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About This Manual

This manual explains how to write programs with the X/Open Transport
Interface (XTI) calls, STREAMS I/O calls, and the Berkeley Software
Distribution (BSD) socket calls. For XTI and sockets, it provides conceptual
and programming information. Additionally, it explains how to port
applications from Transport Layer Interface (TLI) to XTI and from sockets
to XTI. For STREAMS, this manual explains any differences between
the Tru64 UNIX implementation and the AT&T System V Release 4
implementation. It also provides information on the Extensible System
Network Management Protocol (eSNMP) application programming interface,
the Resource ReSerVation Protocol (RSVP) application programming
interface, and AF_INET6 sockets.

After reading this manual, you should be able to:

• Understand the programming support provided in Tru64 UNIX for
networking

• Write an XTI application by using either connection-oriented or
connectionless service

• Understand the Tru64 UNIX implementation of STREAMS

• Write a socket application

• Understand the differences between TLI and XTI and between sockets
and XTI

• Write an eSNMP application

Audience

This manual addresses experienced UNIX programmers. We assume you
are familiar with the following:

• C language

• Programming interfaces for UNIX operating systems

• Basic networking concepts, including an understanding of the Open
Systems Interconnection (OSI) 7-layer model

• Efforts required to write networking applications
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New and Changed Features

This revision of the Network Programmer’s Guide contains the following
changes:

• Chapter 4 has been revised. The chapter now includes information about
a new tool that enables programmer’s to scan and edit source files when
porting applications to support AF_INET6 sockets. The chapter also
includes a new section on IPv6 raw sockets and accessing information
that is received on these sockets.

Organization

This manual is organized as follows:

Chapter 1 Provides an overview of XTI, STREAMS, sockets, and the
programming tasks required for network applications.

Chapter 2 Describes the dlb pseudodriver, which implements a subset of
the the Data Link Provider Interface (DLPI).

Chapter 3 Describes the fundamental concepts associated with XTI, how
to write connection-oriented and connectionless applications,
compatibility issues with TLI, and how to port applications to
XTI. XTI errors are also covered in this chapter.

Chapter 4 Describes the concepts associated with the socket interface,
and how to write socket applications.

Chapter 5 Describes Tru64 UNIX implementation of STREAMS.

Chapter 6 Describes the Extensible System Network Management
Application Programming Interface.

Chapter 7 Describes the Resource ReSerVation Protocol Applica-
tion Programming Interface.

Chapter 8 Describes the ifnet STREAMS module and dlb STREAMS
pseudodriver communication bridges.

Appendix A Provides a sample STREAMS module.

Appendix B Provides XTI and sockets programming examples.

Appendix C Provides AF_INET and AF_INET6 sockets programming examples.

Appendix D Provides Transport Protocol Control (TCP) specific pro-
gramming information.

Appendix E Provides information required by token ring driver developers.

Appendix F Describes the Data Link Interface (DLI) and provides
programming examples.

This guide also contains a glossary of terms and an index.
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Related Documents

For general information about programming with Tru64 UNIX, refer to the
Programmer’s Guide.

For additional information about networking APIs, refer to the following
manual:

• UNIX Network Programming, Networking APIs: Sockets and XTI by W.
Richard Stevens, ISBN 0-13-490012-X, published by Prentiss-Hall

For additional information about XTI, refer to the following manuals:

• X/Open Portability Guide Volume 7: Networking Services (XPG3), ISBN
0-13-685892-9

• Application Environment Specification (AES) Operating System
Programming Interfaces Volume, ISBN 0-13-043522-8, published by
Prentice-Hall, includes all of the mandatory XTI calls

• X/Open CAE Specification: Networking Services (XNS), Issue 5
(XNS5.0), ISBN 1-85912-165-9

For additional information about the STREAMS I/O framework, refer to
the following manuals:

• Programmer’s Guide: STREAMS. Englewood Cliffs:Prentice-Hall, Inc.,
1990.

This manual explains how to write applications, modules, and device
drivers with STREAMS.

• AT&T System V Release 4 Programmer’s Reference Manual. Englewood
Cliffs:Prentice-Hall, Inc., 1989.

This manual contains the reference pages for all programming interfaces,
including those for STREAMS.

• AT&T System V Release 4 System Administrator’s Reference Manual.
Englewood Cliffs:Prentice-Hall, Inc., 1989.

This manual contains the reference pages for STREAMS ioctl
commands.

• Transport Provider Interface (TPI) Specification, UNIX International

For additional information about the socket interface, refer to the following
books:

• Internetworking with TCP/IP: Principles, Protocols, and Architecture.
Englewood Cliffs:Prentice-Hall, Inc., 1988.

This book, by Douglas Comer, includes a chapter that describes the
socket interface.
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• X/Open CAE Specification: Networking Services, Issue 5 (XNS5.0), ISBN
1-85912-165-9

• Protocol Independent Interfaces P1003.1g Draft 6.6. IEEE draft 1997.

• Design and Implementation of the 4.3BSD UNIX Operating System.
Reading:Addison-Wesley Publishing Company, 1989.

This book, by Leffler, McKusick, Karels, and Quarterman, includes
information about the purpose and use of sockets.

For information about administering networking interfaces, refer to
the System Administration manual and the Network Administration:
Connections manual.

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt
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Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

Conventions

This document uses the following typographic conventions:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

# A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[ | ]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.
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cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

Return In an example, a key name enclosed in a box
indicates that you press that key.

Ctrl/x This symbol indicates that you hold down the
first named key while pressing the key or mouse
button that follows the slash. In examples, this
key combination is enclosed in a box (for example,
Ctrl/C ).
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1
Introduction to the Network Programming

Environment

The network programming environment includes the programming
interfaces for application, kernel, and driver developers writing network
applications and implementing network protocols. Additionally, it includes
the kernel-level resources that an application requires to process and
transmit data, some of which include libraries, data structures, header files,
and transport protocols.

This chapter introduces network programming environment by focusing on
how the data link and application programming interfaces work to get data
from an application in user space, through the network layers in kernel
space, out onto the network, and back again.

Information about the kernel resources that support the interfaces is
included in later chapters in this book. Individual chapters describe the
particular system and library calls, data structures, and other programming
considerations for each interface.

The primary components of the network programming environment are
summarized in Table 1–1.

Table 1–1: Components of the Network Programming Environment
Component Interface Description

Data Link Interfaces Data Link
Interface
(DLI)

Allows programs to
access the data link
layer to communicate
with DLI programs on
other systems.Tru64 UNIX
provides DLI for backward
compatibility with ULTRIX.
See Appendix F.
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Table 1–1: Components of the Network Programming Environment (cont.)

Component Interface Description

dlb interface Kernel-level interface
targeted for STREAMS
protocol modules that either
use or provide data link ser-
vices. The dlb STREAMS
pseudodriver implements
a subset of the Data Link
Provider Interface (DLPI).
See Chapter 2 and the
Data Link Provider Speci-
fication (dlpi.ps) located
in the /usr/share/do-
clib/dlpi directory. Note
that the OSFPGMRnnn
subset must be installed
to access the DLPI spec-
ification online.

Application Programming Interfaces Sockets The de facto industry
standard programming
interface. Tru64 UNIX
implements the 4.3BSD,
4.4BSD, XNS4.0, and
POSIX 1003.1g Draft 6.6
socket interface. The
Internet Protocol Suite,
which consists of TCP, UDP,
IP, ARP, ICMP, and SLIP is
implemented over sockets.
See RFC 1200: IAB Protocol
Standards and Chapter 4.

STREAMS A kernel mechanism
that supports the
implementation of device
drivers and networking
protocol stacks. The
STREAMS framework
defines interface standards
for character input and
output within the kernel as
well as between the kernel
and user levels. The Tru64
UNIX operating system
provides an AT&T, System
V Release 4.0 compatible
version of STREAMS.
See Chapter 5.
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Table 1–1: Components of the Network Programming Environment (cont.)

Component Interface Description

XTI/TLI A protocol independent,
transport layer application
interface that consists of
a series of functions. XTI
is based on the Transport
Layer Interface (TLI)
and the transport service
definition for the Open
Systems Interconnection
(OSI) model. See Chapter 3.

eSNMP A set of routines that
enables you to extend
the SNMP agent process
by creating Management
Information Bases (MIBs).
See Chapter 6.

RSVP An industry—standard
protocol and set of routines
that enable applications
to request enhanced
quality-of-service (QoS).
See Chapter 7.

Communication Bridges Between
STREAMS and Sockets

ifnet
STREAMS
module

Allows STREAMS-based
network device drivers to
access the sockets-based
TCP/IP protocol stack
provided on Tru64 UNIX.
See Chapter 8.

dlb
pseudodriver

Allows applications that
use STREAMS-based
protocol stacks to access
BSD-based drivers.
The dlb pseudodriver
implements a subset of
the DLPI specification.
See Chapter 8.

It is easiest to understand the network programming environment
by examining each component. The following sections introduce the
environment piece by piece, starting with the components closest to the
network and working up.

1.1 Data Link Interfaces

The network programming environment supports both the Data Link
Interface (DLI) and the Data Link Provider Interface (DLPI). DLI enables
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you to port programs that run on ULTRIX systems to Tru64 UNIX systems.
See Appendix F for information about DLI.

DLPI is a kernel-level interface that maps to the data link layer of the
OSI reference model. DLPI frees its users from specific knowledge of the
characteristics of the data link provider, allowing them to be implemented
independently of a specific communications medium. Chapter 2 describes in
greater detail DLPI, the Tru64 UNIX dlb pseudodriver, and the supported
primitives.

1.2 Sockets and STREAMS Frameworks

The Tru64 UNIX operating system supports AT&T’s System V Release 4
STREAMS and BSD sockets frameworks for writing networking applications
and for doing kernel-level network input/output (I/O). A framework
comprises a particular programming interface and the kernel-level resources
that the system requires to transmit and receive data.

Sockets is the de facto industry standard interface for writing networking
applications. The sockets framework is BSD-based, consisting of a series of
system and library calls, header files, and data structures. Applications can
access kernel-resident networking protocols, such as the Internet Protocol
suite, through socket system calls. Applications can also use socket library
calls to manipulate network information; for example, mapping service
names to service numbers or translating the byte order of incoming data to
that appropriate for the local system’s architecture.

The STREAMS framework provides an alternative to sockets. The
STREAMS interface was developed by AT&T and consists of system calls,
kernel routines, and kernel utilities that are used to implement everything
from networking protocol suites to device drivers. Applications in user space
access the kernel portions of the STREAMS framework using system calls
such as open, close, putmsg, getmsg, and ioctl. Figure 1–1 illustrates
the STREAMS and sockets frameworks.
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Figure 1–1: Sockets and STREAMS Frameworks
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______________________ Note _______________________

Tru64 UNIX supports, but does not provide any STREAMS-based
transport providers (the dotted line portion of in Figure 1–1.

With sockets, the application in user space passes data to the appropriate
socket system calls, which then pass it to the network layer. Finally, the
network layer passes it, via the ifnet layer, to the BSD driver, which puts
it on to the network.

With STREAMS, the application in user space passes data to the Stream
head, which passes it to any STREAMS modules that have been pushed on
the Stream to process it. Each module passes the data to the next module
until it finally reaches the STREAMS driver, which puts it out on to the
network.
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1.3 X/Open Transport Interface

The X/Open Transport Interface (XTI) defines a transport layer application
interface that is independent of any transport provider. This means that
programs written to XTI can be run over a variety of transport providers,
such as the Transmission Control Protocol (TCP) or the User Datagram
Protocol (UDP). The application specifies which transport provider to use.

Figure 1–2 illustrates the interaction between XTI and the STREAMS and
sockets frameworks.

Figure 1–2: XTI, STREAMS, and Sockets Interactions
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Depending on the transport provider specified by the application, data can
flow along one of two paths:

1. If a STREAMS-based transport provider is specified, data follows the
same route that it did for an application written to run over STREAMS.
It passes first through the Stream head, then to any modules that
the application pushed onto the Stream, and finally to the STREAMS
driver, which puts it on to the network.
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____________________ Note _____________________

Tru64 UNIX does not provide any STREAMS-based transport
providers.

2. If a socket-based transport provider is specified (TCP or UDP), data
is passed through timod and xtiso. The appropriate socket layer
routines are called and the data is passed through the Internet protocols
and ifnet layer to the BSD-based driver, which puts it on to the
network.

1.4 Extensible SNMP

The Tru64 UNIX SNMP agent provides a framework for extensibility (called
eSNMP). The SNMP daemon functions as an extensible master agent,
communicating with various subagents via the eSNMP protocol. The master
agent implements the SNMP on behalf of the entire system, while subagents
provide the actual MIB instrumentation. The eSNMP subagent development
tools and API provide the mechanism for users to develop subagents that
communicate with the master agent and extend the MIB view.

1.5 RSVP Application Programming Interface

The Tru64 UNIX implementation of Resource ReSerVation Protocol (RSVP)
enables applications to use the RSVP Application Programming Interface
(RAPI) to request enhanced quality-of-service (QoS) for specific application
data streams or flows. The application makes these request to the rsvpd
daemon, which in turn uses RSVP to send and receive RSVP messages
through the network. The rsvpd daemon also communicates with the
Traffic Control subsystem to install and modify flows and filters on a given
network interface.

1.6 Sockets and STREAMS Interaction

The ifnet STREAMS module allows programs using Tru64 UNIX
BSD-based TCP/IP to access STREAMS-based drivers. It provides the dlb
pseudodriver to allow programs using a STREAMS-based protocol stack to
access BSD-based drivers provided on Tru64 UNIX.

Figure 1–3 illustrates an application using the BSD-based TCP/IP provided
on the operating system and accessing a STREAMS-based driver.
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Figure 1–3: Bridging STREAMS Drivers to Sockets Protocol Stacks
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In Figure 1–3, data travels from a sockets-based application through the
appropriate sockets system calls and is processed by the Internet protocols.
Then the BSD ifnet layer of the networking subsystem, whose function is to
map BSD ifnet messages to DLPI, passes the data to the ifnet STREAMS
module. The ifnet STREAMS module processes it so that the STREAMS
driver can put it on to the network. When information for the sockets-based
application is returned, the STREAMS driver picks it up off of the network
and passes it to the DLPI interface of the ifnet STREAMS module. The
DLPI interface of the ifnet STREAMS module translates DLPI messages
to BSD ifnet and passes it back to the BSD ifnet layer. The data is then
processed by the Internet protocols and passed back to the application.

Figure 1–4 illustrates an application using a STREAMS-based protocol stack
and accessing a BSD-based driver.
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Figure 1–4: Bridging BSD Drivers to STREAMS Protocol Stacks
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In Figure 1–4, data travels from a STREAMS-based application through the
Stream head and is processed by whatever Streams modules have been
pushed onto the stack. Instead of finally being passed to a STREAMS driver,
the data is passed to the dlb STREAMS pseudodriver and is then forwarded
to the ifnet layer of the sockets framework. From there it is further
processed by a BSD driver and put on to the network.

1.7 Putting It All Together

Figure 1–5 represents the entire network programming environment.
Variations of this figure appear in each chapter to give you perspective on
the information being presented.
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Figure 1–5: The Network Programming Environment
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2
Data Link Provider Interface

Tru64 UNIX provides the dlb STREAMS pseudodriver, which is a partial
implementation of the Data Link Provider Interface (DLPI).

This chapter describes the dlb STREAMS pseudodriver and the basics of
DLPI. A PostScript copy of the DLPI specification (dlpi.ps) is located in
the /usr/share/doclib/dlpi directory.

______________________ Note _______________________

You must have the OSFPGMRnnn subset installed to access the
DLPI specification online.

Figure 2–1 highlights the data link interfaces and shows their relationship
to the rest of the network programming environment.
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Figure 2–1: DLPI Interface
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______________________ Note _______________________

The dlb STREAMS pseudodriver supports a subset of DLPI
primitives. See Section 2.4 for a list of the supported primitives.

The data link interface is the boundary between the network and data
link layers of the OSI reference model. A network application, or data link
service user (DLS user), uses the services of the data link interface. A driver,
pseudodriver, or data link service provider (DLS provider), provides the
services to the data link layer.

DLPI specifies a STREAMS kernel-level service interface that maps to the
OSI reference model. It defines an interface to the services of the data
link layer and provides a definition of service primitives that make up the
interface.
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Figure 2–2 shows the components of DLPI. The DLS user communicates
with the DLS provider using request/response primitives; the DLS provider
communicates with the DLS user with indication/confirmation primitives.

Figure 2–2: DLPI Service Interface
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Section 2.4 lists supported primitives.

2.1 Modes of Communication
DLPI supports three modes of communication:

• Connection

Enables a DLS user to establish a data link connection, transfer data
over that connection, reset the link, and release the connection when
the conversation has terminated.

The connection service establishes a data link connection between a local
DLS user and a remote DLS user for the purpose of sending data. Only
one data link connection is allowed on each Stream.

• Connectionless

Enables a DLS user to transfer units of data to peer DLS users without
incurring the overhead of establishing and releasing a connection. The
connectionless service does not, however, guarantee reliable delivery of
data units between peer DLS users (for instance, lack of flow control may
cause buffer resource shortages that result in data being discarded).

Once a Stream has been initialized using the local management services,
it may be used to send and receive connectionless data units.

_____________________ Note _____________________

Tru64 UNIX supports only the connectionless mode of
communication.
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• Acknowledged connectionless

Designed for general use for the reliable transfer of information between
peer DLS users. These services are intended for applications that
require acknowledgement of data unit transfer across LANs, but wish
to avoid the complexity associated with the connection-mode services.
Although the exchange service is connectionless, in-sequence delivery is
guaranteed for data sent by the initiating station.

2.2 Types of Service

This section describes the types of service, or phases of communication,
supported by DLPI. Note that the types of service available depend on
the mode of communication (connection, connectionless, acknowledged
connectionless) between the DLS provider and the DLS user.

DLPI supports the following types of service:

• Local management services

– Information reporting service

– Attach service

– Bind service

• Connection-mode services

– Connection establishment

– Data transfer

– Connection release

– Reset service

• Connectionless-mode services

– Connectionless data transfer

– Quality of Service (QOS) management

– Error reporting

• Acknowledged connectionless-mode services

– Acknowledged connectionless-mode data transfer

– Quality of service (QOS) management

– Error reporting

2.2.1 Local Managment Services

The local management services apply to all three modes of communication
supported by DLPI. They enable a DLS user to initialize a Stream that is
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connected to a DLS provider and to establish an identity with that provider.
The local management services support the following:

• Information reporting service

Provides information about the DLPI Stream to the DLS user.

• Attach service

Assigns a physical point of attachment (PPA) to a Stream. See Section 2.3
for more information.

• Bind service

Associates a data link service access point (DLSAP) with a Stream.

2.2.2 Connection-Mode Services

The connection-mode services allow two DLS users to establish a data link
connection between them to exchange data, and to reset the link and release
the connection when the conversation is through. The connection-mode
services support the following:

• Connection establishment service

Establishes a data link connection between a local DLS user and a
remote DLS user for the purposes of sending data.

• Data transfer service

Provides for the exchange of user data in either direction or both
directions simultaneously. Data is sent in logical groups called data link
service data units (DLSDUs) and is guaranteed to be delivered in the
order in which it was sent.

• Connection release service

Enables either the DLS user or DLS provider to break an established
connection.

• Reset service

Allows a DLS user to resynchronize the use of a data link connection,
or a DLS provider to report detected loss of data unrecoverable within
the data link service.

2.2.3 Connectionless-Mode Services

The connectionless-mode services allow DLS users to exchange data without
incurring the overhead of establishing and releasing a connection. The
connectionless-mode services support the following:

• Connectionless data transfer service

Provides for the exchange of user data (DLSDU) in either direction or
in both directions simultaneously.
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• Quality of service (QOS) management service

Enables a DLS user to specify the quality of service it can expect for each
invocation of the connectionless data transfer service.

• Error reporting service

Provides a means to notify a DLS user that a previously sent data unit
either produced an error or could not be delivered. However, the error
reporting service does not guarantee that an error indication will be
issued for every undeliverable data unit.

2.2.4 Acknowledged Connectionless-Mode Data Transfer

The acknowledged connectionless-mode data transfer services are designed
for general use for the reliable transfer of data between peer DLS users.
These services are intended for applications that require acknowledgment
of data transfer between local area networks, but wish to avoid using the
connection mode services. In-sequence delivery is guaranteed for data sent
by the initiating station. The following services are supported:

• Acknowledged connectionless-mode data transfer service

Provides for the exchange of DLSDUs which are acknowledged at the
LLC sublayer.

• Quality of service (QOS) management service

Enables a DLS user to specify the quality of service it can expect for each
invocation of the connectionless data transfer service.

• Error reporting service

Provides a means to notify a DLS user that a previously sent data unit
either produced an error or could not be delivered. However, the error
reporting service does not guarantee that an error indication will be
issued for every undeliverable data unit.

2.3 DLPI Addressing

Each DLPI user must establish an identity to communicate with other data
link users. This identity consists of the following pieces of information:

• Physical attachment identification

This identifies the physical medium over which the DLS user
communicates. The importance of identifying the physical medium is
particularly evident on systems that are attached to multiple physical
media. See Section 2.5 for information about identifying the available
physical points of attachment (PPAs) on your system.

• Data link user identification
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The DLS user must register with the DLS provider so that the provider
can deliver protocol data units destined for that user.

The format of the DLSAP address is an unsigned character array containing
the Medium Access Control (MAC) addresses followed by the bound Service
Access Point (SAP). The SAP is usually two bytes in the case of Ethernet,
or one byte in the case of ISO 8802-2 (IEEE 802.2). The one exception is
when a HIERACHICAL DL_SUBS_BIND_REQ is processed. In that case,
the DLSAP address consists of the MAC address, the SNAP SAP (0xAA),
and a five-byte SNAP.

Figure 2–3 illustrates the components of this identification approach.

Figure 2–3: Identifying Components of a DLPI Address
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The PPA is the point at which a system attaches itself to a physical
communications medium. All communication on that physical medium
funnels through the PPA. On systems where a DLS provider supports more
than one physical medium, the DLS user must identify the medium through
which it will communicate. A PPA is identified by a unique PPA identifier.

DLPI defines the following two styles of DLS provider, which are
distinguished by the way they enable a DLS user to choose a particular PPA:

• The style 1 provider assigns a PPA based on the major/minor device the
DLS user opened. A style 1 driver can be implemented so that it reserves
a major device for each PPA the data link driver would support.

This implementation of a style 1 driver allows the STREAMS clone
open feature to be used for each PPA configured. Style 1 providers are
appropriate when few PPAs are supported.

• The style 2 provider requires a DLS user to identify a PPA explicitly,
using a special attach service primitive. For a style 2 driver, the open
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system call creates a Stream between the DLS user and DLS provider.
Then, the attach primitive associates a particular PPA with that
Stream. The format of the PPA identifier is specific to the DLS provider.

Tru64 UNIX supports only the style 2 provider because it is more suitable
for supporting large numbers of PPAs.

2.4 DLPI Primitives

Table 2–1 lists and describes the DLPI primitives that are supported in the
dlb STREAMS pseudodriver. For a complete list of DLPI primitives see the
DLPI specification in the /usr/share/doclib/dlpi/dlpi.ps file.

Table 2–1: Supported DLPI Primitives
Primitive Description

DL_ATTACH_REQ Requests that the DLS provider associate a PPA
with a Stream. Used on style 2 providers only.

DL_BIND_REQ Requests that the DLS provider bind a DLSAP
to the Stream. The DLS user must identify the
address of the DLSAP to be bound to the Stream.

DL_BIND_ACK Reports the successful bind of a DLSAP to
a Stream, and returns the bound DLSAP
address to the DLS user. Generated in
response to a DL_BIND_REQ.

DL_DETTACH_REQ Requests the DLS provider disassociate
a PPA with a stream.

DL_DISABMULTI_REQ Request the DLS provider disable the
multicast address.

DL_ENABMULTI_REQ Request the DLS provider enable a specific
multicast address. (The current implementation of
the DLB driver requires the state to be DL_IDLE.)

DL_ERROR_ACK Informs DLS user of a previously issued
request which was invalid.

DL_INFO_ACK Response to DL_INFO_REQ primitive; conveys
information about the DLPI stream.

DL_INFO_REQ Requests the DLS provider return information
about the DLPI stream.

DL_OK_ACK Acknowledges to the DLS user that a previously
issued request primitive was successfully received.

DL_PHYS_ADDR_REQ Requests that the DLS provider return either
the default (factory) or current value of the
physical address associated with the Stream,
depending upon the value of the address
type selected in the request.
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Table 2–1: Supported DLPI Primitives (cont.)

Primitive Description

DL_PHYS_ADDR_ACK Returns the value for the physical address to the
link user in response to a DL_PHYS_ADDR_REQ.

DL_SUBS_BIND_ACK Is the positive response to a DL_SUBS_BIND_REQ
from the DLS provider.

DL_SUBS_BIND_REQ Requests the DLS provider bind a subsequent
DLSAP to stream. There are two classes of
subsequent bind requests: HIERACHICAL and
PEER. HIERACHICAL requests are only valid
for SNAPs (see the IEEE 802.1 specification)
and you must have bound to the SNAP SAP
(0xAA) with a DL_BINDS_REQ before issuing the
DL_SUBS_BIND_REQ for the SNAP. The PEER
request binds to additional SAPs but does not
change the DLSAP address of the stream.

DL_SUBS_UNBIND_REQ Requests the DLS provider to unbind a SAP which
was previously bound by a DL_SUBS_BIND_REQ.

DL_TEST_CON Conveys that a DLSDU TEST response was
received in response to a DL_TEST_REQ.

DL_TEST_IND Conveys to the DLS user that a TEST command
DLSDU was received.

DL_TEST_REQ Requests the DLS provider to transmit a TEST
command DLSDU on behalf of the DLS user.

DL_TEST_RES Requests the DLS provider to send a TEST
response command on behalf of the DLS user.

DL_UDERROR_IND Informs a DLS user that a previously sent
DL_UNITDATA_REQ failed.

DL_UNBIND_REQ Requests that the DLS provider unbind
the DLSAP that was bound by a previous
DL_BIND_REQ from this Stream.

DL_UNITDATA_REQ Conveys one DLSDU from the DLS user to the
DLS provider for transmission to a peer DLS user.

DL_UNITDATA_IND Conveys one DLSDU from the DLS provider
to the DLS user.

DL_XID_CON Conveys that a XID DLSDU was received in
response to a DL_XID_REQ.

DL_XID_IND Conveys to the DLS user that a XID
DLSDU was received.
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Table 2–1: Supported DLPI Primitives (cont.)

Primitive Description

DL_XID_REQ Requests the DLS provider to transmit a XID
DLSDU on behalf of the DLS user.

DL_XID_RES Requests the DLS provider to send a XID
DLSDU on behalf of the DLS user. This is
in repsonse to a DL_XID_RES.

2.5 Identifying Available PPAs

When compiled and run as root, the following program opens the STREAMS
device /dev/streams/dlb and prints to the screen the PPAs available on
the system. The PPA number should be passed in using the dl_ppa field of
the DL_ATTACH_REQ DLPI primitive.

#include <sys/ioctl.h>
#include <stropts.h>
#include <errno.h>
#include <fcntl.h>

#define ND_GET (’N’ << 8 + 0)
#define BUFSIZE 256

main()
{

int i;
int fd;
char buf [BUFSIZE];
struct strioctl stri;

fd = open("/dev/streams/dlb", O_RDWR, 0);
if (fd < 0) {

perror("open");
exit(1);

}

sprintf(buf, "dl_ifnames");
stri.ic_cmd = ND_GET;
stri.ic_timout = -1;
stri.ic_len = BUFSIZE;
stri.ic_dp = buf;

if (ioctl(fd, I_STR, &stri) < 0) {
perror("ioctl");
exit(1);

}

printf("Valid PPA names on this system are:\n");
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for (i=0; i<stri.ic_len; i++) {
if (buf[i] == 0)

printf(" ");
else

printf("%c",buf[i]);
}
printf("\n");

}

# a.out
Valid PPA names on this system are:
sscc0 (PPA 1) ln0 (PPA 2) dsy0 (PPA 3) dsy1 (PPA 4) \
sl0 (PPA 5) sl1 (PPA 6) lo0
#
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3
X/Open Transport Interface

The X/Open Transport Interface (XTI) is a transport layer application
interface that consists of a series of functions designed to be independent
of the specific transport provider used. In this operating system, XTI is
implemented according to the XPG3, XNS4.0, and XNS5.0 specifications.
XNS4.0 is the default. (XPG3, to be retired in a future release, is provided
for backward compatibility and is available by using a compiler switch.
XNS5.0 is also available by using a compiler switch.) For more information
about XPG3, XNS4.0 and XNS5.0, see the X/Open Portability Guide Volume
7: Networking Services, X/Open CAE Specification: Networking Services,
Issue 4, and X/Open CAE Specification: Networking Services (XNS), Issue 5,
respectively. This operating system’s implementation of XTI is also thread
safe.

Although similar in concept to the Berkeley socket interface, XTI is based
on the AT&T Transport Layer Interface (TLI). TLI, in turn, is based on the
transport service definition for the Open Systems Interconnection (OSI)
model.

______________________ Note _______________________

This operating system includes the Transport Control Protocol
(TCP) and User Datagram Protocol (UDP) transport providers.
Although the information provided in this chapter applies to all
transport providers that this operating system’s XTI supports,
such as DECnet/OSI, the examples are specific to TCP or UDP.
For more specific information using XTI over TCP and UDP, see
xti_internet(7). For examples and information specific to other
transport providers, see the documentation that accompanies
their software.

This chapter contains the following information:

• Overview of XTI

• Description of XTI features

• Instructions on how to use XTI

• Instructions on how to port applications to XTI

• Information on the differences among XPG3, XNS4.0, and XNS5.0.
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• Explanation of XTI errors and error messages

• Information on configuring transport providers.

Figure 3–1 highlights XTI and its relationship to the operating system’s
implementation of the Internet Protocol suite. It also shows how XTI and
the Internet Protocol suite fit into the rest of the network programming
environment.

Figure 3–1: X/Open Transport Interface
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3.1 Overview of XTI

XTI involves the interaction of the following entities:

• Transport providers

A transport provider is a transport protocol, such as TCP or UDP,
that offers transport layer services.

• Transport users

3–2 X/Open Transport Interface



A transport user is an application program that requires the services
of a transport provider to send data to or receive data from another
program. A transport user communicates with a transport provider over
a communications path identified by a transport endpoint.

• Transport endpoints

A transport endpoint is created when an application issues a t_open
library call. All of the transport user’s requests to the transport provider
pass through the endpoint associated with that provider.

The transport user activates a transport endpoint by binding a transport
address to it. Once an endpoint is active, a transport user can send data
over it. The transport provider routes the data to the appropriate peer user
or other destination.

When using a connection-oriented transport service, such as TCP, the
transport user must establish a connection between itself and a peer
transport user with a t_connect function, specifying an active endpoint,
before sending data. In a transport connection, the transport user initiating
the connection is the active user, or client, and the peer transport user
responding to the connection request is the passive user, or server.
Figure 3–2 summarizes the relationship between transport providers,
transport users, and transport endpoints.

Figure 3–2: A Transport Endpoint
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3.2 XTI Features

XTI consists of library calls, header files, and the rules and restrictions
elaborating how XTI processes work and interact. This section describes the
library calls and header files, as well as the regulations that govern the
interaction between communicating processes.

3.2.1 Modes of Service and Execution

Transport users use different service modes and execution modes to
determine how data is exchanged with transport providers. The following
sections introduce the service modes and execution modes available in XTI.

3.2.1.1 Connection-Oriented and Connectionless Service

In XTI, an endpoint can support one of the following modes of service:

• Connection-oriented transport service

A circuit-oriented service that transfers data over an established
connection in a reliable, sequenced manner.

Connection-oriented transport is useful for applications that require
long, order dependent and reliable, stream-oriented interactions. With
connection-oriented transport, transport users and providers can
negotiate the parameters and options that govern data transfer. In
addition, because a connection provides identification of both parties,
the transport user avoids the overhead of transmitting and resolving
addresses during data transfer. A connection also provides a context that
logically relates successive units of data.

• Connectionless transport service

A message-oriented service that transfers data in self-contained units or
datagrams, which have no logical sequence with respect to one another.

Connectionless transport is best suited for applications that have the
following qualities:

– Short-term request and response interactions

– Dynamic reconfiguration of connections to multiple endpoints

– No need for the guaranteed, sequential delivery of data

Each data unit is self-contained and has no relationship to previous
or successive data units, so the transport provider can route it
independently.
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3.2.1.2 Asynchronous and Synchronous Execution

Execution modes provide a means for transport users to handle completion
of functions and receipt of events. An event is an occurrence or happening
that is significant to a transport user. XTI supports two execution modes:

• Synchronous mode

Waits for transport primitives to complete before returning control to the
transport user. Also known as blocking mode.

Synchronous mode is suited for applications that want to wait for
functions to complete or maintain only a single transport connection. In
synchronous mode, the transport user cannot perform other tasks while
waiting for a function to complete. For example, if the transport user
issues a t_rcv function in synchronous mode, t_rcv waits until data is
received before returning control to the transport user.

Even while using synchronous mode, it is possible to get some event
notification, which the transport user does not ordinarily expect. Such
asynchronous events are returned to the user through a special error,
TLOOK.

If an asynchronous event occurs while a function is executing, the
function returns the TLOOK error; the transport user can then issue the
t_look function to retrieve the event.

• Asynchronous mode

Returns control to the transport user before transport primitives
complete. Also known as nonblocking mode.

Asynchronous mode is useful for applications that have long delays
between completion of functions and other tasks to perform in the
meantime. This mode is also useful for applications that handle multiple
connections simultaneously. Many applications handle networking
functions in asynchronous mode because they can perform useful work
while waiting for particular networking functions to complete. For
example, if a transport user issues a t_rcv function call in asynchronous
mode, the function returns control to the user immediately if no data is
available. The user periodically polls for data until the data arrives.

By default, all functions that process incoming events operate in synchronous
mode, blocking until the task completes. To select asynchronous mode, the
transport user specifies the O_NONBLOCK flag with the t_open function
when the endpoint is created or before executing a function or group of
functions with the fcntl operating system call.

For a full discussion of the specific events supported by XTI, see Section 3.2.3.
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3.2.2 The XTI Library, TLI Library, and Header Files

XTI functions are implemented as part of the XTI library, libxti.a. TLI
functions are implemented in a separate TLI library, libtli.a. There are
also shared versions of these libraries, libxti.so and libtli.so.

Shared library support is provided by default when you link an XTI or TLI
application with the XTI or TLI library.

The first of the following examples illustrates how to relink an XTI
application’s object files with the XTI shared library; the second illustrates
how to relink a TLI application’s object files with the TLI shared library:

% cc -o XTIapp XTIappmain.o XTIapputil.o -lxti

% cc -o TLIapp TLIappmain.o TLIapputil.o -ltli

To link programs statically with the XTI or TLI libraries, use the
non_shared option to the cc command. The following example illustrates
how to link an XTI application’s object files to the XTI library statically:

% cc -non_shared -o XTIapp XTIappmain.o XTIapputil.o -lxti

See cc(1) for more information.

To make a program thread safe, build the program with POSIX threads
pthreads routines. For more information, see the Guide to the POSIX
Threads Library.

The few differences between XTI and TLI are described in Section 3.5.2,
which also describes how to link your programs with the correct library
at compile time.

3.2.2.1 XTI and TLI Header Files

XTI and TLI header files contain data definitions, structures, constants,
macros, and options used by the XTI and TLI library calls. An application
program must include the appropriate header file to make use of structures
or other information a particular XTI or TLI library call requires. Table 3–1
lists the XTI and TLI header files.

Table 3–1: Header Files for XTI and TLI
File Name Description

<tiuser.h> Contains data definitions and structures for TLI applications.
You must include this file for all TLI applications.

<xti.h> Contains data definitions and structures for XTI applications.
You must include this file for all XTI applications.

<xti_inet.h> Contains Internet data definitions and structures for XTI
applications. You must include this file for all XTI applications.
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Table 3–1: Header Files for XTI and TLI (cont.)

File Name Description

<xti_osi.h> Contains ISO OSI data definitions and structures for XTI
applications. You must include this file for all XTI applications.

<fcntl.h> Defines flags for modes of execution for the t_open function.
You must include this file for all XTI and TLI applications.

______________________ Note _______________________

Typically, header file names are enclosed in angle brackets (<
>). To obtain the absolute path to the header file, prepend
/usr/include/ to the information enclosed in the angle
brackets. For example, the absolute path for the tiuser.h file
is /usr/include/tiuser.h.

3.2.2.2 XTI Library Calls

Some of the calls apply to connection-oriented transport (COTS), some
to connectionless transport (CLTS), some to connection-oriented transport
when used with the orderly release feature (COTS_ORD), and some to all
service modes. A small group of the calls are utility functions and do not
apply to a particular service mode. Table 3–2 lists the name, purpose, and
service mode of each XTI library call. Each call has an associated reference
page by the same name.

The operating system provides XTI reference pages only; it does not provide
TLI reference pages. For information about TLI and for the TLI reference
pages see the UNIX System V Programmer’s Guide: Networking Interfaces,
which is issued by UNIX System Laboratories, Inc. The operating system
provides reference pages for each of the functions. For more information, see
the X/Open CAE Specification: Networking Services.

Table 3–2: XTI Library Calls
Name of Call Purpose Service Mode

t_accept Accepts a connection request COTS, COTS_ORD

t_alloc Allocates memory for a
library structure

All

t_bind Binds an address to a
transport endpoint

All

t_close Closes a transport endpoint All

t_connect Establishes a connection with
another transport user

COTS, COTS_ORD
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Table 3–2: XTI Library Calls (cont.)

Name of Call Purpose Service Mode

t_error Produces an error message All

t_free Frees memory previously
allocated for a library structure

All

t_getinfo Returns protocol-specific
information

All

t_getprotaddr a Returns the protocol address All

t_getstate Returns the current state for
the transport endpoint

All

t_listen Listens for a connection request COTS, COTS_ORD

t_look Returns the current event on
the transport endpoint

All

t_open Establishes a transport
endpoint

All

t_optmgmt Retrieves, verifies, or
negotiates protocol options

All

t_rcv Receives data or expedited
data over a connection

COTS, COTS_ORD

t_rcvconnect Receives the confirmation from
a connection request

COTS, COTS_ORD

t_rcvdis Identifies the cause of a
disconnect, and retrieves
information sent with a
disconnect

COTS, COTS_ORD

t_rcvrel b Acknowledges receipt of an
orderly release indication

COTS_ORD

t_rcvreldata c Receives an orderly release
indication or confirmation
containing user data

COTS_ORD

t_rcvv c Receives data or expedited
data over a connection and
puts it into buffers

COTS, COTS_ORD

t_rcvvudata c Receives a data unit into buffers CLTS

t_rcvudata Receives a data unit CLTS

t_rcvuderr Receives information about
an error associated with
a data unit

CLTS

t_snd Sends data or expedited data
over a connection

COTS, COTS_ORD
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Table 3–2: XTI Library Calls (cont.)

Name of Call Purpose Service Mode

t_snddis Initiates a release on an
established connection, or
rejects a connection request

COTS, COTS_ORD

t_sndrel b Initiates an orderly release COTS_ORD

t_sndreldata c Initiates or responds to an
orderly release with user data

COTS_ORD

t_sndudata Sends a data unit CLTS

t_sndv c Sends data or expedited data
on a connection

COTS, COTS_ORD

t_sndvudata c Sends a data unit CLTS

t_strerror a Produces an error message
string

All

t_sync Synchronizes the data
structures in the transport
library

All

t_sysconf c Retrieves configurable XTI
variables

All

t_unbind Disables a transport endpoint All
a This function is supported in XNS4.0 only.
b Tru64 UNIX as supplied by Hewlett-Packard Company does not provide a transport provider that supports
the use of COTS_ORD; therefore, this function returns an error.
c This function is supported in XNS5.0 only.

XTI supports an orderly release mechanism, t_sndrel and t_rcvrel
functions. (See Table 3–2 for more information.) However, if your
applications need to be portable to the ISO transport layer, we recommend
that you do not use this mechanism.

Finally, the XTI header file defines the following constants to identify service
modes:

• T_COTS − Connection-oriented transport service (for example, OSI
transport)

• T_CLTS − Connectionless transport service (for example, UDP)

• T_COTS_ORD − Connection-oriented transport service with the orderly
release mechanism implemented (for example, TCP)

These service modes are returned by the transport provider in the servtype
field of the info structure when you create an endpoint with the t_open
function.
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3.2.3 Events and States

Each transport provider has a particular state associated with it, as viewed
by the transport user. The state of a transport provider and its transition
to the next allowable state is governed by outgoing and incoming events,
which correspond to the successful return of specified user-level transport
functions. Outgoing events correspond to functions that send a request or
response to the transport provider, whereas incoming events correspond
to functions that retrieve data or event information from the transport
provider. This section describes the possible states of the transport provider,
the outgoing and incoming events that can occur, and the allowable sequence
of function calls.

3.2.3.1 XTI Events

XTI applications must manage asynchronous events. An asynchronous
event is identified by a mnemonic which is defined as a constant in the XTI
header file. Table 3–3 lists the name, purpose, and service mode for each
type of asynchronous event in XTI.

Table 3–3: Asynchronous XTI Events
Event Name Purpose Service Mode

T_CONNECT The transport provider received
a connection response. This
event usually occurs after
the transport user issues the
t_connect function.

COTS, COTS_ORD

T_DATA The transport provider received
normal data, which is all or
part of a Transport Service
Data Unit (TSDU).

COTS, CLTS,
COTS_ORD

T_DISCONNECT The transport provider received
a disconnect request. This
event usually occurs after the
transport user issues data transfer
functions, the t_accept function,
or the t_snddis function.

COTS, COTS_ORD

T_EXDATA The transport provider received
expedited data.

COTS, COTS_ORD

T_GODATA The flow control restrictions
on the flow of normal data are
lifted. The transport user can
send normal data again.

COTS, CLTS,
COTS_ORD
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Table 3–3: Asynchronous XTI Events (cont.)

Event Name Purpose Service Mode

T_GOEXDATA The flow control restrictions on
the flow of expedited data are
lifted. The transport user can
send expedited data again.

COTS, COTS_ORD

T_LISTEN The transport provider received a
connection request from a remote
user. This event occurs only when
the file descriptor is bound to a
valid address and no transport
connection is established.

COTS, COTS_ORD

T_ORDREL The transport provider received a
request for an orderly release.

COTS_ORD

T_UDERR An error was found on a datagram
that was previously sent. This
event usually occurs after
the transport user issues the
t_rcvudata or t_unbind
functions.

CLTS

XTI stores all events that occur at a transport endpoint.

If using a synchronous mode of execution, the transport user returns from
the function it was executing with a value of -1 and then checks for a value
of TLOOK in t_errno and retrieves the event with the t_look function. In
asynchronous mode, the transport user continues doing productive work and
periodically checks for new events.

Every event at a transport endpoint is consumed by a specific XTI
function, or it remains outstanding. Exceptions are the T_GODATA and
T_GOEXDATA events, which are cleared by retrieving them with t_look.
Thus, once the transport user receives a TLOOK error from a function,
subsequent calls to that function or a different function continue to return
the TLOOK error until the transport user consumes the event. Table 3–4
summarizes the consuming functions for each asynchronous event.

Table 3–4: Asynchronous Events and Consuming Functions
Event Cleared by t_look Consuming Function(s)

T_CONNECT No t_connect, t_rcv-
connect

T_DATA No t_rcv, t_rcvudata

T_DISCONNECT No t_rcvdis

T_EXDATA No t_rcv
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Table 3–4: Asynchronous Events and Consuming Functions (cont.)

Event Cleared by t_look Consuming Function(s)

T_GODATA Yes t_snd, t_sndudata

T_GOEXDATA Yes t_snd

T_LISTEN No t_listen

T_ORDREL No t_rcvrel

T_ORDRELDATAa No t_rcvreldata

T_UDERR No t_rcvuderr
a The Tru64 UNIX TCP transport provider does not support orderly release data.

Table 3–5 lists the events that cause a specific XTI function to return the
TLOOK error. This information may be useful when you structure the event
checking mechanisms in your XTI applications.

Table 3–5: XTI Functions that Return TLOOK
Function Events Causing TLOOK

t_accept T_DISCONNECT, T_LISTEN

t_connect T_DISCONNECT, T_LISTEN a

t_listen T_DISCONNECT b

t_rcv T_DISCONNECT, T_ORDREL c

t_rcvconnect T_DISCONNECT

t_rcvrel T_DISCONNECT

t_rcvreldata T_DISCONNECT

t_rcvudata T_UDERR

t_rcvv T_DISCONNECT, T_ORDREL

t_rcvvudata T_UDERR

t_snd T_DISCONNECT, T_ORDREL

t_sndv T_DISCONNECT, T_ORDREL

t_snddis T_DISCONNECT

t_sndrel T_DISCONNECT

t_sndreldata T_DISCONNECT

t_sndudata T_UDERR

t_sndvudata T_UDERR

t_unbind T_LISTEN, T_DATA d

a This event occurs only when t_connect is issued for an endpoint that was bound with a qlen > 0, and has
a pending connection indication.
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Table 3–5: XTI Functions that Return TLOOK (cont.)
b This event indicates a disconnect on an outstanding connection indication.
c This occurs only when all pending data has been read.
d T_DATA may only occur for the connectionless mode.

Each XTI function manages one transport endpoint at a time. It is not
possible to wait for several events from different sources, particularly from
several transport connections at a time. This implementation of XTI allows
the transport user to monitor input and output on a set of file descriptors
with the poll function. See poll(2) for more information.

3.2.3.2 XTI States

XTI controls the legality of the calls issued by a program at a given point
in time. XTI uses eight states to manage communication over a transport
endpoint. Both the active and passive user have a unique state that reflects
the function in process.

Table 3–6 describes the purpose of each XTI state. A service mode of COTS
indicates the state occurs regardless of whether or not orderly service is
implemented. A service mode of COTS_ORD indicates the state occurs only
when orderly service is implemented.

Table 3–6: XTI States

State Description Service Mode

T_UNINIT Uninitialized. Initial and final
state of the interface. To establish
a transport endpoint, the user
must issue a t_open.

COTS, CLTS,
COTS_ORD

T_UNBIND Unbound. The user can bind an
address to a transport endpoint or
close a transport endpoint.

COTS, CLTS,
COTS_ORD

T_IDLE Idle. The active user can establish a
connection with a passive user (COTS),
disable a transport endpoint (COTS,
CLTS), or send and receive data units
(CLTS). The passive user can listen
for a connection request (COTS).

COTS, CLTS,
COTS_ORD

T_OUTCON Outgoing connection pending. The
active user can receive confirmations
for connection requests.

COTS, COTS_ORD

T_INCON Incoming connection pending.
The passive user can accept
connection requests.

COTS, COTS_ORD
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Table 3–6: XTI States (cont.)

State Description Service Mode

T_DATAXFER Data transfer. The active user can
send data to and receive data from
the passive user. The passive user
can send data to and receive data
from the active user.

COTS, COTS_ORD

T_OUTREL Outgoing orderly release. The
user can respond to an orderly
release indication.

COTS_ORD

T_INREL Incoming orderly release. The user
can send an orderly release indication.

COTS_ORD

If you are writing a connection-oriented application, note that your program
can release a connection at any time during the connection-establishment
state or data-transfer state.

3.2.4 Tracking XTI Events

The XTI library keeps track of outgoing and incoming events to manage the
legal states of transport endpoints. The following sections describe these
outgoing and incoming events.

3.2.4.1 Outgoing Events

Outgoing events are caused by XTI functions that send a request or response
to the transport provider. An outgoing event occurs when a function returns
successfully. Some functions produce different events, depending on the
following values:

ocnt A count of outstanding connection indications (those passed to
the transport user but not yet accepted or rejected). This count
is only meaningful for the current transport endpoint (fd). A
count of outstanding connection indications (those passed to the
transport user but not yet accepted or rejected). This count is only
meaningful for the current transport endpoint (fd).

fd The file descriptor of the current transport endpoint.

resfd The file descriptor of the endpoint where a connection will be accepted.

Table 3–7 describes the outgoing events available in XTI. A service mode
of COTS indicates the event occurs for a connection-oriented service
regardless of whether or not orderly service is implemented. A service
mode of COTS_ORD indicates the event occurs only when orderly service
is implemented.
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Table 3–7: Outgoing XTI Events
Event Description Service Mode

opened Successful return of t_open function. COTS, CLTS,
COTS_ORD

bind Successful return of t_bind function. COTS, CLTS,
COTS_ORD

optmgmt Successful return of t_optmgmt function. COTS, CLTS,
COTS_ORD

unbind Successful return of t_unbind function. COTS, CLTS,
COTS_ORD

closed Successful return of t_close function. COTS, CLTS,
COTS_ORD

connect1 Successful return of t_connect function in
synchronous execution mode.

COTS,
COTS_ORD

connect2 The t_connect function returned the
TNODATA error in asynchronous mode, or
returned the TLOOK error because a disconnect
indication arrived on the transport endpoint.

COTS,
COTS_ORD

accept1 Successful return of t_accept function, where
ocnt == 1 and fd == resfd.

COTS,
COTS_ORD

accept2 Successful return of t_accept function, where
ocnt == 1 and fd != resfd.

COTS,
COTS_ORD

accept3 Successful return of t_accept function,
where ocnt > 1.

COTS

snd Successful return of t_snd function. COTS

snddis1 Successful return of t_snddis function,
where ocnt <= 1.

COTS,
COTS_ORD

snddis2 Successful return of t_snddis function,
where ocnt > 1.

COTS,
COTS_ORD

sndrel Successful return of t_sndrel function. COTS_ORD

sndudata Successful return of t_sndudata function. CLTS

3.2.4.2 Incoming Events

Incoming events are caused by XTI functions that retrieve data or events
from the transport provider. An incoming event occurs when a function
returns successfully. Some functions produce different events, depending
on the value of the ocnt variable. This variable is a count of outstanding
connection indications (those passed to the transport user but not yet
accepted or rejected). This count is only meaningful for the current transport
endpoint (fd).
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The pass_conn incoming event is not associated directly with the successful
return of a function on a given endpoint. The pass_conn event occurs on the
endpoint that is being passed a connection from the current endpoint. No
function occurs on the endpoint where the pass_conn event occurs.

Table 3–8 describes the incoming events available in XTI. A service mode of
COTS indicates the event occurs regardless of whether or not orderly service
is implemented. A service mode of COTS_ORD indicates the event occurs
only when orderly service is implemented.

Table 3–8: Incoming XTI Events
Event Description Service Mode

listen Successful return of the t_listen function COTS,
COTS_ORD

rcvconnect Successful return of the t_rcvconnect function COTS,
COTS_ORD

rcv Successful return of the t_rcv function COTS,
COTS_ORD

rcvdis1 Successful return of the t_rcvdis function,
where ocnt == 0

COTS,
COTS_ORD

rcvdis2 Successful return of the t_rcvdis function,
where ocnt == 1

COTS,
COTS_ORD

rcvdis3 Successful return of the t_rcvdis function,
where ocnt > 1

COTS,
COTS_ORD

rcvrel Successful return of the t_rcvrel function COTS_ORD

rcvudata Successful return of the t_rcvudata function CLTS

rcvuderr Successful return of the t_rcvuderr function CLTS

pass_conn Successfully received a connection that was
passed from another transport endpoint

COTS,
COTS_ORD

3.2.5 Map of XTI Functions, Events, and States

This section describes the relationship among XTI functions, outgoing and
incoming events, and states. Since XTI has well-defined rules about state
transitions, it is possible to know the next allowable state given the current
state and most recently received event. This section provides detailed tables
that map the current event and state to the next allowable state.

This section excludes the t_getstate, t_getinfo, t_alloc, t_free,
t_look, t_sync, and t_error functions from discussions of state
transitions. These utility functions do not affect the state of the transport
interface, so they can be issued from any state except the uninitialized
(T_UNINIT) state.
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To use Table 3–9, Table 3–10, and Table 3–11, find the row that matches the
current incoming or outgoing event and the column that matches the current
state. Go to the intersection of the row and column to find the next allowable
state. A dash (—) at the intersection indicates an invalid combination of
event and state. Some state transitions are marked by a letter that indicates
an action that the transport user must take. The letters and their meanings
are listed at the end of the appropriate table.

Table 3–9 shows the state transitions for initialization and deinitialization
functions, functions that are common to both the connection-oriented and
connectionless modes of service. For example, if the current event and state
are bind and T_UNBND, the next allowable state is T_IDLE. In addition,
the transport user must set the count of outstanding connection indications
to zero, as indicated by the letter a.

Table 3–9: State Transitions for Initialization of Connection-Oriented or
Connectionless Transport Services
Event T_UNINIT State T_UNBND State T_IDLE State

opened T_UNBND — —

bind — T_IDLE a —

unbind — — T_UNBND

closed — T_UNINIT T_UNINIT
a Set the count of outstanding connection indications, ocnt, to 0.

Table 3–10 shows the state transitions for data transfer functions in
connectionless transport services.

Table 3–10: State Transitions for Connectionless Transport Services
Event State T_IDLE

sndudata T_IDLE

rcvudata T_IDLE

rcvuderr T_IDLE

Table 3–11 and Table 3–12 show the transitions for connection, release,
and data transfer functions in connection-oriented transport services for
incoming and outgoing events. For example, if the current event and
state are accept2 and T_INCON, the next allowable state is T_IDLE,
providing the transport user decrements the count of outstanding connection
indications and passes a connection to another transport endpoint.
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Table 3–11: State Transitions for Connection-Oriented Transport Services:
Part 1
Event T_IDLE State T_OUTCON

State
T_INCON State T_DATAXFER

State

connect1 T_DATAXFER — — —

connect2 T_OUTCON — — —

rcvconnect — T_DATAXFER — —

listen T_INCON a — T_INCON a —

accept1 — — T_DATAXFER b —

accept2 — — T_IDLE b c —

accept3 — — T_INCON b c —

snd — — — T_DATAXFER

rcv — — — T_DATAXFER

snddis1 — T_IDLE T_IDLE b T_IDLE

snddis2 — — T_INCON b —

rcvdis1 — T_IDLE — T_IDLE

rcvdis2 — — T_IDLE b —

rcvdis3 — — T_INCON b —

sndrel — — — T_OUTREL

rcvrel — — — T_INREL

pass_conn T_DATAXFER — — —

optmgmt T_IDLE T_OUTCON T_INCON T_DATAXFER

closed T_UNINIT T_UNINIT T_UNINIT T_UNINIT
a Increment the count of outstanding connection indications.
b Decrement the count of outstanding connection indications.
c Pass a connection to another transport endpoint, as indicated in the t_accept function.

Table 3–12: State Transitions for Connection-Oriented Transport Services:
Part 2
Event T_OUTREL State T_INREL State T_UNBND State

connect1 — — —

connect2 — — —

rcvconnect — — —

listen — — —

accept1 — — —
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Table 3–12: State Transitions for Connection-Oriented Transport Services:
Part 2 (cont.)

Event T_OUTREL State T_INREL State T_UNBND State

accept2 — — —

accept3 — — —

snd — T_INREL —

rcv T_OUTREL — —

snddis1 T_IDLE T_IDLE —

snddis2 — — —

rcvdis1 T_IDLE T_IDLE —

rcvdis2 — — —

rcvdis3 — — —

sndrel — T_IDLE —

rcvrel T_IDLE — —

pass_conn — — T_DATAXFER

optmgmt T_OUTREL T_INREL T_UNBND

closed T_UNINIT T_UNINIT —

3.2.6 Synchronization of Multiple Processes and Endpoints

In general, if you use multiple processes, you need to synchronize them
carefully to avoid violating the state of the interface.

Although transport providers treat all transport users of a transport
endpoint as a single user, the following situations are possible:

• One process can create several transport endpoints simultaneously.

• Multiple processes can share a single endpoint simultaneously.

For a single process to manage several endpoints in synchronous execution
mode, the process must manage the actions on each endpoint serially instead
of in parallel. Optionally, you can write a server to manage several endpoints
at once. For example, the process can listen for an incoming connection
indication on one endpoint and accept the connection on a different endpoint,
so as not to block incoming connections. Then, the application can fork a
child process to service the requests from the new connection.

Multiple processes that share a single endpoint must coordinate actions
to avoid violating the state of the interface. To do this, each process calls
the t_sync function, which retrieves the current state of the transport
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provider, before issuing other functions. If all processes do not cooperate in
this manner, another process or an incoming event can change the state
of the interface.

Similarly, while several endpoints can share the same protocol address,
only one can listen for incoming connections. Other endpoints sharing the
protocol address can be in data transfer state or in the process of establishing
a connection without causing a conflict. This means that an address can have
only one server, but multiple endpoints can call the address at the same time.

3.3 Using XTI

This section presents guidelines to help you sequence functions, manage
states, and use XTI options. It then describes the steps required to write
both connection-oriented and connectionless programs to XTI.

3.3.1 Guidelines for Sequencing Functions

Figure 3–3 shows the typical sequence of functions and state transitions for
an active user and passive user communicating with a connection-oriented
transport service in nonblocking mode. The solid lines in the figure show
the state transitions for the active user, while the dashed lines show the
transitions for the passive user. Each line represents the call of a function,
while each ellipse represents the resulting state. This example does not
include the orderly release feature.
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Figure 3–3: State Transitions for Connection-Oriented Transport Services
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Figure 3–4 shows the typical sequence of functions and transitions in state
for two users communicating with the connectionless transport service.
Each line in the figure represents the call of a function, while each ellipse
represents the resulting state. Both users are represented by solid lines.
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Figure 3–4: State Transitions for the Connectionless Transport Service
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3.3.2 State Management by the Transport Provider

All transport providers take the following actions with respect to states:

• Keep a record of the state of the interface as seen by the transport user.

• Reject any requests or responses that would place the interface out of
state and return an error. In this case, the state does not change. For
example, if the user passes data with a function and the interface is
not in T_DATAXFER state, the transport provider does not accept or
forward the data.

The uninitialized state (T_UNINIT) serves two purposes:

• The initial state of a transport endpoint. The transport user must
initialize and bind the transport endpoint before the transport provider
views it as active.

• The final state of a transport endpoint. The transport provider must view
the endpoint as unused. When the transport user issues the t_close
function, the transport provider is closed, and the resources associated
with the transport library are freed for use by another endpoint.

3.3.3 Writing a Connection-Oriented Application

Follow these steps to write a connection-mode application:

1. Initialize an endpoint
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2. Establish a connection

3. Transfer data

4. Release a connection

5. Deinitialize an endpoint

3.3.3.1 Initializing an Endpoint

To initialize an endpoint, complete the following steps:

1. Open the endpoint

2. Bind an address to the endpoint

3. Negotiate protocol options

Note that the steps described here for initializing an endpoint for
connection-oriented service are identical for connectionless service.

Opening a Transport Endpoint

Both connection-oriented and connectionless applications must open a
transport endpoint using the t_open function.

See t_open(3) for function syntax, parameters, and errors. See Section 3.7
for a general description of XTI errors.

This XTI implementation uses pathnames to device special files to identify
transport providers, which is the same method as in the AT&T TLI. The
device special files corresponding to TCP or UDP transport providers reside
in the /dev/streams/xtiso directory. If you use a different transport
provider, see its documentation for the correct device name.

______________________ Note _______________________

Using the special device with any mechanism other than XTI/TLI,
for example, direct open, read, or write calls, is illegal and
will generate undefined results.

The XTI specification forbids the use of O_RDONLY or O_WRONLY to make
the endpoint either read-only or write-only as expected.

If you are designing a protocol-independent program, you can determine data
buffer sizes by accessing the information that the t_open function returns
about the t_info structure. If the transport user exceeds the allowed data
size, you receive an error. Alternatively, you can use the t_alloc function
to allocate data buffers.
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The following is an example of the t_open function for the TCP transport
provider (XNS4.0):

if ( (newfd = t_open( "/dev/streams/xtiso/tcp+" , O_RDWR , NULL) ) == -1 )
{

(void) t_error("could not open tcp transport");
exit (1);

}

Binding an Address to the Endpoint

Once you open an endpoint, you need to bind a protocol address to the
endpoint by using the t_bind function. By binding the address, you activate
the endpoint. In connection mode, you also direct the transport provider
to begin accepting connection indications or servicing connection requests
on the transport endpoint. To determine if the transport provider has
accepted a connection indication, you can issue the t_listen function. In
connectionless mode, once you bind the address, you can send or receive data
units through the transport endpoint.

See t_bind(3) for function syntax, parameters, and errors. See Section 3.7
for a general description of XTI errors.

To determine if the transport provider generates addresses, do not specify
one in the t_bind function (set req to a null pointer). If the transport
provider supplies addresses, the function returns an assigned address in the
ret field. If the transport provider does not supply addresses, the function
returns an error of TNOADDR.

If you accept a connection on an endpoint that is used for listening for
connection indications, the bound address is busy for the duration of the
connection. You cannot bind any other endpoint for listening on that same
address while the initial listening endpoint is actively transferring data
or in T_IDLE state.

You can use the gethostbyname routine, described in Section 4.2.3.2, to
obtain host information when either TCP or UDP is the underlying transport
provider.

If you use a method to retrieve host information other than the
gethostbyname routine, consider the following:

• Your applications must pass XTI functions a socket address in the format
that the transport provider expects. For XTI over TCP/IP, the expected
address format is a sockaddr_in structure.

• Your applications also need to pass a transport provider identifier to
XTI functions. The operating system expects this identifier to be in the
format of a pathname to the device special file for the transport provider.
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3.3.3.2 Using XTI Options

XPG3 , XNS4.0, and XNS5.0 implement option management differently.

In XPG3, option management is handled exclusively by the t_optmgmt
function. In XNS4.0 and XNS5.0, several functions contain an opt argument
which is used to convey options between a transport user and the transport
provider.

For more information, see Section 3.6.7.

3.3.3.3 Establishing a Connection

The connection establishment phase typically consists of the following
actions:

1. A passive user, or server, listens for a connection request.

2. An active user, or client, initiates a connection.

3. A passive user, or server, accepts a connection request and a connection
indication is received.

These steps are described in the following sections.

Listening for Connection Indications

The passive user issues the t_listen function to look for enqueued
connection indications. If the t_listen function finds a connection
indication at the head of the queue, it returns detailed information about
the connection indication and a local sequence number that identifies the
indication. The number of outstanding connection indications that can be
queued is limited by the value of the qlen parameter that was accepted by
the transport provider when the t_bind function was issued.

By default, the t_listen function executes synchronously by waiting for a
connection indication to arrive before returning control to the user. If you
set the O_NONBLOCK flag of the t_open function or the fcntl function
for asynchronous execution, the t_listen function checks for an existing
connection indication and returns an error of TNODATA if none is available.

See t_listen(3) for function syntax, parameters, and errors. See Section 3.7
for a general description of XTI errors.

Initiating Connections

A connection is initiated in either synchronous or asynchronous mode. In
synchronous mode, the active user issues the t_connect function, which
waits for the passive user’s response before returning control to the active
user. In asynchronous mode, t_connect initiates a connection but returns
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control to the active user before a response to the connection arrives.
Then, the active user can determine the status of the connection request
by issuing the t_rcvconnect function. If the passive user accepted the
request, the t_rcvconnect function returns successfully and the connection
establishment phase is complete. If a response has not been received yet,
the t_rcvconnect function returns an error of TNODATA. The active user
should issue the t_rcvconnect function again later.

See t_connect(3) for function syntax, parameters, and errors. See
Section 3.7 for a general description of XTI errors.

Accepting Connections

When the passive user accepts a connection indication, it can issue the
t_accept function on the same endpoint (the endpoint where it has been
listening with t_listen) or a different endpoint.

If the passive user accepts on the same endpoint, the endpoint can no longer
receive and enqueue incoming connection indications. The protocol address
that is bound to the endpoint remains busy for the duration it is active. No
other transport endpoints can be bound to the same protocol address as the
listening endpoint. That is, no other endpoints can be bound until the passive
user issues the t_unbind function. Further, before the connection can be
accepted on the same endpoint, the passive user must respond (with either
the t_accept or t_snddis functions) to all previous connection indications
that it has received. Otherwise, t_accept returns an error of TBADF.

If the passive user accepts the connection on a different endpoint, the
listening endpoint can still receive and enqueue incoming connection
requests. The different endpoint must already be bound to a protocol address
and be in the T_IDLE state. If the protocol address is the same as for the
endpoint where the indication was received, the qlen parameter must be
set to zero (0).

For both types of endpoints, t_accept will fail and return an error of
TLOOK if there are connect or disconnect indications waiting to be received.

See t_accept(3) for function syntax, parameters, and errors. See Section 3.7
for a general description of XTI errors.

3.3.3.4 Transferring Data

Once a connection is established between two endpoints, the active and
passive users can transfer data in full-duplex fashion over the connection.
This phase of connection-oriented service is known as the data transfer
phase. The following sections describe how to send and receive data during
the data transfer phase.
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Sending Data

Transport users can send either normal or expedited data over a connection
with the t_snd function. Normally, t_snd sends successfully and returns
the number of bytes accepted if the transport provider can immediately
accept all the data. If the data cannot be accepted immediately, the result of
t_snd depends on whether it is executing synchronously or asynchronously.

By default, the t_snd function executes synchronously and waits if flow
control conditions prevent the transport provider from accepting the data.
The function blocks until one of the following conditions becomes true:

• The flow control conditions clear, and the transport provider can accept a
new data unit. The t_snd function returns successfully.

• A disconnect indication is received. The t_snd function returns with
an error of TLOOK. If you call the t_look function, it returns the
T_DISCONNECT event. Any data in transit is lost.

• An internal problem occurs. The t_snd function returns with an error of
TSYSERR. Any data in transit is lost.

If the O_NONBLOCK flag was set when the endpoint was created, t_snd
executes asynchronously and fails immediately if flow control restrictions
exist. In some cases, only part of the data was accepted by the transport
provider, so t_snd returns a value that is less than the number of bytes that
you requested to be sent. At this point, you can do one of the following:

• Issue t_snd again with the remaining data.

• Check with the t_look function to see if the flow control restrictions are
lifted, then resend the data. The t_look function is described at the
end of this chapter.

See t_snd(3) for function syntax, parameters, and errors. See Section 3.7 for
a general description of XTI errors.

Receiving Data

Transport users can receive either normal or expedited data over a
connection with the t_rcv function. Typically, if data is available, t_rcv
returns the data. If the connection has been disconnected, t_rcv returns
immediately with an error. If data is not available, but the connection still
exists, t_rcv behaves differently depending on the mode of execution:

• By default, t_rcv executes synchronously and waits for one of the
following to arrive:

– Data

– A disconnect indication

– A signal
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Instead of issuing t_rcv and waiting, you can issue the t_look function
and check for the T_DATA or T_EXDATA events.

– If you set the O_NONBLOCK flag, t_rcv executes asynchronously and
fails with an error of TNODATA if no data is available. You should
continue to poll for data by issuing the t_rcv or t_look functions.

See t_rcv(3) for function syntax, parameters, and errors. See Section 3.7 for
a general description of XTI errors.

3.3.3.5 Releasing Connections

XTI supports two ways to release connections: abortive release and orderly
release. All transport providers support abortive release. Orderly release
is not provided by all transport providers. For example, the OSI transport
supports only abortive release, while TCP supports abortive release and
optionally, orderly release.

Abortive Release

An abortive release, which can be requested by the transport user or the
transport provider, aborts a connection immediately. Abortive releases
cannot be negotiated, and once the abortive release is requested, there is no
guarantee that user data will be delivered.

Transport users can request an abortive release in either the connection
establishment or data transfer phases. During connection establishment, a
transport user can use the abortive release to reject a connection request. In
data transfer phase, either user can release the connection at any time. If
a transport provider requests an abortive release, both users are informed
that the connection no longer exists.

See t_snddis(3) for function syntax, parameters, and errors. See Section 3.7
for a general description of XTI errors.

Transport users are notified about abortive releases through the
T_DISCONNECT event. If your program receives a T_DISCONNECT event,
it must issue the t_rcvdis function to retrieve information about the
disconnect and to consume the T_DISCONNECT event.

See t_rcvdis(3) for function syntax, parameters, and errors. See Section 3.7
for a general description of XTI errors.

Orderly Release

An orderly release allows for release of a connection without loss of data.
Orderly release is not provided by all transport providers. If the transport
provider returned a service type of T_COTS_ORD with the t_open or
t_getinfo functions, orderly release is supported. Transport users can
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request an orderly release during the data transfer phase. The typical
sequence of orderly release is as follows:

1. The active user issues the t_sndrel function to request an orderly
release of the connection.

2. The passive user receives the T_ORDREL event indicating the active
user’s request for the orderly release and issues the t_rcvrel function
to indicate the request was received and consume the T_ORDREL event.

3. When ready to disconnect, the passive user issues the t_sndrel
function.

4. The active user responds by issuing the t_rcvrel function.

The transport user cannot send more data over the connection after it issues
the t_sndrel function. The transport user can, however, continue to receive
data until it receives an orderly release indication (the T_ORDREL event).

See t_sndrel(3) for function syntax, parameters, and errors. See Section 3.7
for a general description of XTI errors.

To acknowledge the receipt of an orderly release indication, issue the
t_rcvrel function with the following syntax:

After a transport user receives an orderly release indication (T_ORDREL),
it cannot receive more data. (If the user attempts to do so, the function
blocks indefinitely.) The transport user can, however, continue to send data
until it issues the t_sndrel function.

See t_rcvrel(3) for function syntax, parameters, and errors. See Section 3.7
for a general description of XTI errors.

3.3.3.6 Deinitializing Endpoints

When you are finished using an endpoint, you deinitialize it by unbinding
and closing the endpoint with the t_unbind and t_close functions.
Note that the steps described here for deinitializing an endpoint with
connection-oriented service are identical to those for connectionless service.

When you unbind the endpoint, you disable the endpoint so that the
transport provider no longer accepts requests for it.

See t_unbind(3) for function syntax, parameters, and errors. See Section 3.7
for a general description of XTI errors.

By closing the endpoint, you inform the transport provider that you are
finished with it and you free any library resources associated with the
endpoint.
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You should call t_close when the endpoint is in the T_UNBND state.
However, this function does not check state information, so it may be called
to close a transport endpoint from any state.

If you close an endpoint that is not in the T_UNBND state, the library
resources associated with the endpoint are freed automatically, and the file
associated with the endpoint is closed. If there are no other descriptors
in this or any other process that references the endpoint, the transport
connection is broken.

See t_close(3) for function syntax, parameters, and errors. See Section 3.7
for a general description of XTI errors.

3.3.4 Writing a Connectionless Application

This section describes the steps required to write a connectionless mode
application:

1. Initializing an endpoint

2. Transferring data

3. Deinitializing an endpoint

3.3.4.1 Initializing an Endpoint

Initializing an endpoint for connection-oriented and connectionless
applications is the same. See Section 3.3.3.1 for information on how to
initialize an endpoint for a CLTS application.

3.3.4.2 Transferring Data

The data transfer phase of connectionless service consists of the following:

• Sending data to other users

• Receiving data from other users

• Retrieving error information about previously sent data

Note that connectionless service:

• Does not support expedited data

• Reports only the T_UDERR, T_DATA, and T_GODATA events

Sending Data

The t_sndudata function can execute synchronously or asynchronously.
When executing synchronously, t_sndudata returns control to the user
when the transport provider can accept another datagram. In some cases,
the function blocks for some time until this occurs. In asynchronous mode,
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the transport provider refuses to send a new datagram if flow control
restrictions exist. The t_sndudata function returns an error of TFLOW,
and you must either try again later or issue the t_look function to see when
the flow control restriction is lifted, which is indicated by the T_GODATA or
T_GOEXDATA events.

If you attempt to send a data unit before you activate the endpoint with the
t_bind function, the transport provider discards the data.

See t_sndudata(3) for function syntax, parameters, and errors. See
Section 3.7 for a general description of XTI errors.

Receiving Data

When you call the t_rcvudata function and data is available, t_rcvudata
returns immediately indicating the number of octets received. If data is
not available, t_rcvudata behaves differently depending on the mode of
execution, as follows:

• Synchronous mode

The t_rcvudata function blocks until either a datagram, error, or signal
is received. As an alternative to waiting for t_rcvudata to return, you
can issue the t_look function periodically for the T_GODATA event,
and then issue t_rcvudata to receive the data.

• Asynchronous mode

The t_rcvudata function returns immediately with an error. You then
must either retry the function periodically or poll for incoming data with
the t_look function.

See t_rcvudata(3) for function syntax, parameters, and errors. See
Section 3.7 for a general description of XTI errors.

Retrieving Error Information

If you issue the t_look function and receive the T_UDERR event, previously
sent data has generated an error. To clear the error and consume the
T_UDERR event, you should issue the t_rcvuderr function. This function
also returns information about the data that caused the error and the nature
of the error, if you want.

To receive an error indication with information about data, issue the
t_rcvuderr function with the following syntax:
t_rcvuderr(fd,uderr);

See t_rcvuderr(3) for function syntax, parameters, and errors. See
Section 3.7 for a general description of XTI errors.
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3.3.4.3 Deinitializing Endpoints

Deinitializing an endpoint for connection-oriented and connectionless
applications is the same. See Section 3.3.3.6 for information on how to
deinitialize an endpoint for a connectionless application.

3.4 Phase-Independent Functions

XTI provides a number of functions that can be issued during any phase
of connection-oriented or connectionless service (except the uninitialized
state) and do not affect the state of the interface. Table 3–13 lists and briefly
describes these functions.

Table 3–13: Phase-Independent Functions
Function Description

t_getinfo Returns information about the characteristics of the transport
provider associated with the endpoint.

t_getprotaddr a Returns the protocol address.

t_getstate Returns the current state of the endpoint.

t_strerror a Produces an error message string.

t_sync Synchronizes the data structures managed by the transport
library with information from the transport provider.

t_sysconf b Returns the current value of configurable XTI limits or options.

t_alloc Allocates storage for a specified data structure.

t_free Frees storage for a data structure that was previously
allocated by t_alloc.

t_error Prints a message describing the last error returned
by an XTI function. (Optional)

t_look Returns the current event associated with the endpoint.
a This function is supported in XNS4.0 only.
b This function is supported in XNS5.0 only.

The t_getinfo and t_getstate functions can be useful for retrieving
important information. The t_getinfo function returns the same
information about the transport provider as t_open. It offers the advantage
that you can call it during any phase of communication, whereas you can
call t_open only during the initialization phase. If a function returns the
TOUTSTATE error to indicate that the endpoint is not in the proper state,
you can issue t_getstate to retrieve the current state and take action
appropriate for the state.

The t_sync function can do the following:
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• Synchronize data structures managed by the transport library with
information from the underlying transport provider.

• Permit two cooperating processes to synchronize their interaction with a
transport provider.

The t_alloc and t_free functions are convenient for allocating and freeing
memory because you specify the names of the XTI structures rather than
information about their size. If you use t_alloc and t_free to manage the
memory for XTI structures, and the structures change in future releases,
you will not need to change your program.

With t_error you can print a user-supplied message (explanation) plus the
contents of t_errno to standard output.

Finally, t_look is an important function for retrieving the current
outstanding event associated with the endpoint. Typically, if an XTI function
returns TLOOK as an error to indicate a significant asynchronous event
has occurred, the transport user follows by issuing the t_look function to
retrieve the event. For more information about events, see Section 3.2.3.

3.5 Porting to XTI

This section provides the following:

• Guidelines for writing programs to XTI

• Information about XTI and TLI compatibility

• Information about rewriting sockets applications to use XTI

3.5.1 Protocol Independence and Portability

XTI was designed to provide an interface that is independent of the specific
transport protocol used. You can write applications that can modify their
behavior according to any subset of the XTI functions and facilities supported
by each of the underlying transport providers.

Providers do not have to provide all the features of all the XTI functions.
Therefore, application programmers should follow these guidelines when
writing XTI applications:

• Use only the functions that are commonly supported features of XTI.

If your application uses features that are not provided by all transport
providers, it may not be able to use them with some transport providers
or some XTI implementations.

For example, the orderly release facility (the t_sndrel and t_rcvrel
functions) is not supported by all connection-based transport protocols;
in particular it is not supported by ISO protocols. If your application

X/Open Transport Interface 3–33



runs in an environment with multiple protocols, make sure it does not
use the orderly release facility.

As an alternative to using only the commonly supported features, write
your application so that it modifies its behavior according to the subset
of XTI functions supported by each transport provider.

• Do not assume that logical data boundaries are preserved across a
connection.

Some transport providers, such as TCP, do not support the concept of a
TSDU, so they ignore the T_MORE flag when used with the t_snd,
t_sndudata, t_rcv, and t_rcvudata functions.

• Do not exceed the protocol-specific service limits returned on the t_open
and t_getinfo functions.

Make sure your application retrieves these limits before transferring
data and adheres to the limits throughout the communication process.

• Do not rely on options that are protocol-specific.

Although the t_optmgmt function allows an application to access the
default protocol options from the transport provider and pass them as
an argument to the connection-establishment function, make sure your
application avoids examining the options or relying on the existence
of certain ones.

• Do not interpret the reason codes associated with the t_rcvdis function
or the error code associated with the t_rcvuderr function.

These codes depend on the underlying protocol so, to achieve protocol
independence, make sure your application does not attempt to interpret
the codes.

• Perform only XTI operations on the file descriptor returned by the
t_open function.

If you perform other operations, the results can vary from system to
system.

The following sections explain how to port applications from different
transport-level programming interfaces to XTI. Specifically, they discuss
how to port from the two most common transport-level programming
interfaces: Transport Layer Interface (TLI), which many UNIX System V
applications use, and the 4.3BSD socket interface, which many Berkeley
UNIX applications use.

The information presented in the following sections presumes that you are
experienced at programming with TLI or sockets and that you understand
fundamental XTI concepts and syntax.
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3.5.2 XTI and TLI Compatibility

This section discusses issues to consider before you recompile your TLI
programs and explains how to recompile them. As a long-term solution,
you should use the XTI interface instead of the TLI interface. As more
applications and transport providers use XTI, you might find it advantageous
to do so as well.

XTI and TLI support the same functions, states, and modes of service.
Shared library support is the default when you link an XTI or TLI
application with the XTI or TLI library. For more information on shared
library support, see Section 3.2.2.

Before you recompile your TLI program, you should consider your program’s
current implementation of the following event management: The System V
UNIX operating system provides the poll function as a tool for managing
events. The Tru64 UNIX implementation of XTI supports the poll function,
so if your application uses it, you can recompile. If your program uses a
unique mechanism for managing events, you should port that mechanism to
Tru64 UNIX or change to the polling mechanism provided with Tru64 UNIX.

