DT$_HW_HE622 V7.1-1H1 SYS$HWDRIVER4.EXE

Table 9-4 Supported OpenVMS Alpha LAN Devices, Part 2 (Continued)

Device Device Type Version Driver Name
327

Local Area Network (LAN) Device Drivers
Supported LAN Devices
DE602-AA,TA,BA,BB are dual Intel 8255x devices. A daughter card, DE602-TA or -FA, can be
installed for additional ports.
Trifecta is a combo device made by Intraserver.
The Galaxy Shared Memory driver, SYS$EBDRIVER.EXE, emulates an Ethernet device
supporting jumbo frames.
LOM, LAN on Motherboard, is a LAN device embedded on the system board.
10Base2 is also known as BNC or Thinwire.
10Base5 is also known as AUI or Thickwire.
100BaseTX devices can do 10BaseT as well.
1000BaseTX devices can do 10BaseT and 100BaseTX as well.
1000BaseSX is 1000 megabits/second multimode fiber.
100 mmf is 100 megabits/second multimode fiber.
SAS in an FDDI Single-Attached Station.
DAS in an FDDI Dual-Attached Station.
DEFPA-xC is required for 3.3 volt (only) PCI.
4/16 STP/UTP is 4 or 16 megabits/second with STP or UTP cabling.
M8154 is a TC4048 equivalent made by Racore Networks.
Token Ring is not supported on EV6-based or later systems.
EL is the emulated LAN device associated with the parent ATM device.
155 mmf is OC3 multimode fiber.
622 mmf is OC12 multimode fiber.

9.2.3 OpenVMS I64 LAN Devices

Table 9-5 and Table 9-6 show the LAN devices supported by the OpenVMS I64 operating system. Table 9-6
lists additional information for the devices listed in Table 9-5. Most of the LAN devices are described here, but
refer to the Software Product Description for the OpenVMS Operating System (SPD 82.35.xx) for the
definitive list of supported devices.

Table 9-5 Supported OpenVMS I64 Systems LAN Devices, Part 1

Medium Medium Type I/O Bus Device
Name

OpenVMS
Name

DECnet
Name

OpenVMS Device
Type

Ethernet 100Base TX PCI A5230A EW EWA DT$_EW_DE500

Ethernet 4x100BaseTX PCI A5506B EW EWA DT$_EW_DE500

Ethernet 100BaseTX PCI 82559 (LOM) EW EWA DT$_EI_82559

Ethernet 1000BaseSX PCI A6847A EW EWA DT$_EW_BCM5701

Ethernet 1000BaseTX PCI A6825A EW EWA DT$_EW_BCM5701

Ethernet 2 x 1000BaseSX PCI-X A7011A EI EIA DT$_EI_82540

Ethernet 2 x 1000BaseTX PCI-X A7012A EI EIA DT$_EI_82540

Ethernet 1000BaseTX PCI-X Intel 82546
(LOM)

EI EIA DT$_EI_82540

Ethernet 1000BaseSX PCI-X AB352A EW EWA DT$_EW_BCM5703

Ethernet 1000BaseSX PCI-X A9782A EW EWA DT$_EW_BCM5703

Ethernet 1000BaseTX PCI-X A9784A EW EWA DT$_EW_BCM5703
328

Local Area Network (LAN) Device Drivers
Supported LAN Devices
NOTE A5230A is a DE500-BA equivalent made by Adaptec.
A5506B is a DE504-BA equivalent made by IntraServer.
A9782A and A9784A are combo Qlogic FibreChannel plus Gigabit Ethernet devices.
AB465A is a combo dual Qlogic FibreChannel plus dual Gigabit Ethernet device.
BCM5701 is embedded on the RX2600 system.
Intel 82546 is embedded on the RX1620 system.
100BaseTX devices can do 10BaseT as well.
1000BaseTX devices can do 10BaseT and 100BaseTX as well.
1000BaseSX is 1000 megabits/second multimode fiber.

Ethernet 1000BaseTX PCI-X AB290A EW EWA DT$_EW_BCM5703

Ethernet 2x1000BaseTX PCI-X AB465A EW EWA DT$_EW_BCM5704

Ethernet 1000Base TX PCI BCM5701
(LOM)

EW EWA DT$_EW_BCM5701

Table 9-6 Supported OpenVMS I64 Systems LAN Devices, Part 2

Device OpenVMS Device
Type

OpenVMS
Version Driver Name

A5230A DT$_EW_DE500 V8.2 SYS$EWDRIVER_DE500BA.EXE

A5506B DT$_EW_DE500 V8.2 SYS$EWDRIVER_DE500BA.EXE

82559 (LOM) DT$_EI_82559 V8.2 SYS$EIDRIVER.EXE

A6847A DT$_EW_BCM5701 V8.2 SYS$EW5700.EXE

A6825A DT$_EW_BCM5701 V8.2 SYS$EW5700.EXE

A7011A DT$_EI_82540 V8.2 SYS$EI1000.EXE

A7012A DT$_EI_82540 V8.2 SYS$EI1000.EXE

Intel 82546 (LOM) DT$_EI_82540 V8.2 SYS$_EI1000.EXE

AB352A DT$_EI_82540 V8.2 SYS$EI1000.EXE

A9782A DT$_EW_BCM5703 V8.2 SYS$EW5700.EXE

A9784A DT$_EW_BCM5703 V8.2 SYS$EW5700.EXE

AB290A DT$_EW_BCM5703 V8.2 SYS$EW5700.EXE

AB465A DT$_EW_BCM5703 V8.2 SYS$EW5700.EXE

BCM5701 (LOM) DT$_EW_BCM5701 V8.2 SYS$EW5700.EXE

Table 9-5 Supported OpenVMS I64 Systems LAN Devices, Part 1 (Continued)

Medium Medium Type I/O Bus Device
Name

OpenVMS
Name

DECnet
Name

OpenVMS Device
Type
329

Local Area Network (LAN) Device Drivers
Supported Industry Standards
9.3 Supported Industry Standards
 Ethernet drivers support the following features and standards:

• Ethernet and IEEE 802.3 packet format

• Physical layer identified as 10Base5 (ThickWire), 10Base2 (ThinWire), and 10BaseT (twisted pair)

• Fast Ethernet physical layer identified as type 100BaseTX

• Gigabit Ethernet's physical layer is identified as 1000BaseT for unshielded twisted pair (UTP),
1000Base-SX for multimode fiber-optic cables.

• Gigabit Ethernet implementation of jumbo frames, a defacto industry standard using a maximum frame
size larger than the standard Ethernet maximum of 1518 bytes.

FDDI drivers support the following features and standards:

• FDDI packet format

• Transmission and reception of frame control (FC) priority

• ANSI X3.139-1987 FDDI Media Access Control (MAC)

• ANSI X3.148-1988 FDDI Physical Layer Protocol (PHY)

• ANSI X3.166-1990 FDDI Physical Layer Medium Dependent (PMD)

Token Ring drivers support the following features and standards:

• IEEE 802.5 packet format

• Transmission and reception of priority bits in the access control (AC) field and the frame control (FC) field

• Transmission of source routing header information.

• Reception of route information (RI).

ATM drivers over ELAN support the following features and standards:

• Ethernet and IEEE 802.3 packet format

• UNI Version 3.0 or 3.1 signaling protocol

• LAN emulation (LANE) Version 1.0

• Maximum frame sizes of 1516, 4544, and 9234 bytes

All LAN drivers support the following features:

• 802.2 packet format

• IEEE 802.2 Class I service including the unnumbered information (UI), exchange identification (XID)
commands and responses, and TEST commands and responses

• IEEE 802.2 Class II service may be specified where the functions are provided by the user application

• Six-byte destination and source address fields
330

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
9.4 LAN I/O Architecture
The OpenVMS LAN software employs a class/port driver architecture to allow LAN applications to
communicate with other nodes over the LAN device and the network.

The class driver is implemented by a collection of execlets known as the LAN common routines. The LAN
common routines implement two APIs, QIO and VCI. LAN applications interface to the LAN device port
drivers using these APIs in a common manner across each type of LAN (Ethernet, FDDI, Token Ring, ATM,
and Shared Memory). An execlet for each LAN medium minimizes the differences between them so
applications can operate transparently over different types of LANs. LAN over ATM emulates Ethernet and
uses the Ethernet LAN common routines. ATM needs a significant amount of additional support code to
provide LAN emulation (LANE) and Classical IP (CLIP) support. This support code is located in an ATM
execlet. LAN over Shared Memory also emulates Ethernet and uses the Ethernet LAN common routines. No
additional support code is needed for Shared Memory.

The port drivers operate the LAN hardware, and there is one port driver for each type of LAN device. Many
of the port drivers operate multiple variations of similar hardware. One port driver for ATM emulates
Ethernet and another emulates IP (called Classical IP). The port driver for Shared Memory emulates
Ethernet. Unlike the port drivers that directly control LAN hardware, the emulated port drivers are pseudo
drivers that implement a pseudo hardware interface in software.

When coorelated to the OSI Model, the LAN implementation occupies the bottom two layers, the LAN
common routines and LAN port drivers constitute the Data Link Layer, and the LAN device hardware the
Physical Layer and parts of the Data Link Layer. The LAN drivers are often called the data link drivers.

9.4.1 LAN Data Structures

The OpenVMS I/O subsystem describes devices in terms of a Unit Control Block (UCB). There is a UCB for
each device, which may be an actual physical device or a pseudo or virtual device. LAN devices include
physical devices, NICs located in PCI buses, for example; and virtual devices, a shared memory emulated
Ethernet device or an ATM emulated LAN device. The LAN drivers define an extension to the standard VMS
UCB that includes additional fields needed to provide LAN context.

When a LAN application wants to use a LAN device, it assigns a channel (opens a port) to the UCB associated
with the LAN device. When this occurs, the VMS I/O subsystem makes a copy of the device UCB and
associates the channel with this cloned UCB. Then the application can activate the channel by specifying the
desired characteristics of the channel, such as protocol type and what multicast addresses to enable. The unit
0 UCB is called the template UCB. Each non-zero UCB represents a channel to the device and contains
application-specific channel characteristics.

Each LAN driver also maintains another structure, the LAN Station Block (LSB), which contains LAN
common information as well as device-specific data. For each LAN device there is one LSB and a
cooresponding unit 0 UCB. The LSB contains device-specific data the would be inappropriate to include in
the UCB structures such as device rings and device counters.

In summary, the UCBs contain application-specific data. The LSBs contain device and driver-specific data.
There is one LSB and one template UCB per LAN device that are created and initialized during device
discovery. Whenever an application opens a channel to a particular LAN device, the template UCB is cloned
to a newly created cloned UCB which represents the channel. There is one cloned UCB for each channel.
When the channel is deassigned, the cloned UCB ceases to exist along with any context associated with the
channel.

Additional data structures are defined to allow applications to send and receive I/O requests to the LAN
drivers, as described in the following QIO and VCI sections.
331

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
9.4.2 Hardware Configuration

When the system boots, system support code probes the I/O buses looking for I/O devices. On VAX systems,
this code probes Unibus, QBUS, BI, XMI, and TURBOchannel buses and identifies I/O devices and loads the
drivers needed for each device. On Alpha and I64 systems, device configuration is done by comparing device
IDs found during bus probing with entries in the file SYS$SYSTEM:SYS$CONFIG.DAT. This file includes
the set of supported LAN devices on Alpha and I64 systems, as well as entries for other I/O devices upported
such as SCSI, FibreChannel, USB, ATA and others.
332

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
9.4.3 Software Modules

OpenVMS LAN software consists of the LAN common routines, LAN port drivers, the LAN Control Programs,
and LAN diagnostic software listed in Table 9-7.

Table 9-7 LAN Software Module

 Location Module Architecure Function

SYS$LOADABLE_IMAGES SYS$LAN.EXE Alpha, I64 LAN common routines,
common across all
media types

SYS$LOADABLE_IMAGES SYS$LAN_CSMACD.EXE Alpha, I64 LAN common routines,
Ethernet-specific
support

SYS$LOADABLE_IMAGES SYS$LAN_FDDI.EXE Alpha LAN common routines,
FDDI-specific support

SYS$LOADABLE_IMAGES SYS$LAN_TR.EXE Alpha LAN common routines,
Token ring-specific
support

SYS$LOADABLE_IMAGES SYS$LAN_ATM.EXE Alpha LAN common routines,
ATM-specific support

SYS$LOADABLE_IMAGES NET$CSMACD.EXE VAX, Alpha, I64 DECnet-Plus network
management support
routines for Ethernet

SYS$LOADABLE_IMAGES NET$FDDI.EXE VAX, Alpha DECnet-Plus network
management support
routines for FDDI

SYS$SYSTEM SYS$CONFIG.DAT Alpha, I64 Device ID entries for
file-based device
configuration

SYS$SYSTEM LANCP.EXE VAX, Alpha, I64 LAN Control Program

SYS$SYSTEM LANACP.EXE VAX, Alpha, I64 LAN Auxiliary Control
Program, including
MOP server

SYS$LIBRARY SDA.EXE VAX System Dump Analyzer
or System Analyzer

SYS$LIBRARY SDA$SHARE.EXE Alpha, I64 System Dump Analyzer
or System Analyzer

SYS$LIBRARY LAN$SDA.EXE Alpha, I64 SDA extension for LAN
drivers

SYS$LOADABLE_IMAGES LAN port drivers VAX, Alpha, I64 LAN port drivers
333

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
The NET$ modules are only loaded when DECnet-Plus is configured on the system. SYS$CONFIG.DAT
includes LAN devices as well as any other I/O devices. LAN support represents only a small portion of the
SDA.EXE and SDA$SHARE.EXE images.

On VAX, the LAN common routines are linked with the LAN port drivers as part of each driver image. On
Alpha and I64, these routines are separate execlets.

9.4.4 Application APIs

The LAN common routines provide two APIs to allow applications to interface to the LAN drivers and
ultimately to send and receive data over the network. The APIs allow an application to initialize a port
(assign a channel), send a packet over the port, receive a packet from the port, and do other management
functions such as set port parameters, obtain port parameters and counters, and to shut down the port
(deassign the channel).

The APIs are:

• QIO — An unprivileged interface to the LAN drivers, designed for user mode code.

• VCI — A privileged interface to the LAN drivers that runs in kernel mode at IPL 8, designed to be very
efficient.

9.4.4.1 QIO API

The QIO API is implemented in the LAN common routines to interface between an application and the LAN
port driver in user mode. The QIO subsystem passes I/O requests from the application to the LAN driver.
The LAN driver performs the requested I/O and returns status and data to the application.

An application calls SYS$QIO with a function code, function modifiers, and addresses of buffers that provide
any information needed, such as a buffer containing transmit data, transmit header data, a buffer to contain
receive data and receive header data, and buffers for setmode and sensemode functions. This information is
passed to the LAN driver via the P1-P6 QIO parameters.

The LAN common routines translate the I/O function in the QIO request to a transmit, receive, sensemode,
setmode, or diagnose operation that is passed on the LAN port driver.

The LAN port driver does the transmit request, retrieves the receive packet, collects sensemode data, sets
characteristics, or does the diagnose function, and passes the results back through the LAN common routines,
back through the QIO subsystem, and back to the application.

QIO operations do buffered I/O. This, in addition to considerable validation of the QIO request, makes for a
robust user mode interface, but less efficient from a performance standpoint than the VCI interface.

9.4.4.1.1 QIO Program Operation The following sequence shows a typical application sequence, to start
a port, do transmits and receives, then shut down a port:

1. Use the Assign I/O Channel ($ASSIGN) system service to assign I/O channels to one or more of the LAN
device names and devices specified in Table 9-1 through Table 9-6. $ASSIGN creates a new unit control
block (UCB), to which the channel for the port is assigned.

2. Start up the port with the set mode function and startup function modifier (see Section 9.7.3.1. You must
supply the required P2 buffer parameters listed in Table 9-39.

3. Perform read, write, and sense mode operations as needed.

4. Shut down the port with the set mode function and shutdown function modifier (see Section 9.7.4.

5. Use the Deassign I/O Channel ($DASSGN) system service to deassign the I/O channel.

The sample programs described in 9.8.2Section 9.8.2 illustrate a QIO implementation.
334

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
9.4.4.2 VCI API

The VCI API is implemented in the LAN common routines to interface between the application and the LAN
port driver in kernel mode at IPL 8. The VCI application calls VCI routines in kernel mode at IPL 8. The VCI
routines are part of the LAN common routines. There are routines to initiate a port management request (to
start, stop, and change a port) and to initiate a transmit request. The VCI application provides routines that
the LAN common routines calls for transmit, receive, and port management completion.

An applications calls a VCI initiation routine with an I/O request that contains the transmit buffer or
pointers to the transmit data, or the port management buffer data.

The LAN common routines process the transmit or port management request and passes the request on to the
LAN port driver.

The LAN port driver does the transmit request, or sets characteristics, and passes the results back through
the LAN common routines, and back to the VCI application by calling the application's completion routine.
When a receive packet arrives, the LAN common routines passes the receive buffer to the VCI application by
calling the application's receive completion routine. When the application has completed processing the
receive data, it returns the receive buffer to the LAN common routines by calling a return receive buffer
routine.

VCI operations do direct I/O, avoiding buffer copies in most cases. VCI applications are considered trusted
applications, so must abide by the VCI specification to gain that trust and to ensure system integrity is
maintained operating in kernel mode with privileges.

9.4.5 LAN Addressing

Each LAN device is identified by a hardware address that is intended to uniquely identify the LAN device and
local system as a node on the network. The hardware address is a 48-bit address known as a MAC address or
Ethernet address.

Ethernet addresses are represented by the Ethernet standard as six pairs of hexadecimal digits (six bytes),
separated by hyphens (for example, AA-01-23-45-67-FF). The bytes are displayed from left to right in the
order in which they are transmitted; bits within each byte are transmitted from right to left. In this example,
byte AA is transmitted first; byte FF is transmitted last. (See the description of NMA$C_PCLI_PHA in
Table 9-39, Section 9.7.3.1, for the internal representation of addresses.)

For Token Ring networks, the address is often given in bit-reversed form, called canonical format, separated
by colons. For example, AA-01-23-45-67-FF in canonical format is 55:80:C4:A2:E6:FF.

Upon application, IEEE assigns a block of addresses to a producer of LAN nodes. Thus, every manufacturer
has a unique set of addresses to use. Normally, one address out of the assigned block of physical addresses is

permanently associated with each device (usually in read-only memory). This address is known as the
hardware address or MAC address of the device. Each individual device has a unique hardware address.

9.4.5.1 Ethernet Address Classifications

An Ethernet address can be a physical address of a single node or a multicast address, depending on the value
of the low-order bit of the first byte of the address (this bit is transmitted first). Following are the two types of
node addresses:

• Physical address—The unique address of a single node on a LAN. The least significant bit of the first byte
of a physical address is 0. (For example, in physical address AA-00-03-00-FC-00, byte AA in binary is 1010
1010, and the value of the low-order bit is 0.) This is also called an individual address.
335

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
• Multicast address—A multidestination address of one or more nodes on a given LAN. The least
significant bit of the first byte of a multicast address is 1. (For example, in the multicast address
0B-22-22-22-22-22, byte 0B in binary is 0000 1011, and the value of the low-order bit is 1. This is the first
bit of the address as transmitted over the wire.)

9.4.5.2 Selecting an Ethernet Physical Address

The OpenVMS interface to the LAN controllers allows you to set a physical address of the controller. The
selection of the physical address of a LAN controller is different for Ethernet and FDDI.

For Ethernet, all users of the controller must agree on this address. The first user of the controller chooses the
physical address; any additional users of the controller must specify either the same physical address, no
physical address, or change the address (if allowed). When all channels to the controller are shut down, the
next user to start a channel chooses the physical address. The controller's physical address is always chosen
on the first successful startup when there are no active ports. If the address is not chosen at this time, the
controller's hardware address is used as the physical address.

For Ethernet, the Can Change Address parameter allows the physical address to be changed even though
there are active users. If all current users of the controller have set the NMA$C_PCLI_CCA parameter to
NMA$C_STATE_ON, then the physical address can be changed.

For FDDI, each port using a controller may specify its own unique physical address. Any combination of
sharing of physical addresses is also allowed across the ports of an FDDI controller. For example, ports A, B,
and C may use one unique physical address and ports D and E may use another unique address.

9.4.5.3 Ethernet Physical and Multicast Address Values

The following shows the multicast addresses assigned for use in cross-company communications:.

The following lists the commonly used multicast addresses.

Value Meaning

FF-FF-FF-FF-FF-FF Broadcast

CF-00-00-00-00-00 Loopback assistance

Value Meaning

AB-00-00-01-00-00 Dump/load assistance

AB-00-00-02-00-00 Remote console

AB-00-00-03-00-00 Level 1 and Level 2 routers

AB-00-00-04-00-00 All end nodes

09-00-2B-02-00-00 Level 2 routers

AB-00-00-05-00-00
through
AB-00-03-FF-FF-FF

Reserved for future use

AB-00-03-00-00-00 LAT

AB-00-04-00-00-00
through
AB-00-04-00-FF-FF

For use by HP customers for their own applications
336

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
9.4.5.4 Token Ring Functional Address Mapping

Except for the global broadcast address (FF-FF-FF-FF-FF-FF), Token Ring hardware does not support the
802 standard group LAN address mechanism. Instead, it uses functional addresses. Functional addresses
are locally administered group addresses (multicast addresses). The first two bytes of the address are always
03-00 (canonical format), and the remaining four bytes contain a bit mask that specifies which of the 32
possible combination masks is being described.

Because most OpenVMS LAN applications use standard multicast addresses, a mechanism has been
designed to map functional addresses to globally and locally administered multicast addresses. This allows
applications to use the same multicast addresses that are used in the other LAN media.

Table 9-8 shows the default mapping used by the OpenVMS Alpha Token Ring drivers:

AB-00-04-01-00-00
through
AB-00-04-01-FF-FF

Local area VMScluster

AB-00-04-02-00-00
through
AB-00-04-FF-FF-FF

Reserved for future use

09-00-2B-01-00-00 Bridge management

09-00-2B-01-00-01 Bridge hello multicast

Table 9-8 Address Mappings of Token Ring Drivers

Multicast Address Functional
Address Bit-Reversed Description

09-00-2B-00-00-04 03-00-00-00-02-00 C0:00:00:00:40:00 ISO 9542 All End-system Network
Entites

09-00-2B-00-00-05 03-00-00-00-01-00 C0:00:00:00:80:00 ISO 9542 All Intermediate System
Network Entities

CF-00-00-00-00-00 03-00-00-08-00-00 C0:00:00:10:00:00 Loopback Assistance

AB-00-00-01-00-00 03-00-02-00-00-00 C0:00:40:00:00:00 MOP Dump/Load

AB-00-00-02-00-00 03-00-04-00-00-00 C0:00:20:00:00:00 MOP Remote Console

AB-00-00-03-00-00 03-00-08-00-00-00 C0:00:10:00:00:00 DNA L1 Routers

09-00-2B-02-00-00 03-00-08-00-00-00 C0:00:10:00:00:00 DNA L2 Routers

09-00-2B-02-01-0A 03-00-08-00-00-00 C0:00:10:00:00:00 DECnet Phase IV — TRN — All
Phase IV — TRN Routers

AB-00-00-04-00-00 03-00-10-00-00-00 C0:00:08:00:00:00 DNA End nodes

09-00-2B-02-01-0B 03-00-10-00-00-00 C0:00:08:00:00:00 Phase IV Prime Unknown

09-00-2B-00-00-07 03-00-20-00-00-00 C0:00:04:00:00:00 PCSA NETBIOS Emulation

09-00-2B-00-00-0F 03-00-40-00-00-00 C0:00:02:00:00:00 Local Area Transport (LAT)

Value Meaning
337

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
If an application needs to change or add mappings, QIOs exist for performing such operations. If the system
or network manager has a requirement regarding mapping of the functional addresses, the LAN control
program (LANCP) utility may be used to manage the mapping. The following example maps the multicast
address AB-01-01-01-02-03 to functional address 03-00-00-01-00-00 on Token Ring device ICA0:.

$ MCR LANCP

LANCP>SET DEVICE/MAP= -

_LANCP> (MULTICAST=AB-01-01-01-02-03,-

_LANCP> FUNCTIONAL=00-01-00-00) ICA0:

Note that it is possible for more than one multicast address to map to the same functional address. In all
cases, the use of the functional address is associated with an individual application's protocol.

9.4.6 LAN Frame Formats

Several different LAN physical layer protocols are supported by OpenVMS with some differences in frame
formats. The following sections describe the similarities and differences in these frame formats. Despite
differences, the QIO interface to the LAN drivers is designed to allow applications to run over the different
media with few changes to the application.

09-00-2B-02-01-04 03-00-80-00-00-00 C0:00:01:00:00:00 LAT Directory Service Solicit (to
slave)

09-00-2B-02-01-07 03-00-00-02-00-00 C0:00:00:40:00:00 LAT Directory Service Solicit — X
Service Class

09-00-2B-04-00-00 03-00-00-04-00-00 C0:00:00:20:00:00 LAST

09-00-2B-02-01-00 03-00-00-00-08-00 C0:00:00:00:10:00 DNA Naming Service
Advertisement

09-00-2B-02-01-01 03-00-00-00-10-00 C0:00:00:00:08:00 DNA Naming Service Solicitation

09-00-2B-02-01-02 03-00-00-00-20-00 C0:00:00:00:04:00 DNA Time Service

03-00-00-00-00-01 03-00-00-00-00-01 C0:00:00:00:00:80 NETBUI Emulation

Table 9-8 Address Mappings of Token Ring Drivers (Continued)

Multicast Address Functional
Address Bit-Reversed Description
338

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
The frame formats available in the LAN media are shown in Figure 9-1.

Figure 9-1 LAN Frame Formats

Note that Ethernet provides two frame formats and the FDDI provides one frame format. The 802.1 header is
an optional extension to the 802.2 header.

9.4.6.1 Ethernet Frames

There are two headers for Ethernet frames:

• Ethernet header

• IEEE 802.3 header

ZK-3901A-AI

Ethernet with Ethernet header

Ethernet with 802.3 header

FDDI

CRC: Cyclic Redundancy Check

Ethernet Header DATA CRC

802.3 Header 802.2/802.1 Header DATA CRC

FDDI Header 802.2/802.1 Header DATA CRC

Token Ring

 802.2/802.1 Header DATA CRCToken Ring Header

ATM ELAN with Ethernet Header

ATM ELAN with 802.3 Header

Ethernet Header

LEH

LEH DATA

802.3 Header 802.2/802.1 Header DATA

LEH: LAN Emulation Header
339

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
Figure 9-2 illustrates an Ethernet frame with an Ethernet header.

Figure 9-2 Ethernet Frame with Ethernet Header

The Ethernet header consists of the DA, SA, and PTY fields. Ethernet frames must be at least 64 bytes in
length, which means that the minimum data length is 46 bytes. Applications select Ethernet format by
specifying NMA$C_LINFM_ETH (the default) as the value for NMA$C_PCLI_FMT in their P2
characteristics buffer. If the amount of actual data to be transmitted is less than 46 bytes, the Ethenet drivers
transmit extra bytes of zero after the application data.

Figure 9-3 illustrates a Ethernet frame with an IEEE 802.3 header.

Figure 9-3 Ethernet Frame with IEEE 802.3 Header

The IEEE 802.3 format is similar to the Ethernet format, except the PTY field is replaced by the LEN field.

DA SA PTY DATA CRC

6 6 2 46=>1500 4

PTY:

DATA:

CRC:

DA:

 SA:

ZK3743AGE

Ethernet Protocol Type

User’s data (can include 2byte length field)

Cyclic Redundancy Check

Minimum total length
Maximum total length 1518 bytes

 64 bytes

Source Address

Destination Address

DA SA LEN DATA CRC

6 6 2 46=>1500 4

LEN: The length of data portion only. It can
be less than 46 if the user supplied less than

DA:

SA:

Destination Address

Source Address

46 bytes of data, but the frame is then
padded to meet minimum length requirements.

ZK3745AGE

DATA:

CRC:

User’s data

Cyclic Redundancy Check
340

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
9.4.6.2 FDDI Frames

Figure 9-4 illustrates the format of FDDI frames.

Figure 9-4 FDDI Frame Format

The FDDI header consists of the FC, DA, and SA fields.

9.4.6.3 Token Ring Frames

Figure 9-5 illustrates the format of Token Ring frames.

Figure 9-5 Token Ring Frame Format

FC DA SA DATA CRC

1 6 6 0=>4478 4

FC: Frame Control contains a "priority" field that
can be used to determine if the frame originated
on the FDDI or on the Ethernet.

DA:

SA:

Destination Address

Source Address

DATA: User’s data

ZK3742AGE

CRC: Cyclic Redundancy Check

ZK6679AGE

AC FC DA [RI]

1 6 6 030 0=>4476 4

SA

1

DATA CRC

RI:

DATA:
CRC: Cyclic Redundancy Check

Optional Routing Information. Only valid with
packets that are source routed.
User’s data

AC:
FC:
DA:
SA: Source Address

Access Control contains priority for the frame.
Frame Control contains the type of frame.
Destination Address
341

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
9.4.6.4 ATM ELAN Frames

Figure 9-6 illustrates the format of LAN emulation data frame format for the IEEE 802.3 and Ethernet
Header.

Figure 9-6 LAN Emulation Data Frame Format with IEEE 802.3/Ethernet Header

9.4.6.5 Ethernet (Ethernet Version 2, DIX) Frame Format

The Ethernet format specifies a two-byte protocol type field followed by an optional length field. The length
field is included in transmit packets and expected in receive packets with the PAD parameter is enabled. The
following sections describe these features.

9.4.6.5.1 Ethernet Protocol Types Every Ethernet frame has a 2-byte protocol type field. This field is
used to determine the port to which a packet belongs. When an application starts a port, it specifies the
protocol type to be used on that port. Packets sent over that port always have the protocol type inserted in the
packet header by the LAN driver, and packets received for that protocol type are delivered to the application
that owns the port. Valid protocol types are in the range 05-DD through FF-FF.

The following lists the cross-company protocol types:

Value Meaning

08-00 IP protocol

08-06 Address resolution protocol (ARP)

86-DD IP protocol Version 6 (IPV6)

DA SA PTY/LEN DATA

6 6 2 46=>*

ZK8990AGE

LEH

2

1500 For an 802.3 LAN emulation of size 1516
4528 For an 802.3 LAN emulation of size 4544
9218 For an 802.3 LAN emulation of size 9234

*

LEH: LAN Emulation Header

PTY/LEN:

DATA:

DA:

 SA:

For frames with the IEEE 802.3 header,

User’s data

Source Address

Destination Address

PTY is the Ethenet Protocol Type. For
frames with the Ethernet header, LEN is
the length of the data portion only. It can
be less than 46 if the user supplied less than
46 bytes of data, but the frame is then
padded to meet minimum requirements.
342

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
The following list some commonly used protocol types.

9.4.6.6 802 (IEEE 802.x LLC) Frame Format

The IEEE 802 packet formats accepted for a port depend on the service enabled on that port. All 802 packet
formats have an 802.2 header. The service on the port determines the valid values for the 802.2 fields.

When a port is started, the NMA$C_PCLI_SRV parameter in the P2 buffer selects the service on that port. A
value of NMA$C_LINSR_CLI specifies Class I service and a value of NMA$C_LINSR_USR specifies
er-supplied service (the default).

9.4.6.6.1 802 Service Access Point (SAP) Types Every IEEE 802 frame has a 1-byte Service Access
Point (SAP) field. This field identifies where the packet came from, the source port on the sending node. And
it identifies the destination port for the packet on the receiving node. When an application starts a port, it
specifies the SAP value that will identify the port. Packets sent over that port always have SAP value
inserted into the SSAP field in the packet header by the LAN driver, and packets received for the SAP value
in the DSAP field are delivered to tha application that owns the port. Also, when transmitting a packet, the
application specifies the destination SAP value, in addition to the destination address. And when receiving a
packet, the application is given the source SAP value as well as the source address.

90-00 Ethernet Loopback protocol

Value Meaning

60-01 DNA Dump/load (MOP)

60-02 DNA Remote Console (MOP)

60-03 DNA Routing

60-04 Local Area Transport (LAT)

60-05 Diagnostics

60-06 Customer use

60-07 System Communication Architecture (SCA)

80-38 Bridge

80-3C DNA Naming Service

80-3D CSMA/CD Encryption

80-3E DNA Time Service

80-3F LAN Traffic Monitor

80-40 NETBIOS Emulator (PCSG)

80-41 Local Area System Transport (LAST)

Value Meaning
343

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
The following lists some commonly used SAP values.

9.4.6.6.2 Class I Service Packet Format For Class I service, only three packet formats are transmitted
and received: UI, XID, and TEST. Figure 9-7 shows the 802.2 header format for Class I service.

Figure 9-7 Class I Service 802.2 Header

The control field for an 802 packet is always an unnumbered control field. The unnumbered control field,
which is always 1 byte in length, is passed by the P4 argument of the write QIO and can be one of the
following binary values:

• UI command (00000011)

This is the unnumbered information command. It is the method used to transmit data from one user to
another and is the most widely used control field value.

The UI command can be specified by using NMA$C_CTLVL_UI.

• XID command (101p1111)

This is the exchange identification command. It is used to convey information about the port. The “p” bit
is the poll bit and can be either 0 or 1. This command can be specified by using NMA$C_CTLVL_XID for a
“0” poll bit or NMA$C_CTLVL_XID_P for a “1” poll bit.

• XID response (101f1111)

The XID response is a response to an XID command. The “f” bit is the final bit and will match the poll bit
from the XID command.

• TEST command (111p0011)

The TEST command is used to test a connection. The “p” bit is the poll bit and can be either 0 or 1. This
command can be specified by using NMA$C_CTLVL_TEST for a “0” poll bit or NMA$C_CTLVL_TEST_P
for a “1” poll bit.

• TEST response (111f0011)

The TEST response is a response to a TEST command. The “f” bit is the final bit and will match the poll
bit from the TEST command.

Value Meaning

FE DECnet-V Link State Routing

F0 Pathworks

DSAP

SSAP

U

ZK4798GE

(Bytes)
Field

Size of

1

1

1

344

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
An 802 format port with Class I service is allowed to transmit UI, XID, and TEST commands. An 802 format
port with Class I service is allowed to receive UI commands and XID and TEST responses.

Refer to the IEEE 802.2 Standard for more information on these control field values and response messages.

9.4.6.6.3 User-Supplied Service Packet Format The user provides the control field values, which are
documented in the IEEE 802.2 Standard. The user-supplied packet format is the generic packet format as
specified in the IEEE 802.2 Standard. Class I packets (see Section 9.4.6.6.2) are a subset of this generic
packet format; therefore, if the control field value of the user-supplied packet is UI, XID, or TEST, the packet
is the same as a Class I packet. Note that Class II packets, as defined in the IEEE 802.2 Standard, include the
UI, XID, and TEST command/response formats.

9.4.6.6.4 Service Access Point (SAP) Use and Restrictions The IEEE 802.2 Standard places
restrictions on both user SAPs and source SAPs (SSAPs). All SAPs are 8 bits long. Figure 9-8 shows the
format of destination SAPs (DSAPs) and SSAPs.

Figure 9-8 DSAP and SSAP Format

Definition of the least significant bit depends on whether the SAP is a source SAP (SSAP) or a destination
SAP (DSAP). For a DSAP field, the least significant bit distinguishes group SAPs (bit 0 = 1) from individual
SAPs (bit 0 = 0). For an SSAP field, the least significant bit distinguishes commands (bit 0 = 0) from responses
(bit 0 = 1). Because these two bits are located at the same bit position within the SAP field, a group SAP
cannot be used as an SSAP. If this were allowed, a group SAP would be interpreted as an individual SAP with
the command/response bit set to 1, thus implying a response. The IEEE 802.2 Standard reserves for its own
definition all SAP addresses with the second least significant bit set to 1. You should use these SAP values for
their intended purposes, as defined in the IEEE 802.2 Standard.

Up to four group SAPs can be enabled on each 802 port. The group SAPs enabled on a controller do not have
to be unique for each port; for example, two 802 format ports can have the same group SAP enabled. This
allows a single packet coming into the controller to be duplicated and passed to each port on the controller
that has the group SAP enabled—assuming the packet has a DSAP value that is a group SAP. If the received
packet has an individual SAP for a DSAP, the packet goes to, at most, one port.

DSAP SSAP

7 0 7

ZK4800GE

DDDDDDDI/G SSSSSSSC/R

0

345

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
9.4.6.7 802 Extended (IEEE 802.x LLC/SNAP) Frame Format

The 802E format uses the 802.2 and 802.1 headers, as shown in Figure 9-9.

Figure 9-9 802 Extended Header

For an 802E packet format, the DSAP and SSAP fields are always set to the SNAP SAP (AA hex). The SNAP
SAP value is a special SAP value reserved for 802 extended format packets. The SNAP SAP value
distinguishes an 802 packet from an 802 extended packet. The only valid control field value for 802 extended
packets is UI (unnumbered information).

9.4.6.7.1 802E PID Types Every SNAP frame has a 5-byte protocol ID (PID) field. This field is used to
determine the port to which a packet belongs. When an application starts a port, the it specifies the PID to be
used on that port. Packets sent over that port always have the PID inserted in the packet header by the LAN
driver, and packets received for that PID are delivered to the application that owns the port.

The following lists the cross-company PID values.

The following lists some commonly used PID values.

Value Meaning

08-00-2B-90-00 Loopback protocol

Value Meaning

08-00-2B-60-02 Loopback protocol

08-00-2B-60-01 DNA Dump/load (MOP)

08-00-2B-60-02 DNA Remote Console (MOP)

08-00-2B-80-3C DNA Naming Service

08-00-2B-80-3E DNA Time Service

08-00-2B-80-48 Availability Manager (AMDS)

DSAP

SSAP

CTL

ZK5791GE

PID

(Bytes)
Field

Size of

1

1

1

5

346

Local Area Network (LAN) Device Drivers
LAN I/O Architecture
9.4.7 Packet Padding

This section describes the PAD parameter NMA$C_PCLI_PAD, which is used only in the Ethernet packet
format.

All Ethernet frames must be at least 64 bytes in length. This includes the Ethernet header, the user data, and
the CRC. If the user data, CRC, and Ethernet header together are less than 64 bytes, zero padding bytes are
inserted between the user data and the CRC to make a 64-byte packet. This packet padding cannot be turned
off.

The PAD parameter directs the LAN drivers to place a data-size field in the packet between the standard
header and the user data. If padding is on (NMA$C_STATE_ON is specified), a 2-byte length field is inserted
after the Protocol Type field and before the user data.

If the PAD parameter is off (NMA$C_STATE_OFF is specified), Ethernet packets have the following
characteristics:

• Packets transmitted are padded with null bytes as needed (CSMA/CD only).

• Packets transmitted do not include the size field.

• The length of user data in the packets received is always between 46 and 1500 bytes for CSMA/CD, and 0
to 4470 for FDDI. For example, if a 10-byte packet is transmitted, it is received as 46 bytes because the
driver cannot determine the amount of user data in the packet—only the amount of user data plus padded
null bytes.

If the PAD parameter is on (NMA$C_STATE_ON is specified), Ethernet packets have the following
characteristics:

• Packets transmitted are padded with null bytes as needed (CSMA/CD only).

• Packets transmitted include the size field.

• The length of user data in the packets received is always between 0 and 1498 bytes for CSMA/CD, and 0
to 4468 bytes for FDDI. The driver uses the size field to determine the amount of user data in the packet.
The size field is not included in the data returned to the user.

9.4.8 Protocol Type and PID Sharing

Protocol types and PIDs are usually nonshareable; however, an application may benefit from a shared
protocol implementation. The protocol access parameter (NMA$C_PCLI_ACC) allows a protocol type or PID
to be opened in either of two shareable modes: shared-default (NMA$C_ACC_SHR) and
shared-with-destination (NMA$C_ACC_LIM).

The LAN drivers also provide the nonshareable exclusive mode (NMA$C_ACC_EXC). (See Table 9-39.) The
rules and requirements for using each mode are as follows:

• The exclusive mode is the default if no access mode is supplied as a P2 buffer parameter. This mode of
operation does not allow the protocol to be shared by other users. Any attempt to start up another protocol
of the same type results in an error status of SS$_BADPARAM.

• The shared-with-destination mode is a protocol type or PID/destination address pairing that allows
multiple users to share a protocol type or PID and to communicate with a different node.

For a given shared protocol type or PID, there can be many “shared-with-destination” users; each user
communicates with a different destination address. Any attempt to start a port with a destination
address that is in use results in an error status of SS$_BADPARAM.
347

Local Area Network (LAN) Device Drivers
LAN Devices
When a “shared-with-destination” user passes the set mode P2 buffer, the buffer must contain a
destination address in the NMA$C_PCLI_DES parameter. This destination address is used as the
destination address in all messages transmitted, and the user receives messages only from this address.

• The shared-default mode is the default user of a shared protocol type or PID. There can be only one such
user for each shared protocol type or PID. A “shared-default” user does not have to exist if a protocol type
or PID is shared, but there can be no more than one such user per shared protocol type or PID.

The “shared-default” user receives all messages for the shared protocol type or PID, but not for any of the
“shared-with-destination” users. The “shared-default” user also receives all messages matching both the
shared protocol type or PID and any multicast address enabled by the “shared-default” user.

The “shared-default” user can only transmit to multicast addresses and physical addresses that are not
enabled by any of the “shared-with-destination” users sharing the same protocol type or PID.

If there is no “shared-default” user of a protocol type or PID, incoming messages from nodes not among
the “shared-with-destination” users for that protocol type or PID are ignored.

9.5 LAN Devices
This section describes each LAN device, giving a list of device variants and device characteristics.

Some port drivers for these devices provide additional counters and device-specific functions that are useful
for troubleshooting purposes. This additional data is described in a text file on the system,
SYS$HELP:LAN_COUNTERS_AND_FUNCTIONS.TXT.

9.5.1 Driver-Specific Internal Counters

Driver-specific internal counters consist of data maintained by a particular LAN driver that is not common
across all LAN drivers or is not suitable for inclusion in LAN statistics and error counters.

The LANCP command SHOW DEVICE/INTERNAL_COUNTERS displays the internal counters maintained
by a port driver. Some counters are special debug counters. These are not displayed unless the additional
qualifier /DEBUG is specified. Counters that are zero are not displayed unless the additional qualifier /ZERO
is specified.

The LAN$SDA SDA extension also displays the complete set of internal counters with the command LAN
INTERNAL/DEVICE=devname.

VAX LAN drivers and some Alpha and I64 LAN drivers do not provide a LANCP or LAN$SDA mechanism for
reading these counters. For these drivers, use SDA to display the internal counters using the command
SHOW LAN/INTERNAL/DEVICE=devname.

The definition of these counters may change from one driver version to the next. Some counters fields
describe device or driver information that is useful for debug of the driver but is not particularly interesting
otherwise. This includes such fields as device register contents. The definition of these counters fields may
be omitted from the SYS$HELP text file.
348

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.2 Device-Specific Functions

The device-specific functions provice additional functionality that is useful for troubleshooting and validation
of the port driver. These functions may change from one driver version to the next. And some functions may
be incorporated into LANCP as a standard device command. These functions are supported on Alpha and I64
systems only.

9.5.3 Ethernet LAN Devices

In general terms, Ethernet includes Fast Ethernet and Gigabit Ethernet devices. The following media types
are used:

• 10Base2 (thinwire or BNC) — Ethernet running over thin shielded coaxial cable, half-duplex only.

• 10Base5 (thickwire or AUI) — Ethernet running over thick shielded coaxial cable, half-duplex only.

• 10BaseT — Ethernet running over Category 5 unshielded twisted-pair cabling (UTP). It uses two of the
four pairs of wires to provide full-duplex communication.

• 100BaseTX — Fast Ethernet running over Category 5 unshielded twisted-pair cabling (UTP). It uses two
of the four pairs of wires to provide full-duplex communication.

• 100BaseFX — Fast Ethernet running over multimode optical fiber cable. It uses two strands of fiber to
provide full-duplex communication.

• 1000BaseT — Gigabit Ethernet running over Category 5 unshielded twisted-pair cabling (UTP). It uses
two of the four pairs of wires to provide full-duplex communication.

• 1000BaseSX — Gigabit Ethernet running over multimode optical fiber cable. It uses two strands of fiber
to provide full-duplex communication.

9.5.3.1 DEMNA Ethernet Device

The DEMNA is an XMI bus Ethernet device that is supported on VAX and Alpha systems that have an XMI
bus. A similar hardware design, the DEBNA, is intended for VAX systems with a BI bus. There are several
variants of the DEBNA, the DEBNK, DEBNT, and DEBNI. Each device is implemented using a VAX chip
and a LANCE chip. Firmware on the device runs on the VAX and operates the LANCE chip.

Table 9-9 DEMNA Characteristics

Device Bus Characteritics

DEMNA XMI 10Base5 (thickwire) Ethernet only

DEBNI BI 10Base5 (thickwire), Ethernet only

DEBNT BI 10Base5 (thickwire), Ethernet + TK50 combo adapter

DEBNK BI 10Base5 (thickwire), Ethernet + TK50 combo adapter

DEBNA BI 10Base5 (thickwire), Ethernet + TK50 combo adapter
349

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.3.2 SGEC/TGEC Ethernet Devices

The Second Generation Ethernet Controller (SGEC) is a embedded Ethernet chip (LOM) on a VAX
workstation. The nearly identical Third Generation Ethernet Controller (TGEC) is embedded on the
Alpha-based Digital 4000 system.

9.5.3.3 LANCE Ethernet Devices

The LANCE is a widely used Ethernet chip used on VAX and Alpha systems. It is used in in embedded (LOM)
configurations on VAX and Alpha systems, and in QBUS and TURBOchannel-based NICs on VAX and Alpha
systems.

9.5.3.3.1 LANCE Hardware Configuration For implementations that include both the 10Base2 and
10Base5 ports, a switch next to the physical connectors determines the port selection.

The DE422 includes a jumper block on the NIC that selects 10BaseT or 10Base2.

The DE20x NICs are configured by a 12-pin DIP switch on the NIC. See the DE20x User Guide for details.

Table 9-10 SGEC/TGEC Characteristics

Device Bus Characteritics

SGEC VAX 10Base2 (thinwire)

TGEC Alpha 10Base2 (thinwire)

Table 9-11 LANCE Characteristics

Device Bus Characteritics

LANCE VAX,
Alpha

LOM, 10Base2 (thinwire)

PMAD VAX,
Alpha

TURBOchannel NIC, 10Base5 (thickwire)

DELTA VAX,
Alpha

Dual TURBOchannel, 10Base5 (thickwire)

DESQA VAX QBUS NIC, 10Base2 (thinwire), 10Base5 (thickwire)

KFE52 VAX Fault-tolerant VAX, 10Base2 (thinwire)

DE422 Alpha EISA, 10BaseT (UTP), 10Base2 (thinwire)

DE200 Alpha ISA, 10Base2 (thinwire), 10Base5 (thickwire)

DE201 Alpha ISA, 10BaseT (UTP)

DE202 Alpha ISA, 10Base2 (thinwire), 10BaseT (UTP)
350

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.3.4 DEQNA Ethernet Devices

The DEQNA and similar NICs are used in QBUS-based VAX systems.

9.5.3.5 DEUNA Ethernet Devices

The DEUNA and similar NICs are used in Unibus-based VAX systems.

9.5.3.6 LEMAC Ethernet Devices

The DE203 and variants are based on the LEMAC chip. These NICs are used on ISA-based Alpha
workstations, primarily the AlphaStation 200 and 400 system.

9.5.3.6.1 ISA LEMAC Hardware Configuration The DE203 NIC and variants are configured by the
console of AlphaStations 200 and 400 systems using the 'isacfg' console utility. First, an ISA slot number is
chosen, then the IRQ, IO base address, and DMA channel address. Then the slot is configured with the
selected characteristics. When the system is reset or power-cycled, the console configures the device as
specified.

For complete information on using 'isacfg' from your console prompt, refer to the hardware documentation
associated with your system for more information.

The ISA slot number is any one of three available slots that is not already in use. The physical location of the
NIC in the ISA bus is of no consequence as any free slot can be assigned to the NIC.

To initialize the 'isacfg' data at the console prompt:

>>> isacfg -init

To add a DE205 in slot 1, using IRQ 15:

>>> add_de205

Table 9-12 DEQNA Characteristics

Device Characteritics

DEQNA Not supported for cluster use. 10Base2 (thinwire), 10Base5 (thickwire)

DELQA LANCE-based DEQNA replacement, 10Base2 (thinwire), 10Base5 (thickwire)

DEQTA DELQA with new firmware, 10Base2 (thinwire), 10Base5 (thickwire)

Table 9-13 DEUNA Characteristics

Device Characteritics

DEUNA 10Base5 (thickwire)

DELUA DEUNA replacement, 10Base5 (thickwire)

Table 9-14 LEMAC Characteristics

Device Characteritics

DE203 10Base2 (thinwire)

DE204 10BaseT (UTP)

DE205 10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)
351

Local Area Network (LAN) Device Drivers
LAN Devices
>>>isacfg -slot 1 -dev 0 -mod -irq 15

To display the ISA configuration data for slot 1:

>>>isacfg -slot 1
===
handle: DE200-LE
etyp: 1
slot: 1
dev: 0
enadev: 1
totdev: 1
iobase0: 300 iobase1: 8000000000000000
iobase2: 8000000000000000 iobase3: 8000000000000000
iobase4: 8000000000000000 iobase5: 8000000000000000
membase0: d0000 memlen0: 10000
membase1: 8000000000000000 memlen1: 8000000000000000
membase2: 8000000000000000 memlen2: 8000000000000000
rombase: 8000000000000000 romlen: 8000000000000000
dma0: 80000000 irq0: f
dma1: 80000000 irq1: 80000000
dma2: 80000000 irq2: 80000000
dma3: 80000000 irq3: 80000000

 ===

To display the ISA configuration at the console prompt, showing, in this example, a DE203 configured in slot
1, and two DW110 Token Ring NICs configured in slots 2 and 3.

>>> show config

 ISA
 Slot Device Name Type Enabled BaseAddr IRQ DMA
 0
 0 MOUSE Embedded Yes 60 12
 1 KBD Embedded Yes 60 1
 2 COM1 Embedded Yes 3f8 4
 3 COM2 Embedded Yes 2f8 3
 4 LPT1 Embedded Yes 3bc 7
 5 FLOPPY Embedded Yes 3f0 6 2
 1 0 DE200-LE Singleport Yes 300 15
 2 0 DW11 Singleport Yes a20 10 7
 3 0 DW11 Singleport Yes 1a20 5 6

9.5.3.7 3C589 Ethernet Device

The 3COM 3C589 PCMCIA NIC is used on the Tadpole AlphaBook notebook system. There are two variants:

Table 9-15 3C589 Characteristics

Device Characteritics

3C589B 10Base2 (thinwire), 10BaseT (UTP)

3C589D 10Base2 (thinwire), 10BaseT (UTP)
352

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.3.8 Tulip Ethernet and Fast Ethernet Devices

Tulip refers to an Ethernet chip designed by Digital Equipment Corporation. It also refers to later Fast
Ethernet versions of the chip that maintain a similar programming interface, so can be controlled by the
same driver with few changes.

9.5.3.8.1 Tulip Hardware Configuration The DE425 and DE435 contain a hardware jumper block that
selects twisted-pair or AUI as noted on the printed circuit board. AUI includes 10Base2 (thinwire) or 10Base5
(thickwire) and this selection is made by setting a console environment variable, by a driver autosense
algorithm, or by a LANCP command to set the media type, speed, and duplex mode.

On Alpha systems prior to OpenVMS Version 7.1, the Tulip driver autosenses the media connection if needed.

On Alpha systems starting with OpenVMS Version 7.1, the Tulip driver uses the setting of a console
environment variable to select the media connection, speed, and duplex mode. The console environment
variable is called EWx0_MODE where x is the controller letter (for example, A, B, C, ...). The console
environment variable is set with the command:

SET EWx0_MODE media_selection

Table 9-16 Tulip Ethernet and Fast Ethernet Characteristics

Device Bus Characteristics

DE425 EISA 10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)

DE434 PCI 10BaseT (UTP)

DE435 PCI 10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)

DE436 PCI Quad DE435

DE450 PCI 10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)

DE500-XA PCI 10BaseT (UTP), 100BaseTX (UTP), auto-negotiation not supported

DE500-AA PCI 10BaseT (UTP), 100BaseTX (UTP), auto-negotiation supported

DE500-BA PCI 10BaseT (UTP), 100BaseTX (UTP), auto-negotiation supported

DE500-FA PCI 100BaseFX (multimode fiber), auto-negotiation not supported

DE504-BA PCI Quad DE500-BA

P2SE PCI Combo SCSI + DE434

P2SE+ PCI Combo SCSI + DE500-XA

21142 PCI LOM, Digital Personal Workstation, all modes depending on MAU options,
auto-negotiation supported

21143 PCI LOM, Alpha Professional Workstation XP900/XP1000, all modes
depending on MAU options, auto-negotiation supported

A5230A PCI DE500-BA equivalent

A5506B PCI DE504-BA equivalent
353

Local Area Network (LAN) Device Drivers
LAN Devices
The media_selection is defined by Table 9-17.

uring driver initialization, a message is sent to the operator's console to indicate the console selection.

If a console environment variable has been set with an unsupported media type for the actual device, then the
driver selects a default media type.

An Alpha system console may assign a controller letter to an adapter differently from OpenVMS, since
OpenVMS EW devices include Tulip, DEGPA, and Broadcom 5700, but the console only recognizes Tulip
devices as EW devices. In this case, you can compare the MAC address listed for the device at the console
SHOW CONFIG and the LANCP SHOW CONFIG commands.

On I64 systems, there is no console environment variable equivalent, so the default setting is autonegotiation.

On Alpha and I64 systems, you can override the console environment variable setting or default setting of
auto-negotation by describing the media selection in the LANCP permanent device database.

Table 9-17 Tulip Hardware Media Selection

Media selection What is selected

Twisted-pair 10BaseT (UTP) half-duplex

Full duplex, twisted-pair 10BaseT (UTP) full-duplex

AUI 10Base5 (thickwire)

BNC 10Base2 (thinwire)

Fast 100BaseTX (UTP) half-duplex

FastFD (full duplex) 100BaseTX (UTP) full-duplex

Autonegotiate Auto-negotiate speed and duplex (UTP)
354

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.3.9 Intel 82559 Fast Ethernet Devices

82559 refers to a Fast Ethernet chip designed by Intel Corporation, either the 82558 or the 82559 chip. These
chips are implemented on PCI bus NICs or a embedded PCI bus on the system board. Both chips support
autonegotiation. Table 9-18 lists the Intel 82559 Fast Ethernet characteristics.

9.5.3.9.1 82559 Hardware Configuration On Alpha systems, the 82559 driver uses the setting of a
console environment variable to select the media connection, speed, and duplex mode. The console
environment variable is called EIx0_MODE where x is the controller letter (e.g., A, B, C, ...). The console
environment variable is set with the command:

SET EWx0_MODE media_selection

The media_selection is defined by Table 9-18.

During driver initialization, a message is sent to the operator's console to indicate the console selection.

If a console environment variable has been set with an unsupported media type for the actual device, then the
driver selects a default media type.

On I64 systems, there is no console environment variable equivalent, so the default setting is
auto-negotiation.

On Alpha and I64 systems, you can override the console environment variable setting or default setting of
auto-negotiation by describing the media selection in the LANCP permanent device database.

Table 9-18 Intel 82559 Fast Ethernet Characteristics

Device Characteristics

DE600-AA 10BaseT (UTP), 100BaseTX (UTP)

DE602-AA Dual DE600-AA

DE602-BA Dual DE600-AA

DE602-BB Dual DE600-AA

DE602-TA Dual DE600-AA daughter card for the DE602

DE602-FA Dual 100BaseFX (multimode fiber) daughter card for the DE602

Trifecta Combo SCSI + DE600

82559ER LOM, 10BaseT (UTP), 100BaseTX (UTP)

82559 LOM, 10BaseT (UTP), 100BaseTX (UTP)

Table 9-19 82559 Hardware Media Selection

Media selection What is selected

Twisted-pair 10BaseT (UTP) half-duplex

Full duplex, twisted-pair 10BaseT (UTP) full-duplex

Fast 100BaseTX (UTP) half-duplex

FastFD (full duplex) 100BaseTX (UTP) full-duplex

Autonegotiate Auto-negotiate speed and duplex (UTP)
355

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.3.10 DEGPA Gigabit Ethernet Devices

The DEGPA series of Gigabit Ethernet NICs uses the Tigon2 chip, designed by Alteon Networks..

Table 9-20 lists and describes the devices and drivers of the DEGPA.

9.5.3.10.1 DEGPA Hardware Configuration The DEGPA NICs are supported only on Alpha systems.
The DEGPA is not a bootable device and has no console support, therefore has no console environment
variable mode setting for configuration, and the default setting is auto-negotiation.

You can override the default setting of auto-negotiation by describing the media selection in the LANCP
permanent device database.

9.5.3.11 Broadcom 5700 Gigabit Ethernet Devices

The Broadcom 5700 refers to a family of Gigabit Ethernet chips designed by Broadcom Corporation. The
5700 NICs described here use two almost identical variants, the 5701 and 5703 chips.

9.5.3.11.1 5700 Hardware Configuration On Alpha systems, the 5700 driver uses the setting of a console
environment variable to select the speed and duplex mode. The console environment variable is called
EGx0_MODE where x is the controller letter (e.g., A, B, C, ...). The console environment variable is set with
the command:

SET EGx0_MODE media_selection

Table 9-20 DEGPA Devices

Device Characteristics

DEGPA-SA 1000BaseSX (multimode fiber)

DEGPA-TA 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

Table 9-21 Broadcom 5700 Characteristics

Device Bus Characteritics

DEGXA-SA PCI 1000BaseSX (multimode fiber)

DEGXA-TA PCI 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

DEGXA-SB PCI-X 1000BaseSX (multimode fiber)

DEGXA-TB PCI-X 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

BCM5703 (LOM) PCI 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

A6847A PCI 1000BaseSX (multimode fiber)

A6825A PCI 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

AB352A PCI-X 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

A9782A PCI-X 1000BaseSX (multimode fiber)

A9784A PCI-X 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

AB454A PCI-X 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

BCM5701 (LOM) PCI 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)
356

Local Area Network (LAN) Device Drivers
LAN Devices
The media_selection is defined by Table 9-22.

During driver initialization, a message is sent to the operator's console to indicate the console selection.

If a console environment variable has been set with an unsupported media type for the actual device, then the
driver selects a default media type.

An Alpha system console may assign a controller letter to an adapter differently from OpenVMS, since
OpenVMS EW devices include Tulip, DEGPA, Broadcom 5700, but the console only recognizes 5700 devices as
EW devices. In this case you can compare the MAC address listed for the device at the console SHOW
CONFIGURATION and LANCP SHOW CONFIGURATION commands.

On I64 systems, there is no console environment variable equivalent, so the default setting is
auto-negotiation.

On Alpha and I64 systems, you can override the console environment variable setting or default setting of
auto-negotiation by describing the media selection in the LANCP permanent device database.

9.5.3.12 Intel 82540 Gigabit Ethernet Devices

The Intel 82540 refers to a family of Gigabit Ethernet chips designed by Intel Corporation. The variant used
on these NICs is the Anvik2 chip.

9.5.3.12.1 82540 Hardware Configuration The 82540 devices are supported only on I64 systems. The
default setting is autonegotiation.

You can override the default setting of auto-negotation by describing the media selection in the LANCP
permanent device database.

9.5.3.13 Shared Memory Ethernet Device

The Shared Memory device is an emulated Ethernet device that uses Galaxy Shared Memory on Alpha
systems. Each Galaxy partion is considered a network node. The driver uses shared memory to send packet
data from one node to another. Applications see the Shared Memory device as just another Ethernet device.

Table 9-22 5700 Hardware Media Selection

Media selection What is selected

auto Auto-negotiate speed and duplex (UTP)

10mbps 10BaseT (UTP) half-duplex

10mbps_full_duplex 10BaseT (UTP) full-duplex

100mbps 100BaseTX (UTP) half-duplex

100mbps_full_duplex 100BaseTX (UTP) full-duplex

1000mbps 1000BaseT (UTP) half-duplex

1000mbps_full_duplex 1000BaseT (UTP) full-duplex

Table 9-23 Intel 82540 Characteristics

Device Bus Characteritics

A7011A PCI-X Dual 1000BaseSX (multimode fiber)

A7012A PCI-X Dual 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)
357

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.4 FDDI LAN Devices

FDDI devices support the following media

• Multimode optical fiber, using two strands of fiber to provide full-duplex communication.

• Category 5 unshielded twisted-pair cabling (UTP), using two of the four pairs of wires to provide full
duplex communication.

9.5.4.1 DEMFA FDDI Device

The DEMFA is an XMI bus FDDI device that is supported on VAX and Alpha systems that have an XMI bus.
The DEMFA is a firmware based FDDI controller that uses an Motorolla 68000 microprocessor to implement
a host interface and the necessary FDDI support functionality.

9.5.4.2 DEFZA FDDI Device

The DEFZA is a TurboChannel FDDI device supported on VAX and Alpha TURBOchannel-based systems.

Table 9-24 DEFMA FDDI Charactertics

Device Bus Characteristics

DEMFA XMI Multimode fiber, 100 megabits/second

Table 9-25 DEFZA FDDI Charactertics

Device Bus Characteristics

DEFZA TurboChannel Multimode fiber, 100 megabits/second
358

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.4.3 PDQ FDDI Devices

The PDQ chip forms the basis of a family of FDDI devices. These are shown in Table 9-26

9.5.5 Token Ring LAN Devices

Token Ring devices support the following media types:

• STP — Shielded twisted-pair cabling, type 1 STP, using 2 pairs of wires in crossover form. The cables
have DB-9 connectors on them.

• UTP — Unshielded twisted-pair cabling, type 3 UTP, using 2 pairs of wires in crossover form to provide
full-duplex communications.

Table 9-26 PDQ FDDI Charactertics

Device Bus Characteristic

DEFQA-SA QBUS Multimode fiber, single attached station (SAS), 100 megabits/second

DEFQA-DA QBUS Multimode fiber, dual attached station (DAS), 100 megabits/second

DEFQA-SF QBUS UTP, single attached station (SAS), 100 megabits/second

DEFQA-DF QBUS UTP, dual attached station (DAS), 100 megabits/second

DEFTA-AA TurboChannel Multimode fiber, single attached station (SAS), 100 megabits/second

DEFTA-DA TurboChannel Multimode fiber, dual attached station (DAS), 100 megabits/second

DEFTA-UA TurboChannel UTP, single attached station (SAS), 100 megabits/second

DEFTA-MA TurboChannel UTP, dual attached station (DAS), 100 megabits/second

DEFAA-AA FutureBus+ Multimode fiber, single attached station (SAS), 100 megabits/second

DEFAA-DA FutureBus+ Multimode fiber, dual attached station (DAS), 100 megabits/second

DEFEA-AA EISA Multimode fiber, single attached station (SAS), 100 megabits/second

DEFEA-DA EISA Multimode fiber, dual attached station (DAS), 100 megabits/second

DEFEA-UA EISA UTP, single attached station (SAS), 100 megabits/second

DEFEA-MA EISA UTP, dual attached station (DAS), 100 megabits/second

DEFPA-AA PCI Multimode fiber, single attached station (SAS), 100 megabits/second

DEFPA-DA PCI Multimode fiber, dual attached station (DAS), 100 megabits/second

DEFPA-UA PCI UTP, single attached station (SAS), 100 megabits/second

DEFPA-MA PCI UTP, dual attached station (DAS), 100 megabits/second
359

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.5.1 TMS380 Token Ring Devices

The Texas Instruments TMS380 chip forms the basis of a family of Token Ring devices. These are shown in
Table 9-27.

9.5.5.1.1 ISA TMS380 Hardware Configuration The DW110 is a bus mastering DMA device on the ISA
bus. In addition to setting up the ISA I/O parameters, you may configure ring speed (4 or 16 megabits/second)
and media (UTP or STP). By using LANCP you can also configure ring speed and media during system
startup. Example 9-1 shows how to configure the OpenVMS software to use the DW110 device.

The method for configuring an ISA TMS380 device is to type 'isacfg' at the console prompt (>>>). For complete
information on using 'isacfg' from your console prompt, refer to the hardware documentation associated with
your system for more information.

The following example illustrates a configuration of:

• Slot 4

• IRQ 10

• DMA channel 7

• Base %x4e20

• Shielded twisted pair (STP)

• Ring speed of 16

Example 9-1 Using the 'isacfg' at Console Prompt with the DW110

>>> isacfg -slot 4 -etyp 1 -ena 1 -irq0 %xa -dmachan0 7
 -iobase0 %x4e20 -handle "DW11,STP,16" -mk

The -mk command makes an isacfg entry for an ISA device at slot 4. It is a Single port type of device (-etyp 1).
The -handle parameter tells the operating system that this is a DW110 device, that STP media is to be used,
and the ring speed is 16.

9.5.6 ATM LAN Devices

Asynchronous transfer mode (ATM) is a cell-oriented switching technology that uses fixed-length packets to
carry different types of data.

The ATM communicates by first establishing endpoints between two computers with a virtual circuit (VC)
through one or more ATM switches. ATM then provides a physical path for data flow between the endpoints
by either a permanent virtual circuit (PVC), or a switched virtual circuit (SVC).

Table 9-27 TMS380 Token Ring Charactertics

Device Bus Characteristics

DETRA TurboChannel 4/16 megabits/second, STP or UTP

DW300 EISA 4/16 megabits/second, STP or UTP

DW110 ISA 4/16 megabits/second, STP or UTP, aka P1392+

TC4048 PCI 4/16 megabits/second, STP or UTP, made by Thomas Conrad Corporation

M8154 PCI 4/16 megabits/second, STP or UTP, made by Racore Computer Products, Inc.
360

Local Area Network (LAN) Device Drivers
LAN Devices
OpenVMS provides LAN Emulation Client (LEC) support over ATM. The LAN Emulation Client software
supports IEEE/802.3 Emulated LANs, and UNI 3.0 or UNI 3.1 and the following maximum frame size (in
bytes): 1516, 4544, and 9234.

The Emulated LAN driver provides the means for communicating over the LAN ATM. The device type for the
Emulated LAN device is DT$_EL_ELAN.

The device name for the Emulated LAN is:

ELcu

where c is the controller and u is the unit number (for example, ELA0).

ATM devices support the following media types:

• Multimode optical fiber, using two strands of fiber to provide full-duplex communication.

• Category 5 unshielded twisted-pair cabling (UTP), using two of the four pairs of wires to provide
full-duplex communication.

9.5.6.1 OTTO ATM Devices

OTTO refers to a family of ATM adapters developed by Digital Equipment Corporation. The TurboChannel
adapter is named OTTO. The PCI DGLPB adapter is named OPPO. OTTO and OPPO are programmable
logic designs where the driver loads firmware onto the adapters to program the FPGA devices. The DGLPA is
a single chip ATM adapter that is a considerably different implementation but lumped into this same
category.

The OTTO drivers support ATM LAN Emulation according to the ATM LANE standards, and Classical IP
over ATM according to RFC 1577.

9.5.6.2 FORE ATM Devices

The DAPBA and DAPCA are ATM adapters made by Fore Networks, Inc., now part of Marconi Corporation,
Plc.

The FORE drivers support ATM LAN Emulation according to the ATM LANE standards.

Table 9-28 OTTO ATM Charactertics

Device Bus Characteristics

DGLTA TurboChannel 155 megabits/second (OC3), multimode fiber

DGLPB PCI 155 megabits/second (OC3), multimode fiber

DGLPA-UA PCI 155 megabits/second (OC3), UTP

DGLPA-FA PCI 155 megabits/second (OC3), multimode fiber

Table 9-29 FORE ATM Charactertics

Device Characteristics

DAPBA-UA 155 megabits/second (OC3), UTP

DAPBA-FA 155 megabits/second (OC3), multimode fiber

DAPCA-FA 622 megabits/second (OC12), multimode fiber
361

Local Area Network (LAN) Device Drivers
LAN Devices
For each DAPBA, HP recommends increasing the SYSGEN parameter NPAGEVIR by 3000000. For each
DAPCA, HP also recommends increasing NPAGEVIR by 6000000. To do this, add the ADD_NPAGEVIR
parameter to MODPARAMS.DAT and then run AUTOGEN. For example, add the following command to
MODPARAMS.DAT on a system with two DAPBAs and one DAPCA:

ADD_NPAGEVIR = 12000000

The following restrictions apply to the DAPBA and DAPCA adapters.

• The adapter cannot be located on a PCI bus that is located behind a PCI-to-PCI bridge. Systems that have
this configuration are the following:

— HP Personal AlphaWorkstation 600 (MIATA GL)

— AlphaStation 1000A (Noritake)

— HP Professional Workstation XP1000 (MONET)

— AlphaServer 2000 and 2100 (SABLE)

• Classical IP is not supported.

9.5.6.3 Permanent Virtual Circuits (PVC)

Permanent Virtual Circuits are set up and torn down by prior arrangement. They are established manually
by a user before the sending of any data between endpoints on a network. Some PVCs are defined directly on
the switch; others are predefined for use in managing switched virtual circuits (SVCs).

9.5.6.4 Switched Virtual Circuits (SVC)

Switched virtual circuits require no operator interaction to create and manage connections between
endpoints. Software sets up and tears down connections dynamically as they are needed through the request
of an endpoint.

9.5.6.5 LAN Emulation over an ATM Network

LAN emulation over an ATM network network allows existing applications to run essentially unchanged
while also allowing the applications to run on computers directly connected to the ATM network. The LAN
emulation hides the underlying ATM network at the media access control (MAC) layer, which provides device
driver interfaces.
362

Local Area Network (LAN) Device Drivers
LAN Devices
 Table 9-30 shows the four components that make up a LAN emulation over ATM network. Of the four
components, OpenVMS supports only the LAN emulation client (LEC). The remaining components are
provided by the ATM switch.

The LEC exists on all ATM-attached computers that participate in the LAN emulation configuration. LEC
provides the ATM MAC-layer connectionless function that is transparent to the LAN-type applications. The
LEC, LES, and BUS can exist on one ATM-attached computer or on separate computers. The server functions
usually reside inside an ATM switch, but can be implemented on client systems.

Table 9-30 Components of LAN Emulation over an ATM Network

Component Function

LAN emulation client (LEC) Provides a software driver that runs on a network client and enables
LAN clients to connect to an ATM network.

LAN emulation server (LES) Maintains a mapping between LAN and ATM addresses by resolving
LAN media access control (MAC) addresses with ATM addresses.

Broadcast and Unknown Server
(BUS)

Maintains connections with every LAN emulation client (LEC) in the
network. For broadcast messages, the BUS sends messages to every
attached LEC. The LECs then forward the message to their
respectively attached LANs. For multicast messages, the BUS sends
messages to only those LECs that have devices in the multicast group.
For a LEC that wants to send a regular message whose destination
MAC address is unknown, the BUS can be used to determine this
address.

LAN emulation configuration
server (LECS)

Provides a service for LAN emulation clients by helping to determine
which emulated LAN each of the LEC's registered users should join,
since each client can specify which emulated LAN to join.
363

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.6.6 LAN Emulation Topology

Figure 9-10 shows the topology of a typical emulated LAN over ATM.

Figure 9-10 Emulated LAN Topology

9.5.6.7 Classical IP Over an ATM Network

Classical IP (CLIP) implements a data-link level device that has the same semantics as an Ethernet interface
(802.3). This interface is used by a TCP/IP protocol to transmit 802.3 (IEEE Ethernet) frames over an ATM
network. The model that OpenVMS follows for exchanging IP datagrams over ATM is based on RFC 1577
(Classical IP over ATM).

For information on using LANCP commands to manage Classical IP, refer to the HP OpenVMS System
Management Utilities Reference Manual.

VM-0733A-AI

Workstation

ATM/Ethernet
Switch

LEC

Ethernet

Ethernet

Ethernet

Workstation

Workstation

LES BUS

ATM Switch

LES BUS

ATM Switch

LEC

OpenVMS Server

LEC

OpenVMS Server

155 Mbps155 Mbps

LEC

UNIX Server

LEC

NT Workstation

155 Mbps155 Mbps
364

Local Area Network (LAN) Device Drivers
LAN Devices
9.5.6.8 Specifying the User to Network Interface (UNI)

The ATM software is set to autosense the UNI version by default. Setting bit 3 of the system parameter,
LAN_FLAGS, to 1 enables UNI 3.0 over all ATM adapters. Setting bit 4 of the system parameter,
LAN_FLAGS, to 1 enables UNI 3.1 over all ATM adapters.

9.5.6.9 Enabling SONET/SDH

The ATM drivers have the capability of operating with either synchronous optical network (SONET) or
Synchronous Digital Hierarchy (SDH) framing. Setting bit 0 of the system parameter, LAN_FLAGS, to 1
enables SDH framing. Setting bit 0 of the system parameter, LAN_FLAGS, to 0 enables SONET framing
(default). For this to take affect, the system parameter must be specified correctly before the ATM adapter
driver is loaded.

9.5.6.10 Booting

OpenVMS Alpha does not support ATM adapters as boot devices.

9.5.6.11 Configuring an Emulated LAN (ELAN)

The LANCP utility sets up an Emulated LAN (ELAN). If the ELAN is defined in the permanent database,
these settings take effect at boot time. To define the commands in the permanent database for specific
adapters, you invoke the DEFINE DEVICE commands. Once these commands define the adapters in the
permanent database, the ELAN can be started during system startup.

You can also invoke the LANCP SET commands to start up an ELAN after the system is booted.

The following example shows the DEFINE DEVICE commands that define the adapter in the permanent
database:

$ mcr lancp
LANCP> define device ela0/elan=create
LANCP> define device ela0/elan=(parent=hwa0,type=csmacd,size=1516)
LANCP> define device ela0/elan=(descr="An ATM ELAN")
LANCP> define device ela0/elan=enable=startup
LANCP> list dev ela0/param

Device Characteristics, Permanent Database, for ELA0:
 Value Characteristic
 —— —————
 HWA0 Parent ATM device
 "An ATM ELAN" Emulated LAN description
 1516 Emulated LAN packet size
 CSMA/CD Emulated LAN type
 Yes Emulated LAN enabled for startup
LANCP> exit
$

The following example shows the SET DEVICE commands required for setting up an ELAN with the desired
parameters. Note that some of the commands generate a console message.

$ mcr lancp
LANCP> set dev ela0/elan=create

%%%%%%%%%%% OPCOM 26-MAR-2001 16:57:12.89 %%%%%%%%%%%
Message from user SYSTEM on ALPHA1
LANACP LAN Services
365

Local Area Network (LAN) Device Drivers
LAN Device Information
Found LAN device ELA0, hardware address 00-00-00-00-00-00

LANCP> set dev ela0/elan=(parent=hwa0,type=csmacd,size=1516)
LANCP> set dev ela0/elan=(descr="An ATM ELAN")
LANCP> set dev ela0/elan=enable=startup

%ELDRIVER, LAN Emulation event at 26-MAR-1996 16:57:28.78
%ELDRIVER, LAN Emulation startup: Emulated LAN 1 on device ELA0

LANCP> sho dev ela/char

 Device Characteristics ELA0:
 Value Characteristic
 —— —————
 Normal Controller mode
 External Internal loopback mode
 CSMA/CD Communication medium
 16 Minimum receive buffers
 32 Maximum receive buffers
 No Full duplex enable
 No Full duplex operational
 Unspecified Line media
 10 Line speed (megabits/second)
 CSMA/CD Communication medium
 "HWA0" Parent ATM Device
 "An ATM ELAN" Emulated LAN Description
 3999990000000008002B LAN Emulation Server ATM Address
 A57E80AA000302FF1300
 Enabled Emulated LAN State
LANCP> exit
$

For information about using LANCP and system manager commands with qualifiers for LAN emulation over
ATM networks, refer to the HP OpenVMS System Management Utilities Reference Manual and HP OpenVMS
System Manager’s Manual.

9.6 LAN Device Information
You can obtain information on controller characteristics by using the Get Device/Volume Information
($GETDVI) system service. (Refer to the HP OpenVMS System Services Reference Manual.)
366

Local Area Network (LAN) Device Drivers
LAN Device Information
$GETDVI returns controller characteristics when you specify the item code DVI$_DEVCHAR. Table 9-31
lists these characteristics, which are defined by the $DEVDEF macro and in the file
SYS$LIBRARY:DEVDEF.H.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and device class names, which are defined by
the $DCDEF macro and in the file SYS$LIBRARY:DCDEF.H. The device class name for the LAN Ethernet
controllers listed in Section 9.2.1 and Section 9.2.2 is always DC$_SCOM.

DVI$_DEVBUFSIZ returns the maximum message size. The maximum send or receive message size depends
on the packet format and whether padding (NMA$C_PCLI_PAD) is enabled (see Sections Section 9.7.1 and
Section 9.7.2). DVI$_DEVDEPEND returns the unit and line status bits and the error summary bits in a
longword field as shown in Figure 9-11.

Figure 9-11 DVI$_DEVDEPEND Returns

Table 9-32 lists the status values and their meanings. These values are defined by the $XMDEF macro.
XM$M_STS_ACTIVE is set when the port is started. XM$M_STS_BUFFAIL and XM$M_STS_TIMO are
dynamically set and cleared by the LAN driver.

Table 9-31 Ethernet Controller Device Characteristics

Characteristic Meaning

 Static Bits (Always Set)

DEV$M_AVL Device is available.

DEV$M_IDV Input device.

DEV$M_NET Network device.

DEV$M_ODV Output device.

Table 9-32 Ethernet Controller Unit and Line Status

Status Meaning

XM$M_STS_ACTIVE Port is active.

XM$M_STS_BUFFAIL Attempt to allocate a system receive buffer failed.

XM$M_STS_TIMO Timeout occurred.

ZK5932GE

31

Not Used

24

Summary
Error

23 16 15

Status
Unit and Line

8 7 0

Not Used
367

Local Area Network (LAN) Device Drivers
LAN Device Information
The error summary bits are set when an error occurs. They are read-only bits. If an error is fatal, the
Ethernet port is shut down. Table 9-33 lists the error summary bit values and their meanings.

Table 9-33 Error Summary Bits

Error Summary Bit Meaning

XM$M_ERR_FATAL Hardware or software error occurred on the controller.
368

Local Area Network (LAN) Device Drivers
LAN Function Codes
9.7 LAN Function Codes
The LAN drivers can perform logical, virtual, and physical I/O operations. The basic functions are read, write,
set mode, set characteristics, sense mode, and sense characteristics. Table 9-34 lists these functions and their
codes. The following sections describe these functions in greater detail.

Table 9-34 LAN I/O Functions

Function Code Arguments Type1

1. V= virtual, L=logical, P=physical (There is no functional difference in these operations.)

Function Modifiers Function

IO$_READLBLK2

2. On OpenVMS Alpha and I64, P1 and P5 support 64-bit addresses.

P1,P2,[P5] L IO$M_NOW Read logical block.

IO$_READVBLK3

3. On OpenVMS Alpha, P1, P4, and P5 support 64-bit address.

P1,P2,[P5] V IO$M_NOW Read virtual block.

IO$_READPBLK2 P1,P2,[P5] P IO$M_NOW Read physical block.

IO$_WRITELBLK4

4. The P1 and P3 arguments are only for attention AST QIOs.

P1,P2,[P4],P5 L IO$M_RESPONSE Write logical block.

IO$_WRITEVBLK4 P1,P2,[P4],P5 V IO$M_RESPONSE Write virtual block.

IO$_WRITEPBLK4 P1,P2,[P4],P5 P IO$M_RESPONSE Write physical block.

IO$_SETMODE P1,[P2],P32 L IO$M_CTRL
IO$M_STARTUP
IO$M_SHUTDOWN
IO$M_ATTNAST
IO$M_SET_MAC
IO$M_UPDATE_MAP
IO$M_ROUTE

Set controller
characteristics and
controller state for
subsequent operations.

IO$_SETCHAR P1,[P2],P32 P IO$M_CTRL
IO$M_STARTUP
IO$M_SHUTDOWN
IO$M_ATTNAST
IO$M_SET_MAC
IO$M_UPDATE_MAP
IO$M_ROUTE

Set controller
characteristics and
controller state for
subsequent operations.

IO$_SENSEMODE [P1],[P2] L IO$M_CTRL
IO$M_SENSE_MAC
IO$M_SHOW_MAP
IO$M_SHOW_ROUTE

Sense controller
characteristics and return
them in specified buffers.

IO$_SENSECHAR [P1],[P2] P IO$M_CTRL
IO$M_SENSE_MAC
IO$M_SHOW_MAP
IO$M_SHOW_ROUTE

Sense controller
characteristics and return
them in specified buffers.
369

Local Area Network (LAN) Device Drivers
LAN Function Codes
Note that the LAN device drivers do not differentiate among logical, virtual, and physical I/O functions; all
are treated identically.

9.7.1 Read

Read functions directly transfer data from a packet received from another port on the Ethernet into the
virtual memory address space of the user process. The operating system provides the following function codes:

• IO$_READLBLK—Read logical block

• IO$_READVBLK—Read virtual block

• IO$_READPBLK—Read physical block

Received messages are buffered in system memory and then copied to the user's buffer when a read operation
is performed.

The read functions take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer that is to receive data. On OpenVMS Alpha and I64
systems, P1 can be a 64-bit address.

• P2—The size of the receive buffer in bytes.

• P5—The address of a buffer where the LAN driver returns packet header information. This is an optional
argument. The information returned depends on the packet format enabled with the set mode QIO. The
size of the buffer must be 14 bytes for an Ethernet format packet, 16 bytes for an IEEE 802 format packet,
and 20 bytes for an 802 extended format packet. Note that the information returned is not the entire
packet header but the header information less any length or size fields. The IOSB, if specified, is where
the packet length information is returned. For FDDI, if received access control (RAC) is on, then 1 byte
must be added to these sizes.

For Token Ring, this buffer must be at least 54 bytes in length due to a possible variable length source
routing header.
370

Local Area Network (LAN) Device Drivers
LAN Function Codes
If NMA$C_PCLI_PRM (see Table 9-39) is enabled, the P5 buffer must be at least 20 bytes for Ethernet
and 21 bytes for FDDI. Figure 9-12 shows the format of the three buffers. On OpenVMS Alpha and I64
systems, P5 can be a 64-bit address.

Figure 9-12 Read Function P5 Buffer

Ethernet Format:

2 Byte Protocol Type

IEEE 802 Format:

SSAP DSAP

1 or 2 Byte CTL Field

802 Extended Format:

ZK-1126-AI

0

2

4

6

8

10

12

0

2

4

6

8

10

12

14

Address
6 Byte Destination

6 Byte Source Address

Address
6 Byte Destination

6 Byte Source Address

18

16

14

12

10

8

6

4

2

0

Address
6 Byte Destination

6 Byte Source Address

SSAP DSAP

1 Byte CTL Field

5 Byte Protocol Identifier
371

Local Area Network (LAN) Device Drivers
LAN Function Codes
The P1 and P2 arguments must always be specified; the P5 argument is optional. However, if P5 is not
specified, you will be unable to determine the source of the received message.

If the size of the user data in a receive message is larger than the value of the NMA$C_PCLI_BUS parameter,
the message is not given to the user, even if there is sufficient space in the user's receive buffer.

If the size of the user data in a receive message is larger than the size specified in P2 (and less than or equal
to the value of the NMA$C_PCLI_BUS parameter), the P1 buffer is filled and SS$_DATAOVERUN is
returned in the I/O status block.

Table 9-35 lists the maximum user data sizes that can be received for Ethernet, FDDI, and Token Ring
protocols.

Table 9-36 lists the maximum user data sizes that can be received for LAN emulation over ATM protocol.

For 802 format packets, the P5 buffer always contains the DSAP and SSAP in the bytes at offset 12 and 13.
The next one or two bytes (offsets 14 and 15) following the SSAP contain the control field value. For Class I
service, the control field value is always 1 byte in length and will always be placed in the byte at offset 14 of
this buffer. For user-supplied service, you have to determine the length of the control field value according to
the IEEE 802.2 Standard.

For Token Ring, if received access control (RAC) is on, the first byte of the P5 buffer contains the frame control
(FC) field.

For FDDI, if RAC is on, the first byte of the P5 buffer contains the FC field.

The read functions can take the following function modifier:

• IO$M_NOW—Complete the read operation immediately with a received message (if no message is
currently available, return a status of SS$_ENDOFFILE in the I/O status block).

Table 9-35 Maximum User Data Sizes for Ethernet, FDDI, and Token Ring

 Packet Format Ethernet FDDI Token Ring

Ethernet format without padding 1500 4470 4418

Ethernet format with padding 1498 4468 4416

802 format with 1-byte CTL field 1497 4475 4423

802 format with 2-byte CTL field 1496 4474 4422

802E format 1492 4470 4418

Table 9-36 Maximum User Data Sizes for LAN Emulation over ATM

Packet Format ATM ELAN size: 1516 4544 9234

Ethernet format without padding 1500 4528 9218

Ethernet format with padding 1498 4526 9216

802 format with 1-byte CTL field 1497 4525 9215

802 format with 2-byte CTL field 1496 4524 9214

802E format 1492 4520 9210
372

Local Area Network (LAN) Device Drivers
LAN Function Codes
9.7.2 Write

Write functions provide for the direct transfer of data from the virtual memory address space of the user
process to the communications medium. The operating system provides the following function codes:

• IO$_WRITELBLK—Write logical block

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITEPBLK—Write physical block

Transmitted messages are copied from the buffer of the requesting process to a system buffer for
transmission.

The write function takes the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer containing the data to be transmitted. On OpenVMS Alpha
and I64 systems, P1 can be a 64-bit address.

• P2—The size of the buffer in bytes.

• P4—The address of a quadword that points to a buffer that contains the DSAP and CTL field values
(optional). (See Section 9.4.6.6.4.) The first longword is the buffer length; the second longword is the
address of the buffer. This argument is used only for ports with the 802 packet format. The format of the
buffer is:

On OpenVMS Alpha and I64 systems, P4 can be a 64-bit address.

• P5—The address of a 6-byte buffer that contains the destination address. For FDDI, if XFC is specified as
zero on startup, the first byte of the P5 buffer contains the low-order 3 bits of the FC field to be
transmitted. On OpenVMS Alpha and I64 systems, P5 can be a 64-bit address.

If the device is in promiscuous mode (NMA$C_PCLI_PRM; see Table 9-39), you must pass a larger buffer
with additional information positioned after the destination address. For Ethernet packet format, the
buffer must be 8 bytes with the 2-byte protocol type following the destination address. For 802 packet
format, the buffer must be 7 bytes with the 1-byte source SAP following the destination address. For 802
extended packet format, the buffer must be 11 bytes with the 5-byte protocol identifier following the

ZK4801GE

CTL DSAP

23 08 7
373

Local Area Network (LAN) Device Drivers
LAN Function Codes
destination address. The Source SAP cannot be a group SAP or the SNAP SAP. Figure 9-13 shows the
format of the P5 buffer. For FDDI with XFC specified as zero on startup, 1 byte must be added to these
sizes for the FC field.

Figure 9-13 Write Function P5 Buffer

Table 9-37 lists the maximum user data sizes that can be specified by P2 and received for Ethernet, FDDI,
and Token Ring protocols.

Table 9-38 lists the maximum user data sizes that can be specified by P2 and received for LAN emulation over
ATM protocol.

If P2 specifies a message size larger than that allowed, the driver returns the status SS$_IVBUFLEN in the
I/O status block.

Table 9-37 Maximum Message Sizes for Ethernet, FDDI, and Token Ring

Packet Format Ethernet FDDI Token Ring

Ethernet format without padding 1500 4470 4418

Ethernet format with padding 1498 4468 4416

802 format with 1-byte CTL field 1497 4475 4423

802 format with 2-byte CTL field 1496 4474 4422

802E format 1492 4470 4418

Table 9-38 Maximum Message Sizes for LAN Emulation over ATM

Packet Format ATM ELAN size: 1516 4544 9234

Ethernet format without padding 1500 4528 9218

Ethernet format with padding 1498 4526 9216

802 format with 1-byte CTL field 1497 4525 9215

802 format with 2-byte CTL field 1496 4524 9214

802E format 1492 4520 9210

ZK-1211-AI

0

2

4

6

*Only if the channel is in promiscuous mode.

6Byte Destination
Address

2Byte Protocol Type, 1Byte Source SAP,
or 5Byte Protocol Identifier *
374

Local Area Network (LAN) Device Drivers
LAN Function Codes
If the P4 buffer is specified, it must be at least 3 bytes long. The first byte is always the DSAP; the next two
bytes are used to determine the CTL field value. The DSAP value cannot be the SNAP SAP.

The CTL field value is either a 1-byte or 2-byte value. If the two least significant bits of the low-order byte of
the CTL field contain the bit values 11, just the low-order byte of the CTL field is used as the CTL field value.
Otherwise, both bytes of the CTL field are used as the CTL field value.

If the driver uses only the low-order byte of the CTL field, you still must pass at least a 3-byte buffer. In this
case, the driver uses the low-order byte of the CTL field and ignores the high-order byte.

If Class I service is enabled, only 1-byte CTL field values can be passed. If user-supplied service is enabled,
then both 1- and 2-byte CTL field values are valid. If Class I service is enabled, the CTL field value must be
one of the three command values: UI, XID, or TEST.

Regarding 802 ports, you can receive packets for the SAP enabled with the IO$_SETMODE or
IO$_SETCHAR QIOs and can transmit packets destined for a different SAP. This is similar to an Ethernet
port receiving packets for one protocol type and transmitting packets with a different protocol type (which is
not possible with the current Ethernet $QIO interface). It is expected that most 802 format applications will
want to process only receive packets from a source SAP that matches the SAP enabled on their port. To do
this, the read function (see Section 9.7.1) has been enhanced to return the source SAP to you. To verify that
the source SAP of an incoming packet matches the SAP enabled on the port, you need only match the source
SAP returned by the read function with the SAP enabled on the port.

The write function can take the following function modifier:

• IO$M_RESPONSE—Transmit a response packet (sets the low-order bit in the SSAP field). This allows
users with user-supplied service enabled to respond to certain 802 format command packets.
IO$M_RESPONSE can be specified only when you have the 802 packet format enabled. The 802 packet
format ports, with Class I service enabled, result in an error if you attempt to transmit a response
message with a CTL field value of unnumbered information (UI).

9.7.3 Set Mode and Set Characteristics

The operating system provides the following two function codes:

• IO$_SETMODE

• IO$_SETCHAR

Other than the privilege check, these two function codes are treated the same by the LAN drivers. This
section refers to the IO$_SETMODE function code only, even though applications can use either function
code.

The set mode function code is used to perform many different functions. These different functions are
distinguished by the modifiers set with the function code. The LAN drivers support the following set mode
requests:

• IO$_SETMODE!IO$M_CTRL — Set or modify port attributes

• IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP — Set port attributes and start port

• IO$_SETMODE!IO$M_SET_MAC — Set medium attributes

• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN — Shut down port

• IO$_SETMODE!IO$M_ATTNAST — Enable attention AST

• IO$M_SETMODE!IO$M_UPDATE_MAP — Update functional address mapping table (Token Ring only)

• IO$M_SETMODE!IO$M_ROUTE — Update source routing cache table (Token Ring only)
375

Local Area Network (LAN) Device Drivers
LAN Function Codes
The following sections describe these functions in detail.

9.7.3.1 Set Controller Mode

Once a port is created using the $ASSIGN system service, you can set the port attributes and start the port
using the requests listed in the previous section. Note that in most cases only
IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP is issued because it sets the port attributes and starts the
port with one request. IO$_SETMODE!IO$M_CTRL is most often used to modify port attributes after the
port has been started.

If the function modifier IO$M_STARTUP is specified, the LAN port is started. If IO$M_STARTUP is not
specified, the specified characteristics are modified.

This function takes the following device- or function-dependent argument:

• P2—The address of a quadword descriptor for an extended characteristics buffer. The first longword of the
descriptor is the buffer length; the second longword is the address of the buffer. The P2 argument is
optional.

The P2 buffer consists of a series of 6-byte or counted string entries. The first word of each entry contains the
parameter identifier (ID) of an attribute, followed by either a longword that contains one of the (binary)
values that can be associated with the parameter ID or a counted string. Counted strings consist of a word
that contains the size of the character string followed by the character string. Figure 9-14 shows the format
for this buffer.

Figure 9-14 P2 Extended Characteristics Buffer

Table 9-39 is an alphabetic listing of the parameter IDs and values that can be specified in the P2 buffer.
These parameter IDs are applicable to all LAN controllers, except where otherwise noted. The $NMADEF
macro defines these values. The $NMADEF macro is included in the macro library SYS$LIBRARY:LIB.MLB.
(Table 9-39 lists the parameters that can be used with each of the packet formats, and indicates which are
required, which are optional, and which generate the SS$_BADPARAM error.)

ZK1177GE

Parameter ID

Longword Value or Counted String

etc.

Parameter ID

Longword Value or Counted String
376

Local Area Network (LAN) Device Drivers
LAN Function Codes
If the status SS$_BADPARAM is returned in the first word of the I/O status block, the second longword
contains the parameter ID of the parameter in error.

Table 9-39 P2 Attributes

Parameter ID Meaning

NMA$C_PCLI_ACC Protocol access mode. This optional parameter determines the access mode
for the protocol type. NMA$C_PCLI_ACC is valid only for ports using
Ethernet packet format.

NMA$C_PCLI_ACC is valid for ports using 802E packet format.

One of the following values can be specified:

• NMA$C_ACC_EXC — Exclusive mode (default)

• NMA$C_ACC_SHR — Shared-default user mode

• NMA$C_ACC_LIM — Shared-with-destination mode

Section 9.4.8 provides a description of protocol type sharing.

Section 9.4.8 provides a description of protocol type PID sharing.

NMA$C_PCLI_ACC is passed as a longword value.

NMA$C_PCLI_BFN Number of receive buffers to preallocate (default = 1). NMA$C_PCLI_BFN
can have a maximum value of 255. This optional parameter is specified on a
per-port basis.

NMA$C_PCLI_BFN is passed as a longword value.

NMA$C_PCLI_BFN represents the number of receive messages the LAN
driver will hold for a port when the port has no read QIOs posted to the
driver.

NMA$C_PCLI_BUS Any message received for this port that is larger than this parameter value
is discarded.

Maximum allowable port receive data size, that is, message length (default
= 512 bytes). NMA$C_PCLI_BUS can have a maximum value of 9234.

This optional parameter is specified on a per-port basis. It is passed as a
longword value.
377

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_CCA Can change address. This optional parameter enables applications to start
before DECnet starts. DECnet may attempt to set the physical address of
the controller when it starts. Ethernet devices support only one physical
address, and so all applications that are using the same device must also use
the same physical address. If applications that do not use the DECnet
address start before DECnet, DECnet is not able to start on that controller
unless the other applications that have already started have all specified
NMA$C_PCLI_CCA to be ON.

This parameter is not applicable to FDDI because FDDI devices can run
with more than one physical address; however, no error is returned if this
parameter is supplied for FDDI devices.

The application receives no indication whatsoever that the physical address
has changed.

This parameter is passed as a longword. One of the following values can be
specified:

• NMA$C_STATE_ON — The physical address can be changed.

• NMA$C_STATE_OFF — The physical address cannot be changed
(default).

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
378

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_CON1 Controller mode. This optional parameter determines whether transmit
packets are to be looped back at the controller. One of the following values
can be specified:

NMA$C_LINCN_NOR — Normal mode (default)
NMA$C_LINCN_LOO — Loopback mode

The only messages looped back are those acceptable to the controller as
receive messages, that is, those messages that possess at least one of the
following characteristics:

• Matching physical address (see Section 9.4.5)

• Matching multicast address (see Section 9.4.5)

• Promiscuous mode (NMA$C_PCLI_PRM) is in the ON state

• Destination address is a multicast address and all multicasts are
enabled (NMA$C_PCLI_MLT is in the ON state)

NMA$C_PCLI_CON affects all ports on a single controller. It is passed as a
longword value.

For the DELUA, DEBNA, DEBNI, DEQTA, PMAD, DEMNA, and DESVA,
the following list shows the maximum amount of user data that can be
looped:

Ethernet format without padding — 18 bytes
Ethernet format with padding — 16 bytes
802 format with 1-byte CTL field — 15 bytes
802 format with 2-byte CTL field — 14 bytes
802 extended format—10 bytes

When the DEUNA is in loopback mode, the driver always enables echo mode
(NMA$C_PCLI_EKO is in the ON state).

Not all devices support loopback mode. If normal mode is not specified, the
request is completed with SS$_BADPARAM status.

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
379

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_CRC1 Cyclic redundancy check (CRC) generation state for transmitted messages
(optional). One of the following values can be specified:

NMA$C_STATE_ON — Controller generates a CRC (default).

NMA$C_STATE_OFF — Controller does not generate a CRC.

NMA$C_PCLI_CRC affects all ports on a single controller. There is no effect
on

checking a receive message’s CRC (it is always checked).
NMA$C_PCLI_CRC is passed as a longword value.

If NMA$C_PCLI_CRC is turned off, all users of the controller must supply
the 4-byte CRC value for all messages transmitted. The CRC is passed at
the end of the P1 transmit buffer; the additional 4 bytes are included in the
size of the P1 buffer. The CRC value is not checked for correctness.

For the DEQNA, DELQA, and Token Ring devices, the NMA$C_PCLI_CRC
parameter cannot be turned off.

For the DEQNA, DELQA, and Token Ring devices, the NMA$C_PCLI_CRC
parameter cannot be turned off.

Not all devices support user-supplied CRC. If a controller-generated CRC is
specified, the request is completed with SS$_BADPARAM status.

NMA$C_PCLI_DES Shared protocol destination address. Passed as a counted string that
consists of a modifier word (NMA$C_LINMC_SET or
NMA$C_LINMC_CLR) followed by a 6-byte (48-bit) physical destination
address. The size of the counted string must always be 8.
NMA$C_PCLI_DES only has meaning when protocol access
(NMA$C_PCLI_ACC) is defined as shared-with-destination mode (NMA$C_
ACC_LIM). The destination address specified must be a physical
address—not a multicast address—and it must be unique among all ports
sharing the same protocol. NMA$C_PCLI_DES is required when the access
mode is defined as ‘‘shared-with-destination.’’

NMA$C_PCLI_DES should not be specified on a port where the 802 or 802E
packet format is selected (NMA$C_PCLI_FMT is set to
NMA$C_LINFM_802 or NMA$C_LINFM_802E). For 802 packet format, the
concept of shared protocol type is handled by using group SAPs.

NMA$C_PCLI_DES should not be specified on a port where the 802 packet
format is selected (NMA$C_PCLI_FMT is set to NMA$C_LINFM_802). For
802 packet format, the concept of shared protocol type is handled by using
group SAPs.

Section 9.4.8 provides a description of protocol type sharing.

Section 9.4.8 provides a description of protocol type PID sharing.

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
380

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_EKO1 Echo mode. Applicable only to the DEUNA device driver.

If echo mode is on, transmitted messages are returned to the sender. This
optional parameter controls the condition of the half-duplex bit in the
DEUNA mode register. One of the following values can be specified:

NMA$C_STATE_OFF — Does not echo transmit messages (default)
NMA$C_STATE_ON — Echoes transmit messages

If NMA$C_STATE_ON is specified, the only transmitted messages echoed
are those acceptable to the DEUNA as receive messages, that is, those
messages that have at least one of the following characteristics:

• Matching physical address (see Section 9.4.5)

• Matching multicast address (see Section 9.4.5)

• Promiscuous mode (NMA$C_PCLI_PRM) is in the ON state

• Destination address is a multicast address and all multicasts are
enabled (NMA$C_PCLI_MLT is in the ON state)

If the DEUNA is placed in loopback mode (NMA$C_LINCN_LOO is
specified in the NMA$C_PCLI_CON parameter), the driver enables echo
mode.

NMA$C_PCLI_EKO affects all ports on a single controller. It is passed as a
longword value.

NMA$C_PCLI_FMT Packet format. This optional parameter specifies the packet format as either
Ethernet, IEEE 802, or 802 extended. This characteristic is passed as a
longword value and affects single ports on a single controller. One of the
following values can be specified:

NMA$C_LINFM_ETH — Ethernet packet format (default)
NMA$C_LINFM_802 — 802 packet format
NMA$C_LINFM_802E — 802 extended packet format

NMAC_PCLI_PTY, NMAC_PCLI_ACC, and NMA$C_PCLI_DES should
only be specified on those ports where the Ethernet packet format
(NMA$C_LINFM_ ETH) is selected.

NMAC_PCLI_SRV, NMAC_PCLI_SAP, and NMA$C_PCLI_GSP should
only be specified on those ports where the 802 packet format
(NMA$C_LINFM_802) is selected.

NMA$C_PCLI_PID should only be specified on those ports where the 802
extended packet format (NMA$C_LINFM_802E) is selected.

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
381

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_GSP Group SAP. This is an optional parameter if the 802 packet format is
selected (NMA$C_PCLI_FMT is set to NMA$C_LINFM_802). If the
Ethernet or 802 extended packet format is selected, NMA$C_PCLI_GSP
cannot be specified. Group SAPs can be shared among multiple ports on the
same controller. If the 802 packet format is selected, NMA$C_PCLI_GSP
defines up to four 802 group SAPs that are to be enabled for matching
incoming packets to complete read operations on this port. By default, no
group SAPs are enabled.

NMA$C_PCLI_GSP is passed as a longword value and is read as four 8-bit
unsigned integers. Each integer must be either a group SAP or zero. To
enable a single group SAP on a port, you need only specify the group SAP
value to be enabled in one of the four integers and place a value of zero in
the three remaining integers. To disable group SAPs on the port, you need
only place a value of zero in all four integers and issue the QIO.

If this characteristic is correctly specified, any group SAPs that were
previously enabled on the port are now replaced by the SAPs specified by
the current request.

NMA$C_PCLI_ILP1 Internal loopback mode. This optional parameter places the device in
internal loopback mode (not for the DEUNA, DEQNA, or DELQA devices).
One of the following values can be specified:

NMA$C_STATE_ON — Internal loopback mode
NMA$C_STATE_OFF — Not in internal loopback mode (default)

If NMA$C_STATE_ON is specified, the NMA$C_PCLI_CON parameter
must be in loopback (NMA$C_LINCN_LOO) mode.

When the controller is in loopback mode (generally for testing), it can loop
packets in external loopback or internal loopback. This parameter places the
controller in one of these loopback modes. NMA$C_PCLI_ILP is passed as a
longword value and affects all ports on the controller.

Not all devices support loopback mode. If NMA$C_STATE_OFF is not
specified, the request is completed with SS$_BADPARAM status.

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
382

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_MCA Multicast address (optional). Passed as a counted string that consists of a
modifier word followed by a list of 6-byte (48-bit) multicast addresses. The
value specified in the modifier word determines whether the addresses are
set or cleared. If NMA$C_LINMC_CAL is specified, all multicast addresses
in the list are ignored.

The following mode values can be specified in the low byte of the modifier
word:

NMA$C_LINMC_SET — Set the multicast addresses.
NMA$C_LINMC_CLR — Clear the multicast addresses.
NMA$C_LINMC_CAL — Clear all multicast addresses.

The driver filters all multicast addresses on a per-port basis; therefore, only
messages received with the port's physical address or the multicast
addresses enabled on the port are used to complete the user's read
operations.

Note that each LAN controller supports a limited number of multicast
addresses. If this limit is exceeded, the LAN driver enables the “accept all
multicast” feature on the controller and all multicast packets on the LAN
must be filtered by the LAN driver. This may cause a minor performance
loss.

NMA$C_PCLI_MCA is specified on a per-port basis.

NMA$C_PCLI_MLT Multicast address state. This optional parameter instructs the controller
hardware whether to accept all multicast addresses for this port. One of the
following values can be specified:

NMA$C_STATE_ON — Accept all multicast addresses.
NMA$C_STATE_OFF — Do not accept all multicast addresses (default).

NMA$C_PCLI_MLT allows you to receive all multicast address packets that
also match the port's protocol type, SAP, or protocol identifier.

Generally, you enable only your individual set of multicast addresses using
the NMA$C_PCLI_MCA parameter, and leave the NMA$C_PCLI_MLT
parameter in the off state.

There could be a minor performance loss when the NMA$C_PCLI_MLT
parameter is in the ON state because the LAN driver may have to process
all multicast addresses on the medium; the number of multicast addresses
on the line determines the amount of processing required.

The NMA$C_PCLI_MLT parameter is passed as a longword value.

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
383

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_PAD Use message size field on transmit and receive messages (optional). One of
the following values can be specified:

NMA$C_STATE_ON — Insert message size field (default)
NMA$C_STATE_OFF — No size field

NMA$C_PCLI_PAD affects only the protocol type that issued the set mode
request. It is passed as a longword value.

On Ethernet, if padding is enabled on Ethernet format packets, the driver
adds a 2-byte count field to the transmitted data. This field allows short
packets (packets fewer than 46 bytes long) to be received with the proper
length returned by the driver. The minimum Ethernet packet contains 46
bytes of user data. When fewer than 46 bytes are sent, the packet is padded
and the receiver always receives 46 bytes of data. When padding is enabled,
the maximum message size for transmit or receive operations is 1498 bytes
and the minimum is zero bytes. See Section 9.4.6.5.1 for additional
information. NMA$C_PCLI_PAD should be specified only on a port where
the Ethernet packet format is selected (NMA$C_PCLI_FMT is set to
NMA$C_LINFM_ETH).

For FDDI, the same 2-byte count field is added; however, because FDDI
packets can be as short as 22 bytes, FDDI transmit requests are never
padded.

NMA$C_PCLI_PHA1 Physical address (optional). It is passed as a counted string that consists of a
modifier word followed by the 48-bit physical address. If the request is to
clear the physical address or to set the physical address to the default
address, the physical address (if present) is not read.

One of the following mode values can be specified in the low byte of the
modifier word:

NMA$C_LINMC_SET — Set the string value.
NMA$C_LINMC_CLR — Clear the physical address.
NMA$C_LINMC_SDF — Set the physical address to the default address. For
CSMA/CD, the default address is constructed by appending the low-order word of
the system parameter SCSSYSTEMID to the constant DECnet header
(AA-00-04-00). If SCSSYSTEMID is zero, and NMA$C_LINMC_SDF is specified,
the hardware address is used as the default.

If not specified for Ethernet, the default is the current address set by a
previous set mode function on this controller, or the hardware address if no
address was defined by a previous set mode function. If not specified for
FDDI, the default is the hardware address.

The physical address must be passed as a 6-byte (48-bit) quantity. The first
byte is the least significant byte. A return value of -1 on a sense mode
request implies that a physical address is not defined.

The NMA$C_PCLI_PHA parameter affects all ports on a single controller. If
the address specified is already being used on the extended LAN,
SS$_IVADDR is returned.

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
384

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_PID Protocol identifier. This parameter is required for, and valid only on, ports
that use 802 extended format packets. NMA$C_PCLI_PID is passed as a
counted 5-byte string, which is the unique protocol identifier required for
each 802 extended format user.

All protocol identifiers specified on a controller must be unique except when
the PID is being shared.

NMA$C_PCLI_PID may only be specified on a port when the 802 extended
packet format is selected; that is, NMA$C_PCLI_FMT is set to
NMA$C_LINFM_802E.

NMA$C_PCLI_PRM Promiscuous (optional). One of the following values can be specified:

• NMA$C_STATE_ON—Promiscuous mode enabled.

• NMA$C_STATE_OFF—Promiscuous mode off.

The NMA$C_PCLI_PRM parameter is passed as a longword value.

Only one port on each controller can be active with promiscuous mode
enabled. Enabling promiscuous mode requires PHY_IO privilege.

THe NMA$C_PCLI_PRM parameter is passed as a longword value.

HP does not recommend promiscuous mode for normal usage.

Some Token Ring devices do not support real promiscuous access to the ring.

See Section 9.8.1 for additional information.

NMA$C_PCLI_PTY Protocol type. This value is read as a 16-bit unsigned integer and must be
unique on the controller except when the protocol type is being shared. For
Ethernet format ports, this is a required parameter.

Valid protocol types are in the range 05-DD through FF.

NMA$C_PCLI_PTY may only be specified on a port where the Ethernet
packet format is selected (NMA$C_PCLI_FMT is set to
NMA$C_LINFM_ETH).

NMA$C_PCLI_PTY is passed as a longword value; however, only the
low-order word is used.

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
385

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_RAC Receive access control (Token Ring only). This optional parameter specifies
whether the application receives a copy of the access control (AC) field for
each Token Ring frame received. It is passed as a longword value. It must be
passed with one of the following values:

• NMA$C_STAT_ON — Application gets a copy of the AC for each Token
Ring frame received.

• NMA$C_STATE_OFF — Application does not get a copy of the AC for
each Token Ring frame received.

The AC is returned in the P5 buffer. The P5 buffer size for Token Ring
should always be a minimum of 54 bytes. This is due to the variable size of
the Token Ring header.

NMA$C_PCLI_RES Restart. This optional parameter allows the user to enable the automatic
port restart feature of the LAN drivers. One of the following values can be
specified:

• NMA$C_LINRES_DIS — Disable automatic restart (default)

• NMA$C_LINRES_ENA — Enable automatic restart

The LAN drivers shut down all users of a controller if there is a fatal error
on the controller or if the LAN driver determines that the controller has
stopped functioning. All outstanding I/O operations on the LAN driver are
completed with either an SS$_ABORT or SS$_TIMEOUT status.

All ports that have the NMA$C_PCLI_RES parameter enabled (set to
NMA$C_LINRES_ENA) have the port automatically restarted by the LAN
driver approximately one second after it has been shut down due to a fatal
error. If the user issues read or write QIOs to the port during the time the
port is shut down, the driver completes the QIOs with an SS$_OPINCOMPL
status.

All ports that have the automatic restart feature disabled must be restarted
by the application program when the port is shut down by the LAN driver.
The application program should wait approximately 2 seconds to allow the
LAN driver to stabilize. Once the LAN driver shuts down a port, it attempts
a maximum of 30 consecutive automatic restarts. If there are 30 consecutive
failures to restart the port, the port remains shut down.

Note that it is unusual to have fatal errors on a LAN controller or to have a
LAN driver detect that a LAN controller has stopped functioning. Having
the ability to automatically restart a user's port makes the program easier
to design because the program does not have to take into account the
possibility of the LAN driver shutting down the port.

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
386

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLL_RFC Receive frame control (FDDI only). This optional parameter specifies
whether the application receives a copy of the Frame Control (FC) field for
each FDDI frame received. It is passed as a longword value. However, only
the low-order byte is used. It must be passed with one of the following
values:

• NMA$C_STATE_ON — Application gets a copy of the FC for each FDDI
frame received.

• NMA$C_STATE_OFF — Application gets a copy of the FC for each
FDDI frames (default).

For $QIO Read operations, the FC is passed to the application in the P5
buffer. The following are the sizes required for the P5 buffer for various
packet formats and settings of NMA$C_PCLI_RFC:

• Ethernet (NMA$C_LINFM_ETH) — 14 if NMA$C_STATE_OFF is
specified, 15 if NMA$C_STATE_ON is specified.

• 802 (NMA$C_LINFM_802) — 16 if NMA$C_STATE_OFF is specified,
17 if NMA$C_STATE_ON is specified.

• 802E (NMA$C_LINKFM_802E) — 20 if NMA$C_STATE_OFF is
specified, 21 if NMA$C_STATE_ON is specified.

Receiving the FC requires one additional byte of space in the P5 buffer.
The FC is the first byte in the P5 buffer, immediately preceding the
6-byte destination address. The size of the P5 buffer required does not
change from the CSMA/CD sizes if NMA$C_PCLI_RFC is set to
NMA$C_STATE_OFF.

NMA$C_PCLI_SAP 802 format SAP. This parameter is required if the 802 packet format is
selected (NMA$C_PCLI_FMT is set to NMA$C_LINFM_802)>
NMA$C_PCLI_SAP defines an 802 SAP and is read as an 8-bit unsigned
integer. The least significant bit of the SAP must be 0 and the SAP cannot be
the null SAP (all 8 bits equal 0) or the SNAP SAP. NMA$C_PCLI_SAP is
passed as a llongwood value. However, only the low-order byte is used.

The SAP specified by NMA$C_PCLI_SAP is the SAP used to match
incoming packets to complete read requests. It is used as the source SAP
(SSAP) in all transmissions (write QIOs). Because it is illegal to transmit
using a group SAP as the source SAP, the SAP specified by this
NMA$C_PCLI_SAP cannot be a group SAP. NMA$C_PCLI_GSP describes
how to set up group SAPs on a port.

All individual SAPs specified on a controller must be unique on that
controller; therefore, the SAP specified using the NMA$C_PCLI_SAP
parameter is checked for uniqueness on the controller.

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
387

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_SRMODE Sets the source routing (SR) modefor the $QIO user (Token Ring only). This
optional parameter allows the application to perform the source routing
discovery. It must be passed with one of the following values:

• NMA$C_SR_TRANSPARENT — Application source routing is
transparent. This is the default when this parameter is not specified.

• NMA$C_SR_SELF — This shuts off the automatic route discovery
exploration messagefor this user.

The $QIOs existto further manipulate the source routing cache. HP
recommends that applications use the NMA$C_SR_TRANSPARENT mode.

NMA$C_PCLI_SRV Port service. This optional parameter specifies the service supplied by the
driver for the port. It can only be specified if the 802 packet format is
selected (NMA$C_PCLI_FMT is set to NMA$C_LINFM_802). This
characteristic is passed as a longword value. One of the following values can
be specified:

• NMA$C_LINSR_USR — User supplied service (default)

• NMA$C_LINSR_CLI — Class I service

NMAC$C_PCLI_XAC Transmit access control (Token Ring only). This is an optional parameter
that enables applications to contol the setting of the priority bits in the
access control (AC) for frames being transmitted in a $QIO write operations.
When set to a wanted value, all subsequent transmits use this AC value.

NMA$C_PCLI_XFC Transmit frame control (FDDI) only). NMA$C_PCLI_XFC is an optional
parameter that enables applications to control the setting of the priority bits
in the FC for frames being transmitted in a $QIO write operation.
NMA$C_PCLI_XFC is passed as a longword parameter that has many valid
settings. If specified with a value of 0, the application supplies an FC value
on each $QIO write operation. The FC value to be used in this case is
supplied in the P5 buffer for the $QIO write operation. If the parameter is
specified with a value other than 0, that value is inserted into the FC field of
every transmit by the FDDI drivers. NO FC is present in the P5 buffer for
the $QIO write in this case. If this parameter is not specified, the default
setting (0) of the priority bits is used.

Regardless of how the FC is supplied, the value specified must be valid. The
allowable values for FC are between 50 hexadecimal and 57 hexadecimal. If
NMA$C_PCLI_XFC is specified with a nonzero value outside the valid
range, the application receives a SS$_BADPARAM error. The priority bits
are the three low-order bits.

1. If the LAN controller is active and you do not specify this parameter, the parameter defaults to
current setting. If the LAN controller is not controller is not active, this parameter defaults to the
default value indicated.

Table 9-39 P2 Attributes (Continued)

Parameter ID Meaning
388

Local Area Network (LAN) Device Drivers
LAN Function Codes
9.7.3.2 Set Mode Parameters for Packet Formats

Table 9-40 summarizes the use of the set mode parameters for the Ethernet, 802, and 802 extended (802E)
packet formats.

9.7.3.3 Set Mode Parameter Validation

When starting a LAN port, the LAN driver checks that the mode of the new port is compatible with the mode
of the LAN ports already started. There are two sets of compatibility checks: one for ports running in shared
mode and one for all ports.

The following parameters must match for all ports on the same controller:

• NMA$C_PCLI_CON

• NMA$C_PCLI_CRC

• NMA$C_PCLI_EKO

• NMA$C_PCLI_ILP

• NMA$C_PCLI_PHA (need only match for Ethernet controllers)

On VAX systems, the following parameters must match for all shared-default and shared-with-destination
users of the same protocol type:

• NMA$C_PCLI_BFN

• NMA$C_PCLI_BUS

• NMA$C_PCLI_CCA

• NMA$C_PCLI_MLT

• NMA$C_PCLI_PAD

Table 9-40 Set Mode Parameters for Packet Formats

Parameter ID Ethernet IEEE 802 802E

FMT DEF REQ REQ

PTY REQ E E

SAP E REQ E

PID E E REQ

ACC OPT E E

DES OPT E E

PAD OPT E E

SRV E OPT E

GSP E OPT E

BFN, BUS, CCA, CON,
CRC, EKO, ILP, MCA,
MLT, PHA, PRM, RAC,
RES, RFC, SRMODE,
XAC, XFC

OPT OPT OPT
389

Local Area Network (LAN) Device Drivers
LAN Function Codes
• NMA$C_PCLI_PTY

• NMA$C_PCLI_RAC

• NMA$C_PCLI_RES

• NMA$C_PCLI_RFC

• NMA$C_PCLI_XAC

• NMA$C_PCLI_XFC

Once a port is started, only the following parameters can be changed:

• NMA$C_PCLI_GSP

• NMA$C_PCLI_MCA

9.7.4 Shutdown Controller

The shutdown controller function shuts down the LAN port. On completion of a shutdown request all
outstanding I/O requests are completed. This port cannot be used again until another startup request has
been issued (see Section 9.7.3.1).

The following function code is used to shut down a port:

• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN—Shut down port

The shutdown controller function takes no device- or function-dependent arguments.

9.7.5 Enable Attention AST

This function requests that an attention AST be delivered to the requesting process when a status change
occurs on the assigned port. An AST is queued when a message is available and there is no waiting read
request. The enable attention AST function is legal at any time, regardless of the condition of the unit status
bits.

The following function code and modifier is used to enable an attention AST:

• IO$_SETMODE!IO$M_ATTNAST—Enable attention AST

This function takes the following device- or function-dependent arguments:

• P1—The address of an AST service routine or 0 for disable

• P2—Ignored

• P3—Access mode to deliver AST

The enable attention AST function enables an attention AST to be delivered to the requesting process once
only. After the AST occurs, it must be explicitly reenabled by the function before the AST can occur again. The
function is subject to AST quotas.

The AST service routine is called with an argument list. The first argument is the current value of the second
longword of the I/O status block (see Section 9.7.13).
390

Local Area Network (LAN) Device Drivers
LAN Function Codes
9.7.6 IO$M_SET_MAC Functional Modifier to IO$M_SETMODE

The IO$M_SET_MAC qualifier, when used with IO$_SETMODE, is used to set medium specific parameters.
The Token Ring parameters require PHY_IO privilege to be set. Table 9-41 shows the parameters that may be
set for Ethernet. Table 9-42 shows the parameters that may be set for FDDI. Table 9-43 shows the
parameters that may be set for Token Ring, and Table 9-44 shows the parameters that may be set for ATM.

Table 9-41 Parameters of IO$M_SET_MAC for Ethernet

Parameter ID Meaning

MA$C_PCLI_FDE Enables or disables full duplex operation. The values for this parameter
are NMA$C_STATE_ON or NMA$C_STATE_OFF.

NMA$C_PCLI_LINEMEDIA Sets the connection media type for the Ethernet adapter. Valid values for
this parameter are:

• NMA$C_MEDIA_AUTO

• NMA$C_MEDIA_AUI

• NMA$C_MEDIA_BNC

• NMA$C_MEDIA_TP

NMA$C_PCLI_LINESPEED Sets the speed of the Ethernet adapter. Valid values for this parameter
are:

• 0—Used to autosense the speed.

• 10—Sets the speed to 10 megabits/second.

• 100—Sets the speed to 100 megabits/second.

• 1000—Sets the speed to 1000 megabits/second.
391

Local Area Network (LAN) Device Drivers
LAN Function Codes
Table 9-42 Parameters of IO$M_SET_MAC for FDDI

 Parameter ID Meaning

NMA$C_PCLI_TREQ Requested value for token rotation timer, ANSI MAC T_req
parameter. Units are in 80 nanoseconds, the default is 8000, minimum
is 4000, and maximum is 167772.

NMA$C_PCLI_TVX Maximum time between arrivals of a valid frame or unrestricted
token, ANSI MAC TVX parameter. Units are in 80 nanoseconds, the
default is 2621, minimum is 2500, and maximum is 5222.

NMA$C_PCLI_REST_TTO Restricted token timeout which limits how long a single restricted
mode dialog may last before being terminated. Units are in
milliseconds, the default is 1000, minimum is 0, and maximum is
10000.

NMA$C_PCLI_RPE Ring purge enable. If 1 (TRUE), this link will particpate in the Ring
Purger election and, if elected, perform the Ring Purger function.

NMA$C_PCLI_NIF_TARG Neighbor information frame target.

NMA$C_PCLI_SIF_CONF_TARG Station information frame configuration target. A 6-byte string
specifying the LAN address of the target. Used only by DECnet/OSI.

NMA$C_PCLI_SIF_OP_TARG Station information frame operation target. A 6-byte string specifying
the LAN address of the target. Used only by DECnet/OSI.

NMA$C_PCLI_ECHO_TARG Echo test target. A 6-byte string specifying the LAN address of the
target. Used only by DECnet/OSI.

NMA$C_PCLI_ECHO_DAT Data pattern to use for the echo test. Used only by DECnet/OSI.

NMA$C_PCLI_ECHO_LEN Length of the echo packet. Used only by DECnet/OSI.

Table 9-43 Parameters of IO$M_SET_MAC for Token Ring

Parameter ID Meaning

NMA$C_PCLI_RNG_SPD Sets the speed of the ring. This longword may be either:

• NMA$C_LINRNG_FOUR — Used for 4 Mb/s rings.

• NMA$C_LINRNG_SIXTN — Used for 16 Mb/s rings.

The default is NMA$C_LINRNG_SIXTN.

NMA$C_PCLI_LINEMEDIA Sets the connection media type for the Token Ring adapter. Valid values
for this longword parameter are:

• NMA$C_MEDIA_STP

• NMA$C_MEDIA_UTP

The default is NMA$C_MEDIA_STP.
392

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_ETR Controls the Early Token release feature of the Token Ring hardware.
This feature can greatly improve throughput, and is only valid on 16
Mb/s rings. The values for this longword parameter are
NMA$C_STATE_ON or NMA$C_STATE_OFF. The default is
NMA$C_STATE_ON.

NMA$C_PCLI_MONCONTEND Specifies whether the controller participates in the monitor contention
process when another adapter detects the need for contention and
initiates the process. The values for this longword parameter are
NMA$C_STATE_ON or NMA$C_STATE_OFF. The default is
NMA$C_STATE_OFF.

NMA$C_PCLI_CACHE_ENT The number of source routing (SR) entries to make available for
caching. The default is 200, minimum is 20, and maximum is 2000.
Each cache entry consumes 64 bytes.

NMA$C_PCLI_ROUTEDIS The source routing discovery timer. This is the amount of seconds to
wait after the transmission of ring explorer packets before declaring
the route of a path to be unknown. The default is 2 seconds, minimum
is 1, and maximum is 255.

NMA$C_PCLI_A_TIM The source routing aging timer. After traffic is neither received from
nor sent to a given node for this number of seconds, the entry is marked
stale. After the entry is marked stale, rediscovery is required to
communicate with the node. The default is 60 seconds, minimum is 1,
and maximum is 65535.

NMA$C_PCLI_SRC_ROU Enables and disables source routing. The values for this longword
parameter are NMA$C_LINSRC_ENA or NMA$C_LINSRC_DIS. The
default is NMA$C_LINSRC_ENA.

NMA$C_PCLI_AUTH_PR Specifies the highest priority that a user may transmit a frame. The
priority is set within the NMA$C_PCLI_XAC parameter. The default
for this parameter is 3, minimum is 0, and maximum is 6.

Table 9-43 Parameters of IO$M_SET_MAC for Token Ring (Continued)

Parameter ID Meaning
393

Local Area Network (LAN) Device Drivers
LAN Function Codes
Table 9-44 Parameters of IO$M_SET_MAC for ATM

Parameter ID Meaning

NMA$C_PCLI_MED Medium. This longword parameter defaults to and may only be set to
NMA$C_LINMD_CSMACD.

NMA$C_PCLI_BUS Buffer size. This longword parameter specifies the requested maximum
packet size of the emulated LAN. The value may be either 1516, 4544, or
9234.

NMA$C_PCLI_ELAN_PAR Parent device name. This is a 3- or 4-character string parameter that
specifies the name of the ATM device to associate with this emulated
LAN.

NMA$C_PCLI_NET ELAN name. This is a string of up to 64 characters that specifies the
name of the emulated LAN to join.

NMA$C_PCLI_ELAN_DESC ELAN description. This is a string of up to 64 characters long that
provides additional description of the emulated LAN for status displays.

NMA$C_PCLI_LES_HWA LES ATM address. This is specified as a 40-character string as the
hexadecimal representation of a 20-byte ATM address.

NMA$C_PCLI_ELAN_STATE
_REQ

ELAN change state request value. This longword parameter directs the
driver to either start or shutdown the emulated LAN. Start is specified by
a value of 2. Shutdown is specified by a value of 4.

NMA$C_PCLI_EVENT_REQ Event mask request. If set to 1, this longword parameter directs the
driver to set the event reporting mask to the value given by the event
parameter.

NMA$C_PCLI_EVENT Event mask value. This is a longword bit mask that controls the event
reporting done by the driver. A bit set in the mask enables the reporting
of corresponding event(s).
394

Local Area Network (LAN) Device Drivers
LAN Function Codes
9.7.7 IO$M_UPDATE_MAP Functional Modifier to IO$_SETMODE

Using Token Ring only, the IO$M_UPDATE_MAP qualifier, when used with IO$_SETMODE, manipulates
the adapter's functional address mapping table. Figure 9-15 shows the format of the P2 buffer for this
operation. This QIO requires PHY_IO privilege.

Figure 9-15 Format of IO$M_UPDATE_MAP Setmode P2 Buffer

The subfunction is one of the following:

• NMA$C_MAP_CHANGE — This function adds or changes a mapping in the functional address table. If
the specified multicast entry does not exist, an entry is created with the specified functional address
mask. If the specified multicast entry does exist, the corresponding functional address mask is changed to
the specified mask. All users who currently have the multicast enabled when the functional mask is
changed will automatically update the functional address table as part of this operation.

Possible errors returned include the following:

— SS$_DEVICEFULL — This error indicates that there is insufficient space in the mapping table to
complete the request. The multicast to functional address mapping table has 200 entries.

• NMA$C_MAP_DELETE — This function deletes the specified MC address in the table. For this function,
the functional address mask is not required to pass the P2 buffer. If the functional address mask is
passed, its contents are ignored.

Possible errors returned include the following:

— SS$_BADPARAM — This error indicates that the specified multicast address cannot be found in the
table.

The following example maps multicast address AB-01-01-01-02-03 to the functional address
03-00-00-01-00-00 for device ICA0:.

LANCP>SET DEVICE/MAP= -
_LANCP>(MULTICAST=AB-01-01-01-02-03, -
_LANCP>FUNCTIONAL=00-01-00-00) ICA0:

The following example deletes the mapping of the multicast address of AB-01-01-01-02-03 for the device
ICA0:.

LANCP>SET DEVICE/NOMAP=(MULTICAST=AB-01-01-01-02-03) ICA0:

MC Addr 1

MC Addr 3

FUNCTIONAL Address 2

NMA$C_PCLI_MAP

Subfunction

MC Addr 2

FUNCTIONAL Address 1

31 15 0

Length
(bytes following this field)

ZK6791AGE
395

Local Area Network (LAN) Device Drivers
LAN Function Codes
9.7.8 IO$M_ROUTE Functional Modifier to IO$_SETMODE

For Token Ring only, the IO$M_ROUTE qualifier, when used with IO$_SETMODE, manipulates the source
routing cache table. This command is successful only when source routing is enabled. Source routing is
enabled with the set mac qualified set mode QIO. Figure 9-16 shows the format of the P2 buffer. This QIO
requires the PHY_IO privilege.

Figure 9-16 Format of the IO$M_ROUTE P2 Buffer

The subfunction is one of the following:

• NMA$C_SR_ADD — This function adds or changes a source routing cache entry. It enters the LAN
address into the table with the enclosed routing information. The routing information string format is
documented in Section 9.4.6.3 I. If RI_size is passed as 0, the entry is created (or modified) to be in the
EXPLORING state (this is useful for users who are doing their own source routing). If the RC 'Lth' field is
0, the LAN address is entered in the table as being in the local state.

Possible errors returned include:

— SS$_INSFMEM — The source routing cache is full.

— SS$_BADPARAM — An invalid RI string was passed or invalid sizes were passed.

— SS$_IVMODE — Source routing is not enabled.

• NMA$C_SR_DELETE — This function deletes a source routing cache entry. The RI_size and the routing
information string are not required for this QIO. If one or both of the fields are passed for this operation,
they are ignored. The result of this command is to put the entry into the deleted state. When the entry
goes into the deleted state, it is deleted within 10 minutes.

Possible errors returned include the following:

— SS$_BADPARAM — The requested entry could not be found.

MC Addr 1

MC Addr 3

NMA$C_PCLI_MAP

Subfunction

MC Addr 2

31 15 0

Length
(bytes following this field)

ZK6792AGE

RI_SizeRouting Information String
030 bytes.
396

Local Area Network (LAN) Device Drivers
LAN Function Codes
9.7.9 Sense Mode and Sense Characteristics

 The sense mode function returns the port attributes in the specified buffers. These attributes include the
device characteristics described in Section 9.6 and, with the exceptions noted below, the attributes listed in
Table 9-39.

The following combinations of function code and modifier are provided:

• IO$_SENSEMODE!IO$M_CTRL—Read characteristics

• IO$_SENSECHAR!IO$M_CTRL—Read characteristics

• IO$_SENSEMODE!IO$M_SENSE_MAC—Medium specific characteristics

• IO$_SENSEMODE!IO$M_SHOW_MAP—Returns current functional address to multicast address
mapping (Token Ring only)

• IO$_SENSEMODE!IO$M_SHOW_ROUTE—Returns current source routing cache table (Toekn Ring
only)

These functions take the following device- or function-dependent arguments:

• P1—The address of a two-longword buffer where the device characteristics are stored. (Figure 9-17 shows
the format for, and Section 9.6 describes the contents of, the P1 buffer.) The P1 argument is optional.

• P2—The address of a quadword descriptor where the attributes buffer is stored. The first longword of the
descriptor is the buffer length; the second longword is the address of the buffer. The P2 argument is
optional.

The P2 buffer is not read by the LAN driver. The driver stores the port's attributes in the buffer, which
contains multiple entries. The format of each entry depends on whether a longword or a counted string is
returned, as shown in Figure 9-18. Each parameter ID contains a string indicator bit (bit 12) that
describes whether the data item is a string or a longword.

Except for the following differences, P2 returns the same attributes as those listed in Table 9-37:

• All parameters that are valid for the enabled packet format are returned (see Table 9-38).

• The sense-mode P2 buffer does not return the modifier word for the NMA$C_PCLI_PHA,
NMA$C_PCLI_MCA, and NMA$C_PCLI_DES parameter IDs.

• The NMA$C_PCLI_DES parameter is only returned on Ethernet ports whose access mode is set to
“shared with destination.”
397

Local Area Network (LAN) Device Drivers
LAN Function Codes
• In addition to the parameter IDs listed in Table 9-37, the sense-mode P2 buffer contains the following
parameter IDs:1

Parameter ID Meaning

NMA$C_PCLI_FCA List of the currently enabled functional addresses (Token Ring only). Each
32-bit entry corresponds respectively with the items returned under
NMA$C_PCLI_MCA.

NMA$C_PCLI_HWA Hardware address. Describes the value for the hardware address. The
hardware address is the default physical address when no physical
address has been specified and there are no active users on the controller.
NMA$C_PCLI_HWA is returned in the same format as
NMA$C_PCLI_PHA.

