
Tru64 UNIX
Programming with ONC RPC

Part Number: AA-RH9XB-TE

July 1999

Product Version: Tru64 UNIX Version 5.0 or higher

Operating System and Version:

High-level programming through open-network remote procedure
calls (ONC RPC) provides client-to-server communication for network
application development without the need to program most of the
interface to the underlying network.

Hewlett-Packard Company
Palo Alto, California

© 1992, 1993, 1994, 1996, 1999 Hewlett-Packard Company

Microsoft® and Windows NT® are trademarks of Microsoft Corporation in the U.S. and/or other countries.
Intel®, Pentium®, and Intel Inside® are trademarks of Intel Corporation in the U.S. and/or other countries.
UNIX® and The Open Group™ are trademarks of The Open Group in the U.S. and/or other countries. All
other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

About This Manual

1 Introduction to Remote Procedure Calls
1.1 The RPC Model 1–1
1.2 RPC Procedure Versions 1–3
1.3 Using portmap to Determine the Destination Port Number of

RPC Packets 1–3
1.4 RPC Independence from Transport Protocol 1–4
1.5 External Data Representation (XDR) 1–5
1.6 Using rpcinfo to Get RPC Registration Information 1–5
1.7 Assigning Program Numbers 1–5

2 Writing RPC Applications with the rpcgen Protocol Compiler
2.1 Simple Example: Using rpcgen to Generate Client and Server

RPC Code 2–2
2.1.1 RPC Protocol Specification File Describing Remote

Procedure 2–3
2.1.2 Implementing the Procedure Declared in the Protocol

Specification 2–4
2.1.3 The Client Program That Calls the Remote Procedure 2–5
2.1.4 Running rpcgen 2–7
2.1.5 Compiling the Client and Server Programs 2–8
2.1.6 Copying the Server to a Remote Machine and Running It 2–8
2.2 Advanced Example: Using rpcgen to Generate XDR Routines 2–9
2.2.1 The RPC Protocol Specification 2–9
2.2.2 Implementing the Procedure Declared in the Protocol

Specification 2–11
2.2.3 The Client Program that Calls the Remote Procedure 2–12
2.2.4 Running rpcgen 2–14
2.2.5 Compiling the File of XDR Routines 2–14
2.2.6 Compiling the Client Side Program with rpcgen Output . . 2–14
2.2.7 Compiling the Server Side Program with rpcgen Output . . 2–14
2.2.8 Running the Remote Directory Program 2–15
2.3 Debugging Applications 2–16
2.4 The C-Preprocessor 2–16

Contents iii

2.5 rpcgen Programming 2–17
2.5.1 Network Types 2–17
2.5.2 User-Provided Define Statements 2–18
2.5.3 inetd Support 2–18
2.5.4 Dispatch Tables 2–18
2.6 Client Programming 2–19
2.6.1 Timeout Changes 2–20
2.6.2 Client Authentication 2–20
2.7 Server Programming 2–21
2.7.1 Handling Broadcasts 2–21
2.7.2 Passing Data to Server Procedures 2–21
2.8 RPC and XDR Languages 2–22
2.8.1 Definitions 2–22
2.8.2 Enumerations 2–23
2.8.3 Typedefs 2–23
2.8.4 Constants 2–24
2.8.5 Declarations 2–24
2.8.6 Structures 2–25
2.8.7 Unions 2–26
2.8.8 Programs 2–27
2.8.9 Special Cases 2–28

3 RPC Programming Interface
3.1 RPC Layers 3–1
3.1.1 Middle Layer of RPC 3–2
3.1.1.1 Using callrpc 3–2
3.1.1.2 Using registerrpc 3–4
3.1.1.3 Passing Arbitrary Data Types 3–5
3.1.1.4 User-Defined Routines 3–6
3.1.1.5 XDR Serializing Defaults 3–7
3.1.2 Lowest Layer of RPC 3–8
3.1.2.1 The Server Side and the Lowest RPC Layer 3–8
3.1.2.2 The Client Side and the Lowest RPC Layer 3–11
3.1.2.3 Memory Allocation with XDR 3–13
3.2 Raw RPC 3–14
3.3 Miscellaneous RPC Features 3–16
3.3.1 Using Select on the Server Side 3–16
3.3.2 Broadcast RPC 3–17
3.3.3 Batching 3–18
3.3.4 Authentication of RPC Calls 3–21
3.3.5 Authentication Through the Operating System 3–22

iv Contents

3.3.5.1 The Client Side 3–22
3.3.5.2 The Server Side 3–22
3.3.6 Using the Internet Service Daemon (inetd) 3–25
3.4 Additional Examples 3–25
3.4.1 Program Versions on the Server Side 3–25
3.4.2 Program Versions on the Client Side 3–27
3.4.3 Using the TCP Transport 3–28
3.4.4 Callback Procedures 3–31

A External Data Representation: Technical Notes
A.1 Usefulness of XDR A–1
A.1.1 A Canonical Standard A–4
A.1.2 The XDR Library A–5
A.1.3 XDR Library Primitives A–7
A.1.3.1 Number Filters A–7
A.1.3.2 Floating Point Filters A–9
A.1.3.3 Enumeration Filters A–9
A.1.3.4 Possibility of No Data A–10
A.1.3.5 Constructed Data Type Filters A–10
A.1.3.5.1 Strings A–10
A.1.3.5.2 Byte Arrays A–11
A.1.3.5.3 Arrays A–11
A.1.3.5.4 Opaque Data A–14
A.1.3.5.5 Arrays of Fixed Size A–14
A.1.3.5.6 Discriminated Unions A–15
A.1.3.5.7 Pointers A–16
A.1.4 Non-filter Primitives A–18
A.1.5 XDR Operation Directions A–18
A.1.6 XDR Stream Access A–19
A.1.6.1 Standard I/O Streams A–19
A.1.6.2 Memory Streams A–19
A.1.6.3 Record (TCP/IP) Streams A–20
A.1.7 XDR Stream Implementation A–21
A.2 Advanced Topics A–22

Index

Examples
2–1 Printing a Remote Message Without ONC RPC 2–2
2–2 RPC Protocol Specification File, Simple Example 2–3

Contents v

2–3 Remote Procedure Definition 2–4
2–4 Client Program that Calls the Remote Procedure 2–5
2–5 RPC Protocol Specification File, Advanced Example 2–9
2–6 Remote Procedure Implementation 2–11
2–7 Client Program that Calls the Server 2–12
2–8 Using the Percent Sign to Bypass Interpretation of a Line 2–17
2–9 Locating a Procedure in a Dispatch Table 2–19
2–10 Using the clnt_control Routine 2–20
2–11 XDR enum Before Compilation 2–23
2–12 C enum Resulting from Compiling XDR enum 2–23
2–13 RPC Program Illustrating Time Protocol 2–27
3–1 Using callrpc 3–2
3–2 Remote Server Procedure 3–3
3–3 Using registerrpc in the Main Body of a Server Program 3–4
3–4 Server Program Using Lowest Layer of RPC 3–8
3–5 Using Lowest RPC Layer to Control Data Transport and

Delivery 3–11
3–6 Debugging and Testing Noncommunication Parts of an

Application 3–14
3–7 Batching RPC Messages 3–19
3–8 Client Batching 3–20
3–9 Modifying the Remote Users Service 3–23
3–10 C Procedure that Returns Two Different Data Types 3–26
3–11 Determining Server-Supported Versions and Creating

Associated Client Handles 3–27
3–12 RPC Call That Uses TCP Protocol 3–28
3–13 Client-Server Usage of gettransient Routine 3–32
A–1 Revised Version of writer.c A–3
A–2 Revised Version of reader.c A–3

Figures
1–1 Basic Network Communication with Remote Procedure Call . 1–2

vi Contents

About This Manual

This manual provides an overview of high-level programming with open
network computing remote procedure calls (ONC RPC), describes how to use
the rpcgen protocol compiler to create applications, and describes the RPC
programming interface. See rpcgen(1) for more information.