Because the Tru64 UNIX implementation of TLI is compatible at the source
level with AT&T TLI, you can recompile your TLI program with the Tru64
UNIX TLI library using the following steps:

1. Make sure the TLI header file is included in your source code:

#include <tli/tiuser.h>

2. Recompile your application using the following command syntax:
cc -o name name.c −ltli

If you decide to change your TLI application to an XTI application, be aware
of the following minor differences between TLI and XTI.

• In XTI, t_error is a function of type int that returns an integer value (0
for success and -1 for failure), while in TLI, it is a procedure of type void.

• In XTI, t_look does not support the T_ERROR event (as in TLI); it
returns -1 and the t_errno instead.

• For the oflag parameter of the t_open function, the O_NDELAY value
in TLI is known as the O_NONBLOCK value in XTI.

• XTI opens an endpoint with read-write access because most of its
functions require read-write access to transport providers. TLI opens
with read-only, write-only, or read-write access. Specifically, in the
t_open function, XTI uses the bitwise inclusive OR of O_RDWR and
O_NONBLOCK as the value of the oflag parameter; TLI uses the
bitwise inclusive OR of O_NDELAY and either O_RDONLY, O_WRONLY,
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or O_RDWR. The O_RDONLY and O_WRONLY values are not available
in XTI; O_RDWR is the only valid value for access to an endpoint.

• TLI assumes the transport provider has an automatic address generator;
XTI does not. If the transport provider does not have an automatic
address generator, XTI can return the proper error message if conflicting
requests are issued.

• XTI defines protocol-specific information for the TCP/IP and OSI
protocols. The Tru64 UNIX XTI implementation adds support for
protocol-specific options for STREAMS-based protocols; TLI does not
provide such information.

• XTI provides additional events to manage flow control, such as
T_GODATA and T_GOEXDATA; in TLI, you keep sending until
successful.

• XTI provides additional error messages to convey more precise error
information to applications. All functions that change the state of
an endpoint use the TOUTSTATE error to indicate the function was
called when the endpoint was in the wrong state. Some XTI functions
return the TLOOK error to indicate that an urgent asynchronous
event occurred. With TLI, you must call the t_look function explicitly
before the function or set a signal for the TLOOK event, which are less
convenient. The TBADQLEN error, returned when there are no queued
connection requests, prevents an application from waiting forever after
issuing the t_listen function. See the XTI reference pages for more
information on error messages.

To make a TLI application a true XTI application, do the following:

1. Include the XTI header file instead of the TLI header file in your source
code:

#include <xti.h>

2. Make any changes or extensions to your program resulting from the
differences between TLI and XTI.

3. Recompile your application using the following command syntax:
cc -o name name.c −lxti

3.5.3 Rewriting a Socket Application to Use XTI

This section explains the differences between the socket interface and XTI.
It assumes that your applications use the standard 4.3BSD socket interface
and does not account for any extensions or changes you have made to the
socket interface. See Appendix B for examples of both sockets and XTI
servers and clients.
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XTI shares many common functions with the socket interface. However,
you should be aware of any differences between it and your current socket
interface when rewriting an application for use with XTI.

XTI provides 30 functions. Of the 14 socket functions that map onto
corresponding XTI functions, 6 have subtle differences. Table 3–14 lists each
XTI function, its corresponding socket function (if one exists), and whether
the two functions share common semantics. Generally, socket calls pass
parameters by value, while most XTI functions pass pointers to structures
containing a combination of input and output parameters.

Table 3–14: Comparison of XTI and Socket Functions
XTI Function Socket Function Shared Semantics

t_accept accept No

t_alloc — —

t_bind bind No

t_close close Yes

t_connect connect Yes

t_error — —

t_free — —

t_getinfo — —

t_getstate — —

t_listen listen, accept Yes a

t_look select No

t_open socket Yes

t_optmgmt setsockopt,
getsockopt

No

t_rcv recv Yes

t_rcvconnect — —

t_rcvdis — —

t_rcvrel — —

t_rcvreldata — —

t_rcvudata recvfrom Yes

t_rcvuderr — —

t_rcvv recv Yes

t_rcvvudata recv Yes
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Table 3–14: Comparison of XTI and Socket Functions (cont.)

XTI Function Socket Function Shared Semantics

t_snd send Yes

t_snddis shutdown No

t_sndrel — —

t_sndreldata — —

t_sndudata sendto Yes

t_sndv send Yes

t_sndvudata send Yes

t_sync — —

t_sysconf — —

t_unbind — —
a In XTI, the t_listen function specifies the queue length parameter as well as waiting for the incoming
connection. In sockets, the listen function only specifies the queue length parameter.

The XTI functions that do not share all semantics with their socket
counterparts have the following differences:

t_accept

The t_accept function takes the user-specified resfd argument and
establishes a connection with the remote endpoint. In contrast, the
accept call from sockets asks the system to select the file descriptor to
which the connection will be established. Additionally, the t_accept
function is issued after a connection indication is received; therefore, it
does not block. Conversely, the accept call is issued in anticipation of
a connect request and therefore may block until the connect request
occurs.

t_bind

XTI can bind one protocol address to many endpoints, while the socket
interface permits one address to be bound with only one socket.

t_look

The t_look function returns the current event, which can be
one of nine possible events: T_LISTEN, T_CONNECT, T_DATA,
T_EXDATA, T_DISCONNECT, T_UDERR, T_ORDREL, T_GODATA,
T_GOEXDATA. The poll function can be used to monitor incoming
events on a transport endpoint. The select call can be used to see
if a single descriptor is ready for read or write, or if an exceptional
condition is pending.
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t_snddis

The t_snddis function initiates an abortive release on an established
connection or rejects a connection request. After an XTI program
issues the t_snddis functions it can continue to listen for requests
with the t_listen function or reestablish a connection with the
t_connect function. In sockets, once you shut down a connection
with the shutdown and close calls, the system automatically frees
all local resources that are allocated for this connection. Therefore, in
order to continue to listen for connections or establish a connection, the
program needs to reissue the socket and bind calls.

XTI and sockets both use a series of states to control the appropriate
sequence of calls, but each uses a different set of states. XTI states and
socket states do not share similar semantics. For example, XTI states are
mutually exclusive; socket states are not.

Few error messages are common among sockets and XTI. Table 3–15 lists
the socket error messages that have comparable XTI error messages.

Table 3–15: Comparison of Socket and XTI Messages
Socket Error XTI Error Description

EBADF TBADF You specified an invalid file
descriptor.

EOPNOTSUPP TNOTSUPPORT You issued a function the
underlying transport provider
does not support.

EADDRINUSE TADDRBUSY You specified an address that
is already in use.

EACCES TACCES You do not have permission to
use the specified address.

______________________ Note _______________________

XTI and TLI are implemented using STREAMS. You should use
the poll function instead of the select call on any STREAMS
file descriptors.

3.6 Differences Among XPG3, XNS4.0, and XNS5.0

This section provides information on the differences among the XPG3,
XNS4.0, and XNS5.0 implementation of XTI.
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In earlier versions of Tru64 UNIX, the XTI implementation conformed to
X/Open’s XPG3 specification. The current implementation conforms to
X/Open’s XNS4.0 and XNS5.0 specifications for XTI; XNS4.0 is the default.

There are some changes in the specification of which you, as a programmer,
should be aware. This section outlines these differences and the related
programming issues.

Note that the implementation of Tru64 UNIX converges XPG3, XNS4.0, and
XNS5.0 versions of XTI in a single subset. This section also provides details
about the usage of the appropriate level of functionality.

In this manual, the terms XNS4.0 or XNS4.0 XTI are used to refer to the
default implementation of XTI available in this version of Tru64 UNIX. The
terms XNS5.0 or XNS5.0 XTI are used to refer to the implementation of XTI
that confirms to X/Open’s XNS5.0 specification. The terms XPG3 XTI refer
to the implementation of XTI that conforms to X/Open’s XPG3 specification.
Note that the latter can be available in the current versions of Tru64 UNIX
due to binary compatibility or source migration features.

3.6.1 Major Differences Between XPG3 and XNS4.0

Most of the changes between the two specifications are upwardly compatible,
with the exception of the t_optmgmt function.

The following is a quick summary of the basic changes in the XTI from
XPG3 to XNS4.0:

• Optional functions were made mandatory. This does not affect the Tru64
UNIX implementation of XTI, because Tru64 UNIX implemented all the
optional functions in its XPG3 version of XTI.

• Many aspects of the XPG3 specification were clarified, which makes
XTI applications more portable.

• Some new error codes were added, ensuring better programmatic
behavior.

• Options and management structures were revised to provide more
control over various aspects of communications.

The changes to the t_optmgmt function are extensive and incompatible
with the XPG3 specification. In general, an application that uses the XPG3
implementation of the t_optmgmt function cannot use the t_optmgmt
function on a system running the XNS4.0 or XNS5.0 specification, without
making some modifications to the source.
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3.6.2 Major Differences Between XNS4.0 and XNS5.0

Most of the changes between the two specifications are upwardly compatible.
The following is a quick summary of the basic changes in the XTI from
XNS4.0 to XNS5.0:

• Seven new functions were added: t_rcvreldata, t_rcvv,
t_rcvvudata, t_sndreldata, t_sndv, t_sndvudata, and
t_sysconf.

3.6.3 Source Code Migration

If you have an application that was developed for XPG3 XTI, you have the
following choices to support it under the current version of the operating
system:

• Use the older binaries of the application; see Section 3.6.4.

• Recompile the unaltered sources.

• Make changes to the sources to comply with XNS4.0 XTI, if wanted.

• Make changes to the sources to comply with XNS5.0 XTI, if wanted.

Which option you choose will depend on your situation. The following
sections describe these conditions in detail.

3.6.3.1 Use the Older Binaries of your Application

This choice is appropriate if the sources and features of your application are
not going to change. It is useful to provide continued coverage by ensuring
that older releases of your products are still functional.

3.6.3.2 Unaltered Sources

This situation arises from minor changes due to correcting minor problems.
Therefore, there are no changes to the structure or features or the
application. In this case, you might want to compile the sources in the same
manner as XPG3 development environment. In that case, compile your
source code with the −DXPG3 compiler switch. This ensures that the headers
automatically define the older features for you.

3.6.3.3 XNS4.0 Compliant Application

If you need to use the new features supported by XNS4.0 XTI, you will have
to make changes in your source code. You cannot combine the features
from the XPG3 and XNS4.0 XTI. Therefore, if you have large applications
consisting of multiple files, you will need to recompile all files with the new
features, rather than just the few you might have changed.
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You need to compile your source code with the −DXOPEN_SOURCE compiler
switch. Additionally, you must ensure that the names of the transport
protocols (as provided through the streams device special files as in
/dev/streams/xtiso/tcp) are updated to reflect the naming convention
used in XNS4.0 XTI. For example, the names for TCP and UDP are
/dev/streams/xtiso/tcp+ and /dev/streams/xtiso/udp+. Check the
reference manual for the names for the other protocols.

3.6.3.4 XNS5.0 Compliant Application

If you need to use the new features supported by XNS5.0 XTI, you will have
to make changes in your source code. You cannot combine the features
from the XPG3 and XNS4.0 XTI. Therefore, if you have large applications
consisting of multiple files, you will need to recompile all files with the new
features, rather than just the few you might have changed.

You need to compile your source code with the −DXOPEN_SOURCE=500
compiler switch. Additionally, you must ensure that the names of the
transport protocols (as provided through the streams device special files
as in /dev/streams/xtiso/tcp) are updated to reflect the naming
convention used in XNS5.0 XTI. For example, the names for TCP and UDP
are /dev/streams/xtiso/tcp5 and /dev/streams/xtiso/udp5. Check
the reference manual for the names for the other protocols.

3.6.4 Binary Compatibility

There are certain conditions of which you should be aware when running
application binaries developed with XPG3 XTI.

Under unusual circumstances, the errors in XPG3 programs may have been
masked due to the way in which the programs or libraries were compiled
and linked. It is feasible that the new implementation is able to flag such
conditions as errors. Since the error manifested is a programming error in
the application, you will have to correct it. The common programming errors
that may cause these errors are pointer overruns and uninitialized variables.

Another issue to consider is the availability of XNS4.0 features through
STREAMS special files. This is significant if your application accepts
command line input for the specifying transport protocol or imports the
protocol names from some configuration files. Since the system configured
with XTI will have the file names for XNS4.0-compliant protocols as well,
it is important to warn users and administrators that those special names
should not be used with applications running with binary-compatibility
mode. The results of such an action are undefined.

If you are planning to run an old applications without recompiling them,
check them for binary compatibility to avoid these problems.
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3.6.5 Packaging

Systems running the current version of the operating system and configured
to run XTI support XPG3, XNS4.0, and XNS5.0-compliant functionality.
You cannot run the XPG3, XNS4.0, and XNS5.0 functionality separately.
Therefore, you only need to ensure that XTI subsystem is configured.

3.6.6 Interoperability

You can use the XPG3, XNS4.0, and XNS5.0 versions of XTI on the same
network. If you are using compatible versions of your application, then the
operation should be transparent to users.

It is possible to convert your application in simple steps, so that you
have some pieces that are XPG3 XTI compatible, some pieces that are
XNS4.0 compatible, and some pieces that are XNS5.0 compatible. The
only thing you have to ensure is that application-level protocol remains
the same. Apart from that there will be no issue for interoperability of
these components. Therefore, if you have client and server components of
an application, you can choose to upgrade the server component for XNS4.0
or XNS5.0 compliance, while the client component is still operational in
binary compatibility mode. Later, once the server functionality is updated
satisfactorily, you can choose to update the client software.

3.6.7 Using XTI Options

This section provides information on using XTI options in XNS4.0, XNS5.0,
and XPG3.

3.6.7.1 Using XTI Options in XNS4.0 and XNS5.0

This section provides the following information on using XTI options:

• General information on using options

• Format of options

• Elements of negotiation

• Option management of transport endpoint

General Information

The following functions contain an opt argument of the type struct
netbuf as an input or output parameter. This argument is used to convey
options between the transport user and the transport provider:

• t_accept

• t_connect
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• t_listen

• t_optmgmt

• t_rcvconnect

• t_rcvudata

• t_rcvuderr

• t_sndudata

There is no general definition about the possible contents of options. There
are general XTI options and those that are specific for each transport
provider. Some options allow you to tailor your communication needs; for
instance, by asking for high throughput or low delay. Others allow the
fine-tuning of the protocol behavior so that communication with unusual
characteristics can be handled more effectively. Other options are for
debugging purposes.

All options have default values. Their values have meaning to and are
defined by the protocol level in which they apply. However, their values
can be negotiated by a transport user. This includes the simple case where
the transport user can enforce its use. Often, the transport provider or
even the remote transport user can have the right to negotiate a value of
lesser quality than the proposed one, that is, a delay can become longer,
or a throughput can become lower.

It is useful to differentiate between options that are association-related and
those that are not. (Association-related means a pair of communication
transport users.) Association-related options are intimately related
to the particular transport connection or datagram transmission. If
the calling user specifies such an option, some ancillary information is
transferred across the network in most cases. The interpretation and
further processing of this information is protocol-dependent. For instance,
in an ISO connection-oriented communication, the calling user can specify
quality-of-service parameters on connection establishment. These are first
processed and possibly lowered by the local transport provider, then sent to
the remote transport provider that may degrade them again, and finally
conveyed to the called user who makes the final selection and transmits
the selected values back to the caller.

Options that are not association-related do not contain information destined
for the remote transport user. Some have purely local relevance; for example,
an option that enables debugging. Others influence the transmission; for
instance, the option that sets the IP time-to-live field or TCP_NODELAY.
(See xti_internet(7).) Local options are negotiated solely between the
transport user and the local transport provider. The distinction between
these two categories of options is visible in XTI through the following
relationship: on output, the t_listen and t_rcvudata functions return
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association-related options only. The t_rcvconnect and t_rcvuderr
functions may return options of both categories. On input, options of both
categories may be specified with the t_accept and t_sndudata functions.
The t_connect and t_optmgmt functions can process and return both
categories of options.

The transport provider has a default value for each option it supports.
These defaults are sufficient for the majority of communication relations.
Therefore, a transport user should only request options actually needed to
perform the task and leave all others at their default value.

This section describes the general framework for the use of options. This
framework is obligatory for transport providers. The t_optmgmt reference
page provides information on general XTI options. The xti_internet
reference page provides information on the specific options that are legal
with the TCP and UDP transport providers.

Format of Options

Options are conveyed through an opt argument of struct netbuf. Each
option in the buffer specified is of the form struct t_opthdr possibly
followed by an option value.

A transport provider embodies a stack of protocols. The level field of
struct t_opthdr identifies the XTI level or a protocol of the transport
provider as TCP or ISO 8073:1986. The name field identifies the option
within the level and the len field contains the total length; that is, the
length of the option header t_ophdr plus the length of the option value. The
status field is used by the XTI level or the transport provider to indicate
success or failure of a negotiation.

Several options can be concatenated; however, The transport user
has to ensure that each option starts at a long-word boundary. The
macro OPT_NEXTHDR(pbuf,buflen,poptons) for XNS4.0 and
T_OPT_NEXTHDR(pbuf,buflen,poptons) for XNS5.0 can be used for
that purpose. The parameter pbuf denotes a pointer to an option buffer
opt.buf and buflen is its length. The parameter poption points to the
current options in the option buffer. OPT_NEXTHDR and T_OPT_NEXTHDR
return a pointer to the position of the next option or return a null pointer
if the option buffer is exhausted. These macros are helpful for writing and
reading the option list.

Elements of Negotiation

This section describes the general rules governing the passing and retrieving
of options and the error conditions that can occur. Unless explicitly
restricted, these rules apply to all functions that allow the exchange of
options.
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Multiple Options and Options Levels

When multiple options are specified in an option buffer on input, different
rules apply to the levels that may be specified, depending on the function
call. Multiple options specified on input to t_optmgmt must address the
same option level. Options specified on input to t_connect, t_accept, and
t_sndudata can address different levels.

Illegal Options

Only legal options can be negotiated; illegal options can cause failure. An
option is illegal if one of the following applies:

• The length specified in the t_opthdr.len parameter exceeds the
remaining size of the option buffer (counted from the beginning of the
option).

• The option value is illegal. The legal values are defined for each option.
See t_optmgmt(3) and xti_internet(7).

If an illegal option is passed to XTI, the following will happen:

• A call to the t_optmgmt function fails with a TBADOPT error.

• The t_accept or t_connect functions fail with a TBADOPT error or
the connection establishment aborts, depending on the implementation
and the time the illegal option is detected. If the connection aborts, a
T_DISCONNECT event occurs and a synchronous call to t_connect
fails with a TLOOK error. It depends on timing and implementation
conditions whether a t_accept function will succeed or fail with a
TLOOK error in that case.

• A call to the t_sndudata function either fails with a TBADOPT error
or it successfully returns; but a T_UDERR event occurs to indicate that
the datagram was not sent.

If the transport user passes multiple options in one call and one of them
is illegal, the call fails as described previously. It is, however, possible
that some or even all of the submitted legal options were successfully
negotiated. The transport user can check the current status by a call to the
t_optmgmt function with the T_CURRENT flag set. See t_optmgmt(3)
and xti_internet(7).

Specifying an option level unknown to or not supported by the protocol
selected by the option level does not cause failure. The option is discarded
in calls to the t_connect, t_accept, or t_sndudata functions. The
t_opmgmt function returns T_NOTSULPORT in the level field of the
option.
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Initiating an Option Negotiation

A transport user initiates an option negotiation when calling the t_connect,
t_sndudata, or t_optmgmt functions with the T_NEGOTIATE flag set.

The negotiation rules for these functions depend on whether an option
request is an absolute requirement. This is explicitly defined for each option.
See t_optmgmt(3) and xti_internet(7). In the case of an ISO transport
provider, for example, the option that requests use of expedited data is
not an absolute requirement. On the other hand, the option that requests
protection could be an absolute requirement.

______________________ Note _______________________

The term absolute requirement originates from the
quality-of-service parameters in the ISO 8072:1986 specification.
Its use is extended here to all options.

If the proposed option value is an absolute requirement, there are three
possible outcomes:

• The negotiated value is the same as the proposed one. When the result
of the negotiation is retrieved, the status field in t_opthdr is set to
T_SUCCESS.

• The negotiation is rejected if the option is supported but the proposed
value cannot be negotiated. This leads to the following:

– The t_optmgmt function successfully returns; but the returned
option has its status field set to T_FAILURE.

– Any attempt to establish a connection aborts; a T_DISCONNECT
event occurs and a synchronous call to the t_connect function fails
with a TLOOK error.

– The t_sndudata function fails with a TLOOK error or successfully
returns; but a T_UDERR event occurs to indicate that the datagram
was not sent.

If multiple options are submitted in one call and one of them is rejected,
XTI behaves as just described. Although the connection establishment
or the datagram transmission fails, options successfully negotiated
before some option was rejected retain their negotiated values. There
is no roll-back mechanism. See the Option Management of a Transport
Endpoint section for more information.

The t_optmgmt function attempts to negotiate each option. The status
fields of the returned options indicate success (T_SUCCESS) or failure
(T_FAILURE).
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• If the local transport provider does not support the option at all, the
t_optmgmt function reports T_NOTSULPORT in the status field. The
t_connect and t_sndudata functions ignore this option.

If the proposed option value is not an absolute requirement, the following
outcomes are possible:

• The negotiated value is of equal or lesser quality than the proposed one;
for example, a delay may become longer.

When the result of the negotiation is retrieved, the status field in
t_opthdr is set to T_SUCCESS if the negotiated value equals the
proposed one; otherwise, it is set to T_PARTSUCCESS.

• If the local transport provider does not support the option at all,
t_optmgmt reports T_NOTSULPORT in the status field. The
t_connect and t_sndudata functions ignore this option.

Unsupported options do not cause functions to fail or a connection to abort,
since different vendors possibly implement different subsets of options.
Furthermore, future enhancements of XTI might encompass additional
options that are unknown to earlier implementations of transport providers.
The decision whether or not the missing support of an option is acceptable
for the communication is left to the transport user.

The transport provider does not check for multiple occurrences of the same
options, possibly with different option values. It simply processes the options
in the option buffer sequentially. However, the user should not make any
assumption about the order of processing.

Not all options are independent of one another. A requested option value
might conflict with the value of another option that was specified in the same
call or is currently effective. See the Option Management of a Transport
Endpoint section for more information. These conflicts may not be detected
at once, but they might later lead to unpredictable results. If detected at
negotiation time, these conflicts are resolved within the rules stated above.
The outcomes may thus be quite different and depend on whether absolute
or nonabsolute requests are involved in the conflict.

Conflicts are usually detected at the time a connection is established or a
datagram is sent. If options are negotiated with the t_optmgmt function,
conflicts are usually not detected at this time, since independent processing
of the requested options must allow for temporal inconsistencies.

When called, the t_connect, and t_sndudata functions initiate a
negotiation of all association-related options according to the rules of this
section. Options not explicitly specified in the function calls themselves are
taken from an internal option buffer that contains the values of a previous
negotiation. See the Option Management of a Transport Endpoint section
for more information.
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Responding to a Negotiation Proposal

In connection-oriented communication, some protocols give the peer
transport users the opportunity to negotiate characteristics of the transport
connection to be established. These characteristics are association-related
options. With the connect indication, the called user receives (through
the t_listen function) a proposal about the option values that should
be effective for this connection. The called user can accept this proposal
or weaken it by choosing values of lower quality; for example, longer
delays than proposed. The called user can, of course, refuse the connection
establishment altogether.

The called user responds to a negotiation proposal using the t_accept
function. If the called transport user tries to negotiate an option of higher
quality than proposed, the outcome depends on the protocol to which that
option applies. Some protocols may reject the option, some protocols take
other appropriate action described in protocol-specific reference pages. If an
option is rejected, the connection fails; a T_DISCONNECT event occurs.
In that case, whether a t_accept function can still succeed or fail with a
TLOOK error depends on timing and implementation conditions.

If multiple options are submitted with the t_accept function and one of
them is rejected, the connection fails as described previously. Options that
could be successfully negotiated before the erroneous option was processed
retain their negotiated value. There is no rollback mechanism. See the
Option Management of a Transport Endpoint section for more information.

The response options can either be specified with the t_accept call or can
be preset for the responding endpoint (not the listening endpoint) resfd in a
t_optmgmt call (action T_NEGOTIATE) prior to the t_accept call. (See the
Option Management of a Transport Endpoint section for more information.)
Note that the response to a negotiation proposal is activated when the
t_accept function is called. A t_optmgmt function call with erroneous
option values as described previously will succeed; the connection aborts at
the time the t_accept function is called.

The connection also fails if the selected option values lead to contradictions.

The t_accept function does not check for multiple specification of an
option. (See the Initiating an Option Negotiation section.) Unsupported
options are ignored.

Retrieving Information About Options

This section describes how a transport user can retrieve information about
options.

A transport user must be able to:
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• Know the result of a negotiation; for example, at the end of a connection
establishment.

• Know the proposed option values under negotiation during connection
establishment.

• Retrieve option values sent by the remote transport user for notification
only; for example, IP options.

• Check option values currently in effect for the transport endpoint.

To this end, the following functions take an output argument opt of the
struct netbuf:

• t_connect

• t_listen

• t_optmgmt

• t_rcvconnect

• t_rcvudata

• t_rcvuderr

The transport user has to supply a buffer to which the options will be written;
the opt.buf parameter must point to this buffer and the opt.maxlen
parameter must contain the buffer’s size. The transport user can set the
opt.maxlen parameter to zero to indicate that no options are to be retrieved.

Which options are returned depend on the function call involved:

• t_connect in synchronous mode and t_rcvconnect

The functions return the values of all association-related options that
were received with the connection response and the negotiated values of
those nonassociation-related options that had been specified on input.
However, options specified on input in the t_connect call that are not
supported or refer to an unknown option level are discarded and not
returned on output.

The status field of each option returned with the t_connect or
t_rcvconnect function indicates if the proposed value (T_SUCCESS) or
a degraded value (T_PARTSUCCESS) has been negotiated. The status
field of received ancillary information (for example, IP options) that is
not subject to negotiation is always set to T_SUCCESS.

• t_listen

The received association-related options are related to the incoming
connection (identified by the sequence number), not to the listening
endpoint. (However, the option values currently in effect for the listening
endpoint can affect the values retrieved by the t_listen function, since
the transport provider might also be involved in the negotiation process.)
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Therefore, if the same options are specified in a call to the t_optmgmt
function with action T_CURRENT, they will usually not return the same
values.

The number of received options may vary for subsequent connect
indications, since many association-related options are only transmitted
on explicit demand by the calling user; for example, IP options or ISO
8072:1986 throughput. It is even possible that no options at all are
returned.

The status field is irrelevant.

• t_rcvudata

The received association-related options are related to the incoming
datagram, not to the transport endpoint fd. Therefore, if the same
options are specified in a call to the t_optmgmt function with action
T_CURRENT, the t_optmgmt function will usually not return the same
values.

The number of options received may vary from call to call.

The status field is irrelevant.

• t_rcvuderr

The returned options are related to the options input of the previous
t_sndudata call that produced the error. Which options are returned
and which values they have depend on the specific error condition. The
status field is irrelevant.

• t_optmgmt

This call can process and return both categories of options. It acts on
options related to the specified transport endpoint, not on options related
to a connect indication or an incoming datagram. For more information,
see t_optmgmt(3).

Privileged and Read-Only Options

Only privileged users can request privileged options, or option values. The
meaning of privilege is hereby implementation-defined.

Read-only options serve for information purposes only. The transport user
may be allowed to read the option value but not to change it. For instance, to
select the value of a protocol timer or the maximum length of a protocol data
unit may be too subtle to leave to the transport user, though the knowledge
about this value might be of some interest. An option might be read-only
for all users or solely for nonprivileged users. A privileged option might be
inaccessible or read-only for nonprivileged users.

An option might be negotiable in some XTI states and read-only in other XTI
states. For instance, the ISO quality-of-service options are negotiable in
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the T_IDLE and T_INCON states, and read-only in all other states (except
T_UNINIT).

If a transport user requests negotiation of a read-only option, or a
nonprivileged user requests illegal access to a privileged option, the following
outcomes are possible:

• The t_optmgmt function successfully returns, but the returned option
has its status field set to T_NOTSULPORT if a privileged option was
requested illegally, and to T_READONLY if modification of a read-only
option was requested.

• If negotiation of a read-only option is requested, the t_accept or
t_connect functions fail with TACCES or the connection establishment
aborts and a T_DISCONNECT event occurs. If the connection aborts, a
synchronous call to t_connect fails with TLOOK. If a privileged option
is illegally requested, the option is quietly ignored. A nonprivileged user
is not able to select an option that is privileged or unsupported. Timing
and implementation conditions determine whether a t_accept call
succeeds or fails with TLOOK.

• If negotiation of a read-only option is requested, the t_sndudata
function may return TLOOK or successfully return, but a T_UDERR
event occurs to indicate that the datagram was not sent. If a
privileged option is illegally requested, the option is quietly ignored.
A nonprivileged user cannot select an option that is privileged or
unsupported.

If multiple options are submitted to the t_connect, t_accept, or
t_sndudata functions and a read-only option is rejected, the connection
or the datagram transmission fails as described. Options that could be
successfully negotiated before the erroneous option was processed retain
their negotiated values. There is no rollback mechanism. See the Option
Management of a Transport Endpoint section for more information.

Option Management of a Transport Endpoint

This section describes how option management works during the lifetime of
a transport endpoint.

Each transport endpoint is (logically) associated with an internal option
buffer. When a transport endpoint is created, this buffer is filled with a
system default value for each supported option. Depending on the option,
the default may be OPTION ENABLED, OPTION DISABLED, or denote a
time span, and so on. These default settings are appropriate for most uses.
Whenever an option value is modified in the course of an option negotiation,
the modified value is written to this buffer and overwrites the previous one.
At any time, the buffer contains all option values that are currently effective
for this transport endpoint.
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The current value of an option can be retrieved at any time by calling the
t_optmgmt function with the T_CURRENT flag set. Calling the t_optmgmt
function with the T_DEFAULT flag set yields the system default for the
specified option.

A transport user can negotiate new option values by calling the t_optmgmt
function with the T_NEGOTIATE flag set. The negotiation follows the rules
described in the Elements of Negotiation section.

Some options may be modified only in specific XTI states and are read-only
in other XTI states. Many association-related options, for instance, may not
be changed in the T_DATAXFER state, and an attempt to do so fails; see the
Privileged and Read-Only Options section. The legal states for each option
are specified with its definition.

As usual, association-related options take effect at the time a connection is
established or a datagram is transmitted. This is the case if they contain
information that is transmitted across the network or determine specific
transmission characteristics. If such an option is modified by a call to the
t_optmgmt function, the transport provider checks whether the option is
supported and negotiates a value according to its current knowledge. This
value is written to the internal option buffer.

The final negotiation takes place if the connection is established or the
datagram is transmitted. This can result in a degradation of the option
value or even in a negotiation failure. The negotiated values are written
to the internal option buffer.

Some options can be changed in the T_DATAXFER state; for example,
those specifying buffer sizes. Such changes might affect the transmission
characteristics and lead to unexpected side effects; for example, data loss if a
buffer size was shortened.

The transport user can explicitly specify both categories of options on input
when calling the t_connect, t_accept, or t_sndudata functions. The
options are at first locally negotiated option by option and the resulting
values written to the internal option buffer. The modified option buffer is
then used if a further negotiation step across the network is required; for
example, in connection-oriented ISO communication. The newly negotiated
values are then written to the internal option buffer.

At any stage, a negotiation failure can cause the transmission to abort. If
a transmission aborts, the option buffer preserves the content it had at
the time the failure occurred. Options that could be negotiated before the
error occurred are written back to the option buffer, whether the XTI call
fails or succeeds.

It is up to the transport user to decide which option it explicitly specifies on
input when calling the t_connect, t_accept, or t_sndudata functions.
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The transport user need not pass options at all by setting the len field of
the function’s input opt argument to zero (0). The current content of the
internal option buffer is then used for negotiation without prior modification.

The negotiation procedure for options at the time of a t_connect,
t_accept, or t_sndudata call always obeys the rules in the Initiating an
Option Negotiation section whether the options were explicitly specified
during the call or implicitly taken from the internal option buffer.

The transport user should not make assumptions about the order in which
options are processed during negotiation.

A value in the option buffer is only modified as a result of a successful
negotiation of this option. It is, in particular, not changed by a connection
release. There is no history mechanism that would restore the buffer state
existing prior to the connection establishment of the datagram transmission.
The transport user must be aware that a connection establishment or a
datagram transmission may change the internal option buffer, even if each
option was originally initialized to its default value.

The Option Value T_UNSPEC

Some options may not always have a fully specified value. An ISO transport
provider, for instance, that supports several protocol classes might not
have a preselected preferred class before a connection establishment is
initiated. At the time of the connection request, the transport provider may
conclude from the destination address, quality-of-service parameters, and
other locally available information which preferred class it should use. A
transport user asking for the default value of the preferred class option in
the T_IDLE state would get the value T_UNSPEC. This value indicates that
the transport provider did not yet select a value. The transport user could
negotiate another value as the preferred class; for example, T_CLASS2.
The transport provider would then be forced to initiate a connect request
with class 2 as the preferred class.

An XTI implementation may also return the T_UNSPEC value if it currently
cannot access the option value. This can happen in the T_UNBND state in
systems where the protocol stacks reside on separate controller cards and
not in the host. The implementation may never return T_UNSPEC if the
option is not supported at all.

If T_UNSPEC is a legal value for a specific option, it can be used on input,
as well. It is used to indicate that it is left to the provider to choose an
appropriate value. This is especially useful in complex options as ISO
throughput, where the option value has an internal structure. The transport
user can leave some fields unspecified by selecting this value. If the user
proposes T_UNSPEC, the transport provider is free to select an appropriate
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value. This might be the default value, some other explicit value, or
T_UNSPEC.

For each option, it is specified whether T_UNSPEC is a legal value for
negotiation purposes.

The info Argument

The t_open and t_getinfo functions return values representing
characteristics of the transport provider in the info argument. The value of
info->options is used by the t_alloc function to allocate storage for an
option buffer to be used in an XTI call. The value is sufficient for all uses.

In general, info->options also includes the size of privileged options;
even if these are not read-only for nonprivileged users. Alternatively, an
implementation can choose to return different values in info->options for
privileged and nonprivileged users.

The values in info->etsdu, info->connect, and info->discon possibly
diminish as soon as the T_DATAXFER state is entered. Calling the
t_optmgmt function does not influence these values. For more information,
see t_optmgmt(3).

Portability Issues

An application programmer who writes XTI programs has the following
portability issues across the following:

• Protocol profiles

• Different system platforms

Options are intrinsically coupled with a definite protocol or protocol profile.
Therefore, explicit use of options degrades portability across protocol profiles.

Different vendors might offer transport providers different option support.
This is due to different implementation and product policies. The list of
options on the t_optmgmt(3) reference page and in the protocol-specific
reference pages are maximal sets, but do not necessarily reflect common
implementation practice. Vendors implement subsets that suit their needs.
Therefore, making careless use of options endangers portability across
different system platforms.

Every implementation of a protocol profile accessible by XTI can be used
with the default values of options. Applications can thus be written that do
not care about options at all.

An application program that processes options retrieved from an XTI
function should discard options it does not know to lessen its dependence
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from different system platforms and future XTI releases with possibly
increased option support.

3.6.7.2 Negotiating Protocol Options in XPG3

The Tru64 UNIX XPG3 implementation of XTI provides an optional function,
t_optmgmt, for retrieving, verifying, and negotiating protocol options with
transport providers. After you create an endpoint with t_open and bind an
address to it, you can verify or negotiate options with the transport provider.

______________________ Note _______________________

Although other transport providers may support the t_optmgmt
function, the TCP transport provider provided with this operating
system does not. See the transport provider documentation for
information about option management.

See t_optmgmt(3) for function syntax, parameters, and errors. See
Section 3.7 for a general description of XTI errors.

3.7 XTI Errors

XTI returns library errors and system errors. When an XTI function
encounters an error, it returns a value of -1, and can do one of the following:

• Check the external variable t_errno to get the specific error. (For
multithreaded applications, t_errno is thread specific.)

• Call the t_error function to print the text of the message associated
with the error stored in t_errno.

• Check the state of the transport endpoint with the t_getstate function.
Some errors change the state of the endpoint.

_____________________ Note _____________________

Since a successful call to an XTI function does not clear the
contents of t_errno, check t_errno only after an error
occurs.

The <xti.h> header file defines the t_errno variable as a macro as follows:

#define t_errno (*(_terrno()))

For more information on errors, see the individual XTI reference pages.

3–56 X/Open Transport Interface



3.8 Configuring XTI Transport Providers
Use the xtiso kernel configuration option to configure XTI transport
providers. You can configure the xtiso option into your system at
installation time or you can add it to your system using the doconfig
command. See the Installation Guide.

You can use the doconfig command in one of the following ways:

• Use the doconfig command without options if you have not customized
your kernel. Without options the doconfig command creates a new
kernel configuration file for your system.

• Use the doconfig −c command if you have customized your kernel and
you do not want to recustomize it. The doconfig −c command allows
you to add information to the existing kernel configuration file.

To use the doconfig command without any options, do the following:

1. Enter the /usr/sbin/doconfig command at the superuser prompt (#).

2. Enter a name for the kernel configuration file. It should be the name
of your system in uppercase letters, and will probably be the default
provided in square brackets ([]). For example:
Enter a name for the kernel configuration file. [HOST1]: RETURN

3. Enter y when the system asks whether you want to replace the system
configuration file. For example:

A configuration file with the name ’HOST1’ already exists.
Do you want to replace it? (y/n) [n]: y

Saving /sys/conf/HOST1 as /sys/conf/HOST1.bck

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***

4. Select the X/Open Transport Interface (XTISO, TIMOD,
TIRDWR) option from the Kernel Option Selection menu. Confirm your
choice at the prompt. For example:
*** KERNEL OPTION SELECTION ***

Selection Kernel Option
--------------------------------------------------------------

1 System V Devices
2 NTP V3 Kernel Phase Lock Loop (NTP_TIME)
3 Kernel Breakpoint Debugger (KDEBUG)
4 Packetfilter driver (PACKETFILTER)
5 Point-to-Point Protocol (PPP)
6 STREAMS pckt module (PCKT)
7 X/Open Transport Interface (XTISO, TIMOD, TIRDWR)
8 File on File File System (FFM)
9 ISO 9660 Compact Disc File System (CDFS)
10 Audit Subsystem
11 ACL Subsystem
12 Logical Storage Manager (LSM)
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13 Advanced File System (ADVFS)
14 All of the above
15 None of the above
16 Help

--------------------------------------------------------------

Enter the selection number for each kernel option you want.
For example, 1 3 [15]: 7

Enter the selection number for each kernel option you want.
For example, 1 3 : 7

You selected the following kernel options:

X/Open Transport Interface (XTISO, TIMOD, TIRDWR)
Is that correct? (y/n) [y]: y

Configuration file complete.

5. Enter n when the doconfig command asks whether you want to edit
the configuration file.

The doconfig command then creates device special files, indicates
where a log of the files it created is located, and builds the new kernel.
After the new kernel is built, you must move it from the directory where
doconfig places it to the root directory ( /) and reboot your system.

When you reboot, the strsetup −i command runs automatically,
creating the device special files for any new STREAMS modules.

6. Enter the strsetup −c command to verify that the device is configured
properly.

The following example shows the output from the strsetup −c
command:

# /usr/sbin/strsetup −c

STREAMS Configuration Information...Fri Nov 3 14:23:36 1995

Name Type Major Module ID
---- ---- ----- ---------

clone 32 0
dlb device 52 5010

kinfo device 53 5020
log device 54 44
nuls device 55 5001
echo device 56 5000
sad device 57 45
pipe device 58 5304

xtisoUDP device 59 5010
xtisoTCP device 60 5010

xtisoUDP+ device 61 5010
xtisoTCP+ device 62 5010

ptm device 63 7609
pts device 6 7608
bba device 64 24880
lat device 5 5

pppif module 6002
pppasync module 6000
pppcomp module 6001
bufcall module 0
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null module 5002
pass module 5003
errm module 5003
ptem module 5003

spass module 5007
rspass module 5008

pipemod module 5303
timod module 5006
tirdwr module 0
ldtty module 7701

Configured devices = 15, modules = 14

To use the doconfig −c command to add the XTISO option to the kernel
configuration file, do the following:

1. Enter the doconfig −c HOSTNAME command from the superuser
prompt (#). HOSTNAME is the name of your system in uppercase letters.
For example, for a system called host1 you would enter:

# doconfig −c HOST1

2. Add XTISO to the options section of the kernel configuration file.

Enter y at the prompt to edit the kernel configuration file. The
doconfig command allows you to edit the configuration file with the
ed editor. For information about using the ed editor, see ed(1).

The following ed editing session shows how to add the XTISO option to
the kernel configuration file for host1. The number of the line after
which you append the new line can differ between kernel configuration
files:

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***

Saving /sys/conf/HOST1 as /sys/conf/HOST1.bck

Do you want to edit the configuration file? (y/n) [n]: y

Using ed to edit the configuration file. Press return when ready,
or type ’quit’ to skip the editing session:
2153

48a
options XTISO
.
1,$w
2185
q

*** PERFORMING KERNEL BUILD ***
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3. After the new kernel is built you must move it from the directory where
doconfig places it to the root directory (/) and reboot your system.

When you reboot, the strsetup −i command is run automatically,
creating the device special files for any new STREAMS modules.

4. Run the strsetup −c command to verify that the device is configured
properly.

The following example shows the output from the strsetup −c
command:

# /usr/sbin/strsetup −c

STREAMS Configuration Information...Fri Nov 3 14:23:36 1995

Name Type Major Module ID
---- ---- ----- ---------

clone 32 0
dlb device 52 5010

kinfo device 53 5020
log device 54 44
nuls device 55 5001
echo device 56 5000
sad device 57 45
pipe device 58 5304

xtisoUDP device 59 5010
xtisoTCP device 60 5010

xtisoUDP+ device 61 5010
xtisoTCP+ device 62 5010

ptm device 63 7609
pts device 6 7608
bba device 64 24880
lat device 5 5

pppif module 6002
pppasync module 6000
pppcomp module 6001
bufcall module 0

null module 5002
pass module 5003
errm module 5003
ptem module 5003

spass module 5007
rspass module 5008

pipemod module 5303
timod module 5006
tirdwr module 0
ldtty module 7701

Configured devices = 15, modules = 14

For detailed information on reconfiguring your kernel or the doconfig
command see the System Administration manual.
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4
Sockets

The operating system’s sockets programming interface supports the XNS5.0
standard, XNS4.0 standard, POSIX 1003.1g Draft 6.6, and the Berkeley
Software Distribution (BSD) socket programming interface. In addition,
the operating system supports the basic sockets interface extensions for
Internet Protocol Version 6 (IPv6) as defined in RFC 2553. The basic
syntax of socket functions remains the same. Existing IPv4 applications
will continue to operate as before, and IPv6 applications can interoperate
with IPv4 applications.

In this operating system, sockets provide an interface to the Internet Protocol
suite (TCP/IP) and to the UNIX domain for interprocess communication on
the same system. However, you can use sockets to build network-based
applications that are independent of the underlying networking protocols
and hardware.

To use the XNS4.0 standard implementation in your program, you must
compile your program using the c89 compiler command. See standards(5)
for additional information. The examples in this chapter are based on the
XNS4.0 standard. See Section 4.5 for information on the differences among
the XNS4.0, XNS5.0, POSIX 1003.1g Draft 6.6, and the BSD interfaces.

This chapter contains the following information:

• Overview of the sockets framework

• Description of the application interface to sockets

• Information on how to use sockets

• Information on writing network applications

• Information on the BSD socket interfaces

• Explanation of common socket error messages

• Information about advanced topics

Figure 4–1 highlights the sockets framework and shows its relationship to
the rest of the network programming environment:
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Figure 4–1: The Sockets Framework
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4.1 Overview of the Sockets Framework

The sockets framework consists of:

• A set of abstractions, such as communication domains and socket types,
that defines socket communication properties

• A programming interface, or set of system and library calls, used by
application programs to access the socket framework

• Kernel resources, including networking protocols, that application
programs access using system and library calls

The operating system implements the Internet Protocol suite and UNIX
domain using sockets to achieve interprocess communication. It also
implements BSD-based device drivers that are accessed using sockets
system calls.
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4.1.1 Communication Properties of Sockets

This section describes the abstractions and definitions that underlie sockets
communication properties.

4.1.1.1 Socket Abstraction

Sockets function as endpoints of communication. A single socket is one
endpoint; a pair of sockets constitutes a two-way communication channel
that enables unrelated processes to exchange data locally and over networks.

Application programs request the operating system to create a socket when
one is needed. The operating system returns a socket descriptor that the
program uses to reference the newly created socket for further operations.

Sockets have the following characteristics:

• Exist only as long as some process holds a descriptor referencing them.

• Are referenced by descriptors and have qualities similar to those of
a character special device. Read, write, and select operations are
performed on sockets by using the appropriate system calls.

• Can be created in pairs or given names and used to rendezvous with
other sockets in a communications domain, accepting connections from
these sockets or exchanging messages with them.

Sockets are typed according to their communication properties. See
Section 4.1.1.3 for a description of the available socket types.

4.1.1.2 Communication Domains

Communication domains define the semantics of communication between
systems whose hardware and software differ. Communication domains
specify the following:

• A set of protocols called the protocol family

• A set of rules for manipulating and interpreting names

• A collection of related socket address formats (an address family)

The socket address for the Internet communication domain contains an
Internet address and a port number. The socket address for the UNIX
communication domain contains a local pathname.

See Section 4.2.3.4 for more information on socket-related data
structures.

The operating system provides default support for the following socket
domains1:

1 The operating system can also be configured to support the AF_DLI domain. For information
about the Data Link Interface and using the AF_DLI domain, see Appendix F.
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• UNIX domain

The operating system provides socket communication between processes
running on the same system when a domain of AF_UNIX is specified.
In the UNIX communication domain, sockets are named with UNIX
pathnames, such as /dev/printer.

• Internet domain

The operating system provides socket communication between a process
running locally and one running on a remote host when a domain of
AF_INET or AF_INET6 is specified. This domain requires that TCP/IP
be configured and running on your system.

Table 4–1 summarizes the characteristics of the UNIX and Internet domains.

Table 4–1: Characteristics of the UNIX and Internet Communication
Domains

UNIX Internet

Socket Types SOCK_STREAM,
SOCK_DGRAM

SOCK_STREAM,
SOCK_DGRAM, SOCK_RAW.

Naming String of ASCII
characters, for example,
/dev/printer.

32-bit IP Version 4 address
plus 16-bit port number
(AF_INET), 128-bit IP
Version 6 address plus 16-bit
port number (AF_INET6).

Security Process connecting to
a pathname must have
write access to it.

Not applicable.

Raw Access Not applicable. Privileged process can access
the raw facilities of IP. Raw
socket is associated with
one IP protocol number, and
receives all traffic received
for that protocol.

4.1.1.3 Socket Types

Each socket has an associated abstract type which describes the semantics
of communications using that socket type. Properties such as reliability,
ordering, and prevention of duplication of messages are determined by the
socket type. The basic set of socket types is defined in the <sys/socket.h>
header file.

______________________ Note _______________________

Typically, header file names are enclosed in angle brackets (<
>). To obtain the absolute path to the header file, prepend
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/usr/include/ to the information enclosed in the angle
brackets. In the case of <sys/socket.h>, socket.h is located
in the /usr/include/sys directory.

Within the UNIX and Internet domains you can use the following socket
types:

SOCK_DGRAM Provides datagrams that are connectionless
messages of a fixed maximum length where each
message can be addressed individually. This type of
socket is generally used for short messages because
the order and reliability of message delivery is
not guaranteed. An important characteristic of a
datagram socket is that record boundaries in data
are preserved, so individual datagrams are kept
separate when they are read.

Often datagrams are used for requests that require
a response or responses from the recipient, such as
with the finger program. If the recipient does not
respond in a specified period of time, the sending
application can repeat the request. The time period
varies with the communication domain.

In the UNIX domain, SOCK_DGRAM is similar
to a message queue. In the Internet domain,
SOCK_DGRAM is implemented using the User
Datagram Protocol (UDP).

SOCK_STREAM Provides sequenced, two-way byte streams across
a connection with a transmission mechanism for
out-of-band data. The data is transmitted on a
reliable basis, in order.

In the UNIX domain, SOCK_STREAM is like
a full-duplex pipe. In the Internet domain,
SOCK_STREAM is implemented using the
Transmission Control Protocol (TCP).

SOCK_RAW Provides access to network protocols and interfaces.
Raw sockets are only available to privileged
processes.

A raw socket allows an application to have direct
access to lower-level communications protocols. Raw
sockets are intended for advanced users who want
to employ protocol features not directly accessible
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through a normal interface, or who want to build
new protocols using existing lower-level protocols.
You can also use SOCK_RAW to communicate with
hardware interfaces.

Raw sockets are normally datagram-oriented,
though their exact characteristics depend on
the interface provided by the protocol. They are
available only within the Internet domain.

4.1.1.4 Socket Names

Sockets can be named, which allows unrelated processes on a system or
network to locate a specific socket and to exchange data with it. The bound
name is a variable-length byte string that is interpreted by the supporting
protocol or protocols. Its interpretation varies from communication domain
to communication domain. In the Internet domain, names contain an
Internet address and port number, and the family is either AF_INET
or AF_INET6; AF_INET sockets support IPv4 communication, whereas
AF_INET6 sockets support both IPv4 and IPv6 communication. In the UNIX
domain, names contain a pathname and the family is AF_UNIX.

Communicating processes are bound by an association. In the Internet
domain, an association comprises a protocol, local and foreign addresses, and
local and foreign ports. When a name is bound to a socket in the Internet
domain, the local address and port are specified.

In the UNIX domain, an association comprises local pathnames. Binding a
name to a socket in the UNIX domain means specifying a pathname.

In most domains, associations must be unique.

4.2 Application Interface to Sockets

The kernel implementation of sockets separates the networking subsystem
into the following three interacting layers:

• The socket layer which supplies the interface between the application
program and the lower layers, such as the Transmission Control Protocol
(TCP) or the User Datagram Protocol (UDP) and IP.

• The protocol layer which consists of transport layer protocols (TCP and
UDP) and network layer protocols (IP).

• The device layer which consists of the ifnet layer and the device driver.

In addition to the abstractions described in Section 4.1.1, the socket interface
comprises system and library calls, library functions, and data structures
that enable you to manipulate sockets and send and receive data.
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Additionally, the kernel provides ancillary services to the sockets framework,
such as buffer management, message routing, standardized interfaces to
the protocols, and interfaces to the network interface drivers for use by the
various network protocols.

4.2.1 Modes of Communication

The sockets framework supports connection-oriented and connectionless
modes of communication. Connection-oriented communication means that
the application specifies a socket type in a communication domain that
supports a connection-oriented protocol. For example, an application could
open a SOCK_STREAM socket in the AF_INET domain. SOCK_STREAM
sockets in the AF_INET and AF_INET6 domains are supported by the TCP
protocol, which is a connection-oriented protocol.

Connectionless communication means that the application specifies a socket
type in a communication domain that supports a connectionless protocol. For
example, a SOCK_DGRAM socket in the AF_INET communication domain
is supported by the UDP protocol, which is a connectionless protocol.

4.2.1.1 Connection-Oriented Communication

TCP is the connection-oriented protocol implemented on this operating
system. TCP is a reliable end-to-end transport protocol that provides for
recovery of lost data, transmission errors, and failures of intervening
gateways. TCP ensures accurate delivery of data by requiring that two
processes be connected before communicating. TCP/IP connections are often
compared to telephone connections. Data passed through a SOCK_STREAM
socket in the AF_INET or AF_INET6 domain is divided into segments and
identified by sequence numbers. The remote process acknowledges receipt
of data by including sequence numbers in the acknowledgement. If data
is lost enroute, it is resent; thus ensuring that data arrives in the correct
sequence to the application.

For applications where large amounts of data are exchanged and the
sequence in which the data arrives is important, connection-oriented
communication is preferable. File transfer programs are a good example
of applications that benefit from the connection-oriented mode of
communication offered by TCP.

4.2.1.2 Connectionless Communication

UDP is the connectionless protocol implemented on the operating system.
UDP functions as follows:

• Delivers messages based on the messages’ address information

• Requires no connection between communicating processes
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• Does not use acknowledgements to ensure that data arrives

• Does not order incoming messages

• Provides no feedback to control the rate at which data is exchanged
between hosts

UDP messages can be lost, duplicated, or arrive out of order.

Where small amounts of data are exchanged and sequencing is not vital,
connectionless communication works well. A good example of a program that
uses connectionless communication is the rwhod daemon, which periodically
broadcasts UDP packets containing system information to the network. It
matters little whether or in what sequence those packets are delivered.

UDP is also appropriate for applications that use IP multicast for delivery of
datagrams to a subset of hosts on a local area network.

4.2.2 Client/Server Paradigm

The most commonly used paradigm in constructing distributed applications
is the client/server model. A server process offers services to a network;
a client process uses those services. The client and server require a
well-known set of conventions before services are rendered and accepted.
This set of conventions a protocol comprises that must be implemented at
both ends of a connection. Depending on the situation, the protocol can be
connection-oriented (asymmetric) or connectionless (symmetric).

In a connection-oriented protocol, such as TCP, one side is always recognized
as the server and the other as the client. The server binds a socket to a
well-known address associated with the service and then passively listens
on its socket. The client requests services from the server by initiating a
connection to the server’s socket. The server accepts the connection and then
server and client can exchange data. An example of a connection-oriented
protocol application is Telnet.

In a connectionless protocol, such as UDP, either side can play the server
or client role. The client does not establish a connection with the server;
instead, it sends a datagram to the server’s address. Similarly, the server
does not accept a connection from a client. Rather, it issues a recvfrom
system call that waits until data arrives from a client. (See Section 4.3.6.)

4.2.3 System Calls, Library Calls, Header Files, and Data Structures

This section lists the system and library calls that the socket layer
comprises. It also lists the header files that define socket-related constants
and structures, and describes some of the most important data structures
contained in those header files.
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4.2.3.1 Socket System Calls

Table 4–2 lists the socket system calls and briefly describes their function.
Note that each call has an associated reference page by the same name.

Table 4–2: Socket System Calls
System Call Description

accept Accepts a connection on a socket to cre-
ate a new socket.

bind Binds a name to a socket.

connect Initiates a connection on a socket.

getpeername Gets the name of the connected peer.

getsockname Gets the socket name.

getsockopt Gets options on sockets.

listen Listens for socket connections and specifies the
maximum number of queued requests.

recv Receives messages, peeks at incoming data,
and receives out-of-band data.

recvfrom Receives messages. Has all of the functions
of the recv call, plus supplies the address
of the peer process.

recvmsg Receives messages. Has all of the functions of the
recv and recvfrom calls, plus receives specially
interpreted data (access rights), and performs
scatter I/O operations on message buffers.

send Sends messages. Also sends out-of-band data and
normal data without network routing.

sendmsg Sends messages. Has all of the functions of the
send and sendto calls, plus transmits specially
interpreted data (access rights), and performs
gather I/O operations on message buffers.

sendto Sends messages. Has all of the functions of the send
call, plus supplies the address of the peer process.

setsockopt Sets socket options.

shutdown Shuts down all socket send and receive operations.

socket Creates an endpoint for communication and
returns a descriptor.

socketpair Creates a pair of connected sockets.
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4.2.3.2 Socket Library Calls

Application programs use socket library calls to construct network addresses
for use by the interprocess communications facilities in a distributed
environment.

Network library subroutines map the following items:

• Host names to network addresses

• Network names to network numbers

• Protocol names to protocol numbers

• Service names to port numbers

Additional socket library calls exist to simplify manipulation of names and
addresses.

An application program must include the <netdb.h> header file when using
any of the socket library calls.

Host Names

Application programs use the following network library routines to map
Internet host names to addresses:

• gethostbyname (AF_INET only)

• gethostbyaddr (AF_INET only)

• getaddrinfo (AF_INET and AF_INET6)

• getnameinfo (AF_INET and AF_INET6)

The gethostbyname routine takes an Internet host name and returns a
hostent structure, while the gethostbyaddr routine maps Internet host
addresses into a hostent structure. The hostent structure consists of
the following components:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type (AF_INET or AF_INET6) */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses, null terminated

first address, network byte order */
#define h_addr h_addr_list[0]
};

The gethostbyaddr and gethostbyname subroutines return the official
name of the host and its public aliases, along with the address family and a
null terminated list of variable-length addresses. This list of addresses is
required because it is possible for a host to have many addresses with the
same name.
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The database for these calls is the /etc/hosts file. If the named name
server is running, the hosts database is maintained on a designated server
on the network. Because of the differences in the databases and their access
protocols, the information returned can differ. When using the /etc/hosts
version of gethostbyname, only one address is returned, but all listed
aliases are included. The named version can return alternate addresses, but
does not provide any aliases other than one given as a parameter value.

The getaddrinfo routine takes an Internet node name or service name and
returns one or more addrinfo structures, while the getnameinfo routine
takes a sockaddr and returns a host name (if requested) and service name
for the port (if requested).

The database for these calls is both the /etc/ipnodes file and /etc/hosts
file. If the named name server is running, the hosts database is maintained
on a designated server on the network. Because of the differences in the
databases and their access protocols, the information returned can differ.
When using the /etc/ipnodes and /etc/hosts version of getaddrinfo,
two addresses may be returned (one from each file), depending on the
request; no aliases are returned. The named version can return alternate
addresses, but does not provide any aliases other than one given as a
parameter value.

Network Names

Application programs use the following network library routines to map
network names to numbers and network numbers to names:

• getnetbyaddr

• getnetbyname

• getnetent

The getnetbyaddr, getnetbyname, and getnetent routines extract their
information from the /etc/networks file and return a netent structure,
as follows:
struct netent {

char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net address type */
in_addr_t n_net; /* network number, host byte order */

};

Protocol Names

Application programs use the following network library routines to map
protocol names to protocol numbers:

• getprotobynumber

• getprotobyname
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• getprotoent

The getprotobynumber, getprotobyname, and getprotoent subroutines
extract their information from the /etc/protocols file and return the
protoent entry, as follows:

struct protoent {
char *p_name; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

};

Service Names

Application programs use the following network library routines to map
service names to port numbers:

• getservbyname

• getservbyport

• getservent

A service is expected to reside at a specific port and employ a particular
communication protocol. This view is consistent with the Internet domain,
but inconsistent with other network architectures. Further, a service can
reside on multiple ports. If this occurs, the higher-level library routines
must be bypassed or extended. Services available are contained in the
/etc/services file. A service mapping is described by the servent
structure, as follows:
struct servent {

char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number, network byte order */
char *s_proto; /* protocol to use */

};

The getservbyname routine maps service names to a servent structure by
specifying a service name and, optionally, a qualifying protocol. Thus, the
following call returns the service specification for a Telnet server by using
any protocol:

sp = getservbyname("telnet", (char *) NULL);

In contrast, the following call returns only the Telnet server that uses the
TCP protocol:

sp = getservbyname("telnet", "tcp");

The getservbyport and getservent routines are also provided. The
getservbyport routine has an interface similar to that provided by
getservbyname; an optional protocol name can be specified to qualify
lookups.
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Network Byte Order Translation

When you have to create or interpret Internet Protocol (IP) suite data
in your program, standard methods exist for conversion. The IP suite
ensures consistency by requiring particular data formats. The operating
system provides functions that let a program convert data to and from those
formats. Additionally, the Internet Protocol suite assumes that the most
significant byte is in the lowest address, a format known as big-endian.
Functions are available to convert from network-byte order to host-byte
order and vice versa.

Four functions ensure that data passed by your program is interpreted
correctly by the network and vice versa:

• htonl

• htons

• ntohl

• ntohs

Application programs use the following related network library routines to
manipulate Internet address strings and binary address quantities:

• inet_addr (AF_INET only)

• inet_lnaof (AF_INET only)

• inet_makeaddr (AF_INET only)

• inet_netof (AF_INET only)

• inet_network (AF_INET only)

• inet_ntoa (AF_INET only)

• getnameinfo (AF_INET and AF_INET6)

• getaddrinfo (AF_INET and AF_INET6)

Table 4–3 lists and briefly describes the socket library calls. Note that each
call has an associated reference page by the same name. The socket library
calls are part of libc, so there is no need to link in a special library.

Table 4–3: Socket Library Calls
Name Description

endhostent Ends a series of host entry lookups.

endnetent Ends a series of network entry lookups.

endprotoent Ends a series of protocol entry lookups.

endservent Ends a series of service entry lookups.
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Table 4–3: Socket Library Calls (cont.)

Name Description

freeaddrinfo Frees addrinfo structures and storage that
were returned by getaddrinfo.

getaddrinfo Given the name of a host and an optional address
family, retrieves the host entry from either the
name server (named), the /etc/ipnodes file, or the
/etc/hosts file.
Translates a node’s address in standard numeric
string format to an Internet address as part of a
sockaddr structure.

gethostbyaddr Given the address of a host, retrieves the host
entry from either the name server (named)
or the /etc/hosts file.

gethostbyname Given the name of a host, retrieves the host
entry from either the name server (named)
or the /etc/hosts file.

gethostent Retrieves the next host entry from either the
name server (named) or the /etc/hosts file,
opening this file if necessary.

getnameinfo Given the sockaddr structure containing the
address of a node, retrieves the host entry from either
the name server (named), the /etc/ipnodes file,
or the /etc/hosts file.
Translates an Internet address from the sockaddr
structure into a standard numeric string format.

getnetbyaddr Given the address of a network, retrieves the network
entry from the /etc/networks file.

getnetbyname Given the name of a network, retrieves the network
entry from the /etc/networks file.

getnetent Retrieves the next network entry from the
/etc/networks file, opening this file if necessary.

getprotobyname Given the protocol name, retrieves the protocol
entry from the /etc/protocols file.

getprotobynumber Given the protocol number, retrieves the protocol
entry from the /etc/protocols file.

getprotoent Retrieves the next protocol entry from the
/etc/protocols file, opening this file if necessary.

getservbyname Given the name of a service, retrieves the service
entry from the /etc/services file.

getservbyport Given the port number of a service, retrieves the
service entry from the /etc/services file.
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Table 4–3: Socket Library Calls (cont.)

Name Description

getservent Retrieves the next service entry from the
/etc/services file, opening this file if necessary.

htonl Converts a 32-bit integer from host-byte order
to Internet network-byte order.

htons Converts an unsigned short integer from host-byte
order to Internet network-byte order.

inet_addr Breaks apart a character string representing
numbers expressed in the Internet standard dot (.)
notation, and returns an Internet address.

inet_lnaof Breaks apart an Internet host address and
returns the local network address.

inet_makeaddr Constructs an Internet address from an Internet
network number and a local network address.

inet_ntoa Translates an Internet address value into
a character string.

inet_netof Breaks apart an Internet host address and
returns the network number.

inet_network Breaks apart a character string representing
numbers expressed in the Internet standard dot (.)
notation, and returns an Internet network number.

ntohl Converts a 32-bit integer from Internet network
standard-byte order to host-byte order.

ntohs Converts an unsigned short integer from Internet
network-byte order to host-byte order.

sethostent Begins a series of host entry lookups.

setnetent Begins a series of network entry lookups.

setprotoent Begins a series of protocol entry lookups.

setservent Begins a series of service entry lookups.

4.2.3.3 Header Files

Socket header files contain data definitions, structures, constants, macros,
and options used by the socket system calls and subroutines. An application
program must include the appropriate header file to make use of structures
or other information a particular socket system call or subroutine requires.
Table 4–4 lists commonly used socket header files.
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Table 4–4: Header Files for the Socket Interface
File Name Description

<sys/socket.h> Contains data definitions and socket structures. You
need to include this file in all socket applications.

<sys/types.h> Contains data type definitions. You need to include
this file in all socket applications. This header
file is included in <sys/socket.h>.

<sys/un.h> Defines structures for the UNIX domain. You
need to include this file in your application if you
plan to use UNIX domain sockets.

<netinet/in.h> Defines constants and structures for the
Internet domain. You need to include this file
in your application if you plan to use TCP/IP
in the Internet domain.

<netdb.h> Contains data definitions for socket subroutines. You
need to include this file in your application if you
plan to use TCP/IP and need to look up host entries,
network entries, protocol entries, or service entries.

4.2.3.4 Socket Related Data Structures

This section describes the following data structures:

• sockaddr

• sockaddr_in

• sockaddr_in6

• sockaddr_storage

• sockaddr_un

• msghdr

• cmsghdr

The sockaddr structures contain information about a socket’s address
format. Because the communication domain in which an application creates
a socket determines its address format, it also determines its data structure.

Socket address data structures are defined in the header files described in
Section 4.2.3.3. Which header file is appropriate depends on the type of
socket you are creating. The possible types of socket address data structures
are as follows:
struct sockaddr

Defines the generic version of the socket address structure.
These sockets are limited to 14 bytes of direct addressing. The
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<sys/socket.h> file contains the sockaddr structure, which
contains the following elements:

unsigned char sa_len; /* total length */
sa_family_t sa_family; /* address family */
char sa_data[14]; /* actually longer;

address value

The sa_len parameter defines the total length. The sa_family
parameter defines the socket address family or domain, which is
AF_UNIX for the UNIX domain, or AF_INET or AF_INET6 for the
Internet domain. The contents of sa_data depend on the protocol in
use, but generally a socket name consists of a machine-name part and
a port-name or service-name part.

struct sockaddr_storage

Defines Internet domain sockets (AF_INET and AF_INET6 address
families) used for machine-to-machine communication across a network
and local interprocess communication. This allows applications
to handle multiple address families with a single variable. The
<sys/socket.h> file contains the sockaddr_storage structure. The
sockaddr_storage structure contains the following elements:

unsigned char ss_len; /* address length */
sa_family_t ss_family; /* address family */
char __ss_pad1[_SS_PAD1SIZE]; /* pad to alignment field */
ulong_t __ss_align; /* force structure alignment */
char __ss_pad2[_SS_PAD2SIZE]; /* pad to desired size */

The _SS_PAD1SIZE and _SS_PAD2SIZE variables are also defined in
<sys/socket.h>.

struct sockaddr_un

Defines UNIX domain sockets used for communications between
processes on the same machine. These sockets require the specification
of a full pathname. The <sys/un.h> header file contains the
sockaddr_un structure. The sockaddr_un structure contains the
following elements:

unsigned char sun_len; /* sockaddr len including null*/
sa_family_t sun_family; /* AF_UNIX, address family*/
char sun_path[]; /* path name */

UNIX domain protocols (AF_UNIX) have socket addresses up to
PATH_MAX plus 2 bytes long. The PATH_MAX parameter defines the
maximum number of bytes of the pathname.

struct sockaddr_in

Defines Internet domain sockets (AF_INET address family) used
for machine-to-machine communication across a network and local
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interprocess communication. The <netinet/in.h> file contains the
sockaddr_in structure. The sockaddr_in structure contains the
following elements:

unsigned char sin_len;
sa_family_t sin_family;
in_port_t sin_port;
struct in_addr sin_addr;

struct sockaddr_in6

Defines Internet domain sockets (AF_INET6 address family) used
for machine-to-machine communication across a network and local
interprocess communication. The <netinet/in.h> file contains the
sockaddr_in6 structure. The sockaddr_in6 structure contains the
following elements:

uint8_t sin6_len;
sa_family_t sin6_family;
in_port_t sin6_port;
uint32_t sin6_flowinfo
struct in6_addr sin6_addr;
uint32_t sin6_scope_id

The in6_addr structure stores the address in network byte order as
an array of sixteen 8-bit elements.

The following data structures enable applications to send and receive
ancillary data using the sendmsg and recvmsg system calls:
struct msghdr

Allows applications to pass access rights to system-maintained objects
(such as files, devices, or sockets) using the sendmsg and recvmsg
system calls. (See Section 4.3.6 for information on the sendmsg and
recvmsg system calls.) The processes transmitting data must be
connected with a UNIX domain socket.

The data structure, which is defined in the <sys/socket.h> header
file, also allows AF_INET sockets and raw AF_INET6 sockets to receive
certain data. See ip(7) for the descriptions of the IP_RECVDSTADDR
and IP_RECVOPTS options (for IPv4) and the IPV6_RECVHOPOPTS,
IPV6_RECVDSTOPTS, IPV6_RECVRTHDR options (for IPv6).

The msghdr data structure consists of the following components:
struct msghdr {

void *msg_name; /* optional address */
size_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* ancillary data, see below */
size_t msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */
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};

In addition to the XNS4.0 msghdr data structure, the operating system
also supports the 4.3BSD, 4.4BSD, and the POSIX 1003.1g Draft 6.6
versions of this data structure. The BSD versions of the msghdr data
structure are described in greater detail in Section 4.5.

struct cmsghdr

Describes ancillary data objects transferred by the sendmsg and
recvmsg system calls. The msg_control member of the msghdr data
structure points to the ancillary data that are contained in a cmsghdr
structure.

Typically, only one data object is passed in a cmsghdr structure.
However, the IPv6 advanced sockets API enables the sendmsg and
recvmsg system calls to pass multiple objects. See Section 4.7.2 for
information on using raw IPv6 sockets. The data structure is defined
in the <sys/socket.h> header file.

The cmsghdr data structure consists of the following components:

struct cmsghdr {
socklen_t cmsg_len; /* #bytes, including this header */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */

/* followed by unsigned char cmsg_data[]; */
};

4.3 Using Sockets

This section outlines the steps required to create and use sockets.
Connection-oriented and connectionless modes of communication are
described in the following sections:

• Creating sockets

Describes how to create a socket with the socket and socketpair
system calls.

• Binding names and addresses

Describes how to bind a name and address to a socket with the bind
system call.

• Establishing connections (clients)

Describes how to use the connect system call on a client to connect
to a server.

• Accepting connections (servers)

Describes how to use the listen and accept system calls to connect
a server to a client.
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• Setting and getting socket options

Describes how to use the setsockopt and getsockopt system calls to
set and retrieve the values of socket characteristics.

• Transferring data

Describes how to use the read and write system calls, as well as the
send and recv related system calls to transmit data.

• Shutting down sockets

Describes how to use the shutdown system call to shut down a socket.

• Closing sockets

Describes how to use the close system call to close a socket.

4.3.1 Creating Sockets

The first step in using sockets is creating a socket. Sockets are opened, or
created, with the socket or socketpair system calls.

The socket call returns a socket descriptor, which is an a nonnegative
integer that the application program uses to reference the newly created
socket in subsequent system calls. The socket descriptor returned is the
lowest unused number available in the calling process for such descriptors
and is an index into the kernel descriptor table.

See socket(2) for function syntax, parameters, and errors.

For example, to create a stream socket in the Internet domain for use with
the AF_INET address family, you can use the following call:

if ((s = socket(AF_INET, SOCK_STREAM,0)) == -1 ) {
fprintf(file1,"socket() failed\n");
local_flag = FAILED;

}

This call results in the creation of a stream socket with the TCP protocol
providing the underlying communication support. To create a datagram
socket in the UNIX domain, you can use the following call:

if ((s = socket(AF_UNIX, SOCK_DGRAM,0)) == -1 ) {
fprintf(file1, "socket() failed\n");
local_flag = FAILED;

}

This call results in the creation of a datagram socket with a UNIX domain
protocol providing the underlying communication support.

The socketpair system call can also be used to create sockets. The
socketpair system call creates an unnamed pair of sockets that are
already connected.
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The socketpair system call returns a pair of socket descriptors, which are
a nonnegative integers, that the application uses to reference the newly
created socket pair in subsequent system calls.

See socketpair(2) for function syntax, parameters, and errors.

The following example shows how to create a socket pair:
{
.
.
.

int sv[2];
.
.
.

if ((s = socketpair (AF_UNIX, SOCK_STREAM, 0, sv)) < 0) {
local_flag=FAILED;
fprintf(file1, "socketpair() failed\n");

}
.
.
.

}

4.3.1.1 Setting Modes of Execution

Sockets can be set to blocking or nonblocking I/O mode. The O_NONBLOCK
fcntl operation is used to determine this mode. When O_NONBLOCK
is clear (not set), which is the default, the socket is in blocking mode. In
blocking mode, when the socket tries to do a read and the data is not
available, it waits for the data to become available.

When O_NONBLOCK is set, the socket is in nonblocking mode. In
nonblocking mode, when the calling process tries to do a read and the data
is not available, the socket returns immediately with the EWOULDBLOCK
error code. It does not wait for the data to become available. Similarly,
during writing, when a socket has O_NONBLOCK set and the output queue
is full, an attempt by the socket to write causes the process to return
immediately with an error code of EWOULDBLOCK.

The following example shows how to mark a socket as nonblocking:

#include <fcntl.h>
...

int s;
...

if (fcntl(s, F_SETFL, O_NONBLOCK) < 0)
perror("fcntl F_SETFL, O_NONBLOCK");
exit(1);

}
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...

When performing nonblocking I/O on sockets, a program must check for the
EWOULDBLOCK error, which is stored in the global value errno. The
EWOULDBLOCK error occurs when an operation normally blocks, but the
socket on which it was performed is marked as nonblocking. The following
socket system calls all return the EWOULDBLOCK error code:

• accept

• connect

• send

• sendto

• sendmsg

• recv

• recvfrom

• recvmsg

• read

• write

Processes that use these system calls on nonblocking sockets must be
prepared to deal with the EWOULDBLOCK return codes.

When an operation, such as a send, cannot be completed but partial writes
are permissible (for example, when using a SOCK_STREAM socket), the
data that can be sent immediately is processed, and the return value
indicates the amount of data actually sent.

4.3.2 Binding Names and Addresses

The bind system call associates an address with a socket. The domain for
the socket is established with the socket system call. Regardless of the
domain in which the bind system call is used, it allows the local process to
fill in information about itself, for example, the local port or local pathname.
This information allows the server application to be located by a client
application.

The following example shows how to use the bind system call on a
SOCK_STREAM socket created in the Internet domain for the AF_INET
address family:

#define PORT 3000

int retval; /* General return value */
int s1_descr; /* Socket 1 descriptor */
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.

.

.

struct sockaddr_in sock1addr; /* Address struct for socket1.*/
.
.
.

s1_descr = socket (AF_INET, SOCK_STREAM, 0);
if (s1_descr < 0) /* Call failed */
.
.
.

bzero(&sock1addr, sizeof(sock1addr));
sock1addr.sin_family = AF_INET;
sock1addr.sin_addr.s_addr = INADDR_ANY;
sock1addr.sin_port = htons(PORT);
retval = bind (s1_descr, (struct sockaddr *) &sock1addr, sizeof(sock1addr));
if (retval < 0) /* Call failed */
.
.
.

See bind(2) for function syntax, parameters, and errors. See Section 4.7.4
for advanced information on binding names and addresses.

4.3.3 Establishing Connections

Sockets are created in the unconnected state. Client processes use
the connect system call to connect to a server process or to store a
server’s address locally, depending on whether the communication is
connection-oriented or connectionless. For the Internet domain, the
connect system call typically causes the local address, local port, foreign
address, and foreign port of an association to be assigned.

The syntax of the connect system call depends on the communication
domain. An error is returned if the connection was unsuccessful; any name
automatically bound by the system remains, however. Applications should
use the close system call to deallocate the socket and descriptor. Common
errors associated with sockets are listed in Table 4–6 in Section 4.6. If the
connection is successful, the socket is associated with the server and data
transfer begins.

See connect(2) for function syntax, parameters, and errors.

Selecting a connection-oriented protocol in the Internet domain means
choosing TCP. In such cases, the connect system call builds a TCP
connection with the destination, or returns an error if it cannot. Client
processes using TCP must call the connect system call to establish a
connection before they can transfer data through a reliable stream socket
(SOCK_STREAM).

Selecting a connectionless protocol in the Internet domain means choosing
UDP. Client processes using connectionless protocols do not have to
be connected before they are used. If connect is used under these
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circumstances, it stores the destination (or server) address locally so that
the client process does not need to specify the server’s address each time a
message is sent. Any data sent on this socket is automatically addressed
to the connected server process and only data received from that server
process is delivered.

Only one connected address is permitted at any time for each socket; a second
connect system call changes the destination address and a connect system
call to a null address (for example, AF_INET address INADDR_ANY) causes
a disconnect. The connect system call on a connectionless protocol returns
immediately, since it results in the operating system recording the server’s
socket’s address (as compared to a connection-oriented protocol, where a
connect request initiates establishment of an end-to-end connection).

While a socket using a connectionless protocol is connected, errors from
recent send system calls can be returned asynchronously. These errors can
be reported on subsequent operations on the socket. A special socket option,
SO_ERROR (used with the getsockopt system call), can be used to query
the error status. A select system call, issued to determine when more data
can be sent or received, will return true when a process has received an
error indication.

In any case, the next operation will return the error and clear the error
status.

See select(2) for function syntax, parameters, and errors.

The following is an example of the select system call:

if ( (ret_val = select(20,&read_mask,NULL,NULL,&tp)) != i )

4.3.4 Accepting Connections

A connection-oriented server process normally listens at a well-known
address for service requests. That is, the server process remains dormant
until a connection is requested by a client’s connection to the server’s
address. Then, the server process wakes up and services the client by
performing the actions the client requests.

Connection-oriented servers use the listen and accept system calls to
prepare for and then accept connections with client processes.

The listen system call is usually called after the socket and bind system
calls. It indicates that the server is ready to receive connect requests from
clients.

See listen(2) for function syntax, parameters, and errors.

The server accepts a connection to a client by using the accept system
call. An accept call blocks the server until a client requests service. This
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call returns a failure status if the call is interrupted by a signal such as
SIGCHLD. Therefore, the return value from accept is checked to ensure
that a connection was established.

See accept(2) for function syntax, parameters, and errors.

When the connection is made, the server normally forks a child process
which creates another socket with the same properties as socket the socket
on which it is listening. Note in the following example how the socket s, used
by the parent for queuing connection requests, is closed in the child while
the socket g, which is created as a result of the accept call, is closed in the
parent. The address of the client is also handed to the doit routine because
it is required for authenticating clients. After the accept system call creates
the new socket, it allows the new socket to service the client’s connection
request while it continues listening on the original socket; for example:

for (;;) {
int g, len = sizeof (from);

g = accept(s, (struct sockaddr *)&from, &len);
if (g < 0) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
if (fork() == 0) { /* Child */

close(s);
doit(g, &from);

}
close(g); /* Parent */

}

Connectionless servers use the bind system call but, instead of using the
accept system call, they use a recvfrom system call and then wait for
client requests. No connection is established between the connectionless
server and client during the process of exchanging data.

4.3.5 Setting and Getting Socket Options

In addition to binding a socket to a local address or connecting to a
destination address, application programs must be able to control the
socket. For example, with protocols that use time-out and retransmission,
the application program may want to obtain or set the time-out parameters.
It may also want to control the allocation of buffer space, determine if
the socket allows transmission of a broadcast, or control processing of
out-of-band data.