NMA$C_PCLI_MBS Maximum packet length. NMA$C_PCLI_MBS is a longword, read-only
parameter. The value returned reflects the largest data packet that the
application can receive for its packet format and type of LAN, measured in
bytes. The values for Ethernet, FDDI, and Token Ring are:

Packet Format Ethernet FDDI Token
Ring

Ethernet format without
padding

1500 4470 4418

Ethernet format with padding 1498 4468 4416

802 format with 1-byte CTL
field

1497 4475 4423

802E format 1492 4470 4418

The values for LAN emulation over ATM are:

Packet Format ATM
ELAN
size:

1516 4544 9234

Ethernet format without
padding

1500 4528 9218

Ethernet format with padding 1498 4526 9216

802 format with 1-byte CTL
field

1497 4525 9215

802E format 1492 4520 9210

1. Alpha specific.
398

Local Area Network (LAN) Device Drivers
LAN Function Codes
Figure 9-17 Sense Mode P1 Characteristics Buffer

It is suggested that a size of 250 bytes be used for the P2 buffer. This will allow space for additional
parameters that may be returned in future releases of OpenVMS.

All attributes that fit into the buffer specified by P2 are returned; however, if all the attributes cannot be
stored in the buffer, the I/O status block returns the status SS$_BUFFEROVF. The second word of the I/O
status block contains the number of bytes used in the P2 buffer (see Section 9.7.13).

Figure 9-18 Sense Mode Attribute Buffer

ZK1178GE

Maximum Message Size

Not Used Error Summary

Type Class

Status

31 24 23 16 15 8 7 0

Not Used

Parameter ID

* Not Used

Value

Longword of

0

*0 0

15 14 13 12 11

String

* Not Used

ZK1210GE

Word of String Count

0 * 1 Parameter ID

1112131415

String Parameter:

0

Longword Parameter:
399

Local Area Network (LAN) Device Drivers
LAN Function Codes
9.7.10 IO$M_SENSE_MAC Functional Modifier to IO$_SENSEMODE

The IO$M_SENSE_MAC qualifier, when used with IO$_SENSEMODE, returns the parameters specified in
Section 9.7.6. In addition to the set mac parameters, Table 9-45 shows the returns of the following
parameters:

Table 9-45 Parameters of IO$M_SENSE_MAC

Parameter ID Meaning

NMA$C_PCLI_T_NEG The negotiated value of the token rotation timer (ANSI MAC parameter
T_neg) (FDDI only).

NMA$C_PCLI_DAT The duplicate address test flag (FDDI only). If set, this indicates that
there is another station on the ring with the same hardware LAN address.

NMA$C_PCLI_UNA Upstream neighbor's address (FDDI and Token Ring). This is a string
parameter specifying the 6-byte LAN address of the upstream neighbor.
Not all devices may support this feature.

NMA$C_PCLI_OLD_UNA The old (previous) upstream neighbor address (FDDI only). Neighbor
addresses change as nodes insert and deinsert into the ring.

NMA$C_PCLI_UN_DAT The upstream neighbor's duplicate address test flag (FDDI only).

NMA$C_PCLI_DNA The downstream neighbor's LAN address (FDDI only).

NMA$C_PCLI_OLD_DNA The old (previous) downstream neighbor's LAN address (FDDI only).

NMA$C_PCLI_RPS The current ring purger state (FDDI only). This longword parameter is
one of the following values:

• 0 — Off

• 1 — Candidate

• 2 — Non-purger

• 3 — Purger
400

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_RER The latest ring error reason (FDDI only). This longword parameter is one
of the following values:

• 0 — No Error

• 5 — Ring Init initiated

• 6 — Ring Init received

• 7 — Ring beaconing initiated

• 8 — Duplicate address detected

• 9 — Duplicate token detected

• 10 — Ring purger error

• 11 — FCI strip error

• 12 — Ring op oscillation

• 14 — PC trace initiated

• 15 — PC trace received

NMA$C_PCLI_NBR_PHY Neighbor's PHY type (FDDI only). This longword parameter is one of the
following values:

• 0 — A

• 1 — B

• 2 — S

• 3 — M

• 4 — Unknown

Table 9-45 Parameters of IO$M_SENSE_MAC (Continued)

Parameter ID Meaning
401

Local Area Network (LAN) Device Drivers
LAN Function Codes
NMA$C_PCLI_RJR Ring reject reason (FDDI only). This longword parameter is one of the
following values:

• 0 — None

• 1 — Local LCT

• 2 — Remote LCT

• 3 — LCT both sides

• 4 — LEM reject

• 5 — Topology error

• 6 — Noise reject

• 7 — Remote reject

• 8 — Trace in progress

• 9 — Trace received-disabled

• 10 — Standby

• 11 — LCT protocol error

NMA$C_PCLI_LEE Link error estimate (FDDI only). The longword value is a negative
exponent of 10 representing the Link error rate. For example, the value of
X represents the error rate of 10^X.

NMA$C_PCLI_RNG_NUM The longword value contains the ring number that the controller is
running on (Token Ring only). It is only valid for a controller that is
started, and also only valid for rings that have a ring parameter server
that is configured for providing this information.

Table 9-45 Parameters of IO$M_SENSE_MAC (Continued)

Parameter ID Meaning
402

Local Area Network (LAN) Device Drivers
LAN Function Codes
9.7.11 IO$M_SHOW_MAP Functional Modifier to IO$_SENSEMODE

For Token Ring only, the IO$M_SHOW_MAP qualifier, when used with IO$_SENSEMODE, returns the
current setting of the mapping table. The P2 buffer is filled with the current multicast to functional address
mapping information. The entries are 16 bytes long and are in the format shown in Figure 9-19. This QIO
requires PHY_IO privilege.

Figure 9-19 Format of IO$M_SHOW_MAP P2 Buffer

The multicast address and functional address mask are returned in canonical format (that is, not
bit-reversed). The following errors may occur:

• SS$_BUFFEROVF — The passed buffer is not large enough to hold all the data required for the
operation.

• SS$_BADPARAM — Not able to get read access to buffer or zero length buffer passed.

31 15 0

ZK6793AGE

Multicast 2 Multicast 1

Reserved Multicast 3

Functional address mark

Reserved Reserved
403

Local Area Network (LAN) Device Drivers
LAN Function Codes
9.7.12 IO$M_SHOW_ROUTE Functional Modifier to IO$_SENSEMODE

For Token Ring only, the IO$M_SHOW_ROUTE qualifier, when used with IO$_SENSEMODE, returns the
current value of the source routing cache table. Each entry is 64 bytes long. Figure 9-20 shows the format of
the returned P2 buffer.
404

Local Area Network (LAN) Device Drivers
LAN Function Codes
Figure 9-20 Format of IO$M_SHOW_ROUTE P2 Buffer

31 15 0

ZK6794AGE

LAN Addr 2

Reserved

State of Entry

LAN Addr1

LAN Addr3

Routing Information String Size

Segment Descriptor Routing Control Field

Last Transmit Timer

Last Receive Timer

Stale Timer

Discovery Timer

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor

Segment Descriptor
405

Local Area Network (LAN) Device Drivers
LAN Function Codes
Table 9-46 shows possible states of the entry.

The LAN address is returned in canonical format (that is, not bit-reversed). The timers are recorded as
seconds before expiration. The transmit and receive timers are initialized from the NMA$C_PCLI_A_TIM
parameter, the discovery timer is initialized from the NMA$C_PCLI_ROUTEDIS parameter, and the stale
timer is initialized to 10 minutes (600 seconds). The following errors may occur:

• SS$_BUFFEROVF — The passed buffer is not large enough to hold all the data required for the
operation.

• SS$_BADPARAM — Not able to get read access to buffer or zero length buffer passed.

9.7.13 I/O Status Block

The I/O status block (IOSB) for all LAN driver functions is shown in Figure 9-21. Appendix A lists the
completion status returned for these functions. (The OpenVMS system messages documentation provides
explanations and suggested user actions for these status codes.)

Figure 9-21 IOSB Contents

The first longword of the IOSB returns, in addition to the completion status, either the size (in bytes) of the
data transfer or the size (in bytes) of the attribute buffer (P2) returned by a sense mode function. The second
longword returns the unit and line status bits listed in Table 9-32 and the error summary bits listed in
Table 9-33.

Table 9-46 State of the Entry

Value Name Description

0 LOCAL Address is reachable on the attached ring.

1 STALE Entry is stale (inactive).

2 UNKNOWN Route to the address is unknown.

3 DELETED Entry is marked for deletion.

4 KNOWN Route is known and the route is stored in the routing information
string.

5 EXPLORING Route to the address is currently being explored.

ZK1179GE

Transfer Size

0+2

Used
Not Status

Completion Status

Byte of Value

Summary
Error

Used
Not

+4
406

Local Area Network (LAN) Device Drivers
Application Programming Notes
9.8 Application Programming Notes
This section contains information to assist you in writing application programs that use the LAN device
drivers. Section 9.8.1 discusses the additional rules required for application programs that you intend to run
in promiscuous mode. Section 9.8.2 describe the Ethernet and 802 sample programs.

9.8.1 Promiscuous Mode

The LAN drivers allow only one port per controller to enable promiscuous mode (NMA$C_PCLI_PRM
specified as NMA$C_STATE_ON). A port running in promiscuous mode usually places an additional load on
the CPU because the LAN device is configured to deliver all received packets to the LAN driver regardless of
destination address or multicast filtering. The LAN driver then has deliver the packets to the promiscuous
port as well as a copy to the intended recipient.

Table 9-47 details additional rules for ports running in promiscuous mode.

9.8.2 Local Area Network Programming Examples

The VAX MACRO program LANETH.MAR (Example 9-2 shows the typical use of QIO functions in driver
operations such as establishing the protocol type, starting the port, and transmitting and receiving data. The
program sends a LOOPBACK packet and waits for the packet to be returned.

The HP C program LAN802E.C (Example 9-3) shows how to initialize an 802E port and how to send and
receive packets on that port. This program sends a LOOPBACK packet and waits for the packet to be
returned.

Table 9-47 Rules for Promiscuous Mode Operation

 I/O Function Rule

IO$_SETMODE
IO$_SETCHAR

It is not necessary to specify a unique identifier (a protocol type, SAP, or protocol
identifier parameter ID) in the P2 buffer.

The port cannot be running in shared mode.

IO$_WRITE The user can only transmit packets in the packet format previously specified with
a set mode QIO when the user was started. The unique identifier for the packet
format must be included in the P5 buffer following the destination address (see
Section 9.7.2).

IO$_READ The LAN driver completes the promiscuous user's read requests with Ethernet,
802, and 802 extended packets. Because any packet format can be used to
complete a read request, the P5 parameter (if specified) must be at least 20 bytes
in length (21 bytes for FDDI with RFC turned on).

All Ethernet format packets are processed as if they have no size field specified
after the protocol type. Therefore, Ethernet packets are always returned with 46
to 1500 bytes of data. If the Ethernet packet contains a size field, it is returned as
part of the user data in the first word of the P1 buffer.

The promiscuous user should use the information returned in the P5 buffer to
determine the packet format. If the application program first filled the P5 buffer
with zeros, the program can determine the format of the packet received by
scanning the P5 buffer after the read request is completed.
407

Local Area Network (LAN) Device Drivers
Application Programming Notes
Example 9-2 LANETH.MAR Local Area Network Programming Example

 .TITLE LAN SAMPLE TEST PROGRAM
 .IDENT /X03/
 .PSECT RWDATA,WRT,NOEXE,PAGE

; This LAN test program sends a MOP loopback message to the Loopback Assistant
; Multicast address and waits for a response. The program uses the LAN device
; EWA0. To use a different device, change the device name in the program or
; define the desired lan device as EWA0.
;
 * To build on VAX, Alpha, I64:
; $ MACRO/OBJECT=LANETH/LIST=LANETH SYS$LIBRARY:ARCH_DEFS.MAR+SYS$DISK:[]LANETH
; $ LINK LANETH
;
; To run:
; $ RUN LANETH

 .LIBRARY "SYS$LIBRARY:LIB.MLB"

 $IODEF ; Define I/O functions and modifiers
 $NMADEF ; Define Network Management parameters

; Setmode parameter buffer and descriptor. Since the loopback protocol does
; not include a length word following the protocol type, we have to explicitly
; turn off padding since the default is on.

SETPARM:
 .WORD NMA$C_PCLI_FMT ; Packet format
 .LONG NMA$C_LINFM_ETH ; Ethernet
 .WORD NMA$C_PCLI_PTY ; Protocol type
 .LONG ^X0090 ; Loopback
 .WORD NMA$C_PCLI_PAD ; Padding
 .LONG NMA$C_STATE_OFF ; Off
SETPARMLEN = .-SETPARM

SETPARMDSC:
 .LONG SETPARMLEN
 .ADDRESS SETPARM

; Sensemode parameter buffer and descriptor. This is used to get our physical
; address to put into the loopback message.

SENSEBUF:
 .BLKB 512
SENSELEN=.-SENSEBUF

SENSEDSC:
 .LONG SENSELEN
 .ADDRESS SENSEBUF

; P2 transmit data buffer.

XMTBUF: .WORD 00 ; Skip count
 .WORD 02 ; Forward request
FORW: .BLKB 6 ; Forward address
 .WORD 01 ; Reply request
 .WORD 00
XMTBUFLEN = .-XMTBUF ; Size of transmit buffer

; P5 transmit destination address, the Loopback Assistant Multicast Address.

XMTP5: .BYTE ^XCF,0,0,0,0,0
408

Local Area Network (LAN) Device Drivers
Application Programming Notes
; P2 receive data buffer.

RCVBUF: .BLKB 512
RCVBUFLEN = .-RCVBUF ; Size of receive buffer

; P5 receive header buffer.

RCVP5:
RCVDA: .BLKB 6
RCVSA: .BLKB 6
RCVPTY: .BLKB 2

; Messages used to display status of this program.

GMSG: .ASCID "Successful test"
LMSG: .ASCID "No response"
EMSG: .ASCID "Error occurred while running test"
DMSG: .ASCID "LAN device not found"

; Miscellaneous data.

IOSB: .BLKQ 1 ; I/O status block
DEVCHAN:.BLKL 1 ; Returned port number
LANDSC: .ASCID 'EWA0' ; Device to use for test

;***
;
; Start of code
;
;***

 .PSECT CODE,EXE,NOWRT,PAGE
 .ENTRY START,^M<>

; Assign a port to the LAN device.

 $ASSIGN_S DEVNAM=LANDSC,CHAN=DEVCHAN
 BLBS R0,10$; Branch if succeeded
 MOVAL DMSG,R9 ; Get address of error message
 BRW EXIT ; Print message and exit

; Set up the port's characteristics.

10$: MOVAL EMSG,R9 ; Assume error message address
 $QIOW_S FUNC=#<IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP>,-
 CHAN=DEVCHAN,IOSB=IOSB,-
 P2=#SETPARMDSC
 BLBC R0,20$; Branch if failed
 MOVZWL IOSB,R0 ; Get status from IOSB
 BLBS R0,30$; Branch if succeeded
20$: BRW EXIT ; Print message and exit

; Issue the SENSEMODE QIO to get our physical address for the loopback
; message.

30$: $QIOW_S FUNC=#<IO$_SENSEMODE!IO$M_CTRL>,-
 CHAN=DEVCHAN,IOSB=IOSB,-
 P2=#SENSEDSC
 BLBC R0,20$; Branch if failed
 MOVZWL IOSB,R0 ; Get status from IOSB
 BLBC R0,20$; Branch if failed

; Locate the PHA parameter in the SENSEMODE buffer and copy it into the
; LOOPBACK transmit message. The PHA parameter is a string parameter.
409

Local Area Network (LAN) Device Drivers
Application Programming Notes
 MOVAB SENSEBUF,R0 ; Start at beginning of buffer
40$: BBS #^XC,(R0),50$; Branch if a string parameter
 ADDL #6,R0 ; Skip over longword parameter
 BRB 40$; Check next parameter
50$: BICW3 #^XF000,(R0)+,R1 ; Get type field less flag bits
 CMPW R1,#NMA$C_PCLI_PHA ; Is this the PHA parameter?
 BEQL 60$; Branch if so
 ADDW (R0)+,R0 ; Skip over string parameter
 BRW 40$; Check next parameter
.IF NOT_DEFINED VAX
 .DISABLE FLAGGING
.ENDC
60$: MOVL 2(R0),FORW ; Copy our address to the loopback
 MOVW 6(R0),FORW+4 ; packet we are about to transmit
.IF NOT_DEFINED VAX
 .ENABLE FLAGGING
.ENDC

; Transmit the loopback message.

 $QIOW_S FUNC=#IO$_WRITEVBLK,CHAN=DEVCHAN,IOSB=IOSB,-
 P1=XMTBUF,P2=#XMTBUFLEN,P5=#XMTP5
 BLBC R0,70$; Branch if failed
 MOVZWL IOSB,R0 ; Get status from IOSB
 BLBS R0,80$; Branch if succeeded
70$: BRW EXIT ; Print message and exit

; Look for a response. We use the NOW function modifier on the READ so that
; we don't hang here waiting forever if there is no response. If there is no
; response in 1000 receive attempts, we declare no response status.

80$: MOVL #1000,R2 ; Check 1000 times
90$: $QIOW_S FUNC=#IO$_READVBLK!IO$M_NOW,CHAN=DEVCHAN,IOSB=IOSB,-
 P1=RCVBUF,P2=#RCVBUFLEN,P5=#RCVP5
 BLBC R0,EXIT ; Branch if failed
 MOVZWL IOSB,R0 ; Get status from IOSB
 BLBS R0,100$; Branch if succeeded
 CMPL R0,#SS$_ENDOFFILE ; Was there just no message available?
 BNEQ EXIT ; Branch if failed
 SOBGTR R2,90$; Try again

; No response in 1000 attempts.

 MOVAL LMSG,R9 ; Get address of lost message
 BRW EXIT ; Print message and exit

; Received a message.

100$: MOVAL GMSG,R9 ; Get address of success message

; The test is done. Call LIB$PUT_OUTPUT to display the test status.

EXIT: PUSHL R9 ; P1 = Address of message to print
 CALLS #1,G^LIB$PUT_OUTPUT ; Print the message
 $EXIT_S ; Exit

 .END START
410

Local Area Network (LAN) Device Drivers
Application Programming Notes
Example 9-3 LAN802.C Local Area Network Programming Example

/***
 * LAN Sample Test Program
 *
 * This LAN test program sends a MOP loopback message to the Loopback Assistant
 * Multicast address and waits for a response. The program uses the LAN device
 * EWA0. To use a different device, change the device name in the program or
 * define the desired lan device as EWA0.
 *
 * To build on VAX:
 * $ CC LAN802E
 * $ LINK LAN802E,SYS$INPUT:/OPT
 * SYS$SHARE:VAXCRTL.EXE/SHARE
 *
 * Note: NMADEF.H must be supplied containing definitions for:
 *
 * #define NMA$C_PCLI_FMT 2770
 * #define NMA$C_PCLI_PID 2774
 * #define NMA$C_PCLI_PHA 2820
 * #define NMA$C_LINFM_802E 0
 *
 * To build on Alpha, I64:
 * $ CC LAN802E+SYS$LIBRARY:SYS$LIB_C.TLB/LIB
 * $ LINK LAN802E
 *
 * To run:
 * $ RUN LAN802E
 ***/

#include <ctype> /* Character type classification macros/routines */
#include <descrip> /* For VMS descriptor manipulation */
#include <iodef> /* I/O function code definitions */
#include "nmadef.h" /* LAN parameter definitions */
#include <ssdef> /* System service return status code definitions */
#include <starlet> /* System library routine prototypes */
#include <stdio> /* ANSI C Standard Input/Output */
#include <stdlib> /* General utilities */
#include <string> /* String handling */
#include <stsdef> /* VMS status code definitions */

#define $SUCCESS(status) (((status) & STS$M_SUCCESS) == SS$_NORMAL)
#define $FAIL(status) (((status) & STS$M_SUCCESS) != SS$_NORMAL)

#pragma nomember_alignment

struct parm_802e
{
 short pcli_fmt;/* Format - 802E */
 int fmt_value;
 short pcli_pid; /* Protocol ID - 08-00-2B-90-00 */
 short pid_length;
 char pid_value[5];
} setparm_802e = {NMAC_PCLI_FMT, NMAC_LINFM_802E,
 NMA$C_PCLI_PID, 5, 8,0,0x2B,0x90,0};

struct setparmdsc
{
 int parm_len;
 void *parm_buffer;
};

struct setparmdsc setparmdsc_loop = {
 sizeof(setparm_802e),&setparm_802e};
411

Local Area Network (LAN) Device Drivers
Application Programming Notes
struct p5_param /* P5 Receive header buffer */
{
 unsigned char da[6];
 unsigned char sa[6];
 char misc[20];
};

struct iosb /* IOSB structure */
{
 short w_err; /* Completion status */
 short w_xfer_size; /* Transfer size */
 short w_addl; /* Additional status */
 short w_misc; /* Miscellaneous */
};

struct ascid /* Device descriptor for assign */
{
 short w_len;
 short w_info;
 char *a_string;
} devdsc = {4,0,"EWA0"};

struct iosb qio_iosb; /* IOSB structure */
struct p5_param rcv_param; /* Receive header structure */
struct p5_param xmt_param = { /* Transmit header structure */
 0xCF,0,0,0,0,0};
char rcv_buffer[512]; /* Receive buffer */
char xmt_buffer[20] = { /* Transmit buffer */
 0,0, /* Skip count */
 2,0, /* Forward request */
 0,0,0,0,0,0, /* Forward address */
 1,0, /* Reply request */
 0,0};

char sense_buffer[512]; /* Sensemode buffer */

struct setparmdsc sensedsc_loop = {sizeof(sense_buffer),sense_buffer};

/*
 * MAIN
 */

main(int argc, char *argv[])
{
 int i, j; /* Scratch */
 int chan; /* Channel assigned */
 int status; /* Return status */

 /*
 * Start a channel.
 */

 status = sys$assign(&devdsc,&chan,0,0);
 if ($FAIL(status)) exit(status);
 status =
sys$qiow(0,chan,IO$_SETMODE|IO$M_CTRL|IO$M_STARTUP,&qio_iosb,0,0,0,&setparmdsc_loop,0,0,0,0);
 if ($SUCCESS(status)) status = qio_iosb.w_err;
 if ($FAIL(status)) {
 printf("IOSB addl status = %04X %04X\n",qio_iosb.w_addl,qio_iosb.w_misc);
 exit(status);
 }

 /*
412

Local Area Network (LAN) Device Drivers
Application Programming Notes
 * Issue the SENSEMODE QIO to get our physical address for the loopback message.
 */

 status = sys$qiow(0,chan,IO$_SENSEMODE|IO$M_CTRL,&qio_iosb,0,0,0,&sensedsc_loop,0,0,0,0);
 if ($SUCCESS(status)) status = qio_iosb.w_err;
 if ($FAIL(status)) {
 printf("IOSB addl status = %04X %04X\n",qio_iosb.w_addl,qio_iosb.w_misc);
 exit(status);
 }

 /*
 * Locate the PHA parameter in the SENSEMODE buffer and copy it into the
 * LOOPBACK transmit message. The PHA parameter is a string parameter.
 */

 j = 0;
 while (j < sizeof(sense_buffer)) {
 i = (sense_buffer[j] + (sense_buffer[j+1] << 8));
 if (0x1000 & i) {
 if ((i & 0xFFF) == NMA$C_PCLI_PHA) {
 memcpy(&xmt_buffer[4],&sense_buffer[j+4],6);
 break;
 }
 j += (sense_buffer[j+2] + (sense_buffer[j+3] << 8)) + 4;
 } else
 j += 6; /* Skip over longword parameter */
 }

 /*
 * Transmit the loopback message.
 */

 status = sys$qiow(0,chan,IO$_WRITEVBLK,&qio_iosb,0,0,&xmt_buffer[0],
 sizeof(xmt_buffer),0,0,&xmt_param,0);
 if ($SUCCESS(status)) status = qio_iosb.w_err;
 if ($FAIL(status)) {
 printf("IOSB addl status = %04X %04X (on transmit)\n",
 qio_iosb.w_addl,qio_iosb.w_misc);
 exit(status);
 }

 /*
 * Look for a response. We use the NOW function modifier on the READ so that
 * we don't hang here waiting forever if there is no response. If there is no
 * response in 1000 receive attempts, we declare no response status.
 */

 for (i=0;i<1000;i++) {
 status = sys$qio(0,chan,IO$_READVBLK|IO$M_NOW,&qio_iosb,0,0,&rcv_buffer[0],
 sizeof(rcv_buffer),0,0,rcv_param,0);
 if ($SUCCESS(status)) status = qio_iosb.w_err;
 if ($SUCCESS(status)) break;
 }
 if ($SUCCESS(status))
 printf("Successful test\n");
 else
 printf("No response\n");

}

413

Local Area Network (LAN) Device Drivers
Application Programming Notes
414

Optional Features for Improving I/O Performance
Fast I/O
10 Optional Features for Improving I/O
Performance

Two features of OpenVMS Alpha and I64 provide dramatically improved I/O performance: Fast I/O and Fast
Path. These features are designed to promote OpenVMS as a leading platform for database systems.
Performance improvement results from reducing the CPU cost per I/O request and improving symmetric
multiprocessing (SMP) scaling of I/O operations. The CPU cost per I/O is reduced by optimizing code for
high-volume I/O and by using better SMP CPU memory cache. SMP scaling of I/O is increased by reducing
the number of spinlocks taken per I/O and by substituting finer-granularity spinlocks for global spinlocks.

The improvements follow a natural division that already exists between the device-independent and
device-dependent layers in the OpenVMS I/O subsystem. The device-independent overhead is addressed by
Fast I/O, which is a set of lean system services that can substitute for certain $QIO operations. Using these
services requires some coding changes in existing applications, but the changes are usually modest and well
contained. The device-dependent overhead is addressed by Fast Path, which is an optional performance
feature that creates a “fast path” to the device. It requires no application changes.

Fast I/O and Fast Path can be used independently; however, together they can provide a 45 percent reduction
in CPU cost per I/O on uniprocessor systems and a 52 percent reduction on multiprocessor systems.

10.1 Fast I/O
Fast I/O is a set of three system services that were developed as a $QIO alternative built for speed. These
services are not a $QIO replacement; $QIO is unchanged, and $QIO interoperation with these services is fully
supported. Rather, the services substitute for a subset of $QIO operations, namely, only the high-volume
read/write I/O requests.

The Fast I/O services support 64-bit addresses for data transfers to and from disk and tape devices.

While Fast I/O services are available on OpenVMS VAX, the performance advantage applies only to
OpenVMS Alpha and I64. OpenVMS VAX has a run-time library (RTL) compatibility package that translates
the Fast I/O service requests to $QIO system service requests, so one set of source code can be used on VAX,
Alpha, and I64 systems.

10.1.1 Fast I/O Benefits

The performance benefits of Fast I/O result from streamlining high-volume I/O requests. The Fast I/O system
service interfaces are optimized to avoid the overhead of general-purpose services. For example, I/O request
packets (IRPs) are now permanently allocated and used repeatedly for I/O rather than allocated and
deallocated anew for each I/O.

The greatest benefits stem from having user data buffers and user I/O status structures permanently locked
down and mapped using system space. This allows Fast I/O to do the following:

• For direct I/O, avoid per-I/O buffer lockdown or unlocking.

• For buffered I/O, avoid allocation and deallocation of a separate system buffer, because the user buffer is
always addressable.
415

Optional Features for Improving I/O Performance
Fast I/O
• Complete Fast I/O operations at IPL 8, thereby avoiding the interrupt chaining usually required by the
more general-purpose $QIO system service. For each I/O, this eliminates the IPL 4 IOPOST interrupt and
a kernel AST.

In total, Fast I/O services eliminate four spinlock acquisitions per I/O (two for the MMG spinlock and two for
the SCHED spinlock). The reduction in CPU cost per I/O is 20 percent for uniprocessor systems and 10
percent for multiprocessor systems.

10.1.2 Using Buffer Objects

The lockdown of user-process data structures is accomplished by buffer objects. A “buffer object” is process
memory whose physical pages have been locked in memory and double-mapped into system space. After
creating a buffer object, the process remains fully pageable and swappable and the process retains normal
virtual memory access to its pages in the buffer object.

If the buffer object contains process data structures to be passed to an OpenVMS system service, the
OpenVMS system can use the buffer object to avoid any probing, lockdown, and unlocking overhead
associated with these process data structures. Additionally, double-mapping into system space allows the
OpenVMS system direct access to the process memory from system context.

To date, only the $QIO system service and the Fast I/O services have been changed to accept buffer objects.
For example, a buffer object allows a programmer to eliminate I/O memory management overhead. On each
I/O, each page of a user data buffer is probed and then locked down on I/O initiation and unlocked on I/O
completion. Instead of incurring this overhead for each I/O, it can be done once at buffer object creation time.
Subsequent I/O operations involving the buffer object can completely avoid this memory management
overhead.

Two system services can be used to create and delete buffer objects, respectively, and can be called from any
access mode. To create a buffer object, the $CREATE_BUFOBJ system service is called. This service expects
as inputs an existing process memory range and returns a buffer handle for the buffer object. The buffer
handle is an opaque identifier used to identify the buffer object on future I/O requests. The
$DELETE_BUFOBJ system service is used to delete the buffer object and accepts as input the buffer handle.
Although image rundown deletes all existing buffer objects, it is good form for the application to clean up
properly.

A 64-bit equivalent version of the $CREATE_BUFOBJ system service ($CREATE_BUFOBJ_64) can be used
to create buffer objects from the new 64-bit P2 or S2 regions. The $DELETE_BUFOBJ system service can be
used to delete 32-bit or 64-bit buffer objects.

Buffer objects require system management. Because buffer objects tie up physical memory, extensive use of
buffer objects requires system management planning. All the bytes of memory in the buffer object are
deducted from a systemwide system parameter called MAXBOBMEM (maximum buffer object memory).
System managers must set this parameter correctly for the application loads that run on their systems.

The MAXBOBMEM parameter defaults to 100 Alpha pages, but for applications with large buffer pools it will
likely be set much larger. To prevent user-mode code from tying up excessive physical memory, user-mode
callers of $CREATE_BUFOBJ must have a new system identifier, VMS$BUFFER_OBJECT_USER,
assigned. This new identifier is automatically created in an OpenVMS Version 7.0 upgrade if the file
SYS$SYSTEM:RIGHTSLIST.DAT is present. The system manager can assign this identifier with the DCL
command SET ACL command to a protected subsystem or application that creates buffer objects from user
mode. It may also be appropriate to grant the identifier to a particular user with the Authorize utility
command GRANT/IDENTIFIER (for example, to a programmer who is working on a development system).

There is currently a restriction on the type of process memory that can be used for buffer objects. Global
section memory cannot be made into a buffer object.
416

Optional Features for Improving I/O Performance
Fast I/O
10.1.3 Differences Between Fast I/O Services and $QIO

The precise definition of high-volume I/O operations optimized by Fast I/O services is important. I/O that does
not comply with this definition either is not possible with the Fast I/O services or is not optimized. The
characteristics of the high-volume I/O optimized by Fast I/O services can be seen by contrasting the operation
of Fast I/O system services to the $QIO system service as follows:

• The $QIO system service I/O status block (IOSB) is replaced by an I/O status area (IOSA) that is larger
and quadword aligned. The transfer byte count returned in IOSA is 64 bits, and the field is aligned on a
quadword boundary. Unlike the IOSB, which is optional, the IOSA is required.

• User data buffers must be aligned to a 512-byte boundary.

• All user process structures passed to the Fast I/O system services must reside in buffer objects. This
includes the user data buffer and the IOSA.

• Only transfers that are multiples of 512 bytes are supported.

• Only the following function codes are supported: IO$_READVBLK, IO$_READLBLK, IO$_WRITEVBLK,
and IO$_WRITELBLK.

• Only I/O to disk and tape devices is optimized for performance.

• No event flags are used with Fast I/O services. If application code must use an event flag in relation to a
specific I/O, then the Event No Flag EFN (EFN$C_ENF) can be used. This event flag is a no-overhead
EFN that can be used in situations when an EFN is required by a system service interface but has no
meaning to an application.

For example, Fast I/O services do not use EFNs, so the application cannot specify a valid EFN associated
with the I/O to the $SYNCH system service with which to synchronize I/O completion. To resolve this
issue, the application can call the $SYNCH system service passing as arguments: EFN$C_ENF and the
address of the appropriate IOSA. Specifying EFN$C_ENF signifies to $SYNCH that no EFN is involved
in the synchronization of the I/O. Once the IOSA has been written with a status and byte count, return
from the $SYNCH call occurs. The IOSA is now the central point of synchronization for a given Fast I/O
(and is the only way to determine whether the asynchronous I/O is complete).

• To minimize arguments passing overhead to these services, the $QIO parameters P3 through P6 are
replaced by a single argument that is passed directly by the Fast I/O system services to device drivers. For
disk-like devices, this argument is the media address (VBN or LBN) of the transfer. For drivers with
complex parameters, this argument is the address of a descriptor or of a buffer specific to the device and
function.

• Segmented transfers are supported by Fast I/O but are not fully optimized. There are two major causes of
segmented transfers. The first is disk fragmenting. While this can be an issue, it is assumed that sites
seeking maximum performance have eliminated the overhead of segmenting I/O due to fragmentation.

A second cause of segmenting is issuing an I/O that exceeds the port's maximum limit for a single
transfer. Transfers beyond the port maximum limit are segmented into several smaller transfers. Some
ports limit transfers to 64KB. If the application limits its transfers to less than 64KB, this type of
segmentation should not be a concern.

10.1.4 Using Fast I/O Services

The three Fast I/O system services are:

• $IO_SETUP—-Sets up an I/O

• $IO_PERFORM[W]—-Performs an I/O request

• $IO_CLEANUP—Cleans up an I/O request
417

Optional Features for Improving I/O Performance
Fast I/O
10.1.4.1 Using Fandles

A key concept behind the operation of the Fast I/O services is the file handle or fandle. A fandle is an opaque
token that represents a “setup” I/O. A fandle is needed for each I/O outstanding from a process.

All possible setup, probing, and validation of arguments is performed off the mainline code path during
application startup with calls to the $IO_SETUP system service. The I/O function, the AST address, the
buffer object for the data buffer, and the IOSA buffer object are specified on input to $IO_SETUP service, and
a fandle representing this setup is returned to the application.

To perform an I/O, the $IO_PERFORM system service is called, specifying the fandle, the channel, the data
buffer address, the IOSA address, the length of the transfer, and the media address (VBN or LBN) of the
transfer.

If the asynchronous version of this system service, $IO_PERFORM, is used to issue the I/O, then the
application can wait for I/O completion using a $SYNCH specifying EFN$C_ENF and the appropriate IOSA.
The synchronous form of the system service, $IO_PERFORMW, is used to issue an I/O and wait for it to
complete. Optimum performance comes when the application uses AST completion; that is, the application
does not issue an explicit wait for I/O completion.

To clean up a fandle, the fandle can be passed to the $IO_CLEANUP system service.

10.1.4.2 Modifying Existing Applications

Modifying an application to use the Fast I/O services requires a few source-code changes. For example:

1. A programmer adds code to create buffer objects for the IOSAs and data buffers.

2. The programmer changes the application to use the Fast I/O services. Not all $QIOs need to be converted.
Only high-volume read/write I/O requests should be changed.

A simple example is a “database writer” program, which writes modified pages back to the database.
Suppose the writer can handle up to 16 simultaneous writes. At application startup, the programmer
would add code to create 16 fandles by 16 $IO_SETUP system service calls.

3. In the main processing loop within the database writer program, the programmer replaces the $QIO calls
with $IO_PERFORM calls. Each $IO_PERFORM call uses one of the 16 available fandles. While the I/O
is in progress, the selected fandle is unavailable for use with other I/O requests. The database writer is
probably using AST completion and recycling fandle, data buffer, and IOSA once the completion AST
arrives.

If the database writer routine cannot return until all dirty buffers are written (that is, it must wait for all
I/O completions), then $IO_PERFORMW can be used. Alternatively $IO_PERFORM calls can be followed
by $SYNCH system service calls passing the EFN$C_ENF argument to await I/O completions.

The database writer will run faster and scale better because I/O requests now use less CPU time.

4. When the application exits, an $IO_CLEANUP system service call is done for each fandle returned by a
prior $IO_SETUP system service call. Then the buffer objects are deleted. Image rundown performs
fandle and buffer object cleanup on behalf of the application, but it is good form for the application to
clean up properly.

10.1.4.3 I/O Status Area (IOSA)

The central point of synchronization for a given Fast I/O is its IOSA. The IOSA replaces the $QIO system
service's IOSB argument. Larger than the IOSB argument, the byte count field in the IOSA is 64 bits and
quadword aligned. Unlike the $QIO system service, Fast I/O services require the caller to supply an IOSA and
require the IOSA to be part of a buffer object.
418

Optional Features for Improving I/O Performance
Fast I/O
The IOSA context field can be used in place of the $QIO system service ASTPRM argument. The $QIO
ASTPRM argument is typically used to pass a pointer back to the application on the completion AST to locate
the user context needed for resuming a stalled user-thread; however, for the $IO_PERFORM system service,
the ASTPRM on the completion AST is always the IOSA. Because there is no user-settable ASTPRM, an
application can store a pointer to the user-thread context for this I/O in the IOSA context field and retrieve
the pointer from the IOSA in the completion AST.)

10.1.4.4 $IO_SETUP

The $IO_SETUP system service performs the setup of an I/O and returns a unique identifier for this setup
I/O, called a fandle, to be used on future I/Os. The $IO_SETUP arguments used to create a given fandle
remain fixed throughout the life of the fandle. This has implications for the number of fandles needed in an
application. For example, a single fandle can be used only for reads or only for writes. If an application module
has up to 16 simultaneous reads or writes pending, then potentially 32 fandles are needed to avoid any
$IO_SETUP calls during mainline processing.

The $IO_SETUP system service supports an expedite flag, which is available to boost the priority of an I/O
among the other I/O requests that have been handed off to the controller. Unrestrained use of this argument
is useless, because if all I/O is expedited, nothing is expedited. Note that this flag requires the use of ALTPRI
and PHY_IO privilege.

10.1.4.5 $IO_PERFORM[W]

The $IO_PERFORM[W] system service accepts a fandle and five other variable I/O parameters for the
high-performance I/O operation. The fandle remains in use to the application until the $IO_PERFORMW
returns or if $IO_PERFORM is used until a completion AST arrives.

The CHAN argument to the fandle contains the data channel returned to the application by a previous file
operation. This argument allows the application the flexibility of using the same fandle for different open files
on successive I/Os; however, if the fandle is used repeatedly for the same file or channel, then an internal
optimization with $IO_PERFORM is taken.

Note that $IO_PERFORM was designed to have no more than six arguments to take advantage of the HP
OpenVMS Calling Standard, which specifies that calls with up to six arguments can be passed entirely in
registers.

10.1.4.6 $IO_CLEANUP

A fandle can be cleaned up by passing the fandle to the $IO_CLEANUP system service.

10.1.4.7 Fast I/O FDT Routine (ACP_STD$FASTIO_BLOCK)

Because $IO_PERFORM supports only four function codes, this system service does not use the generalized
function decision table (FDT) dispatching that is contained in the $QIO system service. Instead,
$IO_PERFORM uses a single vector in the driver dispatch table called DDT$PS_FAST_FDT for the four
supported functions. The DDT$PS_FAST_FDT field is a FDT routine vector that indicates whether the device
driver called by $IO_PERFORM is set up to handle Fast I/O operations. A nonzero value for this field
indicates that the device driver supports Fast I/O operations and that the I/O can be fully optimized.

If the DDT$PS_FAST_FDT field is zero, then the driver is not set up to handle Fast I/O operations. The
$IO_PERFORM system service tolerates such device drivers, but the I/O is only slightly optimized in this
circumstance.

The OpenVMS disk and tape drivers that ship as part of OpenVMS Version 7.0 have added the following line
to their driver dispatch table (DDTAB) macro:

FAST_FDT=ACP_STD$FASTIO_BLOCK,- ; Fast-IO FDT routine
419

Optional Features for Improving I/O Performance
Fast Path (Alpha and I64 Only)
This line initializes the DDT$PS_FAST_FDT field to the address of the standard Fast I/O FDT routine,
ACP_STD$FASTIO_BLOCK.

If you have a disk or tape device driver that can handle Fast I/O operations, you can add this DDTAB macro
line to your driver. If you cannot use the standard Fast I/O FDT routine, ACP_STD$FASTIO_BLOCK, you
can develop your own based on the model presented in this routine.

10.1.5 Additional Information

Refer to the HP OpenVMS System Services Reference Manualfor additional information about the following
Fast I/O system services:

• $CREATE_BUFOBJ

• $DELETE_BUFOBJ

• $CREATE_BUFOBJ_64

• $IO_SETUP

• $IO_PERFORM

• $IO_CLEANUP

To see a sample program that demonstrates the use of buffer objects and the Fast I/O system services, refer to
the IO_PERFORM.C program in the SYS$EXAMPLES directory.

10.2 Fast Path (Alpha and I64 Only)
Fast Path is an optional feature designed to improve I/O performance. There are three factors which serve to
throttle performance for OpenVMS on SMP systems.

1. Time spent by a CPU waiting for memory to be faulted into its cache.

2. Contention for the SCS/IOLOCK8 spinlock.

3. Contention for the primary CPU on which all I/O completion is processed.

Fast Path addresses these factors as follows:

1. Select a secondary CPU for a given device or port. and cause all I/O for that device to originate and
complete on that CPU. This offloads the primary CPU and reduces cache faults.

2. Replace dependence upon SCS/IOLOCK8 spinlock by providing a port-specific spinlock whenever
possible.

3. For the most common I/O requests, preallocate resources and provide an optimized path through the
mainline code.

Using Fast Path features does not require source-code changes. It does require major changes to device
drivers, so it has been implemented only for the newer high-performance devices. These currently service
many CI, Fibre Channel, parallel SCSI, and LAN devices.
420

Optional Features for Improving I/O Performance
Fast Path (Alpha and I64 Only)
Table 10-1 lists the supported ports for each OpenVMS Alpha version.

Prior to OpenVMS Alpha Version 7.3-1, all hardware interrupts took place on the primary CPU. Interrupts
from Fast Path enabled devices would have to be redirected from the primary CPU to a ''preferred'' CPU.
However, this redirection still involved the primary CPU, and also incurred interprocessor overhead.

Starting with OpenVMS Alpha Version 7.3-1, hardware interrupts that are targetted for a ''preferred'' CPU go
directly to the ''preferred'' CPU, thereby eliminating any I/O processing in the primary CPU. This major Fast
Path enhancement is known as distributed interrupts.

NOTE This feature is available on Fibre Channel, CI, and some SCSI ports on AlphaServer DS20,
ES40/45, and GS series systems.

For more information about Fibre Channel, SCSI, and CI configurations, refer to Guidelines for OpenVMS
Cluster Configurations.

10.2.1 Using Fast Path Features

Preferred CPU Selection

All Fast Path ports are assignable to CPUs. You can set a system parameter specifying the set of CPUs that
are allowed to serve as preferred CPUs. This set is called the set of allowable CPUs. At any point in time,
the set of CPUs that currently can have ports assigned to them, called the set of usable CPUs, is the
intersection of the set of allowable CPUs, and the current set of running CPUs.

Each Fast Path Port is initially assigned to a CPU by the FASTPATH_SERVER process that runs at port
initialization time. This process executes an automatic assignment algorithm that spreads Fast Path ports
evenly among the usable CPUs. The FASTPATH_SERVER process also runs whenever a secondary CPU is
started, and whenever the set of system parameters specifying the allowable CPUs is changed.

If the primary CPU is in the set of allowable CPUs, the initial distribution will be biased against the primary
CPU in that a port will only be assigned to the primary after ports have been assigned to each of the other
usable CPUs.

To identify a device or port's current preferred CPU, you can use either $GETDVI or the SHOW
DEVICE/FULL command. To identify the Fast Path ports currently assigned to a CPU, you use the SHOW
CPU /FULL command.

You can directly assign a Fast Path port to a CPU, or request the system to automatically select the port's
preferred CPU from a specific set of CPUs. To do this, you either issue a $QIO or use the SET
DEVICE/PREFERRED_CPU command. This will also set the port's User Preferred CPU to be the selected
CPU.

Table 10-1 Supported Ports for Each Version of OpenVMS Alpha and I64

Version Supported Ports

7.3-2 SMART Array 53xx, many LAN devices

7.3-1 KZPEA

7.3 CIXCD, CIPCA, KGPSA, KZPBA

7.1 CIXCD, CIPCA

7.0 CIXCD
421

Optional Features for Improving I/O Performance
Fast Path (Alpha and I64 Only)
You can clear the port's User Preferred CPU by issuing either a $QIO, or by using the SET
DEVICE/NOPREFERRED CPU DCL command.

You can redistribute the system assignable Fast Path ports across a subset of the set of usable CPUs by
calling the $IO_FASTPATH system service.

Optimizing Application Performance

Processes running on a port's preferred CPU have an inherent advantage when issuing I/O to a port in that
the overhead to assign the I/O to the preferred CPU can be avoided. An application process can use the
$PROCESS_AFFINITY system service to assign itself to the preferred CPU of the device to which the
majority of its I/O is sent.

With proper attention to assignment, a process's execution need never leave the preferred CPU. This presents
a scalable process and I/O scheme for maximizing multiprocessor system operation. Like most RISC systems,
Alpha system performance is highly dependent on the performance of CPU memory caches. Process
assignment and preferred CPU assignment are two keys to minimizing the memory stalls in the application
and in the operating system, thereby maximizing multiprocessor system throughput.

10.2.2 Managing Fast Path

This section describes how to manage Fast Path.

10.2.2.1 Fast Path System Parameters

There are three FAST_PATH system parameters:

• FAST_PATH

• FAST_PATH_PORTS

• IO_PREFER_CPUS

These parameters can be used to control Fast Path as follows:

FAST_PATH FAST_PATH is a static system parameter that enables (1) or disables (0)
the Fast Path performance features for all Fast Path-capable ports.

Fast Path is enabled by default.

FAST_PATH_PORTS FAST_PATH_PORTS is a 32-bit mask. Once Fast Path has been enabled
by setting FAST_PATH to 1, FAST_PATH_PORTS can be used to
selectively disable Fast Path for some specific adapter types.
422

Optional Features for Improving I/O Performance
Fast Path (Alpha and I64 Only)
The value of the FAST_PATH_PORTS system parameter is the sum of the
values of the bits that have been set. Table 10-2 describes thebit mask:

The remaining bits are reserved for possible future adapter types.

The default setting for FAST_PATH_PORTS is 0; therefore, all supported
ports are enabled.

Note that CI drivers are not controlled by FAST_PATH_PORTS. Fast Path
for CI is enabled and disabled exclusively by the FAST_PATH system
parameter.

IO_PREFER_CPUS IO_PREFER_CPUS is a dynamic system parameter that controls the set
of CPUs available for use as Fast Path preferred CPUs.

IO_PREFER_CPUS is a CPU bit mask specifying the CPUs that are
allowed to serve as preferred CPUs and thus can be assigned a Fast Path
port. CPUs whose bit is set in the IO_PREFER_CPUS bit mask are
enabled for Fast Path port assignment. IO_PREFER_CPUS defaults to -1,
which specifies that all CPUs are allowed to be assigned Fast Path ports.

You may want to disable the primary CPU from serving as a preferred
CPU by clearing its bit in IO_PREFER_CPUS. This will reserve the
primary for use by non-Fast Path IO operations.

Changing the value of IO_PREFER_CPUS causes the
FASTPATH_SERVER process to execute the automatic assignment
algorithm that spreads Fast Path ports evenly among the new set of
usable CPUs.

10.2.2.2 Identifying and Setting a Port's Preferred CPU

Following are the commands used to identify and set a preferred CPU for a port.

Table 10-2 FAST_PATH_PORTS Bit Masks

Bit Mask Description

0 00000001 0 = Fast Path is ENABLED for KZPBA ports when FAST_PATH is set to 1.

1 = Fast Path is DISABLED for KZPBA ports.

1 00000002 0 = Fast Path is ENABLED for KGPSA ports when FAST_PATH is set to 1.

1 = Fast Path is DISABLED for KGPSA ports.

2 00000004 0 = Fast Path is ENABLED for KZPEA ports when FAST_PATH is set to 1.

1 = Fast Path is DISABLED for KZPEA ports.

3 00000008 0 = Fast Path is ENABLED for LAN ports when FAST_PATH is set to 1.

1 = Fast Path is DISABLED for LAN ports.

4 00000010 0 = Fast Path is ENABLED for KZPDC ports when FAST_PATH is set to 1.

1 = Fast Path is DISABLED for KZPDC ports.
423

Optional Features for Improving I/O Performance
Fast Path (Alpha and I64 Only)
DCL SHOW DEVICE/FULL or $GETDVI DVI$_PREFERRED_CPU

To identify the preferred CPU for any Fast Path-capable device when Fast
Path is enabled, use the DCL command SHOW DEVICE/FULL to display
— whether or not the device supports Fast Path — the current preferred
CPU ID and, if set, the User Preferred CPU ID for a port or disk device.

Alternatively, the $GETDVI system service or the DCL F$GETDVI lexical
function will return the preferred CPU for a given device or file. The
$GETDVI system service item code is DVI$_PREFERRED_CPU, and the
F$GETDVI item code string argument is PREFERRED_CPU. The return
argument is a 32-bit CPU bit mask with a bit set indicating the preferred
CPU. A return argument containing a bit mask of zero indicates that no
preferred CPU exists, either because Fast Path is disabled or the device is
not a Fast Path-capable device. The return argument serves as a CPU bit
mask input argument to the $PROCESS_AFFINITY system service. The
argument can be used to assign an application process to the optimal
preferred CPU.

For an application seeking optimal Fast Path benefits, you can code each
application process to identify and run on the preferred CPU where the
majority of the process' I/O activity occurs.

A high-availability feature of OpenVMS Cluster Systems is that
dual-pathed devices automatically fail over to a secondary path, if the
primary path becomes inoperable. Because a Fast Path device could fail
over to another path or port, and thereby, to another preferred CPU, an
application should occasionally reissue the $GETDVI in a timer thread to
check that process assignment is optimal.

DCL SHOW CPU /FULL You can use this DCL command to identify whether a CPU is enabled for
use as a preferred CPU, and the current set of ports assigned to that CPU.

DCL SET /PREFERRED_CPU and /NOPREFERRED_CPU

These commands allow you to specify a CPU or a set of candidate CPUs
from which the operating system will choose the CPU to assign to the Fast
Path port. The chosen CPU is called the preferred CPU for this Fast Path
port. The Fast Path port's interrupt I/O completion processing and I/O
initiation processing will be performed on this preferred CPU.

In addition to selecting the preferred CPU, the User Preferred CPU will be
set for this port. Setting the User Preferred CPU prevents the port from
being reassigned to another CPU unless the User Preferred CPU is being
stopped. The qualifier can be negated. When the /NOPREFERRED_CPUS
qualifier is specified, the User Preferred CPU will be cleared for the port,
but it still remains a Fast Path port, and the current preferred CPU will
not be changed.

If both /PREFERRED_CPUS and /NOPREFERRED_CPUS are specified
on the same command line, /NOPREFERRED_CPUS is ignored.

$QIO IO$_SETPRFPATH ! IO$M_PREFERRED_CPU [!IO$M_SYS_ASSIGNABLE]
424

Optional Features for Improving I/O Performance
Fast Path (Alpha and I64 Only)
You can change the assignment of a Fast Path port to a CPU by issuing a
$QIO IO$_SETPRFPATH (Set Preferred Path) to the port device, for
example, PNA0. The IO$M_PREFERRED_CPU modifier must be set, and
the $QIO argument P1 must be set to either 0 or the address of a 32-bit
CPU bit mask with a bit set indicating the new preferred CPU. On return
from the I/O, the port and its associated devices are all assigned to a new
preferred CPU. Note that explicitly setting the preferred CPU overrides
any default assignment of Fast Path ports to CPUs. This interface allows
you the flexibility to load balance I/O activity over multiple CPUs in an
SMP system. This is important because I/O activity can change over the
course of a day or week.

The $QIO passes in either a set containing one or more candidate CPUs,
or 0 as a wildcard value indicating the set of usable CPUs. If the candidate
set contains only one CPU, you are explicitly designating the new
preferred CPU. If the candidate set contains multiple CPUs, you are
requesting use of the automatic preferred CPU assignment algorithm to
select a suitable CPU from the candidate set.

Including the IO$M_SYS_ASSIGNABLE modifier inhibits setting the
selected CPU as the device's User Preferred CPU.

The $QIO or the SET DEVICE/PREFERRED_CPU command will make a
best effort to assign the port to a CPU. However, it is possible for this
request to return failure for the following reasons:

• There is no intersection between the candidate set and the node's set
of usable CPUs.

• There is resource contention. If after a reasonable effort the request is
unable to acquire a key system resource, the request will fail. Some
key resources include Fast Path spinlock, the CPU mutex, and a CPU
transition lock.

If the $QIO or SET DEVICE/PREFERRED_CPU returns failure, you
should consider retrying either immediately or after a short delay. It is
possible that a large number of ports were being reassigned, and the
request failed due to resource contention.

$IO_FASTPATH The $IO_FASTPATH system service performs operations on the set of
Fast Path devices and CPUs enabled for Fast Path use. The
$IO_FASTPATHW system service completes synchronously. That is, it
returns after the operation is complete.

The FP$K_BALANCE_PORTS function code specifies that the system
service is to distribute the set of system assignable Fast Path ports across
the intersection of a caller-supplied set of candidate CPUs.

10.2.3 Fast Path Restrictions

Fast Path restrictions include the following:

• Only high-volume I/Os are optimized.

Fast Path streamlines the operation of high-volume I/O. I/O that does not meet the definition of
high-volume is not optimized.
425

Optional Features for Improving I/O Performance
Fast Path (Alpha and I64 Only)
A high-volume Fast Path I/O is a read or write operation to a Fast Path device without special I/O
modifiers issued at a time when necessary resources have been pre-allocated and there are no
circumstances restricting I/O operations.

• Send-credits resource must be managed for DSA controllers.

Applications seeking maximum performance must ensure the availability of sufficient I/O resources.

The only I/O resource that a Fast Path user needs to be concerned about is send credits. Send credits are
extended by DSA controllers to host systems and represent the maximum number of I/Os that can be
outstanding at any given point in time. If an application sends an unlimited number of simultaneous I/Os
to a controller, it is likely that some I/O will back up waiting for send credits.

You can tell whether the send-credit limit is being exceeded by using the DCL command SHOW
CLUSTER/CONTINUOUS, followed by an ADD CONNECTIONS, CR_WAIT command. Rapidly
increasing credit-wait counts for the disk-class driver connections (a LOC_PROC_NAME name of
VMS$DISK_CL_DRVR) is a sign that an application may be incurring send-credit waits.

To ensure sufficient send credits, some controllers, like the HSC and HSJ, allow the number of send
credits to vary; however, not all controllers have this flexibility, and different controllers have different
send-credit limits. The best workaround is to know your application access patterns and look for
send-credit waits.

If the number of send credits is being exhausted on one node, then add another controller to spread the
load over multiple controllers. An alternative is to rework the application to load balance controller
activity throughout the cluster, spreading a given controller's disk load over multiple nodes and allowing
an application to exceed the send credits allotted to one node.

10.2.4 Special Considerations for Fast Path on Multi-RAD Systems

On systems supporting multiple resource affinity domains (RADs), the best performance for Fast Path ports
is usually obtained by setting the Fast Path preferred CPU assignment to a CPU within the same RAD as the
port.

The FASTPATH_SERVER restricts its distribution of ports accordingly whenever possible. If a port should be
within a RAD without available Fast Path CPUs, the system will set the preferred CPU to the primary CPU.

Because you can override this assignment by the methods described in this chapter, care should be taken that
reassignment does not sacrifice the performance improvements provided by localizing activity to a single
RAD.
426

I/O Function Codes
ACP-QIO Interface Driver
A I/O Function Codes

This appendix lists the function codes and function modifiers defined in the $IODEF macro. The arguments
for these functions are also listed.

A.1 ACP-QIO Interface Driver
This section lists the function codes and function modifiers for the ACP-QIO interface driver.

Functions Arguments Modifiers

IO$_CREATE
IO$_ACCESS
IO$_DEACCESS
IO$_MODIFY
IO$_DELETE
IO$_ACPCONTROL

P1 — FIB descriptor address

P2 — file name string address

P3 — result string length address

P4 — result string descriptor address

P5 — attribute list address

IO$M_CREATE1
IO$M_ACCESS1
IO$M_DELETE2
IO$M_DMOUNT3

1. Only for IO$_CREATE and IO$_ACCESS
2. Only for IO$_CREATE and IO$_DELETE
3. Only for IO$_ACPCONTROL

IO$_MOUNT None None

QIO Status Returns

SS$_ACCONFLICT SS$_ACPVAFUL SS$_BADATTRIB

SS$_BADCHKSUM SS$_BADFILEHDR SS$_BADFILENAME

SS$_BADFILEVER SS$_BADIRECTORY SS$_BADPARAM

SS$_BADQFILE SS$_BLOCKCNTERR SS$_CREATED

SS$_DEVICEFULL SS$_DIRFULL SS$_DIRNOTEMPTY

SS$_DUPDSKQUOTA SS$_DUPFILENAME SS$_ENDOFFILE

SS$_EXBYTLM SS$_EXDISKQUOTA SS$_FCPREADERR

SS$_FCPREWNDERR SS$_FCPSPACERR SS$_FCPWRITERR

SS$_FILELOCKED SS$_FILENUMCHK SS$_FILEPURGED

SS$_FILESEQCHK SS$_FILESTRUCT SS$_FILNOTEXP

SS$_HEADERFULL SS$_IBCERROR SS$_IDXFILEFULL
427

I/O Function Codes
Disk Drivers
A.2 Disk Drivers
This section lists the function codes and function modifiers for the disk drivers.

SS$_ILLCNTRFUNC SS$_NODISKQUOTA SS$_NOMOREFILES

SS$_NOPRIV SS$_NOQFILE SS$_NOSUCHFILE

SS$_NOTAPEOP SS$_NOTLABELMT SS$_NOTPRINTED1

SS$_NOTVOLSET SS$_OVRDSKQUOTA SS$_QFACTIVE

SS$_QFNOTACT SS$_SERIOUSEXCP SS$_SUPERSEDE

SS$_TAPEPOSLOST SS$_TOOMANYVER SS$_WRITLCK

SS$_WRONGACP

1. The second longword of the IOSB contains a job controller status code.

Functions Arguments Modifiers

IO$_READVBLK
IO$_READLBLK
IO$_READPBLK
IO$_WRITEVBLK
IO$_WRITELBLK
IO$_WRITEPBLK

P1 — buffer address

P2 — byte count P3 — disk address

IO$M_INHSEEK1
IO$M_DATACHECK2
IO$M_DELDATA3
IO$M_INHRETRY
IO$M_ERASE4

IO$_WRITECHECK P1 — buffer address

P2 — byte count P3 — disk address

None

IO$_SENSECHAR
IO$_SENSEMODE
IO$_PACKACK
IO$_AVAILABLE
IO$_UNLOAD

None None

IO$_SEARCH P1 — read/write head position None

IO$_SEEK P1 — seek to specified cylinder None

IO$_FORMAT5 P1 — RX02 density None

IO$_SETPRFPATH P1 — node or HSx name IO$_FORCEPATH

QIO Status Returns
428

I/O Function Codes
Magnetic Tape Drivers
A.3 Magnetic Tape Drivers
This section lists the function codes and function modifiers for the magnetic tape drivers.

IO$_CREATE
IO$_ACCESS
IO$_DEACCESS
IO$_MODIFY
IO$_DELETE
IO$_ACPCONTROL

P1 — FIB descriptor address

P2 — file name string address

P3 — result string length address

P4 — result string descriptor address

P5 — attribute list address

IO$M_CREATE
IO$M_ACCESS
IO$M_DELETE
IO$M_DMOUNT

1. Only for IO$_READPBLK and IO$_WRITEPBLK (not for TU58, RX01, RX02, RB02, or RL02)
2. Not for RX01 and RX02
3. Only for IO$_RWRITEPBLK on RX02
4. Only for write functions
5. Not for DSA disks

QIO Status Returns

SS$_ABORT SS$_CANCEL SS$_CTRLERR

SS$_DATACHECK SS$_DATAOVERUN SS$_DRVERR

SS$_FORCEDERR SS$_FORMAT SS$_ILLIOFUNC

SS$_IVADDR SS$_IVBUFLEN SS$_MEDOFL

SS$_NONEXDRV SS$_NORMAL SS$_OPINCOMPL

SS$_PARITY SS$_RCT SS$_RDDELDATA

SS$_TIMEOUT SS$_UNSAFE SS$_VOLINV

SS$_WASECC SS$_WRITLCK

Functions Arguments Modifiers

IO$_READVBLK
IO$_READLBLK
IO$_READPBLK

P1 — buffer address P2 —
byte count

IO$M_DATACHECK1

IO$M_INHRETRY

IO$M_REVERSE2

Functions Arguments Modifiers
429

I/O Function Codes
Magnetic Tape Drivers
IO$_WRITEVBLK
IO$_WRITELBLK
IO$_WRITEPBLK

P1 — buffer address

P2 — byte count

IO$M_DATACHECK1

IO$M_INHRETRY

IO$M_INHEXTGAP3

IO$M_NOWAIT4

IO$M_ERASE5

IO$_SETMODE
IO$_SETCHAR

P1 — characteristics buffer
address

P2 — characteristics buffer
length6

IO$_CREATE IO$_ACCESS
IO$_DEACCESS
IO$_MODIFY
IO$_ACPCONTROL

P1 — FIB descriptor
address

P2 — file name string
address

P3 — result string length
address

P4 — result string
descriptor address

P5 — attribute list address

IO$M_CREATE7

IO$M_ACCESS7

IO$M_DMOUNT8

IO$_SKIPFILE P1 — skip n tape marks IO$M_ALLOWFAST9

IO$M_INHRETRY

IO$M_NOWAIT4

IO$_SKIPRECORD P1 — skip n blocks IO$M_INHRETRY

IO$M_NOWAIT4

IO$_REWIND
IO$_REWINDOFF
IO$_UNLOAD

None IO$M_INHRETRY

IO$M_NOWAIT4

IO$M_RETENSION

IO$_WRITEOF None IO$M_INHEXTGAP3

IO$M_INHRETRY

IO$M_NOWAIT4

IO$_SENSEMODE
IO$_SENSECHAR

P1 — characteristics buffer
address6

P2 — characteristics buffer
length6

IO$M_INHRETRY

Functions Arguments Modifiers
430

I/O Function Codes
Mailbox Driver
A.4 Mailbox Driver
This section lists the function codes and function modifiers for the mailbox driver.

IO$_DSE10

IO$_PACKACK
IO$_AVAILABLE

None None

1. Not for TS04 and TU80
2. Not for TK50
3. Only for TE16, TU45, and TU77
4. Only for TU81-Plus drives
5. IO$M_REASE takes no arguments; only for IO$_WRITEBLK and IO$_WRITEPBLK on TMSCP

drives.
6. Only for TMSCP drives
7. Only for IO$_CREATE and IO$_ACCESS
8. Only for IO$_ACPCONTROL
9. Only for local SCSI drives
10.Only for TU78, TU81, TA81, and TA78

QIO Status Returns

SS$_ABORT SS$_CANCEL SS$_CTRLERR

SS$_DATACHECK SS$_DATAOVERUN SS$_DEVOFFLINE

SS$_DRVERR SS$_ENDOFFILE SS$_ENDOFTAPE

SS$_ENDOFVOLUME SS$_FORMAT SS$_ILLIOFUNC

SS$_MEDOFL SS$_NONEXDRV SS$_NORMAL

SS$_OPINCOMPL SS$_PARITY SS$_SERIOUSEXCP

SS$_TIMEOUT SS$_UNSAFE SS$_VOLINV

SS$_WRITLCK

Functions Arguments Modifiers

IO$_READVBLK IO$_READLBLK
IO$_READPBLK IO$_WRITEVBLK
IO$_WRITELBLK IO$_WRITEPBLK

P1 — buffer
address

P2 — buffer size

IO$M_NOW
IO$M_NORSWAIT1
IO$M_READERCHECK1
IO$M_WRITERCHECK2
IO$M_STREAM2

Functions Arguments Modifiers
431

I/O Function Codes
Mailbox Driver
IO$_WRITEOF None IO$M_NOW
IO$M_READERCHECK
IO$M_STREAM

IO$_SETMODE!IO$M_READATTN
IO$_SETMODE!IO$M_WRTATTN
IO$_SETMODE!IO$MB_ROOM_NOTIFY

P1 — AST address

P2 — AST
parameter

P3 — access mode

None

IO$_SETMODE!IO$M_READERWAIT3

IO$_SETMODE!IO$M_WRITERWAIT3

None None

IO$_SETMODE!IO$M_SETPROT P2 — volume
protection mask

None

IO$_SENSEMODE!IO$M_READERCHECK3

IO$_SENSEMODE!IO$M_WRITERCHECK3

None None

1. Only for write functions
2. Only for read functions
3. VAX specific

QIO Status Returns in R0

SS$_ACCVIO SS$_EXQUOTA SS$_ILLIOFUNC SS$INSFMEM

SS$MBFULL SS$_MBTOOSML SS$_NOPRIV SS$_NORMAL

IOSB Status Returns

SS$_ABORT SS$_BUFFEROVF SS$_CANCEL SS$_ENDOFFILE

SS$_NOREADER SS$_NORMAL SS$_NOWRITER

Functions Arguments Modifiers
432

I/O Function Codes
Terminal Driver
A.5 Terminal Driver
This section lists the function codes and function modifiers for the terminal driver.

Functions Arguments Modifiers

IO$_READVBLK
IO$_READLBLK
IO$_READPROMPT

P1 — buffer address

P2 — buffer size

P3 — timeout

P4 — read terminator block
address

P5 — prompt string buffer
address

P6 — prompt string buffer
size1

IO$M_NOECHO

IO$M_CVTLOW

IO$M_NOFILTR

IO$M_TIMED IO$M_PURGE
IO$M_DSABLMBX
IO$M_TRMNOECHO

IO$M_ESCAPE

IO$_READVBLK P1 — buffer address

P2 — buffer size

P3 — access mode to probe
itemlist

P4 — (zero)

P5 — itemlist buffer
address

P6 — itemlist buffer size

IO$M_EXTEND2

IO$_WRITEVBLK
IO$_WRITELBLK
IO$_WRITEPBLK

P1 — buffer address

P2 — buffer size

P3 — (ignored)

P4 — carriage control
specifier3

IO$M_CANCTRLO
IO$M_ENABLMBX
IO$M_NOFORMAT

IO$M_REFRESH
IO$M_BREAKTHRU

IO$_SETMODE IO$_SETCHAR P1 — characteristics buffer
address

P2 — characteristics buffer
size

P3 — speed specifier

P4 — fill specifier

P5 — parity flags

IO$_SETMODE IO$_SETCHAR None IO$M_HANGUP

IO$_SETMODE P1 — buffer address

P2 — buffer size

IO$M_BRDCST
433

I/O Function Codes
Terminal Driver
IO$_SETMODE IO$_SETCHAR P1 — AST service routine
address

P2 — AST parameter

P3 — access mode to deliver
AST

IO$M_CTRLCAST

IO$M_CTRLYAST

IO$_SETMODE IO$_SETCHAR P1 — AST service routine
address

P2 — character mask
address

P3 — access mode to deliver
AST

IO$M_OUTBAND

IO$M_TT_ABORT4

IO$M_INCLUDE

IO$_SETMODE IO$_SETCHAR P1 — address of control
signals

IO$M_SET_MODEM5

IO$M_MAINT

IO$_SETMODE IO$_SETCHAR None IO$M_LOOP5

IO$M_UNLOOP5

IO$M_MAINT

IO$_TTY_PORT IO$M_LT_CONNECT
IO$M_LT_DISCON

IO$_TTY_PORT P1 — itemlist address6

P2 — queued status

IO$M_LT_MAP_PORT

IO$_TTY_PORT P1 — service name
descriptor address

P2 — service rating

IO$M_LT_RATING

IO$_TTY_PORT P1 — itemlist address

P2 — itemlist length

P3 — entity type

P4 — entity string
descriptor

IO$M_LT_SENSEMODE

IO$_TTY_PORT P1 — itemlist address

P2 — itemlist length

P3 — entity type

P4 — entity string
descriptor

IO$M_LT_SETMODE

Functions Arguments Modifiers
434

I/O Function Codes
Local Area Network Device Drivers
A.6 Local Area Network Device Drivers
This section lists the function codes and function modifiers for the local area network drivers.

IO$_SENSEMODE
IO$_SENSECHAR

P1 — characteristics buffer
address

P2 — characteristics buffer
size

IO$M_TYPEAHDCNT

IO$_SENSEMODE
IO$_SENSECHAR

P1 — address of input
modem signal block

IO$M_RD_MODEM

IO$_SENSEMODE P1 — buffer address

P2 — buffer size

IO$M_BRDCST

1. Only for IO$_READPROMPT
2. Only for itemlist read function. Do not specify with other modifiers.
3. Only for IO$_WRITEBLK and IO$_WRITEVBLK
4. Only with IO$M_OUTBAND
5. Only with IO$M_MAINT
6. Itemlist: IO$V_LT_MAP_NODENAM, IO$V_LT_MAP_PORNAM, IO$V_LT_MAP_SRVNAM,

IO$V_LT_MAP_LNKNAM, and IO$V_LT_MAP_NETADR.

QIO Status Returns

SS$_ABORT SS$_BADESCAPE SS$_BADPARAM

SS$_CANCEL SS$_CHANINTLK SS$_CONTROLC

SS$_CONTROLO SS$_CONTROLY SS$_DATAOVERUN

SS$_INCOMPAT SS$_NORMAL SS$_PARITY

SS$_PARTESCAPE SS$_TIMEOUT

Functions Arguments Modifiers

IO$_READLBLK
IO$_READVBLK
IO$_READPBLK
IO$_WRITELBLK
IO$_WRITEVBLK
IO$_WRITEPBLK

P1 — buffer address

P2 — buffer size

P4 — 802 format fields (optional)1

P5 — destination address (optional)1

IO$M_NOW2
IO$M_RESPONSE3

IO$_SETMODE
IO$_SETCHAR

P2 — extended characteristics buffer
(optional)4

IO$M_CTRL
IO$M_STARTUP
IO$M_SHUTDOWN

Functions Arguments Modifiers
435

I/O Function Codes
Fast I/O Function Codes and Modifiers
A.7 Fast I/O Function Codes and Modifiers
This section lists the function codes and parameters for the $IO_SETUP system service.

IO$_SETMODE
IO$_SETCHAR

P1 — AST service address

P3 — access mode to deliver AST

IO$M_ATTNAST

IO$_SENSEMODE
IO$_SENSECHAR

P1 — device characteristics buffer
(optional)

P2 — extended characteristics buffer
(optional)

IO$M_CTRL

1. See text for complete contents
2. Only for read functions
3. Only for write functions
4. Use only with IO$M_CTRL alone or with IO$_STARTUP; that is, the set controller mode

QIO Status Returns

SS$_ABORT SS$_ACCVIO SS$_BADPARAM

SS$_BUFFEROVF SS$_COMMHARD SS$_CTRLERR

SS$_DATACHECK SS$_DATAOVERUN SS$_DEVACTIVE

SS$_DEVALLOC SS$_DEVINACT SS$_DEVOFFLINE

SS$_DEVREQERR SS$_DISCONNECT SS$_DUPUNIT

SS$_ENDOFFILE SS$_EXQUOTA SS$_INSFMEM

SS$_INSFMAPREG SS$_IVBUFLEN SS$_MEDOFL

SS$_NOPRIV SS$_NORMAL SS$_OPINCOMPL

SS$_TIMEOUT SS$_TOOMUCHDATA

Functions Arguments

IO$_READVBLK
IO$_READLBLK
IO$_WRITEVBLK
IO$_WRITELBLK

bufobj - user's buffer

iosobj — I/O Status Area (IOSA)

astadr — Completion AST routine

flags — longword mask

return_fandle — fandle address

Functions Arguments Modifiers
436

I/O Function Codes
Fast Path Function Code and Modifiers
A.8 Fast Path Function Code and Modifiers
This section lists the function code and function modifiers for Fast Path.

Function Argument Modifiers

IO$_SETPRFPATH P1 — CPU mask
None

IO$M_PREFERRED_CPU
IO$M_SYS_ASSIGNABLE
437

I/O Function Codes
Fast Path Function Code and Modifiers
438

IO$_DIAGNOSE Function for SCSI Class Drivers
B IO$_DIAGNOSE Function for SCSI Class
Drivers

As of OpenVMS Version 7.0, the $QIO IO$_DIAGNOSE function has been enhanced to support 64-bit
addressing for the following SCSI class drivers: GKDRIVER, DKDRIVER, and MKDRIVER. This means that
the virtual addresses specified within the S2DGB may now be 64-bit virtual addresses if the user application
requests it.

The $QIO IO$_DIAGNOSE arguments are still as follows:

The SCSI Diagnose Buffer (S2DGB) defined in STARLET now allows two formats, one for 32-bit addressing
and one for 64-bit addressing. The 32-bit format is identical to the one supported on OpenVMS Alpha Version
6.2.

Argument Use

P1 S2DGB base address

P2 S2DGB length

P3 Reserved, should be 0

P4 Reserved, should be 0

P5 Reserved, should be 0

P6 Reserved, should be 0
439

IO$_DIAGNOSE Function for SCSI Class Drivers
Figure B-1 shows the 32-bit S2DGB format. Figure B-2 shows the 64-bit S2DGB format.

Figure B-1 OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 32-Bit Layout

S2DGB$L_OPCODE

S2DGB$L_FLAGS

S2DGB$L_32CDBADDR

S2DGB$L_32CDBLEN

S2DGB$L_32DATADDR

S2DGB$L_32DATLEN

S2DGB$L_32PADCNT

S2DGB$L_32PHSTMO

S2DGB$L_32DSCTMO

S2DGB$L_32SENSEADDR

S2DGB$L_32SENSELEN

Reserved

Should Be Zero

:00

:04

:08

:0C

:10

:14

:18

:1C

:20

:24

:28

:2C

:30

:34

:38

ZK8486AG E
440

IO$_DIAGNOSE Function for SCSI Class Drivers
Figure B-2 OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 64-Bit Layout

A user application must specify which one of the two S2DGB formats is to be used by passing a format value
in S2DGB$L_OPCODE. Specifically, S2DGB$L_OPCODE must be assigned a value of either OP_XCDB32 (=
1) to request 32-bit format, or OP_XCDB64 (= 2) to request 64-bit format. Once the value of OP_XCDB64 has
been specified, the user application is obligated to use the 64-bit S2DGB format and, in particular, to use the
64-bit names for S2DGB fields as described below. Likewise, an opcode value of OP_XCDB32 obligates the
user application to use the 32-bit names for the fields.

The correct length of the structure is defined by the constant S2DGB$K_XCDB32_LENGTH (value:
60-decimal), as well as by the constant S2DGB$K_XCDB64_LENGTH (value: 60-decimal).

The fields in the S2DGB are in the sections that follow. Whenever a field has two different names for the
32-bit and 64-bit cases, the 32-bit name is given first, and the 64-bit name is given after it in parentheses.
Also, except for fields that contain addresses, all fields are unsigned longwords.

S2DGB$L_OPCODE

This field should contain either S2DGB$K_OP_XCDB32 or S2DGB$K_OP_XCDB64, depending on whether
the user application intends to supply 32-bit virtual addresses or 64-bit virtual addresses, respectively, in the
other fields of the S2DGB.

S2DGB$L_FLAGS

S2DGB$L_OPCODE

S2DGB$L_FLAGS

S2DGB$PQ_64CDBADDR

S2DGB$PQ_64DATADDR

S2DGB$L_64DATLEN

S2DGB$L_64PADCNT

S2DGB$L_64PHSTMO

S2DGB$L_64DSCTMO

S2DGB$PQ_64SENSEADDR

S2DGB$L_64SENSELEN

Reserved. Should be Zero

:00

:04

:08

:10

:18

:20

:24

:28

:2C

:30

:34

:38

ZK8487AG E

S2DGB$L_64CDBLEN
441

IO$_DIAGNOSE Function for SCSI Class Drivers
This field should contain the bit fields shown in the following table. Note that these bit definitions start at bit
0 and omit no bits. This is required for compatibility with the IO$_DIAGNOSE interface available in
OpenVMS Alpha Version 6.1 and earlier.

Table B-1 S2DGB$L_FLAGS Bit Fields

Bit Field Description

S2DGB$V_READ This bit should be 1 if the operation being performed is a read. If the
operation is a write, this bit should be 0.

S2DGB$V_DISCPRIV This bit should contain the DiscPriv bit value to be used in the
IDENTIFY message sent with this operation. If
S2DGB$V_TAGGED_REQ is 1, then this bit is ignored. Note that
S2DGB$V_DISCPRIV may be ignored by some ports
unconditionally.

S2DGB$V_SYNCHRONOUS This bit is ignored because its value is beyond the control of the user
in SCSI-2 drivers.

S2DGB$V_OBSOLETE1 This bit is ignored. In previous releases, it represented the disabling
of command retries, which is now beyond the control of the user in
SCSI-2 drivers.

S2DGB$V_TAGGED_REQ When this bit is 1, the operation is processed as using tagged
command queuing and S2DGB$V_TAG should define the tag value
to be used. When this bit is 0, the operation is processed without
benefit of tagged command queuing.

Note that although some ports do not support tagged command
queuing, setting this bit to 1 will inhibit changing the values of
S2DGB$L_32PADCNT (S2DGB$L_64PADCNT),
S2DGB$L_32DSCTMO (S2DGB$L_64DSCTMO), and
S2DGB$L_32PHSTMO (S2DGB$L_64PHSTMO), and will cause
S2DGB$V_DISCPRIV to be ignored. Note also that some ports
simulate untagged operations using appropriately tagged
operations. If S2DGB$V_TAGGED_REQ is 1, then this 3-bit field
should contain one of the following coded constant values:

S2DGB$K_SIMPLE indicates that the command is to be sent
with the SIMPLE queue tag.

S2DGB$K_ORDERED indicates that the command is to be sent
with the ORDERED queue tab.

S2DGB$K_EXPRESS indicates that the command is to be sent
with the HEAD OF QUEUE queue tag.

If S2DGB$V_TAGGED_REQ is 0, then this field is ignored. Ports
that do not support tagged command queuing always ignore the
S2DGB$V_TAG field and send all commands as untagged
operations.

Note that automatic contingent allegiance processing is not
accessible through the IO$_DIAGNOSE function. Also, even
though this is a 3-bit field, only 2 bits are currently being
utilized. That is, the 3 constants above represent values, not bit
positions.
442

IO$_DIAGNOSE Function for SCSI Class Drivers
S2DGB$L_32CDBADDR (S2DGB$PQ_64CDBADDR)

This field should contain the 32-bit (or 64-bit) virtual address of the SCSI command data block (CDB) to be
sent to the target by this IO$_DIAGNOSE operation.

Note that S2DGB$L_32CDBADDR is a pointer to a longword, while S2DGB$PQ_64CDBADDR is a pointer to
a quadword.

S2DGB$L_32CDBLEN (S2DGB$L_64CDBLEN)

This field should contain the number of bytes in the SCSI command data block (CDB) to be sent to the target
by this IO$_DIAGNOSE operation. (Legal values: 2 to 248; however, some ports may restrict CDBs to smaller
lengths. Recommended values: 2 to 16.)

S2DGB$L_32DATADDR (S2DGB$PQ_64DATADDR)

This field should contain the 32-bit (or 64-bit) virtual address of the DATAIN or DATAOUT buffer to be used
with this SCSI operation. If the CDB being sent to the target does not use a DATAIN or DATAOUT buffer,
then this field should be 0.

Note that S2DGB$L_32DATADDR is a pointer to a longword, while S2DGB$PQ_64DATADDR is a pointer to
a quadword.

S2DGB$L_32DATLEN (S2DGB$L_64DATLEN)

This field should contain the number of bytes in the DATAIN or DATAOUT buffer associated with this
operation. If the CDB being sent to the target does not use a DATAIN or DATAOUT buffer, then this field
should be 0. (Legal values: 0 to UCB$L_MAXBCNT. Recommended values: 0 to 65,536. All ports are required
to support at least 65,536 byte data transfers.)

S2DGB$L_32PADCNT (S2DGB$L_64PADCNT)

This field should contain the number of padding DATAIN or DATAOUT bytes required by this operation. If
S2DGB$V_TAGGED_REQ is 1, then the PAD count value will not be its default value. (Legal values: 0 to the
maximum number of bytes in a disk block on this system minus one. Current legal values: 0 to 511.)

S2DGB$L_32PHSTMO (S2DGB$L_64PHSTMO)

This field should contain the number of seconds that the port driver should wait for a phase transition to
occur or for delivery of an expected interrupt. If S2DGB$V_ TAGGED_REQ is 1 or this field contains a 0 or 1,
then the current phase transition timeout setting will not be changed. (Legal values: 0 to 65,535 [about 18
hours].)

S2DGB$V_AUTOSENSE When this bit is 1, S2DGB$L_32SENSEADDR and
S2DGB$L_32SENSELEN CONDITION or COMMAND
TERMINATED status is returned, REQUEST SENSE data will be
returned in the buffer defined by S2DGB$L_32SENSEADDR and
S2DGB$L_32SENSELEN.

When S2DGB$V_AUTOSENSE is 0, the buffer described by
S2DGB$L_32SENSEADDR and S2DGB$L_32SENSELEN is
ignored. In such cases, the class driver saves the autosense data in
pool and returns it to the next IO$_DIAGNOSE, if and only if that
IO$_DIAGNOSE has a REQUEST SENSE CDB.

All other bits in S2DGB$L_FLAGS should be 0.

Table B-1 S2DGB$L_FLAGS Bit Fields (Continued)

Bit Field Description
443

IO$_DIAGNOSE Function for SCSI Class Drivers
S2DGB$L_32DSCTMO (S2DGB$L_64DSCTMO)

This field should contain the number of seconds that the port driver should wait for a disconnected
transaction to reconnect. If S2DGB$V_TAGGED_REQ is 1 or this field contains a 0 or 1, then the current
disconnect timeout setting will not be changed. (Legal values: 0 to 65,535 [about 18 hours].)

S2DGB$L_32SENSEADDR (S2DGB$PQ_64SENSEADDR)

If S2DGB$V_AUTOSENSE is 1, then this field should contain the 32-bit (or 64-bit) virtual address of the
sense buffer to be used by this SCSI operation. If S2DGB$V_AUTOSENSE is 0, this field will be ignored.

Note that S2DGB$L_32SENSEADDR is a pointer to a longword, while S2DGB$PQ_64SENSEADDR is a
pointer to a quadword.

S2DGB$L_32SENSELEN (S2DGB$L_64SENSELEN)

If S2DGB$V_AUTOSENSE is 1, then this field should contain the number of bytes in the sense buffer
associated with this operation. (Legal values: 0 to 255. Note that a value of 0 instructs the class driver to
discard any sense data received. Recommended value: 18. Some ports may restrict the number of sense bytes
to 18.) If S2DGB$V_AUTOSENSE is 0, this field will be ignored.

The following example shows how to set up a 64-bit S2DGB:

#include /* Define S2DGB */
#include _pointers.h> /* Define VOID_PQ */

 S2DGB diag_desc;

 /* Set up some default S2DGB descriptor values */

 diag_desc.s2dgb$l_opcode = OP_XCDB64 /* Use 64-bits */
 diag_desc.s2dgb$l_flags = (S2DGB$M_READ | /* Flags*/
 S2DGB$M_TAGGED_REQ |
 S2DGB$M_AUTOSENSE);
 diag_desc.s2dgb$v_tag = S2DGB$K_SIMPLE; /* SIMPLE que tag */
 diag_desc.s2dgb$pq_64cdbaddr = (VOID_PQ)([0]);/* Command addr */
 diag_desc.s2dgb$l_64cdblen = 6; /* Command length */
 diag_desc.s2dgb$pq_64dataddr = (VOID_PQ)([0]);/* Data addr */
 diag_desc.s2dgb$l_64datlen = 20; /* Data length */
 diag_desc.s2dgb$l_64padcnt = 0; /* Pad length */
 diag_desc.s2dgb$l_64phstmo = 20; /* Phase timeout */
 diag_desc.s2dgb$l_64dsctmo = 10; /* Disc timeout */
 diag_desc.s2dgb$pq_64senseaddr = (VOID_PQ)([0]);/* Autosense addr */
 diag_desc.s2dgb$l_64senselen = 255; /* Sense length */
 diag_desc.s2dgb$l_reserved_1 = 0; /* Reserved */
 .
 .
 .

 status = sys$qiow(0, target_chan, IO$_DIAGNOSE, , 0, 0,
 _desc, S2DGB$K_XCDB64_LENGTH, 0, 0, 0, 0);
444

IO$_DIAGNOSE Function for SCSI Class Drivers
If all arguments are valid, the class driver will invoke the necessary port functions to send the CDB, transfer
the data, and return, save or discard sense data as defined by the input S2DGB. Upon completion, the return
IOSB will have the following format:

The DKDRIVER, GKDRIVER, and MKDRIVER class drivers, which implement other QIO functions, might
intermix other tagged requests with IO$_DIAGNOSE requests. The order in which requests are sent
generally matches the order in which requests are presented to the driver. An exception to this ordering
occurs when the driver receives REQUEST SENSE for which autosense data previously has been recovered
and stored. In this case, the IO$_DIAGNOSE will complete immediately and no command will be sent to the
target.

The DKDRIVER, GKDRIVER, and MKDRIVER class drivers permit only one IO$_DIAGNOSE operation to
be active (in the start I/O routine) at a given time, except as described in the next paragraph. However,
applications must single thread IO$_DIAGNOSE requests to properly detect the presence of sense data and
send the required REQUEST SENSE command. This is consistent with the VAX IO$_DIAGNOSE behavior.
For example, if three reads are issued with no waiting and the first read gets a CHECK CONDITION, the
sense data will be discarded by the target when the second read arrives.

The DKDRIVER, GKDRIVER, and MKDRIVER drivers permit more than one IO$_DIAGNOSE operation to
be active (in the start I/O routine) only when all active operations have the S2DGB$V_AUTOSENSE flag
equal to 1. Upon encountering the first IO$_DIAGNOSE with S2DGB$V_AUTOSENSE equal to 0, the class
driver will apply the restrictions described in the previous paragraph.

Byte count <15:0>

SCSI status

:00

:04

ZK8488AGE

Port VMS status

Zero Byte count <31:16>
445

IO$_DIAGNOSE Function for SCSI Class Drivers
446

DEC Multinational Character Set and Terminal Escape Sequences/Modes
DEC Multinational Character Set
C DEC Multinational Character Set and
Terminal Escape Sequences/Modes

This appendix includes tables for the DEC Multinational character set and for terminalescape sequences and
modes.

C.1 DEC Multinational Character Set
 Table C-1 lists the DEC Multinational character set. The DEC Multinational character set is an 8-bit
character set with 256 characters. The first 128 characters in the set correspond to the ASCII character set.
The VAX EDT Reference Manual lists the graphics for these characters and describes how to enter them from
various types of terminals.

Table C-1 DEC Multinational Character Set

Hex Code Octal
Code

Decimal
Code

Char or
Abbrev. Description

 ASCII Control Characters1

00 000 000 NUL null character

01 001 001 SOH start of heading (Ctrl/A)

02 002 002 STX start of text (Ctrl/B)

03 003 003 ETX end of text (Ctrl/C)

04 004 004 EOT end of transmission (Ctrl/D)

05 005 005 ENQ enquiry (Ctrl/E)

06 006 006 ACK acknowledge (Ctrl/F)

07 007 007 BEL bell (Ctrl/G)

08 010 008 BS backspace (Ctrl/H)

09 011 009 HT horizontal tabulation (Ctrl/I)

0A 012 010 LF line feed (Ctrl/J)

0B 013 011 VT vertical tabulation (Ctrl/K)

0C 014 012 FF form feed (Ctrl/L)

0D 015 013 CR carriage return (Ctrl/M)

0E 016 014 SO shift out (Ctrl/N)
447

DEC Multinational Character Set and Terminal Escape Sequences/Modes
DEC Multinational Character Set
0F 017 015 SI shift in (Ctrl/O)

10 020 016 DLE data link escape (Ctrl/P)

11 021 017 DC1 device control 1 (Ctrl/Q)

12 022 018 DC2 device control 2 (Ctrl/R)

13 023 019 DC3 device control 3 (Ctrl/S)

14 024 020 DC4 device control 4 (Ctrl/T)

15 025 021 NAK negative acknowledge (Ctrl/U)

16 026 022 SYN synchronous idle (Ctrl/V)

17 027 023 ETB end of transmission block (Ctrl/W)

18 030 024 CAN cancel (Ctrl/X)

19 031 025 EM end of medium (Ctrl/Y)

1A 032 026 SUB substitute (Ctrl/Z)

1B 033 027 ESC escape

1C 034 028 FS file separator

1D 035 029 GS group separator

1E 036 030 RS record separator

1F 037 031 US unit separator

ASCII Special and Numeric Characters

20 040 032 SP space

21 041 033 ! exclamation point

22 042 034 ' quotation marks (double quote)

23 043 035 # number sign

24 044 036 $ dollar sign

25 045 037 % percent sign

26 046 038 & ampersand

27 047 039 ' apostrophe (single quote)

28 050 040 (opening parenthesis

29 051 041) closing parenthesis

2A 052 042 * asterisk

Table C-1 DEC Multinational Character Set (Continued)

Hex Code Octal
Code

Decimal
Code

Char or
Abbrev. Description
448

DEC Multinational Character Set and Terminal Escape Sequences/Modes
DEC Multinational Character Set
2B 053 043 + plus

2C 054 044 , comma

2D 055 045 — hyphen or minus

2E 056 046 . period or decimal point

2F 057 047 / slash

30 060 048 0 zero

31 061 049 1 one

32 062 050 2 two

33 063 051 3 three

34 064 052 4 four

35 065 053 5 five

36 066 054 6 six

37 067 055 7 seven

38 070 056 8 eight

39 071 057 9 nine

3A 072 058 : colon

3B 073 059 ; semicolon

3C 074 060 < less than

3D 075 061 = equals

3E 076 062 > greater than

3F 077 063 ? question mark

ASCII Alphabetic Characters

40 100 064 @ commercial at sign

41 101 065 A uppercase A

42 102 066 B uppercase B

43 103 067 C uppercase C

44 104 068 D uppercase D

45 105 069 E uppercase E

46 106 070 F uppercase F

Table C-1 DEC Multinational Character Set (Continued)

Hex Code Octal
Code

Decimal
Code

Char or
Abbrev. Description
449

DEC Multinational Character Set and Terminal Escape Sequences/Modes
DEC Multinational Character Set
47 107 071 G uppercase G

48 110 072 H uppercase H

49 111 073 I uppercase I

4A 112 074 J uppercase J

4B 113 075 K uppercase K

4C 114 076 L uppercase L

4D 115 077 M uppercase M

4E 116 078 N uppercase N

4F 117 079 O uppercase O

50 120 080 P uppercase P

51 121 081 Q uppercase Q

52 122 082 R uppercase R

53 123 083 S uppercase S

54 124 084 T uppercase T

55 125 085 U uppercase U

56 126 086 V uppercase V

57 127 087 W uppercase W

58 130 088 X uppercase X

59 131 089 Y uppercase Y

5A 132 090 Z uppercase Z

5B 133 091 [left bracket

5C 134 092 \ backslash

5D 135 093] right bracket

5E 136 094 ^ circumflex

5F 137 095 _ underscore

60 140 096 ` grave accent

61 141 097 a lowercase a

62 142 098 b lowercase b

63 143 099 c lowercase c

Table C-1 DEC Multinational Character Set (Continued)

Hex Code Octal
Code

Decimal
Code

Char or
Abbrev. Description
450

DEC Multinational Character Set and Terminal Escape Sequences/Modes
DEC Multinational Character Set
64 144 100 d lowercase d

65 145 101 e lowercase e

66 146 102 f lowercase f

67 147 103 g lowercase g

68 150 104 h lowercase h

69 151 105 i lowercase i

6A 152 106 j lowercase j

6B 153 107 k lowercase k

6C 154 108 l lowercase l

6D 155 109 m lowercase m

6E 156 110 n lowercase n

6F 157 111 o lowercase o

70 160 112 p lowercase p

71 161 113 q lowercase q

72 162 114 r lowercase r

73 163 115 s lowercase s

74 164 116 t lowercase t

75 165 117 u lowercase u

76 166 118 v lowercase v

77 167 119 w lowercase w

78 170 120 x lowercase x

79 171 121 y lowercase y

7A 172 122 z lowercase z

7B 173 123 { left brace

7C 174 124 | vertical line

7D 175 125 } right brace (ALTMODE)

7E 176 126 ~ tilde (ALTMODE)

7F 177 127 DEL rubout (DELETE)

80 200 128 — [reserved]

Table C-1 DEC Multinational Character Set (Continued)

Hex Code Octal
Code

Decimal
Code

Char or
Abbrev. Description
451

DEC Multinational Character Set and Terminal Escape Sequences/Modes
DEC Multinational Character Set
81 201 129 — [reserved]

82 202 130 — [reserved]

83 203 131 — [reserved]

84 204 132 IND index

85 205 133 NEL next line

86 206 134 SSA start of selected area

87 207 135 ESA end of started area

88 210 136 HTS horizontal tab set

89 211 137 HTJ horizontal tab set with justification

8A 212 138 VTS vertical tab set

8B 213 139 PLD partial line down

8C 214 140 PLU partial line up

8D 215 141 RI reverse index

8E 216 142 SS2 single shift 2

8F 217 143 SS3 single shift 3

90 220 144 DCS device control string

91 221 145 PU1 private use 1

92 222 146 PU2 private use 2

93 223 147 STS set transmit state

94 224 148 CCH cancel character

95 225 149 MW message waiting

96 226 150 SPA start of protected area

97 227 151 EPA end of protected area

98 230 152 — [reserved]

99 231 153 — [reserved]

9A 232 154 — [reserved]

9B 233 155 CSI control sequence introducer

9C 234 156 ST string terminator

9D 235 157 OSC operating system command

Table C-1 DEC Multinational Character Set (Continued)

Hex Code Octal
Code

Decimal
Code

Char or
Abbrev. Description
452

DEC Multinational Character Set and Terminal Escape Sequences/Modes
DEC Multinational Character Set
9E 236 158 PM privacy message

9F 237 159 APC application

A0 240 160 — [reserved]

A1 241 161 ¡ inverted exclamation point

A2 242 162 ¢ cent sign

A3 243 163 £ pound sign

A4 244 164 — [reserved]

A5 245 165 ¥ yen sign

A6 246 166 — [reserved]

A7 247 167 § section sign

A8 250 168 ¤ general currency sign

A9 251 169 © copyright sign

AA 252 170 ª feminine ordinal indicator

AB 253 171 << angle quotation mark left

AC 254 172 — [reserved]

AD 255 173 — [reserved]

AE 256 174 — [reserved]

AF 257 175 — [reserved]

B0 260 176 ° degree sign

B1 261 177 ± plus/minus sign

B2 262 178 2 superscript 2

B3 263 179 3 superscript 3

B4 264 180 — [reserved]

B5 265 181 µ micro sign

B6 266 182 ¶ paragraph sign, pilcrow

B7 267 183 placeholder middle dot

B8 270 184 — [reserved]

B9 271 185 1 superscript 1

BA 272 186 º masculine ordinal indicator

Table C-1 DEC Multinational Character Set (Continued)

Hex Code Octal
Code

Decimal
Code

Char or
Abbrev. Description
453

DEC Multinational Character Set and Terminal Escape Sequences/Modes
DEC Multinational Character Set
BB 273 187 >> angle quotation mark right

BC 274 188 1/4 fraction one-quarter

BD 275 189 1/2 fraction one-half

BE 276 190 — [reserved]

BF 277 191 ¿ inverted question mark

C0 300 192 À uppercase A with grave accent

C1 301 193 Á uppercase A with acute accent

C2 302 194 Â uppercase A with circumflex

C3 303 195 Ã uppercase A with tilde

C4 304 196 Ä uppercase A with umlaut(diaeresis)

C5 305 197 Å uppercase A with ring

C6 306 198 AE uppercase AE diphthong

C7 307 199 Ç uppercase C with cedilla

C8 310 200 È uppercase E with grave accent

C9 311 201 É uppercase E with acute accent

CA 312 202 Ê uppercase E with circumflex

CB 313 203 Ë uppercase E with umlaut(diaeresis)

CC 314 204 Ì uppercase I with grave accent

CD 315 205 Í uppercase I with acute accent

CE 316 206 Î uppercase I with circumflex

CF 317 207 Ï uppercase I with umlaut(diaeresis)

D0 320 208 — [reserved]

D1 321 209 Ñ uppercase N with tilde

D2 322 210 Ò uppercase O with grave accent

D3 323 211 Ó uppercase O with acute accent

D4 324 212 Ô uppercase O with circumflex

D5 325 213 Õ uppercase O with tilde

D6 326 214 Ö uppercase O with umlaut(diaeresis)

D7 327 215 OE uppercase OE ligature

Table C-1 DEC Multinational Character Set (Continued)

Hex Code Octal
Code

Decimal
Code

Char or
Abbrev. Description
454

DEC Multinational Character Set and Terminal Escape Sequences/Modes
DEC Multinational Character Set
D8 330 216 Ø uppercase O with slash

D9 331 217 Ù uppercase U with grave accent

DA 332 218 Ú uppercase U with acute accent

DB 333 219 Û uppercase U with circumflex

DC 334 220 Ü uppercase U with umlaut(diaeresis)

DD 335 221 Ÿ uppercase Y with umlaut(diaeresis)

DE 336 222 — [reserved]

DF 337 223 B German lowercase sharp s

E0 340 224 à lowercase a with grave accent

E1 341 225 á lowercase a with acute accent

E2 342 226 â lowercase a with circumflex

E3 343 227 ã lowercase a with tilde

E4 344 228 ä lowercase a with umlaut(diaeresis)

E5 345 229 å lowercase a with ring

E6 346 230 æ lowercase ae diphthong

E7 347 231 ç lowercase c with cedilla

E8 350 232 è lowercase e with grave accent

E9 351 233 é lowercase e with acute accent

EA 352 234 ê lowercase e with circumflex

EB 353 235 ë lowercase e with umlaut(diaeresis)

EC 354 236 ì lowercase i with grave accent

ED 355 237 í lowercase i with acute accent

EE 356 238 î lowercase i with circumflex

EF 357 239 ï lowercase i with umlaut(diaeresis)

F0 360 240 — [reserved]

F1 361 241 ñ lowercase n with tilde

F2 362 242 ò lowercase o with grave accent

F3 363 243 ó lowercase o with acute accent

F4 364 244 ô lowercase o with circumflex

Table C-1 DEC Multinational Character Set (Continued)

Hex Code Octal
Code

Decimal
Code

Char or
Abbrev. Description
455

DEC Multinational Character Set and Terminal Escape Sequences/Modes
Terminal Sequences and Modes
C.2 Terminal Sequences and Modes
Table C-2 lists the valid ANSI and DIGITAL private escape sequences for terminals that have the
TT2$M_ANSICRT, TT2$M_DECCRT, TT2$M_AVO, TT2$M_EDIT, and TT2$M_BLOCK characteristics (see
Section 5.2.1.4).

Table C-2 also lists assumed and selectable ANSI modes and selectable DIGITAL private modes. Only the
names of the escape sequences and modes are listed (for more information, refer to the specific VT100-,
VT200-, or VT300- family user's guide). Unless otherwise noted, the operation of escape sequences and modes
is identical to the particular VT100-, VT200-, or VT300- family terminals that implement these features.

F5 365 245 õ lowercase o with tilde

F6 366 246 ö lowercase o with umlaut(diaeresis)

F7 367 247 oe lowercase oe ligature

F8 370 248 ø lowercase o with slash

F9 371 249 ù lowercase u with grave accent

FA 372 250 ú lowercase u with acute accent

FB 373 251 û lowercase u with circumflex

FC 374 252 ü lowercase u with umlaut(diaeresis)

FD 375 253 ÿ lowercase y with umlaut (diaeresis)

FE 376 254 — [reserved]

FF 377 255 — [reserved]

1. The ALTMODE and DELETE characters (decimal 125, 126, and 127) are also control characters.

Table C-2 Sequences and Modes

Name Valid Parameters ANSICRT DECCRT AVO EDIT BLOCK1

ANSI-Defined Escape Sequences

CPR All x x

CUB All x x

CUD All x x

CUF All x x

Table C-1 DEC Multinational Character Set (Continued)

Hex Code Octal
Code

Decimal
Code

Char or
Abbrev. Description
456

DEC Multinational Character Set and Terminal Escape Sequences/Modes
Terminal Sequences and Modes
CUP All x x

CUU All x x

DSR 0,3,5,6 x x

ED 0,1,2 x x

EL 0,1,2 x x

HVP All x x

IND x x

NEL x x

RI x x

RIS x x

SCS UK,ASCII,0 x

SCS UK,ASCII x x

SGR 0,4,7 x x

SGR 0,1,4,5,7 x

DA Terminal specific x

HTS x

RM Class specific x

SM Class specific x

TBC 0,3 x

DCH All x x

DL All x x

IL All x x

DIGITAL Private Escape Sequences

DECDHDL 2,3 x

DECDWL 6 x

DECKPAM x

DECKPNM x

DECRC 8 x

DECSC 7 x

Table C-2 Sequences and Modes (Continued)

Name Valid Parameters ANSICRT DECCRT AVO EDIT BLOCK1
457

DEC Multinational Character Set and Terminal Escape Sequences/Modes
Terminal Sequences and Modes
DECSTBM All x

DECSWL 5 x

DECPRO 0,1,4,5,7,254 x

DECTTC 0,1 x

DECXMIT 5 x

ANSI Selectable Modes (Set with ANSI SM/RM)

IRM 4 x x

GATM 1 x x

ERM 6 x

TTM 16 x

DIGITAL Private Selectable Modes (Set with ANSI SM/RM)

DECCKM 1 x

DECANM 2 x

DECCOLM 3 x

DECSCLM 4 x

DECSCNM 5 x

DECOM 6 x

DECAWM 7 x

DECARM 8 x

DECEDM 10 x

DECEKEM 16 x

DECLTM 11 x

DECSCFDM 13 x

DECTEM 14 x

ANSI Assumed Modes

CRM Reset Reset

EBM Reset Reset

ERM Set Set 2

FEAM Reset Reset

Table C-2 Sequences and Modes (Continued)

Name Valid Parameters ANSICRT DECCRT AVO EDIT BLOCK1
458

DEC Multinational Character Set and Terminal Escape Sequences/Modes
Terminal Sequences and Modes
FETM Reset Reset

GATM N/A N/A 2

HEM N/A N/A

IRM Reset Reset 2 2

KAM Reset Reset

MATH N/A N/A

PUM Reset Reset

SATM N/A N/A

SRTM Reset Reset

TSM Reset Reset

TTM N/A N/A 2

VEM N/A N/A

1. Terminal characteristics. Prefix is TT2$M_ .
2. Selectable mode.

Table C-2 Sequences and Modes (Continued)

Name Valid Parameters ANSICRT DECCRT AVO EDIT BLOCK1
459

DEC Multinational Character Set and Terminal Escape Sequences/Modes
Terminal Sequences and Modes
460

Control Connection Routines
PDT$CANCEL — Cancel Queued Request
D Control Connection Routines

This appendix lists and describes the calling conventions for the pseudoterminal driver control connection
routines. The routines appear in this section in alphabetical order.

Table D-1 lists the control connection routines and their functions:

D.1 PDT$CANCEL — Cancel Queued Request
Cancels a queued control connection read request.

D.1.1 Format

PDT$CANCEL chan

D.1.2 Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

D.1.3 Arguments

chan

OpenVMS usage: channel

Table D-1 Control Connection Routines

Routine Name Description

PTD$CANCEL Cancels a queued control connection read request

PTD$CREATE Creates a pseudoterminal

PTD$DELETE Deletes a pseudoterminal

PTD$READ Reads data from the pseudoterminal

PTD$READW Reads data from the pseudoterminal and waits for
read to complete

PTD$SET_EVENT_NOTIFICATION Enables or disables terminal event notification ASTs

PTD$WRITE Writes data to the pseudoterminal
461

Control Connection Routines
PDT$CREATE — Create a Pseudoterminal
type: word (unsigned)

access: read only

mechanism: by value

Number of the I/O channel assigned to the pseudoterminal. This channel is only intended to be sued for
PTD$XXX operations.

D.1.4 Return Values

D.2 PDT$CREATE — Create a Pseudoterminal
Creates a new pseudoterminal with a unique device name.

D.2.1 Format

PDT$CREATE chan [,acmode] [,charbuff] [,bufflen] [,astadr] [,astprm]
[,ast_acmode], inadr

D.2.2 Returns

OpenVMS usage: cond_value

type: longword (unsigned)

access: write only

mechanism: by value

D.2.3 Arguments

chan

OpenVMS usage: channel

type: word (unsigned)

access: write only

mechanism: by value

Number of the channel that is assigned to the new pseudoterminal. This argument is the address of a word
into which PTD$CREATE writes the channel number. This channel is only intended to be used for PTD$XXX
operations.

SS$_NORMAL Normal successful completion.

SS$_DEVOFFLINE Device is off line and request cannot
proceed.

SS$_IVCHAN Illegal channel.

SS$_NOPRIV Insufficient privilege to perform request.
462

Control Connection Routines
PDT$CREATE — Create a Pseudoterminal
acmode

OpenVMS usage: access_mode

type: longword (unsigned)

access: read only

mechanism: by value

Access mode to be associated with the channel. The most privileged access mode is the access mode of the
caller. I/O operations on the channel can be performed only from equal and more privileged access modes.

charbuff

OpenVMS usage: device_characteristics

type: longword (unsigned)

access: read only

mechanism: by reference

Address of buffer containing the device characteristics. This information is used to set up the
pseudoterminal's initial characteristics. This buffer can be 12, 16, or 20 bytes long.

Figure D-1 shows the format of this buffer:

Figure D-1 Device Characteristics Buffer

bufflen

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Length of the characteristics buffer (either 12, 16, or 20 bytes). This argument is required if you supply the
charbuff argument.

astadr

OpenVMS usage: ast_procedure

type: procedure value

access: call without stack unwinding

mechanism: by reference

ZK9573G E

Page Width Type Class

Page Length Basic Terminal Characteristics

Extended Terminal Characteristics

Reserved

Reserved
463

Control Connection Routines
PDT$CREATE — Create a Pseudoterminal
AST service routine to be executed when the terminal connection deassigns the last channel to the
pseudoterminal. This argument is the procedure value of this routine. This is a repeating AST and is active
until the control connection deletes the pseudoterminal.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)

access: read only

mechanism: by value

AST parameter to be passed to the AST service routine specified by astadr.

ast_acmode

OpenVMS usage: access_mode

type: longword (unsigned)

access: read only

mechanism: by value

Access mode for which the AST is to be declared. The most privileged access mode is the access mode of the
caller. The resulting mode is the access mode at which the AST is declared.

inadr

OpenVMS usage: address_range

type: longword (unsigned)

access: read only

mechanism: by reference

Address of a two-longword array containing the starting and ending virtual addresses in the virtual address
space of the process (either P0 or P1 regions) to be used as I/O buffers. The array contains, in order, the
starting and ending virtual addresses. The addresses supplied to inadr must express an integral number of
CPU-specific pages. The lower address must be on a CPU-specific page boundary, and the higher address
must be one less than a CPU-specific page boundary. Together these addresses form a range from lowest to
highest bytes. The pages must already exist and must be fully contained in either P0 or P1 space. All pages in
the range must:

• Have identical page protection

• Be writable in the mode of the caller

• Be owned by the same access mode

• Be owned in a mode equal to or less privileged than the caller

• Be of the same page type (process or global)

D.2.4 Description

PTD$CREATE creates a new pseudoterminal with a unique device name. This device name is in the form
FTAn:, where n is the unit number.
464

Control Connection Routines
PDT$DELETE — Delete a Pseudoterminal
When a pseudoterminal is created, it inherits the current system terminal default attributes unless you
specify an alternate set of characteristics.

D.2.5 Return Values

D.3 PDT$DELETE — Delete a Pseudoterminal
Forces the pseudoterminal to be deleted and frees the channel.

D.3.1 Format

PDT$DELETE chan

D.3.2 Returns

OpenVMS usage: longword (unsigned)

type: write

access: by value

D.3.3 Argument

chan

OpenVMS usage: channel

SS$_NORMAL Normal successful completion.

SS$_ACCVIO Unable to read one of the arguments.

SS$_BADPARAM Bad Parameter Value.

SS$_EXBYTLM Insufficient BYTLM to create device or map
buffers.

SS$_EXQUOTA Insufficient quota to create device.

SS$_EXASTLM Insufficient AST quota for notification AST.

SS$_INSFMEM Insufficient memory to create device.

SS$_INSFWSL Insufficient working set limit to map
buffers.

SS$_IVSECFLG Invalid process or global section flags.

SS$_NOPRIV No privilege for attempted operation.

SS$_PAGPNWNVIO Page owner violation.

SS$_VA_IN_USE Virtual address already in use.
465

Control Connection Routines
PDT$READ — Read Data from Pseudoterminal
type: word (unsigned)

access: read only

mechanism: by value

Number of the I/O channel assigned to the pseudoterminal. This channel is only intended to be used for
PTD$XXX operations.

D.3.4 Description

PTD$DELETE forces the pseudoterminal to be deleted and frees the channel assigned to the pseudoterminal.
When a pseudoterminal is deleted, any process using the pseudoterminal (except the control program) is
disconnected. A PTD$DELETE request causes any pending I/O for the control program to be aborted. It
deletes any queued event notification ASTs and returns the I/O buffers back to the application. It also causes
the pseudoterminal unit control block (UCB) to be deleted once the reference count returns to zero.

D.3.5 Return Values

D.4 PDT$READ — Read Data from Pseudoterminal
Reads data from the pseudoterminal. The PTD$READ routine completes asynchronously; that is, it returns to
the caller without waiting for the data to be read.

For synchronous completion, use the PTD$READW routine. The PTD$READW routine is identical to the
PTD$READ routine in every way, except that PTD$READW returns to the caller after the data is read.

D.4.1 Format

PDT$READ [efn], chan [.astadr] [,astprm] readbuf, readbuf_len

D.4.2 Returns

OpenVMS usage: longword (unsigned)

type: write only

access: by value

SS$_NORMAL Normal successful completion.

SS$_DEVOFFLINE Device is off line and request cannot
proceed.

SS$_IVCHAN Illegal channel.

SS$_NOPRIV Insufficient privilege to perform request.
466

Control Connection Routines
PDT$READ — Read Data from Pseudoterminal
D.4.3 Arguments

efn

OpenVMS usage: ef_number

type: longword (unsigned)

access: read only

mechanism: by value

Number of the event flag to be set when PTD$READ returns the requested information. If you do not specify
this argument, event flag 0 is used. When PTD$READ begins execution, it clears this flag.

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the I/O channel assigned to the new pseudoterminal. This channel is only intended to be used for
PTD$XXX operations.

astadr

OpenVMS usage: ast_procedure

type: procedure value

access: call without stack unwinding

mechanism: by reference

AST service routine to be executed when PTD$READ completes. If you specify astadr, the AST routine
executes at the same access mode as the caller of the PTD$READ routine.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)

access: read only

mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr argument.

readbuf

OpenVMS usage: char_string

type: character coded text string

access: write only

mechanism: by reference
467

Control Connection Routines
PDT$READW — Read Data from Pseudoterminal and Wait
Address of the read I/O status longword. The first character position in an I/O buffer to receive all output is
this address plus 4. The readbuf argument must be in the range specified in the inadr argument of the
PTD$CREATE routine; otherwise, an SS$_ACCVIO status is returned.

readbuf_len

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Number of characters that can be read from the pseudoterminal and stored in the buffer specified by
readbuf.

D.4.4 Description

The PTD$READ routine reads data from the pseudoterminal. The read request completes with a minimum of
one character and a maximum of the number of characters specified by the readbuf_len argument. The read
operation completes when the pseudoterminal has characters to output. If a read request is issued and no
data is available, the read request is queued and then completed at a later time.

D.4.5 Return Values

D.5 PDT$READW — Read Data from Pseudoterminal and Wait
Reads data from the pseudoterminal. The PTD$READW routine completes synchronously; that is, it returns
to the caller after the data has been read.

SS$_NORMAL Normal successful completion.

SS$_ACCVIO Unable to read an argument, or invalid read
buffer address.

SS$_DEVOFFLINE Device is off line and request cannot
proceed.

SS$_EXASTLM Insufficient AST quota for notification AST.

SS$_ILLEFC Illegal event flag cluster.

SS$_INSFMEM Insufficient memory.

SS$_IVBUFLEN Buffer size supplied is illegal.

SS$_IVCHAN Illegal channel.

SS$_NOPRIV Insufficient privilege to perform request.

SS$_UNASEFC Unassociated event flag cluster.
468

Control Connection Routines
PDT$SET_EVENT_NOTIFICATION — Enable or Disable Terminal Event Notification ASTs
For asynchronous completion, use the PTD$READ routine. The PTD$READ routine is identical to the
PTD$READW routine in every way except that PTD$READ returns to the caller without waiting for the data
to be read.

D.5.1 Format

PDT$READW [efn], chan [.astadr] [,astprm] readbuf, readbuf_len

D.6 PDT$SET_EVENT_NOTIFICATION — Enable or Disable
Terminal Event Notification ASTs
Enables or disables a number of repeating terminal event notification ASTs.

D.6.1 Format

PDT$SET_EVENT_NOTIFICATION chan, astadr [,astprm] [,acmode], type

D.6.2 Returns

OpenVMS usage: longword (unsigned)

type: write only

access: by value

D.6.3 Arguments

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the I/O channel assigned to the pseudoterminal. This channel is only intended to be used for
PTD$XXX operations.

astadr

OpenVMS usage: ast_procedure

type: procedure value

access: call without stack unwinding

mechanism: by reference

Address of the notification AST service routine, or zero if the AST is to be canceled.
469

Control Connection Routines
PDT$SET_EVENT_NOTIFICATION — Enable or Disable Terminal Event Notification ASTs
astprm

OpenVMS usage: user_arg

type: longword (unsigned)

access: read only

mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr argument.

acmode

OpenVMS usage: access_mode

type: longword (unsigned)

access: read only

mechanism: by value

Access mode for which the AST is to be declared. The most privileged access mode is the access mode of the
caller. The resulting mode is the access mode at which the AST is declared.

type

OpenVMS usage: type_longword

type: longword (unsigned)

access: read only

mechanism: by value

Value that indicates which notification AST to enable. The $PTDDEF macro defines the symbolic names
listed in Table D-2.

Table D-2 Symbolic Names Defined by $PTDDEF Macro

Symbolic Name Description

PTD$C_SEND_XON Deliver notification AST when the pseudoterminal is ready to accept
input. This AST is not delivered if the pseudoterminal is set to NO
HOSTSYNC.

PTD$C_SEND_BELL Deliver notification AST when the pseudoterminal wants to stop input
and signal it with a bell character.

PTD$C_SEND_XOFF Deliver notification AST when the pseudoterminal wants to stop input
and signal it with a DC3 character.

PTD$C_STOP_OUTPUT Deliver notification AST when the pseudoterminal is stopping output.

PTD$C_RESUME_OUTPUT Deliver notification AST when the pseudoterminal is resuming output.

PTD$C_CHAR_CHANGED Deliver notification AST when the pseudoterminal has changed some
device characteristic.

PTD$C_ABORT_OUTPUT Deliver notification AST when the pseudoterminal wants to abort output.
470

Control Connection Routines
PDT$SET_EVENT_NOTIFICATION — Enable or Disable Terminal Event Notification ASTs
D.6.4 Description

PTD$SET_EVENT_NOTIFICATION enables or disables the repeating terminal event notification ASTs
listed in Table D-2. After an event notification AST is enabled, it remains in effect until it is disabled or until
the device is deleted.

PTD$C_START_READ Deliver notification AST when the pseudoterminal is starting an
application's read request. This AST is delivered only if read event
notification has been enabled.

PTD$C_MIDDLE_READ Deliver notification AST when the pseudoterminal has finished sending
an application's read request prompt string. This AST is delivered only if
read event notification has been enabled.

PTD$C_END_READ Deliver notification AST when the pseudoterminal has finished an
application's read request. This AST is delivered only if read event
notification has been enabled.

PTD$C_ENABLE_READ Enable terminal read event AST delivery. If this code is used, you cannot
supply the astadr argument.

PTD$C_DISABLE_READ Disable terminal read event AST delivery. If this code is used, you cannot
supply the astadr argument.

Table D-2 Symbolic Names Defined by $PTDDEF Macro (Continued)

Symbolic Name Description
471

Control Connection Routines
PDT$WRITE — Write Data to Pseudoterminal
D.6.5 Return Values

D.7 PDT$WRITE — Write Data to Pseudoterminal
Inputs data to the pseudoterminal and reads any immediately echoed characters.

D.7.1 Format

PDT$WRITE chan [.astadr] [,astprm] wrtbuf, wrtbuf_len [,echobuf]
[,echobuf_len]

D.7.2 Returns

OpenVMS usage: longword (unsigned)

type: write only

access: by value

D.7.3 Arguments

chan

OpenVMS usage: channel

type: word (unsigned)

access: read only

mechanism: by value

Number of the I/O channel assigned to the new pseudoterminal. This channel is only intended to be used for
PTD$XXX operations.

SS$_NORMAL Normal successful completion.

SS$_ACCVIO Unable to read an argument, or invalid I/O
buffer address.

SS$_BADPARAM An astadr, astprm, or acmode argument
was not zero when enabling or disabling
r3ad notification.

SS$_DEVOFFLINE Device is off line and request cannot
proceed.

SS$_EXASTLM Insufficient AST quota for notification AST.

SS$_INSFMEM Insufficient memory.

SS$_IVCHAN Illegal channel.

SS$_NOPRIV Insufficient privilege to perform request.
472

Control Connection Routines
PDT$WRITE — Write Data to Pseudoterminal
astadr

OpenVMS usage: ast_procedure

type: procedure value

access: call without stack unwinding

mechanism: by reference

AST service routine to be executed when PTD$READ completes. If you specify astadr, the AST routine
executes at the same access mode as the caller of the PTD$WRITE routine.

astprm

OpenVMS usage: user_arg

type: longword (unsigned)

access: read only

mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr argument.

wrtbuf

OpenVMS usage: char_string

type: character coded text string

access: write only

mechanism: by reference

Address of the read I/O status longword. The first character position in an I/O buffer to receive all output is
this address plus 4. The wrtbuf argument must be in the range specified in the inadr argument of the
PTD$CREATE routine; otherwise, an SS$_ACCVIO status is returned.

wrtbuf_len

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Number of characters to be written to the pseudoterminal. These characters appear as input to the terminal
side of the pseudoterminal.

echobuf

OpenVMS usage: char_string

type: character coded text string

access: write only

mechanism: by reference

Address of the echo I/O status longword. The first character position in an I/O buffer to receive all output is
this address plus 4. The echobuf must be in the range specified by the inadr argument of the PTD$CREATE
routine; otherwise an SS$_ACCVIO status is returned.
473

Control Connection Routines
PDT$WRITE — Write Data to Pseudoterminal
wrtbuf_len

OpenVMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Number of characters that can be read from the pseudoterminal. If an echo buffer is specified, up to
echobuf_len characters can be stored in it.

D.7.4 Description

PTD$WRITE inputs data to the pseudoterminal and reads any immediately echoed characters. PTD$WRITE
allows you to specify a buffer to receive any output generated by the write; you do not need to issue a separate
read request to read this data.

D.7.5 Return Values

SS$_NORMAL Normal successful completion.

SS$_ACCVIO Unable to read an argument, or invalid read
buffer address.

SS$_DATALOST The terminal driver type-ahead buffer is full
and character written was lost.

SS$_DATEAOVERUN The terminal type-ahead buffer is getting
full; attempts to send more data might
result in loss of characters.

SS$_DEVOFFLINE Device is off line and request cannot
proceed.

SS$_EXASTLM Insufficient AST quota for notification AST.

SS$_INSFMEM Insufficient memory.

SS$_IVBUFLEN Buffer size supplied is illegal.

SS$_IVCHAN Illegal channel.