Audience

This guide assumes a knowledge of network theory and is for experienced
programmers who want to write network applications using open-network
computing remote procedure calls (ONC RPC) without needing to know
about the underlying network.

Organization

This guide contains three chapters, an appendix, and an index:

Chapter 1 Provides an overview of high-level programming through remote
procedure calls (RPC), and discusses the RPC model and versions,
external data representation, and RPC independence from network
transport protocol.
This chapter is for anyone interested in ONC RPC.

Chapter 2 Describes how to write RPC client and server applications with the
rpcgen protocol compiler. It also provides some information on
rpcgen, client and server programming, debugging applications, the
C preprocessor, and RPC language syntax. This chapter also describes
how to create routines for external data representation (XDR).
This chapter is for programmers who want to use rpcgen to write
RPC-based network applications.

Chapter 3 Describes the RPC programming interface layers, XDR serialization
defaults, raw RPC, and miscellaneous RPC features.
This chapter is for programmers who need to understand RPC
mechanisms to write customized network applications.

Appendix A Contains additional notes on the XDR library. This appendix is for
programmers who want to implement RPC and XDR on new machines.

New and Changed Information

The contents of this manual have not changed since the previous release.

About This Manual vii

Related Documents

The Network Programmer’s Guide explains how to write programs that
use networking system calls.

The Technical Overview provides general information about addressing,
naming, routing, and network protocols and provides a summary of network
applications native to HP Tru64 UNIX.

The Network Administration: Connections manual discusses network
connection setup tasks and the day-to-day administration tasks, and
explains how to isolate and correct problems with network connections.

The Network Administration: Services manual discusses network services
setup tasks and day-to-day administration tasks, and explains how to isolate
and correct problems with network services.

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

viii About This Manual

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

Conventions

This document uses the following conventions:

%

$ A percent sign represents the C shell system prompt.
A dollar sign represents the system prompt for the
Bourne, Korn, and POSIX shells.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

[|]

{ | } In syntax definitions, brackets indicate items that
are optional and braces indicate items that are
required. Vertical bars separating items inside
brackets or braces indicate that you choose one item
from among those listed.

. . .
In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

About This Manual ix

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

x About This Manual

1
Introduction to Remote Procedure Calls

High-level programming through remote procedure calls (RPC) provides
logical client-to-server communication for network application development
— without the need to program most of the interface to the underlying
network. With RPC, the client makes a remote procedure call that sends
requests to the server, which calls a dispatch routine, performs the requested
service, and sends back a reply before the call returns to the client.

RPC does not require the caller to know about the underlying network. For
example, a program can simply call rnusers (a C routine that returns the
number of users on a remote machine) much like making a system call to
malloc. You can make remote procedure calls from any language, and
between different processes on the same machine.

1.1 The RPC Model

The remote procedure call model is similar to that of the local model, which
works as follows:

1. The caller places arguments to a procedure in a specific location (such
as a result register).

2. The caller temporarily transfers control to the procedure.

3. When the caller gains control again, it obtains the results of the
procedure from the specified location.

4. The caller then continues program execution.

The remote procedure call is similar, in that one thread of control logically
winds through two processes — that of the caller and that of the server:

1. The caller process sends a call message to the server process and blocks
(that is, waits) for a reply message. The call message contains the
parameters of the procedure and the reply message contains the
procedure results.

2. When the caller receives the reply message, it gets the results of the
procedure.

3. The caller process then continues executing.

Introduction to Remote Procedure Calls 1–1

On the server side, a process is dormant — awaiting the arrival of a call
message. When one arrives, the server process computes a reply that it
then sends back to the requesting client. After this, the server process
becomes dormant again. Figure 1–1 illustrates this basic form of network
communication with the remote procedure call.

Figure 1–1: Basic Network Communication with Remote Procedure Call

ZK−0475U−R

Machine A Machine B

Invoke
Service

Call Service

Service
Executes

Return Reply

Request
Completed

Program
Continues

RPC Call

Client Program on Machine A Service Daemon on Machine B

Return Answer

This figure shows a synchronous RPC call, in which only one of the two
processes is active at a given time. The remote procedure call hides the
details of the network transport. However, the RPC protocol does not restrict
the concurrency model. For example, RPC calls may be asynchronous so
that the client can do another task while waiting for the reply from the
server. Another possibility is that the server could create a task to process
a certain type of request automatically, freeing it to service other requests.

1–2 Introduction to Remote Procedure Calls

Although RPC provides a way to avoid programming the underlying network
transport, it still allows this where necessary.

1.2 RPC Procedure Versions

Each RPC procedure is uniquely defined by program and procedure numbers.
The program number specifies a group of related remote procedures, each
of which has a different procedure number. Each program also has a
version number so that, when a minor change is made to a remote service
(adding a new procedure, for example), a new program number does not
have to be assigned. When you want to call a procedure to find the number
of remote users, you must know the appropriate program, version, and
procedure numbers to use to contact the service. This information can be
found in several sources. For example, the /etc/rpc file lists some RPC
programs and the rpcinfo command lists the registered RPC programs and
corresponding version numbers running on a particular system.

Typically, a service provides a protocol description so that you can write
client applications that call the service. The RPC Administrator at Sun
Microsystems, Inc. has a list of programs that have been registered with
them (that is, have received port numbers from them) but you can write your
own local RPC programs. Knowing the program and procedure numbers is
useful only if the program is running on a system that you have access to.

1.3 Using portmap to Determine the Destination Port
Number of RPC Packets

The portmap network service command starts automatically when a
machine is booted. As part of its initialization, a server program calls its
host portmap to create a portmap entry for its program and version number.
To find the port of a remote program, a client sends an RPC call message
to a server portmap. If the remote program is registered with the portmap,
it returns the relevant port number in an RPC reply message. The client
program can then send RPC call message packets to that remote program
port.

The portmap network service has a well-known (dedicated) port. Other
network service port numbers can be assigned statically or dynamically
when they register their ports with the portmap of their host. Refer to the
portmap(8) reference page for more information about the port mapping
service.

Introduction to Remote Procedure Calls 1–3

1.4 RPC Independence from Transport Protocol

The RPC protocol is concerned only with the specification and interpretation
of messages; it is independent of transport protocols because it needs no
information on how a message is passed among processes.

Also, RPC does not implement any kind of reliability — the application itself
must be aware of the transport protocol type underlying RPC. With a reliable
transport, such as TCP/IP, the application need not do much else. However,
an application must use its own retransmission and time-out policy if it is
running on top of an unreliable transport, such as UDP/IP.

Because of transport independence, the RPC protocol does not actively
interpret anything about remote procedures or their execution. Instead,
the application infers required information from the underlying protocol
(where such information should be explicitly specified). For example, if
RPC is running on top of an unreliable transport (such as UDP/IP), and
the application retransmits RPC messages after short time-outs, and if the
application receives no reply, then it can infer only that a certain procedure
was executed zero or more times. If it receives a reply, then the application
infers that the procedure was executed at least once.

With a reliable transport, such as TCP/IP, the application can infer from a
reply message that the procedure was executed exactly once, but if it receives
no reply message, it cannot assume the remote procedure was not executed.

______________________ Note _______________________

Even with a connection-oriented protocol like TCP, an application
still needs time-outs and reconnection to handle server crashes.

ONC RPC is currently supported on both UDP/IP and TCP/IP transports.
The selection of the transport depends on the application requirements. The
UDP transport, which is connectionless, is a good choice if the application
has the following characteristics:

• The procedures are idempotent; that is, the same procedure can be
executed more than once without any side effects. For example, reading
a block of data is idempotent; creating a file is not.

• The size of both the arguments and results is smaller than the UDP
packet size of 8K bytes.

• The server is required to handle as many as several hundred clients. The
UDP server can do so because it does not retain any information about
the client state. By contrast, the TCP server holds state information for
each open client connection and this limits its available resources.