The getsockopt and setsockopt system calls provide the application
program with the means to control socket operations. The setsockopt
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system call allows an application program to set a socket option by using the
same set of values obtained with the getsockopt system call.

See setsockopt(2) for function syntax, parameters, and errors.

The following example shows how to set the SO_SNDBUF option on a socket
in the Internet communication domain:
# include <sys/socket.h>
.
.
.

int retval; /* General return value. */
int s1_descr; /* Socket 1 descriptor */
int sockbufsize=16384;
.
.
.

retval = setsockopt (s1_descr, SOL_SOCKET, SO_SNDBUF, (void *)

&sockbufsize, sizeof(sockbufsize));

The getsockopt system call allows an application program to request
information about the socket options that are set with the setsockopt
system call. See getsockopt(2) for function syntax, parameters, and errors.

The following example shows how the getsockopt system call can be used
to determine the size of the SO_SNDBUF on an existing socket:
#include <sys/socket.h>
.
.
.

int retval; /* General return value. */
int s1_descr; /* Socket 1 descriptor */
int sbufsize;
size_t len = sizeof(sbufsize);
.
.
.

retval = getsockopt (s1_descr, SOL_SOCKET, SO_SNDBUF,
(void *)&sbufsize, &len);

The SOL_SOCKET parameter indicates that the general socket level code
is to interpret the SO_SNDBUF parameter. The SO_SNDBUF parameter
indicates the size of the send socket buffer in use on the socket.

Not all socket options apply to all sockets. The options that can be set depend
on the address family and protocol the socket uses.

4.3.6 Transferring Data

Most of the work performed by the socket layer is in sending and receiving
data. The socket layer itself does not impose any structure on data
transmitted or received through sockets. Any data interpretation or
structuring is logically isolated in the implementation of the communication
domain.
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The following are the system calls that an application uses to send and
receive data:

• read

• write

• send

• sendto

• recv

• recvfrom

• sendmsg

• recvmsg

4.3.6.1 Using the read System Call

The read system call allows a process to receive data on a socket without
receiving the sender’s address.

See read(2) for function syntax, parameters, and errors.

4.3.6.2 Using the write System Call

The write system call is used on sockets in the connected state. The
destination of data transferred with the write system call is implicitly
specified by the connection.

See write(2) for function syntax, parameters, and errors.

4.3.6.3 Using the send, sendto, recv and recvfrom System Calls

The send, sendto, recv, and recvfrom system calls are similar to the
read and write system calls, sharing the first three parameters with
them; however, additional flags are required. The flags, defined in the
<sys/socket.h> header file, can be defined as a nonzero value if the
application program requires one or more of the following:

Flag Description

MSG_OOB Send or receive out-of-band data.

MSG_PEEK Look at data without reading. Valid for
the recv and recvfrom calls.

MSG_DONTROUTE Send data without routing packets. Valid
for the send and sendto calls.
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The MSG_OOB flag signifies out-of-band data, or urgent data, and is specific
to stream sockets (SOCK_STREAM). See Section 4.7.5 for more information
about out-of-band data.

The MSG_PEEK flag allows an application to preview the data that is
available to be read, without having the system discard it after the recv or
recvfrom call returns. When the MSG_PEEK flag is specified with a recv
system call, any data present is returned to the user but treated as still
unread. That is, the next read or recv system call applied to the socket
returns the data previously previewed.

The MSG_DONTROUTE flag is currently used only by the routing table
management process and is not discussed further.

send

The send system call is used on sockets in the connected state. The send
and write system calls function almost identically; the only difference is
that send supports the flags described at the beginning of this section.

See send(2) for function syntax, parameters, and errors.

sendto

The sendto system call is used on connected or unconnected sockets. It
allows the process explicitly to specify the destination for a message.

See sendto(2) for function syntax, parameters, and errors.

recv

The recv system call allows a process to receive data on a socket without
receiving the sender’s address. The read and recv system calls function
almost identically; the only difference is that recv supports the flags
described at the beginning of this section.

See recv(2) for function syntax, parameters, and errors.

recvfrom

The recvfrom system call can be used on connected or unconnected sockets.
The recvfrom system call has similar functionality to the recv call but
it additionally allows an application to receive the address of a peer with
whom it is communicating.

See recvfrom(2) for function syntax, parameters, and errors.
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4.3.6.4 Using the sendmsg and recvmsg System Calls

The sendmsg and recvmsg system calls are distinguished from the other
send and receive related system calls in that they allow unrelated processes
on the local machine to pass file descriptors to each other. These two
system calls are the only ones that support the concept of access rights,
which means that the system has granted a process the right to access a
system-maintained object. Using the sendmsg and recvmsg system calls
they can pass that right to another process.

To pass access rights, the sendmsg and recvmsg system calls use the
msghdr data structure. The msghdr data structure defines two parameters,
the msg_control and msg_controllen that deal with the passing and
receiving of access rights between processes. For more information on the
msghdr data structure, see Section 4.2.3.4 and Section 4.5.2.

Although the sendmsg and recvmsg system calls can be used on
connection-oriented or connectionless protocols and in the Internet or UNIX
domains, for processes to pass descriptors they must be connected with a
UNIX domain socket.

sendmsg

The sendmsg system call is used on connected or unconnected sockets. It
transfers data using the msghdr data structure. For more information on
the msghdr data structure, see Section 4.2.3.4 and Section 4.5.2.

See sendmsg(2) for function syntax, parameters, and errors.

The following is an example of the sendmsg system call:

struct msghdr send;
struct iovec saiov;
struct sockaddr destAddress;
char sendbuf[BUFSIZE];
...

send.msg_name = (void *)&destAddress;
send.msg_namelen = sizeof(destAddress);
send.msg_iov = &saiov;
send.msg_iovlen = 1;
saiov.iov_base = sendbuf;
saiov.iov_len = sizeof(sendbuf);
send.msg_control = NULL;
send.msg_controllen = 0;
send.msg_flags = 0;
if ((i = sendmsg(s, &send, 0)) < 0) {

fprintf(file1,"sendmsg() failed\n");
exit(1);

}
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recvmsg

The recvmsg system call is used on connected or unconnected sockets. It
transfers data using the msghdr data structure. For more information on
the msghdr data structure, see Section 4.2.3.4 and Section 4.5.2.

See recvmsg(2) for function syntax, parameters, and errors.

The following is an example of the recvmsg system call:

struct msghdr recv;
struct iovec recviov;
struct sockaddr_in recvaddress;
char recvbuf[BUFSIZE];
...

recv.msg_name = (void *) &recvaddress;
recv.msg_namelen = sizeof(recvaddress);
recv.msg_iov = &recviov;
recv.msg_iovlen = 1;
recviov.iov_base = recvbuf;
recviov.iov_len = sizeof(recvbuf);
recv.msg_control = NULL;
recv.msg_controllen = 0
recv.msg_flags = 0
if ((i = recvmsg(r, &recv, 0)) < 0) {

fprintf(file1,"recvmsg() failed\n");
exit(1);

}
...

4.3.7 Shutting Down Sockets

If an application program has no use for any pending data, it can use the
shutdown system call on the socket prior to closing it. See shutdown(2) for
function syntax, parameters, and errors.

4.3.8 Closing Sockets

The close system call is used to close sockets. See close(2) for function
syntax, parameters, and errors.

Closing a socket and reclaiming its resources can be complicated. For
example, a close system call is never expected to fail when a process exits.
However, when a socket that is promising reliable delivery of data closes
with data still queued for transmission or awaiting acknowledgment of
reception, the socket must attempt to transmit the data. When the socket
discards the queued data to allow the close call to complete successfully, it
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violates its promise to deliver data reliably. Discarding data can cause naive
processes that depend on the implicit semantics of the close call to work
unreliably in a network environment.

However, if sockets block until all data is transmitted successfully, a close
system call may never complete in some communication domains.

The socket layer compromises in an effort to address the completion problem
and still maintain the semantics of the close system call. In normal
operation, closing a socket causes any queued but unaccepted connections to
be discarded. If the socket is in a connected state, a disconnect is initiated.
The socket is marked to indicate that a descriptor is no longer referencing it,
and the close operation returns successfully. When the disconnect request
completes, the network support notifies the socket layer, and the socket
resources are reclaimed. The network layer attempts to transmit any data
queued in the socket’s send buffer, but there is no guarantee that it will
succeed.

Alternatively, a socket can be marked explicitly to force the application
program to linger when closing until pending data is flushed and the
connection shuts down. This option is marked in the socket data structure
by using the setsockopt system call with the SO_LINGER option.

______________________ Note _______________________

The setsockopt system call, using the linger option, takes
a linger structure, which is defined in the <sys/socket.h>
header file.

When an application program indicates that a socket is to linger, it also
specifies a duration for the lingering period. If the lingering period expires
before the disconnect is completed, the socket layer forcibly shuts down the
socket, discarding any data that is still pending.

4.4 Creating Internet Applications

This section outlines the steps required to create and use applications in the
Internet domain (IPv4 and IPv6) by building upon the information presented
in Section 4.3. In addition, it summarizes the address testing macros that an
application might use. Use this information here together with the porting
guidelines in Section 4.7.1 to develop IPv6 applications.
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4.4.1 Creating IPv4 Applications

Internet applications today use AF_INET sockets for IPv4 communications.
Figure 4–2 shows an sample sequence of events for a client application that
uses an AF_INET socket to send IPv4 packets.

Figure 4–2: Using AF_INET Socket for IPv4 Communications

1.2.3.4

1.2.3.4

1.2.3.4

/etc/hosts,
DNS,

or
NIS

Hosts
Database

gethostbyname ("host1") 

User
Application

user space

kernel space

1

2

4

5

6

3

Socket layer

TCP UDP

IPv4
packet

IPv4

host1 = 1.2.3.4 

open AF_INET socket (UDP)

ZK-1558U-AI

4–32 Sockets



1 Application calls gethostbyname and passes the host name, host1.

2 The search finds host1 in the hosts database and gethostbyname
returns the IPv4 address 1.2.3.4 in a structure of type hostent.

3 The application calls socket to create an AF_INET socket. The socket
is a datagram socket (UDP) in this example, but could be a stream
socket (TCP).

4 If the socket call is successful, the application fills in a sockaddr_in
structure and calls connect to establish a connection with host1.
If the connect call is successful, the application calls send to send
information to the 1.2.3.4 address.

5 The socket layer passes the information and address to the UDP module.

6 The UDP module puts the 1.2.3.4 address into the packet header and
passes the information to the IPv4 module for transmission.

From this point, the application can do the following:

1. Call recv to wait for a response from the server system.

2. After it receives a response, call gethostbyaddr and pass it the
server’s address in a sockaddr_in structure. After the search finds the
address in the hosts database, gethostbyaddr returns the host name
in a structure of type hostent.

3. Call inet_ntoa to convert the server address to a text string.

Section C.1.1 contains sample client program code that demonstrates these
steps.

4.4.2 Creating IPv6 Applications

Internet applications can use AF_INET6 sockets for IPv6 communication.
In addition, the AF_INET6 sockets can also support IPv4 communication.
Figure 4–3 shows the sequence of events for a client application that uses an
AF_INET6 socket to send IPv6 packets.
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Figure 4–3: Using AF_INET6 Socket for IPv6 Communications
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1 Application calls getaddrinfo and passes the host name (host1),
the AF_INET6 address family hint, and the AI_ADDRCONFIG and
AI_V4MAPPED flag hints. The flag hints tell the function that if an
IPv6 address is found for host1, return it. See getaddrinfo(3) for a
description of hints fields and values.

2 The search finds an IPv6 address for host1 in the hosts
database and getaddrinfo returns the IPv6 address
3ffe:1200::a00:2bff:fe2d:02b2 in one or more structures of type
addrinfo.
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3 The application calls socket to create an AF_INET6 socket, using the
address family and socket type contained in the addrinfo structure.
The socket is a datagram socket (UDP) in this example, but could be a
stream socket (TCP).

4 If the socket call is successful, the application calls connect
to establish a connection with host1, using the host address
and length in the addrinfo structure. If the connect
call is successful, the application sends information to the
3ffe:1200::a00:2bff:fe2d:02b2 address.

____________________ Note _____________________

After using the information in the addrinfo structures, the
application calls freeaddrinfo to free system resources
used by the structures.

5 The socket layer passes the information and address to the UDP module.

6 The UDP module identifies the IPv6 address and puts the
3ffe:1200::a00:2bff:fe2d:02b2 address into the packet header
and passes the information to the IPv6 module for transmission.

From this point, the application can do the following:

1. Call recv to wait for a response from the server system.

2. After it receives a response, call getpeername to determine the
address of the connected socket. The address is returned in a structure
of type sockaddr_in6. If you want your application to be protocol
independent, you would use the sockaddr_storage structure instead
of the sockaddr_in6 structure.

3. Call getnameinfo with the NI_NAMEREQD flag to obtain the server
name.

4. Call getnameinfo with the NI_NUMERICHOST flag to convert the server
address to a text string.

Section C.2.1 contains sample client program code that demonstrates these
steps.

You can also use an AF_INET6 socket for IPv4 communications. Figure 4–4
shows the sequence of events for an client application that uses an
AF_INET6 socket to send IPv4 packets.
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Figure 4–4: Using AF_INET6 Socket for IPv4 Communications (Send)
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1 Application calls getaddrinfo and passes the host name (host1),
the AF_INET6 address family hint, and the AI_ADDRCONFIG and
AI_V4MAPPED flag hints. The flag hints tell the function that if an IPv4
address is found for host1, return it as an IPv4–mapped IPv6 address.
See getaddrinfo(3) for a description of hints fields and values.

2 The search finds an IPv4 address, 1.2.3.4, for host1 in the hosts
database and getaddrinfo returns the IPv4–mapped IPv6 address
::ffff:1.2.3.4 in one or more structures of type addrinfo.

3 The application calls socket to create an AF_INET6 socket, using the
address family and socket type contained in the addrinfo structure.
The socket is a datagram socket (UDP) in this example, but could be a
stream socket (TCP).

4 If the socket call is successful, the application calls connect to
establish a connection to host1, using the host address and length
in the addrinfo structure. If the connect call is successful, the
application sends information to the ::ffff:1.2.3.4 address.

____________________ Note _____________________

After using the information in the addrinfo structures, the
application calls freeaddrinfo to free system resouces
used by the structures.

5 The socket layer passes the information and address to the UDP module.

6 The UDP module identifies the IPv4–mapped IPv6 address and puts the
1.2.3.4 address into the packet header and passes the information to
the IPv4 module for transmission.

From this point, the application can do the following:

1. Call recv to wait for a response from the server system.

2. After it receives a response, call getpeername to determine the
address of the connected socket. The address is returned in a structure
of type sockaddr_in6. If you want your application to be protocol
independent, you would use the sockaddr_storage structure instead
of the sockaddr_in6 structure.

3. Call getnameinfo with the NI_NAMEREQD flag to obtain the server
name.

4. Call getnameinfo with the NI_NUMERICHOST flag to convert the server
address to a text string.

Section C.2.1 contains sample client program code that demonstrates these
steps.
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AF_INET6 sockets can receive messages sent to either IPv4 or IPv6
addresses. An AF_INET6 socket uses the IPv4–mapped IPv6 address format
to represent IPv4 addresses. Figure 4–5 shows the sequence of events for a
server application that uses an AF_INET6 socket to receive IPv4 packets.

Figure 4–5: Using AF_INET6 Socket for IPv4 Communications (Receive)
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1 The application does the following:

1. Calls socket to create an AF_INET6 socket.

2. Initializes a sockaddr_in6 structure and sets the family, address,
and port.

3. Calls bind to assign an address to the socket.

4. Calls listen to mark the socket as accepting connections.

2 An IPv4 packet arrives and passes through the IPv4 module.

3 The TCP layer strips off the packet header and passes the information
and the IPv4–mapped IPv6 address (::ffff:1.2.3.4) to the socket
layer.

4 The application calls accept and retrieves the information from the
socket. The information from the socket is passed to the application
in a sockaddr_storage structure. This enables the application to
be protocol independent.

5 The application calls getnameinfo and passes the ::ffff:1.2.3.4
address and the NI_NAMEREQD flag. The flag tells the function to return
the host name for the address. See getnameinfo(3) for a description of
the flags bits and their meanings.

6 The search finds the host name for the 1.2.3.4 address in the hosts
database and getnameinfo returns the host name.

Section C.2.2 contains sample server program code that demonstrates these
steps.

4.4.3 Address Testing Macros

In some cases, an application that uses AF_INET6 socket for communications
might need to determine the type of address that is returned in the structure.
For this case, the API defines macros to test the addresses. Table 4–5 lists
the currently defined address testing macros and the return value for a valid
test. To use these macros, include the following file in your application:

#include <netinet/in.h>

Table 4–5: Summary of Address Testing Macros
Macro Return

IN6_IS_ADDR_UNSPECIFIED True, if specified type.

IN6_IS_ADDR_LOOPBACK True, if specified type.

IN6_IS_ADDR_MULTICAST True, if specified type.

IN6_IS_ADDR_LINKLOCAL True, if specified type.
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Table 4–5: Summary of Address Testing Macros (cont.)

IN6_IS_ADDR_SITELOCAL True, if specified type.

IN6_IS_ADDR_V4MAPPED True, if specified type.

IN6_IS_ADDR_V4COMPAT True, if specified type.

IN6_IS_ADDR_MC_NODELOCAL True, if specified scope.

IN6_IS_ADDR_MC_LINKLOCAL True, if specified scope.

IN6_IS_ADDR_MC_SITELOCAL True, if specified scope.

IN6_IS_ADDR_MC_ORGLOCAL True, if specified scope.

IN6_IS_ADDR_MC_GLOBAL True, if specified scope.

IN6_ARE_ADDR_EQUAL True, if addresses are equal.

4.5 BSD Socket Interface

In addition to the XNS4.0 socket interface, the operating system also
supports the 4.3BSD, 4.4BSD, and POSIX 1003.1g Draft 6.6 socket
interfaces. The 4.4BSD socket interface provides a number of changes to
4.3BSD sockets. Most of the changes between the 4.3BSD and 4.4BSD socket
interfaces were designed to facilitate the implementation of International
Standards Organization (ISO) protocol suites under the sockets framework.
The XNS4.0 socket interface provides a standard version of the socket
interface.

______________________ Note _______________________

The availability of the 4.4BSD socket interface does not mean
that your site supports ISO protocols. Check with the appropriate
personnel at your site.

To use the 4.4BSD socket interface, you must add the following line to your
program or makefile:

#define _SOCKADDR_LEN

The 4.4BSD socket interface includes the following changes from the 4.3BSD
interface for application programs:

• A sockaddr structure for supporting variable-length (long) network
addresses

• A msghdr structure to allow receipt of protocol information and status
with data

The following sections describe these features.
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4.5.1 Variable-Length Network Addresses

The 4.4BSD version of the sockaddr structure supports variable-length
network addresses. The structure adds a length field and is defined as
follows:
/* 4.4BSD sockaddr Structure */

struct sockaddr {
u_char sa_len; /* total length */
u_char sa_family; /* address family */
char sa_data[14]; /* actually longer; address value */

};

The 4.3BSD sockaddr structure contains the following fields:

u_short sa_family;
char sa_data[14];

Figure 4–6 compares the 4.3BSD and 4.4BSD sockaddr structures.

Figure 4–6: 4.3BSD and 4.4BSD sockaddr Structures
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4.5.2 Receiving Protocol Data with User Data

The 4.3BSD version of the msghdr structure (which is the default if you use
the cc command) provides the parameters needed for using the optional
functions of the sendmsg and recvmsg system calls.

The 4.3BSD msghdr structure is as follows:
/* 4.3BSD msghdr Structure */
struct msghdr {

caddr_t msg_name; /* optional address */
int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /* access rights sent/re-

/* ceived */
int msg_accrightslen;

};
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The msg_name and msg_namelen parameters are used when the socket
is not connected. The msg_iov and msg_iovlen parameters are used
for scatter (read) and gather (write) operations. As stated previously, the
msg_accrights and msg_accrightslen parameters allow the sending
process to pass its access rights to the receiving process.

The 4.4BSD structure has additional fields that permit application programs
to include protocol information along with user data in messages.

To support the receipt of protocol data together with user data, the operating
system provides the msghdr structure from the 4.4BSD socket interface.
The structure adds a pointer to control data, a length field for the length of
the control data, and a flags field, as follows:

/* 4.4BSD msghdr Structure */
struct msghdr {

caddr_t msg_name; /* optional address */
u_int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
u_int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_control; /* ancillary data, see below */
u_int msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */

};

The XNS4.0 and POSIX 1003.1g Draft 6.6 msghdr data structures have
the same fields as 4.4BSD. However, the size of the msg_namelen and
msg_controllen fields are 8 bytes in the XNS4.0 and POSIX 1003.1g Draft
6.6 msghdr data structures, as opposed to 4 bytes in the 4.4BSD msghdr
data structure. In addition, the size of the msg_iovlen field is 8 bytes in the
POSIX 1003.1g Draft 6.6 msghdr data structure, as opposed to 4 bytes long
in the 4.4BSD and XNS4.0 msghdr data structures. Figure 4–7 shows the
4.3BSD, 4.4BSD, XPG4, and POSIX 1003.1g Draft 6.6 msghdr structures.
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Figure 4–7: 4.3BSD, 4.4BSD, XNS4.0, and POSIX 1003.1g msghdr
Structures
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In the 4.3BSD version of the msghdr data structure, the msg_accrights
and msg_accrightslen fields permit the sending process to pass its access
rights to a system-maintained object, in this case a socket, to the receiving
process. In the 4.4BSD, XNS4.0, and POSIX 1003.1g Draft 6.6 versions, this
is done using the msg_control and msg_controllen fields.

4.6 Common Socket Errors

Table 4–6 lists some common socket error messages and the problems they
indicate:

Table 4–6: Common Errors and Diagnostics
Error Diagnostics

[EAFNOSUPPORT] The protocol family does not support the
addresses in the specified address family.

[EBADF] The socket parameter is not valid.

[ECONNREFUSED] The attempt to connect was rejected.

[EFAULT] A pointer does not point to a valid part
of user address space.

[EHOSTDOWN] The host is down.

[EHOSTUNREACH] The host is unreachable.

[EINVAL] An invalid argument was used.

[EMFILE] The current process has too many
open file descriptors

[ENETDOWN] The network is down.
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Table 4–6: Common Errors and Diagnostics (cont.)

Error Diagnostics

[ENETUNREACH] The network is unreachable. No route
to the network is present.

[ENOMEM] The system was unable to allocate
kernel memory to increase the process
descriptor table.

[ENOTSOCK] The socket parameter refers to a
file, not a socket.

[EOPNOTSUPP] The specified protocol does not permit
creation of socket pairs.

[EOPNOTSUPP] The referenced socket can not accept
connections.

[EPROTONOSUPPORT] This system does not support the
specified protocol.

[EPROTOTYPE] The socket type does not support the
specified protocol.

[ETIMEDOUT] The connection timed out without a response
from the remote application.

[EWOULDBLOCK] The socket is marked nonblocking and the
operation could not complete.

4.7 Advanced Topics

This section contains the following information, which is of interest to
developers writing complex applications for sockets:

• Porting applications to use AF_INET6 sockets

• Using IPv6 Raw Sockets

• Selecting specific protocols

• Binding names and addresses

• Out-of-band data

• IP Multicasting

• Broadcasting and determining network configuration

• The inetd daemon

• Input/output multiplexing

• Interrupt-driven socket I/O

• Signals and process groups
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• Pseudoterminals

4.7.1 Porting Applications to Use AF_INET6 Sockets

AF_INET6 sockets enable applications to communicate using the IPv6
protocol, IPv4 protocol, or both. For IPv6 communication, RFC 2553, Basic
Socket Interface Extensions for IPv6, specifies changes to the BSD socket
Applications Programming Interface (API). Table 4–7 summarizes these
changes.

Table 4–7: Summary of IPv6 Extensions to the BSD Socket API
Category Changes

Core function calls None; basic syntax of socket functions stays the
same. Applications must cast pointers to the
protocol-specific address structures into pointers
to the generic sockaddr address structure when
using the socket functions. See Section 4.4 for
information on creating Internet applications.

Socket address structure Specifies a new sockaddr_in6 structure for
IPv6 communications and a sockaddr_storage
structure for protocol-independent communication.
The sockaddr_in structure remains for
IPv4 communications. See Section 4.7.1.2
for more information.

Name-to-address translation Specifies the getnameinfo and getaddrinfo
functions for protocol-independent (IPv4 and
IPv6) communication. The gethostbyaddr
and gethostbyname functions remain for
IPv4 communications only. See Section 4.7.1.3
for more information.

Address conversion functions Specifies the getnameinfo and getaddrinfo
functions for protocol-independent (IPv4 and
IPv6) address conversion. The inet_ntoa
and inet_addr functions remain for IPv4
address conversion only. See Section 4.7.1.3
for more information.

Socket options Specifies new socket options for IPv6 multicast.
See Section 4.7.6 for more information.

This section describes the following changes that you must make in
your existing application code in order to be ready to operate in an IPv6
networking environment. You must also know how an Internet application
operates over AF_INET6 sockets. See Section 4.4.2 for more information.

• Name changes

• Structure changes
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• Function call changes

• Other application changes

If your application needs to interoperate with existing IPv4 applications,
this section also includes guidelines for making changes to your code.
After you make these changes, your ported application will be capable of
communicating over both IPv4 and IPv6. Any existing IPv4 applications will
continue to operate as before, and interoperate with your IPv6 application.

To make the porting process easier, the operating system provides the
ipv6_sniff utility. This utility enables you to scan source files, looking
for tokens that might need to be changed, and to edit the source files and
make the changes, if necessary. See Section 4.7.1.5 for information on using
this utility.

4.7.1.1 Making Name Changes

Most of the changes required are straightforward and mechanical, some may
require a bit of code restructuring (for example, a routine that returns an
int datatype holding an IPv4 address may need to be modified to take as
an extra parameter a pointer to an in6_addr into which it writes the IPv6
address). Table 4–8 summarizes the changes to make to your application’s
code:

Table 4–8: Name Changes
Search file for: Replace with:

AF_INET AF_INET6

PF_INET PF_INET6

INADDR_ANY in6addr_any

4.7.1.2 Making Structure Changes

The structure names and field names have changed for the following
structures:

• in_addr

• sockaddr_in

• sockaddr

• hostent

The following sections discuss these changes.
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in_addr Structure

Applications that use the in_addr structure must be changed, as needed, to
use the in6_addr structure, as shown in the following examples:

AF_INET Structure AF_INET6 Structure

struct in_addr 1
unsigned int s_addr 2

struct in6_addr 1
uint8_t s6_addr [16] 2

Make the following changes in your application, as needed:

1 Change the structure name in_addr to in6_addr.

2 Change the data type from unsigned int to uint8_t and the field
name s_addr to s6_addr.

If you use the in6_addr structure, see Section 4.7.1.4 for additional changes
might need to make to your application.

sockaddr_in Structure

Applications that use the 4.4 BSD sockaddr_in structure must be changed,
as needed, to use the sockaddr_in6 structure, as shown in the following
examples:

AF_INET Structure AF_INET6 Structure

struct sockaddr_in 1
unsigned char sin_len 2
sa_family_t sin_family 3
in_port_t sin_port 4
struct in_addr sin_addr 5

struct sockaddr_in6 1
uint8_t sin6_len 2
sa_family_t sin6_family 3
int_port_t sin6_port 4
struct in6_addr sin6_addr 5

Make the following change in your application, as needed:

1 Change structure name sockaddr_in to sockaddr_in6.

2 Change the data type unsigned char to uint8_t and the field name
sin_len to sin6_len.

3 Change the field name sin_family to sin6_family.

4 Change the field name sin_port to sin6_port.

5 Change the field name sin_addr to sin6_addr.

Applications that use the 4.3 BSD sockaddr_in structure must be changed,
as needed, to use the sockaddr_in6 structure, as shown in the following
examples:
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AF_INET Structure AF_INET6 Structure

struct sockaddr_in 1
u_short sin_family 2
in_port_t sin_port 3
struct in_addr sin_addr 4

struct sockaddr_in6 1
u_short sin6_family 2
in_port_t sin6_port 3
struct in6_addr sin6_addr 4

Make the following change in your application, as needed:

1 Change structure name sockaddr_in to sockaddr_in6.

2 Change the field name sin_family to sin6_family.

3 Change the field name sin_port to sin6_port.

4 Change the field name sin_addr to sin6_addr.

______________________ Note _______________________

In both cases, you should initialize the entire sockaddr_in6
structure to zero after your structure declarations.

sockaddr Structure

Applications that use the generic socket address structure (sockaddr) to
hold an AF_INET socket address (sockaddr_in) must be changed to use
either the AF_INET6 sockaddr_in6 structure or the sockaddr_storage
structure.

If your application is to manipulate IPv6 addresses only, make the following
changes in your application, as needed:

AF_INET Structure AF_INET6 Structure

struct sockaddr 1 struct sockaddr_in6 1

1 Change structure name sockaddr to sockaddr_in6 for those
cases where it should be struct sockaddr_in. For example,
sizeof(struct sockaddr).

If your application is to manipulate addresses from both IPv4 and IPv6
nodes, make the following changes in your application, as needed:

AF_INET Structure AF_INET6 Structure

struct sockaddr 1 struct sockaddr_storage 1

1 Change structure name sockaddr to sockaddr_storage for those
cases where it should be struct sockaddr_in. For example,
sizeof(struct sockaddr).
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______________________ Note _______________________

Both the sockaddr_in6 and sockaddr_storage structures are
larger than a sockaddr structure.

hostent Structure

Applications that use the hostent structure must be changed, as needed, to
use the addrinfo structure, as shown in the following examples:

AF_INET Structure AF_INET6 Structure

struct hostent 1 struct addrinfo 1

Make the following changes in your application, as needed:

1 Change the structure name hostent to addrinfo.

4.7.1.3 Making Function Call Changes

You must make changes, as needed, to applications that use the following
library routines:

• gethostbyaddr

• gethostbyname

• inet_ntoa

• inet_addr

The following sections discuss these changes.

gethostbyaddr Function Call

Applications that use the gethostbyaddr function call must be changed to
use the getnameinfo function call, as shown in the following examples:

AF_INET Call

gethostbyaddr(xxx,4,AF_INET) 1

AF_INET6 Call

err=getnameinfo(&sockaddr,sockaddr_len, node_name, name_len,
service, service_len, flags); 1

Make the following changes in your application, as needed:

1 Change the function name from gethostbyaddr to getnameinfo and
provide a pointer to the socket address structure, a character string
for the returned node name, an integer for the length of the returned
node name, a character string to receive the returned service name, an
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integer for the length of the returned service name, and an integer
that specifies the type of address processing to be performed. See
getnameinfo(3) for a description of the flags bits and their meanings.

gethostbyname Function Call

Applications that use the gethostbyname function call must be changed to
use the getaddrinfo function call, as shown in the following examples:

AF_INET Call

gethostbyname(name) 1

AF_INET6 Call

err=getaddrinfo(node_name, service_name, &hints, &result); 1
.
.
.

freeaddrinfo(&result); 2

Make the following changes in your application, as needed:

1 Change the function name from gethostbyname to getaddrinfo and
provide a character string that contains the node name, a character
string that contains the service name to use, a pointer to a hints
structure that contains processing options, and a pointer to an
addrinfo structure or structures for the returned address information.
See getaddrinfo(3) for a description of hints fields and values.

2 Add a call to the freeaddrinfo routine to free the addrinfo structure
or structures when your application is finished using them.

If your application needs to determine whether an address is an IPv4
address or an IPv6 address, and cannot determine this from the address
family, use the IN6_IS_ADDR_V4MAPPED macro. See Section 4.4.3 for a
list of IPv6 address testing macros.

inet_ntoa Function Call

Applications that use the inet_ntoa function call must be changed to use
the getnameinfo function call, as shown in the following examples:

AF_INET Call

inet_ntoa(addr) 1

AF_INET6 Call

err=getnameinfo(&sockaddr,sockaddr_len, node_name, name_len,
service, service_len, NI_NUMERICHOST); 1
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Make the following changes in your application, as needed:

1 Change the function name from gethostbyaddr to getnameinfo
and provide a pointer to the socket address structure, a character
string for the returned node name, an integer for the length of the
returned node name, a character string to receive the returned service
name, an integer for the length of the returned service name, and the
NI_NUMERICHOST flag. See getnameinfo(3) for a description of
the flags bits and their meanings.

inet_addr Function Call

Applications that use the inet_addr function call must be changed to use
the getaddrinfo function call, as shown in the following examples:

AF_INET Call

result=inet_addr(&string); 1

AF_INET6 Call

err=getaddrinfo(node_name, service_name, &hints, &result); 1
.
.
.

freeaddrinfo(&result); 2

Make the following changes in your application, as needed:

1 Change the function name from inet_addr to getaddrinfo and
provide a character string that contains the node name, a character
string that contains the service name to use, a pointer to a hints
structure that contains the AI_NUMERICHOST option, and a pointer
to an addrinfo structure or structures for the returned address
information. See getaddrinfo(3) for a description of hints fields and
values.

2 Add a call to the freeaddrinfo routine to free the addrinfo structure
or structures when your application is finished using them.

If your application needs to determine whether an address is an IPv4
address or an IPv6 address, and cannot determine this from the address
family, use the IN6_IS_ADDR_V4MAPPED macro. See Section 4.4.3 for a
list of IPv6 address testing macros.

4.7.1.4 Making Other Application Changes

In addition to the name changes, you should review your code for specific
uses of IP address information and variables.
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Comparing IP Addresses

If your application compares IP addresses or tests IP addresses for equality,
the in6_addr structure changes you made in Section 4.7.1.2 change the
comparison of int quantities to a comparison of structures. This will break
the code and cause compiler errors.

Make either of the following changes to your application, as needed:

AF_INET Code

(addr1->s_addr == addr2->s_addr) 1

AF_INET6 Code

(memcmp(addr1, addr2, sizeof(struct in6_addr)) == 0) 1

1 Change the equality expression to one that uses the memcmp (memory
comparison) function.

AF_INET Code AF_INET6 Code

(addr1->s_addr == addr2->s_addr) 1 IN6_ARE_ADDR_EQUAL(addr1, addr2) 1

1 Change the equality expression to one that uses the
IN6_ARE_ADDR_EQUAL macro. See Section 4.4.3 for a list of IPv6
address testing macros.

Comparing an IP Address to the Wildcard Address

If your application compares an IP address to the wildcard address, the
in6_addr structure changes you made in Section 4.7.1.2 change the
comparison of int quantities to a comparison of structures. This will break
the code and cause compiler errors.

Make either of the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

(addr->s_addr == INADDR_ANY) 1 IN6_IS_ADDR_UNSPECIFIED(addr) 1

1 Change the equality expression to one that uses the
IN6_IS_ADDR_UNSPECIFIED macro. See Section 4.4.3 for a list of IPv6
address testing macros.

AF_INET Code

(addr->s_addr == INADDR_ANY) 1
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AF_INET6 Code

(memcmp(addr, in6addr_any, sizeof(struct in6_addr)) == 0) 1

1 Change the equality expression to one that uses the memcmp (memory
comparison) function.

Using int Data Types to Hold IP Addresses

If your application uses int data types to hold IP addresses, the in6_addr
structure changes you made in Section 4.7.1.2 changes the assignment. This
will break the code and cause compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

struct in_addr foo;
int bar; 1
.
.
.

bar = foo.s_addr; 2

struct in6_addr foo;
struct in6_addr bar; 1
.
.
.

bar = foo; 2

1 Change the data type for bar from int to a struct in6_addr.

2 Change the assignment statement for bar to remove the s_addr field
reference.

Using Functions that Return IP Addresses

If your application uses functions that return IP addresses as int data
types, the in6_addr structure changes you made in Section 4.7.1.2 changes
the destination of the return value from an int to an array of char. This
will break the code and cause compiler errors.

Make the following changes to your application, as needed:

AF_INET Code AF_INET6 Code

struct in_addr *addr;
addr->s_addr = foo(xxx); 1

struct in6_addr *addr;
foo(xxx, addr); 1

1 Restructure the function to enable you to pass the address of the
structure in the call. In addition, modify the function to write the return
value into the structure pointed to by addr.

Changing Socket Options

If your application uses IPv4 IP-level socket options, change them to the
corresponding IPv6 options. See ip(7) for more information.
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4.7.1.5 Using the ipv6_sniff Utility

The ipv6_sniff utility scans one or more files to assist you in locating
potential IPv6 porting issues. By default, the utility scans for IPv4-only
socket usage and options and IPv4 name and address resolution. When the
utility is finished scanning the file or files, it sorts and reports the results.
You can also invoke your favorite editor from within the utility to view and
make changes to the file.

To run the utility, enter the following:

# /usr/sbin/ipv6sniff filename...

See ipv6_sniff(8) for more information.

4.7.2 Using IPv6 Raw Sockets

Raw sockets are used in both IPv4 and IPv6 to bypass the TCP and UDP
transport layers. Table 4–9 describes the principal differences between IPv4
and IPv6 raw sockets.

Table 4–9: Differences Between IPv4 and IPv6 Raw Sockets
IPv4 IPv6

Use Access ICMPv4, IGMPv4,
and to read and write IPv4
datagrams that contain a
protocol field the kernel
does not recognize.

Access ICMPv6, and
to read and write IPv6
datagrams that contain
a Next Header field the
kernel does not recognize.

Byte order Not specified. Network byte order for all
data sent and received.

Send and receive complete
packets

Yes No. Uses ancillary
data objects to transfer
extension headers and hop
limit information.

If an application needs to access the complete IPv6 packet, use the Data
Link Provider Interface (DLPI).

For output, applications can modify all fields, except for the flow label field,
by using ancillary data or socket options, or both. For input, applications can
access all fields, except for the flow label, version number, and Next Header
fields, and all extension headers by using ancillary data.

For IPv6 raw sockets other than ICMPv6 raw sockets, the application must
set the IPV6_CHECKSUM socket option. For example:

int offset = 2;
setsockopt (fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset));
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This enables the kernel to compute and store a checksum for output and to
verify the checksum on input. This relieves the application from having
to perform source address selection on all outgoing packets. This socket
option is disabled by default. You can also disable this option by setting the
offset variable to -1.

Using IPv6 raw sockets, an application can access the following information:

• ICMPv6 messages

• IPv6 header

• Routing header

• IPv6 options headers: Hop-by-Hop options header and Destination
options header

This section describes how to access this information.

4.7.2.1 Accessing ICMPv6 Messages

An ICMPv6 raw socket is a socket that is created by calling the socket
function with the following arguments: PF_INET6, SOCK_RAW, and
IPPROTO_ICMPV6. The kernel calculates and inserts the ICMPv6
checksum for all outbound ICMPv6 packets and verifies the checksum for
all received packets. If the received checksum is incorrect, the packet is
discarded.

Because ICMPv6 is a superset of ICMPv4, an ICMPv6 raw socket can
receive many more messages than an ICMPv4 raw socket. By default, when
you create an ICMPv6 raw socket, it passes all ICMPv6 message types to an
application. An application, however, does not need access to all messages.
An application can specify the ICMPv6 message types it wants passed by
creating an ICMPv6 filter.

The ICMPv6 filter has a datatype of struct icmp6_filter. Use
getsockopt to retrieve the current filter and setsockopt to store the
filter. For example, to enable filtering of ICMPv6 messages, use the
ICMP6_FILTER option as follows:
struct icmp6_filter myfilter;
setsockopt (fd, IPPROTO_ICMPV6, IPV6_FILTER, &myfilter, sizeof(myfilter));

The value of myfilter is an ICMPv6 message type between 0 and 255.

Table 4–10 shows all ICMPv6 filter macros and their descriptions.

Table 4–10: Summary of ICMPv6 Filtering Macros
Macro Description

ICMP6_FILTER_SETPASSALL Passes all ICMPv6 messages
to an application.

Sockets 4–55



Table 4–10: Summary of ICMPv6 Filtering Macros (cont.)

ICMP6_FILTER_SETBLOCKALL Blocks all ICMPv6 messages from
being passed to an application.

ICMP6_FILTER_SETPASS Passes ICMPv6 messages of a given
type to an application.

ICMP6_FILTER_SETBLOCK Blocks ICMPv6 messages of a
given type from being passed
to an application.

ICMP6_FILTER_WILLPASS Returns true, if specified message
type is passed to application.

ICMP6_FILTER_WILLBLOCK True, if specified message type
is blocked from being passed
to an application.

To clear an installed filter, call setsockopt for the ICMP_FILTER option
with a zero length filter. See icmp(7) for more information.

The kernel does not perform any validity checks on message type, message
content, or packet structure. The application is responsible for this checking.

4.7.2.2 Accessing the IPv6 Header

When using IPv6 raw sockets, applications must be able to receive the IPv6
header content. To receive this optional information, use the setsockopt
system call with the corresponding socket option. Table 4–11 lists the
optional information and corresponding socket options.

Table 4–11: Optional Information and Socket Options
Optional Information Socket Option cmsg_type

Destination IPv6 address
and receiving interface
(when receiving) and
source IPv6 address
and sending interface
(when sending)

IPV6_RECVPKTINFO IPV6_PKTINFO

Hop limit IPV6_RECVHOPLIMIT IPV6_HOPLIMIT

Routing header IPV6_RECVRTHDR IPV6_RTHDR

Hop-by-Hop options IPV6_RECVHOPOPTS IPV6_HOPOPTS

Destination options IPV6_RECVDSTOPTS IPV6_DSTOPTS

See ip(7) for more information on these socket options.

The recvmsg system call returns the received data as one or more ancillary
data objects in a cmsghdr data structure. See Section 4.2.3.4 for more
information on the structure.
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To determine the value of a socket option, use the getsockopt system call
with the corresponding option. If the IPV6_RECVPKTINFO option is not
set, the function returns an in6_pktinfo data structure with ipi6_addr
set to in6addr_any and ipi6_addr set to zero. For other options, the
function returns an option_len value of zero (0) if there is not option value.

An application can receive the following IPv6 header information as ancillary
data from incoming packets:

• Destination IPv6 address

• Interface index

• Hop limit

The IPv6 address and interface index are contained in a in6_pktinfo data
structure that is received as ancillary data with the recvmsg system call.
the in6_pktinfo data structure is defined in netinet/in.h.

Receiving an IPv6 Address

If the IPV6_RECVPKTINFO option is enabled, the recvmsg system call
returns a in6_pktinfo data structure as ancillary data. The ipi6_addr
member contains the destination IPv6 address from the received packet. For
TCP sockets, the destination address is the local address of the connection.

Receiving an Interface

If the IPV6_RECVPKTINFO option is enabled, the recvmsg system
call returns a in6_pktinfo data structure as ancillary data. The
ipi6_ifindex member contains the interface index of the interface that
received the packet.

Receiving an Hop Limit

If the IPV6_RECVHOPLIMIT option is enabled, the recvmsg system call
returns a cmsghdr data structure as ancillary data. The cmsg_type
member is IPV6_HOPLIMIT and the cmsg_data[] member contains the
first byte of the integer hop limit.

4.7.2.3 Accessing the IPv6 Routing Header

The Advanced Sockets API enables you to access the IPv6 Routing header.
The Routing header is an IPv6 extension header that enables an application
to perform source routing. RFC 2460 currently defines the Type 0 Routing
header, which supports up to 127 intermediate nodes, or 128 hops.

Table 4–12 lists the sockets calls that an application uses to build and
examine Routing headers. The remainder of this section discusses the tasks
associated with the Routing header.
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Table 4–12: Socket Calls for Routing Header
Name Description

inet6_rth_space Returns the number of bytes required for
a routing header.

inet6_rth_init Initializes buffer data for a routing header.

inet6_rth_add Adds one address to a routing header.

inet6_rth_reverse Reverses the order of fields in a routing header.

inet6_rth_segments Returns the number of segments, or addresses,
in a routing header.

inet6_rth_getaddr Fetches one address from a routing header.

Receiving a Routing Header

To receive a Routing header, an application calls setsockopt with the
IPV6_RECVRTHDR option enabled. See ip(7) for an example of using
this option.

For each received Routing header, the kernel passes one ancillary data
object in a cmsghdr structure with the cmsg_type member set to
IPV6_RTHDR. An application processes a Routing header by calling
inet6_rth_reverse, inet6_rth_segments, and inet6_rth_getaddr.
See inet6_rth_reverse(3), inet6_rth_segments(3), and
inet6_rth_getaddr(3) for more information.

Sending a Routing Header

To send a Routing header, an application specifies the header either
as ancillary data in a call to sendmsg or by calling setsockopt. An
application can remove a sticky Routing header by calling setsockopt for
the IPV6_RTHDR option and specifying a option length of zero (0).

When using ancillary data, the application sets cmsg_level member to
IPPROTO_IPV6 and the cmsg_type member to IPV6_RTHDR. Use the
inet6_rth_space, inet6_rth_init, and inet6_rth_add calls to build
the Routing header. See inet6_rth_space(3), inet6_rth_init(3), and
inet6_rth_append(3) for more information.

When an application specifies a Routing header, the destination address
specified in a call to the connect, sendto, or sendmsg function is the final
destination of the datagram. Therefore, the Routing header contains the
addresses of all intermediate nodes.

Because of the order of extension headers specified in RFC 2460, an
application can specify only one outgoing Routing header.
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4.7.2.4 Accessing the IPv6 Options Headers

The Advanced Sockets API enables applications to access the following IPv6
options headers:

• Hop-by-Hop

A single Hop-by-Hop options header can contain a variable number of
Hop-by-Hop options. Each option is encoded with a type, length, and
value (TLV). The application uses sticky options or ancillary data to
communicate this information with the kernel.

• Destination

One or more Destination options headers can contain a variable number
of Destination options. A Destination options header appearing before
a Routing header is processed by the first and subsequent destinations
specified in the Routing Header. A Destination option appearing after
the Routing header is processed only by the final destination. Each
option is encoded with a type, length, and value (TLV). The application
uses sticky options or ancillary data to communicate this information
with the kernel.

See RFC 2460 for additional information on the alignment requirements of
the headers and ordering of the extensions headers.

Table 4–13 lists the sockets calls that an application uses to build and
examine Hop-by-Hop options and Destination options headers. The
remainder of this section discusses the tasks associated with these options
headers.

Table 4–13: Socket Calls for Options Headers
Name Description

inet6_opt_init Initializes buffer data for options.

inet6_opt_append Adds an option to the options header.

inet6_opt_finish Finishes adding options to the options header.

inet6_opt_set_val Adds one component of the option content
to the options header.

inet6_opt_next Extracts the next option from the options header.

inet6_opt_find Extracts an option of a specified type from
the options header.

inet6_opt_get_val Retrieves one component of the option content
from the options header.
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Receiving Hop-by-Hop Options

To receive a Hop-by-Hop options header, an application calls setsockopt
with the IPV6_RECVHOPOPTS option enabled. See ip(7) for an example
of using this option.

When using ancillary data, the kernel passes a Hop-by-Hop options header
to the application and sets the cmsg_level member to IPPROTO_IPV6
and the cmsg_type member to IPV6_HOPOPTS. An application retrieves
these options by calling inet6_opt_next, inet6_opt_find, and
inet6_opt_get_val. See inet6_opt_next(3), inet6_opt_find(3), and
inet6_opt_get_val(3) for more information.

Sending Hop-by-Hop Options

To send a Hop-by-Hop options header, an application specifies the header
either as ancillary data in a call to sendmsg or by calling setsockopt.
An application can remove a sticky Hop-by-Hop options header by calling
setsockopt for the IPV6_HOPOPTS option and specifying a option length
of zero (0).

When using ancillary data, all Hop-by-Hop options are specified by a
single ancillary data object. The application sets cmsg_level member
to IPPROTO_IPV6 and the cmsg_type member to IPV6_HOPOPTS.
Use the inet6_opt_init, inet6_opt_append, inet6_opt_finish,
and inet6_opt_set_val calls to build the option header. See
inet6_opt_init(3), inet6_opt_append(3), inet6_opt_finish(3), and
inet6_opt_set_val(3) for more information.

Receiving Destination Options

To receive a Destination options header, an application calls setsockopt
with the IPV6_RECVDSTOPTS option enabled. See ip(7) for an example of
using this option. The kernel passes each Destination options header to the
application as one ancillary data object and sets the cmsg_level member to
IPPROTO_IPV6 and the cmsg_type member to IPV6_DSTOPTS.

An application processes these options by calling inet6_opt_next,
inet6_opt_find, and inet6_opt_get_val. See inet6_opt_next(3),
inet6_opt_find(3), and inet6_opt_get_val(3) for more information.

Sending Destination Options

To send a Destination options header, an application specifies the header
either as ancillary data in a call to sendmsg or by calling setsockopt.
An application can remove a sticky Destination options header by calling
setsockopt for the IPV6_DSTOPTS option and specifying a option length
of zero (0).

4–60 Sockets



In accordance with RFC 2460, the API assumes that the extension headers
are in order. Only one set of Destination options can precede a Routing
header and only one set of Destination options can follow a Routing header.
Each set can contain one or more options, but each set is considered a single
extension header.

When using ancillary data for Destination options that follow a Routing
header or when no Routing header is specified, the application sets the
cmsg_level member to IPPROTO_IPV6 and the cmsg_type member to
IPV6_DSTOPTS.

An application builds these options by calling inet6_opt_init,
inet6_opt_append, inet6_opt_finish, and inet6_opt_set_val. See
inet6_opt_init(3), inet6_opt_append(3), inet6_opt_finish(3), and
inet6_opt_set_val(3) for more information.

4.7.3 Selecting Specific Protocols

The syntax of the socket system call is described in Section 4.3.1. If the
third argument to the socket call, the protocol argument, is zero (0),
the socket call selects a default protocol to use with the returned socket
descriptor. The default protocol is usually correct and alternate choices are
not usually available. However, when using raw sockets to communicate
directly with lower-level protocols or hardware interfaces, the protocol
argument can be important for setting up demultiplexing.

For example, raw sockets in the Internet family can be used to implement a
new protocol above IP and the socket receives packets only for the protocol
specified. To obtain a particular protocol, you must determine the protocol
number as defined within the communication domain. For the Internet
domain, you can use one of the library routines described in Section 4.2.3.2.

The following code shows how to use the getprotobyname library call
to select the protocol newtcp for a SOCK_STREAM socket opened in the
Internet domain:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
...

struct protent *pp;
...

pp = getprotobyname("newtcp");
s = socket(AF_INET, SOCK_STREAM, pp->p_proto);
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4.7.4 Binding Names and Addresses

The bind system call associates an address with a socket.

4.7.4.1 Binding to the Wildcard Address

The local machine address for a socket can be any valid network address of
the machine. Because one system can have several valid network addresses,
binding addresses to sockets in the Internet domain can be complicated. To
simplify local address binding, the constant INADDR_ANY (AF_INET) and
in6addr_any (AF_INET6), wildcard addresses, are provided. The wildcard
address tells the system that this server process will accept a connection on
any of its Internet interfaces, if it has more than one.

The following example shows how to bind the wildcard value INADDR_ANY
to a local socket:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>

main()
{

int s, length;
struct sockaddr_in name;
char buf[1024];

...

/* Create name with wildcards. */
name.sin_family = AF_INET;
name.sin_len = sizeof(name);
name.sin_addr.s_addr = INADDR_ANY;
name.sin_port = 0;
if (bind(s, (struct sockaddr *)&name, sizeof(name))== -1) {

perror("binding datagram socket");
exit(1);

}
...

}

Sockets with wildcard local addresses can receive messages directed to the
specified port number, and send to any of the possible addresses assigned to
that host. Note that the socket uses a wildcard value for its local address; a
process sending messages to the named socket must specify a valid network
address. A process can be willing to receive a message from anywhere, but it
cannot send a message anywhere.
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An AF_INET socket can only receive messages addressed to an IPv4 address
on the system. However, AF_INET6 sockets can receive messages sent to
either IPv4 or IPv6 addresses on the system. An AF_INET6 socket uses
the IPv4–mapped IPv6 address format to represent IPv4 addresses. See
the Network Administration: Connections manual for information about
IPv6 addresses.

When a server process on a system with more than one network interface
wants to allow hosts to connect to only one of its interface addresses, the
server process binds the address of the appropriate interface. For example,
if a system has two addresses 130.180.123.45 and 131.185.67.89, a server
process can bind the address 130.180.123.45. Binding that address ensures
that only connections addressed to 130.180.123.45 can connect to the server
process.

Similarly, a local port can be left as unspecified (specified as zero), in which
case the system selects a port number for it.

4.7.4.2 Binding in the UNIX Domain

Processes that communicate in the UNIX domain (AF_UNIX) are bound by
an association that local and foreign pathnames comprises. UNIX domain
sockets do not have to be bound to a name but, when bound, there can never
be duplicate bindings of a protocol, local pathname, or foreign pathname.
The pathnames cannot refer to files existing on the system. The process that
binds the name to the socket must have write permission on the directory
where the bound socket will reside.

The following example shows how to bind the name socket to a socket
created in the UNIX domain:

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>

#define NAME "socket"

main()
{

int s, length;
struct sockaddr_un name;
char buf[1024];

...

/* Create name. */
name.sun_len = sizeof(name.sun_len) +
sizeof(name.sun_family) +
strlen(NAME);
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name.sun_family = AF_UNIX;
strcpy(name.sun_path, NAME);
if (bind(s, (struct sockaddr *) &name, sizeof(name))==-1) {

perror("binding name to datagram socket");
exit(1);

}
...

}

4.7.5 Out-of-Band Data

Out-of-band data is a logically independent transmission channel associated
with each pair of connected stream sockets. Out-of-band data can be
delivered to the socket independently of the normal receive queue or within
the receive queue, depending on the status of the SO_OOBINLINE option,
set with the setsockopt system call.

The stream socket abstraction specifies that the out-of-band data facilities
must support the reliable delivery of at least one out-of-band message at a
time. This message must contain at least one byte of data and at least one
message can be pending delivery to the user at any one time.

The socket layer supports marks in the data stream that indicate the end
of urgent data or out-of-band processing. The socket mechanism does not
return data from both sides of a mark in a single system call.

You can use MSG_PEEK to peek at out-of-band data. If the socket has a
process group, a SIGURG signal is generated when the protocol is notified
of its existence. A process can set the process group or process ID to be
informed by the SIGURG signal via the appropriate fcntl call, as described
in Section 4.7.10 for SIGIO.

When multiple sockets have out-of-band data awaiting delivery, an
application program can use a select call for exceptional conditions to
determine which sockets have such data pending. The SIGURG signal or
select call notifies the application program that data is pending. The
application then must issue the appropriate call actually to receive the data.

In addition to the information passed, a logical mark is placed in the data
stream to indicate the point at which the out-of-band data was sent. When a
signal flushes any pending output, all data up to the logical mark in the data
stream is discarded.

To send an out-of-band message, the MSG_OOB flag is supplied to a send or
a sendto system call. To receive out-of-band data, an application program
must set the MSG_OOB flag when performing a recvfrom or recv system
call.

4–64 Sockets



An application program can determine if the read pointer is currently
pointing to the mark in the data stream by using the SIOCATMARK ioctl:

ioctl(s, SIOCATMARK, &yes);

If yes is a 1 on return, meaning that no out-of-band data arrived, the next
read returns data after the mark. If out-of-band data did arrive, the next
read provides data sent by the client prior to transmission of the out-of-band
signal. The following program shows the routine used in the remote login
process to flush output on receipt of an interrupt or quit signal. This
program reads the normal data up to the mark (to discard it), then reads
the out-of-band byte:

#include <sys/ioctl.h>
#include <sys/file.h>
...

oob()
{

int out = FWRITE, mark;
char waste[BUFSIZ];

/* flush local terminal output */
ioctl(1, TIOCFLUSH, (char *)&out);
for (;;) {

if (ioctl(rem, SIOCATMARK, &mark) < 0) {
perror("ioctl");
break;

}
if (mark)

break;
(void) read(rem, waste, sizeof (waste));

}
if (recv(rem, &mark, 1, MSG_OOB) < 0) {

perror("recv");
...

}
}

A process can also read or peek at the out-of-band data without first reading
up to the logical mark. This is difficult when the underlying protocol delivers
the urgent in-band data with the normal data and only sends notification
of its presence ahead of time; for example, the TCP protocol. With such
protocols, when the out-of-band byte has not yet arrived and a recv system
call is done with the MSG_OOB flag, the call returns an EWOULDBLOCK
error. There can be enough in-band data in the input buffer so that normal
flow control prevents the peer from sending the urgent data until the buffer
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is cleared. The process must then read enough of the queued data so that
the urgent data can be delivered.

______________________ Note _______________________

Certain programs that use multiple bytes of urgent data and
must handle multiple urgent signals need to retain the position of
urgent data within the stream. The socket-level SO_OOBINLINE
option provides this capability and it is strongly recommended
that you use it.

The socket-level SO_OOBINLINE option retains the position of the urgent
data (the logical mark). The urgent data immediately follows the mark
within the normal data stream that is returned without the MSG_OOB
flag. Reception of multiple urgent indications causes the mark to move, but
no out-of-band data is lost.

4.7.6 Internet Protocol Multicasting

Internet Protocol (IP) multicasting provides applications with IP layer
access to the multicast capability of Ethernet and Fiber Distribution Data
Interface (FDDI) networks. IP multicasting, which delivers datagrams on a
best-effort basis, avoids the overhead imposed by IP broadcasting (described
in Section 4.7.7) on uninterested hosts; it also avoids consumption of network
bandwidth by applications that would otherwise transmit separate packets
with identical data to reach several destinations.

IPv4 multicasting achieves efficient multipoint delivery through use of
multicast groups. A multicast group is a group of zero or more nodes that
is identified by a single Class D IP destination address (IPv4) or a single
multicast address (IPv6). An IPv4 Class D address has 1110 in the four
high-order bits. In dotted decimal notation, IP multicast addresses range
from 224.0.0.0 to 239.255.255.255, with 224.0.0.0 being reserved. An IPv6
multicast address has the format prefix of FF00::/8.

A member of a particular multicast group receives a copy of all data sent
to the IP address representing that multicast group. Multicast groups
can be permanent or transient. A permanent group has a well-known,
administratively assigned IP address. In permanent multicast groups, it is
the address of the group that is permanent, not its membership. The number
of group members can fluctuate, even dropping to zero.

In IPv4, the all hosts group is an example of a permanent host group
whose assigned address is 224.0.0.1. Tru64 UNIX systems join the all hosts
group to participate in the Internet Group Management Protocol (IGMP).

4–66 Sockets



(See RFC 1112: Host Extensions for IP Multicasting for more information
about IGMP and IP multicasting.)

In IPv6, the All Nodes multicast address is an example of a permanent
group whose addresses are FF01::1 (node-local, or scope 1) and FF02::1
(link-local, or scope2). See RFC 1884: IPv6 Addressing Architecture for more
information about IPv6 multicast addresses.

IP addresses that are not reserved for permanent multicast groups are
available for dynamic assignment to transient groups. Transient groups
exist only as long as they have one or more members.

______________________ Note _______________________

IP multicasting is not supported over connection-oriented
transports such as TCP.

IP multicasting is implemented using options to the setsockopt
system call, described in the following sections. Definitions required for
multicast-related socket options are in the <netinet/in.h> header file.
Your application must include this header file if you intend it to receive IP
multicast datagrams.

4.7.6.1 Sending IPv4 Multicast Datagrams

To send IPv4 multicast datagrams, an application indicates the host group to
send to by specifying an IP destination address in the range of 224.0.0.0 to
239.255.255.255 in a sendto system call. The system maps the specified IP
destination address to the appropriate Ethernet or FDDI multicast address
prior to transmitting the datagram.

An application can explicitly control multicast options with arguments to the
setsockopt system call. The following options can be set by an application
using the setsockopt system call:

• Time-to-live field (IP_MULTICAST_TTL)

• Multicast interface (IP_MULTICAST_IF)

• Disabling loopback of local delivery (IP_MULTICAST_LOOP)

______________________ Note _______________________

The syntax for and arguments to the setsockopt system call are
described in Section 4.3.5 and setsockopt(2). The examples
here and in Section 4.7.6.2 illustrate how to use the setsockopt
options that apply to IPv4 multicast datagrams only.
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The IP_MULTICAST_TTL option to the setsockopt system call allows an
application to specify a value between 0 and 255 for the time-to-live (TTL)
field. Multicast datagrams with a TTL value of 0 restrict distribution of the
multicast datagram to applications running on the local host. Multicast
datagrams with a TTL value of 1 are forwarded only to hosts on the local
subnet. If a multicast datagram has a TTL value greater than 1 and a
multicast router is attached to the sending host’s network, then multicast
datagrams can be forwarded beyond the local subnet. Multicast routers
forward the datagram to known networks that have hosts belonging to the
specified multicast group. The TTL value is decremented by each multicast
router in the path. When the TTL value is decremented to 0, the datagram
is not forwarded further.

The following example shows how to use the IP_MULTICAST_TTL option to
the setsockopt system call:

u_char ttl;
ttl=2;

if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl,
sizeof(ttl)) == -1)

perror("setsockopt");

A datagram addressed to an IP multicast destination is transmitted from the
default network interface unless the application specifies that an alternate
network interface is associated with the socket. The default interface is
determined by the interface associated with the default route in the kernel
routing table or by the interface associated with an explicit route, if one
exists. Using the IP_MULTICAST_IF option to the setsockopt system call,
an application can specify a network interface other than that specified by
the route in the kernel routing table.

The following example shows how to use the IP_MULTICAST_IF option to
the setsockopt system call to specify an interface other than the default:

int sock;
struct in_addr ifaddress;
char *if_to_use = "16.141.64.251";
.
.
.

ifaddress.s_addr = inet_addr(if_to_use);
if (setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF, &ifaddress,

sizeof(ifaddress)) == -1)
perror ("error from setsockopt IP_MULTICAST_IF");

else
printf ("new interface set for sending multicast datagrams\n");

If a multicast datagram is sent to a group of which the sending host is a
member, a copy of the datagram is, by default, looped back by the IP layer for
local delivery. The IP_MULTICAST_LOOP option to the setsockopt system
call allows an application to disable this loopback delivery.
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The following example shows how to use the IP_MULTICAST_LOOP option to
the setsockopt system call:

u_char loop=0;
if (setsockopt( sock, IPPROTO_IP, IP_MULTICAST_LOOP, &loop

sizeof(loop)) == -1)
perror("setsockopt");

When the value of loop is 0, loopback is disabled. When the value of loop is
1, it is enabled. For performance reasons, you should disable the default,
unless applications on the same host must receive copies of the datagrams.

4.7.6.2 Receiving IPv4 Multicast Datagrams

Before a host can receive IP multicast datagrams destined for a particular
multicast group other than the all hosts group, an application must
direct the host to become a member of that multicast group. This section
describes how an application can direct a host to add itself to and remove
itself from a multicast group.

An application can direct the host it is running on to join a multicast group
by using the IP_ADD_MEMBERSHIP option to the setsockopt system call as
follows:

struct ip_mreq mreq;
if (setsockopt( sock, IPPROTO_IP, IP_ADD_MULTICAST, &mreq

sizeof(mreq)) == -1)
perror("setsockopt");

The mreq variable has the following structure:
structip_mreq{
struct in_addr imr_multiaddr; /* IP multicast address of group */
struct in_addr imr_interface; /* local IP address of interface */
};

Each multicast group membership is associated with a particular
interface. It is possible to join the same group on multiple interfaces. The
imr_interface variable can be specified as INADDR_ANY, which allows
an application to choose the default multicast interface. Alternatively,
specifying one of the host’s local addresses allows an application to
select a particular, multicast-capable interface. The maximum number
of memberships that can be added on a single socket is subject to the
IP_MAX_MEMBERSHIPS value, which is defined in the <netinet/in.h>
header file.

To drop membership in a particular multicast group use the
IP_DROP_MEMBERSHIP option to the setsockopt system call:

struct ip_mreq mreq;
if (setsockopt( sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq

sizeof(mreq))== -1)
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perror("setsockopt");

The mreq variable contains the same structure values used for adding
membership.

If multiple sockets request that a host join a particular multicast group,
the host remains a member of that multicast group until the last of those
sockets is closed.

To receive multicast datagrams sent to a specific UDP port, the receiving
socket must have bound to that port using the bind system call. More than
one process can receive UDP datagrams destined for the same port if the
bind system call (described in Section 4.3.2) is preceded by a setsockopt
system call that specifies the SO_REUSEPORT option. The following example
illustrates how to use the SO_REUSEPORT option to the setsockopt system
call:

int setreuse = 1;
if (setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &setreuse,

sizeof(setreuse)) == -1)
perror("setsockopt");

When the SO_REUSEPORT option is set, every incoming multicast or
broadcast UDP datagram destined for the shared port is delivered to all
sockets bound to that port.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by
the protocol type of the destination.

4.7.6.3 Sending IPv6 Multicast Datagrams

To send IPv6 multicast datagrams, an application indicates the multicast
group to send to by specifying an IPv6 multicast address in a sendto
system call. The system maps the specified IPv6 destination address to
the appropriate Ethernet or FDDI multicast address prior to transmitting
the datagram.

An application can explicitly control multicast options with arguments to the
setsockopt system call. The following options can be set by an application
using the setsockopt system call:

• Hop limit (IPV6_MULTICAST_HOPS)

• Multicast interface (IPV6_MULTICAST_IF)

• Disabling loopback of local delivery (IPV6_MULTICAST_LOOP)

______________________ Note _______________________

The syntax for and arguments to the setsockopt system call are
described in Section 4.3.5 and setsockopt(2). The examples
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here and in Section 4.7.6.4 illustrate how to use the setsockopt
options that apply to IPv6 multicast datagrams only.

The IPV6_MULTICAST_HOPS option to the setsockopt system call allows
an application to specify a value between 0 and 255 for the hop limit field.
Multicast datagrams with a hop limit value of 0 restrict distribution of the
multicast datagram to applications running on the local host. Multicast
datagrams with a hop limit value of 1 are forwarded only to hosts on the
local link. If a multicast datagram has a hop limit value greater than 1
and a multicast router is attached to the sending host’s network, multicast
datagrams can be forwarded beyond the local link. Multicast routers
forward the datagram to known networks that have hosts belonging to
the specified multicast group. The hop limit value is decremented by each
multicast router in the path. When the hop limit value is decremented to 0,
the datagram is not forwarded further.

The following example shows how to use the IPV6_MULTICAST_HOPS option
to the setsockopt system call:

int hops;
hops=2;

if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &hops,
sizeof(hops)) < 0)

perror("setsockopt: IPV6_MULTICAST_HOPS error");

A datagram addressed to an IPv6 multicast address is transmitted from the
default network interface unless the application specifies that an alternate
network interface is associated with the socket. The default interface is
determined by the interface associated with the default route in the kernel
routing table or by the interface associated with an explicit route, if one
exists. Using the IPV6_MULTICAST_IF option to the setsockopt system
call, an application can specify a network interface other than that specified
by the route in the kernel routing table.

The following example shows how to use the IPV6_MULTICAST_IF option to
the setsockopt system call to specify an interface other than the default:

u_int if_index = 1;
.
.
.

if (setsockopt(sock, IPPROTO_IPV6, IPV6_MULTICAST_IF, &if_index,
sizeof(if_index)) < 0)

perror ("setsockopt: IPV6_MULTICAST_IF error");
else

printf ("new interface set for sending multicast datagrams\n");

The if_index parameter specifies the interface index of the desired interface
or 0 to select a default interface. You can use the if_nametoindex(3)
routine to find the interface index.
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If a multicast datagram is sent to a group of which the sending node is a
member, a copy of the datagram is, by default, looped back by the IP layer
for local delivery. The IPV6_MULTICAST_LOOP option to the setsockopt
system call allows an application to disable this loopback delivery.

The following example shows how to use the IPV6_MULTICAST_LOOP option
to the setsockopt system call:

u_char loop=0;
if (setsockopt( sock, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &loop,

sizeof(loop)) < 0)
perror("setsockopt: IPV6_MULTICAST_LOOP error");

When the value of loop is 0, loopback is disabled. When the value of loop is
1, it is enabled. For performance reasons, you should disable the default,
unless applications on the same host must receive copies of the datagrams.

4.7.6.4 Receiving IPv6 Multicast Datagrams

Before a node can receive IPv6 multicast datagrams destined for a particular
multicast group other than the All Nodes group, an application must direct
the node to become a member of that multicast group. This section describes
how an application can direct a node to add itself to and remove itself from a
multicast group.

An application can direct the node it is running on to join a multicast group
by using the IPV6_JOIN_GROUP option to the setsockopt system call as
follows:

struct ipv6_mreq imr6;
...

imr6.ipv6mr_interface = if_index;
if (setsockopt( sock, IPPROTO_IPV6, IPV6_JOIN_GROUP,

(char *)&imr6, sizeof(imr6)) < 0)
perror("setsockopt: IPV6_JOIN_GROUP error");

The imr6 variable has the following structure:
structipv6_mreq {
struct in6_addr ipv6mr_multiaddr; /*IP multicast address of
group*/
unsigned int ipv6mr_interface; /*local interface index*/
};

Each multicast group membership is associated with a particular
interface. It is possible to join the same group on multiple interfaces. The
ipv6mr_interface variable can be specified with a value of 0, which
allows an application to choose the default multicast interface. Alternatively,
specifying one of the host’s local interfaces allows an application to select a
particular, multicast-capable interface. The ipv6mr_multiaddr variable
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can be specified as an IPv6 multicast address or an IPv4-mapped IPv6
address.

The maximum number of memberships that can be added on a single socket
is subject to the IPV6_MAX_MEMBERSHIPS value, which is defined in the
<netinet/in.h> header file.

To drop membership in a particular multicast group use the
IPV6_LEAVE_GROUP option to the setsockopt system call:

struct ipv6_mreq imr6;
if (setsockopt( sock, IPPROTO_IPV6, IPV6_LEAVE_GROUP, &imr6,

sizeof(imr6)) < 0)
perror("setsockopt: IPV6_LEAVE_GROUP error");

The imr6 parameter contains the same structure values used for adding
membership. The address can be an IPv6 multicast address or an
IPv4-mapped IPv6 address.

If multiple sockets request that a node join a particular multicast group,
the node remains a member of that multicast group until the last of those
sockets is closed.

To receive multicast datagrams sent to a specific UDP port, the receiving
socket must have bound to that port using the bind system call. More than
one process can receive UDP datagrams destined for the same port if the
bind system call (described in Section 4.3.2) is preceded by a setsockopt
system call that specifies the SO_REUSEPORT option. See Section 4.7.6.2
for an example of using this option.

Delivery of IP multicast datagrams to SOCK_RAW sockets is determined by
the protocol type of the destination.

4.7.7 Broadcasting and Determining Network Configuration

Using a datagram socket, it is possible to send broadcast packets on many
networks supported by the system. The network itself must support
broadcast; the system provides no simulation of broadcast in the software.

Broadcast messages can place a high load on a network because they force
every host on the network to service them. Consequently, the ability to
send broadcast packets is limited to sockets that are explicitly marked as
allowing broadcasting.

Broadcast is typically used for one of two reasons: to find a resource on
a local network without prior knowledge of its address, or to route some
information, which requires that information be sent to all accessible
neighbors.
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______________________ Note _______________________

Broadcasting is not supported over connection-oriented transports
such as TCP.

To send a broadcast message, use the following procedure:

1. Create a datagram socket; for example:

s = socket(AF_INET, SOCK_DGRAM, 0);

2. Mark the socket for broadcasting; for example:

int on = 1;

if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on,
sizeof(on)) == -1)

perror("setsockopt");

3. Ensure that at least a port number is bound to the socket; for example:

sin.sin_len = sizeof(sin);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
if (bind(s, (struct sockaddr *) &sin, sizeof (sin)) == -1)

perror("setsockopt");

The destination address of the message depends on the network or networks
on which the message is to be broadcast. The Internet domain supports
a shorthand notation for broadcast on the local network, the address is
INADDR_BROADCAST (as defined in netinet/in.h).

To determine the list of addresses for all reachable neighbors requires
knowledge of the networks to which the host is connected. The operating
system provides a method of retrieving this information from the system
data structures. The SIOCGIFCONF ioctl call returns the interface
configuration of a host in the form of a single ifconf structure. This
structure contains a data area that an array of ifreq structures comprises,
one for each network interface to which the host is connected. These
structures are defined in the <net/if.h> header file, as follows:
struct ifconf {

int ifc_len; /* size of associated buffer */
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures returned */
};

struct ifreq {
#define IFNAMSIZ 16
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char ifr_name[IFNAMSIZ]; /* if name, e.g. "ee0" */
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
caddr_t ifru_data;

} ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr /* address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of */

/* p-to-p link */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
#define ifr_flags ifr_ifru.ifru_flags /* flags */
#define ifr_metric ifr_ifru.ifru_metric /* metric */
#define ifr_data ifr_ifru.ifru_data /* for use by */

/* interface */
};

The actual call which obtains the interface configuration is as follows:

struct ifconf ifc;
char buf[BUFSIZ];

ifc.ifc_len = sizeof (buf);
ifc.ifc_buf = buf;
if (ioctl(s, SIOCGIFCONF, (char *) &ifc) < 0) {
...

}

After this call, buf contains one ifreq structure for each network to which
the host is connected, and ifc.ifc_len is modified to reflect the number of
bytes used by the ifreq structures.

Each structure has a set of interface flags that tells whether the network
corresponding to that interface flag is up or down, point-to-point or
broadcast, and so on. The SIOCGIFFLAGS ioctl retrieves these flags for
an interface specified by an ifreq structure, as follows:

struct ifreq *ifr;

ifr = ifc.ifc_req;

for (n = ifc.ifc_len / sizeof (struct ifreq); --n >= 0; ifr++) {
/*
* We must be careful that we don’t use an interface
* devoted to an address family other than those intended.
*/
if (ifr->ifr_addr.sa_family != AF_INET)

continue;
if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

.

.

.

}
/*
* Skip irrelevant cases.
*/
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if ((ifr->ifr_flags & IFF_UP) == 0 ||
(ifr->ifr_flags & IFF_LOOPBACK) ||
(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTOPOINT)) == 0)

continue;

Once the flags are obtained, the broadcast address must be obtained. In the
case of broadcast networks, this is done via the SIOCGIFBRDADDR ioctl;
while, for point-to-point networks, the address of the destination host is
obtained with SIOCGIFDSTADDR. For example:

struct sockaddr dst;

if (ifr->ifr_flags & IFF_POINTOPOINT) {
if (ioctl(s, SIOCGIFDSTADDR, (char *) ifr) < 0) {

...
}
bcopy((char *) ifr->ifr_dstaddr, (char *) &dst,

sizeof (ifr->ifr_dstaddr));
} else if (ifr->ifr_flags & IFF_BROADCAST) {

if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {
...

}
bcopy((char *) ifr->ifr_broadaddr, (char *) &dst,

sizeof (ifr->ifr_broadaddr));
}

After the appropriate ioctl calls obtain the broadcast or destination
address (now in dst), the sendto call is used; for example:
if (sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst)) < 0)

perror("sendto");

In the preceding loop, one sendto call occurs for every interface to which
the host is connected that supports the notion of broadcast or point-to-point
addressing. If a process only wants to send broadcast messages on a given
network, code similar to that in the preceding example is used, but the loop
needs to find the correct destination address.

4.7.8 The inetd Daemon

The operating system supports the inetd Internet superserver daemon. The
inetd daemon, which is invoked at boot time, reads the /etc/inetd.conf
file to determine the servers for which it should listen.

______________________ Note _______________________

Only server applications written to run over sockets can use the
inetd daemon in Tru64 UNIX. The inetd daemon in Tru64
UNIX does not support server applications written to run over
STREAMS, XTI, or TLI.
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For each server listed in /etc/inetd.conf the inetd daemon does the
following:

1. Creates a socket and binds the appropriate port number to it.

2. Issues a select system call for read availability and waits for a process
to request a connection to the service that corresponds to that socket.

3. Issues an accept system call, forks, duplicates (with the dup call) the
new socket to file descriptors 0 and 1 (stdin and stdout), closes other
open file descriptors, and executes (with the exec call) the appropriate
server.

Servers that use inetd are simplified because inetd takes care of most of
the interprocess communication work required to establish a connection.
The server invoked by inetd expects the socket connected to its client on
file descriptors 0 and 1, and immediately performs any operations such as
read, write, send, or recv.

Servers invoked by the inetd daemon can use buffered I/O as provided by
the conventions in the <stdio.h> header file, as long as they remember to
use the fflush call when appropriate. See fflush(3) for more information.

The getpeername call, which returns the address of the peer (process)
connected on the other end of the socket, is useful for developers writing
server applications that use inetd. The following sample code shows how to
log the Internet address, in dot notation, of a client connected to a server
under inetd:
struct sockaddr_storage name;
size_t namelen = sizeof (name);
.
.
.

if (getpeername(0, (struct sockaddr *)&name, &namelen) < 0) {
syslog(LOG_ERR, "getpeername: %m");
exit(1);

} else
syslog(LOG_INFO, "Connection from %s", inet_ntoa(name.sin_addr));

.

.

.

While the getpeername call is especially useful when writing programs to
run with inetd, it can be used under other circumstances.

4.7.9 Input/Output Multiplexing

Multiplexing is a facility used in applications to transmit and receive I/O
requests among multiple sockets. This can be done by using the select
call, as follows:

#include <sys/time.h>
#include <sys/types.h>
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.

.

.

fd_set readmask, writemask, exceptmask;
struct timeval timeout;
.
.
.

if (select(nfds, &readmask, &writemask, &exceptmask, &timeout) < 0)
perror("select");

The select call takes as arguments pointers to three sets:

1. The set of socket descriptors for which the calling application wants to
read data.

2. The socket descriptors to which data is to be written.

3. Exceptional conditions which are pending.

The corresponding argument to the select call must be a null pointer,
if the application is not interested in certain conditions; for example,
read, write, or exceptions.

______________________ Note _______________________

Because XTI and TLI are implemented using STREAMS, you
should use the poll system call instead of the select system
call on any STREAMS file descriptors.

Each set is actually a structure that contains an array of integer bit masks.
The size of the array is set by the FD_SETSIZE definition. The array is long
enough to hold one bit for each of the FD_SETSIZE file descriptors.

The FD_SET (fd, &mask) and FD_CLR (fd, &mask) macros are provided
to add and remove the fd file descriptor in the mask set. The set needs to
be zeroed before use and the FD_ZERO (&mask) macro is provided to clear
the mask set.

The nfds parameter in the select call specifies the range of file descriptors
(for example, one plus the value of the largest descriptor) to be examined
in a set.

A time-out value can be specified when the selection will not last more than
a predetermined period of time. If the fields in timeout are set to zero (0),
the selection takes the form of a poll, returning immediately. If the last
parameter is a null pointer, the selection blocks indefinitely. Specifically, a
return takes place only when a descriptor is selectable or when a signal is
received by the caller, interrupting the system call.