SS$_NOPRIV Insufficient privilege to perform request.
474

Index
Symbols
$QIO, 245

Numerics
3C589 Ethernet device, 352
64-bit virtual addressing

device driver support, 17
802 Extended (IEEE 802.x LLC/SNAP) frame

format, 346

A
ACP (ancillary control process), 21
ACP functions, 22, 57

attributes, 37, 40
disk quotas, 59
IO$_ACCESS, 28, 31, 36, 49
IO$_ACPCONTROL, 28
IO$_CREATE, 31, 32, 36, 46
IO$_DEACCESS, 35, 36, 51
IO$_DELETE, 28, 52
IO$_MODIFY, 28, 32, 35, 36, 51
IO$_MOUNT, 56
magnetic tape positioning, 58
miscellaneous disk, 59
quota file transfer block, 61

ACP subfunctions, 27
access, 31
directory lookup, 28
extend, 32, 61
movefile, 51
read/write attributes, 36
truncate, 35

ACP-QIO interface, 21
access file function, 49
access subfunction, 31
ACP control function, 57
ANSI standard, 21, 58
arguments, 22

disk quota, 61
attribute control block, 36
attributes, 37, 40
attributes statistics block, 45
BLISS-32 programming, 21
create file function, 46

disk, 48
magnetic tape, 49

deaccess file function, 50
delete file function, 52
description, 21
directory entries, 49
file characteristics, 40
function codes, 427
function modifiers, 22

IO$M_ACCESS, 31, 46, 49
IO$M_CREATE, 46, 48, 49
IO$M_DELETE, 46, 48, 52
IO$M_DMOUNT, 57, 59

I/O operations, 21

I/O status block, 61
MACRO programming, 21
movefile subfunction, 53
record attributes area, 43

values, 43
serious exception (EOT), 47, 50, 58
status returns, 427
XQP (extended QIO processor), 21

ACP-QIO interface See also See also FIBs, 21
Alpha LAN devices, 322
ALTMODE key, 189
ANSI escape sequence, 456
Applications

connecting to LAT ports, 217
Arguments

device- or function-dependent, 22
list, 427

ASCII character set See also See DEC Multinational
character set, 447

ASTs (asynchronous system traps)
quota, 89, 118, 145, 212

Asynchronous SCSI data transfer mode
enabling, 306, 312

ATM (asynchronous transfer mode)
ELAN frames, 342

ATM ELAN frames, 342
ATM LAN devices, 360
ATM network

LAN emulation, 362
Attention AST, 245

LAN drivers, 390
mailbox, 152
terminal, 212

AUCBs (audio control blocks)
definition, 81

Audio
$QIO interface to disk class driver, 80
error handling in applications, 84
extensions to SCSI disk class driver, 79
storing with data on CD-ROM, 86

Audio applications
programming, 86
programming example, 87

Audio control blocks See also See AUCBs, 81
Autoconfiguration

of SCSI device, 308

B
Baud rate

of terminal, 210
Booting, 365
BOT (beginning-of-tape) See also See BOT markers

and Magnetic tapes, 124
Broadcast and unknown server (BUS), 363
Broadcast messages, 186, 190, 191, 216
Broadcom 5700 Gigabit Ethernet devices, 356
Buffered I/O

quota, 89, 118, 145
475

Index
C
Caches

tape, 113
write-back volatile, 113

Carriage control, 206
CD-ROM (compact disc read-only memory)

storing data and audio information, 67
Character sets

terminal lowercase, 189, 447
Character sets See also See also DEC Multinational

character set, 447
Characters

terminator set for, 198
Classical IP, 364
Compact discs See also See CD-ROM (compact disc

read-only memory), 67
CONNECT command, 186
Console disks See also See RX01 console disk, 67
Console terminals, 169
Control characters

list, 447
terminal, 172, 175, 178

Control key sequences, 176
Create file function, 46

directory entry creation, 49
CSMA/CD

definition, 318
CTDRIVER driver, 179, 205
Ctrl/x key sequence See also See Terminals, control

characters, 169

D
Data

storing with audio information on CD-ROM, 86
Data checks

disk, 73, 94
magnetic tape, 114, 122, 123

Data transfer mode
as controlled by the generic SCSI class driver, 306,

312
asynchronous, 306, 312
synchronous, 306, 312

Deaccess file function, 50
DEC Multinational character set, 447
DEFZA FDDI device, 358
DEGPA Gigabit Ethernet Devices, 356
DEGPA Gigabit Ethernet NIC, 356
Delete file function, 52
Delete key, 173
DEMFA FDDI device, 358
DEMNA Ethernet device, 349
DEQNA Ethernet devices, 351
DEUNA Ethernet devices, 351
Device characteristics

disk, 87
LAN drivers, 366
magnetic tape, 115
mailbox, 144
pseudoterminal, 285
terminal, 188

Device drivers

disks, 63
LAN, 321
LAT port, 169
magnetic tape, 109
mailbox, 141
pseudoterminal, 283
SCSI, 79
SCSI disk class, 79
shadow set virtual unit, 297
terminal, 169
VAXstation 2000 and MicroVAX 2000 disk, 78

Devices
SCSI support, 298
supported, 298

DHU11 device, 169
DHV11 device, 169
Dialup lines, 181
Digital private escape sequence, 456
Digital Storage Architecture disks See also See DSA

disks, 76
DIOLM process limit, 89
Direct I/O

count process limit, 89, 118
Directory entry

creation, 49
Directory lookup subfunction, 28
DISCONNECT command, 186
Disconnect features

enabling, 312
Disk class drivers

$QIO interface to audio functions, 80
audio extensions, 79
disabling the loading of, 308

Disk drives
compatibility for volume shadowing, 298

Disk quotas, 59, 60, 89
Disks

ACP operation
control function, 59
creating file, 48
deaccessing file, 51

available function, 96
Backup utility, 78
compact disc, 67
data check, 73, 94
device characteristics, 87
device descriptions, 65, 69
driver, 63, 79

SCSI, 79
VAXstation 2000 and MicroVAX 2000, 78

dual-pathed, 70
DSA disks, 72

dual-ported, 71
DSA disks, 72
HSC disks, 73
restrictions for use, 72

error recovery, 75
features, 69
file attributes, 74
function codes, 88, 89, 428
476

Index
function modifiers
IO$M_DATACHECK, 73, 94
IO$M_DELDATA, 95
IO$M_ERASE, 92, 95
IO$M_INHRETRY, 75, 94, 95

HSC controllers, 64
HSC50 controller, 64
HSC70 controller, 64
I/O functions, 88, 93, 99

arguments, 91, 93
IO$_ACPCONTROL, 59

I/O status block, 100
KDA50 controller, 64
KDB50 controller, 64
KFQSA adapter, 65
offset recovery, 74
pack acknowledge function, 96
port access mode, 71
port selection, 71
programming example, 100
quotas, 59, 60, 89
RA60, 65
RA70, 65
RA90, 65
RB02 cartridge, 66
RC25, 66
RCT (replacement and caching table), 77
RD53, 66
RD54, 66
read function, 93
RF30, 66
RF31

failover, 73
RF70

failover, 73
RF71, 66
RK06 cartridge, 66
RK07 cartridge, 66
RL02 cartridge, 66
RM03, 66
RM05, 66
RP05, 67
RP06, 67
RP07, 67
RQDX3 controller, 65
RRD40 CD-ROM, 67
RRD50 CD-ROM, 67
RX02, 68
RX23 flexible, 68
RX33 flexible, 69
RX50 flexible, 69
RZ22, 69
RZ23, 69
RZ55, 69
SDI (standard disk interface), 65
search function, 96
sector translation, 76
seek operations, 75, 97
sense mode function, 95

set density function, 95
set preferred path function, 97
SII integral adapter, 64
skip sectoring, 75
status returns, 429
supported devices, 63, 69
SYS$GETDVI returns, 87
TU58 magnetic tape, 69

data checks, 74
read function, 94
search function, 96
write check function, 97
write function, 94

UDA50 disk adapter, 63
unload function, 96
use with Verify utility, 77, 78
VAXstation 2000 and MicroVAX 2000 driver, 78
write check function, 97
write function, 94

Disks See also I/O functions;See also ACP-QIO
interface, 63

DISMOUNT command, 59
DMB32 device, 169
DMF32 device, 169
DMZ32 device, 169
Drivers

disks, 63
LAN, 321
LAT port, 169
magnetic tape, 109
mailbox, 141
pseudoterminal, 283
SCSI, 79
SCSI disk class, 79
shadow set virtual unit, 297
terminal, 169
VAXstation 2000 and MicroVAX 2000 disk, 78

DSA (Digital Storage Architecture)
disks, 63

bad block replacement, 77, 78
forced error, 77
use with Verify utility, 77, 78

DSA (Digital Storage Architecture) See also disks, 63
DSA disks, 72, 76

bad block replacement, 77, 78
forced error, 77
forced error flag, 78
use with Verify utility, 77, 78

DSA disks See also See also Disks, 63
DSA32 device, 169
DSE (data security erase)

magnetic tape, 130
Dual host

definition, 64
Dual path

definition, 70
Dual-pathed disks, 70

DSA disk, 72
Dual-ported disks, 71

DSA disk, 72
477

Index
HSC disk, 73
restrictions for use, 72

Duplex mode
terminal, 178

Duplex mode See also See also Half-duplex mode, 169
DZ11 device, 169
DZ32 device, 169
DZV11 device, 169

E
ELAN configuring, 365
Enable attention AST function

LAN drivers, 390
End-of-file See also See EOF, 122
End-of-tape markers See also See EOT markers, 109
End-of-volume See also See EOV, 125
EOF (end-of-file)

status of magnetic tape, 122
write mailbox message, 151

EOT markers
status

magnetic tape, 122, 123, 125
EOV (end-of-volume)

detection on magnetic tape, 125
Error recovery

disk, 75
magnetic tape, 114
shadow set virtual unit driver, 300

Escape sequences
ANSI, 456
Digital private, 456
terminal, 176, 189

Ethernet
address classifications, 335
definition, 317

Ethernet (Ethernet Version 2, DIX) frame format,
342

Ethernet LAN devices, 349
Event notification

pseudoterminal, 287
Extend subfunction, 32

F
Fandle, 417
Fast I/O

function codes, 436
system services, 415

Fast Path, 420
function codes, 437

Fast Path performance enhancement, 421
FDDI

definition, 317
FDDI LAN devices, 358
FIBs (file information blocks), 23

access control, 31
contents, 27
descriptor, 22, 23
directory lookup, 28
disk quota, 59, 60
extend control, 33

IO$_ACCESS, 50
IO$_ACPCONTROL, 57, 60
IO$_CREATE, 47
IO$_DEACCESS, 51
IO$_DELETE, 53
IO$_MODIFY, 52
truncate control, 35

FIBs (file information blocks) See also See also ACP
functions, 21

File characteristics
ACP-QIO attributes, 40

File system ACP, 21
FORE ATM devices, 361
Form feeds

terminal, 189
Full-duplex mode, 178
Function codes

IO$_ACCESS, 49
IO$_ACPCONTROL, 57, 118
IO$_AVAILABLE, 96, 131
IO$_CREATE, 46
IO$_DEACCESS, 51
IO$_DELETE, 52
IO$_DSE, 130
IO$_FORMAT, 95
IO$_MODIFY, 51
IO$_PACKACK, 96
IO$_READLBLK, 93, 122, 145, 196, 370
IO$_READPBLK, 93, 122, 145, 370
IO$_READPROMPT, 196
IO$_READVBLK, 93, 122, 145, 196, 370
IO$_REWIND, 123
IO$_REWINDOFF, 126
IO$_SEARCH, 96
IO$_SEEK, 93, 97
IO$_SENSECHAR, 95, 246
IO$_SENSEMODE, 95, 126, 246, 397
IO$_SETCHAR, 127, 208, 375
IO$_SETMODE, 127, 208, 375
IO$_SETPRFPATH, 97
IO$_SKIPFILE, 124
IO$_SKIPRECORD, 124
IO$_UNLOAD, 96, 126
IO$_WRITECHECK, 97
IO$_WRITELBLK, 94, 123, 149, 205, 373
IO$_WRITEOF, 125
IO$_WRITEPBLK, 94, 123, 149, 205, 373
IO$_WRITEVBLK, 94, 123, 149, 205, 373
LAN, 369
list of, 427

Function codes See also See also I/O functions, 427
Function modifiers

for LAN driver, 372
IO$M_ACCESS, 46, 49, 118
IO$M_ATTNAST, 390
IO$M_BRDCST, 216, 249
IO$M_BREAKTHRU, 179, 205
IO$M_CANCTRLO, 174, 206
IO$M_CREATE, 46, 49, 118
IO$M_CTRL, 390, 397
478

Index
IO$M_CTRLCAST, 212
IO$M_CTRLYAST, 174, 212
IO$M_CVTLOW, 197
IO$M_DATACHECK, 73, 94, 114, 122, 123
IO$M_DELDATA, 95
IO$M_DELETE, 46, 52
IO$M_DMOUNT, 57
IO$M_DSABLMBX, 197
IO$M_ENABLMBX, 206
IO$M_ERASE, 92, 95, 123
IO$M_ESCAPE, 176, 197
IO$M_EXTEND, 197, 199
IO$M_FORCEPATH, 97
IO$M_HANGUP, 212
IO$M_INCLUDE, 212, 216
IO$M_INHEXTGAP, 115
IO$M_INHRETRY, 94, 115
IO$M_MAINT, 213, 215
IO$M_MOVEFILE, 51
IO$M_NOECHO, 179, 193, 197
IO$M_NOFILTR, 197
IO$M_NOFORMAT, 179, 206
IO$M_NORSWAIT, 150, 151
IO$M_NOW, 145, 150, 151, 372
IO$M_NOWAIT, 123, 126
IO$M_OUTBAND, 216
IO$M_PURGE, 197
IO$M_RD_MODEM, 247
IO$M_READATTN, 152
IO$M_READERCHECK, 150, 151, 155
IO$M_REFRESH, 206
IO$M_RESPONSE, 375
IO$M_REVERSE, 122
IO$M_SET_MODEM, 213
IO$M_SETPROT, 155
IO$M_SHUTDOWN, 390
IO$M_STREAM, 145
IO$M_TIMED, 198
IO$M_TRMNOECHO, 198
IO$M_TT_ABORT, 216
IO$M_TYPEAHDCNT, 247
IO$M_UNLOOP, 216
IO$M_WRITERCHECK, 145, 155
list of, 427

G
Generic SCSI class driver, 301, 316

$QIO system service format for, 309, 313
assigning a channel to, 309
flow of, 304, 305
I/O status block returned by, 310
loading, 308
obtaining device information from, 313
programming example, 314, 316
security considerations, 305

Generic SCSI descriptor
format of, 311, 313

H
Half-duplex mode, 178, 189
Half-duplex mode See also See also Duplex mode, 169
Hangup function modifier

terminal
disconnecting a, 212
interaction with, 186, 193

Hardware
supported, 298

Hardware interrupts
preferred CPU, 421

HSC disk controllers, 64
HSC disks, 73
HSC40 disk controller, 64
HSC50 disk controller, 64
HSC70 disk controller, 64

I
I/O buffers

pseudoterminal, 285
I/O drivers

disk, 63
LAN drivers, 321
magnetic tapes, 109
mailbox, 141

I/O functions
ACP-QIO interface, 22
disk, 22, 88
for LAN driver, 369
list of, 427
magnetic tape, 22, 117
mailbox, 145
terminal, 196

I/O write operations
preventing data loss, 74
unsuccessful completion, 74

I64 LAN devices, 328
IEEE

definition, 318
INITIALIZE command, 131
Intel 82540 Gigabit Ethernet devices, 357
Intel 82559 Fast Ethernet devices, 355
IO$_M_SET_MAC functional modifier, 391
IO$_SETMODE

IO$M_UPDATE_MAP, 395
IO$M_ALLOWFAST modifier, 124
IO$M_LT_QUE_CHG_NOTIF

LAT $QIO Function Modifier, 245
IO$M_ROUTE functional modifier, 396
IO$M_SENSE_MAC

Used with IO$_SENSEMODE, 400
IO$M_SENSE_MAC functional modifier, 400
IO$M_SHOW_MAP

Used with IO$_SENSEMODE, 403
IO$M_SHOW_MAP functional modifier, 403
IO$M_SHOW_ROUTE

Used with IO$_SENSEMODE, 404
IO$M_SHOW_ROUTE functional modifier, 404
IO$M_UPDATE_MAP functional modifier, 395
IOSBs (I/O status blocks)

ACP-QIO interface, 61
479

Index
disk, 100
LAN drivers, 406
LAT port driver, 249
magnetic tape, 131
mailbox, 156
returned by generic SCSI class driver, 310
terminal, 249

Itemlist read operations, 199

J
Jumbo frames

definition, 318

K
KDA50 disk controller, 64
KDB50 disk controller, 64
Keyboard control character, 172, 175, 178
KFQSA adapter, 65

L
LAN

application APIs, 334
data structures, 331
FDDI devices, 358
frame formats, 338
function codes, 369
I/O architecture, 331
software modules, 333
terminology, 317

LAN addressing, 335
LAN device drivers, 317
LAN drivers

addresses
destination, 370, 374
hardware, 398
loopback assistance, 336
multicast, 336, 370
physical, 336, 370, 384, 398
port, 384
source, 370
Token Ring, 337

AST access mode, 390
AST service routine address, 390
attention AST, 390
buffer

receive, 370
characteristics

device, 366, 367, 397
extended, 376, 387, 398

CRC generation, 379
device characteristics, 366, 367, 397
echo mode (DEUNA only), 380
error summary bits, 368
Ethernet packet padding, 347
exclusive mode on Alpha systems, 347
extended characteristics, 376, 397
function codes, 369, 435
function modifiers, 372, 375, 390, 397

I/O functions, 370, 373, 375, 397
I/O status block, 406
IEEE 802 packet format

Class I service packet format, 344
extended packet format, 346
read function, 370
SAP use and restrictions, 345
support for, 330
write function, 373

IEEE 802 programming example, 407
message size, 367, 372, 374
modify characteristics, 376
packet format

Class I service, 344
extended 802, 346
set mode parameters, 389
SNAP SAP value, 346

padding
message size, 367, 372
transmit messages, 383

parameter ID, 376
packet format, 389

parameter validation, 389
port

start, 376
privilege, 370
programming example, 407
programming notes, 407
promiscuous mode, 407

rules for, 407
protocol type, 370, 374

access mode, 377
Compaq, 342
cross-company, 342

protocol type on Alpha systems
sharing, 347

protocol type sharing on Alpha systems, 347
read function, 370
sense mode function, 397
Service Access Point (SAP), 345
set controller mode

extended characteristics, 376
P2 buffer, 376
parameter ID, 376

set controller mode on Alpha systems
protocol type sharing, 347

set mode function, 375
shared default mode on Alpha systems, 347
shared with destination mode on Alpha systems,

347
shutdown controller mode, 390
shutdown port, 390
status returns, 435
supported devices, 321
SYS$GETDVI routine, 366
unit and line status, 367
write function, 373

LAN drivers See also device characteristics;See also
LAN, extended characteristics, 321
480

Index
LAN emulation, 364
ATM network, 362
topology, 364

LAN emulation client (LEC), 363
LAN emulation configuration server (LECS), 363
LAN emulation data frame format, 342
LAN emulation server (LES), 363
LANCE Ethernet devices, 350
LANCP commands, 365
LAT $QIO, 245
LAT port driver (LTDRIVER), 169
LAT SENSEMODE $QIO Function, 228
LAT SETMODE $QIO Function, 219
LEMAC Ethernet devices, 351
Line terminator

terminal, 178
LTDRIVER (LAT port driver), 169

M
Magnetic tapes

function codes, 429
status returns, 431

Magnetic tapes See also I/O functions;See ACP-QIO
interface, 109

Mailboxes
creating, 141
deleting, 143
device characteristics, 144
disable terminal, 189
driver, 141
function codes, 145, 431
function modifiers

IO$M_NORSWAIT, 150, 151
IO$M_NOW, 145, 150, 151, 153
IO$M_READATTN, 152
IO$M_READERCHECK, 150, 151, 155
IO$M_SETPROT, 155
IO$M_STREAM, 145
IO$M_WRITERCHECK, 145, 155

get mailbox information function, 155
I/O functions

IO$_READLBLK, 145
IO$_READPBLK, 145
IO$_READVBLK, 145
IO$_WRITELBLK, 149
IO$_WRITEOF, 151
IO$_WRITEPBLK, 149
IO$_WRITEVBLK, 149

I/O status block, 156
list of operations, 141
message format, 144

terminal, 187
message size, 141
permanent, 141, 143
programming examples, 158
protection, 141, 143, 155
read attention AST function, 152
read function, 145
set attention AST function, 152
set protection function, 155

status returns, 432
SYS$GETDVI returns, 144
temporary, 141, 143
terminal/mailbox interaction, 186
volume protection, 155
wait for writer/reader function, 154
write attention AST function, 152
write end-of-file message function, 151
write function, 149

Mailboxes See also See also Terminals, 141
Master adapter, 113
MAXBUF system parameter, 196, 200, 205
MAXBUF system parameter See also See also

System parameters, 196
Message format See also See Mailboxes, 187
Modify file function, 51
MOUNT command, 131
Mount function, 56
Movefile subfunction

calling, 53
description, 53

MSCP (mass storage control protocol)
supported devices, 298

Multinational character set See also See DEC
Multinational character set, 447

Multiplexers, 169
DMB32 device, 169
DMF32 device, 169
DZ11 device, 169
DZ32 device, 169

O
OSI model, 319
OTTO ATM devices, 361
Out-of-band AST, 181, 216

P
Packet padding, 347
Parity flag, 210
PASTHRU mode, 178, 179, 194, 197
PDQ FDDI devices, 359
Permanent mailboxes See also See Mailboxes, 143
Permanent Virtual Circuits, 362
PID sharing, 347
Port access mode, 71
Port selection, 71
Pseudoterminals

canceling request, 284
creating, 283
deleting, 284
device characteristics, 285
driver, 283
event notification, 287
features, 284
flow control, 287
I/O buffers, 285
programming example, 289
reading data, 286
using write with echo, 287
writing data, 286
481

Index
Q
QIO API, 334
Quota file

transfer block, 61
Quotas

AST, 89, 118, 145, 152, 212
buffered I/O, 89, 118, 145
BYTELIM, 32
direct I/O, 89, 118
disk, 59, 60
mailbox buffer, 141, 143, 145

R
RA60 disk, 65
RA70 disk, 65
RA90 disk, 65
Radix-50 encoding, 42
RADs support See also See Resource Affinity

Domains support, 426
RB02 cartridge disk, 66
RC25 disk, 66
RD53 disk, 66
RD54 disk, 66
Read attention AST function, 152
Read/write attributes

ACP-QIO interface, 36
Read/write attributes subfunction, 36
Record attributes value, 43
Resource Affinity Domains (RADs) support, 426
Return key, 175
Rewind offline function, 126
RF30 disk, 66
RF71 disk, 66
RK06 cartridge disk, 66
RK07 cartridge disk, 66
RL02 cartridge disk, 66
RM03 disk, 66
RM05 disk, 66
RP05 disk, 67
RP06 disk, 67
RP07 disk, 67
RQDX3 disk controller, 65
RTPAD component of SET HOST, 179
RX01 console disk, 67
RX02 diskette, 68
RX23 diskette, 68
RX33 diskette, 69
RX50 diskette, 69
RZ22 disk, 69
RZ23 disk, 69
RZ55 disk, 69

S
SCSI (Small Computer Systems Interface)

$QIO interface to disk class driver, 80
disk class driver, 79
disks

class driver, 79
error recovery, 75, 79

handling errors in audio applications, 84
hardware compliance, 298

SCSI class driver, 302
SCSI class/port architecture, 302
SCSI command

disabling retry, 307
enabling retry, 312
padding, when required, 313
setting disconnect timeout for, 313
setting DMA timeout for, 307, 313
setting phase change timeout for, 307, 313

SCSI disconnect feature
enabling, 306

SCSI port driver, 302
SCSI_NOAUTO system parameter, 308
SDI (standard disk interface), 65
Sector translation, 76
Seek operation, 75
Sense tape mode function, 126
Serial line multiplexer, 169
Set attention AST See also See Attention AST, 152
SET HOST facility, 179
Set modes

magnetic tape, 127
mailbox, 152
Set Mac qualifier, 391
terminal, 208

SET TERMINAL command, 173, 187, 194
Setting characteristics

magnetic tape, 127
terminal, 208

SGEC/TGEC Ethernet devices, 350
Shadow set virtual unit driver, 297

functions, 298
hardware configurations, 298

Shared Memory Ethernet device, 357
SHDRIVER functions, 297
Shelving

determining if file is shelvable, 40
determining if file is shelved, 40

SII integral adapter, 64
Skip file function, 124
Skip sectoring, 75
Slave formatter, 113
Small Computer Systems Interface (SCSI) See also

See SCSI, 67
SS$_ABORT return, 215, 243, 429, 431, 435
SS$_ACCONFLICT return, 427
SS$_ACCVIO return, 156, 431, 435
SS$_ACPVAFUL return, 427
SS$_BADATTRIB return, 427
SS$_BADCHKSUM return, 427
SS$_BADESCAPE return, 176
SS$_BADFILEHDR return, 427
SS$_BADFILENAME return, 427
SS$_BADFILEVER return, 427
SS$_BADIRECTORY return, 427
SS$_BADPARAM return, 347, 376, 389, 427, 435
SS$_BADQFILE return, 427
SS$_BLOCKCNTERR return, 427
SS$_BUFFEROVF return, 145, 399, 431, 432, 435
SS$_CANCEL return, 429, 431
SS$_COMMHARD return, 435
SS$_CONTROLC return, 216
SS$_CREATED return, 427
482

Index
SS$_CTRLERR return, 429, 431, 435
SS$_DATACHECK return, 429, 431, 435
SS$_DATAOVERUN return, 177, 372, 429, 431, 435
SS$_DEVACTIVE, 246
SS$_DEVACTIVE return, 243, 435
SS$_DEVALLOC return, 435
SS$_DEVICEFULL return, 427
SS$_DEVINACT return, 435
SS$_DEVOFFLINE return, 431, 435
SS$_DEVREQERR, 246
SS$_DEVREQERR return, 435
SS$_DIRFULL return, 427
SS$_DIRNOTEMPTY return, 427
SS$_DISCONNECT return, 435
SS$_DRVERR return, 429, 431
SS$_DUPDSKQUOTA return, 427
SS$_DUPFILENAME return, 427
SS$_DUPUNIT return, 435
SS$_ENDOFFILE return, 125, 149, 151, 372, 427

LAN driver status return, 435
magnetic tape status return, 431
mailbox status return, 431

SS$_ENDOFTAPE return, 431
SS$_ENDOFVOLUME return, 125, 431
SS$_EXBYTLM return, 427
SS$_EXDISKQUOTA return, 427
SS$_EXQUOTA return, 156, 431, 435
SS$_FCPREADERR return, 427
SS$_FCPREWNDERR return, 427
SS$_FCPSPACERR return, 427
SS$_FCPWRITERR return, 427
SS$_FILELOCKED return, 427
SS$_FILENUMCHK return, 427
SS$_FILEPURGED return, 427
SS$_FILESEQCHK return, 427
SS$_FILESTRUCT return, 427
SS$_FILNOTEXP return, 427
SS$_FORCEDERR return, 429
SS$_FORMAT return, 429, 431
SS$_HANGUP return, 181
SS$_HEADERFULL return, 427
SS$_IBCERROR return, 427
SS$_IDXFILEFULL return, 427
SS$_ILLCNTRFUNC return, 428
SS$_ILLIOFUNC return, 156, 243, 429, 431
SS$_INSFMAPREG return, 435
SS$_INSFMEM return, 156, 431, 435
SS$_IVADDR return, 429
SS$_IVBUFLEN return, 375, 429, 435
SS$_MBFULL return, 142, 150, 156, 431
SS$_MBTOOSML return, 156, 431
SS$_MEDOFL return, 429, 431, 435
SS$_NODISKQUOTA return, 428
SS$_NOMOREFILES return, 428
SS$_NONEXDRV return, 429, 431
SS$_NOPRIV return, 155, 156, 428, 431, 435
SS$_NOQFILE return, 428
SS$_NOREADER return, 431
SS$_NORMAL return, 156, 243, 429, 431, 435
SS$_NOSUCHFILE return, 428
SS$_NOTAPEOP return, 428
SS$_NOTLABELMT return, 428
SS$_NOTPRINTED return, 428
SS$_NOTVOLSET return, 428

SS$_NOWRITER return, 431
SS$_OPINCOMPL return, 429, 431, 435
SS$_OVRDSKQUOTA return, 428
SS$_PARITY return, 429, 431
SS$_PARTESCAPE return, 176, 201
SS$_QFACTIVE return, 428
SS$_QFNOTACT return, 428
SS$_RCT return, 429
SS$_RDDELDATA return, 429
SS$_SERIOUSEXCP return, 428, 431
SS$_SUPERSEDE return, 428
SS$_TAPEPOSLOST return, 428
SS$_TIMEOUT return, 198, 243, 429, 431, 435
SS$_TOOMANYVER return, 428
SS$_TOOMUCHDATA return, 435
SS$_UNSAFE return, 429, 431
SS$_VOLINV return, 429, 431
SS$_WASECC return, 429
SS$_WRITLCK return, 428, 429, 431
SS$_WRONGACP return, 428
Standards, 330
Switched Virtual Circuits, 362
Synchronous SCSI data transfer mode

enabling, 306, 312
SYS$ASSIGN routine, 141, 186, 244
SYS$CREMBX system service, 141
SYS$DASSGN routine, 143
SYS$DELMBX system service, 143
SYS$DISMOU system service, 59
SYS$GETDVI routine, 115

disk, 87
LAN drivers, 366
mailbox, 144
SCSI generic class driver, 313
terminal, 188

SYS$QIO routines
format for request to SCSI generic class driver, 309

SYS$QIO system service
interface to audio functions, 80

SYSGEN (System Generation utility) See also See
System Generation utility, 308

System
console terminal, 169

System Generation utility (SYSGEN)
configuring SCSI devices, 308

T
Tabs

Ctrl/I, 175
terminal mechanical, 189
terminal tab stops, 205

Tape class drivers
disabling the loading of, 308

Tape files
attributes, 114

Tape marks, 122, 124, 125
Tapes

ACP control function, 57, 118
ACP create file operation, 49
available function, 131
BOT marker, 124, 125
byte count
483

Index
read, 122
write, 123

data check, 114, 122, 123
data security erase function, 130
density, 129
device characteristics for, 115
driver, 109
end-of-volume detection, 125
EOF status, 122
EOT marker, 124

status, 122, 123, 125
error recovery, 114
extended characteristics, 116
features, 112
function codes, 117, 118
function modifiers

IO$M_DATACHECK, 114, 122, 123
IO$M_ERASE, 123
IO$M_INHEXTGAP, 115
IO$M_INHRETRY, 115
IO$M_NOWAIT, 123, 126
IO$M_REVERSE, 122

I/O functions, 117
arguments, 120
IO$_ACCESS, 118
IO$_ACPCONTROL, 58, 118
IO$_AVAILABLE, 131
IO$_CREATE, 118
IO$_DEACCESS, 118
IO$_DSE, 118, 130
IO$_FLUSH, 118
IO$_MODIFY, 118, 130
IO$_PACKACK, 131
IO$_READLBLK, 122
IO$_READPBLK, 122
IO$_READVBLK, 122
IO$_REWIND, 123
IO$_REWINDOFF, 126
IO$_SENSEMODE, 126
IO$_SETCHAR, 127
IO$_SETMODE, 127
IO$_SKIPFILE, 124
IO$_SKIPRECORD, 124
IO$_UNLOAD, 126
IO$_WRITELBLK, 123
IO$_WRITEOF, 125
IO$_WRITEPBLK, 123
IO$_WRITEVBLK, 123

I/O status block, 131
master adapters, 113
modify function, 130
pack acknowledge function, 131
parity, 129
positioning, 58
programming example, 132
quotas, 118
read function, 122
read reverse function, 122
rewind function, 123

rewind offline function, 126
sense mode function, 126
set characteristics function, 127
set mode function, 127, 129
skip file function, 124
skip record function, 124
slave formatter, 113
status returns, 118
streaming tape systems, 115
supported devices, 109
SYS$GETDVI returns, 115
tape controllers, 109
tape mark, 122, 124, 125
thrashing, 115
TMSCP magnetic tapes, 109
unload function, 126
write end-of-file function, 125
write function, 123

Temporary mailboxes, 143
Terminal characteristics, 188, 189, 194
Terminals

ANSI CRT terminal, 191
autobaud detection, 187, 191
baud rates, 187, 191, 210
bell (Ctrl/G), 177
broadcast messages, 186, 190, 191, 216
carriage control, 206
command line editing, 172, 205
command recall (Ctrl/B), 172, 174
control and data signals, 184
control characters, 172, 175, 178, 196

numeric values, 447
control key sequences, 176
cursor movement, 172, 174, 190
delete character, 172
delete line (Ctrl/U), 173, 196
device characteristics, 188, 189, 194

categories, 194
changing, 211
extended, 194

dialup
characteristic, 190
lines, 181, 192, 212
support, 181

Digital CRT terminal, 192
discard output (Ctrl/O), 174, 196, 206
driver, 169
duplex modes, 178, 181
enable Ctrl/C AST, 212
enable Ctrl/Y AST, 212
escape sequences, 176, 249

ANSI, 456
Digital private, 456
overflow size (item code), 201

extended characteristics, 194
fallback conversion, 179, 193, 212
features, 171
form feed, 189, 205
frame size, 211
484

Index
function codes, 196, 433
function modifiers

IO$M_BRDCST, 216, 249
IO$M_BREAKTHRU, 179, 205
IO$M_CANCTRLO, 174, 206
IO$M_CTRLCAST, 212
IO$M_CTRLYAST, 174, 181, 212
IO$M_CVTLOW, 197
IO$M_DSABLMBX, 197
IO$M_ENABLMBX, 206
IO$M_ESCAPE, 176, 197
IO$M_EXTEND, 197, 199
IO$M_HANGUP, 212
IO$M_INCLUDE, 188, 212, 216
IO$M_LOOP, 215
IO$M_LT_CONNECT, 218
IO$M_LT_DISCON, 218
IO$M_LT_SENSEMODE, 218
IO$M_LT_SETMODE, 218
IO$M_MAINT, 213, 215
IO$M_NOECHO, 178, 179, 193, 197
IO$M_NOFILTR, 197
IO$M_NOFORMAT, 179, 206, 215
IO$M_OUTBAND, 216
IO$M_PURGE, 197
IO$M_RD_MODEM, 247
IO$M_REFRESH, 206
IO$M_SET_MODEM, 213
IO$M_TIMED, 198
IO$M_TRMNOECHO, 198
IO$M_TT_ABORT, 188, 216
IO$M_TYPEAHDCNT, 247
IO$M_UNLOOP, 216

hangup, 181, 185, 186, 193, 212, 246
I/O functions

CTDRIVER, 205
IO$_READLBLK, 196
IO$_READPROMPT, 196
IO$_READVBLK, 196
IO$_SENSECHAR, 246
IO$_SENSEMODE, 246
IO$_SETCHAR, 208
IO$_SETMODE, 208
IO$_TTY_PORT, 218
IO$_WRITELBLK, 205
IO$_WRITEPBLK, 205
IO$_WRITEVBLK, 205

I/O status block, 249
initiate login, 178
input processing, 172
insert/overstrike (Ctrl/A), 172, 175
interrupt (Ctrl/Y), 174
item codes, 200
itemlist read, 199

item codes, 200
item descriptor, 200

LAT line, 169
LAT port driver, 217

application services creation, 244

I/O functions, 218
LAT rejection codes, 251
line editing, 172, 193
line feed, 205
line terminators, 178
mailbox, 186, 206

message format, 187
message types, 186

modem
characteristic, 189
control signals, 184
data signals, 184
protocol, 181
sense signals, 247
signal control, 181

modem signal control, 181
no type-ahead, 190
out-of-band

characters, 188
output

CTDRIVER, 179
RTPAD, 179
SET HOST, 179

output formatting, 179, 194
output processing, 178
page length and width, 210, 247
parity flag, 210
PASTHRU mode, 178, 179, 194, 197
process preservation, 185
programming examples, 252
protocol, 181
read function, 196, 205
read verify, 175, 204
receive speed, 210
redisplay data (Ctrl/R), 175, 196
ReGIS graphics, 194
restart data (Ctrl/Q), 175
sense characteristics function, 246
sense mode function, 246
serial line multiplexer, 169
set characteristics function, 208

arguments, 209
set mode function, 208

arguments, 209
SET TERMINAL DCL command, 173, 187, 194
SIXEL graphics, 194
special operating modes, 178
status (Ctrl/T), 175
status returns, 435
stop data (Ctrl/S), 175
supported devices, 169
SYS$GETDVI returns, 188
system password, 194
tab

Ctrl/I, 175
mechanical, 189
stops, 205

terminator mask, 198, 199
time (Ctrl/T), 175
485

Index
transmit speed, 210
TTY_DIALTYPE system parameter, 181, 184, 185
type-ahead, 177, 186, 189, 247

alternate buffer, 190
unsolicited data, 186
write breakthrough function, 206
write function, 205, 207
XON/XOFF control, 194

Terminals See also line editing;See also Terminals,
item codes, 172

Terminals See also out-of-band;See also Out-of-band
AST, 181

Terminator character bit mask, 198
ThinWire, 330
Thrashing magnetic tape, 115
Timeout periods

for SCSI device, 307, 313
TMS380 Token ring devices, 360
Token Ring

Address mappings, 337
definition, 317
function address mapping, 337
LAN devices, 359

Translations
logical to physical, 76

Truncate subfunction, 35
TU58 magnetic tapes See also See Disks, 69
Tulip Ethernet and Fast Ethernet devices, 353

U
UDA50 disk adapter, 63
Unload function

disk, 96
magnetic tape, 126

V
VAX LAN devices, 320
VCI API, 335

W
Write attention AST function, 152
Write breakthrough function, 206
Write end-of-file function

magnetic tape, 126
message, 151

Write protection
hardware, 298

X
XQP (extended QIO processor), 21
486

	HP OpenVMS I/O User’s Reference Manual
	HP OpenVMS I/O User’s Reference Manual
	HP OpenVMS I/O User’s Reference Manual
	OpenVMS I64 Version 8.2 OpenVMS Alpha Version 8.2 This manual supersedes the HP OpenVMS I/O User’...
	Manufacturing Part Number:� AA-PV6SG-TK
	January 2005
	© Copyright 2005
	© Copyright 2005
	Hewlett-Packard Development Company, L.P

	Legal Notice
	Legal Notice
	Confidential computer software. Valid license from HP required for possession, use or copying. Co...
	The information contained herein is subject to change without notice. The only warranties for HP ...
	Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiarie...
	Printed in the US
	ZK6136
	The HP OpenVMS documentation set is available on CD-ROM.

	Preface
	Preface
	Intended Audience
	Intended Audience
	This manual is intended for system programmers who want to take advantage of the time and space s...

	Document Structure
	Document Structure
	This manual is organized into the following chapters and appendixes:
	• Chapter�1
	• Chapter�1
	• Chapter�1
	• Chapter�1

	• Chapters 2 through 9 describe the use of file-structured and real-time I/O device drivers, the ...
	• Chapters 2 through 9 describe the use of file-structured and real-time I/O device drivers, the ...
	— Chapter�2
	— Chapter�2
	— Chapter�2
	— Chapter�2

	— Chapter�3
	— Chapter�3
	— Chapter�3

	— Chapter�4
	— Chapter�4
	— Chapter�4

	— Chapter�5
	— Chapter�5

	— Chapter�6
	— Chapter�6
	— Chapter�6

	— Chapter�7
	— Chapter�7
	— Chapter�7

	— Chapter�8
	— Chapter�8
	— Chapter�8

	— Chapter�9
	— Chapter�9
	— Chapter�9

	• Chapter�10
	• Chapter�10
	• Chapter�10

	• Appendix�A
	• Appendix�A
	• Appendix�A

	• Appendix�B
	• Appendix�B
	• Appendix�B

	• Appendix�C
	• Appendix�C
	• Appendix�C

	• Appendix�D
	• Appendix�D
	• Appendix�D

	Device Driver Support for OpenVMS Alpha and I64 64-Bit Addressing
	Device Driver Support for OpenVMS Alpha and I64 64-Bit Addressing
	64-bit virtual addressing:device driver support
	The OpenVMS Alpha and I64 operating systems provide support for 64-bit virtual memory addressing,...
	Input and output operations can be performed directly to and from the 64-bit addressable space by...
	For more information about the OpenVMS device drivers that support 64-bit addressing, see the HP ...

	Related Documents
	Related Documents
	The following manuals provide additional information that relates to the topics covered in this b...
	• HP OpenVMS Guide to Upgrading Privileged-Code Applications
	• HP OpenVMS Guide to Upgrading Privileged-Code Applications
	• HP OpenVMS Guide to Upgrading Privileged-Code Applications

	• HP OpenVMS Programming Concepts
	• HP OpenVMS Programming Concepts

	• HP OpenVMS System Services Reference Manual: A�-GETUAI
	• HP OpenVMS System Services Reference Manual: GETUTC�-Z
	• HP OpenVMS System Services Reference Manual: GETUTC�-Z

	• OpenVMS Record Management Services Reference Manual
	• OpenVMS Record Management Services Reference Manual

	• DECnet for OpenVMS Guide to Networking (available on the Documentation CD-ROM)
	• DECnet for OpenVMS Guide to Networking (available on the Documentation CD-ROM)

	•
	•

	NOTE For updated hardware information, refer to the most recent
	NOTE For updated hardware information, refer to the most recent

	HP welcomes your comments on this manual.
	Please send comments to either of the following addresses:
	Internet: openvmsdoc@hp.com
	Internet: openvmsdoc@hp.com

	Postal Mail:
	Postal Mail:
	Hewlett-Packard Company
	OSSG Documentation Group
	ZKO3-4/U08
	110 Spit Brook Road
	Nashua, NH 03062-2698

	How to Order Additional Documentation
	How to Order Additional Documentation
	For information about how to order additional documentation, visit the following World Wide Web a...
	http://www.hp.com/go/openvms/doc/order
	http://www.hp.com/go/openvms/doc/order

	Conventions
	Conventions
	The following conventions may be used in this manual:
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Convention
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	Ctrl/x
	A sequence such as Ctrl/x indicates that you must hold down the key labeled Ctrl while you press ...

	<TABLE ROW>
	PF1 x
	A sequence such as PF1 x indicates that you must first press and release the key labeled PF1 and ...

	<TABLE ROW>
	Return
	In examples, a key name in bold indicates that you press that key.

	<TABLE ROW>
	…
	A horizontal ellipsis in examples indicates one of the following possibilities:

	<TABLE ROW>
	. . .
	A vertical ellipsis indicates the omission of items from a code example or command format; the it...

	<TABLE ROW>
	()
	In command format descriptions, parentheses indicate that you must enclose choices in parentheses...

	<TABLE ROW>
	[]
	In command format descriptions, brackets indicate optional choices. You can choose one or more it...

	<TABLE ROW>
	|
	In command format descriptions, vertical bars separate choices within brackets or braces. Within ...

	<TABLE ROW>
	{ }
	In command format descriptions, braces indicate required choices; you must choose at least one of...

	<TABLE ROW>
	bold type
	bold type

	Bold type represents the introduction of a new term. It also represents the name of an argument, ...

	<TABLE ROW>
	italic type
	italic type

	Italic type indicates important information, complete titles of manuals, or variables. Variables ...

	<TABLE ROW>
	UPPERCASE TYPE
	Uppercase type indicates a command, the name of a routine, the name of a file, or the abbreviatio...

	<TABLE ROW>
	Example
	Example

	This typeface indicates code examples, command examples, and interactive screen displays. In text...
	This typeface indicates code examples, command examples, and interactive screen displays. In text...

	<TABLE ROW>
	–
	A hyphen at the end of a command format description, command line, or code line indicates that th...

	<TABLE ROW>
	numbers
	All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal radixes—binary, ...

	1 ACP-QIO Interface
	1 ACP-QIO Interface
	ACP (ancillary control process)
	ACP (ancillary control process)
	ACP-QIO interface
	File system ACP
	ACP-QIO interface:description
	ACP-QIO interface:I/O operations
	FIBs (file information blocks)<IndexSee> See also </>See also ACP functions
	ACP-QIO interface<IndexSee> See also </>See also FIBs

	Executing physical and logical input/output (I/O) operations on a device that is managed by a fil...
	In addition to the ACP, the XQP (extended QIO processor) facility supplements the QIO driver's fu...
	An XQP is provided to support Files-11 ODS-2 and ODS-5 (On-Disk Structure Level 2 and 5) disks as...
	On VAX systems, an ACP is provided for supporting Files-11 ODS-1 (On-Disk Structure Level 1) disks.
	There are also ACPs to support the ISO 9660 CD-ROM disk structure (Files-11 C) and High Sierra CD...
	This chapter describes the QIO interface to ACPs for disk and magnetic tape devices (file system ...
	This chapter also describes a number of structures and field names of the
	The following macros are available in SYS$LIBRARY:STARLET.MLB:
	$IODEF
	$IODEF
	$IODEF

	$FIBDEF
	$FIBDEF

	$ATRDEF
	$ATRDEF

	$SBKDEF
	$SBKDEF

	The following macros are available in SYS$LIBRARY:LIB.MLB:
	$FATDEF
	$FATDEF
	$FATDEF

	$DQFDEF
	$DQFDEF

	$FCHDEF
	$FCHDEF

	ACP-QIO interface:BLISS-32 programming
	Programs written in BLISS-32 can use these symbols by referencing them and including the correct ...
	References to ANSI refer to the
	ACP Functions and Encoding
	ACP Functions and Encoding
	ACP functions
	ACP functions
	I/O functions:ACP-QIO interface
	I/O functions:disk
	I/O functions:magnetic tape
	Ancillary control process (

	• IO$_CREATE—Creates a directory entry or file
	• IO$_CREATE—Creates a directory entry or file
	• IO$_CREATE—Creates a directory entry or file

	• IO$_ACCESS—Searches a directory for a specified file and accesses the file, if found
	• IO$_ACCESS—Searches a directory for a specified file and accesses the file, if found

	• IO$_DEACCESS—Deaccesses a file and, if specified, writes the final attributes in the file header
	• IO$_DEACCESS—Deaccesses a file and, if specified, writes the final attributes in the file header

	• IO$_MODIFY—Modifies the file attributes and file allocation
	• IO$_MODIFY—Modifies the file attributes and file allocation

	• IO$_DELETE—Deletes a directory entry and file header
	• IO$_DELETE—Deletes a directory entry and file header

	• IO$_MOUNT—Informs the ACP when a volume is mounted; requires MOUNT privilege
	• IO$_MOUNT—Informs the ACP when a volume is mounted; requires MOUNT privilege

	• IO$_ACPCONTROL—Performs miscellaneous control functions
	• IO$_ACPCONTROL—Performs miscellaneous control functions

	The function modifiers are:
	• IO$M_ACCESS—Opens a file on the user's channel
	• IO$M_ACCESS—Opens a file on the user's channel
	• IO$M_ACCESS—Opens a file on the user's channel

	• IO$M_CREATE—Creates a file
	• IO$M_CREATE—Creates a file

	• IO$M_DELETE—Deletes a file or marks it for deletion
	• IO$M_DELETE—Deletes a file or marks it for deletion

	• IO$M_DMOUNT—Dismounts a volume
	• IO$M_DMOUNT—Dismounts a volume

	In addition to the function codes and modifiers, ACPs take five device- or function-dependent arg...
	The second argument, P2, is an optional argument used in directory operations. It specifies the a...
	Argument P3 is the address of a word to receive the resultant file name string length. The result...
	Figure�1�1 ACP Device- or Function-Dependent Arguments
	Figure�1�1 ACP Device- or Function-Dependent Arguments
	<GRAPHIC>

	The fifth argument, P5, is an optional argument containing the address of the attribute control b...
	All areas of memory specified by the descriptors must be capable of being read or written to.
	Figure�1�2
	Figure�1�2

	Figure�1�2 ACP Device/Function Argument Descriptor Format
	Figure�1�2 ACP Device/Function Argument Descriptor Format
	<GRAPHIC>

	File Information Block (FIB)
	File Information Block (FIB)
	FIBs (file information blocks)
	FIBs (file information blocks)
	FIBs (file information blocks)
	FIBs (file information blocks):descriptor

	The FIB is passed by a descriptor (see
	Figure�1�3 Typical Short FIB
	Figure�1�3 Typical Short FIB
	<GRAPHIC>

	Table�1�1
	Table�1�1

	<TABLE>
	Table�1�1 Contents of the FIB�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$L_ACCTL
	FIB$L_ACCTL

	Contains flag bits that control the access to the file. Sections Section 1.3.1.1, Section 1.3.2.1...
	Contains flag bits that control the access to the file. Sections

	<TABLE ROW>
	FIB$L_ACL_STATUS
	Status of the requested ACL attribute operation, if any. The ACL attributes are included in Table...
	Status of the requested ACL attribute operation, if any. The ACL attributes are included in

	<TABLE ROW>
	FIB$L_ACLCTX
	FIB$L_ACLCTX

	Maintains position context when processing ACL attributes from the attribute (P5) list.
	Maintains position context when processing ACL attributes from the attribute (P5) list.

	<TABLE ROW>
	FIB$B_ALALIGN
	FIB$B_ALALIGN

	Contains the interpretation mode of the allocation (FIB$W_ALLOC) field.
	Contains the interpretation mode of the allocation (FIB$W_ALLOC) field.

	<TABLE ROW>
	FIB$W_ALLOC
	Contains the desired physical location of the blocks being allocated. Interpretation of the field...
	Contains the desired physical location of the blocks being allocated. Interpretation of the field...

	<TABLE ROW>
	Subfield
	Subfield

	Meaning

	<TABLE ROW>
	FIB$W_LOC_FID
	FIB$W_LOC_FID

	Three-word related file ID for RFI placement.
	Three-word related file ID for RFI placement.

	<TABLE ROW>
	FIB$W_LOC_NUM
	FIB$W_LOC_NUM

	Related file number.
	Related file number.

	<TABLE ROW>
	FIB$W_LOC_SEQ
	FIB$W_LOC_SEQ

	Related file sequence number.

	<TABLE ROW>
	FIB$B_LOC_RVN
	FIB$B_LOC_RVN

	Related file relative volume number (RVN) or placement RVN.
	Related file relative volume number (RVN) or placement RVN.

	<TABLE ROW>
	FIB$B_LOC_NMX
	FIB$B_LOC_NMX

	Related file number extension.
	Related file number extension.

	<TABLE ROW>
	FIB$L_LOC_ADDR
	FIB$L_LOC_ADDR

	Placement logical block number (LBN), cylinder, or virtual block number (VBN).
	Placement logical block number (LBN), cylinder, or virtual block number (VBN).

	<TABLE ROW>
	FIB$B_ALOPTS
	FIB$B_ALOPTS

	Contains option bits that control the placement of allocated blocks. Section 1.3.3.1 describes th...
	Contains option bits that control the placement of allocated blocks.

	<TABLE ROW>
	FIB$L_ALT_ACCESS
	FIB$L_ALT_ACCESS

	A 32-bit mask that represents an access mask to check against file protection; for example, opens...
	A 32-bit mask that represents an access mask to check against file protection; for example, opens...

	<TABLE ROW>
	FIB$W_CNTRLFUNC
	FIB$W_CNTRLFUNC

	In an IO$_ACPCONTROL function, this field contains the code that specifies which ACP control func...
	In an IO$_ACPCONTROL function, this field contains the code that specifies which ACP control func...

	<TABLE ROW>
	FIB$L_CNTRLVAL
	FIB$L_CNTRLVAL

	Contains a control function value used in an IO$_ACPCONTROL function (see Section 1.6.8). The int...
	Contains a control function value used in an IO$_ACPCONTROL function (see

	<TABLE ROW>
	FIB$W_DID
	FIB$W_DID

	Contains the file identifier of the directory file.
	Contains the file identifier of the directory file.
	For Files-11 On-Disk Structure Level 1 and Level 2, the following subfields are defined:

	<TABLE ROW>
	Subfield
	Subfield

	Meaning

	<TABLE ROW>
	FIB$W_DID_NUM
	FIB$W_DID_NUM

	File number.
	File number.

	<TABLE ROW>
	FIB$W_DID_SEQ
	FIB$W_DID_SEQ

	File sequence number.
	File sequence number.

	<TABLE ROW>
	FIB$W_DID_RVN
	FIB$W_DID_RVN

	Relative volume number (only for magnetic tape devices).
	Relative volume number (only for magnetic tape devices).

	<TABLE ROW>
	FIB$B_DID_RVN
	FIB$B_DID_RVN

	Relative volume number (only for disk devices).
	Relative volume number (only for disk devices).

	<TABLE ROW>
	FIB$B_DID_NMX
	FIB$B_DID_NMX

	File number extension (only for disk devices).
	File number extension (only for disk devices).

	<TABLE ROW>
	FIB$W_EXCTL
	FIB$W_EXCTL

	Contains flag bits that specify extend control for disk devices. Sections Section 1.3.3.1 and Sec...
	Contains flag bits that specify extend control for disk devices. Sections

	<TABLE ROW>
	FIB$L_EXSZ
	FIB$L_EXSZ

	Specifies the number of blocks to be allocated in an extend operation on a disk file.
	Specifies the number of blocks to be allocated in an extend operation on a disk file.

	<TABLE ROW>
	FIB$L_EXVBN
	FIB$L_EXVBN

	Specifies the starting disk file virtual block number at which a file is to be truncated.
	Specifies the starting disk file virtual block number at which a file is to be truncated.

	<TABLE ROW>
	FIB$W_FID
	FIB$W_FID

	Specifies the file identification. You supply the file identifier when it is known; the ACP retur...
	Specifies the file identification. You supply the file identifier when it is known; the ACP retur...
	For Files-11 On-Disk Structure Level 1 and Level 2, the following subfields are defined:

	<TABLE ROW>
	Subfields
	Subfields

	Meaning

	<TABLE ROW>
	FIB$W_FID_NUM
	FIB$W_FID_NUM

	File number.
	File number.

	<TABLE ROW>
	FIB$W_FID_SEQ
	FIB$W_FID_SEQ

	File sequence number.
	File sequence number.

	<TABLE ROW>
	FIB$W_FID_RVN
	FIB$W_FID_RVN

	Relative volume number (only for magnetic tape devices).
	Relative volume number (only for magnetic tape devices).

	<TABLE ROW>
	FIB$B_FID_RVN
	FIB$B_FID_RVN

	Relative volume number (only for disk devices).
	Relative volume number (only for disk devices).

	<TABLE ROW>
	FIB$B_FID_NMX
	FIB$B_FID_NMX

	File number extension (only for disk devices).
	File number extension (only for disk devices).

	<TABLE ROW>
	FIB$W_FID_DIRNUM
	FIB$W_FID_DIRNUM

	Directory number of the file identifier. This is the path table record number of the directory th...
	Directory number of the file identifier. This is the path table record number of the directory th...

	<TABLE ROW>
	FIB$L_FID_RECNUM
	FIB$L_FID_RECNUM

	Record number of the first directory record for the file within the current directory.
	Record number of the first directory record for the file within the current directory.

	<TABLE ROW>
	FIB$B_NAME_FORMAT_IN
	FIB$B_NAME_FORMAT_IN

	Contains the format of the input file specification. Section 1.3.1.1 describes the FIB$B_NAME_FOR...
	Contains the format of the input file specification.

	<TABLE ROW>
	FIB$B_NAME_FORMAT_OUT
	FIB$B_NAME_FORMAT_OUT

	Contains the format of the output file specification. Section 1.3.1.1 describes the FIB$B_NAME_FO...
	Contains the format of the output file specification.

	<TABLE ROW>
	FIB$W_NMCTL
	FIB$W_NMCTL

	Contains flag bits that control the processing of a name string in a directory operation. Section...
	Contains flag bits that control the processing of a name string in a directory operation. Sections

	<TABLE ROW>
	FIB$L_STATUS
	FIB$L_STATUS

	Access status. Applies to all major functions. The following bits are supported:
	Access status. Applies to all major functions. The following bits are supported:

	<TABLE ROW>
	Subfields
	Subfields

	Meaning

	<TABLE ROW>
	FIB$V_ALT_REQ
	FIB$V_ALT_REQ

	Set to indicate whether the alternate access bit is required for the current operation. If not se...
	Set to indicate whether the alternate access bit is required for the current operation. If not se...

	<TABLE ROW>
	FIB$V_ALT_GRANTED
	FIB$V_ALT_GRANTED

	If FIB$V_ALT_REQ = 0, the FIB bit returned from the file system is set if the alternate access ch...
	If FIB$V_ALT_REQ = 0, the FIB bit returned from the file system is set if the alternate access ch...
	Programmers can control the security information being propagated as well as the source of this i...

	<TABLE ROW>
	FIB$V_DIRACL
	FIB$V_DIRACL

	Propagate the ACL from the parent directory to the file, assuming the file is a directory file.
	Propagate the ACL from the parent directory to the file, assuming the file is a directory file.

	<TABLE ROW>
	FIB$V_EXCLPREVIOUS
	FIB$V_EXCLPREVIOUS

	Set to indicate that propagation may not occur from a previous version of the file.
	Set to indicate that propagation may not occur from a previous version of the file.

	<TABLE ROW>
	FIB$V_ALIAS_ENTRY
	FIB$V_ALIAS_ENTRY

	Set on any file system operation where the directory backlink in the file header is different (an...
	Set on any file system operation where the directory backlink in the file header is different (an...

	<TABLE ROW>
	FIB$V_NOCOPYACL
	FIB$V_NOCOPYACL

	Set to indicate that the ACL should not be propagated from the parent directory (or a previous ve...
	Set to indicate that the ACL should not be propagated from the parent directory (or a previous ve...

	<TABLE ROW>
	FIB$V_NOCOPYOWNER
	FIB$V_NOCOPYOWNER

	Set to indicate that the owner UIC should not be propagated from the parent directory (or a previ...
	Set to indicate that the owner UIC should not be propagated from the parent directory (or a previ...

	<TABLE ROW>
	FIB$V_NOCOPYPROT
	FIB$V_NOCOPYPROT

	Set to indicate that the UIC-based protection should not be propagated from the parent directory ...
	Set to indicate that the UIC-based protection should not be propagated from the parent directory ...

	<TABLE ROW>
	FIB$V_PROPAGATE
	FIB$V_PROPAGATE

	Propagate attributes from the parent directory (or previous version of the file). If you set the ...
	Propagate attributes from the parent directory (or previous version of the file). If you set the ...

	<TABLE ROW>
	FIB$W_VERLIMIT
	FIB$W_VERLIMIT

	Contains the version limit of the directory entry.
	Contains the version limit of the directory entry.

	<TABLE ROW>
	FIB$L_WCC
	FIB$L_WCC

	Maintains position context when processing wildcard directory operations.
	Maintains position context when processing wildcard directory operations.

	<TABLE ROW>
	FIB$B_WSIZE
	FIB$B_WSIZE
	FIBs (file information blocks):contents

	Controls the size of the file window used to map a disk file. If a window size of 255 is specifie...
	Controls the size of the file window used to map a disk file. If a window size of 255 is specifie...

	ACP Subfunctions
	ACP Subfunctions
	ACP subfunctions
	ACP subfunctions

	• Directory Lookup
	• Directory Lookup
	• Directory Lookup

	• Access
	• Access

	• Extend
	• Extend

	• Truncate
	• Truncate

	• Read/Write Attributes
	• Read/Write Attributes

	Section 1.6
	Section 1.6

	Directory Lookup
	Directory Lookup
	Directory lookup subfunction
	Directory lookup subfunction
	ACP subfunctions:directory lookup

	Input Parameters
	Input Parameters
	Table�1�2
	Table�1�2

	<TABLE>
	Table�1�2 FIB Fields (Lookup Control)�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$W_NMCTL
	FIB$W_NMCTL

	Name string control. The following name control bits are applicable to a lookup operation:
	Name string control. The following name control bits are applicable to a lookup operation:

	<TABLE ROW>
	FIB$V_ALLNAM
	FIB$V_ALLNAM

	Set to match all name field values.
	Set to match all name field values.

	<TABLE ROW>
	FIB$V_ALLTYP
	FIB$V_ALLTYP

	Set to match all field type values.
	Set to match all field type values.

	<TABLE ROW>
	FIB$V_ALLVER
	FIB$V_ALLVER

	Set to match all version field values.
	Set to match all version field values.

	<TABLE ROW>
	FIB$V_CASE_SENSITIVE
	FIB$V_CASE_SENSITIVE

	When set, performs case-sensitive lookup; when clear, performs case-blind lookup.
	When set, performs case-sensitive lookup; when clear, performs case-blind lookup.

	<TABLE ROW>
	FIB$V_FINDFID
	FIB$V_FINDFID

	Set to search a directory for the file ID in FIB$W_FID.
	Set to search a directory for the file ID in FIB$W_FID.

	<TABLE ROW>
	FIB$V_NAMES_8BIT
	FIB$V_NAMES_8BIT

	Caller can accept (8-bit) ODS-2 or ISO Latin-1 formats.
	Caller can accept (8-bit) ODS-2 or ISO Latin-1 formats.

	<TABLE ROW>
	FIB$V_NAMES_16BIT
	FIB$V_NAMES_16BIT

	Caller can accept (16-bit) Unicode (UCS-2) formats.
	Caller can accept (16-bit) Unicode (UCS-2) formats.

	<TABLE ROW>
	FIB$V_WILD
	FIB$V_WILD

	Set if name string contains wildcards. Setting this bit causes wildcard context to be returned in...
	Set if name string contains wildcards. Setting this bit causes wildcard context to be returned in...

	<TABLE ROW>
	FIB$W_FID
	FIB$W_FID

	File identification. The file ID of the file found is returned in this field.
	File identification. The file ID of the file found is returned in this field.

	<TABLE ROW>
	FIB$W_DID
	FIB$W_DID

	Contains the file identifier of the directory file. This field must be a nonzero number.
	Contains the file identifier of the directory file. This field must be a nonzero number.

	<TABLE ROW>
	FIB$L_WCC
	FIB$L_WCC

	Maintains position context when processing wildcard directory operations.
	Maintains position context when processing wildcard directory operations.

	<TABLE ROW>
	FIB$L_ACCTL
	FIB$L_ACCTL

	The following access control flag is applicable to a lookup subfunction:
	The following access control flag is applicable to a lookup subfunction:

	<TABLE ROW>
	FIB$V_REWIND
	FIB$V_REWIND

	Set to rewind magnetic tape before lookup. If not set, a magnetic tape is searched from its curre...
	Set to rewind magnetic tape before lookup. If not set, a magnetic tape is searched from its curre...

	<TABLE ROW>
	FIB$B_NAME_FORMAT_IN
	FIB$B_NAME_FORMAT_IN

	Contains the format of the input file specification. The following formats are valid:
	Contains the format of the input file specification. The following formats are valid:

	<TABLE ROW>
	FIB$C_ODS2
	FIB$C_ODS2

	ODS-2 Format (default)
	ODS-2 Format (default)

	<TABLE ROW>
	FIB$C_ISO_LATIN
	FIB$C_ISO_LATIN

	ISO Latin-1 Format
	ISO Latin-1 Format

	<TABLE ROW>
	FIB$C_UCS2
	FIB$C_UCS2

	Unicode (UCS-2) Format
	Unicode (UCS-2) Format

	<TABLE ROW>
	FIB$B_NAME_FORMAT_OUT
	FIB$B_NAME_FORMAT_OUT

	Contains the format of the output file specification. The following formats are valid:
	Contains the format of the output file specification. The following formats are valid:

	<TABLE ROW>
	FIB$C_ODS2
	FIB$C_ODS2

	ODS-2 Format (default)
	ODS-2 Format (default)

	<TABLE ROW>
	FIB$C_ISO_LATIN
	FIB$C_ISO_LATIN

	ISO Latin-1 Format
	ISO Latin-1 Format

	<TABLE ROW>
	FIB$C_UCS2
	FIB$C_UCS2

	Unicode (UCS-2) Format
	Unicode (UCS-2) Format

	QIO arguments P2 through P5 (see
	The file name string must have one of the following two formats:
	name.type;version name.type.version
	name.type;version name.type.version

	The name and type can be any combination of alphanumeric characters, and the dollar sign ($), ast...
	If any of the bits FIBV_ALLNAM, FIBV_ALLTYP, and FIB$V_ALLVER are set, then the contents of the...
	Note that the file name string cannot contain a directory string. The directory is specified by t...
	Argument P3 is the address of a word to receive the resultant file name string length. Argument P...

	Operation
	Operation
	The system searches either the directory file specified by FIB$W_DID or the magnetic tape for the...
	Zero and negative version numbers have special significance in a disk lookup operation. Specifyin...
	Wildcard lookups are performed by specifying the appropriate wildcard characters in the name stri...
	To perform a lookup by file ID, set the name control bit FIB$V_FINDFID. When this bit is set, the...
	Lookups by file ID should be done only when the file name is not available, because lookups by th...
	Because not all programs can handle all of the available name formats, the FIB$W_NMCTL flags gove...
	• FIB$V_ NAMES_8BIT clear
	• FIB$V_ NAMES_8BIT clear
	• FIB$V_ NAMES_8BIT clear
	FIB$V_ NAMES_16BIT clear
	Only ODS-2 format names are returned. Note that this includes specifications that were originally...

	• FIB$V_ NAMES_8BIT set
	• FIB$V_ NAMES_8BIT set
	FIB$V_ NAMES_16BIT clear
	Only those file specifications stored in ODS-2 and ISO Latin-1 formats are returned. The value in...

	• FIB$V_ NAMES_8BIT clear
	• FIB$V_ NAMES_8BIT clear
	FIB$V_ NAMES_16BIT set
	All file specifications are returned in Unicode (UCS-2) format.

	• FIB$V_ NAMES_8BIT set
	• FIB$V_ NAMES_8BIT set
	FIB$V_ NAMES_16BIT set
	File specifications are returned in the format stored on the volume. This is the simplest format ...

	Directory Entry Protection
	Directory Entry Protection
	A directory entry is protected with the same protection code as the file itself. For example, if ...
	Nonprivileged users can neither write directly into a .DIR;1 directory file nor turn off the dire...

	Access
	Access
	ACP-QIO interface:access subfunction
	ACP-QIO interface:access subfunction
	ACP subfunctions:access

	Input Parameters
	Input Parameters
	Table�1�3
	Table�1�3

	<TABLE>
	Table�1�3 FIB Fields (Access Control)�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$L_ACCTL
	FIB$L_ACCTL

	Specifies field values that control access to the file. The following access control bits are app...
	Specifies field values that control access to the file. The following access control bits are app...

	<TABLE ROW>
	FIB$V_WRITE
	FIB$V_WRITE

	Set for write access; clear for read-only access.
	Set for write access; clear for read-only access.

	<TABLE ROW>
	FIB$V_NOREAD
	FIB$V_NOREAD

	Set to deny read access to others. (You must have write privilege to the file to use this option.)
	Set to deny read access to others. (You must have write privilege to the file to use this option.)

	<TABLE ROW>
	FIB$V_NOWRITE
	FIB$V_NOWRITE

	Set to deny write access to others.
	Set to deny write access to others.

	<TABLE ROW>
	FIB$V_NOTRUNC
	FIB$V_NOTRUNC

	Set to prevent the file from being truncated; clear to allow truncation.
	Set to prevent the file from being truncated; clear to allow truncation.

	<TABLE ROW>
	FIB$V_CONTROL
	FIB$V_CONTROL

	Set for control access. If this bit is set, you cannot access the file if you do not have control...
	Set for control access. If this bit is set, you cannot access the file if you do not have control...

	<TABLE ROW>
	FIB$V_NO_READ_ DATA
	FIB$V_NO_READ_ DATA

	Set to deny read access to the file.
	Set to deny read access to the file.

	<TABLE ROW>
	FIB$V_DLOCK
	FIB$V_DLOCK

	Set to enable deaccess lock (close check). Used only for disk devices.
	Set to enable deaccess lock (close check). Used only for disk devices.

	<TABLE ROW>
	Used to flag a file as inconsistent if the program currently modifying the file terminates abnorm...
	Used to flag a file as inconsistent if the program currently modifying the file terminates abnorm...

	<TABLE ROW>
	FIB$V_UPDATE
	FIB$V_UPDATE

	Set to position at the start of a magnetic tape file when opening a file for write; clear to posi...
	Set to position at the start of a magnetic tape file when opening a file for write; clear to posi...

	<TABLE ROW>
	FIB$V_READCK
	FIB$V_READCK

	Set to enable read checking of the file. Virtual reads to the file are performed using a data che...
	Set to enable read checking of the file. Virtual reads to the file are performed using a data che...

	<TABLE ROW>
	FIB$V_WRITECK
	FIB$V_WRITECK

	Set to enable write checking of the file. Virtual writes to the file are performed using a data c...
	Set to enable write checking of the file. Virtual writes to the file are performed using a data c...

	<TABLE ROW>
	FIB$V_EXECUTE
	FIB$V_EXECUTE

	Set to access the file in execute mode. The protection check is made against the EXECUTE bit inst...
	Set to access the file in execute mode. The protection check is made against the EXECUTE bit inst...

	<TABLE ROW>
	FIB$V_NOLOCK
	FIB$V_NOLOCK

	Set to override exclusive access to the file, allowing you to access the file when another user h...
	Set to override exclusive access to the file, allowing you to access the file when another user h...
	You must have either SYSPRV privilege or control access to use this option.

	<TABLE ROW>
	FIB$V_NORECORD
	FIB$V_NORECORD

	Set to inhibit recording of the file's modification and expiration dates. If not set, the file's ...
	Set to inhibit recording of the file's modification and expiration dates. If not set, the file's ...

	<TABLE ROW>
	FIB$V_SEQONLY
	FIB$V_SEQONLY

	Set to inform the file system that the file is to be processed sequentially only.
	Set to inform the file system that the file is to be processed sequentially only.

	<TABLE ROW>
	FIB$B_WSIZE
	FIB$B_WSIZE
	Quotas:BYTELIM

	Controls the size of the file window used to map a disk file. The ACP uses the volume default if ...
	Controls the size of the file window used to map a disk file. The ACP uses the volume default if ...

	<TABLE ROW>
	FIB$W_FID
	FIB$W_FID

	Specifies the file identification of the file to be accessed.
	Specifies the file identification of the file to be accessed.

	Operation
	Operation
	The file is opened according to the access control specified (see

	Extend
	Extend
	ACP subfunctions:extend
	ACP subfunctions:extend
	ACP functions:IO$_CREATE
	ACP functions:IO$_MODIFY
	Extend subfunction

	Input Parameters
	Input Parameters
	Table�1�4
	Table�1�4

	<TABLE>
	Table�1�4 FIB Fields (Extend Control)�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$W_EXCTL
	FIB$W_EXCTL

	Extend control flags. The following flags are applicable to the extend subfunction:
	Extend control flags. The following flags are applicable to the extend subfunction:

	<TABLE ROW>
	FIB$V_EXTEND
	FIB$V_EXTEND

	Set to enable extension.
	Set to enable extension.

	<TABLE ROW>
	FIB$V_NOHDREXT
	FIB$V_NOHDREXT

	Set to inhibit generation of extension file headers.
	Set to inhibit generation of extension file headers.

	<TABLE ROW>
	FIB$V_ALCON
	FIB$V_ALCON

	Allocates contiguous space. The extend operation fails if the necessary contiguous space is not a...
	Allocates contiguous space. The extend operation fails if the necessary contiguous space is not a...

	<TABLE ROW>
	FIB$V_ALCONB
	FIB$V_ALCONB

	Allocates the maximum amount of contiguous space.
	Allocates the maximum amount of contiguous space.

	<TABLE ROW>
	If both FIB$V_ALCON and FIB$V_ALCONB are set, a single contiguous area, whose size is the largest...
	If both FIB$V_ALCON and FIB$V_ALCONB are set, a single contiguous area, whose size is the largest...

	<TABLE ROW>
	FIB$V_FILCON
	FIB$V_FILCON

	Marks the file as contiguous. This bit can only be set if the file does not have space already al...
	Marks the file as contiguous. This bit can only be set if the file does not have space already al...

	<TABLE ROW>
	FIB$V_ALDEF
	FIB$V_ALDEF

	Allocates the extend size (FIB$L_EXSZ) or the system default, whichever is greater.
	Allocates the extend size (FIB$L_EXSZ) or the system default, whichever is greater.

	<TABLE ROW>
	FIB$L_EXSZ
	FIB$L_EXSZ

	Specifies the number of blocks to allocate to the file.
	Specifies the number of blocks to allocate to the file.

	<TABLE ROW>
	The number of blocks actually allocated for this operation is returned in this longword. More blo...
	The number of blocks actually allocated for this operation is returned in this longword. More blo...

	<TABLE ROW>
	FIB$L_EXVBN
	FIB$L_EXVBN

	Returns the starting virtual block number of the blocks allocated. FIB$L_EXVBN must initially con...
	Returns the starting virtual block number of the blocks allocated. FIB$L_EXVBN must initially con...

	<TABLE ROW>
	FIB$B_ALOPTS
	FIB$B_ALOPTS

	Contains option bits that control the placement of allocated blocks. The following bits are defined:
	Contains option bits that control the placement of allocated blocks. The following bits are defined:

	<TABLE ROW>
	FIB$V_EXACT
	FIB$V_EXACT

	Set to require exact placement; clear to specify approximate placement. If this bit is set and th...
	Set to require exact placement; clear to specify approximate placement. If this bit is set and th...

	<TABLE ROW>
	FIB$V_ONCYL
	FIB$V_ONCYL

	Set to locate allocated space within a cylinder. This option functions correctly only when FIB$V_...
	Set to locate allocated space within a cylinder. This option functions correctly only when FIB$V_...

	<TABLE ROW>
	FIB$B_ALALIGN
	FIB$B_ALALIGN

	Contains the interpretation mode of the allocation (FIB$W_ALLOC) field. One of the following valu...
	Contains the interpretation mode of the allocation (FIB$W_ALLOC) field. One of the following valu...

	<TABLE ROW>
	(zero)
	(zero)

	No placement data. The remainder of the allocation field is ignored.
	No placement data. The remainder of the allocation field is ignored.

	<TABLE ROW>
	FIB$C_CYL
	FIB$C_CYL

	Location is specified as a byte relative volume number (RVN) in FIB$B_LOC_RVN and a cylinder numb...
	Location is specified as a byte relative volume number (RVN) in FIB$B_LOC_RVN and a cylinder numb...

	<TABLE ROW>
	FIB$C_LBN
	FIB$C_LBN

	Location is specified as a byte RVN in FIB$B_LOC_RVN, followed by a longword logical block number...
	Location is specified as a byte RVN in FIB$B_LOC_RVN, followed by a longword logical block number...

	<TABLE ROW>
	FIB$C_VBN
	FIB$C_VBN

	Location is specified as a longword virtual block number (VBN) of the file being extended in FIB$...
	Location is specified as a longword virtual block number (VBN) of the file being extended in FIB$...

	<TABLE ROW>
	FIB$C_RFI
	FIB$C_RFI

	Location is specified as a three-word file ID in FIB$W_LOC_FID, followed by a longword VBN of tha...
	Location is specified as a three-word file ID in FIB$W_LOC_FID, followed by a longword VBN of tha...

	<TABLE ROW>
	FIB$W_ALLOC
	FIB$W_ALLOC

	Contains the desired physical location of the blocks being allocated. Interpretation of the field...
	Contains the desired physical location of the blocks being allocated. Interpretation of the field...

	<TABLE ROW>
	FIB$W_LOC_FID
	FIB$W_LOC_FID

	Three-word related file ID for RFI placement.
	Three-word related file ID for RFI placement.

	<TABLE ROW>
	FIB$W_LOC_NUM
	FIB$W_LOC_NUM

	Related file number.
	Related file number.

	<TABLE ROW>
	FIB$W_LOC_SEQ
	FIB$W_LOC_SEQ

	Related file sequence number.
	Related file sequence number.

	<TABLE ROW>
	FIB$B_LOC_RVN
	FIB$B_LOC_RVN

	Related file RVN or placement RVN.
	Related file RVN or placement RVN.

	<TABLE ROW>
	FIB$B_LOC_NMX
	FIB$B_LOC_NMX

	Related file number extension.
	Related file number extension.

	<TABLE ROW>
	FIB$L_LOC_ADDR
	FIB$L_LOC_ADDR

	Placement LBN, cylinder, or VBN.
	Placement LBN, cylinder, or VBN.

	Operation
	Operation
	The specified number of blocks are allocated and appended to the file. The virtual block number a...
	The actual number of blocks allocated is also returned in the second longword of the user's I/O s...

	Truncate
	Truncate
	Truncate subfunction
	Truncate subfunction
	ACP subfunctions:truncate
	ACP functions:IO$_DEACCESS
	ACP functions:IO$_MODIFY

	Input Parameters
	Input Parameters
	Table�1�5
	Table�1�5

	<TABLE>
	Table�1�5 FIB Fields (Truncate Control)�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$W_EXCTL
	FIB$W_EXCTL

	Extend control flags. The following flags are applicable to the truncate subfunction:
	Extend control flags. The following flags are applicable to the truncate subfunction:

	<TABLE ROW>
	FIB$V_TRUNC
	FIB$V_TRUNC

	Must be set to enable truncation.
	Must be set to enable truncation.

	<TABLE ROW>
	FIB$V_MARKBAD
	FIB$V_MARKBAD

	Set to append the truncated blocks to the bad block file, instead of returning them to the free s...
	Set to append the truncated blocks to the bad block file, instead of returning them to the free s...

	<TABLE ROW>
	FIB$L_EXSZ
	FIB$L_EXSZ

	Returns the actual number of blocks deallocated. FIB$L_EXSZ must initially contain a value of 0.
	Returns the actual number of blocks deallocated. FIB$L_EXSZ must initially contain a value of 0.

	<TABLE ROW>
	FIB$L_EXVBN
	FIB$L_EXVBN

	Specifies the first virtual block number to be removed from the file. The actual starting virtual...
	Specifies the first virtual block number to be removed from the file. The actual starting virtual...

	Operation
	Operation
	Blocks are deallocated from the file, starting with the virtual block specified in FIB$L_EXVBN an...
	The number of blocks by which FIB$L_EXVBN was rounded up is returned in the second longword of th...
	The truncate subfunction normally requires exclusive access to the file at run time. This means, ...
	An exception occurs when a truncate subfunction is requested for a write-accessed file that allow...
	Once the truncate operation has started, the file is locked from other writers for the duration o...

	Read/Write Attributes
	Read/Write Attributes
	Read/write attributes:ACP-QIO interface
	Read/write attributes:ACP-QIO interface
	Read/write attributes subfunction
	ACP subfunctions:read/write attributes
	ACP functions:IO$_ACCESS
	ACP functions:IO$_CREATE
	ACP functions:IO$_DEACCESS
	ACP functions:IO$_MODIFY

	Input Parameters
	Input Parameters
	The read or write attributes subfunction is controlled by the
	Figure�1�4 Attribute Control Block Format
	Figure�1�4 Attribute Control Block Format
	<GRAPHIC>

	<TABLE>
	Table�1�6 Attribute Control Block Fields�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	ATR$W_SIZE
	ATR$W_SIZE

	Specifies the number of bytes of the attribute to be written, or the size of the buffer into whic...
	Specifies the number of bytes of the attribute to be written, or the size of the buffer into whic...

	<TABLE ROW>
	ATR$W_TYPE
	ATR$W_TYPE

	Identifies the individual attribute to be read or written.
	Identifies the individual attribute to be read or written.

	<TABLE ROW>
	ATR$L_ADDR
	ATR$L_ADDR

	Contains the buffer address of the memory space to or from which the attribute is to be transferr...
	Contains the buffer address of the memory space to or from which the attribute is to be transferr...

	Table�1�7
	Table�1�7

	ACP-QIO interface:attributes
	ACP functions:attributes
	<TABLE>
	Table�1�7 ACP-QIO Attributes�
	<TABLE HEADING>
	<TABLE ROW>
	Attribute Name
	Maximum Size (bytes)
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	ATR$C_ACCDATE
	ATR$C_ACCDATE

	8
	8

	Corresponds to POSIX st_atime and reflects the last time a file was accessed.
	Corresponds to POSIX

	<TABLE ROW>
	ATR$C_ACCESS_MODE
	ATR$C_ACCESS_MODE

	1
	1

	Access mode for following attribute descriptors.
	Access mode for following attribute descriptors.

	<TABLE ROW>
	ATR$C_ACLEVEL
	ATR$C_ACLEVEL

	1
	1

	File access level.
	File access level.

	<TABLE ROW>
	ATR$C_ACLLENGTH6
	ATR$C_ACLLENGTH

	4
	4

	Returns the size, in bytes, of the object's ACL.
	Returns the size, in bytes, of the object's ACL.

	<TABLE ROW>
	ATR$C_ADDACLENT 6 7
	ATR$C_ADDACLENT

	255
	255

	Adds an ACE to the beginning of the ACL when the ACE context value is 0; to the end of the ACL wh...
	Adds an ACE to the beginning of the ACL when the ACE context value is 0; to the end of the ACL wh...

	<TABLE ROW>
	ATR$C_ALCONTROL
	ATR$C_ALCONTROL

	14
	14

	Compatibility mode allocation data.
	Compatibility mode allocation data.

	<TABLE ROW>
	ATR$C_ASCDATES3
	ATR$C_ASCDATES

	35
	35

	Revision count (2 binary bytes), revision date, creation date, and expiration date, in ASCII. For...
	Revision count (2 binary bytes), revision date, creation date, and expiration date, in ASCII. For...

	<TABLE ROW>
	ATR$C_ASCNAME
	ATR$C_ASCNAME

	252 (ODS-5) 86 (ODS-2)
	252 (ODS-5) 86 (ODS-2)

	File name, type, and version, in ASCII, including punctuation. Format: name.type;version.
	File name, type, and version, in ASCII, including punctuation. Format: name.type;version.
	Magnetic tape: contains 17-character file identifier (ANSI a); no version number. Overrides all o...
	See

	<TABLE ROW>
	ATR$C_ATTDATE2
	ATR$C_ATTDATE

	8
	8

	Corresponds to POSIX st_ctime and reflects the last time a file attribute was modified.
	Corresponds to POSIX

	<TABLE ROW>
	ATR$C_BACKLINK6
	ATR$C_BACKLINK

	6
	6

	File back link pointer.
	File back link pointer.

	<TABLE ROW>
	ATR$C_BAKDATE4 5 6
	ATR$C_BAKDATE

	8
	8

	64-bit backup date and time.
	64-bit backup date and time.

	<TABLE ROW>
	ATR$C_BLOCKSIZE
	ATR$C_BLOCKSIZE

	2
	2

	Magnetic tape block size.
	Magnetic tape block size.

	<TABLE ROW>
	ATR$C_BUFFER_OFFSET9
	ATR$C_BUFFER_OFFSET

	2
	2

	Offset length for ANSI magnetic tape header label buffer.
	Offset length for ANSI magnetic tape header label buffer.

	<TABLE ROW>
	ATR$C_CREDATE
	ATR$C_CREDATE

	8
	8

	64-bit creation date and time.
	64-bit creation date and time.

	<TABLE ROW>
	ATR$C_DELACLENT8 6 7
	ATR$C_DELACLENT

	255
	255

	Deletes an access control entry pointed to by the buffer address or, if the buffer address is 0, ...
	Deletes an access control entry pointed to by the buffer address or, if the buffer address is 0, ...

	<TABLE ROW>
	ATR$C_DELETE_ALL8 6 7
	ATR$C_DELETE_ALL

	255
	255

	Delete the entire ACL, including protected entries.
	Delete the entire ACL, including protected entries.

	<TABLE ROW>
	ATR$C_DELETEACL8 6 7
	ATR$C_DELETEACL

	255
	255

	Deletes the entire ACL with the exception of protected ACEs.
	Deletes the entire ACL with the exception of protected ACEs.

	<TABLE ROW>
	ATR$C_DIRSEQ6
	ATR$C_DIRSEQ

	2
	2

	Directory update sequence count.
	Directory update sequence count.

	<TABLE ROW>
	ATR$C_ENDLBLAST
	ATR$C_ENDLBLAST

	4
	4

	End of magnetic tape label processing; provides AST control block.
	End of magnetic tape label processing; provides AST control block.

	<TABLE ROW>
	ATR$C_EXPDAT3
	ATR$C_EXPDAT

	7
	7

	Expiration date in ASCII. Format: DDMMMYY.
	Expiration date in ASCII. Format: DDMMMYY.

	<TABLE ROW>
	ATR$C_EXPDATE3
	ATR$C_EXPDATE

	8
	8

	64-bit expiration date and time.
	64-bit expiration date and time.

	<TABLE ROW>
	ATR$C_FILE_SPEC6
	ATR$C_FILE_SPEC

	4098 (ODS-5)
	4098 (ODS-5)
	512 (ODS-2)

	Convert FID to file specification. See Section 1.3.5.2 for additional information.
	Convert FID to file specification. See

	<TABLE ROW>
	ATR$C_FILNAM
	ATR$C_FILNAM

	10
	10

	6-byte Radix-50 file name plus ATR$C_FILTYP and ATR$C_FILVER. See Section 1.3.5.2 for additional ...
	6-byte Radix-50 file name plus ATR$C_FILTYP and ATR$C_FILVER. See

	<TABLE ROW>
	ATR$C_FILTYP
	ATR$C_FILTYP

	4
	4

	2-byte Radix-50 file type plus ATR$C_FILVER. See Section 1.3.5.2 for additional information.
	2-byte Radix-50 file type plus ATR$C_FILVER. See

	<TABLE ROW>
	ATR$C_FILVER
	ATR$C_FILVER

	2
	2

	2-byte binary version number. See Section 1.3.5.2 for additional information.
	2-byte binary version number. See

	<TABLE ROW>
	ATR$C_FNDACLENT6 7
	ATR$C_FNDACLENT

	255
	255

	Locates an ACE pointed to by its buffer address.
	Locates an ACE pointed to by its buffer address.

	<TABLE ROW>
	ATR$C_FNDACETYP6 7
	ATR$C_FNDACETYP

	255
	255

	Locates an ACE of the type pointed to by its buffer address.
	Locates an ACE of the type pointed to by its buffer address.

	<TABLE ROW>
	ATR$C_FPRO3 4
	ATR$C_FPRO

	2
	2

	File protection.
	File protection.

	<TABLE ROW>
	ATR$C_GRANT_ACE6 7
	ATR$C_GRANT_ACE

	255
	255

	Return an ACE that grants or denies access to the object.
	Return an ACE that grants or denies access to the object.

	<TABLE ROW>
	ATR$C_HDR1_ACC
	ATR$C_HDR1_ACC

	1
	1

	ANSI magnetic tape header label accessibility character.
	ANSI magnetic tape header label accessibility character.

	<TABLE ROW>
	ATR$C_HEADER
	ATR$C_HEADER

	512
	512

	Complete file header. This attribute is read only.
	Complete file header. This attribute is read only.

	<TABLE ROW>
	ATR$C_HIGHWATER6
	ATR$C_HIGHWATER

	4
	4

	High-water mark (user read-only).
	High-water mark (user read-only).

	<TABLE ROW>
	ATR$C_JOURNAL6
	ATR$C_JOURNAL

	1
	1

	Journal control flags.
	Journal control flags.

	<TABLE ROW>
	ATR$C_LINKCOUNT
	ATR$C_LINKCOUNT

	2
	2

	Count of hardlinks.
	Count of hardlinks.

	<TABLE ROW>
	ATR$C_MATCHING_ACE10 6
	ATR$C_MATCHING_ACE

	255
	255

	ACE used to gain access (if any). This attribute can only be retrieved on the initial file access...
	ACE used to gain access (if any). This attribute can only be retrieved on the initial file access...

	<TABLE ROW>
	ATR$C_MODACLENT8 6 7
	ATR$C_MODACLENT

	255
	255

	Replaces the ACE pointed to by a prior ACL$C_FNDACETYP or ACL$C_FNDACLENT with the ACE pointed to...
	Replaces the ACE pointed to by a prior ACL$C_FNDACETYP or ACL$C_FNDACLENT with the ACE pointed to...

	<TABLE ROW>
	ATR$C_MODDATE2
	ATR$C_MODDATE

	8
	8

	Corresponds to POSIX st_mtime and reflects the last time data was modified.
	Corresponds to POSIX

	<TABLE ROW>
	ATR$C_NEXT_ACE6 7
	ATR$C_NEXT_ACE

	4
	4

	Advance to the next ACE in the ACL.
	Advance to the next ACE in the ACL.

	<TABLE ROW>
	ATR$C_PRIVS_USED6
	ATR$C_PRIVS_USED

	4
	4

	Privileges used to gain access. This attribute can only be retrieved on the initial file access o...
	Privileges used to gain access. This attribute can only be retrieved on the initial file access o...

	<TABLE ROW>
	ATR$C_READACE6 7
	ATR$C_READACE

	255
	255

	Reads the ACE pointed to by ACL$C_FNDACETYP or ACL$C_FNDACLENT into the buffer.
	Reads the ACE pointed to by ACL$C_FNDACETYP or ACL$C_FNDACLENT into the buffer.

	<TABLE ROW>
	ATR$C_READACL6 7
	ATR$C_READACL

	512
	512

	Reads the entire ACL or as much as will fit in the supplied buffer. Only complete ACEs are transf...
	Reads the entire ACL or as much as will fit in the supplied buffer. Only complete ACEs are transf...

	<TABLE ROW>
	ATR$C_RECATTR4
	ATR$C_RECATTR

	32
	32

	Record attribute area. Section 1.4 describes the record attribute area in detail.
	Record attribute area.

	<TABLE ROW>
	ATR$C_RESERVED
	ATR$C_RESERVED

	380
	380

	Modifies the reserve area.
	Modifies the reserve area.

	<TABLE ROW>
	ATR$C_REVDATE3 4
	ATR$C_REVDATE

	8
	8

	64-bit revision date and time.
	64-bit revision date and time.

	<TABLE ROW>
	ATR$C_RPRO6
	ATR$C_RPRO

	2
	2

	2-byte record protection.
	2-byte record protection.

	<TABLE ROW>
	ATR$C_SEMASK6
	ATR$C_SEMASK

	8
	8

	File security mask and limit.
	File security mask and limit.

	<TABLE ROW>
	ATR$C_STATBLK
	ATR$C_STATBLK

	32
	32

	Statistics block. This attribute is read only. Section 1.5 describes the statistics block in detail.
	Statistics block. This attribute is read only.

	<TABLE ROW>
	ATR$C_UCHAR3 9
	ATR$C_UCHAR

	4
	4

	4-byte file characteristics. (The file characteristics bits are listed following this table.)
	4-byte file characteristics. (The file characteristics bits are listed following this table.)

	<TABLE ROW>
	ATR$C_USERLABEL
	ATR$C_USERLABEL

	80
	80

	User file label. This attribute is not supported for disk devices.
	User file label. This attribute is not supported for disk devices.

	<TABLE ROW>
	ATR$C_UIC3
	ATR$C_UIC

	4
	4

	4-byte file owner UIC.
	4-byte file owner UIC.

	<TABLE ROW>
	ATR$C_UIC_RO
	ATR$C_UIC_RO
	ACP-QIO interface:attributes
	ACP functions:attributes

	4
	4

	4-byte file owner UIC. This attribute is read only.
	4-byte file owner UIC. This attribute is read only.

	Table�1�8
	Table�1�8

	<TABLE>
	Table�1�8 File Characteristics Bits�
	<TABLE HEADING>
	<TABLE ROW>
	Bits
	Bits

	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FCH$M_NOBACKUP
	FCH$M_NOBACKUP

	Do not back up file.
	Do not back up file.

	<TABLE ROW>
	FCH$M_READCHECK
	FCH$M_READCHECK

	Verify all read operations.
	Verify all read operations.

	<TABLE ROW>
	FCH$M_WRITCHECK
	FCH$M_WRITCHECK

	Verify all write operations.
	Verify all write operations.

	<TABLE ROW>
	FCH$M_CONTIGB
	FCH$M_CONTIGB

	Keep file as contiguous as possible.
	Keep file as contiguous as possible.

	<TABLE ROW>
	FCH$M_LOCKED
	FCH$M_LOCKED

	File is deaccess-locked.
	File is deaccess-locked.

	<TABLE ROW>
	FCH$M_CONTIG
	FCH$M_CONTIG

	File is contiguous.
	File is contiguous.

	<TABLE ROW>
	FCH$M_BADACL
	FCH$M_BADACL

	File's ACL is corrupt.
	File's ACL is corrupt.

	<TABLE ROW>
	FCH$M_SPOOL
	FCH$M_SPOOL

	File is an intermediate spool file.
	File is an intermediate spool file.

	<TABLE ROW>
	FCH$M_DIRECTORY
	FCH$M_DIRECTORY

	File is a directory.
	File is a directory.

	<TABLE ROW>
	FCH$M_BADBLOCK
	FCH$M_BADBLOCK

	File contains bad blocks.
	File contains bad blocks.

	<TABLE ROW>
	FCH$M_MARKDEL
	FCH$M_MARKDEL

	File is marked for deletion.
	File is marked for deletion.

	<TABLE ROW>
	FCH$M_ERASE
	FCH$M_ERASE

	Erase file contents before deletion.
	Erase file contents before deletion.

	<TABLE ROW>
	FCH$M_ASSOCIATED
	FCH$M_ASSOCIATED

	File has an associated file.
	File has an associated file.

	<TABLE ROW>
	FCH$M_EXISTENCE1
	FCH$M_EXISTENCE

	Suppress existence of file.
	Suppress existence of file.

	<TABLE ROW>
	FCH$M_NOMOVE
	FCH$M_NOMOVE

	Disable movefile operations on this file.
	Disable movefile operations on this file.

	<TABLE ROW>
	FCH$M_NOSHELVABLE
	FCH$M_NOSHELVABLE

	File is not shelvable.
	File is not shelvable.

	<TABLE ROW>
	FCH$M_SHELVED
	FCH$M_SHELVED

	File is shelved.
	File is shelved.

	Attribute Descriptions
	Attribute Descriptions
	This section contains descriptions of the following attribute codes that are listed in
	• ATR$C_ASCNAME
	• ATR$C_ASCNAME
	• ATR$C_ASCNAME

	• ATR$C_FILE_SPEC
	• ATR$C_FILE_SPEC

	• ATR$C_FILNAM
	• ATR$C_FILNAM

	• ATR$C_FILTYP
	• ATR$C_FILTYP

	• ATR$C_FILVER
	• ATR$C_FILVER

	ATR$C_ASCNAME
	ATR$C_ASCNAME

	The ATR$C_ASCNAME attribute allows the file specification stored in a file's primary file header ...
	Reading the ATR$C_ASCNAME Attribute
	Reading the ATR$C_ASCNAME Attribute

	For ODS-5 volumes, the file specification is returned in the supplied buffer, and the name format...
	The format in which the name is returned is controlled by the settings of the FIB$V_NAMES_8BIT an...
	Unlike the output file specification parameter, the length of a file specification contained in t...
	NOTE The file system does not enforce a minimum length on the attribute buffer. If the file speci...
	NOTE The file system does not enforce a minimum length on the attribute buffer. If the file speci...
	In contrast, the file system does enforce a maximum size for the attribute buffer. Supplying a la...

	Writing the ATR$C_ASCNAME Attribute
	Writing the ATR$C_ASCNAME Attribute

	The ASCNAME attribute can only be written for files on ODS-2 or ODS-5 volumes provided that the F...
	The ability to write this attribute is only intended to provide compatibility with existing appli...
	In those cases where it is legal to write the attribute, the contents of the attribute buffer (up...
	ATR$C_FILE_SPEC
	ATR$C_FILE_SPEC

	The FILE_SPEC attribute is a read-only attribute that returns the physical file specification in ...
	DDnn:[DIR1.DIR2_DIRn]name.type;1
	The file name returned is that from the file header, which may be different from that in the dire...
	For files on ODS-5 volumes, the path may contain file names that are in any of the three name for...
	When you access files on an ODS-5 volume from a VAX system in a mixed architecture OpenVMS system...
	DKA100:[ABC]
	DKA100:[ABC]

	If the escaped form of the path is longer than can be accommodated by the buffer for the attribut...
	However, if the file specification, even after DID abbreviation, is longer than can be accommodat...
	ATRC_FILNAM, ATRC_FILTYP, and ATR$C_FILVER
	ATRC_FILNAM, ATRC_FILTYP, and ATR$C_FILVER

	The first two of these attributes allow the file name and file type to be read and written using ...
	The maximum component lengths of a Radix-50 encoded file specification are:
	• File name: 15 characters (10 bytes)
	• File name: 15 characters (10 bytes)
	• File name: 15 characters (10 bytes)

	• File type: 6 characters (4 bytes)
	• File type: 6 characters (4 bytes)

	Radix-50 encoding
	As a result of the additional character and length restrictions, only a subset of legal ODS-2 fil...
	The file system only attempts to read or write the three attributes if the format of the existing...
	The ATR$C_FILVER attribute allows the file version number in the file header to be read or writte...

	ACP-QIO Record Attributes Area
	ACP-QIO Record Attributes Area
	ACP-QIO interface:record attributes area
	ACP-QIO interface:record attributes area
	Figure�1�5

	Figure�1�5 ACP-QIO Record Attributes Area
	Figure�1�5 ACP-QIO Record Attributes Area
	<GRAPHIC>

	Table�1�9
	Table�1�9

	<TABLE>
	Table�1�9 ACP Record Attributes Values�
	<TABLE HEADING>
	<TABLE ROW>
	Field Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FAT$B_TYPE
	Record type. Contains FAT$V_RTYPE and FAT$V_FILEORG.

	<TABLE ROW>
	FAT$V_RTYPE
	Record type. The following bit values are defined:

	<TABLE ROW>
	FAT$C_FIXED
	FAT$C_FIXED

	Fixed-length record
	Fixed-length record

	<TABLE ROW>
	FAT$C_VARIABLE
	FAT$C_VARIABLE

	Variable-length record
	Variable-length record

	<TABLE ROW>
	FAT$C_VFC
	Variable-length record with fixed control

	<TABLE ROW>
	FAT$C_UNDEFINED
	FAT$C_UNDEFINED

	Undefined record format (stream binary)

	<TABLE ROW>
	FAT$C_STREAM
	RMS stream format
	RMS stream format

	<TABLE ROW>
	FAT$C_STREAMLF
	FAT$C_STREAMLF

	Stream terminated by LF
	Stream terminated by LF

	<TABLE ROW>
	FAT$C_STREAMCR
	FAT$C_STREAMCR

	Stream terminated by CR
	Stream terminated by CR

	<TABLE ROW>
	FAT$V_FILEORG
	File organization. The following bit values are defined:

	<TABLE ROW>
	FAT$C_DIRECT
	FAT$C_DIRECT

	Direct file organization
	Direct file organization

	<TABLE ROW>
	FAT$C_INDEXED
	FAT$C_INDEXED

	Indexed file organization
	Indexed file organization

	<TABLE ROW>
	FAT$C_RELATIVE
	FAT$C_RELATIVE

	Relative file organization
	Relative file organization

	<TABLE ROW>
	FAT$C_SEQUENTIAL
	FAT$C_SEQUENTIAL

	Sequential file organization

	<TABLE ROW>
	FAT$B_RATTRIB
	FAT$B_RATTRIB

	Record attributes. The following bit values are defined:
	Record attributes. The following bit values are defined:

	<TABLE ROW>
	FAT$M_FORTRANCC
	FAT$M_FORTRANCC

	Fortran carriage control

	<TABLE ROW>
	FAT$M_IMPLIEDCC
	Implied carriage control
	Implied carriage control

	<TABLE ROW>
	FAT$M_PRINTCC
	FAT$M_PRINTCC

	Print file carriage control
	Print file carriage control

	<TABLE ROW>
	FAT$M_NOSPAN
	FAT$M_NOSPAN

	No spanned records
	No spanned records

	<TABLE ROW>
	FAT$M_MSBRCW
	FAT$M_MSBRCW

	Record count word (RCW) is MSB formatted
	Record count word (RCW) is MSB formatted

	<TABLE ROW>
	FAT$W_RSIZE
	FAT$W_RSIZE

	Record size in bytes.
	Record size in bytes.

	<TABLE ROW>
	FAT$L_HIBLK
	FAT$L_HIBLK

	Highest allocated VBN. The ACP maintains this field when the file is extended or truncated. Attem...
	Highest allocated VBN. The ACP maintains this field when the file is extended or truncated. Attem...

	<TABLE ROW>
	FAT$W_HIBLKH
	FAT$W_HIBLKH

	High-order 16 bits
	High-order 16 bits

	<TABLE ROW>
	FAT$W_HIBLKL
	FAT$W_HIBLKL

	Low-order 16 bits
	Low-order 16 bits

	<TABLE ROW>
	FAT$L_EFBLK3
	FAT$L_EFBLK

	End of file VBN
	End of file VBN

	<TABLE ROW>
	FAT$W_EFBLKH
	FAT$W_EFBLKH

	High-order 16 bits
	High-order 16 bits

	<TABLE ROW>
	FAT$W_EFBLKL
	FAT$W_EFBLKL

	Low-order 16 bits
	Low-order 16 bits

	<TABLE ROW>
	FAT$W_FFBYTE
	FAT$W_FFBYTE

	First free byte in FAT$L_EFBLK.
	First free byte in FAT$L_EFBLK.

	<TABLE ROW>
	FAT$B_BKTSIZE
	FAT$B_BKTSIZE

	Bucket size, in blocks.
	Bucket size, in blocks.

	<TABLE ROW>
	FAT$B_VFCSIZE
	FAT$B_VFCSIZE

	Size in bytes of fixed-length control for VFC records.
	Size in bytes of fixed-length control for VFC records.

	<TABLE ROW>
	FAT$W_MAXREC
	FAT$W_MAXREC

	Maximum record size, in bytes.
	Maximum record size, in bytes.

	<TABLE ROW>
	FAT$W_DEFEXT
	FAT$W_DEFEXT

	Default extend quantity.
	Default extend quantity.

	<TABLE ROW>
	FAT$W_GBC
	FAT$W_GBC

	Global buffer count.
	Global buffer count.

	<TABLE ROW>
	FAT$W_VERSIONS
	FAT$W_VERSIONS

	Default version limit; valid only if the file is a directory
	Default version limit; valid only if the file is a directory

	ACP-QIO Attributes Statistics Block
	ACP-QIO Attributes Statistics Block
	ACP-QIO interface:attributes statistics block
	ACP-QIO interface:attributes statistics block
	Figure�1�6

	Figure�1�6 ACP-QIO Attributes Statistics Block
	Figure�1�6 ACP-QIO Attributes Statistics Block
	<GRAPHIC>

	<TABLE>
	Table�1�10 Contents of the Statistics Block�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	SBK$L_STLBN
	SBK$L_STLBN

	Contains the starting LBN of the file if the file is contiguous. If the file is not contiguous, t...
	Contains the starting LBN of the file if the file is contiguous. If the file is not contiguous, t...

	<TABLE ROW>
	SBK$W_STLBNH
	SBK$W_STLBNH

	Starting LBN (high-order 16 bits)
	Starting LBN (high-order 16 bits)

	<TABLE ROW>
	SBK$W_STLBNL
	SBK$W_STLBNL

	Starting LBN (low-order 16 bits)
	Starting LBN (low-order 16 bits)

	<TABLE ROW>
	SBK$L_FILESIZE
	SBK$L_FILESIZE

	Contains the size of the file in blocks. The file size appears as an inverted longword (the high-...
	Contains the size of the file in blocks. The file size appears as an inverted longword (the high-...

	<TABLE ROW>
	SBK$W_FILESIZH
	SBK$W_FILESIZH

	File size (high-order 16 bits)
	File size (high-order 16 bits)

	<TABLE ROW>
	SBK$W_FILESIZL
	SBK$W_FILESIZL

	File size (low-order 16 bits)
	File size (low-order 16 bits)

	<TABLE ROW>
	SBK$B_ACNT
	SBK$B_ACNT

	Access count (low byte). Field is for PDP-11 compatibility.
	Access count (low byte). Field is for PDP-11 compatibility.

	<TABLE ROW>
	SBK$B_LCNT1
	SBK$B_LCNT

	Lock count (low byte). Field is for PDP-11 compatibility.
	Lock count (low byte). Field is for PDP-11 compatibility.

	<TABLE ROW>
	SBK$L_FCB
	SBK$L_FCB

	System pool address of the file's file control block.
	System pool address of the file's file control block.

	<TABLE ROW>
	SBK$W_ACNT1
	SBK$W_ACNT

	Access count (number of channels with file open currently).
	Access count (number of channels with file open currently).

	<TABLE ROW>
	SBK$W_LCNT1
	SBK$W_LCNT

	Lock count (the number of access operations that have locked the file against writers).
	Lock count (the number of access operations that have locked the file against writers).

	<TABLE ROW>
	SBK$W_WCN1
	SBK$W_WCN

	Writer count (the number of channels that currently have the file open for write).
	Writer count (the number of channels that currently have the file open for write).

	<TABLE ROW>
	SBK$W_TCNT1
	SBK$W_TCNT

	Truncate lock count (the number of access operations that have locked the file against truncation).
	Truncate lock count (the number of access operations that have locked the file against truncation).

	<TABLE ROW>
	SBK$L_READS
	SBK$L_READS

	Number of read operations executed for the file on this channel.
	Number of read operations executed for the file on this channel.

	<TABLE ROW>
	SBK$L_WRITES
	SBK$L_WRITES

	Number of write operations executed for the file on this channel.
	Number of write operations executed for the file on this channel.

	Major Functions
	Major Functions
	The following sections describe the operation of the major ACP functions. Each section describes ...
	Create File
	Create File
	Create file function
	Create file function
	ACP-QIO interface:create file function

	The following is the function code:
	• IO$_CREATE
	• IO$_CREATE
	• IO$_CREATE

	The following are the function modifiers:
	• IO$M_CREATE—Creates a file.
	• IO$M_CREATE—Creates a file.
	• IO$M_CREATE—Creates a file.

	• IO$M_ACCESS—Opens the file on your channel.
	• IO$M_ACCESS—Opens the file on your channel.

	• IO$M_DELETE—Marks the file for deletion (applicable only to disk devices).
	• IO$M_DELETE—Marks the file for deletion (applicable only to disk devices).

	Input Parameters
	Input Parameters
	The following are the device- or function-dependent arguments for IO$_CREATE:
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.

	• P2—The address of the file name string descriptor (optional).
	• P2—The address of the file name string descriptor (optional).

	• P3—The address of the word that is to receive the length of the resultant file name string (opt...
	• P3—The address of the word that is to receive the length of the resultant file name string (opt...

	• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (...
	• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (...

	• P5—The address of a list of attribute descriptors (optional).
	• P5—The address of a list of attribute descriptors (optional).

	Table�1�11
	Table�1�11

	<TABLE>
	Table�1�11 IO$_CREATE and the FIB�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$L_ACCTL
	FIB$L_ACCTL

	Specifies field values that control access to the file. The following bits are applicable to the ...
	Specifies field values that control access to the file. The following bits are applicable to the ...

	<TABLE ROW>
	FIB$V_REWIND
	FIB$V_REWIND

	Set to rewind magnetic tape before creating the file. Any data currently on the tape is overwritten.
	Set to rewind magnetic tape before creating the file. Any data currently on the tape is overwritten.

	<TABLE ROW>
	FIB$V_CURPOS
	FIB$V_CURPOS

	Set to create magnetic tape file at the current tape position. (Note: a magnetic tape file is cre...
	Set to create magnetic tape file at the current tape position. (Note: a magnetic tape file is cre...

	<TABLE ROW>
	FIB$V_WRITETHRU
	FIB$V_WRITETHRU

	Specifies that the file header is to be written back to the disk. If not specified and the file i...
	Specifies that the file header is to be written back to the disk. If not specified and the file i...

	<TABLE ROW>
	FIB$W_CNTRLFUNC
	FIB$W_CNTRLFUNC
	ACP-QIO interface:serious exception (EOT)

	Specifies the following value, which allows you to control actions subsequent to EOT detection on...
	Specifies the following value, which allows you to control actions subsequent to EOT detection on...

	<TABLE ROW>
	FIB$W_FID
	FIB$W_FID

	Contains the file ID of the file created or entered.
	Contains the file ID of the file created or entered.

	<TABLE ROW>
	FIB$W_DID
	FIB$W_DID

	Contains the file identifier of the directory file.
	Contains the file identifier of the directory file.

	<TABLE ROW>
	FIB$W_NMCTL
	FIB$W_NMCTL

	Controls the processing of the file name in a directory operation. The following bits are applica...
	Controls the processing of the file name in a directory operation. The following bits are applica...

	<TABLE ROW>
	FIB$V_NEWVER
	FIB$V_NEWVER

	Set to create a file of the same name with the next higher version number. Only for disk devices.
	Set to create a file of the same name with the next higher version number. Only for disk devices.

	<TABLE ROW>
	FIB$V_SUPERSEDE
	FIB$V_SUPERSEDE

	Set to supersede an existing file of the same name, type, and version. Only for disk devices.
	Set to supersede an existing file of the same name, type, and version. Only for disk devices.

	<TABLE ROW>
	FIB$V_LOWVER
	FIB$V_LOWVER

	Set on return if a lower numbered version of the file exists. Only for disk devices.
	Set on return if a lower numbered version of the file exists. Only for disk devices.

	<TABLE ROW>
	FIB$V_HIGHVER
	FIB$V_HIGHVER

	Set on return if a higher numbered version of the file exists. Only for disk devices.
	Set on return if a higher numbered version of the file exists. Only for disk devices.

	<TABLE ROW>
	FIB$W_VERLIMIT
	FIB$W_VERLIMIT

	Specifies the version limit for the directory entry created. Used only for disk devices and only ...
	Specifies the version limit for the directory entry created. Used only for disk devices and only ...

	<TABLE ROW>
	FIB$L_ACL_STATUS
	FIB$L_ACL_STATUS

	Status of the requested ACL attribute operation, if any. The ACL attributes are included in Table...
	Status of the requested ACL attribute operation, if any. The ACL attributes are included in

	<TABLE ROW>
	FIB$L_STATUS
	FIB$L_STATUS

	Access status. Programmers can control the security information being propagated as well as the s...
	Access status. Programmers can control the security information being propagated as well as the s...

	Disk ACP Operation
	Disk ACP Operation
	If the modifier IO$M_CREATE is specified, a file is created. The file
	If a nonzero directory ID is specified in FIB$W_DID, a directory entry is created. The file name ...
	The version number of the file receives the following treatment:
	• If the version number in the specified file name is 0 or negative, the directory entry created ...
	• If the version number in the specified file name is 0 or negative, the directory entry created ...
	• If the version number in the specified file name is 0 or negative, the directory entry created ...

	• If the version number in the specified file name is a nonzero number and FIB$V_NEWVER is set, t...
	• If the version number in the specified file name is a nonzero number and FIB$V_NEWVER is set, t...

	• If the version number in the specified file name is a nonzero number and the directory already ...
	• If the version number in the specified file name is a nonzero number and the directory already ...

	• If, after creating the new directory entry, the number of versions of the file exceeds the vers...
	• If, after creating the new directory entry, the number of versions of the file exceeds the vers...

	• If the file did not previously exist, the new directory entry is given a version limit as follo...
	• If the file did not previously exist, the new directory entry is given a version limit as follo...

	The file name string entered in the directory is returned using the P3 and P4 result string param...
	If an attribute list is specified by P5, a write attributes subfunction is performed (see
	If the modifier IO$M_ACCESS is specified, the file is opened (see
	ACP-QIO interface:function modifiers:IO$M_ACCESS
	ACP-QIO interface:function modifiers:IO$M_ACCESS

	Finally, if a file was set aside for deletion (IO$M_DELETE is specified), that file is deleted. I...
	ACP-QIO interface:function modifiers:IO$M_CREATE
	ACP-QIO interface:function modifiers:IO$M_CREATE

	Directory Entry Creation
	Directory Entry Creation
	Directory entry:creation
	Directory entry:creation
	Create file function:directory entry creation
	ACP-QIO interface:directory entries

	Magnetic Tape ACP Operation
	Magnetic Tape ACP Operation
	No operation is performed unless the IO$M_CREATE modifier is specified.
	If P5 specifies an attribute list, a write attributes subfunction is performed (see
	If the modifier IO$M_ACCESS is specified, the file is opened (see

	Access File
	Access File
	ACP-QIO interface:access file function
	ACP-QIO interface:access file function

	The following is the function code:
	• IO$_ACCESS
	• IO$_ACCESS
	• IO$_ACCESS

	ACP functions:IO$_ACCESS
	Function codes:IO$_ACCESS
	The following are the function modifiers:
	• IO$M_CREATE—Creates a file.
	• IO$M_CREATE—Creates a file.
	• IO$M_CREATE—Creates a file.

	• IO$M_ACCESS—Opens the file on your channel.
	• IO$M_ACCESS—Opens the file on your channel.

	Input Parameters
	Input Parameters
	The following are the device- or function-dependent arguments for IO$_ACCESS:
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.

	• P2—The address of the file name string descriptor (optional).
	• P2—The address of the file name string descriptor (optional).

	• P3—The address of the word that is to receive the length of the resultant file name string (opt...
	• P3—The address of the word that is to receive the length of the resultant file name string (opt...

	• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (...
	• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (...

	• P5—The address of a list of attribute descriptors (optional).
	• P5—The address of a list of attribute descriptors (optional).

	Table�1�12
	Table�1�12

	<TABLE>
	Table�1�12 IO$_ACCESS and the File Information Block�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$W_
	FIB$W_
	CNTRLFUNC
	ACP-QIO interface:serious exception (EOT)

	Specifies the value that allows the user to control actions subsequent to EOT detection on a magn...
	Specifies the value that allows the user to control actions subsequent to EOT detection on a magn...

	<TABLE ROW>
	FIB$W_VERLIMIT
	FIB$W_VERLIMIT

	Receives the version limit for the file. Applicable only if FIB$W_DID is a nonzero number (if a d...
	Receives the version limit for the file. Applicable only if FIB$W_DID is a nonzero number (if a d...

	<TABLE ROW>
	FIB$L_ACL_STATUS
	FIB$L_ACL_STATUS

	Status of the requested ACL attribute operation, if any. The ACL attributes are included in Table...
	Status of the requested ACL attribute operation, if any. The ACL attributes are included in

	<TABLE ROW>
	FIB$L_STATUS
	FIB$L_STATUS

	Alternate access status. The following bits are supported:
	Alternate access status. The following bits are supported:

	<TABLE ROW>
	FIB$V_ALT_REQ
	FIB$V_ALT_REQ

	Set to indicate whether the alternate access bit is required for the current operation. If not se...
	Set to indicate whether the alternate access bit is required for the current operation. If not se...

	<TABLE ROW>
	FIB$V_ALT_GRANTED
	FIB$V_ALT_GRANTED

	If FIB$V_ALT_REQ = 0 and the alternate access check succeeded, the FIB bit returned from the file...
	If FIB$V_ALT_REQ = 0 and the alternate access check succeeded, the FIB bit returned from the file...

	<TABLE ROW>
	FIB$L_ALT_ACCESS
	FIB$L_ALT_ACCESS

	A 32-bit mask that represents an access mask to check against file protection; for example, to op...
	A 32-bit mask that represents an access mask to check against file protection; for example, to op...

	Operation
	Operation
	If a nonzero directory file ID is specified in FIB$W_DID, a lookup subfunction is performed (see
	If the directory search fails with a “file not found” condition and the IO$M_CREATE function modi...
	If IO$M_ACCESS is specified, an access subfunction is performed to open the file (see
	If P5 specifies an attribute list, a read attributes subfunction is performed (see

	Deaccess File
	Deaccess File
	Deaccess file function
	Deaccess file function
	ACP-QIO interface:deaccess file function

	The following is the function code:
	• IO$_DEACCESS
	• IO$_DEACCESS
	• IO$_DEACCESS

	IO$_DEACCESS takes no function modifiers.
	Input Parameters
	Input Parameters
	The following are the device- or function-dependent arguments for IO$_DEACCESS:
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.

	• P5—The address of a list of attribute descriptors (optional).
	• P5—The address of a list of attribute descriptors (optional).

	The following FIB fields are applicable to the IO$_DEACCESS function:
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$W_FID
	FIB$W_FID

	File ID of the file being deaccessed. This field can contain a value of 0. If it does not, it mus...
	File ID of the file being deaccessed. This field can contain a value of 0. If it does not, it mus...

	<TABLE ROW>
	FIB$L_ACL_STATUS
	FIB$L_ACL_STATUS

	Status of the requested ACL attribute operation, if any. The ACL attributes are included in Table...
	Status of the requested ACL attribute operation, if any. The ACL attributes are included in

	Operation
	Operation
	For disk files, if P5 specifies an attribute control list and the
	For disk files, if the truncate enable bit FIB$V_TRUNC is specified in the FIB, a truncate subfun...
	Finally, the file is closed. Trailer labels are written for a magnetic tape file that was opened ...

	Modify File
	Modify File
	Modify file function
	Modify file function

	The following is the function code:
	• IO$_MODIFY
	• IO$_MODIFY
	• IO$_MODIFY

	Function modifiers:IO$M_MOVEFILE
	The following is the function modifier:
	• IO$M_MOVEFILE
	• IO$M_MOVEFILE
	• IO$M_MOVEFILE

	Input Parameters
	Input Parameters
	The following are the device- or function-dependent arguments for IO$_MODIFY:
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.

	• P2—The address of the file name string descriptor (optional). If specified, the directory is se...
	• P2—The address of the file name string descriptor (optional). If specified, the directory is se...

	• P3—The address of the word that is to receive the length of the resultant file name string (opt...
	• P3—The address of the word that is to receive the length of the resultant file name string (opt...

	• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (...
	• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (...

	• P5—The address of a list of attribute descriptors (optional).
	• P5—The address of a list of attribute descriptors (optional).

	The following FIB fields are applicable to the IO$_MODIFY function:
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$L_ACCTL
	Specifies field values that control access to the file. The following bit is applicable to the IO...

	<TABLE ROW>
	FIB$V_WRITETHRU
	Specifies that the file header is to be written back to the disk. If not specified and the file i...

	<TABLE ROW>
	FIB$W_VERLIMIT
	If a nonzero number, specifies the version limit for the file.

	<TABLE ROW>
	FIB$L_ACL_STATUS
	Status of the requested ACL attribute operation. The ACL attributes are listed in Table�1�7. If n...

	Operation
	Operation
	If a nonzero directory ID is specified in FIB$W_DID, a lookup subfunction is executed (see
	If P5 specifies an attribute list, a write attributes subfunction is performed (see
	The file can be either extended or truncated. If FIB$V_EXTEND is specified in the FIB, an extend ...

	Delete File
	Delete File
	Delete file function
	Delete file function
	ACP-QIO interface:delete file function

	The following is the function code:
	• IO$_DELETE
	• IO$_DELETE
	• IO$_DELETE

	The following is the function modifier:
	• IO$M_DELETE—Deletes the file (or marks it for deletion).
	• IO$M_DELETE—Deletes the file (or marks it for deletion).
	• IO$M_DELETE—Deletes the file (or marks it for deletion).

	The following are the device- or function-dependent arguments for IO$_DELETE:
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.

	• P2—The address of the file name string descriptor (optional).
	• P2—The address of the file name string descriptor (optional).

	• P3—The address of the word that is to receive the length of the resultant file name string (opt...
	• P3—The address of the word that is to receive the length of the resultant file name string (opt...

	• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (...
	• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (...

	The following FIB fields are applicable to the IO$_DELETE function:
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$L_ACCTL
	FIB$L_ACCTL

	Specifies field values that control access to the file. The following bits are applicable to the ...
	Specifies field values that control access to the file. The following bits are applicable to the ...

	<TABLE ROW>
	FIB$V_NOLOCK (Alpha only)
	FIB$V_NOLOCK (Alpha only)

	Allows the caller to mark a file for delete that is currently open for write access. When the fil...
	Allows the caller to mark a file for delete that is currently open for write access. When the fil...

	<TABLE ROW>
	FIB$V_WRITETHRU
	FIB$V_WRITETHRU

	Specifies that the file header is to be written back to the disk. If not specified and the file i...
	Specifies that the file header is to be written back to the disk. If not specified and the file i...

	<TABLE ROW>
	FIB$W_DID
	FIB$W_DID

	Contains the file identifier of the directory file. This field must be a nonzero number.
	Contains the file identifier of the directory file. This field must be a nonzero number.

	<TABLE ROW>
	FIB$W_FID
	FIB$W_FID

	Specifies the file identification to be deleted.
	Specifies the file identification to be deleted.

	Operation
	Operation
	If a nonzero directory ID is specified in FIB$W_DID, a lookup subfunction is performed (see
	If the function modifier IO$M_DELETE is specified, the file is marked for deletion. If the file i...

	Movefile Subfunction
	Movefile Subfunction
	The movefile subfunction permits you to move the contents of a file, or part of the contents of a...
	You can disable movefile operations on specific user files by specifying the /NOMOVE qualifier on...
	Calling the Movefile Subfunction
	Calling the Movefile Subfunction
	Movefile subfunction:calling
	Movefile subfunction:calling

	Input Parameters
	Input Parameters
	Table�1�13
	Table�1�13

	<TABLE>
	Table�1�13 FIB Fields (Movefile)�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$L_ACCTL
	FIB$L_ACCTL

	Movefile control flag. The following flags are applicable:
	Movefile control flag. The following flags are applicable:

	<TABLE ROW>
	FIB$V_NOVERIFY
	FIB$V_NOVERIFY

	Inhibits comparison of the moved blocks. If this flag is clear, the movefile operation verifies t...
	Inhibits comparison of the moved blocks. If this flag is clear, the movefile operation verifies t...

	<TABLE ROW>
	FIB$V_CHANGE_VOL
	FIB$V_CHANGE_VOL

	Enables the movefile operation to move blocks from one volume to another within a volume set.
	Enables the movefile operation to move blocks from one volume to another within a volume set.
	The movefile operation clears this flag if the specified file is a directory.

	<TABLE ROW>
	FIB$W_FID
	FIB$W_FID

	Specifies the file identification of the file to be moved.
	Specifies the file identification of the file to be moved.

	<TABLE ROW>
	FIB$W_EXCTL
	FIB$W_EXCTL

	Movefile control flags. The following flag applies to the movefile operation. All other FIB$W_EXC...
	Movefile control flags. The following flag applies to the movefile operation. All other FIB$W_EXC...

	<TABLE ROW>
	FIB$V_ALCON
	FIB$V_ALCON

	Specifies that the movefile operation must allocate contiguous disk space to the moved blocks. If...
	Specifies that the movefile operation must allocate contiguous disk space to the moved blocks. If...
	The movefile operation sets this flag if the file was previously marked as contiguous.

	<TABLE ROW>
	FIB$V_ALCONB
	FIB$V_ALCONB

	Specifies that the movefile operation should attempt to allocate contiguous disk space to the mov...
	Specifies that the movefile operation should attempt to allocate contiguous disk space to the mov...
	The movefile operation sets this flag if the file was previously marked as contiguous best try.

	<TABLE ROW>
	FIB$V_FILCON
	FIB$V_FILCON

	Specifies that the entire file must be made contiguous. Do not set this flag without also setting...
	Specifies that the entire file must be made contiguous. Do not set this flag without also setting...
	If the FIB$V_FILCON flag is set, and either the FIB$V_ALCON flag is clear or the file would not b...
	The movefile operation sets this flag if the file was previously marked as contiguous.

	<TABLE ROW>
	FIB$V_NOPLACE
	FIB$V_NOPLACE

	Specifies that placement information will not be recorded in the file header.
	Specifies that placement information will not be recorded in the file header.
	If this flag is clear and you specify exact placement for the moved blocks, placement information...
	You specify exact placement through the FIBV_EXACT, FIBC_LBN, and FIB$L_LOC_ADDR fields.

	<TABLE ROW>
	FIB$B_ALOPTS
	FIB$B_ALOPTS

	Flags that control the placement of the allocated blocks. Currently, only the FIB$V_EXACT flag ap...
	Flags that control the placement of the allocated blocks. Currently, only the FIB$V_EXACT flag ap...

	<TABLE ROW>
	FIB$V_EXACT
	FIB$V_EXACT

	Set to require exact placement. If this flag is set and the specified blocks are not available, t...
	Set to require exact placement. If this flag is set and the specified blocks are not available, t...

	<TABLE ROW>
	FIB$B_ALALIGN
	FIB$B_ALALIGN

	Contains the interpretation mode of the allocation field (FIB$W_ALLOC). You can specify a field v...
	Contains the interpretation mode of the allocation field (FIB$W_ALLOC). You can specify a field v...

	<TABLE ROW>
	FIB$W_ALLOC
	FIB$W_ALLOC

	Contains the desired location of the blocks being allocated. Interpretation of the field is contr...
	Contains the desired location of the blocks being allocated. Interpretation of the field is contr...

	<TABLE ROW>
	FIB$B_LOC_RVN
	FIB$B_LOC_RVN

	Specifies the relative volume number (RVN) of the volume to which the blocks are moved. Do not sp...
	Specifies the relative volume number (RVN) of the volume to which the blocks are moved. Do not sp...

	<TABLE ROW>
	FIB$L_LOC_ADDR
	FIB$L_LOC_ADDR

	If the FIB$C_LBN and FIB$V_EXACT flags are set, specifies the starting logical address to which t...
	If the FIB$C_LBN and FIB$V_EXACT flags are set, specifies the starting logical address to which t...

	<TABLE ROW>
	FIB$L_MOV_SVBN
	FIB$L_MOV_SVBN

	Specifies the virtual block number (VBN) of the first block to be moved.
	Specifies the virtual block number (VBN) of the first block to be moved.
	The starting VBN must correspond to the first block of a disk cluster. The value must be greater ...

	<TABLE ROW>
	FIB$L_MOV_VBNCNT
	FIB$L_MOV_VBNCNT

	Specifies the number of consecutive virtual blocks to be moved.
	Specifies the number of consecutive virtual blocks to be moved.
	This value must be a multiple of the disk cluster size, and it must not exceed the difference bet...
	If you specify an invalid value, the movefile operation fails.

	Operation
	Operation
	A program can perform a movefile operation on a file if the following conditions are met:
	• The program has write and control access to the file.
	• The program has write and control access to the file.
	• The program has write and control access to the file.

	• The file is closed.
	• The file is closed.

	• Movefile operations are not disabled on the file.
	• Movefile operations are not disabled on the file.
	Movefile operations are automatically disabled on critical system files. You can disable movefile...

	• The operation is not interrupted.
	• The operation is not interrupted.
	If the movefile operation is interrupted by any other operation, such as a read or write operatio...

	The movefile operation moves a specified number of consecutive virtual blocks to new logical bloc...
	The number of blocks moved is specified in the FIB$L_VBNCNT field. To move an entire file, specif...
	To specify a starting logical block for the moved blocks, specify the logical block address in th...
	To move the blocks to another volume, or move blocks that span more than one volume, set the FIB$...
	If the file was previously marked as contiguous, the movefile operation sets the FIB$V_ALCON, FIB...
	For virtual blocks beyond the file's highwater mark, the movefile operation allocates new logical...

	Mount
	Mount
	Mount function
	Mount function
	ACP functions:IO$_MOUNT

	IO$_MOUNT takes no arguments or function modifiers. This function is part of the volume mounting ...

	ACP Control
	ACP Control
	ACP-QIO interface:ACP control function
	ACP-QIO interface:ACP control function
	Function codes:IO$_ACPCONTROL
	Tapes:ACP control function
	ACP functions

	The following is the function code:
	• IO$_ACPCONTROL
	• IO$_ACPCONTROL
	• IO$_ACPCONTROL

	The following is the function modifier:
	• IO$M_DMOUNT—Dismounts a volume.
	• IO$M_DMOUNT—Dismounts a volume.
	• IO$M_DMOUNT—Dismounts a volume.

	Input Parameters
	Input Parameters
	The following are the device- or function-dependent arguments for IO$_ACPCONTROL:
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.

	• P2—The address of the file name string descriptor (optional).
	• P2—The address of the file name string descriptor (optional).

	• P3—The address of the word that is to receive the length of the resultant file name string (opt...
	• P3—The address of the word that is to receive the length of the resultant file name string (opt...

	• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (...
	• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (...

	Table�1�14
	Table�1�14

	<TABLE>
	Table�1�14 IO$_ACPCONTROL and the FIB�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$W_CNTRLFUNC
	FIB$W_CNTRLFUNC

	Specifies the control function to be performed. This field overlays FIB$W_EXCTL.
	Specifies the control function to be performed. This field overlays FIB$W_EXCTL.

	<TABLE ROW>
	FIB$L_CNTRLVAL
	FIB$L_CNTRLVAL

	Specifies additional function-dependent data. This field overlays FIB$L_EXSZ.
	Specifies additional function-dependent data. This field overlays FIB$L_EXSZ.

	<TABLE ROW>
	FIB$L_ACL_STATUS
	FIB$L_ACL_STATUS

	Status of the requested ACL attribute operation, if any. The ACL attributes are included in Table...
	Status of the requested ACL attribute operation, if any. The ACL attributes are included in

	<TABLE ROW>
	FIB$L_STATUS1
	FIB$L_STATUS

	Alternate access status. The following bits are supported:
	Alternate access status. The following bits are supported:

	<TABLE ROW>
	FIB$V_ALT_REQ
	FIB$V_ALT_REQ

	Set to indicate whether the alternate access bit is required for the current operation. If not se...
	Set to indicate whether the alternate access bit is required for the current operation. If not se...

	<TABLE ROW>
	FIB$V_ALT_GRANTED
	FIB$V_ALT_GRANTED

	If FIB$V_ALT_REQ = 0 and the alternate access check succeeded, the FIB bit returned from the file...
	If FIB$V_ALT_REQ = 0 and the alternate access check succeeded, the FIB bit returned from the file...

	<TABLE ROW>
	FIB$L_ALT_ACCESS1
	FIB$L_ALT_ACCESS

	A 32-bit mask that represents an access mask to check against file protection; for example, to op...
	A 32-bit mask that represents an access mask to check against file protection; for example, to op...

	Magnetic Tape Control Functions
	Magnetic Tape Control Functions
	Table�1�15
	Table�1�15

	<TABLE>
	Table�1�15 Magnetic Tape Operations and the FIB�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Subfields
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$W_CNTRLFUNC
	FIB$W_CNTRLFUNC
	ACP-QIO interface:serious exception (EOT)

	Several ACP control functions are used for magnetic tape positioning. These functions are specifi...
	Several ACP control functions are used for magnetic tape positioning. These functions are specifi...

	<TABLE ROW>
	FIB$C_REWINDFIL
	FIB$C_REWINDFIL

	Rewind to beginning-of-file.
	Rewind to beginning-of-file.

	<TABLE ROW>
	FIB$C_REWINDVOL
	FIB$C_REWINDVOL

	Rewind to beginning-of-volume set.
	Rewind to beginning-of-volume set.

	<TABLE ROW>
	FIB$C_POSEND
	FIB$C_POSEND

	Position to end-of-volume set.
	Position to end-of-volume set.

	<TABLE ROW>
	FIB$C_NEXTVOL
	FIB$C_NEXTVOL

	Force next volume.
	Force next volume.

	<TABLE ROW>
	FIB$C_SPACE
	FIB$C_SPACE

	Space n blocks forward or backward. The FIB$L_CNTRLVAL field specifies the number of magnetic tap...
	Space

	<TABLE ROW>
	FIB$C_CLSEREXCP
	FIB$C_CLSEREXCP

	If set, clears the serious exception in the magnetic tape driver (see FIB$C_USEREOT in Section 1....
	If set, clears the serious

	ACP-QIO interface:ANSI standard

	Miscellaneous Disk Control Functions
	Miscellaneous Disk Control Functions
	Several ACP control functions are available for disk volume control.
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	IO$M_DMOUNT
	IO$M_DMOUNT

	Specifying the dismount modifier on the IO$_ACPCNTRL function executes a dismount QIO. No paramet...
	Specifying the dismount modifier on the IO$_ACPCNTRL

	The FIB$W_CNTRLFUNC field of the FIB specifies the following miscellaneous control functions (wit...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	FIB$C_REMAP
	FIB$C_REMAP

	Remap a file. The file window for the file open on the user's channel is remapped so that it maps...
	Remap a file. The file window for the file open on the user's channel is remapped so that it maps...

	<TABLE ROW>
	FIB$C_LOCK_VOL
	FIB$C_LOCK_VOL

	Allocation lock the volume. Operations that change the file structure, such as file creation, del...
	Allocation lock the volume. Operations that change the file structure, such as file creation, del...
	To issue the FIB$C_LOCK_VOL function, you must have either a system UIC or SYSPRV privilege, or b...

	<TABLE ROW>
	FIB$C_UNLK_VOL
	FIB$C_UNLK_VOL

	Unlock the volume. Cancels FIB$C_LOCK_VOL. To issue this function, you must have either a system ...
	Unlock the volume. Cancels FIB$C_LOCK_VOL. To issue this function, you must have either a system ...

	Disk Quotas
	Disk Quotas
	ACP functions:disk quotas
	ACP functions:disk quotas
	Disks:quotas
	Disk quotas
	Quotas:disk

	Table�1�16
	Table�1�16

	<TABLE>
	Table�1�16 Disk Quota Functions (Enable/Disable)�
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FIB$C_ENA_QUOTA
	FIB$C_ENA_QUOTA

	Enable the disk quota file. If a nonzero directory file ID is specified in FIB$W_DID, a lookup su...
	Enable the disk quota file. If a nonzero directory file ID is specified in FIB$W_DID, a lookup su...
	The quota file specified by FIB$W_FID, if present, is accessed by the ACP, and quota enforcement ...

	<TABLE ROW>
	FIB$C_DSA_QUOTA
	FIB$C_DSA_QUOTA

	Disable the disk quota file. The quota file is deaccessed and quota enforcement is turned off. To...
	Disable the disk quota file. The quota file is deaccessed and quota enforcement is turned off. To...

	Table�1�17
	Table�1�17

	IO$_ACPCONTROL functions that transfer quota file data between the caller and the ACP use the fol...
	ACP functions:quota file transfer block
	ACP functions:quota file transfer block
	• P2—The address of a descriptor for the quota data block being sent to the ACP.
	• P2—The address of a descriptor for the quota data block being sent to the ACP.

	• P3—The address of a word that returns the data length.
	• P3—The address of a word that returns the data length.

	• P4—The address of a descriptor for a buffer to receive the quota data block returned from the ACP.
	• P4—The address of a descriptor for a buffer to receive the quota data block returned from the ACP.

	I/O Status Block
	I/O Status Block
	IOSBs (I/O status blocks):ACP-QIO interface
	IOSBs (I/O status blocks):ACP-QIO interface
	ACP-QIO interface:I/O status block
	Figure�1�8

	The file ACP returns a completion status in the first longword of the IOSB. In an extend operatio...
	Values returned in the IOSB are most useful during operations in compatibility mode. When executi...
	Figure�1�8 IOSB Contents — ACP-QIO Functions
	Figure�1�8 IOSB Contents — ACP-QIO Functions
	<GRAPHIC>

	If an extend operation (including CREATE) was performed, IOSB+4 contains the number of blocks all...

	2 Disk Drivers
	2 Disk Drivers
	I/O drivers:disk
	I/O drivers:disk
	Disks:driver
	Drivers:disks
	Device drivers:disks
	Disks:driver
	Disks<IndexSee> See also </>I/O functions\;See also ACP-QIO interface
	DSA (Digital Storage Architecture)<IndexSee> See also </>disks
	DSA (Digital Storage Architecture):disks
	DSA disks<IndexSee> See also </>See also Disks

	All disk drivers support Files-11 On-Disk Structure Level 1 and Level 2 file structures. Access t...
	Supported Disk Devices and Controllers
	Supported Disk Devices and Controllers
	The following sections provide descriptions of disk devices.
	To obtain more information about a device, use the DCL command SHOW DEVICE with the /FULL qualifi...
	UDA50 UNIBUS Disk Adapter
	UDA50 UNIBUS Disk Adapter
	UDA50 disk adapter
	UDA50 disk adapter
	Disks:UDA50 disk adapter

	The UDA50 controller is used to connect any combination of four RA60, RA80, and RA81 disk drives ...
	The UDA50, in implementing DSA, takes over the control of the physical disk unit. The operating s...
	The UDA50 controller corrects bad blocks on the disk by requesting that the disk class driver

	KDA50 Disk Controller
	KDA50 Disk Controller
	KDA50 disk controller
	KDA50 disk controller
	Disks:KDA50 controller

	KDB50 Disk Controller
	KDB50 Disk Controller
	KDB50 disk controller
	KDB50 disk controller
	Disks:KDB50 controller

	HSC40, HSC50, and HSC70 Controllers
	HSC40, HSC50, and HSC70 Controllers
	HSC50 disk controller
	HSC50 disk controller
	Disks:HSC50 controller
	HSC70 disk controller
	Disks:HSC70 controller
	HSC40 disk controller
	HSC disk controllers
	Disks:HSC controllers

	The HSC40 can support up to 12 SDI (standard disk interface) disks from the SA or RA families of ...
	The HSC70 can support up to 32 SDI disks from the SA or RA families of disk drives or a combinati...
	HSC controllers, in implementing DSA, take over the control of the physical disk unit. System pro...
	HSC controllers correct bad blocks on the disk by revectoring a failing physical block to another...
	The HSC series of controllers provides access to disks despite most hardware failures. Use of an ...
	NOTE Only one system should have write access to a Files-11 On-Disk Structure Level 1 disk or to ...
	NOTE Only one system should have write access to a Files-11 On-Disk Structure Level 1 disk or to ...

	HSC-series controllers allow you to add or subtract disks from the device configuration without r...

	SII Integral Adapter
	SII Integral Adapter
	SII integral adapter
	SII integral adapter
	Disks:SII integral adapter
	Dual host:definition

	The term
	A maximum of six devices can be connected to the EDA640 adapter, which is implemeneted by the SII...

	KFQSA Adapter
	KFQSA Adapter
	KFQSA adapter
	KFQSA adapter
	Disks:KFQSA adapter

	In dual-host configurations of MicroVAX 3800/3900 CPUs, the DSSI bus must be connected between KF...
	A maximum of six devices can be connected to the KFQSA adapter in dual-host configurations.

	RQDX3 Disk Controller
	RQDX3 Disk Controller
	RQDX3 disk controller
	RQDX3 disk controller
	Disks:RQDX3 controller

	RA70 and RA90 Disk Drives
	RA70 and RA90 Disk Drives
	RA70 disk
	RA70 disk
	Disks:RA70
	RA90 disk
	Disks:RA90
	SDI (standard disk interface)
	Disks:SDI (standard disk interface)

	The RA90 is a 1.2 GB disk drive designed with thin-film heads and 9-inch thin-film media with an ...

	RA60 Disk
	RA60 Disk
	RA60 disk
	RA60 disk
	Disks:device descriptions
	Disks:RA60

	RA80/RB80/RM80 and RA81 Fixed-Media Disks
	RA80/RB80/RM80 and RA81 Fixed-Media Disks
	The R80 disk drive is a high-capacity, moving-head disk whose nonremovable media consists of 14 d...
	• RA80—An R80 connected to the system through a UNIBUS disk adapter (UDA50) or an HSC50 controlle...
	• RA80—An R80 connected to the system through a UNIBUS disk adapter (UDA50) or an HSC50 controlle...
	• RA80—An R80 connected to the system through a UNIBUS disk adapter (UDA50) or an HSC50 controlle...

	• RB80—On VAX systems, an R80 connected to the system through an RB730 controller on a VAX-11/730...
	• RB80—On VAX systems, an R80 connected to the system through an RB730 controller on a VAX-11/730...

	• RM80—On VAX and Alpha systems, an R80 connected to the system through a MASSBUS adapter (MBA). ...
	• RM80—On VAX and Alpha systems, an R80 connected to the system through a MASSBUS adapter (MBA). ...

	The RA81 is a high-capacity disk drive with nonremovable media that can hold more than 890,000 bl...
	The RA80 and RA81 belong to the DIGITAL Storage Architecture (DSA) family of disk devices (see

	RB02 and RL02 Cartridge Disk (VAX Only)
	RB02 and RL02 Cartridge Disk (VAX Only)
	RB02 cartridge disk
	RB02 cartridge disk
	Disks:RB02 cartridge
	RL02 cartridge disk
	Disks:RL02 cartridge

	When the RL02 is connected to an RB730 controller on a VAX-11/730 processor, it is identified int...

	RC25 Disk (VAX Only)
	RC25 Disk (VAX Only)
	RC25 disk
	RC25 disk
	Disks:RC25

	RD53 and RD54 Disks (VAX Only)
	RD53 and RD54 Disks (VAX Only)
	RD53 disk
	Disks:RD53
	RD54 disk
	Disks:RD54
	On VAX systems, the RD53 and RD54 are 5.25-inch, full-height, Winchester-type drives with average...
	See

	RF30 and RF71 Disks
	RF30 and RF71 Disks
	RF30 disk
	RF30 disk
	RF71 disk
	Disks:RF30
	Disks:RF71

	Both the RF30 and RF71 disks use DIGITAL Storage System Interconnect (DSSI) bus and host adapters.

	RK06 and RK07 Cartridge Disks (VAX Only)
	RK06 and RK07 Cartridge Disks (VAX Only)
	RK06 cartridge disk
	RK06 cartridge disk
	RK07 cartridge disk
	Disks:RK06 cartridge
	Disks:RK07 cartridge

	RM03 and RM05 Pack Disks (VAX Only)
	RM03 and RM05 Pack Disks (VAX Only)
	RM03 disk
	RM03 disk
	RM05 disk
	Disks:RM03
	Disks:RM05

	RP05 and RP06 Disk (VAX Only)
	RP05 and RP06 Disk (VAX Only)
	RP05 disk
	RP05 disk
	RP06 disk
	Disks:RP05
	Disks:RP06

	RP07 Fixed-Media Disk (VAX Only)
	RP07 Fixed-Media Disk (VAX Only)
	RP07 disk
	RP07 disk
	Disks:RP07

	RRD40 and RRD50 Read-Only Memory (CD-ROM)
	RRD40 and RRD50 Read-Only Memory (CD-ROM)
	Compact discs<IndexSee> See also </>See CD-ROM (compact disc read-only memory)
	Compact discs<IndexSee> See also </>See CD-ROM (compact disc read-only memory)
	CD-ROM (compact disc read-only memory):storing data and audio information
	Disks:compact disc
	Disks:RRD40 CD-ROM
	Disks:RRD50 CD-ROM
	Small Computer Systems Interface (SCSI)<IndexSee> See also </>See SCSI

	The RRD40 is a 5.25-inch half-height, front-loading tabletop or embedded device that attaches to ...
	The RRD50 is a 5.25-inch, top-loading tabletop device that attaches to the system using a Q-bus i...
	The RRD40 has an average access time of 0.5 second while the average access time for the RRD50 is...
	The media for the RRD40 and the RRD50 are removable 4.7-inch (120-mm) compact discs. However, the...

	RX01 Console Disk (VAX Only)
	RX01 Console Disk (VAX Only)
	Console disks<IndexSee> See also </>See RX01 console disk
	Console disks<IndexSee> See also </>See RX01 console disk
	RX01 console disk

	For logical and virtual block I/O operations, data is accessed with one block resolution (four se...
	For physical block I/O operations, the track, sector, and cylinder parameters describe a physical...
	Figure�2�1 Disk Physical Address
	Figure�2�1 Disk Physical Address
	<GRAPHIC>

	RX02 Disk (VAX Only)
	RX02 Disk (VAX Only)
	RX02 diskette
	RX02 diskette
	Disks:RX02

	The RX02 is connected to the system by an RX211 controller that interfaces with the UNIBUS adapte...
	For logical and virtual block I/O operations, data is accessed with single block resolution (four...
	For physical block I/O operations, the track and sector parameters shown in

	RX23 (VAX Only)
	RX23 (VAX Only)
	RX23 diskette
	RX23 diskette
	Disks:RX23 flexible

	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Density
	Unformatted
	Formatted

	<TABLE BODY>
	<TABLE ROW>
	Standard
	Standard

	1.0 MB
	1.0 MB

	700 KB
	700 KB

	<TABLE ROW>
	High
	High

	2.0 MB
	2.0 MB

	1.4 MB
	1.4 MB

	The RX23 is backward compatible in that it can read 1-MB media. It can also read and write 2.0-MB...
	The RX23 communicates with the controller using the ST506 fixed-disk interconnect (FDI).