1–4 Introduction to Remote Procedure Calls

TCP (connection-oriented) is a good transport choice if the application has
any of the following characteristics:

• The application needs a reliable underlying transport.

• The procedures are non-idempotent.

• The size of either the arguments or the results exceeds 8K bytes.

1.5 External Data Representation (XDR)
RPC can handle arbitrary data structures, regardless of the byte order or
structure layout convention on a machine. It does this by converting them
to a network standard called External Data Representation (XDR) before
sending them over the wire. XDR is a machine-independent description and
encoding of data that can communicate between diverse machines, such as a
VAX, Sun workstation, IBM-PC, or Cray.

Converting from a particular machine representation to XDR format is
called serializing; the reverse process is deserializing.

1.6 Using rpcinfo to Get RPC Registration Information
The rpcinfo command reports current RPC registration information known
to portmap; administrators can use it to delete registrations. The rpcinfo
command can also find the RPC services registered on a specific host and
report their port numbers and the transports for which the services are
registered. You can also use it to call (through ping) a program version on
a specific host using the TCP or UDP transport, and to report whether the
response was received. For more information, see the rpcinfo(8) reference
page.

1.7 Assigning Program Numbers
Program numbers are assigned in groups of 0x20000000 according to the
following chart:

0x0 - 0x1fffffff Defined by Sun

0x20000000 - 0x3fffffff Defined by user

0x40000000 - 0x5fffffff Transient

0x60000000 - 0x7fffffff Reserved

0x80000000 - 0x9fffffff Reserved

0xa0000000 - 0xbfffffff Reserved

0xc0000000 - 0xdfffffff Reserved

0xe0000000 - 0xffffffff Reserved

Introduction to Remote Procedure Calls 1–5

Sun Microsystems administers the first range of numbers, which should
be identical for all ONC users. An ONC RPC application for general use
should have an assigned number in this first range. The second range of
numbers is for specific, user-defined customer applications, and is primarily
for debugging new programs. The third, called the Transient group, is
reserved for applications that generate program numbers dynamically. The
final groups are reserved for future use, and are not used.

To register a protocol specification, send a request by network mail to
rpc@sun.com or write to:

RPC Administrator
Sun Microsystems
2550 Garcia Ave.
Mountain View, CA 94043

Include a compilable rpcgen .x file describing your protocol; you will then
receive a unique program number. See rpcgen(1) for more information.
Some of the RPC program numbers are in /etc/rpc.

1–6 Introduction to Remote Procedure Calls

2
Writing RPC Applications with the rpcgen

Protocol Compiler

The rpcgenprotocol compiler accepts a remote program interface definition
written in RPC language, which is similar to C. It then produces C language
output consisting of skeleton versions of the client routines, a server
skeleton, XDR filter routines for both parameters and results, a header
file that contains common definitions, and optionally, dispatch tables that
the server uses to invoke routines that are based on authorization checks.
See rpcgen(1)for more information.

The client skeleton interface to the RPC library hides the network from
its callers, and the server skeleton hides the network from the server
procedures invoked by remote clients. You compile and link output files from
rpcgen as usual. The server code generated by rpcgen supports inetd.
You can start the server via inetd or at the command line.

You can write server procedures in any language that has system calling
conventions. To get an executable server program, link the server procedure
with the server skeleton from rpcgen. To create an executable program
for a remote program, write an ordinary main program that makes local
procedure calls to the client skeletons, and link the program with the rpcgen
skeletons. If necessary, the rpcgen options enable you to suppress skeleton
generation and specify the transport to be used by the server skeleton.

The rpcgen protocol compiler helps to reduce development time in the
following ways:

• It greatly reduces network interface programming.

• It can mix low-level code with high-level code.

• For speed-critical applications, you can link customized high-level code
with the rpcgen output.

• You can use rpcgen output as a starting point, and rewrite as necessary.

Refer to rpcgen(1) for more information about programming applications
that use remote procedure calls or for writing XDR routines that convert
procedure arguments and results into their network format (or vice versa).
For a discussion of RPC programming without rpcgen, see Chapter 3.

Writing RPC Applications with the rpcgen Protocol Compiler 2–1

2.1 Simple Example: Using rpcgen to Generate Client and
Server RPC Code

This section shows how to convert a simple routine — one that prints
messages to the console of a single machine — to an ONC RPC application
that runs remotely over the network. To do this, the rpcgen protocol
compiler is used to generate client and server RPC code. Example 2–1 shows
the routine before conversion.

Example 2–1: Printing a Remote Message Without ONC RPC

/* printmsg.c: print a message on the console */
#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

{
char *message;

if (argc != 2) {
fprintf(stderr, "usage: %s <message>\n", argv[0]);
exit (1);

}
message = argv[1];

if (!printmessage(message)) {
fprintf(stderr, "%s: couldn’t print your message\n",

argv[0]);
exit (1);

}
printf("Message Delivered!\n");
exit (0);

}
/* Print a message to the console. Return a Boolean showing result. */
printmessage(msg)

char *msg;
{

FILE *f;

f = fopen("/dev/console", "w");
if (f == NULL) {

return (0);
}
fprintf(f, "%s\n", msg);
fclose(f);
return (1);

}

Compile and run this program from a machine called cyrkle:

cyrkle% cc printmsg.c -o printmsg
cyrkle% printmsg "red rubber ball"
Message delivered!
cyrkle%

2–2 Writing RPC Applications with the rpcgen Protocol Compiler

If the printmessage procedure at the bottom of the printmsg.c program
of Example 2–1 were converted into a remote procedure, you could call it
from anywhere in the network, instead of only from the program where it is
embedded. Before doing this, it is necessary to write a protocol specification
in RPC language that describes the remote procedure, as shown in the next
section.

2.1.1 RPC Protocol Specification File Describing Remote Procedure

To create the specification file, you must know all the input and output
parameter types. In Example 2–1, the printmessage procedure takes
a string as input, and returns an integer as output. Example 2–2 is the
RPC protocol specification file that describes the remote version of the
printmessage procedure.

Example 2–2: RPC Protocol Specification File, Simple Example

/*
* msg.x: Remote message printing protocol
*/

program MESSAGEPROG {
version MESSAGEVERS {

int PRINTMESSAGE(string) = 1;
} = 1;

} = 0x20000099;

Remote procedures are part of remote programs, so Example 2–2 actually
declares a remote program containing a single procedure, PRINTMESSAGE.
By convention, all RPC services provide for a NULL procedure (procedure 0),
normally used for “pinging.” (See ping(8).) The RPC protocol specification
file in Example 2–2 declares the PRINTMESSAGE procedure to be in version 1
of the remote program. No NULL procedure (procedure 0) is necessary in
the protocol definition because rpcgen generates it automatically and the
user does not need it.

In RPC language, the convention (though not a requirement) is to make
all declarations in uppercase characters. Notice that the argument type is
string, not char *, because char * in C is ambiguous. Programmers
usually intend it to mean a null-terminated string of characters, but it could
also be a pointer to a single character or to an array of characters. In RPC
language, a null-terminated string is unambiguously of type string.

Writing RPC Applications with the rpcgen Protocol Compiler 2–3

2.1.2 Implementing the Procedure Declared in the Protocol
Specification

Example 2–3 defines the remote procedure declared in the RPC protocol
specification file of the previous example.

Example 2–3: Remote Procedure Definition

/*
* msg_proc.c: implementation of the remote procedure
* "printmessage"
*/

#include <stdio.h>
#include <rpc/rpc.h> /* always needed */
#include "msg.h" /* msg.h will be generated by rpcgen */

/*
* Remote version of "printmessage"
*/
int *
printmessage_1(msg) 1

char **msg; 2
{

static int result; /* must be static! */
FILE *f;

f = fopen("/dev/console", "w");
if (f == NULL) {

result = 0;
return (&result);

}
fprintf(f, "%s\n", *msg);
fclose(f);
result = 1;
return (&result); 3

}

In this example, the declaration of the remote procedure, printmessage_1,
differs from that of the local procedure printmessage in three ways:

1 It has _1 appended to its name. In general, all remote procedures called
by rpcgen are named by the following rule: the name in the procedure
definition (here, PRINTMESSAGE) is converted to all lowercase letters,
and an underscore (_) and version number (here, 1) is appended to it.