The select call normally returns the number of file descriptors selected; if
the select call returns because the time-out expired, then the value 0 is
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returned. If the select call terminates because of an error or interruption,
a -1 is returned with the error number in errno and with the file descriptor
masks unchanged.

Assuming a successful return, the three sets indicate which file descriptors
are ready to be read from, written to, or have exceptional conditions pending.
The status of a file descriptor in a select mask can be tested with the
FD_ISSET (fd, &mask) macro, which returns a nonzero value if fd is a
member of the mask set or 0 if it is not.

To determine whether there are connections waiting on a socket to be used
with an accept call, the select call is used, followed by a FD_ISSET
(fd, &mask) macro to check for read readiness on the appropriate socket.
If FD_ISSET returns a nonzero value, indicating data to read, then a
connection is pending on the socket.

______________________ Note _______________________

In 4.2BSD, the arguments to the select call were pointers to
integers instead of pointers to fd_set. This type of call works as
long as the number of file descriptors being examined is less than
the number of bits in an integer; however, the method shown in
the following code is recommended.

The following example shows how an application reads data as it becomes
available from sockets s1 and s2 with a 1-second time-out:

#include <sys/time.h>
#include <sys/types.h>
...

fd_set read_template;
struct timeval wait;
...

for (;;) {
wait.tv_sec = 1; /* one second */
wait.tv_usec = 0;

FD_ZERO(&read_template);

FD_SET(s1, &read_template);
FD_SET(s2, &read_template);

nb = select(FD_SETSIZE, &read_template, (fd_set *) 0,
(fd_set *) 0, &wait);

if (nb <= 0) {
An error occurred during the select, or
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the select timed out }

if (FD_ISSET(s1, &read_template)) {
Socket #1 is ready to be read from.

}

if (FD_ISSET(s2, &read_template)) {
Socket #2 is ready to be read from.

}
}

The select call provides a synchronous multiplexing scheme. Asynchronous
notification of output completion, input availability, and exceptional
conditions is possible through use of the SIGIO and SIGURG signals
described in Section 4.7.11.

4.7.10 Interrupt Driven Socket I/O

The SIGIO signal allows a process to be notified using a signal when a socket
(or more generally, a file descriptor) has data waiting to be read. Using the
SIGIO facility requires the following three steps:

1. The process must set up a SIGIO signal handler by using the signal
or sigvec calls.

2. The process must set the process ID or process group ID that is to
receive notification of pending input to its own process ID or the process
group ID of its process group. (Note that the default process group of a
socket is group 0.) This is done by using a fcntl system call.

3. The process must enable asynchronous notification of pending I/O
requests with another fcntl system call. The following code shows
how to allow a particular process to receive information on pending I/O
requests as they occur for socket s. With the addition of a handler for
SIGURG, this code can also be used to prepare for receipt of SIGURG
signals.

#include <fcntl.h>
...

int io_handler();
...

signal(SIGIO, io_handler);

/* Set the process receiving SIGIO/SIGURG signals to us */

if (fcntl(s, F_SETOWN, getpid()) < 0) {
perror("fcntl F_SETOWN");
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exit(1);
}

/* Allow receipt of asynchronous I/O signals */

if (fcntl(s, F_SETFL, FASYNC) < 0) {
perror("fcntl F_SETFL, FASYNC");
exit(1);

}

4.7.11 Signals and Process Groups

Each socket has an associated process number, the value of which is
initialized to zero (0). This number must be redefined with the F_SETOWN
parameter to the fcntl system call, as was done in Section 4.7.10, to enable
SIGURG and SIGIO signals to be caught. To set the socket’s process ID
for signals, positive arguments must be given to the fcntl call. To set the
socket’s process group for signals, negative arguments must be passed to
the fcntl call. Note that the process number indicates the associated
process ID or the associated process group; it is impossible to specify both
simultaneously.

The F_GETOWN parameter to the fcntl call allows a process to determine
the current process number of a socket.

The SIGCHLD signal is also useful when constructing server processes.
This signal is delivered to a process when any child processes change state.
Typically, servers use the SIGCHLD signal to reap child processes that
exited, without explicitly awaiting their termination or periodic polling for
exit status. If the parent server process fails to reap its children, a large
number of zombie processes may be created. The following code shows how
to use the SIGCHLD signal:

int reaper();
...

signal(SIGCHLD, reaper);
listen(f, 5);
for (;;) {

int g;
size_t len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len,);
if (g < 0) {

if (errno != EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");

continue;
}
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...

}
...

#include <wait.h>
reaper()
{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)
;

}

4.7.12 Pseudoterminals

Many programs cannot function properly without a terminal for standard
input and output. Since sockets do not provide the semantics of terminals,
it is often necessary to have a process communicating over the network do
so through a pseudoterminal (pty). A pseudoterminal is a pair of devices,
master and slave, that allow a process to serve as an active agent in
communication between applications and users.

Data written on the slave side of a pseudoterminal is used as input
to a process reading from the master side, while data written on the
master side is processed as terminal input for the slave. In this way, the
process manipulating the master side of the pseudoterminal controls the
information read and written on the slave side as if it were manipulating
the keyboard and reading the screen on a real terminal. The purpose of
the pseudoterminal abstraction is to preserve terminal semantics over a
network connection; that is, the slave side appears as a normal terminal to
any process reading from or writing to it.

For example, rlogind, the remote login server uses pseudoterminals
for remote login sessions. A user logging in to a machine across the
network is provided a shell with a slave pseudoterminal as standard input,
standard output, and standard error. The server process then handles the
communication between the programs invoked by the remote shell and the
user’s local client process. When a user sends a character that generates
an interrupt on the remote machine that flushes terminal output, the
pseudoterminal generates a control message for the server process. The
server then sends an out-of-band message to the client process to signal a
flush of data at the real terminal and on the intervening data buffered in
the network.

In the operating system, the slave side of a pseudoterminal has a name of the
form /dev/ttyxy, where x is any single letter, except d, and is uppercase
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or lowercase. The y is a hexadecimal digit, meaning it is a single character
in the range of 0 to 9 or a to f. The master side of a pseudoterminal has a
name of the form /dev/ptyxy, where x and y correspond to x and y on
the slave side of the pseudoterminal.

The openpty and forkpty functions were added to the libc.a library to
make allocating pseudoterminals easier. These functions use the clone
open call to avoid performing multiple open calls.

The forkpty function allocates a pseudoterminal. Additionally, it forks a
child process and makes the slave pseudoterminal the controlling terminal
for the child. The forkpty function takes four arguments instead of five,
because the slave file descriptor is not passed back to the calling process.
Instead, the slave file descriptor is duplicated in the newly created child
process as stdin, stdout, and stderr. The other four arguments are
identical to those of the openpty function.

Both the openpty and forkpty functions return -1 to signify an error
condition. The openpty function returns a zero (0) upon successful
completion, while the forkpty returns the pid of the child process. See
openpty(3) for function syntax, parameters, and errors.

The openpty function works as follows:

1. Upon successful completion, the slave side of the pseudoterminal is set
to the proper terminal modes. At the time the master and slave sides
of the pseudoterminal are opened, the operating system performs the
necessary security checks.

2. The process then forks; the child closes the master side of the
pseudoterminal and executes (with the exec call) the appropriate
program.

3. The parent closes the slave side of the pseudoterminal and begins
reading and writing from the master side.

The following example makes use of pseudoterminal. The code in this
example makes the following assumptions:

• A connection on a socket already exists.

• The socket is connected to a peer that wants a service of some kind.

• The process disassociated itself from any previous controlling terminal.
if (openpty(&mast,&slave,NULL,NULL,NULL) {

syslog(LOG_ERR, "All network ports in use");
exit(1);

}
ioctl(slave, TIOCGETA, &term); /* get default slave termios struct */
term.c_iflag |= ICRNL;
term.c_oflag |= OCRNL;
ioctl(slave, TIOCSETA, &term); /* set slave characteristics */
i = fork();
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if (i < 0) {
syslog(LOG_ERR, "fork: %m");
exit(1);

} else if (i) { /* Parent */
close(slave);

.

.

.

} else { /* Child */
(void) close(s);
(void) close(master);
dup2(slave, 0);
dup2(slave, 1);
dup2(slave, 2);
if (slave > 2)

(void) close(slave);
.
.
.

}

See Section 4.3 for information about using sockets.
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5
Tru64 UNIX STREAMS

The operating system provides a STREAMS framework as specified by
AT&T’s System V, Version 4.0 release of STREAMS. This framework, which
provides an alternative to traditional UNIX character input/output (I/O),
allows you to implement I/O functions in a modular fashion. Modularly
developed I/O functions allow applications to build and reconfigure
communications services easily.

Note that STREAMS refers to the entire framework whereas Stream refers
to the entity created by an application program with the open system call.

This chapter contains the following information:

• Overview of the STREAMS framework

• Description of the application interface to STREAMS

• Description of the kernel-level functions

• Instructions on how to configure modules or drivers

• Description of the Tru64 UNIX synchronization mechanism

• Information on how to create device special files

• Description of error and event logging

• Information about STREAMS reference pages

This chapter provides detailed information about areas where the Tru64
UNIX implementation of STREAMS differs from that of AT&T System
V, Version 4.0. Where the Tru64 UNIX implementation does not differ
significantly from that of AT&T, it provides pointers to the appropriate
AT&T documentation.

Note that this chapter does not explain how to program using the STREAMS
framework. For detailed programming information you should refer to the
Programmer’s Guide: STREAMS.

5.1 Overview of the STREAMS Framework

The STREAMS framework consists of:

• A programming interface, or set of system calls, used by application
programs to access the STREAMS framework
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• Kernel resources, such as the Stream head, and queue data structures
used by the Stream

• Kernel utilities that handle tasks such as Stream queue scheduling and
flow control, memory allocation, and error logging

Figure 5–1 highlights the STREAMS framework and shows its place in the
network programming environment.

Figure 5–1: The STREAMS Framework
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5.1.1 Review of STREAMS Components

To communicate using STREAMS, an application creates a Stream, which
is a full-duplex communication path between a user process and a device
driver. The Stream itself is a kernel device and is represented to the
application as a character special file. Like any other character special file,
the Stream must be opened and otherwise manipulated with system calls.

Every Stream has at least a Stream head at the top and a Stream end at the
bottom. Additional modules, which consist of linked pairs of queues, can be

5–2 Tru64 UNIX STREAMS



inserted between the Stream head and Stream end if they are required for
processing the data being passed along the Stream. Data is passed between
modules in messages.

This section briefly describes the following STREAMS components:

• Stream head

• Stream end

• Modules

It also describes messages and their role in the STREAMS framework.

Figure 5–2 illustrates a typical stream. Note that data traveling from the
Stream head to the Stream end (STREAMS driver in Figure 5–2) is said to
be traveling downstream, or in the write direction. Data traveling from
the Stream end to the Stream head is said to be traveling upstream, or in
the read direction.

Figure 5–2: Example of a Stream
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The Stream head is a set of routines and data structures that provides an
interface between user processes and the Streams in the kernel. It is created
when your application issues an open system call. The following are the
major tasks that the Stream head performs:

1. Interprets a standard subset of STREAMS system calls, such as write
and putmsg.
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2. Translates them from user space into a standard range of STREAMS
messages (such as M_PROTO and M_DATA) which consist of both data
and control information.

3. Sends the messages downstream to the next module. Eventually the
messages reach the Stream end, or driver.

4. Receives messages sent upstream from the driver and transforms the
STREAMS message from kernel space to a format appropriate to the
system call (such as getmsg or read) made by the application. The
format varies depending on the system call.

The Stream end is a special form of STREAMS module and can be either
a hardware or pseudodevice driver. If a hardware device driver, the
Stream end provides communication between the kernel and an external
communication device. If a pseudodevice driver, the Stream end is
implemented in software and is not related to an external device. Regardless
of whether it is a hardware device driver or a pseudodevice driver, the
Stream end receives messages sent by the module above it, interprets them,
and performs the requested operations. It then returns data and control
information to the application by creating a message of the appropriate type
which it sends upstream toward the Stream head.

Drivers are like any other STREAMS modules except for the following:

• They can handle interrupts (although they do not have to).

Device drivers can have one or more interrupt routines. Interrupt
routines should queue data on the read side service routine for later
processing.

• They can be connected to multiple Streams.

A driver can be implemented as a multiplexor, meaning that it is
connected to multiple Streams in either the upstream or downstream
direction. See the Programmer’s Guide: STREAMS for more information.

• They are initialized and deinitialized by the open and close system
calls. (Other modules use the I_PUSH and I_POP commands of the
ioctl system call.)

For detailed information on device drivers and device driver routines, see the
Writing Device Drivers manual and the Programmer’s Guide: STREAMS.

Modules process data as it passes from the Stream head to the Stream end
and back. A Stream can have zero or more modules on it, depending on
the amount and type of processing that the data requires. If the driver can
perform all of the necessary processing on the data, no additional modules
are required.
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Modules consist of a pair of queues that contain data and pointers to
other structures that define what each module does. One queue handles
data moving downstream toward the driver and the other handles data
moving upstream toward the Stream head and application. Pointers link
each module’s downstream and upstream queues to the next module’s
downstream and upstream queues.

Depending on their processing requirements, applications request that
particular modules be pushed onto the Stream. The Stream head assembles
the modules requested by the application and then routes the messages
through the pipeline of modules.

Information is passed from module to module using messages. Several
different types of messages are defined within the STREAMS environment.
All message types, however, fall into the following categories:

• Normal

• High priority

Normal messages, such as M_DATA and M_IOCTL, are processed in the
order that they are received, and are subject to STREAMS flow control and
queuing mechanisms. Priority messages are passed along the stream in
an expedited manner.

For more information on messages and message data structures, see
Section 5.3.2

5.1.2 ioctl Processing

In STREAMS, user processes can perform control functions on specific
modules and drivers in a Stream with ioctl calls. When a user process
issues an ioctl command, STREAMS blocks the process, forces the Stream
head to process the command, and, if necessary, send messages (M_IOCTL)
downstream to be received and processed by a specific module or driver. The
user process is blocked until one of the following occurs:

• A module or a driver responds with a positive acknowledgement
(M_IOCACK) or a negative acknowledgement (M_IOCNAK)

• The request times out (no message is received)

• The user process interrupts the ioctl

• An error condition occurs

STEAMS provides two methods of ioctl processing: I_STR and
transparent.Table 5–1 compares the two methods.
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Table 5–1: I_STR and Transparent ioctl Processing Comparison
I_STR Processing Transparent Processing

Supports user applications written
for STREAMS files only

Supports user applications
written for either STREAMS or
non-STREAMS filess

Commands described in streamio(7) Commands described in ioctl(2)

Data format and addressing restrictions Data format and addressing restrictions
depend on the ioctl

Requires single pair of messages to
complete ioctl processing

May require multiple pairs of messages
to complete ioctl processing

Timeout value is user-specified or a default Timeout value is infinite

Implies STREAMS processing More general

See the Programmer’s Guide: STREAMS for more information on both
methods of ioctl processing.

5.2 Application Interface to STREAMS
The application interface to the STREAMS framework allows STREAMS
messages to be sent and received by applications. The following sections
describe the application interface, including pointers to the STREAMS
header files and data types, and descriptions of the STREAMS and
STREAMS-related system calls.

5.2.1 Header Files and Data Types

Definitions for the basic STREAMS data types are included in the following
header files:

• The <sys/stream.h> header file must be included for all modules and
Streams applications.

• The <stropts.h> header file must be included when an application
uses the ioctl system call.

• The <strlog.h> header file must be included when an application uses
the STREAMS error logger and trace facility.

______________________ Note _______________________

Typically, header file names are enclosed in angle brackets (<
>). To obtain the absolute path to the header file, prepend
/usr/include/ to the information enclosed in the angle
brackets. In the case of <sys/stream.h>, stream.h is located
in the /usr/include/sys directory.
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5.2.2 STREAMS Functions

Your application accesses and manipulates STREAMS kernel resources
through the following functions:

• open

• close

• read

• write

• ioctl

• mkfifo

• pipe

• putmsg and putpmsg

• getmsg and getpmsg

• poll

• isastream

• fattach

• fdetach

This section briefly describes these functions. For detailed information
about these functions, see the reference pages and the Programmer’s Guide:
STREAMS.

5.2.2.1 The open Function

Use the open function to open a Stream.

See open(2) for function syntax, parameters, and errors.

The following example shows how the open function is used:

int fd;
fd = open("/dev/streams/echo", O_RDWR);

5.2.2.2 The close Function

Use the close function to close a Stream.

See close(2) for function syntax, parameters, and errors.

The last close for a stream causes the stream associated with the file
descriptor to be dismantled. Dismantling a stream includes popping any
modules on the stream and closing the driver.
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5.2.2.3 The read Function

Use the read function to receive the contents of M_DATA messages waiting
at the Stream head.

See read(2) for function syntax, parameters, and errors.

The read function fails on message types other than M_DATA, and errno
is set to EBADMSG.

5.2.2.4 The write Function

Use the write function to create one or more M_DATA messages from the
data buffer.

See write(2) for function syntax, parameters, and errors.

5.2.2.5 The ioctl Function

Use the ioctl function to perform a variety of control functions on Streams.

See streamio(7) for function syntax, parameters, and errors for the
STREAMS ioctl function.

The following example shows how the ioctl call is used:

int fd;
fd = open("/dev/streams/echo", O_RDWR, 0);
ioctl(fd,I_PUSH,"pass");

5.2.2.6 The mkfifo Function

Use the STREAMS-based mkfifo function to create a unidirectional
STREAMS-based file descriptor.

______________________ Note _______________________

The default version of the mkfifo function in the libc library
is not STREAMS-based. To use the STREAMS version of the
mkfifo function the application must link with the sys5 library.
See mkfifo(2) for function syntax, parameters, and errors.

Also note that the mkfifo function requires that the File on File
Mount File System (FFM_FS) kernel option is configured. See the
System Administration manual for information about configuring
kernel options.
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5.2.2.7 The pipe Function

Use the STREAMS-based pipe function to create a bidirectional,
STREAMS-based, communication channel. Non-STREAMS pipes and
STREAMS-based pipes differ in the following ways:

• Non-STREAMS pipes are unidirectional

• STREAMS operations (such as streamio and putmsg) can not be
performed on them

______________________ Note _______________________

The default version of the pipe function in the libc library is
not STREAMS-based. To use the STREAMS version of the pipe
function the application must link with the sys5 library. See
pipe(2) for function syntax, parameters, and errors.

5.2.2.8 The putmsg and putpmsg Functions

Use the putmsg and putpmsg functions to generate a STREAMS message
block by using information from specified buffers.

See putmsg(2) for function syntax, parameters, and errors.

Use the putpmsg function to send priority banded data down a Stream. The
arguments have the same meaning as for the putmsg function.

See putpmsg(2) for function syntax, parameters, and errors.

5.2.2.9 The getmsg and getpmsg Functions

Use the getmsg and getpmsg functions to retrieve the contents of a message
located at the Stream head read queue and place them into user specified
buffer(s).

See getmsg(2) for function syntax, parameters, and errors.

Use the getpmsg function to receive priority banded data from a Stream.
The arguments have the same meaning as for the getmsg function.

See getpmsg(2) for function syntax, parameters, and errors.

5.2.2.10 The poll Function

Use the poll function to identify the Streams to which a user can send data
and from which a user can receive data.

See poll(2) for function syntax, parameters, and errors.

Tru64 UNIX STREAMS 5–9



5.2.2.11 The isastream Function

Use the isastream function to determine if a file descriptor refers to a
STREAMS file.

The following example shows how to use the isastream function to verify
that you have opened a STREAMS-based pipe instead of a sockets-based
pipe:

int fds[2];

pipe(fds);
if (isastream(fds[0]))

printf("STREAMS based pipe\n");
else

printf("Sockets based pipe\n");

See isastream(3) for function syntax, parameters, and errors.

5.2.2.12 The fattach Function

Use the fattach function to attach a STREAMS-based file descriptor to an
object in the file system name space.

The following example shows how to use the fattach function to name a
STREAMS-based pipe:

int fds[2];

pipe(fds);
fattach(fd[0], "/tmp/pipe1");

______________________ Note _______________________

The fattach function requires that the FFM_FS kernel option
be configured. See the System Administration manual for
information about configuring kernel options.

See fattach(3) for function syntax, parameters, and errors.

5.2.2.13 The fdetach Function

Use the fdetach function to detach a STREAMS-based file descriptor from
a file name. A STREAMS-based file descriptor may have been attached by
using the fattach function.
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______________________ Note _______________________

The fdetach function requires that the File on File Mount File
System (FFM_FS) kernel option is configured. See the System
Administration manual for information about configuring kernel
options.

See fdetach(3) for function syntax, parameters, and errors.

Table 5–2 lists and briefly describes the reference pages that contain
STREAMS-related information. For further information about each
component, refer to the appropriate reference page.

Table 5–2: STREAMS Reference Pages
Reference Page Description

autopush(8) Command that manages the system’s database of
automatically pushed STREAMS modules.

clone(7) STREAMS software driver that finds and opens an unused
major/minor device on another STREAMS driver.

close(2) a Function that closes the file associated with a
designated file descriptor.

dlb(7) STREAMS pseduodevice driver that provides a
communication path between BSD-style device drivers
and STREAMS protocol stacks.

fattach(3) Command that attaches a STREAMS-based file
descriptor to a node in the file system.

fdetach(8) Command that detaches a STREAMS-based file
descriptor from a file name.

fdetach(3) Function that detaches a STREAMS-based file
descriptor from a file name.

getmsg(2)
getpmsg(2)

Functions that reference a message positioned at
the Stream head read queue.

ifnet(7) STREAMS-based module that provides a bridge between
STREAMS-based device drivers written to the Data Link
Provider Interface (DLPI) and sockets.

isastream(3) Function that determines if a file descriptor refers
to a STREAMS file.

mkfifo(2) Function that creates a unidirectional STREAMS-
based file descriptor.

open(2) a Function that establishes a connection between
a file and a file descriptor.
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Table 5–2: STREAMS Reference Pages (cont.)

Reference Page Description

pipe(2) Function that creates a bidirectional, STREAMS-based,
interprocess communication channel.

poll(2) Function that provides a general mechanism for reporting
I/O conditions associated with a set of file descriptors and for
waiting until one or more specified conditions becomes true.

putmsg(2)
putpmsg(2)

Functions that generate a STREAMS message block.

read(2)a Function that reads data from a file into a designated buffer.

strace(8) Application that retrieves STREAMS event trace
messages from the STREAMS log driver.

strchg(1) Command that alters the configuration of a Stream.

strclean(8) Command that removes STREAMS error log files.

strconf(1) Command that queries about a Stream’s configuration.

streamio(7) Command that performs a variety of control
functions on Streams.

strerr(3) Daemon that receives error messages from the
STREAMS log driver.

strlog(7) Interface that tracks log messages used by STREAMS
error logging and event tracing daemons.

strsetup(8) Command that creates the appropriate STREAMS
pseudodevices and displays the setup of your
STREAMS modules.

timod(7) Module that converts ioctl calls from a transport user
supporting the Transport Interface (TI) into messages that a
transport protocol provider supporting TI can consume.

tirdwr(7) Module that provides a transport user supporting
the TI with an alternate interface to a transport
protocol provider supporting TI.

write(2) a Function that writes data to a file from a designated buffer.
a The page is not STREAMS specific.

5.3 Kernel Level Functions

This section contains information with which the kernel programmer
who writes STREAMS modules and drivers must be familiar. It contains
information about:

• Module data structures

• Message data structures
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• STREAMS processing routines for modules and drivers

5.3.1 Module Data Structures

When a module or driver is configured into the system, it must define its
read and write queues and other module information.

The qinit, module_info, and streamtab data structures, all of which
are located in the <sys/stream.h> header file, define read and write
queues. STREAMS modules must fill in these structures in their declaration
sections. See Appendix A for an example.

The only external data structure a module must provide is streamtab.

The qinit structure, shown in the following example, defines the interface
routines for a queue. The read queue and write queue each have their own
set of structures.

struct qinit {
int (*qi_putp)(); /* put routine */
int (*qi_srvp)(); /* service routine */
int (*qi_qopen)(); /* called on each open */

/* or a push */
int (*qi_qclose)(); /* called on last close */

/* or a pop */
int (*qi_qadmin)(); /* reserved for future use */
struct module_info * qi_minfo; /* information structure */
struct module_stat * qi_mstat; /* statistics structure (op-

/* tional) */
};

The module_info structure, shown in the following example, contains
module or driver identification and limit values:

struct module_info {
unsigned short mi_idnum; /* module ID number */
char *mi_idname; /* module name */
long mi_minpsz; /* min packet size, for */

/* developer use */
long mi_maxpsz; /* max packet size, for */

/* developer use */
ulong mi_hiwat; /* hi-water mark, for */

/* flow control */
ulong mi_lowat; /* lo-water mark, for */

/* flow control */
};

The streamtab structure, shown in the following example, forms the
uppermost part of the declaration and is the only part which needs to be
visible outside the module or driver:

struct streamtab {
struct qinit * st_rdinit; /* defines read QUEUE */
struct qinit * st_wrinit; /* defines write QUEUE */
struct qinit * st_muxrinit; /* for multiplexing drivers only */
struct qinit * st_muxwinit; /* ditto */

};
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5.3.2 Message Data Structures

Tru64 UNIX STREAMS messages consist of one or more linked message
blocks. Each message block consists of a triplet with the following
components:

• A data buffer

The data buffer contains the binary data that makes up the message.
STREAMS imposes no alignment rules on the format of data in the data
buffer, aside from those imposed by messages processed at the Stream
head.

• A mblk_t control structure

The mblk_t structure contains information that the message owner
can manipulate. Two of its fields are the read and write pointers into
the data buffer.

• A dblk_t control structure

The dblk_t structure contains information about buffer characteristics.
For example, two of its fields point to the limits of the data buffer, while
others contain the message type.

The Stream head creates and fills in the message data structures when data
is traveling downstream from an application. The Stream end creates and
fills in the message data structures when data is traveling upstream, as in
the case of data coming from an external communications device.

The mblk_t and dblk_t structures, shown in the following examples, are
located in the <sys/stream.h> header file:

/* message block */
struct msgb {

struct msgb * b_next; /* next message on queue */
struct msgb * b_prev; /* previous message on queue */
struct msgb * b_cont; /* next message block of message */
unsigned char * b_rptr; /* first unread data byte in buffer */
unsigned char * b_wptr; /* first unwritten data byte */
struct datab * b_datap; /* data block */
unsigned char b_band; /* message priority */
unsigned char b_pad1;
unsigned short b_flag; /* message flags */
long b_pad2;
MSG_KERNEL_FIELDS

};
typedef struct msgb mblk_t;

/* data descriptor */
struct datab {

union {
struct datab * freep;
struct free_rtn * frtnp;

} db_f;
unsigned char * db_base; /* first byte of buffer */
unsigned char * db_lim; /* last byte+1 of buffer */
unsigned char db_ref; /* count of messages pointing */
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/* to block */
unsigned char db_type; /* message type */
unsigned char db_iswhat; /* message status */
unsigned int db_size; /* used internally */
caddr_t db_msgaddr; /* used internally */
long db_filler;

};
#define db_freep db_f.freep
#define db_frtnp db_f.frtnp

typedef struct datab dblk_t;

/* Free return structure for esballoc */
typedef struct free_rtn {

void (*free_func)(char *, char *); /* Routine to free buffer */
char * free_arg; /* Parameter to free_func */

} frtn_t;

When a message is on a STREAMS queue, it is part of a list of messages
linked by b_next and b_prev pointers. The q_next pointer points to
the first message on the queue and the q_last pointer points to the last
message on the queue.

5.3.3 STREAMS Processing Routines for Drivers and Modules

A module or driver can perform processing on the Stream that an application
requires. To perform the required processing, the STREAMS module or
driver must provide special routines whose behavior is specified by the
STREAMS framework. This section describes the STREAMS module and
driver routines, and the following kinds of processing they provide:

• Open processing

• Close processing

• Configuration processing

• Read side put processing

• Write side put processing

• Read side service processing

• Write side service processing

______________________ Note _______________________

STREAMS modules and drivers must provide open, close, and
configuration processing. The other kinds of processing described
in this section are optional.

The format used to describe each routine in this section is XX_routine_name.
You should substitute the name of a user-written STREAMS module or
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driver for the XX. For example, the open routine for the user-written
STREAMS pseudodevice driver echo would be echo_open.

5.3.3.1 Open and Close Processing

Only the open and close routines provide access to the u_area of the
kernel. They are allowed to sleep only if they catch signals.

Open Processing

Modules and drivers must have open routines. The read side qinit
structure, st_rdinit defines the open routine in its qi_qopen field. A
driver’s open routine is called when the application opens a Stream. The
Stream head calls the open routine in a module when an application pushes
the module onto the Stream.

The open routine has the following format:

XX_open(q, devp, flag, sflag, credp)
queue_t *q; /* pointer to the read queue */
dev_t *devp; /* pointer to major/minor number

for devices */
int flag; /* file flag */
int sflag; /* stream open flag */
cred_t *credp /* pointer to a credentials structure */

The open routine can allocate data structures for internal use by the
STREAMS driver or module. A pointer to the data structure is commonly
stored in the q_ptr field of the queue_t structure. Other parts of the
module or driver can access this pointer later.

Close Processing

Modules and drivers must have close routines. The read side qinit
structure, st_rdinit, defines the close routine in its qi_qclose field. A
driver calls the close routine when the application that opened the Stream
closes it. The Stream head calls the close routine in a module when it pops
the module from the stack.

The close routine has the following format:

XX_close(q, flag, credp)
queue_t *q; /* pointer to read queue */
int flag; /* file flag */
cred_t *credp /* pointer to credentials structure */

The close routine may want to free and clean up internally used data
structures.
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5.3.3.2 Configuration Processing

The configure routine is used to configure a STREAMS module or driver
into the kernel. It is specific to Tru64 UNIX and its use is illustrated in
Section 5.4.

The configure routine has the following format:

XX_configure(op, indata, indatalen, outdata, outdatalen)
sysconfig_op_t op; /* operation - should be */

/* SYSCONFIG_CONFIGURE */
str_config_t * indata; /* for drivers - describes the device */
size_t indatalen; /* sizeof(str_config_t) */
str_config_t * outdata; /* pointer to returned data */
size_t outdatalen; /* sizeof(str_config_t) */

5.3.3.3 Read Side Put and Write Side Put Processing

There are both read side and write side XX_Xput routines; XX_wput for
write side put processing and XX_rput for read side put processing.

Write Side Put Processing

The write side put routine, XX_wput, is called when the upstream module’s
write side issues a putnext call. The XX_wput routine is the only interface
for messages to be passed from the upstream module to the current module
or driver.

The XX_wput routine has the following format:

XX_wput(q, mp)
queue_t *q; /* pointer to write queue */
mblk_t *mp; /* message pointer */

Read Side Put Processing

The read side put routine, XX_rput, is called when the downstream modules
read side issues a putnext call. Because there is no downstream module,
drivers that are Stream ends do not have read side put routines. The
XX_rput routine is the only interface for messages to be passed from the
downstream module to the current module.

The XX_rput routine has the following format:

XX_rput(q, mp)
queue_t *q; /* pointer to read queue */
mblk_t *mp; /* message pointer */

The XX_Xput routines must do at least one of the following:

• Process the message

• Pass the message to the next queue (using putnext)
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• Delay processing of the message by putting the message on the module’s
service routine (using putq)

The XX_Xput routine should leave any large amounts of processing to the
service routine.

5.3.3.4 Read Side Service and Write Side Service Processing

If an XX_Xput routine receives a message that requires extensive processing,
processing it immediately could cause flow control problems. Instead of
processing the message immediately, the XX_rput routine (using the putq
call) places the message on its read side message queue and the XX_wput
places the message on its write queue. The STREAMS module notices that
there are messages on these queues and schedules the module’s read or
write side service routines to process them. If the module’s XX_rput routine
never calls putq, the module does not require a read side service routine.
Likewise, if the module’s XX_wput routine never calls putq, the module does
not require a write side service routine.

The code for a basic service routine, either read side or write side, has the
following format:

XXXsrv(q)
queue_t *q;

{
mblk_t *mp;

while ((mp = getq(q)) != NULL)
{

/*
* If flow control is a problem, return
* the message to the queue
*/

if (!(canput(q->q_next))
return putbq(q, mp);

/*
* process message
*/

putnext(q, mp);
}
return 0;

}

5.3.4 Tru64 UNIX STREAMS Concepts

The following STREAMS concepts are unique to Tru64 UNIX. This section
describes these concepts and how they are implemented:

• Synchronization

• Timeout
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5.3.4.1 Synchronization

Tru64 UNIX supports the use of more than one kernel STREAMS thread.
Exclusive access to STREAMS queues and associated data structures
is not guaranteed. Messages can move up and down the same Stream
simultaneously, and more than one process can send messages down the
same Stream.

To synchronize access to the data structures, each STREAMS module or
driver chooses the synchronizaion level it can tolerate. The synchronization
level determines the level of parallel activity allowed in the module or driver.
Synchronization levels are defined in the sa.sa_syn_level field of the
streamadm data structure which is defined in the module’s or driver’s
configuration routine. The sa.sa_syn_level field must have one of the
following values:

SQLVL_QUEUE

Queue Level Synchronizaton. This allows one thread of execution
to access any instance of the module or driver’s write queue at the
same time another thread of execution can access any instance of the
module or driver’s read queue. Queue level synchronization can be
used when the read and write queues do not share common data. The
SQLVL_QUEUE argument provides the lowest level of synchronization
available in the Tru64 UNIX STREAMS framework.

For example, the q_ptr field of the read and write queues do not point
to the same memory location.

SQLVL_QUEUEPAIR

Queue Pair Level Synchronizaion. Only one thread at a time can access
the read and write queues for each instance of this module or driver.
This synchronization level is common for most modules or drivers that
process data and have only per-stream state.

For example, within an instance of a module, the q_ptr field of the
read and write queues points to the same memory location. There is no
other shared data within the module.

SQLVL_MODULE

Module Level Synchronization. All code within this module or driver
is single threaded. No more than one thread of execution can access
all instances of the module or driver. For example, all instances of the
module or driver are accessing data.
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SQLVL_ELSEWHERE

Arbitrary Level Synchronization. The module or driver is synchronized
with some other module or driver. This level is used to synchronize a
group of modules or drivers that access each other’s data. A character
string is passed with this option in the sa.sync_info field of the
streamadm structure. The character string is used to associate with a
set of modules or drivers. The string is decided by convention among
the cooperating modules or drivers.

For example, a networking stack such as a TCP module and an IP
module which share data might agree to pass the string tcp/ip. No
more than one thread of execution can access all modules or drivers
synchronized on this string.

SQLVL_GLOBAL

Global Level Synchronization. All modules or drivers under this level
are single threaded. Note there may be modules or drivers using other
levels not under the same protection. This option is available primarily
for debugging.

5.3.4.2 Timeout

The kernel interface to timeout and untimeout is as follows:

timeout(func, arg, ticks);
untimeout(func, arg);

However, to maintain source compatibilty with AT&T System V Release 4
STREAMS, the <sys/stream.h> header file redefines timeout to be the
System V interface, which is:

id = timeout(func, arg, ticks);
untimeout(id);

The id variable is defined to be an int.

STREAMS modules and drivers must use the System V interface.

5.4 Configuring a User-Written STREAMS-Based Module or
Driver in the Tru64 UNIX Kernel
For your system to access any STREAMS drivers or modules that you have
written, you must configure the drivers and modules into your system’s
kernel.

STREAMS modules or drivers are considered to be configurable kernel
subsystems; therefore, follow the guidelines in the Programmer’s Guide
for configuring kernel subsystems.
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The following sample procedure shows how to add to the kernel a
STREAMS-based module (which can be a pushable module or a hardware
or pseudodevice driver) called mymod, with it’s source files mymodule1.c
and mymodule2.c.

1. Declare a configuration routine in your module source file, in this
example, /sys/streamsm/mymodule1.c.

Example 5–1 shows a module (mymod_configure) that can be used by
a module. To use the routine with a driver, do the following:

a. Remove the comment signs from the following line:

/* sa.sa_flags = STR_IS_DEVICE | STR_SYSV4_OPEN; */

This line follows the following comment line:

/* driver */

b. Comment out the following line:

sa.sa_flags = STR_IS_MODULE | STR_SYSV4_OPEN;

This line follows the following comment line:

/* module */

Example 5–1: Sample Module

/*
* Sample mymodule.c
*/
...

#include <sys/sysconfig.h>
#include <sys/errno.h>

struct streamtab mymodinfo = { &rinit, &winit };

cfg_subsys_attr_t mymod_attributes[] = { 1
{,0,0,0,0,0,0} /* required last element */

};
int
mymod_configure(
cfg_op_t op;
caddr_t indata;
ulong indata_size;
caddr_t outdata;
ulong outdata_size)

{
dev_t devno = NODEV; 2
struct streamadm sa;
if (op != CFG_OP_CONFIGURE) 3
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Example 5–1: Sample Module (cont.)

return EINVAL;

sa.sa_version = OSF_STREAMS_10;
/* module */ 4
sa.sa_flags = STR_IS_MODULE | STR_SYSV4_OPEN;
/* driver */
/* sa.sa_flags = STR_IS_DEVICE | STR_SYSV4_OPEN; */
sa.sa_ttys = NULL;
sa.sa_sync_level = SQLVL_MODULE; 5
sa.sa_sync_info = NULL;
strcpy(sa.sa_name, "mymod");

if ((devno = strmod_add(devno, &mymodinfo, &sa)) == NODEV)
{

return ENODEV;
}

return ESUCCESS;
}

1 The subroutine in this example supplies an empty attribute table
and no attributes are expected to be passed to the subroutine.
If you want to develop attributes for your module, refer to the
Programmer’s Guide.

2 The first available slot in the cdevsw table is automatically
allocated for your module. If you wish to reserve a specific device
number, you should define it after examining the cdevsw table in
the conf.c program. For more information on the cdevsw table
and how to add device driver entries to it, see the Writing Device
Drivers manual.

3 This example routine only supports the CFG_OP_CONFIGURE
option. See the Programmer’s Guide for information on other
configuration routine options.

4 The STR_SYSV4_OPEN option specifies to call the module’s or
device’s open and close routines, using the AT&T System V
Release 4 calling sequence. If this bit is not specified, the AT&T
System V Release 3.2 calling sequence is used.

5 Other options for the sa.sync_level field are described in
Section 5.3.4.

2. Statically link your module with the kernel.
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If you want to make the STREAMS module dynamically loadable,
see the Programmer’s Guide for information on configuring kernel
subsystems. If the module you are configuring is a hardware device
driver, also see the Writing Device Drivers manual.

To statically link your module with the kernel, put your module’s source
files (mymodule1.c and mymodule2.c) into the /sys/streamsm
directory and add an entry for each file to the /sys/conf/files file.
The following example shows the entries in the /sys/conf/files file
for mymodule1.c and mymodule2.c:

streamsm/mymodule1.c optional mymod Notbinary
streamsm/mymodule2.c optional mymod Notbinary

Add the MYMOD option to the kernel configuration file. The default kernel
configuration file is /sys/conf/HOSTNAME (where HOSTNAME is the
name of your system in uppercase letters). For example, if your system
is named TRU64, add the following line to the /sys/conf/TRU64
configuration file:

options MYMOD

If you are configuring a hardware device driver continue with step 3;
if not, go to step 4.

3. If you are configuring a hardware device driver, complete steps 3a to 3d.

If you are not configuring a hardware device driver, go to step 4.

If you are configuring a hardware device driver, you should already
have an XXprobe and an interrupt routine defined. See the Writing
Device Drivers manual for information about defining probe and
interrupt routines.

a. Add the following line to the top of the device driver configuration
file, which for this example is /sys/streams/mydriver.c:

#include <io/common/devdriver.h>

b. Define a pointer to a controller structure; for example:

struct controller *XXinfo;

For information on the controller structure, see the Writing Device
Drivers manual.

c. Declare and initialize a driver structure; for example:

struct driver XXdriver =
{

XXprobe, 0, 0, 0, 0, XXstd, 0, 0, "XX", XXinfo
};

For information on the driver structure, see the Writing Device
Drivers manual.
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d. Add the controller line to the kernel configuration file. The
default kernel configuration file is /sys/conf/HOSTNAME (where
HOSTNAME is the name of your system in uppercase letters). For
example, if your system name is TRU64, would add a line similar to
the following to the /sys/conf/TRU64 configuration file:

controller XX0 at bus vector XXintr

For information about the possible values for the bus keyword, see
the System Administration manual.

4. Reconfigure, rebuild, and boot the new kernel for this system by
using the doconfig command. See doconfig(8) or the System
Administration manual for information on reconfiguring your kernel.

5. Run the strsetup -c command to verify that the device is configured
properly:

# /usr/sbin/strsetup -c

STREAMS Configuration Information...Wed Jun 2 09:30:11 1994

Name Type Major Minor Module ID
---- ---- ----- ----- ---------
clone 32 0

ptm device 37 0 7609
pts device 6 0 7608
log device 36 0 44

nuls device 38 0 5001
echo device 39 0 5000
sad device 40 0 45

pipe device 41 0 5304
kinfo device 42 0 5020

xtisoUDP device 43 0 5010
xtisoTCP device 44 0 5010

dlb device 49 0 5010
bufcall module 0

timod module 5006
tirdwr module 0
ifnet module 5501
ldtty module 7701
null module 5003
pass module 5003
errm module 5003
spass module 5007
rspass module 5008

pipemod module 5303

Configured devices = 11, modules = 11
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5.5 Device Special Files
This section describes the STREAMS device special files and how they are
created. It also provides an overview of the clone device.

All STREAMS drivers must have a character special file created on the
system. These files are usually in the /dev/streams directory and are
created at installation, or by running the /usr/sbin/strsetup utility.

A STREAMS driver has a device major number associated with it which is
determined when the driver is configured into the system. Drivers other
than STREAMS drivers usually have a character special file defined for each
major and minor number combination. The following is an example of an
entry in the /dev/rdisk directory:
crw------- 1 root system 8, 1024 Aug 25 15:38 dsk1a
crw------- 1 root system 8, 1025 Aug 25 15:38 dsk1b
crw------- 1 root system 8, 1026 Aug 25 15:38 dsk1c

In this example, dsk1a has a major number of 8 and a minor number of
1024. The dsk1b device has a major number of 8 and a minor number of
1025, and dsk1c has a major number of 8 and a minor number 1026.

You can also define character special files for each major and minor number
combination for STREAMS drivers. The following is an example of an entry
in the /dev/streams directory:
crw-rw-rw- 1 root system 32, 0 Jul 13 12:00 /dev/streams/echo0
crw-rw-rw- 1 root system 32, 1 Jul 13 12:00 /dev/streams/echo1

In this example, echo0 has a major number of 32 and a minor number of 0,
while echo1 has a major number of 32, and a minor number of 1.

For an application to open a unique Stream to a device, it must open a minor
version of that device that is not already in use. The first application can do
an open on /dev/streams/echo0 while the second application can do an
open on /dev/streams/echo1. Since each of these devices has a different
minor number, each application acquires a unique Stream to the echo driver.
This method requires that each device (in this case, echo) have a character
special file for each minor device that can be opened to it. This method also
requires that the application determine which character special file it should
open; it does not want to open one that is already in use.

The clone device offers an alternative to defining device special files for
each minor device that can be opened. When the clone device is used, each
driver needs only one character special file and, instead of an application
having to determine which minor devices are currently available, clone
allows a second (or third) device to be opened using its (clone device’s)
major number. The minor number is associated with the device being opened
(in this case, echo). Each time a device is opened using clone device’s major
number, the STREAMS driver interprets it as a unique Stream.
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The strsetup command sets up the entries in the /dev/streams
directory to use the clone device. The following is an example entry in the
/dev/streams file:

crw-rw-rw- 1 root system 32, 18 Jul 13 12:00 /dev/streams/echo

In this example, the system has assigned the major number 32 to the clone
device. The number 18 is the major number associated with echo. When an
application opens /dev/streams/echo, the clone device intercepts the
call. Then, clone calls the open routine for the echo driver. Additionally,
clone notifies the echo driver to do a clone open. When the echo driver
realizes it is a clone open, it will return its major number, 18, and the first
available minor number.

______________________ Note _______________________

The character special files the /usr/sbin/strsetup command
creates are created by default in the /dev/streams directory
with clone as the major number. If you configure into your kernel
a STREAMS driver that either does not use clone open, or uses a
different name, you must modify the /etc/strsetup.conf file
described in strsetup.conf(4).

To determine the major number of the clone device on your
system, run the strsetup −c command.

5.6 Error and Event Logging

STREAMS error and event logging involves the following:

• The error logger daemon

• The trace logger

• The strclean command

The error logger daemon, strerr, logs in a file any error messages sent to
the STREAMS error logging and event tracing facility.

The trace logger, strace, writes to standard output trace messages sent to
the STREAMS error logging and event tracing facility.

The strclean command can be run to clean up any old log files generated
by the strerr daemon.

A STREAMS module or driver can send error messages and event tracing
messages to the STREAMS error logging and event tracing facility through
the strlog kernel interface. This involves a call to strlog.
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The following example shows a STREAMS driver printing its major and
minor device numbers to both the STREAMS error logger and the event
tracing facility during its open routine:

#include <sys/strlog.h>

strlog(MY_DRIVER_ID, 0, 0, SL_ERROR 1 SL_TRACE,
"My driver: mydriver_open() - major=%d,minor=%d",

major(dev,minor(dev));

A user process can also send a message to the STREAMS error logging and
event tracing facility by opening a Stream to /dev/streams/log and
calling putmsg. The user process must contain code similar to the following
to submit a log message to strlog:

struct strbuf ctl, dat;
struct log_ctl lc;
char *message = "Last edited by <username> on <date>";

ctl_len = ctl.maxlen = sizeof (lc);
ctl.buf = (char *)&lc;

dat.len = dat.maxlen = strlen(message);
dat.buf = message;
lc.level = 0;
lc.flags = SL_ERROR|SL_NOTIFY;

putmsg (log, &ctl, &dat, 0);
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6
Extensible SNMP Application

Programming Interface

The Simple Network Management Protocol (SNMP) is an application layer
protocol that allows remote management and data collection from networked
devices. A networked device can be anything that is connected to the
network, such as a router, a bridge, or a host.

A managed networked device contains software that acts as the SNMP
agent for the device. It handles the application layer protocol for SNMP and
carries out the management commands. These commands consist of getting
information and setting of operational parameters.

There are also network management application programs (usually running
on a host somewhere on the network) that send SNMP commands to the
various managed devices on the network to perform the management tasks.
These tasks can consist of configuration management, network traffic
monitoring and network trouble shooting.

The Extensible Simple Network Management Protocol (eSNMP) is the
SNMP agent architecture for Tru64 UNIX or earlier versions of DIGITAL
UNIX. It includes a master agent process and multiple related processes
containing eSNMP subagents. The master agent performs the SNMP
protocol handling and the subagents perform the requested management
commands. This chapter assumes you are familiar with the following:

• SNMP protocol

• Management Information Base (MIB) definitions and Request For
Comments (RFCs)

• Object Identifiers (OIDs) and the International Standards Organization
(ISO) registration hierarchy (1.3.6.1.2.1, and so on)

• The C programming language

This chapter provides the following information:

• Overview of eSNMP

• Overview of the eSNMP application programming interface (API)

• Detailed information on the eSNMP routines
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6.1 Overview of eSNMP

The following sections describe the components and architecture of the
eSNMP agent. It contains information on the following:

• Components of eSNMP

• Architecture

• SNMP Versions

6.1.1 Components of eSNMP

The eSNMP components are as follows:

• /usr/sbin/snmpd — The master agent daemon.

• /usr/sbin/os_mibs — The host MIB and networking subagent
daemon.

• /usr/sbin/svrMgt_mib — A server management subagent daemon.

• /usr/sbin/svrSystem_mib — A server system subagent daemon.

• /usr/sbin/mosy — The MIB compiler.

• /usr/sbin/snmpi — The object table code generator.

• /usr/shlib/libesnmp.so — The eSNMP library.

• /usr/include/esnmp.h — eSNMP definitions.

• /usr/examples/esnmp/* — Example code.

The Management Information Base (MIB) defines a set of data elements
that relate to network management. Many of these are standardized in the
RFCs that are produced as a result of the Internet Engineering Task Force
(IETF) working group standardization effort of the Internet Society.

The data elements defined in the RFCs are identified using a naming scheme
with a hierarchical structure. Each name at each level of the hierarchy has a
number associated with it. You can refer to the data elements in the MIB
definitions by name or by their corresponding sequence of numbers, which
are called the Object Identifier (OID). You can extend an OID for a specific
data element further by adding more numbers to identify a specific instance
of the data element. The entire collection of managed data elements is
called the MIB tree.

Each SNMP agent implements those MIB elements that pertain to the
device being managed, plus a few common MIB elements. These are the
supported MIB tree elements. An extensible SNMP agent is one that
permits its supported MIB tree to be distributed among various processes
and change dynamically.
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The eSNMP consists of a single master agent and any number of subagents.
The master agent handles the SNMP protocols, supports MIBs related to
SNMP itself, and maintains a registry of connected subagents and the MIB
subtrees they support. The master agent for eSNMP is the daemon process
/usr/sbin/snmpd.

Tru64 UNIX provides subagents that implement several different MIBs,
both IETF standard and proprietary to HP. Refer to the Software Product
Description (SPD), Cluster Technical Overview, and the snmpd(8) reference
page for more information. These subagents (and any third-party subagents)
together with the master agent function as a single SNMP agent for the host.

6.1.2 Architecture

The master agent listens on the preassigned User Datagram Protocol (UDP)
port for an incoming SNMP request. When the master agent receives
an SNMP request, it authenticates it against the local security database
and handles any authentication or protocol errors. If the request is valid,
the snmpd daemon consults its MIB registry. (See snmpd(8) for more
information.) For each MIB object contained in the request it determines
which registered MIB could contain that object and which subagent has
registered that MIB. The master agent then builds a series of messages; one
for each subagent that will be involved in this SNMP request.

Each subagent program is linked with the shareable library libesnmp.so.
This library contains the protocol implementation that enables
communication between the master agent and the subagent. This code
parses the master agent’s message and consults its local object table.

The object table is a data structure that is defined and initialized in code
emitted by the snmpi and mosy MIB compiler tools. It contains an entry for
each MIB object that is contained in the MIBs implemented in that subagent.
One part of an object table entry is the address of a function that services
requests for the MIB object. These functions are called method routines.

The eSNMP library code calls into the indicated method routine for each of
the MIB variables in the master agent’s message. The eSNMP library code
creates a response packet based on the function return values and sends
it back to the master agent.

The master agent starts a timer and assembles the response packets from
all involved subagents. The master agent may rebuild and resend a new
set of subagent messages, depending on the specific request; for example,
a GetNext request. When the master agent has all required data or error
responses or has timed out waiting for a response from a subagent, it
builds an SNMP response message and sends it to the originating SNMP
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application. The interaction between the master agent and subagent is
invisible to the requesting SNMP management application.

Subagent programs are linked against the libesnmp.so shareable library,
which performs all protocol handling and dispatching. Subagent developers
need to code method routines for their defined MIB objects only.

6.1.3 SNMP Versions

Extensible SNMP support for SNMPv2c exists in the following areas. This
is based on RFCs 1901 through 1908, inclusive:

• The MIB tools (the mosy and snmpi programs) support SNMPv2c
Structure of Management Information for SNMPv2 (SMIv2) and textual
conventions.

• The eSNMP library API supports SNMPv2c, variable binding exceptions,
and error codes.

• The master agent currently supports SNMPv1 and SNMPv2c in a
bilingual manner. All SNMPv2c-specific information from the subagent
is mapped, when necessary, into SNMPv1-adherent data according to
RFC 2089. For example, if a management application makes a request
using SNMPv1 PDUs, the master agent replies using SNMPv1 PDUs,
mapping any SNMPv2c SMI items received from subagents. This means
that subagents created with a previous version of the eSNMP API do not
require any code changes and do not have to be recompiled.

6.1.4 AgentX

All communication by the libesnmp.so library to and from the
master agent is done through an implementation of RFC 2741, Agent
Extensibility (AgentX) Version 1. RFC 2741 defines a standard protocol for
communications between extensible agent components, a master agent and
multiple subagents. This means that subagents that use the eSNMP API
will function correctly with no modification if a different vendor’s master
agent (one that conforms to RFC 2741) is running on the Tru64 UNIX host.

6.2 Overview of the Extensible SNMP Application
Programming Interface
The subagent’s functions are to establish communications with the master
agent, register the MIB subtrees that it intends to handle, and process
requests from the master agent. It must also be able to send SNMP traps on
behalf of the host application.

The subagent consists of the following:

• A main function written by the developer
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• The eSNMP library routines that perform the AgentX protocol work

• The method routines written by the developer that handle specific MIB
elements

• The object table structures generated from MIB definition files using the
mosy and snmpi programs

The subagent is usually embedded within an application, such as a router
daemon. Subagent processing is only a small part of the work performed by
the process. In this case, the main event loop of the application makes the
calls into the eSNMP library. In other cases, the subagent is a standalone
daemon process that has its own main routine.

While processing a packet received from the master agent, the eSNMP
library calls the specified method routine for each requested MIB variable.
Each defined MIB variable in the subagent’s object table has a pointer to
the method routine for handling requests on that MIB variable. Since the
object tables are generated by the mosy and snmpi programs, the method
routine names are static.

The eSNMP developer’s kit provided with the operating system consists
of the following:

• /usr/sbin/mosy — MIB compiler utility

• /usr/sbin/snmpi — Object table code generator utility

• /usr/examples/esnmp/mib-converter.sh — MIB text extraction
tool

• /usr/shlib/libesnmp.so — eSNMP shared library

• /usr/include/esnmp.h — eSNMP definitions file

• /usr/examples/esnmp/* — Subagent example source code

The eSNMP shared library (libesnmp.so) provides the following services:

• Master-agent to subagent protocol handling routines

• Routines for communicating with the master agent on behalf of the
subagent, as follows:

– esnmp_init — Initializes the protocol (performs a handshake with
the master agent)

– esnmp_allocate — Requests the master agent to allocate a value
for one or more specific index objects (OIDs)

– esnmp_deallocate — Requests the master agent to deallocate a
value or values for one or more index objects (OIDs)

– esnmp_register — Registers a MIB subtree with the master agent

– esnmp_poll — Processes a packet from the master agent
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– esnmp_trap — Requests the master agent to generate an SNMP trap

– esnmp_are_you_there — Pings the master agent

– esnmp_unregister — Unregisters a MIB subtree

– esnmp_term — Ends communication with the master agent and
terminates extensible SNMP

– esnmp_sysuptime — Time handling and synchronization

• Support routines useful for developing method routines. See Section 6.3
for a complete list and description of each eSNMP support routine.

• The esnmp.h header file is associated with the eSNMP library. This file
defines all data structures, constants, and function prototyes required to
implement subagents to this API.

6.2.1 MIB Subtrees

Understanding MIB subtrees is crucial to understanding the eSNMP API
and how your subagent will work.

______________________ Note _______________________

This section assumes that you understand the OID naming
structure used in SNMP. If not, refer to RFC 1902: Structure of
Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2).

The information in SNMP is structured hierarchically like an inverted tree.
In this hierarchy, data is only associated with leaf nodes. Each node has a
name and a number. Each node can also be identified by an OID, which
is a concatenation of the non-negative numbers, called sub-identifiers,
that exist on the path from the root node down to that node in the tree.
An OID must be at least two sub-identifiers in length, and can be at most
128 sub-identifiers in length. Valid sub-identifier 1 values range from 0 to
2, inclusive; sub-identifier 2 values range from 0 to 39, inclusive; and the
remaining sub-identifier values can be any non-negative number.

For example, the chess MIB provided with the sample code in the
/usr/examples/esnmp directory has an element with the name chess.
The OID for the element chess is 1.3.6.1.4.1.36.2.15.2.99, which is
derived from its position in the hierarchy of the tree:

iso(1)
org(3)
dod(6)
internet(1)
private(4)
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enterprise(1)
digital(36)
ema(2)
sysobjects(15)
decosf(2)
chess(99)

Any node in the MIB hierarchy can define a MIB subtree. All elements
within the subtree have an OID that starts with the OID of the subtree base.
For example, if we define chess to be a MIB subtree base, the elements with
the same prefix as the chess OID are all within the MIB subtree:

chess 1.3.6.1.4.1.36.2.15.2.99
chessProductID 1.3.6.1.4.1.36.2.15.2.99.1
chessMaxGames 1.3.6.1.4.1.36.2.15.2.99.2
chessNumGames 1.3.6.1.4.1.36.2.15.2.99.3
gameTable 1.3.6.1.4.1.36.2.15.2.99.4
gameEntry 1.3.6.1.4.1.36.2.15.2.99.4.1
gameIndex 1.3.6.1.4.1.36.2.15.2.99.4.1.1
gameDescr 1.3.6.1.4.1.36.2.15.2.99.4.1.2

gameNumMoves 1.3.6.1.4.1.36.2.15.2.99.4.1.3
gameStatus 1.3.6.1.4.1.36.2.15.2.99.4.1.4

moveTable 1.3.6.1.4.1.36.2.15.2.99.5
moveEntry 1.3.6.1.4.1.36.2.15.2.99.5.1
moveIndex 1.3.6.1.4.1.36.2.15.2.99.5.1.1
moveByWhite 1.3.6.1.4.1.36.2.15.2.99.5.1.2
moveByBlack 1.3.6.1.4.1.36.2.15.2.99.5.1.3
moveStatus 1.3.6.1.4.1.36.2.15.2.99.5.1.4

chessTraps 1.3.6.1.4.1.36.2.15.2.99.6
moveTrap 1.3.6.1.4.1.36.2.15.2.99.6.1

It is this MIB subtree base that is registered with the master agent to tell
it that this subagent handles all requests related to the elements within
the subtree.

The master agent expects a subagent to handle all objects subordinate to the
registered MIB subtree. This principle guides your choice of MIB subtrees.

For example, registering a subtree of chess is reasonable because it is
realistic to assume that the subagent could handle all requests for elements
in this subtree. Registering an entire application-specific MIB usually
makes sense because the particular application expects to handle all objects
defined in the application-specific MIB.

Registering a subtree of transmission (under MIB-2) would be a mistake,
because it is unlikely that the subagent is prepared to handle every defined
MIB object subordinate to transmission (FDDI, Token Ring, and so on).

A subagent may register as many MIB subtrees as it wants. It can register
OIDs that overlap with other registrations by itself or other subagents;
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however, it cannot register the same OID more than once. Subagents can
register and unregister MIB subtrees at any time after communication with
the master agent is established.

Normally it is the non-leaf nodes that are registered as a subtree with the
master agent. However, leaf nodes (those representing a MIB variable that
can have an instance and an associated value), or even specific instances,
can be registered as a subtree.

The master agent delivers requests to the subagent that has the MIB
subtree with the longest prefix and the best priority.

6.2.2 Object Tables

The mosy and snmpi utilities are used to generate the C language code
that defines the object tables from the MIBs. The object tables are defined
in the emitted files subtree_tbl.h and subtree_tbl.c, files that are
compiled into your subagent.

These modules are created by the utilities; it is recommended that you
do not edit them. If the MIBs change or a future version of the eSNMP
development utilities require your object tables to be rebuilt, it is easier to
rebuild the files and recompile them if you did not edit the files.

6.2.2.1 The subtree_tbl.h File

The subtree_tbl.h file contains the following information:

• A declaration of the MIB subtree structure

• Index definitions for each MIB variable in the MIB subtree

• Enumeration definitions for MIB variables with enumerated values

• MIB group data structure definitions

• Method routine function prototypes

Declaration of the MIB Subtree Structure

The MIB subtree is automatically initialized by code in the subtree_tbl.c
file. A pointer to this structure is passed to the esnmp_register routine
to register a MIB subtree with the master agent. All access to the object
table for this MIB subtree is through this pointer. The declaration has the
following form:
extern SUBTREE subtree_subtree;

Index Definitions

Index definitions for each MIB variable in the SUBTREE have the following:
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#define I_mib-variable nnnn

These values are unique for each MIB variable within a MIB subtree and
are the index into the object table for this MIB variable. These values are
also generally used to differentiate between variables that are implemented
in the same method routine so they can be used in a switch operation.

Enumeration Definitions

Enumeration definitions for those MIB variables that are defined with
“SYNTAX INTEGER” and enumerated values have the following form:

#define D_mib-variable_enumeration-name value

Enumeration definitions are useful since they describe the architected value
that enumerated integer MIB variables may take on; for example:

/* enumerations for gameEntry group */
#define D_gameStatus_complete 1
#define D_gameStatus_underway 2
#define D_gameStatus_delete 3

Data Structure Definitions

MIB group data structure definitions have the following form:

typedef struct xxx {
type mib-variable;

...
char mib-variable_mark;

...
} mib-group_type

A data structure is emitted for each MIB group within the MIB subtree.
Each structure definition contains a field representing each MIB variable
within the group. If the MIB variable name is not unique within the pool
of MIBs presented to the snmpi program at the time the subtree_tbl.h
file is built, the snmpi program does not qualify the name with the name of
its parent variable (group name) to make it unique. In addition to the MIB
variable fields, the structure includes a 1-byte mib-variable_mark field for
each variable. You can use these for maintaining status of a MIB variable;
for example, the following is the group structure for the chess MIB:

typedef struct _chess_type {
OID chessProductID;
int chessMaxGames;
int chessNumGames;

char chessProductID_mark;
char chessMaxGames_mark;
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char chessNumGames_mark;
} chess_type;

MIB group structures are provided for convenience, but are not mandatory.
You can use whatever structure is easiest for you in your method routine.

Method Routine Function Prototypes

Each MIB group within the MIB subtree has a method routine prototype
defined. A MIB group is a collection of MIB variables that are leaf nodes
and share a common parent node.

There is always a function prototype for the method routine that handles
the Get, GetNext, and GetBulk operations. If the group contains any
writable variables, there is also a function prototype for the method routine
that handles Set operations. Pointers to these routines appear in the MIB
subtree’s object table, which is initialized in the subtree_tbl.c module.
You must write method routines for each prototype that is defined, as follows:
extern int mib-group_get(

METHOD *method);

extern int mib-group_set(
METHOD *method);

For example:

extern int chess_get(METHOD *method);
extern int chess_set(METHOD *method);

Method routines are discussed in more detail in Section 6.3.2.3.

6.2.2.2 The subtree_tbl.c File

The subtree_tbl.c file contains the following information:

• An array of integers representing the OIDs for each MIB variable

• An array of OBJECT structures. (See esnmp.h.)

• The initialized SUBTREE structure

Array of Integers

The array of integers used as the OIDs of each MIB variable in the MIB
subtree has the following form:

static unsigned int elems[] = { ...

OBJECT Structures

There is one OBJECT for each MIB variable within the MIB subtree. (See
esnmp.h.)

An OBJECT represents a MIB variable and has the following fields:
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• object_index — The constant I_mib-variable from the
subtree_tbl.h file.

• oid — The variable’s OID (points to a part of elems[]).

• type — The variable’s data type.

• getfunc — The address of method routine to call for Get operations.

• setfunc — The address of method routine to call for Set operations.

The master agent has no knowledge of object tables or MIB variables. It only
maintains a registry of MIB subtrees. When a request for a particular MIB
variable arrives, it is processed as follows. In the following procedure, the
MIB variable is mib_var and the MIB subtree is subtree_1:

1. The master agent finds subtree_1 as the authoritative region for the
mib_var in the registry of MIB subtrees. The authoritative region is
determined as the registered MIB subtree that has the longest prefix
and the best priority.

2. The master agent sends an eSNMP message to the subagent that
registered subtree_1.

3. The subagent consults its list of registered MIB subtrees and locates
subtree_1. It searches the object table of subtree_1 and locates the
following:

– mib_var (for Get and Set requests)

– The first object lexicographically after mib_var (for GetNext or
GetBulk requests)

4. The subagent calls the appropriate method routine. If the method
routine completes successfully, the data is returned to the master agent.
If not, for Get or Set, an error is returned. For GetNext or GetBulk,
the libesnmp library code keeps trying subsequent objects in the object
table of subtree_1 until a method routine returns success or the table
is exhausted. In either case an appropriate response is returned.

5. If the master agent detects subtree_1 could not return data on a
GetNext or GetBulk routine, it iteratively tries the MIB subtree
lexicographically after subtree_1 until a subagent returns a value or
the registry of MIB subtrees is exhausted.

Initialized SUBTREE Structure

A pointer to the SUBTREE structure is passed to the esnmp_register
eSNMP library routine to register the MIB subtree. It is through this
pointer that the library routines find the object structures. The following is
an example of the chess subtree structure:
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SUBTREE chess_subtree = { "chess", "1.3.6.1.4.1.36.2.15.2.99",
{ 11, &elems[0] }, objects, I_moveStatus};

The SUBTREE structure has the following elements:

• name — The name of the base node of the MIB subtree.

• dots — The ASCII string representation of the MIB subtree’s OID; it
is what actually gets registered.

• oid — The OID of the base node of the subtree; it points back to the
array of integers.

• object_tbl — A pointer to the array of objects in the object table. It is
indexed by the I_xxxx definitions found in the subtree_tbl.h file.

• last — The index of the last object in the object_tbl file. It is used to
determine when the end of the table has been reached.

The final section of the subtree_tbl.c contains short routines for
allocating and freeing the mib-group_type structures. These are provided
as a convenience and are not a required part of the API.

6.2.3 Implementing a Subagent

As a subagent developer, you are usually presented with a UNIX application,
daemon, or driver (such as the gated daemon or ATM driver) and need to
implement an SNMP interface. The following steps explain how you do this:

1. Obtain a MIB specification.

MIB development starts with a MIB specification, usually in the form
of RFCs. For SNMPv1, the specifications are written in concise MIB
format according to RFC 1212. For SNMPv2c, the specifications are
written in SMIv2 and the textual conventions as specified in RFC 1902
and RFC 1903, respectively. Designing and specifying a MIB is beyond
the scope of this document; it is assumed you have a MIB specification.

The standard RFCs can be obtained from the RFC editor at the
following URL:

http://www.rfc-editor.org/rfc.html

If you have to build your own MIB specification, you can look at a similar
MIB written by another vendor. One source for public MIBs is in the
archives section of the Network Management page at the following URL:

http://smurfland.cit.buffalo.edu/NetMan/index.html

You need MIBs for all of the elements you are implementing in the
subagent and for any elements referenced by these MIBs (such that
all element names resolve to the OID numbers). As a minimum you
will need the SMIv2 MIB, snmp-smi.my, and the textual conventions,
snmp-tc.my. These are in the /usr/examples/esnmp directory.
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2. Compile your MIBs.

Once you obtain MIB definitions, use them to generate the object tables
for your new subagent. The objective is to take the MIB specification
text for each of the MIBs, extract the ASN.1 specifications, and compile
them into C language modules that contain the local object tables.

Compile your MIBs using the following tools:

– mib-converter.sh

The mib-converter.sh is an awk shell script that extracts the
MIB ASN.1 definitions from the RFC text. This step removes the
text before and after the MIB definition and removes page headings
and footings.

The mib-converter.sh script may not remove everything that
needs to be removed; therefore, you may need to remove some things
manually, using a text editor. The following is an example of how to
use the mib-converter.sh script:

# /usr/examples/esnmp/mib-converter.sh mib-def.txt > \
mib-def.my

Be careful; some RFCs contain more than one MIB definition. You
can only use the mib-converter.sh script shell on RFCs that
contain a single MIB definition. The mosy compiler may not handle
it either. If you use an RFC that contains more than one MIB
definition, make each one into a separate input file. The resulting
output files containing the extracted MIB ASN.1 definitions should
be in the following form:
mib-def.my

– mosy

The mosy compiler parses .my files created by the
mib-converter.sh script and compiles them into .defs files. The
.defs files describe the object hierarchy within the MIB. The .defs
files are front-ends to several tools. The following is an example of
how to use the mosy compiler:

# mosy mib-def.my

The mosy compiler produces mib-def.defs files.

The mosy program is taken from ISODE 8.0 (distributed with the
4BSD/ISODE SNMPv2 package).

– snmpi

The MIB data initializer creation program (snmpi) reads a
concatenation of the .def files compiled by the mosy compiler and
generates the C code to define the static structures of the object
table for a specified MIB subtree.
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___________________ Note ___________________

The snmpi program supplied with this operating system
is different from the snmpi program in 4BSD/ISODE
SMUX.

Concatenate the .def files the mosy compiler compiles into the
objects.defs file. Be sure to include the compiled versions of
snmp-smi.my and snmp-tc.my. The objects.defs file must
contain enough MIBs to resolve all MIB names, even if they are not
used by your subtrees. Then generate the object table files using
the following command:

# /usr/sbin/snmpi objects.defs subtree

The snmpi program has a print option that allows you to dump the
contents of the entire tree generated as a result of the objects it
finds into the objects.defs file. If you are having trouble with
the subtrees you may find this to be helpful. Use the following
command to generate a listing:

# /usr/sbin/snmpi -p objects.defs > objects.txt

The snmpi program outputs the subtree_tbl.c and
subtree_tbl.h; subtree is the name of the base MIB variable
name for a MIB subtree. These two files are C code used to initialize
the MIB object table for the specified subtree. (This is the local object
table.) Repeat this process for each MIB subtree being implemented
in your subagent. Note that the snmpi program defaults to using
MIB groups as the level of granularity for method routines; that
is, the assumption is made that all MIB variables within a group
should be serviced by the same method routine. (It also provides the
mib-group_type data structure to help do this.)

The mib-group_type structure is not part of the API; it is provided
as a convenience. It is helpful to use the mib-group organization of
the object table. This is because, generally, those objects are logically
related and usually accessed as a group; for example, ipRoutes are
returned more or less complete from the kernel routing tables.

3. Code the method routines and the API calls.

Write the code that calls the eSNMP library API to initialize
communications with the master agent (snmpd), and register your
MIBs. (See Section 6.2.4.)

Write the code for the required method routines. (See Section 6.3.)
Usually you need one Get method routine and one Set method
routine for each MIB group within your registered MIB subtree. The
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subtree_tbl.h files generated in the previous step define the names
and function prototype for each method routine you need.

4. Build the subagent.

An example Makefile, chess.mk, is provided in the /usr/exam-
ples/esnmp directory.

5. Execute and test your subagent.

Run your subagent like any other program or daemon. There are
trace facilities built into the eSNMP library routines to assist in the
debugging process. Use the set_debug_level routine in the main
section to enable the trace.

Once the subagent has initialized and successfully registered a MIB
subtree, you can send SNMP requests using standard applications.
For example, HP Insight Manager, HP Openview, or any MIB browser.
If you do not have access to SNMP applications, you can use the
snmp_request, snmp_traprcv, and snmp_trapsnd programs to help
debug subagents.

Note that if you interactively debug, your subagent will probably cause
SNMP requests to timeout.

Normally all error and warning messages are recorded in the system’s
daemon log. When running the sample chess subagent and the
os_mibs subagent, you specify a trace run-time argument, as follows:

os_mibs -trace

With the trace option active, the program does not run as a daemon
and all trace output goes to stdout; it displays each message that is
processed.

You can use this feature in your own subagents by calling the
set_debug_level routine and pass it the TRACE parameter.

Anything passed in the debug macro is sent to stdout, as follows:
ESNMP_LOG ((TRACE, ("message_text \n"));

To send everything to the daemon log, call the set_debug_level
routine and pass it the WARNING || DAEMON_LOG parameter or the
set_debug_level routine and pass it the ERROR || DAEMON_LOG
parameter to suppress warning messages.

6.2.4 Subagent Protocol Operations

The eSNMP API provides for autonomous subagents that are not closely tied
to the master agent (snmpd). Subagents can be part of other subsystems or
products and have primary functions not related to SNMP. For instance, the
gated daemon is primarily concerned with Internet routing; however it
also functions as a subagent.
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In particular, the snmpd daemon does not start or stop any subagent
daemons during its startup or shutdown procedures. It also does not
maintain any on-disk configuration information about subagents. Whenever
the snmpd daemon starts, it has no knowledge of previous subagent or MIB
subtree registrations.

Typically all daemons on the operating system system are started or
stopped together, as the system changes run levels. But subagents should
correctly handle situations where they start before the snmpd daemon, or
are running while the snmpd daemon is restarted to reload information
from its configuration file. In these situations subagents need to restart the
eSNMP protocol as described in the following sections.

6.2.4.1 Order of Operations

The sequence of subagent protocol operations are as follows:

1. Initialization (esnmp_init)

2. Allocate any needed indexes for tables shares across multiple subagents
(esnmp_allocate)

3. Registration (esnmp_register [esnmp_register ...])

4. Data communication

The following loop happens continuously:

{
determine sockets with data pending

if the eSNMP socket has data pending
esnmp_poll

periodically call esnmp_are_you_there as required
during periods of inactivity

}

5. Termination (esnmp_term)

Note that it is very important that subagents call the esnmp_term
function when they are stopping. This enables eSNMP to free system
resources being used by the subagent.

The example subagent in the /usr/examples/esnmp directory shows how
to code subagent protocol operations.

6.2.4.2 Function Return Values

The eSNMP API function return values indicate to a subagent both the
success or failure of the requested operation and the state of the master
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agent. The following list provides a description of each return value and the
indicated subagent actions:

• ESNMP_LIB_OK

The operation was successful.

• ESNMP_LIB_NO_CONNECTION

The connection between the subagent and the master agent could not be
initiated. This value is returned by the esnmp_init function.

– Causes — The master agent is not running or is not responding.

– Action — Restart the protocol by calling the esnmp_init function
again after a suitable delay.

• ESNMP_LIB_BAD_ALLOC

Cannot allocate the index or indexes. This value is returned by the
esnmp_allocate function.

– Causes are as follows:

� The esnmp_init function has not been successfully called prior
to calling the esnmp_allocate function.

� One of the parameters in the esnmp_allocate function is
invalid. See the log file to determine which parameter is invalid.

– Action — Call the esnmp_allocate function in the proper sequence
and with correct arguments.

• ESNMP_LIB_BAD_DEALLOC

Cannot deallocate the index or indexes. This value is returned by the
esnmp_deallocate function.

– Causes are as follows:

� The esnmp_init function has not been successfully called prior
to calling the esnmp_allocate function.

� One of the parameters in the esnmp_deallocate function is
invalid. See the log file to determine which parameter is invalid.

– Action — Call the esnmp_deallocate function in the proper
sequence and with correct arguments.

• ESNMP_LIB_LOST_CONNECTION

Lost communications with the master agent. This value is returned
by the esnmp_register, esnmp_poll, esnmp_are_you_there,
esnmp_unregister, and esnmp_trap functions.

– Causes — An attempt to send a packet to the master agent’s
socket failed; this is normally due to the master agent terminating
abnormally.
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– Action — Restart the protocol by calling the esnmp_init function
after a suitable delay.

• ESNMP_LIB_BAD_REG

The attempt to send a registration failed. This value is returned by the
esnmp_register, esnmp_unregister, and esnmp_poll. functions.

– Causes are as follows:

� The esnmp_init function has not been successfully called prior
to calling the esnmp_register function.

� The timeout parameter in the esnmp_register function is
invalid.

� The subtree passed to the esnmp_register function has already
been queued for registration or has been registered by this
subagent.

� A previous registration was failed by the master agent (when
returned by the esnmp_poll function). See the log file to
determine the details regarding why it failed and which subtree
was at fault.

� Trying to unregister a subtree that was not registered
(esnmp_unregister).

– Action — Call the esnmp_register function in the proper sequence
and with correct arguments.

• ESNMP_LIB_CLOSE

The master agent is stopping. This value is returned by the esnmp_poll
function.

– Causes — The master agent is beginning an orderly shutdown.

– Action — Restart the protocol with the esnmp_init function as
suited by the subagent.

• ESNMP_LIB_NOTOK

An eSNMP protocol error occurred and the packet was discarded. This
value is returned by the esnmp_poll and esnmp_trap functions.

– Causes — This indicates a packet-level protocol error within eSNMP,
probably due to lack of memory resources within the subagent.

– Action — Continue.

6.3 Extensible SNMP Application Programming Interface

The following sections provide detailed information on the SNMP Application
Programming Interface, which consists of the following:

6–18 Extensible SNMP Application Programming Interface



• Calling interface

• Method routine calling interface

• The libesnmp support routines

6.3.1 Calling Interface

The calling interface contains the following routines:

• esnmp_init

• esnmp_allocate

• esnmp_deallocate

• esnmp_register

• esnmp_register2

• esnmp_unregister

• esnmp_unregister2

• esnmp_capabilities

• esnmp_uncapabilities

• esnmp_poll

• esnmp_are_you_there

• esnmp_trap

• esnmp_term

• esnmp_sysuptime

6.3.1.1 The esnmp_init Routine

The esnmp_init routine locally initializes the eSNMP subagent, and
initiates communication with the master agent.

This call does not block waiting for a response from the master agent. After
calling the esnmp_init routine, call the esnmp_register routine for each
MIB subtree that is to be handled by this subagent.

Call this routine during program initialization or to restart the eSNMP
protocol. If you are restarting, the esnmp_init routine clears all
registrations so each subtree must be reregistered.

You should attempt to create a unique subagent_identifier, perhaps
using the program name (argv[0]) and additional descriptive text.

The syntax for the esnmp_init routine is as follows:
int esnmp_init(

int *socket,
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char *subagent_identifier);

The arguments are defined as follows:

socket

The address of the integer that receives the socket descriptor used
by eSNMP.

subagent_identifier

The address of a null-terminated string that identifies this subagent
(usually program name).

The return values are as follows:

ESNMP_LIB_NO_CONNECTION

Could not initialize or communicate with the master agent. Try again
after a delay.

ESNMP_LIB_OK

The esnmp_init routine has completed successfully.

ESNMP_LIB_NOTOK

Could not allocate memory for the subagent.

The following is an example of the esnmp_init routine:

#include <esnmp.h>
int socket;
status = esnmp_init(&socket, "gated");

6.3.1.2 The esnmp_allocate Routine

The esnmp_allocate routine requests the allocation of a value for one or
more specific index objects.

Index allocation is a service provided by an AgentX-compliant master
agent. It provides generic support for sharing MIB conceptual tables among
subagents who are assumed to have no knowledge of each other. The master
agent maintains a database of index objects (OIDs) and the values that
have been allocated for each index. The master agent is unaware of what
MIB variables (if any) the index objects represent. By convention, subagent
developers should use the MIB variable listed in the INDEX clause as the
index object for which values must be allocated.
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For tables indexed by multiple variables, values may be allocated for each
index although this is frequently unnecessary. The subagent may request
one of the following types of allocation:

• A specific index value

• An index value that is not currently allocated

• An index value that has never been allocated
The last two alternatives reflect the uniqueness and constancy requirements
present in many MIB specifications for arbitrary integer indexes; for
example, ifIndex in the IF-MIB (RFC 2233), snmpFddiSMTIndex in the
FDDI MIB (RFC 1285), and sysApplInstallPkgIndex in the System
Application MIB (RFC 2287). The need for subagents to share tables using
such indexes is the main motivation for an index allocation mechanism.