	RX33 (VAX Only)
	RX33 (VAX Only)
	RX33 diskette
	RX33 diskette
	Disks:RX33 flexible

	In standard-density mode, the RX33 drive is read- and write-compatible with single-sided, standar...

	RX50 (VAX Only)
	RX50 (VAX Only)
	RX50 diskette
	RX50 diskette
	Disks:RX50 flexible

	RZ22, RZ23, and RZ55 Disks
	RZ22, RZ23, and RZ55 Disks
	RZ22 disk
	RZ22 disk
	RZ23 disk
	RZ55 disk
	Disks:RZ22
	Disks:RZ23
	Disks:RZ55

	The RZ55 is a 332-MB, 5.25-inch, full-height SCSI drive with an average access rate of 24 ms.

	TU58 Magnetic Tape (DECtape II)
	TU58 Magnetic Tape (DECtape II)
	TU58 magnetic tapes<IndexSee> See also </>See Disks
	TU58 magnetic tapes<IndexSee> See also </>See Disks
	Disks:TU58 magnetic tape

	The TU58 uses two vectors. NUMVEC=2 is required on the CONNECT command when specifying system par...
	The TU58 interfaces with the UNIBUS adapter through a DL11-series interface device. Both the TU58...

	Driver Features
	Driver Features
	Disks:features
	Disks:features

	• Multiple controllers of the same type (except RB730), for example, more than one MBA or RK611 c...
	• Multiple controllers of the same type (except RB730), for example, more than one MBA or RK611 c...
	• Multiple controllers of the same type (except RB730), for example, more than one MBA or RK611 c...

	• Multiple disk drives per controller (the exact number depends on the controller)
	• Multiple disk drives per controller (the exact number depends on the controller)

	• Different types of disk drives on a single controller
	• Different types of disk drives on a single controller

	• Static dual porting (MBA drives only)
	• Static dual porting (MBA drives only)

	• Overlapped seeks (except RL02, RX01, RX02, and TU58)
	• Overlapped seeks (except RL02, RX01, RX02, and TU58)

	• Data checks on a per-request, per-file, or per-volume basis (except RX01 and RX02)
	• Data checks on a per-request, per-file, or per-volume basis (except RX01 and RX02)

	• Full recovery from power failure for online disk drives with volumes mounted
	• Full recovery from power failure for online disk drives with volumes mounted

	• Extensive error recovery algorithms, such as error code correction and offset (except RB02, RL0...
	• Extensive error recovery algorithms, such as error code correction and offset (except RB02, RL0...

	• Dynamic, as well as static, bad block handling
	• Dynamic, as well as static, bad block handling

	• Logging of device errors in a file that can be displayed by field service personnel or customer...
	• Logging of device errors in a file that can be displayed by field service personnel or customer...

	• Online diagnostic support for drive level diagnostics
	• Online diagnostic support for drive level diagnostics

	• Multiple-block, noncontiguous, virtual I/O operations at the driver level
	• Multiple-block, noncontiguous, virtual I/O operations at the driver level

	• Logical-to-physical sector translation (RX01 and RX02 only)
	• Logical-to-physical sector translation (RX01 and RX02 only)

	The following sections describe these features in greater detail.
	Dual-Pathed Disks
	Dual-Pathed Disks
	Dual-pathed disks
	Dual-pathed disks
	Disks:dual-pathed
	Dual path:definition

	• Dual-ported MASSBUS disks
	• Dual-ported MASSBUS disks
	• Dual-ported MASSBUS disks

	• Dual-ported HSC disks
	• Dual-ported HSC disks

	• Dual-pathed DSA disks on local UDA50, KDA50, and KDB50 controllers
	• Dual-pathed DSA disks on local UDA50, KDA50, and KDB50 controllers

	• Dual-ported RF-series disks
	• Dual-ported RF-series disks

	The term dual-pathed refers to the two paths through which clustered CPUs can access a disk to wh...

	Dual Porting MASSBUS Disks
	Dual Porting MASSBUS Disks
	Disks:dual-ported
	Disks:dual-ported
	Dual-ported disks

	Figure�2�2 Dual-Ported Disk Drives
	Figure�2�2 Dual-Ported Disk Drives
	<GRAPHIC>

	Port Selection and Access Modes
	Port Selection and Access Modes
	Disks:port selection
	Disks:port selection
	Disks:port access mode
	Port selection
	Port access mode

	• Locked on Port A—The drive is in a single-port mode (Port A). It does not respond to any reques...
	• Locked on Port A—The drive is in a single-port mode (Port A). It does not respond to any reques...
	• Locked on Port A—The drive is in a single-port mode (Port A). It does not respond to any reques...

	• Locked on Port B—The drive is in a single-port mode (Port B). It does not respond to any reques...
	• Locked on Port B—The drive is in a single-port mode (Port B). It does not respond to any reques...

	• Programmable A/B—The drive is capable of responding to requests on either Port A or Port B. In ...
	• Programmable A/B—The drive is capable of responding to requests on either Port A or Port B. In ...
	— The drive is connected and responding to a request on Port A. It is closed to requests on Port B.
	— The drive is connected and responding to a request on Port A. It is closed to requests on Port B.
	— The drive is connected and responding to a request on Port A. It is closed to requests on Port B.

	— The drive is connected and responding to a request on Port B. It is closed to requests on Port A.
	— The drive is connected and responding to a request on Port B. It is closed to requests on Port A.

	— The drive is in a neutral state. It is equally available to requests on either port on a first-...
	— The drive is in a neutral state. It is equally available to requests on either port on a first-...

	The operational condition of the drive cannot be changed with the port select switches after the ...
	If a drive is in the neutral state and a disk controller either reads or writes to a drive regist...

	Disk Use and Restrictions
	Disk Use and Restrictions
	Disks:dual-ported:restrictions for use
	Disks:dual-ported:restrictions for use
	Dual-ported disks:restrictions for use

	The Autoconfigure utility currently may not be able to locate the nonactive port. For example, if...

	Restriction on Dual-Ported Non-DSA Disks in a Cluster
	Restriction on Dual-Ported Non-DSA Disks in a Cluster
	Do not use SYSGEN to AUTOCONFIGURE or CONFIGURE a dual-ported, non-DSA disk that is already avail...
	NOTE If the disk is not dual-ported or is never served by an MSCP server on the remote host, this...
	NOTE If the disk is not dual-ported or is never served by an MSCP server on the remote host, this...

	In a cluster, dual-ported non-DSA disks (MASSBUS or UNIBUS) can be connected between two nodes of...
	If the local path to the disk is not found during the bootstrap, then the MSCP server path from t...
	• The port select switch for the drive is not enabled for this host.
	• The port select switch for the drive is not enabled for this host.
	• The port select switch for the drive is not enabled for this host.

	• The disk, cable, or adapter hardware for the local path is broken.
	• The disk, cable, or adapter hardware for the local path is broken.

	• There is sufficient activity on the other port to hide the existence of the port.
	• There is sufficient activity on the other port to hide the existence of the port.

	• The system is booted in such a way that the SYSGEN AUTOCONFIGURE ALL command in the SYS$SYSTEM:...
	• The system is booted in such a way that the SYSGEN AUTOCONFIGURE ALL command in the SYS$SYSTEM:...

	Use of the disk is still possible through the MSCP server path.
	After the configuration of the disk has reached this state, it is important
	To recover the local path to the disk, it is necessary to reboot the system connected to that loc...

	Dual-Pathed DSA Disks
	Dual-Pathed DSA Disks
	Dual-ported disks:DSA disk
	Dual-ported disks:DSA disk
	Dual-pathed disks:DSA disk
	Disks:dual-ported:DSA disks
	Disks:dual-pathed:DSA disks
	DSA disks

	CAUTION Failure to observe these requirements can endanger data integrity.
	CAUTION Failure to observe these requirements can endanger data integrity.

	However, because a DSA disk can be on line to only one controller at a time, only one of the CPUs...
	NOTE A dual-ported DSA disk may not be used as a system disk.
	NOTE A dual-ported DSA disk may not be used as a system disk.

	Dual-Porting HSC Disks
	Dual-Porting HSC Disks
	Dual-ported disks:HSC disk
	Dual-ported disks:HSC disk
	HSC disks
	Disks:dual-ported:HSC disks

	For each dual-ported HSC disk, you can control failover to a specific port using the port select ...
	With the port select button, you can select alternate ports to balance the disk controller worklo...
	The port select buttons also allow you to fail over all the disks to an alternate port manually w...

	Dual-Pathed RF-Series Disks
	Dual-Pathed RF-Series Disks
	Disks:RF31:failover
	Disks:RF31:failover
	Disks:RF70:failover

	If either CPU fails, satellites can access their disks through the remaining CPU. Note that failo...
	NOTE The DSSI bus should not be connected between a KFQSA adapter on one CPU and an SII integral ...
	NOTE The DSSI bus should not be connected between a KFQSA adapter on one CPU and an SII integral ...

	Data Check
	Data Check
	Data checks:disk
	Data checks:disk
	Disks:data check

	Disk drivers support data checks at the following levels:
	• Per request—You can specify the data check function modifier (IO$M_DATACHECK)
	• Per request—You can specify the data check function modifier (IO$M_DATACHECK)
	• Per request—You can specify the data check function modifier (IO$M_DATACHECK)

	• Per volume—You can specify the characteristics “data check all reads” and “data check all write...
	• Per volume—You can specify the characteristics “data check all reads” and “data check all write...

	• Per file—You can specify the file access attributes “data check on read” and “data check on wri...
	• Per file—You can specify the file access attributes “data check on read” and “data check on wri...

	Disks:offset recovery
	Disks:offset recovery

	Data checks on read operations are extremely rare, and you can either accept the data as is, trea...
	A data check operation directed to a TU58 does not compare the data in memory

	Effects of a Failure During an I/O Write Operation
	Effects of a Failure During an I/O Write Operation
	I/O write operations : preventing data loss
	The operating system ensures that when an I/O write operation returns a successful completion sta...
	If a system failure occurs while a multiple-block write operation is in progress, the operating s...
	• The new data is written completely to the disk blocks on the media, but a completion status was...
	• The new data is written completely to the disk blocks on the media, but a completion status was...
	• The new data is written completely to the disk blocks on the media, but a completion status was...

	• The new data is partially written to the media so that some of the disk blocks involved in the ...
	• The new data is partially written to the media so that some of the disk blocks involved in the ...

	• The new data was never written to the disk blocks on the media.
	• The new data was never written to the disk blocks on the media.

	To guarantee that a write operation either finishes successfully or (in the event of failure) is ...
	• Permanent loss of the path between a CPU data buffer containing the data being written and the ...
	• Permanent loss of the path between a CPU data buffer containing the data being written and the ...
	• Permanent loss of the path between a CPU data buffer containing the data being written and the ...

	• Failure of a CPU (such as a system failure, system halt, power failure, or system shutdown) dur...
	• Failure of a CPU (such as a system failure, system halt, power failure, or system shutdown) dur...

	• Mistaken deletion of a file.
	• Mistaken deletion of a file.

	• Corruption of file system pointers.
	• Corruption of file system pointers.

	• File corruption due to a software error or incomplete bucket write operation to an indexed file.
	• File corruption due to a software error or incomplete bucket write operation to an indexed file.

	• Cancellation of an in-progress multiple-block write operation.
	• Cancellation of an in-progress multiple-block write operation.

	Overlapped Seeks
	Overlapped Seeks
	Disks:seek operations
	Disks:seek operations
	Seek operation

	During the seek operation, the controller is free to perform transfers on other units. Therefore,...
	This overlapping is possible because, unlike I/O transfers, seek operations do not require the co...
	All DSA controllers perform extensive seek optimization functions as part of their operation; IO$...

	Error Recovery
	Error Recovery
	Disks:error recovery
	Disks:error recovery
	Error recovery:disk
	SCSI (Small Computer Systems Interface):disks:error recovery

	• Handling special conditions such as power failure and interrupt timeout.
	• Handling special conditions such as power failure and interrupt timeout.
	• Handling special conditions such as power failure and interrupt timeout.

	• Retrying nonfatal controller and drive errors. For DSA and SCSI disks, this function is impleme...
	• Retrying nonfatal controller and drive errors. For DSA and SCSI disks, this function is impleme...

	• Applying error correction information (not applicable for RB02, RL02, RX01, RX02, and TU58 driv...
	• Applying error correction information (not applicable for RB02, RL02, RX01, RX02, and TU58 driv...

	• Offsetting read heads to try to obtain a stronger recorded signal (not applicable for RB02, RL0...
	• Offsetting read heads to try to obtain a stronger recorded signal (not applicable for RB02, RL0...

	The error recovery algorithm uses a combination of these four types of error recovery operations ...
	• Power failure recovery consists of waiting for mounted drives to spin up and come on line, foll...
	• Power failure recovery consists of waiting for mounted drives to spin up and come on line, foll...
	• Power failure recovery consists of waiting for mounted drives to spin up and come on line, foll...

	• Device timeout is treated as a nonfatal error. The operation that was in progress when the time...
	• Device timeout is treated as a nonfatal error. The operation that was in progress when the time...

	• Nonfatal controller/drive errors are executed up to eight times before a fatal error is returned.
	• Nonfatal controller/drive errors are executed up to eight times before a fatal error is returned.

	• All normal error recovery procedures (nonspecial conditions) can be inhibited
	• All normal error recovery procedures (nonspecial conditions) can be inhibited

	Skip Sectoring
	Skip Sectoring
	Disks:skip sectoring
	Disks:skip sectoring
	Skip sectoring

	You can detect bad blocks when a disk is formatted. Most formatters place these blocks in a bad b...
	When a skip sector is encountered during a data transfer, it is skipped over, and all remaining b...
	Because skip sectors are implemented at the device driver level, they are not visible to you. The...

	Logical-to-Physical Translation (RX01 and RX02)
	Logical-to-Physical Translation (RX01 and RX02)
	Disks:sector translation
	Disks:sector translation
	Sector translation
	Translations:logical to physical

	The translation procedure, in more precise terms, is as follows:
	1. � Compute an uncorrected medium address using the following dimensions:
	1. � Compute an uncorrected medium address using the following dimensions:
	1. � Compute an uncorrected medium address using the following dimensions:
	Number of sectors per track = 26 Number of tracks per cylinder = 1 Number of cylinders per disk = 77

	2. � Correct the computed address for interleaving and track-to-track skew (in that order) as sho...
	2. � Correct the computed address for interleaving and track-to-track skew (in that order) as sho...
	Interleaving:
	Skew:

	3. � Set the sector number in the range of 1 through 26 as required by the hardware:
	3. � Set the sector number in the range of 1 through 26 as required by the hardware:
	ISECT = ISECT+1
	ISECT = ISECT+1

	4. � Adjust the cylinder number to cylinder 1 (cylinder 0 is not used):
	4. � Adjust the cylinder number to cylinder 1 (cylinder 0 is not used):
	ICYL = ICYL+1
	ICYL = ICYL+1

	DIGITAL Storage Architecture (DSA) Devices
	DIGITAL Storage Architecture (DSA) Devices
	Digital Storage Architecture disks<IndexSee> See also </>See DSA disks
	Digital Storage Architecture disks<IndexSee> See also </>See DSA disks
	DSA disks

	• Media format—Describes the structure of sectors on a disk and the algorithms for replacing bad ...
	• Media format—Describes the structure of sectors on a disk and the algorithms for replacing bad ...
	• Media format—Describes the structure of sectors on a disk and the algorithms for replacing bad ...

	• Drive-to-controller interconnect—Describes the connection between a drive and its controller
	• Drive-to-controller interconnect—Describes the connection between a drive and its controller

	• Controller-to-host communicationsë—Describes how hosts request controllers to transfer data
	• Controller-to-host communicationsë—Describes how hosts request controllers to transfer data

	Because the operating system supports all DSA disks, it supports all controller-to-host aspects o...
	DSA disks differ from MASSBUS and UNIBUS disks in the following ways:
	• DSA disks contain no bad blocks. The hardware and the disk class driver
	• DSA disks contain no bad blocks. The hardware and the disk class driver
	• DSA disks contain no bad blocks. The hardware and the disk class driver

	• Insert a WAIT statement in your SYSTARTUP_V5.COM file on VAX systems, or your SYSTARTUP_VMS.COM...
	• Insert a WAIT statement in your SYSTARTUP_V5.COM file on VAX systems, or your SYSTARTUP_VMS.COM...

	• The DUDRIVER and the DSA device controllers allow multiple, concurrently outstanding QIO reques...
	• The DUDRIVER and the DSA device controllers allow multiple, concurrently outstanding QIO reques...

	• All DSA disks can be dual-ported, but only one HSC/UDA controller can control a disk at a time ...
	• All DSA disks can be dual-ported, but only one HSC/UDA controller can control a disk at a time ...

	• In many cases, you can attach a DSA disk to its controller on a running system and then use it ...
	• In many cases, you can attach a DSA disk to its controller on a running system and then use it ...

	• DSA disks and the DUDRIVER do not accept physical QIO data transfers or seek operations.
	• DSA disks and the DUDRIVER do not accept physical QIO data transfers or seek operations.

	Bad Block Replacement and Forced Errors for DSA Disks
	Bad Block Replacement and Forced Errors for DSA Disks
	DSA disks:bad block replacement
	DSA disks:bad block replacement
	DSA (Digital Storage Architecture):disks:bad block replacement
	DSA disks:forced error
	DSA (Digital Storage Architecture):disks:forced error

	Additional physical blocks are set aside to replace blocks that fail during normal disk operation...
	When a drive-dependent error threshold is reached, the need for a bad block replacement operation...
	The design goal of DSA disks is that this read operation proceeds without error and that the RCT ...
	However, if the original data cannot be read from the failing block, a best-attempt copy of the d...
	%SYSTEM-F-FORCEDERROR, forced error flagged in last sector read
	Writing into a block always clears the forced error flag.
	Note that most utilities and DCL commands treat the forced error flag as a fatal error and termin...
	System managers (and other users of BACKUP) should assume that forced errors reported by BACKUP s...
	To determine what, if any, blocks on a given disk volume have the forced error flag set, use the ...

	VAXstation 2000 and MicroVAX 2000 Disk Driver
	VAXstation 2000 and MicroVAX 2000 Disk Driver
	Disks:driver:VAXstation 2000 and MicroVAX 2000
	Disks:driver:VAXstation 2000 and MicroVAX 2000
	Disks:VAXstation 2000 and MicroVAX 2000 driver
	Drivers:VAXstation 2000 and MicroVAX 2000 disk
	Device drivers:VAXstation 2000 and MicroVAX 2000 disk
	DSA disks:bad block replacement
	DSA (Digital Storage Architecture):disks:bad block replacement

	Like other DSA disks, if a serious error occurs during a replacement operation, the disk is write...
	• ERRFMT messages show that the disk is write-locked.
	• ERRFMT messages show that the disk is write-locked.
	• ERRFMT messages show that the disk is write-locked.

	• The disk enters mount verification and hangs.
	• The disk enters mount verification and hangs.

	• DCL command SHOW DEVICE output shows that the disk is write-locked.
	• DCL command SHOW DEVICE output shows that the disk is write-locked.

	• Error messages occur from programs and utilities attempting to write to the disk.
	• Error messages occur from programs and utilities attempting to write to the disk.

	If the disk becomes write-locked, you should use the following procedure:
	1. � Shut down the system.
	1. � Shut down the system.
	1. � Shut down the system.

	2. � Use standalone BACKUP to create a full backup of the disk.
	2. � Use standalone BACKUP to create a full backup of the disk.

	3. � Format the disk with the disk formatter.
	3. � Format the disk with the disk formatter.

	4. � Restore the disk from the backup using standalone BACKUP. Note that any files with sectors f...
	4. � Restore the disk from the backup using standalone BACKUP. Note that any files with sectors f...

	If errors occurring during replacement operations persist, call HP Customer Services.

	SCSI Disk Class Driver
	SCSI Disk Class Driver
	SCSI (Small Computer Systems Interface):disks:class driver
	SCSI (Small Computer Systems Interface):disks:class driver
	Disks:driver:SCSI
	Drivers:SCSI
	Device drivers:SCSI
	SCSI (Small Computer Systems Interface):disks:error recovery

	• Static and dynamic bad block replacement (BBR)
	• Static and dynamic bad block replacement (BBR)
	• Static and dynamic bad block replacement (BBR)

	• Error correction code (ECC)
	• Error correction code (ECC)

	• Reexecution of read or write operations within the SCSI drive
	• Reexecution of read or write operations within the SCSI drive

	• Reexecution of read or write operations by the SCSI disk class driver
	• Reexecution of read or write operations by the SCSI disk class driver

	All SCSI disks supplied by HP implement the REASSIGN BLOCKS command, which relocates data for a s...
	Unlike DSA, there is no forced error flag in SCSI. Blocks that produce irrecoverable errors durin...

	Audio Extensions to the SCSI Disk Class Driver
	Audio Extensions to the SCSI Disk Class Driver
	Audio:extensions to SCSI disk class driver
	Audio:extensions to SCSI disk class driver
	Drivers:SCSI disk class
	Device drivers:SCSI disk class
	Disks:driver
	SCSI (Small Computer Systems Interface):disk class driver
	Disk class drivers:audio extensions
	This section describes SCSI disk class driver audio commands and the $QIO interface by which the ...
	Table�2�1
	Table�2�1

	<TABLE>
	Table�2�1 SCSI Disk Class Driver Audio Commands�
	<TABLE HEADING>
	<TABLE ROW>
	Command
	Audio Function Code
	Description

	<TABLE BODY>
	<TABLE ROW>
	Play Audio MSF
	Play Audio MSF

	AUDIO_PLAY_AUDIO_MSF (5)
	AUDIO_PLAY_AUDIO_MSF (5)

	Requests the CD-ROM to begin an audio playback operation. The two required command arguments spec...
	Requests the CD-ROM to begin an audio playback operation. The two required command arguments spec...

	<TABLE ROW>
	Play Audio Track
	Play Audio Track

	AUDIO_PLAY_AUDIO_TRACK (6)
	AUDIO_PLAY_AUDIO_TRACK (6)

	Requests the CD-ROM to begin an audio playback operation. The two required command arguments spec...
	Requests the CD-ROM to begin an audio playback operation. The two required command arguments spec...

	<TABLE ROW>
	Play Audio
	Play Audio

	AUDIO_PLAY_AUDIO (4)
	AUDIO_PLAY_AUDIO (4)

	Requests the CD-ROM to begin an audio playback operation. The two required command arguments spec...
	Requests the CD-ROM to begin an audio playback operation. The two required command arguments spec...

	<TABLE ROW>
	Pause
	Pause

	AUDIO_PAUSE (0)
	AUDIO_PAUSE (0)

	Requests the CD-ROM to suspend any active audio operations. In response, the CD-ROM enters the ho...
	Requests the CD-ROM to suspend any active audio operations. In response, the CD-ROM enters the ho...

	<TABLE ROW>
	Resume
	Resume

	AUDIO_RESUME (1)
	AUDIO_RESUME (1)

	Requests the CD-ROM to resume any active audio operations. In response, the CD-ROM exits the hold...
	Requests the CD-ROM to resume any active audio operations. In response, the CD-ROM exits the hold...

	<TABLE ROW>
	Get Status
	Get Status

	AUDIO_GET_STATUS (9)
	AUDIO_GET_STATUS (9)

	Requests from the CD-ROM the status of the currently active playback operation, as well as the st...
	Requests from the CD-ROM the status of the currently active playback operation, as well as the st...

	<TABLE ROW>
	Set Volume
	Set Volume

	AUDIO_SET_VOLUME (11)
	AUDIO_SET_VOLUME (11)

	Requests the CD-ROM to adjust the output channel selection and volume settings for ports 0 throug...
	Requests the CD-ROM to adjust the output channel selection and volume settings for ports 0 throug...

	<TABLE ROW>
	Get Volume
	Get Volume

	AUDIO_GET_VOLUME (12)
	AUDIO_GET_VOLUME (12)

	Requests from the CD-ROM the output channel selection and volume settings for ports 0 through 3. ...
	Requests from the CD-ROM the output channel selection and volume settings for ports 0 through 3. ...

	<TABLE ROW>
	Prevent Removal
	Prevent Removal

	AUDIO_PREVENT_REMOVAL (2)
	AUDIO_PREVENT_REMOVAL (2)

	Prevents the removal of the CD caddy from the CD-ROM drive.
	Prevents the removal of the CD caddy from the CD-ROM drive.

	<TABLE ROW>
	Allow Removal
	Allow Removal

	AUDIO_ALLOW_REMOVAL (3)
	AUDIO_ALLOW_REMOVAL (3)

	Allows the removal of the CD caddy from the CD-ROM drive.
	Allows the removal of the CD caddy from the CD-ROM drive.

	<TABLE ROW>
	Get TOC
	Get TOC

	AUDIO_GET_TOC (10)
	AUDIO_GET_TOC (10)

	Requests from the CD-ROM a list of each track on the disk, including information about the audio ...
	Requests from the CD-ROM a list of each track on the disk, including information about the audio ...

	$QIO Interface to Audio Functionality of the SCSI Disk Class Driver
	$QIO Interface to Audio Functionality of the SCSI Disk Class Driver
	Audio:$QIO interface to disk class driver
	SCSI (Small Computer Systems Interface):$QIO interface to disk class driver
	Disk class drivers:$QIO interface to audio functions
	SYS$QIO system service:interface to audio functions
	To employ the audio functions of the RRD42 CD-ROM reader, the application program issues a call t...
	status=SYS$QIO ([efn] ,[chan] ,func [,iosb] [,astadr] [,astprm] [,p1] [,p2] [,p3] [,p4] [,p5] [,p6])
	Arguments
	[efn]
	[efn]

	[chan]
	[chan]

	[iosb]
	[iosb]

	[astadr]
	[astadr]

	[astprm]
	[astprm]

	These arguments apply to the $QIO system service completion, not to device interrupt actions. For...
	func
	func

	The IO$_AUDIO function code allows the SCSI disk class driver to process SCSI audio commands.
	p1
	p1

	Address of an audio control block (AUCB). The $QIO system service passes a SCSI audio command and...
	p2
	p2

	Size of the AUCB.

	Defining an Audio Control Block (AUCB)
	Defining an Audio Control Block (AUCB)
	Audio control blocks <IndexSee> See also </>See AUCBs
	AUCBs (audio control blocks):definition
	An application program that issues a call to the $QIO system service that specifies the IO$_AUDIO...
	An AUCB defines a specific SCSI audio command and provides the SCSI disk class driver with comman...
	Figure�2�3 Audio Control Block (AUCB)
	Figure�2�3 Audio Control Block (AUCB)
	<GRAPHIC>

	<TABLE>
	Table�2�2 Contents of AUCB�
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Use
	Use

	<TABLE BODY>
	<TABLE ROW>
	Audio Function Code
	Audio Function Code

	Numeric or symbolic code representing the audio function desired by the application program. (See...
	Numeric or symbolic code representing the audio function desired by the application program. (See

	<TABLE ROW>
	AUCB Version Number
	AUCB Version Number

	Version of the AUCB and SCSI disk class driver audio interface. For the current version of the in...
	Version of the AUCB and SCSI disk class driver audio interface. For the current version of the in...

	<TABLE ROW>
	Argument 1
	Argument 1

	This field is audio command-specific and contains the first argument of the function as follows:
	This field is audio command-specific and contains the first argument of the function as follows:

	<TABLE ROW>
	Audio Function Code
	Audio Function Code
	Audio Function Code
	For any function code not listed in this table, this field contains a zero.
	For any function code not listed in this table, this field contains a zero.

	Field Contents
	Field Contents
	Field Contents

	<TABLE ROW>
	AUDIO_PLAY_AUDIO_MSF (5)
	AUDIO_PLAY_AUDIO_MSF (5)

	Starting Frames|(Sec shifted left 8 bits)|(Min shifted left 16 bits)
	Starting Frames|(Sec shifted left 8 bits)|(Min shifted left 16 bits)

	<TABLE ROW>
	AUDIO_PLAY_AUDIO_TRACK (6)
	AUDIO_PLAY_AUDIO_TRACK (6)

	Starting (Track shifted left 8 bits) |Index
	Starting (Track shifted left 8 bits) |Index

	<TABLE ROW>
	AUDIO_PLAY_AUDIO (4)
	AUDIO_PLAY_AUDIO (4)

	Starting logical block address.
	Starting logical block address.

	<TABLE ROW>
	AUDIO_GET_STATUS (9)
	AUDIO_GET_STATUS (9)

	0 if LBA format, 1 if MSF format. Refer to the SCSI II specification for information about these ...
	0 if LBA format, 1 if MSF format. Refer to the SCSI II specification for information about these ...

	<TABLE ROW>
	AUDIO_SET_VOLUME (11)
	AUDIO_SET_VOLUME (11)

	Longword representing the values to be used to determine the new output channel selection and vol...
	Longword representing the values to be used to determine the new output channel selection and vol...

	<TABLE ROW>
	AUDIO_GET_VOLUME (12)
	AUDIO_GET_VOLUME (12)

	Longword to receive the current values determining output channel selection and volume settings f...
	Longword to receive the current values determining output channel selection and volume settings f...

	<TABLE ROW>
	AUDIO_GET_TOC (10)
	AUDIO_GET_TOC (10)

	0 if LBA format, 1 if MSF format. Refer to the SCSI II specification for information about these ...
	0 if LBA format, 1 if MSF format. Refer to the SCSI II specification for information about these ...

	<TABLE ROW>
	Argument 2
	Argument 2

	This field is audio command-specific and contains the second argument of the function as follows:
	This field is audio command-specific and contains the second argument of the function as follows:

	<TABLE ROW>
	Audio Function Code1
	Audio Function Code
	Audio Function Code
	1

	Field Contents
	Field Contents

	<TABLE ROW>
	AUDIO_PLAY_AUDIO_MSF (5)
	AUDIO_PLAY_AUDIO_MSF (5)

	Starting frames|(sec shifted left 8 bits)|(min shifted left 16 bits)
	Starting frames|(sec shifted left 8 bits)|(min shifted left 16 bits)

	<TABLE ROW>
	AUDIO_PLAY_AUDIO_TRACK (6)
	AUDIO_PLAY_AUDIO_TRACK (6)

	Ending(track shifted left 8 bits)|index
	Ending(track shifted left 8 bits)|index

	<TABLE ROW>
	AUDIO_PLAY_AUDIO (4)
	AUDIO_PLAY_AUDIO (4)

	Transfer count in number of contiguous blocks to be played
	Transfer count in number of contiguous blocks to be played

	<TABLE ROW>
	AUDIO_GET_TOC (10)
	AUDIO_GET_TOC (10)

	Starting track
	Starting track

	<TABLE ROW>
	Reserved
	Reserved

	Must be zero.
	Must be zero.

	<TABLE ROW>
	Destination Buffer Address
	Destination Buffer Address

	Address of the application program's buffer from which the status from a GET_STATUS or GET_TOC fu...
	Address of the application program's buffer from which the status from a GET_STATUS or GET_TOC fu...

	<TABLE ROW>
	Destination Buffer Count
	Destination Buffer Count

	Size, in bytes, of the destination buffer specified in the Destination Buffer Address field. For ...
	Size, in bytes, of the destination buffer specified in the Destination Buffer Address field. For ...

	<TABLE ROW>
	Destination Buffer Transfer Count
	Destination Buffer Transfer Count

	The SCSI disk class driver returns to this field the actual number of bytes transferred to the bu...
	The SCSI disk class driver returns to this field the actual number of bytes transferred to the bu...
	Before accessing data returned by the GET_TOC or GET_STATUS commands, an application program must...
	The application program initializes this field to zero.

	<TABLE ROW>
	Operating System Command Status
	Operating System Command Status

	Completion status of the SCSI audio function. This value is also returned in the I/O status block...
	Completion status of the SCSI audio function. This value is also returned in the I/O status block...
	The application program initializes this field to zero.

	<TABLE ROW>
	SCSI Command Status (optional)
	SCSI Command Status (optional)

	SCSI status of the current operation. The SCSI disk class driver returns the SCSI status byte for...
	SCSI status of the current operation. The SCSI disk class driver returns the SCSI status byte for...
	The application program initializes this field to zero.

	<TABLE ROW>
	Sense Data Buffer Address (optional)
	Sense Data Buffer Address (optional)

	Address of buffer to which the SCSI disk class driver returns sense data when errors occur during...
	Address of buffer to which the SCSI disk class driver returns sense data when errors occur during...

	<TABLE ROW>
	Sense Data Buffer Count (optional)
	Sense Data Buffer Count (optional)

	Size, in bytes, of the buffer specified in the Sense Data Buffer Address field. During request se...
	Size, in bytes, of the buffer specified in the Sense Data Buffer Address field. During request se...

	<TABLE ROW>
	Sense Data Buffer Transfer Count (optional)
	Sense Data Buffer Transfer Count (optional)

	Actual number of bytes of sense data returned to the application in the buffer specified in the S...
	Actual number of bytes of sense data returned to the application in the buffer specified in the S...
	The application program initializes this field to zero.

	<TABLE ROW>
	Reserved
	Reserved

	Must be zero.
	Must be zero.

	The output channel selection and volume settings for CD-ROM ports as used by the SET_VOLUME funct...

	Error Handling in Applications Using SCSI Audio Functions
	Error Handling in Applications Using SCSI Audio Functions
	Audio:error handling in applications
	SCSI (Small Computer Systems Interface):handling errors in audio applications
	As indicated in
	• Condition values, returned in the Operating System Command Status field of the AUCB, as well as...
	• Condition values, returned in the Operating System Command Status field of the AUCB, as well as...
	• Condition values, returned in the Operating System Command Status field of the AUCB, as well as...
	If this status is SS$_NORMAL, the function has completed without error. If the status is not SS$_...

	Figure�2�4 Output Channel Selection and Volume Settings for CD-ROM Ports as Used by the SET_VOLUM...
	Figure�2�4 Output Channel Selection and Volume Settings for CD-ROM Ports as Used by the SET_VOLUM...
	<GRAPHIC>

	• SCSI command status, returned in the SCSI Command Status field of the AUCB. The SCSI disk class...
	• SCSI command status, returned in the SCSI Command Status field of the AUCB. The SCSI disk class...
	• SCSI command status, returned in the SCSI Command Status field of the AUCB. The SCSI disk class...

	• Sense data, returned in the buffer specified in the Sense Data Buffer Address field of the AUCB...
	• Sense data, returned in the buffer specified in the Sense Data Buffer Address field of the AUCB...

	If the CD-ROM device is currently software-enabled (that is, the volume has been mounted) and a u...
	<TABLE>
	Table�2�3 Status Codes Returned to the IOSB and AUCB by the SCSI Disk Class Driver�
	<TABLE HEADING>
	<TABLE ROW>
	Code
	Code

	Meaning

	<TABLE BODY>
	<TABLE ROW>
	SS$_NORMAL
	SS$_NORMAL

	AUCB command completed successfully.
	AUCB command completed successfully.

	<TABLE ROW>
	SS$_ABORT
	SS$_ABORT

	Returned by the SCSI disk port driver. In general, you should retry commands that fail with this ...
	Returned by the SCSI disk port driver. In general, you should retry commands that fail with this ...

	<TABLE ROW>
	SS$_BADPARM
	SS$_BADPARM

	The driver detected an illegal value or missing value in the AUCB.
	The driver detected an illegal value or missing value in the AUCB.

	<TABLE ROW>
	SS$_CTRLERR
	SS$_CTRLERR

	CD-ROM failed some part of its initialization sequence. When this status is returned, it is unlik...
	CD-ROM failed some part of its initialization sequence. When this status is returned, it is unlik...

	<TABLE ROW>
	SS$_DEVOFFLINE
	SS$_DEVOFFLINE

	Device returned a not-ready sense key or failed the TEST UNIT READY/START sequence.
	Device returned a not-ready sense key or failed the TEST UNIT READY/START sequence.

	<TABLE ROW>
	SS$_DRVERR
	SS$_DRVERR

	CD-ROM failed to execute the command, either because the drive has failed or an illegal command w...
	CD-ROM failed to execute the command, either because the drive has failed or an illegal command w...

	<TABLE ROW>
	SS$_ILLIOFUNC
	SS$_ILLIOFUNC

	Illegal I/O function was specified in the func argument of the $QIO request.
	Illegal I/O function was specified in the

	<TABLE ROW>
	SS$_IVADDR
	SS$_IVADDR

	Specified block number is larger than UCB$L_MAXBLOCK.
	Specified block number is larger than UCB$L_MAXBLOCK.

	<TABLE ROW>
	SS$_MEDOFL
	SS$_MEDOFL

	Last command failed because the drive detected the removal and replacement of the CD carrier, or ...
	Last command failed because the drive detected the removal and replacement of the CD carrier, or ...

	<TABLE ROW>
	SS$_NOPRIV
	SS$_NOPRIV

	Caller does not have sufficient privileges to execute this function. If the CD-ROM has not been m...
	Caller does not have sufficient privileges to execute this function. If the CD-ROM has not been m...

	<TABLE ROW>
	SS$_OPINCOMPL
	SS$_OPINCOMPL

	Number of bytes requested is less than the number of bytes returned.
	Number of bytes requested is less than the number of bytes returned.

	<TABLE ROW>
	SS$_PARITY
	SS$_PARITY

	Nonrecoverable media error (does not apply to audio functions).
	Nonrecoverable media error (does not apply to audio functions).

	<TABLE ROW>
	SS$_RECOVERR
	SS$_RECOVERR

	Recovered media error (does not apply to audio functions).
	Recovered media error (does not apply to audio functions).

	<TABLE ROW>
	SS$_VOLINV
	SS$_VOLINV

	CD-ROM has not been mounted.
	CD-ROM has not been mounted.

	<TABLE ROW>
	SS$_WRITLCK
	SS$_WRITLCK

	Write operations not permitted on read-only devices.
	Write operations not permitted on read-only devices.

	Using CD-ROM to Store Both Data and Audio Information
	Using CD-ROM to Store Both Data and Audio Information
	Data:storing with audio information on CD-ROM
	Audio:storing with data on CD-ROM
	To make effective use of mixed data and audio CDs, an application program requires detailed knowl...
	By default, the SCSI disk class driver transfers all requests issued to a CD-ROM in blocks of 512...

	Programming Audio Applications
	Programming Audio Applications
	Audio applications:programming
	The following list contains information useful in avoiding problems when writing code using the S...
	• If you do not know the type of file system on the CD-ROM, you should mount the CD-ROM as foreig...
	• If you do not know the type of file system on the CD-ROM, you should mount the CD-ROM as foreig...
	• If you do not know the type of file system on the CD-ROM, you should mount the CD-ROM as foreig...

	• When using the GET_TOC command to obtain CD-ROM address information in LBA format, be advised t...
	• When using the GET_TOC command to obtain CD-ROM address information in LBA format, be advised t...

	• Before attempting to issue a $QIO request with the virtual block I/O read function (IO$_READVBL...
	• Before attempting to issue a $QIO request with the virtual block I/O read function (IO$_READVBL...

	Application Program Example Using SCSI Audio Capabilities (VAX only)
	Application Program Example Using SCSI Audio Capabilities (VAX only)
	Audio applications:programming example
	The file SYS$EXAMPLES:CDROM_AUDIO.C contains an example of an application program that performs t...
	• Defines standard symbolic names for the audio function codes representing SCSI audio commands.
	• Defines standard symbolic names for the audio function codes representing SCSI audio commands.
	• Defines standard symbolic names for the audio function codes representing SCSI audio commands.

	• Defines representative AUCBs for each audio function code supported by the SCSI disk class driver.
	• Defines representative AUCBs for each audio function code supported by the SCSI disk class driver.

	• Issues a series of $QIO system service requests, each specifying the IO$_AUDIO function, that e...
	• Issues a series of $QIO system service requests, each specifying the IO$_AUDIO function, that e...

	• Converts LBA data returned by a GET_STATUS command in big-endian byte-ordering form to VAX litt...
	• Converts LBA data returned by a GET_STATUS command in big-endian byte-ordering form to VAX litt...

	Disk Driver Device Information
	Disk Driver Device Information
	Device characteristics:disk
	Device characteristics:disk
	Disks:device characteristics
	Disks:device characteristics
	Device characteristics:disk
	Disks:SYS$GETDVI returns
	SYS$GETDVI routine:disk

	$GETDVI returns disk characteristics when you specify the item codes DVI$_DEVCHAR and DVI$_DEVCHAR2.
	<TABLE>
	Table�2�4 Disk Device Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Characteristic
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	Dynamic Bits (Conditionally Set)
	Dynamic Bits (Conditionally Set)

	<TABLE ROW>
	DEV$M_AVL
	DEV$M_AVL

	Device is on line and available.
	Device is on line and available.

	<TABLE ROW>
	DEV$M_CDP
	DEV$M_CDP

	Dual-path device with two unit control blocks (UCBs).
	Dual-path device with two unit control blocks (UCBs).

	<TABLE ROW>
	DEV$M_CLU2
	DEV$M_CLU

	Device is available clusterwide.
	Device is available clusterwide.

	<TABLE ROW>
	DEV$M_2P2
	DEV$M_2P

	Device is dual-pathed.
	Device is dual-pathed.

	<TABLE ROW>
	DEV$M_FOR
	DEV$M_FOR

	Device is foreign.
	Device is foreign.

	<TABLE ROW>
	DEV$M_MNT
	DEV$M_MNT

	Volume is mounted.
	Volume is mounted.

	<TABLE ROW>
	DEV$M_RCK
	DEV$M_RCK

	Perform data check on all reads.
	Perform data check on all reads.

	<TABLE ROW>
	DEV$M_WCK
	DEV$M_WCK

	Perform data check on all writes.
	Perform data check on all writes.

	<TABLE ROW>
	DEV$M_MSCP2
	DEV$M_MSCP

	Device is accessed using the mass storage control protocol.
	Device is accessed using the mass storage control protocol.

	<TABLE ROW>
	DEV$M_RCT
	DEV$M_RCT

	Disk contains replacement and caching table.
	Disk contains replacement and caching table.

	<TABLE ROW>
	DEV$M_SRV2
	DEV$M_SRV

	For a cluster, device is served by the MSCP server.
	For a cluster, device is served by the MSCP server.

	<TABLE ROW>
	Static Bits (Always Set)
	Static Bits (Always Set)

	<TABLE ROW>
	DEV$M_FOD
	DEV$M_FOD

	Device is file-oriented.
	Device is file-oriented.

	<TABLE ROW>
	DEV$M_IDV
	DEV$M_IDV

	Device is capable of input.
	Device is capable of input.

	<TABLE ROW>
	DEV$M_ODV
	DEV$M_ODV

	Device is capable of output.
	Device is capable of output.

	<TABLE ROW>
	DEV$M_RND
	DEV$M_RND

	Device is capable of random access.
	Device is capable of random access.

	<TABLE ROW>
	DEV$M_SHR
	DEV$M_SHR

	Device is shareable.
	Device is shareable.

	DVI$_DEVBUFSIZ returns the buffer size. The buffer size is the default to be used for disk transf...
	DVI$_CYLINDERS returns the number of cylinders per volume (that is, per disk), DVI$_TRACKS return...
	DVI$_MAXBLOCK returns the maximum number of blocks (1 block = 512 bytes) that can be contained on...

	Disk Function Codes
	Disk Function Codes
	I/O functions:disk
	I/O functions:disk
	Disks:function codes
	Disks:I/O functions
	I/O functions:disk

	Logical and physical I/O functions allow access to volume storage and require only that the issui...
	NOTE The results of logical and physical I/O operations are unpredictable if an ancillary control...
	NOTE The results of logical and physical I/O operations are unpredictable if an ancillary control...

	Virtual I/O functions require an ACP for Files-11 On-Disk Structure Level 1 files or an XQP for F...
	Non-DSA disk devices can read or write up to 65,535 bytes in a single request. DSA devices connec...
	Quotas:direct I/O
	Quotas:direct I/O
	Quotas:buffered I/O
	Quotas:AST
	Disks:quotas
	Disk quotas
	ASTs (asynchronous system traps):quota
	Buffered I/O:quota
	Direct I/O:count process limit
	DIOLM process limit

	Table�2�5
	Table�2�5

	<TABLE>
	Table�2�5 Disk I/O Functions�
	<TABLE HEADING>
	<TABLE ROW>
	Function Code
	Arguments
	Type
	Function Modifiers
	Function

	<TABLE BODY>
	<TABLE ROW>
	IO$_ACCESS
	IO$_ACCESS

	P1, [P2],[P3], [P4], [P5]
	P1, [P2],[P3], [P4], [P5]

	V
	V

	IO$M_CREATE IO$M_ACCESS
	IO$M_CREATE IO$M_ACCESS

	Search a directory for a specified file and access the file if found.
	Search a directory for a specified file and access the file if found.

	<TABLE ROW>
	IO$_ACPCONTROL
	IO$_ACPCONTROL

	P1,[P2],[P3], [P4],[P5]
	P1,[P2],[P3], [P4],[P5]

	V
	V

	IO$M_DMOUNT
	IO$M_DMOUNT

	Perform miscellaneous control functions.
	Perform miscellaneous control functions.

	<TABLE ROW>
	IO$_AVAILABLE
	IO$_AVAILABLE

	P
	P

	Clear volume valid; make DSA units available.
	Clear volume valid; make DSA units available.

	<TABLE ROW>
	IO$_CREATE
	IO$_CREATE

	P1,[P2],[P3], [P4],[P5]
	P1,[P2],[P3], [P4],[P5]

	V
	V

	IO$M_CREATE IO$M_ACCESS IO$M_DELETE
	IO$M_CREATE IO$M_ACCESS IO$M_DELETE

	Create a directory entry or a file.
	Create a directory entry or a file.

	<TABLE ROW>
	IO$_DEACCESS
	IO$_DEACCESS

	P1,[P2],[P3], [P4],[P5]
	P1,[P2],[P3], [P4],[P5]

	V
	V

	Deaccess a file and, if specified, write final attributes in the file header.
	Deaccess a file and, if specified, write final attributes in the file header.

	<TABLE ROW>
	IO$_DELETE
	IO$_DELETE

	P1,[P2],[P3],[P4],[P5]
	P1,[P2],[P3],[P4],[P5]

	V
	V

	IO$M_DELETE
	IO$M_DELETE

	Remove a directory entry or file header, or both.
	Remove a directory entry or file header, or both.

	<TABLE ROW>
	IO$_FORMAT
	IO$_FORMAT

	P1
	P1

	P
	P

	Set density (RX02 only).
	Set density (RX02 only).

	<TABLE ROW>
	IO$_MODIFY
	IO$_MODIFY

	P1,[P2],[P3], [P4],[P5]
	P1,[P2],[P3], [P4],[P5]

	V
	V

	Modify the file attributes or allocation, or both.
	Modify the file attributes or allocation, or both.

	<TABLE ROW>
	IO$_PACKACK
	IO$_PACKACK

	P
	P

	Update UCB fields if RX02; initialize volume valid on other devices. Bring DSA units on line.
	Update UCB fields if RX02; initialize volume valid on other devices. Bring DSA units on line.

	<TABLE ROW>
	IO$_READLBL
	IO$_READLBL

	P1,P2,P3
	P1,P2,P3

	L
	L

	IO$M_DATACHECK IO$M_INHRETRY
	IO$M_DATACHECK

	Read logical block.
	Read logical block.

	<TABLE ROW>
	IO$_READPBLK2
	IO$_READPBLK

	P1,P2,P3
	P1,P2,P3

	P
	P

	IO$M_DATACHECK3 IO$M_INHRETRY IO$M_INHSEEK
	IO$M_DATACHECK

	Read physical block.
	Read physical block.

	<TABLE ROW>
	IO$_READVBLK2
	IO$_READVBLK

	P1,P2,P3
	P1,P2,P3

	V
	V

	IO$M_DATACHECK3 IO$M_INHRETRY
	IO$M_DATACHECK

	Read virtual block.
	Read virtual block.

	<TABLE ROW>
	IO$_SEARCH
	IO$_SEARCH

	P1
	P1

	P
	P

	Search for specified block or sector (only for TU58).
	Search for specified block or sector (only for TU58).

	<TABLE ROW>
	IO$_SEEK
	IO$_SEEK

	P1
	P1

	P
	P

	Seek to specified cylinder.5
	Seek to specified cylinder.

	<TABLE ROW>
	IO$_SENSECHAR
	IO$_SENSECHAR

	P
	P

	Sense the device-dependent characteristics and return them in the I/O status block.
	Sense the device-dependent characteristics and return them in the I/O status block.

	<TABLE ROW>
	IO$_SENSEMODE
	IO$_SENSEMODE

	L
	L

	Sense the device-dependent characteristics and return them in the I/O status block.
	Sense the device-dependent characteristics and return them in the I/O status block.

	<TABLE ROW>
	IO$_SETPRFPATH
	IO$_SETPRFPATH

	P1
	P1

	P
	P

	IO$M_FORCEPTH
	IO$M_FORCEPTH

	Specifies a preferred path for DSA disks.
	Specifies a preferred path for DSA disks.

	<TABLE ROW>
	IO$_UNLOAD
	IO$_UNLOAD

	P
	P

	Clear volume valid; make DSA units available and spin down the volume.
	Clear volume valid; make DSA units available and spin down the volume.

	<TABLE ROW>
	IO$_WRITECHECK 2
	IO$_WRITECHECK

	P1,P2,P3
	P1,P2,P3

	P
	P

	Verify data written to disk by a previous write QIO.3
	Verify data written to disk by a previous write QIO.

	<TABLE ROW>
	IO$_WRITELBLK2
	IO$_WRITELBLK

	P1,P2,P3
	P1,P2,P3

	L
	L

	IO$M_DATACHECK3 IO$M_ERASE IO$M_INHRETRY
	IO$M_DATACHECK

	Write logical block.
	Write logical block.

	<TABLE ROW>
	IO$_WRITEPBLK2
	IO$_WRITEPBLK

	P1,P2,P3
	P1,P2,P3

	P
	P

	IO$M_DATACHECK3 IO$M_ERASE IO$M_INHRETRY IO$M_INHSEEK4 IO$M_DELDATA
	IO$M_DATACHECK

	Write physical block.5
	Write physical block.

	<TABLE ROW>
	IO$_WRITEVBLK2
	IO$_WRITEVBLK

	P1,P2,P3
	P1,P2,P3

	V
	V

	IO$M_DATACHECK3 IO$M_ERASE IO$M_INHRETRY
	IO$M_DATACHECK

	Write virtual block.
	Write virtual block.

	The function-dependent arguments for IO$_CREATE, IO$_ACCESS, IO$_DEACCESS,
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.

	• P2—The address of the file name string descriptor (optional). If specified, the name is entered...
	• P2—The address of the file name string descriptor (optional). If specified, the name is entered...

	• P3—The address of the word that is to receive the length of the resulting file name string (opt...
	• P3—The address of the word that is to receive the length of the resulting file name string (opt...

	• P4—The address of a descriptor for a buffer that is to receive the resulting file name string (...
	• P4—The address of a descriptor for a buffer that is to receive the resulting file name string (...

	• P5—The address of a list of attribute descriptors (optional). If specified, the indicated attri...
	• P5—The address of a list of attribute descriptors (optional). If specified, the indicated attri...

	See
	The function-dependent arguments for IO$_READVBLK, IO$_READLBLK, IO$_WRITEVBLK, and IO$_WRITELBLK...
	• P1—The starting virtual address of the buffer that is to receive the data from a read operation...
	• P1—The starting virtual address of the buffer that is to receive the data from a read operation...
	• P1—The starting virtual address of the buffer that is to receive the data from a read operation...

	• P2—The number of bytes that are to be read from the disk, or written from memory to the disk. A...
	• P2—The number of bytes that are to be read from the disk, or written from memory to the disk. A...

	• P3—The starting virtual/logical disk address of the data to be transferred in a read operation;...
	• P3—The starting virtual/logical disk address of the data to be transferred in a read operation;...
	In a virtual read or write operation, the address is expressed as a block number within the file,...
	In a logical read or write operation, the address is expressed as a block number relative to the ...

	The function-dependent arguments for IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK functions th...
	• P1——The starting virtual address of the buffer that contains a 4-byte, user-specified erase pat...
	• P1——The starting virtual address of the buffer that contains a 4-byte, user-specified erase pat...
	• P1——The starting virtual address of the buffer that contains a 4-byte, user-specified erase pat...
	NOTE DSA disk controllers provide controlled, assisted erasing for the IO$M_ERASE modifier (with ...
	NOTE DSA disk controllers provide controlled, assisted erasing for the IO$M_ERASE modifier (with ...

	• P2—The number of bytes of erase pattern to write to the disk. The number specified is rounded u...
	• P2—The number of bytes of erase pattern to write to the disk. The number specified is rounded u...

	• P3—The starting virtual, logical, or physical disk address of the data to be erased.
	• P3—The starting virtual, logical, or physical disk address of the data to be erased.

	The function-dependent arguments for IO$_WRITECHECK, IO$_READPBLK, and IO$_WRITEPBLK are as follows:
	• P1—The starting virtual address of the buffer that is to receive the data in a read operation; ...
	• P1—The starting virtual address of the buffer that is to receive the data in a read operation; ...
	• P1—The starting virtual address of the buffer that is to receive the data in a read operation; ...

	• P2—The number of bytes that are to be read from the disk, or written from memory to the disk. P...
	• P2—The number of bytes that are to be read from the disk, or written from memory to the disk. P...

	• P3—The starting physical disk address of the data to be read in a read operation; or, in a writ...
	• P3—The starting physical disk address of the data to be read in a read operation; or, in a writ...
	NOTE On the RB80 and RM80, do not address cylinders 560 and 561. These two cylinders are used for...
	NOTE On the RB80 and RM80, do not address cylinders 560 and 561. These two cylinders are used for...

	The function-dependent argument for IO$_SEARCH is as follows:
	P1—The physical disk address where the tape is positioned. The address is expressed as sector, tr...
	P1—The physical disk address where the tape is positioned. The address is expressed as sector, tr...
	P1—The physical disk address where the tape is positioned. The address is expressed as sector, tr...

	Figure�2�5 Starting Physical Address
	Figure�2�5 Starting Physical Address
	<GRAPHIC>

	Function codes:IO$_SEEK
	Function codes:IO$_SEEK

	P1—The physical cylinder number where the disk heads are positioned. The address is expressed in ...
	P1—The physical cylinder number where the disk heads are positioned. The address is expressed in ...
	P1—The physical cylinder number where the disk heads are positioned. The address is expressed in ...

	Figure�2�6 Physical Cylinder Number Format
	Figure�2�6 Physical Cylinder Number Format
	<GRAPHIC>

	The function-dependent argument for IO$_FORMAT is as follows:
	P1—The density at which an RX02 diskette is reformatted (see
	P1—The density at which an RX02 diskette is reformatted (see
	P1—The density at which an RX02 diskette is reformatted (see

	Disks:I/O functions:arguments
	Read
	Read
	Disks:read function
	Disks:read function

	The operating system provides the following read function codes:
	• IO$_READVBLK—Read virtual block
	• IO$_READVBLK—Read virtual block
	• IO$_READVBLK—Read virtual block

	• IO$_READLBLK—Read logical block
	• IO$_READLBLK—Read logical block

	• IO$_READPBLK—Read physical block
	• IO$_READPBLK—Read physical block

	If a read virtual block function is directed to a volume that is mounted foreign, that function i...
	Three function-dependent arguments are used with these codes: P1, P2, and P3. These arguments are...
	The data check function modifier (IO$M_DATACHECK) can be used with all read functions.
	If IO$M_DATACHECK is specified with a read function code to a TU58, or if
	The data check function modifier to a disk or tape can return five error codes in the I/O status ...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	SS$_CTRLERR
	SS$_CTRLERR

	SS$_DRVERR
	SS$_DRVERR

	SS$_MEDOFL
	SS$_MEDOFL

	<TABLE ROW>
	SS$_NONEXDRV
	SS$_NONEXDRV

	SS$_NORMAL
	SS$_NORMAL

	If no errors are detected, the disk or tape data is considered reliable.
	The inhibit retry function modifier (IO$M_INHRETRY) can be used with all read functions.

	Write
	Write
	Disks:write function
	Disks:write function

	The operating system provides the following write function codes:
	• IO$_WRITEVBLK—Write virtual block
	• IO$_WRITEVBLK—Write virtual block
	• IO$_WRITEVBLK—Write virtual block

	• IO$_WRITELBLK—Write logical block
	• IO$_WRITELBLK—Write logical block

	• IO$_WRITEPBLK—Write physical block
	• IO$_WRITEPBLK—Write physical block

	If a write virtual block function is directed to a volume that is mounted foreign, the function i...
	Three function-dependent arguments are used with these codes: P1, P2, and P3. These arguments are...
	The data check function modifier (IO$M_DATACHECK) can be used with all write operations.
	If IO$M_DATACHECK is specified with a write function code to a TU58, or if the
	The inhibit retry function modifier (IO$M_INHRETRY) can be used with all write functions.
	The write deleted data function modifier (IO$M_DELDATA) can be used with
	The IO$M_ERASE function modifier can be used with all write function codes to

	Sense Mode
	Sense Mode
	Disks:sense mode function
	Disks:sense mode function

	• IO$_SENSEMODE—Sense characteristics
	• IO$_SENSEMODE—Sense characteristics
	• IO$_SENSEMODE—Sense characteristics

	• IO$_SENSECHAR—Sense characteristics
	• IO$_SENSECHAR—Sense characteristics

	IO$_SENSEMODE is a logical function. IO$_SENSECHAR is a physical I/O function and requires the ac...

	Set Density
	Set Density
	Function codes:IO$_FORMAT
	Function codes:IO$_FORMAT
	Disks:set density function

	IO$_FORMAT
	IO$_FORMAT
	IO$_FORMAT

	IO$_FORMAT takes the following function-dependent argument:
	P1—The density at which the diskette is reformatted:
	P1—The density at which the diskette is reformatted:
	P1—The density at which the diskette is reformatted:

	The set density operation should not be interrupted before it is completed (about 15 seconds). If...

	Search
	Search
	Disks:search function
	Disks:search function

	IO$_SEARCH
	IO$_SEARCH
	IO$_SEARCH

	This function code takes the following function-dependent argument:
	P1—Specifies the block where the read/write head will be positioned. The low byte contains the se...
	P1—Specifies the block where the read/write head will be positioned. The low byte contains the se...
	P1—Specifies the block where the read/write head will be positioned. The low byte contains the se...

	IO$_SEARCH can save time between read and write operations. For example, nearly 30 seconds are re...

	Pack Acknowledge
	Pack Acknowledge
	Disks:pack acknowledge function
	Disks:pack acknowledge function

	IO$_PACKACK
	IO$_PACKACK
	IO$_PACKACK

	This function code takes no function-dependent arguments.
	IO$_PACKACK must be the first function issued when a volume (pack, cartridge, or diskette) is pla...
	For DSA disks, the IO$_PACKACK function locks the drive's port selector on the port that initiate...
	In addition, the IO$_PACKACK function updates device-dependent information about DSA disks return...

	Unload
	Unload
	Disks:unload function
	Disks:unload function

	IO$_UNLOAD
	IO$_UNLOAD
	IO$_UNLOAD

	This function takes no function-dependent arguments.

	Available
	Available
	Disks:available function
	Disks:available function
	Function codes:IO$_AVAILABLE

	IO$_AVAILABLE
	IO$_AVAILABLE
	IO$_AVAILABLE

	This function takes no function-dependent arguments.

	Seek
	Seek
	Disks:seek operations
	Disks:seek operations
	Function codes:IO$_SEEK

	Write Check
	Write Check
	The write check function verifies that data was written to disk correctly. The data to be checked...
	IO$_WRITECHECK
	IO$_WRITECHECK
	IO$_WRITECHECK

	A write QIO must be used to write data to disk before you enter this command. IO$_WRITECHECK then...
	IO$_WRITECHECK is similar to the IO$M_DATACHECK function modifier for write QIOs, except that IO$...
	The write check function and the data check function modifier to a TU58 can

	Set Preferred Path
	Set Preferred Path
	Disks:set preferred path function
	Function codes:IO$_SETPRFPATH
	The set preferred path function specifies a preferred path for DSA disks. This includes RA-series...
	In addition, you can initiate failover of a mounted disk to force the disk to the preferred path,...
	The function code is:
	IO$_SETPRFPATH
	IO$_SETPRFPATH
	IO$_SETPRFPATH

	Function modifiers:IO$M_FORCEPATH
	Function modifiers:IO$M_FORCEPATH

	IO$M_FORCEPATH—Causes the disk class driver to select the server path with the highest load avail...
	IO$M_FORCEPATH—Causes the disk class driver to select the server path with the highest load avail...
	IO$M_FORCEPATH—Causes the disk class driver to select the server path with the highest load avail...

	The P1 parameter contains the address of a counted ASCII string (.ASCIC). This string is the node...
	The PHYS_IO privilege is required for IO$_SETPRFPATH and IO$M_FORCEPATH.
	The following example shows the use of IO$_SETPRFPATH:
	$assigndef $qiodef $iodef $exitdef dev: .ascid /$254$DUA48:/ chnl: .word 0 node: .ascic /HSC001/ ...
	This updates the local node I/O database to indicate that node HSC001 is the preferred path for D...
	Forcing a Path Change
	Forcing a Path Change
	You can move a disk that is already mounted to its preferred path by specifying the IO$M_FORCEPAT...
	IO$M_FORCEPATH does not accept any arguments. If you intend to move a disk to its preferred path,...
	The following example shows a use of the IO$M_FORCEPATH function modifier:
	$assigndef $qiodef $iodef $exitdef dev: .ascid /$254$DUA197:/ chnl: .word 0 .entry start,0 $assig...
	Note that forcing a path change places the disk in mount verification. New I/O requests are suspe...

	Using IO$_SETPRFPATH with Disks Dual-Pathed Between HSCs
	Using IO$_SETPRFPATH with Disks Dual-Pathed Between HSCs
	You can use the IO$_SETPRFPATH and IO$M_FORCEPATH functions to load balance disks that are dual-p...

	Using IO$_SETPRFPATH with Disks Dual-Pathed Between Systems
	Using IO$_SETPRFPATH with Disks Dual-Pathed Between Systems
	You can use IO$M_FORCEPATH to load balance RA-series disks that are dual-pathed between systems r...

	Using IO$_SETPRFPATH with Disks Accessed Through MSCP Servers
	Using IO$_SETPRFPATH with Disks Accessed Through MSCP Servers
	You can specify a preferred path for disks that are accessed through MSCP servers; however, this ...
	Note that if a disk can be accessed through both HSC and MSCP servers, you need not specify the H...
	Using IO$M_FORCEPATH without a preferred path causes the disk class driver to move the disk to th...

	Using IO$_SETPRFPATH with Phase I Volume Shadowing
	Using IO$_SETPRFPATH with Phase I Volume Shadowing
	You can specify IO$_SETPRFPATH for shadow set members, but not for virtual units. IO$M_FORCEPATH ...

	Using IO$_SETPRFPATH with Phase II Volume Shadowing
	Using IO$_SETPRFPATH with Phase II Volume Shadowing
	IO$_SETPRFPATH and IO$M_FORCEPATH are supported for shadow set members but not for virtual units.

	I/O Status Block
	I/O Status Block
	Disks:I/O status block
	Disks:I/O status block
	Disks:I/O status block
	IOSBs (I/O status blocks):disk
	IOSBs (I/O status blocks):disk
	Figure�2�7

	Figure�2�7 IOSB Contents
	Figure�2�7 IOSB Contents
	<GRAPHIC>

	The byte count is a 32-bit integer that gives the actual number of bytes transferred to or from t...
	Figure�2�8 IOSB Contents for the Sense Mode Function
	Figure�2�8 IOSB Contents for the Sense Mode Function
	<GRAPHIC>

	The second longword of the I/O status block for the sense mode function returns information about...

	Disk Driver Programming Example
	Disk Driver Programming Example
	Disks:programming example
	Disks:programming example

	Example�2�1 DISK_DRIVER.MAR Disk Driver Programming Example
	Example�2�1 DISK_DRIVER.MAR Disk Driver Programming Example
	; ** ; .TITLE Disk Driver Progr...

	3 Magnetic Tape Drivers
	3 Magnetic Tape Drivers
	Tapes:driver
	Tapes:driver
	I/O drivers:magnetic tapes
	End-of-tape markers <IndexSee> See also </>See EOT markers

	HP Magnetic Tape Controllers and Drives
	HP Magnetic Tape Controllers and Drives
	Tapes:tape controllers
	Tapes:tape controllers

	TM03 Magnetic Tape Controller (VAX Only)
	TM03 Magnetic Tape Controller (VAX Only)
	On VAX systems, the TM03 magnetic tape controller supports up to eight TE16, TU45, or TU77 tape d...

	TS11 Magnetic Tape Controller (VAX Only)
	TS11 Magnetic Tape Controller (VAX Only)
	On VAX systems, the TS11 magnetic tape controller connects to the UNIBUS through a UNIBUS adapter...
	The TSU05 and the TSV05 magnetic tape drives are used with UNIBUS and Q-bus systems, respectively.

	TM78 and TM79 Magnetic Tape Controllers (VAX Only)
	TM78 and TM79 Magnetic Tape Controllers (VAX Only)
	On VAX systems, the TM78 and TM79 magnetic tape controllers support up to four TU78 tape drives. ...

	TU80 Magnetic Tape Subsystem (VAX Only)
	TU80 Magnetic Tape Subsystem (VAX Only)
	On VAX systems, the TU80 is a single-density, dual-speed (25 or 100 ips) magnetic tape subsystem ...

	TA81 Magnetic Tape Subsystem
	TA81 Magnetic Tape Subsystem
	On VAX and Alpha systems, the TA81 is a high-performance, dual-density (1600 or 6250 bit/inch), d...

	TU81 Magnetic Tape Subsystem (VAX Only)
	TU81 Magnetic Tape Subsystem (VAX Only)
	On VAX systems, the TU81 is a high-performance, dual-density (1600 or 6250 bit/inch), dual-speed ...

	TU81-Plus Magnetic Tape Subsystem (VAX Only)
	TU81-Plus Magnetic Tape Subsystem (VAX Only)
	On VAX systems, the TU81-Plus is an enhanced version of the TU81 streaming tape subsystem. It is ...

	TA90 Magnetic Tape Subsystem
	TA90 Magnetic Tape Subsystem
	On VAX and Alpha systems, the TA90 is a 5- by 4-inch, 200-MB cartridge tape, fully read- and writ...
	TA90 tape drives can be equipped with optional stack loaders for unattended backup operations. Ea...

	RV20 Write-Once Optical Drive (VAX Only)
	RV20 Write-Once Optical Drive (VAX Only)
	On VAX systems, the RV20, a 2 GB, double-sided, write-once optical (WORM) disk drive, is accessed...
	RV02 cartridges can be used on any HP RV20 optical subsystem.
	The average access time is 212.5 ms with an average seek rate of 150 ms. The maximum data transfe...

	TK50 Cartridge Tape System (VAX Only)
	TK50 Cartridge Tape System (VAX Only)
	On VAX systems, the TK50 is a 95-MB, 5.25-inch cartridge tape system that uses streaming tape tec...
	The TQK50 is a dual-height Q-bus controller for the TK50 tape drive. The TUK50 is a UNIBUS contro...
	Section 3.1.13
	Section 3.1.13

	TK70 Cartridge Tape System (VAX Only)
	TK70 Cartridge Tape System (VAX Only)
	On VAX systems, the TK70 is a 295-MB, 5.25-inch, streaming cartridge tape system. (See
	The TQK70 is a dual-height, Q-bus controller for the TK70 magnetic tape drive. The TK70 subsystem...

	TZ30 Cartridge Tape System
	TZ30 Cartridge Tape System
	On VAX and Alpha systems, the TZ30 is a 95-MB, 5.25-inch, half-height cartridge streaming tape dr...

	Read and Write Compatibility Between Cartridge Tape Systems
	Read and Write Compatibility Between Cartridge Tape Systems
	When you insert a cartridge tape into the TZ30, TK50, and TK70 tape drives, the hardware initiali...
	Depending on the type of cartridge and the type of drive on which it is formatted (inserted and i...
	Formatting a Blank TK50 Cartridge Tape
	Formatting a Blank TK50 Cartridge Tape

	A blank, unformatted TK50 cartridge can be formatted on the TK50, TK70, and TZ30 cartridge system...
	Formatting a Previously Initialized TK50 Cartridge Tape
	Formatting a Previously Initialized TK50 Cartridge Tape

	If a TK50 cartridge tape is formatted on a TZ30 or TK50 cartridge tape drive, the TZ30 and TK50 d...
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	TK50

	<TABLE ROW>
	Controller
	Read
	Write
	Write

	<TABLE BODY>
	<TABLE ROW>
	TZ30
	TZ30

	Yes
	Yes

	Yes
	Yes

	<TABLE ROW>
	TQK50
	TQK50

	Yes
	Yes

	Yes
	Yes

	<TABLE ROW>
	TQK70
	TQK70

	Yes
	Yes

	No
	No

	The TK70 tape drive can read data on a TK50 cartridge formatted on a TK50 or TZ30 tape drive.
	Formatting a TK50 or TK52 Cartridge Tape on a TK70 Tape Drive
	Formatting a TK50 or TK52 Cartridge Tape on a TK70 Tape Drive
	If a TK50 or TK52 cartridge tape is formatted on a TK70 tape drive, the TK70 cartridge tape drive...
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	TK50
	TK52

	<TABLE ROW>
	Controller
	Read
	Write
	Read
	Write

	<TABLE BODY>
	<TABLE ROW>
	TZ30
	No
	No
	No
	No

	<TABLE ROW>
	TQK50
	No
	No
	No
	No

	<TABLE ROW>
	TQK70
	Yes
	Yes
	Yes
	Yes

	The TK50 and TZ30 tape drives cannot read or write data on a TK50 cartridge tape formatted on a T...

	Driver Features
	Driver Features
	Tapes:features
	Tapes:features

	• Multiple master adapters and slave formatters
	• Multiple master adapters and slave formatters
	• Multiple master adapters and slave formatters

	• Different types of devices on a single MASSBUS adapter; for example, an RP05 disk and a TM03 ta...
	• Different types of devices on a single MASSBUS adapter; for example, an RP05 disk and a TM03 ta...

	• Reverse read function (except for the TZ30 and TK50 on TUK50 and TQK50 controllers)
	• Reverse read function (except for the TZ30 and TK50 on TUK50 and TQK50 controllers)

	• Reverse data check function (except for the TZ30, TS11, and TK50 on TUK50 and TQK50 controllers)
	• Reverse data check function (except for the TZ30, TS11, and TK50 on TUK50 and TQK50 controllers)

	• Data checks on a per-request, per-file, or per-volume basis (except for the TS11)
	• Data checks on a per-request, per-file, or per-volume basis (except for the TS11)

	• Full recovery from power failure for online drives with volumes mounted, including repositionin...
	• Full recovery from power failure for online drives with volumes mounted, including repositionin...

	• Extensive error-recovery algorithms; for example, nonreturn-to-zero-inverted (NRZI) error corre...
	• Extensive error-recovery algorithms; for example, nonreturn-to-zero-inverted (NRZI) error corre...

	• Logging of device errors in a file that may be displayed by field service or customer personnel
	• Logging of device errors in a file that may be displayed by field service or customer personnel

	• Online diagnostic support for drive-level diagnostics
	• Online diagnostic support for drive-level diagnostics

	The following sections describe master and slave controllers, and data check and error recovery c...
	Dual-Path HSC Tape Drives
	Dual-Path HSC Tape Drives
	A
	If one port fails, the operating system switches access to the operational port automatically, pr...

	Dynamic Failover and Mount Verification
	Dynamic Failover and Mount Verification
	Dynamic failover occurs on dual-pathed tape drives if mount verification is unable to recover on ...
	A device enters mount verification when an I/O request fails because the device has become inoper...
	• The device is accidentally placed off line.
	• The device is accidentally placed off line.
	• The device is accidentally placed off line.

	• The active port of an HSC-connected drive fails.
	• The active port of an HSC-connected drive fails.

	• A hardware error occurs.
	• A hardware error occurs.

	• The device is set to write protected during a write operation.
	• The device is set to write protected during a write operation.

	When the device comes back on line, either through automatic failover or operator intervention, t...

	Tape Caching
	Tape Caching
	Caches:tape
	Caches:tape
	Caches:tape:write-back volatile

	The Backup utility enables caching on a per-command basis. The user can implement caching on a pe...

	Master Adapters and Slave Formatters
	Master Adapters and Slave Formatters
	Tapes:master adapters
	Tapes:master adapters
	Tapes:slave formatter
	Master adapter
	Slave formatter

	The operating system also supports the use of multiple slave formatters per master adapter on a s...

	Data Check
	Data Check
	Data checks:magnetic tape
	Data checks:magnetic tape
	Tapes:data check

	• Per request—You can specify the data-check function
	• Per request—You can specify the data-check function
	• Per request—You can specify the data-check function

	• Per volume—You can specify the characteristics “data check all reads” and “data check all write...
	• Per volume—You can specify the characteristics “data check all reads” and “data check all write...

	• Per file—You can specify the file attributes “data check
	• Per file—You can specify the file attributes “data check

	Data check is distinguished from a BACKUP/VERIFY operation, which writes an entire save set, rewi...
	See
	NOTE Read and write operations with data check can result in very slow performance on streaming t...
	NOTE Read and write operations with data check can result in very slow performance on streaming t...

	Error Recovery
	Error Recovery
	Tapes:error recovery
	Tapes:error recovery

	• Handling special conditions, such as power failure and interrupt timeout
	• Handling special conditions, such as power failure and interrupt timeout
	• Handling special conditions, such as power failure and interrupt timeout

	• Retrying nonfatal controller or drive errors
	• Retrying nonfatal controller or drive errors

	The error recovery algorithm uses a combination of these types of error recovery operations to co...
	Power failure recovery consists of repositioning the reel to the position held at the start of th...
	Device timeout is treated as a fatal error, with a loss of tape position. A tape on which a timeo...
	If a nonfatal controller/drive error occurs, the driver (or the controller, depending on the type...
	The inhibit retry function modifier (IO$M_INHRETRY) inhibits all
	The driver can write up to 16 extended interrecord gaps during the error recovery for a write ope...

	Streaming Tape Systems
	Streaming Tape Systems
	Tapes:streaming tape systems
	Tapes:streaming tape systems

	NOTE Read and write operations with data check can result in very slow performance on streaming t...
	NOTE Read and write operations with data check can result in very slow performance on streaming t...

	Because the motors driving the reels are low-powered and because there is no tape buffering, stre...
	1. � The tape slowly coasts forward to a stop.
	1. � The tape slowly coasts forward to a stop.
	1. � The tape slowly coasts forward to a stop.

	2. � It backs up over a section previously processed.
	2. � It backs up over a section previously processed.

	3. � It halts to await the next command.
	3. � It halts to await the next command.

	4. � It accelerates so that, when the original interrecord gap is encountered, the tape is moving...
	4. � It accelerates so that, when the original interrecord gap is encountered, the tape is moving...

	These steps, allowing the tape to reposition, require approximately one-half second to complete o...
	Thrashing is entirely dependent on how fast the system can process data relative to the tape driv...
	The TK50 writes up to seven filler records to keep the tape in motion. These records are ignored ...

	Magnetic Tape Driver Device Information
	Magnetic Tape Driver Device Information
	Tapes:device characteristics for
	Tapes:device characteristics for
	Device characteristics:magnetic tape
	Tapes:SYS$GETDVI returns
	SYS$GETDVI routine

	$GETDVI returns magnetic tape characteristics when you specify the item codes DVI$_DEVCHAR, DVI$_...
	<TABLE>
	Table�3�1 Magnetic Tape Device-Independent Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Characteristic
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	Dynamic Bits (Conditionally Set)
	Dynamic Bits (Conditionally Set)

	<TABLE ROW>
	DEV$M_AVL
	DEV$M_AVL

	Device is on line and available.
	Device is on line and available.

	<TABLE ROW>
	DEV$M_FOR
	DEV$M_FOR

	Volume is foreign.
	Volume is foreign.

	<TABLE ROW>
	DEV$M_MNT
	DEV$M_MNT

	Volume is mounted.
	Volume is mounted.

	<TABLE ROW>
	DEV$M_RCK
	DEV$M_RCK

	Perform data check on all read operations.
	Perform data check on all read operations.

	<TABLE ROW>
	DEV$M_WCK
	DEV$M_WCK

	Perform data check on all write operations.
	Perform data check on all write operations.

	<TABLE ROW>
	Static Bits (Always Set)
	Static Bits (Always Set)

	<TABLE ROW>
	DEV$M_FOD
	DEV$M_FOD

	Device is file-oriented.
	Device is file-oriented.

	<TABLE ROW>
	DEV$M_IDV
	DEV$M_IDV

	Device is capable of input.
	Device is capable of input.

	<TABLE ROW>
	DEV$M_ODV
	DEV$M_ODV

	Device is capable of output.
	Device is capable of output.

	<TABLE ROW>
	DEV$M_SQD
	DEV$M_SQD

	Device is capable of sequential access.
	Device is capable of sequential access.

	<TABLE ROW>
	DEV$M_WBC
	DEV$M_WBC

	Device is capable of write-back caching.
	Device is capable of write-back caching.

	<TABLE>
	Table�3�2 Device-Dependent Information for Tape Devices�
	<TABLE HEADING>
	<TABLE ROW>
	Characteristic
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	MT$M_LOST
	MT$M_LOST

	If set, the current tape position is unknown.
	If set, the current tape position is unknown.

	<TABLE ROW>
	MT$M_HWL
	MT$M_HWL

	If set, the selected drive is hardware write-locked.
	If set, the selected drive is hardware write-locked.

	<TABLE ROW>
	MT$M_EOT
	MT$M_EOT

	If set, an end-of-tape (EOT) condition was encountered by the last operation to move the tape in ...
	If set, an end-of-tape (EOT) condition was encountered by the last operation to move the tape in ...

	<TABLE ROW>
	MT$M_EOF
	MT$M_EOF

	If set, a tape mark was encountered by the last operation to move the tape.
	If set, a tape mark was encountered by the last operation to move the tape.

	<TABLE ROW>
	MT$M_BOT
	MT$M_BOT

	If set, a beginning-of-tape (BOT) marker was encountered by the last operation to move the tape i...
	If set, a beginning-of-tape (BOT) marker was encountered by the last operation to move the tape i...

	<TABLE ROW>
	MT$M_PARITY
	MT$M_PARITY

	If set, all data transfers are performed with even parity. If clear (normal case), all data trans...
	If set, all data transfers are performed with even parity. If clear (normal case), all data trans...

	<TABLE ROW>
	MT$V_DENSITY MT$S_DENSITY
	MT$V_DENSITY MT$S_DENSITY

	Specifies the density at which all data transfer operations are performed. Possible density value...
	Specifies the density at which all data transfer operations are performed. Possible density value...

	<TABLE ROW>
	MT$K_GCR_6250
	MT$K_GCR_6250

	Group-coded recording, 6250 bits/inch
	Group-coded recording, 6250 bits/inch

	<TABLE ROW>
	MT$K_PE_1600
	MT$K_PE_1600

	Phase-encoded recording, 1600 bits/inch
	Phase-encoded recording, 1600 bits/inch

	<TABLE ROW>
	MT$K_NRZI_800
	MT$K_NRZI_800

	Nonreturn-to-zero-inverted recording, 800 bits/inch
	Nonreturn-to-zero-inverted recording, 800 bits/inch

	<TABLE ROW>
	MT$K_BLK_833
	MT$K_BLK_833

	Cartridge block mode recording
	Cartridge block mode recording

	<TABLE ROW>
	MT$V_FORMAT MT$S_FORMAT
	MT$V_FORMAT MT$S_FORMAT

	Specifies the format in which all data transfers are performed. A possible format value is as fol...
	Specifies the format in which all data transfers are performed. A possible format value is as fol...

	<TABLE ROW>
	MT$K_NORMAL11
	MT$K_NORMAL11

	Normal PDP-11 format. Data bytes are recorded sequentially on tape with each byte occupying exact...
	Normal PDP-11 format. Data bytes are recorded sequentially on tape with each byte occupying exact...

	<TABLE ROW>
	MT$_FASTSKIP_USED
	MT$_FASTSKIP_USED

	If set, the most recent IO$_SKIPFILE function was performed using the optimized SCSI space-by-fil...
	If set, the most recent IO$_SKIPFILE function was performed using the optimized SCSI space-by-fil...

	Tapes:extended characteristics
	<TABLE>
	Table�3�3 Device-Dependent Information for Tape Devices�
	<TABLE HEADING>
	<TABLE ROW>
	Characteristic
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	MT2$V_WBC_ENABLE
	MT2$V_WBC_ENABLE

	If set, write-back caching is enabled for this unit.

	<TABLE ROW>
	MT2$V_RDC_DISABLE
	If set, read caching is disabled for this unit.

	DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and class names, which are defined by the $...
	This function code takes no function-dependent arguments.

	Magnetic Tape Function Codes
	Magnetic Tape Function Codes
	Tapes:I/O functions
	Tapes:I/O functions
	Tapes:function codes
	I/O functions:magnetic tape
	I/O functions:magnetic tape

	Logical and physical I/O functions to magnetic tape devices allow sequential access to volume sto...
	Virtual I/O functions require intervention by an ACP and must be executed in a prescribed order. ...
	Any number of bytes (from a minimum of 14 to a maximum of 65,535) can be read from or written int...
	The volume to which a logical or virtual function is directed must be mounted for the function ac...
	Table�3�4
	Table�3�4

	<TABLE>
	Table�3�4 Magnetic Tape I/O Functions�
	<TABLE HEADING>
	<TABLE ROW>
	Function Code
	Arguments
	Type
	Function Modifiers
	Function

	<TABLE BODY>
	<TABLE ROW>
	IO$_ACCESS
	IO$_ACCESS

	P1,[P2],[P3], [P4],[P5]
	P1,[P2],[P3], [P4],[P5]

	V
	V

	IO$M_CREATE IO$M_ACCESS
	IO$M_CREATE IO$M_ACCESS

	Search a tape for a specified file and access the file if found and IO$M_ACCESS is set. If the fi...
	Search a tape for a specified file and access the file if found and IO$M_ACCESS is set. If the fi...

	<TABLE ROW>
	IO$_ACPCONTROL
	IO$_ACPCONTROL

	P1,[P2],[P3], [P4], [P5]
	P1,[P2],[P3], [P4], [P5]

	V
	V

	IO$M_DMOUNT
	IO$M_DMOUNT

	Perform miscellaneous control functions.
	Perform miscellaneous control functions.

	<TABLE ROW>
	IO$_AVAILABLE
	IO$_AVAILABLE

	P
	P

	Clear volume valid bit.
	Clear volume valid bit.

	<TABLE ROW>
	IO$_CREATE
	IO$_CREATE

	P1,[P2][,[P3], [P4],[P5]
	P1,[P2][,[P3], [P4],[P5]

	V
	V

	IO$M_CREATE IO$M_ACCESS
	IO$M_CREATE IO$M_ACCESS

	Create a file.
	Create a file.

	<TABLE ROW>
	IO$_DEACCESS
	IO$_DEACCESS

	P1,[P2],[P3], [P4],[P5]
	P1,[P2],[P3], [P4],[P5]

	V
	V

	Deaccess a file and, if the file has been written, write out trailer records.
	Deaccess a file and, if the file has been written, write out trailer records.

	<TABLE ROW>
	IO$_DSE
	IO$_DSE

	P
	P

	IO$M_NOWAIT
	IO$M_NOWAIT

	Erase a prescribed section of the tape.
	Erase a prescribed section of the tape.

	<TABLE ROW>
	IO$_FLUSH
	IO$_FLUSH

	L
	L

	Flush the controller cache to tape.
	Flush the controller cache to tape.

	<TABLE ROW>
	IO$_MODIFY
	IO$_MODIFY

	P1,[P2],[P3], [P4],[P5]
	P1,[P2],[P3], [P4],[P5]

	V
	V

	Write user labels.
	Write user labels.

	<TABLE ROW>
	IO$_PACKACK
	IO$_PACKACK

	P
	P

	Initialize volume valid bit.
	Initialize volume valid bit.

	<TABLE ROW>
	IO$_READLBLK
	IO$_READLBLK

	P1,P2
	P1,P2

	L
	L

	IO$M_DATACHECK IO$M_INHRETRY IO$M_REVERSE
	IO$M_DATACHECK

	Read logical block.
	Read logical block.

	<TABLE ROW>
	IO$_READPBLK
	IO$_READPBLK

	P1,P2
	P1,P2

	P
	P

	IO$M_DATACHECK5 IO$M_INHRETRY IO$M_REVERSE6
	IO$M_DATACHECK

	Read physical block.
	Read physical block.

	<TABLE ROW>
	IO$_READVBLK
	IO$_READVBLK

	P1,P2
	P1,P2

	V
	V

	IO$M_DATACHECK5 IO$M_INHRETRY IO$M_REVERSE6
	IO$M_DATACHECK

	Read virtual block.
	Read virtual block.

	<TABLE ROW>
	IO$_REWIND
	IO$_REWIND

	L
	L

	IO$M_INHRETRY IO$M_NOWAIT IO$M_RETENSION
	IO$M_INHRETRY IO$M_NOWAIT IO$M_RETENSION

	Reposition tape to the beginning-of-tape (BOT) marker.
	Reposition tape to the beginning-of-tape (BOT) marker.

	<TABLE ROW>
	IO$_REWINDOFF
	IO$_REWINDOFF

	L
	L

	IO$M_INHRETRY IO$M_NOWAIT IO$M_RETENSION
	IO$M_INHRETRY IO$M_NOWAIT IO$M_RETENSION

	Rewind and unload the tape on the selected drive.
	Rewind and unload the tape on the selected drive.

	<TABLE ROW>
	IO$_SENSECHAR
	IO$_SENSECHAR

	[P1],[P2]
	[P1],[P2]

	P
	P

	IO$M_INHRETRY
	IO$M_INHRETRY

	Sense the tape characteristics and return them in the I/O status block.
	Sense the tape characteristics and return them in the I/O status block.

	<TABLE ROW>
	IO$_SENSEMODE
	IO$_SENSEMODE

	[P1],[P2]7
	[P1],[P2]

	L
	L

	IO$M_INHRETRY
	IO$M_INHRETRY

	Sense the tape characteristics and return them in the I/O status block.
	Sense the tape characteristics and return them in the I/O status block.

	<TABLE ROW>
	IO$_SETCHAR
	IO$_SETCHAR

	P1,[P2]7
	P1,[P2]

	P
	P

	Set tape characteristics for subsequent operations.
	Set tape characteristics for subsequent operations.

	<TABLE ROW>
	IO$_SETMODE
	IO$_SETMODE

	P1,[P2]7
	P1,[P2]

	L
	L

	Set tape characteristics for subsequent operations.
	Set tape characteristics for subsequent operations.

	<TABLE ROW>
	IO$_SKIPFILE
	IO$_SKIPFILE

	P1
	P1

	L
	L

	IO$M_INHRETRY IO$M_NOWAIT IO$M_ALLOWFAST
	IO$M_INHRETRY IO$M_NOWAIT

	Skip past a specified number of tape marks in either a forward or reverse direction.
	Skip past a specified number of tape marks in either a forward or reverse direction.

	<TABLE ROW>
	IO$_SKIPRECORD
	IO$_SKIPRECORD

	P1
	P1

	L
	L

	IO$M_INHRETRY IO$M_NOWAIT8
	IO$M_INHRETRY IO$M_NOWAIT

	Skip past a specified number of blocks in either a forward or reverse direction.
	Skip past a specified number of blocks in either a forward or reverse direction.

	<TABLE ROW>
	IO$_UNLOAD
	IO$_UNLOAD

	L
	L

	IO$M_INHRETRY IO$M_NOWAIT
	IO$M_INHRETRY IO$M_NOWAIT

	Rewind and unload the tape on the selected drive.
	Rewind and unload the tape on the selected drive.

	<TABLE ROW>
	IO$_WRITELBLK
	IO$_WRITELBLK

	P1,P2
	P1,P2

	L
	L

	IO$M_ERASE IO$M_DATACHECK5 IO$M_INHRETRY IO$M_INHEXTGAP IO$M_NOWAIT8
	IO$M_ERASE

	Write logical block.
	Write logical block.

	<TABLE ROW>
	IO$_WRITEOF
	IO$_WRITEOF

	L
	L

	IO$M_INHRETRY IO$M_INHEXTGAP10 IO$M_NOWAIT
	IO$M_INHRETRY IO$M_INHEXTGAP

	Write an extended interrecord gap followed by a tape mark.
	Write an extended interrecord gap followed by a tape mark.

	<TABLE ROW>
	IO$_WRITEPBLK
	IO$_WRITEPBLK

	P1,P2
	P1,P2

	P
	P

	IO$M_ERASE9 IO$M_DATACHECK5 IO$M_INHRETRY IO$M_INHEXTGAP10 IO$M_NOWAIT8
	IO$M_ERASE

	Write physical block.
	Write physical block.

	<TABLE ROW>
	IO$_WRITEVBLK
	IO$_WRITEVBLK

	P1,P2
	P1,P2

	V
	V

	IO$M_DATACHECK5 IO$M_INHRETRY IO$M_INHEXTGAP10 IO$M_NOWAIT8
	IO$M_DATACHECK

	Write virtual block.
	Write virtual block.

	The function-dependent arguments for IO$_CREATE, IO$_ACCESS, IO$_DEACCESS, IO$_MODIFY, IO$_ACPCON...
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.
	• P1—The address of the file information block (FIB) descriptor.

	• P2—Optional. The address of the file name string descriptor. If specified with IO$_ACCESS, the ...
	• P2—Optional. The address of the file name string descriptor. If specified with IO$_ACCESS, the ...

	• P3—Optional. The address of the word that is to receive the length of the resultant file name s...
	• P3—Optional. The address of the word that is to receive the length of the resultant file name s...

	• P4—Optional. The address of a descriptor for a buffer that is to receive the resultant file nam...
	• P4—Optional. The address of a descriptor for a buffer that is to receive the resultant file nam...

	• P5—Optional. The address of a list of attribute descriptors. If specified with IO$_ACCESS, the ...
	• P5—Optional. The address of a list of attribute descriptors. If specified with IO$_ACCESS, the ...

	See
	The function-dependent arguments for IO$_READVBLK, IO$_READLBLK, IO$_READPBLK, IO$_WRITEVBLK, IO$...
	• P1—The starting virtual address of the buffer that is to receive the data in the case of a read...
	• P1—The starting virtual address of the buffer that is to receive the data in the case of a read...
	• P1—The starting virtual address of the buffer that is to receive the data in the case of a read...

	• P2—The length of the buffer specified by P1.
	• P2—The length of the buffer specified by P1.

	The function-dependent argument for IO$_SKIPFILE and IO$_SKIPRECORD is:
	P1—The number of tape marks to skip over in the case of a skip file operation; or, in the case of...
	P1—The number of tape marks to skip over in the case of a skip file operation; or, in the case of...
	P1—The number of tape marks to skip over in the case of a skip file operation; or, in the case of...

	Example�3�1
	Example�3�1

	Example�3�1 Defining the P1 Parameter in a IO$_SKIPRECORD QIO
	Example�3�1 Defining the P1 Parameter in a IO$_SKIPRECORD QIO
	.
	.
	. TAPE_CHAN: .WORD 0 IOSB: .WORD 0 .WORD 0 .LONG 0 DEVICE: .ASCID /127MUA0:/ RECORD: .LONG 2000...
	; $ASSIGN_S CHAN=TAPE_CHAN,- DEVNAM=DEVICE BLBC R0,EXIT_ERROR ; $QIOW_S CHAN=TAPE_CHAN,- FUNC=#IO...
	.
	.
	. EXIT_ERROR: $EXIT_S R0 .END MT_IO

	Read
	Read
	Tapes:read function
	Tapes:read function

	The operating system provides the following read function codes:
	• IO$_READVBLK—Read virtual block
	• IO$_READVBLK—Read virtual block
	• IO$_READVBLK—Read virtual block

	• IO$_READLBLK—Read logical block
	• IO$_READLBLK—Read logical block

	• IO$_READPBLK—Read physical block
	• IO$_READPBLK—Read physical block

	If a read virtual block function is directed to a volume that is mounted foreign, it is converted...
	Two function-dependent arguments are used with these codes: P1 and P2. These arguments are descri...
	Function modifiers:IO$M_REVERSE
	Function modifiers:IO$M_REVERSE

	The data check function modifier (IO$M_DATACHECK) can be used with all read functions. If this mo...
	For read physical block and read logical block functions, the drive returns the status SS$_NORMAL...
	• The tape is positioned past the end-of-tape (EOT) position at the start of the read (forward or...
	• The tape is positioned past the end-of-tape (EOT) position at the start of the read (forward or...
	• The tape is positioned past the end-of-tape (EOT) position at the start of the read (forward or...

	• The tape enters the EOT region as a result of the read (forward) operation.
	• The tape enters the EOT region as a result of the read (forward) operation.

	The transferred byte count reflects the actual number of bytes read.
	If the drive reads a tape mark during a logical or physical read
	• The tape is positioned past the EOT position at the start of the read operation.
	• The tape is positioned past the EOT position at the start of the read operation.
	• The tape is positioned past the EOT position at the start of the read operation.

	• The tape enters the EOT region as a result of the read operation.
	• The tape enters the EOT region as a result of the read operation.

	• The drive reads a tape mark as a result of a read operation but the tape does not enter the EOT...
	• The drive reads a tape mark as a result of a read operation but the tape does not enter the EOT...

	An EOF status is also returned if the drive attempts a read operation in the reverse direction wh...
	If the drive attempts to read a block that is larger than the specified memory buffer during a lo...
	It is not possible to read a block that is less than 14 bytes in length. Records that contain les...

	Write
	Write
	The write function writes data from a specified buffer to tape in the forward direction starting ...
	The operating system provides the following write function codes:
	• IO$_WRITEVBLK—Write virtual block
	• IO$_WRITEVBLK—Write virtual block
	• IO$_WRITEVBLK—Write virtual block

	• IO$_WRITELBLK—Write logical block
	• IO$_WRITELBLK—Write logical block

	• IO$_WRITEPBLK—Write physical block
	• IO$_WRITEPBLK—Write physical block

	Tapes:function modifiers:IO$M_ERASE
	Function modifiers:IO$M_ERASE
	If a write virtual block function is directed to a volume that is mounted foreign, the function i...
	Two function-dependent arguments are used with these codes: P1 and P2. These arguments are descri...
	The IO$M_ERASE function modifier can be used with the IO$_WRITELBLK and IO$_WRITEPBLK function co...
	The data check function modifier (IO$M_DATACHECK) can be used with all write functions. If this m...
	If the IO$M_NOWAIT function modifier is specified, write-back caching is enabled on a per-command...
	If the drive performs a write physical block or a write logical block operation, an EOT status is...
	• The tape is positioned past the EOT position at the start of the write operation.
	• The tape is positioned past the EOT position at the start of the write operation.
	• The tape is positioned past the EOT position at the start of the write operation.

	• The tape enters the EOT region as a result of the write operation.
	• The tape enters the EOT region as a result of the write operation.

	The transferred byte count reflects the size of the block written.

	Rewind
	Rewind
	Tapes:rewind function
	Tapes:rewind function
	Tapes:function modifiers:IO$M_NOWAIT
	Function modifiers:IO$M_NOWAIT
	Tapes:I/O functions:IO$_REWIND
	Function codes:IO$_REWIND

	If the IO$M_NOWAIT function modifier is specified, the I/O operation is completed when the rewind...
	If the IO$M_RETENSION function modifier is specified and the device supports the retension operat...
	IO$_REWIND has no function-dependent arguments.

	Skip File
	Skip File
	Tapes:skip file function
	Tapes:skip file function
	Tapes:I/O functions:IO$_SKIPFILE
	Function codes:IO$_SKIPFILE

	Figure�3�1 IO$_SKIPFILE Argument
	Figure�3�1 IO$_SKIPFILE Argument
	<GRAPHIC>

	Only tape marks (when the tape moves in either direction) and the BOT
	A skip file function in the forward direction can also be terminated if two consecutive tape mark...
	IO$M_ALLOWFAST modifier
	IO$M_ALLOWFAST modifier

	When the IO$M_ALLOWFAST modifier is specified, a tape operation skips over consecutive tape marks...
	The IO$M_ALLOWFAST modifier allows a SCSI tape subsystem to use the optimized IO$_SKIPFILE if it ...

	Skip Record
	Skip Record
	Tapes:skip record function
	Tapes:skip record function
	Tapes:I/O functions:IO$_SKIPRECORD
	Function codes:IO$_SKIPRECORD

	Figure�3�2 IO$_SKIPRECORD Argument
	Figure�3�2 IO$_SKIPRECORD Argument
	<GRAPHIC>

	A skip record operation is terminated by the end-of-file (EOF) marker when the tape moves in eith...
	A skip record function in the forward direction can also be terminated if the tape was originally...
	Tapes:tape mark
	Tape marks
	Logical End-of-Volume (EOV) Detection
	Logical End-of-Volume (EOV) Detection
	A skip file or skip record operation that uses the standard space-by-records algorithm is termina...
	An optimized skip file that uses the IO$M_ALLOWFAST modifier is terminated when the end-of-data p...
	Subsequent skip record (or skip file) requests terminate immediately when the tape is positioned ...
	SS$_ENDOFVOLUME return
	SS$_ENDOFVOLUME return
	SS$_ENDOFFILE return

	If three consecutive tape marks are encountered during a skip file function, you must issue two I...
	Tapes:end-of-volume detection
	EOV (end-of-volume):detection on magnetic tape
	End-of-volume<IndexSee> See also </>See EOV

	Write End-of-File
	Write End-of-File
	Tapes:write end-of-file function
	Tapes:write end-of-file function
	Tapes:I/O functions:IO$_WRITEOF
	Function codes:IO$_WRITEOF

	An end-of-tape (EOT) status is returned in the I/O status block if either of
	• A write EOF function is executed while the tape
	• A write EOF function is executed while the tape
	• A write EOF function is executed while the tape

	• A write EOF function causes the tape position to enter the EOT region.
	• A write EOF function causes the tape position to enter the EOT region.

	Rewind Offline
	Rewind Offline
	The rewind offline function rewinds and unloads the tape
	The I/O operation is completed as soon as the tape movement is initiated. The actual finish of th...
	If the IO$M_RETENSION function modifier is specified and the device supports the retension operat...
	No device- or function-dependent arguments are used with IO$_REWINDOFF.

	Unload
	Unload
	The unload function rewinds and unloads the tape

	Sense Tape Mode
	Sense Tape Mode
	Sense tape mode function
	Sense tape mode function
	Tapes:sense mode function
	Tapes:I/O functions:IO$_SENSEMODE
	Function codes:IO$_SENSEMODE

	The operating system provides the following function codes:
	• IO$_SENSEMODE—Sense mode
	• IO$_SENSEMODE—Sense mode
	• IO$_SENSEMODE—Sense mode

	• IO$_SENSECHAR—Sense characteristics
	• IO$_SENSECHAR—Sense characteristics

	Sense mode requires logical I/O privilege. Sense characteristics requires physical I/O privilege....
	• P1—Optional. Address of a user-supplied buffer.
	• P1—Optional. Address of a user-supplied buffer.
	• P1—Optional. Address of a user-supplied buffer.

	• P2—Optional. Length of a user-supplied buffer.
	• P2—Optional. Length of a user-supplied buffer.

	If P1 is not zero, the sense mode buffer returns the tape characteristics. (If P2=8, the second l...
	Figure�3�3 Sense Mode P1 Buffer
	Figure�3�3 Sense Mode P1 Buffer
	<GRAPHIC>

	Set Mode
	Set Mode
	Tapes:set mode function
	Tapes:set mode function

	Set mode requires logical I/O privilege. Set characteristics requires physical I/O privilege. The...
	• IO$_SETMODE—Set mode
	• IO$_SETMODE—Set mode
	• IO$_SETMODE—Set mode

	• IO$_SETCHAR—Set characteristics
	• IO$_SETCHAR—Set characteristics

	These functions take the following device- or function-dependent arguments (other arguments are i...
	• P1—The address of a characteristics buffer.
	• P1—The address of a characteristics buffer.
	• P1—The address of a characteristics buffer.

	• P2—Optional. The length of the characteristics buffer. The default is 8 bytes. If a length of 1...
	• P2—Optional. The length of the characteristics buffer. The default is 8 bytes. If a length of 1...

	Figure�3�4
	Figure�3�4

	Figure�3�4 Set Mode Characteristics Buffer for IO$_SETMODE
	Figure�3�4 Set Mode Characteristics Buffer for IO$_SETMODE
	<GRAPHIC>

	Figure�3�5 Set Mode Characteristics Buffer for IO$_SETCHAR
	Figure�3�5 Set Mode Characteristics Buffer for IO$_SETCHAR
	<GRAPHIC>

	The first longword of the P1 buffer for the set characteristics function contains information on ...
	The $DCDEF macro defines the device type and class names. The buffer size is the default to be us...
	The second longword of the P1 buffer for both the set mode and set characteristics functions cont...
	<TABLE>
	Table�3�5 Set Mode and Set Characteristics Magnetic Tape Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Characteristic
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	MT$M_PARITY
	MT$M_PARITY

	If set, all data transfers are performed with even parity. If clear (normal case), all data trans...
	If set, all data transfers are performed with even parity. If clear (normal case), all data trans...

	<TABLE ROW>
	MT$V_DENSITY MT$S_DENSITY
	MT$V_DENSITY MT$S_DENSITY

	Specifies the density at which all data transfers are performed. Tape density can be set only whe...
	Specifies the density at which all data transfers are performed. Tape density can be set only whe...

	<TABLE ROW>
	MT$K_DEFAULT
	MT$K_DEFAULT

	Default system density.
	Default system density.

	<TABLE ROW>
	MT$K_GCR_6250
	MT$K_GCR_6250

	Group-coded recording, 6250 bits/inch.
	Group-coded recording, 6250 bits/inch.

	<TABLE ROW>
	MT$K_PE_1600
	MT$K_PE_1600

	Phase-encoded recording, 1600 bits/inch.
	Phase-encoded recording, 1600 bits/inch.

	<TABLE ROW>
	MT$K_NRZI_800
	MT$K_NRZI_800

	Nonreturn-to-zero-inverted recording, 800 bits/inch.
	Nonreturn-to-zero-inverted recording, 800 bits/inch.

	<TABLE ROW>
	MT$K_BLK_833
	MT$K_BLK_833

	Cartridge block mode recording.
	Cartridge block mode recording.

	<TABLE ROW>
	MT$V_FORMAT MT$S_FORMAT
	MT$V_FORMAT MT$S_FORMAT

	Specifies the format in which all data transfers are performed. Possible format values are as fol...
	Specifies the format in which all data transfers are performed. Possible format values are as fol...

	<TABLE ROW>
	MT$K_DEFAULT
	MT$K_DEFAULT

	Default system format.
	Default system format.

	<TABLE ROW>
	MT$K_NORMAL11
	MT$K_NORMAL11

	Normal PDP-11 format. Data bytes are recorded sequentially on tape with each byte occupying exact...
	Normal PDP-11 format. Data bytes are recorded sequentially on tape with each byte occupying exact...

	<TABLE>
	Table�3�6 Extended Device Characteristics for Tape Devices�
	<TABLE HEADING>
	<TABLE ROW>
	Characteristic
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	MT2$V_WBC_ENABLE
	Enable write-back caching on a per-unit basis.

	<TABLE ROW>
	MT2$V_RDC_DISABLE
	Disable read caching on a per-unit basis.

	Application programs that change specific magnetic tape characteristics should perform the follow...
	1. � Use the IO$_SENSEMODE function to read the current characteristics.
	1. � Use the IO$_SENSEMODE function to read the current characteristics.
	1. � Use the IO$_SENSEMODE function to read the current characteristics.

	2. � Modify the characteristics.
	2. � Modify the characteristics.

	3. � Use the set mode function to write back the results.
	3. � Use the set mode function to write back the results.

	Failure to follow this sequence will result in clearing any previously set characteristic.

	Multiple Tape Density Support
	Multiple Tape Density Support
	As of Version 7.2, OpenVMS Alpha permits the selection of any density and any compression support...
	Mutiple tape density support is provided by changes in the QIO interface. These changes are guide...
	NOTE After the media has been initialized to a specific density, it will remain that density unti...
	NOTE After the media has been initialized to a specific density, it will remain that density unti...

	These enhancements allow IO$_SETMODE and IO$_SENSEMODE to function with most density values and a...

	Data Security Erase
	Data Security Erase
	Tapes:data security erase function
	Tapes:data security erase function
	DSE (data security erase):magnetic tape
	Tapes:I/O functions:IO$_DSE
	Function codes:IO$_DSE

	IO$_DSE
	IO$_DSE
	IO$_DSE

	If the function is issued when a tape is positioned at the BOT marker, all data on the tape will ...
	IO$_DSE takes no device- or function-dependent arguments.

	Modify
	Modify
	Tapes:I/O functions:IO$_MODIFY
	Tapes:modify function
	Specifying the ATR$C_USERLABEL or ATR$C_ENDLBLAST attributes with IO$_MODIFY results in a bad att...

	Pack Acknowledge
	Pack Acknowledge
	Tapes:I/O functions:IO$_PACKACK
	Tapes:I/O functions:IO$_PACKACK
	Tapes:pack acknowledge function

	IO$_PACKACK
	IO$_PACKACK
	IO$_PACKACK

	IO$_PACKACK must be the first function issued when a volume is placed in a magnetic tape drive. I...

	Available
	Available
	Tapes:available function
	Tapes:available function
	Tapes:I/O functions:IO$_AVAILABLE
	Function codes:IO$_AVAILABLE

	IO$_AVAILABLE
	IO$_AVAILABLE
	IO$_AVAILABLE

	This function takes no function-dependent arguments.

	Flush
	Flush
	The flush function is used to ensure that all previously issued cached commands have fully comple...
	IO$_FLUSH
	IO$_FLUSH
	IO$_FLUSH

	This function code takes no function-dependent arguments.

	I/O Status Block
	I/O Status Block
	Tapes:I/O status block
	Tapes:I/O status block
	IOSBs (I/O status blocks):magnetic tape

	Figure�3�6 IOSB Contents
	Figure�3�6 IOSB Contents
	<GRAPHIC>

	The byte count is the actual number of bytes transferred to or from the process buffer or the num...

	Magnetic Tape Drive Programming Examples
	Magnetic Tape Drive Programming Examples
	Tapes:programming example
	Tapes:programming example

	Example�3�2
	Example�3�2

	Example�3�3
	Example�3�3

	In addition,
	Example�3�2 Device Characteristic Program Example
	Example�3�2 Device Characteristic Program Example
	$QIOW_S - ; Get current characteristics. FUNC = #IO$_SENSEMODE,- ; - Sense mode CHAN = CHANNEL,- ...

	Example�3�3 Set Mode and Sense Mode Program Example
	Example�3�3 Set Mode and Sense Mode Program Example
	.PSECT IMPURE, NOEXE, NOSHR $IODEF DEVICE_NAME: ; Name of device .ASCID /MUA0/ ; CHANNEL: ; Chann...
	$ASSIGN_S - ; Assign a channel to device DEVNAM = DEVICE_NAME,- ; CHAN = CHANNEL ; BSBW ERR_CHECK...
	FUNC = #IO$_SETMODE,- ; Length defaulted CHAN = CHANNEL,- ; IOSB = IO_STATUS,- ; P1 = BUFFER ; BS...

	Example�3�4 MAGNETIC_TAPE.MAR Device Characteristic Program Example
	Example�3�4 MAGNETIC_TAPE.MAR Device Characteristic Program Example
	; *** ; .TITLE MAGTAPE PROGRAMM...

	4 Mailbox Driver
	4 Mailbox Driver
	I/O drivers:mailbox
	I/O drivers:mailbox
	Mailboxes:driver
	Drivers:mailbox
	Device drivers:mailbox

	The HP OpenVMS Programming Concepts and the HP OpenVMS System Services Reference Manual contain a...
	Mailbox Operations
	Mailbox Operations
	Mailboxes:list of operations
	Mailboxes:list of operations

	• Creating mailboxes
	• Creating mailboxes
	• Creating mailboxes

	• Deleting mailboxes
	• Deleting mailboxes

	• Protecting mailboxes
	• Protecting mailboxes

	Creating Mailboxes
	Creating Mailboxes
	Mailboxes:creating
	Mailboxes:creating
	SYS$CREMBX system service

	$CREMBX also establishes the characteristics of the mailbox. These characteristics include a prot...
	Mailboxes:temporary
	Mailboxes:temporary
	Mailboxes:permanent
	SYS$ASSIGN routine
	Quotas:mailbox buffer
	Mailboxes:protection
	Mailboxes:message size

	Figure�4�1
	Figure�4�1

	Figure�4�1 Multiple Mailbox Channels
	Figure�4�1 Multiple Mailbox Channels
	<GRAPHIC>

	If sufficient dynamic memory for the mailbox data structure is not available when a mailbox is cr...
	When a mailbox is created, a certain amount of space is specified for buffering messages that hav...
	A message written to a mailbox, in the absence of an outstanding read request, is queued to the m...
	If a process attempts to write to a mailbox that is full or has insufficient buffering space and ...
	Channels can be assigned to mailboxes as bidirectional (read/write), read only, or write only. Th...
	The
	For the $ASSIGN system service, the $AGNDEF macro defines a symbolic name for each flag bit. Thes...
	• AGN$M_READONLY— When this flag is specified, $ASSIGN assigns a read-only channel to the mailbox...
	• AGN$M_READONLY— When this flag is specified, $ASSIGN assigns a read-only channel to the mailbox...
	• AGN$M_READONLY— When this flag is specified, $ASSIGN assigns a read-only channel to the mailbox...

	• AGN$M_WRITEONLY— When this flag is specified, $ASSIGN assigns a write-only channel to the mailb...
	• AGN$M_WRITEONLY— When this flag is specified, $ASSIGN assigns a write-only channel to the mailb...

	For the $CREMBX system service, the $CMBDEF macro defines a symbolic name for each flag bit. Thes...
	• CMB$M_READONLY— When this flag is specified, $CREMBX assigns a read-only channel to the mailbox...
	• CMB$M_READONLY— When this flag is specified, $CREMBX assigns a read-only channel to the mailbox...
	• CMB$M_READONLY— When this flag is specified, $CREMBX assigns a read-only channel to the mailbox...

	• CMB$M_WRITEONLY— When this flag is specified, $CREMBX assigns a write-only channel to the mailb...
	• CMB$M_WRITEONLY— When this flag is specified, $CREMBX assigns a write-only channel to the mailb...

	Refer to the HP OpenVMS System Services Reference Manual for a syntax description of the $CREMBX ...
	The programming examples at the end of this section (

	Deleting Mailboxes
	Deleting Mailboxes
	Mailboxes:deleting
	Mailboxes:deleting
	SYS$DASSGN routine

	If a mailbox channel is deassigned, any incomplete I/O requests on the mailbox channel for the pr...
	Permanent mailboxes that have not been marked for deletion must be explicitly deleted using the D...
	When a temporary mailbox is deleted, its message buffer quota is returned to the process that cre...

	Mailbox Protection
	Mailbox Protection
	Mailboxes:protection
	Mailboxes:protection
	Mailboxes:temporary
	Mailboxes:permanent
	Temporary mailboxes

	For additional information on temporary mailboxes and mailbox protection, see the description of ...

	Mailbox Message Format
	Mailbox Message Format
	Mailboxes:message format
	Mailboxes:message format
	Mailboxes:message format

	Mailbox Driver Device Information
	Mailbox Driver Device Information
	Mailboxes:device characteristics
	Mailboxes:device characteristics
	Mailboxes:SYS$GETDVI returns
	SYS$GETDVI routine:mailbox
	Device characteristics:mailbox

	$GETDVI returns mailbox characteristics when you specify the item code DVI$_DEVCHAR.
	<TABLE>
	Table�4�1 Mailbox Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Characteristic
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	Dynamic Bits (Conditionally Set)
	Dynamic Bits (Conditionally Set)

	<TABLE ROW>
	DEV$M_SHR
	DEV$M_SHR

	Device is shareable.
	Device is shareable.

	<TABLE ROW>
	DEV$M_AVL
	DEV$M_AVL

	Device is available.
	Device is available.

	<TABLE ROW>
	Static Bits (Always Set)
	Static Bits (Always Set)

	<TABLE ROW>
	DEV$M_REC
	DEV$M_REC

	Device is record-oriented.
	Device is record-oriented.

	<TABLE ROW>
	DEV$M_IDV
	DEV$M_IDV

	Device is capable of input.
	Device is capable of input.

	<TABLE ROW>
	DEV$M_ODV
	DEV$M_ODV

	Device is capable of output.
	Device is capable of output.

	<TABLE ROW>
	DEV$M_MBX
	DEV$M_MBX

	Device is a mailbox.
	Device is a mailbox.

	DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device type names, which are defined b...
	DVI$_DEVDEPEND returns a longword field in which the two low-order bytes contain the number of me...
	DVI$_UNIT returns the mailbox unit number. Using mailbox to hold a termination message for a subp...

	Mailbox Function Codes
	Mailbox Function Codes
	Mailboxes:function codes
	Mailboxes:function codes
	Mailboxes:function codes
	I/O functions:mailbox
	Buffered I/O:quota
	Quotas:buffered I/O
	Quotas:AST
	ASTs (asynchronous system traps):quota
	Quotas:mailbox buffer
	Quotas:buffered I/O
	Quotas:AST

	No buffered I/O byte count quota checking is performed on mailbox I/O messages. Instead, the byte...
	Read
	Read
	Mailboxes:read function
	Mailboxes:read function

	• IO$_READVBLK—Read virtual block
	• IO$_READVBLK—Read virtual block
	• IO$_READVBLK—Read virtual block

	• IO$_READLBLK—Read logical block
	• IO$_READLBLK—Read logical block

	• IO$_READPBLK—Read physical block
	• IO$_READPBLK—Read physical block

	IO$_READLBLK, IO$_READVBLK, and IO$_READPBLK all perform the same operation. To issue a read requ...
	The following device- or function-dependent arguments are used with these codes:
	• P1—The starting virtual address of the buffer that is to receive the message. If P2 specifies a...
	• P1—The starting virtual address of the buffer that is to receive the message. If P2 specifies a...
	• P1—The starting virtual address of the buffer that is to receive the message. If P2 specifies a...

	• P2—The size of the buffer in bytes (limited by the maximum message size for the mailbox). A zer...
	• P2—The size of the buffer in bytes (limited by the maximum message size for the mailbox). A zer...

	The following function modifiers can be specified with a read request:
	• IO$M_WRITERCHECK—Completes the I/O operation with SS$_NOWRITER status if the mailbox is empty a...
	• IO$M_WRITERCHECK—Completes the I/O operation with SS$_NOWRITER status if the mailbox is empty a...
	• IO$M_WRITERCHECK—Completes the I/O operation with SS$_NOWRITER status if the mailbox is empty a...

	• IO$M_NOW—Completes the I/O operation immediately with no wait for a write request from another ...
	• IO$M_NOW—Completes the I/O operation immediately with no wait for a write request from another ...

	• IO$M_STREAM—Ignores QIO record boundaries. The read operation transfers message data to the use...
	• IO$M_STREAM—Ignores QIO record boundaries. The read operation transfers message data to the use...
	Figure�4�2
	Figure�4�2

	Figure�4�2 $QIO READ STREAM Operation
	Figure�4�2 $QIO READ STREAM Operation
	<GRAPHIC>

	A READ IO$M_STREAM (without IO$M_NOW specified) on an empty mailbox waits until some data has bee...
	— 0 bytes read if the next data written is an end-of-file message.
	— 0 bytes read if the next data written is an end-of-file message.
	— 0 bytes read if the next data written is an end-of-file message.

	— Fewer than P2 bytes read if the next data written is less than P2 bytes but greater than 0 byte...
	— Fewer than P2 bytes read if the next data written is less than P2 bytes but greater than 0 byte...

	— P2 bytes read if the next data written is greater than or equal to P2 bytes.
	— P2 bytes read if the next data written is greater than or equal to P2 bytes.

	If a $QIO READ STREAM is fulfilled by multiple $QIO WRITE requests, the sender PID returned in th...
	A $QIO READ STREAM issued to a mailbox that would cause BUFQUO to be exceeded because BUFQUO is o...

	Reads of 0 bytes are handled differently depending on which functional modifiers are specified. I...
	• SS$_NORMAL (if 0 bytes were written with the corresponding $QIO WRITE performed)
	• SS$_NORMAL (if 0 bytes were written with the corresponding $QIO WRITE performed)
	• SS$_NORMAL (if 0 bytes were written with the corresponding $QIO WRITE performed)

	• SS$_BUFFEROVF (if the corresponding $QIO WRITE wrote more than 0 bytes with 0 bytes read)
	• SS$_BUFFEROVF (if the corresponding $QIO WRITE wrote more than 0 bytes with 0 bytes read)

	• SS$_ENDOFFILE (if a WRITEOF function was performed as the corresponding $QIO write function)
	• SS$_ENDOFFILE (if a WRITEOF function was performed as the corresponding $QIO write function)

	For a 0-byte nonstream read, a record is actually removed from the mailbox to meet the $QIO READ ...
	Figure�4�3
	Figure�4�3

	Figure�4�3 Read Mailbox
	Figure�4�3 Read Mailbox
	<GRAPHIC>

	If Process A issues a read request before Process B issues a write request, one of two events can...
	However, if Process A did specify the IO$M_NOW function modifier, the read operation is completed...
	If Process B sends a message (with no function modifier; see

	Write
	Write
	Mailboxes:write function
	Mailboxes:write function

	• IO$_WRITEVBLK—Write virtual block
	• IO$_WRITEVBLK—Write virtual block
	• IO$_WRITEVBLK—Write virtual block

	• IO$_WRITELBLK—Write logical block
	• IO$_WRITELBLK—Write logical block

	• IO$_WRITEPBLK—Write physical block
	• IO$_WRITEPBLK—Write physical block

	IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK all perform the same operation. To issue a write ...
	These function codes take the following device- or function-dependent arguments:
	• P1—The starting virtual address of the buffer that contains the message being written. If P2 sp...
	• P1—The starting virtual address of the buffer that contains the message being written. If P2 sp...
	• P1—The starting virtual address of the buffer that contains the message being written. If P2 sp...

	• P2—The size of the buffer in bytes (limited by the maximum message size for the mailbox). A zer...
	• P2—The size of the buffer in bytes (limited by the maximum message size for the mailbox). A zer...

	The following function modifiers can be specified with a write request:
	• IO$M_READERCHECK—Completes the I/O operation immediately, with SS$_NOREADER status, if no read ...
	• IO$M_READERCHECK—Completes the I/O operation immediately, with SS$_NOREADER status, if no read ...
	• IO$M_READERCHECK—Completes the I/O operation immediately, with SS$_NOREADER status, if no read ...

	• IO$M_NOW—Completes the I/O operation immediately without waiting for another process to read th...
	• IO$M_NOW—Completes the I/O operation immediately without waiting for another process to read th...

	• IO$M_NORSWAIT—If the mailbox is full, the I/O operation fails with a status return of SS$_MBFUL...
	• IO$M_NORSWAIT—If the mailbox is full, the I/O operation fails with a status return of SS$_MBFUL...

	A $QIO WRITE of 0 bytes causes a 0-byte long message to be placed in the mailbox. When this data ...
	Figure�4�4
	Figure�4�4

	If Process A issues a write request before Process B issues a read request, one of two events can...
	However, if Process A did specify the IO$M_NOW function modifier, the write operation is complete...
	If Process B issues a read request (with no function modifier) before Process A issues a write re...
	Figure�4�4 Write Mailbox
	Figure�4�4 Write Mailbox
	<GRAPHIC>

	Write End-of-File Message
	Write End-of-File Message
	EOF (end-of-file):write mailbox message
	EOF (end-of-file):write mailbox message
	Mailboxes:write end-of-file message function
	Mailboxes:I/O functions:IO$_WRITEOF

	This function takes no arguments. The operating system provides the following function code:
	IO$_WRITEOF—Write end-of-file message
	IO$_WRITEOF—Write end-of-file message
	IO$_WRITEOF—Write end-of-file message

	Write end-of-file function:message
	Write end-of-file function:message
	Mailboxes:function modifiers:IO$M_NOW
	Function modifiers:IO$M_NOW

	• IO$M_READERCHECK—Completes the I/O operation immediately, with SS$_NOREADER status, if no read ...
	• IO$M_READERCHECK—Completes the I/O operation immediately, with SS$_NOREADER status, if no read ...
	• IO$M_READERCHECK—Completes the I/O operation immediately, with SS$_NOREADER status, if no read ...

	• IO$M_NOW—Completes the I/O operation immediately without waiting for another process to read th...
	• IO$M_NOW—Completes the I/O operation immediately without waiting for another process to read th...

	• IO$M_NORSWAIT—If the mailbox is full, the I/O operation fails with a status return of SS$_MBFUL...
	• IO$M_NORSWAIT—If the mailbox is full, the I/O operation fails with a status return of SS$_MBFUL...

	Set Attention AST
	Set Attention AST
	Mailboxes:set attention AST function
	Mailboxes:set attention AST function
	Mailboxes:function modifiers:IO$M_READATTN
	Function modifiers:IO$M_READATTN
	Mailboxes:read attention AST function
	Mailboxes:write attention AST function
	Set modes:mailbox
	Set attention AST<IndexSee> See also </>See Attention AST

	• When a cooperating process places a read request for which no write request is pending in a des...
	• When a cooperating process places a read request for which no write request is pending in a des...
	• When a cooperating process places a read request for which no write request is pending in a des...

	• When a cooperating process places a write request for which no read request is pending in a des...
	• When a cooperating process places a write request for which no read request is pending in a des...

	• When room becomes available in the mailbox.
	• When room becomes available in the mailbox.

	If a message exists in the mailbox when a request to enable a write attention AST is issued, the ...
	The operating system provides the following function codes:
	• IO$_SETMODE!IO$M_READATTN—Read attention AST
	• IO$_SETMODE!IO$M_READATTN—Read attention AST
	• IO$_SETMODE!IO$M_READATTN—Read attention AST

	• IO$_SETMODE!IO$M_WRTATTN—Write attention AST
	• IO$_SETMODE!IO$M_WRTATTN—Write attention AST

	• IO$_SETMODE!IO$M_MB_ROOM_NOTIFY—Room in the mailbox attention AST
	• IO$_SETMODE!IO$M_MB_ROOM_NOTIFY—Room in the mailbox attention AST

	These function codes take the following device- or function-dependent arguments:
	• P1—AST address (request notification is disabled if the address is 0)
	• P1—AST address (request notification is disabled if the address is 0)
	• P1—AST address (request notification is disabled if the address is 0)

	• P2—AST parameter returned in the argument list when the AST service routine is called
	• P2—AST parameter returned in the argument list when the AST service routine is called

	• P3—Access mode to deliver AST; maximized with requester's mode
	• P3—Access mode to deliver AST; maximized with requester's mode

	These functions are enabled only once; they must be explicitly reenabled after the AST has been d...
	Figure�4�5
	Figure�4�5

	Figure�4�5 Write Attention AST (Read Unsolicited Data)
	Figure�4�5 Write Attention AST (Read Unsolicited Data)
	<GRAPHIC>

	Process A uses the IO$_SETMODE!IO$M_WRTATTN function to request an AST. When Process B sends a me...
	If several requesting processes have set ASTs for unsolicited messages at the same mailbox, all A...
	Figure�4�6
	Figure�4�6

	Figure�4�6 Read Attention AST
	Figure�4�6 Read Attention AST
	<GRAPHIC>

	Process A uses the IO$_SETMODE!IO$M_READATTN function to specify an AST. When Process B issues a ...
	If several requesting processes set ASTs for read requests for the same mailbox, all ASTs are del...

	Wait for Writer/Reader
	Wait for Writer/Reader
	Mailboxes:wait for writer/reader function
	The wait for writer/reader mailbox driver function waits until a channel is assigned to the mailb...
	The wait function requires the same synchronization techniques as all other $QIO functions. $QIO ...
	The following function codes and modifiers are provided:
	• IO$_SETMODE!IO$M_READERWAIT—Waits for a read channel to be assigned to the mailbox.
	• IO$_SETMODE!IO$M_READERWAIT—Waits for a read channel to be assigned to the mailbox.
	• IO$_SETMODE!IO$M_READERWAIT—Waits for a read channel to be assigned to the mailbox.

	• IO$_SETMODE!IO$M_WRITERWAIT—Waits for a write channel to be assigned to the mailbox.
	• IO$_SETMODE!IO$M_WRITERWAIT—Waits for a write channel to be assigned to the mailbox.

	These function codes require no function-dependent arguments.
	These functions are enabled only once. Once the $QIO operation completes, these functions must be...

	Set Protection
	Set Protection
	Mailboxes:protection
	Mailboxes:protection
	Mailboxes:set protection function
	Mailboxes:volume protection
	Mailboxes:function modifiers:IO$M_SETPROT
	Function modifiers:IO$M_SETPROT

	IO$_SETMODE!IO$M_SETPROT—Set protection
	IO$_SETMODE!IO$M_SETPROT—Set protection
	IO$_SETMODE!IO$M_SETPROT—Set protection

	This function code takes the following device- or function-dependent argument:
	P2—A volume protection mask
	P2—A volume protection mask
	P2—A volume protection mask

	The protection mask specified by P2 is a 16-bit mask with 4 bits for each class of owner: SYSTEM,...
	Figure�4�7 Protection Mask
	Figure�4�7 Protection Mask
	<GRAPHIC>

	Only logical I/O, read, and write functions have meaning for mailboxes. A clear (0) bit implies t...
	The I/O status block for the set protection function (see

	Get Mailbox Information
	Get Mailbox Information
	Mailboxes:get mailbox information function
	Mailboxes:volume protection
	Mailboxes:function modifiers:IO$M_READERCHECK
	Function modifiers:IO$M_READERCHECK
	Mailboxes:function modifiers:IO$M_WRITERCHECK
	Function modifiers:IO$M_WRITERCHECK
	The get mailbox information function allows the user to find out the number of unread messages an...
	IO$_SENSEMODE—Get mailbox contents information
	IO$_SENSEMODE—Get mailbox contents information
	IO$_SENSEMODE—Get mailbox contents information

	The following function codes and modifiers are provided:
	• IO$_SENSEMODE!IO$M_READERCHECK—If a $QIO SENSEMODE with IO$M_READERCHECK is issued and no read ...
	• IO$_SENSEMODE!IO$M_READERCHECK—If a $QIO SENSEMODE with IO$M_READERCHECK is issued and no read ...
	• IO$_SENSEMODE!IO$M_READERCHECK—If a $QIO SENSEMODE with IO$M_READERCHECK is issued and no read ...

	• IO$_SENSEMODE!IO$M_WRITERCHECK—If a $QIO SENSEMODE with IO$M_WRITERCHECK is issued and no write...
	• IO$_SENSEMODE!IO$M_WRITERCHECK—If a $QIO SENSEMODE with IO$M_WRITERCHECK is issued and no write...

	These function codes require no function-dependent arguments.

	I/O Status Block
	I/O Status Block
	Mailboxes:I/O status block
	Mailboxes:I/O status block
	IOSBs (I/O status blocks):mailbox
	Mailboxes:I/O status block
	IOSBs (I/O status blocks):mailbox

	Appendix�A
	Appendix�A

	SS$_ACCVIO
	SS$_ACCVIO
	SS$_ACCVIO

	SS$_EXQUOTA
	SS$_EXQUOTA

	SS$_ILLIOFUNC
	SS$_ILLIOFUNC

	SS$_INSFMEM
	SS$_INSFMEM

	SS$_MBFULL
	SS$_MBFULL

	SS$_MBTOOSML
	SS$_MBTOOSML

	SS$_NOPRIV
	SS$_NOPRIV

	SS$_NORMAL
	SS$_NORMAL

	SS$_ACCVIO return
	SS$_EXQUOTA return
	SS$_ILLIOFUNC return
	SS$_INSFMEM return
	SS$_MBFULL return
	SS$_MBTOOSML return
	SS$_NOPRIV return
	SS$_NORMAL return
	(The OpenVMS system messages documentation provides explanations and suggested user actions for b...
	Figure�4�8 IOSB Contents — Read Function
	Figure�4�8 IOSB Contents — Read Function
	<GRAPHIC>

	Figure�4�9 IOSB Contents— Write Function
	Figure�4�9 IOSB Contents— Write Function
	<GRAPHIC>

	Figure�4�10 IOSB Contents— Set Protection Function
	Figure�4�10 IOSB Contents— Set Protection Function
	<GRAPHIC>

	Figure�4�11 IOSB Contents — Get Mailbox Information Function
	Figure�4�11 IOSB Contents — Get Mailbox Information Function
	<GRAPHIC>

	Mailbox Driver Programming Examples
	Mailbox Driver Programming Examples
	This section contains the following programming examples:
	• Example�4�1
	• Example�4�1
	• Example�4�1
	• Example�4�1

	• Example�4�2
	• Example�4�2
	• Example�4�2

	• Example�4�3
	• Example�4�3
	• Example�4�3

	Mailboxes:programming examples
	Mailboxes:programming examples
	Example�4�1

	Next, the mailbox is read. If there is no mail in the mailbox, the program waits because IO$M_NOW...
	It is up to the user to coordinate the data that goes into and out of mailboxes. In this example,...
	NOTE The table for temporary mailbox names can be redfined to be a group table. This allows the p...
	NOTE The table for temporary mailbox names can be redfined to be a group table. This allows the p...

	Example 4-2 and Example 4-3 work together from two separate processes and show the unidirectional...
	Example�4�2
	Example�4�2

	1. � Assigns a read-only channel to the mailbox.
	1. � Assigns a read-only channel to the mailbox.
	1. � Assigns a read-only channel to the mailbox.

	2. � Waits for another program to assign a writable channel to the mailbox.
	2. � Waits for another program to assign a writable channel to the mailbox.

	3. � Reads, using the IO$M_WRITERCHECK function modifier, what has been written to the mailbox. E...
	3. � Reads, using the IO$M_WRITERCHECK function modifier, what has been written to the mailbox. E...

	4. � When SS$_NOWRITER is returned from the read operation, goes back to Step 2 and waits for ano...
	4. � When SS$_NOWRITER is returned from the read operation, goes back to Step 2 and waits for ano...

	Example�4�3
	Example�4�3

	1. � Assigns a write-only channel to the mailbox.
	1. � Assigns a write-only channel to the mailbox.
	1. � Assigns a write-only channel to the mailbox.

	2. � Waits for a reader.
	2. � Waits for a reader.

	3. � Gathers user input until the user enters Ctrl/Z, then writes that input to the mailbox.
	3. � Gathers user input until the user enters Ctrl/Z, then writes that input to the mailbox.

	Example�4�1 Mailbox Driver Program Example 1
	Example�4�1 Mailbox Driver Program Example 1
	; *** ; .TITLE MAILBOX DRIVER P...

	Example�4�2
	Example�4�2

	Example�4�2 Mailbox Driver Program Example 2
	Example�4�2 Mailbox Driver Program Example 2
	/* * MAILBOX_READER.C * C program to demonstrate features of the Mailbox driver. * This program i...

	Example�4�3
	Example�4�3

	Example�4�3 Mailbox Driver Program Example 3
	Example�4�3 Mailbox Driver Program Example 3
	/* * MAILBOX_WRITER.C * C program to demonstrate features of the Mailbox driver. * This program i...