2 It takes a pointer to a string instead of a string itself. This is true of
all remote procedures — they always take pointers to their arguments

2–4 Writing RPC Applications with the rpcgen Protocol Compiler

rather than the arguments themselves; if there are no arguments,
specify void.

3 It returns a pointer to an integer instead of an integer itself. This is
also characteristic of remote procedures — they return pointers to
their results. Therefore it is important to have the result declared as a
static; if there are no arguments, specify void.

2.1.3 The Client Program That Calls the Remote Procedure

Example 2–4 declares the main client program, rprintmsg.c, that will
call the remote procedure.

Example 2–4: Client Program that Calls the Remote Procedure

/*
* rprintmsg.c: remote version of "printmsg.c"
*/

#include <stdio.h>
#include <rpc/rpc.h> /* always needed */
#include "msg.h" /* msg.h will be generated by rpcgen */

main(argc, argv)
int argc;
char *argv[];

{
CLIENT *cl;
int *result;
char *server;
char *message;

if (argc != 3) {
fprintf(stderr,
"usage: %s host message\n", argv[0]);
exit(1);

}

server = argv[1];
message = argv[2];

/*
* Create client "handle" used for calling MESSAGEPROG on
* the server designated on the command line. We tell
* the RPC package to use the TCP protocol when
* contacting the server.
*/

cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS,
"tcp"); 1 2

Writing RPC Applications with the rpcgen Protocol Compiler 2–5

Example 2–4: Client Program that Calls the Remote Procedure (cont.)

if (cl == NULL) {

/*
* Couldn’t establish connection with server.
* Print error message and stop.
*/

clnt_pcreateerror(server);
exit(1);

}

/*
* Call the remote procedure "printmessage" on the server
*/

result = printmessage_1(&message, cl); 3
if (result == NULL) { 4

/*
* An error occurred while calling the server.
* Print error message and stop.
*/

clnt_perror(cl, server);
exit(1);

}

/*
* Okay, we successfully called the remote procedure.
*/

if (*result == 0) { 4

/*
* Server was unable to print our message.
* Print error message and stop.
*/

fprintf(stderr, "%s: %s couldn’t print your message\n",
argv[0], server);
exit(1);

}

/*
* The message got printed on the server’s console
*/

2–6 Writing RPC Applications with the rpcgen Protocol Compiler

Example 2–4: Client Program that Calls the Remote Procedure (cont.)

printf("Message delivered to %s!\n", server);
exit(0);

}

In this example, the following events occur:

1 A client “handle” is created first, using the RPC library routine
clnt_create(). This client handle will be passed to the skeleton
routines that call the remote procedure.

2 The last parameter to clnt_create is tcp, the transport on which you
want to run your application. (Alternatively udp could have been used.)

3 The remote procedure printmessage_1 is called exactly the same way
as in msg_proc.c, except for the inserted client handle as the second
argument.

4 The remote procedure call can fail in two ways: the RPC mechanism
itself can fail or there can be an error in the execution of the
remote procedure. In the former case, the remote procedure,
print_message_1, returns with a NULL. In the latter case, error
reporting is application-dependent. In this example, the error is
reported via *result.

2.1.4 Running rpcgen

Use the rpcgen protocol compiler on the RPC protocol specification
file, msg.x, (from Example 2–2) to generate client and server RPC code
automatically:

cyrkle% rpcgen msg.x

Using rpcgen like this — without options — automatically creates the
following files from the input file msg.x:

• A header file called msg.h that contains #define statements for
MESSAGEPROG, MESSAGEVERS, and PRINTMESSAGE so that they can be
used in the other modules. You must include msg.h in both the client
and server modules.

• An output file and the client skeleton routines within it. The output
file, msg_clnt.c, is formed by appending _clnt to the file name and
substituting the file type suffix, .c. The msg_clnt.c file contains
only one client skeleton routine, printmessage_1, referred from the
printmsg client program.

Writing RPC Applications with the rpcgen Protocol Compiler 2–7

• The server program, msg_svc.c, created by appending _svc to the file
name and substituting the file type suffix, .c. The msg_svc.c program
calls printmessage_1 from msg_proc.c.

______________________ Note _______________________

The -T option of rpcgen creates an additional output file of index
information for dispatching service routines.

2.1.5 Compiling the Client and Server Programs

After the rpcgen protocol compilation, use two cc compilation statements
to create a client program and a server program:

• To create the client program called rprintmsg, compile the
rprintmsg.c and msg_clnt.c programs together, and use the -o
option to specify the executable output in the file rprintmsg:

cyrkle% cc rprintmsg.c msg_clnt.c -o rprintmsg

• To create a server program called msg_server, compile the msg_proc.c
and msg_svc.c programs together, and use the -o option to specify the
executable output in the file msg_server:

cyrkle% cc msg_proc.c msg_svc.c -o msg_server

2.1.6 Copying the Server to a Remote Machine and Running It

Copy the server program msg_server to a remote machine called space in
this example. Then, run the program in background mode on the server—
indicated by &:

space% msg_server &

______________________ Note _______________________

Servers generated by rpcgen can be invoked with port monitors
like inetd, as well as from the command line, if they are invoked
with the -I option.

From a local machine (earth) you can now print a message on the console of
the remote machine space:

earth% rprintmsg space "Hello out there..."

The message Hello out there... will appear on the console of the
machine space. You can print a message on any console (including your
own) with this program if you copy the server to that machine and run it.

2–8 Writing RPC Applications with the rpcgen Protocol Compiler

2.2 Advanced Example: Using rpcgen to Generate XDR
Routines

Section 2.1 explains how to use rpcgen to generate client and server RPC
code automatically to convert a simple procedure to one that can be run
remotely over the network. The rpcgen protocol compiler can also generate
the external data representation (XDR) routines that convert local data
structures into network format (and vice versa).

The following sections present a more advanced example of a complete RPC
service — a remote directory listing service that uses rpcgen to generate
both skeleton and XDR routines.

2.2.1 The RPC Protocol Specification

As with the simple example, you must first create an RPC protocol
specification file. This file, dir.x, is for a remote directory listing, shown
in Example 2–5.

Example 2–5: RPC Protocol Specification File, Advanced Example

/*
* dir.x: Remote directory listing protocol
*/

/* maximum length of a directory entry */
const MAXNAMELEN = 255;

/* a directory entry */
typedef string nametype<MAXNAMELEN>;

/* a link in the listing */
typedef struct namenode *namelist;

/*
* A node in the directory listing
*/
struct namenode {

nametype name; /* name of directory entry */
namelist next; /* next entry */

};

/*
* The result of a READDIR operation.
*/
union readdir_res switch (int errno) {

case 0:
namelist list; /* no error: return directory listing */

Writing RPC Applications with the rpcgen Protocol Compiler 2–9

Example 2–5: RPC Protocol Specification File, Advanced Example (cont.)

default:
void; /* error occurred: nothing else to return */

};

/*
* The directory program definition
*/
program DIRPROG {

version DIRVERS {
readdir_res
READDIR(nametype) = 1;

} = 1;
} = 0x20000076;

______________________ Note _______________________

You can define types (like readdir_res in Example 2–5) by
using the struct, union, and enum keywords, but do not use
these keywords in later variable declarations of those types. For
example, if you define union foo, you must declare it later
by using foo, not union foo. The rpcgen protocol compiler
compiles RPC unions into C structures, so it is an error to declare
them later by using the union keyword.