Index allocation and MIB region registration are not coupled in the master
agent. The master agent does not consider its current state of index
allocations when processing registration requests and does not consider its
current registry when processing index allocation requests. This is mainly to
accommodate non-AgentX subagents.

Subagent developers should request the allocation of an index first. Then,
they should register the corresponding region. When done in this order, a
successful index allocation request gives a subagent a good hint (but no
guarantee) of what it should be able to register. The registration might fail
because some other subagent has already registered that row of the table.

Subagents should register conceptual rows in a shared table in the following
order:

1. Allocate an index value successfully.

2. Use the allocated index value or values in the instance field in the
ESNMP_REG structure that is passed to the esnmp_register2 routine.
In this way, the eSNMP subagent developer can fully qualify the MIB
region or regions specified by the subtree and any range_subid and
range_upper_bound fields in that ESNMP_REG structure. Subagent
developers should set the priority field to 255 when attempting
registrations with instances.

3. If the registration fails with a result code of
ESNMP_REG_STATE_REGDUP, deallocate the previously allocated
index value or values for this row with the esnmp_deallocate routine
and begin the process again at step 1.

Note that index allocation is necessary only when an index is an arbitrary
value and the subagent developer cannot determine which index values
to use. When index values have intrinsic meaning, subagents should not
allocate their index values. For example, in RFC 1514 the table of running
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software processes (hrSWRunTable) is indexed by the system’s native
process identifier (pid). A subagent implementing the row of hrSWRunTable
corresponding to its own process would register the region defining that
row’s object instances; it is not necessary to allocate index values.

The syntax for the esnmp_allocate routine is as follows:
int esnmp_allocate(

ESNMP_ALLOC *alloc_parm);

The arguments are as follows:

alloc_parm

Is a pointer to a ESNMP_ALLOC structure. The caller must keep this
structure and its referenced VARBIND list persistent (in memory). This
is necessary in order for the eSNMP runtime library to update fields
with the result of the index allocation request provided by the master
agent. The structure contains the following fields:

vb

A pointer to a variable binding list containing one or more
VARBINDs. Each VARBIND in the list contains the name of an
index object to be allocated a value. You must always supply a
value for each varbind.

When neither the ESNMP_ALLOC_ANY_INDEX nor the
ESNMP_ALLOC_NEW_INDEX flags are specified, the master
agent uses all supplied values when processing the index allocation
request. When either the ESNMP_ALLOC_ANY_INDEX or the
ESNMP_ALLOC_NEW_INDEX flag is specified, the master agent
ignores all supplied values and generates an appropriate value
for each VARBIND when processing the index allocation request.

options

A bitmask of the following values:

ESNMP_ALLOC_CLUSTER

The index allocation request is for the cluster context.

ESNMP_ALLOC_NEW_INDEX

This index allocation request is for a new value. The master
agent will generate a value for each VARBIND that has not
been used since it started running. These values will be
passed back in the successful response.
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ESNMP_ALLOC_ANY_INDEX

This index allocation request is for an unused value. The
master agent will generate a value for each VARBIND that
may or may not have been used since it started running.
These values will be passed back in the successful response.

status

One of the following integer values that provides the caller
with asynchronous updates of the state of the index allocation
request. After the return of the esnmp_poll routine, the caller
can inspect this parameter. For the following status codes, the
alloc->error_index field contains a value of zero (0):

ESNMP_ALLOC_STATE_PENDING

The index allocation request is currently held locally while
waiting for a connection to the master agent to become
established.

ESNMP_ALLOC_STATE_SENT

The routine sent the index allocation request to the master
agent (final status still pending).

ESNMP_ALLOC_STATE_DONE

The master agent successfully processed and acknowledged
the index allocation request. The subagent can
now use the allocated index value or values in the
esnmp_reg->instance field that is passed to the
esnmp_register2 call.

For the following status codes, the alloc->error_index field
contains a non-zero value:

ESNMP_ALLOC_STATE_ALLOCTYPE

The master agent rejected the index allocation request
because of a wrong index type or wrong options.

ESNMP_ALLOC_STATE_ALLOCINUSE

The master agent rejected the index allocation request
because the supplied index object value or values are
currently in use.
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ESNMP_ALLOC_STATE_ALLOCAVAIL

The master agent rejected the index allocation request
because it had no available value or values for the
requested index object. This status is returned only
if you specify the ESNMP_ALLOC_NEW_INDEX or
ESNMP_ALLOC_ANY_INDEX option.

ESNMP_ALLOC_STATE_ALLOCNOCLU

The master agent rejected the index allocation request
because the cluster context option is not supported.

ESNMP_ALLOC_STATE_REJ

The master agent rejected the index allocation request
because of other reasons.

error_index

Identifies the VARBIND (starting from 1) in the alloc.vb varbind
list to which the status code applies. After the return of the
esnmp_poll routine, the caller can inspect this parameter.

The return values are as follows:
ESNMP_LIB_NOTOK

The alloc_parm argument was not specified.

ESNMP_LIB_OK

The esnmp_allocate routine has completed successfully.

ESNMP_LIB_LOST_CONNECTION

The subagent lost communication with the master agent.

ESNMP_LIB_BAD_ALLOC

The subagent has not established a connection with the master
agent or no valid VARBIND list was dereferenced by the alloc_parm
argument. A message is also in the log file.

Note that the return value indicates only initiation of an index allocation
request. The actual status code returned in the master agent’s response
will be returned in a subsequent call to the esnmp_poll routine in the
alloc->status and alloc->error_index fields.

The following is an example of the esnmp_allocate routine:
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#define INDENT_SIZE 4
#define RESPONSE_TIMEOUT 0 /* use the default time set

in esnmp_init message */
#define REGISTRATION_PRIORITY 128 /* priority at which the MIB

subtree will register */
#define RANGE_SUBID 10 /* the identifier position in

oid->elements just after ifEntry */
#define RANGE_UPPER_BOUND 22 /* the identifier for ifSpecific, under ifEntry */

int rc, status;
unsigned int our_ifIndex_instance = 0;
int ready_to_register = 0;
int have_a_good_registration = 0;
extern SUBTREE ifEntry_subtree; /* generated by /usr/sbin/snmpi -r ifEntry */
OBJECT *ifIndex_object = &ifEntry_subtree.object_tbl[I_ifIndex];
static ESNMP_ALLOC esnmp_alloc_for_ifIndex; /* retain this structure to obtain status

code and index object values. Also,
retain this structure for a subsequent
call to esnmp_deallocate */

static ESNMP_REG esnmp_reg_for_ifEntry; /* retain this structure for a subsequent
call to esnmp_unregister2 */

static OID ifEntry_instance_oid;
VARBIND *vb;
\*
* initialize the ESNMP_ALLOC structure
*\
memset(&esnmp_alloc_for_ifIndex, 0, sizeof(ESNMP_ALLOC));

esnmp_alloc_for_ifIndex.options = ESNMP_ALLOC_NEW_INDEX;
esnmp_alloc_for_ifIndex.vb = vb = (VARBIND *)malloc(sizeof(VARBIND));
bzero((char *)vb, sizeof(VARBIND));
clone_oid(&vb->name, &ifIndex_object->oid);
o_integer(vb, ifIndex_object, (unsigned long)0); /* master will return actual

value assigned */
while(!have_a_good_registration) {

status = esnmp_allocate(&esnmp_alloc_for_ifIndex );
if (status != ESNMP_LIB_OK) {

printf("Could not queue the ’ifIndex’ \n");
printf("index object for index allocation\n")

}
.
.
.
rc = esnmp_poll();
.
.
.
if (esnmp_alloc_for_ifIndex.status > ESNMP_ALLOC_STATE_SENT) {

/*
* esnmp_alloc_for_ifIndex.status nows contain the final
* status from the master agent.
*/

switch(esnmp_alloc_for_ifIndex.status) {
case ESNMP_ALLOC_STATE_DONE

our_ifIndex_instance = esnmp_alloc_for_ifIndex.vb->value.ul;
ready_to_register = 1;
printf("\n*** Successful index allocation. Our conceptual row in the");
printf("\n*** interfaces table was allocated. ifIndex value is %i\n\n",

our_ifIndex_instance);
break;

case ESNMP_ALLOC_STATE_ALLOCTYPE:
printf("\n*** Failed index allocation - ’allocation type’");
printf("\n*** associated with supplied varbind #%i.\n\n",

esnmp_alloc_for_ifIndex.error_index);
break;

case ESNMP_ALLOC_STATE_ALLOCINUSE:
printf("\n*** Failed index allocation - ’allocation in use’");
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printf("\n*** associated with supplied varbind #%i.\n\n",
esnmp_alloc_for_ifIndex.error_index);

break;
case ESNMP_ALLOC_STATE_ALLOCAVAIL:

printf("\n*** Failed index allocation - ’no available values’");
printf("\n*** associated with supplied varbind #%i.\n\n",

esnmp_alloc_for_ifIndex.error_index);
break;

case ESNMP_ALLOC_STATE_ALLOCNOCLU:
printf("\n*** Failed index allocation - ’cluster context not supported’");
printf("\n*** associated with supplied varbind #%i.\n\n",

esnmp_alloc_for_ifIndex.error_index);
esnmp_alloc_for_ifIndex.options &= ~ESNMP_ALLOC_CLUSTER;
break;

case ESNMP_ALLOC_STATE_REJ:
printf("\n*** failed index allocation - ’other reasons’");
printf("\n*** associated with supplied varbind #%i.\n\n",

esnmp_alloc_for_ifIndex.error_index);
break;

} /* End switch */
} /* End if */
if (ready_to_register) {

vb = esnmp_alloc_for_ifIndex.vb;
memset(&esnmp_reg_for_ifEntry, 0, sizeof(ESNMP_REG));
esnmp_reg_for_ifEntry.subtree = &ifEntry_subtree;
esnmp_reg_for_ifEntry.priority = REGISTRATION_PRIORITY;
esnmp_reg_for_ifEntry.timeout = RESPONSE_TIMEOUT;
esnmp_reg_for_ifEntry.range_subid = RANGE_SUBID;
esnmp_reg_for_ifEntry.range_upper_bound = RANGE_UPPER_BOUND;

ifEntry_instance_oid.nelem = 1;
ifEntry_instance_oid.elements = &our_ifIndex_instance;
esnmp_reg_for_ifEntry.instance = (OID *)malloc(sizeof(OID));
esnmp_reg_for_ifEntry.instance = clone_oid(esnmp_reg_for_ifEntry.instance,

&ifEntry_instance_oid);
status = esnmp_register2(&esnmp_reg_for_ifEntry);
if (status != ESNMP_LIB_OK) {

printf("Could not queue the registration for ’ifEntry’\n");
}
else {

.

.

.
rc = esnmp_poll();
.
.
.
if (esnmp_reg_for_ifEntry.state > ESNMP_REG_STATE_SENT) {

/*
* esnmp_reg_for_ifEntry.status nows contain the final
* status from the master agent.
*/

switch(esnmp_reg_for_ifEntry.state) {
case ESNMP_REG_STATE_DONE:

printf("\n*** Successful registration for conceptual row in");
printf("\n*** the interfaces table indexed by an ifIndex");
printf("\n*** value of %i.\n\n", our_ifIndex_instance);
have_a_good_registration = 1;
break;

case ESNMP_REG_STATE_REGDUP:
printf("\n*** Failed registration - Duplicate registration.");
printf("\n*** We need to deallocate this ifIndex value and";
printf("\n*** allocate a new value\n\n");
break;

case ESNMP_REG_STATE_REGNOCLU:
printf("\n*** Failed registration - Cluster context not supported.");
printf("\n*** Need to deallocate this ifIndex value and to");
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printf("\n*** allocate a new value in the default context\n\n");
esnmp_alloc_for_ifIndex.options &= ~ESNMP_ALLOC_CLUSTER;
break;

case ESNMP_REG_STATE_REJ:
printf("\n*** Failed registration - Other reasons\n\n");
break;

}
if (!have_a_good_registration) {

esnmp_deallocate(&esnmp_alloc_for_ifIndex);
ready_to_register = 0;
rc = esnmp_poll();
free_oid(esnmp_reg_for_ifEntry.instance);
free(esnmp_reg_for_ifEntry.instance);
esnmp_reg_for_ifEntry.instance = NULL;

}
}

}
}

}

6.3.1.3 The esnmp_deallocate Routine

The esnmp_deallocate routine requests the master agent to deallocate a
value or values previously allocated to this subagent for one or more index
objects.

Upon receiving an index deallocation request, the master agent updates
its database of index objects (OIDs) by marking the specified values as
deallocated. These released values are considered available for assignment
by subsequent index allocation requests.

The syntax for the esnmp_deallocate routine is as follows:
int esnmp_deallocate(

ESNMP_ALLOC *alloc_parm);

The arguments are as follows:

alloc_parm

Is a pointer to an ESNMP_ALLOC structure. Typically, this is the same
structure used in a previous call to esnmp_allocate. The caller must
keep this structure and its referenced VARBIND list persistent (in
memory). This is necessary in order for the eSNMP runtime library to
update fields with the result of the index allocation request provided by
the master agent. The structure contains the following fields:

vb

A pointer to a variable binding list containing one or more
VARBINDs. Each VARBIND in the list contains the name and the
value of an index object previously allocated.

options

A bitmask of the following values:
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ESNMP_ALLOC_CLUSTER

The index allocation request is for the cluster context.

status

One of the following integer values that provides the caller with
asynchronous updates of the state of the index deallocation
request. After the return of the esnmp_poll routine, the caller
can inspect this parameter. For the following status codes, the
alloc->error_index field contains a value of zero (0):

ESNMP_ALLOC_STATE_SENT

The index deallocation request was sent to the master agent
(final status still pending).

ESNMP_ALLOC_STATE_DONE

The master agent successfully processed and acknowledged
the index deallocation request. The master agent can
now reuse the index value or values when processing a
subsequent index allocation request.

For the following status codes, the alloc->error_index filed
contains a non-zero value:
ESNMP_ALLOC_STATE_DEALLOC_REJ

The master agent rejected the index deallocation request
because of an unknown allocation.

ESNMP_ALLOC_STATE_REJ

The master agent rejected the index deallocation request
because of other reasons.

error_index

Identifies the VARBIND (starting from 1) in the alloc.vb
list to which the status code applies. After the return of the
esnmp_poll routine, the caller can inspect this parameter.

The return values are as follows:
ESNMP_LIB_NOTOK

The alloc_parm argument was not specified.

ESNMP_LIB_OK

The esnmp_allocate routine has completed successfully.
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ESNMP_LIB_LOST_CONNECTION

The subagent lost communication with the master agent.

ESNMP_LIB_BAD_DEALLOC

The subagent has not established a connection with the master
agent or no valid VARBIND list was dereferenced by the alloc_parm
argument. See the log file.

Note that the return value indicates only initiation of an index deallocation
request. The actual status code returned in the master agent’s response
will be returned in a subsequent call to the esnmp_poll routine in the
alloc->status and alloc->error_index fields.

The following is an example of the esnmp_deallocate routine:

#include <esnmp.h>

int status;
static ESNMP_ALLOC esnmp_alloc_for_ifIndex; /* structure retained from a previous call

to esnmp_allocation(). Retain this
structure for update with final status
from the master agent */

/* call to unregister2() goes here */
esnmp_alloc_for_ifIndex.options = 0; /* clear options */
status = esnmp_deallocate( &esnmp_alloc_for_ifIndex );
if (status != ESNMP_LIB_OK) {

printf("Could not queue the ’ifIndex’ \n");
printf("index object for index allocation\n");

}
.
.
.

esnmp_poll();
.
.
.

if (esnmp_alloc_for_ifIndex.status > ESNMP_ALLOC_STATE_SENT) {
/*
* the final status from the master agent is available
*/

switch(esnmp_alloc_for_ifIndex.status) {
case ESNMP_ALLOC_STATE_DONE:

printf("Successful index deallocation for value(s) associated\n");
printf("with the ’ifIndex’ index object.\n");
free_varbind(esnmp_alloc_forifIndex.vb);
break;

case ESNMP_ALLOC_STATE_DEALLOC_REJ:
printf("Failed index deallocation due to ’unknown allocation’\n");
printf("associated with supplied varbind #%i.\n",

esnmp_alloc_for_ifIndex.error_index);
break;

case ESNMP_ALLOC_STATE_REJ:
printf("Failed index deallocation due to ’other reasons’\n");
printf("associated with supplied varbind #%i.\n",

esnmp_alloc_for_ifIndex.error_index);
break;

}
}
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6.3.1.4 The esnmp_register Routine

The esnmp_register routine requests registration of a single MIB subtree.
This indicates to the master agent that the subagent instantiates MIB
variables within the registered MIB subtree.

The initialization routine (esnmp_init) must be called prior to calling
the esnmp_register routine. The esnmp_register function must be
called for each SUBTREE structure corresponding to each MIB subtree that it
will be handling. At any time MIB subtrees can be unregistered by calling
esnmp_unregister and then be reregistered by calling esnmp_register.

When restarting the eSNMP protocol by calling esnmp_init, all MIB
subtree registrations are cleared. All MIB subtrees must be reregistered.

A MIB subtree is identified by the base MIB variable name and its
corresponding OID. This tuple represents the parent of all MIB variables
that are contained in the MIB subtree; for example, the MIB-2 tcp subtree
has an OID of 1.3.6.1.2.1.6. All MIB variables subordinate to this (those
that have the same first 7 identifiers) are included in the subtree’s region.
A MIB subtree can also be a single MIB variable (a leaf node) or even a
specific instance.

By registering a MIB subtree, the subagent indicates that it will process
SNMP requests for all MIB variables (or OIDs) within that MIB subtree’s
region. Therefore, a subagent should register the most fully qualified
(longest) MIB subtree that still contains its instrumented MIB variables.

The master agent requires that a subagent cannot register the same MIB
subtree more than once. Other than this one restriction, a subagent may
register MIB subtrees that overlap the OID range of MIB subtrees that it
previously registered or those of MIB subtrees registered by other subagents.

For example, consider the two Tru64 UNIX daemons, os_mibs and
gated. The os_mibs daemon registers the ip MIB subtree (1.3.6.1.2.1.4)
and the gated daemon registers the ipRouteEntry MIB subtree
(1.3.6.1.2.1.4.21.1). Requests for ip MIB variables within ipRouteEntry,
such as ipRouteIfIndex (1.3.6.1.2.1.4.21.1.2), are passed to the gated
subagent. Requests for other ip variables, such as ipNetToMediaIfIndex
(1.3.6.1.2.1.4.22.1.1), are passed to the os_mibs subagent. If the gated
process should terminate or unregister the ipRouteEntry MIB subtree,
subsequent requests for ipRouteIfIndex will go to the os_mibs
subagent because the ip MIB subtree, which includes all ipRouteEntry
MIB variables, would now be the authoritative region of requests for
ipRouteIfIndex.

When the master agent receives a SIGUSR1 signal, it puts its MIB registry in
to the /var/tmp/snmpd_dump.log file. See snmpd(8) for more information.
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The syntax for the esnmp_register routine is as follows:
int esnmp_register(

SUBTREE *subtree,
int timeout,
int priority);

The arguments are defined as follows:

subtree

A pointer to a SUBTREE structure corresponding to the MIB subtree
to be handled. The SUBTREE structures are externally declared
and initialized in the code emitted by the mosy and snmpi utilities
(xxx_tbl.c and xxx_tbl.h, where xxx is the name of the MIB
subtree) taken directly from the MIB document.

____________________ Note ____________________

All memory pointed to by the subtree fields must have
permanent storage since it is referenced by libesnmp for
the duration of the program. You should use the data
declarations emitted by the snmpi utility.

timeout

The number of seconds the master agent should wait for responses
when requesting data in this MIB subtree. This value must be between
zero (0) and three hundred (300). If the value is zero (0), the default
timeout is used (3 seconds). You should use the default.

priority

The registration priority. The entry with the largest number has
the highest priority. The range is 1 to 255. The subagent that has
registered a MIB subtree that has the highest priority over a range of
Object Identifiers (OIDs) gets all requests for that range of OIDs.

MIB subtrees that are registered with the same priority are considered
duplicates, and the registration is rejected by the master agent.

The priority argument is a mechanism for cooperating subagents to
handle different configurations.

The return values are as follows:

ESNMP_LIB_OK

The esnmp_register routine has completed successfully.
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ESNMP_LIB_BAD_REG

The esnmp_init routine has not been called, the timeout parameter is
invalid, or this MIB subtree has already been queued for registration.

ESNMP_LIB_LOST_CONNECTION

The subagent lost communication with the master agent.

Note that the status indicates only the initiation of the request. The
actual status returned in the master agent’s response will be returned in a
subsequent call to the esnmp_poll routine.

The following is an example of the esnmp_register routine:

#include <esnmp.h>
#define RESPONSE_TIMEOUT 0 /* use the default time set

in esnmp_init message */
#define REGISTRATION_PRIORITY 10 /* priority at which subtrees

will register */
int status;

extern SUBTREE ipRouteEntry_subtree;

status = esnmp_register( &ipRouteEntry_subtree,
RESPONSE_TIMEOUT,
REGISTRATION_PRIORITY );

if (status != ESNMP_LIB_OK) {
printf ("Could not queue the ’ipRouteEntry’ \n");
printf ("subtree for registration\n");

}

6.3.1.5 The esnmp_unregister Routine

The esnmp_unregister routine unregisters a MIB subtree with the master
agent.

This routine can be called by the application code to tell the eSNMP subagent
not to process requests for variables in this MIB subtree anymore. You can
later reregister a MIB subtree, if needed, by calling the esnmp_register
routine.

The syntax for the esnmp_unregister routine is as follows:
int esnmp_unregister(

SUBTREE *subtree);

The arguments are as follows:
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subtree

A pointer to the SUBTREE structure for the MIB subtree to be
unregistered.

The return values are as follows:

ESNMP_LIB_OK

The routine completed successfully.

ESNMP_LIB_BAD_REG

The MIB subtree was not registered.

ESNMP_LIB_LOST_CONNECTION

The request to unregister the MIB subtree could not be sent. You
should restart the protocol.

The following is an example of the esnmp_unregister routine:

#include <esnmp.h>
int status

extern SUBTREE ipRouteEntry_subtree;

status = esnmp_unregister( &ipRouteEntry_subtree );

switch (status) {
case ESNMP_LIB_OK:
printf ("The esnmp_unregister routine completed successfully.\n");
break;

case ESNMP_LIB_BAD_REG:
printf ("The MIB subtree was not registered.\n");
break;

case ESNMP_LIB_LOST_CONNECTION:
printf("%s%s%s\n", "The request to unregister the ",

"MIB subtree could not be sent. ",
"You should restart the protocol.\n");

break;
}

6.3.1.6 The esnmp_register2 Routine

The esnmp_register2 routine offers extensions to the esnmp_register
routine.
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The initialization routine (esnmp_init) must be called prior to calling
the esnmp_register2 routine. The esnmp_register2 function must
be called for each subtree structure corresponding to each MIB subtree
that it will be handling. At any time MIB subtrees can be unregistered
by calling esnmp_unregister2 and then be reregistered by calling
esnmp_register2.

When restarting the eSNMP protocol by calling esnmp_init, all MIB
subtree registrations are cleared. All MIB subtrees must be reregistered.

A MIB subtree is identified by the base MIB variable name and its
corresponding OID. This tuple represents the parent of all MIB variables
that are contained in the MIB subtree; for example, the MIB-2 tcp subtree
has an OID of 1.3.6.1.2.1.6. All elements subordinate to this (those
that have the same first 7 identifiers) are included in the subtree’s object
table. A MIB subtree can also be a single MIB object (a leaf node) or even a
specific instance.

By registering a MIB subtree, the subagent indicates that it will process
SNMP requests for all MIB variables (or OIDs) within that MIB subtree’s
region. Therefore, a subagent should register the most fully qualified
(longest) MIB subtree that still contains its instrumented MIB variables.

A subagent using the esnmp_register2 routine can register the same MIB
subtree for the local node and for a cluster. To register the MIB subtree for
both, you must call the esnmp_register2 routine twice: once with the
ESNMP_REG_OPT_CLUSTER bit set in the options parameter and once
with the ESNMP_REG_OPT_CLUSTER bit clear in the options parameter.
Alternatively, you can register a MIB subtree for the cluster only or for the
local node only, by setting or clearing the ESNMP_REG_OPT_CLUSTER bit,
respectively, in the options parameter.

A subagent may also register MIB subtrees that overlap the OID range
of MIB subtrees that it previously registered or those of MIB subtrees
registered by other subagents.

For example, consider the two Tru64 UNIX daemons, os_mibs and
gated. The os_mibs daemon registers the ip MIB subtree (1.3.6.1.2.1.4)
and the gated daemon registers the ipRouteEntry MIB subtree
(1.3.6.1.2.1.4.21.1). Both of these registrations are made with the
ESNMP_REG_OPT_CLUSTER bit set in the options parameter. Requests
for ip MIB variables within ipRouteEntry, such as ipRouteIfIndex
(1.3.6.1.2.1.4.21.1.2), are passed to the gated subagent. Requests for other
ip variables, such as ipNetToMediaIfIndex (1.3.6.1.2.1.4.22.1.1), are
passed to the os_mibs subagent. If the gated process should terminate
or unregister the ipRouteEntry MIB subtree, subsequent requests for
ipRouteIfIndex will go to the os_mibs subagent because the ip MIB
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subtree, which includes all ipRouteEntry MIB variables, would now be the
authoritative region of requests for ipRouteIfIndex.

The syntax for the esnmp_register2 routine is as follows:
int esnmp_register2(

ESNMP_REG *reg);

The arguments are defined as follows:
reg

A pointer to a ESNMP_REG structure, which contains the following
fields:
subtree

A pointer to a SUBTREE structure corresponding to the MIB
subtree to be handled. The SUBTREE structures are externally
declared and initialized in the code emitted by the mosy and
snmpi utilities (xxx_tbl.c and xxx_tbl.h, where xxx is the
name of the MIB subtree) taken directly from the MIB document.

__________________ Note __________________

All memory pointed to by this field must have
permanent storage since it is referenced by libesnmp
for the duration of the program. You should use the
data declarations emitted by the snmpi utility.

priority

The registration priority. The entry with the largest number
has the highest priority. The range is 1 to 255. The subagent
that has registered a MIB subtree that has the highest priority
over a range of Object Identifiers (OIDs) gets all requests for
that range of OIDs.

MIB subtrees that are registered with the same priority are
considered duplicates, and the registration is rejected by the
master agent.

The priority field is a mechanism for cooperating subagents to
handle different configurations.

timeout

The number of seconds the master agent should wait for
responses when requesting data in this MIB subtree. This value
must be between zero (0) and three hundred (300). If the value
is zero (0), the default timeout is used (3 seconds). You should
use the default.
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range_subid

An integer value that when non-zero and together with the
range_upper_bound field specifies a range instead of one
of the MIB subtree’s OID sub-identifiers. The range_subid
field specifies the OID sub-identifier modified by the
range_upper_bound field.

range_upper_bound

An integer value that, in conjunction with a non-zero
range_subid field specifies a range instead of one of the MIB
subtree’s OID sub-identifiers. The range_upper_bound field
provides the upper bound of the range and the range_subid
field provides the lower bound of the range, which is the MIB
subtree’s OID sub-identifier.

options

An integer value that when set to ESNMP_REG_OPT_CLUSTER
indicates that the registration is valid cluster-wide and when set
to zero indicates that the registration is valid for the local node.

state

One of the following integer values that provides the caller with
asynchronous updates of the state of registration of this MIB
subtree. After the return of the esnmp_poll routine, the caller
can inspect this parameter.

ESNMP_REG_STATE_PENDING

The registration is currently held locally while waiting for
connection to the master agent.

ESNMP_REG_STATE_SENT

The registration was sent to the master agent.

ESNMP_REG_STATE_DONE

The wegistration was successfully ackowledged by the
master agent.

ESNMP_REG_STATE_REGDUP

The registration was rejected by the master agent because it
was a duplicate.
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ESNMP_REG_STATE_REGNOCLU

The master agent does not support cluster registrations.

ESNMP_REG_STATE_REJ

The master agent rejected the registration for other reasons.

instance

When non-null, this input parameter specifies a partial or
fully qualified instance for the MIB subtree or subtrees in the
registration. Use this parameter when registering a row in a
table. See Section 6.3.1.2 and snmpi(8)for additional information
on registering rows in a table.

The return values are as follows:
ESNMP_LIB_OK

The esnmp_register2 routine has completed successfully.

ESNMP_LIB_BAD_REG

The esnmp_init routine has not been called, the timeout parameter
is invalid, a registration slot is not available, or this MIB subtree has
already been queued for registration. A message is also in the log file.

ESNMP_LIB_LOST_CONNECTION

The subagent lost communication with the master agent.

Note that the status indicates only the initiation of the request. The
actual status returned in the master agent’s response will be returned in a
subsequent call to the esnmp_poll routine in the reg->state field.

The following is an example of the esnmp_register2 routine:

#include <esnmp.h>
#define RESPONSE_TIMEOUT 0 /* use the default time set

in esnmp_init message */
#define REGISTRATION_PRIORITY 10 /* priority at which the MIB

subtree will register */
#define RANGE_SUBID 7 /* the identifier position in

oid->elements just after
mib-2 */

#define RANGE_UPPER_BOUND 8 /* the identifier for egp,
under mib-2 */

int status;

extern SUBTREE ip_subtree;
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static ESNMP_REG esnmp_reg_for_ip2egp; /* retain this structure
for a subsequent call to
esnmp_unregister2 */

/*
* initialize the ESNMP_REG structure
*/
memset(&esnmp_reg_for_ip2egp, 0, sizeof(ESNMP_REG));
esnmp_reg_for_ip2egp.subtree = &ip_subtree;
esnmp_reg_for_ip2egp.priority = REGISTRATION_PRIORITY;
esnmp_reg_for_ip2egp.timeout = RESPONSE_TIMEOUT;
esnmp_reg_for_ip2egp.range_subid = RANGE_SUBID;
esnmp_reg_for_ip2egp.range_upper_bound = RANGE_UPPER_BOUND;

status = esnmp_register2( &esnmp_reg_for_ip2egp );
if (status != ESNMP_LIB_OK) {

printf("Could not queue the ’ipRouteEntry’ \n");
printf("subtree for registration\n");

}

6.3.1.7 The esnmp_unregister2 Routine

The esnmp_unregister2 routine unregisters a MIB subtree with the
master agent. Use this routine only when the MIB subtree was registered
using the esnmp_register2 routine.

This routine can be called by the application code to tell the eSNMP subagent
not to process requests for variables in this MIB subtree any more. You can
later reregister a MIB subtree, if needed, by calling the esnmp_register2
routine.

The syntax for the esnmp_unregister2 routine is as follows:
int esnmp_unregister2(

ESNMP_REG *reg);

The arguments are as follows:
reg

A pointer to the ESNMP_REG structure that was used when the
esnmp_register2 routine was called.

The return values are as follows:

ESNMP_LIB_OK

The routine completed successfully.

ESNMP_LIB_BAD_REG

The MIB subtree was not registered.
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ESNMP_LIB_LOST_CONNECTION

The request to unregister the MIB subtree could not be sent. You
should restart the protocol.

The following is an example of the esnmp_unregister2 routine:

#include <esnmp.h>
int status

extern ESNMP_REG esnmp_reg_for_ip2egp;

status = esnmp_unregister2( &esnmp_reg_for_ip2egp );

switch(status) {
case ESNMP_LIB_OK:
printf("The esnmp_unregister2 routine completed successfully.\n");
break;

case ESNMP_LIB_BAD_REG:
printf("The MIB subtree was not registered.\n");
break;

case ESNMP_LIB_LOST_CONNECTION:
printf("%s%s%s\n", "The request to unregister the ",

"MIB subtree could not be sent. ",
"You should restart the protocol.\n");

break;
}

6.3.1.8 The esnmp_capabilities Routine

The esnmp_capabilities routine adds a subagent’s capabilities to the
master agent’s sysORTable. The sysORTable is a conceptual table that
contains an agent’s object resources, and is described in RFC 1907.

This routine is called at any point after initializing eSNMP by a call to the
esnmp_init routine.

The syntax for the esnmp_capabilities routine is as follows:
void esnmp_capabilities(

OID *agent_cap_id,
char *agent_cap_descr);

The arguments are as follows:

agent_cap_id

A pointer to an object identifier that represents an authoritative agent
capabilities identifier. This value is used for the sysORID object in the
sysORTable for the managed node.
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agent_cap_descr

A pointer to a null-terminated character string describing
agent_cap_id. This value is used for the sysORDescr object in the
sysORTable for the managed node.

6.3.1.9 The esnmp_uncapabilities Routine

The esnmp_uncapabilities routine removes a subagent’s capabilities
from the master agent’s sysORTable.

This routine is called if a subagent alters its capabilities dynamically. When
a logical connection for a subagent is closed, the master agent removes the
related entries in sysORTable.

The syntax for the esnmp_uncapabilities routine is as follows:
void esnmp_uncapabilities(

OID *agent_cap_id);

The arguments are as follows:
agent_cap_id

A pointer to an object identifier of the agent capabilities statement to
be removed from the sysORTable.

6.3.1.10 The esnmp_poll Routine

The esnmp_poll routine processes a pending message that has been sent
by the master agent. This routine is called after the user’s select() call
has indicated data is ready on the eSNMP socket. (This socket was returned
from the call to the esnmp_init routine). If no message is pending on the
socket, the esnmp_poll routine blocks until one is received.

If a received message indicates a problem, the routine makes an entry in the
syslog file and returns an error status.

If the received message is a request for SNMP data, the routine consults the
object table and calls the appropriate method routine or routines.

The syntax for the esnmp_poll routine is as follows:
int esnmp_poll( void );

The return values are as follows:
ESNMP_LIB_OK

The esnmp_poll routine has completed successfully.

ESNMP_LIB_BAD_REG

A previous registration was failed by the master agent. See the log file.
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ESNMP_LIB_DUPLICATE

A duplicate subagent identifier has already been received by the
master agent. This is an esnmp_init error.

ESNMP_LIB_NO_CONNECTION

The master agent failed to initiate an esnmp_init request. Restart
after a delay. See the log file.

ESNMP_LIB_CLOSE

A CLOSE message was received.

ESNMP_LIB_NOTOK

An eSNMP protocol error occurred. The packet was discarded.

ESNMP_LIB_LOST_CONNECTION

Communication with master agent was lost. Restart the connection.

6.3.1.11 The esnmp_are_you_there Routine

The esnmp_are_you_there routine requests the master agent to report
immediately that it is up and functioning. This call does not block waiting for
a response. The response is processed by calling the esnmp_poll routine.

If no response is received within the timeout period, the application code
should restart the eSNMP protocol by calling the esnmp_init routine.
There are no timers maintained by the eSNMP library.

The syntax for the esnmp_are_you_there routine is as follows:
int esnmp_are_you_there( void );

The return values are as follows:

ESNMP_LIB_OK

The request was sent.

ESNMP_LIB_LOST_CONNECTION

Cannot send the request because the master agent is down.

6.3.1.12 The esnmp_trap Routine

The esnmp_trap routine sends a trap message to the master agent. This
function can be called at anytime. If the master agent is not running the
eSNMP protocol, traps are queued and sent when communication is possible.
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The trap message is actually sent to the master agent after the master
agent’s response to the esnmp_init call has been processed. This processing
happens within any API call, in most cases during subsequent calls to the
esnmp_poll routine. The quickest way to send traps to the master agent is
to call the esnmp_init, esnmp_poll, and esnmp_trap routines.

The master agent formats the trap into an SNMP trap message and sends it
to management stations based on its current configuration. For information
on configuring the master agent, see snmpd(8) and snmpd.conf(4).

There is no response returned from the master agent for a trap.

The syntax for the esnmp_trap routine is as follows:
int esnmp_trap(

int generic_trap,
int specific_trap,
char *enterprise,
VARBIND *vb);

The arguments are as follows:
generic_trap

A generic trap code. Set to 0 (zero) for SNMPv2 traps.

specific_trap

A specific trap code. Set to 0 (zero) for SNMPv2 traps.

enterprise

An enterprise OID string in dot notation. Set to the object identifier
defined by the NOTIFICATION-TYPE macro in the defining MIB
specification. This value is passed as the value of SnmpTrapOID.0 in
the SNMPv2–Trap-PDU.

vb

A VARBIND list of data (a NULL pointer indicates no data)

The return values are as follows:
ESNMP_LIB_OK

The routine completed successfully.

ESNMP_LIB_LOST_CONNECTION

The routine could not send the trap message to the master agent.

ESNMP_LIB_NOTOK

Something failed and a message could not be generated.
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6.3.1.13 The esnmp_term Routine

The esnmp_term routine sends a close message to the master agent and
shuts down the eSNMP protocol. All subagents must call this routine when
terminating, so that the master agent can update its MIB registry more
quickly and that system resources used by eSNMP on the behalf of the
subagents can be released.

The syntax for the esnmp_term routine is as follows:
void esnmp_term( void );

The return value is:
ESNMP_LIB_OK

The esnmp_term routine always returns ESNMP_LIB_OK, even if the
packet could not be sent.

6.3.1.14 The esnmp_sysuptime Routine

The esnmp_sysuptime routine converts UNIX system time obtained from
gettimeofday into a value with the same timebase as sysUpTime. This
can be used as a TimeTicks data type (the time since the master agent
started) in units of 1/100 seconds. The time base is obtained from the master
agent in response to the esnmp_init routine, so calls to this function before
that time will not be accurate.

This provides a general purpose mechanism to convert UNIX timestamps
into SNMP TimeTicks. The function returns the appropriate value of
sysUpTime for a given UNIX. Passing a null timestamp returns the current
value of sysUpTime.

The syntax is as follows:
unsigned int esnmp_sysuptime(

struct timeval *timestamp);

The arguments are as follows:
timestamp

Is a pointer to a struct timeval containing a value obtained
from the gettimeofday system call. The structure is defined in
include/sys/time.h.

A NULL pointer means return the current sysUpTime.

The following is an example of the esnmp_sysuptime routine:

#include <sys/time.h>
#include <esnmp.h>
struct timeval timestamp;
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gettimeofday(&timestamp, NULL);
o_integer(vb, object, esnmp_sysuptime(&timestamp));

The return is as follows:

0 Indicates an error (gettimeofday failed); otherwise,
timestamp contains the time in 1/100ths seconds since the
master agent protocol started.

6.3.2 Method Routine Calling Interface

SNMP requests may contain many VariableBindings (encoded MIB
variables). The libsnmp code executing in a subagent matches each
VariableBinding with an object table entry. The object table’s method
routine is then called. Therefore, a method routine is called to service a
single MIB variable. Since a single method method routine can handle a
number of MIB variables, the same method routine may be called several
times during a single SNMP request.

The method routine calling interface contains the following functions:

• *_get

• *_set

Section 6.3.2.3 provides additional information on method routines.

6.3.2.1 The *_get Routine

The *_get routine is a method routine for the specified MIB item, which
is typically a MIB group (for example, system in MIB-2) or a table entry
(for example, ifEntry in MIB-2). However, it is up to your discretion. See
snmpi(8) for more information.

The libesnmp routines call whatever routine is specified for Get operations
in the object table identified by the registered subtree.

This function is pointed to by some number of elements of the subagent object
table. When a request arrives for an object, its method routine is called. The
*_get method routine is called in response to a Get SNMP request.

The syntax for the *_get routine is as follows:
int mib-group_get(

METHOD *method);

The arguments are:

method

A pointer to a METHOD structure, which contains the following fields:
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action

One of ESNMP_ACT_GET, ESNMP_ACT_GETNEXT, or
ESNMP_ACT_GETBULK.

serial_num

An integer number that is unique to this SNMP request. Each
method routine called while servicing a single SNMP request
receives the same value of serial_num. New SNMP requests are
indicated by a new value of serial_num.

repeat_cnt

Used for GetBulk only. This value indicates the current iteration
number of a repeating VARBIND. This number increments from
1 to max_repetitions, and is 0 for nonrepeating VARBIND
structures.

max_repetitions

For GetBulk. The maximum number of repetitions to perform.
This will be 0 for nonrepeating VARBIND structures. You can
optimize subsequent processing by knowing the maximum
number repeat calls will be made.

varbind

A pointer to the VARBIND structure for which we must fill in
the OID and data fields. Upon entry of the method routine, the
method->varbind->name field is the OID that was requested.

Upon exit of the method routine, the method->varbind field
contains the requested data, and the method->varbind->name
field is updated to reflect the actual instance OID for the returned
VARBIND.

The libsnmp routines (o_integer, o_string, o_oid, and
o_octet) are generally used to load data. The libsnmp
instance2oid routine is used to update the OID in
method->varbind->name field.

object

A pointer to the object table entry for the MIB variable being
referenced. The method->object->object_index field is this
object’s unique index within the object table (useful when one
method routine services many objects).

The method->object->oid field is the OID defined for
this object in the MIB. The instance requested is derived by
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comparing this OID with the OID in the request found in the
method->varbind->namefield. The oid2instance function
is useful for this.

The possible return values for the *_get method routine are as follows:

ESNMP_MTHD_noError

The routine completed successfully.

ESNMP_MTHD_noSuchObject

The requested object cannot be returned or does not exist.

ESNMP_MTHD_noSuchInstance

The requested instance of an object cannot be returned or does not exist.

ESNMP_MTHD_genErr

A general processing error.

6.3.2.2 The *_set Method Routine

The *_set method routine for a specified MIB item, which is typically a
MIB group (for example, system in MIB-2) or a table entry (for example,
ifEntry in MIB-2). However, it is up to your discretion. See snmpi(8) for
more information.

The libesnmp routines call whatever routine is specified for Set operations
in the object table identified by the registered subtree.

This function is pointed to by some number of elements of the subagent object
table. When a request arrives for an object, its method routine is called. The
*_set method routine is called in response to a Set SNMP request.

The syntax for the *_set method routine is as follows:
int mib-group_set(

METHOD *method);

The arguments are as follows:

method

A pointer to a METHOD structure, which contains the following fields:

action

The action value can be one of the following: ESNMP_ACT_SET,
ESNMP_ACT_COMMIT, ESNMP_ACT_UNDO, or
ESNMP_ACT_CLEANUP
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serial_num

An integer number that is unique to this SNMP request. Each
method routine called while servicing a single SNMP request
receives the same value of serial_num. New SNMP requests are
indicated by a new value of serial_num.

varbind

A pointer to the VARBIND structure that contains the MIB
variable’s supplied data value and name (OID). The instance
information has already been extracted from the OID and placed
in method->row->instance field.

object

A pointer to the object table entry for the MIB variable being
referenced. The method->object->object_index field is this
object’s unique index within the object table (useful when one
method routine services many objects).

The method->object->oid field is the OID defined for this
object in the MIB.

flags

A read-only integer bitmask set by libesnmp. If set, the
ESNMP_FIRST_IN_ROW bit indicates that this call is the first
object to be set in the row. If set, the ESNMP_LAST_IN_ROW
bit indicates that this call is the last object to be set in the row.
Only METHOD structures with the ESNMP_LAST_IN_ROW bit
set are passed to the method routines for commit, undo, and
cleanup phases.

row

A pointer to a ROW_CONTEXT structure (defined in the esnmp.h
header file). All Set calls to the method routine that refer to
the same group and have the same instance number will be
presented with the same row structure. The method routines can
accumulate information in the row structures during Set calls for
use during the commit and undo phases. The accumulated data
can be released by the method routines during the cleanup phase.

The ROW_CONTEXT structure contains the following fields:

instance

An address of an array containing the instance OID for this
conceptual row. The libesnmp routine builds this array by

Extensible SNMP Application Programming Interface 6–47



subtracting the object oid from the requested variable
binding oid.

instance_len

The size of the method->row->instance field.

context

A pointer to be used privately by the method routine to
reference data needed to process this request.

save

A pointer to be used privately by the method routine to
reference data needed to potentially undo this request.

state

An integer to be used privately by the method routine to
hold any state information it requires.

The possible returns for the *_set method routine are as follows:

ESNMP_MTHD_noError

The routine completed successfully.

ESNMP_MTHD_notWritable

The requested object cannot be set or was not implemented.

ESNMP_MTHD_wrongType

The data type for the requested value is the wrong type.

ESNMP_MTHD_wrongLength

The requested value is the wrong length.

ESNMP_MTHD_wrongEncoding

The requested value is represented incorrectly.

ESNMP_MTHD_wrongValue

The requested value is out of range.

ESNMP_MTHD_noCreation

The requested instance can never be created.
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ESNMP_MTHD_inconsistentName

The requested instance cannot currently be created.

ESNMP_MTHD_inconsistentValue

The requested value is not consistent.

ESNMP_MTHD_resourceUnavailable

A failure due to some resource constraint.

ESNMP_MTHD_genErr

A general processing error.

ESNMP_MTHD_commitFailed

The commit phase failed.

ESNMP_MTHD_undoFailed

The undo phase failed.

Overall Processing of the *_set Routine

Every variable binding is parsed and its object is located in the object
table. A METHOD structure is created for each VARBIND structure. These
METHOD structures point to a ROW_CONTEXT structure, which is useful for
handling these phases. Objects in the same conceptual row all point to the
same ROW_CONTEXT structure. This determination is made by checking
the following:

• The referenced objects are in the same MIB group.

• The VARBIND structures have the same instance OIDs.

Each ROW_CONTEXT structure is loaded with the instance information for
that conceptual row. The ROW_CONTEXT structure context and save fields
are set to NULL, and the state field is set to ESNMP_SET_UNKNOWN
structure.

The method routine for each object is called, being passed its METHOD
structure with an action code of ESNMP_ACT_SET.

If all method routines return success, a single method routine (the last
one called for the row) is called for each row, with method->action ==
ESNMP_ACT_COMMIT.

If any row reports failure, all rows that were successfully committed are told
to undo the phase. This is accomplished by calling a single method routine
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for each row (the same one that was called for the commit phase), with a
method->action == ESNMP_ACT_UNDO.

Finally, each row is released. The same single method routine for each row is
called with a method->action == ESNMP_ACT_CLEANUP. This occurs for
every row, regardless of the results of previous processing.

The following list describes the action codes:

ESNMP_ACT_SET

Each object’s method routine is called during the Set phase, until all objects
are processed or a method routine returns an error status value. (This is
the only phase during which each object’s method routine is called.) For
variable bindings in the same conceptual row, method->row points to a
common ROW_CONTEXT.

The method->flags bitmask has the ESNMP_LAST_IN_ROW bit set, if
this is the last object being called for this ROW_CONTEXT. This enables you to
do a final consistency check, because you have seen every variable binding
for this conceptual row.

The method routine’s job in this phase is to determine if the SetRequest
will work, return the correct SNMP error code if not, and prepare any
context data it needs to actually perform the Set during the commit phase.

The method->row->context is private to the method routine; libesnmp
does not use it. A typical use is to store the address of an emitted foo_type
structure that has been loaded with the data from the VARBIND for the
conceptual row.

ESNMP_ACT_COMMIT

Even though several variable bindings may be in a conceptual row, only the
last one in order of the SetRequest is processed. So, for all the method
routines that point to a common row, only the last method routine is called.

This method routine must have available to it all necessary data and context
to perform the operation. It must also save a snapshot of current data or
whatever it needs to undo the Set if required. The method->row->save
field is intended to hold a pointer to whatever data is needed to accomplish
this. A typical use is to store the address of an xxx structure that has been
loaded with the current data for the conceptual row. The xxx structure is
one that has been automatically generated by the snmpi program.

The method->row->save field is also private to the method routine;
libesnmp does not use it.
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If the set operation succeeds, return ESNMP_MTHD_noError;
otherwise, back out the commit as best you can and return a value of
ESNMP_MTHD_commitFailed.

If any errors were returned during the commit phase, libesnmp enters the
undo phase; if not, it enters the cleanup phase.

______________________ Note _______________________

The undo phase may occur even if the Set operation in your
subagent is successful because the SetRequest spanned
subagents and some other subagent failed.

ESNMP_ACT_UNDO

For each conceptual row that was successfully committed, the same method
routine is called with method->action == ESNMP_ACT_UNDO. The
ROW_CONTEXT structures that have not yet been called for the commit phase
are not called for the undo phase; they are called for cleanup phase.

The method routine should attempt to restore conditions to what they were
before it executed the commit phase. (This is typically done using the data
pointed to by the method->row->save field.)

If successful, return ESNMP_MTHD_noError; otherwise, return
ESNMP_MTHD_undoFail.

ESNMP_ACT_CLEANUP

Regardless of what else has happened, at this point each ROW_CONTEXT
participates in cleanup phase. The same method routine that was called for
commit phase is called with method->action == ESNMP_ACT_CLEANUP.

This indicates the end of processing for the SetRequest. The method
routine should perform whatever cleanup is required; for instance,
freeing dynamic memory that might have been allocated and stored in
method->row->context and method->row->save fields, and so on.

The function return status value is ignored for the cleanup phase.

6.3.2.3 Method Routine Applications Programming

You must write the code for the method routines declared in the
subtree_tbl.h file. Each method routine has one argument, which is a
pointer to the METHOD structure, as follows:
int mib_group_get(

METHOD *method,
int mib_group_set(

METHOD *method);
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The Get method routines are used to perform Get, GetNext, and GetBulk
operations.

Get method routines perform the following tasks:

1. Extract the instance portion of the requested OID. You can do this
manually by comparing the method->object->oid field (the object’s
base OID) to the method->varbind->name field (the requested OID).
You can use the oid2instance libesnmp routine to do this.

2. Determine the instance validity. The instance OID may be null or any
length, depending on what was requested and how your object was
selected. You may be able to reject the request immediately by checking
on the instance OID.

3. Extract the data. Based on the instance OID and method->action
field, determine what data, if any, is to be returned.

4. Load the response OID back into the method routine’s VARBIND
structure. Set the method->varbind field with the OID of the actual
MIB variable instance you are returning. This is usually accomplished
by loading an array of integers with the instance OID you wish to return
and calling the instance2OID libesnmp routine.

5. Load the response data back into the method routine’s VARBIND
structure.

Use one of the libesnmp library routine with the corresponding data
type to load the method->varbind field with the data to return:

– o_integer

– o_string

– o_octet

– o_oid

These routines make a copy of the data you specify. The libesnmp
function manages any memory associated with copied data. The method
routine must manage the original data’s memory.

The routine does any necessary conversions to the type defined in the
object table for the MIB variable and copies the converted data into the
method->varbind field.

See the Value Representation section for information on data value
representation.

6. Return the correct status value, as follows:

– ESNMP_MTHD_noError — The routine completed successfully
or no errors were found.
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– ESNMP_MTHD_noSuchInstance — There is no such instance of
the requested object.

– ESNMP_MTHD_noSuchObject — No such object exists.

– ESNMP_MTHD_ genErr — An error occurred and the routine did
not complete successfully.

Value Representation

The values in a VARBIND structure for each data type are represented as
follows. (Refer to the esnmp.h file for a definition of the OCT and OID
structures.)

• ESNMP_TYPE_Integer32 (varbind->value.sl field)

This is a 32-bit signed integer. Use the o_integer routine to insert an
integer value into the VARBIND. Note that the prototype for the value
argument is unsigned long, so you may need to cast this to a signed
int.

• ESNMP_TYPE_DisplayString, ESNMP_TYPE_Opaque,
ESNMP_TYPE_OctetString (varbind->value.oct field)

This is an octet string. It is contained in the VARBIND structure as an
OCT structure that contains a length and a pointer to a dynamically
allocated character array.

The DisplayString is different only in that the character array can be
interpreted as ASCII text where the OctetString can be anything. If
the OctetString contains bits or a bitstring, the OCT structure contains
the following:

– A length equal to the number of bytes needed to contain the value
that is ((qty-bits - 1)/8 + 1)

– A pointer to a buffer containing the bits of the bitstring in the
form bbbbb..bb, where the bb octets represent the bit string itself,
where bit zero (0) comes first and so on. Any unused bits in the last
octet are set to zero (0).

Use the o_string routine to insert a value into the VARBIND structure,
which is a buffer and a length. New space will be allocated and the buffer
copied into the new space.

Use the o_octet routine to insert a value into the VARBIND structure,
which is a pointer to an OCT structure. New space is allocated and the
buffer pointed to by the OCT structure is copied.

• ESNMP_TYPE_ObjectId (varbind->value.oid and the
varbind->name fields)
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This is an object identifier. It is contained in the VARBIND structure as
an OID structure that contains the number of elements and a pointer to a
dynamically allocated array of unsigned integers, one for each element.

The varbind->name field is used to hold the object identifier
and instance information that identifies MIB variable. Use the
OID2Instance function to extract the instance elements from an
incoming OID on a request. Use the instance2oid function to combine
the instance elements with the MIB variable’s base OID to set the
VARBIND structure’s name field when building a response.

Use the o_oid function to insert an object identifier into the VARBIND
structure when the OID value to be returned as data is in the form of a
pointer to an OID structure.

Use the o_string function to insert an object ID into the VARBIND
structure when the OID value to be returned as data is in the form of a
pointer to an ASCII string containing the OID in dot format; for example
1.3.6.1.2.1.3.1.1.2.0.

• ESNMP_TYPE_NULL

This is the NULL or empty type. This is used to indicate that there is no
value. The length is 0 and the value union in the VARBIND structure is
zero-filled.

The incoming VARBIND structures on a Get, GetNext, and GetBulk will
have this data type. A method routine should never return such a value.
An incoming Set request never has such a value in a VARBIND structure.

• ESNMP_TYPE_IpAddress (varbind->value.oct field)

This is an IP address. It is contained in the VARBIND structure in an OCT
structure that has a length of 4 and a pointer to a dynamically allocated
buffer containing the 4 bytes of the IP address in network byte order.

Use the o_integer function to insert an IP address into the VARBIND
structure when the value is an unsigned integer in network byte order.

Use the o_string function to insert an IP address into the VARBIND
structure when the value is a byte array (in network byte order). Use a
length of 4.

• ESNMP_TYPE_UInteger32 ESNMP_TYPE_Counter32
ESNMP_TYPE_Gauge32 (varbind->value.ul field)

The 32-bit counter and 32-bit gauge data types are stored in the VARBIND
structure as an unsigned int.

Use the o_integer function to insert an unsigned value into the
VARBIND structure.

• ESNMP_TYPE_TimeTicks (varbind->value.ul field)
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The 32-bit timeticks type values are stored in the VARBIND structure as
an unsigned int.

Use the o_integer function to insert an unsigned value into the
VARBIND structure.

• ESNMP_TYPE_Counter64 (varbind->value.ul64)

The 64-bit counter is stored in a VARBIND structure as an unsigned
long, which on an Alpha machine has a 64-bit value.

Use the o_integer function to insert an unsigned long value (64 bits)
into the VARBIND structure.

6.3.3 The libsnmp Support Routines

The following sections provide information on the libsnmp support routines,
which consist of the following:

• o_integer

• o_octet

• o_oid

• o_string

• str2oid

• sprintoid

• instance2oid

• oid2instance

• inst2ip

• cmp_oid

• cmp_oid_prefix

• clone_oid

• free_oid

• clone_buf

• mem2oct

• cmp_oct

• clone_oct

• free_oct

• free_varbind_data

• set_debug_level

• is_debug_level
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• ESNMP_LOG

6.3.3.1 The o_integer Routine

The o_integer routine loads an integer value into the VARBIND structure
with the appropriate type.

The syntax is as follows:
int o_integer(

VARBIND *vb,
OBJECT *obj,
unsigned long value);

The arguments are as follows:

vb

A pointer to the VARBIND structure that is to receive the data. This
function does not allocate the VARBIND structure.

obj

A pointer to the OBJECT structure for the MIB variable associated with
the OID in the VARBIND structure.

value

The value to be inserted into the VARBIND structure.

The real type as defined in the object structure must be one of the
following; otherwise, an error is returned.

If the real type is IpAddress, the assumption is that the 4-byte integer
is in network byte order.

ESNMP_TYPE_Integer32:

32-bit INTEGER

ESNMP_TYPE_Counter32:

32-bit Counter (unsigned)

ESNMP_TYPE_Gauge32:

32-bit Gauge (unsigned)

ESNMP_TYPE_TimeTicks:

32-bit TimeTicks (unsigned)

ESNMP_TYPE_UInteger32:

32-bit INTEGER (unsigned)
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ESNMP_TYPE_Counter64:

64-bit Counter (unsigned)

ESNMP_TYPE_IpAddress:

IMPLICIT OCTET STRING (4)

The following is an example of the o_integer routine:

#include <esnmp.h>
#include "ip_tbl.h" <-- for ipNetToMediaEntry_type definition
VARBIND *vb = method->varbind;
OBJECT *object = method->object;
ipNetToMediaEntry_type *data;
:
: assume buffer and structure member assignments occur here
:
switch(arg) {
case I_atIfIndex:
return o_integer(vb, object, data->ipNetToMediaIfIndex);

The following are the return values:

ESNMP_MTHD_noError

The routine completed successfully.

ESNMP_MTHD_genErr

An error has occurred.

6.3.3.2 The o_octet Routine

The o_octet routine loads an octet value into the VARBIND structure with
the appropriate type.

The syntax is as follows:
int o_octet(

VARBIND *vb,
OBJECT *obj,
OCT *oct);

The arguments are as follows:

vb

A pointer to the VARBIND structure that is to receive the data. This
function does not allocate the VARBIND structure.
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____________________ Note ____________________

If the original value in the vb field is not NULL, this routine
attempts to free it. So if you issue the malloc command to
allocate your own vb structure, be sure to fill it with zeros
before using it.

obj

A pointer to the OBJECT structure for the MIB variable associated with
the OID in the VARBIND structure.

value

The value to be inserted into the VARBIND structure.

The real type as defined in the object structure must be one of the
following; otherwise, an error is returned:

ESNMP_TYPE_OCTET_STRING

OCTET STRING

ESNMP_TYPE_IpAddress

IMPLICIT OCTET STRING (4) — in octet form, network byte
order

ESNMP_TYPE_DisplayString

DisplayString (Textual Convention)

ESNMP_TYPE_Opaque

IMPLICIT OCTET STRING

The following is an example of the o_octet routine:

#include <esnmp.h>
#include "ip_tbl.h" <-- for ipNetToMediaEntry_type definition
VARBIND *vb = method->varbind;
OBJECT *object = method->object;
ipNetToMediaEntry_type *data;
:
: assume buffer and structure member assignments occur here
:
switch(arg) {
case I_atPhysAddress:
return o_octet(vb, object, &data->ipNetToMediaPhysAddress);

The returns are as follows:
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ESNMP_MTHD_noError

The routine completed successfully.

ESNMP_MTHD_genErr

An error condition has occurred.

6.3.3.3 The o_oid Routine

The o_oid routine loads an OID value into the VARBIND structure with
the appropriate type.

The syntax is as follows:
int o_oid(

VARBIND *vb,
OBJECT *obj,
OID *oid);

The arguments are as follows:

vb

A pointer to the VARBIND structure that is to receive the data. This
function does not allocate the VARBIND structure.

____________________ Note ____________________

If the original value in the vb field is not NULL, this routine
attempts to free it; therefore, if you issue the malloc
command to allocate your own vb structure, fill it with zeros
(0s) before using it.

obj

A pointer to the OBJECT structure for the MIB variable associated with
the OID in the VARBIND structure.

value

The value to be inserted into the VARBIND structure as data. See
Section 6.2.1 for OID length and values.

The real type as defined in the object structure must be the following;
otherwise, an error is returned:

ESNMP_TYPE_OBJECT_IDENTIFIER

OBJECT IDENTIFIER

The following is an example of the o_oid routine:
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#include <esnmp.h>
#include "ip_tbl.h" <-- for ipNetToMediaEntry_type definition
VARBIND *vb = method->varbind;
OBJECT *object = method->object;
ipNetToMediaEntry_type *data;
:
: assume buffer and structure member assignments occur here
:
switch(arg) {
case I_atObjectID:
return o_oid(vb, object, &data->ipNetToMediaObjectID);

The returns are as follows:
ESNMP_MTHD_noError

The routine completed successfully.

ESNMP_MTHD_genErr

An error condition has occurred.

6.3.3.4 The o_string Routine

The o_string routine loads a string value into the VARBIND structure with
the appropriate type.

The syntax is as follows:
int o_string(

VARBIND *vb,
OBJECT *obj,
unsigned char *ptr,
int len);

The arguments are as follows:
vb

A pointer to the VARBIND structure that is to receive the data. This
function does not allocate the VARBIND structure.

____________________ Note ____________________

If the original value in the vb field is not NULL, this routine
attempts to free it; therefore, if you issue the malloc
command to allocate your own vb structure, fill it with zeros
(0s) before using it.

obj

A pointer to the OBJECT structure for the MIB variable associated with
the oid in the VARBIND structure.
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ptr

A pointer to the buffer containing data to be inserted into the VARBIND
structure as data.

len

The length of the data in buffer to which ptr field points.

The real type as defined in the object structure must be one of the
following; otherwise, an error is returned:

ESNMP_TYPE_OCTET_STRING

OCTET STRING

ESNMP_TYPE_IpAddress

IMPLICIT OCTET STRING (4) — in octet form, network byte
order

ESNMP_TYPE_DisplayString

DisplayString (Textual Convention)

ESNMP_TYPE_Opaque

IMPLICIT OCTET STRING

ESNMP_TYPE_OBJECT_IDENTIFIER

OBJECT IDENTIFIER — in dot notation, 1.3.6.1.4.1.3.6

The following is an example of the o_string routine:

#include <esnmp.h>
#include "ip_tbl.h" <-- for ipNetToMediaEntry_type definition
VARBIND *vb = method->varbind;
OBJECT *object = method->object;
ipNetToMediaEntry_type *data;
:
: assume buffer and structure member assignments occur here
:
switch(arg) {
case I_atPhysAddress:
return o_string(vb, object, data->ipNetToMediaPhysAddress.ptr,

data->ipNetToMediaPhysAddress.len);

The return values are as follows:

ESNMP_MTHD_noError

The routine completed successfully.
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ESNMP_MTHD_genErr

An error condition has occurred.

6.3.3.5 The str2oid Routine

The str2oid routine converts a null-terminated OID string (in dot notation)
to an OID structure.

It dynamically allocates the elements buffer and inserts its pointer into the
OID structure passed in. It is the responsibility of the caller to free this
buffer. The OID can have a maximum of 128 elements. A null string or
empty string returns an OID structure that has one element of zero (0).

Note that the str2oid routine does not allocate an OID structure.

The syntax is as follows:
OID * str2oid(

OID *oid,
char *s);

The following is an example of the str2oid routine:

#include <esnmp.h>
OID abc;
if (str2oid(&abc, "1.2.5.4.3.6") == NULL)

DPRINTF((WARNING,"It did not work...\n"));

The returns are as follows:
NULL

An error has occurred; otherwise, the pointer to the OID structure
(its first argument) is returned.

6.3.3.6 The sprintoid Routine

The sprintoid routine converts an OID into a null-terminated string in dot
notation. An OID structure can have up to 128 elements. A full sized OID
structure can require a large buffer.

The syntax is as follows:
char * sprintoid(

char *buffer,
OID *oid);

The following is an example of the sprintoid routine:

#include <esnmp.h>
#define SOMETHING_BIG 1024
OID abc;
char buffer[SOMETHING_BIG];
:
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: assume abc gets initialized with some value
:
printf("dots=%s\n", sprintoid(buffer, &abc));

The return value points to its first argument.

6.3.3.7 The instance2oid Routine

The instance2oid routine makes a copy of the object’s base OID and
appends a copy of the instance array to make a complete OID for a value.
The instance is an array of integers and len is the number of elements.
The instance array may be created by oid2instance or constructed from
key values as a result of a get_next search.

The routine dynamically allocates the elements buffer and inserts its pointer
into the OID structure passed in the call. The calling program or module is
responsible for freeing this buffer.

To use this routine, point to the OID structure that is to receive the new OID
values and call this routine. Any previous value in the OID structure is freed
(it calls free_oid first) and the new values are dynamically allocated and
inserted. Be sure the initial value of the new OID structure is all zeros, if
you do not want it to be freed.

Note that the instance2oid routine does not allocate an OID structure,
only the array containing the elements.

The syntax is as follows:
OID * instance2oid(

OID *new,
OBJECT *obj,
unsigned int *instance,
int len);

The arguments are as follows:
new

A pointer to the OID structure that is to receive the new OID value.

obj

A pointer to the object table entry for the MIB variable being obtained.
The first part of the new OID is the OID from this MIB object table
entry.

instance

A pointer to an array of instance values. These values are appended
to the base OID obtained from the MIB object table entry to construct
the new OID.
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len

The number of elements in the instance array.

The following is an example of the instance2oid routine:

#include <esnmp.h>
VARBIND *vb; <-- filled in
OBJECT *object; <-- filled in
unsigned int instance[6];

-- Construct the outgoing OID in a GETNEXT --
-- Instance is N.1.A.A.A.A where A’s are IP address --
instance[0] = data->ipNetToMediaIfIndex;
instance[1] = 1;
for (i = 0; i < 4; i++) {
instance[i+2]=((unsigned char *)(&data->ipNetToMediaNetAddress))[i];
}
instance2oid(&vb->name, object, instance, 6);

The returns are as follows:

NULL

An error has occurred; otherwise, the pointer to the OID structure
(its first argument) is returned.

6.3.3.8 The oid2instance Routine

The oid2instance routine extracts the instance values from an OID
structure and copies them to the specified array of integers. It then returns
the number of elements in the array. The instance is the elements of an OID
beyond those elements that identify the MIB variable. They are used as
indexes to identify a specific instance of a MIB value.

If the OID structure contains more elements than expected (more than
specified by the max_len parameter), the function copies the number
of elements specified by max_len only and returns the total number of
elements that would have been copied had there been space.

The syntax is as follows:
int oid2instance(

OID *oid,
OBJECT *obj,
unsigned int *instance,
int max_len);

The arguments are as follows:

oid

A pointer to an incoming OID structure containing an instance or part
of an instance.
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obj

A pointer to the object table entry for the MIB variable.

instance

A pointer to an array of unsigned integers where the index will be
placed.

max_len

The number of elements available in the instance array.

#include <esnmp.h>
OID *incoming = &method->varbind->name;
OBJECT *object = method->object;
int instLength;
unsigned int instance[6];

-- in a GET operation --
-- Expected Instance is N.1.A.A.A.A where A’s are IP address --
instLength = oid2instance(incoming, object, instance, 6);
if (instLength != 6)

return ESNMP_MTHD_noSuchInstance;

The N will be in instance[0] and the IP address will be in instance[2],
instance[3], instance[4], and instance[5].

The returns are as follows:

• <0 — An error occurred. This is not returned if the object was obtained
by looking at this oid.

• 0 — There are no instance elements.

• >0 — The number of elements in the index. (This could be larger than
the max_len parameter).

6.3.3.9 The inst2ip Routine

The inst2ip routine returns an IP address derived from an OID instance.
For evaluation of an instance for Get and Set operations use the EXACT
mode. For GetNext and GetBulk operations use the NEXT mode. When
using the NEXT mode, this routine’s logic assumes that the search for data
will be performed using greater than or equal to matches.

The syntax is as follows:
int inst2ip(

unsigned int *inst,
int length,
unsigned int *ipAddr,
int exact,
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int carry);

The arguments are as follows:

inst

A pointer to an array of unsigned int containing the instance
numbers returned by the oid2instance routine to be converted to
an IP address.

Each element is in the range 0 to 255. Using the EXACT mode, the
routine returns 1 if an element is out of range. Using NEXT mode, a
value greater than 255 causes that element to overflow. It is set to 0
and the next most significant element is incremented, so it returns a
lexically equivalent value of the next possible ipAddress.

length

The number of elements in the instance array. Instances beyond the
fourth are ignored. If the length is less than 4, the missing values are
assumed to be 0. A negative length results in an ipAddr value of 0. For
an exact match (such as Get) there must be at exactly four elements.

ipAddr

A pointer to where to return the IP address value. It is in network byte
order; that is, the most significant element is first.

exact

Either TRUE or FALSE.

TRUE means do an EXACT match. If any element is greater than 255
or if there are not exactly 4 elements, return 1. The carry argument
is ignored.

FALSE means do a NEXT match. That is, return the lexically next IP
address if the carry is set and the length is at least 4. If there are fewer
than 4 elements, assume the missing values are 0. If any one element
contains a value greater than 255, then zero the value and increment
the next most significant element. Return 1 only in the case where
there is a carry from the more significant (the first) value.

carry

Is the carry to add to the IP address on a NEXT match. If you are
trying to determine the next possible IP address, pass in a 1; otherwise,
pass in a 0. A length of less than 4 cancels the carry.

The following are examples of the inst2ip routine.
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The following example converts an instance to an IP address for a Get
operation, which is an EXACT match.
#include <esnmp.h>
OID *incoming = &method->varbind->name;
OBJECT *object = method->object;
int instLength;
unsigned int instance[6];
unsigned int ip_addr;
int iface;

-- The instance is N.1.A.A.A.A where A.A.A.A is the IP address--
instLength = oid2instance(incoming, object, instance, 6);
if (instLength == 6 && !inst2ip(&instance[2], 4, &ip_addr, TRUE,0)) {

iface = (int) instance[0];
}
else

return ESNMP_MTHD_noSuchInstance;

The following example shows a GetNext operation where there is only one
key or that the ipAddr value is the least significant part of the key. This is a
NEXT match; therefore, a 1 is passed in for carry value.
#include <esnmp.h>
OID *incoming = &method->varbind->name;
OBJECT *object = method->object;
int instLength;
unsigned int instance[6];
unsigned int ip_addr;
int iface;

-- The instance is N.1.A.A.A.A where A.A.A.A is the IP address--
instLength = oid2instance(incoming, object, instance, 6);
iface = (instLength < 1) ? 0 :(int) instance[0];

iface += inst2ip(&instance[2], instLength - 2, &ip_addr, FALSE, 1);

In the following example, if there is more than one part to a search key and
you are doing a GetNext operation, you want to find the next possible value
for the search key so you can do a cascaded greater-than or equal-to search.

If you have a search key of a number and two ipAddr values that are
represented in the instance part of the OID as N.A.A.A.A.B.B.B.B with N
as single valued integer and the A.A.A.A portion making up one IP address
and the B.B.B.B portion making up a second IP address and a total length of
9 if all elements are given, you start by converting the least significant part
of the key, (that would be the B.B.B.B portion). You do that by calling the
inst2ip routine passing in a 1 for the carry and (length–5) for the length.

If the conversion of the B.B.B.B portion generated a carry (returned 1), you
will pass it on to the next most significant part of the key.

Therefore, convert the A.A.A.A portion by calling the inst2ip routine,
passing in (length–1) for the length and the carry returned from the
conversion of the B.B.B.B portion. The most significant element N is
a number; therefore, add the carry from the A.A.A.A conversion to the
number. If that also overflows, then this is not a valid search key.
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#include <esnmp.h>
OID *incoming = &method->varbind->name;
OBJECT *object = method->object;
int instLength;
unsigned int instance[9];
unsigned int ip_addrA;
unsigned int ip_addrB;
int iface;
int carry;

-- The instance is N.A.A.A.A.B.B.B.B --
instLength = oid2instance(incoming, object, instance, 9);
iface = (instLength < 1) ? 0 :(int) instance[0];
carry = inst2ip(&instance[5],instLength - 5,&ip_addrB,FALSE,1);
carry = inst2ip(&instance[1],instLength - 1,&ip_addrA,FALSE,carry);
iface += carry;
if (iface > carry) {
-- a carry caused an overflow in the most significant element
return ESNMP_MTHD_noSuchInstance;

}

The returns are as follows:

• If the carry is 0, the routine ended successfully.

• If the carry equals 1, it indicates an error if EXACT match or there was
a carry for a NEXT match. If there was a carry, the returned ipAddr is 0.

6.3.3.10 The cmp_oid Routine

The cmp_oid routine compares two OID structures. This routine does an
element-by-element comparison starting with the most significant element
(element 0) and working toward the least significant element. If all other
elements are equal, the OID structure with the fewest elements is considered
less.

The syntax is as follows:
int cmp_oid(

OID *q,
OID *p);

The returns are as follows:

• +1 — The oid q is greater than oid p.

• 0 — The oid q is in oid p.

• −1 — The oid q is less than oid p.

6.3.3.11 The cmp_oid_prefix Routine

The cmp_oid_prefix routine compares an OID structure against a prefix.
A prefix could be the OID on an object in the object table. The elements
beyond the prefix are the instance information.
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This routine does an element-by-element comparison, starting with the most
significant element (element 0) and working toward the least significant
element. If all elements of the prefix OID match exactly with corresponding
elements of OID q structure, it is considered a match even if the OID q
structure contains additional elements. The OID q structure is considered
greater than the OID prefix if the first nonmatching element is larger. It is
considered smaller if the first nonmatching element is less.

The syntax is as follows:
int cmp_oid_prefix(

OID *q,
OID *prefix);

The following is an example of the cmp_oid_prefix routine:

#include <esnmp.h>
OID *q;
OBJECT *object;
if (cmp_oid_prefix(q, &object->oid) == 0)

printf("matches prefix\n");

The returns are as follows:

• −1 — The oid is less than the prefix.

• 0 — The oid is in the prefix.

• +1 — The oid is greater than the prefix.

6.3.3.12 The clone_oid Routine

The clone_oid routine makes a copy of the OID structure.

It dynamically allocates the elements buffer and inserts its pointer into
the OID structure passed in.

To use this routine, pass in a pointer to the old OID structure to be cloned
and a pointer to the new OID structure that is to receive the duplicated
OID values.

The calling program or module has the responsibility to free this buffer.

Note that any previous elements buffer pointed to by the new OID structure
will be freed and pointers to the new, dynamically allocated, buffer will be
inserted. Be sure to initialize the new OID structure with zeroes (0), unless
it contains an element buffer that can be freed.

Also note that this routine does not allocate an OID structure.

If the old OID structure is NULL or contains a NULL pointer to its elements
buffer, a new OID of {0.0} is generated.

The syntax is as follows:
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OID *clone_oid(
OID *new,
OID *oid);

The arguments are as follows:
new

A pointer to the OID structure that is to receive the copy.

old

A pointer to the OID structure where the data is to be obtained.

The following is an example of the clone_oid routine:

#include <esnmp.h>
OID oid1;
OID oid2;
:
: assume oid1 gets assigned a value
:
memset(&oid2, 0, sizeof(OID));
if (clone_oid(&oid2, &oid1) == NULL)

ESNMP_LOG((WARNING, "It did not work\n"));

The returns are as follows:
NULL

An error occurred; otherwise, the pointer to the new OID (its first
argument) is returned.

6.3.3.13 The free_oid Routine

The free_oid routine frees an OID structure’s elements buffer.

It frees the buffer pointed to by oid->elements field then zeros that field
and the oid->nelem field.

Note that this routine does not deallocate the OID structure itself, only the
elements buffer attached to it.

The syntax is as follows:
void free_oid(

OID *oid);

The following is an example of the free_oid routine:

#include <esnmp.h>
OID oid;
:
: assume oid was assigned a value (perhaps with clone_oid()
: and we are now finished with it.
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:
free_oid(&oid);

6.3.3.14 The clone_buf Routine

The clone_buf routine duplicates a buffer in a dynamically allocated space.
One extra byte is always allocated on end and filled with \0. If the len
parameter is less than 0, the duplicate buffer length is set to 0. The routine
always returns a buffer pointer, unless there is a malloc error.

The caller has the responsibility to free the allocated buffer.

The syntax is as follows:
char *clone_buf(

char *str,
int len);

The arguments are as follows:

str

A pointer to the buffer to be duplicated.

len

The number of bytes to copy.

The following is an example of the clone_buf routine:

#include <esnmp.h>
char *str = "something nice";
char *copy;
copy = clone_buf(str, strlen(str));

The returns are as follows:

NULL

A malloc error occurred; otherwise, the pointer to allocated buffer
containing a copy of the original buffer is returned.

6.3.3.15 The mem2oct Routine

The mem2oct routine converts a string, (a buffer and length) to an OCT
structure.

It dynamically allocates a new buffer, copies the indicated data into it, and
updates the OCT structure with the new buffer’s address and length.

The caller has the responsibility to free the allocated buffer.
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Note this routine does not allocate an OCT structure and that it does not
free data previously pointed to in the OCT structure before making the
assignment.

The syntax is as follows:
OCT * mem2oct(

OCT *new,
char *buffer,
int len);

The following is an example of the mem2oct routine:

#include <esnmp.h>
char buffer;
int len;
OCT abc;
:
: buffer and len are initialized to something
:
memset(&abc, 0, sizeof(OCT));
if (mem2oct(&abc, buffer, len) == NULL)

ESNMP_LOG((WARNING,"It did not work...\n"));

The following are the return values:

NULL

An error occurred; otherwise, the pointer to the OCT structure (its first
argument) is returned.

6.3.3.16 The cmp_oct Routine

The cmp_oct routine compares two octet strings. The two octet strings
are compared byte-by-byte for the length of the shortest octet string. If all
bytes are equal, the lengths are compared. An octet with a null pointer is
considered the same as a zero-length octet.

The syntax is as follows:
int cmp_oct(

OCT *oct1,
OCT *oct2);

The following is an example of the cmp_oct routine:

#include <esnmp.h>
OCT abc, efg;
:
: abc and efg are initialized to something
:
if (cmp_oct(&abc, &efg) > 0)

ESNMP_LOG((WARNING,"octet abc is larger than efg...\n"));

The returns are as follows:
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• −1 — The string to which the first parameter points is less than the
second.

• 0 — The string to which the first parameter points is equal to the
second.

• +1 — The string to which the first parameter points is greater than
the second.

6.3.3.17 The clone_oct Routine

The clone_oct routine makes a copy of an OCT structure.

The caller passes in a pointer to the old OCT structure to be cloned and
a pointer to the new OCT structure that is to receive the duplicate OCT
structure values.

It dynamically allocates the buffer, copies the data, and updates the new OCT
structure with the buffer’s address and length.

The caller has the responsibility to free this allocated buffer.

Note that any previous buffer to which the new OCT structure points is freed
and pointers to the new, dynamically allocated buffer are inserted. Be sure
to initialize the new OCT structure with zeros (0), unless it contains a buffer
that can be freed.

Also note that this routine does not allocate an OCT structure, only the
elements buffer pointed to by the OCT structure.

The syntax is as follows:
OCT *clone_oct(

OCT *new,
OCT *old);

The arguments are as follows:
new

A pointer to the OCT structure that is to receive the copy.

old

A pointer to the OCT structure where the data is to be obtained.