	5 Terminal Driver
	5 Terminal Driver
	Drivers:terminal
	Drivers:terminal
	Device drivers:terminal
	Terminals:driver
	Drivers:LAT port
	Device drivers:LAT port
	LAT port driver (LTDRIVER)
	LTDRIVER (LAT port driver)
	System:console terminal
	Console terminals
	Duplex mode<IndexSee> See also </>See also Half-duplex mode
	Half-duplex mode<IndexSee> See also </>See also Duplex mode
	Ctrl/x key sequence<IndexSee> See also </>See Terminals, control characters

	Supported Terminal Devices
	Supported Terminal Devices
	In addition to the multiplexers listed in
	The remote command terminal, used by the DCL command SET HOST, also makes use of the features lis...
	<TABLE>
	Table�5�1 Supported Terminal Devices (Continued)
	<TABLE HEADING>
	<TABLE ROW>
	Terminal Interfaces
	No. of Lines
	Output
	Split Speed
	Bus
	International Modem Control

	<TABLE ROW>
	Silo
	Silo

	DMA
	DMA

	<TABLE BODY>
	<TABLE ROW>
	CXY08
	CXY08

	8
	8

	Yes
	Yes

	Yes
	Yes

	Yes
	Yes

	Q-bus
	Q-bus

	Full
	Full

	<TABLE ROW>
	CXA16
	CXA16

	16
	16

	Yes1
	Yes

	Yes
	Yes

	Yes
	Yes

	Q-bus
	Q-bus

	No
	No

	<TABLE ROW>
	CXB16
	CXB16

	16
	16

	Yes1
	Yes

	Yes
	Yes

	Yes
	Yes

	Q-bus
	Q-bus

	No
	No

	<TABLE ROW>
	DZQ11
	DZQ11

	4
	4

	No
	No

	No
	No

	Yes
	Yes

	Q-bus
	Q-bus

	No
	No

	<TABLE ROW>
	DZQ11-CR
	DZQ11-CR

	4
	4

	No
	No

	No
	No

	Yes
	Yes

	Q-bus
	Q-bus

	No
	No

	<TABLE ROW>
	MicroVAX 2000
	MicroVAX 2000

	4
	4

	No
	No

	No
	No

	Yes
	Yes

	None
	None

	No
	No

	<TABLE ROW>
	MicroVAX 3100
	MicroVAX 3100

	4
	4

	No
	No

	No
	No

	Yes
	Yes

	None
	None

	No
	No

	<TABLE ROW>
	DZV11
	DZV11

	4
	4

	No
	No

	No
	No

	No
	No

	Q-bus
	Q-bus

	No
	No

	<TABLE ROW>
	DHQ11
	DHQ11

	8
	8

	Yes
	Yes

	Yes
	Yes

	Yes
	Yes

	Q-bus
	Q-bus

	Full
	Full

	<TABLE ROW>
	DHU11
	DHU11

	16
	16

	Yes1
	Yes

	Yes
	Yes

	Yes
	Yes

	UNIBUS
	UNIBUS

	Full
	Full

	<TABLE ROW>
	DHV11
	DHV11

	8
	8

	No
	No

	Yes
	Yes

	Yes
	Yes

	Q-bus
	Q-bus

	Full
	Full

	<TABLE ROW>
	DMB32
	DMB32

	8
	8

	No
	No

	Yes
	Yes

	Yes
	Yes

	VAXBI bus
	VAXBI bus

	Full
	Full

	<TABLE ROW>
	DHB32
	DHB32

	16
	16

	No
	No

	Yes
	Yes

	Yes
	Yes

	VAXBI bus
	VAXBI bus

	Full
	Full

	<TABLE ROW>
	DSH32
	DSH32

	8
	8

	Yes
	Yes

	No
	No

	Yes
	Yes

	MicroVAX 2000, MicroVAX 3100
	MicroVAX 2000, MicroVAX 3100

	No
	No

	<TABLE ROW>
	DMF32
	DMF32

	8
	8

	Yes
	Yes

	Yes
	Yes

	Yes2
	Yes

	UNIBUS
	UNIBUS

	Yes
	Yes

	<TABLE ROW>
	DMZ32
	DMZ32

	24
	24

	Yes
	Yes

	Yes
	Yes

	Yes
	Yes

	UNIBUS
	UNIBUS

	Full
	Full

	<TABLE ROW>
	DZ11
	DZ11

	8/16
	8/16

	No
	No

	No
	No

	No
	No

	UNIBUS
	UNIBUS

	No
	No

	<TABLE ROW>
	DZ32
	DZ32

	8
	8

	No
	No

	No
	No

	Limited
	Limited

	UNIBUS
	UNIBUS

	No
	No

	<TABLE ROW>
	LAT
	LAT

	3
	3
	3

	No
	No

	Yes
	Yes
	Server-dependent.
	Server-dependent.
	Server-dependent.

	N/A
	N/A

	3
	3
	3

	<TABLE ROW>
	VAX 8200 serial lines
	VAX 8200 serial lines

	4
	4

	No
	No

	No
	No

	No
	No

	None
	None

	No
	No

	<TABLE ROW>
	VAXstation 3100
	VAXstation 3100

	4
	4

	No
	No

	No
	No

	Yes
	Yes

	None
	None

	No
	No

	<TABLE ROW>
	VAXstation 4000
	VAXstation 4000

	2
	2

	No
	No

	No
	No

	Yes
	Yes

	None
	None

	No
	No

	<TABLE ROW>
	DEC 2000 Model 300
	DEC 2000 Model 300

	2
	2

	No
	No

	No
	No

	No
	No

	None
	None

	Full
	Full

	<TABLE ROW>
	DEC 2000
	DEC 2000
	Model 300

	4, 8
	4, 8

	Yes
	Yes

	No
	No

	No
	No

	EISA
	EISA

	Full
	Full

	<TABLE ROW>
	AlphaServer 2100
	AlphaServer 2100

	2
	2

	No
	No

	No
	No

	No
	No

	None
	None

	Full
	Full

	<TABLE ROW>
	AlphaServer5
	AlphaServer

	4, 8
	4, 8

	Yes
	Yes

	No
	No

	No
	No

	EISA
	EISA

	Full
	Full

	<TABLE ROW>
	DEC 3000 Model 300
	DEC 3000 Model 300

	3
	3

	No
	No

	Yes
	Yes

	No
	No

	None
	None

	Full
	Full

	<TABLE ROW>
	DEC 3000 Model 400
	DEC 3000 Model 400

	4
	4

	No
	No

	Yes
	Yes

	No
	No

	None
	None

	Full
	Full

	<TABLE ROW>
	DEC 3000 Model 500
	DEC 3000 Model 500

	4
	4

	No
	No

	Yes7
	Yes

	No
	No

	None
	None

	Full
	Full

	<TABLE ROW>
	DEC 4000 Model 600
	DEC 4000 Model 600

	2
	2

	No
	No

	No
	No

	No
	No

	None
	None

	Full
	Full

	Terminal Driver Features
	Terminal Driver Features
	Terminals:features
	Terminals:features

	• Input processing
	• Input processing
	• Input processing
	— Command-line editing and command recall
	— Command-line editing and command recall
	— Command-line editing and command recall

	— Control characters and special keys
	— Control characters and special keys

	— Input character validation (read verify)
	— Input character validation (read verify)

	— American National Standard Institute (ANSI) escape sequence detection
	— American National Standard Institute (ANSI) escape sequence detection

	— Type-ahead feature
	— Type-ahead feature

	— Specifiable or default input terminators
	— Specifiable or default input terminators

	— Special operating modes, such as NOECHO and PASTHRU
	— Special operating modes, such as NOECHO and PASTHRU

	• Output processing
	• Output processing
	— Efficiency
	— Efficiency
	— Efficiency

	— Limited full-duplex operation
	— Limited full-duplex operation

	— Formatted or unformatted output
	— Formatted or unformatted output

	• Dialup support
	• Dialup support
	— Modem control
	— Modem control
	— Modem control

	— Hangup on logout
	— Hangup on logout

	— Preservation of process across hangups
	— Preservation of process across hangups

	• Miscellaneous
	• Miscellaneous
	— Terminal/mailbox interaction
	— Terminal/mailbox interaction
	— Terminal/mailbox interaction

	— Autobaud detection
	— Autobaud detection

	— Out-of-band control character handling
	— Out-of-band control character handling

	Input Processing
	Input Processing
	Terminals:input processing
	Terminals:input processing

	Command-Line Editing and Command Recall
	Command-Line Editing and Command Recall
	Terminals:command line editing
	Terminals:command line editing
	Terminals:cursor movement
	Terminals:insert/overstrike (Ctrl/A)
	Terminals:delete character
	Terminals:line editing
	Terminals<IndexSee> See also </>line editing\;See also Terminals, item codes

	When you use the terminal driver's editing functions, the following restrictions result:
	• You cannot move the cursor to a previous line after a line wrap.
	• You cannot move the cursor to a previous line after a line wrap.
	• You cannot move the cursor to a previous line after a line wrap.

	• You cannot insert a character if the insertion would force a line wrap or if a tab follows the ...
	• You cannot insert a character if the insertion would force a line wrap or if a tab follows the ...

	• You cannot delete a word at the beginning of a line after a line wrap.
	• You cannot delete a word at the beginning of a line after a line wrap.

	• You cannot assign the line editing function to other keys.
	• You cannot assign the line editing function to other keys.

	Command recall, initiated by Ctrl/B or the up arrow, returns the last line entered
	Any control key that is not defined by line editing is ignored. For application programs that req...

	Control Characters and Special Keys
	Control Characters and Special Keys
	Terminals:control characters
	Terminals:control characters
	Terminals:control characters
	Control characters:terminal
	Keyboard control character

	You enter some control characters at the terminal by simultaneously pressing the Ctrl key and a c...
	Several of the control characters do not function as described if the DCL command SET TERMINAL/LI...
	<TABLE>
	Table�5�2 Terminal Control Characters (Continued)
	<TABLE HEADING>
	<TABLE ROW>
	Control Character
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	Cancel(Ctrl/C)
	Cancel(Ctrl/C)

	Gains the attention of the enabling process if the user program has enabled a Ctrl/C AST. If a Ct...
	Gains the attention of the enabling process if the user program has enabled a Ctrl/C AST. If a Ct...
	The terminal performs a carriage-return/line-feed combination (carriage return followed by a line...
	Additional consequences of Ctrl/C are as follows:
	• The type-ahead buffer is emptied.
	• The type-ahead buffer is emptied.
	• The type-ahead buffer is emptied.

	• Ctrl/S and Ctrl/O are reset.
	• Ctrl/S and Ctrl/O are reset.

	• All queued and in-progress write operations and all in-progress read operations are successfull...
	• All queued and in-progress write operations and all in-progress read operations are successfull...

	The F6 key maps to Ctrl/C on the following terminal types: LK201, LK46W, LK461, LK463, and other ...
	Note that Ctrl/C is generally translated to Ctrl/Y for processing within DCL, unless you have a C...

	<TABLE ROW>
	Delete Character (DELETE)
	Delete Character (DELETE)

	Removes the last character entered from the input stream.
	Removes the
	DELETE (decimal 127 or hexadecimal 7F) is ignored if there are currently no input characters. Har...

	<TABLE ROW>
	Delete line (Ctrl/U)
	Delete line (Ctrl/U)

	Purges current input data. When Ctrl/U is entered before the end of a read operation, the current...
	Purges current input data. When Ctrl/U is entered before the end of a read operation, the current...

	<TABLE ROW>
	Delete word (Ctrl/J or F13) (Line feed)
	Delete word (Ctrl/J or F13) (Line feed)

	Deletes the word before the cursor. Word terminators are all control characters, space, comma, da...
	Deletes the word before the cursor. Word terminators are all control characters, space, comma, da...

	<TABLE ROW>
	Discard output (Ctrl/O)
	Discard output (Ctrl/O)

	Discards output. Action is immediate. All output is discarded until the next read operation, the ...
	Discards output. Action is immediate. All output is discarded until the next read operation, the ...
	A second Ctrl/O, which reenables output, echoes OUTPUT ON. Ctrl/C, Ctrl/Y, and Ctrl/T cancel Ctrl/O.

	<TABLE ROW>
	End of line (Ctrl/E)
	End of line (Ctrl/E)

	Moves the cursor to the end of the line.
	Moves the cursor to the end of the line.

	<TABLE ROW>
	Exit (Ctrl/Z or F10)
	Exit (Ctrl/Z or F10)

	Echoes EXIT when Ctrl/Z is entered as a read terminator. By convention, Ctrl/Z constitutes end-of...
	Echoes EXIT when Ctrl/Z is entered as a read terminator. By convention, Ctrl/Z constitutes end-of...

	<TABLE ROW>
	Interrupt (Ctrl/Y)
	Interrupt (Ctrl/Y)

	Ctrl/Y is a special interrupt or attention character that is used to invoke the command interpret...
	Ctrl/Y is a special interrupt or attention character that is used to invoke
	Entering Ctrl/Y results in an AST to an enabled process to signify that the user entered Ctrl/Y f...
	Additional consequences of Ctrl/Y are as follows:
	• The type-ahead buffer is flushed.
	• The type-ahead buffer is flushed.
	• The type-ahead buffer is flushed.

	• Ctrl/S and Ctrl/O are reset.
	• Ctrl/S and Ctrl/O are reset.

	• All queued and in-progress write operations and all in-progress read operations are successfull...
	• All queued and in-progress write operations and all in-progress read operations are successfull...

	• The cancel ReGIS escape sequence is sent.
	• The cancel ReGIS escape sequence is sent.

	<TABLE ROW>
	Move cursor left (Ctrl/D)
	Move cursor left (Ctrl/D)

	Moves the cursor one position to the left.
	Moves the cursor one position to the left.

	<TABLE ROW>
	Move cursor right (Ctrl/F)
	Move cursor right (Ctrl/F)

	Moves the cursor one position to the right.
	Moves the cursor one position to the right.

	<TABLE ROW>
	Move cursor to beginning of line (Ctrl/H or F12) (Backspace)
	Move cursor to beginning of line (Ctrl/H or F12) (Backspace)

	Moves the cursor to the beginning of the line.
	Moves the cursor to the beginning of the line.

	<TABLE ROW>
	Purge type-ahead (Ctrl/X)
	Purge type-ahead (Ctrl/X)

	Purges the type-ahead buffer and performs a Ctrl/U operation. Action is immediate. If a read oper...
	Purges the type-ahead buffer and performs a Ctrl/U operation. Action is immediate. If a read oper...

	<TABLE ROW>
	Recall (Ctrl/B or up arrow)
	Recall (Ctrl/B or up arrow)

	Recalls the last command entered. DCL extends recall to several commands.
	Recalls the last command entered. DCL extends recall to several commands.

	<TABLE ROW>
	Redisplay input (Ctrl/R)
	Redisplay input (Ctrl/R)

	Redisplays current input. When Ctrl/R is entered during a read operation, a carriage-return/line-...
	Redisplays current input. When Ctrl/R is entered during a read operation, a carriage-return/line-...

	<TABLE ROW>
	Restart output (Ctrl/Q)
	Restart output (Ctrl/Q)

	Controls data flow; used by terminals and the driver. Restarts data flow to and from a terminal i...
	Controls data flow; used by terminals and the driver. Restarts data flow to and from
	Ctrl/Q is meaningless if the line does not have the characteristic TT$M_TTSYNC, the characteristi...

	<TABLE ROW>
	RET (Return)
	RET (Return)

	If used during a read (input) operation, RET echoes a carriage-return/line-feed combination. All ...
	If used during a read (input) operation, RET echoes a carriage-return/line-feed combination. All ...
	Return key

	<TABLE ROW>
	Stop output (Ctrl/S)
	Stop output (Ctrl/S)

	Controls data flow; used by both terminals and the terminal driver. Ctrl/S stops all data flow; t...
	Controls data flow; used by both terminals and the terminal driver. Ctrl/S stops all data flow;

	<TABLE ROW>
	TAB(Ctrl/I)
	TAB(Ctrl/I)

	Tabs horizontally. Advances to the next tab stop on terminals with the characteristic TT$M_MECHTA...
	Tabs horizontally. Advances to the next tab stop on terminals with the characteristic TT$M_MECHTA...

	<TABLE ROW>
	Status (Ctrl/T)
	Status (Ctrl/T)

	Displays the current time. Ctrl/T also displays the current node and user name, the name of the i...
	Displays the current time. Ctrl/T also displays the current node and user name, the name of the i...

	<TABLE ROW>
	Toggle insert/overstrike (Ctrl/A or F14)
	Toggle insert/overstrike (Ctrl/A or F14)

	Changes current edit mode from insert to overstrike, or from overstrike to insert. The default mo...
	Changes current edit mode from insert to overstrike, or from overstrike to insert. The default mo...

	Read Verify
	Read Verify
	Terminals:read verify
	Terminals:read verify

	Escape and Control Sequences
	Escape and Control Sequences
	Terminals:escape sequences
	Terminals:escape sequences
	Terminals:escape sequences
	Function modifiers:IO$M_ESCAPE
	Terminals:function modifiers:IO$M_ESCAPE
	Escape sequences:terminal

	The set mode characteristic TT$M_ESCAPE (see
	SS$_BADESCAPE return
	SS$_BADESCAPE return
	SS$_PARTESCAPE return

	ESC <int>...
	The keywords in the escape sequences indicate the following:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	ESC
	ESC

	The ESC key, a byte (character) of 1B. This character introduces the escape sequence in a 7-bit e...
	The ESC key, a byte (character) of 1B. This character introduces the escape sequence in a 7-bit e...

	<TABLE ROW>
	CSI
	CSI

	The control sequence introducer, a byte (character) of 9B. This character introduces the escape s...
	The control sequence introducer, a byte (character) of 9B. This character introduces the escape s...

	<TABLE ROW>
	<int>
	<
	<

	An “intermediate character” in the range of 20 to 2F. This range includes the space character and...
	An “intermediate character” in the range of 20 to 2F. This range includes the space character and...

	<TABLE ROW>
	<fin>
	<
	<

	A “final character” in the range of 30 to 7E. This range includes uppercase and lowercase letters...
	A “final character” in the range of 30 to 7E. This range includes uppercase and lowercase letters...

	Three additional escape sequence forms are as follows:
	ESC <;> <20-2F>...<30-7E> ESC <20-2F>...<30-7E> ESC <O><20-2F>...<40-7E>
	Control sequences, as defined by the ANSI standard, are escape sequences
	ESC [<par>...
	The keywords in the control sequences indicate the following:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	ESC
	ESC

	The ESC key, a byte (character) of 1B.
	The ESC key, a byte (character) of 1B.

	<TABLE ROW>
	[
	[

	A control sequence, a byte (character) of 5B.
	A control sequence, a byte (character) of 5B.

	<TABLE ROW>
	CSI
	CSI

	The control sequence introducer, a byte (character) of 9B.
	The control sequence introducer, a byte (character) of 9B.

	<TABLE ROW>
	<par>
	<
	<

	A parameter specifier in the range of 30 to 3F.
	A parameter specifier in the range of 30 to 3F.

	<TABLE ROW>
	<int>
	<
	<

	An “intermediate character” in the range of 20 to 2F.
	An “intermediate character” in the range of 20 to 2F.

	<TABLE ROW>
	<fin>
	<
	<

	A “final character” in the range of 40 to 7E.
	A “final character” in the range of 40 to 7E.

	For example, the position cursor control sequence is ESC [Pl ; Pc H where Pl is the desired line...
	The user guides for the various terminals list valid escape and control sequences. For example, the
	Section 5.2.1.2
	Section 5.2.1.2

	Table�C�2
	Table�C�2

	Type-Ahead Feature
	Type-Ahead Feature
	Terminals:type-ahead
	Terminals:type-ahead

	Data entered at the terminal is retained in the type-ahead buffer until the user program issues a...
	Deferring the echo until the read operation is active allows the user process to specify function...
	If a read operation is already in progress when the data is typed at the terminal, the data trans...
	The action of the driver when the type-ahead buffer fills depends on the set mode characteristic ...
	The type-ahead buffer length is variable, with possible values in the range of 0 through 32,767. ...
	Certain input-intensive applications, such as block mode input terminals, can take advantage of a...

	Line Terminators
	Line Terminators
	Control characters:terminal
	Control characters:terminal
	Keyboard control character
	Line terminator:terminal
	Terminals:line terminators
	Terminals:line terminators
	Terminals:control characters
	Terminals:control characters
	Terminals:line terminators

	Terminators are specified by an argument to the QIO request for a read operation. By default, the...
	All characters are 7-bit ASCII characters unless data is input on an 8-bit terminal (see
	The terminal driver notifies the job controller to initiate login when

	Special Operating Modes
	Special Operating Modes
	Terminals:special operating modes
	Terminals:special operating modes

	Output Processing
	Output Processing
	Terminals:output processing
	Terminals:output processing

	Duplex Modes
	Duplex Modes
	Terminals:duplex modes
	Terminals:duplex modes
	Half-duplex mode
	Full-duplex mode
	Duplex mode:terminal

	In half-duplex mode, all read and write requests are inserted onto one queue. The terminal driver...
	In full-duplex mode, read requests (and all other requests except write requests) are inserted on...
	The following terms describe the state of a read request:
	• A read request is
	• A read request is
	• A read request is

	• A read request is
	• A read request is

	In the terminal driver, write requests usually have priority. A write request can interrupt an ac...
	The terminal driver does not start a read request until all outstanding writes are completed. Thi...
	Once a read request is started, all write requests are queued until the read completes. However, ...
	If a write function specifies the IO$M_BREAKTHRU modifier, the write operation is not blocked, ev...
	When all I/O requests are entered using the Queue I/O Request and Wait ($QIOW) system service, th...
	The type-ahead buffer always buffers input data for which there is no current read request, in bo...

	Formatting of Output
	Formatting of Output
	By default, output data is subject to formatting by the terminal driver. This formatting includes...
	Fallback conversions occur regardless of formatting mode.

	SET HOST Facility and Output Buffering
	SET HOST Facility and Output Buffering
	Terminals:output:SET HOST
	Terminals:output:SET HOST
	SET HOST facility

	CTDRIVER and RTPAD
	CTDRIVER and RTPAD

	CTDRIVER driver
	CTDRIVER driver
	RTPAD component of SET HOST
	Terminals:output:CTDRIVER
	Terminals:output:RTPAD

	The delay between execution of an application and the display of its output can lead to several a...
	Output Line Not in Sequence Following an Abort Character
	Output Line Not in Sequence Following an Abort Character

	After you enter an abort character (Ctrl/C, Ctrl/Y, or an out-of-band abort character) that cause...
	When CTDRIVER receives the abort character (Ctrl/C, Ctrl/Y, or an out-of-band abort character) fr...
	When using the terminal driver, the effect of an abort character on the display screen is differe...
	Extra Input Prompt Following an Abort Character
	Extra Input Prompt Following an Abort Character

	For connections between systems, the CTERM protocol allows CTDRIVER to synchronize with RTPAD bef...
	NOTE Prior to VAX VMS Version 5.2, a control character entered during program execution to abort ...
	NOTE Prior to VAX VMS Version 5.2, a control character entered during program execution to abort ...
	If the SET HOST facility is used between systems running VMS Version 5.2 and an earlier version, ...

	Processing Abort Characters
	Processing Abort Characters

	The abort character AST is delivered after the message describing the aborted read operation has ...
	NOTE Prior to VAX VMS Version 5.2, if an application had a read operation pending and had queued ...
	NOTE Prior to VAX VMS Version 5.2, if an application had a read operation pending and had queued ...

	Captive Command Procedures and Ctrl/Y
	Captive Command Procedures and Ctrl/Y

	CTDRIVER and RTPAD emulate the terminal driver in that the current read operation and all pending...
	The effect of the buffering can be confusing if a Ctrl/Y is entered when a captive command proced...

	Dialup Support
	Dialup Support
	Terminals:dialup:support
	Terminals:dialup:support
	Terminals:duplex modes

	Modem Signal Control
	Modem Signal Control
	Terminals:dialup:lines
	Terminals:dialup:lines
	Dialup lines
	Terminals:modem:signal control
	Terminals:modem signal control

	If a line's carrier signal is lost, the driver waits 2 seconds for the carrier signal to return. ...
	NOTE Some systems, such as the VAXstation 3100, provide built-in serial lines using 6-pin modular...
	NOTE Some systems, such as the VAXstation 3100, provide built-in serial lines using 6-pin modular...

	For terminals with the TT$M_MODEM characteristic, TT$M_REMOTE reflects the state of the carrier s...
	A line that does not have TT$M_MODEM set does not respond to modem signals or set the DTR signal....
	The terminal driver default modem protocol
	Table�5�3
	Table�5�3

	Figure�5�1 Modem Control: Two-Way Simultaneous Operation
	Figure�5�1 Modem Control: Two-Way Simultaneous Operation
	<GRAPHIC>

	Set mode function modifiers are provided to allow a process to activate or deactivate modem contr...
	Bit 1 of the system generation parameter TTY_DIALTYPE enables alternate modem
	Remote terminal connections have a timeout feature for the security of dialup lines. If no channe...
	<TABLE>
	Table�5�3 Control and Data Signals (Continued)
	<TABLE HEADING>
	<TABLE ROW>
	Signal
	Source
	MUX
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	Transmitted data (TxD)
	Transmitted data (TxD)

	Computer
	Computer

	All
	All

	The data originated by the computer and transmitted through the modem to one or more remote termi...
	The data originated by the computer and transmitted through the modem to one or more remote termi...

	<TABLE ROW>
	Received data (RxD)
	Received data (RxD)

	Modem
	Modem

	All
	All

	The data generated by the modem in response to telephone line signals received from a remote term...
	The data generated by the modem in response to telephone line signals received from a remote term...

	<TABLE ROW>
	Request to send (RTS)
	Request to send (RTS)

	Computer
	Computer

	Full
	Full

	If present (ON condition), RTS directs the modem to assume the transmit mode. If not present(OFF ...
	If present (ON condition), RTS directs the modem to assume the transmit mode. If not present(OFF ...

	<TABLE ROW>
	Clear to send (CTS)
	Clear to send (CTS)

	Modem
	Modem

	Full
	Full

	Indicates whether the modem is ready (ON condition) or not ready (OFF condition) to transmit data...
	Indicates whether the modem is ready (ON condition) or not ready (OFF condition) to transmit data...

	<TABLE ROW>
	Data set ready (DSR)
	Data set ready (DSR)

	Modem
	Modem

	Full
	Full

	If present (ON condition), DSR indicates that the modem is ready to transmit and receive; that is...
	If present (ON condition), DSR indicates that the modem is ready to transmit and receive; that is...

	<TABLE ROW>
	If DSR is not present (OFF condition), the modem is not ready to transmit and receive. If DSR is ...
	If DSR is not present (OFF condition), the modem is not ready to transmit and receive. If DSR is ...

	<TABLE ROW>
	Data channel received line signal detector (CARRIER)
	Data channel received line signal detector (CARRIER)

	Modem
	Modem

	All
	All

	If present (ON condition), CARRIER indicates that the received data channel line signal is within...
	If present (ON condition), CARRIER indicates that the received data channel line signal is within...

	<TABLE ROW>
	Data terminal ready (DTR)
	Data terminal ready (DTR)
	Terminals:TTY_DIALTYPE system parameter

	Computer
	Computer

	All
	All

	If present (ON condition), DTR indicates that the computer is ready to operate, prepares the mode...
	If present (ON condition), DTR indicates that the computer is ready to operate, prepares the mode...

	<TABLE ROW>
	Calling indicator (RING)
	Calling indicator (RING)

	Modem
	Modem

	All
	All

	Indicates whether a calling signal is being received by the modem. Bit 1 of the system generation...
	Indicates whether a calling signal is being received by the modem. Bit 1 of the system generation...

	Hangup on Logging Out
	Hangup on Logging Out
	By default, logging out on a line with modem signals will not break the connection. If TT2$M_HANG...

	Preservation of a Process Across Hangups
	Preservation of a Process Across Hangups
	Terminals:process preservation
	Terminals:process preservation
	Terminals:hangup

	On VAX systems, the following SYSGEN command allows terminals to be disconnectable terminals:
	SYSGEN>
	SYSGEN>

	On Alpha and I64 systems, the following SYSMAN command allows terminals to be disconnectable term...
	SYSMAN>
	SYSMAN>

	After this command is entered, a terminal with the TT2$M_DISCONNECT characteristic logs in as VTA
	Following are four ways in which a terminal can become disconnected:
	• Modem signals between the host and the terminal are lost.
	• Modem signals between the host and the terminal are lost.
	• Modem signals between the host and the terminal are lost.

	• A user presses the BREAK key on a terminal that has the TT2$M_SECURE characteristic.
	• A user presses the BREAK key on a terminal that has the TT2$M_SECURE characteristic.

	• A user enters the DCL command DISCONNECT.
	• A user enters the DCL command DISCONNECT.

	• A user enters the DCL command CONNECT/CONTINUE.
	• A user enters the DCL command CONNECT/CONTINUE.

	DISCONNECT command
	DISCONNECT command
	CONNECT command

	• Allow the login process to make the connection.
	• Allow the login process to make the connection.
	• Allow the login process to make the connection.

	• Enter the DCL command CONNECT.
	• Enter the DCL command CONNECT.

	Terminal/Mailbox Interaction
	Terminal/Mailbox Interaction
	Mailboxes:terminal/mailbox interaction
	Mailboxes:terminal/mailbox interaction
	Terminals:mailbox

	A user program can use the Assign I/O Channel ($ASSIGN) system service
	Mailboxes used in this way carry status messages, not terminal data, from the driver to the user ...
	• Unsolicited data in the type-ahead buffer. The use of the associated mailbox can be enabled and
	• Unsolicited data in the type-ahead buffer. The use of the associated mailbox can be enabled and
	• Unsolicited data in the type-ahead buffer. The use of the associated mailbox can be enabled and

	• Terminal hangup.
	• Terminal hangup.

	• Broadcast messages.
	• Broadcast messages.

	Messages placed in the mailbox have the following content and format (see
	• Message type. The codes MSG$_TRMUNSOLIC (unsolicited data), MSG$_TRMHANGUP (hangup), and MSG$_T...
	• Message type. The codes MSG$_TRMUNSOLIC (unsolicited data), MSG$_TRMHANGUP (hangup), and MSG$_T...
	• Message type. The codes MSG$_TRMUNSOLIC (unsolicited data), MSG$_TRMHANGUP (hangup), and MSG$_T...

	• Device unit number to identify the terminal that sent the message.
	• Device unit number to identify the terminal that sent the message.

	• Counted string to specify the device name.
	• Counted string to specify the device name.

	• Controller name.
	• Controller name.

	• Message (for broadcasts).
	• Message (for broadcasts).

	Figure�5�2 Terminal Mailbox Message Format
	Figure�5�2 Terminal Mailbox Message Format
	<GRAPHIC>

	Terminals:mailbox:message format
	Mailboxes:message format:terminal
	Mailboxes:message format:terminal
	Message format<IndexSee> See also </>See Mailboxes
	Interaction with a mailbox associated with a terminal occurs through standard QIO functions and A...
	The ratio of terminals to mailboxes is not always one to one. One user process can have many term...

	Autobaud Detection
	Autobaud Detection
	Terminals:autobaud detection
	Terminals:autobaud detection
	Terminals:SET TERMINAL DCL command
	SET TERMINAL command

	The autobaud function works with either even parity or no parity, but not with odd parity. If a l...
	The SET TERMINAL qualifier /EIGHT_BIT specifies that the terminal uses 8-bit ASCII code. /NOEIGHT...
	Table�5�6
	Table�5�6

	HP does not usually recommend specifying the /FRAME qualifier with the SET TERMINAL command. The ...

	Out-of-Band Control Character Handling
	Out-of-Band Control Character Handling
	Terminals:out-of-band:characters
	Terminals:out-of-band:characters

	Terminal Driver Device Information
	Terminal Driver Device Information
	Terminals:device characteristics
	Terminals:device characteristics
	Terminals:device characteristics
	Device characteristics:terminal
	Device characteristics:terminal
	Terminals:SYS$GETDVI returns
	SYS$GETDVI routine:terminal

	Terminal characteristics
	$GETDVI returns terminal characteristics when you specify the item codes DVI$_DEVCHAR, DVI$_DEVDE...
	DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device type names, which are defined b...
	<TABLE>
	Table�5�4 Terminal Device-Independent Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Characteristic
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	DEV$M_AVL
	DEV$M_AVL

	Terminal is on line and available.
	Terminal is on line and available.

	<TABLE ROW>
	DEV$M_CCL
	DEV$M_CCL

	Carriage control is enabled.
	Carriage control is enabled.

	<TABLE ROW>
	DEV$M_DET
	DEV$M_DET

	Terminal is detached.
	Terminal is detached.

	<TABLE ROW>
	DEV$M_IDV
	DEV$M_IDV

	Terminal is capable of input.
	Terminal is capable of input.

	<TABLE ROW>
	DEV$M_ODV
	DEV$M_ODV

	Terminal is capable of output.
	Terminal is capable of output.

	<TABLE ROW>
	DEV$M_OPR
	DEV$M_OPR

	Terminal is enabled as an operator console.
	Terminal is enabled as an operator console.

	<TABLE ROW>
	DEV$M_REC
	DEV$M_REC

	Device is record-oriented.
	Device is record-oriented.

	<TABLE ROW>
	DEV$M_RTT
	DEV$M_RTT

	Terminal has remote terminal UCB extension.
	Terminal has remote terminal UCB extension.

	<TABLE ROW>
	DEV$M_SPL
	DEV$M_SPL

	Device is spooled.
	Device is spooled.

	<TABLE ROW>
	DEV$M_TRM
	DEV$M_TRM

	Device is a terminal.
	Device is a terminal.

	<TABLE ROW>
	DEV$M_NET
	DEV$M_NET

	Terminal line is allocated for DECnet use.
	Terminal line is allocated for DECnet use.

	<TABLE>
	Table�5�5 Terminal Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	TT$M_CRFILL
	TT$M_CRFILL

	Terminal requires fill after the Return key is pressed (the fill type can be specified by the set...
	Terminal requires fill after the Return key is pressed (the fill type can be specified by the set...

	<TABLE ROW>
	TT$M_EIGHTBIT
	TT$M_EIGHTBIT

	Terminal uses the 8-bit ASCII character set (see Appendix�C). Terminals without this characterist...
	Terminal uses the 8-bit ASCII character set (see

	<TABLE ROW>
	TT$M_ESCAPE
	TT$M_ESCAPE

	Terminal generates escape sequences (see Section 5.2.1.4). Escape sequences are validated for syn...
	Terminal generates escape sequences (see

	<TABLE ROW>
	TT$M_HALFDUP
	TT$M_HALFDUP

	Terminal is in half-duplex mode (see Section 5.2.2.1). All read and write requests are executed s...
	Terminal is in half-duplex mode (see

	<TABLE ROW>
	TT$M_HOSTSYNC
	TT$M_HOSTSYNC

	The host system is synchronized to the terminal. Ctrl/Q and Ctrl/S are used to control data flow ...
	The host system is synchronized to the terminal. Ctrl/Q and Ctrl/S are used to control data flow ...

	<TABLE ROW>
	TT$M_LFFILL
	TT$M_LFFILL

	Terminal requires fill after the line-feed character is processed. (The fill can be specified by ...
	Terminal requires fill after the line-feed character is processed. (The fill can be specified by ...

	<TABLE ROW>
	TT$M_LOWER
	TT$M_LOWER

	Terminal has the lowercase character set. Unless the terminal is in the PASTHRU mode or IO$M_NOFO...
	Terminal has the lowercase character set. Unless

	<TABLE ROW>
	TT$M_MBXDSABL
	TT$M_MBXDSABL

	Mailboxes associated with the terminal do not receive notification of unsolicited input or hangup...
	Mailboxes associated with the terminal do not

	<TABLE ROW>
	TT$M_MECHFORM
	TT$M_MECHFORM

	Terminal has mechanical form feed. The terminal driver passes form feeds directly to the terminal...
	Terminal has mechanical form feed. The terminal driver

	<TABLE ROW>
	TT$M_MECHTAB
	TT$M_MECHTAB

	Terminal has mechanical tabs and is capable of tab expansion. To accomplish correct line wrapping...
	Terminal has mechanical tabs and is capable of tab expansion. To accomplish correct line

	<TABLE ROW>
	TT$M_MODEM
	TT$M_MODEM

	Terminal line is connected to a modem. If TT$M_MODEM is set, the terminal driver automatically ha...
	Terminal line is connected to a modem. If
	TT$M_MODEM is not supported for LAT devices.

	<TABLE ROW>
	TT$M_NOBRDCST
	TT$M_NOBRDCST

	Terminal does not receive any broadcast messages.
	Terminal does not receive any broadcast

	<TABLE ROW>
	TT$M_NOECHO
	TT$M_NOECHO

	Input characters are not echoed on this terminal line (see Section 5.2.1.5).
	Input characters are not echoed on this terminal line (see

	<TABLE ROW>
	TT$M_NOTYPEAHD
	TT$M_NOTYPEAHD

	Data must be solicited by a read operation. Data is lost if received in the absence of an outstan...
	Data must be solicited by a read operation.

	<TABLE ROW>
	TT$M_READSYNC
	TT$M_READSYNC

	Read synchronization is enabled. The host explicitly solicits all read operations by entering a C...
	Read synchronization is enabled. The host explicitly solicits all read operations by entering a C...

	<TABLE ROW>
	TT$M_REMOTE
	TT$M_REMOTE

	Dialup characteristic is enabled. The terminal returns to local mode when a hangup occurs on the ...
	Dialup characteristic is enabled. The terminal

	<TABLE ROW>
	TT$M_SCOPE
	TT$M_SCOPE

	Terminal is a video screen display (CRT terminal), for example, the VT100 or VT240 terminals.
	Terminal is a video screen display (CRT terminal), for example, the VT100 or VT240 terminals.

	<TABLE ROW>
	TT$M_TTSYNC
	TT$M_TTSYNC

	The terminal is synchronized to the host system. Output to the terminal is controlled by terminal...
	The terminal is synchronized to the host system. Output to the terminal is controlled by terminal...

	<TABLE ROW>
	TT$M_WRAP
	TT$M_WRAP
	Terminals:cursor movement

	A carriage-return/line-feed combination should be inserted if the cursor moves beyond the right m...
	A carriage-return/line-feed combination should be inserted if the cursor moves beyond the right m...

	<TABLE>
	Table�5�6 Extended Terminal Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	TT2$M_ALTYPEAHD
	TT2$M_ALTYPEAHD

	Alternate type-ahead buffer size is enabled. Use the alternate type-ahead buffer size specified d...
	Alternate type-ahead buffer size is enabled.

	<TABLE ROW>
	TT2$M_ANSICRT
	TT2$M_ANSICRT

	ANSI CRT terminal is enabled. This characteristic is set by the SET TERMINAL command. TT2$M_ANSIC...
	ANSI CRT terminal is enabled.

	<TABLE ROW>
	TT2$M_APP_KEYPAD
	TT2$M_APP_KEYPAD

	Notifies application programs of state to set the keypad to when exiting.
	Notifies application programs of state to set the keypad to when exiting.

	<TABLE ROW>
	TT2$M_AUTOBAUD
	TT2$M_AUTOBAUD

	Automatic baud rate detection is enabled. This characteristic allows the baud rate to be set auto...
	Automatic baud rate detection is enabled.

	<TABLE ROW>
	TT2$M_AVO
	TT2$M_AVO

	Advanced video is enabled. This characteristic provides the terminal with blink, bold, and flashi...
	Advanced video is enabled. This characteristic provides the terminal with blink, bold, and flashi...

	<TABLE ROW>
	TT2$M_BLOCK
	TT2$M_BLOCK

	Block mode is enabled. This characteristic is set by the SET TERMINAL command. TT2$M_BLOCK define...
	Block mode is enabled. This characteristic is set by the SET TERMINAL command. TT2$M_BLOCK define...

	<TABLE ROW>
	TT2$M_BRDCSTMBX
	TT2$M_BRDCSTMBX

	Mailbox broadcasts messages. Broadcast messages are sent to an associated mailbox, if one exists.
	Mailbox broadcasts messages.

	<TABLE ROW>
	TT2$M_COMMSYNC
	TT2$M_COMMSYNC

	Enables devices such as asynchronous printers to be connected to terminal ports. Flow control is ...
	Enables devices such as asynchronous printers to be connected to terminal ports. Flow control is ...
	Do not set TT2$M_COMMSYNC on a line connected to a modem that is intended for interactive use. TT...

	<TABLE ROW>
	TT2$M_DECCRT
	TT2$M_DECCRT

	DIGITAL CRT terminal. This characteristic is set by the SET TERMINAL command for all terminals th...
	DIGITAL CRT terminal.

	<TABLE ROW>
	TT2$M_DECCRT2
	TT2$M_DECCRT2

	DIGITAL CRT terminal. This characteristic is set by the SET TERMINAL command for all terminals th...
	DIGITAL CRT terminal.

	<TABLE ROW>
	TT2$M_DECCRT3
	TT2$M_DECCRT3

	DIGITAL CRT terminal. This characteristic is set by the SET TERMINAL command for all terminals th...
	DIGITAL CRT terminal.

	<TABLE ROW>
	TT2$M_DECCRT4
	TT2$M_DECCRT4

	DIGITAL CRT terminal. This characteristic is set by the SET TERMINAL command for all terminals th...
	DIGITAL CRT terminal.

	<TABLE ROW>
	TT2$M_DIALUP
	TT2$M_DIALUP

	Terminal is a dialup line. Used by LOGINOUT for the disable dialup control.
	Terminal is a dialup line. Used by LOGINOUT for the disable dialup control.

	<TABLE ROW>
	TT2$M_DISCONNECT
	TT2$M_DISCONNECT

	Allows terminal disconnect when a hangup occurs (that is, when modem signals are lost, when the D...
	Allows terminal disconnect when a hangup

	<TABLE ROW>
	TT2$M_DMA
	TT2$M_DMA

	Direct memory access (DMA) mode. This characteristic enables the use of DMA mode for asynchronous...
	Direct memory access (DMA) mode. This characteristic enables the use of DMA mode for asynchronous...

	<TABLE ROW>
	TT2$M_DRCS
	TT2$M_DRCS

	Terminal supports loadable character fonts. This characteristic is set with the DCL command SET T...
	Terminal supports loadable character fonts. This characteristic is set with the DCL command SET T...

	<TABLE ROW>
	TT2$M_EDIT
	TT2$M_EDIT

	Terminal edit. This characteristic is set by the SET TERMINAL command for all terminals that supp...
	Terminal edit. This characteristic is set by

	<TABLE ROW>
	TT2$M_EDITING
	TT2$M_EDITING

	Line editing is allowed.
	Line editing is allowed.

	<TABLE ROW>
	TT2$M_FALLBACK
	TT2$M_FALLBACK

	Output is transformed from the 8-bit multinational character set to a 7-bit ASCII character set o...
	Output is transformed from the 8-bit

	<TABLE ROW>
	TT2$M_HANGUP
	TT2$M_HANGUP

	Terminal hangup. Terminal lines connected through modems are hung up when a process logs out or i...
	Terminal hangup.

	<TABLE ROW>
	TT2$M_INSERT
	TT2$M_INSERT

	Sets default mode for insert or overstrike at the beginning of each read operation.
	Sets default mode for insert or overstrike at the beginning of each read operation.

	<TABLE ROW>
	TT2$M_LOCALECHO
	TT2$M_LOCALECHO

	Local echo. This characteristic is used with TT$M_NOECHO. If both characteristics are set, only t...
	Local echo. This characteristic is used

	<TABLE ROW>
	TT2$M_MODHANGUP
	TT2$M_MODHANGUP

	Modify hangup. If specified, TT2$M_HANGUP can be modified without privilege. Otherwise, logical o...
	Modify hangup. If specified, TT2$M_HANGUP can be modified without privilege. Otherwise, logical o...

	<TABLE ROW>
	TT2$M_PASTHRU
	TT2$M_PASTHRU

	Terminal is in PASTHRU mode; all input and output data is in 7- or 8-bit binary format (no data i...
	Terminal is in PASTHRU mode; all input

	<TABLE ROW>
	TT2$M_PRINTER
	TT2$M_PRINTER

	DIGITAL CRT terminal with a local printer port.
	DIGITAL CRT terminal with a local printer port.

	<TABLE ROW>
	TT2$M_REGIS
	TT2$M_REGIS

	ReGIS graphics. The terminal supports the ReGIS graphics instruction set.
	ReGIS graphics.

	<TABLE ROW>
	TT2$M_SIXEL
	TT2$M_SIXEL
	Terminals:SIXEL graphics

	SIXEL graphics. The terminal supports the SIXEL graphics instruction set.
	SIXEL graphics. The terminal supports the SIXEL graphics instruction set.

	<TABLE ROW>
	TT2$M_SECURE
	TT2$M_SECURE

	For use with nonmodem, nonautobaud lines. This characteristic guarantees that no process is conne...
	For use with nonmodem, nonautobaud lines. This characteristic guarantees that no process is conne...

	<TABLE ROW>
	TT2$M_SETSPEED
	TT2$M_SETSPEED

	Set speed. If specified, either LOG_IO or PHY_IO privilege is required to change terminal speed. ...
	Set speed. If specified, either LOG_IO or PHY_IO privilege is required to change terminal speed. ...

	<TABLE ROW>
	TT2$M_SYSPWD
	TT2$M_SYSPWD

	System password. This characteristic specifies that the login procedure should require the system...
	System password. This characteristic specifies that the login procedure should require the system...

	<TABLE ROW>
	TT2$M_XON
	TT2$M_XON

	XON/XOFF control. If a set mode function is performed on a terminal in the Ctrl/S state, and if T...
	XON/XOFF control.

	Terminal Characteristics Categories
	Terminal Characteristics Categories
	Terminals:SET TERMINAL DCL command
	Terminals:SET TERMINAL DCL command
	SET TERMINAL command

	To customize terminal behavior and usage, the operating system
	Terminals:device characteristics
	Terminals:device characteristics:extended
	Terminals:device characteristics:extended
	Terminals:extended characteristics
	Terminal characteristics
	• Format effectors—The following characteristics allow you to specify terminal-dependent formatti...
	• Format effectors—The following characteristics allow you to specify terminal-dependent formatti...
	• Format effectors—The following characteristics allow you to specify terminal-dependent formatti...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	TT$M_CRFILL
	TT$M_CRFILL

	TT$M_EIGHTBIT
	TT$M_EIGHTBIT

	TT$M_LFFILL
	TT$M_LFFILL

	<TABLE ROW>
	TT$M_LOWER
	TT$M_LOWER

	TT2$M_LOCALECHO
	TT2$M_LOCALECHO

	TT$M_MECHFORM
	TT$M_MECHFORM

	<TABLE ROW>
	TT$M_MECHTAB
	TT$M_MECHTAB

	TT$M_NOECHO
	TT$M_NOECHO

	TT$M_SCOPE
	TT$M_SCOPE

	<TABLE ROW>
	TT$M_WRAP
	TT$M_WRAP

	• Generic terminal capabilities—The following characteristics specify generic terminal features a...
	• Generic terminal capabilities—The following characteristics specify generic terminal features a...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	TT2$M_ANSICRT
	TT2$M_ANSICRT

	TT2$M_AVO
	TT2$M_AVO

	TT2$M_BLOCK
	TT2$M_BLOCK

	<TABLE ROW>
	TT2$M_DECCRT
	TT2$M_DECCRT

	TT2$M_DECCRT2
	TT2$M_DECCRT2

	TT2$M_DECCRT3
	TT2$M_DECCRT3

	<TABLE ROW>
	TT2$M_DECCRT4
	TT2$M_DECCRT4

	TT2$M_DRCS
	TT2$M_DRCS

	TT2$M_EDIT
	TT2$M_EDIT

	<TABLE ROW>
	TT2$M_PRINTER
	TT2$M_PRINTER

	TT2$M_REGIS
	TT2$M_REGIS

	TT2$M_SIXEL
	TT2$M_SIXEL

	Their use allows execution of these programs without knowledge of the actual terminal type. For e...

	• Protocol—The following characteristics control protocols used by the terminal:
	• Protocol—The following characteristics control protocols used by the terminal:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	TT$M_ESCAPE
	TT$M_ESCAPE

	TT$M_HALFDUP
	TT$M_HALFDUP

	TT$M_HOSTSYNC
	TT$M_HOSTSYNC

	<TABLE ROW>
	TT2$M_PASTHRU
	TT2$M_PASTHRU

	TT$M_TTSYNC
	TT$M_TTSYNC

	• System management—The following characteristics, normally set only at system startup, allow the...
	• System management—The following characteristics, normally set only at system startup, allow the...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	TT2$M_ALTYPEAHD
	TT2$M_ALTYPEAHD

	TT2$M_AUTOBAUD
	TT2$M_AUTOBAUD

	TT2$M_DIALUP
	TT2$M_DIALUP

	<TABLE ROW>
	TT2$M_DISCONNECT
	TT2$M_DISCONNECT

	TT2$M_DMA
	TT2$M_DMA

	TT2$M_HANGUP
	TT2$M_HANGUP

	<TABLE ROW>
	TT$M_MODEM
	TT$M_MODEM

	TT$M_NOTYPEAHD
	TT$M_NOTYPEAHD

	TT2$M_MODHANGUP
	TT2$M_MODHANGUP

	<TABLE ROW>
	TT2$M_SECURE
	TT2$M_SECURE

	TT2$M_SETSPEED
	TT2$M_SETSPEED

	TT2$M_SYSPWD
	TT2$M_SYSPWD

	<TABLE ROW>
	TT2$M_COMMSYNC
	TT2$M_COMMSYNC

	• User preference—The following characteristics allow you to customize the terminal operating mode:
	• User preference—The following characteristics allow you to customize the terminal operating mode:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	TT2$M_APP_KEYPAD
	TT2$M_APP_KEYPAD

	TT2$M_FALLBACK
	TT2$M_FALLBACK

	TT2$M_EDITING
	TT2$M_EDITING

	<TABLE ROW>
	TT2$M_INSERT
	TT2$M_INSERT

	TT$M_NOBRDCST
	TT$M_NOBRDCST

	• Miscellaneous—The following characteristics provide greater program control of terminal operati...
	• Miscellaneous—The following characteristics provide greater program control of terminal operati...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	TT2$M_BRDCSTMBX
	TT2$M_BRDCSTMBX

	TT$M_MBXDSABL
	TT$M_MBXDSABL

	TT2$M_XON
	TT2$M_XON

	Terminal Function Codes
	Terminal Function Codes
	I/O functions:terminal
	I/O functions:terminal
	Terminals:function codes
	Terminals:function codes
	I/O functions:terminal

	Read
	Read
	Terminals:read function
	Terminals:read function
	Terminals:I/O functions:IO$_READVBLK
	Terminals:I/O functions:IO$_READLBLK
	Terminals:I/O functions:IO$_READPROMPT
	Function codes:IO$_READVBLK
	Function codes:IO$_READLBLK
	Function codes:IO$_READPROMPT

	• IO$_READVBLK—Read virtual block
	• IO$_READVBLK—Read virtual block
	• IO$_READVBLK—Read virtual block

	• IO$_READLBLK—Read logical block
	• IO$_READLBLK—Read logical block

	• IO$_READPROMPT—Read with prompt
	• IO$_READPROMPT—Read with prompt

	Read operations are terminated if either of the following two conditions occurs:
	• The user buffer is full.
	• The user buffer is full.
	• The user buffer is full.

	• The received character is included in a specified terminator mask (see
	• The received character is included in a specified terminator mask (see

	The following device- or function-dependent arguments are used with the read function codes. The ...
	• P1—The starting virtual address of the buffer that is to receive the data read.
	• P1—The starting virtual address of the buffer that is to receive the data read.
	• P1—The starting virtual address of the buffer that is to receive the data read.

	• P2—The size of the buffer that is to receive the data read in bytes. (The system generation par...
	• P2—The size of the buffer that is to receive the data read in bytes. (The system generation par...

	• P3—Read with timeout, timeout count (see
	• P3—Read with timeout, timeout count (see

	• P4—The read terminator descriptor block address (see
	• P4—The read terminator descriptor block address (see

	• P5—The starting virtual address of the prompt buffer that is to be written to the terminal; for...
	• P5—The starting virtual address of the prompt buffer that is to be written to the terminal; for...

	• P6—The size of the prompt buffer that is to be written to the terminal; for read with prompt op...
	• P6—The size of the prompt buffer that is to be written to the terminal; for read with prompt op...

	In a read with prompt operation, the P5 and P6 arguments specify the address and size of a prompt...
	Terminals:I/O functions:IO$_READPROMPT
	Terminals:I/O functions:IO$_READPROMPT
	Terminals:control characters
	Terminals:redisplay data (Ctrl/R)
	Terminals:delete line (Ctrl/U)
	Terminals:discard output (Ctrl/O)

	Depending on the terminal type and your input, the prompt string can be very simple or quite comp...
	In PASTHRU mode, data received from the associated terminal is placed in the user buffer as binar...
	Function Modifier Codes for Read QIO Functions
	Function Modifier Codes for Read QIO Functions
	Eight function modifiers can be specified with IO$_READVBLK, IO$_READLBLK, and IO$_READPROMPT.
	<TABLE>
	Table�5�7 Read QIO Function Modifiers for the Terminal Driver�
	<TABLE HEADING>
	<TABLE ROW>
	Code
	Consequence

	<TABLE BODY>
	<TABLE ROW>
	IO$M_CVTLOW
	IO$M_CVTLOW

	Lowercase alphabetic characters (hexadecimal 61 to 7A) are converted to uppercase when transferre...
	Lowercase alphabetic characters (hexadecimal 61 to 7A)

	<TABLE ROW>
	IO$M_DSABLMBX
	IO$M_DSABLMBX

	The mailbox is disabled for unsolicited data.
	The mailbox is disabled for unsolicited data.

	<TABLE ROW>
	IO$M_ESCAPE
	IO$M_ESCAPE

	A valid ANSI escape sequence is recognized as a valid delimiter for the read operation. The TT$M_...
	A valid ANSI escape sequence is recognized as a

	<TABLE ROW>
	IO$M_EXTEND
	IO$M_EXTEND

	This characteristic provides additional functionality for read operations (see Section 5.4.1.3). ...
	This characteristic provides additional functionality for read operations (see

	<TABLE ROW>
	IO$M_NOECHO
	IO$M_NOECHO

	Characters are not echoed as they are entered at the keyboard. The terminal line can also be set ...
	Characters are not echoed

	<TABLE ROW>
	IO$M_NOFILTR
	IO$M_NOFILTR

	The terminal does not interpret Ctrl/U, Ctrl/R, or DEL. They are passed to the user. IO$M_NOFILTR...
	The terminal does not interpret Ctrl/U, Ctrl/R, or DEL. They are passed to the user. IO$M_NOFILTR...

	<TABLE ROW>
	IO$M_PURGE
	IO$M_PURGE

	The type-ahead buffer is purged before the read operation begins.
	The type-ahead buffer is purged before the read operation begins.

	<TABLE ROW>
	IO$M_TIMED
	IO$M_TIMED

	The P3 argument specifies the maximum time (seconds) that can elapse between characters received ...
	The P3 argument specifies the maximum time (seconds) that can elapse between characters received ...
	Note that if you are using a timeout in an item list of a $QIO read to a terminal driver, the tim...
	Because driver timing operates on a 1-second timer, a 2-second timeout must be specified to guara...
	A read with timeout operation, in which the timeout value is 0, empties the type-ahead buffer int...
	If a write request is active and there is no prompt string, the read request generally times out ...
	If a read operation is interrupted by either a broadcast write or a synchronous write request, th...

	<TABLE ROW>
	IO$M_TRMNOECHO
	IO$M_TRMNOECHO

	The termination character (if any) is not echoed. There is no formal terminator if the buffer is ...
	The termination character (if any) is not echoed.

	Read Function Terminators
	Read Function Terminators
	The P4 argument to a read QIO function either specifies the terminator set for the read function ...
	If P4 does not equal 0, it contains the address of a quadword that either specifies a terminator ...
	The long form allows use of a more comprehensive set of terminator characters. Any mask equal to ...
	If the terminator mask is all zeros, there are no specified terminators. The read operation ends ...
	Certain control keys will not act as terminators unless IO$M_NOFILTR is specified or the line has...
	Figure�5�3 Short and Long Forms of Terminator Mask Quadwords
	Figure�5�3 Short and Long Forms of Terminator Mask Quadwords
	<GRAPHIC>

	Terminals:terminator mask

	Itemlist Read Operations
	Itemlist Read Operations
	Terminals:itemlist read
	Terminals:itemlist read
	Itemlist read operations
	Terminals:itemlist read

	IO$_READVBLK!IO$M_EXTEND—Itemlist read virtual block
	IO$_READVBLK!IO$M_EXTEND—Itemlist read virtual block
	IO$_READVBLK!IO$M_EXTEND—Itemlist read virtual block

	Terminals:function modifiers:IO$M_EXTEND
	Terminals:function modifiers:IO$M_EXTEND
	Function modifiers:IO$M_EXTEND

	NOTE Itemlist read features supported by the terminal driver are not supported by all DECnet term...
	NOTE Itemlist read features supported by the terminal driver are not supported by all DECnet term...

	The itemlist read function code and modifier combination takes the following device- or function-...
	• P1—The starting virtual address of the buffer that is to receive the data read.
	• P1—The starting virtual address of the buffer that is to receive the data read.
	• P1—The starting virtual address of the buffer that is to receive the data read.

	• P2—The size of the buffer that is to receive the data read in bytes. If required, the P2 size i...
	• P2—The size of the buffer that is to receive the data read in bytes. If required, the P2 size i...
	NOTE The IO$_READxBLK and IO$_WRITExBLK are limited by the system parameter MAXBUF as well as the...
	NOTE The IO$_READxBLK and IO$_WRITExBLK are limited by the system parameter MAXBUF as well as the...

	MAXBUF system parameter

	• P3—The access mode at which the itemlist is to be probed (optional).
	• P3—The access mode at which the itemlist is to be probed (optional).

	• P5—The address of the itemlist buffer.
	• P5—The address of the itemlist buffer.

	• P6—The length in bytes of the itemlist buffer.
	• P6—The length in bytes of the itemlist buffer.

	P4 is not meaningful for itemlist read operations. P5 points to a series of item descriptors.
	Figure�5�4 Itemlist Read Descriptor
	Figure�5�4 Itemlist Read Descriptor
	<GRAPHIC>

	Table�5�8
	Table�5�8

	<TABLE>
	Table�5�8 Item Codes for Terminal Driver Itemlist Read Operations�
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	TRM$_ALTECHSTR
	TRM$_ALTECHSTR

	Alternate echo string. The buffer length word contains the length of the string. The data address...
	Alternate echo string. The buffer length word contains the length of the string. The data address...
	This item code for character validating read mode (TRM$K_EM_RDVERIFY) editing only.

	<TABLE ROW>
	TRM$_EDITMODE
	TRM$_EDITMODE

	Extended editing modes. The immediate data longword specifies extended editing mode values. The b...
	Extended editing modes. The immediate data longword specifies extended editing mode values. The b...

	<TABLE ROW>
	TRM$K_EM_DEFAULT
	Normal read mode. This is the default if TRM_EDITMODE is not present in the itemlist.

	<TABLE ROW>
	TRM$K_EM_RDVERIFY
	Character Validating read mode. See “Read Verify Function” on page�204.

	<TABLE ROW>
	TRM$_ESCTRMOVR
	Escape terminator overflow size. Specifies the number of bytes that may be used to hold an escape...
	Escape terminator overflow size. Specifies the number of bytes that may be used to hold an escape...
	Terminals:escape sequences:overflow size (item code)
	Terminals:escape sequences:overflow size (item code)
	SS$_PARTESCAPE return

	<TABLE ROW>
	TRM$_FILLCHR
	A 2-byte value that indicates the fill and clear character for TRM$K_EM_RDVERIFY. The first byte ...
	A 2-byte value that indicates the fill and clear character for TRM$K_EM_RDVERIFY. The first byte ...
	This item code is for character validating read mode (TRM$K_EM_RDVERIFY) editing only.

	<TABLE ROW>
	TRM$_INIOFFSET
	Indicates the character in the initial string where echoing starts. The immediate data longword s...
	Indicates the character in the initial string where echoing starts. The immediate data longword s...

	<TABLE ROW>
	TRM$_INISTRNG
	TRM$_INISTRNG

	Specifies a string to preload into the read buffer (P1). The buffer length word contains the leng...
	Specifies a string to preload into the read buffer (P1). The buffer length word contains the leng...

	<TABLE ROW>
	TRM$_MODIFIERS
	TRM$_MODIFIERS

	Read modifiers. The immediate data longword contains a 32-bit value that specifies modifiers to r...
	Read modifiers. The immediate data longword contains a 32-bit value that specifies modifiers to r...

	<TABLE ROW>
	TRM$M_TM_ARROWS
	TRM$M_TM_ARROWS

	The terminal interprets the left and right arrow keys (TRM$K_EM_RDVERIFY mode only). The arrow ke...
	The terminal interprets the left and right arrow keys (TRM$K_EM_RDVERIFY mode only). The arrow ke...

	<TABLE ROW>
	TRM$M_TM_AUTO_TAB
	TRM$M_TM_AUTO_TAB

	This bit creates an autotab mode field (TRM$K_EM_RDVERIFY mode only).
	This bit creates an autotab mode field (TRM$K_EM_RDVERIFY mode only).

	<TABLE ROW>
	TRM$M_TM_CVTLOW
	TRM$M_TM_CVTLOW

	Lowercase alphabetic characters (hexadecimal 61 to 7A) are converted to uppercase when transferre...
	Lowercase alphabetic characters (hexadecimal 61 to 7A) are converted to uppercase when transferre...

	<TABLE ROW>
	TRM$M_TM_DSABLMBX
	TRM$M_TM_DSABLMBX

	The mailbox is disabled for unsolicited data and for receiving hangup messages.
	The mailbox is disabled for unsolicited data and for receiving hangup messages.

	<TABLE ROW>
	TRM$M_TM_ESCAPE
	TRM$M_TM_ESCAPE

	A valid ANSI escape sequence is recognized as a valid delimiter for the read operation.
	A valid ANSI escape sequence is recognized as a valid delimiter for the read operation.

	<TABLE ROW>
	TRM$M_TM_NOCLEAR
	Fill characters are not replaced with clear characters after a nonfill character occurs (TRM$K_EM...
	Fill characters are not replaced with clear characters after a nonfill character occurs (TRM$K_EM...

	<TABLE ROW>
	TRM$M_TM_NOECHO
	TRM$M_TM_NOECHO

	Characters are not displayed as they are entered at the keyboard.

	<TABLE ROW>
	TRM$M_TM_NOEDIT
	This bit inhibits advanced editing for this read operation.
	This bit inhibits advanced editing for this read operation.

	<TABLE ROW>
	TRM$M_TM_NOFILTR
	TRM$M_TM_NOFILTR

	The terminal does not interpret DEL, Ctrl/U, or Ctrl/R, but passes them to you. This characterist...
	The terminal does not interpret DEL, Ctrl/U, or Ctrl/R, but passes them to you. This characterist...

	<TABLE ROW>
	TRM$M_TM_NORECALL
	TRM$M_TM_NORECALL

	This bit inhibits command recall (Ctrl/B) by the terminal driver.
	This bit inhibits command recall (Ctrl/B) by the terminal driver.

	<TABLE ROW>
	TRM$M_TM_OTHERWAY
	TRM$M_TM_OTHERWAY

	This bit sets left-justify fields to insert mode and right-justify fields to overstrike mode (TRM...
	This bit sets left-justify fields to insert mode and right-justify fields to overstrike mode (TRM...

	<TABLE ROW>
	TRM$M_TM_PURGE
	TRM$M_TM_PURGE

	The type-ahead buffer is purged before the read operation begins.
	The type-ahead buffer is purged before the read operation begins.

	<TABLE ROW>
	TRM$M_TM_R_JUST
	TRM$M_TM_R_JUST

	This bit creates a right-justified field (TRM$K_EM_RDVERIFY mode only).
	This bit creates a right-justified field (TRM$K_EM_RDVERIFY mode only).

	<TABLE ROW>
	TRM$M_TM_TERM_ARROW
	TRM$M_TM_TERM_ARROW

	The read operation is terminated when the left arrow key is pressed at the left margin or when th...
	The read operation is terminated when the left arrow key is pressed at the left margin or when th...

	<TABLE ROW>
	TRM$M_TM_TERM_DEL
	TRM$M_TM_TERM_DEL

	The read operation is terminated when the DELETE key is pressed at the left margin (TRM$K_EM_RDVE...
	The read operation is terminated when the DELETE key is pressed at the left margin (TRM$K_EM_RDVE...

	<TABLE ROW>
	TRM$M_TM_TOGGLE
	Enables Ctrl/A to function as a toggle key between insert mode and overstrike mode (TRM$K_EM_RDVE...
	Enables Ctrl/A to function as a toggle key between insert mode and overstrike mode (TRM$K_EM_RDVE...

	<TABLE ROW>
	TRM$M_TM_TIMED
	TRM$M_TM_TIMED

	TRM$_TIMEOUT specifies the maximum time (seconds) that can elapse between characters received fro...
	TRM$_TIMEOUT specifies the maximum time (seconds) that can elapse between characters received fro...

	<TABLE ROW>
	TRM$M_TM_TRMNOECHO
	TRM$M_TM_TRMNOECHO

	The termination character (if any) is not displayed. There is no formal terminator if the buffer ...
	The termination character (if any) is not displayed. There is no formal terminator if the buffer ...
	All other bits must be zero.

	<TABLE ROW>
	TRM$_PICSTRNG
	Character validation string. The buffer length word contains the length of the string, which must...
	Character validation string. The buffer length word contains the length of the string, which must...
	Note that this item code is for character validating read mode (TRM$K_EM_RDVERIFY) editing only.
	The format of the character validation string is 1 byte per input character. Each byte is a bit m...

	<TABLE ROW>
	Value
	Value

	Meaning
	Meaning

	<TABLE ROW>
	TRM$M_CV_UPPER
	Uppercase alphabetic

	<TABLE ROW>
	TRM$M_CV_LOWER
	Lowercase alphabetic

	<TABLE ROW>
	TRM$M_CV_NUMERIC
	Numeric (0-9)

	<TABLE ROW>
	TRM$M_CV_NUMPUNC
	Numeric punctuation (+ - .)

	<TABLE ROW>
	TRM$M_CV_PRINTABLE
	Printable ASCII character

	<TABLE ROW>
	TRM$M_CV_ANY
	Any character

	<TABLE ROW>
	If no values are set, the corresponding character specified by TRM$_INISTRNG is used. Appendix�C ...
	If no values are set, the corresponding character specified by TRM$_INISTRNG is used.

	<TABLE ROW>
	TRM$_PROMPT
	TRM$_PROMPT

	Specifies a prompt string. The buffer length word contains the length of the prompt. The data add...
	Specifies a prompt string. The buffer length word contains the length of the prompt. The data add...

	<TABLE ROW>
	TRM$_TERM
	TRM$_TERM

	The buffer length word determines the format of the nondefault terminator mask. If the buffer len...
	The buffer length word determines the format of the nondefault terminator mask. If the buffer len...

	<TABLE ROW>
	TRM$_TIMEOUT
	TRM$_TIMEOUT

	Read timeout. See the description of IO$M_TIMED in Table�5�7.
	Read timeout. See the description of IO$M_TIMED in

	Terminals:itemlist read:item codes
	Terminals:item codes

	Read Verify Function
	Read Verify Function
	Terminals:read verify
	Terminals:read verify
	Terminals:read verify

	The initial string describes the initial contents of the input field. This string may consist of ...
	The picture string is a string of bytes where each byte corresponds to one character of the field...
	For left-justified fields, the prompt data is output to the terminal, followed by an optional num...
	For right-justified fields, the prompt is output and is followed by the initial string. (In gener...
	The definition of full field is different for left- and right-justified read operations. For left...
	If the modifier TRM$M_TM_AUTO_TAB is set in TRM$_MODIFIERS, then detection of a full field termin...
	If a read verify function is interrupted by an asynchronous write operation, the read verify is c...
	No line editing functions other than the delete character function are supported for read verify.

	Write
	Write
	Terminals:write function
	Terminals:write function

	• IO$_WRITEVBLK—Write virtual block
	• IO$_WRITEVBLK—Write virtual block
	• IO$_WRITEVBLK—Write virtual block

	• IO$_WRITELBLK—Write logical block
	• IO$_WRITELBLK—Write logical block

	• IO$_WRITEPBLK—Write physical block
	• IO$_WRITEPBLK—Write physical block

	The write function codes can take the following device- or function-dependent arguments:
	• P1—The starting virtual address of the buffer that is to be written to the terminal.
	• P1—The starting virtual address of the buffer that is to be written to the terminal.
	• P1—The starting virtual address of the buffer that is to be written to the terminal.

	• P2—The number of bytes that are to be written to the terminal. (The system generation parameter...
	• P2—The number of bytes that are to be written to the terminal. (The system generation parameter...

	• P4—Carriage control specifier except for write physical block operations. (Write function carri...
	• P4—Carriage control specifier except for write physical block operations. (Write function carri...

	P3, P5, and P6 are not meaningful for terminal write operations.
	In write virtual block and write logical block operations, the buffer (P1 and P2) is formatted fo...
	Unless TT$M_MECHFORM is specified, multiple line feeds are generated for form feeds. The number o...
	CTDRIVER and Buffered Output
	CTDRIVER and Buffered Output

	Terminals:I/O functions:CTDRIVER
	Terminals:I/O functions:CTDRIVER
	CTDRIVER driver

	Note that this output might not be displayed if the user enters an abort character or a Ctrl/O.
	Function Modifier Codes for Write QIO Functions
	Function Modifier Codes for Write QIO Functions
	Five function modifiers can be specified with IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK.
	<TABLE>
	Table�5�9 Write QIO Function Modifiers for the Terminal Driver�
	<TABLE HEADING>
	<TABLE ROW>
	Code
	Consequence

	<TABLE BODY>
	<TABLE ROW>
	IO$M_BREAKTHRU
	IO$M_BREAKTHRU

	Allows breakthrough read regardless of the current active state.
	Allows breakthrough read regardless of the current active state.

	<TABLE ROW>
	IO$M_CANCTRLO
	IO$M_CANCTRLO

	Turns off Ctrl/O (if it is in effect) before the write operation. Otherwise, the data cannot be d...
	Turns off Ctrl/O (if it is in effect) before the write operation. Otherwise,

	<TABLE ROW>
	IO$M_ENABLMBX
	IO$M_ENABLMBX

	Enables use of the mailbox associated with the terminal for notification that unsolicited data is...
	Enables use of the mailbox associated with the terminal for notification that

	<TABLE ROW>
	IO$M_NOFORMAT
	IO$M_NOFORMAT

	Allows you to specify write functions without interpretation or format; in effect, the terminal l...
	Allows you to specify write functions without interpretation

	<TABLE ROW>
	IO$M_REFRESH
	IO$M_REFRESH

	If a read operation is interrupted by a write operation (by either a write breakthrough or any ot...
	If a read operation is interrupted by a write operation (by either a write breakthrough

	Write Function Carriage Control
	Write Function Carriage Control
	The P4 argument is a longword that specifies carriage control. Carriage control determines the ne...
	Figure�5�5 P4 Carriage Control Specifier
	Figure�5�5 P4 Carriage Control Specifier
	<GRAPHIC>

	Only bytes 0, 2, and 3 in the longword are used. Byte 1 is ignored. If the low-order byte (byte 0...
	<TABLE>
	Table�5�10 FORTRAN Write Function Carriage Control�
	<TABLE HEADING>
	<TABLE ROW>
	Byte 0 Value (hexadecimal)
	ASCII Character
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	20
	20

	(space)
	(space)

	Single-space carriage control (sequence: carriage-return/line-feed combination, print buffer cont...
	Single-space carriage control (sequence: carriage-return/line-feed combination, print buffer cont...

	<TABLE ROW>
	30
	30

	0
	0

	Double-space carriage control (sequence: carriage-return/line-feed combination, carriage-return/l...
	Double-space carriage control (sequence: carriage-return/line-feed combination, carriage-return/l...

	<TABLE ROW>
	31
	31

	1
	1

	Page eject carriage control (sequence: form feed, print buffer contents, return).
	Page eject carriage control (sequence: form feed, print buffer contents, return).

	<TABLE ROW>
	2B
	2B

	+
	+

	Overprint carriage control; allows double printing for emphasis or special effects (sequence: pri...
	Overprint carriage control; allows double printing for emphasis or special effects (sequence: pri...

	<TABLE ROW>
	24
	24

	$
	$

	Prompt carriage control (sequence: carriage-return/line-feed combination, print buffer contents).
	Prompt carriage control (sequence: carriage-return/line-feed combination, print buffer contents).

	<TABLE ROW>
	All other values
	All other values

	Same as ASCII space character: single-space carriage control.
	Same as ASCII space character: single-space carriage control.

	If the low-order byte (byte 0) is 0, bytes 2 and 3 of the P4 longword are interpreted as the pref...
	1. � Prefix carriage control
	1. � Prefix carriage control
	1. � Prefix carriage control

	2. � Print
	2. � Print

	3. � Postfix carriage control
	3. � Postfix carriage control

	The prefix and postfix bytes, although interpreted separately, use the same encoding scheme.
	With several exceptions,
	In the first example in
	80 (bit 7 = 1) + D (return) —- 8D (postfix = return)
	<TABLE>
	Table�5�11 Write Function Carriage Control (P4 byte 0 = 0)�
	<TABLE HEADING>
	<TABLE ROW>
	Prefix/Postfix Bytes (Hexadecimal)

	<TABLE BODY>
	<TABLE ROW>
	Bit 7
	Bit 7

	Bits 0—6
	Bits 0—6

	Meaning
	Meaning

	<TABLE ROW>
	0
	0

	0
	0

	No carriage control is specified (NULL).
	No carriage control is specified (NULL).

	<TABLE ROW>
	0
	0

	1—7F
	1—7F

	Bits 0 through 6 are a count of carriage-return/line-feed combinations.
	Bits 0 through 6 are a count of carriage-return/line-feed combinations.

	<TABLE ROW>
	Bit 7
	Bit 7

	Bit 6
	Bit 6

	Bit 5
	Bit 5

	Bits 0—4
	Bits 0—4

	Meaning
	Meaning

	<TABLE ROW>
	1
	1

	0
	0

	0
	0

	0—1F
	0—1F

	Output the single ASCII control character specified by the configuration of bits 0 through 4 (7-b...
	Output the single ASCII control character specified by the configuration of bits 0 through 4 (7-b...

	<TABLE ROW>
	1
	1

	1
	1

	0
	0

	0—1F
	0—1F

	Output the single ASCII control character specified by the configuration of bits 0 through 4, whi...
	Output the single ASCII control character specified by the configuration of bits 0 through 4, whi...

	<TABLE ROW>
	1
	1

	1
	1

	1
	1

	0—1F
	0—1F

	Reserved.
	Reserved.

	Terminals:write function

	Set Mode
	Set Mode
	Terminals:set mode function
	Terminals:set mode function
	Terminals:set characteristics function
	Terminals:I/O functions:IO$_SETMODE
	Terminals:I/O functions:IO$_SETCHAR
	Function codes:IO$_SETMODE
	Function codes:IO$_SETCHAR
	Set modes:terminal
	Setting characteristics:terminal

	The set mode function affects the mode and temporary characteristics of the associated terminal l...
	• IO$_SETMODE
	• IO$_SETMODE
	• IO$_SETMODE

	The set characteristics function affects the permanent characteristics of the associated terminal...
	• IO$_SETCHAR
	• IO$_SETCHAR
	• IO$_SETCHAR

	Figure�5�6 Write Function Carriage Control (Prefix and Postfix Coding)
	Figure�5�6 Write Function Carriage Control (Prefix and Postfix Coding)
	<GRAPHIC>

	The set mode and set characteristics functions take the following device- or function-dependent a...
	• P1—Address of characteristics buffer
	• P1—Address of characteristics buffer
	• P1—Address of characteristics buffer

	• P2—Length of characteristics buffer (default length is 8 bytes)
	• P2—Length of characteristics buffer (default length is 8 bytes)

	• P3—Speed specifier (bits 0 through 7 = transmit; 8 through 15 = receive)
	• P3—Speed specifier (bits 0 through 7 = transmit; 8 through 15 = receive)

	• P4—Fill specifier (bits 0 through 7 = CR fill count; bits 8 through 15 = LF fill count)
	• P4—Fill specifier (bits 0 through 7 = CR fill count; bits 8 through 15 = LF fill count)

	• P5—Parity flags
	• P5—Parity flags

	The P1 argument points to a variable-length block, as shown in
	Figure�5�7 Set Mode and Set Characteristics Buffers
	Figure�5�7 Set Mode and Set Characteristics Buffers
	<GRAPHIC>

	In the buffer, the device class is DC$_TERM, which is defined by the $DCDEF macro. The terminal t...
	NOTE Make sure that the selected device is a terminal before performing any set mode function, pa...
	NOTE Make sure that the selected device is a terminal before performing any set mode function, pa...

	The P3 argument defines the device speed, such as TT$C_BAUD_300. The low eight bits specify the t...
	P4 contains fill counts for the carriage-return and line-feed characters. Bits 0 through 7 specif...
	P4 is applicable only if TT$M_CRFILL or TT$M_LFFILL is specified as a terminal characteristic for...
	Several parity flags can be specified in the P5 argument:
	• TT$M_ALTRPAR—Alter parity. If set, check the state of TT$M_PARITY and TT$M_ODD and, if indicate...
	• TT$M_ALTRPAR—Alter parity. If set, check the state of TT$M_PARITY and TT$M_ODD and, if indicate...
	• TT$M_ALTRPAR—Alter parity. If set, check the state of TT$M_PARITY and TT$M_ODD and, if indicate...

	• TT$M_PARITY—Enable parity on terminal line if set, disable if clear.
	• TT$M_PARITY—Enable parity on terminal line if set, disable if clear.

	• TT$M_ODD—Parity is odd if set.
	• TT$M_ODD—Parity is odd if set.

	• TT$M_ALTDISPAR—Alter dismiss parity errors. If set, check the state of TT$M_DISPARERR.
	• TT$M_ALTDISPAR—Alter dismiss parity errors. If set, check the state of TT$M_DISPARERR.

	• TT$M_DISPARERR—Dismiss parity errors. If this mode is set, a character with a parity error is p...
	• TT$M_DISPARERR—Dismiss parity errors. If this mode is set, a character with a parity error is p...
	NOTE If parity is enabled, the DZ11 generates a parity check bit to detect parity mismatch. Unles...
	NOTE If parity is enabled, the DZ11 generates a parity check bit to detect parity mismatch. Unles...

	• TT$M_BREAK—Generate a break if set. The break is in effect until this bit is turned off. TT$M_B...
	• TT$M_BREAK—Generate a break if set. The break is in effect until this bit is turned off. TT$M_B...

	• TT$M_ALTFRAME—If set, the four low-order bits of P5 become the frame size. Note that the frame ...
	• TT$M_ALTFRAME—If set, the four low-order bits of P5 become the frame size. Note that the frame ...

	To take the existing parity settings, modify them, and use them in the set mode or set characteri...
	insv iosb+6, #4, #8, flags bisl #tt$m_altrpar!tt$m_odd!tt$m_parity, flags
	The following instruction then resets the parity to its original state:
	bicl #tt$m_odd!tt$m_parity, flags
	See
	Application programs that change terminal characteristics
	1. � Use the IO$_SENSEMODE function to read the current characteristics.
	1. � Use the IO$_SENSEMODE function to read the current characteristics.
	1. � Use the IO$_SENSEMODE function to read the current characteristics.

	2. � Modify the characteristics.
	2. � Modify the characteristics.

	3. � Use the set mode function to write back the results.
	3. � Use the set mode function to write back the results.

	4. � If the characteristic is intended to be reset when the image exits, the application must per...
	4. � If the characteristic is intended to be reset when the image exits, the application must per...

	Failure to follow this sequence will result in clearing any previously set characteristic.
	Two stop bits are used only for data rates less than or equal to 150 baud; higher data rates defa...
	The set mode and set characteristics functions can take the enable Ctrl/C AST, enable Ctrl/Y AST,...
	NOTE If an attempt is made to turn on TT2$V_FALLBACK for a disconnected
	NOTE If an attempt is made to turn on TT2$V_FALLBACK for a disconnected

	Hangup Function Modifier
	Hangup Function Modifier
	The hangup function disconnects a terminal that is on a
	• IO$_SETMODE!IO$M_HANGUP
	• IO$_SETMODE!IO$M_HANGUP
	• IO$_SETMODE!IO$M_HANGUP

	• IO$_SETCHAR!IO$M_HANGUP
	• IO$_SETCHAR!IO$M_HANGUP

	The hangup function modifier takes no arguments. SS$_NORMAL is returned in the I/O status block.
	NOTE For remote terminals, the hangup function breaks the network connection to the local system,...
	NOTE For remote terminals, the hangup function breaks the network connection to the local system,...

	Enable Ctrl/C AST and Enable Ctrl/Y AST Function Modifiers
	Enable Ctrl/C AST and Enable Ctrl/Y AST Function Modifiers
	Both set mode functions can
	• IO$_SETMODE!IO$M_CTRLCAST—Enable Ctrl/C AST
	• IO$_SETMODE!IO$M_CTRLCAST—Enable Ctrl/C AST
	• IO$_SETMODE!IO$M_CTRLCAST—Enable Ctrl/C AST

	• IO$_SETMODE!IO$M_CTRLYAST—Enable Ctrl/Y AST
	• IO$_SETMODE!IO$M_CTRLYAST—Enable Ctrl/Y AST

	These function code modifier pairs take the following device- or function-dependent arguments:
	• P1—Address of the AST service or 0 if the corresponding AST is disabled
	• P1—Address of the AST service or 0 if the corresponding AST is disabled
	• P1—Address of the AST service or 0 if the corresponding AST is disabled

	• P2—AST parameter
	• P2—AST parameter

	• P3—Access mode to deliver AST (maximized with caller's access mode)
	• P3—Access mode to deliver AST (maximized with caller's access mode)

	If the respective enabling is in effect, pressing Ctrl/C or Ctrl/Y gains the attention of the ena...
	Enable Ctrl/C and Ctrl/Y AST are one-time enabling function modifiers. After the AST occurs, it m...
	Quotas:AST
	Quotas:AST
	ASTs (asynchronous system traps):quota

	If no enable Ctrl/C AST is present, the holder of an enable Ctrl/Y AST receives an AST when Ctrl/...
	Figure�5�8
	Figure�5�8

	Enable Ctrl/C AST requests are flushed by the Cancel I/O on the Channel ($CANCEL) system service....
	Ctrl/Y is normally used to gain the attention of the command interpreter and to input special com...
	See
	Section 5.2.1.2
	Section 5.2.1.2

	Set Modem Function Modifier
	Set Modem Function Modifier
	The set modem function modifier is used in maintenance
	• IO$_SETMODE!IO$M_SET_MODEM!IO$M_MAINT
	• IO$_SETMODE!IO$M_SET_MODEM!IO$M_MAINT
	• IO$_SETMODE!IO$M_SET_MODEM!IO$M_MAINT

	• IO$_SETCHAR!IO$M_SET_MODEM!IO$M_MAINT
	• IO$_SETCHAR!IO$M_SET_MODEM!IO$M_MAINT

	NOTE For LAT devices, the set modem field for maintenance operations of the IO$M_SET_MODEM!IO$M_M...
	NOTE For LAT devices, the set modem field for maintenance operations of the IO$M_SET_MODEM!IO$M_M...

	These function code modifier pairs take the following device- or function-dependent argument:
	• P1—The address of a quadword block that specifies which modem control signals to activate or de...
	• P1—The address of a quadword block that specifies which modem control signals to activate or de...
	• P1—The address of a quadword block that specifies which modem control signals to activate or de...

	Figure�5�9
	Figure�5�9

	Figure�5�8 Relationship of Out-of-Band Function with Control Characters
	Figure�5�8 Relationship of Out-of-Band Function with Control Characters
	<GRAPHIC>

	The modem on and modem off fields, in combination or separately, can specify one or more of the f...
	• TT$M_DS_RTS—Request to send (RTS)
	• TT$M_DS_RTS—Request to send (RTS)
	• TT$M_DS_RTS—Request to send (RTS)

	• TT$M_DS_DTR—Data terminal ready (DTR)
	• TT$M_DS_DTR—Data terminal ready (DTR)
	Figure�5�9 Set Mode P1 Block
	Figure�5�9 Set Mode P1 Block
	<GRAPHIC>

	• TT$M_DS_SECTX—Transmitted backward channel data (Sec Txd)
	• TT$M_DS_SECTX—Transmitted backward channel data (Sec Txd)

	The $TTDEF macro defines the values for these values. These values can only be specified if the t...
	NOTE The set modem function is not supported for remote terminals. The status SS$_DEVREQERR is re...
	NOTE The set modem function is not supported for remote terminals. The status SS$_DEVREQERR is re...
	Because the DMF32 does not provide the secondary transmitted data signal (Sec Txd), the driver se...

	Loopback Function Modifier
	Loopback Function Modifier
	The loopback function modifier is used in maintenance operations
	NOTE The loopback function is not supported for remote terminals. The status SS$_DEVREQERR is ret...
	NOTE The loopback function is not supported for remote terminals. The status SS$_DEVREQERR is ret...

	The following combinations of function code and modifier are provided:
	• IO$_SETMODE!IO$M_LOOP!IO$M_MAINT
	• IO$_SETMODE!IO$M_LOOP!IO$M_MAINT
	• IO$_SETMODE!IO$M_LOOP!IO$M_MAINT

	• IO$_SETCHAR!IO$M_LOOP!IO$M_MAINT
	• IO$_SETCHAR!IO$M_LOOP!IO$M_MAINT

	Data transmitted in the loopback mode should only be written in records less than or equal to the...
	NOTE The serial line interfaces for the VAX 8200 processor implement an internal loopback bus tha...
	NOTE The serial line interfaces for the VAX 8200 processor implement an internal loopback bus tha...

	The operating system provides another function modifier to reset a terminal line previously place...
	• IO$_SETMODE!IO$M_UNLOOP!IO$M_MAINT
	• IO$_SETMODE!IO$M_UNLOOP!IO$M_MAINT
	• IO$_SETMODE!IO$M_UNLOOP!IO$M_MAINT

	• IO$_SETCHAR!IO$M_UNLOOP!IO$M_MAINT
	• IO$_SETCHAR!IO$M_UNLOOP!IO$M_MAINT

	Programs that use the unloop function modifier should incorporate a 1-second delay to allow the c...
	NOTE IO$M_LOOP and IO$M_UNLOOP are not supported for LAT devices.
	NOTE IO$M_LOOP and IO$M_UNLOOP are not supported for LAT devices.

	Enable Out-of-Band AST Function Modifier
	Enable Out-of-Band AST Function Modifier
	The enable out-of-band AST function modifier requests that the terminal driver
	• IO$_SETMODE!IO$M_OUTBAND—Enable out-of-band AST
	• IO$_SETMODE!IO$M_OUTBAND—Enable out-of-band AST
	• IO$_SETMODE!IO$M_OUTBAND—Enable out-of-band AST

	• IO$_SETCHAR!IO$M_OUTBAND—Enable out-of-band AST
	• IO$_SETCHAR!IO$M_OUTBAND—Enable out-of-band AST

	These function code modifier pairs take the following device- or function-dependent arguments:
	• P1—Address of the AST service or 0 if the AST entered on this channel is to be canceled. (The A...
	• P1—Address of the AST service or 0 if the AST entered on this channel is to be canceled. (The A...
	• P1—Address of the AST service or 0 if the AST entered on this channel is to be canceled. (The A...

	• P2—Address of a character mask with the same format as the short form terminator mask (see
	• P2—Address of a character mask with the same format as the short form terminator mask (see

	• P3—Access mode to deliver AST (maximized with the caller's access mode).
	• P3—Access mode to deliver AST (maximized with the caller's access mode).

	The IO$_SETMODE!IO$M_OUTBAND function can optionally take the following function modifiers:
	• IO$M_INCLUDE—Include the character typed in the data stream.
	• IO$M_INCLUDE—Include the character typed in the data stream.
	• IO$M_INCLUDE—Include the character typed in the data stream.

	• IO$M_TT_ABORT—Allow current read and write operations to be aborted. (The IOSB for aborted oper...
	• IO$M_TT_ABORT—Allow current read and write operations to be aborted. (The IOSB for aborted oper...

	If an out-of-band AST is in effect, pressing any control character specified in the P2 mask gains...
	You can have only one out-of-band AST enabled per channel.
	Out-of-band ASTs are repeating ASTs; they continue to be delivered until specifically disabled. O...

	Broadcast Function Modifier
	Broadcast Function Modifier
	Terminals:broadcast messages
	Terminals:broadcast messages

	IO$_SETMODE!IO$M_BRDCST
	IO$_SETMODE!IO$M_BRDCST
	IO$_SETMODE!IO$M_BRDCST

	Function modifiers:IO$M_BRDCST
	Function modifiers:IO$M_BRDCST
	Terminals:function modifiers:IO$M_BRDCST

	• P1—A buffer that contains the bits that specify the requester IDs to be broadcast
	• P1—A buffer that contains the bits that specify the requester IDs to be broadcast
	• P1—A buffer that contains the bits that specify the requester IDs to be broadcast

	• P2—The length of the P1 buffer (default is 8 bytes)
	• P2—The length of the P1 buffer (default is 8 bytes)

	The first longword of P1 is reserved for use by HP facilities, as shown in
	<TABLE>
	Table�5�12 Broadcast Requester IDs�
	<TABLE HEADING>
	<TABLE ROW>
	Bit
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	BRK$C_DCL
	BRK$C_DCL

	Disables broadcasts by Ctrl/T
	Disables broadcasts by Ctrl/T

	<TABLE ROW>
	BRK$C_GENERAL
	BRK$C_GENERAL

	Disables broadcasts by the DCL command REPLY and the SYS$BRDCST system service
	Disables broadcasts by the DCL command REPLY and the SYS$BRDCST system service

	<TABLE ROW>
	BRK$C_MAIL
	BRK$C_MAIL

	Disables broadcasts by the Mail utility
	Disables broadcasts by the Mail utility

	<TABLE ROW>
	BRK$C_PHONE
	BRK$C_PHONE

	Disables broadcasts by the Phone utility
	Disables broadcasts by the Phone utility

	<TABLE ROW>
	BRC$C_QUEUE
	BRC$C_QUEUE

	Disables broadcasts about batch and print queues
	Disables broadcasts about batch and print queues

	<TABLE ROW>
	BRK$C_SHUTDOWN
	BRK$C_SHUTDOWN

	Disables broadcasts about system shutdown
	Disables broadcasts about system shutdown

	<TABLE ROW>
	BRK$C_URGENT
	BRK$C_URGENT

	Disables broadcasts labeled URGENT by the REPLY command
	Disables broadcasts labeled URGENT by the REPLY command

	<TABLE ROW>
	BRK$C_USERn
	BRK$C_USER

	Disables broadcasts by images associated with the specified value; n can be any decimal integer b...
	Disables broadcasts by images associated with the specified value;

	LAT Port Driver QIO Interface
	LAT Port Driver QIO Interface
	Terminals:LAT port driver
	Terminals:LAT port driver
	Applications:connecting to LAT ports

	This section describes the capabilities of the QIO interface to the LAT port driver (LTDRIVER). T...
	The LTDRIVER responds to TEST SERVICE commands issued at terminal servers that support the TEST S...
	LAT devices can use all read and write function modifiers listed for the terminal driver function...
	The operating system does not support the following set mode or set characteristics function code...
	• IO$M_LOOP
	• IO$M_LOOP
	• IO$M_LOOP

	• IO$M_UNLOOP
	• IO$M_UNLOOP

	• TT$M_ALTRPAR
	• TT$M_ALTRPAR

	• TT$M_ALTFRAME
	• TT$M_ALTFRAME

	• TT$M_MODEM
	• TT$M_MODEM

	• TT$M_READSYNC
	• TT$M_READSYNC

	• TT2$M_SETSPEED
	• TT2$M_SETSPEED

	With LAT devices, the terminal server, rather than the host, handles flow control to the physical...
	LAT Port Types
	LAT Port Types
	QIO functions can be used to create the following LAT port types:
	• Application Port. This type of port can be used to connect to a remote device (typically a prin...
	• Application Port. This type of port can be used to connect to a remote device (typically a prin...
	• Application Port. This type of port can be used to connect to a remote device (typically a prin...

	• Dedicated Port. This type of port specifies that the logical port on your node is dedicated to ...
	• Dedicated Port. This type of port specifies that the logical port on your node is dedicated to ...

	• Forward Port. This type of port is used for outgoing LAT connections (to remote services) and i...
	• Forward Port. This type of port is used for outgoing LAT connections (to remote services) and i...
	QIO functions can also be used to configure and read information about these ports; for more info...
	— See
	— See
	— See

	— See
	— See

	— See
	— See

	LAT Port Driver Functions
	LAT Port Driver Functions
	Terminals:LAT port driver:I/O functions
	Terminals:LAT port driver:I/O functions

	• IO$_TTY_PORT!IO$M_LT_CONNECT. Requests that the LAT port driver make a connection to a remote d...
	• IO$_TTY_PORT!IO$M_LT_CONNECT. Requests that the LAT port driver make a connection to a remote d...
	• IO$_TTY_PORT!IO$M_LT_CONNECT. Requests that the LAT port driver make a connection to a remote d...

	• IO$_TTY_PORT!IO$M_LT_DISCON. Depending on the port type, requests that the LAT port driver term...
	• IO$_TTY_PORT!IO$M_LT_DISCON. Depending on the port type, requests that the LAT port driver term...

	• IO$_TTY_PORT!IO$M_LT_SETMODE. Requests that the LAT port driver create or configure a LAT entit...
	• IO$_TTY_PORT!IO$M_LT_SETMODE. Requests that the LAT port driver create or configure a LAT entit...

	• IO$_TTY_PORT!IO$M_LT_SENSEMODE. Requests that the LAT port driver return configuration informat...
	• IO$_TTY_PORT!IO$M_LT_SENSEMODE. Requests that the LAT port driver return configuration informat...

	Terminals:function modifiers:IO$M_LT_CONNECT
	Terminals:function modifiers:IO$M_LT_DISCON
	Terminals:function modifiers:IO$M_LT_SETMODE
	Terminals:function modifiers:IO$M_LT_SENSEMODE
	Terminals:I/O functions:IO$_TTY_PORT

	Creating and Configuring LAT Entities
	Creating and Configuring LAT Entities
	LAT SETMODE $QIO Function
	The LAT SETMODE $QIO function (IO$_TTY_PORT!IO$M_LT_SETMODE) is used to create, delete, and modif...
	Creation, deletion, or modification of any entity requires the OPER privilege.
	The LAT SETMODE $QIO function accepts four arguments: P1, P2, P3, and P4. P1 is the address of an...
	P3 specifies the type of entity to which the SETMODE operation applies. The entity type can be on...
	• Node (LAT$C_ENT_NODE). Only the local node name may be specified, with the exception of a SETMO...
	• Node (LAT$C_ENT_NODE). Only the local node name may be specified, with the exception of a SETMO...
	• Node (LAT$C_ENT_NODE). Only the local node name may be specified, with the exception of a SETMO...

	• Service (LAT$C_ENT_SERVICE). Only local service names may be specified, with the exception of a...
	• Service (LAT$C_ENT_SERVICE). Only local service names may be specified, with the exception of a...

	• Link (LAT$C_ENT_LINK). The data link associated with the LAN.
	• Link (LAT$C_ENT_LINK). The data link associated with the LAN.

	• Port (LAT$C_ENT_PORT).
	• Port (LAT$C_ENT_PORT).

	• Queue Entry (LAT$C_ENT_QUEUE_ENTRY). Indicates queue entry entities. When this entity is used, ...
	• Queue Entry (LAT$C_ENT_QUEUE_ENTRY). Indicates queue entry entities. When this entity is used, ...

	The value for the entity type occupies the low-order 16 bits (bits 0--15) of the P3 parameter. Fo...
	• LAT$C_ENTS_OLD—The entity must already exist. An SS$_NOSUCHDEV error is returned if the entity ...
	• LAT$C_ENTS_OLD—The entity must already exist. An SS$_NOSUCHDEV error is returned if the entity ...
	• LAT$C_ENTS_OLD—The entity must already exist. An SS$_NOSUCHDEV error is returned if the entity ...

	• LAT$C_ENTS_NEW—The entity must be created. An SS$_DUPLNAM error is returned if the entity alrea...
	• LAT$C_ENTS_NEW—The entity must be created. An SS$_DUPLNAM error is returned if the entity alrea...

	• LAT$C_ENTS_UNK—If the entity does not exist, it is created. If it does exist, its characteristi...
	• LAT$C_ENTS_UNK—If the entity does not exist, it is created. If it does exist, its characteristi...

	• LAT$C_ENTS_DEL—If the entity exists, delete it. Otherwise, an SS$_NOSUCHDEV error is returned a...
	• LAT$C_ENTS_DEL—If the entity exists, delete it. Otherwise, an SS$_NOSUCHDEV error is returned a...

	P4 may contain the address of an entity name string descriptor. If this parameter is omitted (con...
	• LAT$C_ENT_NODE—The local node.
	• LAT$C_ENT_NODE—The local node.
	• LAT$C_ENT_NODE—The local node.

	• LAT$C_ENT_SERVICE—No default; you must specify the service name.
	• LAT$C_ENT_SERVICE—No default; you must specify the service name.

	• LAT$C_ENT_LINK—The string LAT$LINK.
	• LAT$C_ENT_LINK—The string LAT$LINK.

	• LAT$C_ENT_PORT—The device name associated with the currently assigned channel (the CHAN paramet...
	• LAT$C_ENT_PORT—The device name associated with the currently assigned channel (the CHAN paramet...

	SETMODE can return the following status codes:
	• SS$_NOPRIV—No privilege to complete the desired operation.
	• SS$_NOPRIV—No privilege to complete the desired operation.
	• SS$_NOPRIV—No privilege to complete the desired operation.

	• SS$_ACCVIO—Part of the argument list or itemlist is not addressable.
	• SS$_ACCVIO—Part of the argument list or itemlist is not addressable.

	• SS$_BADPARAM—One of the parameters in the itemlist is in error. If this value is returned, the ...
	• SS$_BADPARAM—One of the parameters in the itemlist is in error. If this value is returned, the ...

	SETMODE Item Codes
	SETMODE Item Codes

	Each item in the itemlist consists of a one-word (16-bit) item code, followed by a value associat...
	Item codes in which the bit named LAT$V_STRING is zero take a longword value. The associated valu...
	If you set bit LAT$V_CLEAR in the item code to 1, the current value associated with the item code...
	Figure�5�10
	Figure�5�10

	Figure�5�10 Example SETMODE Itemlist
	Figure�5�10 Example SETMODE Itemlist
	<GRAPHIC>

	This SETMODE itemlist is the P1 parameter for a $QIO SETMODE function on the local node. P4 is om...
	1. � Set the state of the node to on.
	1. � Set the state of the node to on.
	1. � Set the state of the node to on.

	2. � Set the LAT keepalive timer to 40 seconds.
	2. � Set the LAT keepalive timer to 40 seconds.

	3. � Set the node identification to LTC CLUSTER.
	3. � Set the node identification to LTC CLUSTER.

	4. � Set the LAT circuit timer to 160 milliseconds.
	4. � Set the LAT circuit timer to 160 milliseconds.

	5. � Enable LAT outbound connections.
	5. � Enable LAT outbound connections.

	6. � Turn on user groups 2, 8, 10, 11, 12, 16, and 19. LAT$_ITM_USER_GROUPS is represented by a b...
	6. � Turn on user groups 2, 8, 10, 11, 12, 16, and 19. LAT$_ITM_USER_GROUPS is represented by a b...

	7. � Set the outgoing session limit to five sessions.
	7. � Set the outgoing session limit to five sessions.

	For each entity type, only a subset of item codes may be set.
	<TABLE>
	Table�5�13 LAT$C_ENT_NODE Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_STATE
	LAT$_ITM_STATE

	Operating state of the LAT protocol. The following values are allowed:
	Operating state of the LAT protocol. The following values are allowed:

	<TABLE ROW>
	LAT$C_OFF
	Turns off LAT protocol processing. No new connections allowed in either direction. Existing conne...
	Turns off LAT protocol processing. No new connections allowed in either direction. Existing conne...

	<TABLE ROW>
	LAT$C_SHUT
	LAT$C_SHUT

	Disallows new LAT connections in either direction. Existing connections are allowed to remain act...
	Disallows new LAT connections in either direction. Existing connections are allowed to remain act...

	<TABLE ROW>
	LAT$C_ON
	LAT$C_ON

	Turns on LAT protocol processing.
	Turns on LAT protocol processing.

	<TABLE ROW>
	LAT$_ITM_CIRCUIT_TIMER
	Circuit timer value in milliseconds. Valid values are 10 to 1000 milliseconds. The default is 80 ...
	Circuit timer value in milliseconds. Valid values are 10 to 1000 milliseconds. The default is 80 ...

	<TABLE ROW>
	LAT$_ITM_CPU_RATING
	LAT$_ITM_CPU_RATING

	CPU rating. Valid values are 0 to 100. If this value is 0, then the CPU rating value is not used ...
	CPU rating. Valid values are 0 to 100. If this value is 0, then the CPU rating value is not used ...

	<TABLE ROW>
	LAT$_ITM_DEVICE_SEED
	Overrides the default lower boundary for new LTA devices. Valid values are 0 to 9999; the default...
	Overrides the default lower boundary for new LTA devices. Valid values are 0 to 9999; the default...

	<TABLE ROW>
	LAT$_ITM_KEEPALIVE_TIMER
	LAT$_ITM_KEEPALIVE_TIMER

	Keepalive timer value in seconds. Valid values are 10 to 255 seconds. The default is 20 seconds.
	Keepalive timer value in seconds. Valid values are 10 to 255 seconds. The default is 20 seconds.

	<TABLE ROW>
	LAT$_ITM_MULTICAST_TIMER
	LAT$_ITM_MULTICAST_TIMER

	Multicast timer value in seconds. Valid values are 10 to 180 seconds. The default is 60 seconds.
	Multicast timer value in seconds. Valid values are 10 to 180 seconds. The default is 60 seconds.

	<TABLE ROW>
	LAT$_ITM_NODE_LIMIT
	LAT$_ITM_NODE_LIMIT

	Maximum number of nodes in LAT database. The default is 0, where the maximum is determined by sys...
	Maximum number of nodes in LAT database. The default is 0, where the maximum is determined by sys...

	<TABLE ROW>
	LAT$_ITM_RETRANSMIT_LIMIT
	LAT$_ITM_RETRANSMIT_LIMIT

	LAT retransmit limit. Valid values are 4 to 120 retransmissions. The default is 8 retransmissions.
	LAT retransmit limit. Valid values are 4 to 120 retransmissions. The default is 8 retransmissions.

	<TABLE ROW>
	LAT$_ITM_SERVER_MODE
	Controls whether the node allows the use of the MASTER side of the LAT protocol for outbound conn...

	<TABLE ROW>
	LAT$C_DISABLED
	LAT$C_DISABLED

	Server mode disabled (this is the default).
	Server mode disabled (this is the default).

	<TABLE ROW>
	LAT$C_ENABLED
	LAT$C_ENABLED

	Server mode enabled.
	Server mode enabled.

	<TABLE ROW>
	LAT$_ITM_SERVICE_RESPONDER
	LAT$_ITM_SERVICE_RESPONDER

	Indicates whether the node is to respond to service inquiries originating from a remote system. T...

	<TABLE ROW>
	LAT$C_DISABLED
	LAT$C_DISABLED

	Service responder disabled (this is the default).
	Service responder disabled (this is the default).

	<TABLE ROW>
	LAT$C_ENABLED
	LAT$C_ENABLED

	Service responder enabled.
	Service responder enabled.

	<TABLE ROW>
	LAT$_ITM_OUTGOING_SES_LIMIT
	LAT$_ITM_OUTGOING_SES_LIMIT

	Maximum number of outgoing LAT sessions. A value of 0, which is the default, indicates that the l...

	<TABLE ROW>
	LAT$_ITM_INCOMING_SES_LIMIT
	LAT$_ITM_INCOMING_SES_LIMIT

	Maximum number of interactive LAT sessions. A value of 0, which is the default, indicates that th...
	Maximum number of interactive LAT sessions. A value of 0, which is the default, indicates that th...

	<TABLE ROW>
	LAT$_ITM_CONNECTIONS
	LAT$_ITM_CONNECTIONS

	Controls whether inbound connections can be accepted. Valid values are:

	<TABLE ROW>
	LAT$C_DISABLED
	LAT$C_DISABLED

	Inbound connections disabled.
	Inbound connections disabled.

	<TABLE ROW>
	LAT$C_ENABLED
	Inbound connections enabled (this is the default).
	Inbound connections enabled (this is the default).

	<TABLE ROW>
	LAT$_ITM_NODE_NAME
	LAT$_ITM_NODE_NAME

	Causes the LAT node name to be set to the given name. This item code may be specified only if the...
	Causes the LAT node name to be set to the given name. This item code may be specified only if the...

	<TABLE ROW>
	LAT$_ITM_IDENTIFICATION
	LAT$_ITM_IDENTIFICATION

	Node identification string. The default is the translation of SYS$ANNOUNCE.
	Node identification string. The default is the translation of SYS$ANNOUNCE.

	<TABLE ROW>
	LAT$_ITM_SERVICE_GROUPS
	LAT$_ITM_SERVICE_GROUPS

	Specifies a default service group code bit mask. This mask is then used when creating new local s...
	Specifies a default service group code bit mask. This mask is then used when creating new local s...
	Note that the use of the LAT$V_CLEAR bit is an exception for this parameter code. If you clear bi...

	<TABLE ROW>
	LAT$_ITM_USER_GROUPS
	LAT$_ITM_USER_GROUPS

	LAT group codes to be used when attempting outbound connections using the MASTER side of the LAT ...
	LAT group codes to be used when attempting outbound connections using the MASTER side of the LAT ...
	Note that the use of the LAT$V_CLEAR bit is an exception for this parameter code. If you clear bi...

	<TABLE ROW>
	LAT$_ITM_COUNTERS
	LAT$_ITM_COUNTERS

	Node counters block. Allows for zeroing of all node counters. This item code may be specified onl...
	Node counters block. Allows for zeroing of all node counters. This item code may be specified onl...

	<TABLE ROW>
	LAT$_ITM_MAXIMUM_UNITS
	LAT$_ITM_MAXIMUM_UNITS

	Maximum unit number. Sets the highest value for a LTA unit number. Must be between 1 and 9999; de...
	Maximum unit number. Sets the highest value for a LTA unit number. Must be between 1 and 9999; de...

	<TABLE ROW>
	LAT$_ITM_HI_CIRCUITS
	Indicates the highest number the resource attained since the host was initialized for LAT connect...
	Indicates the highest number the resource attained since the host was initialized for LAT connect...

	<TABLE ROW>
	LAT$_ITM_CUR_CIRCUITS1
	LAT$_ITM_CUR_CIRCUITS

	Indicates current count of active connections to node.
	Indicates current count of active connections to node.

	<TABLE ROW>
	LAT$_ITM_MAX_CIRCUITS1
	LAT$_ITM_MAX_CIRCUITS

	Indicates maximum allowed virtual circuits to node.
	Indicates maximum allowed virtual circuits to node.

	<TABLE ROW>
	LAT$_ITM_HI_SESSIONS1
	LAT$_ITM_HI_SESSIONS

	Indicates highest number the resource attained since the host was initialized for LAT sessions.
	Indicates highest number the resource attained since the host was initialized for LAT sessions.

	<TABLE ROW>
	LAT$_ITM_CUR_SESSIONS1
	LAT$_ITM_CUR_SESSIONS

	Indicates current number of active sessions.
	Indicates current number of active sessions.

	<TABLE ROW>
	LAT$_ITM_MAX_SESSIONS1
	Indicates maximum possible sessions.
	Indicates maximum possible sessions.

	<TABLE ROW>
	LAT$_ITM_HI_OUT_QUEUE1
	Indicates highest number the resource attained since the host was initialized of outgoing queued ...
	Indicates highest number the resource attained since the host was initialized of outgoing queued ...

	<TABLE ROW>
	LAT$_ITM_CUR_OUT_QUEUE1
	Indicates current count of outgoing queued connect requests.
	Indicates current count of outgoing queued connect requests.

	<TABLE ROW>
	LAT$_ITM_MAX_OUT_QUEUE1
	LAT$_ITM_MAX_OUT_QUEUE

	Indicates maximum number of simultaneous outgoing queued connect requests.

	<TABLE ROW>
	LAT$_TIM_HI_IN_QUEUE1
	LAT$_TIM_HI_IN_QUEUE

	Indicates highest number the resource attained since the host was initialized of incoming queued ...
	Indicates highest number the resource attained since the host was initialized of incoming queued ...

	<TABLE ROW>
	LAT$_ITM_CUR_IN_QUEUE1
	LAT$_ITM_CUR_IN_QUEUE

	Indicates current number of entries in the incoming connect queue.

	<TABLE ROW>
	LAT$_ITM_CUR_IN_QUEUE1
	LAT$_ITM_CUR_IN_QUEUE

	Indicates maximum number of entries allowed on the incoming connect queue.
	Indicates maximum number of entries allowed on the incoming connect queue.

	<TABLE ROW>
	LAT$_ITM_HI_SAMS_QUEUED1
	LAT$_ITM_HI_SAMS_QUEUED

	Indicates highest number the resource attained since the host was initialized of outstanding, unp...
	Indicates highest number the resource attained since the host was initialized of outstanding, unp...

	<TABLE ROW>
	LAT$_ITM_CUR_SAMS_QUEUED1
	LAT$_ITM_CUR_SAMS_QUEUED

	Indicates current number of outstanding, unprocessed service announcement messages on LATACP's qu...
	Indicates current number of outstanding, unprocessed service announcement messages on LATACP's qu...

	<TABLE ROW>
	LAT$_ITM_MAX_SAMS_QUEUED1
	LAT$_ITM_MAX_SAMS_QUEUED

	Indicates maximum number of outstanding, unprocessed service announcement messages allowed on LAT...
	Indicates maximum number of outstanding, unprocessed service announcement messages allowed on LAT...

	<TABLE ROW>
	LAT$_ITM_HI_SOL_QUEUED1
	Indicates highest number the resource attained since the host was initialized of outstanding, unp...
	Indicates highest number the resource attained since the host was initialized of outstanding, unp...

	<TABLE ROW>
	LAT$_ITM_CUR_SOL_QUEUED
	LAT$_ITM_CUR_SOL_QUEUED

	Indicates current number of outstanding, unprocessed solicit information messages on LATACP's queue.
	Indicates current number of outstanding, unprocessed solicit information messages on LATACP's queue.

	<TABLE ROW>
	LAT$_ITM_MAX_SOL_QUEUED1
	Indicates maximum number of outstanding, unprocessed solicit information messages allowed on LATA...
	Indicates maximum number of outstanding, unprocessed solicit information messages allowed on LATA...

	<TABLE ROW>
	LAT$_ITM_HI_AVAIL_SVCS1
	LAT$_ITM_HI_AVAIL_SVCS

	Indicates highest number the resource attained since the host was initialized by the number of av...
	Indicates highest number the resource attained since the host was initialized by the number of av...

	<TABLE ROW>
	LAT$_ITM_CUR_AVAIL_SVCS1
	LAT$_ITM_CUR_AVAIL_SVCS

	Indicates count of currently available LAT services in LATACP database.
	Indicates count of currently available LAT services in LATACP database.

	<TABLE ROW>
	LAT$_ITM_MAX_AVAIL_SVCS1
	LAT$_ITM_MAX_AVAIL_SVCS

	Indicates maximum number of available services possible in LATACP database.
	Indicates maximum number of available services possible in LATACP database.

	<TABLE ROW>
	LAT$_ITM_HI_REACH_NODES1
	LAT$_ITM_HI_REACH_NODES

	Indicates highest number the resource attained since the host was initialized of reachable nodes ...

	<TABLE ROW>
	LAT$_ITM_CUR_REACH_NODES1
	LAT$_ITM_CUR_REACH_NODES

	Indicates current number of reachable nodes in LATACP database.
	Indicates current number of reachable nodes in LATACP database.

	<TABLE ROW>
	LAT$_ITM_MAX_REACH_NODES1
	LAT$_ITM_MAX_REACH_NODES

	Indicates maximum number of nodes allowed in LATACP database.
	Indicates maximum number of nodes allowed in LATACP database.

	<TABLE ROW>
	LAT$_ITM_HI_LCL_SVCS
	LAT$_ITM_HI_LCL_SVCS

	Indicates highest number the resource attained since the host was initialized of locally offered ...
	Indicates highest number the resource attained since the host was initialized of locally offered ...

	<TABLE ROW>
	LAT$_ITM_CUR_LCL_SVCS1
	LAT$_ITM_CUR_LCL_SVCS

	Indicates current count of locally offered service.
	Indicates current count of locally offered service.

	<TABLE ROW>
	LAT$_ITM_MAX_LCL_SVCS1
	LAT$_ITM_MAX_LCL_SVCS

	Indicates maximum number of locally offered services.
	Indicates maximum number of locally offered services.

	<TABLE ROW>
	LAT$_ITM_DISCARDED_NODES1
	LAT$_ITM_DISCARDED_NODES

	Indicates number of discarded service announcement messages.
	Indicates number of discarded service announcement messages.

	<TABLE ROW>
	LAT$_ITM_SERVICE_CLASSES1
	LAT$_ITM_SERVICE_CLASSES

	Indicates returned service class bit mask for supported service classes on node. It is returned f...
	Indicates returned service class bit mask for supported service classes on node. It is returned f...

	<TABLE ROW>
	LAT$_ITM_LARGE_BUFFERS
	LAT$_ITM_LARGE_BUFFERS

	Indicates in Boolean logic whether or not the LAT software is using large packet support by default.
	Indicates in Boolean logic whether or not the LAT software is using large packet support by default.

	<TABLE ROW>
	LAT$_ITM_ANNOUNCEMENTS
	LAT$_ITM_ANNOUNCEMENTS

	Indicates in Boolean logic whether or not the LAT software is transmitting LAT service advertisem...
	Indicates in Boolean logic whether or not the LAT software is transmitting LAT service advertisem...

	Table�5�14
	Table�5�14

	<TABLE>
	Table�5�14 LAT$C_ENT_SERVICE Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Item Code

	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_RATING
	LAT$_ITM_RATING

	Static LAT service rating. The default is the dynamic rating calculation. Static ratings can be b...
	Static LAT service rating. The default is the dynamic rating calculation. Static ratings can be b...

	<TABLE ROW>
	LAT$_IETEM_IDENTIFICATION
	LAT$_IETEM_IDENTIFICATION

	Service identification string. The default is the translation of SYS$ANNOUNCE.
	Service identification string. The default is the translation of SYS$ANNOUNCE.

	<TABLE ROW>
	LAT$_ITM_SERVICE_TYPE
	LAT$_ITM_SERVICE_TYPE

	Defines the type of service. Valid values are:
	Defines the type of service. Valid values are:

	<TABLE ROW>
	LAT$C_ST_GENERAL
	LAT$C_ST_GENERAL

	Creates a general timesharing service.
	Creates a general timesharing service.

	<TABLE ROW>
	LAT$C_ST_APPLICATION
	LAT$C_ST_APPLICATION

	Creates a special application service that must then be associated with ports dedicated to accept...
	Creates a special application service that must then be associated with ports dedicated to accept...

	<TABLE ROW>
	LAT$C_ST_LIMITED1
	LAT$C_ST_LIMITED

	Indicates that the service is limited.
	Indicates that the service is limited.

	<TABLE ROW>
	LAT$_ITM_COUNTERS
	LAT$_ITM_COUNTERS

	Service counters block. Allows for zeroing of all service counters. This item code may be specifi...
	Service counters block. Allows for zeroing of all service counters. This item code may be specifi...

	<TABLE ROW>
	LAT$_ITM_PASSWORD
	LAT$_ITM_PASSWORD

	Indicates that if a value of LAT$C_ENABLED is indicated, then the service is password protected. ...
	Indicates that if a value of LAT$C_ENABLED is indicated, then the service is password protected. ...

	<TABLE ROW>
	LAT$_ITM_LIM_PORT_BLOCK1
	LAT$_ITM_LIM_PORT_BLOCK

	Indicates a subblock contained in an itemlist, which has a list of limited ports associated with ...
	Indicates a subblock contained in an itemlist, which has a list of limited ports associated with ...

	Table�5�15
	Table�5�15

	<TABLE>
	Table�5�15 LAT$C_ENT_LINK Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_STATE
	LAT$_ITM_STATE

	Operating state of the LAT protocol. Valid values are:

	<TABLE ROW>
	LAT$C_OFF
	LAT$C_OFF

	Turns off LAT protocol processing. No new connections allowed in either direction. Existing conne...
	Turns off LAT protocol processing. No new connections allowed in either direction. Existing conne...

	<TABLE ROW>
	LAT$C_SHUT
	LAT$C_SHUT

	Disallows new LAT connections in either direction. Existing connections are allowed to remain act...
	Disallows new LAT connections in either direction. Existing connections are allowed to remain act...

	<TABLE ROW>
	LAT$C_ON
	LAT$C_ON

	Turns on LAT protocol processing. This is the default.
	Turns on LAT protocol processing. This is the default.

	<TABLE ROW>
	LAT$_ITM_DEVICE_NAME
	LAT$_ITM_DEVICE_NAME

	The name of the local area network (LAN) device to be used for this link. The default is hardware...
	The name of the local area network (LAN) device to be used for this link. The default is hardware...

	<TABLE ROW>
	LAT$_ITM_DECNET_ADDRESS
	LAT$_ITM_DECNET_ADDRESS

	Specifies whether to use the DECnet address when starting the LAT protocol on the LAN controller ...
	Specifies whether to use the DECnet address when starting the LAT protocol on the LAN controller ...

	<TABLE ROW>
	LAT$C_DISABLED
	LAT$C_DISABLED

	DECnet address use disabled.
	DECnet address use disabled.

	<TABLE ROW>
	LAT$C_ENABLED
	LAT$C_ENABLED

	DECnet address use enabled (this is the default).
	DECnet address use enabled (this is the default).

	<TABLE ROW>
	LAT$_ITM_COUNTERS
	LAT$_ITM_COUNTERS

	Link counters block. Allows for zeroing of all link counters. This item code may be specified onl...
	Link counters block. Allows for zeroing of all link counters. This item code may be specified onl...

	Table�5�16
	Table�5�16

	<TABLE>
	Table�5�16 LAT$C_ENT_PORT Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Item Code

	Meaning
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_PORT_TYPE
	LAT$_ITM_PORT_TYPE

	Type of port. Valid values are:
	Type of port. Valid values are:

	<TABLE ROW>
	LAT$C_PT_APPLICATION
	LAT$C_PT_APPLICATION

	Application port for solicited connections.
	Application port for solicited connections.

	<TABLE ROW>
	LAT$C_PT_DEDICATED
	LAT$C_PT_DEDICATED

	Dedicated port associated with a local application service.
	Dedicated port associated with a local application service.

	<TABLE ROW>
	LAT$C_PT_LIMITED
	LAT$C_PT_LIMITED

	Indicates that the port type is limited.
	Indicates that the port type is limited.

	<TABLE ROW>
	LAT$_ITM_QUEUED
	LAT$_ITM_QUEUED

	Controls whether the solicited connection requests queued or nonqueued access. Valid values are:
	Controls whether the solicited connection requests queued or nonqueued access. Valid values are:

	<TABLE ROW>
	LAT$C_DISABLED
	LAT$C_DISABLED

	Queued access disabled.
	Queued access disabled.

	<TABLE ROW>
	LAT$C_ENABLED
	LAT$C_ENABLED

	Queued access enabled (this is the default).
	Queued access enabled (this is the default).

	<TABLE ROW>
	LAT$_ITM_SERVICE_CLASS
	LAT$_ITM_SERVICE_CLASS

	Controls the class driver that the LAT driver communicates with when a connection is established....
	Controls the class driver that the LAT driver communicates with when a connection is established....

	<TABLE ROW>
	LAT$C_SERVCLASS_INTERACT IVE
	LAT$C_SERVCLASS_INTERACT IVE

	Service class 1, TTDRIVER (this is the default).
	Service class 1, TTDRIVER (this is the default).

	<TABLE ROW>
	LAT$C_SERVCLASS_XTRANSPO RT
	LAT$C_SERVCLASS_XTRANSPO RT

	Service class 3, X Protocol.
	Service class 3, X Protocol.

	<TABLE ROW>
	LAT$C_SERVCLASS_FONT
	LAT$C_SERVCLASS_FONT

	Service class 4, X fonts.
	Service class 4, X fonts.

	<TABLE ROW>
	LAT$_ITM_DISPLAY_NUMBER
	LAT$_ITM_DISPLAY_NUMBER

	For X devices, this is the binary value of the display number, which may need to be transmitted i...
	For X devices, this is the binary value of the display number, which may need to be transmitted i...

	<TABLE ROW>
	LAT$_ITM_TARGET_NODE_NAME
	LAT$_ITM_TARGET_NODE_NAME

	Target node name for connection. This parameter must be specified for application ports and may o...
	Target node name for connection. This parameter must be specified for application ports and may o...

	<TABLE ROW>
	LAT$_ITM_TARGET_SERVICE_NAME
	LAT$_ITM_TARGET_SERVICE_NAME

	Target service name for connection. This parameter must be specified for forward ports and may op...
	Target service name for connection. This parameter must be specified for forward ports and may op...

	<TABLE ROW>
	LAT$_ITM_TARGET_PORT_NAME
	LAT$_ITM_TARGET_PORT_NAME

	Target port name for connection. This parameter may optionally be specified for application ports...
	Target port name for connection. This parameter may optionally be specified for application ports...

	<TABLE ROW>
	LAT$_ITM_SERVICE_PASSWORD
	LAT$_ITM_SERVICE_PASSWORD

	Password string for remote service on forward ports. This parameter must be specified to access s...
	Password string for remote service on forward ports. This parameter must be specified to access s...

	<TABLE ROW>
	LAT$_ITM_DIALUP1
	LAT$_ITM_DIALUP

	Indicates if an LTA device tells a remote node that the connection is coming from a dialin source...
	Indicates if an LTA device tells a remote node that the connection is coming from a dialin source...

	<TABLE ROW>
	LAT$_ITM_AUTOPROMPT1
	LAT$_ITM_AUTOPROMPT

	Indicates if a connect request has autoprompt enabled. Possible values are LAT$C_ENABLED or LAT$C...
	Indicates if a connect request has autoprompt enabled. Possible values are LAT$C_ENABLED or LAT$C...

	Obtaining Information About LAT Entities
	Obtaining Information About LAT Entities
	LAT SENSEMODE $QIO Function
	The LAT SENSEMODE $QIO function (IO$_TTY_PORT!IO$M_LT_SENSEMODE) is used to obtain information ab...
	The LAT SENSEMODE $QIO function accepts four arguments: P1, P2, P3, and P4. P1 is the address of ...
	P3 specifies the type of entity to which the SENSEMODE operation applies. The entity type can be ...
	• Node (LAT$C_ENT_NODE). Node, including the local node.
	• Node (LAT$C_ENT_NODE). Node, including the local node.
	• Node (LAT$C_ENT_NODE). Node, including the local node.

	• Service (LAT$C_ENT_SERVICE). Service, including local services.
	• Service (LAT$C_ENT_SERVICE). Service, including local services.

	• Link (LAT$C_ENT_LINK). Data link associated with the LAN.
	• Link (LAT$C_ENT_LINK). Data link associated with the LAN.

	• Port (LAT$C_ENT_PORT).
	• Port (LAT$C_ENT_PORT).

	• Queue Entry (LAT$C_ENT_QUEUE_ENTRY). Indicates queue entry entities.
	• Queue Entry (LAT$C_ENT_QUEUE_ENTRY). Indicates queue entry entities.

	The value for the entity type occupies the low-order 16 bits (bits 0--15) of the P3 parameter. Bi...
	P4 may contain the address of an entity name string descriptor. If this parameter is omitted (con...
	If P4 is omitted and the LAT$V_SENSE_NEXT bit is 0, a default entity name may be used in some cas...
	• LAT$C_ENT_NODE—The local node.
	• LAT$C_ENT_NODE—The local node.
	• LAT$C_ENT_NODE—The local node.

	• LAT$C_ENT_SERVICE—No default; you must specify the service name.
	• LAT$C_ENT_SERVICE—No default; you must specify the service name.

	• LAT$C_ENT_LINK—The string LAT$LINK.
	• LAT$C_ENT_LINK—The string LAT$LINK.

	• LAT$C_ENT_PORT—The device name associated with the currently assigned channel (the CHAN paramet...
	• LAT$C_ENT_PORT—The device name associated with the currently assigned channel (the CHAN paramet...

	SENSEMODE can return the following failure return codes:
	• SS$_NOPRIV—No privilege to complete the desired operation
	• SS$_NOPRIV—No privilege to complete the desired operation
	• SS$_NOPRIV—No privilege to complete the desired operation

	• SS$_ACCVIO—Part of the argument list or item list is not addressable
	• SS$_ACCVIO—Part of the argument list or item list is not addressable

	SENSEMODE Item Codes
	SENSEMODE Item Codes
	Each item in the itemlist starts with a one-word (16-bit) item code that describes the type of in...
	Item codes in which the bit named LAT$V_STRING is 0 take a longword value. The associated value i...
	Table�5�17
	Table�5�17

	<TABLE>
	Table�5�17 LAT$C_ENT_NODE Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_NODE_NAME (BOTH, SUMMARY)
	LAT$_ITM_NODE_NAME (BOTH, SUMMARY)

	LAT node name for the node.
	LAT node name for the node.

	<TABLE ROW>
	LAT$_ITM_IDENTIFICATION (BOTH, SUMMARY)
	LAT$_ITM_IDENTIFICATION (BOTH, SUMMARY)

	Node identification string.
	Node identification string.

	<TABLE ROW>
	LAT$_ITM_NODE_TYPE (BOTH, SUMMARY)
	LAT$_ITM_NODE_TYPE (BOTH, SUMMARY)

	Type of node. Possible values are:
	Type of node. Possible values are:

	<TABLE ROW>
	LAT$C_NT_LOCAL
	LAT$C_NT_LOCAL

	Node is local node.
	Node is local node.

	<TABLE ROW>
	LAT$C_NT_REMOTE
	LAT$C_NT_REMOTE

	Node is remote node.
	Node is remote node.

	<TABLE ROW>
	LAT$_ITM_STATE (LOCAL,SUMMARY)
	Operating state of the LAT protocol. Possible values are:

	<TABLE ROW>
	LAT$C_ON
	LAT$C_ON

	New connections are allowed and the LAT protocol is running.
	New connections are allowed and the LAT protocol is running.

	<TABLE ROW>
	LAT$C_OFF
	LAT$C_OFF

	New connections are not allowed. The LAT protocol is not running.
	New connections are not allowed. The LAT protocol is not running.

	<TABLE ROW>
	No new connections are allowed. Currently active connections are still maintained. The LAT protoc...
	No new connections are allowed. Currently active connections are still maintained. The LAT protoc...

	<TABLE ROW>
	LAT$_ITM_NODE_STATUS (REMOTE, SUMMARY)
	Current status of remote node. This item code is present only if a LAT virtual circuit does not c...

	<TABLE ROW>
	LAT$C_REACHABLE
	LAT$C_REACHABLE

	Remote node is reachable.
	Remote node is reachable.

	<TABLE ROW>
	LAT$C_UNREACHABLE
	LAT$C_UNREACHABLE

	Remote node is unreachable.

	<TABLE ROW>
	LAT$C_UNKNOWN
	LAT$C_UNKNOWN

	Remote node status is unknown.
	Remote node status is unknown.

	<TABLE ROW>
	LAT$_ITM_CONNECTED_COUNT (REMOTE, SUMMARY)
	LAT$_ITM_CONNECTED_COUNT (REMOTE, SUMMARY)

	Number of LAT sessions from the local node to this remote node. This item code replaces the LAT$_...
	Number of LAT sessions from the local node to this remote node. This item code replaces the LAT$_...

	<TABLE ROW>
	LAT$_ITM_SERVICE_GROUPS (BOTH)
	A bit mask of LAT group codes that are serviced by the node.
	A bit mask of LAT group codes that are serviced by the node.

	<TABLE ROW>
	LAT$_ITM_PROTOCOL_VERSION (BOTH)
	LAT$_ITM_PROTOCOL_VERSION (BOTH)

	LAT protocol version string.

	<TABLE ROW>
	LAT$_ITM_DATALINK_
	LAT$_ITM_DATALINK_
	ADDRESS (REMOTE)

	LAN address uesed by the node.

	<TABLE ROW>
	LAT$_ITM_NODE_LIMIT
	Maximum number of nodes in LAT database. The default is 0, where the maximum is determined by sys...
	Maximum number of nodes in LAT database. The default is 0, where the maximum is determined by sys...

	<TABLE ROW>
	LAT$_ITM_RETRANSMIT_
	LAT$_ITM_RETRANSMIT_
	LIMIT

	LAT retransmit limit. Possible values are 4 to 120 retransmissions. The default is 8 retransmissi...
	LAT retransmit limit. Possible values are 4 to 120 retransmissions. The default is 8 retransmissi...

	<TABLE ROW>
	LAT$_ITM_MAXIMUM_UNITS (LOCAL)
	LAT$_ITM_MAXIMUM_UNITS (LOCAL)

	Maximum LTA unit number.
	Maximum LTA unit number.

	<TABLE ROW>
	LAT$_ITM_SERVER_MODE (LOCAL)
	LAT$_ITM_SERVER_MODE (LOCAL)

	Controls whether the node allows the use of the MASTER side of the LAT protocol for outbound conn...

	<TABLE ROW>
	LAT$C_DISABLED
	LAT$C_DISABLED

	Server mode disabled (this is the default).
	Server mode disabled (this is the default).

	<TABLE ROW>
	LAT$C_ENABLED
	LAT$C_ENABLED

	Server mode enabled.
	Server mode enabled.

	<TABLE ROW>
	LAT$_ITM_SERVICE_RESPONDER (LOCAL)
	LAT$_ITM_SERVICE_RESPONDER (LOCAL)

	Indicates whether the node is to respond to service inquiries originating from a remote system. T...

	<TABLE ROW>
	LAT$C_DISABLED
	Service responder disabled (this is the default).
	Service responder disabled (this is the default).

	<TABLE ROW>
	LAT$C_ENABLED
	Service responder enabled.
	Service responder enabled.

	<TABLE ROW>
	LAT$_ITM_OUTGOING_SES_LIMIT (LOCAL)
	LAT$_ITM_OUTGOING_SES_LIMIT (LOCAL)

	Maximum number of outgoing LAT sessions. A value of 0, which is the default, indicates that the l...
	Maximum number of outgoing LAT sessions. A value of 0, which is the default, indicates that the l...

	<TABLE ROW>
	LAT$_ITM_INCOMING_SES_LIMIT (LOCAL)
	LAT$_ITM_INCOMING_SES_LIMIT (LOCAL)

	Maximum number of interactive LAT sessions. A value of 0, which is the default, indicates that th...
	Maximum number of interactive LAT sessions. A value of 0, which is the default, indicates that th...

	<TABLE ROW>
	LAT$_ITM_USER_GROUPS (LOCAL)
	Bit mask of LAT group codes to be used when attempting outbound connections using the MASTER side...
	Bit mask of LAT group codes to be used when attempting outbound connections using the MASTER side...

	<TABLE ROW>
	LAT$_ITM_CIRCUIT_TIMER (BOTH)
	LAT$_ITM_CIRCUIT_TIMER (BOTH)

	Circuit timer value in milliseconds. Possible values are 10 to 1000 milliseconds. The default is ...

	<TABLE ROW>
	LAT$_ITM_CPU_RATING (LOCAL)
	LAT$_ITM_CPU_RATING (LOCAL)

	CPU rating.
	CPU rating.

	<TABLE ROW>
	LAT$_ITM_KEEPALIVE_TIMER (LOCAL)
	LAT$_ITM_KEEPALIVE_TIMER (LOCAL)

	Keepalive timer value in seconds. Possible values are 10 to 255 seconds. The default is 20 seconds.
	Keepalive timer value in seconds. Possible values are 10 to 255 seconds. The default is 20 seconds.