Running rpcgen on dir.x creates four output files:

• Header file

• File of client skeleton routines

• Server skeleton file

• File of XDR routines

The first three files have already been described. The fourth file, dir_xdr.c,
contains the XDR routines that convert the declared data types into XDR
format (and vice versa). For each data type used in the .x file, rpcgen
assumes that the RPC/XDR library contains a routine with the name of that
data type prefixed by xdr_, for example, xdr_int. If the data type was
defined in the .x file, then rpcgen generates the required XDR routine. If
there are no such data types, then the file (for example, dir_xdr.c) will
not be generated. If the data types were used but not defined, then the
user has to provide that XDR routine. This enables you to create your own
customized XDR routines.

2–10 Writing RPC Applications with the rpcgen Protocol Compiler

2.2.2 Implementing the Procedure Declared in the Protocol
Specification

Example 2–6 consists of the dir_proc.c file that implements the remote
READDIR procedure from the previous RPC protocol specification file.

Example 2–6: Remote Procedure Implementation

/*
* dir_proc.c: remote readdir implementation
*/
#include <rpc/rpc.h> /* Always needed */
#include <sys/dir.h>
#include "dir.h" /* Created by rpcgen */

extern int errno;
extern char *malloc();
extern char *strdup();

readdir_res *
readdir_1(dirname)

nametype *dirname;
{

DIR *dirp;
struct direct *d;
namelist nl;
namelist *nlp;
static readdir_res res; /* must be static! */

/*
* Open directory
*/
dirp = opendir(*dirname);
if (dirp == NULL) {

res.errno = errno;
return (&res);

}

/*
* Free previous result
*/
xdr_free(xdr_readdir_res, &res);

/*
* Collect directory entries.
* Memory allocated here will be freed by xdr_free
* next time readdir_1 is called
*/
nlp = &res.readdir_res_u.list;
while (d = readdir(dirp)) {

Writing RPC Applications with the rpcgen Protocol Compiler 2–11

Example 2–6: Remote Procedure Implementation (cont.)

nl = *nlp = (namenode *) malloc(sizeof(namenode));
nl->name = strdup(d->d_name);
nlp = &nl->next;

}
*nlp = NULL;

/*
* Return the result
*/
res.errno = 0;
closedir(dirp);
return (&res);

}

2.2.3 The Client Program that Calls the Remote Procedure

Example 2–7 shows the client side program, rls.c, that calls the remote
server procedure.

Example 2–7: Client Program that Calls the Server

/*
* rls.c: Remote directory listing client
*/
#include <stdio.h>
#include <rpc/rpc.h> /* always need this */
#include "dir.h" /* will be generated by rpcgen */

extern int errno;

main(argc, argv)
int argc;
char *argv[];

{
CLIENT *cl;
char *server;
char *dir;
readdir_res *result;
namelist nl;

if (argc != 3) {
fprintf(stderr, "usage: %s host directory\n",

argv[0]);
exit(1);

}

2–12 Writing RPC Applications with the rpcgen Protocol Compiler

Example 2–7: Client Program that Calls the Server (cont.)

server = argv[1];
dir = argv[2];

/*
* Create client "handle" used for calling DIRPROG on
* the server designated on the command line. Use
* the tcp protocol when contacting the server.
*/
cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");
if (cl == NULL) {

/*
* Couldn’t establish connection with server.
* Print error message and stop.
*/

clnt_pcreateerror(server);
exit(1);

}

/*
* Call the remote procedure readdir on the server
*/
result = readdir_1(&dir, cl);
if (result == NULL) {

/*
* An RPC error occurred while calling the server.
* Print error message and stop.
*/

clnt_perror(cl, server);
exit(1);

}

/*
* Okay, we successfully called the remote procedure.
*/
if (result->errno != 0) {

/*
* A remote system error occurred.
* Print error message and stop.
*/

errno = result->errno;
perror(dir);
exit(1);

}

/*
* Successfully got a directory listing.
* Print it out.

Writing RPC Applications with the rpcgen Protocol Compiler 2–13

Example 2–7: Client Program that Calls the Server (cont.)

*/
for (nl = result->readdir_res_u.list; nl != NULL;

nl = nl->next) {
printf("%s\n", nl->name);

}
exit(0);

}

2.2.4 Running rpcgen

As with the simple example, you must run the rpcgen protocol compiler on
the RPC protocol specification file dir.x, to create a header file, dir.h,
an output file of client skeletons, dir_clnt.c, and a server program,
dir_svc.c. For this advanced example, rpcgen also generates the file of
XDR routines, dir_xdr.c:

earth% rpcgen dir.x

2.2.5 Compiling the File of XDR Routines

The next step is to compile the file of XDR routines, dir_xdr.c, with the
following cc -c command:

earth% cc -c dir_xdr.c

Here, the -c option is used to suppress the loading phase of the compilation
and to produce an object file, even if only one program is compiled.

2.2.6 Compiling the Client Side Program with rpcgen Output

Next, the remote directory listing client program, rls.c, is compiled with
the file of client skeletons, dir_clnt.c, and the object file of the previous
compilation, dir_xdr.o. The -o option places the executable output of the
compilation into the file rls:

earth% cc rls.c dir_clnt.c dir_xdr.o -o rls

2.2.7 Compiling the Server Side Program with rpcgen Output

The following statement compiles three files together: the server program
from the original rpcgen compilation, dir_svc.c; the remote READDIR
implementation program, dir_proc.c; and the object file, dir_xdr.o,
produced by the recent cc compilation of the file of XDR routines. Through
the -o option, the executable output is placed in the file dir_svc:

earth% cc dir_svc.c dir_proc.c dir_xdr.o -o dir_svc

2–14 Writing RPC Applications with the rpcgen Protocol Compiler

2.2.8 Running the Remote Directory Program

To run the remote directory program, use the new dir_svc and rls
commands. The following statement runs the dir_svc command in
background mode on the local machine earth:

earth% dir_svc &

The rls command can then be used from the remote machine space to
provide a directory listing on the machine where dir_svc is running in
background mode. The command and output (a directory listing of /usr/pub
on machine earth) is shown here:

space% rls earth /usr/pub
.
..
ascii
eqnchar
kbd
marg8
tabclr
tabs
tabs4

______________________ Note _______________________

Client code generated by rpcgen does not release the memory
allocated for the results of the RPC call. You can call xdr_free to
deallocate the memory when no longer needed. This is similar
to calling free, except that you must also pass the XDR routine
for the result.

Writing RPC Applications with the rpcgen Protocol Compiler 2–15

For example, after printing the directory listing in the previous
example, you could call xdr_free as follows:

xdr_free(xdr_readdir_res, result);

2.3 Debugging Applications
It is difficult to debug distributed applications that have separate client and
server processes. To simplify this, you can test the client program and the
server procedure as a single program by linking them with each other rather
than with the client and server skeletons. To do this, you must first remove
calls to client creation RPC library routines (for example, clnt_create).
To create the single debuggable file rls, use the -o option when you compile
rls.c, dir_clnt.c, dir_proc.c, and dir_xdr.c together as follows:

% cc rls.c dir_clnt.c dir_proc.c dir_xdr.c -o rls

The procedure calls are executed as ordinary local procedure calls and the
program can be debugged with a local debugger such as dbx. When the
program is working, the client program can be linked to the client skeleton
produced by rpcgen and the server procedures can be linked to the server
skeleton produced by rpcgen.

There are two kinds of errors possible in an RPC call:

• A problem with the remote procedure call mechanism

This occurs when a procedure is unavailable, the remote server does not
respond, the remote server cannot decode the arguments, and so on. As
in Example 2–7, an RPC error occurs if result is NULL.

The reason for the failure can be printed by using clnt_perror, or you
can return an error string through clnt_sperror.

• A problem with the server itself

As in Example 2–6, an error occurs if opendir fails; that is why
readdir_res is of type union. The handling of these types of errors are
the responsibility of the programmer.