The following is an example of the clone_oct routine:

#include <esnmp.h>
OCT octet1;
OCT octet2;
:
: assume octet1 gets assigned a value
:
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memset(&octet2, 0, sizeof(OCT));
if (clone_oct(&octet2, &octet1) == NULL)

ESNMP_LOG((WARNING, "It did not work\n"));

The return values are as follows:
NULL

An error occurred; otherwise, the pointer to the OCT structure (its first
argument) is returned.

6.3.3.18 The free_oct Routine

The free_oct routine frees the buffer attached to an OCT structure.

It frees a dynamically allocated buffer to which the OCT structure points,
then zeros (0) the pointer and length fields in the OCT structure. If the OCT
structure is already NULL, this routine does nothing. If the buffer attached
to the OCT structure is already NULL, this routine sets the length field of
the OCT structure to zero (0).

Note that this routine does not deallocate the OCT structure, only the buffer
to which it points.

The syntax is as follows:
void free_oct(

OCT *oct);

The following is an example of the free_oct routine:

#include <esnmp.h>
OCT octet;
:
: assume octet was assigned a value (perhaps with clone_oct()
: and we are now finished with it.
:
free_oct(&octet);

6.3.3.19 The free_varbind_data Routine

The free_varbind_data routine frees the dynamically allocated fields
within the VARBIND structure.

The routine performs a free_oid (vb->name) operation. If the vb->type
field indicates, it then frees the vb->value data using either the free_oct
or the free_oid routine.

It does not deallocate the VARBIND structure itself; only the name and data
buffers to which it points.

The syntax is as follows:
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void free_varbind_data(
VARBIND *vb);

The following is an example of the free_varbind_data routine:

#include <esnmp.h>
VARBIND *vb;
:
: assume oid and data are declared and
: assigned appropriate values
:
vb = (VARBIND*)malloc(sizeof(VARBIND));
clone_oid(&vb->name, oid);
clone_oct(&vb->value.oct, data);
:
: some processing that uses vb occurs here
:
free_varbind_data(vb);
free(vb);

6.3.3.20 The set_debug_level Routine

The set_debug_level routine sets the logging level, which dictates what
log messages are generated. The program or module calls the routine
during program initialization in response to run-time options. If not called,
WARNING and ERROR messages are sent to stdout as the default.

The syntax is as follows:
void set_debug_level(

int stat,
LOG_CALLBACK_ROUTINE callback_routine);

The arguments are as follows:

stat

The log level. The following values can be set individually or in
combination:

ERROR

For when a bad error occurred, requiring a restart.

WARNING

For when a packet cannot be handled; this also implies ERROR.

TRACE

For when tracing all packets; this also implies ERROR and
WARNING.
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DAEMON_LOG

Causes output to go to syslog rather than to standard output.

EXTERN_LOG

Causes the callback function to be called to output log messages.
If this bit is set, you must provide the second argument, which
is a pointer to a user supplied external callback function. If
DAEMON_LOG and EXTERN_LOG are not specified, output
goes to standard output.

callback_routine

A user-supplied external callback function. For example:
void callback_function(

int level,
char *message);

The level will be ERROR, WARNING, or TRACE. If the EXTERN_LOG
bit is set in stat, the callback function will be called whenever an
ESNMP_LOG macro is executed and the log level indicates that a log
message is to be generated.

This facility allows an implementer to control where eSNMP library
functions output log messages. If the EXTERN_LOG bit will not be set,
pass in a NULL pointer for the callback function argument.

The following is an example of the set_debug_level routine:

#include <esnmp.h>
extern void log_handler(int level, char *message);

if (daemonize)
set_debug_level(EXTERN_LOG | WARNING, log_handler);

else
set_debug_level(TRACE, NULL);

6.3.3.21 The is_debug_level Routine

The is_debug_level routine tests the logging level to see if the specified
level is set. You can test the levels as follows:

• ERROR — For when a bad error occurred, requiring restart.

• WARNING — For when a packet cannot be handled; this also implies
ERROR.

• TRACE — For when tracing all packets; this also implies ERROR and
WARNING.

• DAEMON_LOG — For output going to syslog.
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• EXTERN_LOG — For the callback function to be called to output
log messages.

The syntax is as follows:
int is_debug_level(

int type);

The return values are as follows:

TRUE The requested level is set and the ESNMP_LOG will generate
output, or output will go to the specified destination.

FALSE The logging level is not set.

The following is an example of the is_debug_level routine:

#include <esnmp.h>

if (is_debug_level(TRACE))
dump_packet();

6.3.3.22 The ESNMP_LOG Routine

The ESNMP_LOG routine is an error declaration C macro defined in the
<esnmp.h> header file. It gathers the information that it can obtain and
sends it to the log. If DAEMON_LOG is set, log messages are sent to the
daemon log. If EXTERN_LOG is set, log messages are sent to the callback
function; otherwise, log messages go to standard output.

______________________ Note _______________________

The esnmp_log routine is called using the ESNMP_LOG macro,
which uses the helper routine esnmp_logs to format part of the
text. Do not use these functions without the ESNMP_LOG macro.

#define ESNMP_LOG(level, x) if (is_debug_level(level)) { \
esnmp_log(level, esnmp_logs x, __LINE__, __FILE__);}

Where x is (text):

text - format, arguments, ....

For example a printf statement.

level

Can be one of the following:

ERROR Declares an error condition.
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WARNING Declares a warning.

TRACE Puts in log file if trace is active.

The syntax is as follows:
ESNMP_LOG(level,(format, ...))

The following is an example of the ESNMP_LOG routine:

#include <esnmp.h>
ESNMP_LOG( ERROR, ("Cannot open file %s\n", file));
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7
RSVP Application Programming Interface

The Resource ReSerVation Protocol (RSVP) is an network layer protocol
that enables Internet applications to request enhanced quality-of-service
(QoS) for specific application data streams or flows, either simplex
unicast or multicast. Applications will typically use the RSVP Application
Programming Interface (RAPI) to request enhanced QoS when the default
best effort delivery is not acceptable (for example, video and audio). The
types of QoS applications may request are defined by Internet Integrated
Services.

This chapter assumes you are familiar with the following:

• IETF Integrated Services (RFC 1633)

• RSVP protocol (RFC 2205)

• RSVP and Integrated Services (RFC 2210)

• Controlled-Load Service (RFC 2211)

• The C programming language

This chapter provides the following information:

• Overview of network quality of service

• Information about the network QoS components

• Information about the RSVP application programming interface (RAPI)
routines

7.1 Network Quality of Service

As applications place ever increasing demands for bandwidth on the Internet
network, increasing the network bandwidth is only a temporary solution.
Newer real-time applications demand both increased bandwidth and low
latency. Clearly, there must be a mechanism to manage bandwidth use in
the network.

At present, an IP network with its Best Effort delivery service already
performs a form of passive bandwidth management. If an outgoing queue is
full, indicating high network traffic and congestion, the packets are quietly
dropped. Some upper-level protocols can detect this data loss, others cannot.
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Quality of service (QoS) is the phrase commonly associated with the concept
of actively managing network bandwidth. In this scenario, all network
elements (for example, hosts, applications, and routers) and all network
protocol layers cooperate to ensure consistent traffic and service end-to-end
in a network. Network bandwidth for real-time applications is reserved,
while sufficient bandwidth remains for best-effort traffic.

7.2 Network Quality of Service Components
The major network quality of service components in this operating system
are as follows:

• Traffic Control

• RSVP

• RAPI
These components work together to provide network QoS. The following
sections describe each of these components.

7.2.1 Traffic Control

On this operating system, the Traffic Control subsystem implements the
Controlled-Load service as defined in RFC 2211. This service provides an
application data flow with a QoS that approximates Best Effort delivery
through unloaded network interfaces. The Traffic Control subsystem
consists of the following components:

• Admission control — Verifies that the local system interface has the
requested bandwidth and installs flows and filters.

• Packet classifier — Matches the outbound IP header with installed
filters.

• Packet rate enforcer — Ensures that each output flow stays within its
agreed upon boundaries.

• iftcntl utility — Manually sets up flows and views existing flows and
filters.

Traffic control is supported on the Ethernet and FDDI interfaces.

7.2.2 RSVP

RSVP is an network signaling protocol that is defined in RFC 2205. It
provides a mechanism to reserve bandwidth on the local system and through
the network. On this operating system, RSVP is implemented in the form
of the rsvpd daemon. This daemon is responsible for communicating with
RSVP-enabled applications, sending RSVP messages, and receiving and
processing RSVP messages. The rsvpd daemon uses the Traffic Control
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subsystem to install and modify flows and filters for a specific network
interface.

7.2.3 RAPI

RAPI enables a local application that requires enhanced QoS to communicate
with the rsvpd daemon. Using the RAPI routines, an application can make
resource (bandwidth) reservations on the local system or advertise services
to other nodes in the network, or both. This operating system implements
RAPI as defined by the Resource ReSerVation Protocol API (RAPI) Technical
Standard published by The Open Group. This technical standard is a
companion document to this section. See Section 7.5 for a list of supported
routines and their descriptions.

7.2.4 Interoperation of Components

In RSVP, there are following roles:

• Senders (or data source) — Defined by an IP source address and a source
port

• Receivers — Defined by transport protocol, IP destination address, and
destination port

An application can be both a sender and a receiver.

In a typical scenario, a remote host communicates with the local application
and asks to receive data. When a local application wants to declare itself
a data sender, the following events might occur:

1. The application initiates communication with the rsvpd daemon
through the RAPI interface.

2. The application passes outgoing traffic or flow characteristics, such as
upper and lower bandwidth limits, delay, and jitter, to rsvpd. These
characteristics are known as a Tspec. An Adspec is also passed to the
daemon.

3. The rsvpd daemon creates a PATH message that contains this
information and passes it down to Traffic Control. The interaction
between the rsvpd daemon and Traffic Control subsystem is invisible
to the requesting application.

4. Traffic Control determines if there is sufficient bandwidth on the local
adapter for the reservation. If there is, Traffic Control transmits the
message. The transmission can be to a unicast address or multicast
address.

5. At each RSVP-enabled router, Traffic Control updates the PATH
message with the previous source address (next hop upstream to the
sender), modifies the Adspec depending on the QoS control services
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present on the node, and transmits the message downstream to its
destination.

6. At the receiver, rsvpd passes the Tspec and Adspec to the receiver
application through RAPI.

The preceding list is provided to show a summary of the steps that can occur.
Additional steps might be required.

When an local application wants to make a reservation request (declare
itself as a receiver), the following events might occur:

1. The application initiates communication with the rsvpd daemon
through the RAPI interface.

2. The application passes the traffic expected by the receiver (Tspec), the
QoS level required (Rspec), and transport protocol and port number for
the packets (filter spec) to rsvpd. The Rspec and Tspec are considered
the flow descriptor or flowspec.

The Rspec is also used to control the packet scheduling mechanism in
the router or host. The filter spec also controls packet classification to
determine which senders’ data packets receive the corresponding QoS.

3. The rsvpd daemon creates a RESV message that contains this
information and passes it down to Traffic Control. The interaction
between the rsvpd daemon and Traffic Control subsystem is invisible
to the requesting application.

4. Traffic Control determines if there is sufficient bandwidth on the local
adapter for the reservation. If there is, Traffic Control transmits the
message upstream using the source address in the PATH message.

5. At each RSVP-enabled router, Traffic Control authenticates the
reservation request and allocates the necessary resources as requested
in the Tspecs and the Flowspec. If the authorization fails or if there are
insufficient resources available, the router sends an RSVP error back
to the receiver.

6. At the last RSVP-enabled router, if the request is accepted, the router
sends an RSVP confirmation message back to the receiver.

7. At each RSVP session data sender, RSVP passes the merged Flowspec
object to the application. This informs the sender of the request and
describes the properties of the data path.

8. If the sender agrees with the RSVP reservation parameters, it
acknowledges the reservation via RSVP and proceeds to send data to
receiver over a separate data connection.

The preceding list is provided to show a summary of the steps that can occur.
Additional steps might be required.
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The detailed manner in which reservations from different receivers are
shared in the Internet is controlled by a reservation parameter known as the
reservation style. See RFC 2205 for information on the different reservation
styles.

7.3 Traffic Control

The Traffic Control subsystem performs the following tasks:

• Implements an admission control mechanism that maintains interface
parameters, such as the device’s peak output rate, the percentage of
bandwidth that can be reserved for the Controlled-Load service, and the
maximum number of concurrent flows.

• Ensures that applications do not pace data at a rate faster than the
flowspec.

• Interfaces with the rsvpd daemon and the iftcntl command to install
and remove flows and filters

• Matches all outgoing packet headers with any existing filter specs to
determine on which output queue to place the packets

See iftcntl(8) for more information. See the Network Administration:
Connections manual for information on enabling traffic control on the system.

7.4 RSVP

RSVP assigns QoS to specific IP data flows or sessions, which can be either
multipoint-to-multipoint or point-to-point. An RSVP session is defined
by a particular transport protocol, IP destination address, and destination
port. In order to receive data packets for a particular multicast session, a
host must have joined the corresponding IP multicast group. A given session
may have multiple senders and if the destination is a multicast address,
multiple receivers.

The following sections describe the operating system’s RSVP components
and the operation of the rsvpd daemon.
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7.4.1 Components of RSVP

The operating system’s RSVP components are as follows:

• /usr/sbin/rsvpd — RSVP daemon

• /usr/sbin/rsvpstat — A program that displays resource reservation
status

• /usr/shlib/librsvp.so — RSVP library

• /usr/include/rapi_lib.h — RAPI definitions

• /usr/include/rapi_err.h — RSVP and RAPI error definitions

7.4.2 rsvpd Daemon

The rsvpd daemon performs the following functions:

• Listens on a raw IP socket for an incoming RSVP messages

• Communicates with applications on the local host through the RSVP
Application Programming Interface (RAPI)

• Interfaces with the operating system’s Traffic Control subsystem

When rsvpd receives an RSVP message from the network, it validates it
against the local interface database and handles any authentication or
protocol errors. If the request is valid, the rsvpd daemon then does the
following:

• Keeps track of RSVP sessions and flows

• Handles resource reservations against flows

• Passes RSVP messages to the local application, if registered with rsvpd

• Routes RSVP packets with a destination address that does not match
any interface on the local host to the next hop

See rsvpd(8) for information on daemon options. See the Network
Administration: Connections manual for information on starting and
stopping the rsvpd daemon.

7.5 RSVP Application Programming Interface

The RSVP Application Programming Interface (RAPI) enables an application
to establish communications with the rsvpd daemon and to declare itself a
data receiver or data sender, or both.

The application consists of the following:

• A main function written by the developer

• The RSVP Library routines that perform the RSVP protocol work
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• A function written by the developer to process RSVP callbacks

The following sections describe the supported routines and the steps a
developer needs to perform in order to write an RSVP-capable application.

7.5.1 Supported Routines

RAPI consists of the following:

• Client library services — Routines that implement communication
between the application program and the rsvpd daemon

• RAPI formatting routines — Optional routines for convenience in
formatting RAPI objects.

Table 7–1 lists the supported client library services routines and their
descriptions. See each routine’s reference page for complete description of
the routine, its syntax, and its parameters.

Table 7–1: Client Library Services Routines
Routine Description

rapi_session(3) Creates a RAPI session locally.

rapi_reserve(3) Makes, modifies, or deletes a resource
reservation for a session.

rapi_sender(3) Defines, redefines, or deletes a sender’s
data flow parameters.

rapi_strerror(3) Maps a RAPI error code to an error
message string.

rapi_version(3) Returns the RAPI version number being
used on the operating system.

rapi_release(3) Closes a RAPI session and deletes
all resource reservations.

rapi_dispatch(3) Dispatches a RAPI event.

rapi_getfd(3) Obtains the file descriptor associated
with a RAPI session.

rapi_event_rtn_t(3) A user-written routine that receives
incoming, asynchronous RSVP events.

RSVP requests contain objects that describe the type of QoS. The RAPI
formatting routines enable applications to display the contents of RAPI
objects. Table 7–2 lists the supported RAPI formatting routines and their
descriptions. See each routine’s reference page for complete description of
the routine, its syntax, and its parameters.
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Table 7–2: RAPI Formatting Routines
Routine Description

rapi_fmt_adspec(3) Formats a given RAPI Adspec into a
buffer of given address and length.

rapi_fmt_filtspec(3) Formats a given RAPI filter spec into a
buffer of given address and length.

rapi_fmt_flowspec(3) Formats a given RAPI flowspec into a
buffer of given address and length.

rapi_fmt_tspec(3) Formats a given RAPI Tspec into a
buffer of given address and length.

See the Resource ReSerVation Protocol API (RAPI) Technical Standard
published by The Open Group for information on RAPI objects, protocol
operations, and RAPI return values.

7.5.2 Writing a RAPI-Enabled Application

As an application developer, you are usually presented with a UNIX
application and have to implement an RSVP interface.

The following steps explain this process:

1. Include the rapi.h header file. This file defines all data structures,
constants, and function prototyes required for applications to use RAPI.

2. Code the RAPI calls.

Write the code that calls RAPI to initialize communications with the
rsvpd daemon.

Write a callback routine with which to receive RSVP events.

3. Execute and test your application.

7.5.2.1 Linking Your Application

After you compile your application, you link it with either the librsvp.so
shareable library or the librsvp.a static library. This library contains the
protocol implementation (RAPI) that enables communication between the
application and the rsvpd daemon.

7.5.3 Debugging RAPI Applications

To assist in testing and debugging your applications, you might want to run
rsvpd with the -d flag. This forces the daemon to write error messages and
debugging output to the /var/rsvp/rsvpd_dbg.log file.
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You can also run rsvpstat to verify if connections are getting through or
whether reservations are being honored. To monitor active RSVP sessions
on the local system, enter the following command:

# /usr/sbin/rsvpstat

By default, the rsvpstat command displays a list of all RSVP sessions,
sender and receiver, active on this system. Information includes the session
number, destination address, IP protocol, port number, and the number of
PATH and RESV states for the session.

To display sender information, including the contents of the actual PATH
message from the sender, enter the following command:

# /usr/sbin/rsvpstat -Sv

To display receiver information, including the contents of the actual RESV
message from the receiver, enter the following command:

# /usr/sbin/rsvpstat -Rv

See rsvpstat(8) for more information.
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Tru64 UNIX STREAMS/Sockets

Coexistence

This chapter describes the ifnet STREAMS module and dlb STREAMS
pseudodriver communication bridges. Before reading it, you should be
familiar with basic STREAMS and sockets concepts and have reviewed the
information in Chapter 4 and Chapter 5.

The operating system’s network programming environment supports the
STREAMS and sockets frameworks for network programming. However,
there is no native communication path at the data link layer between
the two frameworks. The term coexistence refers to the ability to
exchange data between the sockets and STREAMS frameworks. The term
communication bridge refers to the software (ifnet STREAMS module
or the dlb STREAMS pseudodriver) that enables the two frameworks to
exchange data at the data link layer.

Programs written to sockets and STREAMS must intercommunicate for
the following reasons:

• A system cannot have two drivers for the same device.

• Programs may need to access STREAMS-based device drivers from BSD
protocol stacks or, conversely, may need to access BSD device drivers
from STREAMS-based protocol stacks.

For example, if your system is running a STREAMS device driver and
you have an application that uses the TCP/IP implemented on Tru64
UNIX, which is sockets-based, you need a path by which the data gets
from the sockets-based protocols stack to the STREAMS device driver
and back again. The ifnet STREAMS module allows an application
using TCP/IP to exchange data with a STREAMS device driver.
Section 8.1 describes the ifnet STREAMS module.

Conversely, if you have a STREAMS protocol stack implemented on your
system but want to use the BSD device driver implemented on Tru64
UNIX, you need a path by which the data gets from the STREAMS
protocol stack to the BSD device driver and back again. The dlb
STREAMS pseudodriver allows the STREAMS protocol stack to route its
data to the BSD device driver. Section 8.2 describes the dlb STREAMS
pseudodriver.
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8.1 Bridging STREAMS Drivers to Sockets Protocol Stacks

The ifnet STREAMS module is a communication bridge that allows
STREAMS network drivers to access sockets-based network protocols. The
ifnet STREAMS module functions like any other STREAMS module, being
pushed on the Stream above the STREAMS device driver. Once it is on
the Stream, it handles all of the translation required between the DLPI
interface of the STREAMS driver and the BSD ifnet layer. The ifnet
STREAMS module exports both standard STREAMS interfaces as well as
ifnet layer interfaces.

Note that STREAMS network drivers can also continue to use
STREAMS-based network protocols while using the ifnet STREAMS
module.

Figure 8–1 highlights the ifnet STREAMS module and shows its place in
the network programming environment.

Figure 8–1: The ifnet STREAMS module
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8.1.1 The STREAMS Driver

This section describes how to prepare the system running the STREAMS
driver to use the ifnet STREAMS module.

______________________ Note _______________________

The ifnet STREAMS module only supports Ethernet STREAMS
device drivers.

This section also lists the DLPI primitives that the STREAMS driver must
support in order for the ifnet STREAMS module to operate successfully.

8.1.1.1 Using the ifnet STREAMS Module

If your device driver supports the primitives listed in Section 8.1.1.2, no
source code changes to either the driver or STREAMS kernel code are needed
for you to use the ifnet STREAMS module.

To use the ifnet STREAMS module, the STRIFNET and DLPI options must
be configured in your kernel and you must set up STREAMS for the driver.

The STRIFNET and DLPI options may have been configured into your
system at installation time. (For information on configuring options during
installation, see the Installation Guide.) You can check to see if the options
are configured, by issuing the following command:

# /usr/sbin/strsetup −c

If ifnet and dlb appear in the Name column, the options are configured in
your kernel. If not, you must add them using the doconfig command.

To configure STRIFNET and DLPI into your kernel, perform the following
steps:

1. Log in as superuser.

2. Enter the /usr/sbin/doconfig command. If you have a customized
configuration file, you should use the /usr/sbin/doconfig -c
command. For more information, see doconfig(8).

3. Enter a name for the kernel configuration file. It should be the name
of your system in uppercase letters, and will probably be the default
provided in square brackets ([]); for example:

Enter a name for the kernel configuration file.
[HOST1]: RETURN

4. Enter y when the system asks whether you want to replace the system
configuration file; for example:
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A configuration file with the name ’HOST1’ already exists.
Do you want to replace it? (y/n) [n]: y

Saving /sys/conf/HOST1 as /sys/conf/HOST1.bck

*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***

5. Select the options you want to include in your kernel.

____________________ Note _____________________

The STRIFNET and DLPI options are not available from
this menu. To include these options, you must edit the
configuration file, as shown in the following step.

6. Add DLPI and STRIFNET to the options section of the kernel
configuration file.

Enter y when the system asks whether you want to edit the kernel
configuration file. The doconfig command allows you to edit the
configuration file with the ed editor. For information about using the
ed editor, see ed(1).

The following ed editing session shows how to add the DLPI and
STRIFNET options to the kernel configuration file for host1. Note that
the number of the line after which you append the new lines can differ
between kernel configuration files:

Do you want to edit the configuration file? (y/n) [n]: y

Using ed to edit the configuration file. Press return when ready,
or type ’quit’ to skip the editing session:
2153

48a
options DLPI
options STRIFNET
.
1,$w
2185
q

*** PERFORMING KERNEL BUILD ***

7. After the new kernel is built, you must move it from the directory where
doconfig places it to the root directory (/) and reboot your system.

When you reboot, the strsetup −i command runs automatically, and
creates the device special files for any new STREAMS modules.

8. Run the strsetup −c command to verify that the device is configured
properly. The following example shows the output from the strsetup
−c command:
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# /usr/sbin/strsetup −c
STREAMS Configuration Information...Thu Nov 9 08:38:17 1995

Name Type Major Module ID
---- ---- ----- ---------
clone 32 0

dlb device 52 5010
dlpi device 53 800
kinfo device 54 5020

log device 55 44
nuls device 56 5001
echo device 57 5000
sad device 58 45

pipe device 59 5304
xtisoUDP device 60 5010
xtisoTCP device 61 5010

xtisoUDP+ device 62 5010
xtisoTCP+ device 63 5010

ptm device 64 7609
pts device 6 7608
bba device 65 24880
lat device 5 5

pppif module 6002
pppasync module 6000
pppcomp module 6001
bufcall module 0

ifnet module 5501
null module 5002
pass module 5003
errm module 5003
ptem module 5003
spass module 5007
rspass module 5008

pipemod module 5303
timod module 5006
tirdwr module 0
ldtty module 7701

Configured devices = 16, modules = 15

For more detailed information on reconfiguring your kernel or the doconfig
command see the System Administration manual and doconfig(8).

To set up STREAMS for the driver you must do the following:

1. Write an application program similar to the following:

/*
* Application program to set up the "pifnet" streams for IP
* and ARP. This must be run prior to ifconfig
*/
#include <stdio.h>
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#include <fcntl.h>
#include <errno.h>
#include <stropts.h>
#include <sys/ioctl.h>
#include <signal.h>
#include "dlpihdr.h"

#define IP_PROTOCOL 0x800
#define ARP_PROTOCOL 0x806
#define PIFNET_IOCTL_UNIT 1236

main(argc, argv)
int argc;
char *argv[];

{
extern char *getenv();
char *p;
short unit = 0;
char devName[256];

if (argc != 3) usage();
strcpy(devName, argv[1]);
unit = atoi(argv[2]);

sigignore(SIGHUP);
setupStream(devName, unit, IP_PROTOCOL);
setupStream(devName, unit, ARP_PROTOCOL);

/*
* sleep forever to keep the Streams alive.
*/

if (fork()) /* detach */
exit();

pause();
}

usage()
{

fprintf(stderr, "usage: pifnetd devname unit-number\n");
exit(1);

}

setupStream(devName, unit, serviceClass)
char *devName;
short unit;
u_long serviceClass;

{
int fd, status;
dl_bind_req_t bindreq;
dl_bind_ack_t bindack;
int flags;
struct strioctl str;
struct strbuf pstrbufctl, pstrbufdata, gstrbufctl, \

gstrbufdata;
char ebuf[256];

/*
* build the stream
*/

fd = open(devName, O_RDWR, 0);
if (fd < 0)
{

sprintf(ebuf, " open ’%s’ failed", devName);
perror(ebuf);
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exit(1);
}
if (ioctl(fd, I_PUSH, "ifnet") < 0)
{

sprintf(ebuf, " ioctl I_PUSH failed");
perror(ebuf);
exit(1);

}

/*
* tell pifnet the unit number for the device
*/

str.ic_cmd = PIFNET_IOCTL_UNIT;
str.ic_timout = 15;
str.ic_len = sizeof (short);
str.ic_dp = (char *) &unit;
status = ioctl(fd, I_STR, &str);
if (status < 0)
{

sprintf(ebuf, " %s - ioctl");
perror(ebuf);
exit(1);

}

/*
* bind the stream to a protocol
*/

bindreq.dl_primitive = DL_BIND_REQ;
bindreq.dl_sap = serviceClass;
bindreq.dl_max_conind = 0;
bindreq.dl_service_mode = DL_CLDLS;
bindreq.dl_conn_mgmt = 0;
bindreq.dl_xidtest_flg = 0;
pstrbufctl.len = sizeof(dl_bind_req_t);
pstrbufctl.buf = (void *)&bindreq;

pstrbufdata.buf = (char *)0;
pstrbufdata.len = -1;
pstrbufdata.maxlen = 0;

status = putmsg(fd, &pstrbufctl, (struct strbuf *)0, 0);
if (status < 0)
{

perror("putmsg");
exit(1);

}

/*
* Check requested binding
*/

gstrbufctl.buf = (char *)&bindack;
gstrbufctl.maxlen = sizeof(dl_bind_ack_t);
gstrbufctl.len = 0;
status = getmsg(fd, &gstrbufctl, (struct strbuf *)0, &flags);
if (status < 0)
{

perror("getmsg");
exit(1);

}

if (bindack.dl_primitive != DL_BIND_ACK)
{

errno = EPROTO;
perror(" DL_BIND_ACK");
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exit(1);
}

}

In this sample application the driver’s name is /dev/streams/ln.
The application creates two Streams; one for the Internet Protocol
(IP) and one for the Address Resolution Protocol (ARP). After setting
up the Streams, the application must keep running, using the pause
command, in order to keep the Streams alive.

Note that, if the driver is a style-2 driver, you must add a
DL_ATTACH_REQ primitive to the application program. For more
information about the DL_ATTACH_REQ primitive or style-2 drivers, see
the DLPI specification in /usr/share/doclib/dlpi/dlpi.ps.

2. Generate an executable file for the application. Compile, link, and
debug the program until it runs without errors.

3. Move the executable into a directory that is convenient for you.

The executable can be located in any directory.

4. Add a line invoking the program to the /sbin/init.d/inet file.

Although you can manually start the program each time you reboot,
it is easiest to add a line to the /sbin/init.d/inet file to run it
automatically when the system reboots. Be sure to add the line before
the system’s ifconfig lines.

In the following example, each time the system reboots, the
/sbin/init.d/inet file runs a program called run_ifnet, which
resides in the /etc directory:
.
.
.
#
# Enable network
#
case $1 in

echo "Configuring network"
/sbin/hostname $HOSTNAME
echo "hostname: \c"
/sbin/hostname
if [ "$NETDEV_0" != ’’ ]; then

echo >/tmp/ifconfig_"$NETDEV_0".tmp
# place command invoking executable BEFORE \

ifconfig lines
/etc/run_ifnet

/sbin/ifconfig $NETDEV_0 $IFCONFIG_0 > \
/tmp/ifconfig_"$NETDEV_0".tmp 2>&1

if [ $? != 0 ]; then
ERROR=‘cat /tmp/ifconfig_"$NETDEV_0".tmp‘
if [ "$ERROR" = "$ERRSTRING" ]; then

/sbin/ifconfig $NETDEV_0 up
else

echo "$0: $ERROR"
fi

fi
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rm /tmp/ifconfig_"$NETDEV_0".tmp
fi

.

.

.

5. Reboot the system.

Use the /usr/sbin/shutdown −r command to shut down your system
and have it reboot automatically; for example:

# /usr/sbin/shutdown −r now

8.1.1.2 Data Link Provider Interface Primitives

Note that the STREAMS device driver can be a style-1 or a style-2 DLPI
provider, as described in the Data Link Provider Interface specification,
which is located in /usr/share/doclib/dlpi/dlpi.ps. Note that
you must have the OSFPGMRnnn subset installed to access the DLPI
specification on line.

The driver must support the following DLPI primitives. For detailed
information about these primitives and how to use them, see the DLPI
specification:

DL_PHYS_ADDR_REQ/DL_PHYS_ADDR_ACK

DL_BIND_REQ/DL_BIND_ACK

DL_UNBIND_REQ

DL_UNITDATA_REQ/DL_UNITDATA_IND/DL_UDERROR_IND

DL_OK_ACK/DL_ERROR_ACK

8.2 Bridging BSD Drivers to STREAMS Protocol Stacks

The dlb STREAMS pseudodevice driver allows you to bridge BSD-style
device drivers and STREAMS protocol stacks. The STREAMS pseudodevice
driver is the Stream end in a Stream wanting to communicate with
BSD-based drivers. The STREAMS pseudodevice driver provided with this
operating system has two interfaces, a subset of the DLPI interface that
communicates with STREAMS protocol stacks and another interface that
accesses the ifnet layer interface of the sockets framework.

Figure 8–2 highlights the dlb STREAMS pseudodriver and shows its place
in the network programming environment.
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Figure 8–2: DLPI STREAMS Pseudodriver
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8.2.1 Supported DLPI Primitives and Media Types

The dlb STREAMS pseudodriver supports the following connectionless
mode primitive and media types. For detailed information about these
primitives and how to use them, see the Data Link Provider Interface
specification which is in /usr/share/doclib/dlpi/dlpi.ps.

DL_ATTACH_REQ/DL_DETACH_REQ/DL_OK_ACK

DL_BIND_REQ/DL_BIND_ACK/DL_UNBIND_REQ

DL_ENABMULTI_REQ/DL_DISABLMULTI_REQ

DL_PROMISCON_REQ/DL_PROMISCONOFF_REQ

DL_PHYS_ADDR_REQ/DL_PHYS_ADDR_ACK

DL_SET_PHYS_ADDR_REQ

DL_UNITDATA_REQ/DL_UNITDATA_IND
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DL_SUBS_BIND_REQ/DL_SUBS_BIND_ACK

DL_SUBS_UNBIND_REQ/DL_SUBS_UNBIND_ACK

The Ethernet bus (DL_ETHER) is the media type supported by the STREAMS
pseudodriver.

8.2.2 Using the STREAMS Pseudodriver

To use the dlb STREAMS pseudodriver the DLPI option must be configured
into your kernel. The DLPI option may have been configured into your
system at installation time.

You can check to see if the DLPI option is configured by issuing the following
command:

# /usr/sbin/strsetup −c

If dlb appears in the Name column, the option is configured in your kernel.
If not, you must add it using the doconfig command.

For a description of how to reconfigure your kernel with the doconfig
command, see Section 8.1.1.1.

For more information on reconfiguring your kernel or the doconfig
command see the System Administration manual and doconfig(8). For
information on configuring options during installation, see the Installation
Guide.
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A
Sample STREAMS Module

The spass module is a simple STREAMS module that passes all messages
put to it to the putnext() procedure. The spass module delays the call to
putnext() for the service procedure to handle. It has flow control code built
in, and both the read and write sides share a service procedure.

The following is the code for the spass module:

#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/sysconfig.h>

static int spass_close();
static int spass_open();
static int spass_rput();
static int spass_srv();
static int spass_wput();

static struct module_info minfo = {
0, "spass", 0, INFPSZ, 2048, 128

};

static struct qinit rinit = {
spass_rput, spass_srv, spass_open, spass_close, NULL, &minfo

};

static struct qinit winit = {
spass_wput, spass_srv, NULL, NULL, NULL, &minfo

};

struct streamtab spassinfo = { &rinit, &winit };

cfg_subsys_attr_t bufcall_attributes[] = {
{, 0, 0, 0, 0, 0, 0} /* must be the last element */

};

int
spass_configure(op, indata, indata_size, outdata, outdata_size)

cfg_op_t op;
caddr_t indata;
ulong indata_size;
caddr_t outdata;
ulong outdata_size;

{
struct streamadm sa;
dev_t devno = NODEV;

if (op != CFG_OP_CONFIGURE)
return EINVAL;

sa.sa_version = OSF_STREAMS_10;
sa.sa_flags = STR_IS_MODULE | STR_SYSV4_OPEN;
sa.sa_ttys = 0;
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sa.sa_sync_level = SQLVL_QUEUE;
sa.sa_sync_info = 0;
strcpy(sa.sa_name, "spass");
if ( (devno = strmod_add(devno, &spassinfo, &sa)) == NODEV ) {

return ENODEV;
}

return 0;
}

/* Called when module is popped or the Stream is closed */
static int
spass_close (q, credp)

queue_t * q;
cred_t * credp;

{
return 0;

}

/* Called when module is pushed */
static int
spass_open (q, devp, flag, sflag, credp)

queue_t * q;
int * devp;
int flag;
int sflag;
cred_t * credp;

{
return 0;

}

/*
* Called to process a message coming upstream. All messages
* but flow control messages are put on the read side service
* queue for later processing.
*/
static int
spass_rput (q, mp)

queue_t * q;
mblk_t * mp;

{
switch (mp->b_datap->db_type) {
case M_FLUSH:

if (*mp->b_rptr & FLUSHR)
flushq(q, 0);

putnext(q, mp);
break;

default:
putq(q, mp);
break;

}
return 0;

}

/*
* Shared by both read and write sides to process messages put
* on the read or write service queues. When called from the
* write side, sends all messages on the write side queue
* downstream until flow control kicks in or all messages are
* processed. When called from the read side sends all messages
* on its read side service queue upstreams until flow control
* kicks in or all messages are processed.
*/
static int
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spass_srv (q)
queue_t * q;

{
mblk_t * mp;

while (mp = getq(q)) {
if (!canput(q->q_next))

return putbq(q, mp);
putnext(q, mp);

}
return 0;

}

/*
* Called to process a message coming downstream. All messages but
* flow control messages are put on the write side service queue for
* later processing.
*/
static int
spass_wput (q, mp)

queue_t * q;
mblk_t * mp;

{
switch (mp->b_datap->db_type) {
case M_FLUSH:

if (*mp->b_rptr & FLUSHW)
flushq(q, 0);

putnext(q, mp);
break;

default:
putq(q, mp);
break;

}
return 0;

}

Sample STREAMS Module A–3





B
Socket and XTI Programming Examples

This appendix contains annotated files for a sample server/client1 credit card
authorization program. Clients access a server on the merchant’s behalf and
request authorization from the server to put a charge on the client’s credit
card. The server maintains a database of authorized merchants and their
passwords, as well as a database of credit card customers, their credit limit,
and current balance. It either authorizes or rejects a client request based
on the information in its database.

Several variations on the credit card authorization program are
presented, including connection-oriented and connectionless modes. The
connection-oriented and connectionless modes each contain socket and XTI
code for the server and client portions of the program.

Although the program uses network programming in a real world
application, it has the following limitations:

• Error handling is not robust

• Accepts only integer amounts

• Performs no child process clean up

• In the case of the connection-oriented protocol examples in Section B.1,
for each request received, the server program forks a child process to
handle the request. The database information is "detached" in the child
process’ private data area. When the child process analyzes the request
and reduces the customer’s credit balance appropriately, it needs to
update this information in the original server’s data area (and on some
persistent storage as well) so that the next request for the same customer
is handled correctly. To avoid unnecessary complexity, this logic is not
included in the program.

The information is organized as follows:

• Connection-oriented mode programs

– Socket

� Server

� Client

1 The term client in this appendix refers to the program initiated by the merchant which
interacts with the server program.
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– XTI

� Server

� Client

• Connectionless mode programs

– Socket

� Server

� Client

– XTI

� Server

� Client

• Common files

You can obtain copies of these example programs from /usr/exam-
ples/network_programming directory.

B.1 Connection-Oriented Programs
This section contains sockets and XTI variations of the same server and
client programs, written for connection-oriented modes communication.

B.1.1 Socket Server Program

Example B–1 implements a server using the socket interface.

Example B–1: Connection-Oriented Socket Server Program

/*
*
* This file contains the main socket server code
* for a connection-oriented mode of communication.
*
* Usage: socketserver
*
*/

#include "server.h"

char *parse(char *);
struct transaction *verifycustomer(char *, int, char *);

main(int argc, char *argv[])
{

int sockfd;
int newsockfd;
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Example B–1: Connection-Oriented Socket Server Program (cont.)

struct sockaddr_in serveraddr;
struct sockaddr_in clientaddr;
int clientaddrlen = sizeof(clientaddr);
struct hostent *he;
int pid;

signal(SIGCHLD, SIG_IGN);

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) 1
{

perror("socket_create");
exit(1);

}

bzero((char *) &serveraddr,
sizeof(struct sockaddr_in)); 2

serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY); 3
serveraddr.sin_port = htons(SERVER_PORT); 4

if ( bind(sockfd, 5
(struct sockaddr *)&serveraddr,
sizeof(struct sockaddr_in)) < 0) {

perror("socket_bind");
exit(2);

}

listen(sockfd, 8); 6

while(1) {

if ((newsockfd =
accept(sockfd, 7

(struct sockaddr *) &clientaddr,
&clientaddrlen)) < 0) {

if (errno == EINTR) {
printf("Bye...\n");
exit(0);

} else {
perror("socket_accept");
exit(3);

}
}
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Example B–1: Connection-Oriented Socket Server Program (cont.)

pid = fork();

switch(pid) {
case -1: /* error */

perror("dosession_fork");
break;

default:
close(newsockfd);
break;

case 0: /* child */

close(sockfd);
transactions(newsockfd);

close(newsockfd);
return(0);

}
}

}

transactions(int fd) 8
{

int bytes;
char *reply;
int dcount;
char datapipe[MAXBUFSIZE+1];

/*
* Look at the data buffer and parse commands,
* keep track of the collected data through
* transaction_status.
*
*/
while (1) {

if ((dcount=recv(fd, datapipe, MAXBUFSIZE, 0)) 9
< 0) {

perror("transactions_receive");
break;

}
if (dcount == 0) {

return(0);
}

datapipe[dcount] = ’\0’;
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Example B–1: Connection-Oriented Socket Server Program (cont.)

if ((reply=parse(datapipe)) != NULL) {
send(fd, reply, strlen(reply), 0); 10

}
}

}

1 Create a socket with the socket call.

AF_INET specifies the Internet communication domain. Alternatively, if
OSI transport were supported, a corresponding constant such as AF_OSI
would be required here. The socket type SOCK_STREAM is specified for
TCP or connection-oriented communication. This parameter indicates
that the socket is connection-oriented. Contrast the socket call with
the t_open call in the XTI server example (Section B.1.3).

2 The serveraddr is of type sockaddr_in, which is dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP and UDP/IP this is the Internet address of the server
and the port number on which it is listening.

Note that the information contained in the sockaddr_in structure is
dependent on the address family, which is AF_INET in this example. If
AF_OSI were used instead of AF_INET, then sockaddr_osi would be
required for the bind call instead of sockaddr_in.

3 INADDRANY signifies any attached interface adapter on the system.
All numbers must be converted to the network format using appropriate
macros. See the following reference pages for more information:
htonl(3), htons(3), ntohl(3), and ntohs(3).

4 SERVER_PORT is defined in the common.h header file. It is a short
integer, which helps identify the server process from other application
processes. Numbers from 0 to 1024 are reserved.

5 Bind the server’s address to this socket with the bind call. The
combination of the address and port number identify it uniquely on
the network.

6 Specify the number of pending connections the server can queue while it
finishes processing the previous accept call. This value governs the
success rate of connections while the server processes accept calls. Use
a larger number to obtain a better success rate if multiple clients are
sending the server connect requests. The operating system imposes a
ceiling on this value.
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7 Accept connections on this socket. For each connection, the server forks
a child process to handle the session to completion. The server then
resumes listening for new connection requests. This is an example of
a concurrent server. You can also have an iterative server, meaning
that the server handles the data itself. See Section B.2 for an example
of iterative servers.

8 Each incoming message packet is accepted and passed to the parse
function, which tracks the information provided, such as the merchant’s
login ID, password, and customer’s credit card number. This process is
repeated until the parse function identifies a complete transaction and
returns a response packet, to be sent to the client program.

The client program can send information packets in any order (and in
one or more packets), so the parse function is designed to remember
state information sufficient to deal with this unstructured message
stream.

Since the program uses a connection-oriented protocol for data transfer,
this function uses send and recv to send and receive messages,
respectively.

9 Receive data with the recv call.

10 Send data with the send call.

B.1.2 Socket Client Program

Example B–2 implements a client program that can communicate with the
socketserver interface shown in Example B–1.

Example B–2: Connection-Oriented Socket Client Program

/*
*
* This generates the client program.
*
* usage: client [serverhostname]
*
* If a host name is not specified, the local
* host is assumed.
*
*/

#include "client.h"

main(int argc, char *argv[])
{

int sockfd;
struct sockaddr_in serveraddr;
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Example B–2: Connection-Oriented Socket Client Program (cont.)

struct hostent *he;
int n;
char *serverhost = "localhost";
struct hostent *serverhostp;
char buffer[1024];
char inbuf[1024];

if (argc>1) {
serverhost = argv[1];

}

init();

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) 1
{

perror("socket_create");
exit(1);

}

bzero((char *) &serveraddr,
sizeof(struct sockaddr_in)); 2

serveraddr.sin_family = AF_INET;

if ((serverhostp = gethostbyname(serverhost)) == 3
(struct hostent *)NULL) {

fprintf(stderr,"gethostbyname on %s failed\n",
serverhost);

exit(1);
}
bcopy(serverhostp->h_addr,

(char *)&(serveraddr.sin_addr.s_addr),
serverhostp->h_length);

serveraddr.sin_port = htons(SERVER_PORT); 4

/* Now connect to the server */
if (connect(sockfd, (struct sockaddr *)&serveraddr, 5

sizeof(serveraddr)) < 0) {
perror ("connect");
exit(2);

}

while(1) {
/* Merchant record */
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Example B–2: Connection-Oriented Socket Client Program (cont.)

sprintf(buffer, "%%%%m%s##%%%%p%s##",
merchantname, password);

printf("\n\nSwipe card, enter amount: ");
fflush(stdout);
if (scanf("%s", inbuf) == EOF) {

printf("bye...\n");
exit(0);

}
soundbytes();

sprintf(buffer, "%s%%%%a%s##%%%%n%s##",
buffer, inbuf, swipecard());

if (send(sockfd, buffer, strlen(buffer), 0) 6
< 0) {

perror("send");
exit(1);

}

/* receive info */
if ((n = recv(sockfd, buffer, 1024, 0)) < 0) { 7

perror("recv");
exit(1);

}
buffer[n] = ’\0’;

if ((n=analyze(buffer))== 0) {
printf("transaction failure,"

" try again\n");
} else if (n<0) {

printf("login failed, try again\n");
init();

}
}

}

1 Create a socket with the socket call.

AF_INET is the socket type for the Internet communication domain.
Note that this parameter must match the protocol and type selected in
the corresponding server program.

Contrast the socket call with the t_open call in the XTI client example
(Section B.1.4).
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2 The serveraddr is of type sockaddr_in, which is dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP protocol suite, this is the Internet address of the server
and the port number on which it is listening.

Note that the information contained in the sockaddr_in structure is
dependent on the address family (or the protocol).

3 Getting information about the server depends on the protocol or the
address family. To get the IP address of the server, you can use the
gethostbyname routine.

4 SERVER_PORT is defined in the <common.h> header file. It is
imperative that the same port number be used to connect to the socket
server program. The server and client select the port number, which
functions as a well known address for communication.

5 Client issues a connect call to connect to the server. When the
connect call is used with a connection-oriented protocol, it allows the
client to build a connection with the server before sending data. This is
analogous to dialing a phone number.

6 Send data with the send call.

7 Receive data with the recv call.

B.1.3 XTI Server Program

Example B–3 implements a server using the XTI library for network
communication. It is an alternative design for a communication program
that makes it transport independent. Compare this program with the socket
server program in Section B.1.1. This program has the same limitations
described at the beginning of the appendix.

Example B–3: Connection-Oriented XTI Server Program

/*
*
*
* This file contains the main XTI server code
* for a connection-oriented mode of communication.
*
* Usage: xtiserver
*
*/
#include "server.h"

char *parse(char *);
struct transaction *verifycustomer(char *, int, char *);
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Example B–3: Connection-Oriented XTI Server Program (cont.)

main(int argc, char *argv[])
{

int xtifd;
int newxtifd;
struct sockaddr_in serveraddr;
struct hostent *he;
int pid;
struct t_bind *bindreqp;
struct t_call *call;

signal(SIGCHLD, SIG_IGN);

if ((xtifd = t_open("/dev/streams/xtiso/tcp+", O_RDWR, 1
NULL)) < 0) {

xerror("xti_open", xtifd);
exit(1);

}

bzero((char *) &serveraddr, sizeof(struct sockaddr_in));
serveraddr.sin_family = AF_INET; 2
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY); 3
serveraddr.sin_port = htons(SERVER_PORT); 4

/* allocate structures for the t_bind and t_listen call */
if (((bindreqp=(struct t_bind *)

t_alloc(xtifd, T_BIND, T_ALL))
== NULL) ||

((call=(struct t_call *)
t_alloc(xtifd, T_CALL, T_ALL))

== NULL)) {
xerror("xti_alloc", xtifd);
exit(3);

}

bindreqp->addr.buf = (char *)&serveraddr;
bindreqp->addr.len = sizeof(serveraddr);

/*
* Specify how many pending connections can be
* maintained, until finish accept processing
*
*/
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Example B–3: Connection-Oriented XTI Server Program (cont.)

bindreqp->qlen = 8; 5

if (t_bind(xtifd, bindreqp, (struct t_bind *)NULL) 6
< 0) {

xerror("xti_bind", xtifd);
exit(4);

}

/*
* Now the socket is ready to accept connections.
* For each connection, fork a child process in charge
* of the session, and then resume accepting connections.
*
*/

while(1) {

if (t_listen(xtifd, &call) < 0) { 7
if (errno == EINTR) {

printf("Bye...\n");
exit(0);

} else {
xerror("t_listen", xtifd);
exit(4);

}
}

/*
* Create a new transport endpoint on which
* to accept a connection
*
*/

if ((newxtifd=t_open("/dev/streams/xtiso/tcp+", 8
O_RDWR, NULL)) < 0) {

xerror("xti_newopen", xtifd);
exit(5);

}

/* accept connection */
if (t_accept(xtifd, newxtifd, call) < 0) { 9

xerror("xti_accept", xtifd);
exit(7);

}
pid = fork();

switch(pid) {
case -1: /* error */
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Example B–3: Connection-Oriented XTI Server Program (cont.)

xerror("dosession_fork", xtifd);
break;

default:
t_close(newxtifd);
break;

case 0: /* child */

t_close(xtifd);
transactions(newxtifd);
if ((t_free((char *)bindreqp,

T_BIND) < 0) ||
(t_free((char *)call,
T_CALL) < 0)) {

xerror("xti_free", xtifd);
exit(3);

}

t_close(newxtifd);
return(0);

}
}

}

transactions(int fd) 10
{

int bytes;
char *reply;
int dcount;
int flags;
char datapipe[MAXBUFSIZE+1];

/*
* Look at the data buffer and parse commands, if more data
* required go get it
* Since the protocol is SOCK_STREAM oriented, no data
* boundaries will be preserved.
*
*/
while (1) {

if ((dcount=t_rcv(fd, datapipe, MAXBUFSIZE, 11
&flags)) < 0){

/* if disconnected bid a goodbye */
if (t_errno == TLOOK) {

int tmp = t_look(fd);
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Example B–3: Connection-Oriented XTI Server Program (cont.)

if (tmp != T_DISCONNECT) {
t_scope(tmp);

} else {
exit(0);

}
}
xerror("transactions_receive", fd);
break;

}
if (dcount == 0) {

/* consolidate all transactions */
return(0);

}

datapipe[dcount] = ’ ’;

if ((reply=parse(datapipe)) != NULL) {
if (t_snd(fd, reply, strlen(reply), 0) 12

< 0) {
xerror("xti_send", fd);
break;

}
}

}
}

1 The t_open call specifies a device special file name; for example
/dev/streams/xtiso/tcp+. This file name provides the necessary
abstraction for the TCP transport protocol over IP. Unlike the socket
interface, where you specify the address family (for example, AF_INET),
this information is already represented in the choice of the device special
file. The /dev/streams/xtiso/tcp+ file implies both TCP transport
and IP. See the Chapter 5 for information about STREAMS devices.

As mentioned in Section B.1.1, if the OSI transport were available you
would use a device such as /dev/streams/xtiso/cots.

Contrast the t_open call with the socket call in Section B.1.1.

2 Selection of the address depends on the choice of the transport protocol.
Note that in the socket example the address family was the same as
used in the socket system call. With XTI, the choice is not obvious and
you must know the appropriate mapping from the transport protocol to
sockaddr. See Chapter 3 for more information.
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3 INADDRANY signifies any attached interface adapter on the system.
All numbers must be converted to the network format using appropriate
macros. See the following reference pages for more information:
htonl(3), htons(3), ntohl(3), ntohs(3).

4 SERVER_PORT is defined in the <common.h> header file. It has a data
type of short integer which helps identify the server process from
other application processes. Numbers from 0 to 1024 are reserved.

5 Specify the number of pending connections the server can queue while it
processes the last request.

6 Bind the server’s address with the t_bind call. The combination of the
address and port number uniquely identify it on the network. After the
server process’ address is bound, the server process is registered on
the system and can be identified by the lower level kernel functions
to which to direct any requests.

7 Listen for connection requests with the t_listen function.

8 Create a new transport endpoint with another call to the t_open
function.

9 Accept the connection request with the t_accept function.

10 Each incoming message packet is accepted and passed to the parse
function, which tracks the information provided (such as the merchant’s
login ID, password, and customer’s credit card number). This process is
repeated until the parse function identifies a complete transaction and
returns a response packet to be sent to the client program.

The client program can send information packets in any order (and in
one or more packets), so the parse function is designed to remember
state information sufficient to deal with this unstructured message
stream.

Since the program uses a connection-oriented protocol for data
transfer, this function uses t_snd and t_rcv to send and receive data,
respectively.

11 Receive data with the t_rcv function.

12 Send data with the t_snd function.

B.1.4 XTI Client Program

Example B–4 implements a client program that can communicate with the
xtiserver interface shown in Section B.1.3. Compare this program with
the socket client program in Example B–3.
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Example B–4: Connection-Oriented XTI Client Program

/*
*
* This file contains the main XTI client code
* for a connection-oriented mode of communication.
*
* Usage: xticlient [serverhostname]
*
* If a host name is not specified, the local
* host is assumed.
*
*/

#include "client.h"

main(int argc, char *argv[])
{

int xtifd;
struct sockaddr_in serveraddr;
int n;
char *serverhost = "localhost";
struct hostent *serverhostp;
char buffer[1024];
char inbuf[1024];
struct t_call *sndcall;
int flags = 0;

if (argc>1) {
serverhost = argv[1];

}

init();

if ((xtifd = t_open("/dev/streams/xtiso/tcp+", O_RDWR, 1
NULL)) < 0) {

xerror("xti_open", xtifd);
exit(1);

}

bzero((char *) &serveraddr, 2
sizeof(struct sockaddr_in));

serveraddr.sin_family = AF_INET; 3
if ((serverhostp = gethostbyname(serverhost)) == 4

(struct hostent *)NULL) {
fprintf(stderr,"gethostbyname on %s failed\n",

serverhost);
exit(1);
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Example B–4: Connection-Oriented XTI Client Program (cont.)

}
bcopy(serverhostp->h_addr,

(char *)&(serveraddr.sin_addr.s_addr),
serverhostp->h_length);

serveraddr.sin_port = htons(SERVER_PORT); 5

if (t_bind(xtifd, (struct t_bind *)NULL, 6
(struct t_bind *)NULL) < 0) {

xerror("bind", xtifd);
exit(2);

}

/* Allocate structures for the t_bind and t_listen calls */
if ((sndcall=(struct t_call *)t_alloc(xtifd, T_CALL,

T_ALL)) == NULL) {
xerror("xti_alloc", xtifd);
exit(3);

}

sndcall.opt.maxlen = 0;
sndcall.udata.maxlen = 0;
sndcall.addr.buf = (char *)&serveraddr;
sndcall.addr.len = sizeof(serveraddr);

if (t_connect(xtifd, sndcall, 7
(struct t_call *)NULL) < 0) {

xerror ("t_connect", xtifd);
exit(3);

}

while(1) {
/* Merchant record */
sprintf(buffer, "%%%%m%s##%%%%p%s##",

merchantname, password);

printf("\n\nSwipe card, enter amount: ");
fflush(stdout);
if (scanf("%s", inbuf) == EOF) {

printf("bye...\n");
exit(0);

}
soundbytes();

sprintf(buffer, "%s%%%%a%s##%%%%n%s##",
buffer, inbuf, swipecard());
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Example B–4: Connection-Oriented XTI Client Program (cont.)

if (t_snd(xtifd, buffer, strlen(buffer), 0) 8
< 0) {

xerror("t_snd", xtifd);
exit(1);

}

if ((n = t_rcv(xtifd, buffer, 1024, &flags)) 9
< 0) {

xerror("t_rcv", xtifd);
exit(1);

}

buffer[n] = ’\0’;

if ((n=analyze(buffer))== 0) {
printf("transaction failure,"

" try again\n");
} else if (n<0) {

printf("login failed, try again\n");
init();

}
}
if (t_free((char *)sndcall, T_CALL) < 0) {

xerror("xti_free", xtifd);
exit(3);

}
}

1 AF_INET is the socket type for the Internet communication domain.
If AF_OSI were supported, it could be used to create a socket for OSI
communications. The socket type SOCK_STREAM is specified for TCP
or connection-oriented communication.

The t_open call specifies a special device file name instead of the socket
address family, socket type, and protocol that the socket call requires.

Contrast the socket call in Section B.1.2 with the t_open call.

2 The serveraddr is of type sockaddr_in, which is dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP protocol suite, which includes UDP, this is the Internet
address of the server and the port number on which it is listening.

Note that the information contained in the sockaddr_in structure is
dependent on the address family (or the protocol).
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3 AF_INET specifies the Internet communication domain. If AF_OSI were
supported, it could be used to create a socket for OSI communications.

4 Obtaining information about the server depends on the protocol or the
address family. To get the IP address of the server, you can use the
gethostbyname routine.

5 SERVER_PORT is defined in the <common.h> header file. It is
imperative that the same port number be used to connect to the XTI
server program. Numbers from 0 through 1024 are reserved.

6 Bind the server address with the t_bind function to enable the client to
start sending and receiving data.

7 Initiate a connection with the server using the t_connect function.

8 Send data with the t_snd function.

9 Receive data with the t_rcv function.

B.2 Connectionless Programs

This section contains sockets and XTI variations of the same server and
client programs, written for connectionless modes of communication.

B.2.1 Socket Server Program

Example B–5 implements the server portion of the application in a manner
similar to the socket server described in Section B.1.1. Instead of using
a connection-oriented paradigm, this program uses a connectionless
(datagram/UDP) paradigm for communicating with client programs. This
program has the limitations described at the beginning of the appendix.
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Example B–5: Connectionless Socket Server Program

/*
*
* This file contains the main socket server code
* for a connectionless mode of communication.
*
* Usage: socketserverDG
*
*/
#include "server.h"

char *parse(char *);
struct transaction *verifycustomer(char *, int, char *);

main(int argc, char *argv[])
{

int sockfd;
int newsockfd;
struct sockaddr_in serveraddr;
int serveraddrlen = sizeof(serveraddr);
struct sockaddr_in clientaddr;
int clientaddrlen = sizeof(clientaddr);
struct hostent *he;
int pid;

signal(SIGCHLD, SIG_IGN);

/* Create a socket for the communications */
if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) 1

< 0) {
perror("socket_create");
exit(1);

}

bzero((char *) &serveraddr, 2
sizeof(struct sockaddr_in));

serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY); 3
serveraddr.sin_port = htons(SERVER_PORT); 4

if ( bind(sockfd, 5
(struct sockaddr *)&serveraddr,
sizeof(struct sockaddr_in)) < 0) {

perror("socket_bind");
exit(2);

}

transactions(sockfd);
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Example B–5: Connectionless Socket Server Program (cont.)

}

transactions(int fd) 6
{

int bytes;
char *reply;
int dcount;
char datapipe[MAXBUFSIZE+1];
struct sockaddr_in serveraddr;
int serveraddrlen = sizeof(serveraddr);

bzero((char *) &serveraddr, sizeof(struct sockaddr_in));
serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
serveraddr.sin_port = htons(SERVER_PORT);

/* Look at the data buffer and parse commands.
* Keep track of the collected data through
* transaction_status.
*/
while (1) {

if ((dcount=recvfrom(fd, datapipe, 7
MAXBUFSIZE, 0,
(struct sockaddr *)&serveraddr,
&serveraddrlen)) < 0){

perror("transactions_receive");
break;

}
if (dcount == 0) {

return(0);
}

datapipe[dcount] = ’\0’;

if ((reply=parse(datapipe)) != NULL) {
if (sendto(fd, reply, strlen(reply), 8

0,
(struct sockaddr *)&serveraddr,
serveraddrlen) < 0) {

perror("transactions_sendto");
}

}
}

}

1 Create a socket with the socket call.
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AF_INET specifies the Internet communication domain. The socket type
SOCK_DGRAM is specified for UDP or connectionless communication.
This parameter indicates that the program is connectionless.

Contrast the socket call with the t_open call in the XTI server
example (Section B.2.3).

2 The serveraddr is of type sockaddr_in, which is dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP protocol suite, which includes UDP, this is the Internet
address of the server and the port number on which it is listening.

The information contained in the sockaddr_in structure is dependent
on the address family, which is AF_INET in this example. If AF_OSI
were used instead of AF_INET, then sockaddr_osi would be required
for the bind call instead of sockaddr_in.

3 INADDRANY signifies any attached interface adapter on the system.
All numbers must be converted to the network format using appropriate
macros. See the following reference pages for more information:
htonl(3), htons(3), ntohl(3), and ntohs(3).

4 SERVER_PORT is defined in the <common.h> header file. It has a
data type of short integer which helps identify the server process
from other application processes.

5 Bind the server’s address to this socket with the bind call. The
combination of the address and port number identify it uniquely on
the network.

After the server process’ address is bound, the server process is
registered on the system and can be identified by the lower level kernel
functions to which to direct requests.

6 Each incoming message packet is accepted and passed to the parse
function, which tracks the information provided (such as the merchant’s
login ID, password, and customer’s credit card number). This process is
repeated until the parse function identifies a complete transaction and
returns a response packet, to be sent to the client program.

Since this program uses a connectionless (datagram) protocol, it uses
sendto and recvfrom to send and receive data, respectively.

7 Receive data with the recvfrom call.

8 Send data with the sendto call.
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B.2.2 Socket Client Program

Example B–6 implements a socket client that can communicate with the
socket server in Example B–5. Section B.2.1. It uses the socket interface in
the connectionless, or datagram, mode.

Example B–6: Connectionless Socket Client Program

/*
*
* This file contains the main client socket code
* for a connectionless mode of communication.
*
* usage: socketclientDG [serverhostname]
*
* If a host name is not specified, the local
* host is assumed.
*
*/
#include "client.h"

main(int argc, char *argv[])
{

int sockfd;
struct sockaddr_in serveraddr;
int serveraddrlen;
struct hostent *he;
int n;
char *serverhost = "localhost";
struct hostent *serverhostp;
char buffer[1024];
char inbuf[1024];

if (argc>1) {
serverhost = argv[1];

}

init();

/* Create a socket for the communications */
if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) 1
{

perror("socket_create");
exit(1);

}

bzero((char *) &serveraddr, 2
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Example B–6: Connectionless Socket Client Program (cont.)

sizeof(struct sockaddr_in));
serveraddr.sin_family = AF_INET;

if ((serverhostp = gethostbyname(serverhost)) == 3
(struct hostent *)NULL) {

fprintf(stderr,"gethostbyname on %s failed\n",
serverhost);

exit(1);
}
bcopy(serverhostp->h_addr,

(char *)&(serveraddr.sin_addr.s_addr),
serverhostp->h_length);

serveraddr.sin_port = htons(SERVER_PORT); 4

/* Now connect to the server
if (connect(sockfd, (struct sockaddr *)&serveraddr, 5

sizeof(serveraddr)) < 0) {
perror ("connect");
exit(2);

}
*/

while(1) {
/* Merchant record */
sprintf(buffer, "%%%%m%s##%%%%p%s##",

merchantname, password);

printf("\n\nSwipe card, enter amount: ");
fflush(stdout);
if (scanf("%s", inbuf) == EOF) {

printf("bye...\n");
exit(0);

}
soundbytes();

sprintf(buffer, "%s%%%%a%s##%%%%n%s##",
buffer, inbuf, swipecard());

if (sendto(sockfd, buffer, strlen(buffer),0, 6
(struct sockaddr *)&serveraddr,
sizeof(serveraddr)) < 0) {

perror("sendto");
exit(1);

}
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Example B–6: Connectionless Socket Client Program (cont.)

/* receive info */
if ((n = recvfrom(sockfd, buffer, 1024, 0, 7

(struct sockaddr *)&serveraddr,
&serveraddrlen)) < 0) {

perror("recvfrom");
exit(1);

}
buffer[n] = ’\0’;

if ((n=analyze(buffer))== 0) {
printf("transaction failure, "

"try again\n");
} else if (n<0) {

printf("login failed, try again\n");
init();

}
}

}

1 Create a socket with the socket call.

AF_INET specifies the Internet communication domain. If AF_OSI were
supported, it could be used to create a socket for OSI communications.
The socket type SOCK_DGRAM is specified for UDP or connectionless
communication.

Contrast the socket call with the t_open call in the XTI client example
(Section B.2.4).

2 The serveraddr is of type sockaddr_in, which is dictated by the
communication domain of the socket (AF_INET). The socket address for
the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP protocol suite, which includes UDP, this is the Internet
address of the server and the port number on which it is listening.

Note that the information contained in the sockaddr_in structure is
dependent on the address family (or the protocol).

3 Getting information about the server depends on the protocol or the
address family. To get the IP address of the server, you can use the
gethostbyname routine.

4 SERVER_PORT is defined in the <common.h> header file. It is a short
integer, which helps identify the server process from other application
processes.
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5 Client issues a connect call to connect to the server. When the
connect call is used with a connectionless protocol, it allows the client
to store the server’s address locally. This means that the client does not
have to specify the server’s address each time it sends a message.

6 Send data with the sendto call.

7 Receive data with the recvfrom call.

B.2.3 XTI Server Program

Example B–7 implements a server using the XTI library for network
communication. It is an alternative design for a communication program
that makes it transport independent. Compare this program with the socket
server program in Example B–5. This program has the limitations described
at the beginning of the appendix.

Example B–7: Connectionless XTI Server Program

/*
*
* This file contains the main XTI server code
* for a connectionless mode of communication.
*
* Usage: xtiserverDG
*
*/
#include "server.h"

char *parse(char *);
struct transaction *verifycustomer(char *, int, char *);

main(int argc, char *argv[])
{

int xtifd;
int newxtifd;
struct sockaddr_in serveraddr;
struct hostent *he;
int pid;
struct t_bind *bindreqp;

signal(SIGCHLD, SIG_IGN);

/* Create a transport endpoint for the communications */
if ((xtifd = t_open("/dev/streams/xtiso/udp+", 1

O_RDWR, NULL)) < 0) {
xerror("xti_open", xtifd);
exit(1);
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Example B–7: Connectionless XTI Server Program (cont.)

}

bzero((char *) &serveraddr, 2
sizeof(struct sockaddr_in));

serveraddr.sin_family = AF_INET; 3
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY); 4
serveraddr.sin_port = htons(SERVER_PORT) 5

/* allocate structures for the t_bind call */
if ((bindreqp=(struct t_bind *)t_alloc(xtifd,

T_BIND,
T_ALL))

== NULL) {
xerror("xti_alloc", xtifd);
exit(3);

}

bindreqp->addr.buf = (char *)&serveraddr;
bindreqp->addr.len = sizeof(serveraddr);

/*
* Specify how many pending connections can be
* maintained, while we finish "accept" processing
*
*/
bindreqp->qlen = 8; 6

if (t_bind(xtifd, bindreqp, (struct t_bind *)NULL) 7
< 0) {

xerror("xti_bind", xtifd);
exit(4);

}

/*
* Now the server is ready to accept connections
* on this socket. For each connection, fork a child
* process in charge of the session, and then resume
* accepting connections.
*
*/
transactions(xtifd);

if (t_free((char *)bindreqp, T_BIND) < 0) {
xerror("xti_free", xtifd);
exit(3);
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Example B–7: Connectionless XTI Server Program (cont.)

}
}

transactions(int fd) 8
{

int bytes;
char *reply;
int dcount;
int flags;
char datapipe[MAXBUFSIZE+1];
struct t_unitdata *unitdata;
struct sockaddr_in clientaddr;

/* Allocate structures for t_rcvudata and t_sndudata call */
if ((unitdata=(struct t_unitdata *)t_alloc(fd,

T_UNITDATA,
T_ALL))

== NULL) {
xerror("xti_alloc", fd);
exit(3);

}

/*
* Look at the data buffer and parse commands.
* If more data required, go get it.
*
*/
while (1) {

unitdata->udata.maxlen = MAXBUFSIZE;
unitdata->udata.buf = datapipe;
unitdata->addr.maxlen = sizeof(clientaddr);
unitdata->addr.buf = (char *)&clientaddr;
unitdata->opt.maxlen = 0;

if ((dcount=t_rcvudata(fd, &unitdata, &flags))9
< 0) {

/* if disconnected bid a goodbye */
if (t_errno == TLOOK) {

int tmp = t_look(fd);

if (tmp != T_DISCONNECT) {
t_scope(tmp);

} else {
exit(0);

}
}
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Example B–7: Connectionless XTI Server Program (cont.)

xerror("transactions_receive", fd);
break;

}
if (unitdata->udata.len == 0) {

return(0);
}

datapipe[unitdata->udata.len] = ’\0’;

if ((reply=parse(datapipe)) != NULL) {

/* sender’s addr is in the unitdata */
unitdata->udata.len = strlen(reply);
unitdata->udata.buf = reply;

if (t_sndudata(fd, unitdata) < 0) { 10
xerror("xti_send", fd);
break;

}
}

}
if (t_free((char *)unitdata, T_UNITDATA) < 0) {

xerror("xti_free", fd);
exit(3);

}
}

1 The t_open call specifies a device special file name, which is
/dev/streams/xtiso/udp+ in this example. This file name provides
the necessary abstraction for the UDP transport protocol over IP. Unlike
the socket interface, where you specify the address family (for example,
AF_INET), this information is already represented in the choice of the
device special file. The /dev/streams/xtiso/udp+ file implies both
UDP transport and Internet Protocol. See the Chapter 5 for information
about STREAMS devices. Contrast the t_open call with the socket
call in Section B.2.1.

2 The serveraddr is of type sockaddr_in, which is dictated by the
communication domain or address family of the socket (AF_INET). The
socket address for the Internet communication domain contains an
Internet address and a 16-bit port number, which uniquely identifies
an application entity on the network. For TCP/IP and UDP/IP this
is the Internet address of the server and the port number on which
it is listening.
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The information contained in the sockaddr_in structure is dependent
on the address family (or the protocol).

3 AF_INET specifies the Internet communication domain or address
family.

4 INADDRANY signifies any attached interface adapter on the system.
All numbers must be converted to the network format using appropriate
macros. See the following reference pages for more information:
htonl(3), htons(3), ntohl(3), and ntohs(3).

5 SERVER_PORT is defined in the <common.h> header file. It is a short
integer, which helps identify the server process from other application
processes. Numbers from 0 to 124 are reserved.

6 Specify the number of pending connections the server can queue while it
processes the last request.

7 Bind the server’s address with the t_bind call. The combination of the
address and port number identify it uniquely on the network. After the
server process’ address is bound, the server process is registered on
the system and can be identified by the lower level kernel functions
to which to direct any requests.

8 Each incoming message packet is accepted and passed to the parse
function, which tracks the information provided, such as the merchant’s
login ID, password, and customer’s credit card number. This process is
repeated until the parse function identifies a complete transaction and
returns a response packet, to be sent to the client program.

The client program can send information packets in any order (and in
one or more packets), so the parse function is designed to remember
state information sufficient to deal with this unstructured message
stream.

Since this program uses a connectionless (datagram) protocol, it uses
t_sndudata and t_rcvudata to send and receive data, respectively.

9 Receive data with the t_rcvudata function.

10 Send data with the t_sndudata function.

B.2.4 XTI Client Program

Example B–8 implements an XTI client that can communicate with the
XTI server in Example B–7. It uses the XTI interface in the connectionless,
or datagram, mode.
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Example B–8: Connectionless XTI Client Program

/*
*
* This file contains the main XTI client code
* for a connectionless mode of communication.
*
* usage: client [serverhostname]
*
*/
#include "client.h"

main(int argc, char *argv[])
{

int xtifd;
struct sockaddr_in serveraddr;
struct hostent *he;
int n;
char *serverhost = "localhost";
struct hostent *serverhostp;
char buffer[MAXBUFSIZE+1];
char inbuf[MAXBUFSIZE+1];
struct t_unitdata *unitdata;
int flags = 0;

if (argc>1) {
serverhost = argv[1];

}

init();

if ((xtifd = t_open("/dev/streams/xtiso/udp+", 1
O_RDWR, NULL)) < 0) {

xerror("xti_open", xtifd);
exit(1);

}

bzero((char *) &serveraddr, 2
sizeof(struct sockaddr_in));

serveraddr.sin_family = AF_INET; 3

if ((serverhostp = gethostbyname(serverhost)) == 4
(struct hostent *)NULL) {

fprintf(stderr,"gethostbyname on %s failed\n",
serverhost);

exit(1);
}
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Example B–8: Connectionless XTI Client Program (cont.)

bcopy(serverhostp->h_addr,
(char *)&(serveraddr.sin_addr.s_addr),
serverhostp->h_length);

/*
* SERVER_PORT is a short which identifies
* the server process from other sources.
*
*/
serveraddr.sin_port = htons(SERVER_PORT); 5

if (t_bind(xtifd, (struct t_bind *)NULL, 6
(struct t_bind *)NULL) < 0) {

xerror("bind", xtifd);
exit(2);

}

/* Allocate structures for t_rcvudata and t_sndudata call */
if ((unitdata=(struct t_unitdata *)t_alloc(xtifd,

T_UNITDATA,
T_ALL))

== NULL) {
xerror("xti_alloc", fd);
exit(3);

}

while(1) {
/* Merchant record */
sprintf(buffer, "%%%%m%s##%%%%p%s##",

merchantname, password);

printf("\n\nSwipe card, enter amount: ");
fflush(stdout);

if (scanf("%s", inbuf) == EOF) {
printf("bye...\n");
exit(0);

}

soundbytes();

sprintf(buffer, "%s%%%%a%s##%%%%n%s##",
buffer, inbuf, swipecard());

unitdata->addr.buf = (char *)&serveraddr;
unitdata->addr.len = sizeof(serveraddr);
unitdata->udata.buf = buffer;
unitdata->udata.len = strlen(buffer);
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Example B–8: Connectionless XTI Client Program (cont.)

unitdata->opt.len = 0;

if (t_sndudata(xtifd, unitdata) < 0) { 7
xerror("t_snd", xtifd);
exit(1);

}

unitdata->udata.maxlen = MAXBUFSIZE;
unitdata->addr.maxlen = sizeof(serveraddr);

/* receive info */
if ((t_rcvudata(xtifd, unitdata, &flags)) 8

< 0) {
xerror("t_rcv", xtifd);
exit(1);

}

buffer[unitdata->udata.len] = ’\0’;

if ((n=analyze(buffer))== 0) {
printf("transaction failure, "

"try again\n");
} else if (n<0) {

printf("login failed, try again\n");
init();

}
}
if (t_free((char *)unitdata, T_UNITDATA) < 0) {

xerror("xti_free", fd);
exit(3);

}
}

1 The t_open call specifies a device special file name; for example
/dev/streams/xtiso/udp+. This file name provides the necessary
abstraction for the UDP transport protocol over IP. Unlike the socket
interface, where you specify the address family (for example, AF_INET),
this information is already represented in the choice of the device
special file. The /dev/streams/xtiso/udp+ file implies both UDP
transport and Internet Protocol. See the Chapter 5 for information
about STREAMS devices.

Contrast the t_open call with the socket call in Section B.2.2.

2 The serveraddr is of type sockaddr_in, which is dictated by the
communication domain of the socket (AF_INET). The socket address for
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the Internet communication domain contains an Internet address and a
16-bit port number, which uniquely identifies an entity on the network.
For the TCP/IP protocol suite, which includes UDP, this is the Internet
address of the server and the port number on which it is listening.

The information contained in the sockaddr_in structure is dependent
on the address family (or the protocol).

3 AF_INET specifies the Internet communication domain. If AF_OSI were
supported it could be used to create a socket for OSI communications.

4 Getting information about the server depends on the protocol or the
address family. To get the IP address of the server, you can use the
gethostbyname(3) routine.

5 SERVER_PORT is defined in the <common.h> header file. It is a short
integer, which helps identify the server process from other application
processes.

6 Bind the server address with the t_bind function to enable the client to
start sending and receiving data.

7 Send data with the t_sndudata function.

8 Receive data with the t_rcvudata function.

B.3 Common Code

The following header and database files are required for all or several of the
client and server portions of this application:

• <common.h>

• <server.h>

• serverauth.c

• serverdb.c

• xtierror.c

• <client.h>

• clientauth.c

• clientdb.c

B.3.1 The common.h Header File

Example B–9 shows the <common.h> header file. It contains common
header files and constants required by all sample programs.
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Example B–9: The common.h Header File

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h> 1
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <fcntl.h>
#include <xti.h>

#define SEPARATOR ’,’
#define PREAMBLE "%%"
#define PREAMBLELEN 2 2
#define POSTAMBLE "##"
#define POSTAMBLELEN 2

/* How to contact the server */
#define SERVER_PORT 1234 3
/* How to contact the client (for datagram only) */
#define CLIENT_PORT 1235

#define MAXBUFSIZE 4096

1 List of header files to include.

2 These statements define constants that allow more effective parsing of
data exchanged between the server and client.

3 SERVER_PORT is a well known port that is arbitrarily assigned by
the programmer so that clients can communicate with the server.
SERVER_PORT is used to identify the service to which you want to
connect. Port numbers 0 through 1024 are reserved for the system.
Programmers can choose a number, as long as it does not conflict
with any other applications. While debugging, this number is chosen
randomly (and by trial and error). For a well-distributed application,
some policy must be used to avoid conflicts with other applications.

B.3.2 The server.h Header File

Example B–10 shows the <server.h> header file. It contains the data
structures for accessing the server’s database, as well as the data structures
for analyzing and synthesizing messages to and from clients.

B–34 Socket and XTI Programming Examples



Example B–10: The server.h Header File

#include "common.h"

struct merchant {
char *name;
char *passwd;

};

struct customer {
char *cardnum;
char *name;
int limit;
int balance;
struct transaction *tlist;
/* presumably other data */

};

struct transaction {
struct transaction *nextcust;
struct transaction *nextglob;
struct customer *whose;
char *merchantname;
int amount;
char *verification;

};

extern struct transaction *alltransactions;
extern struct merchant merchant[];
extern int merchantcount;
extern struct customer customer[];
extern int customercount;

#define INVALID (struct transaction *)1

#define MERCHANTAUTHERROR "%%A##"
#define USERAUTHERROR "%%U##"
#define USERAMOUNTERROR "%%V##"
#define TRANSMITERROR "deadbeef"

/* define transaction_status flags */
#define NAME 0x01
#define PASS 0x02
#define AMOUNT 0x04
#define NUMBER 0x08

#define AUTHMASK 0x03
#define VERIMASK 0x0C
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B.3.3 The serverauth.c File

Example B–11 shows the serverauth.c file.