	<TABLE ROW>
	LAT$_ITM_MULTICAST_TIMER (BOTH)
	LAT$_ITM_MULTICAST_TIMER (BOTH)

	Multicast timer value in seconds. Possible values are 10 to 180 seconds. The default is 20 seconds.
	Multicast timer value in seconds. Possible values are 10 to 180 seconds. The default is 20 seconds.

	<TABLE ROW>
	LAT$_ITM_CONNECTIONS (BOTH)
	LAT$_ITM_CONNECTIONS (BOTH)

	Indicates whether inbound connections (interactive sessions) can be accepted. Possible values are:
	Indicates whether inbound connections (interactive sessions) can be accepted. Possible values are:

	<TABLE ROW>
	LAT$C_DISABLED
	LAT$C_DISABLED

	Inbound connections disabled.
	Inbound connections disabled.

	<TABLE ROW>
	LAT$C_ENABLED
	LAT$C_ENABLED

	Inbound connections enabled (this is the default).
	Inbound connections enabled (this is the default).

	<TABLE ROW>
	LAT$C_ITM_LARGE_BUFFERS
	LAT$C_ITM_LARGE_BUFFERS

	Indicates in Boolean logic whether the LAT software is using large packet support by default.
	Indicates in Boolean logic whether the LAT software is using large packet support by default.

	<TABLE ROW>
	LAT$C_ITM_
	LAT$C_ITM_
	ANNOUNCEMENTS

	Indicates in Boolean logic whether the LAT software is transmitting LAT service advertisement mes...
	Indicates in Boolean logic whether the LAT software is transmitting LAT service advertisement mes...

	Node service information is presented as a list of node service subblocks, with each subblock con...
	<TABLE>
	Table�5�18 Node Service Subblock Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Item Code

	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_SERVICE_NAME (BOTH)
	LAT$_ITM_SERVICE_NAME (BOTH)

	Name of a LAT service offered by the node.
	Name of a LAT service offered by the node.

	<TABLE ROW>
	LAT$_ITM_SERVICE_STATUS (BOTH)
	LAT$_ITM_SERVICE_STATUS (BOTH)

	Status of the service. Possible values are:
	Status of the service. Possible values are:

	<TABLE ROW>
	LAT$C_AVAILABLE
	LAT$C_AVAILABLE

	Service available.

	<TABLE ROW>
	LAT$C_UNAVAILABLE
	LAT$C_UNAVAILABLE

	Service unavailable.
	Service unavailable.

	<TABLE ROW>
	LAT$_ITM_SERVICE_TYPE (LOCAL)
	LAT$_ITM_SERVICE_TYPE (LOCAL)

	Type of service. Possible values are:
	Type of service. Possible values are:

	<TABLE ROW>
	LAT$C_ST_GENERAL
	LAT$C_ST_GENERAL

	Creates a general timesharing service.
	Creates a general timesharing service.

	<TABLE ROW>
	LAT$C_ST_APPLICATION
	LAT$C_ST_APPLICATION

	Creates a special application service that must then be associated with ports dedicated to accept...
	Creates a special application service that must then be associated with ports dedicated to accept...

	<TABLE ROW>
	LAT$_ITM_RATING (BOTH)
	LAT$_ITM_RATING (BOTH)

	LAT service rating associated with the service.
	LAT service rating associated with the service.

	<TABLE ROW>
	LAT$_ITM_RATING_TYPE (LOCAL)
	LAT$_ITM_RATING_TYPE (LOCAL)

	Type of LAT rating calculation being done by this node. Possible values are:
	Type of LAT rating calculation being done by this node. Possible values are:

	<TABLE ROW>
	LAT$C_STATIC
	LAT$C_STATIC

	Static rating calculation
	Static rating calculation

	<TABLE ROW>
	LAT$C_DYNAMIC
	LAT$C_DYNAMIC

	Dynamic rating calculation
	Dynamic rating calculation

	<TABLE ROW>
	LAT$_ITM_IDENTIFICATION (BOTH)
	LAT$_ITM_IDENTIFICATION (BOTH)

	Identification string associated with the service.
	Identification string associated with the service.

	On Alpha and I64 systems, port counters information is presented as a counters subblock. The subb...
	Node counters information is presented as a counters subblock. The subblock item code LAT$_ITM_CO...
	<TABLE>
	Table�5�20 Node Counters Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Codes
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_CTNOD_SSZ (BOTH)
	LAT$_ITM_CTNOD_SSZ (BOTH)

	Seconds since zeroed
	Seconds since zeroed

	<TABLE ROW>
	LAT$_ITM_CTNOD_MSGR (BOTH)
	LAT$_ITM_CTNOD_MSGR (BOTH)

	Messages received
	Messages received

	<TABLE ROW>
	LAT$_ITM_CTNOD_MSGT (BOTH)
	LAT$_ITM_CTNOD_MSGT (BOTH)

	Messages transmitted
	Messages transmitted

	<TABLE ROW>
	LAT$_ITM_CTNOD_SLTR (BOTH)
	LAT$_ITM_CTNOD_SLTR (BOTH)

	Slots received
	Slots received

	<TABLE ROW>
	LAT$_ITM_CTNOD_SLTT (BOTH)
	LAT$_ITM_CTNOD_SLTT (BOTH)

	Slots transmitted
	Slots transmitted

	<TABLE ROW>
	LAT$_ITM_CTNOD_BYTR (BOTH)
	LAT$_ITM_CTNOD_BYTR (BOTH)

	Bytes received
	Bytes received

	<TABLE ROW>
	LAT$_ITM_CTNOD_MNA (BOTH)
	LAT$_ITM_CTNOD_MNA (BOTH)

	Multiple node addresses
	Multiple node addresses

	<TABLE ROW>
	LAT$_ITM_CTNOD_DUP (BOTH)
	LAT$_ITM_CTNOD_DUP (BOTH)

	Duplicates received
	Duplicates received

	<TABLE ROW>
	LAT$_ITM_CTNOD_MRT (BOTH)
	LAT$_ITM_CTNOD_MRT (BOTH)

	Messages retransmitted
	Messages retransmitted

	<TABLE ROW>
	LAT$_ITM_CTNOD_ILM (BOTH)
	LAT$_ITM_CTNOD_ILM (BOTH)

	Illegal messages received
	Illegal messages received

	<TABLE ROW>
	LAT$_ITM_CTNOD_ILS (BOTH)
	LAT$_ITM_CTNOD_ILS (BOTH)

	Illegal slots received
	Illegal slots received

	<TABLE ROW>
	LAT$_ITM_CTNOD_SLCA (BOTH)
	LAT$_ITM_CTNOD_SLCA (BOTH)

	Solicitations accepted
	Solicitations accepted

	<TABLE ROW>
	LAT$_ITM_CTNOD_SLCR (BOTH)
	LAT$_ITM_CTNOD_SLCR (BOTH)

	Solicitations rejected
	Solicitations rejected

	<TABLE ROW>
	LAT$_ITM_CTNOD_TER (LOCAL)
	LAT$_ITM_CTNOD_TER (LOCAL)

	Transmit errors
	Transmit errors

	<TABLE ROW>
	LAT$_ITM_CTNOD_RES (LOCAL)
	LAT$_ITM_CTNOD_RES (LOCAL)

	Resource errors
	Resource errors

	<TABLE ROW>
	LAT$_ITM_CTNOD_NTB (LOCAL)
	LAT$_ITM_CTNOD_NTB (LOCAL)

	No transmit buffer
	No transmit buffer

	<TABLE ROW>
	LAT$_ITM_CTNOD_TMO (LOCAL)
	LAT$_ITM_CTNOD_TMO (LOCAL)

	Virtual circuit timeout
	Virtual circuit timeout

	<TABLE ROW>
	LAT$_ITM_CTNOD_DOB (LOCAL)
	LAT$_ITM_CTNOD_DOB (LOCAL)

	Discarded output bytes
	Discarded output bytes

	<TABLE ROW>
	LAT$_ITM_CTNOD_LSTER (LOCAL)
	LAT$_ITM_CTNOD_LSTER (LOCAL)

	Last transmit error
	Last transmit error

	<TABLE ROW>
	LAT$_ITM_CTNOD_MCBXMT (LOCAL)
	LAT$_ITM_CTNOD_MCBXMT (LOCAL)

	Number of multicast bytes transmitted
	Number of multicast bytes transmitted

	<TABLE ROW>
	LAT$_ITM_CTNOD_MCBRCV (LOCAL)
	LAT$_ITM_CTNOD_MCBRCV (LOCAL)

	Number of multicast bytes received
	Number of multicast bytes received

	<TABLE ROW>
	LAT$_ITM_CTNOD_MCMXMT (LOCAL)
	LAT$_ITM_CTNOD_MCMXMT (LOCAL)

	Number of multicast messages transmitted
	Number of multicast messages transmitted

	<TABLE ROW>
	LAT$_ITM_CTNOD_MCMRCV (LOCAL)
	LAT$_ITM_CTNOD_MCMRCV (LOCAL)

	Number of multicast messages received
	Number of multicast messages received

	<TABLE ROW>
	LAT$_ITM_CTNOD_SOLFAIL (LOCAL)
	LAT$_ITM_CTNOD_SOLFAIL (LOCAL)

	Number of solicitation failures
	Number of solicitation failures

	<TABLE ROW>
	LAT$_ITM_CTNOD_ATLOS (LOCAL)
	LAT$_ITM_CTNOD_ATLOS (LOCAL)

	Number of times attention slot data was lost
	Number of times attention slot data was lost

	<TABLE ROW>
	LAT$_ITM_CTNOD_DATLOS (LOCAL)
	LAT$_ITM_CTNOD_DATLOS (LOCAL)

	Number of times user data was lost
	Number of times user data was lost

	<TABLE ROW>
	LAT$_ITM_CTNOD_NOREJ (LOCAL)
	LAT$_ITM_CTNOD_NOREJ (LOCAL)

	Number of times a reject slot could not be sent
	Number of times a reject slot could not be sent

	<TABLE ROW>
	LAT$_ITM_CTNOD_LOSCT (LOCAL)
	LAT$_ITM_CTNOD_LOSCT (LOCAL)

	Number of times remote node counters were lost
	Number of times remote node counters were lost

	<TABLE ROW>
	LAT$_ITM_CTNOD_LOSSAM (LOCAL)
	LAT$_ITM_CTNOD_LOSSAM (LOCAL)

	Number of service announcement messages lost
	Number of service announcement messages lost

	<TABLE ROW>
	LAT$_ITM_CTNOD_NOSAM (LOCAL)
	LAT$_ITM_CTNOD_NOSAM (LOCAL)

	Number of times a service announcement message could not be sent
	Number of times a service announcement message could not be sent

	<TABLE ROW>
	LAT$_ITM_CTNOD_NOSTS (LOCAL)
	LAT$_ITM_CTNOD_NOSTS (LOCAL)

	Number of times node status was lost
	Number of times node status was lost

	<TABLE ROW>
	LAT$_ITM_CTNOD_NOXMT (LOCAL)
	LAT$_ITM_CTNOD_NOXMT (LOCAL)

	Number of times no link was available for a transmit
	Number of times no link was available for a transmit

	<TABLE ROW>
	LAT$_ITM_CTNOD_CTLERR (LOCAL)
	LAT$_ITM_CTNOD_CTLERR (LOCAL)

	Number of controller errors
	Number of controller errors

	<TABLE ROW>
	LAT$_ITM_CTNOD_CERRCOD (LOCAL)
	LAT$_ITM_CTNOD_CERRCOD (LOCAL)

	Lost controller error
	Lost controller error

	<TABLE ROW>
	LAT$_ITM_CTNOD_ISOLA (LOCAL)
	LAT$_ITM_CTNOD_ISOLA (LOCAL)

	Number of incoming solicitations accepted
	Number of incoming solicitations accepted

	<TABLE ROW>
	LAT$_ITM_CTNOD_ISOLR (LOCAL)
	LAT$_ITM_CTNOD_ISOLR (LOCAL)

	Number of incoming solicitations rejected
	Number of incoming solicitations rejected

	<TABLE ROW>
	LAT$_ITM_CTNOD_PROTO (LOCAL)
	LAT$_ITM_CTNOD_PROTO (LOCAL)

	Protocol error count
	Protocol error count

	<TABLE ROW>
	LAT$_ITM_CTNOD_XSTR (REMOTE)
	LAT$_ITM_CTNOD_XSTR (REMOTE)

	Indicates that the node attempted to start up too many LAT sessions for a specific virtual circuit
	Indicates that the node attempted to start up too many LAT sessions for a specific virtual circuit

	Several protocol errors are also included in a separate subblock. The protocol errors item code i...
	<TABLE>
	Table�5�21 Protocol Error Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Codes
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_CTPRO_IVM (LOCAL)
	LAT$_ITM_CTPRO_IVM (LOCAL)

	Invalid message type received.
	Invalid message type received.

	<TABLE ROW>
	LAT$_ITM_CTPRO_ISM (LOCAL)
	LAT$_ITM_CTPRO_ISM (LOCAL)

	Invalid start message received.
	Invalid start message received.

	<TABLE ROW>
	LAT$_ITM_CTPRO_IVS (LOCAL)
	LAT$_ITM_CTPRO_IVS (LOCAL)

	Invalid sequence number received.
	Invalid sequence number received.

	<TABLE ROW>
	LAT$_ITM_CTPRO_NIZ (LOCAL)
	LAT$_ITM_CTPRO_NIZ (LOCAL)

	Zero-node index received.
	Zero-node index received.

	<TABLE ROW>
	LAT$_ITM_CTPRO_ICI (LOCAL)
	LAT$_ITM_CTPRO_ICI (LOCAL)

	Node circuit index out of range.
	Node circuit index out of range.

	<TABLE ROW>
	LAT$_ITM_CTPRO_CSI (LOCAL)
	LAT$_ITM_CTPRO_CSI (LOCAL)

	Node circuit sequence invalid.
	Node circuit sequence invalid.

	<TABLE ROW>
	LAT$_ITM_CTPRO_NLV (LOCAL)
	LAT$_ITM_CTPRO_NLV (LOCAL)

	Node circuit index no longer valid.
	Node circuit index no longer valid.

	<TABLE ROW>
	LAT$_ITM_CTPRO_HALT (LOCAL)
	LAT$_ITM_CTPRO_HALT (LOCAL)

	Circuit was forced to halt.
	Circuit was forced to halt.

	<TABLE ROW>
	LAT$_ITM_CTPRO_MIZ (LOCAL)
	LAT$_ITM_CTPRO_MIZ (LOCAL)

	Invalid master slot index.
	Invalid master slot index.

	<TABLE ROW>
	LAT$_ITM_CTPRO_SIZ (LOCAL)
	LAT$_ITM_CTPRO_SIZ (LOCAL)

	Invalid slave slot index.
	Invalid slave slot index.

	<TABLE ROW>
	LAT$_ITM_CTPRO_CRED (LOCAL)
	LAT$_ITM_CTPRO_CRED (LOCAL)

	Invalid credit field.
	Invalid credit field.

	<TABLE ROW>
	LAT$_ITM_CTPRO_RCSM (LOCAL)
	LAT$_ITM_CTPRO_RCSM (LOCAL)

	Repeat creation of slot by master.
	Repeat creation of slot by master.

	<TABLE ROW>
	LAT$_ITM_CTPRO_RDSM (LOCAL)
	LAT$_ITM_CTPRO_RDSM (LOCAL)

	Repeat disconnection of slot by master.
	Repeat disconnection of slot by master.

	<TABLE ROW>
	LAT$_ITM_CTPRO_INVCLASS (LOCAL)
	LAT$_ITM_CTPRO_INVCLASS (LOCAL)

	Indicates the number of times a LAT message was received with an invalid service class specified ...
	Indicates the number of times a LAT message was received with an invalid service class specified ...

	<TABLE ROW>
	LAT$_ITM_CTPRO_EXCSTART (LOCAL)
	LAT$_ITM_CTPRO_EXCSTART (LOCAL)

	Indicates that a remote node attempted to start up too many LAT sessions. When a virtual circuit ...
	Indicates that a remote node attempted to start up too many LAT sessions. When a virtual circuit ...

	Table�5�22
	Table�5�22

	<TABLE>
	Table�5�22 LAT$C_ENT_SERVICE Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_SERVICE_NAME (BOTH, SUMMARY)
	LAT$_ITM_SERVICE_NAME (BOTH, SUMMARY)

	Service name.
	Service name.

	<TABLE ROW>
	LAT$_ITM_SERVICE_STATUS (BOTH, SUMMARY)
	Status of the specified service. Possible values are:
	Status of the specified service. Possible values are:

	<TABLE ROW>
	LAT$C_AVAILABLE
	Service available.

	<TABLE ROW>
	LAT$C_UNAVAILABLE
	Service unavailable.

	<TABLE ROW>
	LAT$_ITM_SERVICE_TYPE (LOCAL,SUMMARY)
	LAT$_ITM_SERVICE_TYPE (LOCAL,SUMMARY)

	Type of service. Possible values are:
	Type of service. Possible values are:

	<TABLE ROW>
	LAT$C_ST_GENERAL
	General timesharing service.

	<TABLE ROW>
	LAT$C_ST_APPLICATION
	Special application service associated with ports dedicated to accepting connections to this serv...

	<TABLE ROW>
	LAT$_ITM_IDENTIFICATION (BOTH, SUMMARY)
	LAT$_ITM_IDENTIFICATION (BOTH, SUMMARY)

	Service identification string, as advertised by the highest rated node that currently offers the ...
	Service identification string, as advertised by the highest rated node that currently offers the ...

	Service node information is presented as a list of service node subblocks, with each subblock con...
	<TABLE>
	Table�5�23 Service Node Subblock Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$C_ITM_NODE_NAME (BOTH)
	Name of a LAT node that offers the selected service.

	<TABLE ROW>
	LAT$_ITM_STATE (LOCAL)
	Current state of the LAT protocol on the local node. Possible values are:

	<TABLE ROW>
	LAT$C_ON
	New connections are allowed, and the LAT protocol is running.

	<TABLE ROW>
	LAT$C_OFF
	New connections are not allowed, and any current connections are abnormally terminated. The LAT p...

	<TABLE ROW>
	LAT$C_SHUT
	No new connections are allowed. Currently active connections are still maintained. The LAT protoc...

	<TABLE ROW>
	LAT$_ITM_NODE_STATUS (REMOTE)
	LAT$_ITM_NODE_STATUS (REMOTE)

	Current status of the remote node. This item code is present only if a LAT virtual circuit does n...

	<TABLE ROW>
	LAT$C_REACHABLE
	LAT$C_REACHABLE

	Remote node is reachable.
	Remote node is reachable.

	<TABLE ROW>
	LAT$C_UNREACHABLE
	LAT$C_UNREACHABLE

	Remote node is unreachable.
	Remote node is unreachable.

	<TABLE ROW>
	LAT$C_UNKNOWN
	LAT$C_UNKNOWN

	Remote node status is unknown.
	Remote node status is unknown.

	<TABLE ROW>
	LAT$_ITM_CONNECTED_COUNT (REMOTE)
	LAT$_ITM_CONNECTED_COUNT (REMOTE)

	Number of LAT sessions from the local node to this remote node. This item code replaces the LAT$_...
	Number of LAT sessions from the local node to this remote node. This item code replaces the LAT$_...

	<TABLE ROW>
	LAT$_ITM_RATING (BOTH)
	LAT$_ITM_RATING (BOTH)

	LAT service rating associated with the service.
	LAT service rating associated with the service.

	<TABLE ROW>
	LAT$_ITM_RATING_TYPE (LOCAL)
	LAT$_ITM_RATING_TYPE (LOCAL)

	Type of LAT rating calculation being done by this node. Possible values are LAT$C_STATIC and LAT$...
	Type of LAT rating calculation being done by this node. Possible values are LAT$C_STATIC and LAT$...

	<TABLE ROW>
	LAT$_ITM_IDENTIFICATION (BOTH)
	LAT$_ITM_IDENTIFICATION (BOTH)

	Identification string associated with the service.
	Identification string associated with the service.

	Service counters information is presented as a counters subblock. The subblock item code LAT$_ITM...
	<TABLE>
	Table�5�24 Service Counters Subblock Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Codes
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_CTSRV_SSZ (BOTH)
	LAT$_ITM_CTSRV_SSZ (BOTH)

	Seconds since zeroed.
	Seconds since zeroed.

	<TABLE ROW>
	LAT$_ITM_CTSRV_MCNA (BOTH)
	LAT$_ITM_CTSRV_MCNA (BOTH)

	Outgoing connections attempted (the number of times the local node has attempted to connect to th...
	Outgoing connections attempted (the number of times the local node has attempted to connect to th...
	Outgoing connections completed (the number of times the local node successfully connected to the ...

	<TABLE ROW>
	LAT$_ITM_CTSRV_MCNC (BOTH)
	LAT$_ITM_CTSRV_MCNC (BOTH)

	<TABLE ROW>
	LAT$_ITM_CTSRV_SCNA (BOTH)
	LAT$_ITM_CTSRV_SCNA (BOTH)

	Incoming connections accepted (the number of times the local node has accepted a connection reque...
	Incoming connections accepted (the number of times the local node has accepted a connection reque...

	<TABLE ROW>
	LAT$_ITM_CTSRV_SCNR (BOTH)
	LAT$_ITM_CTSRV_SCNR (BOTH)

	Incoming connections rejected (the number of times the local node rejected a connection request f...
	Incoming connections rejected (the number of times the local node rejected a connection request f...

	<TABLE ROW>
	LAT$_ITM_DED_PORT_BLOCK (LOCAL)
	LAT$_ITM_DED_PORT_BLOCK (LOCAL)

	If the selected service is an application service offered by the local node, a list of one or mor...
	If the selected service is an application service offered by the local node, a list of one or mor...

	<TABLE ROW>
	LAT$_ITM_PORT_ NAME (LOCAL)
	LAT$_ITM_PORT_ NAME (LOCAL)

	Name of the dedicated port.

	<TABLE ROW>
	LAT$_ITM_PASSWORD_
	LAT$_ITM_PASSWORD_
	FAILURE

	Indicates password failures.
	Indicates password failures.

	Table�5�25
	Table�5�25

	<TABLE>
	Table�5�25 LAT$C_ENT_LINK Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Codes
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_LINK_NAME (SUMMARY)
	LAT$_ITM_LINK_NAME (SUMMARY)

	Link name (such as LAT$LINK).
	Link name (such as LAT$LINK).

	<TABLE ROW>
	LAT$_ITM_STATE (SUMMARY)
	LAT$_ITM_STATE (SUMMARY)

	State of the link. Possible values are:
	State of the link. Possible values are:

	<TABLE ROW>
	LAT$C_ON
	LAT$C_ON

	New connections are allowed, and the LAT protocol is running.

	<TABLE ROW>
	LAT$C_OFF
	New connections are not allowed, and any current connections are abnormally terminated. The LAT p...

	<TABLE ROW>
	LAT$C_SHUT
	No new connections are allowed. Currently active connections are still maintained. The LAT protoc...

	<TABLE ROW>
	LAT$_ITM_DEVICE_NAME (SUMMARY)
	LAT$_ITM_DEVICE_NAME (SUMMARY)

	The name of the LAN device used for the link.
	The name of the LAN device used for the link.

	<TABLE ROW>
	LAT$_ITM_DATALINK_ADDRESS
	LAT$_ITM_DATALINK_ADDRESS

	The LAN device's current physical address for the link.
	The LAN device's current physical address for the link.

	<TABLE ROW>
	LAT$_ITM_DECNET_ADDRESS
	LAT$_ITM_DECNET_ADDRESS

	Indicates whether the link attempts to use the default DECnet LAN address when starting the data ...
	Indicates whether the link attempts to use the default DECnet LAN address when starting the data ...

	<TABLE ROW>
	LAT$C_DISABLED
	LAT$C_DISABLED

	DECnet LAN address use disabled.

	<TABLE ROW>
	LAT$C_ENABLED
	DECnet LAN address use enabled (this is the default.

	Link counters information is presented as a counters subblock. The subblock item code LAT$_ITM_CO...
	<TABLE>
	Table�5�26 Link Counters Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Codes
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	NMA$C_CTLIN_ZER
	NMA$C_CTLIN_ZER

	Seconds since zeroed
	Seconds since zeroed

	<TABLE ROW>
	NMA$C_CTLIN_DBR
	NMA$C_CTLIN_DBR

	Messages received
	Messages received

	<TABLE ROW>
	NMA$C_CTLIN_DBS
	NMA$C_CTLIN_DBS

	Messages transmitted
	Messages transmitted

	<TABLE ROW>
	NMA$C_CTLIN_MBL
	NMA$C_CTLIN_MBL

	Multicast messages received
	Multicast messages received

	<TABLE ROW>
	NMA$C_CTLIN_MBS
	NMA$C_CTLIN_MBS

	Multicast messages transmitted
	Multicast messages transmitted

	<TABLE ROW>
	NMA$C_CTLIN_BRC
	NMA$C_CTLIN_BRC

	Bytes received
	Bytes received

	<TABLE ROW>
	NMA$C_CTLIN_BSN
	NMA$C_CTLIN_BSN

	Bytes transmitted
	Bytes transmitted

	<TABLE ROW>
	NMA$C_CTLIN_MBY
	NMA$C_CTLIN_MBY

	Multicast bytes received
	Multicast bytes received

	<TABLE ROW>
	NMA$C_CTLIN_MSN
	NMA$C_CTLIN_MSN

	Multicast bytes transmitted
	Multicast bytes transmitted

	<TABLE ROW>
	NMA$C_CTLIN_RFL
	NMA$C_CTLIN_RFL

	Receive errors
	Receive errors

	<TABLE ROW>
	NMA$C_CTLIN_SFL
	NMA$C_CTLIN_SFL

	Transmit errors
	Transmit errors

	<TABLE ROW>
	NMA$C_CTLIN_OVR
	NMA$C_CTLIN_OVR

	Data overrun
	Data overrun

	<TABLE ROW>
	NMA$C_CTLIN_UBU
	NMA$C_CTLIN_UBU

	User buffer unavailable
	User buffer unavailable

	<TABLE ROW>
	NMA$C_CTLIN_SBU
	NMA$C_CTLIN_SBU

	System buffer unavailable
	System buffer unavailable

	<TABLE ROW>
	NMA$C_CTLIN_LBE
	NMA$C_CTLIN_LBE

	Local buffer errors
	Local buffer errors

	<TABLE ROW>
	NMA$C_CTLIN_BS1
	NMA$C_CTLIN_BS1

	Messages sent, single collisions
	Messages sent, single collisions

	<TABLE ROW>
	NMA$C_CTLIN_BSM
	NMA$C_CTLIN_BSM

	Messages sent, multiple collisions
	Messages sent, multiple collisions

	<TABLE ROW>
	NMA$C_CTLIN_BID
	NMA$C_CTLIN_BID

	Messages sent, initially deferred
	Messages sent, initially deferred

	<TABLE ROW>
	NMA$C_CTLIN_CDC
	NMA$C_CTLIN_CDC

	Transmit collision detection check failure
	Transmit collision detection check failure

	Table�5�27
	Table�5�27

	<TABLE>
	Table�5�27 Additional Link Counters Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Codes
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_CTLAT_RMSG
	LAT$_ITM_CTLAT_RMSG

	Count of LAT messages received through link
	Count of LAT messages received through link

	<TABLE ROW>
	LAT$_ITM_CTLAT_RBYT
	LAT$_ITM_CTLAT_RBYT

	Count of bytes for LAT received through link
	Count of bytes for LAT received through link

	<TABLE ROW>
	LAT$_ITM_CTLAT_XMSG
	LAT$_ITM_CTLAT_XMSG

	Count of LAT messages transmitted through link
	Count of LAT messages transmitted through link

	<TABLE ROW>
	LAT$_ITM_CTLAT_XBYT
	LAT$_ITM_CTLAT_XBYT

	Count of bytes for LAT transmitted through link
	Count of bytes for LAT transmitted through link

	<TABLE ROW>
	LAT$_ITM_CTLAT_MUL_RMSG
	LAT$_ITM_CTLAT_MUL_RMSG

	Count of LAT multicast messages received through link
	Count of LAT multicast messages received through link

	<TABLE ROW>
	LAT$_ITM_CTLAT_MUL_RBYT
	LAT$_ITM_CTLAT_MUL_RBYT

	Count of multicast bytes for LAT received through link
	Count of multicast bytes for LAT received through link

	<TABLE ROW>
	LAT$_ITM_CTLAT_MUL_XMSG
	LAT$_ITM_CTLAT_MUL_XMSG

	Count of LAT multicast messages transmitted through link
	Count of LAT multicast messages transmitted through link

	<TABLE ROW>
	LAT$_ITM_CTLAT_MUL_XBYT
	LAT$_ITM_CTLAT_MUL_XBYT

	Count of multicast bytes for LAT transmitted through link
	Count of multicast bytes for LAT transmitted through link

	<TABLE ROW>
	LAT$_ITM_LAT_DEV_CTR_BLOCK
	LAT$_ITM_LAT_DEV_CTR_BLOCK

	This block contains the LAT-specific counters for the specified link. Counters returned in this b...
	This block contains the LAT-specific counters for the specified link. Counters returned in this b...

	The counter item codes listed in
	$
	$
	SHOW LINK /COUNTER

	The display looks similiar to the following: Link Name: LAT$LINK Device Name: _XQA1: Seconds Sinc...
	Table�5�28
	Table�5�28

	<TABLE>
	Table�5�28 LAT$C_ENT_PORT Item Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Item Code

	Meaning
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_PORT_NAME_SUMMARY
	LAT$_ITM_PORT_NAME_SUMMARY

	Name of the port (such as _LTA15:).
	Name of the port (such as _LTA15:).

	<TABLE ROW>
	LAT$_ITM_PORT_TYPE_SUMMARY
	LAT$_ITM_PORT_TYPE_SUMMARY

	Type of port.
	Type of port.

	<TABLE ROW>
	Possible values are:
	Possible values are:
	Possible values are:

	<TABLE ROW>
	LAT$_PT_FORWARD
	LAT$_PT_FORWARD

	Forward port used for outgoing LAT connections or for management functions.
	Forward port used for outgoing LAT connections or for management functions.

	<TABLE ROW>
	LAT$_PT_INTERACTIVE
	LAT$_PT_INTERACTIVE

	Interactive port created as the result of an incoming LAT connection request.
	Interactive port created as the result of an incoming LAT connection request.

	<TABLE ROW>
	LAT$_PT_APPLICATION
	LAT$_PT_APPLICATION

	Application port for solicited connections.
	Application port for solicited connections.

	<TABLE ROW>
	LAT$_PT_DEDICATED
	LAT$_PT_DEDICATED

	Dedicated port associated with a local service.
	Dedicated port associated with a local service.

	<TABLE ROW>
	LAT$_ITM_QUEUED
	LAT$_ITM_QUEUED

	Controls whether the solicited connection requests queued or nonqueued access.
	Controls whether the solicited connection requests queued or nonqueued access.

	<TABLE ROW>
	Possible values are:
	Possible values are:
	Possible values are:

	<TABLE ROW>
	LAT$C_DISABLED
	LAT$C_DISABLED

	Queued access disabled.
	Queued access disabled.

	<TABLE ROW>
	LAT$C_ENABLED
	LAT$C_ENABLED

	Queued access enabled (this is the default).
	Queued access enabled (this is the default).

	<TABLE ROW>
	LAT$_ITM_SERVICE_CLASS
	LAT$_ITM_SERVICE_CLASS

	Indicates the class driver with which the device is communicating. This item code can be used onl...
	Indicates the class driver with which the device is communicating. This item code can be used onl...

	<TABLE ROW>
	Possible values are:
	Possible values are:
	Possible values are:

	<TABLE ROW>
	LAT$C_SERVCLASS_INTERACTIVE
	LAT$C_SERVCLASS_INTERACTIVE

	Service class 1, TTDRIVER (this is the default).
	Service class 1, TTDRIVER (this is the default).

	<TABLE ROW>
	LAT$C_SERVCLASS_TESTSERVICE
	LAT$C_SERVCLASS_TESTSERVICE

	Service class 2, TEST SERVICE.
	Service class 2, TEST SERVICE.

	<TABLE ROW>
	LAT$C_SERVCLASS_XTRANSPORT
	LAT$C_SERVCLASS_XTRANSPORT

	Service class 3, X Protocol.
	Service class 3, X Protocol.

	<TABLE ROW>
	LAT$C_SERVCLASS_FONT
	LAT$C_SERVCLASS_FONT

	Service class 4, X fonts.
	Service class 4, X fonts.

	<TABLE ROW>
	LAT$_ITM_DISPLAY_NUMBER
	LAT$_ITM_DISPLAY_NUMBER

	Display number value for the device. This field has meaning for services classes 3 and 4 (X) only...
	Display number value for the device. This field has meaning for services classes 3 and 4 (X) only...

	<TABLE ROW>
	LAT$_ITM_DISCONNECT_REASON
	LAT$_ITM_DISCONNECT_REASON

	Reason (if any) for the last disconnect on the port. If it is not a 0--19 LAT rejection code, it ...
	Reason (if any) for the last disconnect on the port. If it is not a 0--19 LAT rejection code, it ...

	<TABLE ROW>
	LAT$C_PT_STATE_DISCONNECTING
	LAT$C_PT_STATE_DISCONNECTING

	Name of service to which this port is connected. For forward and application ports, this is the n...
	Name of service to which this port is connected. For forward and application ports, this is the n...

	<TABLE ROW>
	LAT$_ITM_CONNECTED_NODE_NAME1
	LAT$_ITM_CONNECTED_NODE_NAME

	Name of remote node to which this port is connected.
	Name of remote node to which this port is connected.

	<TABLE ROW>
	LAT$_ITM_CONNECTED_PORT_NAME1
	LAT$_ITM_CONNECTED_PORT_NAME

	Name of remote port to which this port is connected.
	Name of remote port to which this port is connected.

	<TABLE ROW>
	LAT$_ITM_CONNECTED_LINK_NAME1
	LAT$_ITM_CONNECTED_LINK_NAME

	Name of the link on which the LAT connection exists.
	Name of the link on which the LAT connection exists.

	<TABLE ROW>
	LAT$_ITM_TARGET_SERVICE_NAME
	LAT$_ITM_TARGET_SERVICE_NAME

	Target service name for connection of forward or application ports. For dedicated ports, this ite...
	Target service name for connection of forward or application ports. For dedicated ports, this ite...

	<TABLE ROW>
	LAT$_ITM_TARGET_NODE_NAME2
	LAT$_ITM_TARGET_NODE_NAME

	Target node name for connection of forward or application ports.
	Target node name for connection of forward or application ports.

	<TABLE ROW>
	LAT$_ITM_TARGET_PORT_NAME2
	LAT$_ITM_TARGET_PORT_NAME

	Target port name for connection of forward or application ports.
	Target port name for connection of forward or application ports.

	<TABLE ROW>
	LAT$_ITM_NODE_QUEUE_POSITION
	LAT$_ITM_NODE_QUEUE_POSITION

	Indicates current node queue position for connect request. Returned during SENSEMODE of port entity.
	Indicates current node queue position for connect request. Returned during SENSEMODE of port entity.

	<TABLE ROW>
	LAT$_ITM_SERVICE_QUEUE_POSITION3
	LAT$_ITM_SERVICE_QUEUE_POSITION

	Indicates current service queue position for connect request. Returned during SENSEMODE of port e...
	Indicates current service queue position for connect request. Returned during SENSEMODE of port e...

	<TABLE ROW>
	LAT$_ITM_PORT_STATE
	LAT$_ITM_PORT_STATE

	Current port state.
	Current port state.

	<TABLE ROW>
	Possible values are:
	Possible values are:
	Possible values are:

	<TABLE ROW>
	LAT$C_PT_STATE_INACTIVE
	LAT$C_PT_STATE_INACTIVE

	Port is inactive.

	<TABLE ROW>
	LAT$C_PT_STATE_CONNECTING
	LAT$C_PT_STATE_CONNECTING

	Port connection in progress but not complete.
	Port connection in progress but not complete.

	<TABLE ROW>
	LAT$C_PT_STATE_ACTIVE
	LAT$C_PT_STATE_ACTIVE

	Port has active LAT connection.
	Port has active LAT connection.

	<TABLE ROW>
	LAT$C_PT_STATE_DISCONNECTING
	LAT$C_PT_STATE_DISCONNECTING

	Port LAT connection in process of terminating.
	Port LAT connection in process of terminating.

	On Alpha and I64 systems, the item codes for queue entries are listed in
	<TABLE>
	Table�5�29 LAT SENSEMODE Queue Entries �
	<TABLE HEADING>
	<TABLE ROW>
	Item Code
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	LAT$_ITM_QUEUED_ENTRY_ID (SUMMARY)
	LAT$_ITM_QUEUED_ENTRY_ID (SUMMARY)

	Indicates by string the queue entry ID name.

	<TABLE ROW>
	LAT$_ITM_NODE_QUEUE_POSITION (SUMMARY)
	LAT$_ITM_NODE_QUEUE_POSITION (SUMMARY)

	Indicates the current position of entry in node wide queue.

	<TABLE ROW>
	LAT$_ITM_SERVICE_QUEUE_POSITION (SUMMARY)
	LAT$_ITM_SERVICE_QUEUE_POSITION (SUMMARY)

	Indicates the current position of entry in service wide queue.

	<TABLE ROW>
	LAT$_ITM_NODE_NAME (SUMMARY)
	Indicates where the remote node name queue entry came from.

	<TABLE ROW>
	LAT$_ITM_SERVICE_NAME (SUMMARY)
	Indicates the target service name to which the queue entry is queued (if specified).

	<TABLE ROW>
	LAT$_ITM_PORT_NAME (SUMMARY)
	Indicates the target port name to which the entry is queued (if specified).

	<TABLE ROW>
	LAT$_ITM_LINK_NAME
	Returns the link name on which the queued request is active.

	<TABLE ROW>
	LAT$_ITM_DATALINK_ADDRESS
	Returns the remote node that issued the request’s data link address.

	Programming Application Ports
	Programming Application Ports
	An application port is used to connect to a remote device (typically a printer) on a terminal ser...
	<TABLE>
	Table�5�30 IO$M_LT_CONNECT Request Status�
	<TABLE HEADING>
	<TABLE ROW>
	Event
	IOSB Status
	Explanation

	<TABLE BODY>
	<TABLE ROW>
	Connection established
	Connection established
	SS$_NORMAL return
	SS$_TIMEOUT return
	SS$_ABORT return

	SS$_NORMAL
	SS$_NORMAL

	The connection is successful, and the port is ready for use.
	The connection is successful, and the port is ready for use.

	<TABLE ROW>
	Connection timeout
	Connection timeout

	SS$_TIMEOUT
	SS$_TIMEOUT

	The connection did not complete because communication was never established with the remote end. ...
	The connection did not complete because communication was never established with the remote end. ...

	<TABLE ROW>
	Connection rejected
	Connection rejected

	SS$_ABORT. IOSB+2 contains LAT rejection code or LAT facility message code.
	SS$_ABORT. IOSB+2 contains LAT rejection code or LAT facility message code.

	The connection cannot be made. The LAT port driver updates the I/O status block. The LAT rejectio...
	The connection cannot be made. The LAT port driver updates the I/O status block. The LAT rejectio...

	<TABLE ROW>
	Connection request
	Connection request
	SS$_ILLIOFUNC return
	SS$_DEVACTIVE return

	SS$_ILLIOFUNC
	SS$_ILLIOFUNC

	The QIO request is not to an application, dedicated, or forward port. The LAT port driver rejects...
	The QIO request is not to an application, dedicated, or forward port. The LAT port driver rejects...

	<TABLE ROW>
	Connection already established on port
	Connection already established on port

	SS$_DEVACTIVE
	SS$_DEVACTIVE

	The QIO request is for a port already in use. The LAT port driver rejects the request immediately.
	The QIO request is for a port already in use. The LAT port driver rejects the request immediately.

	<TABLE ROW>
	Incorrectly configured LAT port
	Incorrectly configured LAT port

	SS$_DEVREQERR
	SS$_DEVREQERR

	The LAT port is incorrectly configured. This may mean that the port type was neither forward nor ...
	The LAT port is incorrectly configured. This may mean that the port type was neither forward nor ...

	<TABLE ROW>
	Insufficient resources
	Insufficient resources

	SS$_INSFMEM
	SS$_INSFMEM

	The QIO request failed because the LAT port driver could not get system memory to complete the co...
	The QIO request failed because the LAT port driver could not get system memory to complete the co...

	Before the application port can be used, it must be mapped to a remote node name, and either the ...
	• LAT$_ITM_TARGET_NODE_NAME—The node name. The node name is the name of the terminal server where...
	• LAT$_ITM_TARGET_NODE_NAME—The node name. The node name is the name of the terminal server where...
	• LAT$_ITM_TARGET_NODE_NAME—The node name. The node name is the name of the terminal server where...

	• LAT$_ITM_TARGET_PORT_NAME—The port name.
	• LAT$_ITM_TARGET_PORT_NAME—The port name.

	• LAT$_ITM_TARGET_SERVICE_NAME—The service name.
	• LAT$_ITM_TARGET_SERVICE_NAME—The service name.

	The queued status of the connection can also be mapped to the port by specifying the LAT$_ITM_QUE...
	• LAT$C_ENABLED—Port has queued status. This is the default.
	• LAT$C_ENABLED—Port has queued status. This is the default.
	• LAT$C_ENABLED—Port has queued status. This is the default.

	• LAT$C_DISABLED—The port does not have queued status.
	• LAT$C_DISABLED—The port does not have queued status.

	Programming Application Services and Dedicated Ports
	Programming Application Services and Dedicated Ports
	Terminals:LAT port driver:application services creation
	Terminals:LAT port driver:application services creation

	1. � Define the dedicated ports in LAT$SYSTARTUP.COM and execute the command procedure in SYSTART...
	1. � Define the dedicated ports in LAT$SYSTARTUP.COM and execute the command procedure in SYSTART...
	1. � Define the dedicated ports in LAT$SYSTARTUP.COM and execute the command procedure in SYSTART...

	2. � Run the application program. Within the application program, allocate dedicated ports with t...
	2. � Run the application program. Within the application program, allocate dedicated ports with t...

	3. � Post a read request to the dedicated ports. When the terminal user connects to the service a...
	3. � Post a read request to the dedicated ports. When the terminal user connects to the service a...

	4. � To break the connection, use the Deassign I/O Channel ($DASSGN) system service to deassign t...
	4. � To break the connection, use the Deassign I/O Channel ($DASSGN) system service to deassign t...

	An example of the application service concept is a program that provides the time of day. For thi...
	CREATE SERVICE TIME/ID="At the tone, the time will be"/APPLICATION CREATE PORT LTA99:/DEDICATED S...
	An application program then assigns a channel to device LTA99. When a terminal server user types ...
	A system manager may associate more than one LAT port with the same service. In that case, the ap...

	Programming Forward Ports
	Programming Forward Ports
	An outbound LAT connection to a remote service node can be made using a forward port. The LAT por...
	• LAT$_ITM_TARGET_SERVICE_NAME—The service name. The service name is the name of the service to w...
	• LAT$_ITM_TARGET_SERVICE_NAME—The service name. The service name is the name of the service to w...
	• LAT$_ITM_TARGET_SERVICE_NAME—The service name. The service name is the name of the service to w...

	• LAT$_ITM_TARGET_NODE_NAME—The node name. The node name is the name of a specific service node o...
	• LAT$_ITM_TARGET_NODE_NAME—The node name. The node name is the name of a specific service node o...

	• LAT$_ITM_TARGET_PORT_NAME—The port name. The port name is the name of a specific port on the ta...
	• LAT$_ITM_TARGET_PORT_NAME—The port name. The port name is the name of a specific port on the ta...

	• LAT$_ITM_SERVICE_PASSWORD—The password. The password is required for access to a password-prote...
	• LAT$_ITM_SERVICE_PASSWORD—The password. The password is required for access to a password-prote...

	A LAT SETMODE QIO on a forward port does not require OPER privilege if the port name is not speci...
	Table�5�30
	Table�5�30

	Queue Change Notification
	Queue Change Notification
	$QIO
	LAT $QIO
	IO$M_LT_QUE_CHG_NOTIF:LAT $QIO Function Modifier
	Attention AST
	On Alpha and I64 systems, the IO$M_LT_QUE_CHG_NOTIF function modifier for $QIO allows a process t...
	If a $QIO connect request has been issued to a remote node and that request has been queued, this...
	SS$_DEVACTIVE
	SS$_DEVACTIVE

	SS$_DEVREQERR
	SS$_DEVREQERR

	The implementation of IO$M_LT_QUE_CHG_NOTIF is shown in the following C example:
	status - sys$qiow (0, /* efn */ ltchannel, /* channel */ IO$_TTY_PORT|IO$M_LT_QUE_CHG_NOTIF, /* ...
	When a queue position change occurs, the AST routine is called with a 32-bit value. If this value...

	Hangup Notification
	Hangup Notification
	Terminals:hangup
	Terminals:hangup

	When an application with a pending read or write request has an abnormal LAT connection completio...
	If IOSB indicates an abnormal completion (SS$_ABORT, see

	Sense Mode and Sense Characteristics
	Sense Mode and Sense Characteristics
	Terminals:sense mode function
	Terminals:sense mode function
	Terminals:sense characteristics function
	Terminals:I/O functions:IO$_SENSEMODE
	Terminals:I/O functions:IO$_SENSECHAR
	Function codes:IO$_SENSEMODE
	Function codes:IO$_SENSECHAR

	• IO$_SENSEMODE
	• IO$_SENSEMODE
	• IO$_SENSEMODE

	• IO$_SENSECHAR
	• IO$_SENSECHAR

	IO$_SENSEMODE returns the temporary characteristics of the terminal (the characteristics associat...
	These function codes take the following device- or function-dependent arguments:
	• P1—Address of a characteristics buffer
	• P1—Address of a characteristics buffer
	• P1—Address of a characteristics buffer

	• P2—Length of characteristics buffer (default length is 8 bytes)
	• P2—Length of characteristics buffer (default length is 8 bytes)
	For remote terminals, specify a P2 value of 8 or 12 only.

	The P1 argument points to a variable-length block, as shown in
	Figure�5�11 Sense Mode Characteristics Buffer
	Figure�5�11 Sense Mode Characteristics Buffer
	<GRAPHIC>

	In the buffer, the device class is DC$_TERM, which is defined by the $DCDEF macro. The terminal t...
	The sense mode and sense characteristics functions can take the type-ahead count, read modem, and...
	Type-ahead Count Function Modifier
	Type-ahead Count Function Modifier
	Terminals:function modifiers:IO$M_TYPEAHDCNT
	Terminals:function modifiers:IO$M_TYPEAHDCNT
	Function modifiers:IO$M_TYPEAHDCNT
	Terminals:type-ahead

	Figure�5�12 Sense Mode Characteristics Buffer (type-ahead)
	Figure�5�12 Sense Mode Characteristics Buffer (type-ahead)
	<GRAPHIC>

	Read Modem Function Modifier
	Read Modem Function Modifier
	Terminals:function modifiers:IO$M_RD_MODEM
	Terminals:function modifiers:IO$M_RD_MODEM
	Function modifiers:IO$M_RD_MODEM
	Terminals:modem:sense signals

	• IO$_SENSEMODE!IO$M_RD_MODEM
	• IO$_SENSEMODE!IO$M_RD_MODEM
	• IO$_SENSEMODE!IO$M_RD_MODEM

	• IO$_SENSECHAR!IO$M_RD_MODEM
	• IO$_SENSECHAR!IO$M_RD_MODEM

	These function code modifier pairs take the following device- or function-dependent argument:
	• P1—The address of a quadword block
	• P1—The address of a quadword block
	• P1—The address of a quadword block

	Figure�5�13
	Figure�5�13

	Figure�5�13 Sense Mode P1 Block
	Figure�5�13 Sense Mode P1 Block
	<GRAPHIC>

	The receive modem field returns the value of the current input modem signals. Any or all of the f...
	• TT$M_DS_DSR—Data set ready (DSR)
	• TT$M_DS_DSR—Data set ready (DSR)
	• TT$M_DS_DSR—Data set ready (DSR)

	• TT$M_DS_RING—Calling indicator (RING)
	• TT$M_DS_RING—Calling indicator (RING)

	• TT$M_DS_CARRIER—Data channel received line signal detector (CARRIER)
	• TT$M_DS_CARRIER—Data channel received line signal detector (CARRIER)

	• TT$M_DS_CTS—Ready for sending (CTS)
	• TT$M_DS_CTS—Ready for sending (CTS)

	• TT$M_DS_SECREC—Received backward channel data (Sec RxD)
	• TT$M_DS_SECREC—Received backward channel data (Sec RxD)

	The $TTDEF macro defines the symbols for the receive modem field.
	The controller type field returns the type of terminal controller in use by the currently active ...
	• DT$_DZ11—DZ11 and DZV11
	• DT$_DZ11—DZ11 and DZV11
	• DT$_DZ11—DZ11 and DZV11

	• DT$_DZ32—DZ32
	• DT$_DZ32—DZ32

	• DT$_DMF32—DMF32
	• DT$_DMF32—DMF32

	• DT$_DMB32—DMB32
	• DT$_DMB32—DMB32

	• DT$_DMZ32—DMZ32
	• DT$_DMZ32—DMZ32

	• DT$_DHV—DHV11
	• DT$_DHV—DHV11

	• DT$_DHU—DHU11
	• DT$_DHU—DHU11

	• DT$_LAT—LAT server
	• DT$_LAT—LAT server

	NOTE For LAT devices, the receive modem field of the IO$M_RD_MODEM function modifier does not ret...
	NOTE For LAT devices, the receive modem field of the IO$M_RD_MODEM function modifier does not ret...
	The IO$M_RD_MODEM function modifier is not supported for remote terminals. The status SS$_DEVREQE...

	Broadcast Function Modifier
	Broadcast Function Modifier
	Function modifiers:IO$M_BRDCST
	Function modifiers:IO$M_BRDCST
	Terminals:function modifiers:IO$M_BRDCST

	• IO$_SENSEMODE!IO$M_BRDCST
	• IO$_SENSEMODE!IO$M_BRDCST
	• IO$_SENSEMODE!IO$M_BRDCST

	This function code modifier pair takes the following device- or function-dependent arguments:
	P1—A buffer that contains the bits that specify the requester IDs to be broadcast. (If the bit is...
	P1—A buffer that contains the bits that specify the requester IDs to be broadcast. (If the bit is...
	P1—A buffer that contains the bits that specify the requester IDs to be broadcast. (If the bit is...

	P2—The length of the P1 buffer.
	P2—The length of the P1 buffer.

	I/O Status Block
	I/O Status Block
	Terminals:I/O status block
	Terminals:I/O status block
	IOSBs (I/O status blocks):terminal
	IOSBs (I/O status blocks):LAT port driver

	In
	Figure�5�14 IOSB Contents—Read Function
	Figure�5�14 IOSB Contents—Read Function
	<GRAPHIC>

	In
	Figure�5�15 IOSB Contents—Itemlist Read Function
	Figure�5�15 IOSB Contents—Itemlist Read Function
	<GRAPHIC>

	The byte at IOSB+5 passes the status information, listed in
	<TABLE>
	Table�5�31 Byte IOSB+5 Status Information�
	<TABLE HEADING>
	<TABLE ROW>
	Bit
	Interpretation

	<TABLE BODY>
	<TABLE ROW>
	7 (sign bit)
	7 (sign bit)

	0 to indicate rest of bits valid. This applies to insert/overstrike and arrow key read verify fun...
	0 to indicate rest of bits valid. This applies to insert/overstrike and arrow key read verify fun...

	<TABLE ROW>
	6�-2
	6�-2

	Always 0 if bit 7 is equal to 0. Not used; reserved for future use.
	Always 0 if bit 7 is equal to 0. Not used; reserved for future use.

	<TABLE ROW>
	1 TRM$V_ST_OTHERWAY
	1 TRM$V_ST_OTHERWAY

	Set to indicate that read is terminated in left-justify insert mode or right-justify overstrike m...
	Set to indicate that read is terminated in left-justify insert mode or right-justify overstrike m...

	<TABLE ROW>
	0 TRM$V_ST_FIELD_FULL
	0 TRM$V_ST_FIELD_FULL

	Read terminated on an autotab field full condition. IOSB+7 contains an index to the cursor.
	Read terminated on an autotab field full condition. IOSB+7 contains an index to the cursor.

	In
	Figure�5�16 IOSB Contents—Write Function
	Figure�5�16 IOSB Contents—Write Function
	<GRAPHIC>

	In
	Figure�5�17 IOSB Contents—Set Mode, Set Characteristics, Sense Mode, and Sense Characteristics Fu...
	Figure�5�17 IOSB Contents—Set Mode, Set Characteristics, Sense Mode, and Sense Characteristics Fu...
	<GRAPHIC>

	When an application program makes an I/O request for a connection to a remote device on a termina...
	If the server rejects the request, the LAT port driver returns a numeric LAT rejection code in th...
	Figure�5�18 IOSB Contents—LAT Port Driver Function
	Figure�5�18 IOSB Contents—LAT Port Driver Function
	<GRAPHIC>

	Terminals:LAT rejection codes
	<TABLE>
	Table�5�32 LAT Rejection Codes�
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Reason

	<TABLE BODY>
	<TABLE ROW>
	0
	0

	Reason is unknown.
	Reason is unknown.

	<TABLE ROW>
	1
	1

	User requested disconnect.
	User requested disconnect.

	<TABLE ROW>
	2
	2

	System shutdown in progress.
	System shutdown in progress.

	<TABLE ROW>
	3
	3

	Invalid slot received.
	Invalid slot received.

	<TABLE ROW>
	4
	4

	Invalid service class received.
	Invalid service class received.

	<TABLE ROW>
	5
	5

	Insufficient resources to satisfy request.
	Insufficient resources to satisfy request.

	<TABLE ROW>
	6
	6

	Service in use.
	Service in use.

	<TABLE ROW>
	7
	7

	No such service.
	No such service.

	<TABLE ROW>
	8
	8

	Service is disabled.
	Service is disabled.

	<TABLE ROW>
	9
	9

	Service is not offered on the requested port.
	Service is not offered on the requested port.

	<TABLE ROW>
	10
	10

	Port name is unknown.
	Port name is unknown.

	<TABLE ROW>
	11
	11

	Invalid password.
	Invalid password.

	<TABLE ROW>
	12
	12

	Entry is not in queue.
	Entry is not in queue.

	<TABLE ROW>
	13
	13

	Immediate access rejected (server queue full).
	Immediate access rejected (server queue full).

	<TABLE ROW>
	14
	14

	Access denied (group code mismatch).
	Access denied (group code mismatch).

	<TABLE ROW>
	15
	15

	Corrupted solicit request.
	Corrupted solicit request.

	<TABLE ROW>
	16
	16

	COMMAND_TYPE code is illegal/not supported.
	COMMAND_TYPE code is illegal/not supported.

	<TABLE ROW>
	17
	17

	Start slot cannot be sent.
	Start slot cannot be sent.

	<TABLE ROW>
	18
	18

	Queue entry deleted by local node.
	Queue entry deleted by local node.

	<TABLE ROW>
	19
	19

	Inconsistent or illegal request parameters.
	Inconsistent or illegal request parameters.

	Terminal Driver Programming Examples
	Terminal Driver Programming Examples
	Terminals:programming examples
	The VAX C program LAT.C shown in
	• Cloning the LAT template device (LTA0:)
	• Cloning the LAT template device (LTA0:)
	• Cloning the LAT template device (LTA0:)

	• IO$M_LT_SETMODE
	• IO$M_LT_SETMODE

	• IO$M_LT_CONNECT (on forward port)
	• IO$M_LT_CONNECT (on forward port)

	• IO$M_LT_SENSEMODE
	• IO$M_LT_SENSEMODE

	Example�5�1 LAT.C Terminal Driver Programming Example
	Example�5�1 LAT.C Terminal Driver Programming Example
	#module LAT_FORWARD_CONNECT "X1.0-001"/* **++ ** ** MODULE DESCRIPTION: ** ** In initiating and m...
	#define SERVICE_NAME_LENGTH 11 /* ** For the sake of clarity, the sizes of the buffers used for r...

	The VAX MACRO program FULL_DUPLEX_TERMINAL.MAR (
	The initialization code queues a read request to the terminal and enables Ctrl/C AST requests. Th...
	Example�5�2 FULL_DUPLEX_TERMINAL.MAR Terminal Driver Programming Example
	Example�5�2 FULL_DUPLEX_TERMINAL.MAR Terminal Driver Programming Example
	.TITLE FULL_DUPLEX TERMINAL PROGRAMMING EXAMPLE .IDENT /05/ ; ***********************************...
	.WORD 1@4 ; and "$"ENABLE_READ: $QIO_S EFN=ASYNC_EFN, - ; Must not be QIOW form or read will bloc...

	The VAX MACRO program READ_VERIFY.MAR (
	Example�5�3 READ_VERIFY.MAR Terminal Driver Programming Example
	Example�5�3 READ_VERIFY.MAR Terminal Driver Programming Example
	.TITLE READ_VERIFY - Read Verify Coding Example .IDENT 'V05-000' .SBTTL DECLARATIONS .DISABLE GLO...
	$QIOW_S EFN=SYNC_EFN, - CHAN = TT_CHAN, - FUNC = #$_READVBLK!IO$M_EXTEND>, - IOSB = IN_IOSB, - p1...

	Example�5�4 LIB$XXABLE_CTRL.C Terminal Driver Programming Example
	Example�5�4 LIB$XXABLE_CTRL.C Terminal Driver Programming Example
	//Demonstrates CTRL/Y and CTRL/C handling under OpenVMS, as well as

	6 Pseudoterminal Driver
	6 Pseudoterminal Driver
	Drivers:pseudoterminal
	Device drivers:pseudoterminal
	Pseudoterminals:driver
	This chapter describes the use of the pseudoterminal driver (FTDRIVER) and the pseudoterminal sof...
	A pseudoterminal is a software device that appears as a real terminal to an application communica...
	A pseudoterminal allows an application to be set up on the control side of the link to communicat...
	The pseudoterminal driver software includes a set of control connection routines. Applications ca...
	Pseudoterminal Operations
	Pseudoterminal Operations
	This section contains information on the following pseudoterminal operations:
	• Creating a pseudoterminal
	• Creating a pseudoterminal
	• Creating a pseudoterminal

	• Canceling a request
	• Canceling a request

	• Deleting a pseudoterminal
	• Deleting a pseudoterminal

	Creating a Pseudoterminal
	Creating a Pseudoterminal
	Pseudoterminals:creating
	To create a pseudoterminal, use the PTD$CREATE routine described in
	• TT$M_CRFILL is cleared. To change this attribute, issue the SET MODE $QIO function.
	• TT$M_CRFILL is cleared. To change this attribute, issue the SET MODE $QIO function.
	• TT$M_CRFILL is cleared. To change this attribute, issue the SET MODE $QIO function.

	• TT$M_LFFILL is cleared. To change this attribute, issue the SET MODE $QIO function.
	• TT$M_LFFILL is cleared. To change this attribute, issue the SET MODE $QIO function.

	• TT$M_MODEM is cleared. This attribute cannot be changed.
	• TT$M_MODEM is cleared. This attribute cannot be changed.

	• TT$M_REMOTE is cleared. This attribute cannot be changed.
	• TT$M_REMOTE is cleared. This attribute cannot be changed.

	• TT$M_HOSTSYNC is set. To change this attribute, issue the SET MODE $QIO function.
	• TT$M_HOSTSYNC is set. To change this attribute, issue the SET MODE $QIO function.

	• TT$M_TTSYNC is set. To change this attribute, issue the SET MODE $QIO function.
	• TT$M_TTSYNC is set. To change this attribute, issue the SET MODE $QIO function.

	• TT2$M_DMA is cleared. To change this attribute, issue the SET MODE $QIO function. Changing it d...
	• TT2$M_DMA is cleared. To change this attribute, issue the SET MODE $QIO function. Changing it d...

	• TT2$M_AUTOBAUD is cleared. To change this attribute, issue the SET MODE $QIO function. Changing...
	• TT2$M_AUTOBAUD is cleared. To change this attribute, issue the SET MODE $QIO function. Changing...

	• TT2$M_FALLBACK is cleared. To change this attribute, issue the SET MODE $QIO function.
	• TT2$M_FALLBACK is cleared. To change this attribute, issue the SET MODE $QIO function.

	• TT2$M_HANGUP is cleared. To change this attribute, issue the SET MODE $QIO function.
	• TT2$M_HANGUP is cleared. To change this attribute, issue the SET MODE $QIO function.

	• TT2$M_DCL_MAILBX is cleared. This attribute cannot be changed.
	• TT2$M_DCL_MAILBX is cleared. This attribute cannot be changed.

	When you create a pseudoterminal, you can specify a repeating asynchronous system trap (AST) to b...

	Canceling a Request
	Canceling a Request
	Pseudoterminals:canceling request
	To cancel a queued control connection request, the control program uses the PTD$CANCEL routine. T...

	Deleting a Pseudoterminal
	Deleting a Pseudoterminal
	Pseudoterminals:deleting
	To delete the pseudoterminal, the control program uses the PTD$DELETE routine. When a pseudotermi...
	The PTD$DELETE request causes any pending I/O for the control program to be aborted. It deletes a...
	NOTE If an application exits without calling PTD$DELETE, the pseudoterminal is still deleted.
	NOTE If an application exits without calling PTD$DELETE, the pseudoterminal is still deleted.

	Pseudoterminal Driver Features
	Pseudoterminal Driver Features
	Pseudoterminals:features
	The terminal portion of a pseudoterminal is similar to a regular terminal. The pseudoterminal dri...
	• Type-ahead buffer
	• Type-ahead buffer
	• Type-ahead buffer

	• Specifiable or default line terminators
	• Specifiable or default line terminators

	• Special operating modes, such as NOECHO and PASTHRU
	• Special operating modes, such as NOECHO and PASTHRU

	• Escape sequence detection
	• Escape sequence detection

	• Terminal/mailbox interaction
	• Terminal/mailbox interaction

	• Terminal control characters, such as Ctrl/S and Ctrl/Q for starting and stopping output, Ctrl/O...
	• Terminal control characters, such as Ctrl/S and Ctrl/Q for starting and stopping output, Ctrl/O...

	• Limited full-duplex operation (simultaneously active read and write requests)
	• Limited full-duplex operation (simultaneously active read and write requests)

	For more information on these features, see

	Pseudoterminal Driver Device Information
	Pseudoterminal Driver Device Information
	Pseudoterminals:device characteristics
	Device characteristics:pseudoterminal
	The pseudoterminal inherits its device characteristics from the system default parameters, with t...
	• The device inherits initial device characteristics from the SYSGEN-supplied default values. You...
	• The device inherits initial device characteristics from the SYSGEN-supplied default values. You...
	• The device inherits initial device characteristics from the SYSGEN-supplied default values. You...

	• The HOSTSYNC terminal characteristic is always set.
	• The HOSTSYNC terminal characteristic is always set.

	• The device is set to NOMODEM and cannot be set to MODEM.
	• The device is set to NOMODEM and cannot be set to MODEM.

	• The device is set not to time output character transmission. Hardware controllers time output c...
	• The device is set not to time output character transmission. Hardware controllers time output c...

	You can obtain information on pseudoterminal characteristics by using the Get Device/Volume Infor...
	Applications should assign a channel other than the control channel to read data from, write data...

	I/O Buffers
	I/O Buffers
	Pseudoterminals:I/O buffers
	I/O buffers:pseudoterminal
	When you create a pseudoterminal, you must provide at least one page to be used as an I/O buffer.
	On Alpha and I64 systems, you can allocate one page and divide it into I/O buffers as needed.
	On VAX systems, each page becomes one I/O buffer. You should allocate no more than six I/O buffer...
	No read or write request should reference more than one I/O buffer at a time. The I/O buffers mus...
	The I/O buffers must be valid pages in virtual address space. Creating or deleting an I/O buffer ...
	The low-order word of the status information longword contains the status of the request. The hig...
	Assume that an I/O buffer starting at 200 hexadecimal is available for use. If you want to read 2...
	Figure�6�1 Buffer Layout
	Figure�6�1 Buffer Layout
	<GRAPHIC>

	Pseudoterminal Functions
	Pseudoterminal Functions
	This section discusses the following pseudoterminal functions:
	• Reading data
	• Reading data
	• Reading data

	• Writing data
	• Writing data

	• Using write with echo
	• Using write with echo

	• Flow control
	• Flow control

	• Event notification
	• Event notification

	Reading Data
	Reading Data
	Pseudoterminals:reading data
	To read data from the pseudoterminal, the control program uses the PTD$READ routine. The read req...
	An application that issues an asynchronous pseudoterminal read can use the $SYNCH system service ...

	Writing Data
	Writing Data
	Pseudoterminals:writing data
	To write data to the pseudoterminal, the control program uses the PTD$WRITE routine. The write re...
	An application can issue only one write request at a time. Once the write request completes, the ...

	Using Write with Echo
	Using Write with Echo
	Pseudoterminals:using write with echo
	If a read request is pending when a write-with-echo request is issued, the echo data is placed in...
	If an application is not using the write-with-echo capability, the application should avoid using...
	When using write with echo, both the

	Flow Control
	Flow Control
	Pseudoterminals:flow control
	By default, the driver attempts to notify the control program of data overrun or loss. The pseudo...
	If the control program is writing to the terminal or terminal driver, it should let the terminal ...

	Event Notification
	Event Notification
	Pseudoterminals:event notification
	Event notification:pseudoterminal
	This section describes how the pseudoterminal driver provides notification of important driver ev...
	Input Flow Control
	Input Flow Control
	The driver provides three ways to indicate when the class driver wants to stop input and one way ...
	• The driver returns a status of SS$_DATAOVERUN and the number of characters input for the contro...
	• The driver returns a status of SS$_DATAOVERUN and the number of characters input for the contro...
	• The driver returns a status of SS$_DATAOVERUN and the number of characters input for the contro...

	• The control program can enable a BELL attention AST to be delivered when the class driver calls...
	• The control program can enable a BELL attention AST to be delivered when the class driver calls...

	• The control program can enable an XOFF attention AST to be delivered when the class driver call...
	• The control program can enable an XOFF attention AST to be delivered when the class driver call...

	• The control program can enable an XON attention AST to be delivered when the class driver calls...
	• The control program can enable an XON attention AST to be delivered when the class driver calls...

	Output Stop
	Output Stop
	The Output Stop AST tells the control program that the terminal driver is stopping output. This k...

	Output Resume
	Output Resume
	The Output Resume AST tells the control program that the terminal driver wants to resume output. ...

	Characteristics Changed
	Characteristics Changed
	The Characteristics Changed AST tells the control program that the terminal driver has called the...

	Output Abort
	Output Abort
	The Output Abort AST tells the control program that the terminal driver has called the pseudoterm...

	Terminal Driver Read Events
	Terminal Driver Read Events
	Three special event types notify the control program when a terminal read request starts and fini...
	• Start Read—Tells the control program that the terminal driver is starting a read request. Some ...
	• Start Read—Tells the control program that the terminal driver is starting a read request. Some ...
	• Start Read—Tells the control program that the terminal driver is starting a read request. Some ...

	• Middle Read—Tells the control program that the terminal driver has finished writing the prompt ...
	• Middle Read—Tells the control program that the terminal driver has finished writing the prompt ...

	• End Read—Tells the control program that the terminal driver has finished a read request.
	• End Read—Tells the control program that the terminal driver has finished a read request.

	Once an event notification AST is enabled, it continues to be delivered until it is canceled, or ...
	To enable or disable event notification, the control program uses the PTD$SET_EVENT_NOTIFICATION ...

	Pseudoterminal Driver Programming Example
	Pseudoterminal Driver Programming Example
	Pseudoterminals:programming example
	Example�6�1
	Example�6�1

	The scenario chosen for this example is a simple terminal session logging utility that uses most ...
	Design Overview
	Design Overview
	The design approach writes the log record in a main loop that hibernates when it has no work to d...
	One major design consideration is how flow control should be handled — either by attempting to en...
	One of the six I/O buffers is permanently reserved as the terminal read buffer. This buffer is pa...
	Example�6�1 Sample Pseudocode for Pseudoterminal Driver Program
	Example�6�1 Sample Pseudocode for Pseudoterminal Driver Program
	/* ** Main Routine ** ** Function: Intitializes the environment and then hibernates, waiting ** t...

	7 Shadow-Set Virtual Unit Driver
	7 Shadow-Set Virtual Unit Driver
	This chapter provides an overview of HP Volume Shadowing for OpenVMS and describes the use of the...
	Introduction
	Introduction
	Drivers:shadow set virtual unit
	Device drivers:shadow set virtual unit
	Shadow set virtual unit driver
	SHDRIVER functions
	HP Volume Shadowing for OpenVMS ensures that data is available for applications and end users by ...
	Volume shadowing supports the clusterwide shadowing of DIGITAL SCSI and DSA storage systems. Volu...
	You can mount one, two or three compatible disk volumes, including the system disk, to form a
	Volume Shadowing features include:
	• Controller independence. Shadow set members can be located on any node in an OpenVMS Cluster th...
	• Controller independence. Shadow set members can be located on any node in an OpenVMS Cluster th...
	• Controller independence. Shadow set members can be located on any node in an OpenVMS Cluster th...

	• Clusterwide, homogeneous shadow-set maintenance functions.
	• Clusterwide, homogeneous shadow-set maintenance functions.

	• Ability to survive controller, disk, and media failures transparently.
	• Ability to survive controller, disk, and media failures transparently.

	• Shadowing functions that do not affect application I/O.
	• Shadowing functions that do not affect application I/O.

	Applications and users read and write data to and from a shadow set using the same commands and p...
	SHDRIVER, the driver that controls the virtual unit functions, is described in
	For more detailed information on HP Volume Shadowing for OpenVMS, refer to the Volume Shadowing f...

	Configurations
	Configurations
	Shadow set virtual unit driver:hardware configurations
	Shadow set virtual unit driver:hardware configurations

	Supported Hardware
	Supported Hardware
	Hardware:supported
	Hardware:supported
	Devices :supported
	MSCP (mass storage control protocol):supported devices
	SCSI (Small Computer Systems Interface) :hardware compliance
	Devices :SCSI support

	Refer to the most recent Volume Shadowing for OpenVMS

	Compatible Disk Drives and Volumes
	Compatible Disk Drives and Volumes
	Disk drives : compatibility for volume shadowing
	Disk drives : compatibility for volume shadowing

	• Units must be Files-11 On-Disk Structure Level 2 (ODS-2) data disks.
	• Units must be Files-11 On-Disk Structure Level 2 (ODS-2) data disks.
	• Units must be Files-11 On-Disk Structure Level 2 (ODS-2) data disks.

	• Units and controllers must conform to DSA and OpenVMS MSCP, or must be SCSI compliant.
	• Units and controllers must conform to DSA and OpenVMS MSCP, or must be SCSI compliant.

	Write protection : hardware
	Write protection : hardware
	Write protection : hardware

	Driver Functions
	Driver Functions
	Shadow set virtual unit driver:functions
	This section describes the major virtual unit functions supported by SHDRIVER. In addition to the...
	Table�7�1
	Table�7�1

	NOTE The MOUNTSHAD, ADDSHADMBR, COPYSHAD, and REMSHADMBR functions are reserved for HP internal u...
	NOTE The MOUNTSHAD, ADDSHADMBR, COPYSHAD, and REMSHADMBR functions are reserved for HP internal u...

	<TABLE>
	Table�7�1 Functions of the Shadow Set Virtual Unit Driver�
	<TABLE HEADING>
	<TABLE ROW>
	Function
	Description

	<TABLE BODY>
	<TABLE ROW>
	MOUNTSHAD
	MOUNTSHAD

	Creates a virtual unit
	Creates a virtual unit

	<TABLE ROW>
	ADDSHAD
	ADDSHAD

	Evaluates a physical member and adds members
	Evaluates a physical member and adds members

	<TABLE ROW>
	COPYSHAD
	COPYSHAD

	Triggers and controls copy operations
	Triggers and controls copy operations

	<TABLE ROW>
	REMSHAD
	REMSHAD

	Removes a physical member
	Removes a physical member

	<TABLE ROW>
	AVAILABLE
	AVAILABLE

	Virtual unit dissolution
	Virtual unit dissolution

	<TABLE ROW>
	SENSECHAR
	SENSECHAR

	Verifies shadow set status
	Verifies shadow set status

	<TABLE ROW>
	READ
	READ

	Directs I/O to a physical member
	Directs I/O to a physical member

	<TABLE ROW>
	WRITE
	WRITE

	Propagates a write operation to all physical members
	Propagates a write operation to all physical members

	Read and Write Functions
	Read and Write Functions
	With minor changes, the read and write functions for SHDRIVER operate the same as for the disk cl...
	During an SHDRIVER read operation, the host directs the read to the member volume with the shorte...
	During a write operation, SHDRIVER directs the write to each member volume. The write operations ...
	The read and write SHDRIVER functions, as well as all user functions, are issued by user programs...
	Remember that volume shadowing provides data availability by protecting against hardware problems...
	• All members might contain the new data.
	• All members might contain the new data.
	• All members might contain the new data.

	• All members might contain the old data.
	• All members might contain the old data.

	• Some members might contain new data and others might contain old data.
	• Some members might contain new data and others might contain old data.

	When the system recovers, volume shadowing performs a merge or copy operation to ensure that the ...
	For example, when used with volume shadowing, OpenVMS RMS journaling allows you to develop applic...
	• Permanent loss of the path between a CPU data buffer containing the data being written and the ...
	• Permanent loss of the path between a CPU data buffer containing the data being written and the ...
	• Permanent loss of the path between a CPU data buffer containing the data being written and the ...

	• Failure of a CPU (such as a system crash, halt, power failure, or system shutdown) during a mul...
	• Failure of a CPU (such as a system crash, halt, power failure, or system shutdown) during a mul...

	• Mistaken deletion of a file.
	• Mistaken deletion of a file.

	• Corruption of file system pointers.
	• Corruption of file system pointers.

	• OpenVMS RMS file corruption due to a software error or incomplete bucket write operation to an ...
	• OpenVMS RMS file corruption due to a software error or incomplete bucket write operation to an ...

	• Cancellation of an in-progress multiple block write operation.
	• Cancellation of an in-progress multiple block write operation.

	Refer to the Volume Shadowing for OpenVMS manual for more information about shadowing merge and c...

	Error Processing
	Error Processing
	Error recovery:shadow set virtual unit driver
	Shadow set recovery and repair are handled by volume processing, which replaces mount verificatio...
	• If some, but not all, members of the set are accessible, then the local node sequentially adjus...
	• If some, but not all, members of the set are accessible, then the local node sequentially adjus...
	• If some, but not all, members of the set are accessible, then the local node sequentially adjus...

	• If no members are accessible, no modifications to the set membership are made.
	• If no members are accessible, no modifications to the set membership are made.

	There are two types of volume processing: active and passive. Active volume processing handles er...
	• Member additions from other nodes
	• Member additions from other nodes
	• Member additions from other nodes

	• Member removals from other nodes
	• Member removals from other nodes

	• A new node mounting the shadow set
	• A new node mounting the shadow set

	• A node dismounting the shadow set
	• A node dismounting the shadow set

	• A system crash on a node that has the shadow set mounted
	• A system crash on a node that has the shadow set mounted

	For more information, refer to the Volume Shadowing for OpenVMS manual.

	8 Using the OpenVMS Generic SCSI Class Driver
	8 Using the OpenVMS Generic SCSI Class Driver
	Generic SCSI class driver
	This chapter describes the use of the OpenVMS Generic Small Computer System Interface (SCSI) clas...
	Overview of SCSI
	Overview of SCSI
	The American National Standard for information systems — Small Computer System Interface-2 (SCSI-...
	Certain OpenVMS systems employ the SCSI bus as an I/O bus. For these systems, HP offers SCSI-comp...
	SCSI has been widely adopted by manufacturers for a variety of peripheral devices; however, becau...
	For more information, refer to the following documents:
	• American National Standard for Information Systems — Small Computer System Interface-2 (SCSI-2)...
	• American National Standard for Information Systems — Small Computer System Interface-2 (SCSI-2)...
	• American National Standard for Information Systems — Small Computer System Interface-2 (SCSI-2)...
	Copies of this document can be purchased from: Global Engineering Documents, 2805 McGaw, Irvine, ...

	• American National Standard for Information Systems — Small Computer System Interface specificat...
	• American National Standard for Information Systems — Small Computer System Interface specificat...
	Copies of this document can be obtained from: American National Standards Institute, Inc., 1430 B...

	HP publishes two additional documents to help third-party vendors prepare SCSI peripherals and pe...
	• The
	• The
	• The

	• The
	• The

	OpenVMS SCSI Class/Port Architecture
	OpenVMS SCSI Class/Port Architecture
	SCSI class/port architecture
	SCSI class/port architecture

	Figure�8�1 OpenVMS SCSI Class/Port Interface
	Figure�8�1 OpenVMS SCSI Class/Port Interface
	<GRAPHIC>

	SCSI port driver
	SCSI port driver

	SCSI class driver
	SCSI class driver

	Overview of the OpenVMS Generic SCSI Class Driver
	Overview of the OpenVMS Generic SCSI Class Driver
	The OpenVMS generic SCSI class driver provides a mechanism by which an application program can co...
	In effect, an application using the generic SCSI class driver implements details of device contro...
	The application program sets up the characteristics of the connection the generic SCSI class driv...
	The application initiates all transactions to the SCSI device by means of a $QIO call to the gene...
	Because the generic SCSI class driver has no knowledge of specific device errors, it neither logs...
	A third-party class driver is the only means of supporting devices that themselves generate trans...
	Figure�8�2
	Figure�8�2

	Figure�8�2 Generic SCSI Class Driver Flow
	Figure�8�2 Generic SCSI Class Driver Flow
	<GRAPHIC>

	When direct access to a target device on the SCSI bus is required, the generic SCSI class driver ...
	1. � Calls the Assign I/O Channel ($ASSIGN) system service to assign a channel to the generic SCS...
	1. � Calls the Assign I/O Channel ($ASSIGN) system service to assign a channel to the generic SCS...
	1. � Calls the Assign I/O Channel ($ASSIGN) system service to assign a channel to the generic SCS...

	2. � Formats a SCSI command descriptor block.
	2. � Formats a SCSI command descriptor block.

	3. � Formats any data to be transferred to the device.
	3. � Formats any data to be transferred to the device.

	4. � Calls the Queue I/O Request ($QIO) system service to request the generic SCSI class driver t...
	4. � Calls the Queue I/O Request ($QIO) system service to request the generic SCSI class driver t...

	5. � Upon completion of the I/O request, interprets the SCSI status byte and any data returned fr...
	5. � Upon completion of the I/O request, interprets the SCSI status byte and any data returned fr...

	These operations are described in following sections.
	Generic SCSI class driver:security considerations
	Generic SCSI class driver:security considerations
	Generic SCSI class driver:security considerations

	Accessing the OpenVMS Generic SCSI Class Driver
	Accessing the OpenVMS Generic SCSI Class Driver
	Interactive commands and procedure calls can use the OpenVMS generic SCSI class driver to access ...
	A utility program, installed with the DIAGNOSE and PHY_IO or LOG_IO privileges, can provide nonpr...
	A privileged shareable image can provide system applications with a procedure interface to a SCSI...

	SCSI Port Features Under Application Control
	SCSI Port Features Under Application Control
	The standard OpenVMS SCSI port driver provides mechanisms by which the generic SCSI class driver ...
	• Data transfer mode
	• Data transfer mode
	• Data transfer mode

	• Disconnection and reselection
	• Disconnection and reselection

	• Command retry
	• Command retry

	• Command timeouts
	• Command timeouts

	The following sections discuss these features.
	Setting the Data Transfer Mode
	Setting the Data Transfer Mode
	Data transfer mode:as controlled by the generic SCSI class driver
	Data transfer mode:as controlled by the generic SCSI class driver
	Data transfer mode:asynchronous
	Data transfer mode:synchronous

	Synchronous SCSI data transfer mode:enabling
	Synchronous SCSI data transfer mode:enabling
	Asynchronous SCSI data transfer mode:enabling

	For example, to use synchronous mode in a transfer, a programmer using the generic SCSI class dri...
	To set up a connection to use synchronous data transfer mode, a program using the generic SCSI cl...

	Enabling Disconnection and Reselection
	Enabling Disconnection and Reselection
	SCSI disconnect feature:enabling
	SCSI disconnect feature:enabling

	Whether disconnection should be enabled or disabled on a given connection depends on the nature a...
	By default, the OpenVMS class/port interface disables the disconnect facility on a connection. To...
	flags

	Disabling Command Retry
	Disabling Command Retry
	SCSI command :disabling retry
	SCSI command :disabling retry

	When the command retry mechanism is enabled, the port driver retries up to three times any I/O op...
	An application may need to disable the command retry mechanism under certain circumstances. For e...
	An application program using the generic SCSI class driver can disable the command retry mechanis...

	Setting Command Timeouts
	Setting Command Timeouts
	Timeout periods:for SCSI device
	Timeout periods:for SCSI device

	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Timeout
	Description

	<TABLE BODY>
	<TABLE ROW>
	Phase change timeout
	Phase change timeout

	Maximum number of seconds for a target to change the SCSI bus phase or complete a data transfer. ...
	Maximum number of seconds for a target to change the SCSI bus phase or complete a data transfer. ...
	Upon sending the last command byte, the port driver waits this many seconds for the target to cha...

	<TABLE ROW>
	Disconnect timeout
	Disconnect timeout

	Maximum number of seconds, from the time the initiator receives the DISCONNECT message, for a tar...
	Maximum number of seconds, from the time the initiator receives the DISCONNECT message, for a tar...

	An application program using the generic SCSI class driver is responsible for maintaining both of...
	• Accepting a connection's default value. The default value for both timeouts is 20 seconds.
	• Accepting a connection's default value. The default value for both timeouts is 20 seconds.
	• Accepting a connection's default value. The default value for both timeouts is 20 seconds.

	• Altering the connection's default value. To modify the default values, the class driver specifi...
	• Altering the connection's default value. To modify the default values, the class driver specifi...

	Configuring a Device Using the Generic Class Driver
	Configuring a Device Using the Generic Class Driver
	Autoconfiguration:of SCSI device
	Autoconfiguration:of SCSI device
	System Generation utility (SYSGEN):configuring SCSI devices
	SYSGEN (System Generation utility)<IndexSee> See also </>See System Generation utility

	If a third-party-supplied SCSI device requires that the generic class driver be loaded, it must b...
	$ RUN SYS$SYSTEM:SYSGEN
	$ RUN SYS$SYSTEM:SYSGEN
	SYSGEN> CONNECT GKpd0u /NOADAPTER

	SYSMAN performs the same functions that SYSGEN performs on VAX systems. If a third-party-supplied...
	$ RUN SYS$SYSTEM:SYSMAN
	$ RUN SYS$SYSTEM:SYSMAN
	SYSMAN> IO CONNECT GKpd0u /NOADAPTER/DRIVER=SYS$GKDRIVER

	On VAX and Alpha systems,
	Multiple devices residing on any SCSI bus in the system can share GKDRIVER as a class driver, as ...
	Because just one connection can exist through the SCSI port driver to each target, the generic cl...
	Disabling the Autoconfiguration of a SCSI Device (VAX Only)
	Disabling the Autoconfiguration of a SCSI Device (VAX Only)
	Disk class drivers:disabling the loading of
	Disk class drivers:disabling the loading of
	Tape class drivers:disabling the loading of
	SCSI_NOAUTO system parameter

	To disable the loading of a disk or tape driver for any given device ID, OpenVMS defines the spec...
	The
	Figure�8�3 SCSI_NOAUTO System Parameter
	Figure�8�3 SCSI_NOAUTO System Parameter
	<GRAPHIC>

	Assigning a Channel to GKDRIVER
	Assigning a Channel to GKDRIVER
	Generic SCSI class driver:assigning a channel to
	Generic SCSI class driver:assigning a channel to

	Issuing a $QIO Request to the Generic Class Driver
	Issuing a $QIO Request to the Generic Class Driver
	The format of the Queue I/O Request ($QIO) system service that initiates a request to the SCSI ge...
	VAX MACRO Format
	VAX MACRO Format
	$QIO [efn] ,chan ,func ,iosb ,[astadr] ,[astprm] ,p1 ,p2 [,p3] [,p4] [,p5] [,p6]
	$QIO [efn] ,chan ,func ,iosb ,[astadr] ,[astprm] ,p1 ,p2 [,p3] [,p4] [,p5] [,p6]

	High-Level Language Format
	High-Level Language Format
	SYS$QIO ([efn] ,chan ,func ,iosb ,[astadr] ,[astprm] ,p1 ,p2 [,p3] [,p4] [,p5] [,p6])
	SYS$QIO ([efn] ,chan ,func ,iosb ,[astadr] ,[astprm] ,p1 ,p2 [,p3] [,p4] [,p5] [,p6])

	Arguments
	Arguments
	chan
	chan
	chan

	I/O channel assigned to the device to which the request is directed. The
	I/O channel assigned to the device to which the request is directed. The

	func
	func
	func

	Longword value containing the IO$_DIAGNOSE function code. Only the IO$_DIAGNOSE function code is ...
	Longword value containing the IO$_DIAGNOSE function code. Only the IO$_DIAGNOSE function code is ...

	iosb
	iosb
	iosb

	IOSBs (I/O status blocks):returned by generic SCSI class driver
	Generic SCSI class driver:I/O status block returned by
	I/O status block. The
	I/O status block. The
	The status code provides the final status indicating the success or failure of the SCSI command. ...

	[efn] [astadr] [astprm]
	[efn] [astadr] [astprm]
	[efn] [astadr] [astprm]

	These arguments apply to $QIO system service completion. For an explanation of these arguments, r...
	These arguments apply to $QIO system service completion. For an explanation of these arguments, r...

	p1
	p1
	p1

	Generic SCSI descriptor:format of
	Address of a generic SCSI descriptor of the following format:
	Address of a generic SCSI descriptor of the following format:
	<GRAPHIC>

	p2
	p2
	p2

	Length of the generic SCSI descriptor.
	Length of the generic SCSI descriptor.

	Descriptor Fields
	Descriptor Fields
	opcode
	opcode
	opcode

	Currently, the only supported opcode is 1, indicating a pass-through function. Other opcode value...
	Currently, the only supported opcode is 1, indicating a pass-through function. Other opcode value...

	flags
	flags
	flags

	Bit map having the following format:
	Bit map having the following format:
	Bits in the flags bit map are defined as follows:
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Field
	Definition

	<TABLE BODY>
	<TABLE ROW>
	dir
	dir
	dir

	Direction of transfer.
	Direction of transfer.
	If this bit is set, the target is expected at some time to enter the DATA IN phase to send data t...
	If this bit is clear, the target is expected at some time to enter the DATA OUT phase to receive ...
	The generic SCSI class driver ignores the

	<TABLE ROW>
	dis
	dis
	dis

	Enable disconnection.
	Enable disconnection.
	If this bit is set, the target device is allowed to disconnect during the execution of the command.
	If this bit is clear, the target cannot disconnect during the execution of the command.
	Note that targets that hold on to the bus for long periods of time without disconnecting can adve...

	<TABLE ROW>
	syn
	syn
	syn

	Enable synchronous mode.
	Enable synchronous mode.
	Data transfer mode:as controlled by the generic SCSI class driver
	Data transfer mode:as controlled by the generic SCSI class driver
	Data transfer mode:asynchronous
	Data transfer mode:synchronous
	Synchronous SCSI data transfer mode:enabling
	Asynchronous SCSI data transfer mode:enabling

	If this bit is clear, or synchronous mode is not supported by either the host or target, the port...
	See

	<TABLE ROW>
	dpr
	dpr
	dpr

	Disable port retry.
	Disable port retry.
	SCSI command:enabling retry
	SCSI command:enabling retry

	If this bit is set, the port driver does not retry commands for which it detects failure.
	See

	SCSI command address
	SCSI command address
	SCSI command address

	Address of a buffer containing a SCSI command.
	Address of a buffer containing a SCSI command.

	SCSI command length
	SCSI command length
	SCSI command length

	Length of the SCSI command. The maximum length of the SCSI command is 128 bytes.
	Length of the SCSI command. The maximum length of the SCSI command is 128 bytes.

	SCSI data address
	SCSI data address
	SCSI data address

	Address of a data buffer associated with the SCSI command.
	Address of a data buffer associated with the SCSI command.
	If the
	If the SCSI command requires no data to be transferred, then the

	SCSI data length
	SCSI data length
	SCSI data length

	Length, in bytes, of the data buffer pointed to by the
	Length, in bytes, of the data buffer pointed to by the
	If the SCSI command requires no data to be transferred, then this field should be clear.

	SCSI pad length
	SCSI pad length
	SCSI pad length

	SCSI command:padding, when required
	This field is used to accommodate SCSI device classes that require that the transfer length be sp...
	This field is used to accommodate SCSI device classes that require that the transfer length be sp...
	For example, suppose an application program is using the generic class driver to read the first 2...
	For most transfers, this field should contain 0. Failure to initialize the

	phase change timeout
	phase change timeout
	phase change timeout

	SCSI command:setting DMA timeout for
	SCSI command:setting phase change timeout for
	Timeout periods:for SCSI device
	Maximum number of seconds for a target to change the SCSI bus phase or complete a data transfer. ...
	Maximum number of seconds for a target to change the SCSI bus phase or complete a data transfer. ...
	See

	disconnect timeout
	disconnect timeout
	disconnect timeout

	SCSI command:setting disconnect timeout for
	Maximum number of seconds for a target to reselect the initiator to proceed with a disconnected I...
	Maximum number of seconds for a target to reselect the initiator to proceed with a disconnected I...
	See

	Generic SCSI descriptor:format of
	Generic SCSI class driver:$QIO system service format for

	Generic SCSI Class Driver Device Information
	Generic SCSI Class Driver Device Information
	SYS$GETDVI routine:SCSI generic class driver
	SYS$GETDVI routine:SCSI generic class driver
	Generic SCSI class driver:obtaining device information from

	$GETDVI returns the following device characteristics when you specify the item code DVI$_DEVCHAR:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	DEV$M_AVL
	DEV$M_AVL

	Available device
	Available device

	<TABLE ROW>
	DEV$M_IDV
	DEV$M_IDV

	Input device
	Input device

	<TABLE ROW>
	DEV$M_ODV
	DEV$M_ODV

	Output device
	Output device

	<TABLE ROW>
	DEV$M_SHR
	DEV$M_SHR

	Shareable device
	Shareable device

	<TABLE ROW>
	DEV$M_RND
	DEV$M_RND

	Random-access device
	Random-access device

	DVI$DEVCLASS returns the device class, which is DC$_MISC; DVI$DEVTYPE returns the device type, wh...

	Call a Generic SCSI Class Driver
	Call a Generic SCSI Class Driver
	Generic SCSI class driver:programming example
	Generic SCSI class driver:programming example
	Example�8�1

	Example�8�1 Generic SCSI Class Driver Call Example
	Example�8�1 Generic SCSI Class Driver Call Example
	/* GKTEST.C This program uses the SCSI generic class driver to send an inquiry command to a devic...
	Generic SCSI class driver:programming example
	Generic SCSI class driver

	9 Local Area Network (LAN) Device Drivers
	9 Local Area Network (LAN) Device Drivers
	LAN device drivers
	This chapter describes the use of LAN drivers that support the LAN devices listed in the Software...
	The LAN drivers support two user interfaces or APIs, QIO and VCI (VMS Communications Interface). ...
	The LAN drivers are composed of a set of LAN common routines that implement the user interfaces p...
	Local Area Network (LAN) Terminology
	Local Area Network (LAN) Terminology
	LAN:terminology
	LAN:terminology

	• Ethernet —
	• Ethernet —
	• Ethernet —

	• Fast Ethernet — Ethernet upgraded to 100 megabits/second over twisted-pair cable or multimode f...
	• Fast Ethernet — Ethernet upgraded to 100 megabits/second over twisted-pair cable or multimode f...

	• Gigabit Ethernet — Ethernet upgraded to 1000 megabits/second over twisted-pair cable or multimo...
	• Gigabit Ethernet — Ethernet upgraded to 1000 megabits/second over twisted-pair cable or multimo...

	• FDDI —
	• FDDI —

	• Token Ring —
	• Token Ring —

	• ATM — Asynchronous Transfer Mode, a cell-based network communications technology, where network...
	• ATM — Asynchronous Transfer Mode, a cell-based network communications technology, where network...

	• IEEE —
	• ANSI — American Natioanl Standards Institute, an organization that develops and maintains stand...
	• 802.3 — The IEEE standard for Ethernet network technology, including 802.3u for Fast Ethernet, ...
	• 802.5 — The IEEE standard for Token Ring network technology.
	• CSMA/CD —
	• NIC — Network Interface Card. Other terms that may be used interchangeably include Adapter, Con...
	• Bus — Data and control paths that connect the functional units of a computer. In relation to LA...
	• Duplex — A characteristic of a 2-way communication channel that indicates whether the channel c...
	• Flow Control — A technique where the flow of data along a communications channel is adjusted to...
	• Packet — A unit of data transmission on the network, also called frame. It consists of a header...
	• J
	• Link Up/Down — Network connection state, for Ethernet devices. Most Ethernet devices that conne...
	• Ring Available/Unavailable — Network connection state, for FDDI, Token Ring, or ATM devices.
	• Open Systems Interconnect (
	• Port - One end of a communications channel, or the channel itself. When correlated to the OSI M...
	• User — Refers to the application that has opened a port to the LAN driver. A LAN device may be ...

	Supported LAN Devices
	Supported LAN Devices
	Table�9�1
	Table�9�1

	OpenVMS
	OpenVMS
	Table�9�1
	Table�9�1

	<TABLE>
	Table�9�1 Supported OpenVMS VAX Systems LAN Devices, Part 1�
	<TABLE HEADING>
	<TABLE ROW>
	Medium
	Medium

	Medium Type
	Medium Type

	I/O Bus
	I/O Bus

	Device
	Device

	OpenVMS Name
	OpenVMS Name

	DECnet Name
	DECnet Name

	Device Type
	Device Type

	<TABLE BODY>
	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	XMI
	DEMNA
	EXc0
	EXc0

	MNA
	MNA

	DT$_EX_DEMNA
	DT$_EX_DEMNA

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2
	10Base2

	System
	System

	SGEC (LOM)
	SGEC (LOM)

	EZc0
	EZc0

	ISA
	ISA

	DT$_EZ_SGEC
	DT$_EZ_SGEC

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2
	10Base2

	System
	System

	LANCE (LOM)
	LANCE (LOM)

	ESc0
	ESc0

	SVA
	SVA

	DT$_ES_LANCE
	DT$_ES_LANCE

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	TurboChannel
	TurboChannel

	PMAD
	PMAD

	ECc0
	ECc0

	MXE
	MXE

	DT$_EC_PMAD
	DT$_EC_PMAD

	<TABLE ROW>
	Ethernet
	Ethernet

	2 x 10Base5
	2 x 10Base5

	TurboChannel
	TurboChannel

	DELTA
	DELTA

	ECc0
	ECc0

	MXE
	MXE

	DT$_EC_PMAD
	DT$_EC_PMAD

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	QBUS
	QBUS

	DESQA
	DESQA

	ESc0
	ESc0

	SVA
	SVA

	DT$_ES_LANCE
	DT$_ES_LANCE

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	QBUS
	QBUS

	DELQA
	DELQA

	XQc0
	XQc0

	QNA
	QNA

	DT$_XQ_DELQA
	DT$_XQ_DELQA

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5
	10Base2/5

	QBUS
	QBUS

	DEQTA
	DEQTA

	XQc0
	XQc0

	QNA
	QNA

	DT$_XQ_DEQTA
	DT$_XQ_DEQTA

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5
	10Base2/5

	QBUS
	QBUS

	DEQNA
	DEQNA

	XQc0
	XQc0

	QNA
	QNA

	DT$_DEQNA
	DT$_DEQNA

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	QBUS
	QBUS

	KFE52
	KFE52

	EFc0
	EFc0

	KFE
	KFE

	DT$_FT_NI
	DT$_FT_NI

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	XMI
	XMI

	DEUNA
	DEUNA

	XEc0
	XEc0

	UNA
	UNA

	DT$_DEUNA
	DT$_DEUNA

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	UNIBUS
	UNIBUS

	DELUA
	DELUA

	XEc0
	XEc0

	UNA
	UNA

	DT$_DELUA
	DT$_DELUA

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	BI
	BI

	DEBNA
	DEBNA

	ETc0
	ETc0

	BNA
	BNA

	DT$_ET_DEBNA
	DT$_ET_DEBNA

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	BI
	BI

	DEBNK
	DEBNK

	ETc0
	ETc0

	BNA
	BNA

	DT$_ET_DEBNA
	DT$_ET_DEBNA

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	BI
	BI

	DEBNT
	DEBNT

	ETc0
	ETc0

	BNA
	BNA

	DT$_ET_DEBNA
	DT$_ET_DEBNA

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	BI
	BI

	DEBNI
	DEBNI

	ETc0
	ETc0

	BNA
	BNA

	DT$_ET_DEBNI
	DT$_ET_DEBNI

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf
	100 mmf

	XMI
	XMI

	DEMFA
	DEMFA

	FXc0
	FXc0

	MFA
	MFA

	DT$_FX_DEMFA
	DT$_FX_DEMFA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf
	100 mmf

	TurboChannel
	TurboChannel

	DEFZA
	DEFZA

	FCc0
	FCc0

	FZA
	FZA

	DT$_FC_DEFZA
	DT$_FC_DEFZA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf
	100 mmf

	TurboChannel
	TurboChannel

	DEFTA
	DEFTA

	FCc0
	FCc0

	FZA
	FZA

	DT$_FC_DEFTA
	DT$_FC_DEFTA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf
	100 mmf

	QBUS
	QBUS

	DEFQA
	DEFQA

	FQc0
	FQc0

	FQA
	FQA

	DT$_FQ_DEFQA
	DT$_FQ_DEFQA

	<TABLE>
	Table�9�2 Supported OpenVMS VAX Systems LAN Devices, Part 2�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Device

	Device Type
	Device Type

	Version
	Version

	Driver Name
	Driver Name

	<TABLE BODY>
	<TABLE ROW>
	DEMNA
	DEMNA

	DT$_EX_DEMNA
	DT$_EX_DEMNA

	V5.3
	V5.3

	EXDRIVER.EXE
	EXDRIVER.EXE

	<TABLE ROW>
	SGEC
	SGEC

	DT$_EZ_SGEC
	DT$_EZ_SGEC

	V5.3
	V5.3

	EZDRIVER.EXE
	EZDRIVER.EXE

	<TABLE ROW>
	LANCE
	LANCE

	DT$_ES_LANCE
	DT$_ES_LANCE

	V4.4
	V4.4

	ESDRIVER.EXE
	ESDRIVER.EXE

	<TABLE ROW>
	PMAD
	PMAD

	DT$_EC_PMAD
	DT$_EC_PMAD

	V5.5-2HW
	V5.5-2HW

	ECDRIVER.EXE
	ECDRIVER.EXE

	<TABLE ROW>
	DELTA
	DELTA

	DT$_EC_PMAD
	DT$_EC_PMAD

	V5.5-2HW
	V5.5-2HW

	ECDRIVER.EXE
	ECDRIVER.EXE

	<TABLE ROW>
	DESQA
	DESQA

	DT$_ES_LANCE
	DT$_ES_LANCE

	V5.0
	V5.0

	ESDRIVER.EXE
	ESDRIVER.EXE

	<TABLE ROW>
	DELQA
	DELQA

	DT$_XQ_DELOA
	DT$_XQ_DELOA

	V5.0
	V5.0

	XQDRIVER.EXE
	XQDRIVER.EXE

	<TABLE ROW>
	DEQTA
	DEQTA

	DT$_XQ_DEQTA
	DT$_XQ_DEQTA

	V5.3
	V5.3

	XQDRIVER.EXE
	XQDRIVER.EXE

	<TABLE ROW>
	DEQNA
	DEQNA

	DT$_DEQNA
	DT$_DEQNA

	V4.0
	V4.0

	XQDRIVER.EXE
	XQDRIVER.EXE

	<TABLE ROW>
	KFE52
	KFE52

	DT$_FT_NI
	DT$_FT_NI

	V5.4
	V5.4

	EFDRIVER.EXE/EPDRIVER.EXE
	EFDRIVER.EXE/EPDRIVER.EXE

	<TABLE ROW>
	DEUNA
	DEUNA

	DT$_DEUNA
	DT$_DEUNA

	V4.0
	V4.0

	XEDRIVER.EXE
	XEDRIVER.EXE

	<TABLE ROW>
	DELUA
	DELUA

	DT$_DELUA
	DT$_DELUA

	V4.0
	V4.0

	XEDRIVER.EXE
	XEDRIVER.EXE

	<TABLE ROW>
	DEBNA
	DEBNA

	DT$_ET_DEBNA
	DT$_ET_DEBNA

	V4.4
	V4.4

	ETDRIVER.EXE
	ETDRIVER.EXE

	<TABLE ROW>
	DEBNK
	DEBNK

	DT$_ET_DEBNA
	DT$_ET_DEBNA

	V4.4
	V4.4

	ETDRIVER.EXE
	ETDRIVER.EXE

	<TABLE ROW>
	DEBNT
	DEBNT

	DT$_ET_DEBNA
	DT$_ET_DEBNA

	V4.4
	V4.4

	ETDRIVER.EXE
	ETDRIVER.EXE

	<TABLE ROW>
	DEBNI
	DEBNI

	DT$_ET_DEBNI
	DT$_ET_DEBNI

	V5.2
	V5.2

	ETDRIVER.EXE
	ETDRIVER.EXE

	<TABLE ROW>
	DEMFA
	DEMFA

	DT$_FX_DEMFA
	DT$_FX_DEMFA

	V5.4-3
	V5.4-3

	FXDRIVER.EXE
	FXDRIVER.EXE

	<TABLE ROW>
	DEFZA
	DEFZA

	DT$_FC_DEFZA
	DT$_FC_DEFZA

	V5.5-2HW
	V5.5-2HW

	FCDRIVER.EXE
	FCDRIVER.EXE

	<TABLE ROW>
	DEFTA
	DEFTA

	DT$_FC_DEFTA
	DT$_FC_DEFTA

	V6.0
	V6.0

	FCDRIVER.EXE
	FCDRIVER.EXE

	<TABLE ROW>
	DEFQA
	DEFQA

	DT$_FQ_DEFQA
	DT$_FQ_DEFQA

	V6.1
	V6.1

	FQDRIVER.EXE
	FQDRIVER.EXE

	NOTE DEQTA is also known as the DELQA-YM. PMAD is a single LANCE device. DELTA is a dual LANCE de...
	NOTE DEQTA is also known as the DELQA-YM. PMAD is a single LANCE device. DELTA is a dual LANCE de...

	I/O drivers:LAN drivers
	LAN drivers<IndexSee> See also </>device characteristics\;See also LAN, extended characteristics
	Drivers:LAN
	Device drivers:LAN
	LAN drivers:supported devices

	OpenVMS
	OpenVMS
	Table�9�3
	Table�9�3

	<TABLE>
	Table�9�3 Supported OpenVMS Alpha LAN Devices, Part 1 (Continued)
	<TABLE HEADING>
	<TABLE ROW>
	Medium
	Medium

	Medium Type
	Medium Type

	I/O Bus
	I/O Bus

	Device
	Device

	OpenVMS Name
	OpenVMS Name

	DECnet Name
	DECnet Name

	Device Type
	Device Type

	<TABLE BODY>
	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	XMI
	XMI

	DEMNA
	DEMNA

	EX
	EX

	MNA
	MNA

	DT$_EX_DEMNA
	DT$_EX_DEMNA

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5
	10Base2/5

	CBUS
	CBUS

	TGEC (LOM)
	TGEC (LOM)

	EZ
	EZ

	ISA
	ISA

	DT$_EZ_TGEC
	DT$_EZ_TGEC

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2
	10Base2

	TurboChannel
	TurboChannel

	COREIO (COM)
	COREIO (COM)

	ES
	ES

	SVA
	SVA

	DT$_ES_LANCE
	DT$_ES_LANCE

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base5
	10Base5

	TurboChannel
	TurboChannel

	PMAD
	PMAD

	EC
	EC

	MXE
	MXE

	DT$_EC_PMAD
	DT$_EC_PMAD

	<TABLE ROW>
	Ethernet
	Ethernet

	2 x 10Base5
	2 x 10Base5

	TurboChannel
	TurboChannel

	DELTA
	DELTA

	EC
	EC

	MXE
	MXE

	DT$_EY_NITC2
	DT$_EY_NITC2

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/T
	10Base2/T

	EISA
	EISA

	DE422
	DE422

	ER
	ER

	ERA
	ERA

	DT$_ER_DE422
	DT$_ER_DE422

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5/T
	10Base2/5/T

	EISA
	EISA

	DE425
	DE425

	ER
	ER

	ETA
	ETA

	DT$_ER_TULIP
	DT$_ER_TULIP

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5
	10Base2/5

	ISA
	ISA

	DE200
	DE200

	ER
	ER

	ERA
	ERA

	DT$_ER_LANCE
	DT$_ER_LANCE

	<TABLE ROW>
	Ethernet
	Ethernet

	10BaseT
	10BaseT

	ISA
	ISA

	DE201
	DE201

	ER
	ER

	ERA
	ERA

	DT$_ER_LANCE
	DT$_ER_LANCE

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/T
	10Base2/T

	ISA
	ISA

	DE202
	DE202

	ER
	ER

	ERA
	ERA

	DT$_ER_LANCE
	DT$_ER_LANCE

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5/T
	10Base2/5/T

	ISA
	ISA

	DE203
	DE203

	ER
	ER

	ERA
	ERA

	DT$_ER_LEMAC
	DT$_ER_LEMAC

	<TABLE ROW>
	Ethernet
	Ethernet

	10BaseT
	10BaseT

	ISA
	ISA

	DE204
	DE204

	ER
	ER

	ERA
	ERA

	DT$_ER_LEMAC
	DT$_ER_LEMAC

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5/T
	10Base2/5/T

	ISA
	ISA

	DE205
	DE205

	ER
	ER

	ERA
	ERA

	DT$_ER_LEMAC
	DT$_ER_LEMAC

	<TABLE ROW>
	Ethernet
	Ethernet

	10BaseT
	10BaseT

	PCI
	PCI

	Tulip (LOM)
	Tulip (LOM)

	EW
	EW

	EWA
	EWA

	DT$_EW_TULIP
	DT$_EW_TULIP

	<TABLE ROW>
	Ethernet
	Ethernet

	10BaseT
	10BaseT

	PCI
	PCI

	DE434
	DE434

	EW
	EW

	EWA
	EWA

	DT$_EW_DE435
	DT$_EW_DE435

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5/T
	10Base2/5/T

	PCI
	PCI

	DE435
	DE435

	EW
	EW

	EWA
	EWA

	DT$_EW_DE435
	DT$_EW_DE435

	<TABLE ROW>
	Ethernet
	Ethernet

	4 x 10BaseT
	4 x 10BaseT

	PCI
	PCI

	DE436
	DE436

	EW
	EW

	EWA
	DT$_EW_DE435
	DT$_EW_DE435

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5/T
	10Base2/5/T

	PCI
	PCI

	DE450
	DE450

	EW
	EW

	EWA
	EWA

	DT$_EW_DE450
	DT$_EW_DE450

	<TABLE ROW>
	Ethernet
	Ethernet

	100BaseTX
	100BaseTX

	PCI
	PCI

	DE500-XA
	DE500-XA

	EW
	EW

	EWA
	EWA

	DT$_EW_DE500
	DT$_EW_DE500

	<TABLE ROW>
	Ethernet
	Ethernet

	100BaseTX
	100BaseTX

	PCI
	PCI

	DE500-AA
	DE500-AA

	EW
	EW

	EWA
	EWA

	DT$_EW_DE500
	DT$_EW_DE500

	<TABLE ROW>
	Ethernet
	Ethernet

	100BaseTX
	100BaseTX

	PCI
	PCI

	DE500-BA
	DE500-BA

	EW
	EW

	EWA
	EWA

	DT$_EW_DE500
	DT$_EW_DE500

	<TABLE ROW>
	Ethernet
	Ethernet

	100BaseFX
	100BaseFX

	PCI
	PCI

	DE500-FA
	DE500-FA

	EW
	EW

	EWA
	EWA

	DT$_EW_DE500
	DT$_EW_DE500

	<TABLE ROW>
	Ethernet
	Ethernet

	4 x 100BaseTX
	4 x 100BaseTX

	PCI
	PCI

	P2SE+
	P2SE+

	EW
	EW

	EWA
	EWA

	DT$_EW_DE500
	DT$_EW_DE500

	<TABLE ROW>
	Ethernet
	Ethernet

	10BaseT
	10BaseT

	PCI
	PCI

	21142 (LOM)
	21142 (LOM)

	EW
	EW

	EWA
	EWA

	DT$_EW_DE500
	DT$_EW_DE500

	<TABLE ROW>
	Ethernet
	Ethernet

	100BaseTX
	100BaseTX

	PCI
	PCI

	DE504-BA
	DE504-BA

	EW
	EW

	EWA
	EWA

	DT$_EW_DE500
	DT$_EW_DE500

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5/T, 100BaseTX
	10Base2/5/T, 100BaseTX

	PCI
	PCI

	P2SE
	P2SE

	EW
	EW

	EWA
	EWA

	DT$_EW_DE500
	DT$_EW_DE500

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/5/T, 100BaseTX
	10Base2/5/T, 100BaseTX

	PCI
	PCI

	21143 (LOM)
	21143 (LOM)

	EW
	EW

	EWA
	EWA

	DT$_EW_DE500
	DT$_EW_DE500

	<TABLE ROW>
	Ethernet
	100BaseTX
	100BaseTX

	PCI
	PCI

	DE600-AA
	DE600-AA

	EI
	EI

	EIA
	EIA

	DT$_EI_82558
	DT$_EI_82558

	<TABLE ROW>
	Ethernet
	Ethernet

	100BaseTX
	100BaseTX

	PCI
	PCI

	DE602-AA
	DE602-AA

	EI
	EI

	EIA
	EIA

	DT$_EI_82558
	DT$_EI_82558

	<TABLE ROW>
	Ethernet
	Ethernet

	2 x 100BaseTX
	2 x 100BaseTX

	PCI
	PCI

	DE602-BA
	DE602-BA

	EI
	EI

	EIA
	EIA

	DT$_EI_82558
	DT$_EI_82558

	<TABLE ROW>
	Ethernet
	Ethernet

	2 x 100BaseTX
	2 x 100BaseTX

	PCI
	PCI

	DE602-BB
	DE602-BB

	EI
	EI

	EIA
	EIA

	DT$_EI_82559
	DT$_EI_82559

	<TABLE ROW>
	Ethernet
	Ethernet

	2 x 100BaseTX
	2 x 100BaseTX

	DE602 daughter card
	DE602 daughter card

	DE602-TA
	DE602-TA

	EI
	EI

	EIA
	EIA

	DT$_EI_82559
	DT$_EI_82559

	<TABLE ROW>
	Ethernet
	100BaseFX
	100BaseFX

	DE602 daughter card
	DE602 daughter card

	DE602-FA
	DE602-FA

	EI
	EI

	EIA
	EIA

	DT$_EI_82558
	DT$_EI_82558

	<TABLE ROW>
	Ethernet
	Ethernet

	100BaseTX
	100BaseTX

	PCI
	PCI

	Trifecta
	Trifecta

	EI
	EI

	EIA
	EIA

	DT$_EI_82558
	DT$_EI_82558

	<TABLE ROW>
	Ethernet
	Ethernet

	100BaseTX
	100BaseTX

	PCI
	PCI

	82559ER (LOM)
	82559ER (LOM)

	EI
	EI

	EIA
	EIA

	DT$_EI_82559
	DT$_EI_82559

	<TABLE ROW>
	Ethernet
	Ethernet

	1000BaseSX
	1000BaseSX

	PCI
	PCI

	DEGPA-SA
	DEGPA-SA

	EW
	EW

	EWA
	EWA

	DT$_EW_DEGPA
	DT$_EW_DEGPA

	<TABLE ROW>
	Ethernet
	Ethernet

	1000BaseTX
	1000BaseTX

	PCI
	PCI

	DEGPA-TA
	DEGPA-TA

	EW
	EW

	EWA
	EWA

	DT$_EW_DEGPA
	DT$_EW_DEGPA

	<TABLE ROW>
	Ethernet
	Ethernet

	1000BaseSX
	1000BaseSX

	PCI
	PCI

	DEGXA-SA
	DEGXA-SA

	EW
	EW

	EWA
	EWA

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	<TABLE ROW>
	Ethernet
	Ethernet

	1000BaseTX
	1000BaseTX

	PCI
	PCI

	DEGXA-TA
	DEGXA-TA

	EW
	EW

	EWA
	EWA

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	<TABLE ROW>
	Ethernet
	Ethernet

	1000BaseSX
	1000BaseSX

	PCI-X
	PCI-X

	DEGXA-SB
	DEGXA-SB

	EW
	EW

	EWA
	EWA

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	<TABLE ROW>
	Ethernet
	Ethernet

	1000BaseTX
	1000BaseTX

	PCI-X
	PCI-X

	DEGXA-TB
	DEGXA-TB

	EW
	EW

	EWA
	EWA

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	<TABLE ROW>
	Ethernet
	Ethernet

	1000BaseTX
	1000BaseTX

	PCI
	PCI

	BCM5703 (LOM)
	BCM5703 (LOM)

	EW
	EW

	EWA
	EWA

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/T
	10Base2/T

	PCMCIA
	PCMCIA

	3C589B
	3C589B

	EO
	EO

	CEC
	CEC

	DT$_EO_3C589
	DT$_EO_3C589

	<TABLE ROW>
	Ethernet
	Ethernet

	10Base2/T
	10Base2/T

	PCMCIA
	PCMCIA

	3C589D
	3C589D

	EO
	EO

	CEC
	CEC

	DT$_EO_3C589
	DT$_EO_3C589

	<TABLE ROW>
	Ethernet
	Ethernet

	N/A
	N/A

	Memory
	Memory

	Galaxy Shared Memory
	Galaxy Shared Memory

	EB
	EB

	EBA
	EBA

	DT$_EB_SMLAN
	DT$_EB_SMLAN

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf
	100 mmf

	XMI
	XMI

	DEMFA
	DEMFA

	FX
	FX

	MFA
	MFA

	DT$_FX_DEMFA
	DT$_FX_DEMFA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf
	100 mmf

	FutureBus+
	FutureBus+

	DEFAA
	DEFAA

	FA
	FA

	FAA
	FAA

	DT$_FA_DEFAA
	DT$_FA_DEFAA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf
	100 mmf

	TurboChannel
	TurboChannel

	DEFZA
	DEFZA

	FC
	FC

	FZA
	FZA

	DT$_FC_DEFZA
	DT$_FC_DEFZA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf - SAS
	100 mmf - SAS

	TurboChannel
	TurboChannel

	DEFTA-AA
	DEFTA-AA

	FC
	FC

	FZA
	FZA

	DT$_FC_DEFTA
	DT$_FC_DEFTA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf - DAS
	100 mmf - DAS

	TurboChannel
	TurboChannel

	DEFTA-DA
	DEFTA-DA

	FC
	FC

	FZA
	FZA

	DT$_FC_DEFTA
	DT$_FC_DEFTA

	<TABLE ROW>
	FDDI
	FDDI

	UTP - SAS
	UTP - SAS

	TurboChannel
	TurboChannel

	DEFTA-UA
	DEFTA-UA

	FC
	FC

	FZA
	FZA

	DT$_FC_DEFTA
	DT$_FC_DEFTA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf - SAS
	100 mmf - SAS

	EISA
	EISA

	DEFEA-AA
	DEFEA-AA

	FR
	FR

	FEA
	FEA

	DT$_FR_DEFEA
	DT$_FR_DEFEA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf - DAS
	100 mmf - DAS

	EISA
	EISA

	DEFEA-DA
	DEFEA-DA

	FR
	FR

	FEA
	FEA

	DT$_FR_DEFEA
	DT$_FR_DEFEA

	<TABLE ROW>
	FDDI
	FDDI

	UTP - SAS
	UTP - SAS

	EISA
	EISA

	DEFEA-UA
	DEFEA-UA

	FR
	FR

	FEA
	FEA

	DT$_FR_DEFEA
	DT$_FR_DEFEA

	<TABLE ROW>
	FDDI
	FDDI

	UTP - DAS
	UTP - DAS

	EISA
	EISA

	DEFEA-MA
	DEFEA-MA

	FR
	FR

	FEA
	FEA

	DT$_FR_DEFEA
	DT$_FR_DEFEA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf - SAS
	100 mmf - SAS

	PCI
	PCI

	DEFPZ-AA
	DEFPZ-AA

	FW
	FW

	FPA
	FPA

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	<TABLE ROW>
	FDDI
	FDDI

	UTP - SAS
	UTP - SAS

	PCI
	PCI

	DEFPZ-UA
	DEFPZ-UA

	FW
	FW

	FPA
	FPA

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf - SAS
	100 mmf - SAS

	PCI
	PCI

	DEFPA-AA/ AB/AC
	DEFPA-AA/ AB/AC

	FW
	FW

	FPA
	FPA

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	<TABLE ROW>
	FDDI
	FDDI

	100 mmf - DAS
	100 mmf - DAS

	PCI
	PCI

	DEFPA-DA/ DB/DC
	DEFPA-DA/ DB/DC

	FW
	FW

	FPA
	FPA

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	<TABLE ROW>
	FDDI
	FDDI

	UTP - SAS
	UTP - SAS

	PCI
	PCI

	DEFPA-UA/ UB/UC
	DEFPA-UA/ UB/UC

	FW
	FW

	FPA
	FPA

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	<TABLE ROW>
	FDDI
	FDDI

	UTP - DAS
	UTP - DAS

	PCI
	PCI

	DEFPA-MA /MB/MC
	DEFPA-MA /MB/MC

	FW
	FW

	FPA
	FPA

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	<TABLE ROW>
	TokenRing
	TokenRing

	4/16 STP/UTP
	4/16 STP/UTP

	TurboChannel
	TurboChannel

	DETRA
	DETRA

	IC
	IC

	TRA
	TRA

	DT$_IC_DETRA
	DT$_IC_DETRA

	<TABLE ROW>
	TokenRing
	TokenRing

	4/16 STP/UTP
	4/16 STP/UTP

	EISA
	EISA

	DW300
	DW300

	IR
	IR

	TRE
	TRE

	DT$_IR_DW300
	DT$_IR_DW300

	<TABLE ROW>
	TokenRing
	TokenRing

	4/16 STP/UTP
	4/16 STP/UTP

	ISA
	ISA

	DW110
	DW110

	IR
	IR

	TRE
	TRE

	DT$_IR_DW300
	DT$_IR_DW300

	<TABLE ROW>
	TokenRing
	TokenRing

	4/16 STP/UTP
	4/16 STP/UTP

	PCI
	PCI

	TC4048
	TC4048

	IW
	IW

	TRE
	TRE

	DT$_IW_TI380PCI
	DT$_IW_TI380PCI

	<TABLE ROW>
	TokenRing
	TokenRing

	4/16 STP/UTP
	4/16 STP/UTP

	PCI
	PCI

	M8154
	M8154

	IW
	IW

	TRE
	TRE

	DT$_IW_TI380PCI
	DT$_IW_TI380PCI

	<TABLE ROW>
	ATM
	ATM

	155 mmf
	155 mmf

	TurboChannel
	TurboChannel

	DGLTA
	DGLTA

	HC/EL
	HC/EL

	ELA
	ELA

	DT$_HC_OTTO
	DT$_HC_OTTO

	<TABLE ROW>
	ATM
	ATM

	155 mmf
	155 mmf

	PCI
	PCI

	DGLPB
	DGLPB

	HW/EL
	HW/EL

	ELA
	ELA

	DT$_HW_OTTO
	DT$_HW_OTTO

	<TABLE ROW>
	ATM
	ATM

	155 mmf
	155 mmf

	PCI
	PCI

	DGLPA-FA
	DGLPA-FA

	HW/EL
	HW/EL

	ELA
	ELA

	DT$_HW_METEOR
	DT$_HW_METEOR

	<TABLE ROW>
	ATM
	ATM

	UTP
	UTP

	PCI
	PCI

	DAPBA-UA
	DAPBA-UA

	HW/EL
	HW/EL

	ELA
	ELA

	DT$_HW_HE155
	DT$_HW_HE155

	<TABLE ROW>
	ATM
	ATM

	155 mmf
	155 mmf

	PCI
	PCI

	DAPBA-FA
	DAPBA-FA

	HW/EL
	HW/EL

	ELA
	ELA

	DT$_HW_HE155
	DT$_HW_HE155

	<TABLE ROW>
	ATM
	ATM

	UTP
	UTP

	PCI
	PCI

	DAPBA-UA
	DAPBA-UA

	HW/EL
	HW/EL

	ELA
	ELA

	DT$_HW_HE155
	DT$_HW_HE155

	<TABLE ROW>
	ATM
	ATM

	622 mmf
	622 mmf

	PCI
	PCI

	DAPCA-FA
	DAPCA-FA

	HW/EL
	HW/EL

	ELA
	ELA

	DT$_HW_HE622
	DT$_HW_HE622

	<TABLE>
	Table�9�4 Supported OpenVMS Alpha LAN Devices, Part 2 (Continued)
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Device

	Device Type
	Device Type

	Version
	Version

	Driver Name
	Driver Name

	<TABLE BODY>
	<TABLE ROW>
	DEMNA
	DEMNA

	DT$_EX_DEMNA
	DT$_EX_DEMNA

	V1.0
	V1.0

	SYS$EXDRIVER.EXE
	SYS$EXDRIVER.EXE

	<TABLE ROW>
	TGEC (LOM)
	TGEC (LOM)

	DT$_EZ_TGEC
	DT$_EZ_TGEC

	V1.0
	V1.0

	SYS$EZDRIVER.EXE
	SYS$EZDRIVER.EXE

	<TABLE ROW>
	COREIO (LOM)
	COREIO (LOM)

	DT$_ES_LANCE
	DT$_ES_LANCE

	V1.0
	V1.0

	SYS$ESDRIVER.EXE
	SYS$ESDRIVER.EXE

	<TABLE ROW>
	PMAD
	PMAD

	DT$_EC_PMAD
	DT$_EC_PMAD

	V1.0
	V1.0

	SYS$ECDRIVER.EXE
	SYS$ECDRIVER.EXE

	<TABLE ROW>
	DELTA
	DELTA

	DT$_EY_NITC2
	DT$_EY_NITC2

	V6.1
	V6.1

	SYS$ECDRIVER.EXE
	SYS$ECDRIVER.EXE

	<TABLE ROW>
	DE422
	DE422

	DT$_ER_DE422
	DT$_ER_DE422

	V1.5
	V1.5

	SYS$ERDRIVER.EXE
	SYS$ERDRIVER.EXE

	<TABLE ROW>
	DE425
	DE425

	DT$_ER_TULIP
	DT$_ER_TULIP

	V6.1
	V6.1

	SYS$ERDRIVER.EXE
	SYS$ERDRIVER.EXE

	<TABLE ROW>
	DE200
	DE200

	DT$_ER_LANCE
	DT$_ER_LANCE

	V6.1
	V6.1

	SYS$ERDRIVER.EXE
	SYS$ERDRIVER.EXE

	<TABLE ROW>
	DE201
	DE201

	DT$_ER_LANCE
	DT$_ER_LANCE

	V6.1
	V6.1

	SYS$ERDRIVER.EXE
	SYS$ERDRIVER.EXE

	<TABLE ROW>
	DE202
	DE202

	DT$_ER_LANCE
	DT$_ER_LANCE

	V6.1
	V6.1

	SYS$ERDRIVER.EXE
	SYS$ERDRIVER.EXE

	<TABLE ROW>
	DE203
	DE203

	DT$_ER_LEMAC
	DT$_ER_LEMAC

	V6.2
	V6.2

	SYS$ERDRIVER.EXE
	SYS$ERDRIVER.EXE

	<TABLE ROW>
	DE204
	DE204

	DT$_ER_LEMAC
	DT$_ER_LEMAC

	V6.2
	V6.2

	SYS$ERDRIVER.EXE
	SYS$ERDRIVER.EXE

	<TABLE ROW>
	DE205
	DE205

	DT$_ER_LEMAC
	DT$_ER_LEMAC

	V6.2
	V6.2

	SYS$ERDRIVER.EXE
	SYS$ERDRIVER.EXE

	<TABLE ROW>
	Tulip (LOM)
	Tulip (LOM)

	DT$_EW_TULIP
	DT$_EW_TULIP

	V6.1
	V6.1

	SYS$EWDRIVER.EXE
	SYS$EWDRIVER.EXE

	<TABLE ROW>
	DE434
	DE434

	DT$_EW_DE435
	DT$_EW_DE435

	V6.1
	V6.1

	SYS$EWDRIVER.EXE
	SYS$EWDRIVER.EXE

	<TABLE ROW>
	DE435
	DE435

	DT$_EW_DE435
	DT$_EW_DE435

	V6.1
	V6.1

	SYS$EWDRIVER.EXE
	SYS$EWDRIVER.EXE

	<TABLE ROW>
	DE436
	DE436

	DT$_EW_DE435
	DT$_EW_DE435

	V6.1
	V6.1

	SYS$EWDRIVER.EXE
	SYS$EWDRIVER.EXE

	<TABLE ROW>
	DE450
	DE450

	DT$_EW_DE450
	DT$_EW_DE450

	V6.2
	V6.2

	SYS$EWDRIVER.EXE
	SYS$EWDRIVER.EXE

	<TABLE ROW>
	DE500-XA
	DE500-XA

	DT$_EW_DE500
	DT$_EW_DE500

	V6.2
	V6.2

	SYS$EWDRIVER.EXE
	SYS$EWDRIVER.EXE

	<TABLE ROW>
	DE500-AA
	DE500-AA

	DT$_EW_DE500
	DT$_EW_DE500

	V7.1
	V7.1

	SYS$EWDRIVER.EXE
	SYS$EWDRIVER.EXE

	<TABLE ROW>
	DE500-BA
	DE500-BA

	DT$_EW_DE500
	DT$_EW_DE500

	V7.1-1H1
	V7.1-1H1

	SYS$EWDRIVER_DE500BA.EXE
	SYS$EWDRIVER_DE500BA.EXE

	<TABLE ROW>
	DE500-FA
	DE500-FA

	DT$_EW_DE500
	DT$_EW_DE500

	V7.1-1H1
	V7.1-1H1

	SYS$EWDRIVER.EXE
	SYS$EWDRIVER.EXE

	<TABLE ROW>
	DE504-BA
	DE504-BA

	DT$_EW_DE500
	DT$_EW_DE500

	V7.1-1H1
	V7.1-1H1

	SYS$EWDRIVER_DE500BA.EXE
	SYS$EWDRIVER_DE500BA.EXE

	<TABLE ROW>
	P2SE
	P2SE

	DT$_EW_DE500
	DT$_EW_DE500

	V7.1-1H1
	V7.1-1H1

	SYS$EWDRIVER.EXE
	SYS$EWDRIVER.EXE

	<TABLE ROW>
	P2SE+
	P2SE+

	DT$_EW_DE500
	DT$_EW_DE500

	V7.1-1H1
	V7.1-1H1

	SYS$EWDRIVER.EXE
	SYS$EWDRIVER.EXE

	<TABLE ROW>
	21142 (LOM)
	21142 (LOM)

	DT$_EW_DE500
	DT$_EW_DE500

	V7.1-1H1
	V7.1-1H1

	SYS$EWDRIVER_DE500BA.EXE
	SYS$EWDRIVER_DE500BA.EXE

	<TABLE ROW>
	21143 (LOM)
	21143 (LOM)

	DT$_EW_DE500
	DT$_EW_DE500

	V7.1-1H1
	V7.1-1H1

	SYS$EWDRIVER_DE500BA.EXE
	SYS$EWDRIVER_DE500BA.EXE

	<TABLE ROW>
	DE600-AA
	DE600-AA

	DT$_EI_82558
	DT$_EI_82558

	V7.2
	V7.2

	SYS$EIDRIVER.EXE
	SYS$EIDRIVER.EXE

	<TABLE ROW>
	DE602-AA
	DE602-AA

	DT$_EI_82558
	DT$_EI_82558

	V7.2
	V7.2

	SYS$EIDRIVER.EXE
	SYS$EIDRIVER.EXE

	<TABLE ROW>
	DE602-BA
	DE602-BA

	DT$_EI_82558
	DT$_EI_82558

	V7.2
	V7.2

	SYS$EIDRIVER.EXE
	SYS$EIDRIVER.EXE

	<TABLE ROW>
	DE602-BB
	DE602-BB

	DT$_EI_82559
	DT$_EI_82559

	V7.2
	V7.2

	SYS$EIDRIVER.EXE
	SYS$EIDRIVER.EXE

	<TABLE ROW>
	DE602-TA
	DE602-TA

	DT$_EI_82559
	DT$_EI_82559

	V7.2
	V7.2

	SYS$EIDRIVER.EXE
	SYS$EIDRIVER.EXE

	<TABLE ROW>
	DE602-FA
	DE602-FA

	DT$_EI_82558
	DT$_EI_82558

	V7.2
	V7.2

	SYS$EIDRIVER.EXE
	SYS$EIDRIVER.EXE

	<TABLE ROW>
	Trifecta
	Trifecta

	DT$_EI_82558
	DT$_EI_82558

	V7.2
	V7.2

	SYS$EIDRIVER.EXE
	SYS$EIDRIVER.EXE

	<TABLE ROW>
	82559ER (LOM)
	82559ER (LOM)

	DT$_EI_82559
	DT$_EI_82559

	V7.3-1
	V7.3-1

	SYS$EIDRIVER.EXE
	SYS$EIDRIVER.EXE

	<TABLE ROW>
	DEGPA-SA
	DEGPA-SA

	DT$_EW_DEGPA
	DT$_EW_DEGPA

	V7.1-2
	V7.1-2

	SYS$EW1000A.EXE
	SYS$EW1000A.EXE

	<TABLE ROW>
	DEGPA-TA
	DEGPA-TA

	DT$_EW_DEGPA
	DT$_EW_DEGPA

	V7.1-2
	V7.1-2

	SYS$EW1000A.EXE
	SYS$EW1000A.EXE

	<TABLE ROW>
	DEGXA-SA
	DEGXA-SA

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	V7.2-2
	V7.2-2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	DEGXA-TB
	DEGXA-TB

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	V7.2-2
	V7.2-2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	DEGXA-SB
	DEGXA-SB

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	V7.2-2
	V7.2-2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	DEGXA-TB
	DEGXA-TB

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	V7.2-2
	V7.2-2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	BCM5703 (LOM)
	BCM5703 (LOM)

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	V7.3-1
	V7.3-1

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	3C589B
	3C589B

	DT$_EO_3C589
	DT$_EO_3C589

	V6.2-1H2
	V6.2-1H2

	SYS$EODRIVER.EXE
	SYS$EODRIVER.EXE

	<TABLE ROW>
	3C589D
	3C589D

	DT$_EO_3C589
	DT$_EO_3C589

	V6.2-1H2
	V6.2-1H2

	SYS$EODRIVER.EXE
	SYS$EODRIVER.EXE

	<TABLE ROW>
	Galaxy Shared Memory
	Galaxy Shared Memory

	DT$_EB_SMLAN
	DT$_EB_SMLAN

	V7.2
	V7.2

	SYS$EBDRIVER.EXE
	SYS$EBDRIVER.EXE

	<TABLE ROW>
	DEMFA
	DEMFA

	DT$_FX_DEMFA
	DT$_FX_DEMFA

	V1.0
	V1.0

	SYS$FXDRIVER.EXE
	SYS$FXDRIVER.EXE

	<TABLE ROW>
	DEFAA
	DEFAA

	DT$_FA_DEFAA
	DT$_FA_DEFAA

	V1.0
	V1.0

	SYS$FADRIVER.EXE
	SYS$FADRIVER.EXE

	<TABLE ROW>
	DEFZA
	DEFZA

	DT$_FC_DEFZA
	DT$_FC_DEFZA

	V1.0
	V1.0

	SYS$FCDRIVER.EXE
	SYS$FCDRIVER.EXE

	<TABLE ROW>
	DEFTA-AA
	DEFTA-AA

	DT$_FC_DEFTA
	DT$_FC_DEFTA

	V1.0
	V1.0

	SYS$FCDRIVER.EXE
	SYS$FCDRIVER.EXE

	<TABLE ROW>
	DEFTA-DA
	DEFTA-DA

	DT$_FC_DEFTA
	DT$_FC_DEFTA

	V1.0
	V1.0

	SYS$FCDRIVER.EXE
	SYS$FCDRIVER.EXE

	<TABLE ROW>
	DEFTA-UA
	DEFTA-UA

	DT$_FC_DEFTA
	DT$_FC_DEFTA

	V6.1
	V6.1

	SYS$FCDRIVER.EXE
	SYS$FCDRIVER.EXE

	<TABLE ROW>
	DEFEA-AA
	DEFEA-AA

	DT$_FR_DEFEA
	DT$_FR_DEFEA

	V1.5
	V1.5

	SYS$FRDRIVER.EXE
	SYS$FRDRIVER.EXE

	<TABLE ROW>
	DEFEA-DA
	DEFEA-DA

	DT$_FR_DEFEA
	DT$_FR_DEFEA

	V6.1
	V6.1

	SYS$FRDRIVER.EXE
	SYS$FRDRIVER.EXE

	<TABLE ROW>
	DEFEA-UA
	DEFEA-UA

	DT$_FR_DEFEA
	DT$_FR_DEFEA

	V6.1
	V6.1

	SYS$FRDRIVER.EXE
	SYS$FRDRIVER.EXE

	<TABLE ROW>
	DEFEA-MA
	DEFEA-MA

	DT$_FR_DEFEA
	DT$_FR_DEFEA

	V6.1
	V6.1

	SYS$FRDRIVER.EXE
	SYS$FRDRIVER.EXE

	<TABLE ROW>
	DEFPZ-AA
	DEFPZ-AA

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	V6.1
	V6.1

	SYS$FWDRIVER.EXE
	SYS$FWDRIVER.EXE

	<TABLE ROW>
	DEFPZ-UA
	DEFPZ-UA

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	V6.2
	V6.2

	SYS$FWDRIVER.EXE
	SYS$FWDRIVER.EXE

	<TABLE ROW>
	DEFPA-AA/AB/AC
	DEFPA-AA/AB/AC

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	V6.2
	V6.2

	SYS$FWDRIVER.EXE
	SYS$FWDRIVER.EXE

	<TABLE ROW>
	DEFPA-DA/DB/DC
	DEFPA-DA/DB/DC

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	V6.2
	V6.2

	SYS$FWDRIVER.EXE
	SYS$FWDRIVER.EXE

	<TABLE ROW>
	DEFPA-UA/UB/UC
	DEFPA-UA/UB/UC

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	V6.1
	V6.1

	SYS$FWDRIVER.EXE
	SYS$FWDRIVER.EXE

	<TABLE ROW>
	DEFPA-MA/MB/MC
	DEFPA-MA/MB/MC

	DT$_FW_DEFPA
	DT$_FW_DEFPA

	V6.1
	V6.1

	SYS$FWDRIVER.EXE
	SYS$FWDRIVER.EXE

	<TABLE ROW>
	DETRA
	DETRA

	DT$_IC_DETRA
	DT$_IC_DETRA

	V6.1
	V6.1

	SYS$ICDRIVER.EXE
	SYS$ICDRIVER.EXE

	<TABLE ROW>
	DW300
	DW300

	DT$_IR_DW300
	DT$_IR_DW300

	V6.1
	V6.1

	SYS$IRDRIVER.EXE
	SYS$IRDRIVER.EXE

	<TABLE ROW>
	DW110
	DW110

	DT$_IR_DW300
	DT$_IR_DW300

	V6.2
	V6.2

	SYS$IRDRIVER.EXE
	SYS$IRDRIVER.EXE

	<TABLE ROW>
	TC4048
	TC4048

	DT$_IW_TI380PCI
	DT$_IW_TI380PCI

	V6.2
	V6.2

	SYS$IWDRIVER.EXE
	SYS$IWDRIVER.EXE

	<TABLE ROW>
	M8154
	M8154

	DT$_IW_TI380PCI
	DT$_IW_TI380PCI

	V7.1
	V7.1

	SYS$IWDRIVER.EXE
	SYS$IWDRIVER.EXE

	<TABLE ROW>
	DGLTA
	DGLTA

	DT$_HC_OTTO
	DT$_HC_OTTO

	V7.1-1H1
	V7.1-1H1

	SYS$HCDRIVER.EXE
	SYS$HCDRIVER.EXE

	<TABLE ROW>
	DGLPB
	DGLPB

	DT$_HW_OTTO
	DT$_HW_OTTO

	V7.1-1H1
	V7.1-1H1

	SYS$HWDRIVER.EXE
	SYS$HWDRIVER.EXE

	<TABLE ROW>
	DGLPA-FA
	DGLPA-FA

	DT$_HW_METEOR
	DT$_HW_METEOR

	V7.1-1H1
	V7.1-1H1

	SYS$ATMWORKS351.EXE
	SYS$ATMWORKS351.EXE

	<TABLE ROW>
	DAPBA-UA
	DAPBA-UA

	DT$_HW_HE155
	DT$_HW_HE155

	V7.1-1H1
	V7.1-1H1

	SYS$HWDRIVER4.EXE
	SYS$HWDRIVER4.EXE

	<TABLE ROW>
	DAPBA-FA
	DAPBA-FA

	DT$_HW_HE155
	DT$_HW_HE155

	V7.1-1H1
	V7.1-1H1

	SYS$HWDRIVER4.EXE
	SYS$HWDRIVER4.EXE

	<TABLE ROW>
	DAPBA-UA
	DAPBA-UA

	DT$_HW_HE155
	DT$_HW_HE155

	V7.1-1H1
	V7.1-1H1

	SYS$HWDRIVER4.EXE
	SYS$HWDRIVER4.EXE

	<TABLE ROW>
	DAPCA-FA
	DAPCA-FA

	DT$_HW_HE622
	DT$_HW_HE622

	V7.1-1H1
	V7.1-1H1

	SYS$HWDRIVER4.EXE
	SYS$HWDRIVER4.EXE

	NOTE PMAD is a single LANCE device. DELTA is a dual LANCE device. DE436 is a quad Tulip device. D...
	NOTE PMAD is a single LANCE device. DELTA is a dual LANCE device. DE436 is a quad Tulip device. D...