2.4 The C-Preprocessor
The C-preprocessor, cpp, runs on all input files before they are compiled,
so all the preprocessor directives are legal within an .x file. Five macro
identifiers may have been defined, depending upon which output file is being
generated. The following table lists these macros:

Identifier Usage

RPC_HDR For header-file output

2–16 Writing RPC Applications with the rpcgen Protocol Compiler

RPC_XDR For XDR routine output

RPC_SVC For server-skeleton output

RPC_CLNT For client-skeleton output

RPC_TBL For index-table output

Also, rpcgen does some additional preprocessing of the input file. Any
line that begins with a percent sign (%) passes directly into the output file,
without any interpretation. Example 2–8 demonstrates this processing
feature.

Example 2–8: Using the Percent Sign to Bypass Interpretation of a Line

/*
* time.x: Remote time protocol
*/
program TIMEPROG {

version TIMEVERS {
unsigned int TIMEGET(void) = 1;

} = 1;
} = 44;

#ifdef RPC_SVC
%int *
%timeget_1()
%{
% static int thetime;
%
% thetime = time(0);
% return (&thetime);
%}
#endif

Using the percent sign feature does not guarantee that rpcgen will place
the output where you intend. If you have problems of this type, do not use
this feature.

2.5 rpcgen Programming
The following sections contain additional rpcgen programming information
about network types, defining symbols, inetd support, and dispatch tables.

2.5.1 Network Types

By default, rpcgen generates server code for both UDP and TCP transports.
The -s flag creates a server that responds to requests on the specified
transport. The following example creates a UDP server:

Writing RPC Applications with the rpcgen Protocol Compiler 2–17

rpcgen -s udp proto.x

2.5.2 User-Provided Define Statements

The rpcgen protocol compiler provides a way to define symbols and assign
values to them. These defined symbols are passed on to the C preprocessor
when it is invoked. This facility is useful when, for example, invoking
debugging code that is enabled only when the DEBUG symbol is defined.
For example:

rpcgen -DDEBUG proto.x

2.5.3 inetd Support

The rpcgen protocol compiler can create RPC servers that can be invoked
by inetd when a request for that service is received.

rpcgen -I proto.x

The server code in proto_svc.c supports inetd. For more information
on setting up the entry for RPC services in /etc/inetd.conf, see
Section 3.3.6.

In many applications, it is useful for services to wait after responding to a
request, on the chance that another will soon follow. However, if there is no
call within a certain time (by default, 120 seconds), the server exits and the
port monitor continues to monitor requests for its services. You can use the
-K option to change the default waiting time. In the following example, the
server waits only 20 seconds before exiting:

rpcgen -I -K 20 proto.x

If you want the server to exit immediately, use -K 0; if you want the server
to wait forever (a normal server situation), use -K -1.

2.5.4 Dispatch Tables

Dispatch tables are often useful. For example, the server dispatch routine
may need to check authorization and then invoke the service routine, or a
client library may need to control all details of storage management and XDR
data conversion. The following rpcgen command generates RPC dispatch
tables for each program defined in the protocol description file, proto.x,
and places them in the file proto_tbl.i (the suffix .i indicates index):

rpcgen -T proto.x

Each entry in the table is a struct rpcgen_table defined in the header
file, proto.h, as follows:

struct rpcgen_table {
char *(*proc)();

2–18 Writing RPC Applications with the rpcgen Protocol Compiler

xdrproc_t xdr_arg;
unsigned len_arg;
xdrproc_t xdr_res;
unsigned len_res;

};

In this proto.h definition, proc is a pointer to the service routine, xdr_arg
is a pointer to the input (argument) xdr_routine, len_arg is the length
in bytes of the input argument, xdr_res is a pointer to the output (result)
xdr_routine, and len_res is the length in bytes of the output result.

The table dirprog_1_table is indexed by procedure number. The variable
dirprog_1_nproc contains the number of entries in the table. The
find_proc routine in Example 2–9 shows how to locate a procedure in
the dispatch tables.

Example 2–9: Locating a Procedure in a Dispatch Table

struct rpcgen_table *
find_proc(proc)

long proc;
{

if (proc >= dirprog_1_nproc)

/* error */
else

return (&dirprog_1_table[proc]);
}

Each entry in the dispatch table contains a pointer to the corresponding
service routine. However, the service routine is not defined in the client code.
To avoid generating unresolved external references, and to require only one
source file for the dispatch table, the actual service routine initializer is
RPCGEN_ACTION(proc_ver). With this, you can include the same dispatch
table in both the client and the server. Use the following define statement
when compiling the client:

#define RPCGEN_ACTION(routine) 0

Next, use the following define statement when compiling the server:

#define RPCGEN_ACTION(routine) routine

2.6 Client Programming

The following sections contain client programming information about default
timeouts and client authentication.

Writing RPC Applications with the rpcgen Protocol Compiler 2–19

2.6.1 Timeout Changes

RPC sets a default timeout of 25 seconds for RPC calls when clnt_create
is used. RPC waits for 25 seconds to get the results from the server. If it does
not, then this usually means one of the following conditions exists:

• The server is not running

• The remote machine has crashed

• The network is unreachable

In such cases, the function returns NULL; you can print the error with
clnt_perrno.

Sometimes you may need to change the timeout value to accommodate the
application or because the server is too slow or far away. Change the timeout
by using clnt_control. The code segment in Example 2–10 demonstrates
the use of clnt_control.

Example 2–10: Using the clnt_control Routine

struct timeval tv;
CLIENT *cl;

cl = clnt_create("somehost", SOMEPROG, SOMEVERS, "tcp");
if (cl == NULL) {

exit(1);
}
tv.tv_sec = 60; /* change timeout to 1 minute */
tv.tv_usec = 0; /* this should always be set */
clnt_control(cl, CLSET_TIMEOUT, &tv);

2.6.2 Client Authentication

By default, client creation routines do not handle client authentication.
Sometimes, you may want the client to authenticate itself to the server. This
is easy to do, as shown in the following coding:

CLIENT *cl;

cl = client_create("somehost", SOMEPROG, SOMEVERS, "udp");
if (cl != NULL) {

/* To set UNIX style authentication */
cl->cl_auth = authunix_create_default();

}

For more information on authentication, see Section 3.3.5.

2–20 Writing RPC Applications with the rpcgen Protocol Compiler

2.7 Server Programming
The following sections contain server programming information about
system broadcasts and passing data to server procedures.

2.7.1 Handling Broadcasts

Sometimes, clients broadcast to determine whether a particular server exists
on the network, or to determine all the servers for a particular program and
version number. You make these calls with clnt_broadcast (for which
there is no rpcgen support). Refer to Section 3.3.2.

When a procedure is known to be called via broadcast RPC, it is best for the
server not to reply unless it can provide useful information to the client.
Otherwise, the network can be overloaded with useless replies. To prevent
the server from replying, a remote procedure can return NULL as its result;
the server code generated by rpcgen can detect this and prevent a reply.

The following example shows a procedure that replies only if it acts as an
NFS server:

void *
reply_if_nfsserver()
{

char notnull; /* just here so we can use its address */

if (access("/etc/exports", F_OK) < 0) {
return (NULL); /* prevent RPC from replying */

}
/*
* return non-null pointer so RPC will send out a reply
*/
return ((void *)¬null);

}

If a procedure returns type void *, it must return a non-NULL pointer if
it wants RPC to reply for it.

2.7.2 Passing Data to Server Procedures

Server procedures often need to know more about an RPC call than just its
arguments. For example, getting authentication information is useful to
procedures that want to implement some level of security. This information
is supplied to the server procedure as a second argument. (For details see
the structure of svc_req in Section 3.3.5.2.) The following example shows
the use of svc_req, where the previous printmessage_1 procedure is
rewritten to allow only root users to print a message to the console:

int *
printmessage_1(msg, rqstp)

Writing RPC Applications with the rpcgen Protocol Compiler 2–21

char **msg;
struct svc_req *rqstp;

{
static int result; /* Must be static */
FILE *f;
struct authunix_parms *aup;

aup = (struct authunix_parms *)rqstp->rq_clntcred;
if (aup->aup_uid != 0) {

result = 0;
return (&result);

}

/*
* Same code as before.
*/

}

2.8 RPC and XDR Languages

RPC language is an extension of XDR language, through the addition of
the program and version types. The XDR language is similar to C. For a
complete description of the XDR language syntax, see RFC 1014, External
Data Representation Standard: Protocol Specification . For a description of
the RPC extensions to the XDR language, see RFC 1050, Remote Procedure
Calls: Protocol Specification .