Example B–11: The serverauth.c File

/*
*
* Authorization information (not related to the
* networking interface)
*
*/

#include "server.h"

/*
* Currently a simple non-encrypted password method to search db
*
*/
authorizemerchant(char *merch, char *password)
{

struct merchant *mp;

for(mp = merchant; (mp)->name != (char *)NULL; mp++) {
if (!strcmp(merch, (mp)->name)) {

return (!strcmp(password, (mp)->passwd));
}

}
return(0);

}

struct transaction *
verifycustomer(char *num, int amount, char *merchant)
{

char buf[64];
struct customer *cp;
struct transaction *tp;

for(cp = customer; (cp)->cardnum != NULL; cp++) {
if (!strcmp(num, (cp)->cardnum)) {

if (amount <= (cp)->balance) {
(cp)->balance -= amount;
if ((tp = malloc(sizeof(

struct transaction)))
== NULL) {

printf("Malloc error\n");
return(NULL);

}
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Example B–11: The serverauth.c File (cont.)

tp->merchantname = merchant;
tp->amount = amount;
sprintf(buf, "v%012d", time(0));
if ((tp->verification =

malloc(strlen(buf)+1))
== NULL) {

printf("Malloc err\n");
return(NULL);

}
strcpy(tp->verification, buf);
tp->nextcust = cp->tlist;
tp->whose = cp;
cp->tlist = tp;
tp->nextglob = alltransactions;
alltransactions = tp;
return(tp);

} else {
return(NULL);

}
}

}
return(INVALID);

}

int transaction_status;
int authorized = 0;
int amount = 0;
char number[256];
char Merchant[256];
char password[256];

char *
parse(char *cp)
{

char *dp, *ep;
unsigned char type;
int doauth = 0;
char *buffer;

dp = cp;
if ((buffer=malloc(256)) == NULL) {

return(TRANSMITERROR);
}
while (*dp) {

/* terminate the string at the postamble */
if (!(ep=strstr(dp, POSTAMBLE))) {
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Example B–11: The serverauth.c File (cont.)

return(TRANSMITERROR);
}
*ep = ’\0’;
ep = ep + POSTAMBLELEN; 1

/* search for preamble */
if (!(dp=strstr(dp, PREAMBLE))) {

return(TRANSMITERROR);
}
dp += PREAMBLELEN;

/* Now get the token */
type = *dp++;

switch(type) {
case ’m’:

strcpy(Merchant, dp);
transaction_status |= NAME;
break;

case ’p’:
strcpy(password, dp);
transaction_status |= PASS;
break;

case ’n’:
transaction_status |= NUMBER;
strcpy(number, dp);
break;

case ’a’:
transaction_status |= AMOUNT;
amount = atoi(dp);
break;

default:
printf("Bad command\n");
return(TRANSMITERROR);

}
if ((transaction_status & AUTHMASK) == AUTHMASK) {

transaction_status &= ~AUTHMASK;
authorized = authorizemerchant(

Merchant, password);
if (!authorized) {

printf("Merchant not"
" authorized\n");

return(MERCHANTAUTHERROR);
}

}
/* If both amount and number gathered,
* do verification */
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Example B–11: The serverauth.c File (cont.)

if ((authorized) &&
((transaction_status&VERIMASK)
==VERIMASK)) {

struct transaction *tp;
transaction_status &= ~VERIMASK;
/* send a verification back */
if ((tp=verifycustomer(number,

amount,
Merchant))

== NULL) {
return(USERAMOUNTERROR);

} else if (tp==INVALID) {
return(USERAUTHERROR);

} else {
sprintf(buffer,

"%%%%%s##%%%%c%s##%%%%m%s##",
tp->verification,
tp->whose->name,
tp->merchantname);

return(buffer);
}

}
dp = ep;

}
return(NULL);

}

1 This function parses the incoming data, which includes the merchant
authorization information, customer’s credit card number, and the
amount the customer is charging. Note that the function can not
assume that all of the information is available in one message because
the underlying TCP protocol is stream-oriented. This function can be
simplified if a datagram type service is used or if a protocol that uses
sequenced packets (SEQPACKET) is used. The function is designed to
accept pieces of information in any order and in one or more message
blocks.

B.3.4 The serverdb.c File

Example B–12 shows the serverdb.c file.
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Example B–12: The serverdb.c File

/*
*
* Database of valid merchants and credit card customers with the
* credit limits, etc.
*
*
*/
#include "server.h"

struct merchant merchant[] = {
{"abc", "abc"},
{"magic", "magic"},
{"gasco", "gasco"},
{"furnitureco", "abc"},
{"groceryco", "groceryco"},
{"bakeryco", "bakeryco"},
{"restaurantco", "restaurantco"},
{NULL, NULL}

};

int merchantcount = sizeof(merchant)/sizeof(struct merchant)-1;

struct customer customer[] = {
{ "4322546789701000", "John Smith", 1000, 800 },
{ "4322546789701001", "Bill Stone", 2000, 200 },
{ "4322546789701002", "Dave Adams", 1500, 500 },
{ "4322546789701003", "Ray Jones", 1200, 800 },
{ "4322546789701004", "Tony Zachry", 1000, 100 },
{ "4322546789701005", "Danny Einstein", 5000, 50 },
{ "4322546789701006", "Steve Simonyi", 10000, 5800},
{ "4322546789701007", "Mary Ming", 1100, 700 },
{ "4322546789701008", "Joan Walters", 800, 780 },
{ "4322546789701009", "Gail Newton", 1000, 900 },
{ "4322546789701010", "Jon Robertson", 1000, 1000},
{ "4322546789701011", "Ellen Bloop", 1300, 800 },
{ "4322546789701012", "Sue Svelter", 1400, 347 },
{ "4322546789701013", "Suzette Ring", 1200, 657 },
{ "4322546789701014", "Daniel Mattis", 1600, 239 },
{ "4322546789701015", "Robert Esconis", 1800, 768 },
{ "4322546789701016", "Lisa Stiles", 1100, 974 },
{ "4322546789701017", "Bill Brophy", 1050, 800 },
{ "4322546789701018", "Linda Smitten", 4000, 200 },
{ "4322546789701019", "John Norton", 1400, 900 },
{ "4322546789701020", "Danielle Smith", 2000, 640 },
{ "4322546789701021", "Amy Olds", 1300, 100 },
{ "4322546789701022", "Steve Smith", 2000, 832 },
{ "4322546789701023", "Robert Smart", 3000, 879 },
{ "4322546789701024", "Jon Harris", 500, 146 },
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Example B–12: The serverdb.c File (cont.)

{ "4322546789701025", "Adam Gershner", 1600, 111 },
{ "4322546789701026", "Mary Papadimis", 2000, 382 },
{ "4322546789701027", "Linda Jones", 1300, 578 },
{ "4322546789701028", "Lucy Barret", 1400, 865 },
{ "4322546789701029", "Marie Gilligan", 1000, 904 },
{ "4322546789701030", "Kim Coyne", 3000, 403 },
{ "4322546789701031", "Mike Storm", 7500, 5183},
{ "4322546789701032", "Cliff Clayden", 750, 430 },
{ "4322546789701033", "John Turing", 4000, 800 },
{ "4322546789701034", "Jane Joyce", 10000, 8765},
{ "4322546789701035", "Jim Roberts", 4000, 3247},
{ "4322546789701036", "Stevw Stephano", 1750, 894 },
{NULL, NULL}

};

struct transaction *
alltransactions = NULL;
int customercount = sizeof(customer)/sizeof(struct customer)-1;
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B.3.5 The xtierror.c File

Example B–13 shows the xtierror.c file. It is used to generate a
descriptive message in case of an error. Note that for asynchronous errors or
events the t_look function is used to get more information.

Example B–13: The xtierror.c File

#include <xti.h>
#include <stdio.h>

void t_scope();

void
xerror(char *marker, int fd)
{

fprintf(stderr, "%s error [%d]\n", marker, t_errno);
t_error("Transport Error");
if (t_errno == TLOOK) {

t_scope(t_look(fd));
}

}

void
t_scope(int tlook)
{

char *tmperr;

switch(tlook) {
case T_LISTEN:

tmperr = "connection indication";
break;

case T_CONNECT:
tmperr = "connect confirmation";
break;

case T_DATA:
tmperr = "normal data received";
break;

case T_EXDATA:
tmperr = "expedited data";
break;

case T_DISCONNECT:
tmperr = "disconnect received";
break;

case T_UDERR:
tmperr = "datagram error";
break;

case T_ORDREL:
tmperr = "orderly release indication";

B–42 Socket and XTI Programming Examples



Example B–13: The xtierror.c File (cont.)

break;
case T_GODATA:

tmperr = "flow control restriction lifted";
break;

case T_GOEXDATA:
tmperr = "flow control restriction "

"on expedited data lifted";
break;

default:
tmperr = "unknown event";

}
fprintf(stderr,

"Asynchronous event: %s\n",
tmperr);

}

B.3.6 The client.h Header File

Example B–14 shows the client.h header file.

Example B–14: The client.h File

#include "common.h"

extern char merchantname[];
extern char password[];
extern char *swipecard();

B.3.7 The clientauth.c File

Example B–15 shows the clientauth.c file. It contains the code that
obtains the merchant’s authorization, as well as the logic to analyze the
message sent from the server. The resulting message is interpreted to see if
the authorization was granted or rejected by the server.

Example B–15: The clientauth.c File

#include "client.h"

init()
{

printf("\nlogin: "); fflush(stdout);
scanf("%s", merchantname);
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Example B–15: The clientauth.c File (cont.)

printf("Password: "); fflush(stdout);
scanf("%s", password);

srandom(time(0));
}

/* simulate some network activity via sound */
soundbytes()
{

int i;

for(i=0;i<11;i++) {
printf();
fflush(stdout);
usleep(27000*(random()%10+1));

}
}

analyze(char *cp)
{

char *dp, *ep;
unsigned char type;
char customer[128];
char verification[128];

customer[0] = verification[0] = ’\0’;

dp = cp;

while ((dp!=NULL) && (*dp)) {
/* terminate the string at the postamble */
if (!(ep=strstr(dp, POSTAMBLE))) {

return(0);
}
*ep = ’\0’;
ep = ep + POSTAMBLELEN;

/* search for preamble */
if (!(dp=strstr(dp, PREAMBLE))) {

return(0);
}
dp += PREAMBLELEN;

/* Now get the token */
type = *dp++;

B–44 Socket and XTI Programming Examples



Example B–15: The clientauth.c File (cont.)

switch(type) {
case ’m’:

if (strcmp(merchantname, dp)) {
return(0);

}
break;

case ’c’:
strcpy(customer, dp);
break;

case ’U’:
printf("Authorization denied\n");
return(1);

case ’V’:
printf("Amount exceeded\n");
return(1);

case ’A’:
return(-1);

case ’v’:
strcpy(verification, dp);
break;

default:
return(0);

}
dp = ep;

}
if (*customer && *verification) {

printf("%s, verification ID: %s\n",
customer, verification);

return(1);
}
return(0);

}

B.3.8 The clientdb.c File

Example B–16 shows the clientdb.c file. It contains a database of
customer credit card numbers used to simulate the card swapping action.
In a real world application, a magnetic reader reads the numbers through
an appropriate interface. Also, the number cache is not required for a real
world application.
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Example B–16: The clientdb.c File

/*
*
* Database of customer credit card numbers to simulate
* the card swapping action. In practice the numbers
* will be read by magnetic readers through an
* appropriate interface.
*/

#include <time.h>

char merchantname[256];
char password[256];

char *numbercache[] = {
"4322546789701000",
"4322546789701001",
"4322546789701002",
"4222546789701002", /* fake id */
"4322546789701003",
"4322546789701004",
"4322546789701005",
"4322546789701006",
"4322546789701007",
"4322546789701008",
"4322546789701009",
"4322546789701010",
"4322546789701011",
"4322546789701012",
"4322546789701013",
"4322546789701014",
"4322546789701015",
"4322546789701016",
"4322546789701017",
"4322546789701018",
"4222546789701018", /* fake id */
"4322546789701019",
"4322546789701020",
"4322546789701021",
"4322546789701022",
"4322546789701023",
"4322546789701024",
"4322546789701025",
"2322546789701025", /* fake id */
"4322546789701026",
"4322546789701027",
"4322546789701028",
"4322546789701029",
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Example B–16: The clientdb.c File (cont.)

"4322546789701030",
"4322546789701031",
"4322546789701032",
"4322546789701033",
"4322546789701034",
"4322546789701035",
"4322546789701036",

};

#define CACHEENTRIES (sizeof(numbercache)/sizeof(char *))

char *
swipecard()
{

return(numbercache[random()%CACHEENTRIES]);
}
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C
IPv4 and IPv6 Sockets Programming

Examples

This appendix contains annotated files for a sample client/server program.
Clients send a request to the server and print the server’s response. Servers
listen for client requests, print the request, and send a response to the client.

Although the program is not a real world application, it is structured
demonstrate the sequence and use of the various socket calls.

The information is organized as follows:

• AF_INET sockets programs

– Client

– Server

• AF_INET6 sockets programs

– Client

– Server
You can find these programs and a protocol-independent client in
the/usr/examples/ipv6/network_programming directory. In addition,
this section also contains sample output from these programs.

C.1 Programs Using AF_INET Sockets
This section contains a client and server program that use AF_INET sockets.

C.1.1 Client Program Using AF_INET Sockets

Example C–1 shows a sample client program that you can build, compile,
and run on your system. The program sends a request to and receives a
response from the system specified on the command line.

Example C–1: Client Stub Routine

/*
* *****************************************************************
* * *
* * Copyright (c) Compaq Computer Corporation, 2000 *
* * *
* * The software contained on this media is proprietary to *
* * and embodies the confidential technology of Compaq *
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Example C–1: Client Stub Routine (cont.)

* * Computer Corporation. Possession, use, duplication or *
* * dissemination of the software and media is authorized only *
* * pursuant to a valid written license from Compaq Computer *
* * Corporation. *
* * *
* * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
* * by the U.S. Government is subject to restrictions as set *
* * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
* * or in FAR 52.227-19, as applicable. *
* * *
* *****************************************************************
*/
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <arpa/inet.h>

#define SERVER_PORT 7639
#define CLIENT_PORT 7739

#define MAXBUFSIZE 4096

int main (
int argc,
char **argv )

{
int s;
char databuf[MAXBUFSIZE];
int dcount;
struct sockaddr_in serveraddr; 1
struct sockaddr_in clientaddr;
int serveraddrlen;
const char *ap;
const char *request = "this is the client’s request";
struct hostent *hp;
char *server;

if (argc < 2) {
printf("Usage: client <server>\n");
exit(1);

}
server = argv[1];

bzero((char *) &serveraddr, sizeof(struct sockaddr_in)); 2
serveraddr.sin_family = AF_INET;
if ((hp = gethostbyname(server)) == NULL) { 3

printf("unknown host: %s\n", server);
exit(2);

}
serveraddr.sin_port = htons(SERVER_PORT);

while (hp->h_addr_list[0] != NULL) {
if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) { 4

perror("socket");
exit(3);
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Example C–1: Client Stub Routine (cont.)

}
memcpy(&serveraddr.sin_addr.s_addr, hp->h_addr_list[0],

hp->h_length);

if (connect(s, (struct sockaddr *)&serveraddr,
sizeof(serveraddr)) < 0) { 5

perror("connect");
close(s);
hp->h_addr_list++;
continue;

}
break;

}
if (send(s, request, strlen(request), 0) < 0) { 6

perror("send");
exit(5);

}
dcount = recv(s, databuf, sizeof(databuf), 0); 7
if (dcount < 0) {

perror("recv");
exit(6);

}
databuf[dcount] = ’\0’;

hp = gethostbyaddr((char *)&serveraddr.sin_addr.s_addr, 8
sizeof(serveraddr.sin_addr.s_addr), AF_INET);

ap = inet_ntoa(serveraddr.sin_addr); 9
printf("Response received from");
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Example C–1: Client Stub Routine (cont.)

if (hp != NULL)
printf(" %s", hp->h_name);

if (ap != NULL)
printf(" (%s)", ap);

printf(": %s\n", databuf);

close(s);
}

1 Declares sockaddr_in structures. The use of this type of structure is
dictated by the communication domain of the socket (AF_INET), which
implies communication using the IPv4 protocol.

2 Clears the server address and sets up server variables. The socket
address for IPv4 communications is a 32–bit Internet address and a
16–bit port number. This will be the Internet address of the server and
the port number on which it is listening.

3 Obtain the server’s IPv4 address. A call to gethostbyname returns
IPv4 address only.

4 Creates an AF_INET socket with a socket call. The socket
type SOCK_STREAM is specified for TCP or connection-oriented
communication.

5 Connects to the server using the address in the sockaddr_in structure
named serveraddr.

6 Sends a request to the server.

7 Receives a response from the server.

8 Retrieves the server name using the address in the sockaddr_in
structure named serveraddr. A call to gethostbyaddrexpects an
IPv4 address as input.

9 Convert the server’s 32–bit IPv4 address to a dot-formatted Internet
address text string. A call to inet_ntoa expects an IPv4 address as
input.

C.1.2 Server Program Using AF_INET Sockets

Example C–2 shows a sample server program that you can build, compile,
and run on your system. The program receives requests from and sends
responses to client programs on other systems.
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Example C–2: Server Stub Routine

/*
* *****************************************************************
* * *
* * Copyright (c) Compaq Computer Corporation, 2000 *
* * *
* * The software contained on this media is proprietary to *
* * and embodies the confidential technology of Compaq *
* * Computer Corporation. Possession, use, duplication or *
* * dissemination of the software and media is authorized only *
* * pursuant to a valid written license from Compaq Computer *
* * Corporation. *
* * *
* * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
* * by the U.S. Government is subject to restrictions as set *
* * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
* * or in FAR 52.227-19, as applicable. *
* * *
* *****************************************************************
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <arpa/inet.h>

#define SERVER_PORT 7639
#define CLIENT_PORT 7739

#define MAXBUFSIZE 4096

int main (
int argc,
char **argv )

{
int s;
char databuf[MAXBUFSIZE];
int dcount;
struct sockaddr_in serveraddr; 1
struct sockaddr_in clientaddr;
int clientaddrlen;
struct hostent *hp;
const char *ap;
const char *response = "this is the server’s response";
u_short port;

if ((s = socket(AF_INET, SOCK_STREAM, 0)) < 0) { 2
perror("socket");
exit(1);

}

bzero((char *) &serveraddr, sizeof(struct sockaddr_in)); 3
serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl(INADDR_ANY); 4
serveraddr.sin_port = htons(SERVER_PORT);

if (bind(s, (struct sockaddr *)&serveraddr, sizeof(serveraddr)) < 0) { 5
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Example C–2: Server Stub Routine (cont.)

perror("bind");
exit(2);

}
if (listen(s, SOMAXCONN) < 0) { 6

perror("Listen");
close(s);
exit(3);

while (1) {
int new_s;
clientaddrlen = sizeof(clientaddr);
new_s = accept(s, (struct sockaddr *)&clientaddr, &clientaddrlen); 7

dcount = recv(new_s, databuf, sizeof(databuf), 0); 8
if (dcount <= 0) {

perror("recv");
close(new_s);
continue;

}
databuf[dcount] = ’\0’;
hp = gethostbyaddr((char *)&clientaddr.sin_addr.s_addr, 9

sizeof(clientaddr.sin_addr.s_addr), AF_INET);
ap = inet_ntoa(clientaddr.sin_addr); 10
port = ntohs(clientaddr.sin_port);
printf("Request received from");
if (hp != NULL)

printf(" %s", hp->h_name);
if (ap != NULL)

printf(" (%s)", ap);
printf(" port %d \"%s\"\n", port, databuf);

if (send(new_s, response, strlen(response), 0) < 0) { 11
perror("send");
close(new_s);
continue;

}
close(new_s);

}
close(s);

}

1 Declares sockaddr_in structures. The use of this type of structure is
dictated by the communication domain of the socket (AF_INET), which
implies communication using the IPv4 protocol.

2 Creates an AF_INET socket. The socket type SOCK_STREAM is
specified for TCP or connection-oriented communication.

3 Clears the server address and sets up server variables. The socket
address for IPv4 communications is a 32–bit Internet address and a
16–bit port number. This will be the Internet address of the server and
the port number on which it is listening.

4 Sets the server address to the IPv4 wildcard address INADDR_ANY.
This signifies any attached network interface on the system.
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5 Binds the server’s address to the AF_INET socket.

6 Listens on the socket for a connection. The server will queue up to
SOMAXCONN pending connections while it finishes processing the
previous accept call. See sys_attrs_socket(5) for more information
on the socket subsystem kernel attributes.

7 Accepts a connection on this socket. The accept call places the client’s
address in the sockaddr_in structure named clientaddr.

8 Receives data from the client.

9 Retrieves the client name using the address in the sockaddr_in
structure named clientaddr. A call to gethostbyaddrexpects an
IPv4 address as input.

10 Converts the client’s 32–bit IPv4 address to a dot-formatted Internet
address text string. A call to inet_ntoa expects an IPv4 address as
input.

11 Sends a response to the client.

C.2 Programs Using AF_INET6 Sockets

This section contains a client and server program that use AF_INET6
sockets.

C.2.1 Client Program Using AF_INET6 Sockets

Example C–3 shows a sample client program that you can build, compile,
and run on your system. The program sends a request to and receives a
response from the system specified on the command line. All addresses
are in IPv6 address format.

Example C–3: Client Stub Routine

/*
* *****************************************************************
* * *
* * Copyright (c) Compaq Computer Corporation, 2000 *
* * *
* * The software contained on this media is proprietary to *
* * and embodies the confidential technology of Compaq *
* * Computer Corporation. Possession, use, duplication or *
* * dissemination of the software and media is authorized only *
* * pursuant to a valid written license from Compaq Computer *
* * Corporation. *
* * *
* * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
* * by the U.S. Government is subject to restrictions as set *
* * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
* * or in FAR 52.227-19, as applicable. *
* * *
* *****************************************************************
*/
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Example C–3: Client Stub Routine (cont.)

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <arpa/inet.h>

#define SERVER_PORT 7639
#define CLIENT_PORT 7739

#define MAXBUFSIZE 4096

int main (
int argc,
char **argv )

{
int s;
char databuf[MAXBUFSIZE];
int dcount;
struct addrinfo *server_info; 1
struct addrinfo *cur_info;
struct addrinfo hints;
struct sockaddr_in6 serveraddr; 2
char addrbuf[INET6_ADDRSTRLEN];
char node[MAXDNAME];
char service[MAXDNAME];
int ni;
int err;
int serveraddrlen;
const char *request = "this is the client’s request";
char *server;

if (argc < 2) {
printf("Usage: client <server>\n");
exit(1);

}
server = argv[1];
bzero((char *) &hints, sizeof(hints)); 3
hints.ai_family = AF_INET6;
hints.ai_protocol = IPPROTO_TCP;
hints.ai_flags = AI_ADDRCONFIG | AI_V4MAPPED;

sprintf(service, "%d", SERVER_PORT);

err = getaddrinfo(server, service, &hints, &server_info); 4
if (err != 0) {

printf("%s\n", gai_strerror(err));
if (err == EAI_SYSTEM)

perror("getaddrinfo");
exit(2);

}
cur_info = server_info;

while (cur_info != NULL) {
if ((s = socket(cur_info->ai_family, cur_info->ai_socktype, 0)) < 0) { 5

perror("socket");
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Example C–3: Client Stub Routine (cont.)

freeaddrinfo(server_info);
exit(3);

}
if (connect(s, cur_info->ai_addr, cur_info->ai_addrlen) <0 { 6

close(s);
cur_info = cur_info->ai_next;
continue;

}
break;

}
freeaddrinfo(server_info); 7

if (send(s, request, strlen(request), 0) < 0) { 8
perror("send");
exit(5);

}
dcount = recv(s, databuf, sizeof(databuf), 0); 9
if (dcount < 0) {

perror("recv");
exit(6);

}
databuf[dcount] = ’\0’;
serveraddrlen = sizeof(serveraddr);
if (getpeername(s, (struct sockaddr*) &serveraddr, &serveraddrlen) < 0) { 10

perror("getpeername");
exit(7);

}
printf("Response received from");
ni = getnameinfo((struct sockaddr*)&serveraddr, serveraddrlen, 11

node, sizeof(node), NULL, 0, NI_NAMEREQD);
if (ni == 0)

printf(" %s", node);
ni = getnameinfo((struct sockaddr*)&serveraddr, serveraddrlen, 12

addrbuf, sizeof(addrbuf), NULL, 0, NI_NUMERICHOST);
if (ni == 0)

printf(" (%s)", addrbuf);

printf(": %s\n", databuf);

close(s);
}

1 Declares addrinfo structures and the hints structure.

2 Declares the sockaddr_in6 structure. The use of this type of
structure is dictated by the communication domain of the socket
(AF_INET6), which implies communication using the IPv6 protocol. If
you wanted to write a protocol-independent program, you would declare
a sockaddr_storage structure.

3 Declares the address string buffer, node name string buffer, service
name string buffer, error number variable, and server address length
variable.
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4 Clears the hints structure and sets up hints variables. Thehints
structure contains values that direct the getaddrinfo processing. In
this case, AF_INET6 returns IPv6 addresses. The AI_ADDRCONFIG
and AI_V4MAPPED values return AAAA records if an IPv6 address is
configured, and if none are found, return A records if an IPv4 address
is configured. See getaddrinfo(3) for more information on hints
structure values.

5 Obtains the server address. A call to getaddrinfo returns
IPv6–formatted addresses in one or more structures of type addrinfo.

6 Creates an AF_INET6 socket. The socket type is specified in the
addrinfo structure.

7 Connects to the server using the address in the addrinfo structure
named cur_info.

8 Frees all addrinfo structures.

9 Sends a request to the server.

10 Receives a response from the server.

11 Obtains the address of the peer socket at the other end of the
connection and stores the address in a sockaddr_in6 structure named
serverinfo.

12 Obtains the server’s name with a call to getnameinfo using the
address in the sockaddr_in6 structure named serveraddr. The
NI_NAMEREQD flag directs the routine to return a host name for the
given address.

13 Obtains the server’s numeric address value with a call to getnameinfo
using the address in the sockaddr_in6 structure named serveraddr.
The NI_NUMERICHOST flag directs the routine to return an address
value for the given address.

C.2.2 Server Program Using AF_INET6 Sockets

Example C–4 shows a sample server program that you can build, compile,
and run on your system. The program receives requests from and sends
responses to client programs on other systems.

Example C–4: Server Stub Routine

/*
* *****************************************************************
* * *
* * Copyright (c) Compaq Computer Corporation, 2000 *
* * *
* * The software contained on this media is proprietary to *
* * and embodies the confidential technology of Compaq *
* * Computer Corporation. Possession, use, duplication or *
* * dissemination of the software and media is authorized only *
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Example C–4: Server Stub Routine (cont.)

* * pursuant to a valid written license from Compaq Computer *
* * Corporation. *
* * *
* * RESTRICTED RIGHTS LEGEND Use, duplication, or disclosure *
* * by the U.S. Government is subject to restrictions as set *
* * forth in Subparagraph (c)(1)(ii) of DFARS 252.227-7013, *
* * or in FAR 52.227-19, as applicable. *
* * *
* *****************************************************************
*/

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <arpa/inet.h>

#define SERVER_PORT 7639
#define CLIENT_PORT 7739

#define MAXBUFSIZE 4096

int main (
int argc,
char **argv )

{
int s;
char databuf[MAXBUFSIZE];
int dcount;
struct sockaddr_in6 serveraddr; 1
struct sockaddr_storage clientaddr; 2
char addrbuf[INET6_ADDRSTRLEN];
char node[MAXDNAME];
char port[MAXDNAME];
int err;
int ni;
int clientaddrlen;
const char *response = "this is the server’s response";

if ((s = socket(AF_INET6, SOCK_STREAM, 0)) < 0) { 3
perror("socket");
exit(1);

}

bzero((char *) &serveraddr, sizeof(struct sockaddr_in6)); 4
serveraddr.sin6_family = AF_INET6;
serveraddr.sin6_addr = in6addr_any;
serveraddr.sin6_port = htons(SERVER_PORT);

if (bind(s, (struct sockaddr *)&serveraddr, sizeof(serveraddr)) < 0) { 5
perror("bind");
exit(2);

}
if (listen(s, SOMAXCONN) < 0) { 6

perror("listen");
close(s);
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Example C–4: Server Stub Routine (cont.)

exit(3);
}
while (1) {

int new_s;
clientaddrlen = sizeof(clientaddr);
bzero((char *)&clientaddr, clientaddrlen); 7
new_s = accept(s, (struct sockaddr*)&clientaddr, &clientaddrlen); 8

if (new_s < 0) {
perror("accept");
continue;

}
dcount = recv(new_s, databuf, sizeof(databuf), 0); 9
if (dcount < 0) {

perror("recv");
close(new_s);
continue;

}
databuf[dcount] = ’\0’;

printf("Request received from");
ni = getnameinfo((struct sockaddr *)&clientaddr, 10

clientaddrlen, node, sizeof(node), NULL, 0, NI_NAMEREQD);
if (ni == 0)

printf(" %s", node);
ni = getnameinfo((struct sockaddr *)&clientaddr, 11

clientaddrlen, addrbuf, sizeof(addrbuf), port, sizeof(port),
NI_NUMERICHOST|NI_NUMERICSERV);

if (ni == 0)
printf(" (%s) port %d", addrbuf, port);

printf(" \"%s\"\n", port, databuf);
if (send(new_s, response, strlen(response), 0) < 0) { 12
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Example C–4: Server Stub Routine (cont.)

perror("send");
close(new_s);
continue;

}
close(new_s);

}
close(s);

}

1 Declares the sockaddr_in6 structure named serveraddr. The use
of this type of structure is dictated by the communication domain of
the socket (AF_INET6), which implies communication using the IPv6
protocol.

2 Declares a sockaddr_storage structure named clientaddr. The
use of this type of structure enables your program to be protocol
independent.

3 Creates an AF_INET6 socket. The socket type SOCK_STREAM is
specified for TCP or connection-oriented communication.

4 Clears the server address and sets up the server variables.

5 Binds the server’s address to the AF_INET socket.

6 Listens on the socket for a connection. The server will queue up to
SOMAXCONN pending connections while it finishes processing the
previous accept call. See sys_attrs_socket(5) for more information
on the socket subsystem kernel attributes.

7 Clears the client address.

8 Accepts a connection on this socket. The accept call places the client’s
address in the sockaddr_storage structure named clientaddr.

9 Receives data from the client.

10 Obtains the client’s name with a call to getnameinfo using the
address in the sockaddr_storage structure named clientaddr.
The NI_NAMEREQD flag directs the routine to return a host name for
the given address.

11 Obtains the client’s numeric address value and port nnumber with a
call to getnameinfo using the address in the sockaddr_storage
structure named clientaddr. The NI_NUMERICHOST and
NI_NUMERICSERV flags direct the routine to return a values for the
given address and the port number.

12 Sends a response to the client.
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C.3 Sample Program Output

This section contains sample output from the server and client programs.
The server program makes and receives all requests on an AF_INET6 socket
using sockaddr_in6. For requests received over IPv4, sockaddr_in6
contains an IPv4-mapped IPv6 address.

The following example shows the client program running on node hostb6
and sending a request to node hosta6. The program uses an AF_INET6
socket. The hosta6 node has the IPv6 address 3ffe:1200::a00:2bff:fe97:7be0
in the Domain Name System (DNS).

user2@hostb6> ./client hosta6
Response received from hosta6.ipv6.corp.example (3ffe:1200::a00:2bff:fe97:7be0):
this is the server’s response

On the server node, the following example shows the server program
invocation and the request received from the client node hostb6:

user1@hosta6> ./server
Request received from hostb6.ipv6.corp.example (3ffe:1200::a00:2bff:fe2d:02b2
port 7739 "this is the client’s request"

The following example shows the client program running on node hostb and
sending a request to node hosta. The program uses an AF_INET6 socket.
The hosta node has the IPv4 address 10.10.10.13 in the DNS.

user2@hostb> ./client hosta
Response received from hosta.corp.example (::ffff:10.10.10.13): this is the
server’s response

On the server node, the following example shows the server program
invocation and the request received from the client node hostb:

user1@hosta6> ./server
Request received from hostb.corp.example (::ffff:10.10.10.251) port 7739
"this is the client’s request"

The following example shows the client program running on node hostc
and sending a request to node hosta. The program was built and run on
an IPv4-only system using an AF_INET socket.

user3@hostc> ./client hosta
Response received from hosta.corp.example (10.10.10.13): this is the
server’s response

On the server node, the following example shows the server program
invocation and the request received from the client node hostc:

user1@hosta6> ./server
Request received from hostc.corp.example (::ffff:10.10.10.63) port 7739
"this is the client’s request"
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D
TCP Specific Programming Information

This appendix contains information about performance aspects of the
Transport Control Protocol (TCP).

It discusses how programs can influence TCP throughput by controlling the
following via socket options:

• TCP window size

• TCP error recovery

• TCP round-trip time

• TCP reliability

D.1 TCP Throughput and Window Size

TCP throughput depends on the transfer rate, which is the rate at which
the network can accept packets, and the round-trip time, which is the delay
between the time a TCP segment is sent and the time an acknowledgement
arrives for that segment. These factors determine the amount of data that
must be buffered (the window) prior to receiving acknowledgment to obtain
maximum throughput on a TCP connection.

If the transfer rate or the round-trip time or both is high, the default window
size used by TCP may be insufficient to keep the pipe fully loaded. Under
these circumstances, TCP throughput can be limited because the sender is
required to stall until acknowledgements for prior data are received.

The receive socket buffer size determines the maximum receive window for
a TCP connection. The transfer rate from a sender can also be limited by
the send socket buffer size. The default value is 61440 bytes for TCP send
and receive buffers.

D.1.1 Programming the TCP Socket Buffer Sizes

An application can override the default TCP send and receive socket buffer
sizes by using the setsockopt system call and specifying the SO_SNDBUF
and SO_RCVBUF options, prior to establishing the connection. The largest
size that can be specified with the SO_SNDBUF and SO_RCVBUF options is
limited by the kernel variable sb_max. See Section D.1.2.1 for information
about increasing this value.
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For maximum throughput, send and receive socket buffers on both ends of
the connection should be of equal size.

When writing programs that use the setsockopt system call to change a
TCP socket buffer size (SO_SNDBUF, SO_RCVBUF), note that the actual
socket buffer size used for a TCP connection can be larger than the specified
value. This situation occurs when the specified socket buffer size is not
a multiple of the TCP Maximum Segment Size (MSS) to be used for the
connection.

TCP determines the actual size, and the specified size is rounded up to the
nearest multiple of the negotiated MSS. For local network connections,
the MSS is generally determined by the network interface type and its
maximum transmission unit (MTU).

D.1.2 TCP Window Scale Option

Tru64 UNIX implements the TCP window scale option, as defined in RFC
1323: TCP Extensions for High Performance. The TCP window scale option,
which allows larger windows to be used, was designed to increase throughput
of TCP over high bandwidth, long delay networks. This option may also
increase throughput of TCP in local Gigabit Ethernet and FDDI networks.

The window field in the TCP header is 16 bits. Therefore, the largest window
that can be used without the window scale option is 2**16 (64KB). When the
window scale option is used between cooperating systems, windows up to
(2**30)-1 bytes are allowed. The option, transmitted between TCP peers at
the time a connection is established, defines a scale factor which is applied to
the window size value in each TCP header to obtain the actual window size.

The maximum receive window, and therefore the scale factor offered by TCP
during connection establishment, is determined by the maximum receive
socket buffer space.

If the receive socket buffer size is greater than 65535 bytes, during
connection establishment, TCP will specify the Window Scale option with
a scale factor based on the size of the receive socket buffer. Both systems
involved in the TCP connection must send the Window Scale option in
their SYN segments for window scaling to occur in either direction on the
connection. As stated previously, for maximum throughput, send and receive
buffers on both ends of the connection should be of equal size.

D.1.2.1 Increasing the System Socket Buffer Size Limit

The sb_max kernel attribute for the Socket kernel subsystem limits the
amount of socket buffer space that can be allocated for each send and receive
buffer. The current default is 1048576 bytes (1MB) but optionally you can
increase it.
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For local Gigabit Ethernet connections, the current value is sufficient. For
long delay, high bandwidth paths, values greater than 1MB may be required.

To change the sb_max kernel attribute in the kernel currently in memory,
use either the dxkerneltuner utility or the sysconfig -r command. See
dxkerneltuner(8) or sysconfig(8), respectively, for more information.

D.2 TCP Performance and Error Recovery
TCP relies on acknowledgements to determine if packets arrive at their
destination. In high-speed connections (for example, Gigabit Ethernet) that
use large windows, the default mechanism can seriously affect throughput.

By default, if a packet is lost, TCP retransmits that packet and all packets
after it. An application can override the default by using the setsockopt
system call specifying the TCP_SACKENA option , prior to establishing the
connection. After the option is agreed upon, the data receiver can inform the
sender about all segments that have arrived successfully. In this way, the
sender need retransmit only those segments that have actually been lost.
This option is useful in cases where multiple segments are dropped.

D.3 TCP Performance and Round-Trip Measurement
TCP bases its round-trip time measurements on a only one packet per
window. In high-speed connections (for example, Gigabit Ethernet) that use
large window, it is possible for the round-trip time estimates to be seriously
flawed, resulting in many retransmissions.

By default, TCP does not send time stamps in the TCP header. An
application can override the default by using the setsockopt system call
specifying the TCP_TSOPTENA option, prior to establishing the connection.
After the option is selected, the sender places a timestamp in each data
segment. The receiver, if configured to accept them, sends these timestamps
back in ACK segments. This provides the sender with a reliable mechanism
with which to measure round-trip time.

D.4 TCP Reliability and Sequence Numbers
TCP relies on sequence numbers to determine the correct sequencing of
packets and to determine if duplicate packets have been received. In
high-speed connections (for example, Gigabit Ethernet), it is possible for the
sequence numbers to wrap around. This means that two packets could have
the same sequence number yet contain different information; they are not
duplicate but TCP will assume that they are.

By default, TCP does not provide a mechanism for rejecting old duplicate
packets. An application can override the default by using the setsockopt
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system call specifying the TCP_PAWS option, after specifying the
TCP_TSOPTENA option, and prior to establishing the connection. When the
PAWS (Protect Against Wrapped Sequence numbers) option is enabled, the
receiver rejects any old duplicate segments that are received. This option is
used on synchronized TCP connections only.
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E
Information for Token Ring Driver

Developers

This appendix contains the following information for developers of Token
Ring drivers for the Tru64 UNIX operating system:

• Enabling source routing

• Using canonical addresses

• Avoiding unaligned access

• Setting fields in the softc structure of the driver

E.1 Enabling Source Routing

Source routing is a bridging mechanism that systems on a Token Ring
local area network (LAN) use to send messages to a system on another
interconnected Token Ring LAN. Under this mechanism, the system that
is the source of a message uses a route discover process to determine the
optimum route over Token Ring LANs and bridges to a destination system.

To use the Token Ring source routing module you must add the TRSRCF
option to your kernel configuration file. Use the doconfig −c command to
add the TRSRCF option, as follows:

1. Enter the doconfig −c HOSTNAME command from the superuser
prompt (#). HOSTNAME is the name of your system in uppercase letters;
for example, for a system called host1 you would enter:

# doconfig −c HOST1

2. Add TRSRCF to the options section of the kernel configuration file.

Enter y when the system asks whether you want to edit the kernel
configuration file. The doconfig command allows you to edit the
configuration file with the ed editor. For information about using the
ed editor, see ed(1).

The following ed editing session shows how to add the TRSRCF option
to the kernel configuration file for host1. The number of the line after
which you append the new line can differ between kernel configuration
files:
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*** KERNEL CONFIGURATION AND BUILD PROCEDURE ***

Saving /sys/conf/HOST1 as /sys/conf/HOST1.bck

Do you want to edit the configuration file? (y/n) [n]: y

Using ed to edit the configuration file. Press return when ready,
or type ’quit’ to skip the editing session:
2153

48a
options TRSRCF
.
1,$w
2185
q

*** PERFORMING KERNEL BUILD ***

3. After the new kernel is built, you must move it from the directory where
doconfig places it to the root directory (\/) and reboot your system.

For detailed information on reconfiguring your kernel or the doconfig
command see the System Administration manual.

The Token Ring source routing functionality is initialized if the trn_units
variable is greater than or equal to 1. The trn_units variable indicates the
number of Token Ring adapters initialized on the system.

The driver should declare trn_units as follows:

extern int trn_units;

At the end of its attach routine, the driver should increment the trn_units
variable as follows:

trn_units++;

For information on source routing management see the Network
Administration: Connections manual.

E.2 Using Canonical Addresses

The Token Ring driver requires that the destination address (DA) and source
address (SA) in the Media Access Control (MAC) header be in the canonical
form while presenting it to the layers above the driver.

The canonical form is also known as the Least Significant Bit (LSB) format.
It differs from the noncanonical form, known as the Most Significant Bit
(MSB) format, in that it transmits the LSB first. The noncanonical form
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transmits the MSB first. The two formats also differ in that the bit order
within each octet is reversed.

For example, the following address is in noncanonical form:

10:00:d4:f0:22:c4

The same address in canonical form is as follows:

08-00-2b-0f-44-23

If the hardware does not present the driver with a canonical address in
the MAC header, you should convert the address to canonical form before
passing it up to the higher layers. The haddr_convert kernel routine is
available for converting canonical addresses to noncanonical, and vice versa.
It has the following format:
haddr_convert( addr)
unsigned char *addr

The addr variable is a pointer to the 6 bytes of the address that
require conversion from either noncanonical to canonical or canonical to
noncanonical form. The converted address is returned in the same buffer.

E.3 Avoiding Unaligned Access

The frame that the driver receives consists of the Media Access Control
(MAC) header, which includes the Routing Information Field (RIF) and data.
Because the length of the RIF can vary between 0 and 18 bytes, the data
after the RIF may not be aligned to a longword boundary. To avoid degraded
performance, you should pad the RIF field so that data always starts on a
longword boundary.

Figure E–1 illustrates the relationship between the components of the MAC
header and the data in a typical frame.

Figure E–1: Typical Frame
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E.4 Setting Fields in the softc Structure of the Driver

The softc structure contains driver-specific information.
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You must set the following field of the softc structure in the attach
routine of the driver:

sc->isac.ac_arphrd=ARPHRD_802;

Here, sc is a pointer to the softc structure, and ARPHRD_802 is the value
of the hardware type used in an Address Resolution Protocol (ARP) packet
sent from this interface. A value of 6 for ARPHRD_802 indicates an IEEE
802 network.
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F
The Data Link Interface

The data link interface (DLI) is a programming interface that allows
programs to use the data link facility directly to communicate with data link
programs running on a remote system.

See Section F.5 for client and server DLI programming examples.

F.1 Prerequisites for DLI Programming
DLI programming requires both a thorough knowledge of the C programming
language and experience writing system programs. If you intend to use the
Ethernet substructure, you should be familiar with the Ethernet protocol.
If you intend to use the 802 substructure, you should be familiar with the
802.2, 802.3, and FDDI protocols.

You should be also be familiar with the following concepts before attempting
to write programs to the DLI interface:

• Datagram sockets

Your application uses sockets to send and receive Ethernet, 802.3 and
FDDI frames. DLI uses datagram sockets only.

For more information about using sockets, see Chapter 4.

• Logical Link Control (LLC)

LLC is a sublayer of DLI that provides a set of services determined by a
value in the 802.2 frame format.

• Physical and multicast addressing

You can send and receive messages over the network using physical or
multicast addresses. You can use physical addresses to send messages
to a single destination system. Multicast addresses are not associated
with any specific system; instead, a packet sent to a multicast address is
received by all systems with the multicast address enabled.

For more information about multicast addressing, see Section 4.7.

• Standard frame formats

The Ethernet frame format is a proprietary standard that belongs
to Compaq Computer Corporation, Intel Corporation, and Xerox
Corporation. The IEEE 802.3 frame format is a standard for multivendor
networking. The FDDI and IEEE 802.3 frame formats are very similar.
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Both contain the LLC (or 802.2) frame within them. See Section F.3.1
for more information.

Note that running DLI applications on this operating system requires
superuser or root privileges.

F.2 DLI Overview

DLI programs transfer data over networks using the standard Ethernet
frame format, the Open Systems Interconnect (OSI) 802.3 frame format, or
the FDDI frame format. Your operating system can run Internet, DECnet,
and DLI programs concurrently.

The operating system supports both Ethernet and 802.2 data link services.
DLI and IP both run over Ethernet and 802.2. FDDI and 802.3 use the
802.2 Logical Link Control (LLC) as their data link sublayer. TCP and UDP
run over IP, providing data delivery and message routing services to the
programs that use them. Because DLI provides direct access to the data link
layer it does not provide the higher-level services that TCP and UDP do.

Figure F–1 illustrates in greater detail the relationships between DLI and
IP, DLI and Ethernet, and DLI and 802.2.

Figure F–1: DLI and the Network Programming Environment
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Sockets are the user application interface and facilitate access to TCP, UDP,
and DLI. See Chapter 4 for information about opening sockets in the DLI
communication domain (AF_DLI).

F.2.1 DLI Services

DLI provides the following services at the data link layer:

• Datagram service

• Logical Link Control (LLC) layer

– ISO 802.2 Class I, Type I service
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• Multicast address mode

• Medium Access Control (MAC) layer

– Ethernet frames

– 802.3 frames

– FDDI frames

F.2.2 Hardware Support

DLI requires no knowledge of the underlying hardware. It uses Ethernet
or FDDI device drivers, which each use the probe routine to determine
what devices a particular system has configured. For a complete list of
the supported network devices, see the Tru64 UNIX Software Product
Description.

To determine which network devices are configured on your system, use the
/usr/sbin/netstat −i command, as follows:

% /usr/sbin/netstat −i

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ln0 1500 <Link> 746 0 234 0 18
ln0 1500 orange-net host1 746 0 234 0 18
sl0* 296 <Link> 0 0 0 0 0
sl1* 296 <Link> 0 0 0 0 0
lo0 1536 <Link> 74 0 74 0 0
lo0 1536 loop localhost 74 0 74 0 0

The output displayed on your screen contains information about the
interfaces or devices that your system has configured. In this example, an
Ethernet hardware device (ln) is configured, as are two Serial Line Interface
Protocol devices (sl0 and sl1). The asterisk (*) following the sl0 and sl1
indicates that the support for the interfaces has not been turned on yet.

F.2.3 Using DLI to Access the Local Area Network

A data link on a single local area network (LAN) controller supports multiple
concurrent users. Each station represents an available port on the network
channel.

Because multiple users simultaneously access the network channel, your
program must use addressing mechanisms that ensure delivery of messages
to the correct recipient. Any message you transmit on the network must
include an Ethernet or FDDI address that identifies the destination system.
The message must also include an additional identifier that directs the
message to the correct user on the destination system; this identifier varies
according to the frame format you choose to use. DLI builds frames according
to the Ethernet, IEEE 802.3, or FDDI standards.
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F.2.4 Including Higher-Level Services

DLI provides only datagram services. Because DLI is a direct interface to
the data link layer, it does not offer higher-level services normally provided
by Internet and DECnet. Therefore, your application should provide the
following kinds of services:

• Packet routing and guaranteed delivery

• Flow control

• Error recovery

• Data segmentation

F.3 DLI Socket Address Data Structure

This section describes the Ethernet, 802.3, and FDDI standard frame
formats, and the function of the DLI socket address data structure
(sockaddr_dl). It explains how you use sockaddr_dl to specify the domain
address, the network device, and the Ethernet, 802.3, or FDDI substructure.

F.3.1 Standard Frame Formats

The following diagrams illustrate the differences and similarities between
the Ethernet, 802.3, and FDDI frames.

Figure F–2 illustrates the Ethernet frame format.

Figure F–2: The Ethernet Frame Format
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Figure F–3 illustrates the 802.3 frame format. Note that the 802.3 frame
format contains the 802.2 structure, which is illustrated in Figure F–5.

Figure F–3: The 802.3 Frame Format
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Figure F–4 illustrates the FDDI frame format. The FDDI frame format also
contains within it the 802.2 structure illustrated in Figure F–5.
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Figure F–4: The FDDI Frame Format
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Figure F–5 illustrates the 802.2 LLC PDU and the 802.2 LLC SNAP PDU.
One of these two structures is contained within the 802.3 and FDDI frame
formats.

Figure F–5: The 802.2 Structures
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Typically, 802 applications use the 802.2 LLC PDU format; however, an
application developer may choose to use the 802.2 LLC SNAP PDU format
for the following reasons:

• Using the SNAP_SAP is a convenient way to map Ethernet protocol
types on to 802.2 protocols. This is useful for applications that operate
over both Ethernet and 802.2, or are migrating from Ethernet to 802.2.

• The I/O control flags (DLI_NORMAL, DLI_EXCLUSIVE and
DLI_DEFAULT) are valid only for Ethernet and 802.2 SNAP frames.
These flags are meaningless when the non-SNAP 802.2 LLC PDU is used.

• Using the SNAP_SAP allows a greater number of applications to run
over 802.2 because the SNAP SAP has a five byte protocol ID associated
with it. The normal 802.2 LLC PDU, on the other hand, is multiplexed
on the 7 most significant bits of the DSAP.
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F.3.2 How the sockaddr_dl Structure Works

DLI provides a socket address data structure through which you can
configure the set of services required for communication at the data link
layer. The data structure sockaddr_dl is used to convey information to
DLI when an application binds to the network, or when it transmits a packet
to the network. DLI also uses it to convey information to the application
when it receives a packet from the network. This includes network device
information, the packet format to be used, and addressing information.

The following example shows the DLI socket address structure, which is
defined in the header file <dli/dli_var.h>:

#define DLI_ETHERNET 0
#define DLI_802 2
.
.
.

struct sockaddr_dl {
u_char dli_len; /* length of sockaddr */
u_char dli_family; /* address family (AF_DLI) */
struct dli_devid dli_device; /* id of comm device to use */
u_char dli_substructype; /* id to interpret following */

/* structure */
union {

struct sockaddr_edl dli_eaddr; /* Ethernet */
struct sockaddr_802 dli_802addr; /* OSI 802 support */
caddr_t dli_aligner1; /* this needs to have */

/* longword alignment */
} choose_addr;

};

Any single application can send and receive both Ethernet and 802
substructures. The Ethernet substructure enables applications to
communicate across an Ethernet. The 802 substructure enables applications
to use 802.2, 802.3, and FDDI protocols to communicate with each other.

You can use system calls to specify values within the socket address
structure by using either the Ethernet or 802 substructures.

The fields within the substructures are updated as a function of the system
call. For example, the bind system call is used to specify the domain,
network device, and most of the substructure. When using the sendto
system call to transmit data, the domain, network device, and part of the
substructure must be specified. When using the recvfrom system call to
receive data, DLI fills in the entire sockaddr structure.

The dli_econn and dli_802_3_conn user-written subroutines open a
socket and bind the associated domain, network device name, protocol
type, and other substructure information to the socket. See Section F.5 for
examples of the dli_econn and dli_802_3_conn user-written subroutines.

The following sections describe the functions that the Ethernet and 802.2
substructures provide within the DLI sockaddr_dl data structure.
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F.3.3 Ethernet Substructure

The following example shows the DLI Ethernet socket address substructure:

#define DLI_EADDRSIZE 6
.
.
.

struct sockaddr_edl {
u_char dli_ioctlflg; /* i/o control flags */
u_char dli_options; /* Ethernet options */
u_short dli_protype; /* Ethernet protocol type */
u_char dli_target[DLI_EADDRSIZE]; /* Ethernet address of */

/* destination system */
u_char dli_dest[DLI_EADDRSIZE]; /* Ethernet address used to */

/* address the local system; */
}; /* DLI places the destination */

/* address of an incoming */
/* packet here to be used in */
/* the recvfrom call. This */
/* address can be the sys- */
/* tem’s address or a multi */
/* cast address. */

The Ethernet substructure specifies the following:

• An I/O control flag for the protocol type (dli_ioctlflg)

• Whether Ethernet is padded (dli_options)

The PAD is a 2-byte length field in little-endian after the MAC/LLC
header. The following entry in the <dli/dli_var.h> header file is the
bit that must be set in the dli_options field to turn on padding:

#define DLI_ETHERPAD 0x01 /* Protocol is padded */

• The DLI protocol type (dli_prototype)

• The Ethernet address of the destination system (dli_target)

• The Ethernet address used to address the local system (dli_dest)

This information is used to create the Ethernet frame format.

F.3.3.1 How Ethernet Frames Work

All Ethernet frames contain a 16-bit identification number called an
Ethernet protocol type (PType). When a message arrives at the controller,
the protocol type is used to identify which port receives the frame. DLI
applications that communicate across the Ethernet must always enable the
same Ethernet protocol type. In addition to using protocol types to select
a user for an incoming packet, you can configure DLI to select a user as a
function of both the protocol type and the physical address of the remote
system. This allows several applications in the same system to use the same
type, which can make input/output simpler for the application.
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F.3.3.2 Defining Ethernet Substructure Values

The user specifies the values for the following fields in the Ethernet socket
address substructure. The other fields are filled in either by system calls
or DLI:

• Destination address ( dli_target[DLI_EADDRSIZE])

You can use the dli_target field to specify the destination address.

• Protocol type ( dli_protype)

You can use the dli_prototype field to specify the protocol to be used
for data transmission.

• I/O Control Flag ( dli_ioctlflg)

The following sections define the values for user-definable members in the
Ethernet substructure.

Destination Node Physical Address

The destination system physical address (DA in Figure F–2) is a 48-bit
unique value assigned by the manufacturer to a station on the Ethernet. For
example, 08-00-2b-XX-XX-XX is the form a valid Ethernet address takes,
with the Xs being replaced by hexadecimal digits. DA is the address of the
remote system with respect to the local system.

If you do not specify the DA value with the bind call, you must specify it
when sending data by using the sendto call. In addition, you should use
the recvfrom call to determine the source of a data message. You can use
either the physical address or a multicast address to send messages in the
sendto system call.

Protocol Type

The protocol type (PType in Figure F–2) is a 16-bit value in the Ethernet
frame following the source address. The Ethernet driver passes the protocol
type to DLI for use in determining the recipient of the data in the frame.
With the exception of reserved values, you can use any Ethernet protocol
type if it is assigned to you by the manufacturer and not used elsewhere
in your system.

The following hexadecimal values are reserved for use by the system:

• 0X 0200 — PUP Protocol

• 0X 0800 — Internet Protocol

• 0X 0806 — Address Resolution Protocol

• 0X 6004 — Local Area Transport

• 0X 6003 — Phase IV DECnet
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• 0X 6002 — MOP CCR Protocol

• 0X 6001 — MOP Downline Load Protocol

• 0X 9000 — MOP Loopback Protocol

• 0X 1000 to 0X 100f — Internet Trailer Protocol (used by VAX only)

I/O Control Flag

The I/O control flag, defined in the header file <dli/dli_var.h>, is a value
that DLI uses to determine how your program reserves a protocol type. It
is used by DLI to determine whether to select a user as a function of the
protocol type alone or as a function of the combination of the protocol type
and the target audience. The following list defines the possible I/O control
flags and describes the conditions for their use:

• NORMAL

Allows your program to exchange messages with one destination system,
using only the specified protocol type. When using the NORMAL flag, you
must specify the destination system physical address in the bind call
and you can use any of the data transfer calls to send and receive data.
DLI forwards to the user all messages containing the specified protocol
type from the specified target.

• EXCLUSIVE

Gives your program exclusive use of the specified protocol type and
allows the program to exchange data with any other system using this
protocol type. In other words, the program receives all messages with
the specified protocol type. When you use the EXCLUSIVE flag, do not
specify the target address with the bind call. You must use the sendto
and recvfrom calls to exchange data with other systems, and you must
specify the target address with the sendto call. In the address structure
(returned with recvfrom), DLI fills in the target address with the source
address in the Ethernet frame. It also fills in the destination address
with the destination address in the Ethernet frame.

• DEFAULT

Allows your program to receive messages that contain the specified
protocol type and that are meant for no other program on the system. If
no other program is bound exclusively to the protocol type or the protocol
type/address pair in the message, the socket bound to the protocol type
gets the message by default. This mode of operation is recommended
for use in programs that listen for messages but do not necessarily
send them. When you use the DEFAULT flag, do not specify the target
address with the bind call. Use the recvfrom call to receive data from
other systems. If you are using the DEFAULT flag, DLI fills in the target
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address with the source address in the Ethernet frame. It also fills in the
destination address with the destination address in the Ethernet frame.

F.3.4 802.2 Substructure

The 802.2 substructure enables applications to communicate with each
other using the 802.2, 802.3, and FDDI protocols. It uses two basic modes
of operation: Class I, Type 1 service, and the services supplied by your
application using the 802.2 protocol.

The following example shows the DLI 802.3 socket address substructure:
struct sockaddr_802 { /* 802.3 sockaddr struct */

u_char ioctl; /* filter on incoming packets */
/* addressed to the SNAP SAP */

u_char svc; /* service class for this portal */
struct osi_802hdr eh_802; /* OSI 802 header format */

};

The 802.2 substructure subsumes both the 802.3 and FDDI frame formats.
You can specify values for the following fields:

• Destination system physical address (DA in Figure F–3 and Figure F–4)

• Service class

• Destination service access points (DSAP in Figure F–5)

– Individual

– Group

• Source service access point (SSAP in Figure F–5)

The protocol identifier and I/O control field may be required, depending
on the type of SSAP you enable.

• Control field

F.3.4.1 Defining 802 Substructure Values

The following sections define the possible values for all members in the
802 substructure.

Destination Node Physical Address

The destination system physical address (DA) is a 48-bit unique value
assigned by the manufacturer to a station on an Ethernet or FDDI network.
For example, 08-00-2b-XX-XX-XX is a valid Ethernet or FDDI address, with
the Xs being replaced by hexadecimal digits. This is the address of the
remote system with which the application attempts to exchange packets. It
must be specified in the bind call, except when the I/O control field is either
EXCLUSIVE or DEFAULT and the service access point (SAP) is a SNAP_SAP
type. The SAP must be specified in the sendto call.
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Service Class

The service class is a value in the 802.2 substructure that determines
the capabilities and features provided by the Logical Link Control (LLC)
sublayer of the data link layer. The possible service classes are:

• TYPE1

This value causes DLI to interpret all header information and provide
Class I, Type 1 service.

_____________________ Note _____________________

When Type 1 service is used, the DLI software handles the
XID and TEST packets. This is transparent to the application.

DLI uses the source and destination service access points to determine
who should receive the message; it interprets the control field on behalf
of the user. Whether DLI passes the data field to the user depends on the
value of the control field.

• USER

This value provides few services. The user must, therefore, implement
most of the 802.2 protocol. In other words, the application must handle
the XID and TEST packets. DLI uses the source and destination service
access points, but it passes the control field with the data to the user.
The user must interpret the control field. This mode must be selected if
the application needs to implement Class II, Type 2 service.

Destination Service Access Point

The destination service access point (DSAP) is a field in the 802.2 frame that
identifies the application for which the message is intended. You can use
individual or group DSAPs to identify one user or a group of users. You can
use group DSAPs only when the service class is set to USER. The possible
values for this field are:

• Individual DSAPs

NULL_SAP — A DSAP consisting of all zeros. You can send TEST and
XID commands and responses, but no data, to a NULL_SAP. ( TEST and
XID are explained later in this section.) The data link layer uses the
NULL_SAP to talk to another data link layer, primarily for testing.

User-defined DSAP — Identifies one user for whom the message is
intended. The user-defined individual DSAP must be an even number
greater than or equal to 2 and less than or equal to 254.

SNAP_SAP — The 802.3 Subnetwork Access Protocol.

• Group DSAP (user defined)
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Identifies more than one user for whom the message is intended. You can
send data to a maximum of 127 group DSAPs on one socket. The user
defined group DSAP must be an odd number greater than or equal to 3
and less than or equal to 255. Note that the 255 number is the global
SAP and must be enabled like any other group SAP. You can use group
SAPs only when the service class is set to USER.

Source Service Access Point

The source service access point (SSAP) is a field in the 802.2 frame that
identifies the address of the application that sent the message. You can
enable only one SSAP on a socket. The SSAP must be an even number
greater than or equal to 2 and less than or equal to 254.

______________________ Note _______________________

When using the SNAP_SAP, both the DSAP and SSAP must be set
to SNAP_SAP. In addition, you must specify the protocol identifier
and control field. The protocol identifier is five bytes. The control
field is one byte. Enabling the SNAP_SAP is allowed only when
the service class is TYPE1.

Note also that IEEE 802.2 standard reserves for its own definition
all SAP addresses with the second least significant bit set to 1.
It is suggested that you use these SAP values for their intended
purposes, as defined in the IEEE 802.2 standard.

Control Field

The control field specifies the packet type. The following values are defined
for Class I, Type 1 service, and can also be used in the user-supplied mode
to provide Class II, Type 2 service.

______________________ Note _______________________

An application using this user mode is responsible for providing
the correct services. For other operations supported by CLASS
II service, see the IEEE Standards for Local Area Networks:
Logical Link Control, published by the Institute of Electrical
and Electronics Engineers, Inc.

• Exchange Identification

The value XID identifies the exchange identification command or
response. An 8-bit format identifier and a 16-bit parameter follow the
XID control field. The 16-bit parameter identifies the supported LLC
services and the receive window size. The LLC is the top sublayer

F–12 The Data Link Interface



in the data link layer of the IEEE/Std 802 Local Area Network
Protocol. The following values of XID are defined in the DLI header file
<dli/dli_var.h>:

– XID_PCMD

Exchange identification command with the poll bit set. The exchange
identification command conveys the types of LLC services supported
and the receive window size to the destination LLC. This command
causes the destination LLC to reply with the XID response Protocol
Data Unit (PDU) at the earliest opportunity. The poll bit is set to 1,
soliciting a response PDU.

– XID_NPCMD

Exchange identification command with no poll bit set. This command
is identical to the previous command, except that you clear the poll
bit. No response is expected.

– XID_PRSP

Exchange identification response with the poll bit set. The Data
Link layer uses the exchange identification response to reply to an
XID command at the earliest opportunity. The XID response PDU
identifies the responding LLC and includes an information field
like that defined for the XID command PDU, regardless of what
information is present in the information field of the received XID
command PDU. The final bit is set to 1, indicating that this response
is sent by the LLC as a reply to a soliciting command PDU.

– XID_NPRSP

Exchange identification response with no poll bit set. This response
is identical to the previous one, except that the final bit is cleared.

• LLC Protocol Data Unit Test

The value TEST identifies the LLC PDU command or response test. The
TEST control field can be followed by a data field. The following values of
TEST are defined in the DLI header file <dli/dli_var.h>:

– TEST_PCMD

TEST command with the poll bit set. The TEST command tests the
LLC-to-LLC transmission path by causing the destination LLC to
respond with the TEST response PDU at the earliest opportunity. An
information field is optional with this control field value. If used, the
receiving LLC returns the information rather than passing it to the
user. The poll bit is set to 1, soliciting a response PDU.

– TEST_NPCMD

TEST command with no poll bit set. This command is identical to the
previous command, except that the poll bit is cleared.
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– TEST_PRSP

TEST response with the poll bit set. The TEST response PDU is a
reply to the TEST command PDU. An information field, if present in
the TEST command PDU, is returned in the corresponding TEST
response PDU. The final bit is set to 1, indicating that this response
is sent by the LLC as a reply to a soliciting command PDU.

– TEST_NPRSP

TEST response with no poll bit set. This response is identical to the
previous one, except that the final bit is cleared.

• Unnumbered Information Command

The unnumbered information command with no poll set ( UI_NPCMD)
sends information to one or more LLCs. The UI_NPCMD command
does not have an LLC response PDU. This is usually passed up to the
application. Class I, Type 1 applications generally send and receive data
using this command.

F.4 Writing DLI Programs

This section explains how to use system calls to write DLI programs and
describes procedures for specifying values within the Ethernet and 802
substructures.

Section F.5 contains DLI programming examples of the procedures described
in this section.

For additional information about how to use sockets and system calls to
write application programs, see Chapter 4.

F.4.1 Supplying Data Link Services

Because DLI provides only a datagram service, a DLI application should
provide the services that the higher levels of network software normally
provide:

• Flow control — DLI programs running on different systems must
synchronize data transfer or they will lose data.

• Error recovery — DLI reports errors, but your application must recover
from them.

• Data segmentation — Your application must segment data during
transmission. (See Section F.4.7 for information about the buffer size for
Ethernet, 802.3, and FDDI packets.)

F–14 The Data Link Interface



F.4.2 Using Tru64 UNIX System Calls

Your DLI program uses the socket interface with input arguments,
structures, and substructures specific to DLI. For example, when issuing the
socket system call, your program uses the address format AF_DLI and
the protocol DLPROTO_DLI.

The beginning of any DLI program must include the header file
<dli/dli_var.h>. Then it should follow the calling sequence shown in
Table F–1.

Table F–1: Calling Sequence for DLI Programs
Function System Call

Create a socket. socket

Bind the socket to a device by specifying the address family,
the frame format type, and the device over which the program
will send the data using the sockaddr_dl structure.

bind

Set socket options. This call is optional. setsockopt

Transfer data. send, recv, read,
write, sendto,
and recvfrom

Deactivate the socket descriptor. close

See Chapter 4 and the reference page for each system call for more
information.

The following sections describe DLI functions, input arguments, and
structures.

F.4.3 Creating a Socket

Your DLI application must create a socket by using the socket system call
with the following input arguments:

Address family: AF_DLI

Socket type: SOCK_DGRAM

Protocol: DLPROTO_DLI

The value AF_DLI specifies the DLI address family. SOCK_DGRAM creates
a datagram socket, which is the only type of socket that DLI allows. DLI
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does not supply the services necessary for connecting to other programs
and for using other socket types. The value DLPROTO_DLI specifies the
DLI protocol module.

The following example shows how the socket call is used to open a socket
to DLI:

int so;
...

if ( (so = socket(AF_DLI,SOCK_DGRAM,DLPROTO_DLI))<0)
{

perror("cannot open DLI socket");
return (-1);

}

F.4.4 Setting Socket Options

Use the setsockopt call to set the following socket options within the
sockaddr_dl structure:

Option Description

DLI_ENAGSAP Enables a group service access point (GSAP)

DLI_DISGSAP Disables a group service access point (GSAP)

DLI_SET802CTL Sets the 802 control field

DLI_MULTICAST Enables the reception of all messages addressed
to a multicast address

The following code examples show how to use the setsockopt call to set
the socket options.

The following example shows how the setsockopt call is used to enable
the GSAP option:

/* enable GSAPs supplied by user */
j = 3;
i = 0;
while (j < argc ) {

sscanf(argv[j++], "%x", &k);
out_opt[i++] = k;

}
optlen = i;
if (setsockopt(sock,DLPROTO_DLI,DLI_ENAGSAP,&out_opt[0],optlen) < 0){

perror("dli_setsockopt: Can’t enable gsap");
exit(1);

}

The following example shows how the setsockopt call is used to disable
the GSAP option:
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/* disable all but the last 4 or all GSAPs, */
/* whichever is smallest */
if ( optlen > 4 )

optlen -= 4;
if (setsockopt(sock,DLPROTO_DLI,DLI_DISGSAP,&out_opt[0],optlen) < 0){

perror("dli_setsockopt: Can’t disable gsap");
}

The following example shows how the setsockopt call is used to set the
802 control field:

/* set 802 control field */
out_opt[0] = TEST_PCMD;
optlen = 1;
if (setsockopt(sock,DLPROTO_DLI,DLI_SET802CTL,

&out_opt[0],optlen)<0){
perror("dli_setsockopt: Can’t set 802 control");
exit(1);

}

The following example shows how the setsockopt call is used to enable two
multicast addresses:

/* enable two multicast addresses */
bcopy(mcast0, out_opt, sizeof(mcast0));
bcopy(mcast1, out_opt+sizeof(mcast0), sizeof(mcast1));
if ( setsockopt(sock, DLPROTO_DLI, DLI_MULTICAST, &out_opt[0],

(sizeof(mcast0) + sizeof(mcast1))) < 0 ) {
perror("dli_setsockopt: can’t enable multicast");

}

See Section F.5 for more detailed code examples.

F.4.5 Binding the Socket

After you create the socket, your application must bind the socket to
a network device. At this point, you specify the type of format for the
message. You assign a name to the socket, where the variable name is a
pointer to a structure of the type sockaddr_dl. Then, you must fill in
the sockaddr_dl data structure and include the appropriate substructure
(Ethernet or 802).

To bind the socket, use the bind system call. See bind(2) for more
information.

F.4.6 Filling in the sockaddr_dl Structure

Fill in the sockaddr_dl structure with the following information:

• Address family

• I/O device ID

• Substructure type
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F.4.6.1 Specifying the Address Family

To specify the address family, use the value AF_DLI in the socket call.

F.4.6.2 Specifying the I/O Device ID

The I/O device is the controller over which your program sends and receives
data to and from the target system. The I/O device ID consists of the device
name, dli_devname, and the device number, dli_devnumber. Definitions
for each variable follow:

• dli_devname

The netstat −i command lists the devices that are available on your
system.

• dli_devnumber

The device number is set up in the system configuration file.

F.4.6.3 Specifying the Substructure Type

The substructure specifies the type of frame format that the program will
use. Definitions for each variable follow:

• dli_eaddr

Ethernet frame format ( DLI_ETHERNET)

• dli_802addr

802.3 frame format ( DLI_802)

A program can send and receive Ethernet, 802.3, and FDDI frames, as long
as it has a socket associated with each type. For example, your DLI program
might communicate with one system using the Ethernet frames and another
system using 802.3 or FDDI frames. Your choice of frame formats depends
on the frame types used by the target program; however, only one type of
frame per socket is allowed.

Your program specifies the packet header for sending your message by
filling in the substructure of your choice. Example F–1 shows how to fill the
sockaddr_dl structure for the Ethernet protocol. Example F–2 shows how
to fill the sockaddr_dl structure for the 802 protocol:

Example F–1: Filling the sockaddr_dl Structure for Ethernet

/*
* Fill out the sockaddr_dl structure for the bind call
*/
bzero(&out_bind, sizeof(out_bind));
out_bind.dli_family = AF_DLI;
out_bind.dli_substructype = DLI_ETHERNET;
bcopy(devname, out_bind.dli_device.dli_devname, i);
out_bind.dli_device.dli_devnumber = devunit;
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Example F–1: Filling the sockaddr_dl Structure for Ethernet (cont.)

out_bind.choose_addr.dli_eaddr.dli_ioctlflg = ioctl;
out_bind.choose_addr.dli_eaddr.dli_protype = ptype;
if ( taddr )

bcopy(taddr, out_bind.choose_addr.dli_eaddr.dli_target,
DLI_EADDRSIZE);

if ( bind(sock, &out_bind, sizeof(out_bind)) < 0 )
{

perror("dli_eth, can’t bind DLI socket");
return(-1);

}

return(sock);
}

Example F–2: Filling the sockaddr_dl Structure for 802.2

/*
* Fill out sockaddr_dl structure for the bind call.
* Note that we need to determine whether the
* control field is 8 bits (unnumbered format) or
* 16 bits (informational/supervisory format). We do this
* by checking the low order 2 bits, which are both 1 only
* for unnumbered control fields.
*/
bzero(&out_bind, sizeof(out_bind));
out_bind.dli_family = AF_DLI;
out_bind.dli_substructype = DLI_802;
bcopy(devname, out_bind.dli_device.dli_devname, i);
out_bind.dli_device.dli_devnumber = devunit;
out_bind.choose_addr.dli_802addr.ioctl = ioctl;
out_bind.choose_addr.dli_802addr.svc = svc;
if(ctl & 3)

out_bind.choose_addr.dli_802addr.eh_802.ctl.U_fmt=(u_char)ctl;
else

out_bind.choose_addr.dli_802addr.eh_802.ctl.I_S_fmt = ctl;
out_bind.choose_addr.dli_802addr.eh_802.ssap = sap;
out_bind.choose_addr.dli_802addr.eh_802.dsap = dsap;
if ( ptype )

bcopy(ptype,out_bind.choose_addr.dli_802addr.eh_802.osi_pi,5);
if ( taddr )

bcopy(taddr, out_bind.choose_addr.dli_802addr.eh_802.dst,
DLI_EADDRSIZE);

if ( bind(sock, &out_bind, sizeof(out_bind)) < 0 )
{

perror("dli_802, can’t bind DLI socket");
return(-1);

}

return(sock);
}
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F.4.7 Calculating the Buffer Size

The buffer size must be no larger than the controllers on the communicating
systems can handle, or you will lose data. The maximum buffer size for
Ethernet packets is 1500 bytes.

The maximum buffer size for 802.3 packets is calculated as follows:

bytes = 1500 - [ 2 + (control field == UI? 1:2) +
(Source SAP == SNAP SAP ? 5:0)]

The number of bytes in the control field and in the Source SAP are specified
in the bind call.

The maximum buffer size for FDDI packets 4352 bytes.

F.4.8 Transferring Data

A DLI program can use the write, send, or sendto calls to send data and
the read, recv, or recvfrom calls to receive data. The X’s in Table F–2
indicate the conditions under which you can use the system calls as a
function of the I/O control flag set up during the bind call.

______________________ Note _______________________

You must set the target address in the bind call when using the
Normal control flag. You do not need to set the target address in
the bind call when using the Exclusive or Default control flags.
However, if you do not set the target address then you must use
the sendto and recvfrom system calls.

Table F–2: Data Transfer System Calls Used with DLI
System Calls Normal Control Exclusive Control Default Control

write X

send X

sendto X X X

read X

recv X

recvfrom X X X

When you set the control flag to NORMAL, set the target address in the bind
call. Then use any of the following calls to transfer data: write, send,
sendto, read, recv, recvfrom.
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When you set the control flag to EXCLUSIVE, make the value of the target
address in the bind call zero. Then, set the target address in the sendto
call. Use only the sendto and recvfrom calls to transfer data.

When you set the control flag to DEFAULT, make the value of the target
address in the bind call zero. Then use the sendto call to send data and
set the target address in that call. Use the recvfrom call to determine the
source address of any data.

F.4.9 Deactivating the Socket

When you have finished sending or receiving data, deactivate the socket
by issuing the close system call.

F.5 DLI Programming Examples
This section includes the following DLI programming examples:

• A sample DLI client program using Ethernet format packets

• A sample DLI server program using Ethernet format packets

• A sample DLI client program using 802.3 format packets

• A sample DLI server program using 802.3 format packets

• A sample DLI program using getsockopt and setsockopt system calls

These programming examples are also available on line in the
/usr/examples/dli directory.