	OpenVMS
	OpenVMS
	Table�9�5
	Table�9�5

	<TABLE>
	Table�9�6 Supported OpenVMS I64 Systems LAN Devices, Part 2�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Device

	OpenVMS Device Type
	OpenVMS Device Type

	OpenVMS Version
	OpenVMS Version

	Driver Name
	Driver Name

	<TABLE BODY>
	<TABLE ROW>
	A5230A
	A5230A

	DT$_EW_DE500
	DT$_EW_DE500

	V8.2
	V8.2

	SYS$EWDRIVER_DE500BA.EXE
	SYS$EWDRIVER_DE500BA.EXE

	<TABLE ROW>
	A5506B
	A5506B

	DT$_EW_DE500
	DT$_EW_DE500

	V8.2
	V8.2

	SYS$EWDRIVER_DE500BA.EXE
	SYS$EWDRIVER_DE500BA.EXE

	<TABLE ROW>
	82559 (LOM)
	82559 (LOM)

	DT$_EI_82559
	DT$_EI_82559

	V8.2
	V8.2

	SYS$EIDRIVER.EXE
	SYS$EIDRIVER.EXE

	<TABLE ROW>
	A6847A
	A6847A

	DT$_EW_BCM5701
	DT$_EW_BCM5701

	V8.2
	V8.2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	A6825A
	A6825A

	DT$_EW_BCM5701
	DT$_EW_BCM5701

	V8.2
	V8.2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	A7011A
	A7011A

	DT$_EI_82540
	DT$_EI_82540

	V8.2
	V8.2

	SYS$EI1000.EXE
	SYS$EI1000.EXE

	<TABLE ROW>
	A7012A
	A7012A

	DT$_EI_82540
	DT$_EI_82540

	V8.2
	V8.2

	SYS$EI1000.EXE
	SYS$EI1000.EXE

	<TABLE ROW>
	Intel 82546 (LOM)
	Intel 82546 (LOM)

	DT$_EI_82540
	DT$_EI_82540

	V8.2
	V8.2

	SYS$_EI1000.EXE
	SYS$_EI1000.EXE

	<TABLE ROW>
	AB352A
	AB352A

	DT$_EI_82540
	DT$_EI_82540

	V8.2
	V8.2

	SYS$EI1000.EXE
	SYS$EI1000.EXE

	<TABLE ROW>
	A9782A
	A9782A

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	V8.2
	V8.2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	A9784A
	A9784A

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	V8.2
	V8.2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	AB290A
	AB290A

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	V8.2
	V8.2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	AB465A
	AB465A

	DT$_EW_BCM5703
	DT$_EW_BCM5703

	V8.2
	V8.2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	<TABLE ROW>
	BCM5701 (LOM)
	BCM5701 (LOM)

	DT$_EW_BCM5701
	DT$_EW_BCM5701

	V8.2
	V8.2

	SYS$EW5700.EXE
	SYS$EW5700.EXE

	NOTE A5230A is a DE500-BA equivalent made by Adaptec. A5506B is a DE504-BA equivalent made by Int...
	NOTE A5230A is a DE500-BA equivalent made by Adaptec. A5506B is a DE504-BA equivalent made by Int...

	Supported Industry Standards
	Supported Industry Standards
	LAN drivers:IEEE 802 packet format:support for
	LAN drivers:IEEE 802 packet format:support for

	• Ethernet and IEEE 802.3 packet format
	• Ethernet and IEEE 802.3 packet format
	• Ethernet and IEEE 802.3 packet format

	• Physical layer identified as 10Base5 (ThickWire), 10Base2 (ThinWire), and 10BaseT (twisted pair)
	• Physical layer identified as 10Base5 (ThickWire), 10Base2 (ThinWire), and 10BaseT (twisted pair)

	• Fast Ethernet physical layer identified as type 100BaseTX
	• Fast Ethernet physical layer identified as type 100BaseTX

	• Gigabit Ethernet's physical layer is identified as 1000BaseT for unshielded twisted pair (UTP),...
	• Gigabit Ethernet's physical layer is identified as 1000BaseT for unshielded twisted pair (UTP),...

	• Gigabit Ethernet implementation of jumbo frames, a defacto industry standard using a maximum fr...
	• Gigabit Ethernet implementation of jumbo frames, a defacto industry standard using a maximum fr...

	FDDI drivers support the following features and standards:
	• FDDI packet format
	• FDDI packet format
	• FDDI packet format

	• Transmission and reception of frame control (FC) priority
	• Transmission and reception of frame control (FC) priority

	• ANSI X3.139-1987 FDDI Media Access Control (MAC)
	• ANSI X3.148-1988 FDDI Physical Layer Protocol (PHY)
	• ANSI X3.166-1990 FDDI Physical Layer Medium Dependent (PMD)

	Token Ring drivers support the following features and standards:
	• IEEE 802.5 packet format
	• IEEE 802.5 packet format
	• IEEE 802.5 packet format

	• Transmission and reception of priority bits in the access control (AC) field and the frame cont...
	• Transmission of source routing header information.
	• Reception of route information (RI).

	ATM drivers over ELAN support the following features and standards:
	• Ethernet and IEEE 802.3 packet format
	• Ethernet and IEEE 802.3 packet format
	• Ethernet and IEEE 802.3 packet format

	• UNI Version 3.0 or 3.1 signaling protocol
	• UNI Version 3.0 or 3.1 signaling protocol

	• LAN emulation (LANE) Version 1.0
	• LAN emulation (LANE) Version 1.0

	• Maximum frame sizes of 1516, 4544, and 9234 bytes
	• Maximum frame sizes of 1516, 4544, and 9234 bytes

	All LAN drivers support the following features:
	• 802.2 packet format
	• 802.2 packet format
	• 802.2 packet format

	• IEEE 802.2 Class I service including the unnumbered information (UI), exchange identification (...
	• IEEE 802.2 Class I service including the unnumbered information (UI), exchange identification (...

	• IEEE 802.2 Class II service may be specified where the functions are provided by the user appli...
	• IEEE 802.2 Class II service may be specified where the functions are provided by the user appli...

	• Six-byte destination and source address fields
	• Six-byte destination and source address fields

	LAN:I/O architecture
	LAN:I/O architecture
	LAN:I/O architecture

	The OpenVMS LAN software employs a class/port driver architecture to allow LAN applications to co...
	The class driver is implemented by a collection of execlets known as the LAN common routines. The...
	The port drivers operate the LAN hardware, and there is one port driver for each type of LAN devi...
	When coorelated to the OSI Model, the LAN implementation occupies the bottom two layers, the LAN ...
	LAN Data Structures
	LAN Data Structures
	The OpenVMS I/O subsystem describes devices in terms of a Unit Control Block (UCB). There is a UC...
	When a LAN application wants to use a LAN device, it assigns a channel (opens a port) to the UCB ...
	Each LAN driver also maintains another structure, the LAN Station Block (LSB), which contains LAN...
	In summary, the UCBs contain application-specific data. The LSBs contain device and driver-specif...
	Additional data structures are defined to allow applications to send and receive I/O requests to ...

	Hardware Configuration
	Hardware Configuration
	When the system boots, system support code probes the I/O buses looking for I/O devices. On VAX s...

	LAN:software modules
	LAN:software modules
	LAN:software modules

	OpenVMS LAN software consists of the LAN common routines, LAN port drivers, the LAN Control Progr...
	<TABLE>
	Table�9�7 LAN Software Module�
	<TABLE HEADING>
	<TABLE ROW>
	Location
	Module
	Architecure
	Function
	Function

	<TABLE BODY>
	<TABLE ROW>
	SYS$LOADABLE_IMAGES
	SYS$LAN.EXE
	Alpha, I64
	LAN common routines, common across all media types
	LAN common routines, common across all media types

	<TABLE ROW>
	SYS$LOADABLE_IMAGES
	SYS$LAN_CSMACD.EXE
	Alpha, I64
	LAN common routines, Ethernet-specific support

	<TABLE ROW>
	SYS$LOADABLE_IMAGES
	SYS$LAN_FDDI.EXE
	Alpha
	LAN common routines, FDDI-specific support

	<TABLE ROW>
	SYS$LOADABLE_IMAGES
	SYS$LAN_TR.EXE
	Alpha
	LAN common routines, Token ring-specific support

	<TABLE ROW>
	SYS$LOADABLE_IMAGES
	SYS$LAN_ATM.EXE
	Alpha
	LAN common routines, ATM-specific support

	<TABLE ROW>
	SYS$LOADABLE_IMAGES
	NET$CSMACD.EXE
	VAX, Alpha, I64
	DECnet-Plus network management support routines for Ethernet
	DECnet-Plus network management support routines for Ethernet

	<TABLE ROW>
	SYS$LOADABLE_IMAGES
	NET$FDDI.EXE
	VAX, Alpha
	DECnet-Plus network management support routines for FDDI
	DECnet-Plus network management support routines for FDDI

	<TABLE ROW>
	SYS$SYSTEM
	SYS$CONFIG.DAT
	Alpha, I64
	Device ID entries for file-based device configuration
	Device ID entries for file-based device configuration

	<TABLE ROW>
	SYS$SYSTEM
	LANCP.EXE
	VAX, Alpha, I64
	LAN Control Program
	LAN Control Program

	<TABLE ROW>
	SYS$SYSTEM
	LANACP.EXE
	VAX, Alpha, I64
	LAN Auxiliary Control Program, including MOP server
	LAN Auxiliary Control Program, including MOP server

	<TABLE ROW>
	SYS$LIBRARY
	SDA.EXE
	VAX
	System Dump Analyzer or System Analyzer
	System Dump Analyzer or System Analyzer

	<TABLE ROW>
	SYS$LIBRARY
	SDA$SHARE.EXE
	Alpha, I64
	System Dump Analyzer or System Analyzer
	System Dump Analyzer or System Analyzer

	<TABLE ROW>
	SYS$LIBRARY
	LAN$SDA.EXE
	Alpha, I64
	SDA extension for LAN drivers
	SDA extension for LAN drivers

	<TABLE ROW>
	SYS$LOADABLE_IMAGES
	LAN port drivers
	VAX, Alpha, I64
	LAN port drivers
	LAN port drivers

	The NET$ modules are only loaded when DECnet-Plus is configured on the system. SYS$CONFIG.DAT inc...
	On VAX, the LAN common routines are linked with the LAN port drivers as part of each driver image...

	LAN: application APIs
	LAN: application APIs
	LAN: application APIs

	The LAN common routines provide two APIs to allow applications to interface to the LAN drivers an...
	The APIs are:
	• QIO — An unprivileged interface to the LAN drivers, designed for user mode code.
	• QIO — An unprivileged interface to the LAN drivers, designed for user mode code.
	• VCI — A privileged interface to the LAN drivers that runs in kernel mode at IPL 8, designed to ...

	QIO API
	QIO API
	QIO API

	The QIO API is implemented in the LAN common routines to interface between an application and the...
	An application calls SYS$QIO with a function code, function modifiers, and addresses of buffers t...
	The LAN common routines translate the I/O function in the QIO request to a transmit, receive, sen...
	The LAN port driver does the transmit request, retrieves the receive packet, collects sensemode d...
	QIO operations do buffered I/O. This, in addition to considerable validation of the QIO request, ...
	QIO Program Operation
	QIO Program Operation
	The following sequence shows a typical application sequence, to start a port, do transmits and re...
	1. � Use the Assign I/O Channel ($ASSIGN) system service to assign I/O channels to one or more of...
	1. � Use the Assign I/O Channel ($ASSIGN) system service to assign I/O channels to one or more of...
	2. � Start up the port with the set mode function and startup function modifier (see
	3. � Perform read, write, and sense mode operations as needed.
	4. � Shut down the port with the set mode function and shutdown function modifier (see
	5. � Use the Deassign I/O Channel ($DASSGN) system service to deassign the I/O channel.

	The sample programs described in

	VCI API
	VCI API
	VCI API

	The VCI API is implemented in the LAN common routines to interface between the application and th...
	An applications calls a VCI initiation routine with an I/O request that contains the transmit buf...
	The LAN common routines process the transmit or port management request and passes the request on...
	The LAN port driver does the transmit request, or sets characteristics, and passes the results ba...
	VCI operations do direct I/O, avoiding buffer copies in most cases. VCI applications are consider...

	LAN Addressing
	LAN Addressing
	Each LAN device is identified by a hardware address that is intended to uniquely identify the LAN...
	Ethernet addresses are represented by the Ethernet standard as six pairs of hexadecimal digits (s...
	For Token Ring networks, the address is often given in bit-reversed form, called canonical format...
	Upon application, IEEE assigns a block of addresses to a producer of LAN nodes. Thus, every manuf...
	Ethernet Address Classifications
	Ethernet Address Classifications
	An Ethernet address can be a physical address of a single node or a multicast address, depending ...
	• Physical address—The unique address of a single node on a LAN. The least significant bit of the...
	• Physical address—The unique address of a single node on a LAN. The least significant bit of the...
	• Physical address—The unique address of a single node on a LAN. The least significant bit of the...

	• Multicast address—A multidestination address of one or more nodes on a given LAN. The least sig...
	• Multicast address—A multidestination address of one or more nodes on a given LAN. The least sig...

	Selecting an Ethernet Physical Address
	Selecting an Ethernet Physical Address
	The OpenVMS interface to the LAN controllers allows you to set a physical address of the controll...
	For Ethernet, all users of the controller must agree on this address. The first user of the contr...
	For Ethernet, the Can Change Address parameter allows the physical address to be changed even tho...
	For FDDI, each port using a controller may specify its own unique physical address. Any combinati...

	Ethernet Physical and Multicast Address Values
	Ethernet Physical and Multicast Address Values
	The following shows the multicast addresses assigned for use in cross-company communications:.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FF-FF-FF-FF-FF-FF
	FF-FF-FF-FF-FF-FF

	Broadcast
	Broadcast

	<TABLE ROW>
	CF-00-00-00-00-00
	CF-00-00-00-00-00

	Loopback assistance
	Loopback assistance

	The following lists the commonly used multicast addresses.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	AB-00-00-01-00-00
	AB-00-00-01-00-00

	Dump/load assistance
	Dump/load assistance

	<TABLE ROW>
	AB-00-00-02-00-00
	AB-00-00-02-00-00

	Remote console
	Remote console

	<TABLE ROW>
	AB-00-00-03-00-00
	AB-00-00-03-00-00

	Level 1 and Level 2 routers
	Level 1 and Level 2 routers

	<TABLE ROW>
	AB-00-00-04-00-00
	AB-00-00-04-00-00

	All end nodes
	All end nodes

	<TABLE ROW>
	09-00-2B-02-00-00
	09-00-2B-02-00-00

	Level 2 routers
	Level 2 routers

	<TABLE ROW>
	AB-00-00-05-00-00 through AB-00-03-FF-FF-FF
	AB-00-00-05-00-00 through AB-00-03-FF-FF-FF

	Reserved for future use
	Reserved for future use

	<TABLE ROW>
	AB-00-03-00-00-00
	AB-00-03-00-00-00

	LAT
	LAT

	<TABLE ROW>
	AB-00-04-00-00-00 through AB-00-04-00-FF-FF
	AB-00-04-00-00-00 through AB-00-04-00-FF-FF

	For use by HP customers for their own applications
	For use by HP customers for their own applications

	<TABLE ROW>
	AB-00-04-01-00-00 through AB-00-04-01-FF-FF
	AB-00-04-01-00-00 through AB-00-04-01-FF-FF

	Local area VMScluster
	Local area VMScluster

	<TABLE ROW>
	AB-00-04-02-00-00 through AB-00-04-FF-FF-FF
	AB-00-04-02-00-00 through AB-00-04-FF-FF-FF

	Reserved for future use
	Reserved for future use

	<TABLE ROW>
	09-00-2B-01-00-00
	09-00-2B-01-00-00

	Bridge management
	Bridge management

	<TABLE ROW>
	09-00-2B-01-00-01
	09-00-2B-01-00-01

	Bridge hello multicast
	Bridge hello multicast

	Token Ring:function address mapping
	Token Ring:function address mapping
	Token Ring:function address mapping

	LAN drivers:addresses:Token Ring
	Except for the global broadcast address (FF-FF-FF-FF-FF-FF), Token Ring hardware does not support...
	Because most OpenVMS LAN applications use standard multicast addresses, a mechanism has been desi...
	Table�9�8
	Table�9�8

	<TABLE>
	Table�9�8 Address Mappings of Token Ring Drivers (Continued)
	<TABLE HEADING>
	<TABLE ROW>
	Multicast Address
	Functional Address
	Bit-Reversed
	Description

	<TABLE BODY>
	<TABLE ROW>
	09-00-2B-00-00-04
	09-00-2B-00-00-04

	03-00-00-00-02-00
	03-00-00-00-02-00

	C0:00:00:00:40:00
	C0:00:00:00:40:00

	ISO 9542 All End-system Network Entites
	ISO 9542 All End-system Network Entites

	<TABLE ROW>
	09-00-2B-00-00-05
	09-00-2B-00-00-05

	03-00-00-00-01-00
	03-00-00-00-01-00

	C0:00:00:00:80:00
	C0:00:00:00:80:00

	ISO 9542 All Intermediate System Network Entities
	ISO 9542 All Intermediate System Network Entities

	<TABLE ROW>
	CF-00-00-00-00-00
	CF-00-00-00-00-00

	03-00-00-08-00-00
	03-00-00-08-00-00

	C0:00:00:10:00:00
	C0:00:00:10:00:00

	Loopback Assistance
	Loopback Assistance

	<TABLE ROW>
	AB-00-00-01-00-00
	AB-00-00-01-00-00

	03-00-02-00-00-00
	03-00-02-00-00-00

	C0:00:40:00:00:00
	C0:00:40:00:00:00

	MOP Dump/Load
	MOP Dump/Load

	<TABLE ROW>
	AB-00-00-02-00-00
	AB-00-00-02-00-00

	03-00-04-00-00-00
	03-00-04-00-00-00

	C0:00:20:00:00:00
	C0:00:20:00:00:00

	MOP Remote Console
	MOP Remote Console

	<TABLE ROW>
	AB-00-00-03-00-00
	AB-00-00-03-00-00

	03-00-08-00-00-00
	03-00-08-00-00-00

	C0:00:10:00:00:00
	C0:00:10:00:00:00

	DNA L1 Routers
	DNA L1 Routers

	<TABLE ROW>
	09-00-2B-02-00-00
	09-00-2B-02-00-00

	03-00-08-00-00-00
	03-00-08-00-00-00

	C0:00:10:00:00:00
	C0:00:10:00:00:00

	DNA L2 Routers
	DNA L2 Routers

	<TABLE ROW>
	09-00-2B-02-01-0A
	09-00-2B-02-01-0A

	03-00-08-00-00-00
	03-00-08-00-00-00

	C0:00:10:00:00:00
	C0:00:10:00:00:00

	DECnet Phase IV — TRN — All Phase IV — TRN Routers
	DECnet Phase IV — TRN — All Phase IV — TRN Routers

	<TABLE ROW>
	AB-00-00-04-00-00
	AB-00-00-04-00-00

	03-00-10-00-00-00
	03-00-10-00-00-00

	C0:00:08:00:00:00
	C0:00:08:00:00:00

	DNA End nodes
	DNA End nodes

	<TABLE ROW>
	09-00-2B-02-01-0B
	09-00-2B-02-01-0B

	03-00-10-00-00-00
	03-00-10-00-00-00

	C0:00:08:00:00:00
	C0:00:08:00:00:00

	Phase IV Prime Unknown
	Phase IV Prime Unknown

	<TABLE ROW>
	09-00-2B-00-00-07
	09-00-2B-00-00-07

	03-00-20-00-00-00
	03-00-20-00-00-00

	C0:00:04:00:00:00
	C0:00:04:00:00:00

	PCSA NETBIOS Emulation
	PCSA NETBIOS Emulation

	<TABLE ROW>
	09-00-2B-00-00-0F
	09-00-2B-00-00-0F

	03-00-40-00-00-00
	03-00-40-00-00-00

	C0:00:02:00:00:00
	C0:00:02:00:00:00

	Local Area Transport (LAT)
	Local Area Transport (LAT)

	<TABLE ROW>
	09-00-2B-02-01-04
	09-00-2B-02-01-04

	03-00-80-00-00-00
	03-00-80-00-00-00

	C0:00:01:00:00:00
	C0:00:01:00:00:00

	LAT Directory Service Solicit (to slave)
	LAT Directory Service Solicit (to slave)

	<TABLE ROW>
	09-00-2B-02-01-07
	09-00-2B-02-01-07

	03-00-00-02-00-00
	03-00-00-02-00-00

	C0:00:00:40:00:00
	C0:00:00:40:00:00

	LAT Directory Service Solicit — X Service Class
	LAT Directory Service Solicit — X Service Class

	<TABLE ROW>
	09-00-2B-04-00-00
	09-00-2B-04-00-00

	03-00-00-04-00-00
	03-00-00-04-00-00

	C0:00:00:20:00:00
	C0:00:00:20:00:00

	LAST
	LAST

	<TABLE ROW>
	09-00-2B-02-01-00
	09-00-2B-02-01-00

	03-00-00-00-08-00
	03-00-00-00-08-00

	C0:00:00:00:10:00
	C0:00:00:00:10:00

	DNA Naming Service Advertisement
	DNA Naming Service Advertisement

	<TABLE ROW>
	09-00-2B-02-01-01
	09-00-2B-02-01-01

	03-00-00-00-10-00
	03-00-00-00-10-00

	C0:00:00:00:08:00
	C0:00:00:00:08:00

	DNA Naming Service Solicitation
	DNA Naming Service Solicitation

	<TABLE ROW>
	09-00-2B-02-01-02
	09-00-2B-02-01-02

	03-00-00-00-20-00
	03-00-00-00-20-00

	C0:00:00:00:04:00
	C0:00:00:00:04:00

	DNA Time Service
	DNA Time Service

	<TABLE ROW>
	03-00-00-00-00-01
	03-00-00-00-00-01

	03-00-00-00-00-01
	03-00-00-00-00-01

	C0:00:00:00:00:80
	C0:00:00:00:00:80

	NETBUI Emulation
	NETBUI Emulation

	If an application needs to change or add mappings, QIOs exist for performing such operations. If ...
	$
	$
	MCR LANCP

	LANCP>SET DEVICE/MAP= -
	LANCP>SET DEVICE/MAP= -

	_LANCP> (MULTICAST=AB-01-01-01-02-03,-
	_LANCP> (MULTICAST=AB-01-01-01-02-03,-

	_LANCP> FUNCTIONAL=00-01-00-00) ICA0:
	_LANCP> FUNCTIONAL=00-01-00-00) ICA0:

	Note that it is possible for more than one multicast address to map to the same functional addres...

	LAN:frame formats
	LAN:frame formats
	LAN:frame formats

	Several different LAN physical layer protocols are supported by OpenVMS with some differences in ...
	The frame formats available in the LAN media are shown in
	Figure�9�1 LAN Frame Formats
	Figure�9�1 LAN Frame Formats
	<GRAPHIC>

	Note that Ethernet provides two frame formats and the FDDI provides one frame format. The 802.1 h...
	Ethernet Frames
	Ethernet Frames
	There are two headers for Ethernet frames:
	• Ethernet header
	• Ethernet header
	• Ethernet header

	• IEEE 802.3 header
	• IEEE 802.3 header

	Figure�9�2
	Figure�9�2

	Figure�9�2 Ethernet Frame with Ethernet Header
	Figure�9�2 Ethernet Frame with Ethernet Header
	<GRAPHIC>

	The Ethernet header consists of the DA, SA, and PTY fields. Ethernet frames must be at least 64 b...
	Figure�9�3
	Figure�9�3

	Figure�9�3 Ethernet Frame with IEEE 802.3 Header
	Figure�9�3 Ethernet Frame with IEEE 802.3 Header
	<GRAPHIC>

	The IEEE 802.3 format is similar to the Ethernet format, except the PTY field is replaced by the ...

	FDDI Frames
	FDDI Frames
	Figure�9�4
	Figure�9�4

	Figure�9�4 FDDI Frame Format
	Figure�9�4 FDDI Frame Format
	<GRAPHIC>

	The FDDI header consists of the FC, DA, and SA fields.

	Token Ring Frames
	Token Ring Frames
	Figure�9�5
	Figure�9�5

	Figure�9�5 Token Ring Frame Format
	Figure�9�5 Token Ring Frame Format
	<GRAPHIC>

	ATM ELAN frames
	ATM ELAN frames
	ATM ELAN frames

	LAN emulation data frame format
	ATM (asynchronous transfer mode):ELAN frames
	Figure�9�6
	Figure�9�6

	Figure�9�6 LAN Emulation Data Frame Format with IEEE 802.3/Ethernet Header
	Figure�9�6 LAN Emulation Data Frame Format with IEEE 802.3/Ethernet Header
	<GRAPHIC>

	Ethernet (Ethernet Version 2, DIX) frame format
	Ethernet (Ethernet Version 2, DIX) frame format
	Ethernet (Ethernet Version 2, DIX) Frame Format
	The Ethernet format specifies a two-byte protocol type field followed by an optional length field...
	Ethernet Protocol Types
	Ethernet Protocol Types
	Every Ethernet frame has a 2-byte protocol type field. This field is used to determine the port t...
	The following lists the cross-company protocol types:
	LAN drivers:protocol type:cross-company
	LAN drivers:protocol type:cross-company
	LAN drivers:protocol type:Compaq

	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	08-00
	IP protocol

	<TABLE ROW>
	08-06
	Address resolution protocol (ARP)

	<TABLE ROW>
	86-DD
	86-DD

	IP protocol Version 6 (IPV6)
	IP protocol Version 6 (IPV6)

	<TABLE ROW>
	90-00
	90-00

	Ethernet Loopback protocol
	Ethernet Loopback protocol

	The following list some commonly used protocol types.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	60-01
	60-01

	DNA Dump/load (MOP)
	DNA Dump/load (MOP)

	<TABLE ROW>
	60-02
	60-02

	DNA Remote Console (MOP)
	DNA Remote Console (MOP)

	<TABLE ROW>
	60-03
	60-03

	DNA Routing
	DNA Routing

	<TABLE ROW>
	60-04
	60-04

	Local Area Transport (LAT)
	Local Area Transport (LAT)

	<TABLE ROW>
	60-05
	60-05

	Diagnostics
	Diagnostics

	<TABLE ROW>
	60-06
	60-06

	Customer use
	Customer use

	<TABLE ROW>
	60-07
	60-07

	System Communication Architecture (SCA)
	System Communication Architecture (SCA)

	<TABLE ROW>
	80-38
	80-38

	Bridge
	Bridge

	<TABLE ROW>
	80-3C
	80-3C

	DNA Naming Service
	DNA Naming Service

	<TABLE ROW>
	80-3D
	80-3D

	CSMA/CD Encryption
	CSMA/CD Encryption

	<TABLE ROW>
	80-3E
	80-3E

	DNA Time Service
	DNA Time Service

	<TABLE ROW>
	80-3F
	80-3F

	LAN Traffic Monitor
	LAN Traffic Monitor

	<TABLE ROW>
	80-40
	80-40

	NETBIOS Emulator (PCSG)
	NETBIOS Emulator (PCSG)

	<TABLE ROW>
	80-41
	80-41

	Local Area System Transport (LAST)
	Local Area System Transport (LAST)

	802 (IEEE 802.x LLC) Frame Format
	802 (IEEE 802.x LLC) Frame Format
	The IEEE 802 packet formats accepted for a port depend on the service enabled on that port. All 8...
	When a port is started, the NMA$C_PCLI_SRV parameter in the P2 buffer selects the service on that...
	802 Service Access Point (SAP) Types
	802 Service Access Point (SAP) Types
	Every IEEE 802 frame has a 1-byte Service Access Point (SAP) field. This field identifies where t...
	The following lists some commonly used SAP values.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	FE
	DECnet-V Link State Routing

	<TABLE ROW>
	F0
	Pathworks

	Class I Service Packet Format
	Class I Service Packet Format
	LAN drivers:packet format:Class I service
	LAN drivers:packet format:Class I service
	LAN drivers:IEEE 802 packet format:Class I service packet format

	Figure�9�7 Class I Service 802.2 Header
	Figure�9�7 Class I Service 802.2 Header
	<GRAPHIC>

	The control field for an 802 packet is always an unnumbered control field. The unnumbered control...
	• UI command (00000011)
	• UI command (00000011)
	• UI command (00000011)
	This is the unnumbered information command. It is the method used to transmit data from one user ...
	The UI command can be specified by using NMA$C_CTLVL_UI.

	• XID command (101p1111)
	• XID command (101p1111)
	This is the exchange identification command. It is used to convey information about the port. The...

	• XID response (101f1111)
	• XID response (101f1111)
	The XID response is a response to an XID command. The “f” bit is the final bit and will match the...

	• TEST command (111p0011)
	• TEST command (111p0011)
	The TEST command is used to test a connection. The “p” bit is the poll bit and can be either 0 or...

	• TEST response (111f0011)
	• TEST response (111f0011)
	The TEST response is a response to a TEST command. The “f” bit is the final bit and will match th...

	An 802 format port with Class I service is allowed to transmit UI, XID, and TEST commands. An 802...
	Refer to the IEEE 802.2 Standard for more information on these control field values and response ...

	User-Supplied Service Packet Format
	User-Supplied Service Packet Format
	The user provides the control field values, which are documented in the IEEE 802.2 Standard. The ...

	Service Access Point (SAP) Use and Restrictions
	Service Access Point (SAP) Use and Restrictions
	LAN drivers:IEEE 802 packet format:SAP use and restrictions
	LAN drivers:IEEE 802 packet format:SAP use and restrictions
	LAN drivers:Service Access Point (SAP)

	Figure�9�8 DSAP and SSAP Format
	Figure�9�8 DSAP and SSAP Format
	<GRAPHIC>

	Definition of the least significant bit depends on whether the SAP is a source SAP (SSAP) or a de...
	Up to four group SAPs can be enabled on each 802 port. The group SAPs enabled on a controller do ...

	802 Extended (IEEE 802.x LLC/SNAP) frame format
	802 Extended (IEEE 802.x LLC/SNAP) frame format
	802 Extended (IEEE 802.x LLC/SNAP) frame format

	LAN drivers:IEEE 802 packet format:extended packet format
	LAN drivers:IEEE 802 packet format:extended packet format
	LAN drivers:packet format:extended 802

	Figure�9�9 802 Extended Header
	Figure�9�9 802 Extended Header
	<GRAPHIC>

	LAN drivers:packet format:SNAP SAP value
	LAN drivers:packet format:SNAP SAP value

	802E PID Types
	802E PID Types
	Every SNAP frame has a 5-byte protocol ID (PID) field. This field is used to determine the port t...
	The following lists the cross-company PID values.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	08-00-2B-90-00
	Loopback protocol

	The following lists some commonly used PID values.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	08-00-2B-60-02
	Loopback protocol

	<TABLE ROW>
	08-00-2B-60-01
	08-00-2B-60-01

	DNA Dump/load (MOP)
	DNA Dump/load (MOP)

	<TABLE ROW>
	08-00-2B-60-02
	08-00-2B-60-02

	DNA Remote Console (MOP)
	DNA Remote Console (MOP)

	<TABLE ROW>
	08-00-2B-80-3C
	08-00-2B-80-3C

	DNA Naming Service
	DNA Naming Service

	<TABLE ROW>
	08-00-2B-80-3E
	08-00-2B-80-3E

	DNA Time Service
	DNA Time Service

	<TABLE ROW>
	08-00-2B-80-48
	08-00-2B-80-48

	Availability Manager (AMDS)
	Availability Manager (AMDS)

	Packet padding
	Packet padding
	Packet Padding
	LAN drivers:Ethernet packet padding
	LAN drivers:Ethernet packet padding

	All Ethernet frames must be at least 64 bytes in length. This includes the Ethernet header, the u...
	The PAD parameter directs the LAN drivers to place a data-size field in the packet between the st...
	If the PAD parameter is off (NMA$C_STATE_OFF is specified), Ethernet packets have the following c...
	• Packets transmitted are padded with null bytes as needed (CSMA/CD only).
	• Packets transmitted are padded with null bytes as needed (CSMA/CD only).
	• Packets transmitted are padded with null bytes as needed (CSMA/CD only).

	• Packets transmitted do not include the size field.
	• Packets transmitted do not include the size field.

	• The length of user data in the packets received is always between 46 and 1500 bytes for CSMA/CD...
	• The length of user data in the packets received is always between 46 and 1500 bytes for CSMA/CD...

	If the PAD parameter is on (NMA$C_STATE_ON is specified), Ethernet packets have the following cha...
	• Packets transmitted are padded with null bytes as needed (CSMA/CD only).
	• Packets transmitted are padded with null bytes as needed (CSMA/CD only).
	• Packets transmitted are padded with null bytes as needed (CSMA/CD only).

	• Packets transmitted include the size field.
	• Packets transmitted include the size field.

	• The length of user data in the packets received is always between 0 and 1498 bytes for CSMA/CD,...
	• The length of user data in the packets received is always between 0 and 1498 bytes for CSMA/CD,...

	Protocol Type and
	Protocol Type and
	LAN drivers:protocol type on Alpha systems :sharing
	LAN drivers:protocol type on Alpha systems :sharing
	LAN drivers:protocol type sharing on Alpha systems
	LAN drivers:exclusive mode on Alpha systems
	LAN drivers:shared default mode on Alpha systems
	LAN drivers:set controller mode on Alpha systems:protocol type sharing
	LAN drivers:shared with destination mode on Alpha systems

	• The exclusive mode is the default if no access mode is supplied as a P2 buffer parameter. This ...
	• The exclusive mode is the default if no access mode is supplied as a P2 buffer parameter. This ...
	• The exclusive mode is the default if no access mode is supplied as a P2 buffer parameter. This ...

	• The shared-with-destination mode is a protocol type or PID/destination address pairing that all...
	• The shared-with-destination mode is a protocol type or PID/destination address pairing that all...
	For a given shared protocol type or PID, there can be many “shared-with-destination” users; each ...
	When a “shared-with-destination” user passes the set mode P2 buffer, the buffer must contain a de...

	• The shared-default mode is the default user of a shared protocol type or PID. There can be only...
	• The shared-default mode is the default user of a shared protocol type or PID. There can be only...
	The “shared-default” user receives all messages for the shared protocol type or PID, but not for ...
	The “shared-default” user can only transmit to multicast addresses and physical addresses that ar...
	If there is no “shared-default” user of a protocol type or PID, incoming messages from nodes not ...

	LAN Devices
	LAN Devices
	This section describes each LAN device, giving a list of device variants and device characteristics.
	Some port drivers for these devices provide additional counters and device-specific functions tha...
	Driver-Specific Internal Counters
	Driver-Specific Internal Counters
	Driver-specific internal counters consist of data maintained by a particular LAN driver that is n...
	The LANCP command SHOW DEVICE/INTERNAL_COUNTERS displays the internal counters maintained by a po...
	The LAN$SDA SDA extension also displays the complete set of internal counters with the command LA...
	VAX LAN drivers and some Alpha and I64 LAN drivers do not provide a LANCP or LAN$SDA mechanism fo...
	The definition of these counters may change from one driver version to the next. Some counters fi...

	Device-Specific Functions
	Device-Specific Functions
	The device-specific functions provice additional functionality that is useful for troubleshooting...

	Ethernet LAN devices
	Ethernet LAN devices
	Ethernet LAN devices

	In general terms, Ethernet includes Fast Ethernet and Gigabit Ethernet devices. The following med...
	• 10Base2 (thinwire or BNC) — Ethernet running over thin shielded coaxial cable, half-duplex only.
	• 10Base2 (thinwire or BNC) — Ethernet running over thin shielded coaxial cable, half-duplex only.
	• 10Base5 (thickwire or AUI) — Ethernet running over thick shielded coaxial cable, half-duplex only.
	• 10BaseT — Ethernet running over Category 5 unshielded twisted-pair cabling (UTP). It uses two o...
	• 100BaseTX — Fast Ethernet running over Category 5 unshielded twisted-pair cabling (UTP). It use...
	• 100BaseFX — Fast Ethernet running over multimode optical fiber cable. It uses two strands of fi...
	• 1000BaseT — Gigabit Ethernet running over Category 5 unshielded twisted-pair cabling (UTP). It ...
	• 1000BaseSX — Gigabit Ethernet running over multimode optical fiber cable. It uses two strands o...

	DEMNA Ethernet Device
	DEMNA Ethernet Device
	The DEMNA is an XMI bus Ethernet device that is supported on VAX and Alpha systems that have an X...
	<TABLE>
	Table�9�9 DEMNA Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Characteritics
	Characteritics

	<TABLE BODY>
	<TABLE ROW>
	DEMNA
	XMI
	10Base5 (thickwire) Ethernet only

	<TABLE ROW>
	DEBNI
	BI
	10Base5 (thickwire), Ethernet only

	<TABLE ROW>
	DEBNT
	BI
	10Base5 (thickwire), Ethernet + TK50 combo adapter

	<TABLE ROW>
	DEBNK
	BI
	10Base5 (thickwire), Ethernet + TK50 combo adapter

	<TABLE ROW>
	DEBNA
	BI
	10Base5 (thickwire), Ethernet + TK50 combo adapter

	SGEC/TGEC Ethernet devices
	SGEC/TGEC Ethernet devices
	SGEC/TGEC Ethernet devices

	The Second Generation Ethernet Controller (SGEC) is a embedded Ethernet chip (LOM) on a VAX works...
	<TABLE>
	Table�9�10 SGEC/TGEC Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Characteritics
	Characteritics

	<TABLE BODY>
	<TABLE ROW>
	SGEC
	VAX
	10Base2 (thinwire)

	<TABLE ROW>
	TGEC
	Alpha
	10Base2 (thinwire)

	LANCE Ethernet devices
	LANCE Ethernet devices
	LANCE Ethernet Devices
	The LANCE is a widely used Ethernet chip used on VAX and Alpha systems. It is used in in embedded...
	<TABLE>
	Table�9�11 LANCE Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Characteritics
	Characteritics

	<TABLE BODY>
	<TABLE ROW>
	LANCE
	VAX, Alpha
	LOM, 10Base2 (thinwire)

	<TABLE ROW>
	PMAD
	VAX, Alpha
	TURBOchannel NIC, 10Base5 (thickwire)

	<TABLE ROW>
	DELTA
	VAX, Alpha
	Dual TURBOchannel, 10Base5 (thickwire)

	<TABLE ROW>
	DESQA
	VAX
	QBUS NIC, 10Base2 (thinwire), 10Base5 (thickwire)

	<TABLE ROW>
	KFE52
	VAX
	Fault-tolerant VAX, 10Base2 (thinwire)

	<TABLE ROW>
	DE422
	Alpha
	EISA, 10BaseT (UTP), 10Base2 (thinwire)

	<TABLE ROW>
	DE200
	Alpha
	ISA, 10Base2 (thinwire), 10Base5 (thickwire)

	<TABLE ROW>
	DE201
	Alpha
	ISA, 10BaseT (UTP)

	<TABLE ROW>
	DE202
	Alpha
	ISA, 10Base2 (thinwire), 10BaseT (UTP)

	LANCE Hardware Configuration
	LANCE Hardware Configuration
	For implementations that include both the 10Base2 and 10Base5 ports, a switch next to the physica...
	The DE422 includes a jumper block on the NIC that selects 10BaseT or 10Base2.
	The DE20x NICs are configured by a 12-pin DIP switch on the NIC. See the DE20x User Guide for det...

	DEQNA Ethernet devices
	DEQNA Ethernet devices
	DEQNA Ethernet devices

	The DEQNA and similar NICs are used in QBUS-based VAX systems.
	<TABLE>
	Table�9�12 DEQNA Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Characteritics

	<TABLE BODY>
	<TABLE ROW>
	DEQNA
	Not supported for cluster use. 10Base2 (thinwire), 10Base5 (thickwire)

	<TABLE ROW>
	DELQA
	LANCE-based DEQNA replacement, 10Base2 (thinwire), 10Base5 (thickwire)

	<TABLE ROW>
	DEQTA
	DELQA with new firmware, 10Base2 (thinwire), 10Base5 (thickwire)

	DEUNA Ethernet devices
	DEUNA Ethernet devices
	DEUNA Ethernet devices

	The DEUNA and similar NICs are used in Unibus-based VAX systems.
	<TABLE>
	Table�9�13 DEUNA Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Characteritics

	<TABLE BODY>
	<TABLE ROW>
	DEUNA
	10Base5 (thickwire)

	<TABLE ROW>
	DELUA
	DEUNA replacement, 10Base5 (thickwire)

	LEMAC Ethernet devices
	LEMAC Ethernet devices
	LEMAC Ethernet devices

	The DE203 and variants are based on the LEMAC chip. These NICs are used on ISA-based Alpha workst...
	<TABLE>
	Table�9�14 LEMAC Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Characteritics

	<TABLE BODY>
	<TABLE ROW>
	DE203
	10Base2 (thinwire)

	<TABLE ROW>
	DE204
	10BaseT (UTP)

	<TABLE ROW>
	DE205
	10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)

	ISA LEMAC Hardware Configuration
	ISA LEMAC Hardware Configuration
	The DE203 NIC and variants are configured by the console of AlphaStations 200 and 400 systems usi...
	For complete information on using 'isacfg' from your console prompt, refer to the hardware docume...
	The ISA slot number is any one of three available slots that is not already in use. The physical ...
	To initialize the 'isacfg' data at the console prompt:
	>>> isacfg -init
	To add a DE205 in slot 1, using IRQ 15:
	>>> add_de205
	To display the ISA configuration data for slot 1:
	>>>isacfg -slot 1 === handle: DE200-LE ...
	To display the ISA configuration at the console prompt, showing, in this example, a DE203 configu...
	>>> show config ISA Slot Device Name Type Enabled BaseAddr IRQ DMA 0 0 MOUSE Embedded Yes 60 12 1...

	3C589 Ethernet device
	3C589 Ethernet device
	3C589 Ethernet device

	The 3COM 3C589 PCMCIA NIC is used on the Tadpole AlphaBook notebook system. There are two variants:
	<TABLE>
	Table�9�15 3C589 Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Characteritics

	<TABLE BODY>
	<TABLE ROW>
	3C589B
	10Base2 (thinwire), 10BaseT (UTP)

	<TABLE ROW>
	3C589D
	10Base2 (thinwire), 10BaseT (UTP)

	Tulip Ethernet and Fast Ethernet devices
	Tulip Ethernet and Fast Ethernet devices
	Tulip Ethernet and Fast Ethernet devices

	Tulip refers to an Ethernet chip designed by Digital Equipment Corporation. It also refers to lat...
	<TABLE>
	Table�9�16 Tulip Ethernet and Fast Ethernet Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Characteristics
	Characteristics

	<TABLE BODY>
	<TABLE ROW>
	DE425
	EISA
	10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)

	<TABLE ROW>
	DE434
	PCI
	10BaseT (UTP)

	<TABLE ROW>
	DE435
	PCI
	10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)

	<TABLE ROW>
	DE436
	PCI
	Quad DE435

	<TABLE ROW>
	DE450
	PCI
	10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)

	<TABLE ROW>
	DE500-XA
	PCI
	10BaseT (UTP), 100BaseTX (UTP), auto-negotiation not supported

	<TABLE ROW>
	DE500-AA
	PCI
	10BaseT (UTP), 100BaseTX (UTP), auto-negotiation supported

	<TABLE ROW>
	DE500-BA
	PCI
	10BaseT (UTP), 100BaseTX (UTP), auto-negotiation supported

	<TABLE ROW>
	DE500-FA
	PCI
	100BaseFX (multimode fiber), auto-negotiation not supported

	<TABLE ROW>
	DE504-BA
	PCI
	Quad DE500-BA

	<TABLE ROW>
	P2SE
	PCI
	Combo SCSI + DE434

	<TABLE ROW>
	P2SE+
	PCI
	Combo SCSI + DE500-XA

	<TABLE ROW>
	21142
	PCI
	LOM, Digital Personal Workstation, all modes depending on MAU options, auto-negotiation supported

	<TABLE ROW>
	21143
	PCI
	LOM, Alpha Professional Workstation XP900/XP1000, all modes depending on MAU options, auto-negoti...

	<TABLE ROW>
	A5230A
	PCI
	DE500-BA equivalent

	<TABLE ROW>
	A5506B
	PCI
	DE504-BA equivalent

	Tulip Hardware Configuration
	Tulip Hardware Configuration
	The DE425 and DE435 contain a hardware jumper block that selects twisted-pair or AUI as noted on ...
	On Alpha systems prior to OpenVMS Version 7.1, the Tulip driver autosenses the media connection i...
	On Alpha systems starting with OpenVMS Version 7.1, the Tulip driver uses the setting of a consol...
	SET EWx0_MODE media_selection
	The media_selection is defined by
	uring driver initialization, a message is sent to the operator's console to indicate the console ...
	If a console environment variable has been set with an unsupported media type for the actual devi...
	An Alpha system console may assign a controller letter to an adapter differently from OpenVMS, si...
	On I64 systems, there is no console environment variable equivalent, so the default setting is au...
	On Alpha and I64 systems, you can override the console environment variable setting or default se...

	Intel 82559 Fast Ethernet devices
	Intel 82559 Fast Ethernet devices
	Intel 82559 Fast Ethernet devices

	82559 refers to a Fast Ethernet chip designed by Intel Corporation, either the 82558 or the 82559...
	<TABLE>
	Table�9�18 Intel 82559 Fast Ethernet Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Characteristics

	<TABLE BODY>
	<TABLE ROW>
	DE600-AA
	10BaseT (UTP), 100BaseTX (UTP)

	<TABLE ROW>
	DE602-AA
	Dual DE600-AA

	<TABLE ROW>
	DE602-BA
	Dual DE600-AA

	<TABLE ROW>
	DE602-BB
	Dual DE600-AA

	<TABLE ROW>
	DE602-TA
	Dual DE600-AA daughter card for the DE602

	<TABLE ROW>
	DE602-FA
	Dual 100BaseFX (multimode fiber) daughter card for the DE602

	<TABLE ROW>
	Trifecta
	Combo SCSI + DE600

	<TABLE ROW>
	82559ER
	LOM, 10BaseT (UTP), 100BaseTX (UTP)

	<TABLE ROW>
	82559
	LOM, 10BaseT (UTP), 100BaseTX (UTP)

	82559 Hardware Configuration
	82559 Hardware Configuration
	On Alpha systems, the 82559 driver uses the setting of a console environment variable to select t...
	SET EWx0_MODE media_selection
	The media_selection is defined by
	During driver initialization, a message is sent to the operator's console to indicate the console...
	If a console environment variable has been set with an unsupported media type for the actual devi...
	On I64 systems, there is no console environment variable equivalent, so the default setting is au...
	On Alpha and I64 systems, you can override the console environment variable setting or default se...

	DEGPA Gigabit Ethernet Devices
	DEGPA Gigabit Ethernet Devices
	DEGPA Gigabit Ethernet Devices

	DEGPA Gigabit Ethernet NIC
	The DEGPA series of Gigabit Ethernet NICs uses the Tigon2 chip, designed by Alteon Networks..
	Table�9�20
	Table�9�20

	<TABLE>
	Table�9�20 DEGPA Devices�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Characteristics

	<TABLE BODY>
	<TABLE ROW>
	DEGPA-SA
	DEGPA-SA

	1000BaseSX (multimode fiber)

	<TABLE ROW>
	DEGPA-TA
	DEGPA-TA

	10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

	DEGPA Hardware Configuration
	DEGPA Hardware Configuration
	The DEGPA NICs are supported only on Alpha systems. The DEGPA is not a bootable device and has no...
	You can override the default setting of auto-negotiation by describing the media selection in the...

	Broadcom 5700 Gigabit Ethernet devices
	Broadcom 5700 Gigabit Ethernet devices
	Broadcom 5700 Gigabit Ethernet devices

	The Broadcom 5700 refers to a family of Gigabit Ethernet chips designed by Broadcom Corporation. ...
	<TABLE>
	Table�9�21 Broadcom 5700 Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Bus

	Characteritics

	<TABLE BODY>
	<TABLE ROW>
	DEGXA-SA
	PCI
	1000BaseSX (multimode fiber)

	<TABLE ROW>
	DEGXA-TA
	PCI
	10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

	<TABLE ROW>
	DEGXA-SB
	PCI-X
	1000BaseSX (multimode fiber)

	<TABLE ROW>
	DEGXA-TB
	PCI-X
	10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

	<TABLE ROW>
	BCM5703 (LOM)
	PCI
	10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

	<TABLE ROW>
	A6847A
	PCI
	1000BaseSX (multimode fiber)

	<TABLE ROW>
	A6825A
	PCI
	10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

	<TABLE ROW>
	AB352A
	PCI-X
	10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

	<TABLE ROW>
	A9782A
	PCI-X
	1000BaseSX (multimode fiber)

	<TABLE ROW>
	A9784A
	PCI-X
	10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

	<TABLE ROW>
	AB454A
	PCI-X
	10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

	<TABLE ROW>
	BCM5701 (LOM)
	PCI
	10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

	5700 Hardware Configuration
	5700 Hardware Configuration
	On Alpha systems, the 5700 driver uses the setting of a console environment variable to select th...
	SET EGx0_MODE media_selection
	The media_selection is defined by
	During driver initialization, a message is sent to the operator's console to indicate the console...
	If a console environment variable has been set with an unsupported media type for the actual devi...
	An Alpha system console may assign a controller letter to an adapter differently from OpenVMS, si...
	On I64 systems, there is no console environment variable equivalent, so the default setting is au...
	On Alpha and I64 systems, you can override the console environment variable setting or default se...

	Intel 82540 Gigabit Ethernet devices
	Intel 82540 Gigabit Ethernet devices
	Intel 82540 Gigabit Ethernet Devices
	The Intel 82540 refers to a family of Gigabit Ethernet chips designed by Intel Corporation. The v...
	<TABLE>
	Table�9�23 Intel 82540 Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Bus

	Characteritics

	<TABLE BODY>
	<TABLE ROW>
	A7011A
	PCI-X
	Dual 1000BaseSX (multimode fiber)

	<TABLE ROW>
	A7012A
	PCI-X
	Dual 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

	82540 Hardware Configuration
	82540 Hardware Configuration
	The 82540 devices are supported only on I64 systems. The default setting is autonegotiation.
	You can override the default setting of auto-negotation by describing the media selection in the ...

	Shared Memory Ethernet device
	Shared Memory Ethernet device
	Shared Memory Ethernet device

	The Shared Memory device is an emulated Ethernet device that uses Galaxy Shared Memory on Alpha s...

	FDDI LAN Devices
	FDDI LAN Devices
	FDDI devices support the following media
	• Multimode optical fiber, using two strands of fiber to provide full-duplex communication.
	• Multimode optical fiber, using two strands of fiber to provide full-duplex communication.
	• Category 5 unshielded twisted-pair cabling (UTP), using two of the four pairs of wires to provi...

	DEMFA FDDI device
	DEMFA FDDI device
	DEMFA FDDI device

	The DEMFA is an XMI bus FDDI device that is supported on VAX and Alpha systems that have an XMI b...
	<TABLE>
	Table�9�24 DEFMA FDDI Charactertics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Characteristics

	<TABLE BODY>
	<TABLE ROW>
	DEMFA
	XMI
	Multimode fiber, 100 megabits/second

	DEFZA FDDI device
	DEFZA FDDI device
	DEFZA FDDI device

	The DEFZA is a TurboChannel FDDI device supported on VAX and Alpha TURBOchannel-based systems.
	<TABLE>
	Table�9�25 DEFZA FDDI Charactertics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Characteristics

	<TABLE BODY>
	<TABLE ROW>
	DEFZA
	TurboChannel
	Multimode fiber, 100 megabits/second

	PDQ FDDI devices
	PDQ FDDI devices
	PDQ FDDI Devices
	The PDQ chip forms the basis of a family of FDDI devices. These are shown in
	<TABLE>
	Table�9�26 PDQ FDDI Charactertics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Characteristic

	<TABLE BODY>
	<TABLE ROW>
	DEFQA-SA
	QBUS
	Multimode fiber, single attached station (SAS), 100 megabits/second

	<TABLE ROW>
	DEFQA-DA
	QBUS
	Multimode fiber, dual attached station (DAS), 100 megabits/second

	<TABLE ROW>
	DEFQA-SF
	QBUS
	UTP, single attached station (SAS), 100 megabits/second

	<TABLE ROW>
	DEFQA-DF
	QBUS
	UTP, dual attached station (DAS), 100 megabits/second

	<TABLE ROW>
	DEFTA-AA
	TurboChannel
	Multimode fiber, single attached station (SAS), 100 megabits/second

	<TABLE ROW>
	DEFTA-DA
	TurboChannel
	Multimode fiber, dual attached station (DAS), 100 megabits/second

	<TABLE ROW>
	DEFTA-UA
	TurboChannel
	UTP, single attached station (SAS), 100 megabits/second

	<TABLE ROW>
	DEFTA-MA
	TurboChannel
	UTP, dual attached station (DAS), 100 megabits/second

	<TABLE ROW>
	DEFAA-AA
	FutureBus+
	Multimode fiber, single attached station (SAS), 100 megabits/second

	<TABLE ROW>
	DEFAA-DA
	FutureBus+
	Multimode fiber, dual attached station (DAS), 100 megabits/second

	<TABLE ROW>
	DEFEA-AA
	EISA
	Multimode fiber, single attached station (SAS), 100 megabits/second

	<TABLE ROW>
	DEFEA-DA
	EISA
	Multimode fiber, dual attached station (DAS), 100 megabits/second

	<TABLE ROW>
	DEFEA-UA
	EISA
	UTP, single attached station (SAS), 100 megabits/second

	<TABLE ROW>
	DEFEA-MA
	EISA
	UTP, dual attached station (DAS), 100 megabits/second

	<TABLE ROW>
	DEFPA-AA
	PCI
	Multimode fiber, single attached station (SAS), 100 megabits/second

	<TABLE ROW>
	DEFPA-DA
	PCI
	Multimode fiber, dual attached station (DAS), 100 megabits/second

	<TABLE ROW>
	DEFPA-UA
	PCI
	UTP, single attached station (SAS), 100 megabits/second

	<TABLE ROW>
	DEFPA-MA
	PCI
	UTP, dual attached station (DAS), 100 megabits/second

	Token Ring:LAN devices
	Token Ring:LAN devices
	Token Ring:LAN devices

	Token Ring devices support the following media types:
	• STP — Shielded twisted-pair cabling, type 1 STP, using 2 pairs of wires in crossover form. The ...
	• STP — Shielded twisted-pair cabling, type 1 STP, using 2 pairs of wires in crossover form. The ...
	• UTP — Unshielded twisted-pair cabling, type 3 UTP, using 2 pairs of wires in crossover form to ...

	TMS380 Token Ring Devices
	TMS380 Token Ring Devices
	The Texas Instruments TMS380 chip forms the basis of a family of Token Ring devices. These are sh...
	<TABLE>
	Table�9�27 TMS380 Token Ring Charactertics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Characteristics

	<TABLE BODY>
	<TABLE ROW>
	DETRA
	TurboChannel
	4/16 megabits/second, STP or UTP

	<TABLE ROW>
	DW300
	EISA
	4/16 megabits/second, STP or UTP

	<TABLE ROW>
	DW110
	ISA
	4/16 megabits/second, STP or UTP, aka P1392+

	<TABLE ROW>
	TC4048
	PCI
	4/16 megabits/second, STP or UTP, made by Thomas Conrad Corporation

	<TABLE ROW>
	M8154
	PCI
	4/16 megabits/second, STP or UTP, made by Racore Computer Products, Inc.

	ISA TMS380 Hardware Configuration
	ISA TMS380 Hardware Configuration
	The DW110 is a bus mastering DMA device on the ISA bus. In addition to setting up the ISA I/O par...
	The method for configuring an ISA TMS380 device is to type 'isacfg' at the console prompt (>>>). ...
	The following example illustrates a configuration of:
	• Slot 4
	• Slot 4
	• IRQ 10
	• DMA channel 7
	• Base %x4e20
	• Shielded twisted pair (STP)
	• Ring speed of 16

	Example�9�1 Using the 'isacfg' at Console Prompt with the DW110
	Example�9�1 Using the 'isacfg' at Console Prompt with the DW110
	>>> isacfg -slot 4 -etyp 1 -ena 1 -irq0 %xa -dmachan0 7 -iobase0 %x4e20 -handle "DW11,STP,16" -mk

	The -mk command makes an isacfg entry for an ISA device at slot 4. It is a Single port type of de...

	ATM LAN Devices
	ATM LAN Devices
	Asynchronous transfer mode (ATM) is a cell-oriented switching technology that uses fixed-length p...
	The ATM communicates by first establishing endpoints between two computers with a virtual circuit...
	OpenVMS provides LAN Emulation Client (LEC) support over ATM. The LAN Emulation Client software s...
	The Emulated LAN driver provides the means for communicating over the LAN ATM. The device type fo...
	The device name for the Emulated LAN is:
	ELcu
	where c is the controller and u is the unit number (for example, ELA0).
	ATM devices support the following media types:
	• Multimode optical fiber, using two strands of fiber to provide full-duplex communication.
	• Multimode optical fiber, using two strands of fiber to provide full-duplex communication.
	• Category 5 unshielded twisted-pair cabling (UTP), using two of the four pairs of wires to provi...

	OTTO ATM Devices
	OTTO ATM Devices
	OTTO refers to a family of ATM adapters developed by Digital Equipment Corporation. The TurboChan...
	<TABLE>
	Table�9�28 OTTO ATM Charactertics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Bus
	Characteristics

	<TABLE BODY>
	<TABLE ROW>
	DGLTA
	TurboChannel
	155 megabits/second (OC3), multimode fiber

	<TABLE ROW>
	DGLPB
	PCI
	155 megabits/second (OC3), multimode fiber

	<TABLE ROW>
	DGLPA-UA
	PCI
	155 megabits/second (OC3), UTP

	<TABLE ROW>
	DGLPA-FA
	PCI
	155 megabits/second (OC3), multimode fiber

	The OTTO drivers support ATM LAN Emulation according to the ATM LANE standards, and Classical IP ...

	FORE ATM Devices
	FORE ATM Devices
	The DAPBA and DAPCA are ATM adapters made by Fore Networks, Inc., now part of Marconi Corporation...
	The FORE drivers support ATM LAN Emulation according to the ATM LANE standards.
	<TABLE>
	Table�9�29 FORE ATM Charactertics�
	<TABLE HEADING>
	<TABLE ROW>
	Device
	Characteristics

	<TABLE BODY>
	<TABLE ROW>
	DAPBA-UA
	155 megabits/second (OC3), UTP

	<TABLE ROW>
	DAPBA-FA
	155 megabits/second (OC3), multimode fiber

	<TABLE ROW>
	DAPCA-FA
	622 megabits/second (OC12), multimode fiber

	For each DAPBA, HP recommends increasing the SYSGEN parameter NPAGEVIR by 3000000. For each DAPCA...
	ADD_NPAGEVIR = 12000000
	The following restrictions apply to the DAPBA and DAPCA adapters.
	• The adapter cannot be located on a PCI bus that is located behind a PCI-to-PCI bridge. Systems ...
	• The adapter cannot be located on a PCI bus that is located behind a PCI-to-PCI bridge. Systems ...
	• Classical IP is not supported.

	Permanent Virtual Circuits (PVC)
	Permanent Virtual Circuits (PVC)
	Permanent Virtual Circuits are set up and torn down by prior arrangement. They are established ma...

	Switched Virtual Circuits (SVC)
	Switched Virtual Circuits (SVC)
	Switched virtual circuits require no operator interaction to create and manage connections betwee...

	LAN Emulation over an ATM Network
	LAN Emulation over an ATM Network
	LAN emulation:ATM network
	ATM network:LAN emulation
	LAN emulation over an ATM network network allows existing applications to run essentially unchang...
	LAN emulation client (LEC)
	LAN emulation client (LEC)
	LAN emulation server (LES)
	Broadcast and unknown server (BUS)
	LAN emulation configuration server (LECS)

	<TABLE>
	Table�9�30 Components of LAN Emulation over an ATM Network�
	<TABLE HEADING>
	<TABLE ROW>
	Component
	Function

	<TABLE BODY>
	<TABLE ROW>
	LAN emulation client (LEC)
	LAN emulation client (LEC)

	Provides a software driver that runs on a network client and enables LAN clients to connect to an...
	Provides a software driver that runs on a network client and enables LAN clients to connect to an...

	<TABLE ROW>
	LAN emulation server (LES)
	LAN emulation server (LES)

	Maintains a mapping between LAN and ATM addresses by resolving LAN media access control (MAC) add...
	Maintains a mapping between LAN and ATM addresses by resolving LAN media access control (MAC) add...

	<TABLE ROW>
	Broadcast and Unknown Server (BUS)
	Broadcast and Unknown Server (BUS)

	Maintains connections with every LAN emulation client (LEC) in the network. For broadcast message...
	Maintains connections with every LAN emulation client (LEC) in the network. For broadcast message...

	<TABLE ROW>
	LAN emulation configuration server (LECS)
	LAN emulation configuration server (LECS)

	Provides a service for LAN emulation clients by helping to determine which emulated LAN each of t...
	Provides a service for LAN emulation clients by helping to determine which emulated LAN each of t...

	The LEC exists on all ATM-attached computers that participate in the LAN emulation configuration....

	LAN Emulation Topology
	LAN Emulation Topology
	LAN emulation:topology
	Figure�9�10
	Figure�9�10

	Figure�9�10 Emulated LAN Topology
	Figure�9�10 Emulated LAN Topology
	<GRAPHIC>

	Classical IP Over an ATM Network
	Classical IP Over an ATM Network
	Classical IP
	Classical IP (CLIP) implements a data-link level device that has the same semantics as an Etherne...
	For information on using LANCP commands to manage Classical IP, refer to the

	Specifying the User to Network Interface (UNI)
	Specifying the User to Network Interface (UNI)
	The ATM software is set to autosense the UNI version by default. Setting bit 3 of the system para...

	Enabling SONET/SDH
	Enabling SONET/SDH
	The ATM drivers have the capability of operating with either synchronous optical network (SONET) ...

	Booting
	Booting
	Booting
	OpenVMS Alpha does not support ATM adapters as boot devices.

	Configuring an Emulated LAN (ELAN)
	Configuring an Emulated LAN (ELAN)
	ELAN configuring
	LANCP commands
	The LANCP utility sets up an Emulated LAN (ELAN). If the ELAN is defined in the permanent databas...
	You can also invoke the LANCP SET commands to start up an ELAN after the system is booted.
	The following example shows the DEFINE DEVICE commands that define the adapter in the permanent d...
	$ mcr lancp LANCP> define device ela0/elan=create LANCP> define device ela0/elan=(parent=hwa0,typ...
	The following example shows the SET DEVICE commands required for setting up an ELAN with the desi...
	$ mcr lancp LANCP> set dev ela0/elan=create %%%%%%%%%%% OPCOM 26-MAR-2001 16:57:12.89 %%%%%%%%%%%...
	For information about using LANCP and system manager commands with qualifiers for LAN emulation o...

	LAN Device Information
	LAN Device Information
	LAN drivers:characteristics:device
	LAN drivers:characteristics:device
	Device characteristics :LAN drivers
	LAN drivers:device characteristics
	LAN drivers:SYS$GETDVI routine
	SYS$GETDVI routine:LAN drivers

	$GETDVI returns controller characteristics when you specify the item code DVI$_DEVCHAR.
	<TABLE>
	Table�9�31 Ethernet Controller Device Characteristics�
	<TABLE HEADING>
	<TABLE ROW>
	Characteristic
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	Static Bits (Always Set)

	<TABLE ROW>
	DEV$M_AVL
	DEV$M_AVL

	Device is available.
	Device is available.

	<TABLE ROW>
	DEV$M_IDV
	DEV$M_IDV

	Input device.
	Input device.

	<TABLE ROW>
	DEV$M_NET
	DEV$M_NET

	Network device.
	Network device.

	<TABLE ROW>
	DEV$M_ODV
	DEV$M_ODV

	Output device.
	Output device.

	DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and device class names, which are defined b...
	LAN drivers:padding:message size
	LAN drivers:padding:message size
	LAN drivers:message size

	Figure�9�11 DVI$_DEVDEPEND Returns
	Figure�9�11 DVI$_DEVDEPEND Returns
	<GRAPHIC>

	Table�9�32
	Table�9�32

	<TABLE>
	Table�9�32 Ethernet Controller Unit and Line Status�
	<TABLE HEADING>
	<TABLE ROW>
	Status
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	XM$M_STS_ACTIVE
	XM$M_STS_ACTIVE

	Port is active.
	Port is active.

	<TABLE ROW>
	XM$M_STS_BUFFAIL
	XM$M_STS_BUFFAIL

	Attempt to allocate a system receive buffer failed.
	Attempt to allocate a system receive buffer failed.

	<TABLE ROW>
	XM$M_STS_TIMO
	XM$M_STS_TIMO

	Timeout occurred.
	Timeout occurred.

	The error summary bits are set when an error occurs. They are read-only bits. If an error is fata...
	<TABLE>
	Table�9�33 Error Summary Bits�
	<TABLE HEADING>
	<TABLE ROW>
	Error Summary Bit
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	XM$M_ERR_FATAL
	XM$M_ERR_FATAL

	Hardware or software error occurred on the controller.
	Hardware or software error occurred on the controller.

	LAN Function Codes
	LAN Function Codes
	LAN drivers:function codes
	LAN drivers:function codes
	LAN drivers:function codes
	I/O functions:for LAN driver

	<TABLE>
	Table�9�34 LAN I/O Functions�
	<TABLE HEADING>
	<TABLE ROW>
	Function Code
	Arguments
	Type
	Function Modifiers
	Function

	<TABLE BODY>
	<TABLE ROW>
	IO$_READLBLK
	IO$_READLBLK

	P1,P2,[P5]
	P1,P2,[P5]

	L
	L

	IO$M_NOW
	IO$M_NOW

	Read logical block.
	Read logical block.

	<TABLE ROW>
	IO$_READVBLK
	IO$_READVBLK

	P1,P2,[P5]
	P1,P2,[P5]

	V
	V

	IO$M_NOW
	IO$M_NOW

	Read virtual block.
	Read virtual block.

	<TABLE ROW>
	IO$_READPBLK2
	IO$_READPBLK

	P1,P2,[P5]
	P1,P2,[P5]

	P
	P

	IO$M_NOW
	IO$M_NOW

	Read physical block.
	Read physical block.

	<TABLE ROW>
	IO$_WRITELBLK
	IO$_WRITELBLK

	P1,P2,[P4],P5
	P1,P2,[P4],P5

	L
	L

	IO$M_RESPONSE
	IO$M_RESPONSE

	Write logical block.
	Write logical block.

	<TABLE ROW>
	IO$_WRITEVBLK4
	IO$_WRITEVBLK

	P1,P2,[P4],P5
	P1,P2,[P4],P5

	V
	V

	IO$M_RESPONSE
	IO$M_RESPONSE

	Write virtual block.
	Write virtual block.

	<TABLE ROW>
	IO$_WRITEPBLK4
	IO$_WRITEPBLK

	P1,P2,[P4],P5
	P1,P2,[P4],P5

	P
	P

	IO$M_RESPONSE
	IO$M_RESPONSE

	Write physical block.
	Write physical block.

	<TABLE ROW>
	IO$_SETMODE
	IO$_SETMODE

	P1,[P2],P32
	P1,[P2],P3

	L
	L

	IO$M_CTRL IO$M_STARTUP IO$M_SHUTDOWN IO$M_ATTNAST IO$M_SET_MAC IO$M_UPDATE_MAP IO$M_ROUTE
	IO$M_CTRL IO$M_STARTUP IO$M_SHUTDOWN IO$M_ATTNAST IO$M_SET_MAC IO$M_UPDATE_MAP IO$M_ROUTE

	Set controller characteristics and controller state for subsequent operations.
	Set controller characteristics and controller state for subsequent operations.

	<TABLE ROW>
	IO$_SETCHAR
	IO$_SETCHAR

	P1,[P2],P32
	P1,[P2],P3

	P
	P

	IO$M_CTRL IO$M_STARTUP IO$M_SHUTDOWN IO$M_ATTNAST IO$M_SET_MAC IO$M_UPDATE_MAP IO$M_ROUTE
	IO$M_CTRL IO$M_STARTUP IO$M_SHUTDOWN IO$M_ATTNAST IO$M_SET_MAC IO$M_UPDATE_MAP IO$M_ROUTE

	Set controller characteristics and controller state for subsequent operations.
	Set controller characteristics and controller state for subsequent operations.

	<TABLE ROW>
	IO$_SENSEMODE
	IO$_SENSEMODE

	[P1],[P2]
	[P1],[P2]

	L
	L

	IO$M_CTRL IO$M_SENSE_MAC IO$M_SHOW_MAP IO$M_SHOW_ROUTE
	IO$M_CTRL IO$M_SENSE_MAC IO$M_SHOW_MAP IO$M_SHOW_ROUTE

	Sense controller characteristics and return them in specified buffers.
	Sense controller characteristics and return them in specified buffers.

	<TABLE ROW>
	IO$_SENSECHAR
	IO$_SENSECHAR

	[P1],[P2]
	[P1],[P2]

	P
	P

	IO$M_CTRL IO$M_SENSE_MAC IO$M_SHOW_MAP IO$M_SHOW_ROUTE
	IO$M_CTRL IO$M_SENSE_MAC IO$M_SHOW_MAP IO$M_SHOW_ROUTE

	Sense controller characteristics and return them in specified buffers.
	Sense controller characteristics and return them in specified buffers.

	LAN drivers:privilege
	LAN drivers:privilege

	Read
	Read
	LAN drivers:read function
	LAN drivers:read function

	• IO$_READLBLK—Read logical block
	• IO$_READLBLK—Read logical block
	• IO$_READLBLK—Read logical block

	• IO$_READVBLK—Read virtual block
	• IO$_READVBLK—Read virtual block

	• IO$_READPBLK—Read physical block
	• IO$_READPBLK—Read physical block

	Received messages are buffered in system memory and then copied to the user's buffer when a read ...
	The read functions take the following device- or function-dependent arguments:
	• P1—The starting virtual address of the buffer that is to receive data. On OpenVMS Alpha and I64...
	• P1—The starting virtual address of the buffer that is to receive data. On OpenVMS Alpha and I64...
	• P1—The starting virtual address of the buffer that is to receive data. On OpenVMS Alpha and I64...

	• P2—The size of the receive buffer in bytes.
	• P2—The size of the receive buffer in bytes.

	• P5—The address of a buffer where the LAN driver returns packet header information. This is an o...
	• P5—The address of a buffer where the LAN driver returns packet header information. This is an o...
	For Token Ring, this buffer must be at least 54 bytes in length due to a possible variable length...
	If NMA$C_PCLI_PRM (see

	Figure�9�12 Read Function P5 Buffer
	Figure�9�12 Read Function P5 Buffer
	<GRAPHIC>

	The P1 and P2 arguments must always be specified; the P5 argument is optional. However, if P5 is ...
	If the size of the user data in a receive message is larger than the value of the NMA$C_PCLI_BUS ...
	If the size of the user data in a receive message is larger than the size specified in P2 (and le...
	Table�9�35
	Table�9�35

	<TABLE>
	Table�9�35 Maximum User Data Sizes for Ethernet, FDDI, and Token Ring�
	<TABLE HEADING>
	<TABLE ROW>
	Packet Format
	Ethernet
	FDDI
	Token Ring

	<TABLE BODY>
	<TABLE ROW>
	Ethernet format without padding
	Ethernet format without padding

	1500
	1500

	4470
	4470

	4418
	4418

	<TABLE ROW>
	Ethernet format with padding
	Ethernet format with padding

	1498
	1498

	4468
	4468

	4416
	4416

	<TABLE ROW>
	802 format with 1-byte CTL field
	802 format with 1-byte CTL field

	1497
	1497

	4475
	4475

	4423
	4423

	<TABLE ROW>
	802 format with 2-byte CTL field
	802 format with 2-byte CTL field

	1496
	1496

	4474
	4474

	4422
	4422

	<TABLE ROW>
	802E format
	802E format

	1492
	1492

	4470
	4470

	4418
	4418

	Table�9�36
	Table�9�36

	<TABLE>
	Table�9�36 Maximum User Data Sizes for LAN Emulation over ATM �
	<TABLE HEADING>
	<TABLE ROW>
	Packet Format
	ATM ELAN size:
	1516
	4544
	9234

	<TABLE BODY>
	<TABLE ROW>
	Ethernet format without padding
	Ethernet format without padding

	1500
	1500

	4528
	4528

	9218
	9218

	<TABLE ROW>
	Ethernet format with padding
	Ethernet format with padding

	1498
	1498

	4526
	4526

	9216
	9216

	<TABLE ROW>
	802 format with 1-byte CTL field
	802 format with 1-byte CTL field

	1497
	1497

	4525
	4525

	9215
	9215

	<TABLE ROW>
	802 format with 2-byte CTL field
	802 format with 2-byte CTL field

	1496
	1496

	4524
	4524

	9214
	9214

	<TABLE ROW>
	802E format
	802E format

	1492
	1492

	4520
	4520

	9210
	9210

	LAN drivers:message size
	LAN drivers:padding:message size
	LAN drivers:message size
	For 802 format packets, the P5 buffer always contains the DSAP and SSAP in the bytes at offset 12...
	For Token Ring, if received access control (RAC) is on, the first byte of the P5 buffer contains ...
	For FDDI, if RAC is on, the first byte of the P5 buffer contains the FC field.
	The read functions can take the following function modifier:
	• IO$M_NOW—Complete the read operation immediately with a received message (if no message is curr...
	• IO$M_NOW—Complete the read operation immediately with a received message (if no message is curr...
	• IO$M_NOW—Complete the read operation immediately with a received message (if no message is curr...

	SS$_ENDOFFILE return

	Write
	Write
	LAN drivers:write function
	LAN drivers:write function
	LAN drivers:IEEE 802 packet format:write function

	• IO$_WRITELBLK—Write logical block
	• IO$_WRITELBLK—Write logical block
	• IO$_WRITELBLK—Write logical block

	• IO$_WRITEVBLK—Write virtual block
	• IO$_WRITEVBLK—Write virtual block

	• IO$_WRITEPBLK—Write physical block
	• IO$_WRITEPBLK—Write physical block

	Transmitted messages are copied from the buffer of the requesting process to a system buffer for ...
	The write function takes the following device- or function-dependent arguments:
	• P1—The starting virtual address of the buffer containing the data to be transmitted. On OpenVMS...
	• P1—The starting virtual address of the buffer containing the data to be transmitted. On OpenVMS...
	• P1—The starting virtual address of the buffer containing the data to be transmitted. On OpenVMS...

	• P2—The size of the buffer in bytes.
	• P2—The size of the buffer in bytes.

	• P4—The address of a quadword that points to a buffer that contains the DSAP and CTL field value...
	• P4—The address of a quadword that points to a buffer that contains the DSAP and CTL field value...
	On OpenVMS Alpha and I64 systems, P4 can be a 64-bit address.

	• P5—The address of a 6-byte buffer that contains the destination address. For FDDI, if XFC is sp...
	• P5—The address of a 6-byte buffer that contains the destination address. For FDDI, if XFC is sp...
	If the device is in promiscuous mode (NMA$C_PCLI_PRM; see

	Figure�9�13 Write Function P5 Buffer
	Figure�9�13 Write Function P5 Buffer
	<GRAPHIC>

	LAN drivers:message size
	Table�9�37
	Table�9�37

	<TABLE>
	Table�9�37 Maximum Message Sizes for Ethernet, FDDI, and Token Ring�
	<TABLE HEADING>
	<TABLE ROW>
	Packet Format
	Ethernet
	FDDI
	Token Ring

	<TABLE BODY>
	<TABLE ROW>
	Ethernet format without padding
	Ethernet format without padding

	1500
	1500

	4470
	4470

	4418
	4418

	<TABLE ROW>
	Ethernet format with padding
	Ethernet format with padding

	1498
	1498

	4468
	4468

	4416
	4416

	<TABLE ROW>
	802 format with 1-byte CTL field
	802 format with 1-byte CTL field

	1497
	1497

	4475
	4475

	4423
	4423

	<TABLE ROW>
	802 format with 2-byte CTL field
	802 format with 2-byte CTL field

	1496
	1496

	4474
	4474

	4422
	4422

	<TABLE ROW>
	802E format
	802E format

	1492
	1492

	4470
	4470

	4418
	4418

	Table�9�38
	Table�9�38

	If P2 specifies a message size larger than that allowed, the driver returns the status SS$_IVBUFL...
	SS$_IVBUFLEN return
	SS$_IVBUFLEN return

	The CTL field value is either a 1-byte or 2-byte value. If the two least significant bits of the ...
	If the driver uses only the low-order byte of the CTL field, you still must pass at least a 3-byt...
	If Class I service is enabled, only 1-byte CTL field values can be passed. If user-supplied servi...
	Regarding 802 ports, you can receive packets for the SAP enabled with the IO$_SETMODE or IO$_SETC...
	The write function can take the following function modifier:
	• IO$M_RESPONSE—Transmit a response packet (sets the low-order bit in the SSAP field). This allow...
	• IO$M_RESPONSE—Transmit a response packet (sets the low-order bit in the SSAP field). This allow...
	• IO$M_RESPONSE—Transmit a response packet (sets the low-order bit in the SSAP field). This allow...

	Set Mode and Set Characteristics
	Set Mode and Set Characteristics
	LAN drivers:set mode function
	LAN drivers:I/O functions
	Function codes :IO$_SETMODE
	Function codes :IO$_SETCHAR
	The operating system provides the following two function codes:
	• IO$_SETMODE
	• IO$_SETMODE
	• IO$_SETMODE

	• IO$_SETCHAR
	• IO$_SETCHAR

	Other than the privilege check, these two function codes are treated the same by the LAN drivers....
	The set mode function code is used to perform many different functions. These different functions...
	• IO$_SETMODE!IO$M_CTRL — Set or modify port attributes
	• IO$_SETMODE!IO$M_CTRL — Set or modify port attributes
	• IO$_SETMODE!IO$M_CTRL — Set or modify port attributes

	• IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP — Set port attributes and start port
	• IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP — Set port attributes and start port

	• IO$_SETMODE!IO$M_SET_MAC — Set medium attributes
	• IO$_SETMODE!IO$M_SET_MAC — Set medium attributes

	• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN — Shut down port
	• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN — Shut down port

	• IO$_SETMODE!IO$M_ATTNAST — Enable attention AST
	• IO$_SETMODE!IO$M_ATTNAST — Enable attention AST

	• IO$M_SETMODE!IO$M_UPDATE_MAP — Update functional address mapping table (Token Ring only)
	• IO$M_SETMODE!IO$M_UPDATE_MAP — Update functional address mapping table (Token Ring only)
	• IO$M_SETMODE!IO$M_UPDATE_MAP — Update functional address mapping table (Token Ring only)

	• IO$M_SETMODE!IO$M_ROUTE — Update source routing cache table (Token Ring only)
	• IO$M_SETMODE!IO$M_ROUTE — Update source routing cache table (Token Ring only)

	The following sections describe these functions in detail.
	Set Controller Mode
	Set Controller Mode
	Once a port is created using the $ASSIGN system service, you can set the port attributes and star...
	If the function modifier IO$M_STARTUP is specified, the LAN port is
	This function takes the following device- or function-dependent argument:
	• P2—The address of a quadword descriptor for an extended characteristics buffer. The first longw...
	• P2—The address of a quadword descriptor for an extended characteristics buffer. The first longw...
	• P2—The address of a quadword descriptor for an extended characteristics buffer. The first longw...

	LAN drivers:set controller mode :P2 buffer
	LAN drivers:set controller mode :P2 buffer

	Figure�9�14 P2 Extended Characteristics Buffer
	Figure�9�14 P2 Extended Characteristics Buffer
	<GRAPHIC>

	LAN drivers:extended characteristics
	LAN drivers:extended characteristics
	LAN drivers:set controller mode :extended characteristics
	LAN drivers:characteristics:extended
	LAN drivers:extended characteristics
	Table�9�39

	If the status SS$_BADPARAM is returned in the first word of the I/O status block, the second long...
	<TABLE>
	Table�9�39 P2 Attributes (Continued)
	<TABLE HEADING>
	<TABLE ROW>
	Parameter ID
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	NMA$C_PCLI_ACC
	NMA$C_PCLI_ACC

	Protocol access mode. This optional parameter determines the access mode for the protocol type. N...
	Protocol access mode. This optional parameter determines the access
	NMA$C_PCLI_ACC is valid for ports using 802E packet format.
	One of the following values can be specified:
	• NMA$C_ACC_EXC — Exclusive mode (default)
	• NMA$C_ACC_EXC — Exclusive mode (default)
	• NMA$C_ACC_EXC — Exclusive mode (default)

	• NMA$C_ACC_SHR — Shared-default user mode
	• NMA$C_ACC_SHR — Shared-default user mode

	• NMA$C_ACC_LIM — Shared-with-destination mode
	• NMA$C_ACC_LIM — Shared-with-destination mode

	Section 9.4.8
	Section 9.4.8

	Section 9.4.8
	Section 9.4.8

	NMA$C_PCLI_ACC is passed as a longword value.

	<TABLE ROW>
	NMA$C_PCLI_BFN
	NMA$C_PCLI_BFN

	Number of receive buffers to preallocate (default = 1). NMA$C_PCLI_BFN can have a maximum value o...
	Number of receive buffers to preallocate (default = 1). NMA$C_PCLI_BFN can have a maximum value o...
	NMA$C_PCLI_BFN is passed as a longword value.
	NMA$C_PCLI_BFN represents the number of receive messages the LAN driver will hold for a port when...

	<TABLE ROW>
	NMA$C_PCLI_BUS
	Any message received for this port that is larger than this parameter value is discarded.
	Any message received for this port that is larger than this parameter value is discarded.
	Maximum allowable port receive data size, that is, message length (default = 512 bytes). NMA$C_PC...

	<TABLE ROW>
	NMA$C_PCLI_CCA
	Can change address. This optional parameter enables applications to start before DECnet starts. D...
	Can change address. This optional parameter enables applications to start before DECnet starts. D...
	This parameter is not applicable to FDDI because FDDI devices can run with more than one physical...
	• NMA$C_STATE_ON — The physical address can be changed.
	• NMA$C_STATE_ON — The physical address can be changed.
	• NMA$C_STATE_ON — The physical address can be changed.

	• NMA$C_STATE_OFF — The physical address cannot be changed (default).
	• NMA$C_STATE_OFF — The physical address cannot be changed (default).

	<TABLE ROW>
	NMA$C_PCLI_CON
	NMA$C_PCLI_CON

	Controller mode. This optional parameter determines whether transmit packets are to be looped bac...
	Controller mode. This optional parameter determines whether transmit packets are to be looped bac...
	NMA$C_LINCN_NOR — Normal mode (default)
	NMA$C_LINCN_NOR — Normal mode (default)
	NMA$C_LINCN_NOR — Normal mode (default)

	The only messages looped back are those acceptable to the controller as receive messages, that is...
	• Matching physical address (see
	• Matching physical address (see
	• Matching physical address (see
	• Matching physical address (see

	• Matching multicast address (see
	• Matching multicast address (see

	• Promiscuous mode (NMA$C_PCLI_PRM) is in the ON state
	• Promiscuous mode (NMA$C_PCLI_PRM) is in the ON state

	• Destination address is a multicast address and all multicasts are enabled (NMA$C_PCLI_MLT is in...
	• Destination address is a multicast address and all multicasts are enabled (NMA$C_PCLI_MLT is in...

	NMA$C_PCLI_CON affects all ports on a single controller. It is passed as a longword value.
	For the DELUA, DEBNA, DEBNI, DEQTA, PMAD, DEMNA, and DESVA, the following list shows the maximum ...
	Ethernet format without padding — 18 bytes
	Ethernet format without padding — 18 bytes
	Ethernet format with padding — 16 bytes
	802 format with 1-byte CTL field — 15 bytes
	802 format with 2-byte CTL field — 14 bytes
	802 extended format—10 bytes

	When the DEUNA is in loopback mode, the driver always enables echo mode (NMA$C_PCLI_EKO is in the...
	Not all devices support loopback mode. If normal mode is not specified, the request is completed ...

	<TABLE ROW>
	NMA$C_PCLI_CRC1
	Cyclic redundancy check (CRC) generation state for transmitted messages (optional). One of the fo...
	Cyclic redundancy check (CRC) generation state for transmitted messages (optional). One of the fo...
	NMA$C_STATE_ON — Controller generates a CRC (default).
	If NMA$C_PCLI_CRC is turned off, all users of the controller must supply the 4-byte CRC value for...
	For the DEQNA, DELQA, and Token Ring devices, the NMA$C_PCLI_CRC parameter cannot be turned off.
	For the DEQNA, DELQA, and Token Ring devices, the NMA$C_PCLI_CRC parameter cannot be turned off.
	Not all devices support user-supplied CRC. If a controller-generated CRC is specified, the reques...

	<TABLE ROW>
	NMA$C_PCLI_DES
	NMA$C_PCLI_DES

	Shared protocol destination address. Passed as a counted string that consists of a modifier word ...
	Shared protocol destination address. Passed as a counted string that consists of a modifier word ...
	NMA$C_PCLI_DES should not be specified on a port where the 802 or 802E packet format is selected ...
	NMA$C_PCLI_DES should not be specified on a port where the 802 packet format is selected (NMA$C_P...
	Section 9.4.8
	Section 9.4.8

	Section 9.4.8
	Section 9.4.8

	LAN drivers:echo mode (DEUNA only)
	LAN drivers:echo mode (DEUNA only)

	<TABLE ROW>
	NMA$C_PCLI_EKO1
	NMA$C_PCLI_EKO

	Echo mode. Applicable only to the DEUNA device driver.
	Echo mode. Applicable only to the DEUNA device driver.
	If echo mode is on, transmitted messages are returned to the sender. This optional parameter cont...
	NMA$C_STATE_OFF — Does not echo transmit messages (default)
	NMA$C_STATE_OFF — Does not echo transmit messages (default)
	NMA$C_STATE_OFF — Does not echo transmit messages (default)
	NMA$C_STATE_ON — Echoes transmit messages

	If NMA$C_STATE_ON is specified, the only transmitted messages echoed are those acceptable to the ...
	• Matching physical address (see
	• Matching physical address (see
	• Matching physical address (see
	• Matching physical address (see

	• Matching multicast address (see
	• Matching multicast address (see

	• Promiscuous mode (NMA$C_PCLI_PRM) is in the ON state
	• Promiscuous mode (NMA$C_PCLI_PRM) is in the ON state

	• Destination address is a multicast address and all multicasts are enabled (NMA$C_PCLI_MLT is in...
	• Destination address is a multicast address and all multicasts are enabled (NMA$C_PCLI_MLT is in...

	If the DEUNA is placed in loopback mode (NMA$C_LINCN_LOO is specified in the NMA$C_PCLI_CON param...
	NMA$C_PCLI_EKO affects all ports on a single controller. It is passed as a longword value.

	<TABLE ROW>
	NMA$C_PCLI_FMT
	Packet format. This optional parameter specifies the packet format as either Ethernet, IEEE 802, ...
	Packet format. This optional parameter specifies the packet format as either Ethernet, IEEE 802, ...
	NMA$C_LINFM_ETH — Ethernet packet format (default)
	NMA$C_LINFM_ETH — Ethernet packet format (default)

	NMAC_PCLI_PTY, NMAC_PCLI_ACC, and NMA$C_PCLI_DES should only be specified on those ports where ...
	NMAC_PCLI_SRV, NMAC_PCLI_SAP, and NMA$C_PCLI_GSP should only be specified on those ports where ...
	NMA$C_PCLI_PID should only be specified on those ports where the 802 extended packet format (NMA$...

	<TABLE ROW>
	NMA$C_PCLI_GSP
	NMA$C_PCLI_GSP

	Group SAP. This is an optional parameter if the 802 packet format is selected (NMA$C_PCLI_FMT is ...
	Group SAP. This is an optional parameter if the 802 packet format is selected (NMA$C_PCLI_FMT is ...
	NMA$C_PCLI_GSP is passed as a longword value and is read as four 8-bit unsigned integers. Each in...
	If this characteristic is correctly specified, any group SAPs that were previously enabled on the...

	<TABLE ROW>
	NMA$C_PCLI_ILP1
	NMA$C_PCLI_ILP

	Internal loopback mode. This optional parameter places the device in internal loopback mode (not ...
	Internal loopback mode. This optional parameter places the device in internal loopback mode (not ...
	NMA$C_STATE_ON — Internal loopback mode
	NMA$C_STATE_ON — Internal loopback mode
	NMA$C_STATE_OFF — Not in internal loopback mode (default)

	If NMA$C_STATE_ON is specified, the NMA$C_PCLI_CON parameter must be in loopback (NMA$C_LINCN_LOO...
	When the controller is in loopback mode (generally for testing), it can loop packets in external ...
	Not all devices support loopback mode. If NMA$C_STATE_OFF is not specified, the request is comple...

	<TABLE ROW>
	NMA$C_PCLI_MCA
	NMA$C_PCLI_MCA

	Multicast address (optional). Passed as a counted string that consists of a modifier word followe...
	Multicast address (optional). Passed as a counted string that consists of a modifier word followe...
	The following mode values can be specified in the low byte of the modifier word:
	NMA$C_LINMC_SET — Set the multicast addresses.
	NMA$C_LINMC_SET — Set the multicast addresses.
	NMA$C_LINMC_CLR — Clear the multicast addresses.
	NMA$C_LINMC_CAL — Clear all multicast addresses.

	The driver filters all multicast addresses on a per-port basis; therefore, only messages received...
	Note that each LAN controller supports a limited number of multicast addresses. If this limit is ...
	NMA$C_PCLI_MCA is specified on a per-port basis.

	<TABLE ROW>
	NMA$C_PCLI_MLT
	NMA$C_PCLI_MLT

	Multicast address state. This optional parameter instructs the controller hardware whether to acc...
	LAN drivers:padding:transmit messages
	LAN drivers:padding:transmit messages

	NMA$C_STATE_ON — Accept all multicast addresses.
	NMA$C_STATE_ON — Accept all multicast addresses.

	NMA$C_PCLI_MLT allows you to receive all multicast address packets that also match the port's pro...
	Generally, you enable only your individual set of multicast addresses using the NMA$C_PCLI_MCA pa...
	There could be a minor performance loss when the NMA$C_PCLI_MLT parameter is in the ON state beca...
	The NMA$C_PCLI_MLT parameter is passed as a longword value.

	<TABLE ROW>
	NMA$C_PCLI_PAD
	Use message size field on transmit and receive messages (optional). One of the following values c...
	LAN drivers:addresses:port
	LAN drivers:addresses:port
	LAN drivers:addresses:physical

	NMA$C_STATE_ON — Insert message size field (default)
	NMA$C_STATE_ON — Insert message size field (default)
	NMA$C_STATE_OFF — No size field

	NMA$C_PCLI_PAD affects only the protocol type that issued the set mode request. It is passed as a...
	On Ethernet, if padding is enabled on Ethernet format packets, the driver adds a 2-byte count fie...
	For FDDI, the same 2-byte count field is added; however, because FDDI packets can be as short as ...

	<TABLE ROW>
	NMA$C_PCLI_PHA1
	Physical address (optional). It is passed as a counted string that consists of a modifier word fo...
	Physical address (optional). It is passed as a counted string that consists of a modifier word fo...
	One of the following mode values can be specified in the low byte of the modifier word:
	NMA$C_LINMC_SET — Set the string value.
	NMA$C_LINMC_SET — Set the string value.
	NMA$C_LINMC_CLR — Clear the physical address.
	NMA$C_LINMC_SDF — Set the physical address to the default address. For CSMA/CD, the default addre...

	If not specified for Ethernet, the default is the current address set by a previous set mode func...
	The physical address must be passed as a 6-byte (48-bit) quantity. The first byte is the least si...
	The NMA$C_PCLI_PHA parameter affects all ports on a single controller. If the address specified i...

	<TABLE ROW>
	NMA$C_PCLI_PID
	NMA$C_PCLI_PID

	Protocol identifier. This parameter is required for, and valid only on, ports that use 802 extend...
	Protocol identifier. This parameter is required for, and valid only on, ports that use 802 extend...
	All protocol identifiers specified on a controller must be unique except when the PID is being sh...
	NMA$C_PCLI_PID may only be specified on a port when the 802 extended packet format is selected; t...

	<TABLE ROW>
	NMA$C_PCLI_PRM
	NMA$C_PCLI_PRM

	Promiscuous (optional). One of the following values can be specified:
	Promiscuous (optional). One of the following values can be specified:
	• NMA$C_STATE_ON—Promiscuous mode enabled.
	• NMA$C_STATE_ON—Promiscuous mode enabled.
	• NMA$C_STATE_OFF—Promiscuous mode off.

	The NMA$C_PCLI_PRM parameter is passed as a longword value.
	Only one port on each controller can be active with promiscuous mode enabled. Enabling promiscuou...
	THe NMA$C_PCLI_PRM parameter is passed as a longword value.
	HP does not recommend promiscuous mode for normal usage.
	Some Token Ring devices do not support real promiscuous access to the ring.
	See

	<TABLE ROW>
	NMA$C_PCLI_PTY
	NMA$C_PCLI_PTY

	Protocol type. This value is read as a 16-bit unsigned integer and must be unique on the controll...
	Protocol type. This value is read as a 16-bit unsigned integer and must be unique on the controll...
	Valid protocol types are in the range 05-DD through FF.
	NMA$C_PCLI_PTY may only be specified on a port where the Ethernet packet format is selected (NMA$...
	NMA$C_PCLI_PTY is passed as a longword value; however, only the low-order word is used.

	<TABLE ROW>
	NMA$C_PCLI_RAC
	NMA$C_PCLI_RAC

	Receive access control (Token Ring only). This optional parameter specifies whether the applicati...
	Receive access control (Token Ring only). This optional parameter specifies whether the applicati...
	• NMA$C_STAT_ON — Application gets a copy of the AC for each Token Ring frame received.
	• NMA$C_STAT_ON — Application gets a copy of the AC for each Token Ring frame received.
	• NMA$C_STAT_ON — Application gets a copy of the AC for each Token Ring frame received.
	• NMA$C_STATE_OFF — Application does not get a copy of the AC for each Token Ring frame received.

	The AC is returned in the P5 buffer. The P5 buffer size for Token Ring should always be a minimum...

	<TABLE ROW>
	NMA$C_PCLI_RES
	NMA$C_PCLI_RES

	Restart. This optional parameter allows the user to enable the automatic port restart feature of ...
	Restart. This optional parameter allows the user to enable the automatic port restart feature of ...
	• NMA$C_LINRES_DIS — Disable automatic restart (default)
	• NMA$C_LINRES_DIS — Disable automatic restart (default)
	• NMA$C_LINRES_DIS — Disable automatic restart (default)
	• NMA$C_LINRES_ENA — Enable automatic restart

	The LAN drivers shut down all users of a controller if there is a fatal error on the controller o...
	All ports that have the NMA$C_PCLI_RES parameter enabled (set to NMA$C_LINRES_ENA) have the port ...
	All ports that have the automatic restart feature disabled must be restarted by the application p...
	Note that it is unusual to have fatal errors on a LAN controller or to have a LAN driver detect t...

	<TABLE ROW>
	NMA$C_PCLL_RFC
	NMA$C_PCLL_RFC

	Receive frame control (FDDI only). This optional parameter specifies whether the application rece...
	Receive frame control (FDDI only). This optional parameter specifies whether the application rece...
	• NMA$C_STATE_ON — Application gets a copy of the FC for each FDDI frame received.
	• NMA$C_STATE_ON — Application gets a copy of the FC for each FDDI frame received.
	• NMA$C_STATE_ON — Application gets a copy of the FC for each FDDI frame received.
	• NMA$C_STATE_OFF — Application gets a copy of the FC for each FDDI frames (default).

	For $QIO Read operations, the FC is passed to the application in the P5 buffer. The following are...
	• Ethernet (NMA$C_LINFM_ETH) — 14 if NMA$C_STATE_OFF is specified, 15 if NMA$C_STATE_ON is specif...
	• Ethernet (NMA$C_LINFM_ETH) — 14 if NMA$C_STATE_OFF is specified, 15 if NMA$C_STATE_ON is specif...
	• Ethernet (NMA$C_LINFM_ETH) — 14 if NMA$C_STATE_OFF is specified, 15 if NMA$C_STATE_ON is specif...
	• Ethernet (NMA$C_LINFM_ETH) — 14 if NMA$C_STATE_OFF is specified, 15 if NMA$C_STATE_ON is specif...

	• 802 (NMA$C_LINFM_802) — 16 if NMA$C_STATE_OFF is specified, 17 if NMA$C_STATE_ON is specified.
	• 802 (NMA$C_LINFM_802) — 16 if NMA$C_STATE_OFF is specified, 17 if NMA$C_STATE_ON is specified.

	• 802E (NMA$C_LINKFM_802E) — 20 if NMA$C_STATE_OFF is specified, 21 if NMA$C_STATE_ON is specified.
	• 802E (NMA$C_LINKFM_802E) — 20 if NMA$C_STATE_OFF is specified, 21 if NMA$C_STATE_ON is specified.
	Receiving the FC requires one additional byte of space in the P5 buffer. The FC is the first byte...

	<TABLE ROW>
	NMA$C_PCLI_SAP
	NMA$C_PCLI_SAP

	802 format SAP. This parameter is required if the 802 packet format is selected (NMA$C_PCLI_FMT i...
	802 format SAP. This parameter is required if the 802 packet format is selected (NMA$C_PCLI_FMT i...
	The SAP specified by NMA$C_PCLI_SAP is the SAP used to match incoming packets to complete read re...
	All individual SAPs specified on a controller must be unique on that controller; therefore, the S...
	LAN drivers:characteristics:extended

	<TABLE ROW>
	NMA$C_PCLI_SRMODE
	NMA$C_PCLI_SRMODE

	Sets the source routing (SR) modefor the $QIO user (Token Ring only). This optional parameter all...
	Sets the source routing (SR) modefor the $QIO user (Token Ring only). This optional parameter all...
	• NMA$C_SR_TRANSPARENT — Application source routing is transparent. This is the default when this...
	• NMA$C_SR_TRANSPARENT — Application source routing is transparent. This is the default when this...
	• NMA$C_SR_TRANSPARENT — Application source routing is transparent. This is the default when this...
	• NMA$C_SR_SELF — This shuts off the automatic route discovery exploration messagefor this user.

	The $QIOs existto further manipulate the source routing cache. HP recommends that applications us...

	<TABLE ROW>
	NMA$C_PCLI_SRV
	NMA$C_PCLI_SRV

	Port service. This optional parameter specifies the service supplied by the driver for the port. ...
	Port service. This optional parameter specifies the service supplied by the driver for the port. ...
	• NMA$C_LINSR_USR — User supplied service (default)
	• NMA$C_LINSR_USR — User supplied service (default)
	• NMA$C_LINSR_USR — User supplied service (default)
	• NMA$C_LINSR_CLI — Class I service

	<TABLE ROW>
	NMAC$C_PCLI_XAC
	NMAC$C_PCLI_XAC

	Transmit access control (Token Ring only). This is an optional parameter that enables application...

	<TABLE ROW>
	NMA$C_PCLI_XFC
	NMA$C_PCLI_XFC

	Transmit frame control (FDDI) only). NMA$C_PCLI_XFC is an optional parameter that enables applica...
	Transmit frame control (FDDI) only). NMA$C_PCLI_XFC is an optional parameter that enables applica...
	Regardless of how the FC is supplied, the value specified must be valid. The allowable values for...

	Set Mode Parameters for Packet Formats
	Set Mode Parameters for Packet Formats
	LAN drivers:packet format:set mode parameters
	LAN drivers:packet format:set mode parameters
	LAN drivers:parameter ID:packet format
	Table�9�40

	<TABLE>
	Table�9�40 Set Mode Parameters for Packet Formats�
	<TABLE HEADING>
	<TABLE ROW>
	Parameter ID
	Ethernet
	IEEE 802
	802E

	<TABLE BODY>
	<TABLE ROW>
	FMT
	FMT

	DEF
	DEF

	REQ
	REQ

	REQ
	REQ

	<TABLE ROW>
	PTY
	PTY

	REQ
	REQ

	E
	E

	E
	E

	<TABLE ROW>
	SAP
	SAP

	E
	E

	REQ
	REQ

	E
	E

	<TABLE ROW>
	PID
	PID

	E
	E

	E
	E

	REQ
	REQ

	<TABLE ROW>
	ACC
	ACC

	OPT
	OPT

	E
	E

	E
	E

	<TABLE ROW>
	DES
	DES

	OPT
	OPT

	E
	E

	E
	E

	<TABLE ROW>
	PAD
	PAD

	OPT
	OPT

	E
	E

	E
	E

	<TABLE ROW>
	SRV
	SRV

	E
	E

	OPT
	OPT

	E
	E

	<TABLE ROW>
	GSP
	GSP

	E
	E

	OPT
	OPT

	E
	E

	<TABLE ROW>
	BFN, BUS, CCA, CON, CRC, EKO, ILP, MCA, MLT, PHA, PRM, RAC, RES, RFC, SRMODE, XAC, XFC
	BFN, BUS, CCA, CON, CRC, EKO, ILP, MCA, MLT, PHA, PRM, RAC, RES, RFC, SRMODE, XAC, XFC

	OPT
	OPT

	OPT
	OPT

	OPT
	OPT

	SS$_BADPARAM return

	Set Mode Parameter Validation
	Set Mode Parameter Validation
	LAN drivers:parameter validation
	LAN drivers:parameter validation

	The following parameters must match for all ports on the same controller:
	• NMA$C_PCLI_CON
	• NMA$C_PCLI_CON
	• NMA$C_PCLI_CON

	• NMA$C_PCLI_CRC
	• NMA$C_PCLI_CRC

	• NMA$C_PCLI_EKO
	• NMA$C_PCLI_EKO

	• NMA$C_PCLI_ILP
	• NMA$C_PCLI_ILP

	• NMA$C_PCLI_PHA (need only match for Ethernet controllers)
	• NMA$C_PCLI_PHA (need only match for Ethernet controllers)

	On VAX systems, the following parameters must match for all shared-default and shared-with-destin...
	• NMA$C_PCLI_BFN
	• NMA$C_PCLI_BFN
	• NMA$C_PCLI_BFN

	• NMA$C_PCLI_BUS
	• NMA$C_PCLI_BUS

	• NMA$C_PCLI_CCA
	• NMA$C_PCLI_CCA

	• NMA$C_PCLI_MLT
	• NMA$C_PCLI_MLT

	• NMA$C_PCLI_PAD
	• NMA$C_PCLI_PAD

	• NMA$C_PCLI_PTY
	• NMA$C_PCLI_PTY

	• NMA$C_PCLI_RAC
	• NMA$C_PCLI_RAC

	• NMA$C_PCLI_RES
	• NMA$C_PCLI_RES

	• NMA$C_PCLI_RFC
	• NMA$C_PCLI_RFC

	• NMA$C_PCLI_XAC
	• NMA$C_PCLI_XAC

	• NMA$C_PCLI_XFC
	• NMA$C_PCLI_XFC

	Once a port is started, only the following parameters can be changed:
	• NMA$C_PCLI_GSP
	• NMA$C_PCLI_GSP
	• NMA$C_PCLI_GSP

	• NMA$C_PCLI_MCA
	• NMA$C_PCLI_MCA

	Shutdown Controller
	Shutdown Controller
	LAN drivers:shutdown controller mode
	LAN drivers:shutdown controller mode

	The following function code is used to shut down a port:
	• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN—Shut down port
	• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN—Shut down port
	• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN—Shut down port

	The shutdown controller function takes no device- or function-dependent arguments.

	Enable Attention AST
	Enable Attention AST
	LAN drivers:attention AST
	LAN drivers:attention AST
	Attention AST :LAN drivers
	Enable attention AST function:LAN drivers

	The following function code and modifier is used to enable an attention AST:
	• IO$_SETMODE!IO$M_ATTNAST—Enable attention AST
	• IO$_SETMODE!IO$M_ATTNAST—Enable attention AST
	• IO$_SETMODE!IO$M_ATTNAST—Enable attention AST

	This function takes the following device- or function-dependent arguments:
	• P1—The address of an AST service routine or 0 for disable
	• P1—The address of an AST service routine or 0 for disable
	• P1—The address of an AST service routine or 0 for disable

	• P2—Ignored
	• P2—Ignored

	• P3—Access mode to deliver AST
	• P3—Access mode to deliver AST

	The enable attention AST function enables an attention AST to be delivered to the requesting proc...
	The AST service routine is called with an argument list. The first argument is the current value ...

	IO$M_SET_MAC Functional Modifier to IO$M_SETMODE
	IO$M_SET_MAC Functional Modifier to IO$M_SETMODE
	Set modes:Set Mac qualifier
	IO$_M_SET_MAC functional modifier
	The IO$M_SET_MAC qualifier, when used with IO$_SETMODE, is used to set medium specific parameters...
	<TABLE>
	Table�9�41 Parameters of IO$M_SET_MAC for Ethernet �
	<TABLE HEADING>
	<TABLE ROW>
	Parameter ID
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	MA$C_PCLI_FDE
	MA$C_PCLI_FDE

	Enables or disables full duplex operation. The values for this parameter are NMA$C_STATE_ON or NM...
	Enables or disables full duplex operation. The values for this parameter are NMA$C_STATE_ON or NM...

	<TABLE ROW>
	NMA$C_PCLI_LINEMEDIA
	NMA$C_PCLI_LINEMEDIA

	Sets the connection media type for the Ethernet adapter. Valid values for this parameter are:
	Sets the connection media type for the Ethernet adapter. Valid values for this parameter are:

	<TABLE ROW>
	NMA$C_PCLI_LINESPEED
	NMA$C_PCLI_LINESPEED

	Sets the speed of the Ethernet adapter. Valid values for this parameter are:
	Sets the speed of the Ethernet adapter. Valid values for this parameter are:

	<TABLE>
	Table�9�42 Parameters of IO$M_SET_MAC for FDDI�
	<TABLE HEADING>
	<TABLE ROW>
	Parameter ID
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	NMA$C_PCLI_TREQ
	NMA$C_PCLI_TREQ

	Requested value for token rotation timer, ANSI MAC T_req parameter. Units are in 80 nanoseconds, ...
	Requested value for token rotation timer, ANSI MAC T_req parameter. Units are in 80 nanoseconds, ...

	<TABLE ROW>
	NMA$C_PCLI_TVX
	NMA$C_PCLI_TVX

	Maximum time between arrivals of a valid frame or unrestricted token, ANSI MAC TVX parameter. Uni...
	Maximum time between arrivals of a valid frame or unrestricted token, ANSI MAC TVX parameter. Uni...

	<TABLE ROW>
	NMA$C_PCLI_REST_TTO
	NMA$C_PCLI_REST_TTO

	Restricted token timeout which limits how long a single restricted mode dialog may last before be...
	Restricted token timeout which limits how long a single restricted mode dialog may last before be...

	<TABLE ROW>
	NMA$C_PCLI_RPE
	NMA$C_PCLI_RPE

	Ring purge enable. If 1 (TRUE), this link will particpate in the Ring Purger election and, if ele...
	Ring purge enable. If 1 (TRUE), this link will particpate in the Ring Purger election and, if ele...

	<TABLE ROW>
	NMA$C_PCLI_NIF_TARG
	NMA$C_PCLI_NIF_TARG

	Neighbor information frame target.
	Neighbor information frame target.

	<TABLE ROW>
	NMA$C_PCLI_SIF_CONF_TARG
	NMA$C_PCLI_SIF_CONF_TARG

	Station information frame configuration target. A 6-byte string specifying the LAN address of the...
	Station information frame configuration target. A 6-byte string specifying the LAN address of the...

	<TABLE ROW>
	NMA$C_PCLI_SIF_OP_TARG
	NMA$C_PCLI_SIF_OP_TARG

	Station information frame operation target. A 6-byte string specifying the LAN address of the tar...
	Station information frame operation target. A 6-byte string specifying the LAN address of the tar...

	<TABLE ROW>
	NMA$C_PCLI_ECHO_TARG
	NMA$C_PCLI_ECHO_TARG

	Echo test target. A 6-byte string specifying the LAN address of the target. Used only by DECnet/OSI.
	Echo test target. A 6-byte string specifying the LAN address of the target. Used only by DECnet/OSI.

	<TABLE ROW>
	NMA$C_PCLI_ECHO_DAT
	NMA$C_PCLI_ECHO_DAT

	Data pattern to use for the echo test. Used only by DECnet/OSI.
	Data pattern to use for the echo test. Used only by DECnet/OSI.

	<TABLE ROW>
	NMA$C_PCLI_ECHO_LEN
	NMA$C_PCLI_ECHO_LEN

	Length of the echo packet. Used only by DECnet/OSI.
	Length of the echo packet. Used only by DECnet/OSI.

	<TABLE>
	Table�9�43 Parameters of IO$M_SET_MAC for Token Ring (Continued)
	<TABLE HEADING>
	<TABLE ROW>
	Parameter ID
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	NMA$C_PCLI_RNG_SPD
	NMA$C_PCLI_RNG_SPD

	Sets the speed of the ring. This longword may be either:
	Sets the speed of the ring. This longword may be either:
	The default is NMA$C_LINRNG_SIXTN.

	<TABLE ROW>
	NMA$C_PCLI_LINEMEDIA
	NMA$C_PCLI_LINEMEDIA

	Sets the connection media type for the Token Ring adapter. Valid values for this longword paramet...
	Sets the connection media type for the Token Ring adapter. Valid values for this longword paramet...
	The default is NMA$C_MEDIA_STP.

	<TABLE ROW>
	NMA$C_PCLI_ETR
	NMA$C_PCLI_ETR

	Controls the Early Token release feature of the Token Ring hardware. This feature can greatly imp...
	Controls the Early Token release feature of the Token Ring hardware. This feature can greatly imp...

	<TABLE ROW>
	NMA$C_PCLI_MONCONTEND
	NMA$C_PCLI_MONCONTEND

	Specifies whether the controller participates in the monitor contention process when another adap...
	Specifies whether the controller participates in the monitor contention process when another adap...

	<TABLE ROW>
	NMA$C_PCLI_CACHE_ENT
	NMA$C_PCLI_CACHE_ENT

	The number of source routing (SR) entries to make available for caching. The default is 200, mini...
	The number of source routing (SR) entries to make available for caching. The default is 200, mini...

	<TABLE ROW>
	NMA$C_PCLI_ROUTEDIS
	NMA$C_PCLI_ROUTEDIS

	The source routing discovery timer. This is the amount of seconds to wait after the transmission ...
	The source routing discovery timer. This is the amount of seconds to wait after the transmission ...

	<TABLE ROW>
	NMA$C_PCLI_A_TIM
	NMA$C_PCLI_A_TIM

	The source routing aging timer. After traffic is neither received from nor sent to a given node f...
	The source routing aging timer. After traffic is neither received from nor sent to a given node f...

	<TABLE ROW>
	NMA$C_PCLI_SRC_ROU
	NMA$C_PCLI_SRC_ROU

	Enables and disables source routing. The values for this longword parameter are NMA$C_LINSRC_ENA ...
	Enables and disables source routing. The values for this longword parameter are NMA$C_LINSRC_ENA ...

	<TABLE ROW>
	NMA$C_PCLI_AUTH_PR
	NMA$C_PCLI_AUTH_PR

	Specifies the highest priority that a user may transmit a frame. The priority is set within the N...
	Specifies the highest priority that a user may transmit a frame. The priority is set within the N...

	<TABLE>
	Table�9�44 Parameters of IO$M_SET_MAC for ATM�
	<TABLE HEADING>
	<TABLE ROW>
	Parameter ID
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	NMA$C_PCLI_MED
	NMA$C_PCLI_MED

	Medium. This longword parameter defaults to and may only be set to NMA$C_LINMD_CSMACD.
	Medium. This longword parameter defaults to and may only be set to NMA$C_LINMD_CSMACD.

	<TABLE ROW>
	NMA$C_PCLI_BUS
	NMA$C_PCLI_BUS

	Buffer size. This longword parameter specifies the requested maximum packet size of the emulated ...
	Buffer size. This longword parameter specifies the requested maximum packet size of the emulated ...

	<TABLE ROW>
	NMA$C_PCLI_ELAN_PAR
	NMA$C_PCLI_ELAN_PAR

	Parent device name. This is a 3- or 4-character string parameter that specifies the name of the A...
	Parent device name. This is a 3- or 4-character string parameter that specifies the name of the A...

	<TABLE ROW>
	NMA$C_PCLI_NET
	NMA$C_PCLI_NET

	ELAN name. This is a string of up to 64 characters that specifies the name of the emulated LAN to...
	ELAN name. This is a string of up to 64 characters that specifies the name of the emulated LAN to...

	<TABLE ROW>
	NMA$C_PCLI_ELAN_DESC
	NMA$C_PCLI_ELAN_DESC

	ELAN description. This is a string of up to 64 characters long that provides additional descripti...
	ELAN description. This is a string of up to 64 characters long that provides additional descripti...

	<TABLE ROW>
	NMA$C_PCLI_LES_HWA
	NMA$C_PCLI_LES_HWA

	LES ATM address. This is specified as a 40-character string as the hexadecimal representation of ...
	LES ATM address. This is specified as a 40-character string as the hexadecimal representation of ...

	<TABLE ROW>
	NMA$C_PCLI_ELAN_STATE _REQ
	NMA$C_PCLI_ELAN_STATE _REQ

	ELAN change state request value. This longword parameter directs the driver to either start or sh...
	ELAN change state request value. This longword parameter directs the driver to either start or sh...

	<TABLE ROW>
	NMA$C_PCLI_EVENT_REQ
	NMA$C_PCLI_EVENT_REQ

	Event mask request. If set to 1, this longword parameter directs the driver to set the event repo...
	Event mask request. If set to 1, this longword parameter directs the driver to set the event repo...

	<TABLE ROW>
	NMA$C_PCLI_EVENT
	NMA$C_PCLI_EVENT

	Event mask value. This is a longword bit mask that controls the event reporting done by the drive...
	Event mask value. This is a longword bit mask that controls the event reporting done by the drive...

	IO$M_UPDATE_MAP Functional Modifier to IO$_SETMODE
	IO$M_UPDATE_MAP Functional Modifier to IO$_SETMODE
	IO$M_UPDATE_MAP functional modifier
	IO$_SETMODE:IO$M_UPDATE_MAP
	Using Token Ring only, the IO$M_UPDATE_MAP qualifier, when used with IO$_SETMODE, manipulates the...
	Figure�9�15 Format of IO$M_UPDATE_MAP Setmode P2 Buffer
	Figure�9�15 Format of IO$M_UPDATE_MAP Setmode P2 Buffer
	<GRAPHIC>

	The subfunction is one of the following:
	• NMA$C_MAP_CHANGE — This function adds or changes a mapping in the functional address table. If ...
	• NMA$C_MAP_CHANGE — This function adds or changes a mapping in the functional address table. If ...
	• NMA$C_MAP_CHANGE — This function adds or changes a mapping in the functional address table. If ...
	Possible errors returned include the following:
	— SS$_DEVICEFULL — This error indicates that there is insufficient space in the mapping table to ...
	— SS$_DEVICEFULL — This error indicates that there is insufficient space in the mapping table to ...
	— SS$_DEVICEFULL — This error indicates that there is insufficient space in the mapping table to ...

	• NMA$C_MAP_DELETE — This function deletes the specified MC address in the table. For this functi...
	• NMA$C_MAP_DELETE — This function deletes the specified MC address in the table. For this functi...
	Possible errors returned include the following:
	— SS$_BADPARAM — This error indicates that the specified multicast address cannot be found in the...
	— SS$_BADPARAM — This error indicates that the specified multicast address cannot be found in the...
	— SS$_BADPARAM — This error indicates that the specified multicast address cannot be found in the...

	The following example maps multicast address AB-01-01-01-02-03 to the functional address 03-00-00...
	LANCP>
	LANCP>
	SET DEVICE/MAP= -
	SET DEVICE/MAP= -

	_LANCP>
	(MULTICAST=AB-01-01-01-02-03, -
	(MULTICAST=AB-01-01-01-02-03, -

	_LANCP>
	FUNCTIONAL=00-01-00-00) ICA0:
	FUNCTIONAL=00-01-00-00) ICA0:

	The following example deletes the mapping of the multicast address of AB-01-01-01-02-03 for the d...
	LANCP>
	LANCP>
	SET DEVICE/NOMAP=(MULTICAST=AB-01-01-01-02-03) ICA0:
	SET DEVICE/NOMAP=(MULTICAST=AB-01-01-01-02-03) ICA0:

	IO$M_ROUTE Functional Modifier to IO$_SETMODE
	IO$M_ROUTE Functional Modifier to IO$_SETMODE
	IO$M_ROUTE functional modifier
	For Token Ring only, the IO$M_ROUTE qualifier, when used with IO$_SETMODE, manipulates the source...
	Figure�9�16 Format of the IO$M_ROUTE P2 Buffer
	Figure�9�16 Format of the IO$M_ROUTE P2 Buffer
	<GRAPHIC>

	The subfunction is one of the following:
	• NMA$C_SR_ADD — This function adds or changes a source routing cache entry. It enters the LAN ad...
	• NMA$C_SR_ADD — This function adds or changes a source routing cache entry. It enters the LAN ad...
	• NMA$C_SR_ADD — This function adds or changes a source routing cache entry. It enters the LAN ad...
	Possible errors returned include:
	— SS$_INSFMEM — The source routing cache is full.
	— SS$_INSFMEM — The source routing cache is full.
	— SS$_INSFMEM — The source routing cache is full.

	— SS$_BADPARAM — An invalid RI string was passed or invalid sizes were passed.
	— SS$_BADPARAM — An invalid RI string was passed or invalid sizes were passed.

	— SS$_IVMODE — Source routing is not enabled.
	— SS$_IVMODE — Source routing is not enabled.

	• NMA$C_SR_DELETE — This function deletes a source routing cache entry. The RI_size and the routi...
	• NMA$C_SR_DELETE — This function deletes a source routing cache entry. The RI_size and the routi...
	Possible errors returned include the following:
	— SS$_BADPARAM — The requested entry could not be found.
	— SS$_BADPARAM — The requested entry could not be found.
	— SS$_BADPARAM — The requested entry could not be found.

	Sense Mode and Sense Characteristics
	Sense Mode and Sense Characteristics
	LAN drivers:sense mode function
	LAN drivers:sense mode function
	Function codes :IO$_SENSEMODE
	LAN drivers:characteristics:device
	LAN drivers:device characteristics
	LAN drivers:I/O functions
	LAN drivers:function modifiers
	Function modifiers :IO$M_CTRL

	The following combinations of function code and modifier are provided:
	• IO$_SENSEMODE!IO$M_CTRL—Read characteristics
	• IO$_SENSEMODE!IO$M_CTRL—Read characteristics
	• IO$_SENSEMODE!IO$M_CTRL—Read characteristics

	• IO$_SENSECHAR!IO$M_CTRL—Read characteristics
	• IO$_SENSECHAR!IO$M_CTRL—Read characteristics

	• IO$_SENSEMODE!IO$M_SENSE_MAC—Medium specific characteristics
	• IO$_SENSEMODE!IO$M_SENSE_MAC—Medium specific characteristics

	• IO$_SENSEMODE!IO$M_SHOW_MAP—Returns current functional address to multicast address mapping (To...
	• IO$_SENSEMODE!IO$M_SHOW_MAP—Returns current functional address to multicast address mapping (To...
	• IO$_SENSEMODE!IO$M_SHOW_MAP—Returns current functional address to multicast address mapping (To...

	• IO$_SENSEMODE!IO$M_SHOW_ROUTE—Returns current source routing cache table (Toekn Ring only)
	• IO$_SENSEMODE!IO$M_SHOW_ROUTE—Returns current source routing cache table (Toekn Ring only)

	These functions take the following device- or function-dependent arguments:
	• P1—The address of a two-longword buffer where the device characteristics are stored. (
	• P1—The address of a two-longword buffer where the device characteristics are stored. (
	• P1—The address of a two-longword buffer where the device characteristics are stored. (

	• P2—The address of a quadword descriptor where the attributes buffer is stored. The first longwo...
	• P2—The address of a quadword descriptor where the attributes buffer is stored. The first longwo...
	The P2 buffer is not read by the LAN driver. The driver stores the port's attributes in the buffe...

	Except for the following differences, P2 returns the same attributes as those listed in
	• All parameters that are valid for the enabled packet format are returned (see
	• All parameters that are valid for the enabled packet format are returned (see
	• All parameters that are valid for the enabled packet format are returned (see

	• The sense-mode P2 buffer does not return the modifier word for the NMAC_PCLI_PHA, NMAC_PCLI_M...
	• The sense-mode P2 buffer does not return the modifier word for the NMAC_PCLI_PHA, NMAC_PCLI_M...

	• The NMA$C_PCLI_DES parameter is only returned on Ethernet ports whose access mode is set to “sh...
	• The NMA$C_PCLI_DES parameter is only returned on Ethernet ports whose access mode is set to “sh...

	• In addition to the parameter IDs listed in
	• In addition to the parameter IDs listed in

	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Parameter ID
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	NMA$C_PCLI_FCA
	NMA$C_PCLI_FCA

	List of the currently enabled functional addresses (Token Ring only). Each 32-bit entry correspon...
	List of the currently enabled functional addresses (Token Ring only). Each 32-bit entry correspon...

	<TABLE ROW>
	NMA$C_PCLI_HWA
	NMA$C_PCLI_HWA

	Hardware address. Describes the value for the hardware address. The hardware address is the defau...
	Hardware address. Describes

	<TABLE ROW>
	NMA$C_PCLI_MBS
	NMA$C_PCLI_MBS

	Maximum packet length. NMA$C_PCLI_MBS is a longword, read-only parameter. The value returned refl...
	Maximum packet length. NMA$C_PCLI_MBS is a longword, read-only parameter. The value returned refl...

	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Packet Format
	Ethernet
	FDDI
	Token Ring

	<TABLE BODY>
	<TABLE ROW>
	Ethernet format without padding
	Ethernet format without padding

	1500
	1500

	4470
	4470

	4418
	4418

	<TABLE ROW>
	Ethernet format with padding
	Ethernet format with padding

	1498
	1498

	4468
	4468

	4416
	4416

	<TABLE ROW>
	802 format with 1-byte CTL field
	802 format with 1-byte CTL field

	1497
	1497

	4475
	4475

	4423
	4423

	<TABLE ROW>
	802E format
	802E format

	1492
	1492

	4470
	4470

	4418
	4418

	<TABLE ROW>
	The values for LAN emulation over ATM are:
	The values for LAN emulation over ATM are:

	<TABLE ROW>
	Packet Format
	Packet Format
	Packet Format

	ATM ELAN size:
	ATM ELAN size:
	ATM ELAN size:

	1516
	1516

	4544
	4544

	9234

	<TABLE ROW>
	Ethernet format without padding
	Ethernet format without padding

	1500
	4528
	9218

	<TABLE ROW>
	Ethernet format with padding
	1498
	4526
	9216

	<TABLE ROW>
	802 format with 1-byte CTL field
	1497
	4525
	9215

	<TABLE ROW>
	802E format
	1492
	4520
	9210

	<TABLE ROW>

	Figure�9�17 Sense Mode P1 Characteristics Buffer
	Figure�9�17 Sense Mode P1 Characteristics Buffer
	<GRAPHIC>

	It is suggested that a size of 250 bytes be used for the P2 buffer. This will allow space for add...
	All attributes that fit into the buffer specified by P2 are returned; however, if all the attribu...
	Figure�9�18 Sense Mode Attribute Buffer
	Figure�9�18 Sense Mode Attribute Buffer
	<GRAPHIC>

	IO$M_SENSE_MAC Functional Modifier to IO$_SENSEMODE
	IO$M_SENSE_MAC Functional Modifier to IO$_SENSEMODE
	IO$M_SENSE_MAC functional modifier
	IO$M_SENSE_MAC:Used with IO$_SENSEMODE
	The IO$M_SENSE_MAC qualifier, when used with IO$_SENSEMODE, returns the parameters specified in
	<TABLE>
	Table�9�45 Parameters of IO$M_SENSE_MAC�
	<TABLE HEADING>
	<TABLE ROW>
	Parameter ID
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	NMA$C_PCLI_T_NEG
	NMA$C_PCLI_T_NEG

	The negotiated value of the token rotation timer (ANSI MAC parameter T_neg) (FDDI only).
	The negotiated value of the token rotation timer (ANSI MAC parameter T_neg) (FDDI only).

	<TABLE ROW>
	NMA$C_PCLI_DAT
	NMA$C_PCLI_DAT

	The duplicate address test flag (FDDI only). If set, this indicates that there is another station...
	The duplicate address test flag (FDDI only). If set, this indicates that there is another station...

	<TABLE ROW>
	NMA$C_PCLI_UNA
	NMA$C_PCLI_UNA

	Upstream neighbor's address (FDDI and Token Ring). This is a string parameter specifying the 6-by...
	Upstream neighbor's address (FDDI and Token Ring). This is a string parameter specifying the 6-by...

	<TABLE ROW>
	NMA$C_PCLI_OLD_UNA
	NMA$C_PCLI_OLD_UNA

	The old (previous) upstream neighbor address (FDDI only). Neighbor addresses change as nodes inse...
	The old (previous) upstream neighbor address (FDDI only). Neighbor addresses change as nodes inse...

	<TABLE ROW>
	NMA$C_PCLI_UN_DAT
	NMA$C_PCLI_UN_DAT

	The upstream neighbor's duplicate address test flag (FDDI only).
	The upstream neighbor's duplicate address test flag (FDDI only).