The following sections describe the syntax of the RPC and XDR languages,
with examples and descriptions of how the various RPC and XDR type
definitions are compiled into C type definitions in the output header file.

2.8.1 Definitions

An RPC language file consists of a series of definitions:

definition-list:
definition ";"
definition ";" definition-list

RPC recognizes the following definition types:

definition:
enum-definition
typedef-definition
const-definition
declaration-definition
struct-definition
union-definition
program-definition

2–22 Writing RPC Applications with the rpcgen Protocol Compiler

2.8.2 Enumerations

XDR enumerations have the same syntax as C enumerations:

enum-definition:
"enum" enum-ident "{"

enum-value-list
"}"

enum-value-list:
enum-value
enum-value "," enum-value-list

enum-value:
enum-value-ident
enum-value-ident "=" value

A comparison of the next two examples show how close XDR language is to
C by showing an XDR language enum (Example 2–11), followed by the C
language enum that results after compilation (Example 2–12).

Example 2–11: XDR enum Before Compilation

enum colortype {
RED = 0,
GREEN = 1,
BLUE = 2

};

Example 2–12: C enum Resulting from Compiling XDR enum

enum colortype {
RED = 0,
GREEN = 1,
BLUE = 2,

};
typedef enum colortype colortype;

2.8.3 Typedefs

XDR typedefs have the same syntax as C typedefs:

typedef-definition:
"typedef" declaration

The following example in XDR defines a fname_type that declares file name
strings with a maximum length of 255 characters:

typedef string fname_type<255>;

Writing RPC Applications with the rpcgen Protocol Compiler 2–23

The following example shows the corresponding C definition for this:

typedef char *fname_type;

2.8.4 Constants

XDR constants are used wherever an integer constant is used (for example,
in array size specifications), as shown by the following syntax:

const-definition:
"const" const-ident "=" integer

The following XDR example defines a constant DOZEN equal to 12:

const DOZEN = 12;

The following example shows the corresponding C definition for this:

#define DOZEN 12

2.8.5 Declarations

XDR provides only four kinds of declarations, shown by the following syntax:

declaration:
simple-declaration 1
fixed-array-declaration 2
variable-array-declaration 3
pointer-declaration 4

The syntax for each, followed by examples, is listed here:

1 Simple declarations

simple-declaration:
type-ident variable-ident

For example, colortype color in XDR, is the same in C: colortype
color.

2 Fixed-length array declarations

fixed-array-declaration:
type-ident variable-ident "[" value "]"

For example, colortype palette[8] in XDR, is the same in C:
colortype palette[8].

3 Variable-length array declarations

These have no explicit syntax in C, so XDR creates its own by using
angle brackets, as in the following syntax:

variable-array-declaration:
type-ident variable-ident "<" value ">"
type-ident variable-ident "<" ">"

2–24 Writing RPC Applications with the rpcgen Protocol Compiler

The maximum size is specified between the angle brackets; it may be
omitted, indicating that the array can be of any size, as shown in the
following example:

int heights<12>; /* at most 12 items */
int widths<>; /* any number of items */

Variable-length arrays have no explicit syntax in C, so each of their
declarations is compiled into a struct. For example, the heights
declaration is compiled into the following struct:

struct {
u_int heights_len; /* number of items in array */
int *heights_val; /* pointer to array */

} heights;

Here, the _len component stores the number of items in the array and
the _val component stores the pointer to the array. The first part of
each of these component names is the same as the name of the declared
XDR variable.

4 Pointer declarations

These are the same in XDR as in C. You cannot send pointers over
the network, but you can use XDR pointers to send recursive data
types, such as lists and trees. In XDR language, this type is called
optional-data, not pointer, as in the following syntax:

optional-data:
type-ident "*"variable-ident

An example of this (the same in both XDR and C) follows:

listitem *next;

2.8.6 Structures

XDR declares a struct almost exactly like its C counterpart. The XDR
syntax is the following:

struct-definition:
"struct" struct-ident "{"

declaration-list
"}"

declaration-list:
declaration ";"
declaration ";" declaration-list

The following example shows an XDR structure to a two-dimensional
coordinate, followed by the C structure into which it is compiled in the
output header file:

Writing RPC Applications with the rpcgen Protocol Compiler 2–25

struct coord {
int x;
int y;

};

The following example shows the C structure that results from compiling
the previous XDR structure:

struct coord {
int x;
int y;

};
typedef struct coord coord;

Here, the output is identical to the input, except for the added typedef at
the end of the output. This enables the use of coord instead of struct
coord in declarations.

2.8.7 Unions

XDR unions are discriminated unions, and are different from C unions.
They are more analogous to Pascal variant records than to C unions. The
syntax is shown here:

union-definition:
"union" union-ident "switch" ("simple declaration") "{"

case-list
"}"

case-list:
"case" value ":" declaration ";"
"case" value ":" declaration ";" case-list
"default" ":" declaration ";"

The following is an example of a type that might be returned as the result of
a read data. If there is no error, it returns a block of data; otherwise, it
returns nothing:

union read_result switch (int errno) {
case 0:

opaque data[1024];
default:

void;
};

This coding is compiled into the following:

struct read_result {
int errno;
union {

char data[1024];
} read_result_u;

};
typedef struct read_result read_result;

2–26 Writing RPC Applications with the rpcgen Protocol Compiler

Notice that the union component of the output struct has the same name
as the structure type name, except for the suffix, _u.

2.8.8 Programs

You declare RPC programs using the following syntax:

program-definition:
"program" program-ident "{"

version-list
"}" "=" value

version-list:
version ";"
version ";" version-list

version:
"version" version-ident "{"

procedure-list
"}" "=" value

procedure-list:
procedure ";"
procedure ";" procedure-list

procedure:
type-ident procedure-ident "("type-ident")" "=" value

Example 2–13 shows a program of time protocol.

Example 2–13: RPC Program Illustrating Time Protocol

/*
* time.x: Get or set the time. Time is represented as number
* of seconds since 0:00, January 1, 1970.
*/
program TIMEPROG {

version TIMEVERS {
unsigned int TIMEGET(void) = 1;
void TIMESET(unsigned) = 2;

} = 1;
} = 44;

This file compiles into the following #define statements in the output
header file:

#define TIMEPROG 44
#define TIMEVERS 1
#defRine TIMEGET 1
#define TIMESET 2

Writing RPC Applications with the rpcgen Protocol Compiler 2–27

2.8.9 Special Cases

The following list describes exceptions to the syntax rules described in the
previous sections:

• Booleans

C has no built-in Boolean type. However, the RPC library has a Boolean
type called bool_t that is either TRUE or FALSE. Items declared as type
bool in XDR language are compiled into bool_t in the output header
file. For example, bool married is compiled into bool_t married.

• Strings

C has no built-in string type, but instead uses the null-terminated char
* convention. In XDR language, you declare strings by using the string
keyword, and each string is compiled into a char * in the output header
file. The maximum size contained in the angle brackets specifies the
maximum number of characters allowed in the strings (excluding the
NULL character). For example, string name<32> would be compiled
into char *name. You can omit a maximum size to indicate a string of
arbitrary length. For example, string longname<> would be compiled
into char *longname.

• Opaque data

RPC and XDR use opaque data to describe untyped data, which consists
simply of sequences of arbitrary bytes. You declare opaque data as an
array of either fixed or variable length. An opaque declaration of a fixed
length array is opaque diskblock[512], whose C counterpart is char
diskblock[512]. An opaque declaration of a variable length array is
opaque filedata<1024>, whose C counterpart could be the following:

struct {
u_int filedata_len;
char *filedata_val;

} filedata;

• Voids

In a void declaration, the variable is not named. The declaration is
just a void. Declarations of void occur only in union and program
definitions (as the argument or result of a remote procedure).