F.5.1 Sample DLI Client Program Using Ethernet Format Packets
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <memory.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <net/route.h>
#include <dli/dli_var.h>

/*
* d l i _ e x a m p l e : d l i _ e t h
*
* Description: This program sends out a message to a node where a
* companion program, dli_ethd, echoes the message back.
* The ethernet packet format is used. The ethernet
* address of the node where the companion program is
* running, the protocol type, and the message are
* supplied by the user. The companion program should
* be started before executing this program.
*

The Data Link Interface F–21



* Inputs: device, target address, protocol type, short message.
*
* Outputs: Exit status.
*
* To compile: cc -o dli_eth dli_eth.c
*
* Example: dli_eth ln0 08-00-2b-02-e2-ff 6006 "Echo this"
*
* Comments: This example demonstrates the use of the "NORMAL" I/O
* control flag. The use of the "NORMAL" flag means that
* we can communicate only with a single specific node
* whose address is specified during the bind. Because
* of this, we can use the normal write & read system
* calls on the socket, because the source/destination of
* all data that is read/written on the socket is fixed.
*
*/

/*
* Compaq Computer Corporation supplies this software example on
* an "as-is" basis for general customer use. Note that Compaq
* does not offer any support for it, nor is it covered under any
* of Compaq’s support contracts.
*/

main(
int argc,
char **argv)

{
struct sockaddr_dl sdl;
size_t sdllen;
int ch, fd, rsize, itarget[6], ptype, ioctlflg = DLI_NORMAL, errflg = 0;
u_char inbuf[4800], u_char *src;

memset(&sdl, 0, sizeof(sdl));
while ((ch = getopt(argc, argv, "xp:")) != EOF) {
case ’x’: ioctlflg = DLI_EXCLUSIVE; break;
case ’p’: {

if (sscanf(optarg, "%x", &ptype, &ch) != 1) {
fprintf(stderr, "%s: invalid protocol type "s

argv[0], optarg);
errflg++;
break;
}

}
default: errflg++; break;

}

if (errflg || argc - optind < 5) {
fprintf(stderr, "%s %s %s\n",

"usage:",
argv[0],
"device lan-address short-message");

exit(1);
}

/*
* Get device name and unit number.
*/

if (sscanf(argv[optind], "%[a-z]%hd%c", sdl.dli_device.dli_devname,
&sdl.dli_device.dli_devnumber, &ch) != 2) {

fprintf(stderr, "%s: invalid device name
argv[0], argv[optind]);

exit(1);

F–22 The Data Link Interface



}

/*
* Get the address to which we will be sending
*/

if (sscanf(argv[++optind], "%x%*[:-]%x%*[:-]%x%*[:-]\
%x%*[:-]%x%*[:-]%x%c",

&itarget[0], &itarget[1], &itarget[2],
&itarget[3], &itarget[4], &itarget[5], &ch) != 6) {

fprintf(stderr, "%s: invalid lan address
argv[0], argv[optind]);

exit(1);
}

/*
* If the LAN Address is a multicast, then we can’t
* use DLI_NORMAL. Use DLI_DEFAULT instead.
*/

if ((itarget[0] & 1) && ioctflg == DLI_NORMAL)
ioctlflg = DLI_DEFAULT;

/*
* Fill out sockaddr structure for bind/sento/recvfrom
*/

sdl.dli_family = AF_DLI;
if (ptype < GLOBAL_SAP) {
sdl.dli_substructype = DLI_802;
sdl.choose_addr.dli_802addr.ioctl = ioctlflg;
sdl.choose_addr.dli_802addr.svc = TYPE1;
sdl.choose_addr.dli_802addr.eh_802.dsap = ptype;
sdl.choose_addr.dli_802addr.eh_802.ssap = ptype;
sdl.choose_addr.dli_802addr.eh_802.ctl.U_fmt = UI_NPCMD;
src = sdl.choose_addr.dli_802addr.eh_802.dst;

} else {
sdl.dli_substructype = DLI_ETHERNET;
sdl.choose_addr.dli_eaddr.dli_ioctlflg = ioctlflg;
sdl.choose_addr.dli_eaddr.dli_protype = ptype;
src = sdl.choose_addr.dli_eaddr.dli_target;

}
/*
* If we are using DLI_NORMAL, we must supply
*/

if (ioctlflg == DLI_NORMAL) {
src[0] = itarget[0]; src[1] = itarget[1]; src[2] = itarget[2];
src[3] = itarget[3]; src[4] = itarget[4]; src[5] = itarget[5];

}

/*
* Open a socket to DLI and then bind to our protocol/address.
*/

if ((fd = socket(AF_DLI, SOCK_DGRAM, DLPROTO_DLI)) < 0) {
fprintf(stderr, "%s: DLI open failed: %s\n",

argv[0], strerror(errno));
exit(1);

}

if (bind(fd, (struct sockaddr *) &sdl, sizeof(sdl)) < 0) {
fprintf(stderr, "%s: DLI bind failed: %s\n",

argv[0], strerror(errno));
exit(2);

}

if (ioctlflg != DLI_NORMAL) {
src[0] = itarget[0]; src[1] = itarget[1]; src[2] = itarget[2];
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src[3] = itarget[3]; src[4] = itarget[4]; src[5] = itarget[5];
}

/* send response to originator. */
sdllen = sizeof(sdl);
if (sendto(fd, argv[4], strlen(argv[4]), 0,

(struct sockaddr *) &sdl, sdllen) < 0) {
fprintf(stderr, "%s: DLI transmission failed: %s\n",

argv[0], strerror(errno));
exit(1);

}

if ((rsize = recvfrom(fd, inbuf, sizeof(inbuf), 0,
(struct sockaddr *) &sdl, &sdllen)) < 0 ) {

fprintf(stderr, "%s: DLI reception failed: %s\n",
argv[0], strerror(errno));

exit(1);
}

/* check header */
if (sdllen != sizeof(struct sockaddr_dl)) {
fprintf(stderr, "%s, incorrect header supplied\n", argv[0]);
exit(1);

}

if (from.dli_substructype == DLI_802)
src = from.dli_choose_addr.dli_802addr.eh_802.dst;

else
src = from.dli_choose_addr.dli_eaddr.dli_target;

/* any data? */
fprintf(stderr, "%s: %sdata received from ", argv[0],

rsize ? : "NO ");
fprintf(stderr, "%02x-%02x-%02x-%02x-%02x-%02x",

src[0], src[1], src[2], src[3], src[4], src[5]);
if (from.dli_substructype == DLI_802)
fprintf(stderr, " SAP %02x\n\n",

sdl.choose_addr.dli_802addr.eh_802.ssap & ~1);
else
fprintf(stderr, " on protocol type %04x\n\n",

sdl.choose_addr.dli_eaddr.dli_protype);

/* print results */
printf("%s\n", inbuf);
close(fd);
return 0;

}

F.5.2 Sample DLI Server Program Using Ethernet Format Packets

#ifndef lint
static char *rcsid = "@(#)$RCSfile: ap-dli.sgml,v $ \

$Revision: 1.1.6.3 $ (DEC) $Date: 1999/07/08 20:46:48 $";
#endif

#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
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#include <netinet/if_ether.h>
#include <dli/dli_var.h>
#include <sys/ioctl.h>

extern int errno;

/*
* d l i _ e x a m p l e : d l i _ e t h d
*
* Description: This daemon program transmits any message it
* receives to the originating system, i.e., it echoes the
* message back. The device and protocol type are supplied
* by the user. The program uses ethernet format packets.
*
* Inputs: device, protocol type.
*
* Outputs: Exit status.
*
* To compile: cc -o dli_ethd dli_ethd.c
*
* Example: dli_ethd de0 6006
*
* Comments: This example demonstrates the use of the "DEFAULT"
* I/O control flag, and the recvfrom & sendto system calls.
* By specifying "DEFAULT" when binding the DLI socket to
* the device we inform the system that this program will
* receive any ethernet format packet with the given
* protocol type which is not meant for any other program
* on the system. Since packets may arrive from
* different systems we use the recvfrom call to read the
* packets. This call gives us access to the packet
* header information so that we can determine where the
* packet came from. When we write on the socket we must
* use the sendto system call to explicitly give the
* destination of the packet.
*/

/*
* Compaq Computer Corporation supplies this software
* example on an "as-is" basis for general customer use. Note
* that Compaq does not offer any support for it, nor is it
* covered under any of Compaq’s support contracts.
*/

main(argc, argv, envp)
int argc;
char **argv, **envp;

{

u_char inbuf[1500], outbuf[1500];
u_char devname[16];
u_char target_eaddr[6];
char *cp;
int rsize;
unsigned int devunit;
int i, sock, fromlen;
unsigned int ptype;
struct sockaddr_dl from;

if ( argc < 3 )
{

fprintf(stderr,
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"usage: %s device hex-protocol-type\n", argv[0]);
exit(1);

}

/* get device name and unit number. */
bzero(devname, sizeof(devname));
i = 0;
cp = argv[1];
while ( isalpha(*cp) )

devname[i++] = *cp++;
sscanf(cp, "%d", &devunit);

/* get protocol type */
sscanf(argv[2], "%x", &ptype);

/* open dli socket */
if
((sock = dli_econn(devname, devunit, ptype, NULL, \

DLI_DEFAULT))<0)
{

perror("dli_ethd, dli_econn failed");
exit(1);

}

while ( 1 ) {
/* wait for message */
from.dli_family = AF_DLI;
fromlen = sizeof(struct sockaddr_dl);
if ((rsize = recvfrom(sock, inbuf, sizeof(inbuf),

NULL, &from, &fromlen)) < 0 ) {
sprintf(inbuf, "%s: DLI reception failed", argv[0]);
perror(inbuf);
exit(2);

}

/* check header */
if ( fromlen != sizeof(struct sockaddr_dl) ) {

fprintf(stderr,"%s, incorrect header supplied\n",argv[0]);
continue;

}

/* any data? */
if ( ! rsize )

fprintf(stderr, "%s, NO data received from ", argv[0]);
else

fprintf(stderr, "%s, data received from ", argv[0]);
for ( i = 0; i < 6; i++ )

fprintf(stderr, "%x%s",
from.choose_addr.dli_eaddr.dli_target[i],
((i<5)?"-":" "));

fprintf(stderr, "on protocol type %x\n",
from.choose_addr.dli_eaddr.dli_protype);

/* send response to originator. */
if ( sendto(sock, inbuf, rsize, NULL, &from, fromlen) < 0 ) {

sprintf(outbuf, "%s: DLI transmission failed", argv[0]);
perror(outbuf);
exit(2);

}
}

}
/*
* d l i _ e c o n n
*
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*
*
* Description:
* This subroutine opens a dli socket, then binds an associated
* device name and protocol type to the socket.
*
* Inputs:
* devname = ptr to device name
* devunit = device unit number
* ptype = protocol type
* taddr = target address
* ioctl = io control flag
*
* Outputs:
* returns = socket handle if success, otherwise -1
*/

dli_econn(devname, devunit, ptype, taddr, ioctl)
char *devname;
unsigned devunit;
unsigned ptype;
u_char *taddr;
u_char ioctl;
{

int i, sock;
struct sockaddr_dl out_bind;

if ( (i = strlen(devname)) >
sizeof(out_bind.dli_device.dli_devname) )

{
fprintf(stderr, "dli_ethd: bad device name");
return(-1);

}

if ((sock = socket(AF_DLI, SOCK_DGRAM, DLPROTO_DLI)) < 0)
{

perror("dli_ethd, can’t open DLI socket");
return(-1);

}
/* Fill out bind structure */

bzero(&out_bind, sizeof(out_bind));
out_bind.dli_family = AF_DLI;
out_bind.dli_substructype = DLI_ETHERNET;
bcopy(devname, out_bind.dli_device.dli_devname, i);
out_bind.dli_device.dli_devnumber = devunit;
out_bind.choose_addr.dli_eaddr.dli_ioctlflg = ioctl;
out_bind.choose_addr.dli_eaddr.dli_protype = ptype;
if ( taddr )

bcopy(taddr, out_bind.choose_addr.dli_eaddr.dli_target,
DLI_EADDRSIZE);

if ( bind(sock, &out_bind, sizeof(out_bind)) < 0 )
{

perror("dli_ethd, can’t bind DLI socket");
return(-1);

}

return(sock);
}
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F.5.3 Sample DLI Client Program Using 802.3 Format Packets

#ifndef lint
static char *sccsid = "@(#)dli_802.c 1.1 (DEC OSF/1) 5/29/92";
#endif lint

#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <dli/dli_var.h>
#include <sys/ioctl.h>

extern int errno;

#define PROTOCOL_ID {0x00, 0x00, 0x00, 0x00, 0x5}
u_char protocolid[] = PROTOCOL_ID;

/*
* d l i _ e x a m p l e : d l i _ 8 0 2
*
* Description: This program sends out a message to a system
* where a companion program, dli_802d, echoes the message
* back. The 802.3 packet format is used. The ethernet
* address of the system where the companion program is
* running, the sap, and the message are supplied by the
* user. The companion program should be started before
* executing this program.
*
* Inputs: device, target address, sap, short message.
*
* Outputs: Exit status.
*
*/
#ifndef lint
static char *rcsid = "@(#)$RCSfile: ap-dli.sgml,v $ \

$Revision: 1.1.6.3 $ (DEC) $Date: 1999/07/08 20:46:48 $";
#endif

#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <dli/dli_var.h>
#include <sys/ioctl.h>

extern int errno;

#define PROTOCOL_ID {0x00, 0x00, 0x00, 0x00, 0x5}
u_char protocolid[] = PROTOCOL_ID;
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/*
* d l i _ e x a m p l e : d l i _ 8 0 2
*
* Description: This program sends out a message to a system
* where a companion program, dli_802d, echoes the message
* back. The 802.3 packet format is used. The ethernet
* address of the system where the companion program is
* running, the sap, and the message are supplied by the
* user. The companion program should be started before
* executing this program.
*
* Inputs: device, target address, sap, short message.
*
* Outputs: Exit status.
*
* To compile: cc -o dli_802 dli_802.c
*
* Example: dli_802 qe0 08-00-2b-02-e2-ff ac "Echo this"
*
* Comments: This example demonstrates the use of 802 "TYPE1"
* service. With TYPE1 service, the processing of
* XID and TEST messages is handled transparently by
* DLI, i.e., this program doesn’t have to be concerned
* with handling them. If the SNAP SAP (0xAA) is
* selected, a 5 byte protocol id is also required.
* This example automatically uses a protocol id of
* of PROTOCOL_ID when the SNAP SAP is used. Also,
* note the use of DLI_NORMAL for the i/o control flag.
* DLI makes use of this only when that SNAP_SAP/Protocol
* ID pair is used. DLI will filter all incoming messages
* by comparing the Ethernet source address and Protocol
* ID against the target address and Protocol ID set up
* in the bind call. Only if a match occurs will DLI
* pass the message up to the application.
*/

/*
* Compaq Computer Corporation supplies this software
* example on an "as-is" basis for general customer use. Note
* that Compaq does not offer any support for it, nor is it
* covered under any of Compaq’s support contracts.
*/

main(argc, argv, envp)
int argc;
char **argv, **envp;

{

u_char inbuf[1500], outbuf[1500];
u_char target_eaddr[6];
u_char devname[16];
int rsize, devunit;
char *cp;
int i, sock, fromlen;
struct sockaddr_dl from;
unsigned int obsiz, byteval;
u_int sap;
u_char *pi = 0;

if ( argc < 5 )
{

fprintf(stderr, "%s %s %s\n",
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"usage:",
argv[0],
"device ethernet-address hex-sap short-message");

exit(1);
}

/* get device name and unit number. */
bzero(devname, sizeof(devname));
i = 0;
cp = argv[1];
while ( isalpha(*cp) )

devname[i++] = *cp++;
sscanf(cp, "%d", &devunit);

/* get phys addr of remote system */
bzero(target_eaddr, sizeof(target_eaddr));
i = 0;
cp = argv[2];
while ( *cp ) {

if ( *cp == ’-’ ) {
cp++;
continue;

}
else {

sscanf(cp, "%2x", &byteval );
target_eaddr[i++] = byteval;

cp += 2;
}

}

/* get sap */
sscanf(argv[3], "%x", &sap);

/* get message */
bzero(outbuf, sizeof(outbuf));
if ( (obsiz = strlen(argv[4])) > 1500 ) {

fprintf(stderr, "%s: message is too long\n", argv[0]);
exit(2);

}
strcpy(outbuf, argv[4]);

/* open dli socket. notice that if (and only if) the */
/* snap sap was selected then a protocol id must also */
/* be provided. */
if ( sap == SNAP_SAP )

pi = protocolid;
if ( (sock = dli_802_3_conn(devname, devunit, pi, target_eaddr,

DLI_NORMAL, TYPE1, sap, sap, UI_NPCMD)) < 0 ) {
perror("dli_802, dli_econn failed");
exit(3);

}

/* send message to target. minimum message size is 46 bytes. */
if ( write(sock, outbuf, (obsiz < 46 ? 46 : obsiz)) < 0 ) {

sprintf(outbuf, "%s: DLI transmission failed", argv[0]);
perror(outbuf);
exit(4);

}

/* wait for response from correct address */
while (1) {
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bzero(&from, sizeof(from));
from.dli_family = AF_DLI;
fromlen = sizeof(struct sockaddr_dl);
if ((rsize = recvfrom(sock, inbuf, sizeof(inbuf),

NULL, &from, &fromlen)) < 0 ) {
sprintf(inbuf, "%s: DLI reception failed", argv[0]);
perror(inbuf);
exit(5);

}
if ( fromlen != sizeof(struct sockaddr_dl) ) {

fprintf(stderr,"%s, invalid address size\n",argv[0]);
exit(6);

}
if ( bcmp(from.choose_addr.dli_802addr.eh_802.dst,

target_eaddr, sizeof(target_eaddr)) == 0 )
break;

}

if ( ! rsize ) {
fprintf(stderr, "%s, no data returned\n", argv[0]);
exit(7);

}
/* print message */
printf("%s\n", inbuf);

close(sock);

}

/*
* d l i _8 0 2 _ 3 _ c o n n
*
*
*
* Description:
* This subroutine opens a dli 802.3 socket, then binds an
* associated device name and protocol type to the socket.
*
* Inputs:
* devname = ptr to device name
* devunit = device unit number
* ptype = protocol type
* taddr = target address
* ioctl = io control flag
* svc = service class
* sap = source sap
* dsap = destination sap
* ctl = control field
*
*
* Outputs:
* returns = socket handle if success, otherwise -1
*
*
*/

dli_802_3_conn (devname,devunit,ptype,taddr,ioctl,svc,sap,dsap,ctl)
char *devname;
u_short devunit;
u_char *ptype;
u_char *taddr;
u_char ioctl;
u_char svc;
u_char sap;
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u_char dsap;
u_short ctl;

{
int i, sock;
struct sockaddr_dl out_bind;

if ( (i = strlen(devname)) >
sizeof(out_bind.dli_device.dli_devname) )

{
fprintf(stderr, "dli_802: bad device name");
return(-1);

}

if ((sock = socket(AF_DLI, SOCK_DGRAM, DLPROTO_DLI)) < 0)
{

perror("dli_802, can’t open DLI socket");
return(-1);

}

/*
* fFill out bind structure. Note that we need to determine
* whether the ctl field is 8 bits (unnumbered format) or
* 16 bits (informational/supervisory format). We do this
* by checking the low order 2 bits, which are both 1 only
* for unnumbered control fields.
*/

bzero(&out_bind, sizeof(out_bind));
out_bind.dli_family = AF_DLI;
out_bind.dli_substructype = DLI_802;
bcopy(devname, out_bind.dli_device.dli_devname, i);
out_bind.dli_device.dli_devnumber = devunit;
out_bind.choose_addr.dli_802addr.ioctl = ioctl;
out_bind.choose_addr.dli_802addr.svc = svc;
if(ctl & 3)

out_bind.choose_addr.dli_802addr.eh_802.ctl.U_fmt=\
(u_char)ctl;

else
out_bind.choose_addr.dli_802addr.eh_802.ctl.I_S_fmt = \

ctl;
out_bind.choose_addr.dli_802addr.eh_802.ssap = sap;
out_bind.choose_addr.dli_802addr.eh_802.dsap = dsap;
if ( ptype )

bcopy(ptype,out_bind.choose_addr.dli_802addr.eh_802.osi_pi,\
5);

if ( taddr )
bcopy(taddr, out_bind.choose_addr.dli_802addr.eh_802.dst,

DLI_EADDRSIZE);
if ( bind(sock, &out_bind, sizeof(out_bind)) < 0 )
{

perror("dli_802, can’t bind DLI socket");
return(-1);

}

return(sock);
}
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F.5.4 Sample DLI Server Program Using 802.3 Format Packets

#ifndef lint
static char *rcsid = "@(#)$RCSfile: ap-dli.sgml,v $ \

$Revision: 1.1.6.3 $ (DEC) $Date: 1999/07/08 20:46:48 $";
#endif

#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <dli/dli_var.h>
#include <sys/ioctl.h>

extern int errno;

#define PROTOCOL_ID {0x00, 0x00, 0x00, 0x00, 0x5}
u_char protocolid[] = PROTOCOL_ID;

/*
* d l i _ e x a m p l e : d l i _ 8 0 2 d
*
* Description: This daemon program transmits any message it
* receives to the originating system, i.e., it echoes the
* message back. The device and sap are supplied by the
* user. The program uses 802.3 format packets.
*
* Inputs: device, sap.
*
* Outputs: Exit status.
*
* To compile: cc -o dli_802d dli_802d.c
*
* Example: dli_802d de0 ac
*
* Comments: This example demonstrates the recvfrom & sendto
* system calls. Since packets may arrive from different
* systems we use the recvfrom call to read the packets.
* This call gives us access to the packet header information
* so that we can determine where the packet came from.
* When we write on the socket we must use the sendto
* system call to explicitly give the destination of
* the packet. The use of the "DEFAULT" I/O control flag
* only applies (i.e. only has an affect) when the SNAP SAP
* is used. When the SNAP SAP is used, any arriving packets
* which have the specified protocol id and which are not
* destined for some other program will be given to this
* program.
*/

/*
* Compaq Computer Corporation supplies this software
* example on an "as-is" basis for general customer use.
* Note that Compaq does not offer any support for it, nor
* is it covered under any of Compaq’s support contracts.
*/

The Data Link Interface F–33



main(argc, argv, envp)
int argc;
char **argv, **envp;

{

u_char inbuf[1500], outbuf[1500];
u_char devname[16];
u_char target_eaddr[6];
char *cp;
int rsize, devunit;
int i, sock, fromlen;
u_char tmpsap, sap;
struct sockaddr_dl from;
u_char *pi = 0;

if ( argc < 3 )
{

fprintf(stderr, "usage: %s device hex-sap\n", argv[0]);
exit(1);

}

/* get device name and unit number. */
bzero(devname, sizeof(devname));
i = 0;
cp = argv[1];
while ( isalpha(*cp) )

devname[i++] = *cp++;
sscanf(cp, "%d", &devunit);

/* get sap */
sscanf(argv[2], "%x", &sap);

/* open dli socket. note that if (and only if) the snap sap */
/* was selected then a protocol id must also be specified. */
if ( sap == SNAP_SAP )

pi = protocolid;
if ((sock = dli_802_3_conn(devname, devunit, pi, target_eaddr,

DLI_DEFAULT, TYPE1, sap, sap, UI_NPCMD)) < 0) {
perror("dli_802d, dli_conn failed");
exit(1);

}

/* listen and respond */
while ( 1 ) {

/* wait for message */
from.dli_family = AF_DLI;
fromlen = sizeof(struct sockaddr_dl);
if ((rsize = recvfrom(sock, inbuf, sizeof(inbuf), NULL,

&from, &fromlen)) < 0 ) {
sprintf(inbuf, "%s: DLI reception failed", argv[0]);
perror(inbuf);
exit(2);

}

/* check header */
if ( fromlen != sizeof(struct sockaddr_dl) ) {

fprintf(stderr,"%s, incorrect header supplied\n",\
argv[0]);

continue;
}
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/*
* Note that DLI swaps the source & destination saps and
* lan addresses in the sockaddr_dl structure returned
* by the recvfrom call. That is, it places the DSAP in
* eh_802.ssap and the SSAP in eh_802.dsap; it also places
* the destination lan address in eh_802.src and the source
* lan address in eh_802.dst. This allows for minimal to
* no manipulation of the address structure for subsequent
* sendto or dli connection calls.
*/

/* any data? */
if ( ! rsize )

fprintf(stderr, "%s: NO data received from ", \
argv[0]);

else
fprintf(stderr, "%s: data received from ", argv[0]);

for ( i = 0; i < 6; i++ )
fprintf(stderr, "%x%s",

from.choose_addr.dli_802addr.eh_802.dst[i],
((i<5)?"-":" "));

fprintf(stderr, "\n on dsap %x ",
from.choose_addr.dli_802addr.eh_802.ssap);

if ( from.choose_addr.dli_802addr.eh_802.dsap == \
SNAP_SAP )

fprintf(stderr,
"(SNAP SAP), protocol id = %x-%x-%x-%x-%x\n ",
from.choose_addr.dli_802addr.eh_802.osi_pi[0],
from.choose_addr.dli_802addr.eh_802.osi_pi[1],
from.choose_addr.dli_802addr.eh_802.osi_pi[2],
from.choose_addr.dli_802addr.eh_802.osi_pi[3],
from.choose_addr.dli_802addr.eh_802.osi_pi[4]);

fprintf(stderr, " from ssap %x ",
from.choose_addr.dli_802addr.eh_802.dsap);

fprintf(stderr, "\n\n");

/* send response to originator. */
if ( from.choose_addr.dli_802addr.eh_802.dsap == \

SNAP_SAP )
bcopy(protocolid,

from.choose_addr.dli_802addr.eh_802.osi_pi, 5);
if ( sendto(sock, inbuf, rsize, NULL, &from, fromlen) \

< 0 ) {
sprintf(outbuf, "%s: DLI transmission failed", \

argv[0]);
perror(outbuf);
exit(2);

}
}

}

/*
* d l i _8 0 2 _ 3 _ c o n n
*
*
*
* Description:
* This subroutine opens a dli 802.3 socket, then binds an
* associated device name and protocol type to the socket.
*
* Inputs:
* devname = ptr to device name
* devunit = device unit number
* ptype = protocol type
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* taddr = target address
* ioctl = io control flag
* svc = service class
* sap = source sap
* dsap = destination sap
* ctl = control field
*
*
* Outputs:
* returns = socket handle if success, otherwise -1
*
*
*/

dli_802_3_conn (devname,devunit,ptype,taddr,ioctl,svc,sap,\
dsap,ctl)

char *devname;
u_short devunit;
u_char *ptype;
u_char *taddr;
u_char ioctl;
u_char svc;
u_char sap;
u_char dsap;
u_short ctl;
{

int i, sock;
struct sockaddr_dl out_bind;

if ( (i = strlen(devname)) >
sizeof(out_bind.dli_device.dli_devname) )

{
fprintf(stderr, "dli_802d: bad device name");
return(-1);

}

if ((sock = socket(AF_DLI, SOCK_DGRAM, DLPROTO_DLI)) < 0)
{

perror("dli_802d, can’t open DLI socket");
return(-1);

}

/*
* fill out bind structure. note that we need to determine
* whether the ctl field is 8 bits (unnumbered format) or
* 16 bits (informational/supervisory format). We do this
* by checking the low order 2 bits, which are both 1 only
* for unnumbered control fields.
*/

bzero(&out_bind, sizeof(out_bind));
out_bind.dli_family = AF_DLI;
out_bind.dli_substructype = DLI_802;
bzero(&out_bind, sizeof(out_bind));
out_bind.dli_family = AF_DLI;
out_bind.dli_substructype = DLI_802;
bcopy(devname, out_bind.dli_device.dli_devname, i);
out_bind.dli_device.dli_devnumber = devunit;
out_bind.choose_addr.dli_802addr.ioctl = ioctl;
out_bind.choose_addr.dli_802addr.svc = svc;
if(ctl & 3)

out_bind.choose_addr.dli_802addr.eh_802.ctl.U_fmt=\
(u_char)ctl;

else
out_bind.choose_addr.dli_802addr.eh_802.ctl.I_S_fmt = \
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ctl;
out_bind.choose_addr.dli_802addr.eh_802.ssap = sap;
out_bind.choose_addr.dli_802addr.eh_802.dsap = dsap;
if ( ptype )

bcopy(ptype,out_bind.choose_addr.dli_802addr.eh_802.osi_pi,\
5);

if ( taddr )
bcopy(taddr, out_bind.choose_addr.dli_802addr.eh_802.dst,

DLI_EADDRSIZE);

if ( bind(sock, &out_bind, sizeof(out_bind)) < 0 )
{

perror("dli_802d, can’t bind DLI socket");
return(-1);

}

return(sock);
}

F.5.5 Sample DLI Program Using getsockopt and setsockopt

#ifndef lint
static char *sccsid = "@(#)dli_setsockopt.c 1.5 3/27/90";
#endif lint

#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <strings.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <dli/dli_var.h>
#include <sys/ioctl.h>

extern int errno;
int debug = 0;

#define PROTOCOL_ID {0x00, 0x00, 0x00, 0x00, 0x5}
#define CUSTOMER0 {0xab, 0x00, 0x04, 0x00, 0x00, 0x00}
#define CUSTOMER1 {0xab, 0x00, 0x04, 0x00, 0x00, 0x01}

u_char mcast0[] = CUSTOMER0;
u_char mcast1[] = CUSTOMER1;
u_char protocolid[] = PROTOCOL_ID;

/*
*
* d l i e x a m p l e : d l i s e t s o c k o p t
*
* Description: This program demonstrates the use of the DLI
* get- and setsockopt calls. It opens a socket, enables
* 2 multicast addresses, changes the 802 control
* field, enables a number of group saps supplied by
* the user, and reads the group saps that are enabled.
*
* Inputs: device, sap, group-saps.
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*
* Outputs: Exit status.
*
* To compile: cc -o dli_setsockopt dli_setsockopt.c
*
* Example: dli_setsockopt qe0 ac 5 9 d
*
* Comments: When a packet arrives with a group dsap,
* all dli programs that have that group sap enabled will
* receive copies of that packet. Group saps are
* those with the low order bit set. Group sap 1
* is currently not allowed for customer use. Group
* saps with the second bit set (eg 3,7,etc) are
* reserved by IEEE.
*/

/*
* Compaq Computer Corporation supplies this software example
* on an "as-is" basis for general customer use. Note that
* Compaq does not offer any support for it, nor is it covered
* under any of Compaq’s support contracts.
*/

main(argc, argv, envp)
int argc;
char **argv, **envp;

{

u_char inbuf[1500], outbuf[1500];
u_char devname[16];
u_char target_eaddr[6];
char *cp;
int rsize, devunit;
int i, j, k, sock, fromlen;
u_short obsiz;
u_char tmpsap, sap;
struct sockaddr_dl from;
u_char *pi = 0;
u_char out_opt[1000], in_opt[1000];
int optlen, ioptlen = sizeof(in_opt);

if ( argc < 4 )
{

fprintf(stderr, "usage: %s device hex-sap hex-groupsaps\n",
argv[0]);
exit(1);

}

/* get device name and unit number. */
bzero(devname, sizeof(devname));
i = 0;
cp = argv[1];
while ( isalpha(*cp) )
devname[i++] = *cp++;
sscanf(cp, "%d", &devunit);

/* get protocol type */
sscanf(argv[2], "%x", &sap);

/* open dli socket */
if ( sap == SNAP_SAP ) {

fprintf(stderr,
"%s: can’t use SNAP_SAP in USER mode\n", argv[0]);
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exit(1);
}
if ( (sock = dli_802_3_conn(devname, devunit, pi,\

target_eaddr,
DLI_DEFAULT, USER, sap, sap, UI_NPCMD)) \

< 0 ) {
perror("dli_setsockopt: dli_conn failed");
exit(1);

}

/* enable two multicast addresses */
bcopy(mcast0, out_opt, sizeof(mcast0));
bcopy(mcast1, out_opt+sizeof(mcast0), sizeof(mcast1));

if ( setsockopt(sock, DLPROTO_DLI, DLI_MULTICAST, \
&out_opt[0],

(sizeof(mcast0) + sizeof(mcast1))) < 0 ) {
perror("dli_setsockopt: can’t enable multicast");

}

/* set 802 control field */
out_opt[0] = TEST_PCMD;
optlen = 1;
if
(setsockopt(sock,DLPROTO_DLI,DLI_SET802CTL,&out_opt[0],\

optlen)<0){
perror("dli_setsockopt: Can’t set 802 control");
exit(1);

}

/* enable GSAPs supplied by user */
j = 3;
i = 0;
while (j < argc ) {

sscanf(argv[j++], "%x", &k);
out_opt[i++] = k;

}
optlen = i;
if
(setsockopt(sock,DLPROTO_DLI,DLI_ENAGSAP,&out_opt[0],\

optlen) < 0){
perror("dli_setsockopt: Can’t enable gsap");
exit(1);

}

/* verify all gsaps are enabled */
bzero(in_opt, (ioptlen = sizeof(in_opt)));
if
(getsockopt(sock,DLPROTO_DLI,DLI_GETGSAP,in_opt,\

&ioptlen) < 0){
perror("dli_setsockopt: DLI getsockopt 2 failed");
exit(1);

}
printf("number of enabled GSAPs = %d, GSAPS:", ioptlen);
for(i = 0; i < ioptlen; i++) {

if ( ! (i % 10) )
printf("\n");

printf("%2x ",in_opt[i]);
}
printf("\n");

/* disable all but the last 4 or all GSAPs, */
/* whichever is smallest */
if ( optlen > 4 )
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optlen -= 4;
if
(setsockopt(sock,DLPROTO_DLI,DLI_DISGSAP,&out_opt[0],\

optlen) < 0){
perror("dli_setsockopt: Can’t disable gsap");

}

/* verify some gsaps still enabled */
bzero(in_opt, (ioptlen = sizeof(in_opt)));
if
(getsockopt(sock,DLPROTO_DLI,DLI_GETGSAP,in_opt,\

&ioptlen) < 0){
perror("dli_setsockopt: getsockopt 3 failed");
exit(1);

}
printf("number of enabled GSAPs = %d, GSAPS:", ioptlen);
for(i = 0; i < ioptlen; i++) {

if ( ! (i % 10) )
printf("\n");

printf("%2x ",in_opt[i]);
}
printf("\n");

}

/*
* d l i _8 0 2 _ 3 _ c o n n
*
*
*
* Description:
* This subroutine opens a dli 802.3 socket and then binds
* an associated device name and protocol type to it.
*
* Inputs:
* devname = ptr to device name
* devunit = device unit number
* ptype = protocol type
* taddr = target address
* ioctl = io control flag
* svc = service class
* sap = source sap
* dsap = destination sap
* ctl = control field
*
*
* Outputs:
* returns = socket handle if success, otherwise -1
*
*/

dli_802_3_conn (devname,devunit,ptype,taddr,ioctl,svc,sap,\
dsap,ctl)

char *devname;
u_short devunit;
u_char *ptype;
u_char *taddr;
u_char ioctl;
u_char svc;
u_char sap;
u_char dsap;
u_short ctl;
{

int i, sock;
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struct sockaddr_dl out_bind;

if ( (i = strlen(devname)) >
sizeof(out_bind.dli_device.dli_devname) )

{
fprintf(stderr, "dli_setsockopt: bad device name");
return(-1);

}

if ((sock = socket(AF_DLI, SOCK_DGRAM, DLPROTO_DLI)) < 0)
{

perror("dli_setsockopt: can’t open DLI socket");
return(-1);

}

/*
* Fill out bind structure
*/

bzero(&out_bind, sizeof(out_bind));
out_bind.dli_family = AF_DLI;
out_bind.dli_substructype = DLI_802;
bcopy(devname, out_bind.dli_device.dli_devname, i);
out_bind.dli_device.dli_devnumber = devunit;
out_bind.choose_addr.dli_802addr.ioctl = ioctl;
out_bind.choose_addr.dli_802addr.svc = svc;
if(ctl & 3)

out_bind.choose_addr.dli_802addr.eh_802.ctl.U_fmt=\
(u_char)ctl;

else
out_bind.choose_addr.dli_802addr.eh_802.ctl.I_S_fmt = \

ctl;
out_bind.choose_addr.dli_802addr.eh_802.ssap = sap;
out_bind.choose_addr.dli_802addr.eh_802.dsap = dsap;
if ( ptype )

bcopy(ptype,out_bind.choose_addr.dli_802addr.eh_802.osi_pi,\
5);

if ( taddr )
bcopy(taddr, out_bind.choose_addr.dli_802addr.eh_802.dst,

DLI_EADDRSIZE);
if ( bind(sock, &out_bind, sizeof(out_bind)) < 0 )
{

perror("dli_setsockopt: can’t bind DLI socket");
return(-1);

}

return(sock);
}
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Glossary

active user
In an XTI transport connection, the transport user that initiated the
connection. See also client process and passive user.

Address Resolution Protocol (ARP)
The Internet (TCP/IP) Protocol that can dynamically resolve an Internet
address to a physical hardware address. ARP can be used only across
a single physical network and in networks that support the hardware
broadcast feature.

asynchronous event
See event.

asynchronous execution

1. Execution of processes or threads in which each process or thread does
not await the completion of the others before starting.

2. In XTI, a mode of execution that notifies the transport user of an event
without forcing it to wait.

Berkeley Software Distribution
UNIX software release of the Computer Systems Research Group (CSRG) of
the University of California at Berkeley.

blocking mode
See synchronous execution.

BSD socket interface
A transport-layer interface provided for applications to perform interprocess
communication between two unrelated processes on a single system or on
multiply connected systems. This interprocess communications facility
allows programs to use sockets for communications between other programs,
protocols, and devices.

client process
In the client/server model of communication, a process that requests services
from a server process. See also active user.

communication domain
An abstraction used by the interprocess communication facility of a
system to define the properties of a network. Properties include a set of
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communication protocols, rules for manipulating and interpreting names,
and the ability to transmit access rights.

connection-oriented mode
A mode of service supported by a transport endpoint for transmitting data
over an established connection.

connectionless mode
A mode of service supported by a transport endpoint that requires no
established connection for transmitting data. Data is delivered in self-
contained units, called datagrams.

datagram
A unit of data that is transmitted across a network by the connectionless
service of a transport provider. In addition to user data, a datagram includes
the information needed for its delivery. It is self-contained, in that it has no
relationship to any datagrams previously or successively transmitted.

datagram socket
Socket that provides datagrams consisting of individual messages for
transmission in connectionless mode.

error
In XTI, an indicator that is returned by a function when it encounters a
system or library error in the process of executing. The object is to allow
applications to take an action based on the returned error code.

eSNMP
The Extensible Simple Network Protocol (eSNMP) enables you to create
subagents to be mananged by an SNMP management station. See Chapter 6.

Ethernet
A 10-megabit baseband local area network (LAN) using carrier sense
multiple access with collision detection (CSMA/CD). The network allows
multiple stations to access the medium at will without prior coordination,
and avoids contention by using carrier sense and deference, and detection
and transmission.

ETSDU
See Expedited Transport Service Data Unit and out-of-band data.

event
An occurrence, or happening, that is significant to a transport user. Events
are asynchronous, in that they do not happen as a result of an action taken
by the user.

event management
A mechanism by which transport providers notify transport users of the
occurrence of significant events.
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expedited data
Data that is considered urgent. The semantics of this data are defined by
the transport provider. See also out-of-band data.

Expedited Transport Service Data Unit
In XTI, an expedited message in which the identity of the data unit is
preserved from one end of a transport connection to the other.

file descriptor
A small unsigned integer that a UNIX system uses to identify a file. A file
descriptor is created by a process through issuing an open system call for
the file name. A file descriptor ceases to exist when it is no longer held by
any process.

host group
A group of zero or more hosts that, for the purposes of IP multicasting, are
identified by a single class D IP destination address. Class D IP addresses
have 1110 as their high-order four bits. See IP Multicasting for more
information.

ICMP
See Internet Control Message Protocol.

#include file.h

A C language precompiler directive specifying interpolation of a named file
into the file being compiled. The interpolated file is a standard header file
(indicated by placing its name in angle brackets) or any other file containing
C language code (indicated by placing its name in double quotation marks).

The absolute path name of header files whose names are placed in angle
brackets (lt; gt;) is /usr/include/file.h.

International Standards Organization (ISO)
An international body composed of the national standards organizations of
89 countries. ISO issues standards on a vast number of goods and services,
including networking software.

Internet Control Message Protocol (ICMP)
A host-to-host protocol from the Internet Protocol (IP) suite that provides
error and informational messages on the operations of the IP.

Internet Protocol (IP)
The Internet Protocol that provides a connectionless service for the delivery
of datagrams across a network.

ISO
See International Standards Organization.
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IP Multicasting
IP Multicasting is a method for transmitting IP datagrams to a group of hosts
identified by a single IP destination address, or host group. Host groups are
identified by class D IP addresses. See host group for more information.

Management Information Base
See MIB.

MIB
The Management Information Base (MIB) definitions are a set of data
elements that relate to network management. See Chapter 6.

name server
A daemon running on a system that client processes contact to obtain the
addresses of hosts or other objects in a network. This daemon translates a
machine’s network name to its network IP address.

name service
The service provided to client processes for identifying peer systems for
communications purposes.

nonblocking mode
See asynchronous execution.

normal data
Regular data that is sent or received in band by a transport user. See also
out-of-band data.

Object Identifier
See OID.

OID
Object Identifiers (OID) are data elements in MIB definitions that can
be referred to by name or by a corresponding sequence of numbers. See
Chapter 6.

Open Systems Interconnection (OSI)
The interconnection of open systems in accordance with ISO standards.

orderly release
In XTI, an optional feature that allows a transport user to gracefully
terminate a transport connection with no loss of data.

OSI
See Open Systems Interconnection.
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out-of-band data
Data that is transmitted out of the flow of normal data because it is
considered urgent. The receiving process is notified of the presence of this
data so that it can be retrieved.

passive user
In an XTI transport connection, the peer transport user that responded to
the connection request. See also active user and client process.

pipe
An I/O stream that has a descriptor and can be used in unidirectional
communications between related processes. See also socketpair.

raw socket
A socket that provides privileged users access to internal network protocols
and interfaces. These socket types can be used to take advantage of protocol
features not available through more normal interfaces or to communicate
with hardware interfaces.

Serial Line Internet Protocol (SLIP)
A transmission line protocol that encapsulates and transfers IP datagrams
over asynchronous serial lines.

server process
In the client/server model of communication, a process that provides services
to client processes. See also passive user.

SLIP
See Serial Line Internet Protocol.

socket
In interprocess communications, an endpoint of communication. Also, the
system call that creates a socket and the associated data structure.

socketpair
A pair of sockets that can be created in the UNIX domain for 2-way
communication. Like pipes, socketpairs require communicating processes to
be related. See also pipe.

state
In XTI, the current condition of a process that reflects the function in
progress. XTI uses eight different states to manage communications over
a transport endpoint.

stream socket
A socket that provides 2-way byte streams across a transport connection.
Also includes a mechanism for handling out-of-band data.
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STREAMS
A kernel mechanism specified by AT&T that supports the implementation
of device drivers and networking protocol stacks. See also STREAMS
framework.

STREAMS framework
Components of the AT&T STREAMS mechanism which define the interface
standards for character I/O within the kernel and between the kernel and
user levels. It consists of functions, utility routines, kernel facilities, and
data structures.

synchronous execution
A mode of execution that forces transport primitives to wait for specific
events before returning control to the transport user.

TCP
See Transmission Control Protocol.

TCP/IP
The two fundamental protocols of the Internet Protocol suite, and an
acronym that is frequently used to refer to the Internet Protocol suite.
TCP provides for the reliable transfer of data, while IP transmits the data
through the network in the form of datagrams. See also Transmission
Control Protocol and Internet Protocol.

TLI
See Transport Layer Interface.

Transmission Control Protocol (TCP)
The Internet transport-layer protocol that provides a reliable, full-duplex,
connection-oriented service for applications. TCP uses the IP protocol to
transmit information through the network.

transport endpoint
A communication path over which a transport user can exchange data with a
transport provider. See also Transport Layer Interface.

Transport Layer Interface (TLI)
An interface to the transport layer of the OSI model, designed on the ISO
Transport service definition.

transport provider
A transport protocol that offers transport layer services in a system.

Transport Service Data Unit (TSDU)
In OSI terminology, the item of information, or message, that the transport
user passes to the transport provider.
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transport services
The support given by the transport layer in a system to the application layer
for the transfer of data between user processes. The two types of services
provided are connection-oriented and connectionless. See also Transport
Layer Interface.

transport user
A program needing the services of a transport protocol to send data to
or receive data from another program or point in a network. See also
Transport Layer Interface.

TSDU
See Transport Service Data Unit.

UDP
See User Datagram Protocol.

User Datagram Protocol (UDP)
The Internet Protocol that allows application programs on remote machines
to send datagrams to one another. UDP uses IP to deliver the datagrams.

X/Open Transport Interface
Protocol-independent, transport-layer interface for applications. XTI
consists of a series of C language functions based on TLI, which in turn was
based on the transport service definition for the OSI model.

XTI
See X/Open Transport Interface.
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connection mode service

in DLPI, 2–5
connection-oriented application

initializing an endpoint, 3–23
program examples, B–2
sample header files, B–33
writing, 3–22

connection-oriented
communication, 4–7

connection-oriented service in
XTI

defined, 3–4
connection-oriented transport

service
state transitions allowed in XTI,

3–17
typical sequence of functions, 3–20

connectionless application
program examples, B–18
sample header files, B–33
writing, 3–30

connectionless communication,
4–7

connectionless mode of
communication
in DLPI, 2–3
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COTS
( See connection-oriented

transport service )

D
daemon

inetd, 4–76
rsvpd, 7–6

data flow
XTI and a socket-based transport

provider, 1–7
XTI and a STREAMS-based

transport provider, 1–6
Data Link Interface

Index–3



( See DLI )
data link interfaces, 1–3, 2–1

DLPI, 2–1
Data Link Provider Interface

( See DLPI )
data link service provider

( See DLS provider )
data link service providers in

DLPI, 2–7
data link service user

( See DLS user )
data segmentation

providing, F–4, F–14
data structures

4.3BSD msghdr, 4–41
4.4BSD msghdr, 4–42
cmsghdr, 4–19
dblk_t, 5–14
hostent, 4–10
mblk_t, 5–14
message, 5–14
module, 5–13

module_info, 5–13
qinit, 5–13
streamtab, 5–13

msghdr, 4–18
netent, 4–11
protoent, 4–12
servent, 4–12
sockaddr, 4–16
sockaddr_in, 4–17
sockaddr_in6, 4–18
sockaddr_storage, 4–17
sockaddr_un, 4–17
sockets, 4–16

data transfer
in DLI, F–20
with sockets, 4–26

data transfer phase
of connectionless service, 3–30
state transitions allowed for

connectionless transport services,
3–17

data transfer state

in XTI, 3–13
data units

receiving, 3–31
receiving error information, 3–31

datagram socket, 4–5, F–1, F–15
dblk_t data structure, 5–14
destination options

receiving, 4–60
sending, 4–60

destination service access point
( See DSAP )

destination system
specifying information, F–7

destination system physical
address
defined, F–8, F–10, F–11
specifying, F–8

device drivers
and Stream ends, 5–4
STREAMS processing routines for,

5–15
device special file, 5–25
distributed applications

and the client/server paradigm, 4–8
DL_ATTACH_REQ primitive, 2–8,

8–10
DL_BIND_ACK primitive, 2–8,

8–10
DL_BIND_REQ primitive, 2–8,

8–10
DL_DETACH_REQ primitive, 8–10
DL_DETTACH_REQ primitive,

2–8
DL_DISABLMULTI_REQ

primitive, 8–10
DL_DISABMULTI_REQ primitive,

2–8
DL_ENABMULTI_REQ primitive,

2–8, 8–10
DL_ERROR_ACK primitive, 2–8
DL_ETHER media, 8–11
DL_INFO_ACK primitive, 2–8
DL_INFO_REQ primitive, 2–8
DL_OK_ACK primitive, 2–8, 8–10
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DL_PHYS_ADDR_ACK primitive,
2–8, 8–10

DL_PHYS_ADDR_REQ primitive,
8–10

DL_PROMISCON_REQ primitive,
8–10

DL_PROMISCONOFF_REQ
primitive, 8–10

DL_SET_PHYS_ADDR_REQ
primitive, 8–10

DL_SUBS_BIND_ACK primitive,
2–8, 8–10

DL_SUBS_BIND_REQ primitive,
2–8, 8–10

DL_SUBS_UNBIND_ACK
primitive, 8–10

DL_SUBS_UNBIND_REQ
primitive, 2–8, 8–10

DL_TEST_CON primitive, 2–8
DL_TEST_IND primitive, 2–8
DL_TEST_REQ primitive, 2–8
DL_TEST_RES primitive, 2–8
DL_UDERROR_IND primitive,

2–8
DL_UNBIND_REQ primitive, 2–8,

8–10
DL_UNIDATA_IND primitive, 2–8
DL_UNIDATA_REQ primitive, 2–8
DL_UNITDATA_IND primitive,

8–10
DL_UNITDATA_REQ primitive,

8–10
DL_XID_CON primitive, 2–8
DL_XID_IND primitive, 2–8
DL_XID_REQ primitive, 2–8
DL_XID_RES primitive, 2–8
dlb STREAMS pseudodriver, 1–9,

2–2, 8–1, 8–9
DLI

and accessing the local area
network, F–3

and transmitting IEEE 802.3
frames, 2–2

binding a socket, F–17
calculating buffer size, F–20
concepts, F–1
creating a socket, F–16
deactivating a socket, F–21
definition of, F–1
filling the sockaddr_dl structure,

F–17
programming examples, F–21
services, F–2
setting socket options, F–16
transferring data, F–20
using system calls, F–15
writing programs, F–14

DLI address family
specifying, F–15

DLI client program
using 802.3 format packets

example, F–28
using Ethernet format packets

example, F–21
DLI program

including higher-level services, F–4
using getsockopt and setsockopt

example, F–37
DLI protocol module

specifying, F–15
DLI server program

using 802.3 format packets
example, F–33

using Ethernet packets
example, F–24

DLI services
examples of, F–2

dli_802_3_conn subroutine
example, F–37
using, F–6

dli_econn subroutine
example, F–24
using, F–6
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DLPI, 2–2
accessing specification online, 2–1
acknowledged connectionless mode

of communication, 2–4
acknowledged connectionless mode

service, 2–6
addressing, 2–6

PPA, 2–7
and DLS provider, 2–2
and DLS user, 2–2
connection mode of communication,

2–3
connection mode service, 2–5
connectionless mode of

communication in, 2–3
connectionless mode service, 2–5
defined, 2–2
DLS providers, 2–7
local management service, 2–4
modes of communication, 2–3
primitives the STREAMS driver

must support, 8–9
supported media

DL_ETHER, 8–11
supported primitives, 2–8, 8–10

table of, 2–8
types of service, 2–4

DLPI addressing
identifying components, 2–7

DLPI interface, 2–1
DLPI option, 8–3

adding to kernel configuration file,
8–3

DLPI primitives
supported in Tru64 UNIX, 2–8

DLPI service interface, 2–3
DLS provider

defined, 2–2
DLS user

defined, 2–2
domain

specifying the, F–6
driver

bridging BSD driver to STREAMS
protocol stack, 8–9

bridging STREAMS driver to
sockets protocol stack, 8–2

Token Ring, E–1
DSAP

defined, F–11

E
EAFNOSUPPORT socket error,

4–43
EBADF socket error, 4–43
ECONNREFUSED socket error,

4–43
EFAULT socket error, 4–43
EHOSTDOWN socket error, 4–43
EHOSTUNREACH socket error,

4–43
EINVAL socket error, 4–43
EMFILE socket error, 4–43
endhostent library call, 4–13
endnetent library call, 4–13
endprotoent library call, 4–13
endservent library call, 4–13
ENETDOWN socket error, 4–43
ENETUNREACH socket error,

4–43
ENOMEM socket error, 4–43
ENOTSOCK socket error, 4–43
EOPNOTSUPP socket error, 4–43
EPROTONOSUPPORT socket

error, 4–43
EPROTOTYPE socket error, 4–43
error

comparison of XTI and sockets,
3–39

contrast between XTI and TLI,
3–36

in XTI, 3–56
logging in STREAMS, 5–26
sockets, 4–43

error recovery
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providing, F–4, F–14
eSNMP, 1–7

application interface, 6–4
application programming interface

routines, 6–18
architecture, 6–3
calling interface, 6–19
components, 6–2
implementing a subagent, 6–12
introduction, 1–7
method routine calling interface,

6–44
method routines, 6–51
MIB subtree, 6–6
object tables, 6–8
overview, 6–2
SNMP versions, 6–4
starting, 6–15

function return values, 6–16
stopping, 6–15

function return values, 6–16
subtree_tbl.c file, 6–10
subtree_tbl.h file, 6–8
support routines, 6–55
value representation, 6–53

eSNMP application programming
interface
( See eSNMP )

Ethernet
accessing, F–3
address, F–3
multiple users, F–3
transmitting messages on, F–3

Ethernet frame structure
example of, F–4, F–7
function of, F–7
specifying destination system

information, F–7
Ethernet substructure

filling the, F–18
frame structure, F–7
sending and receiving, F–6

ETIMEDOUT socket error, 4–43
event

defined, 3–5
in XTI, 3–10
incoming (XTI), 3–16
logging in STREAMS, 5–26
outgoing (XTI), 3–15
tracking in XTI, 3–14
used by connectionless transport

services, 3–30
event management

and TLI compatibility, 3–35
EWOULDBLOCK socket error,

4–43
exchange identification

defined, F–13
function of, F–13

execution in XTI
modes of, 3–5

expedited data
and connectionless transport

services, 3–30
extensible SNMP

( See eSNMP )

F
F_GETOWN parameter, 4–81
F_SETOWN parameter, 4–81
fattach library call, 5–10
fcntl system call

F_GETOWN parameter, 4–81
F_SETOWN parameter, 4–81

fcntl.h file, 3–6
fd variable

and outgoing events, 3–14
FDDI

accessing, F–3
frame format, F–4
source service access point, F–12

fdetach library call, 5–10
file descriptor

Index–7



and protocol independence, 3–34
flow control

contrast between XTI and TLI,
3–36

in XTI, 3–10
providing, F–4, F–14

frame format
802, F–1
802.3, F–4, F–10
Ethernet, F–1, F–4, F–7
FDDI, F–4
processing, F–10
standard, F–1

frames
building, F–3

framework
sockets, 4–1

components, 4–2
STREAMS, 5–1

components, 5–2
STREAMS components, 5–3
STREAMS messages, 5–5

freehostent library call, 4–13
freehostent routine, 4–10
function

allowed sequence of in XTI, 3–20
and protocol independence, 3–33
comparison of XTI and sockets,

3–37
STREAMS, 5–7

G
generation of addresses

comparison of TLI and XTI, 3–36
getaddrinfo library call, 4–11,

4–13
gethostbyaddr library call, 4–13
gethostbyaddr routine, 4–10

and IPv6, 4–49
gethostbyname library call, 4–13
gethostbyname routine, 4–10

and IPv6, 4–50
gethostent library call, 4–13

getipnodebyaddr library call,
4–13

getipnodebyname library call,
4–13

getmsg function, 5–9
getnameinfo library call, 4–11,

4–13
getnetbyaddr library call, 4–13
getnetbyaddr routine, 4–11
getnetbyname library call, 4–13
getnetbyname routine, 4–11
getnetent library call, 4–13
getnetent routine, 4–11
getpeername system call, 4–9
getpmsg function, 5–9
getprotobyname library call, 4–13
getprotobyname routine, 4–11
getprotobynumber library call,

4–13
getprotobynumber routine, 4–11
getprotoent library call, 4–13
getprotoent routine, 4–11
getservbyname library call, 4–13
getservbyname routine, 4–12
getservbyport library call, 4–13
getservbyport routine, 4–12
getservent library call, 4–13
getservent routine, 4–12
getsockname system call, 4–9
guaranteed delivery

providing, F–4

H
header files

conventions for specifying, 4–4
fcntl.h, 3–6
netinet/in.h, 4–15
sockets, 4–15
STREAMS, 5–6
sys/socket.h, 4–15
sys/types.h, 4–15
sys/un.h, 4–15
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tiuser.h, 3–6, 3–35
XTI and TLI, 3–6
xti.h, 3–6, 3–36

high-level services
providing, F–4, F–14

hop-by-hop options
receiving, 4–60
sending, 4–60

hostent data structure, 4–10
hostent structure, 4–49
htonl library call, 4–13
htons library call, 4–13

I
I/O control flags

functions of, F–9
idle state

in XTI, 3–13
ifnet STREAMS module, 1–7, 8–1,

8–2
required setup, 8–3
using, 8–3

in_addr structure, 4–47
IN6_ARE_ADDR_EQUAL macro,

4–39, 4–52
IN6_IS_ADDR_LINKLOCAL

macro, 4–39
IN6_IS_ADDR_LOOPBACK macro,

4–39
IN6_IS_ADDR_MC_GLOBAL

macro, 4–39
IN6_IS_ADDR_MC_LINKLOCAL

macro, 4–39
IN6_IS_ADDR_MC_NODELOCAL

macro, 4–39
IN6_IS_ADDR_MC_ORGLOCAL

macro, 4–39
IN6_IS_ADDR_MC_SITELOCAL

macro, 4–39

IN6_IS_ADDR_MULTICAST
macro, 4–39

IN6_IS_ADDR_SITELOCAL
macro, 4–39

IN6_IS_ADDR_UNSPECIFIED
macro, 4–39, 4–52

IN6_IS_ADDR_V4COMPAT macro,
4–39

IN6_IS_ADDR_V4MAPPED macro,
4–39, 4–50, 4–51

in6addr_any wildcard address
binding names to addresses, 4–62

INADDR_ANY wildcard address
binding names to addresses, 4–62

incoming connection pending
state
in XTI, 3–13

incoming event
in XTI, 3–16
tracking of (XTI), 3–15

incoming orderly release state
in XTI, 3–13

inet_addr library call, 4–13
inet_addr routine

and IPv6, 4–51
inet_lnaof library call, 4–13
inet_makeaddr library call, 4–13
inet_netof library call, 4–13
inet_network library call, 4–13
inet_ntoa library call, 4–13
inet_ntoa routine

and IPv6, 4–50
inetd daemon, 4–76
initialization phase

state transitions allowed, 3–17
input/output multiplexing, 4–77
Internet communication domain

characteristics, 4–4
interrupt driven socket I/O, 4–80
ioctl function, 5–8
IP multicasting, 4–66

all hosts group, 4–66
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multicast groups, 4–66
receiving datagrams, 4–72
receiving datagrams (IPv4), 4–69
sending datagrams (IPv4), 4–67
sending datagrams (IPv6), 4–70

IP_ADD_MEMBERSHIP, 4–69
IP_DROP_MEMBERSHIP, 4–69
IP_MULTICAST_IF, 4–68
IP_MULTICAST_LOOP, 4–68
IP_MULTICAST_TTL, 4–68
IPv6

destination options, 4–59
hop-by-hop options, 4–59
packet header, 4–56
Routing header, 4–57

IPV6_JOIN_GROUP, 4–72
IPV6_LEAVE_GROUP, 4–73
IPV6_MULTICAST_HOPS, 4–71
IPV6_MULTICAST_IF, 4–71
IPV6_MULTICAST_LOOP, 4–72
isastream library call, 5–10

K
kernel configuration file

DLPI option, 8–3
STRIFNET option, 8–3

kernel implementation
of sockets, 4–6

kernel-level function
STREAMS, 5–12

kernel subsystem
configuring STREAMS drivers,

5–20
configuring STREAMS modules,

5–20

L
library

TLI, 3–6
XTI, 3–6

library calls
sockets, 4–10

STREAMS
fattach, 5–10
fdetach, 5–10
isastream, 5–10

XTI, 3–7
libtli.a library, 3–6
libxti.a library, 3–6
linking

with XTI and TLI libraries, 3–6
listen event, 3–16
listen system call, 4–9
LLC

sublayer of DLI, F–11
LLC Protocol Data Unit Test

defined, F–13
function of, F–13

local management service
in DLPI, 2–4

logical data boundaries
and protocol independence, 3–34

Logical Link Control
( See LLC )

M
macro

IN6_ARE_ADDR_EQUAL, 4–39,
4–52

IN6_IS_ADDR_LINKLOCAL, 4–39
IN6_IS_ADDR_LOOPBACK, 4–39
IN6_IS_ADDR_MC_GLOBAL,

4–39
IN6_IS_ADDR_MC_LINKLOCAL,

4–39
IN6_IS_ADDR_MC_NODELOCAL,

4–39
IN6_IS_ADDR_MC_ORGLOCAL,

4–39
IN6_IS_ADDR_MC_SITELOCAL,

4–39
IN6_IS_ADDR_MULTICAST, 4–39
IN6_IS_ADDR_SITELOCAL, 4–39
IN6_IS_ADDR_UNSPECIFIED,

4–39, 4–52
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IN6_IS_ADDR_V4COMPAT, 4–39
IN6_IS_ADDR_V4MAPPED, 4–39,

4–50, 4–51
macros

address testing, 4–39
mapping

hostnames to addresses, 4–10
network names to network

numbers, 4–11
protocol names to protocol numbers,

4–11
service names to port numbers,

4–12
master device, 4–82
mblk_t data structure, 5–14
message block

components, 5–14
data buffer, 5–14
dblk_t control structure, 5–14
mblk_t control structure, 5–14

message data structures, 5–14
message types

normal, 5–5
priority, 5–5

method routines
eSNMP, 6–51

MIB subtree
eSNMP, 6–6

mkfifo function, 5–8
modes of communication

connection-oriented (sockets), 4–7
connectionless (sockets), 4–7
sockets, 4–7

modes of execution
sockets

blocking mode, 4–21
nonblocking mode, 4–21

module data structures, 5–13
module_info, 5–13
qinit, 5–13
streamtab, 5–13

module_info data structure, 5–13

modules
STREAMS processing routines for,

5–15
close processing, 5–16
configuration processing, 5–17
open processing, 5–16
read side put processing, 5–17
read side service processing,

5–18
write side put processing, 5–17
write side service processing,

5–18
msghdr data structure, 4–18, 4–41

and the recvmsg system call, 4–29
and the sendmsg system call, 4–29
different types supported, 4–19

multicast addresses, F–1
using, F–8

multicast groups
defined, 4–66

multicasting, 4–66
multiple processes

synchronization in XTI, 3–19
multiple users

on Ethernet, F–3
multiplexing, 4–77

N
naming sockets, 4–6
netdb.h header file, 4–10
netent data structure, 4–11
netinet/in.h header file, 4–15
network

accessing a LAN with DLI, F–3
bandwidth management, 7–1
QoS, 7–1
QoS architecture, 7–2
QoS component operation, 7–3

network addresses
and sockets, 4–41
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network byte order translation,
4–13

network configuration
broadcasting and determining,

4–73
network device

specifying the, F–6
network library routines, 4–10,

4–11, 4–12
network programming framework

sockets, 1–4
STREAMS, 1–4

network sockets application
AF_INET programming examples,

C–1
AF_INET6 programming examples,

C–7
nonblocking mode

( See asynchronous execution )
normal data, 3–10
ntohl library call, 4–13
ntohs library call, 4–13

O
O_NDELAY value

support in TLI, 3–35
object table

eSNMP, 6–8
ocnt variable, 3–17

and incoming events, 3–15
and outgoing events, 3–14

open function, 5–7
open processing, 5–16
opened event, 3–15
option management

and TCP, 3–56
options

XTI, 3–43
optmgmt event, 3–15
orderly release

and protocol independence, 3–34
defined, 3–9
event indicating, 3–10

out-of-band data
handling in the socket framework,

4–64
receiving, 4–64
sending, 4–64

outgoing connection pending
state
in XTI, 3–13

outgoing event
in XTI, 3–15
tracking of (XTI), 3–14

outgoing orderly release state
in XTI, 3–13

P
packet header (IPv6), 4–56
packet routing

providing, F–4
pass_conn event, 3–16
passive user

defined, 3–3
typical state transitions, 3–20

PAWS option, D–3
physical addresses, F–1

using, F–8
physical point of attachment

( See PPA )
pipe function, 5–9
poll function, 5–9

in XTI applications, 3–13
porting

and protocol independence, 3–33
guidelines for writing XTI

applications, 3–33
porting applications to XTI, 3–33
PPA

and addressing in DLPI, 2–7
defined, 2–7

prerequisites
for DLI programming, F–1

privileges
superuser, F–1

processes
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sharing a single endpoint among
multiple, 3–19

synchronization of multiple
processes in XTI, 3–19

programming examples
for DLI, F–21

protocol independence
for XTI applications, 3–33

protocol type
defined, F–8

protocol-specific options
and protocol independence, 3–34

protocols
selecting with the socket system

call, 4–61
protoent data structure, 4–12
pseudoterminal

and sockets, 4–82
defined, 4–82
master device, 4–82
slave device, 4–82

putmsg function, 5–9
putpmsg function, 5–9

Q
qinit data structure, 5–13
QoS

component operation, 7–3
components, 7–2
defined, 7–1

quality of service
( See QoS )

R
RAPI, 7–6

debugging applications, 7–8
routines, 7–7
support for, 7–1
testing applications, 7–8

raw sockets, 4–5

rcv event, 3–16
rcvconnect event, 3–16
rcvdis1 event, 3–16
rcvdis3 event, 3–16
rcvrel event, 3–16
rcvudata event, 3–16
rcvuderr event, 3–16
read function, 5–8
read side put processing, 5–17
read side service processing, 5–18
read system call, 4–27
read-only access

support in TLI, 3–35
receiving

data units, 3–31
errors about data units, 3–31
IP multicast datagrams, 4–72
IPv4 multicast datagrams, 4–69

recommendations
for use of connection-oriented

transport and CLTS, 3–4
for use of execution modes, 3–5

recompiling TLI programs, 3–35
recv system call, 4–9, 4–28
recvfrom system call, 4–9, 4–28
recvmsg system call, 4–9, 4–30

and the msghdr data structure,
4–29

resfd variable
and outgoing events, 3–14

Resource ReSerVation Protocol
( See RSVP )

round-trip time
defined, D–1

Routing header, 4–57
receiving, 4–58
sending, 4–58

Routing Information Field, E–3
RSVP

application programming interface,
7–6

components, 7–6
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implementing in applications, 7–8
overview, 7–5
system roles, 7–3

RSVP application programming
interface
( See RAPI )

rsvpd daemon, 7–6
rsvpstat command, 7–8

S
sa_family, 4–17
SACK option, D–3
select socket call

contrast to XTI t_look function,
3–38

send system call, 4–9, 4–28
sending IPv4 multicast datagrams,

4–67
sending IPv6 multicast datagrams,

4–70
sendmsg system call, 4–9, 4–29

and the msghdr data structure,
4–29

sendto system call, 4–9, 4–28, F–6
sequencing functions

in XTI, 3–20
servent data structure, 4–12
server process

accepting connections, 4–24
connection-oriented, 4–24
connectionless, 4–25
defined, 4–8

server/client interaction, 4–8
service class

defined, F–11
values, F–11

service in XTI
modes of, 3–4

service types in DLPI, 2–4
services

providing high-level, F–14
sethostent library call, 4–13
setnetent library call, 4–13

setprotoent library call, 4–13
setservent library call, 4–13
setsockopt system call, 4–9

IP_ADD_MEMBERSHIP option,
4–69

IP_DROP_MEMBERSHIP option,
4–69

IP_MULTICAST_IF option, 4–68
IP_MULTICAST_LOOP option,

4–68
IP_MULTICAST_TTL option, 4–68
IPV6_JOIN_GROUP option, 4–72
IPV6_LEAVE_GROUP option,

4–73
IPV6_MULTICAST_HOPS option,

4–71
IPV6_MULTICAST_IF option,

4–71
IPV6_MULTICAST_LOOP option,

4–72
SO_REUSEPORT option, 4–70,

4–73
shared libraries

and TLI, 3–6
and XTI, 3–6

shutdown system call, 4–9
shutting down sockets, 4–30
signals

setting process groups for sockets,
4–81

setting process IDs for sockets,
4–81

slave device, 4–82
SNAP_SAP

using, F–12
snd event, 3–15
snddis1 event, 3–15
snddis2 event, 3–15
sndrel event, 3–15
sndudata event, 3–15
SNMP, 6–1

( See also eSNMP )
supported versions, 6–4
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SO_REUSEPORT, 4–70, 4–73
SOCK_DGRAM socket, 4–5
SOCK_RAW socket, 4–5
SOCK_STREAM socket, 4–5
sockaddr data structure, 4–16,

4–48
comparing 4.3BSD and 4.4BSD,

4–41
sockaddr_dl data structure, F–6

and the 802.2 substructure, F–10
and the Ethernet substructure, F–7
explanation of, F–4
filling in, F–6

sockaddr_in data structure, 4–17
sockaddr_in6 data structure, 4–18
sockaddr_storage data structure,

4–17, 4–48
sockaddr_un data structure, 4–17
socket interface

and TCP/IP, 4–1
supported types, 4–1

socketpair system call, 4–9, 4–20
sockets

4.3BSD msghdr data structure,
4–41

accept system call, 4–9
advanced topics, 4–44
AF_INET program example, C–1
AF_INET6, 4–45
AF_INET6 program example, C–7
and handling out-of-band data,

4–64
application programming interface,

4–6
bind system call, 4–9
binding in DLI, F–17
binding names to, 4–22
BSD, 4–40
calculating buffer size in DLI, F–20
characteristics, 4–3
closing, 4–30

cmsghdr data structure, 4–19
coexistence with STREAMS, 8–1
common errors, 4–43
communication bridge to STREAMS

framework, 8–1
communication domains, 4–3

Internet domain, 4–4
UNIX domain, 4–4

communication properties, 4–3
comparison with XTI, 3–36
connect system call, 4–9
connection-oriented mode, 4–7
connection-oriented program

example, B–2
connection-oriented server

processes, 4–24
connectionless mode, 4–7
connectionless programs, B–18
connectionless server processes,

4–25
creating, 4–20
creating in DLI, F–15
deactivating in DLI, F–21
defined, 4–3
establishing client connections,

4–23
establishing new server connections,

4–24
fcntl system call, 4–81
filling the sockaddr_dl structure,

F–17
flushing data when closing, 4–31
getpeername system call, 4–9
getsockname system call, 4–9
getting socket options, 4–26
header files, 4–15
I/O multiplexing, 4–77
increasing buffer size limit, D–2
kernel implementation, 4–6
library calls, 4–10

table of, 4–13
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listen system call, 4–9
mapping host names to addresses,

4–10
mapping network names to network

numbers, 4–11
mapping protocol names to protocol

numbers, 4–11
mapping service names to port

numbers, 4–12
modes of communication, 4–7
modes of execution, 4–21
msghdr data structure, 4–18
naming, 4–6
network address in 4.4BSD, 4–41
programming TCP socket buffer

sizes, D–1
raw (IPv6), 4–54
receiving protocol data in 4.4BSD,

4–41
reclaiming resources when closing,

4–30
recv system call, 4–9
recvfrom system call, 4–9
recvmsg system call, 4–9
rewriting applications for XTI,

3–36
sample programs

client.h file, B–43
clientauth.c file, B–43
clientdb.c file, B–45
common.h file, B–33
server.h file, B–34
serverauth.h file, B–36
serverdb.h file, B–39
xtierror.c file, B–42

selecting protocols, 4–61
send system call, 4–9
sendmsg system call, 4–9
sendto system call, 4–9
setsockopt system call, 4–9
setting DLI options, F–16
setting process groups for signals,

4–81

setting process IDs for signals,
4–81

setting socket options, 4–25
shutdown system call, 4–9
shutting down, 4–30
sockaddr data structure, 4–16
sockaddr_in data structure, 4–17
sockaddr_in6 data structure, 4–18
sockaddr_storage data structure,

4–17
sockaddr_un data structure, 4–17
socket system call, 4–9
socketpair system call, 4–9
system calls, 4–9
TCP-specific programming

information, D–1
transferring data, 4–26
types, 4–4

SOCK_DGRAM, 4–5
SOCK_RAW, 4–5
SOCK_STREAM, 4–5

sockets and STREAMS
frameworks
communication between, 1–7

sockets client
connection-oriented program, B–6
connectionless program, B–22
program using an AF_INET socket,

C–1
program using an AF_INET6

socket, C–7
sockets error

compared with XTI, 3–39
sockets framework, 1–4, 4–1

components, 4–2
interaction with STREAMS, 1–7
relationship to XTI, 1–6

sockets header files, 4–15
sockets I/O

interrupt driven, 4–80
sockets protocol stack

bridging to STREAMS driver, 8–2
sockets server

connection-oriented program, B–2
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connectionless program, B–18
program using an AF_INET socket,

C–4
program using an AF_INET6

socket, C–10
sockets states

compared with XTI states, 3–39
sockets-based drivers

accessing from STREAMS-based
protocol stacks, 1–9

source routing
enabling, E–1

source service access point
( See SSAP )

SSAP
defined, F–12

standard frame formats
802, F–1
Ethernet, F–1

state transitions
allowed for data transfer

connectionless transport services,
3–17

allowed for initialization phase,
3–17

states
comparison of XTI and sockets,

3–39
in XTI, 3–13
managing in XTI, 3–22

strclean command, 5–26
Stream

defined, 5–2
ends

and device drivers, 5–4
head, 5–3
module, 5–4

stream sockets, 4–5
STREAMS

and timeout, 5–20
application programming interface,

5–6

clone device, 5–25
close function, 5–7
coexistence with sockets, 8–1
communication bridge to sockets

framework, 8–1
components, 5–2, 5–3
configuring drivers, 5–20
configuring modules, 5–20
device special files, 5–25
driver processing routines, 5–15
error logging, 5–26
event logging, 5–26

strclean command, 5–26
functions, 5–7
header files, 5–6
ioctl function, 5–8
kernel-level functions, 5–12
library calls, 5–10
message data structures, 5–14
messages, 5–5
mkfifo function, 5–8
module data structures, 5–13
module processing routines, 5–15
open function, 5–7
pipe function, 5–9
processing routines

close processing, 5–16
configuration processing, 5–17
open processing, 5–16
read side put processing, 5–17
read side service processing,

5–18
write side put processing, 5–17
write side service processing,

5–18
putmsg function, 5–9
putpmsg function, 5–9
read function, 5–8
required setup to use the ifnet

STREAMS module, 8–3
sample module, A–1
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synchronization mechanism, 5–19
using the ifnet STREAMS module,

8–3
write function, 5–8

STREAMS concepts, 5–18
STREAMS driver, 8–3

bridging to sockets protocol stack,
8–2

STREAMS framework, 1–4, 5–1
interaction with sockets, 1–7
relationship to XTI, 1–6

STREAMS header files
strlog.h, 5–6
stropts.h, 5–6
sys/stream.h, 5–6

STREAMS protocol stack
bridging to BSD driver, 8–9

STREAMS pseudodriver, 8–11
STREAMS-based drivers

accessing from sockets-based
protocol stacks, 1–8

streamtab data structure, 5–13
STRIFNET option, 8–3

adding to kernel configuration file,
8–3

strlog.h header file, 5–6
stropts.h header file, 5–6
struct sockaddr, 4–16
struct sockaddr_in, 4–17
struct sockaddr_in6, 4–18
struct sockaddr_storage, 4–17
struct sockaddr_un, 4–17
structure alignment, E–3
sub-identifier, 6–6
subagent

implementing, 6–12
substructures

802.2, F–10
Ethernet frame structure, F–7
filling in, F–6
sending and receiving, F–6

subsystem
traffic control, 7–2

subtree_tbl.c file, 6–10

subtree_tbl.h file, 6–8
synchronization

of multiple processes in XTI, 3–19
synchronization mechanism

in STREAMS, 5–19
synchronous execution in XTI

defined, 3–5
sys/socket.h header file, 4–15
sys/stream.h header file, 5–6
sys/types.h header file, 4–15
sys/un.h header file, 4–15
system calls

and DLI, F–15
calling sequence, F–15
sockets, 4–9
specifying values with, F–6
summary of, F–15
used to transfer data, F–20

T
t_accept function, 3–26

contrast to accept socket call, 3–38
t_alloc function, 3–32, 3–33
t_bind function, 3–24

contrast to bind socket call, 3–38
t_close function, 3–29
T_CLTS constant, 3–9
T_CONNECT asynchronous event,

3–10
t_connect function, 3–25
T_COTS constant, 3–9
T_COTS_ORD constant, 3–9
T_DATA asynchronous event,

3–10
T_DATAXFER state, 3–13
T_DISCONNECT asynchronous

event, 3–10
t_errno variable, 3–56
T_ERROR event

support in TLI, 3–35
t_error function, 3–32, 3–33
T_EXDATA asynchronous event,

3–10
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t_free function, 3–32, 3–33
t_getinfo function, 3–32
t_getstate function, 3–32
T_GODATA asynchronous event,

3–10
T_GOEXDATA asynchronous

event, 3–10
T_IDLE state, 3–13
T_INCON state, 3–13
T_INREL, 3–13
T_LISTEN asynchronous event,

3–10
t_listen function, 3–25
t_look function, 3–32, 3–33

contrast to select socket call, 3–38
T_MORE flag

and protocol independence, 3–34
t_optmgmt function, 3–56
T_ORDREL asynchronous event,

3–10
T_OUTCON state, 3–13
T_OUTREL state, 3–13
t_rcv function, 3–27
t_rcvdis function, 3–28

and protocol independence, 3–34
t_rcvrel function, 3–29

and protocol independence, 3–34
t_rcvudata function, 3–31
t_rcvuderr function, 3–31

and protocol independence, 3–34
t_snd function, 3–27
t_snddis function, 3–28

contrast to close socket call, 3–39
t_sndrel function, 3–29

and protocol independence, 3–34
t_sndudata function, 3–30
t_sync function, 3–32
T_UDERR asynchronous event,

3–10
t_unbind function, 3–29
T_UNBIND state, 3–13

T_UNINIT state, 3–13
purpose of, 3–22

TCP
and round-trip time, D–1
and the connect system call, 4–23
and transfer rate, D–1
connection-oriented communication,

4–7
error recovery, D–3
PAWS option, D–3
programming information, D–1
protocol, 4–7
round-trip time, D–3
SACK option, D–3
sequence numbers, D–3
throughput, D–1
timestamp option, D–3
window scale option

configuring the kernel, D–2
window size, D–1

TCP_PAWS option, D–3
TCP_SACKENA option, D–3
TCP_TSOPTENA option, D–3
timeout, 5–20
timestamp option, D–3
tiuser.h file, 3–6, 3–35
TLI

and XTI, 3–1
compatibility with XTI, 3–35
contrast with XTI, 3–35
header files, 3–6
library and header files, 3–6
reference pages, 3–7

TLOOK error message
XTI events causing, 3–12

Token Ring driver
and canonical addresses, E–2
enabling source routing, E–1

traffic control subsystem, 7–2
tasks, 7–5

transfer rate
defined, D–1
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transferring
state to another endpoint, 3–14

transitions
between XTI states, 3–16

Transmission Control Protocol
( See TCP )

transport endpoint
defined, 3–2

Transport Layer Interface
( See TLI )

transport provider
and state management, 3–22
defined, 3–2

Transport Service Data Unit
( See TSDU )

transport user
defined, 3–2

trn_units variable
and enabling source routing, E–1

TSDU, 3–10
and protocol independence, 3–34

types of service
in DLPI, 2–4

types of sockets, 4–4
SOCK_DGRAM, 4–5
SOCK_RAW, 4–5
SOCK_STREAM, 4–5

U
UDP

and the connect system call, 4–23
protocol, 4–7

unbind event, 3–15
unbound state

in XTI, 3–13
uninitialized state

in XTI, 3–13
UNIX communication domain, 4–4

characteristics, 4–4
UNIX domain, 4–63
unnumbered information

command
defined, F–14

function of, F–14
User Datagram Protocol

( See UDP )

V
value representation

eSNMP, 6–53

W
write function, 5–8
write side put processing, 5–17
write side service processing,

5–18
write system call, 4–27
write-only access

support in TLI, 3–35

X
X/Open Transport Interface

( See XTI )
XID

defined, F–13
function of, F–13

XTI
and network programming

environment, 3–2
and standards, 3–1
and TLI, 3–1
application programming interface,

3–4
asynchronous execution, 3–5
code migration XNS4.0 to XNS5.0,

3–41
code migration XPG3 to XNS4.0,

3–41
comparison with sockets, 3–36
comparison with TLI, 3–35
configuring xtiso, 3–57
connection indication, 3–10

Index–20



connection-oriented program
example, B–2

connection-oriented service, 3–4
connectionless programs, B–18
connectionless service, 3–4
constants identifying service modes

T_CLTS, 3–9
T_COTS, 3–9
T_COTS_ORD, 3–9

contrast with TLI, 3–35
data flow, 1–6
data flow with a sockets-based

transport provider, 1–7
data transfer state, 3–13
defined, 1–6, 3–1
differences between XNS4.0 and

XNS5.0, 3–39
differences between XPG3 and

XNS4.0, 3–39
execution modes, 3–4
handling errors, 3–56
header files, 3–6
interoperability of XNS4.0 and

XNS5.0, 3–43
interoperability of XPG3 and

XNS4.0, 3–43
library and header files, 3–6
library calls, 3–7
option management, 3–56
outgoing connection pending state,

3–13
outgoing orderly release state, 3–13
overview, 3–2
passing connections to other

endpoints, 3–16
phase-independent functions, 3–32
porting applications to, 3–33
relationship to STREAMS and

sockets frameworks, 1–6
relationships between users,

providers, and endpoints, 3–3

rewriting socket applications for,
3–36

sample programs
client.h file, B–43
clientauth.c file, B–43
clientdb.c file, B–45
common.h file, B–33
server.h file, B–34
serverauth.h file, B–36
serverdb.h file, B–39
xtierror.c file, B–42

sequencing functions, 3–20
service modes, 3–4
synchronization of multiple

processes, 3–19
synchronous execution, 3–5
transport endpoint, 3–3
using XPG3 programs, 3–41
writing connection-oriented

applications, 3–22
accepting a connection, 3–26
binding an address to an

endpoint, 3–24
deinitializing endpoints, 3–29
establishing a connection, 3–25
initializing an endpoint, 3–23
initiating a connection, 3–25
listening for connection

indications, 3–25
negotiating protocol options,

3–56
opening an endpoint, 3–23
receiving data, 3–27
releasing connections, 3–28
sending data, 3–27
to use phase-independent

functions, 3–32
transferring data, 3–26
using the abortive release of

connections, 3–28
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using the orderly release of
connections, 3–28

writing connectionless applications
deinitializing endpoints, 3–32
initializing endpoints, 3–30
transferring data, 3–30

XTI asynchronous events
and consuming functions, 3–11
table of, 3–10

XTI client
connection-oriented program, B–14
connectionless program, B–29

XTI error
compared with sockets, 3–39
t_errno variable, 3–56

XTI event, 3–10
causes of T_LOOK error, 3–12
consuming functions, 3–11
incoming, 3–16
map of, 3–16
outgoing, 3–15
tracking, 3–14
used by connectionless transport

services, 3–30
XTI function, 3–7

map of, 3–16
XTI options

format, 3–45
info argument, 3–55
negotiating, 3–45
portability, 3–55
T_UNSPEC, 3–54
using, 3–43

XTI server
connection-oriented program, B–9
connectionless program, B–25

XTI state, 3–13
compared with sockets states, 3–39
management by transport

providers, 3–22
map of, 3–16
table of, 3–13

xti.h header file, 3–6
and t_errno variable, 3–56

xtiso option
configuring, 3–57

XTO options
management of a transport

endpoint, 3–52
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