	<TABLE ROW>
	NMA$C_PCLI_DNA
	NMA$C_PCLI_DNA

	The downstream neighbor's LAN address (FDDI only).
	The downstream neighbor's LAN address (FDDI only).

	<TABLE ROW>
	NMA$C_PCLI_OLD_DNA
	NMA$C_PCLI_OLD_DNA

	The old (previous) downstream neighbor's LAN address (FDDI only).
	The old (previous) downstream neighbor's LAN address (FDDI only).

	<TABLE ROW>
	NMA$C_PCLI_RPS
	NMA$C_PCLI_RPS

	The current ring purger state (FDDI only). This longword parameter is one of the following values:
	The current ring purger state (FDDI only). This longword parameter is one of the following values:

	<TABLE ROW>
	NMA$C_PCLI_RER
	NMA$C_PCLI_RER

	The latest ring error reason (FDDI only). This longword parameter is one of the following values:
	The latest ring error reason (FDDI only). This longword parameter is one of the following values:

	<TABLE ROW>
	NMA$C_PCLI_NBR_PHY
	NMA$C_PCLI_NBR_PHY

	Neighbor's PHY type (FDDI only). This longword parameter is one of the following values:
	Neighbor's PHY type (FDDI only). This longword parameter is one of the following values:

	<TABLE ROW>
	NMA$C_PCLI_RJR
	NMA$C_PCLI_RJR

	Ring reject reason (FDDI only). This longword parameter is one of the following values:
	Ring reject reason (FDDI only). This longword parameter is one of the following values:

	<TABLE ROW>
	NMA$C_PCLI_LEE
	NMA$C_PCLI_LEE

	Link error estimate (FDDI only). The longword value is a negative exponent of 10 representing the...
	Link error estimate (FDDI only). The longword value is a negative exponent of 10 representing the...

	<TABLE ROW>
	NMA$C_PCLI_RNG_NUM
	NMA$C_PCLI_RNG_NUM

	The longword value contains the ring number that the controller is running on (Token Ring only). ...
	The longword value contains the ring number that the controller is running on (Token Ring only). ...

	IO$M_SHOW_MAP Functional Modifier to IO$_SENSEMODE
	IO$M_SHOW_MAP Functional Modifier to IO$_SENSEMODE
	IO$M_SHOW_MAP functional modifier
	IO$M_SHOW_MAP:Used with IO$_SENSEMODE
	For Token Ring only, the IO$M_SHOW_MAP qualifier, when used with IO$_SENSEMODE, returns the curre...
	Figure�9�19 Format of IO$M_SHOW_MAP P2 Buffer
	Figure�9�19 Format of IO$M_SHOW_MAP P2 Buffer
	<GRAPHIC>

	The multicast address and functional address mask are returned in canonical format (that is, not ...
	• SS$_BUFFEROVF — The passed buffer is not large enough to hold all the data required for the ope...
	• SS$_BUFFEROVF — The passed buffer is not large enough to hold all the data required for the ope...
	• SS$_BUFFEROVF — The passed buffer is not large enough to hold all the data required for the ope...

	• SS$_BADPARAM — Not able to get read access to buffer or zero length buffer passed.
	• SS$_BADPARAM — Not able to get read access to buffer or zero length buffer passed.

	IO$M_SHOW_ROUTE Functional Modifier to IO$_SENSEMODE
	IO$M_SHOW_ROUTE Functional Modifier to IO$_SENSEMODE
	IO$M_SHOW_ROUTE functional modifier
	IO$M_SHOW_ROUTE:Used with IO$_SENSEMODE
	For Token Ring only, the IO$M_SHOW_ROUTE qualifier, when used with IO$_SENSEMODE, returns the cur...
	Figure�9�20 Format of IO$M_SHOW_ROUTE P2 Buffer
	Figure�9�20 Format of IO$M_SHOW_ROUTE P2 Buffer
	<GRAPHIC>

	Table�9�46
	Table�9�46

	<TABLE>
	Table�9�46 State of the Entry�
	<TABLE HEADING>
	<TABLE ROW>
	Value
	Name
	Description

	<TABLE BODY>
	<TABLE ROW>
	0
	0

	LOCAL
	LOCAL

	Address is reachable on the attached ring.
	Address is reachable on the attached ring.

	<TABLE ROW>
	1
	1

	STALE
	STALE

	Entry is stale (inactive).
	Entry is stale (inactive).

	<TABLE ROW>
	2
	2

	UNKNOWN
	UNKNOWN

	Route to the address is unknown.
	Route to the address is unknown.

	<TABLE ROW>
	3
	3

	DELETED
	DELETED

	Entry is marked for deletion.
	Entry is marked for deletion.

	<TABLE ROW>
	4
	4

	KNOWN
	KNOWN

	Route is known and the route is stored in the routing information string.
	Route is known and the route is stored in the routing information string.

	<TABLE ROW>
	5
	5

	EXPLORING
	EXPLORING

	Route to the address is currently being explored.
	Route to the address is currently being explored.

	The LAN address is returned in canonical format (that is, not bit-reversed). The timers are recor...
	• SS$_BUFFEROVF — The passed buffer is not large enough to hold all the data required for the ope...
	• SS$_BUFFEROVF — The passed buffer is not large enough to hold all the data required for the ope...
	• SS$_BUFFEROVF — The passed buffer is not large enough to hold all the data required for the ope...

	• SS$_BADPARAM — Not able to get read access to buffer or zero length buffer passed.
	• SS$_BADPARAM — Not able to get read access to buffer or zero length buffer passed.

	I/O Status Block
	I/O Status Block
	LAN drivers:I/O status block
	LAN drivers:I/O status block
	IOSBs (I/O status blocks) :LAN drivers

	Figure�9�21 IOSB Contents
	Figure�9�21 IOSB Contents
	<GRAPHIC>

	The first longword of the IOSB returns, in addition to the completion status, either the size (in...

	Application Programming Notes
	Application Programming Notes
	LAN drivers:programming notes
	LAN drivers:programming notes

	Promiscuous Mode
	Promiscuous Mode
	LAN drivers:promiscuous mode
	LAN drivers:promiscuous mode

	Table�9�47
	Table�9�47

	<TABLE>
	Table�9�47 Rules for Promiscuous Mode Operation�
	<TABLE HEADING>
	<TABLE ROW>
	I/O Function
	Rule

	<TABLE BODY>
	<TABLE ROW>
	IO$_SETMODE IO$_SETCHAR
	IO$_SETMODE IO$_SETCHAR

	It is not necessary to specify a unique identifier (a protocol type, SAP, or protocol identifier ...
	It is not necessary to specify a unique identifier (a protocol type, SAP, or protocol identifier ...
	The port cannot be running in shared mode.

	<TABLE ROW>
	IO$_WRITE
	IO$_WRITE

	The user can only transmit packets in the packet format previously specified with a set mode QIO ...
	The user can only transmit packets in the packet format previously specified with a set mode QIO ...

	<TABLE ROW>
	IO$_READ
	IO$_READ

	The LAN driver completes the promiscuous user's read requests with Ethernet, 802, and 802 extende...
	The LAN driver completes the promiscuous user's read requests with Ethernet, 802, and 802 extende...
	All Ethernet format packets are processed as if they have no size field specified after the proto...
	The promiscuous user should use the information returned in the P5 buffer to determine the packet...

	Local Area Network Programming Examples
	Local Area Network Programming Examples
	The VAX MACRO program LANETH.MAR (
	LAN drivers:IEEE 802 programming example
	LAN drivers:IEEE 802 programming example
	LAN drivers:programming example

	Example�9�3 LAN802.C Local Area Network Programming Example
	Example�9�3 LAN802.C Local Area Network Programming Example
	/*** * LAN Sample Test Program * * This...

	10 Optional Features for Improving I/O Performance
	10 Optional Features for Improving I/O Performance
	Fast I/O:system services
	Two features of OpenVMS Alpha and I64 provide dramatically improved I/O performance: Fast I/O and...
	The improvements follow a natural division that already exists between the device-independent and...
	Fast I/O and Fast Path can be used independently; however, together they can provide a 45 percent...
	Fast I/O
	Fast I/O
	Fast I/O is a set of three system services that were developed as a $QIO alternative built for sp...
	The Fast I/O services support 64-bit addresses for data transfers to and from disk and tape devices.
	While Fast I/O services are available on OpenVMS VAX, the performance advantage applies only to O...
	Fast I/O Benefits
	Fast I/O Benefits
	The performance benefits of Fast I/O result from streamlining high-volume I/O requests. The Fast ...
	The greatest benefits stem from having user data buffers and user I/O status structures permanent...
	• For direct I/O, avoid per-I/O buffer lockdown or unlocking.
	• For direct I/O, avoid per-I/O buffer lockdown or unlocking.
	• For direct I/O, avoid per-I/O buffer lockdown or unlocking.

	• For buffered I/O, avoid allocation and deallocation of a separate system buffer, because the us...
	• For buffered I/O, avoid allocation and deallocation of a separate system buffer, because the us...

	• Complete Fast I/O operations at IPL 8, thereby avoiding the interrupt chaining usually required...
	• Complete Fast I/O operations at IPL 8, thereby avoiding the interrupt chaining usually required...

	In total, Fast I/O services eliminate four spinlock acquisitions per I/O (two for the MMG spinloc...

	Using Buffer Objects
	Using Buffer Objects
	The lockdown of user-process data structures is accomplished by buffer objects. A “buffer object”...
	If the buffer object contains process data structures to be passed to an OpenVMS system service, ...
	To date, only the $QIO system service and the Fast I/O services have been changed to accept buffe...
	Two system services can be used to create and delete buffer objects, respectively, and can be cal...
	A 64-bit equivalent version of the $CREATE_BUFOBJ system service ($CREATE_BUFOBJ_64) can be used ...
	Buffer objects require system management. Because buffer objects tie up physical memory, extensiv...
	The MAXBOBMEM parameter defaults to 100 Alpha pages, but for applications with large buffer pools...
	There is currently a restriction on the type of process memory that can be used for buffer object...

	Differences Between Fast I/O Services and $QIO
	Differences Between Fast I/O Services and $QIO
	The precise definition of high-volume I/O operations optimized by Fast I/O services is important....
	• The $QIO system service I/O status block (IOSB) is replaced by an I/O status area (IOSA) that i...
	• The $QIO system service I/O status block (IOSB) is replaced by an I/O status area (IOSA) that i...
	• The $QIO system service I/O status block (IOSB) is replaced by an I/O status area (IOSA) that i...

	• User data buffers must be aligned to a 512-byte boundary.
	• User data buffers must be aligned to a 512-byte boundary.

	• All user process structures passed to the Fast I/O system services must reside in buffer object...
	• All user process structures passed to the Fast I/O system services must reside in buffer object...

	• Only transfers that are multiples of 512 bytes are supported.
	• Only transfers that are multiples of 512 bytes are supported.

	• Only the following function codes are supported: IO$_READVBLK, IO$_READLBLK, IO$_WRITEVBLK, and...
	• Only the following function codes are supported: IO$_READVBLK, IO$_READLBLK, IO$_WRITEVBLK, and...

	• Only I/O to disk and tape devices is optimized for performance.
	• Only I/O to disk and tape devices is optimized for performance.

	• No event flags are used with Fast I/O services. If application code must use an event flag in r...
	• No event flags are used with Fast I/O services. If application code must use an event flag in r...
	For example, Fast I/O services do not use EFNs, so the application cannot specify a valid EFN ass...

	• To minimize arguments passing overhead to these services, the $QIO parameters P3 through P6 are...
	• To minimize arguments passing overhead to these services, the $QIO parameters P3 through P6 are...

	• Segmented transfers are supported by Fast I/O but are not fully optimized. There are two major ...
	• Segmented transfers are supported by Fast I/O but are not fully optimized. There are two major ...
	A second cause of segmenting is issuing an I/O that exceeds the port's maximum limit for a single...

	Using Fast I/O Services
	Using Fast I/O Services
	The three Fast I/O system services are:
	• $IO_SETUP—-Sets up an I/O
	• $IO_SETUP—-Sets up an I/O
	• $IO_SETUP—-Sets up an I/O

	• $IO_PERFORM[W]—-Performs an I/O request
	• $IO_PERFORM[W]—-Performs an I/O request

	• $IO_CLEANUP—Cleans up an I/O request
	• $IO_CLEANUP—Cleans up an I/O request

	Fandle
	Using Fandles
	Using Fandles
	A key concept behind the operation of the Fast I/O services is the file handle or
	All possible setup, probing, and validation of arguments is performed off the mainline code path ...
	To perform an I/O, the $IO_PERFORM system service is called, specifying the fandle, the channel, ...
	If the asynchronous version of this system service, $IO_PERFORM, is used to issue the I/O, then t...
	To clean up a fandle, the fandle can be passed to the $IO_CLEANUP system service.

	Modifying Existing Applications
	Modifying Existing Applications
	Modifying an application to use the Fast I/O services requires a few source-code changes. For exa...
	1. � A programmer adds code to create buffer objects for the IOSAs and data buffers.
	1. � A programmer adds code to create buffer objects for the IOSAs and data buffers.
	1. � A programmer adds code to create buffer objects for the IOSAs and data buffers.

	2. � The programmer changes the application to use the Fast I/O services. Not all $QIOs need to b...
	2. � The programmer changes the application to use the Fast I/O services. Not all $QIOs need to b...
	A simple example is a “database writer” program, which writes modified pages back to the database...

	3. � In the main processing loop within the database writer program, the programmer replaces the ...
	3. � In the main processing loop within the database writer program, the programmer replaces the ...
	If the database writer routine cannot return until all dirty buffers are written (that is, it mus...
	The database writer will run faster and scale better because I/O requests now use less CPU time.

	4. � When the application exits, an $IO_CLEANUP system service call is done for each fandle retur...
	4. � When the application exits, an $IO_CLEANUP system service call is done for each fandle retur...

	I/O Status Area (IOSA)
	I/O Status Area (IOSA)
	The central point of synchronization for a given Fast I/O is its IOSA. The IOSA replaces the $QIO...
	The IOSA context field can be used in place of the $QIO system service ASTPRM argument. The $QIO ...

	$IO_SETUP
	$IO_SETUP
	The $IO_SETUP system service performs the setup of an I/O and returns a unique identifier for thi...
	The $IO_SETUP system service supports an expedite flag, which is available to boost the priority ...

	$IO_PERFORM[W]
	$IO_PERFORM[W]
	The $IO_PERFORM[W] system service accepts a fandle and five other variable I/O parameters for the...
	The CHAN argument to the fandle contains the data channel returned to the application by a previo...
	Note that $IO_PERFORM was designed to have no more than six arguments to take advantage of the

	$IO_CLEANUP
	$IO_CLEANUP
	A fandle can be cleaned up by passing the fandle to the $IO_CLEANUP system service.

	Fast I/O FDT Routine (ACP_STD$FASTIO_BLOCK)
	Fast I/O FDT Routine (ACP_STD$FASTIO_BLOCK)
	Because $IO_PERFORM supports only four function codes, this system service does not use the gener...
	If the DDT$PS_FAST_FDT field is zero, then the driver is not set up to handle Fast I/O operations...
	The OpenVMS disk and tape drivers that ship as part of OpenVMS Version 7.0 have added the followi...
	FAST_FDT=ACP_STD$FASTIO_BLOCK,- ; Fast-IO FDT routine
	This line initializes the DDT$PS_FAST_FDT field to the address of the standard Fast I/O FDT routi...
	If you have a disk or tape device driver that can handle Fast I/O operations, you can add this DD...

	Additional Information
	Additional Information
	Refer to the HP OpenVMS System Services Reference Manualfor additional information about the foll...
	• $CREATE_BUFOBJ
	• $CREATE_BUFOBJ
	• $CREATE_BUFOBJ

	• $DELETE_BUFOBJ
	• $DELETE_BUFOBJ

	• $CREATE_BUFOBJ_64
	• $CREATE_BUFOBJ_64

	• $IO_SETUP
	• $IO_SETUP

	• $IO_PERFORM
	• $IO_PERFORM

	• $IO_CLEANUP
	• $IO_CLEANUP

	To see a sample program that demonstrates the use of buffer objects and the Fast I/O system servi...

	Fast Path (Alpha and I64 Only)
	Fast Path (Alpha and I64 Only)
	Fast Path
	Fast Path is an optional feature designed to improve I/O performance. There are three factors whi...
	1. � Time spent by a CPU waiting for memory to be faulted into its cache.
	1. � Time spent by a CPU waiting for memory to be faulted into its cache.
	2. � Contention for the SCS/IOLOCK8 spinlock.
	3. � Contention for the primary CPU on which all I/O completion is processed.

	Fast Path addresses these factors as follows:
	1. � Select a secondary CPU for a given device or port. and cause all I/O for that device to orig...
	1. � Select a secondary CPU for a given device or port. and cause all I/O for that device to orig...
	2. � Replace dependence upon SCS/IOLOCK8 spinlock by providing a port-specific spinlock whenever ...
	3. � For the most common I/O requests, preallocate resources and provide an optimized path throug...

	Using Fast Path features does not require source-code changes. It does require major changes to d...
	Table�10�1
	Table�10�1

	<TABLE>
	Table�10�1 Supported Ports for Each Version of OpenVMS Alpha and I64�
	<TABLE HEADING>
	<TABLE ROW>
	Version
	Supported Ports

	<TABLE BODY>
	<TABLE ROW>
	7.3-2
	7.3-2

	SMART Array 53xx, many LAN devices
	SMART Array 53xx, many LAN devices

	<TABLE ROW>
	7.3-1
	7.3-1

	KZPEA
	KZPEA

	<TABLE ROW>
	7.3
	7.3

	CIXCD, CIPCA, KGPSA, KZPBA
	CIXCD, CIPCA, KGPSA, KZPBA

	<TABLE ROW>
	7.1
	7.1

	CIXCD, CIPCA
	CIXCD, CIPCA

	<TABLE ROW>
	7.0
	7.0

	CIXCD
	CIXCD

	Hardware interrupts :preferred CPU
	Fast Path performance enhancement
	Prior to OpenVMS Alpha Version 7.3-1, all hardware interrupts took place on the primary CPU. Inte...
	Starting with OpenVMS Alpha Version 7.3-1, hardware interrupts that are targetted for a ''preferr...
	NOTE This feature is available on Fibre Channel, CI, and some SCSI ports on AlphaServer DS20, ES4...
	NOTE This feature is available on Fibre Channel, CI, and some SCSI ports on AlphaServer DS20, ES4...

	For more information about Fibre Channel, SCSI, and CI configurations, refer to Guidelines for Op...
	Using Fast Path Features
	Using Fast Path Features
	Preferred CPU Selection
	Preferred CPU Selection

	All Fast Path ports are assignable to CPUs. You can set a system parameter specifying the set of ...
	Each Fast Path Port is initially assigned to a CPU by the
	If the primary CPU is in the set of allowable CPUs, the initial distribution will be biased again...
	To identify a device or port's current preferred CPU, you can use either $GETDVI or the SHOW DEVI...
	You can directly assign a Fast Path port to a CPU, or request the system to automatically select ...
	You can clear the port's User Preferred CPU by issuing either a $QIO, or by using the SET DEVICE/...
	You can redistribute the system assignable Fast Path ports across a subset of the set of usable C...
	Optimizing Application Performance
	Optimizing Application Performance

	Processes running on a port's preferred CPU have an inherent advantage when issuing I/O to a port...
	With proper attention to assignment, a process's execution need never leave the preferred CPU. Th...

	Managing Fast Path
	Managing Fast Path
	This section describes how to manage Fast Path.
	Fast Path System Parameters
	Fast Path System Parameters
	There are three FAST_PATH system parameters:
	• FAST_PATH
	• FAST_PATH
	• FAST_PATH

	• FAST_PATH_PORTS
	• FAST_PATH_PORTS

	• IO_PREFER_CPUS
	• IO_PREFER_CPUS

	These parameters can be used to control Fast Path as follows:
	FAST_PATH
	FAST_PATH
	FAST_PATH
	FAST_PATH is a static system parameter that enables (1) or disables (0) the Fast Path performance...
	FAST_PATH is a static system parameter that enables (1) or disables (0) the Fast Path performance...
	Fast Path is enabled by default.

	FAST_PATH_PORTS
	FAST_PATH_PORTS
	FAST_PATH_PORTS is a 32-bit mask. Once Fast Path has been enabled by setting FAST_PATH to 1, FAST...
	FAST_PATH_PORTS is a 32-bit mask. Once Fast Path has been enabled by setting FAST_PATH to 1, FAST...
	The value of the FAST_PATH_PORTS system parameter is the sum of the values of the bits that have ...
	<TABLE>
	Table�10�2 FAST_PATH_PORTS Bit Masks�
	<TABLE HEADING>
	<TABLE ROW>
	Bit
	Mask
	Description

	<TABLE BODY>
	<TABLE ROW>
	0
	0

	00000001
	00000001

	0 = Fast Path is ENABLED for KZPBA ports when FAST_PATH is set to 1.
	0 = Fast Path is ENABLED for KZPBA ports when FAST_PATH is set to 1.

	<TABLE ROW>
	1 = Fast Path is DISABLED for KZPBA ports.
	1 = Fast Path is DISABLED for KZPBA ports.

	<TABLE ROW>
	1
	1

	00000002
	00000002

	0 = Fast Path is ENABLED for KGPSA ports when FAST_PATH is set to 1.
	0 = Fast Path is ENABLED for KGPSA ports when FAST_PATH is set to 1.

	<TABLE ROW>
	1 = Fast Path is DISABLED for KGPSA ports.
	1 = Fast Path is DISABLED for KGPSA ports.

	<TABLE ROW>
	2
	2

	00000004
	00000004

	0 = Fast Path is ENABLED for KZPEA ports when FAST_PATH is set to 1.
	0 = Fast Path is ENABLED for KZPEA ports when FAST_PATH is set to 1.

	<TABLE ROW>
	1 = Fast Path is DISABLED for KZPEA ports.
	1 = Fast Path is DISABLED for KZPEA ports.

	<TABLE ROW>
	3
	3

	00000008
	00000008

	0 = Fast Path is ENABLED for LAN ports when FAST_PATH is set to 1.
	0 = Fast Path is ENABLED for LAN ports when FAST_PATH is set to 1.

	<TABLE ROW>
	1 = Fast Path is DISABLED for LAN ports.
	1 = Fast Path is DISABLED for LAN ports.

	<TABLE ROW>
	4
	4

	00000010
	00000010

	0 = Fast Path is ENABLED for KZPDC ports when FAST_PATH is set to 1.
	0 = Fast Path is ENABLED for KZPDC ports when FAST_PATH is set to 1.

	<TABLE ROW>
	1 = Fast Path is DISABLED for KZPDC ports.
	1 = Fast Path is DISABLED for KZPDC ports.

	The remaining bits are reserved for possible future adapter types.
	The default setting for FAST_PATH_PORTS is 0; therefore, all supported ports are enabled.
	Note that CI drivers are not controlled by FAST_PATH_PORTS. Fast Path for CI is enabled and disab...

	IO_PREFER_CPUS
	IO_PREFER_CPUS
	IO_PREFER_CPUS is a dynamic system parameter that controls the set of CPUs available for use as F...
	IO_PREFER_CPUS is a dynamic system parameter that controls the set of CPUs available for use as F...
	IO_PREFER_CPUS is a CPU bit mask specifying the CPUs that are allowed to serve as preferred CPUs ...
	You may want to disable the primary CPU from serving as a preferred CPU by clearing its bit in IO...
	Changing the value of IO_PREFER_CPUS causes the FASTPATH_SERVER process to execute the automatic ...

	Identifying and Setting a Port's Preferred CPU
	Identifying and Setting a Port's Preferred CPU
	Following are the commands used to identify and set a preferred CPU for a port.
	DCL SHOW DEVICE/FULL or $GETDVI DVI$_PREFERRED_CPU
	DCL SHOW DEVICE/FULL or $GETDVI DVI$_PREFERRED_CPU
	DCL SHOW DEVICE/FULL or $GETDVI DVI$_PREFERRED_CPU
	To identify the preferred CPU for any Fast Path-capable device when Fast Path is enabled, use the...
	Alternatively, the $GETDVI system service or the DCL F$GETDVI lexical function will return the pr...
	For an application seeking optimal Fast Path benefits, you can code each application process to i...
	A high-availability feature of OpenVMS Cluster Systems is that dual-pathed devices automatically ...

	DCL SHOW CPU /FULL
	DCL SHOW CPU /FULL
	You can use this DCL command to identify whether a CPU is enabled for use as a preferred CPU, and...
	You can use this DCL command to identify whether a CPU is enabled for use as a preferred CPU, and...

	DCL SET /PREFERRED_CPU and /NOPREFERRED_CPU
	DCL SET /PREFERRED_CPU and /NOPREFERRED_CPU
	These commands allow you to specify a CPU or a set of candidate CPUs from which the operating sys...
	In addition to selecting the preferred CPU, the User Preferred CPU will be set for this port. Set...
	If both /PREFERRED_CPUS and /NOPREFERRED_CPUS are specified on the same command line, /NOPREFERRE...

	$QIO IO$_SETPRFPATH ! IO$M_PREFERRED_CPU [!IO$M_SYS_ASSIGNABLE]
	$QIO IO$_SETPRFPATH ! IO$M_PREFERRED_CPU [!IO$M_SYS_ASSIGNABLE]
	You can change the assignment of a Fast Path port to a CPU by issuing a $QIO IO$_SETPRFPATH (Set ...
	The $QIO passes in either a set containing one or more candidate CPUs, or 0 as a wildcard value i...
	Including the IO$M_SYS_ASSIGNABLE modifier inhibits setting the selected CPU as the device's User...
	The $QIO or the SET DEVICE/PREFERRED_CPU command will make a best effort to assign the port to a ...
	• There is no intersection between the candidate set and the node's set of usable CPUs.
	• There is no intersection between the candidate set and the node's set of usable CPUs.
	• There is no intersection between the candidate set and the node's set of usable CPUs.

	• There is resource contention. If after a reasonable effort the request is unable to acquire a k...
	• There is resource contention. If after a reasonable effort the request is unable to acquire a k...

	If the $QIO or SET DEVICE/PREFERRED_CPU returns failure, you should consider retrying either imme...

	$IO_FASTPATH
	$IO_FASTPATH
	The $IO_FASTPATH system service performs operations on the set of Fast Path devices and CPUs enab...
	The $IO_FASTPATH system service performs operations on the set of Fast Path devices and CPUs enab...
	The FP$K_BALANCE_PORTS function code specifies that the system service is to distribute the set o...

	Fast Path Restrictions
	Fast Path Restrictions
	Fast Path restrictions include the following:
	• Only high-volume I/Os are optimized.
	• Only high-volume I/Os are optimized.
	• Only high-volume I/Os are optimized.
	Fast Path streamlines the operation of high-volume I/O. I/O that does not meet the definition of ...
	A high-volume Fast Path I/O is a read or write operation to a Fast Path device without special I/...

	• Send-credits resource must be managed for DSA controllers.
	• Send-credits resource must be managed for DSA controllers.
	Applications seeking maximum performance must ensure the availability of sufficient I/O resources.
	The only I/O resource that a Fast Path user needs to be concerned about is send credits. Send cre...
	You can tell whether the send-credit limit is being exceeded by using the DCL command SHOW CLUSTE...
	To ensure sufficient send credits, some controllers, like the HSC and HSJ, allow the number of se...
	If the number of send credits is being exhausted on one node, then add another controller to spre...

	Resource Affinity Domains (RADs) support
	RADs support<IndexSee> See also </>See Resource Affinity Domains support

	Special Considerations for Fast Path on Multi-RAD Systems
	Special Considerations for Fast Path on Multi-RAD Systems
	On systems supporting multiple resource affinity domains (RADs), the best performance for Fast Pa...
	The FASTPATH_SERVER restricts its distribution of ports accordingly whenever possible. If a port ...
	Because you can override this assignment by the methods described in this chapter, care should be...

	A I/O Function Codes
	A I/O Function Codes
	This appendix lists the function codes and function modifiers defined in the $IODEF macro. The ar...
	ACP-QIO Interface Driver
	ACP-QIO Interface Driver
	ACP-QIO interface:function codes
	Function codes<IndexSee> See also </>See also I/O functions
	This section lists the function codes and function modifiers for the ACP-QIO interface driver.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Functions
	Arguments
	Modifiers

	<TABLE BODY>
	<TABLE ROW>
	IO$_CREATE IO$_ACCESS IO$_DEACCESS IO$_MODIFY IO$_DELETE IO$_ACPCONTROL
	IO$_CREATE IO$_ACCESS IO$_DEACCESS IO$_MODIFY IO$_DELETE IO$_ACPCONTROL

	P1 — FIB descriptor address
	P1 — FIB descriptor address
	P2 — file name string address
	P3 — result string length address
	P4 — result string descriptor address
	P5 — attribute list address

	IO$M_CREATE IO$M_ACCESS1 IO$M_DELETE IO$M_DMOUNT
	IO$M_CREATE

	<TABLE ROW>
	IO$_MOUNT
	IO$_MOUNT

	None
	None

	None
	None

	ACP-QIO interface:status returns
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	QIO Status Returns

	<TABLE BODY>
	<TABLE ROW>
	SS$_ACCONFLICT
	SS$_ACCONFLICT
	SS$_ACCONFLICT return
	SS$_ACPVAFUL return
	SS$_BADATTRIB return

	SS$_ACPVAFUL
	SS$_ACPVAFUL

	SS$_BADATTRIB
	SS$_BADATTRIB

	<TABLE ROW>
	SS$_BADCHKSUM
	SS$_BADCHKSUM
	SS$_BADCHKSUM return
	SS$_BADFILEHDR return
	SS$_BADFILENAME return

	SS$_BADFILEHDR
	SS$_BADFILEHDR

	SS$_BADFILENAME
	SS$_BADFILENAME

	<TABLE ROW>
	SS$_BADFILEVER
	SS$_BADFILEVER
	SS$_BADFILEVER return
	SS$_BADIRECTORY return
	SS$_BADPARAM return

	SS$_BADIRECTORY
	SS$_BADIRECTORY

	SS$_BADPARAM
	SS$_BADPARAM

	<TABLE ROW>
	SS$_BADQFILE
	SS$_BADQFILE
	SS$_BADQFILE return
	SS$_BLOCKCNTERR return
	SS$_CREATED return

	SS$_BLOCKCNTERR
	SS$_BLOCKCNTERR

	SS$_CREATED
	SS$_CREATED

	<TABLE ROW>
	SS$_DEVICEFULL
	SS$_DEVICEFULL
	SS$_DEVICEFULL return
	SS$_DIRFULL return
	SS$_DIRNOTEMPTY return

	SS$_DIRFULL
	SS$_DIRFULL

	SS$_DIRNOTEMPTY
	SS$_DIRNOTEMPTY

	<TABLE ROW>
	SS$_DUPDSKQUOTA
	SS$_DUPDSKQUOTA
	SS$_DUPDSKQUOTA return
	SS$_DUPFILENAME return
	SS$_ENDOFFILE return

	SS$_DUPFILENAME
	SS$_DUPFILENAME

	SS$_ENDOFFILE
	SS$_ENDOFFILE

	<TABLE ROW>
	SS$_EXBYTLM
	SS$_EXBYTLM
	SS$_EXBYTLM return
	SS$_EXDISKQUOTA return
	SS$_FCPREADERR return

	SS$_EXDISKQUOTA
	SS$_EXDISKQUOTA

	SS$_FCPREADERR
	SS$_FCPREADERR

	<TABLE ROW>
	SS$_FCPREWNDERR
	SS$_FCPREWNDERR
	SS$_FCPREWNDERR return
	SS$_FCPSPACERR return
	SS$_FCPWRITERR return

	SS$_FCPSPACERR
	SS$_FCPSPACERR

	SS$_FCPWRITERR
	SS$_FCPWRITERR

	<TABLE ROW>
	SS$_FILELOCKED
	SS$_FILELOCKED
	SS$_FILELOCKED return
	SS$_FILENUMCHK return
	SS$_FILEPURGED return

	SS$_FILENUMCHK
	SS$_FILENUMCHK

	SS$_FILEPURGED
	SS$_FILEPURGED

	<TABLE ROW>
	SS$_FILESEQCHK
	SS$_FILESEQCHK
	SS$_FILESEQCHK return
	SS$_FILESTRUCT return
	SS$_FILNOTEXP return

	SS$_FILESTRUCT
	SS$_FILESTRUCT

	SS$_FILNOTEXP
	SS$_FILNOTEXP

	<TABLE ROW>
	SS$_HEADERFULL
	SS$_HEADERFULL
	SS$_HEADERFULL return
	SS$_IBCERROR return
	SS$_IDXFILEFULL return

	SS$_IBCERROR
	SS$_IBCERROR

	SS$_IDXFILEFULL
	SS$_IDXFILEFULL

	<TABLE ROW>
	SS$_ILLCNTRFUNC
	SS$_ILLCNTRFUNC
	SS$_ILLCNTRFUNC return
	SS$_NODISKQUOTA return
	SS$_NOMOREFILES return

	SS$_NODISKQUOTA
	SS$_NODISKQUOTA

	SS$_NOMOREFILES
	SS$_NOMOREFILES

	<TABLE ROW>
	SS$_NOPRIV
	SS$_NOPRIV
	SS$_NOPRIV return
	SS$_NOQFILE return
	SS$_NOSUCHFILE return

	SS$_NOQFILE
	SS$_NOQFILE

	SS$_NOSUCHFILE
	SS$_NOSUCHFILE

	<TABLE ROW>
	SS$_NOTAPEOP
	SS$_NOTAPEOP
	SS$_NOTAPEOP return
	SS$_NOTLABELMT return
	SS$_NOTPRINTED return

	SS$_NOTLABELMT
	SS$_NOTLABELMT

	SS$_NOTPRINTED
	SS$_NOTPRINTED

	<TABLE ROW>
	SS$_NOTVOLSET
	SS$_NOTVOLSET
	SS$_NOTVOLSET return
	SS$_OVRDSKQUOTA return
	SS$_QFACTIVE return

	SS$_OVRDSKQUOTA
	SS$_OVRDSKQUOTA

	SS$_QFACTIVE
	SS$_QFACTIVE

	<TABLE ROW>
	SS$_QFNOTACT
	SS$_QFNOTACT
	SS$_QFNOTACT return
	SS$_SERIOUSEXCP return
	SS$_SUPERSEDE return

	SS$_SERIOUSEXCP
	SS$_SERIOUSEXCP

	SS$_SUPERSEDE
	SS$_SUPERSEDE

	<TABLE ROW>
	SS$_TAPEPOSLOST
	SS$_TAPEPOSLOST
	SS$_TAPEPOSLOST return
	SS$_TOOMANYVER return
	SS$_WRITLCK return

	SS$_TOOMANYVER
	SS$_TOOMANYVER

	SS$_WRITLCK
	SS$_WRITLCK

	<TABLE ROW>
	SS$_WRONGACP
	SS$_WRONGACP
	SS$_WRONGACP return

	Disk Drivers
	Disk Drivers
	Disks:function codes
	This section lists the function codes and function modifiers for the disk drivers.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Functions
	Arguments
	Modifiers

	<TABLE BODY>
	<TABLE ROW>
	IO$_READVBLK IO$_READLBLK IO$_READPBLK IO$_WRITEVBLK IO$_WRITELBLK IO$_WRITEPBLK
	IO$_READVBLK IO$_READLBLK IO$_READPBLK IO$_WRITEVBLK IO$_WRITELBLK IO$_WRITEPBLK

	P1 — buffer address
	P1 — buffer address
	P2 — byte count P3 — disk address

	IO$M_INHSEEK IO$M_DATACHECK IO$M_DELDATA IO$M_INHRETRY IO$M_ERASE
	IO$M_INHSEEK

	<TABLE ROW>
	IO$_WRITECHECK
	IO$_WRITECHECK

	P1 — buffer address
	P1 — buffer address
	P2 — byte count P3 — disk address

	None
	None

	<TABLE ROW>
	IO$_SENSECHAR IO$_SENSEMODE IO$_PACKACK IO$_AVAILABLE IO$_UNLOAD
	IO$_SENSECHAR IO$_SENSEMODE IO$_PACKACK IO$_AVAILABLE IO$_UNLOAD

	None
	None

	None
	None

	<TABLE ROW>
	IO$_SEARCH
	IO$_SEARCH

	P1 — read/write head position
	P1 — read/write head position

	None
	None

	<TABLE ROW>
	IO$_SEEK
	IO$_SEEK

	P1 — seek to specified cylinder
	P1 — seek to specified cylinder

	None
	None

	<TABLE ROW>
	IO$_FORMAT
	IO$_FORMAT

	P1 — RX02 density
	P1 — RX02 density

	None
	None

	<TABLE ROW>
	IO$_SETPRFPATH
	IO$_SETPRFPATH

	P1 — node or HSx name
	P1 — node or HSx name

	IO$_FORCEPATH
	IO$_FORCEPATH

	<TABLE ROW>
	IO$_CREATE IO$_ACCESS IO$_DEACCESS IO$_MODIFY IO$_DELETE IO$_ACPCONTROL
	IO$_CREATE IO$_ACCESS IO$_DEACCESS IO$_MODIFY IO$_DELETE IO$_ACPCONTROL

	P1 — FIB descriptor address
	P1 — FIB descriptor address
	P2 — file name string address
	P3 — result string length address
	P4 — result string descriptor address
	P5 — attribute list address

	IO$M_CREATE IO$M_ACCESS IO$M_DELETE IO$M_DMOUNT
	IO$M_CREATE IO$M_ACCESS IO$M_DELETE IO$M_DMOUNT

	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	QIO Status Returns

	<TABLE BODY>
	<TABLE ROW>
	SS$_ABORT
	SS$_ABORT
	Disks:status returns
	SS$_ABORT return
	SS$_CANCEL return
	SS$_CTRLERR return

	SS$_CANCEL
	SS$_CANCEL

	SS$_CTRLERR
	SS$_CTRLERR

	<TABLE ROW>
	SS$_DATACHECK
	SS$_DATACHECK
	SS$_DATACHECK return
	SS$_DATAOVERUN return
	SS$_DRVERR return

	SS$_DATAOVERUN
	SS$_DATAOVERUN

	SS$_DRVERR
	SS$_DRVERR

	<TABLE ROW>
	SS$_FORCEDERR
	SS$_FORCEDERR
	SS$_FORMAT return
	SS$_FORCEDERR return
	SS$_ILLIOFUNC return
	SS$_IVADDR return

	SS$_FORMAT
	SS$_FORMAT

	SS$_ILLIOFUNC
	SS$_ILLIOFUNC

	<TABLE ROW>
	SS$_IVADDR
	SS$_IVADDR
	SS$_IVBUFLEN return
	SS$_MEDOFL return
	SS$_NONEXDRV return

	SS$_IVBUFLEN
	SS$_IVBUFLEN

	SS$_MEDOFL
	SS$_MEDOFL

	<TABLE ROW>
	SS$_NONEXDRV
	SS$_NONEXDRV
	SS$_NORMAL return
	SS$_OPINCOMPL return
	SS$_PARITY return
	SS$_RCT return

	SS$_NORMAL
	SS$_NORMAL

	SS$_OPINCOMPL
	SS$_OPINCOMPL

	<TABLE ROW>
	SS$_PARITY
	SS$_PARITY

	SS$_RCT
	SS$_RCT

	SS$_RDDELDATA
	SS$_RDDELDATA

	<TABLE ROW>
	SS$_TIMEOUT
	SS$_TIMEOUT
	SS$_RDDELDATA return
	SS$_TIMEOUT return
	SS$_UNSAFE return

	SS$_UNSAFE
	SS$_UNSAFE

	SS$_VOLINV
	SS$_VOLINV

	<TABLE ROW>
	SS$_WASECC
	SS$_WASECC
	SS$_VOLINV return
	SS$_WASECC return
	SS$_WRITLCK return

	SS$_WRITLCK
	SS$_WRITLCK

	Magnetic Tape Drivers
	Magnetic Tape Drivers
	Magnetic tapes:function codes
	This section lists the function codes and function modifiers for the magnetic tape drivers.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Functions
	Arguments
	Modifiers

	<TABLE BODY>
	<TABLE ROW>
	IO$_READVBLK IO$_READLBLK IO$_READPBLK
	IO$_READVBLK IO$_READLBLK IO$_READPBLK

	P1 — buffer address P2 — byte count
	P1 — buffer address P2 — byte count

	IO$M_DATACHECK
	IO$M_DATACHECK
	IO$M_INHRETRY
	IO$M_REVERSE

	<TABLE ROW>
	IO$_WRITEVBLK IO$_WRITELBLK IO$_WRITEPBLK
	IO$_WRITEVBLK IO$_WRITELBLK IO$_WRITEPBLK

	P1 — buffer address
	P1 — buffer address
	P2 — byte count

	IO$M_DATACHECK1
	IO$M_DATACHECK
	IO$M_INHRETRY
	IO$M_INHEXTGAP
	IO$M_NOWAIT
	IO$M_ERASE

	<TABLE ROW>
	IO$_SETMODE IO$_SETCHAR
	IO$_SETMODE IO$_SETCHAR

	P1 — characteristics buffer address
	P1 — characteristics buffer address
	P2 — characteristics buffer length

	<TABLE ROW>
	IO$_CREATE IO$_ACCESS IO$_DEACCESS IO$_MODIFY IO$_ACPCONTROL
	IO$_CREATE IO$_ACCESS IO$_DEACCESS IO$_MODIFY IO$_ACPCONTROL

	P1 — FIB descriptor address
	P1 — FIB descriptor address
	P2 — file name string address
	P3 — result string length address
	P4 — result string descriptor address
	P5 — attribute list address

	IO$M_CREATE
	IO$M_CREATE
	IO$M_ACCESS
	IO$M_DMOUNT

	<TABLE ROW>
	IO$_SKIPFILE
	IO$_SKIPFILE

	P1 — skip n tape marks
	P1 — skip n tape marks

	IO$M_ALLOWFAST
	IO$M_ALLOWFAST
	IO$M_INHRETRY
	IO$M_NOWAIT

	<TABLE ROW>
	IO$_SKIPRECORD
	IO$_SKIPRECORD

	P1 — skip n blocks
	P1 — skip n blocks

	IO$M_INHRETRY
	IO$M_INHRETRY
	IO$M_NOWAIT

	<TABLE ROW>
	IO$_REWIND IO$_REWINDOFF IO$_UNLOAD
	IO$_REWIND IO$_REWINDOFF IO$_UNLOAD

	None
	None

	IO$M_INHRETRY
	IO$M_INHRETRY
	IO$M_NOWAIT
	IO$M_RETENSION

	<TABLE ROW>
	IO$_WRITEOF
	IO$_WRITEOF

	None
	None

	IO$M_INHEXTGAP3
	IO$M_INHEXTGAP
	IO$M_INHRETRY
	IO$M_NOWAIT

	<TABLE ROW>
	IO$_SENSEMODE IO$_SENSECHAR
	IO$_SENSEMODE IO$_SENSECHAR

	P1 — characteristics buffer address6
	P1 — characteristics buffer address
	P2 — characteristics buffer length

	IO$M_INHRETRY
	IO$M_INHRETRY

	<TABLE ROW>
	IO$_DSE
	IO$_DSE
	IO$_PACKACK IO$_AVAILABLE

	None
	None

	None
	None

	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	QIO Status Returns

	<TABLE BODY>
	<TABLE ROW>
	SS$_ABORT
	SS$_ABORT
	SS$_ABORT return
	SS$_CANCEL return
	SS$_CTRLERR return

	SS$_CANCEL
	SS$_CANCEL

	SS$_CTRLERR
	SS$_CTRLERR

	<TABLE ROW>
	SS$_DATACHECK
	SS$_DATACHECK
	SS$_DATACHECK return
	SS$_DATAOVERUN return
	SS$_DEVOFFLINE return

	SS$_DATAOVERUN
	SS$_DATAOVERUN

	SS$_DEVOFFLINE
	SS$_DEVOFFLINE

	<TABLE ROW>
	SS$_DRVERR
	SS$_DRVERR
	SS$_DRVERR return
	SS$_ENDOFFILE return:magnetic tape status return
	SS$_ENDOFTAPE return

	SS$_ENDOFFILE
	SS$_ENDOFFILE

	SS$_ENDOFTAPE
	SS$_ENDOFTAPE

	<TABLE ROW>
	SS$_ENDOFVOLUME
	SS$_ENDOFVOLUME
	SS$_ENDOFVOLUME return
	SS$_FORMAT return
	SS$_ILLIOFUNC return

	SS$_FORMAT
	SS$_FORMAT

	SS$_ILLIOFUNC
	SS$_ILLIOFUNC

	<TABLE ROW>
	SS$_MEDOFL
	SS$_MEDOFL
	SS$_MEDOFL return
	SS$_NONEXDRV return
	SS$_NORMAL return

	SS$_NONEXDRV
	SS$_NONEXDRV

	SS$_NORMAL
	SS$_NORMAL

	<TABLE ROW>
	SS$_OPINCOMPL
	SS$_OPINCOMPL
	SS$_OPINCOMPL return
	SS$_PARITY return
	SS$_SERIOUSEXCP return

	SS$_PARITY
	SS$_PARITY

	SS$_SERIOUSEXCP
	SS$_SERIOUSEXCP

	<TABLE ROW>
	SS$_TIMEOUT
	SS$_TIMEOUT
	SS$_TIMEOUT return
	SS$_UNSAFE return
	SS$_VOLINV return

	SS$_UNSAFE
	SS$_UNSAFE

	SS$_VOLINV
	SS$_VOLINV

	<TABLE ROW>
	SS$_WRITLCK
	SS$_WRITLCK
	SS$_WRITLCK return

	Mailbox Driver
	Mailbox Driver
	Mailboxes:function codes
	This section lists the function codes and function modifiers for the mailbox driver.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Functions
	Arguments
	Modifiers

	<TABLE BODY>
	<TABLE ROW>
	IO$_READVBLK IO$_READLBLK IO$_READPBLK IO$_WRITEVBLK IO$_WRITELBLK IO$_WRITEPBLK
	IO$_READVBLK IO$_READLBLK IO$_READPBLK IO$_WRITEVBLK IO$_WRITELBLK IO$_WRITEPBLK

	P1 — buffer address
	P1 — buffer address
	P2 — buffer size

	IO$M_NOW IO$M_NORSWAIT IO$M_READERCHECK1 IO$M_WRITERCHECK IO$M_STREAM2
	IO$M_NOW IO$M_NORSWAIT

	<TABLE ROW>
	IO$_WRITEOF
	IO$_WRITEOF

	None
	None

	IO$M_NOW IO$M_READERCHECK IO$M_STREAM
	IO$M_NOW IO$M_READERCHECK IO$M_STREAM

	<TABLE ROW>
	IO$_SETMODE!IO$M_READATTN IO$_SETMODE!IO$M_WRTATTN IO$_SETMODE!IO$MB_ROOM_NOTIFY
	IO$_SETMODE!IO$M_READATTN IO$_SETMODE!IO$M_WRTATTN IO$_SETMODE!IO$MB_ROOM_NOTIFY

	P1 — AST address
	P1 — AST address
	P2 — AST parameter
	P3 — access mode

	None
	None

	<TABLE ROW>
	IO$_SETMODE!IO$M_READERWAIT
	IO$_SETMODE!IO$M_READERWAIT
	IO$_SETMODE!IO$M_WRITERWAIT

	None
	None

	None
	None

	<TABLE ROW>
	IO$_SETMODE!IO$M_SETPROT
	IO$_SETMODE!IO$M_SETPROT

	P2 — volume protection mask
	P2 — volume protection mask

	None
	None

	<TABLE ROW>
	IO$_SENSEMODE!IO$M_READERCHECK3
	IO$_SENSEMODE!IO$M_READERCHECK
	IO$_SENSEMODE!IO$M_WRITERCHECK

	None
	None

	None
	None

	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	QIO Status Returns in R0

	<TABLE BODY>
	<TABLE ROW>
	SS$_ACCVIO
	SS$_ACCVIO

	SS$_EXQUOTA
	SS$_EXQUOTA

	SS$_ILLIOFUNC
	SS$_ILLIOFUNC

	SS$INSFMEM
	SS$INSFMEM

	<TABLE ROW>
	SS$MBFULL
	SS$MBFULL
	Mailboxes:status returns
	SS$_BUFFEROVF return

	SS$_MBTOOSML
	SS$_MBTOOSML

	SS$_NOPRIV
	SS$_NOPRIV

	SS$_NORMAL
	SS$_NORMAL

	SS$_ACCVIO return
	SS$_EXQUOTA return
	SS$_ILLIOFUNC return
	SS$_INSFMEM return
	SS$_MBFULL return
	SS$_MBTOOSML return
	SS$_NOPRIV return
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	IOSB Status Returns

	<TABLE BODY>
	<TABLE ROW>
	SS$_ABORT
	SS$_ABORT

	SS$_BUFFEROVF
	SS$_BUFFEROVF

	SS$_CANCEL
	SS$_CANCEL

	SS$_ENDOFFILE
	SS$_ENDOFFILE

	<TABLE ROW>
	SS$_NOREADER
	SS$_NOREADER

	SS$_NORMAL
	SS$_NORMAL

	SS$_NOWRITER
	SS$_NOWRITER

	SS$_ABORT return
	SS$_BUFFEROVF return
	SS$_CANCEL return
	SS$_ENDOFFILE return:mailbox status return
	SS$_NOREADER return
	SS$_NOWRITER return

	Terminal Driver
	Terminal Driver
	Terminals:function codes
	This section lists the function codes and function modifiers for the terminal driver.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Functions
	Arguments
	Modifiers

	<TABLE BODY>
	<TABLE ROW>
	IO$_READVBLK IO$_READLBLK IO$_READPROMPT
	IO$_READVBLK IO$_READLBLK IO$_READPROMPT

	P1 — buffer address
	P1 — buffer address
	P2 — buffer size
	P3 — timeout
	P4 — read terminator block address
	P5 — prompt string buffer address
	P6 — prompt string buffer size

	IO$M_NOECHO
	IO$M_NOECHO
	IO$M_CVTLOW
	IO$M_NOFILTR
	IO$M_TIMED IO$M_PURGE IO$M_DSABLMBX IO$M_TRMNOECHO
	IO$M_ESCAPE

	<TABLE ROW>
	IO$_READVBLK
	IO$_READVBLK

	P1 — buffer address
	P1 — buffer address
	P2 — buffer size
	P3 — access mode to probe itemlist
	P4 — (zero)
	P5 — itemlist buffer address
	P6 — itemlist buffer size

	IO$M_EXTEND
	IO$M_EXTEND

	<TABLE ROW>
	IO$_WRITEVBLK IO$_WRITELBLK IO$_WRITEPBLK
	IO$_WRITEVBLK IO$_WRITELBLK IO$_WRITEPBLK

	P1 — buffer address
	P1 — buffer address
	P2 — buffer size
	P3 — (ignored)
	P4 — carriage control specifier

	IO$M_CANCTRLO IO$M_ENABLMBX IO$M_NOFORMAT
	IO$M_CANCTRLO IO$M_ENABLMBX IO$M_NOFORMAT
	IO$M_REFRESH IO$M_BREAKTHRU

	<TABLE ROW>
	IO$_SETMODE IO$_SETCHAR
	IO$_SETMODE IO$_SETCHAR

	P1 — characteristics buffer address
	P1 — characteristics buffer address
	P2 — characteristics buffer size
	P3 — speed specifier
	P4 — fill specifier
	P5 — parity flags

	<TABLE ROW>
	IO$_SETMODE IO$_SETCHAR
	IO$_SETMODE IO$_SETCHAR

	None
	None

	IO$M_HANGUP
	IO$M_HANGUP

	<TABLE ROW>
	IO$_SETMODE
	IO$_SETMODE

	P1 — buffer address
	P1 — buffer address
	P2 — buffer size

	IO$M_BRDCST
	IO$M_BRDCST

	<TABLE ROW>
	IO$_SETMODE IO$_SETCHAR
	IO$_SETMODE IO$_SETCHAR

	P1 — AST service routine address
	P1 — AST service routine address
	P2 — AST parameter
	P3 — access mode to deliver AST

	IO$M_CTRLCAST
	IO$M_CTRLCAST
	IO$M_CTRLYAST

	<TABLE ROW>
	IO$_SETMODE IO$_SETCHAR
	IO$_SETMODE IO$_SETCHAR

	P1 — AST service routine address
	P1 — AST service routine address
	P2 — character mask address
	P3 — access mode to deliver AST

	IO$M_OUTBAND
	IO$M_OUTBAND
	IO$M_TT_ABORT
	IO$M_INCLUDE

	<TABLE ROW>
	IO$_SETMODE IO$_SETCHAR
	IO$_SETMODE IO$_SETCHAR

	P1 — address of control signals
	P1 — address of control signals

	IO$M_SET_MODEM
	IO$M_SET_MODEM
	IO$M_MAINT

	<TABLE ROW>
	IO$_SETMODE IO$_SETCHAR
	IO$_SETMODE IO$_SETCHAR

	None
	None

	IO$M_LOOP5
	IO$M_LOOP
	IO$M_UNLOOP
	IO$M_MAINT

	<TABLE ROW>
	IO$_TTY_PORT
	IO$_TTY_PORT

	IO$M_LT_CONNECT IO$M_LT_DISCON
	IO$M_LT_CONNECT IO$M_LT_DISCON

	<TABLE ROW>
	IO$_TTY_PORT
	IO$_TTY_PORT

	P1 — itemlist address
	P1 — itemlist address
	P2 — queued status

	IO$M_LT_MAP_PORT
	IO$M_LT_MAP_PORT

	<TABLE ROW>
	IO$_TTY_PORT
	IO$_TTY_PORT

	P1 — service name descriptor address
	P1 — service name descriptor address
	P2 — service rating

	IO$M_LT_RATING
	IO$M_LT_RATING

	<TABLE ROW>
	IO$_TTY_PORT
	IO$_TTY_PORT

	P1 — itemlist address
	P1 — itemlist address
	P2 — itemlist length
	P3 — entity type
	P4 — entity string descriptor

	IO$M_LT_SENSEMODE
	IO$M_LT_SENSEMODE

	<TABLE ROW>
	IO$_TTY_PORT
	IO$_TTY_PORT

	P1 — itemlist address
	P1 — itemlist address
	P2 — itemlist length
	P3 — entity type
	P4 — entity string descriptor

	IO$M_LT_SETMODE
	IO$M_LT_SETMODE

	<TABLE ROW>
	IO$_SENSEMODE IO$_SENSECHAR
	IO$_SENSEMODE IO$_SENSECHAR

	P1 — characteristics buffer address
	P1 — characteristics buffer address
	P2 — characteristics buffer size

	IO$M_TYPEAHDCNT
	IO$M_TYPEAHDCNT

	<TABLE ROW>
	IO$_SENSEMODE IO$_SENSECHAR
	IO$_SENSEMODE IO$_SENSECHAR

	P1 — address of input modem signal block
	P1 — address of input modem signal block

	IO$M_RD_MODEM
	IO$M_RD_MODEM

	<TABLE ROW>
	IO$_SENSEMODE
	IO$_SENSEMODE

	P1 — buffer address
	P1 — buffer address
	P2 — buffer size

	IO$M_BRDCST
	IO$M_BRDCST

	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	QIO Status Returns
	Terminals:status returns

	<TABLE BODY>
	<TABLE ROW>
	SS$_ABORT
	SS$_ABORT

	SS$_BADESCAPE
	SS$_BADESCAPE

	SS$_BADPARAM

	<TABLE ROW>
	SS$_CANCEL
	SS$_CANCEL

	SS$_CHANINTLK
	SS$_CHANINTLK

	SS$_CONTROLC
	SS$_CONTROLC

	<TABLE ROW>
	SS$_CONTROLO
	SS$_CONTROLO

	SS$_CONTROLY
	SS$_CONTROLY

	SS$_DATAOVERUN
	SS$_DATAOVERUN

	<TABLE ROW>
	SS$_INCOMPAT
	SS$_INCOMPAT

	SS$_NORMAL
	SS$_NORMAL

	SS$_PARITY

	<TABLE ROW>
	SS$_PARTESCAPE
	SS$_PARTESCAPE

	SS$_TIMEOUT
	SS$_TIMEOUT

	Local Area Network Device Drivers
	Local Area Network Device Drivers
	This section lists the function codes and function modifiers for the local area network drivers.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Functions
	Arguments
	Modifiers

	<TABLE BODY>
	<TABLE ROW>
	IO$_READLBLK IO$_READVBLK IO$_READPBLK IO$_WRITELBLK IO$_WRITEVBLK IO$_WRITEPBLK
	IO$_READLBLK IO$_READVBLK IO$_READPBLK IO$_WRITELBLK IO$_WRITEVBLK IO$_WRITEPBLK

	P1 — buffer address
	P1 — buffer address
	P2 — buffer size
	P4 — 802 format fields (optional)
	P5 — destination address (optional)

	IO$M_NOW IO$M_RESPONSE
	IO$M_NOW

	<TABLE ROW>
	IO$_SETMODE IO$_SETCHAR
	IO$_SETMODE IO$_SETCHAR

	P2 — extended characteristics buffer (optional)
	P2 — extended characteristics buffer (optional)

	IO$M_CTRL IO$M_STARTUP IO$M_SHUTDOWN
	IO$M_CTRL IO$M_STARTUP IO$M_SHUTDOWN

	<TABLE ROW>
	IO$_SETMODE IO$_SETCHAR
	IO$_SETMODE IO$_SETCHAR

	P1 — AST service address
	P1 — AST service address
	P3 — access mode to deliver AST

	IO$M_ATTNAST
	IO$M_ATTNAST

	<TABLE ROW>
	IO$_SENSEMODE IO$_SENSECHAR
	IO$_SENSEMODE IO$_SENSECHAR

	P1 — device characteristics buffer (optional)
	P1 — device characteristics buffer (optional)
	P2 — extended characteristics buffer (optional)

	IO$M_CTRL
	IO$M_CTRL

	LAN drivers:status returns
	SS$_ABORT return
	SS$_ACCVIO return
	SS$_BADPARAM return
	SS$_BUFFEROVF return
	SS$_COMMHARD return
	SS$_CTRLERR return
	SS$_DATACHECK return
	SS$_DATAOVERUN return
	SS$_DEVACTIVE return
	SS$_DEVALLOC return
	SS$_DEVINACT return
	SS$_DEVOFFLINE return
	SS$_DEVREQERR return
	SS$_DISCONNECT return
	SS$_DUPUNIT return
	SS$_ENDOFFILE return:LAN driver status return
	SS$_EXQUOTA return
	SS$_INSFMEM return
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	QIO Status Returns

	<TABLE BODY>
	<TABLE ROW>
	SS$_ABORT
	SS$_ABORT

	SS$_ACCVIO
	SS$_ACCVIO

	SS$_BADPARAM
	SS$_BADPARAM

	<TABLE ROW>
	SS$_BUFFEROVF
	SS$_BUFFEROVF

	SS$_COMMHARD
	SS$_COMMHARD

	SS$_CTRLERR
	SS$_CTRLERR

	<TABLE ROW>
	SS$_DATACHECK
	SS$_DATACHECK

	SS$_DATAOVERUN
	SS$_DATAOVERUN

	SS$_DEVACTIVE
	SS$_DEVACTIVE

	<TABLE ROW>
	SS$_DEVALLOC
	SS$_DEVALLOC

	SS$_DEVINACT
	SS$_DEVINACT

	SS$_DEVOFFLINE
	SS$_DEVOFFLINE

	<TABLE ROW>
	SS$_DEVREQERR
	SS$_DEVREQERR

	SS$_DISCONNECT
	SS$_DISCONNECT

	SS$_DUPUNIT
	SS$_DUPUNIT

	<TABLE ROW>
	SS$_ENDOFFILE
	SS$_ENDOFFILE

	SS$_EXQUOTA
	SS$_EXQUOTA

	SS$_INSFMEM
	SS$_INSFMEM

	<TABLE ROW>
	SS$_INSFMAPREG
	SS$_INSFMAPREG

	SS$_IVBUFLEN
	SS$_IVBUFLEN

	SS$_MEDOFL
	SS$_MEDOFL

	<TABLE ROW>
	SS$_NOPRIV
	SS$_NOPRIV

	SS$_NORMAL
	SS$_NORMAL

	SS$_OPINCOMPL
	SS$_OPINCOMPL

	<TABLE ROW>
	SS$_TIMEOUT
	SS$_TIMEOUT

	SS$_TOOMUCHDATA
	SS$_TOOMUCHDATA

	SS$_INSFMAPREG return
	SS$_IVBUFLEN return
	SS$_MEDOFL return
	SS$_NOPRIV return
	SS$_NORMAL return
	SS$_OPINCOMPL return
	SS$_TIMEOUT return
	SS$_TOOMUCHDATA return

	Fast I/O Function Codes and Modifiers
	Fast I/O Function Codes and Modifiers
	This section lists the function codes and parameters for the $IO_SETUP system service.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Functions
	Arguments

	<TABLE BODY>
	<TABLE ROW>
	IO$_READVBLK IO$_READLBLK IO$_WRITEVBLK IO$_WRITELBLK
	IO$_READVBLK IO$_READLBLK IO$_WRITEVBLK IO$_WRITELBLK

	bufobj - user's buffer
	bufobj - user's buffer
	iosobj — I/O Status Area (IOSA)
	astadr — Completion AST routine
	flags — longword mask
	return_fandle — fandle address

	Fast Path Function Code and Modifiers
	Fast Path Function Code and Modifiers
	This section lists the function code and function modifiers for Fast Path.
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Function
	Argument
	Modifiers

	<TABLE BODY>
	<TABLE ROW>
	IO$_SETPRFPATH
	IO$_SETPRFPATH

	P1 — CPU mask None
	P1 — CPU mask None

	IO$M_PREFERRED_CPU IO$M_SYS_ASSIGNABLE
	IO$M_PREFERRED_CPU IO$M_SYS_ASSIGNABLE

	B IO$_DIAGNOSE Function for SCSI Class Drivers
	B IO$_DIAGNOSE Function for SCSI Class Drivers
	As of OpenVMS Version 7.0, the $QIO IO$_DIAGNOSE function has been enhanced to support 64-bit add...
	The $QIO IO$_DIAGNOSE arguments are still as follows:
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Argument
	Use

	<TABLE BODY>
	<TABLE ROW>
	P1
	P1

	S2DGB base address
	S2DGB base address

	<TABLE ROW>
	P2
	P2

	S2DGB length
	S2DGB length

	<TABLE ROW>
	P3
	P3

	Reserved, should be 0
	Reserved, should be 0

	<TABLE ROW>
	P4
	P4

	Reserved, should be 0
	Reserved, should be 0

	<TABLE ROW>
	P5
	P5

	Reserved, should be 0
	Reserved, should be 0

	<TABLE ROW>
	P6
	P6

	Reserved, should be 0
	Reserved, should be 0

	The SCSI Diagnose Buffer (S2DGB) defined in STARLET now allows two formats, one for 32-bit addres...
	Figure�B�1
	Figure�B�1

	Figure�B�1 OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 32-Bit Layout
	Figure�B�1 OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 32-Bit Layout
	<GRAPHIC>

	Figure�B�2 OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 64-Bit Layout
	Figure�B�2 OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 64-Bit Layout
	<GRAPHIC>

	A user application must specify which one of the two S2DGB formats is to be used by passing a for...
	The correct length of the structure is defined by the constant S2DGB$K_XCDB32_LENGTH (value: 60-d...
	The fields in the S2DGB are in the sections that follow. Whenever a field has two different names...
	S2DGB$L_OPCODE
	S2DGB$L_OPCODE

	This field should contain either S2DGB$K_OP_XCDB32 or S2DGB$K_OP_XCDB64, depending on whether the...
	S2DGB$L_FLAGS
	S2DGB$L_FLAGS

	This field should contain the bit fields shown in the following table. Note that these bit defini...
	<TABLE>
	Table�B�1 S2DGB$L_FLAGS Bit Fields�
	<TABLE HEADING>
	<TABLE ROW>
	Bit Field
	Bit Field

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	S2DGB$V_READ
	S2DGB$V_READ

	This bit should be 1 if the operation being performed is a read. If the operation is a write, thi...
	This bit should be 1 if the operation being performed is a read. If the operation is a write, thi...

	<TABLE ROW>
	S2DGB$V_DISCPRIV
	S2DGB$V_DISCPRIV

	This bit should contain the DiscPriv bit value to be used in the IDENTIFY message sent with this ...
	This bit should contain the DiscPriv bit value to be used in the IDENTIFY message sent with this ...

	<TABLE ROW>
	S2DGB$V_SYNCHRONOUS
	S2DGB$V_SYNCHRONOUS

	This bit is ignored because its value is beyond the control of the user in SCSI-2 drivers.
	This bit is ignored because its value is beyond the control of the user in SCSI-2 drivers.

	<TABLE ROW>
	S2DGB$V_OBSOLETE1
	S2DGB$V_OBSOLETE1

	This bit is ignored. In previous releases, it represented the disabling of command retries, which...
	This bit is ignored. In previous releases, it represented the disabling of command retries, which...

	<TABLE ROW>
	S2DGB$V_TAGGED_REQ
	S2DGB$V_TAGGED_REQ

	When this bit is 1, the operation is processed as using tagged command queuing and S2DGB$V_TAG sh...
	When this bit is 1, the operation is processed as using tagged command queuing and S2DGB$V_TAG sh...
	Note that although some ports do not support tagged command queuing, setting this bit to 1 will i...
	S2DGB$K_SIMPLE indicates that the command is to be sent with the SIMPLE queue tag.
	S2DGB$K_SIMPLE indicates that the command is to be sent with the SIMPLE queue tag.
	S2DGB$K_SIMPLE indicates that the command is to be sent with the SIMPLE queue tag.

	S2DGB$K_ORDERED indicates that the command is to be sent with the ORDERED queue tab.
	S2DGB$K_ORDERED indicates that the command is to be sent with the ORDERED queue tab.

	S2DGB$K_EXPRESS indicates that the command is to be sent with the HEAD OF QUEUE queue tag.
	S2DGB$K_EXPRESS indicates that the command is to be sent with the HEAD OF QUEUE queue tag.

	If S2DGB$V_TAGGED_REQ is 0, then this field is ignored. Ports that do not support tagged command ...
	If S2DGB$V_TAGGED_REQ is 0, then this field is ignored. Ports that do not support tagged command ...
	Note that automatic contingent allegiance processing is not accessible through the IO$_DIAGNOSE f...

	<TABLE ROW>
	S2DGB$V_AUTOSENSE
	S2DGB$V_AUTOSENSE

	When this bit is 1, S2DGB$L_32SENSEADDR and S2DGB$L_32SENSELEN CONDITION or COMMAND TERMINATED st...
	When this bit is 1, S2DGB$L_32SENSEADDR and S2DGB$L_32SENSELEN CONDITION or COMMAND TERMINATED st...
	When S2DGB$V_AUTOSENSE is 0, the buffer described by S2DGB$L_32SENSEADDR and S2DGB$L_32SENSELEN i...
	All other bits in S2DGB$L_FLAGS should be 0.

	S2DGB$L_32CDBADDR (S2DGB$PQ_64CDBADDR)
	S2DGB$L_32CDBADDR (S2DGB$PQ_64CDBADDR)

	This field should contain the 32-bit (or 64-bit) virtual address of the SCSI command data block (...
	Note that S2DGB$L_32CDBADDR is a pointer to a longword, while S2DGB$PQ_64CDBADDR is a pointer to ...
	S2DGB$L_32CDBLEN (S2DGB$L_64CDBLEN)
	S2DGB$L_32CDBLEN (S2DGB$L_64CDBLEN)

	This field should contain the number of bytes in the SCSI command data block (CDB) to be sent to ...
	S2DGB$L_32DATADDR (S2DGB$PQ_64DATADDR)
	S2DGB$L_32DATADDR (S2DGB$PQ_64DATADDR)

	This field should contain the 32-bit (or 64-bit) virtual address of the DATAIN or DATAOUT buffer ...
	Note that S2DGB$L_32DATADDR is a pointer to a longword, while S2DGB$PQ_64DATADDR is a pointer to ...
	S2DGB$L_32DATLEN (S2DGB$L_64DATLEN)
	S2DGB$L_32DATLEN (S2DGB$L_64DATLEN)

	This field should contain the number of bytes in the DATAIN or DATAOUT buffer associated with thi...
	S2DGB$L_32PADCNT (S2DGB$L_64PADCNT)
	S2DGB$L_32PADCNT (S2DGB$L_64PADCNT)

	This field should contain the number of padding DATAIN or DATAOUT bytes required by this operatio...
	S2DGB$L_32PHSTMO (S2DGB$L_64PHSTMO)
	S2DGB$L_32PHSTMO (S2DGB$L_64PHSTMO)

	This field should contain the number of seconds that the port driver should wait for a phase tran...
	S2DGB$L_32DSCTMO (S2DGB$L_64DSCTMO)
	S2DGB$L_32DSCTMO (S2DGB$L_64DSCTMO)

	This field should contain the number of seconds that the port driver should wait for a disconnect...
	S2DGB$L_32SENSEADDR (S2DGB$PQ_64SENSEADDR)
	S2DGB$L_32SENSEADDR (S2DGB$PQ_64SENSEADDR)

	If S2DGB$V_AUTOSENSE is 1, then this field should contain the 32-bit (or 64-bit) virtual address ...
	Note that S2DGB$L_32SENSEADDR is a pointer to a longword, while S2DGB$PQ_64SENSEADDR is a pointer...
	S2DGB$L_32SENSELEN (S2DGB$L_64SENSELEN)
	S2DGB$L_32SENSELEN (S2DGB$L_64SENSELEN)

	If S2DGB$V_AUTOSENSE is 1, then this field should contain the number of bytes in the sense buffer...
	The following example shows how to set up a 64-bit S2DGB:
	#include /* Define S2DGB */ #include _pointers.h> /* Define VOID_PQ */ S2DGB diag_desc; /* Set up...
	If all arguments are valid, the class driver will invoke the necessary port functions to send the...
	The DKDRIVER, GKDRIVER, and MKDRIVER class drivers, which implement other QIO functions, might in...
	The DKDRIVER, GKDRIVER, and MKDRIVER class drivers permit only one IO$_DIAGNOSE operation to be a...
	The DKDRIVER, GKDRIVER, and MKDRIVER drivers permit more than one IO$_DIAGNOSE operation to be ac...

	C DEC Multinational Character Set and Terminal Escape Sequences/Modes
	C DEC Multinational Character Set and Terminal Escape Sequences/Modes
	This appendix includes tables for the DEC Multinational character set and for terminalescape sequ...
	DEC Multinational Character Set
	DEC Multinational Character Set
	Character sets<IndexSee> See also </>See also DEC Multinational character set
	Character sets<IndexSee> See also </>See also DEC Multinational character set
	Character sets:terminal lowercase
	Multinational character set<IndexSee> See also </>See DEC Multinational character set
	ASCII character set<IndexSee> See also </>See DEC Multinational character set
	DEC Multinational character set

	<TABLE>
	Table�C�1 DEC Multinational Character Set�
	<TABLE HEADING>
	<TABLE ROW>
	Hex Code
	Octal Code
	Decimal Code
	Char or Abbrev.
	Description

	<TABLE BODY>
	<TABLE ROW>
	ASCII Control Characters

	<TABLE ROW>
	00
	00

	000
	000

	000
	000

	NUL
	NUL

	null character
	null character

	<TABLE ROW>
	01
	01

	001
	001

	001
	001

	SOH
	SOH

	start of heading (Ctrl/A)
	start of heading (Ctrl/A)

	<TABLE ROW>
	02
	02

	002
	002

	002
	002

	STX
	STX

	start of text (Ctrl/B)
	start of text (Ctrl/B)

	<TABLE ROW>
	03
	03

	003
	003

	003
	003

	ETX
	ETX

	end of text (Ctrl/C)
	end of text (Ctrl/C)

	<TABLE ROW>
	04
	04

	004
	004

	004
	004

	EOT
	EOT

	end of transmission (Ctrl/D)
	end of transmission (Ctrl/D)

	<TABLE ROW>
	05
	05

	005
	005

	005
	005

	ENQ
	ENQ

	enquiry (Ctrl/E)
	enquiry (Ctrl/E)

	<TABLE ROW>
	06
	06

	006
	006

	006
	006

	ACK
	ACK

	acknowledge (Ctrl/F)
	acknowledge (Ctrl/F)

	<TABLE ROW>
	07
	07

	007
	007

	007
	007

	BEL
	BEL

	bell (Ctrl/G)
	bell (Ctrl/G)

	<TABLE ROW>
	08
	08

	010
	010

	008
	008

	BS
	BS

	backspace (Ctrl/H)
	backspace (Ctrl/H)

	<TABLE ROW>
	09
	09

	011
	011

	009
	009

	HT
	HT

	horizontal tabulation (Ctrl/I)
	horizontal tabulation (Ctrl/I)

	<TABLE ROW>
	0A
	0A

	012
	012

	010
	010

	LF
	LF

	line feed (Ctrl/J)
	line feed (Ctrl/J)

	<TABLE ROW>
	0B
	0B

	013
	013

	011
	011

	VT
	VT

	vertical tabulation (Ctrl/K)
	vertical tabulation (Ctrl/K)

	<TABLE ROW>
	0C
	0C

	014
	014

	012
	012

	FF
	FF

	form feed (Ctrl/L)
	form feed (Ctrl/L)

	<TABLE ROW>
	0D
	0D

	015
	015

	013
	013

	CR
	CR

	carriage return (Ctrl/M)
	carriage return (Ctrl/M)

	<TABLE ROW>
	0E
	0E

	016
	016

	014
	014

	SO
	SO

	shift out (Ctrl/N)
	shift out (Ctrl/N)

	<TABLE ROW>
	0F
	0F

	017
	017

	015
	015

	SI
	SI

	shift in (Ctrl/O)
	shift in (Ctrl/O)

	<TABLE ROW>
	10
	10

	020
	020

	016
	016

	DLE
	DLE

	data link escape (Ctrl/P)
	data link escape (Ctrl/P)

	<TABLE ROW>
	11
	11

	021
	021

	017
	017

	DC1
	DC1

	device control 1 (Ctrl/Q)
	device control 1 (Ctrl/Q)

	<TABLE ROW>
	12
	12

	022
	022

	018
	018

	DC2
	DC2

	device control 2 (Ctrl/R)
	device control 2 (Ctrl/R)

	<TABLE ROW>
	13
	13

	023
	023

	019
	019

	DC3
	DC3

	device control 3 (Ctrl/S)
	device control 3 (Ctrl/S)

	<TABLE ROW>
	14
	14

	024
	024

	020
	020

	DC4
	DC4

	device control 4 (Ctrl/T)
	device control 4 (Ctrl/T)

	<TABLE ROW>
	15
	15

	025
	025

	021
	021

	NAK
	NAK

	negative acknowledge (Ctrl/U)
	negative acknowledge (Ctrl/U)

	<TABLE ROW>
	16
	16

	026
	026

	022
	022

	SYN
	SYN

	synchronous idle (Ctrl/V)
	synchronous idle (Ctrl/V)

	<TABLE ROW>
	17
	17

	027
	027

	023
	023

	ETB
	ETB

	end of transmission block (Ctrl/W)
	end of transmission block (Ctrl/W)

	<TABLE ROW>
	18
	18

	030
	030

	024
	024

	CAN
	CAN

	cancel (Ctrl/X)
	cancel (Ctrl/X)

	<TABLE ROW>
	19
	19

	031
	031

	025
	025

	EM
	EM

	end of medium (Ctrl/Y)
	end of medium (Ctrl/Y)

	<TABLE ROW>
	1A
	1A

	032
	032

	026
	026

	SUB
	SUB

	substitute (Ctrl/Z)
	substitute (Ctrl/Z)

	<TABLE ROW>
	1B
	1B

	033
	033

	027
	027

	ESC
	ESC

	escape
	escape

	<TABLE ROW>
	1C
	1C

	034
	034

	028
	028

	FS
	FS

	file separator
	file separator

	<TABLE ROW>
	1D
	1D

	035
	035

	029
	029

	GS
	GS

	group separator
	group separator

	<TABLE ROW>
	1E
	1E

	036
	036

	030
	030

	RS
	RS

	record separator
	record separator

	<TABLE ROW>
	1F
	1F

	037
	037

	031
	031

	US
	US

	unit separator
	unit separator

	<TABLE ROW>
	ASCII Special and Numeric Characters
	ASCII Special and Numeric Characters

	<TABLE ROW>
	20
	20

	040
	040

	032
	032

	SP
	SP

	space
	space

	<TABLE ROW>
	21
	21

	041
	041

	033
	033

	!
	!

	exclamation point
	exclamation point

	<TABLE ROW>
	22
	22

	042
	042

	034
	034

	'
	'

	quotation marks (double quote)
	quotation marks (double quote)

	<TABLE ROW>
	23
	23

	043
	043

	035
	035

	#
	#

	number sign
	number sign

	<TABLE ROW>
	24
	24

	044
	044

	036
	036

	$
	$

	dollar sign
	dollar sign

	<TABLE ROW>
	25
	25

	045
	045

	037
	037

	%
	%

	percent sign
	percent sign

	<TABLE ROW>
	26
	26

	046
	046

	038
	038

	&
	&

	ampersand
	ampersand

	<TABLE ROW>
	27
	27

	047
	047

	039
	039

	'
	'

	apostrophe (single quote)
	apostrophe (single quote)

	<TABLE ROW>
	28
	28

	050
	050

	040
	040

	(
	(

	opening parenthesis
	opening parenthesis

	<TABLE ROW>
	29
	29

	051
	051

	041
	041

)
)

	closing parenthesis
	closing parenthesis

	<TABLE ROW>
	2A
	2A

	052
	052

	042
	042

	*
	*

	asterisk
	asterisk

	<TABLE ROW>
	2B
	2B

	053
	053

	043
	043

	+
	+

	plus
	plus

	<TABLE ROW>
	2C
	2C

	054
	054

	044
	044

	,
	,

	comma
	comma

	<TABLE ROW>
	2D
	2D

	055
	055

	045
	045

	—
	—

	hyphen or minus
	hyphen or minus

	<TABLE ROW>
	2E
	2E

	056
	056

	046
	046

	.
	.

	period or decimal point
	period or decimal point

	<TABLE ROW>
	2F
	2F

	057
	057

	047
	047

	/
	/

	slash
	slash

	<TABLE ROW>
	30
	30

	060
	060

	048
	048

	0
	0

	zero
	zero

	<TABLE ROW>
	31
	31

	061
	061

	049
	049

	1
	1

	one
	one

	<TABLE ROW>
	32
	32

	062
	062

	050
	050

	2
	2

	two
	two

	<TABLE ROW>
	33
	33

	063
	063

	051
	051

	3
	3

	three
	three

	<TABLE ROW>
	34
	34

	064
	064

	052
	052

	4
	4

	four
	four

	<TABLE ROW>
	35
	35

	065
	065

	053
	053

	5
	5

	five
	five

	<TABLE ROW>
	36
	36

	066
	066

	054
	054

	6
	6

	six
	six

	<TABLE ROW>
	37
	37

	067
	067

	055
	055

	7
	7

	seven
	seven

	<TABLE ROW>
	38
	38

	070
	070

	056
	056

	8
	8

	eight
	eight

	<TABLE ROW>
	39
	39

	071
	071

	057
	057

	9
	9

	nine
	nine

	<TABLE ROW>
	3A
	3A

	072
	072

	058
	058

	:
	:

	colon
	colon

	<TABLE ROW>
	3B
	3B

	073
	073

	059
	059

	;
	;

	semicolon
	semicolon

	<TABLE ROW>
	3C
	3C

	074
	074

	060
	060

	<
	<

	less than
	less than

	<TABLE ROW>
	3D
	3D

	075
	075

	061
	061

	=
	=

	equals
	equals

	<TABLE ROW>
	3E
	3E

	076
	076

	062
	062

	>
	>

	greater than
	greater than

	<TABLE ROW>
	3F
	3F

	077
	077

	063
	063

	?
	?

	question mark
	question mark

	<TABLE ROW>
	ASCII Alphabetic Characters
	ASCII Alphabetic Characters

	<TABLE ROW>
	40
	40

	100
	100

	064
	064

	@
	@

	commercial at sign
	commercial at sign

	<TABLE ROW>
	41
	41

	101
	101

	065
	065

	A
	A

	uppercase A
	uppercase A

	<TABLE ROW>
	42
	42

	102
	102

	066
	066

	B
	B

	uppercase B
	uppercase B

	<TABLE ROW>
	43
	43

	103
	103

	067
	067

	C
	C

	uppercase C
	uppercase C

	<TABLE ROW>
	44
	44

	104
	104

	068
	068

	D
	D

	uppercase D
	uppercase D

	<TABLE ROW>
	45
	45

	105
	105

	069
	069

	E
	E

	uppercase E
	uppercase E

	<TABLE ROW>
	46
	46

	106
	106

	070
	070

	F
	F

	uppercase F
	uppercase F

	<TABLE ROW>
	47
	47

	107
	107

	071
	071

	G
	G

	uppercase G
	uppercase G

	<TABLE ROW>
	48
	48

	110
	110

	072
	072

	H
	H

	uppercase H
	uppercase H

	<TABLE ROW>
	49
	49

	111
	111

	073
	073

	I
	I

	uppercase I
	uppercase I

	<TABLE ROW>
	4A
	4A

	112
	112

	074
	074

	J
	J

	uppercase J
	uppercase J

	<TABLE ROW>
	4B
	4B

	113
	113

	075
	075

	K
	K

	uppercase K
	uppercase K

	<TABLE ROW>
	4C
	4C

	114
	114

	076
	076

	L
	L

	uppercase L
	uppercase L

	<TABLE ROW>
	4D
	4D

	115
	115

	077
	077

	M
	M

	uppercase M
	uppercase M

	<TABLE ROW>
	4E
	4E

	116
	116

	078
	078

	N
	N

	uppercase N
	uppercase N

	<TABLE ROW>
	4F
	4F

	117
	117

	079
	079

	O
	O

	uppercase O
	uppercase O

	<TABLE ROW>
	50
	50

	120
	120

	080
	080

	P
	P

	uppercase P
	uppercase P

	<TABLE ROW>
	51
	51

	121
	121

	081
	081

	Q
	Q

	uppercase Q
	uppercase Q

	<TABLE ROW>
	52
	52

	122
	122

	082
	082

	R
	R

	uppercase R
	uppercase R

	<TABLE ROW>
	53
	53

	123
	123

	083
	083

	S
	S

	uppercase S
	uppercase S

	<TABLE ROW>
	54
	54

	124
	124

	084
	084

	T
	T

	uppercase T
	uppercase T

	<TABLE ROW>
	55
	55

	125
	125

	085
	085

	U
	U

	uppercase U
	uppercase U

	<TABLE ROW>
	56
	56

	126
	126

	086
	086

	V
	V

	uppercase V
	uppercase V

	<TABLE ROW>
	57
	57

	127
	127

	087
	087

	W
	W

	uppercase W
	uppercase W

	<TABLE ROW>
	58
	58

	130
	130

	088
	088

	X
	X

	uppercase X
	uppercase X

	<TABLE ROW>
	59
	59

	131
	131

	089
	089

	Y
	Y

	uppercase Y
	uppercase Y

	<TABLE ROW>
	5A
	5A

	132
	132

	090
	090

	Z
	Z

	uppercase Z
	uppercase Z

	<TABLE ROW>
	5B
	5B

	133
	133

	091
	091

	[
	[

	left bracket
	left bracket

	<TABLE ROW>
	5C
	5C

	134
	134

	092
	092

	\
	\

	backslash
	backslash

	<TABLE ROW>
	5D
	5D

	135
	135

	093
	093

]
]

	right bracket
	right bracket

	<TABLE ROW>
	5E
	5E

	136
	136

	094
	094

	^
	^

	circumflex
	circumflex

	<TABLE ROW>
	5F
	5F

	137
	137

	095
	095

	_
	_

	underscore
	underscore

	<TABLE ROW>
	60
	60

	140
	140

	096
	096

	`
	`
	`

	grave accent
	grave accent

	<TABLE ROW>
	61
	61

	141
	141

	097
	097

	a
	a

	lowercase a
	lowercase a

	<TABLE ROW>
	62
	62

	142
	142

	098
	098

	b
	b

	lowercase b
	lowercase b

	<TABLE ROW>
	63
	63

	143
	143

	099
	099

	c
	c

	lowercase c
	lowercase c

	<TABLE ROW>
	64
	64

	144
	144

	100
	100

	d
	d

	lowercase d
	lowercase d

	<TABLE ROW>
	65
	65

	145
	145

	101
	101

	e
	e

	lowercase e
	lowercase e

	<TABLE ROW>
	66
	66

	146
	146

	102
	102

	f
	f

	lowercase f
	lowercase f

	<TABLE ROW>
	67
	67

	147
	147

	103
	103

	g
	g

	lowercase g
	lowercase g

	<TABLE ROW>
	68
	68

	150
	150

	104
	104

	h
	h

	lowercase h
	lowercase h

	<TABLE ROW>
	69
	69

	151
	151

	105
	105

	i
	i

	lowercase i
	lowercase i

	<TABLE ROW>
	6A
	6A

	152
	152

	106
	106

	j
	j

	lowercase j
	lowercase j

	<TABLE ROW>
	6B
	6B

	153
	153

	107
	107

	k
	k

	lowercase k
	lowercase k

	<TABLE ROW>
	6C
	6C

	154
	154

	108
	108

	l
	l

	lowercase l
	lowercase l

	<TABLE ROW>
	6D
	6D

	155
	155

	109
	109

	m
	m

	lowercase m
	lowercase m

	<TABLE ROW>
	6E
	6E

	156
	156

	110
	110

	n
	n

	lowercase n
	lowercase n

	<TABLE ROW>
	6F
	6F

	157
	157

	111
	111

	o
	o

	lowercase o
	lowercase o

	<TABLE ROW>
	70
	70

	160
	160

	112
	112

	p
	p

	lowercase p
	lowercase p

	<TABLE ROW>
	71
	71

	161
	161

	113
	113

	q
	q

	lowercase q
	lowercase q

	<TABLE ROW>
	72
	72

	162
	162

	114
	114

	r
	r

	lowercase r
	lowercase r

	<TABLE ROW>
	73
	73

	163
	163

	115
	115

	s
	s

	lowercase s
	lowercase s

	<TABLE ROW>
	74
	74

	164
	164

	116
	116

	t
	t

	lowercase t
	lowercase t

	<TABLE ROW>
	75
	75

	165
	165

	117
	117

	u
	u

	lowercase u
	lowercase u

	<TABLE ROW>
	76
	76

	166
	166

	118
	118

	v
	v

	lowercase v
	lowercase v

	<TABLE ROW>
	77
	77

	167
	167

	119
	119

	w
	w

	lowercase w
	lowercase w

	<TABLE ROW>
	78
	78

	170
	170

	120
	120

	x
	x

	lowercase x
	lowercase x

	<TABLE ROW>
	79
	79

	171
	171

	121
	121

	y
	y

	lowercase y
	lowercase y

	<TABLE ROW>
	7A
	7A

	172
	172

	122
	122

	z
	z

	lowercase z
	lowercase z

	<TABLE ROW>
	7B
	7B

	173
	173

	123
	123

	{
	{

	left brace
	left brace

	<TABLE ROW>
	7C
	7C

	174
	174

	124
	124

	|
	|

	vertical line
	vertical line

	<TABLE ROW>
	7D
	7D

	175
	175

	125
	125

	}
	}

	right brace (ALTMODE)
	right brace (ALTMODE)

	<TABLE ROW>
	7E
	7E

	176
	176

	126
	126

	~
	~

	tilde (ALTMODE)
	tilde (ALTMODE)

	<TABLE ROW>
	7F
	7F

	177
	177

	127
	127

	DEL
	DEL

	rubout (DELETE)
	rubout (DELETE)

	<TABLE ROW>
	80
	80

	200
	200

	128
	128

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	81
	81

	201
	201

	129
	129

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	82
	82

	202
	202

	130
	130

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	83
	83

	203
	203

	131
	131

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	84
	84

	204
	204

	132
	132

	IND
	IND

	index
	index

	<TABLE ROW>
	85
	85

	205
	205

	133
	133

	NEL
	NEL

	next line
	next line

	<TABLE ROW>
	86
	86

	206
	206

	134
	134

	SSA
	SSA

	start of selected area
	start of selected area

	<TABLE ROW>
	87
	87

	207
	207

	135
	135

	ESA
	ESA

	end of started area
	end of started area

	<TABLE ROW>
	88
	88

	210
	210

	136
	136

	HTS
	HTS

	horizontal tab set
	horizontal tab set

	<TABLE ROW>
	89
	89

	211
	211

	137
	137

	HTJ
	HTJ

	horizontal tab set with justification
	horizontal tab set with justification

	<TABLE ROW>
	8A
	8A

	212
	212

	138
	138

	VTS
	VTS

	vertical tab set
	vertical tab set

	<TABLE ROW>
	8B
	8B

	213
	213

	139
	139

	PLD
	PLD

	partial line down
	partial line down

	<TABLE ROW>
	8C
	8C

	214
	214

	140
	140

	PLU
	PLU

	partial line up
	partial line up

	<TABLE ROW>
	8D
	8D

	215
	215

	141
	141

	RI
	RI

	reverse index
	reverse index

	<TABLE ROW>
	8E
	8E

	216
	216

	142
	142

	SS2
	SS2

	single shift 2
	single shift 2

	<TABLE ROW>
	8F
	8F

	217
	217

	143
	143

	SS3
	SS3

	single shift 3
	single shift 3

	<TABLE ROW>
	90
	90

	220
	220

	144
	144

	DCS
	DCS

	device control string
	device control string

	<TABLE ROW>
	91
	91

	221
	221

	145
	145

	PU1
	PU1

	private use 1
	private use 1

	<TABLE ROW>
	92
	92

	222
	222

	146
	146

	PU2
	PU2

	private use 2
	private use 2

	<TABLE ROW>
	93
	93

	223
	223

	147
	147

	STS
	STS

	set transmit state
	set transmit state

	<TABLE ROW>
	94
	94

	224
	224

	148
	148

	CCH
	CCH

	cancel character
	cancel character

	<TABLE ROW>
	95
	95

	225
	225

	149
	149

	MW
	MW

	message waiting
	message waiting

	<TABLE ROW>
	96
	96

	226
	226

	150
	150

	SPA
	SPA

	start of protected area
	start of protected area

	<TABLE ROW>
	97
	97

	227
	227

	151
	151

	EPA
	EPA

	end of protected area
	end of protected area

	<TABLE ROW>
	98
	98

	230
	230

	152
	152

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	99
	99

	231
	231

	153
	153

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	9A
	9A

	232
	232

	154
	154

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	9B
	9B

	233
	233

	155
	155

	CSI
	CSI

	control sequence introducer
	control sequence introducer

	<TABLE ROW>
	9C
	9C

	234
	234

	156
	156

	ST
	ST

	string terminator
	string terminator

	<TABLE ROW>
	9D
	9D

	235
	235

	157
	157

	OSC
	OSC

	operating system command
	operating system command

	<TABLE ROW>
	9E
	9E

	236
	236

	158
	158

	PM
	PM

	privacy message
	privacy message

	<TABLE ROW>
	9F
	9F

	237
	237

	159
	159

	APC
	APC

	application
	application

	<TABLE ROW>
	A0
	A0

	240
	240

	160
	160

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	A1
	A1

	241
	241

	161
	161

	¡
	¡

	inverted exclamation point
	inverted exclamation point

	<TABLE ROW>
	A2
	A2

	242
	242

	162
	162

	¢
	¢

	cent sign
	cent sign

	<TABLE ROW>
	A3
	A3

	243
	243

	163
	163

	£
	£

	pound sign
	pound sign

	<TABLE ROW>
	A4
	A4

	244
	244

	164
	164

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	A5
	A5

	245
	245

	165
	165

	¥
	¥

	yen sign
	yen sign

	<TABLE ROW>
	A6
	A6

	246
	246

	166
	166

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	A7
	A7

	247
	247

	167
	167

	§
	§

	section sign
	section sign

	<TABLE ROW>
	A8
	A8

	250
	250

	168
	168

	¤
	¤

	general currency sign
	general currency sign

	<TABLE ROW>
	A9
	A9

	251
	251

	169
	169

	©
	©

	copyright sign
	copyright sign

	<TABLE ROW>
	AA
	AA

	252
	252

	170
	170

	ª
	ª

	feminine ordinal indicator
	feminine ordinal indicator

	<TABLE ROW>
	AB
	AB

	253
	253

	171
	171

	<<
	angle quotation mark left
	angle quotation mark left

	<TABLE ROW>
	AC
	AC

	254
	254

	172
	172

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	AD
	AD

	255
	255

	173
	173

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	AE
	AE

	256
	256

	174
	174

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	AF
	AF

	257
	257

	175
	175

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	B0
	B0

	260
	260

	176
	176

	°
	°

	degree sign
	degree sign

	<TABLE ROW>
	B1
	B1

	261
	261

	177
	177

	±
	±

	plus/minus sign
	plus/minus sign

	<TABLE ROW>
	B2
	B2

	262
	262

	178
	178

	2
	2

	superscript 2
	superscript 2

	<TABLE ROW>
	B3
	B3

	263
	263

	179
	179

	3
	3

	superscript 3
	superscript 3

	<TABLE ROW>
	B4
	B4

	264
	264

	180
	180

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	B5
	B5

	265
	265

	181
	181

	m
	m

	micro sign
	micro sign

	<TABLE ROW>
	B6
	B6

	266
	266

	182
	182

	¶
	¶

	paragraph sign, pilcrow
	paragraph sign, pilcrow

	<TABLE ROW>
	B7
	B7

	267
	267

	183
	183

	placeholder
	placeholder

	middle dot
	middle dot

	<TABLE ROW>
	B8
	B8

	270
	270

	184
	184

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	B9
	B9

	271
	271

	185
	185

	1
	1

	superscript 1
	superscript 1

	<TABLE ROW>
	BA
	BA

	272
	272

	186
	186

	º
	º

	masculine ordinal indicator
	masculine ordinal indicator

	<TABLE ROW>
	BB
	BB

	273
	273

	187
	187

	>>
	angle quotation mark right
	angle quotation mark right

	<TABLE ROW>
	BC
	BC

	274
	274

	188
	188

	1/4
	fraction one-quarter
	fraction one-quarter

	<TABLE ROW>
	BD
	BD

	275
	275

	189
	189

	1/2
	1/2

	fraction one-half
	fraction one-half

	<TABLE ROW>
	BE
	BE

	276
	276

	190
	190

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	BF
	BF

	277
	277

	191
	191

	¿
	¿

	inverted question mark
	inverted question mark

	<TABLE ROW>
	C0
	C0

	300
	300

	192
	192

	À
	À

	uppercase A with grave accent
	uppercase A with grave accent

	<TABLE ROW>
	C1
	C1

	301
	301

	193
	193

	Á
	Á

	uppercase A with acute accent
	uppercase A with acute accent

	<TABLE ROW>
	C2
	C2

	302
	302

	194
	194

	Â
	Â

	uppercase A with circumflex
	uppercase A with circumflex

	<TABLE ROW>
	C3
	C3

	303
	303

	195
	195

	Ã
	Ã

	uppercase A with tilde
	uppercase A with tilde

	<TABLE ROW>
	C4
	C4

	304
	304

	196
	196

	Ä
	Ä

	uppercase A with umlaut(diaeresis)
	uppercase A with umlaut(diaeresis)

	<TABLE ROW>
	C5
	C5

	305
	305

	197
	197

	Å
	Å

	uppercase A with ring
	uppercase A with ring

	<TABLE ROW>
	C6
	C6

	306
	306

	198
	198

	AE
	AE

	uppercase AE diphthong
	uppercase AE diphthong

	<TABLE ROW>
	C7
	C7

	307
	307

	199
	199

	Ç
	Ç

	uppercase C with cedilla
	uppercase C with cedilla

	<TABLE ROW>
	C8
	C8

	310
	310

	200
	200

	È
	È

	uppercase E with grave accent
	uppercase E with grave accent

	<TABLE ROW>
	C9
	C9

	311
	311

	201
	201

	É
	É

	uppercase E with acute accent
	uppercase E with acute accent

	<TABLE ROW>
	CA
	CA

	312
	312

	202
	202

	Ê
	Ê

	uppercase E with circumflex
	uppercase E with circumflex

	<TABLE ROW>
	CB
	CB

	313
	313

	203
	203

	Ë
	Ë

	uppercase E with umlaut(diaeresis)
	uppercase E with umlaut(diaeresis)

	<TABLE ROW>
	CC
	CC

	314
	314

	204
	204

	Ì
	Ì

	uppercase I with grave accent
	uppercase I with grave accent

	<TABLE ROW>
	CD
	CD

	315
	315

	205
	205

	Í
	Í

	uppercase I with acute accent
	uppercase I with acute accent

	<TABLE ROW>
	CE
	CE

	316
	316

	206
	206

	Î
	Î

	uppercase I with circumflex
	uppercase I with circumflex

	<TABLE ROW>
	CF
	CF

	317
	317

	207
	207

	Ï
	Ï

	uppercase I with umlaut(diaeresis)
	uppercase I with umlaut(diaeresis)

	<TABLE ROW>
	D0
	D0

	320
	320

	208
	208

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	D1
	D1

	321
	321

	209
	209

	Ñ
	Ñ

	uppercase N with tilde
	uppercase N with tilde

	<TABLE ROW>
	D2
	D2

	322
	322

	210
	210

	Ò
	Ò

	uppercase O with grave accent
	uppercase O with grave accent

	<TABLE ROW>
	D3
	D3

	323
	323

	211
	211

	Ó
	Ó

	uppercase O with acute accent
	uppercase O with acute accent

	<TABLE ROW>
	D4
	D4

	324
	324

	212
	212

	Ô
	Ô

	uppercase O with circumflex
	uppercase O with circumflex

	<TABLE ROW>
	D5
	D5

	325
	325

	213
	213

	Õ
	Õ

	uppercase O with tilde
	uppercase O with tilde

	<TABLE ROW>
	D6
	D6

	326
	326

	214
	214

	Ö
	Ö

	uppercase O with umlaut(diaeresis)
	uppercase O with umlaut(diaeresis)

	<TABLE ROW>
	D7
	D7

	327
	327

	215
	215

	OE
	OE

	uppercase OE ligature
	uppercase OE ligature

	<TABLE ROW>
	D8
	D8

	330
	330

	216
	216

	Ø
	Ø

	uppercase O with slash
	uppercase O with slash

	<TABLE ROW>
	D9
	D9

	331
	331

	217
	217

	Ù
	Ù

	uppercase U with grave accent
	uppercase U with grave accent

	<TABLE ROW>
	DA
	DA

	332
	332

	218
	218

	Ú
	Ú

	uppercase U with acute accent
	uppercase U with acute accent

	<TABLE ROW>
	DB
	DB

	333
	333

	219
	219

	Û
	Û

	uppercase U with circumflex
	uppercase U with circumflex

	<TABLE ROW>
	DC
	DC

	334
	334

	220
	220

	Ü
	Ü

	uppercase U with umlaut(diaeresis)
	uppercase U with umlaut(diaeresis)

	<TABLE ROW>
	DD
	DD

	335
	335

	221
	221

	Ÿ
	Ÿ

	uppercase Y with umlaut(diaeresis)
	uppercase Y with umlaut(diaeresis)

	<TABLE ROW>
	DE
	DE

	336
	336

	222
	222

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	DF
	DF

	337
	337

	223
	223

	B
	German lowercase sharp s
	German lowercase sharp s

	<TABLE ROW>
	E0
	E0

	340
	340

	224
	224

	à
	à

	lowercase a with grave accent
	lowercase a with grave accent

	<TABLE ROW>
	E1
	E1

	341
	341

	225
	225

	á
	á

	lowercase a with acute accent
	lowercase a with acute accent

	<TABLE ROW>
	E2
	E2

	342
	342

	226
	226

	â
	â

	lowercase a with circumflex
	lowercase a with circumflex

	<TABLE ROW>
	E3
	E3

	343
	343

	227
	227

	ã
	ã

	lowercase a with tilde
	lowercase a with tilde

	<TABLE ROW>
	E4
	E4

	344
	344

	228
	228

	ä
	ä

	lowercase a with umlaut(diaeresis)
	lowercase a with umlaut(diaeresis)

	<TABLE ROW>
	E5
	E5

	345
	345

	229
	229

	å
	å

	lowercase a with ring
	lowercase a with ring

	<TABLE ROW>
	E6
	E6

	346
	346

	230
	230

	æ
	æ

	lowercase ae diphthong
	lowercase ae diphthong

	<TABLE ROW>
	E7
	E7

	347
	347

	231
	231

	ç
	ç

	lowercase c with cedilla
	lowercase c with cedilla

	<TABLE ROW>
	E8
	E8

	350
	350

	232
	232

	è
	è

	lowercase e with grave accent
	lowercase e with grave accent

	<TABLE ROW>
	E9
	E9

	351
	351

	233
	233

	é
	é

	lowercase e with acute accent
	lowercase e with acute accent

	<TABLE ROW>
	EA
	EA

	352
	352

	234
	234

	ê
	ê

	lowercase e with circumflex
	lowercase e with circumflex

	<TABLE ROW>
	EB
	EB

	353
	353

	235
	235

	ë
	ë

	lowercase e with umlaut(diaeresis)
	lowercase e with umlaut(diaeresis)

	<TABLE ROW>
	EC
	EC

	354
	354

	236
	236

	ì
	ì

	lowercase i with grave accent
	lowercase i with grave accent

	<TABLE ROW>
	ED
	ED

	355
	355

	237
	237

	í
	í

	lowercase i with acute accent
	lowercase i with acute accent

	<TABLE ROW>
	EE
	EE

	356
	356

	238
	238

	î
	î

	lowercase i with circumflex
	lowercase i with circumflex

	<TABLE ROW>
	EF
	EF

	357
	357

	239
	239

	ï
	ï

	lowercase i with umlaut(diaeresis)
	lowercase i with umlaut(diaeresis)

	<TABLE ROW>
	F0
	F0

	360
	360

	240
	240

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	F1
	F1

	361
	361

	241
	241

	ñ
	ñ

	lowercase n with tilde
	lowercase n with tilde

	<TABLE ROW>
	F2
	F2

	362
	362

	242
	242

	ò
	ò

	lowercase o with grave accent
	lowercase o with grave accent

	<TABLE ROW>
	F3
	F3

	363
	363

	243
	243

	ó
	ó

	lowercase o with acute accent
	lowercase o with acute accent

	<TABLE ROW>
	F4
	F4

	364
	364

	244
	244

	ô
	ô

	lowercase o with circumflex
	lowercase o with circumflex

	<TABLE ROW>
	F5
	F5

	365
	365

	245
	245

	õ
	õ

	lowercase o with tilde
	lowercase o with tilde

	<TABLE ROW>
	F6
	F6

	366
	366

	246
	246

	ö
	ö

	lowercase o with umlaut(diaeresis)
	lowercase o with umlaut(diaeresis)

	<TABLE ROW>
	F7
	F7

	367
	367

	247
	247

	oe
	lowercase oe ligature
	lowercase oe ligature

	<TABLE ROW>
	F8
	F8

	370
	370

	248
	248

	ø
	ø

	lowercase o with slash
	lowercase o with slash

	<TABLE ROW>
	F9
	F9

	371
	371

	249
	249

	ù
	ù

	lowercase u with grave accent
	lowercase u with grave accent

	<TABLE ROW>
	FA
	FA

	372
	372

	250
	250

	ú
	ú

	lowercase u with acute accent
	lowercase u with acute accent

	<TABLE ROW>
	FB
	FB

	373
	373

	251
	251

	û
	û

	lowercase u with circumflex
	lowercase u with circumflex

	<TABLE ROW>
	FC
	FC

	374
	374

	252
	252

	ü
	ü

	lowercase u with umlaut(diaeresis)
	lowercase u with umlaut(diaeresis)

	<TABLE ROW>
	FD
	FD

	375
	375

	253
	253

	Ø
	Ø

	lowercase y with umlaut (diaeresis)
	lowercase y with umlaut (diaeresis)

	<TABLE ROW>
	FE
	FE

	376
	376

	254
	254

	—
	—

	[reserved]
	[reserved]

	<TABLE ROW>
	FF
	FF

	377
	377

	255
	255

	—
	—

	[reserved]
	[reserved]

	Terminal Sequences and Modes
	Terminal Sequences and Modes
	Table�C�2
	Table�C�2

	Table�C�2
	Table�C�2

	<TABLE>
	Table�C�2 Sequences and Modes�
	<TABLE HEADING>
	<TABLE ROW>
	Name
	Valid Parameters
	ANSICRT
	DECCRT
	AVO
	EDIT
	BLOCK

	<TABLE BODY>
	<TABLE ROW>
	ANSI-Defined Escape Sequences
	ANSI-Defined Escape Sequences

	<TABLE ROW>
	CPR
	CPR

	All
	All

	x
	x

	x
	x

	<TABLE ROW>
	CUB
	CUB

	All
	All

	x
	x

	x
	x

	<TABLE ROW>
	CUD
	CUD

	All
	All

	x
	x

	x
	x

	<TABLE ROW>
	CUF
	CUF

	All
	All

	x
	x

	x
	x

	<TABLE ROW>
	CUP
	CUP

	All
	All

	x
	x

	x
	x

	<TABLE ROW>
	CUU
	CUU

	All
	All

	x
	x

	x
	x

	<TABLE ROW>
	DSR
	DSR

	0,3,5,6
	0,3,5,6

	x
	x

	x
	x

	<TABLE ROW>
	ED
	ED

	0,1,2
	0,1,2

	x
	x

	x
	x

	<TABLE ROW>
	EL
	EL

	0,1,2
	0,1,2

	x
	x

	x
	x

	<TABLE ROW>
	HVP
	HVP

	All
	All

	x
	x

	x
	x

	<TABLE ROW>
	IND
	IND

	x
	x

	x
	x

	<TABLE ROW>
	NEL
	NEL

	x
	x

	x
	x

	<TABLE ROW>
	RI
	RI

	x
	x

	x
	x

	<TABLE ROW>
	RIS
	RIS

	x
	x

	x
	x

	<TABLE ROW>
	SCS
	SCS

	UK,ASCII,0
	UK,ASCII,0

	x
	x

	<TABLE ROW>
	SCS
	SCS

	UK,ASCII
	UK,ASCII

	x
	x

	x
	x

	<TABLE ROW>
	SGR
	SGR

	0,4,7
	0,4,7

	x
	x

	x
	x

	<TABLE ROW>
	SGR
	SGR

	0,1,4,5,7
	0,1,4,5,7

	x
	x

	<TABLE ROW>
	DA
	DA

	Terminal specific
	Terminal specific

	x
	x

	<TABLE ROW>
	HTS
	HTS

	x
	x

	<TABLE ROW>
	RM
	RM

	Class specific
	Class specific

	x
	x

	<TABLE ROW>
	SM
	SM

	Class specific
	Class specific

	x
	x

	<TABLE ROW>
	TBC
	TBC

	0,3
	0,3

	x
	x

	<TABLE ROW>
	DCH
	DCH

	All
	All

	x
	x

	x
	x

	<TABLE ROW>
	DL
	DL

	All
	All

	x
	x

	x
	x

	<TABLE ROW>
	IL
	IL

	All
	All

	x
	x

	x
	x

	<TABLE ROW>
	DIGITAL Private Escape Sequences

	<TABLE ROW>
	DECDHDL
	DECDHDL

	2,3
	2,3

	x
	x

	<TABLE ROW>
	DECDWL
	DECDWL

	6
	6

	x
	x

	<TABLE ROW>
	DECKPAM
	DECKPAM

	x
	x

	<TABLE ROW>
	DECKPNM
	DECKPNM

	x
	x

	<TABLE ROW>
	DECRC
	DECRC

	8
	8

	x
	x

	<TABLE ROW>
	DECSC
	DECSC

	7
	7

	x
	x

	<TABLE ROW>
	DECSTBM
	DECSTBM

	All
	All

	x
	x

	<TABLE ROW>
	DECSWL
	DECSWL

	5
	5

	x
	x

	<TABLE ROW>
	DECPRO
	DECPRO

	0,1,4,5,7,254
	0,1,4,5,7,254

	x
	x

	<TABLE ROW>
	DECTTC
	DECTTC

	0,1
	0,1

	x
	x

	<TABLE ROW>
	DECXMIT
	DECXMIT

	5
	5

	x
	x

	<TABLE ROW>
	ANSI Selectable Modes (Set with ANSI SM/RM)

	<TABLE ROW>
	IRM
	IRM

	4
	4

	x
	x

	x
	x

	<TABLE ROW>
	GATM
	GATM

	1
	1

	x
	x

	x
	x

	<TABLE ROW>
	ERM
	ERM

	6
	6

	x
	x

	<TABLE ROW>
	TTM
	TTM

	16
	16

	x
	x

	<TABLE ROW>
	DIGITAL Private Selectable Modes (Set with ANSI SM/RM)

	<TABLE ROW>
	DECCKM
	DECCKM

	1
	1

	x
	x

	<TABLE ROW>
	DECANM
	DECANM

	2
	2

	x
	x

	<TABLE ROW>
	DECCOLM
	DECCOLM

	3
	3

	x
	x

	<TABLE ROW>
	DECSCLM
	DECSCLM

	4
	4

	x
	x

	<TABLE ROW>
	DECSCNM
	DECSCNM

	5
	5

	x
	x

	<TABLE ROW>
	DECOM
	DECOM

	6
	6

	x
	x

	<TABLE ROW>
	DECAWM
	DECAWM

	7
	7

	x
	x

	<TABLE ROW>
	DECARM
	DECARM

	8
	8

	x
	x

	<TABLE ROW>
	DECEDM
	DECEDM

	10
	10

	x
	x

	<TABLE ROW>
	DECEKEM
	DECEKEM

	16
	16

	x
	x

	<TABLE ROW>
	DECLTM
	DECLTM

	11
	11

	x
	x

	<TABLE ROW>
	DECSCFDM
	DECSCFDM

	13
	13

	x
	x

	<TABLE ROW>
	DECTEM
	DECTEM

	14
	14

	x
	x

	<TABLE ROW>
	ANSI Assumed Modes

	<TABLE ROW>
	CRM
	CRM

	Reset
	Reset

	Reset
	Reset

	<TABLE ROW>
	EBM
	EBM

	Reset
	Reset

	Reset
	Reset

	<TABLE ROW>
	ERM
	ERM

	Set
	Set

	Set
	Set
	Selectable mode.
	Selectable mode.

	<TABLE ROW>
	FEAM
	FEAM

	Reset
	Reset

	Reset
	Reset

	<TABLE ROW>
	FETM
	FETM

	Reset
	Reset

	Reset
	Reset

	<TABLE ROW>
	GATM
	GATM

	N/A
	N/A

	N/A
	N/A

	2
	2
	2

	<TABLE ROW>
	HEM
	HEM

	N/A
	N/A

	N/A
	N/A

	<TABLE ROW>
	IRM
	IRM

	Reset
	Reset

	Reset
	Reset

	2
	2
	2

	2
	2
	2

	<TABLE ROW>
	KAM
	KAM

	Reset
	Reset

	Reset
	Reset

	<TABLE ROW>
	MATH
	MATH

	N/A
	N/A

	N/A
	N/A

	<TABLE ROW>
	PUM
	PUM

	Reset
	Reset

	Reset
	Reset

	<TABLE ROW>
	SATM
	SATM

	N/A
	N/A

	N/A
	N/A

	<TABLE ROW>
	SRTM
	SRTM

	Reset
	Reset

	Reset
	Reset

	<TABLE ROW>
	TSM
	TSM

	Reset
	Reset

	Reset
	Reset

	<TABLE ROW>
	TTM
	TTM

	N/A
	N/A

	N/A
	N/A

	2
	2
	2

	<TABLE ROW>
	VEM
	VEM

	N/A
	N/A

	N/A
	N/A

	D Control Connection Routines
	D Control Connection Routines
	This appendix lists and describes the calling conventions for the pseudoterminal driver control c...
	This appendix lists and describes the calling conventions for the pseudoterminal driver control c...
	Table�D�1
	Table�D�1

	<TABLE>
	Table�D�1 Control Connection Routines�
	<TABLE HEADING>
	<TABLE ROW>
	Routine Name
	Routine Name

	Description

	<TABLE BODY>
	<TABLE ROW>
	PTD$CANCEL
	Cancels a queued control connection read request

	<TABLE ROW>
	PTD$CREATE
	PTD$CREATE

	Creates a pseudoterminal

	<TABLE ROW>
	PTD$DELETE
	PTD$DELETE

	Deletes a pseudoterminal
	Deletes a pseudoterminal

	<TABLE ROW>
	PTD$READ
	Reads data from the pseudoterminal
	Reads data from the pseudoterminal

	<TABLE ROW>
	PTD$READW
	PTD$READW

	Reads data from the pseudoterminal and waits for read to complete
	Reads data from the pseudoterminal and waits for read to complete

	<TABLE ROW>
	PTD$SET_EVENT_NOTIFICATION
	PTD$SET_EVENT_NOTIFICATION

	Enables or disables terminal event notification ASTs
	Enables or disables terminal event notification ASTs

	<TABLE ROW>
	PTD$WRITE
	PTD$WRITE

	Writes data to the pseudoterminal

	PDT$CANCEL — Cancel Queued Request
	PDT$CANCEL — Cancel Queued Request
	Cancels a queued control connection read request.
	Format
	Format
	PDT$CANCEL chan

	Returns
	Returns
	OpenVMS usage:
	OpenVMS usage:
	OpenVMS usage:
	cond_value

	type :
	type :
	longword (unsigned)

	access:
	access:
	write only

	mechanism:
	mechanism:
	by value

	Arguments
	Arguments
	chan
	chan
	OpenVMS usage:
	OpenVMS usage:
	channel

	type :
	type :
	word (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Number of the I/O channel assigned to the pseudoterminal. This channel is only intended to be sue...

	Return Values
	Return Values
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	SS$_NORMAL
	SS$_NORMAL

	Normal successful completion.

	<TABLE ROW>
	SS$_DEVOFFLINE
	Device is off line and request cannot proceed.

	<TABLE ROW>
	SS$_IVCHAN
	Illegal channel.

	<TABLE ROW>
	SS$_NOPRIV
	Insufficient privilege to perform request.

	PDT$CREATE — Create a Pseudoterminal
	PDT$CREATE — Create a Pseudoterminal
	Creates a new pseudoterminal with a unique device name.
	Format
	Format
	PDT$CREATE chan [,acmode] [,charbuff] [,bufflen] [,astadr] [,astprm] �����������[,ast_acmode], inadr

	Returns
	Returns
	OpenVMS usage:
	OpenVMS usage:
	OpenVMS usage:
	cond_value

	type :
	type :
	longword (unsigned)

	access:
	access:
	write only

	mechanism:
	mechanism:
	by value

	Arguments
	Arguments
	chan
	chan
	OpenVMS usage:
	OpenVMS usage:
	channel

	type :
	type :
	word (unsigned)

	access:
	access:
	write only

	mechanism:
	mechanism:
	by value

	Number of the channel that is assigned to the new pseudoterminal. This argument is the address of...
	acmode
	acmode
	OpenVMS usage:
	OpenVMS usage:
	access_mode

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Access mode to be associated with the channel. The most privileged access mode is the access mode...
	charbuff
	charbuff
	OpenVMS usage:
	OpenVMS usage:
	device_characteristics

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by reference

	Address of buffer containing the device characteristics. This information is used to set up the p...
	Figure�D�1
	Figure�D�1

	bufflen
	bufflen
	OpenVMS usage:
	OpenVMS usage:
	word_unsigned

	type :
	type :
	word (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Length of the characteristics buffer (either 12, 16, or 20 bytes). This argument is required if y...
	astadr
	astadr
	OpenVMS usage:
	OpenVMS usage:
	ast_procedure

	type :
	type :
	procedure value

	access:
	access:
	call without stack unwinding

	mechanism:
	mechanism:
	by reference

	AST service routine to be executed when the terminal connection deassigns the last channel to the...
	astprm
	astprm
	OpenVMS usage:
	OpenVMS usage:
	user_arg

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	AST parameter to be passed to the AST service routine specified by
	ast_acmode
	ast_acmode
	OpenVMS usage:
	OpenVMS usage:
	access_mode

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Access mode for which the AST is to be declared. The most privileged access mode is the access mo...
	inadr
	inadr
	OpenVMS usage:
	OpenVMS usage:
	address_range

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by reference

	Address of a two-longword array containing the starting and ending virtual addresses in the virtu...
	• Have identical page protection
	• Have identical page protection
	• Have identical page protection

	• Be writable in the mode of the caller
	• Be writable in the mode of the caller

	• Be owned by the same access mode
	• Be owned by the same access mode

	• Be owned in a mode equal to or less privileged than the caller
	• Be owned in a mode equal to or less privileged than the caller

	• Be of the same page type (process or global)
	• Be of the same page type (process or global)

	Description
	Description
	PTD$CREATE creates a new pseudoterminal with a unique device name. This device name is in the for...
	When a pseudoterminal is created, it inherits the current system terminal default attributes unle...

	Return Values
	Return Values
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	SS$_NORMAL
	SS$_NORMAL

	Normal successful completion.

	<TABLE ROW>
	SS$_ACCVIO
	Unable to read one of the arguments.

	<TABLE ROW>
	SS$_BADPARAM
	Bad Parameter Value.

	<TABLE ROW>
	SS$_EXBYTLM
	Insufficient BYTLM to create device or map buffers.

	<TABLE ROW>
	SS$_EXQUOTA
	SS$_EXQUOTA

	Insufficient quota to create device.

	<TABLE ROW>
	SS$_EXASTLM
	Insufficient AST quota for notification AST.

	<TABLE ROW>
	SS$_INSFMEM
	SS$_INSFMEM

	Insufficient memory to create device.

	<TABLE ROW>
	SS$_INSFWSL
	Insufficient working set limit to map buffers.

	<TABLE ROW>
	SS$_IVSECFLG
	SS$_IVSECFLG

	Invalid process or global section flags.
	Invalid process or global section flags.

	<TABLE ROW>
	SS$_NOPRIV
	No privilege for attempted operation.

	<TABLE ROW>
	SS$_PAGPNWNVIO
	Page owner violation.
	Page owner violation.

	<TABLE ROW>
	SS$_VA_IN_USE
	Virtual address already in use.

	PDT$DELETE — Delete a Pseudoterminal
	PDT$DELETE — Delete a Pseudoterminal
	Forces the pseudoterminal to be deleted and frees the channel.
	Format
	Format
	PDT$DELETE chan

	Returns
	Returns
	OpenVMS usage:
	OpenVMS usage:
	OpenVMS usage:
	longword (unsigned)

	type :
	type :
	write

	access:
	access:
	by value

	Argument
	Argument
	chan
	chan
	OpenVMS usage:
	OpenVMS usage:
	channel

	type :
	type :
	word (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Number of the I/O channel assigned to the pseudoterminal. This channel is only intended to be use...

	Description
	Description
	PTD$DELETE forces the pseudoterminal to be deleted and frees the channel assigned to the pseudote...

	Return Values
	Return Values
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	SS$_NORMAL
	SS$_NORMAL

	Normal successful completion.

	<TABLE ROW>
	SS$_DEVOFFLINE
	Device is off line and request cannot proceed.

	<TABLE ROW>
	SS$_IVCHAN
	Illegal channel.

	<TABLE ROW>
	SS$_NOPRIV
	Insufficient privilege to perform request.

	PDT$READ — Read Data from Pseudoterminal
	PDT$READ — Read Data from Pseudoterminal
	Reads data from the pseudoterminal. The PTD$READ routine completes asynchronously; that is, it re...
	For synchronous completion, use the PTD$READW routine. The PTD$READW routine is identical to the ...
	Format
	Format
	PDT$READ [efn], chan [.astadr] [,astprm] readbuf, readbuf_len

	Returns
	Returns
	OpenVMS usage:
	OpenVMS usage:
	OpenVMS usage:
	longword (unsigned)

	type :
	type :
	write only

	access:
	access:
	by value

	Arguments
	Arguments
	efn
	efn
	OpenVMS usage:
	OpenVMS usage:
	ef_number

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Number of the event flag to be set when PTD$READ returns the requested information. If you do not...
	chan
	chan
	OpenVMS usage:
	OpenVMS usage:
	channel

	type :
	type :
	word (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Number of the I/O channel assigned to the new pseudoterminal. This channel is only intended to be...
	astadr
	astadr
	OpenVMS usage:
	OpenVMS usage:
	ast_procedure

	type :
	type :
	procedure value

	access:
	access:
	call without stack unwinding

	mechanism:
	mechanism:
	by reference

	AST service routine to be executed when PTD$READ completes. If you specify
	astprm
	astprm
	OpenVMS usage:
	OpenVMS usage:
	user_arg

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	AST parameter to be passed to the AST service routine specified by the
	readbuf
	readbuf
	OpenVMS usage:
	OpenVMS usage:
	char_string

	type :
	type :
	character coded text string

	access:
	access:
	write only

	mechanism:
	mechanism:
	by reference

	Address of the read I/O status longword. The first character position in an I/O buffer to receive...
	readbuf_len
	readbuf_len
	OpenVMS usage:
	OpenVMS usage:
	word_unsigned

	type :
	type :
	word (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Number of characters that can be read from the pseudoterminal and stored in the buffer specified by

	Description
	Description
	The PTD$READ routine reads data from the pseudoterminal. The read request completes with a minimu...

	Return Values
	Return Values
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	SS$_NORMAL
	SS$_NORMAL

	Normal successful completion.

	<TABLE ROW>
	SS$_ACCVIO
	Unable to read an argument, or invalid read buffer address.

	<TABLE ROW>
	SS$_DEVOFFLINE
	Device is off line and request cannot proceed.

	<TABLE ROW>
	SS$_EXASTLM
	Insufficient AST quota for notification AST.

	<TABLE ROW>
	SS$_ILLEFC
	SS$_ILLEFC

	Illegal event flag cluster.

	<TABLE ROW>
	SS$_INSFMEM
	SS$_INSFMEM

	Insufficient memory.

	<TABLE ROW>
	SS$_IVBUFLEN
	Buffer size supplied is illegal.

	<TABLE ROW>
	SS$_IVCHAN
	SS$_IVCHAN

	Illegal channel.

	<TABLE ROW>
	SS$_NOPRIV
	Insufficient privilege to perform request.

	<TABLE ROW>
	SS$_UNASEFC
	Unassociated event flag cluster.

	PDT$READW — Read Data from Pseudoterminal and Wait
	PDT$READW — Read Data from Pseudoterminal and Wait
	Reads data from the pseudoterminal. The PTD$READW routine completes synchronously; that is, it re...
	For asynchronous completion, use the PTD$READ routine. The PTD$READ routine is identical to the P...
	Format
	Format
	PDT$READW [efn], chan [.astadr] [,astprm] readbuf, readbuf_len

	PDT$SET_EVENT_NOTIFICATION — Enable or Disable Terminal Event Notification ASTs
	PDT$SET_EVENT_NOTIFICATION — Enable or Disable Terminal Event Notification ASTs
	Enables or disables a number of repeating terminal event notification ASTs.
	Format
	Format
	PDT$SET_EVENT_NOTIFICATION chan, astadr [,astprm] [,acmode], type

	Returns
	Returns
	OpenVMS usage:
	OpenVMS usage:
	OpenVMS usage:
	longword (unsigned)

	type :
	type :
	write only

	access:
	access:
	by value

	Arguments
	Arguments
	chan
	chan
	OpenVMS usage:
	OpenVMS usage:
	channel

	type :
	type :
	word (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Number of the I/O channel assigned to the pseudoterminal. This channel is only intended to be use...
	astadr
	astadr
	OpenVMS usage:
	OpenVMS usage:
	ast_procedure

	type :
	type :
	procedure value

	access:
	access:
	call without stack unwinding

	mechanism:
	mechanism:
	by reference

	Address of the notification AST service routine, or zero if the AST is to be canceled.
	astprm
	astprm
	OpenVMS usage:
	OpenVMS usage:
	user_arg

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	AST parameter to be passed to the AST service routine specified by the
	acmode
	acmode
	OpenVMS usage:
	OpenVMS usage:
	access_mode

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Access mode for which the AST is to be declared. The most privileged access mode is the access mo...
	type
	type
	OpenVMS usage:
	OpenVMS usage:
	type_longword

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Value that indicates which notification AST to enable. The $PTDDEF macro defines the symbolic nam...
	<TABLE>
	Table�D�2 Symbolic Names Defined by $PTDDEF Macro�
	<TABLE HEADING>
	<TABLE ROW>
	Symbolic Name
	Description

	<TABLE BODY>
	<TABLE ROW>
	PTD$C_SEND_XON
	PTD$C_SEND_XON

	Deliver notification AST when the pseudoterminal is ready to accept input. This AST is not delive...
	Deliver notification AST when the pseudoterminal is ready to accept input. This AST is not delive...

	<TABLE ROW>
	PTD$C_SEND_BELL
	PTD$C_SEND_BELL

	Deliver notification AST when the pseudoterminal wants to stop input and signal it with a bell ch...
	Deliver notification AST when the pseudoterminal wants to stop input and signal it with a bell ch...

	<TABLE ROW>
	PTD$C_SEND_XOFF
	PTD$C_SEND_XOFF

	Deliver notification AST when the pseudoterminal wants to stop input and signal it with a DC3 cha...
	Deliver notification AST when the pseudoterminal wants to stop input and signal it with a DC3 cha...

	<TABLE ROW>
	PTD$C_STOP_OUTPUT
	PTD$C_STOP_OUTPUT

	Deliver notification AST when the pseudoterminal is stopping output.
	Deliver notification AST when the pseudoterminal is stopping output.

	<TABLE ROW>
	PTD$C_RESUME_OUTPUT
	PTD$C_RESUME_OUTPUT

	Deliver notification AST when the pseudoterminal is resuming output.
	Deliver notification AST when the pseudoterminal is resuming output.

	<TABLE ROW>
	PTD$C_CHAR_CHANGED
	PTD$C_CHAR_CHANGED

	Deliver notification AST when the pseudoterminal has changed some device characteristic.
	Deliver notification AST when the pseudoterminal has changed some device characteristic.

	<TABLE ROW>
	PTD$C_ABORT_OUTPUT
	PTD$C_ABORT_OUTPUT

	Deliver notification AST when the pseudoterminal wants to abort output.
	Deliver notification AST when the pseudoterminal wants to abort output.

	<TABLE ROW>
	PTD$C_START_READ
	PTD$C_START_READ

	Deliver notification AST when the pseudoterminal is starting an application's read request. This ...
	Deliver notification AST when the pseudoterminal is starting an application's read request. This ...

	<TABLE ROW>
	PTD$C_MIDDLE_READ
	PTD$C_MIDDLE_READ

	Deliver notification AST when the pseudoterminal has finished sending an application's read reque...
	Deliver notification AST when the pseudoterminal has finished sending an application's read reque...

	<TABLE ROW>
	PTD$C_END_READ
	PTD$C_END_READ

	Deliver notification AST when the pseudoterminal has finished an application's read request. This...
	Deliver notification AST when the pseudoterminal has finished an application's read request. This...

	<TABLE ROW>
	PTD$C_ENABLE_READ
	PTD$C_ENABLE_READ

	Enable terminal read event AST delivery. If this code is used, you cannot supply the astadr argum...
	Enable terminal read event AST delivery. If this code is used, you cannot supply the

	<TABLE ROW>
	PTD$C_DISABLE_READ
	PTD$C_DISABLE_READ

	Disable terminal read event AST delivery. If this code is used, you cannot supply the astadr argu...
	Disable terminal read event AST delivery. If this code is used, you cannot supply the

	Description
	Description
	PTD$SET_EVENT_NOTIFICATION enables or disables the repeating terminal event notification ASTs lis...

	Return Values
	Return Values
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	SS$_NORMAL
	SS$_NORMAL

	Normal successful completion.

	<TABLE ROW>
	SS$_ACCVIO
	Unable to read an argument, or invalid I/O buffer address.

	<TABLE ROW>
	SS$_BADPARAM
	An astadr, astprm, or acmode argument was not zero when enabling or disabling r3ad notification.

	<TABLE ROW>
	SS$_DEVOFFLINE
	Device is off line and request cannot proceed.

	<TABLE ROW>
	SS$_EXASTLM
	SS$_EXASTLM

	Insufficient AST quota for notification AST.

	<TABLE ROW>
	SS$_INSFMEM
	SS$_INSFMEM

	Insufficient memory.

	<TABLE ROW>
	SS$_IVCHAN
	SS$_IVCHAN

	Illegal channel.

	<TABLE ROW>
	SS$_NOPRIV
	Insufficient privilege to perform request.

	PDT$WRITE — Write Data to Pseudoterminal
	PDT$WRITE — Write Data to Pseudoterminal
	Inputs data to the pseudoterminal and reads any immediately echoed characters.
	Format
	Format
	PDT$WRITE chan [.astadr] [,astprm] wrtbuf, wrtbuf_len [,echobuf] ����������[,echobuf_len]

	Returns
	Returns
	OpenVMS usage:
	OpenVMS usage:
	OpenVMS usage:
	longword (unsigned)

	type :
	type :
	write only

	access:
	access:
	by value

	Arguments
	Arguments
	chan
	chan
	OpenVMS usage:
	OpenVMS usage:
	channel

	type :
	type :
	word (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Number of the I/O channel assigned to the new pseudoterminal. This channel is only intended to be...
	astadr
	astadr
	OpenVMS usage:
	OpenVMS usage:
	ast_procedure

	type :
	type :
	procedure value

	access:
	access:
	call without stack unwinding

	mechanism:
	mechanism:
	by reference

	AST service routine to be executed when PTD$READ completes. If you specify
	astprm
	astprm
	OpenVMS usage:
	OpenVMS usage:
	user_arg

	type :
	type :
	longword (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	AST parameter to be passed to the AST service routine specified by the
	wrtbuf
	wrtbuf
	OpenVMS usage:
	OpenVMS usage:
	char_string

	type :
	type :
	character coded text string

	access:
	access:
	write only

	mechanism:
	mechanism:
	by reference

	Address of the read I/O status longword. The first character position in an I/O buffer to receive...
	wrtbuf_len
	wrtbuf_len
	OpenVMS usage:
	OpenVMS usage:
	word_unsigned

	type :
	type :
	word (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Number of characters to be written to the pseudoterminal. These characters appear as input to the...
	echobuf
	echobuf
	OpenVMS usage:
	OpenVMS usage:
	char_string

	type :
	type :
	character coded text string

	access:
	access:
	write only

	mechanism:
	mechanism:
	by reference

	Address of the echo I/O status longword. The first character position in an I/O buffer to receive...
	wrtbuf_len
	wrtbuf_len
	OpenVMS usage:
	OpenVMS usage:
	word_unsigned

	type :
	type :
	word (unsigned)

	access:
	access:
	read only

	mechanism:
	mechanism:
	by value

	Number of characters that can be read from the pseudoterminal. If an echo buffer is specified, up to

	Description
	Description
	PTD$WRITE inputs data to the pseudoterminal and reads any immediately echoed characters. PTD$WRIT...

	Return Values
	Return Values
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	SS$_NORMAL
	SS$_NORMAL

	Normal successful completion.

	<TABLE ROW>
	SS$_ACCVIO
	Unable to read an argument, or invalid read buffer address.

	<TABLE ROW>
	SS$_DATALOST
	SS$_DATALOST

	The terminal driver type-ahead buffer is full and character written was lost.

	<TABLE ROW>
	SS$_DATEAOVERUN
	The terminal type-ahead buffer is getting full; attempts to send more data might result in loss o...

	<TABLE ROW>
	SS$_DEVOFFLINE
	Device is off line and request cannot proceed.

	<TABLE ROW>
	SS$_EXASTLM
	Insufficient AST quota for notification AST.

	<TABLE ROW>
	SS$_INSFMEM
	SS$_INSFMEM

	Insufficient memory.

	<TABLE ROW>
	SS$_IVBUFLEN
	Buffer size supplied is illegal.

	<TABLE ROW>
	SS$_IVCHAN
	SS$_IVCHAN

	Illegal channel.

	<TABLE ROW>
	SS$_NOPRIV
	Insufficient privilege to perform request.