2–28 Writing RPC Applications with the rpcgen Protocol Compiler

3
RPC Programming Interface

For most applications, you do not need the information in this chapter; you
can simply use the automatic features of the rpcgen protocol compiler
(described in Chapter 2. This chapter requires an understanding of
network theory; it is for programmers who must write customized network
applications using open-network computing remote procedure calls (ONC
RPC), and who need to know about the RPC mechanisms hidden by rpcgen.

3.1 RPC Layers

The ONC RPC interface consists of three layers, highest, middle, and lowest.
For ONC RPC programming, only the middle and lowest layers are of
interest; the highest layer is transparent to the operating system, machine,
and network upon which it is run. For a complete specification of the
routines in the remote procedure call library, see the rpc(3) reference page.

The middle layer routines are adequate for most applications. This layer is
“RPC proper” because you do not need to write additional programming
code for network sockets, the operating system, or any other low-level
implementation mechanisms. At this level, you simply make remote
procedure calls to routines on other machines. For example, you can make
simple ONC RPC calls by using the following system routines:

• registerrpc, which obtains a unique system-wide procedure-
identification number

• callrpc, which executes a remote procedure call

• svc_run, which calls a remote procedure in response to an RPC request

The middle layer is not suitable for complex programming tasks because it
sacrifices flexibility for simplicity. Although it is adequate for many tasks,
the middle layer does not enable the following:

• Timeout specifications

• Choice of transport

• Operating system process control

• Processing flexibility after occurrence of error

• Multiple kinds of call authentication

RPC Programming Interface 3–1

The lowest layer is suitable for programming tasks that require greater
efficiency or flexibility. The lowest layer routines include client creation
routines such as:

• clnt_create, which creates a client handle

• clnt_call, which calls the server svcudp_create, a server creation
routine, and svc_register, the server registration routine

The following sections describe the middle and lowest RPC layers.

3.1.1 Middle Layer of RPC

The middle layer is the simplest RPC program interface; from this layer you
make explicit RPC calls and use the functions callrpc and registerrpc.

3.1.1.1 Using callrpc

The simplest way to make remote procedure calls is through the RPC library
routine callrpc. The programming code in Example 3–1, which obtains the
number of remote users, shows the usage of callrpc.

Example 3–1: Using callrpc

/*
* Print the number of users on a remote systedm using callrpc
*/

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

main(argc, argv)
int argc;
char **argv;

{
unsigned long nusers;
int stat;

if (argc != 2) {
fprintf(stderr, "usage: nusers hostname\n");
exit(1);

}
if (stat = callrpc(argv[1],

RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
xdr_void, 0, xdr_u_long, &nusers) != 0) {

clnt_perrno(stat);
exit(1);

}
printf("%d users on %s\n", nusers, argv[1]);

3–2 RPC Programming Interface

Example 3–1: Using callrpc (cont.)

exit(0);
}

The callrpc library routine has eight parameters. In Example 3–1 the first
parameter, argv[1], is the name of the remote server machine. The next
three, RUSERSPROG, RUSERSVERS, and RUSERSPROC_NUM, are the program,
version, and procedure numbers that together identify the procedure to be
called. The fifth and sixth parameters are an XDR filter (xdr_void) and
an argument (0) to be encoded and passed to the remote procedure. You
provide an XDR filter procedure to encode or decode machine-dependent
data to or from the XDR format.

The final two parameters are an XDR filter, xdr_u_long, for decoding the
results returned by the remote procedure and a pointer, &nusers, to the
storage location of the procedure results. Multiple arguments and results
are handled by embedding them in structures.

If callrpc completes successfully, it returns zero; otherwise it returns a
nonzero value. The return codes are found in rpc/clnt.h. The callrpc
library routine needs the type of the RPC argument, as well as a pointer to
the argument itself (and similarly for the result). For RUSERSPROC_NUM, the
return value is an unsigned long. This is why callrpc has xdr_u_long
as its first return parameter, which means that the result is of type
unsigned long, and &nusers as its second return parameter, which is a
pointer to the location that stores the long result. RUSERSPROC_NUM takes
no argument, so the argument parameter of callrpc is xdr_void. In such
cases the argument must be NULL.

If callrpc gets no answer after trying several times to deliver a message, it
returns with an error code. Methods for adjusting the number of retries or
for using a different protocol require you to use the lower layer of the RPC
library, discussed in Section 3.1.2.

The remote server procedure corresponding to the callrpc usage example
might look like the one in Example 3–2.

Example 3–2: Remote Server Procedure

unsigned long *
nuser(indata)

char *indata;
{

static unsigned long nusers;

/*

RPC Programming Interface 3–3

Example 3–2: Remote Server Procedure (cont.)

* Code here to compute the number of users
* and place result in variable nusers.
*/
return(&nusers);

}

This procedure takes one argument, a pointer to the input of the remote
procedure call (ignored in the example), and returns a pointer to the result.
In the current version of C, character pointers are the generic pointers, so
the input argument and the return value can be cast to char *.

3.1.1.2 Using registerrpc

Normally, a server registers all of the RPC calls it plans to handle, and then
goes into an infinite loop waiting to service requests. Using rpcgen for this
also generates a server dispatch function. You can write a server yourself
by using registerrpc. Example 3–3 is a program segment showing how
you would use registerrpc in the main body of a server program that
registers a single procedure; the remote procedure call passes a single
unsigned long.

Example 3–3: Using registerrpc in the Main Body of a Server Program

#include <stdio.h>
#include <rpc/rpc.h> /* required */
#include <rpcsvc/rusers.h> /* for prog, vers definitions */

unsigned long *nuser();

main()
{

registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
nuser, xdr_void, xdr_u_long);

svc_run(); /* Never returns */
fprintf(stderr, "Error: svc_run returned!\n");
exit(1);

}

The registerrpc routine registers a procedure as corresponding to a
given RPC procedure number. The first three parameters, RUSERPROG,
RUSERSVERS, and RUSERSPROC_NUM, are the program, version, and
procedure numbers of the remote procedure to be registered; nuser is the
name of the local procedure that implements the remote procedure; and
xdr_void and xdr_u_long are the XDR filters for the remote procedure’s
arguments and results, respectively. (Multiple arguments or multiple results
are passed as structures.)

3–4 RPC Programming Interface

The underlying transport mechanism for registerrpc is UDP.

______________________ Note _______________________

The UDP transport mechanism can handle only arguments and
results that are less than 8K bytes in length.

After registering the local procedure, the main procedure of the server
program calls svc_run, the remote procedure dispatcher for the RPC
library; svc_run calls the remote procedures in response to RPC requests
and decodes remote procedure arguments and encodes results. To do this,
it uses the XDR filters specified when the remote procedure was registered
with registerrpc.

3.1.1.3 Passing Arbitrary Data Types

RPC can handle arbitrary data structures, regardless of machine
conventions, for byte order and structure layout, by converting them to
a network standard called External Data Representation (XDR) before
sending them over the network. The process of converting from a particular
machine representation to XDR format is called serializing, and the reverse
process is called deserializing. The type field parameters of callrpc and
registerrpc can be a built-in procedure like xdr_u_long (in the previous
example), or one that you supply. XDR has the following built-in routines:

Built-in XDR primitive routines:

xdr_hyper xdr_u_hyper xdr_enum

xdr_int xdr_u_int xdr_bool

xdr_long xdr_u_long xdr_wrapstring

xdr_longlong_t xdr_u_longlong_t

xdr_short xdr_u_short

xdr_char xdr_u_char

Other built-in XDR routines:

xdr_array xdr_bytes xdr_reference

xdr_vector xdr_union xdr_pointer

xdr_string xdr_opaque

You cannot use the xdr_string routine with either callrpc or
registerrpc, each of which passes only two parameters to an XDR routine.

RPC Programming Interface 3–5

Instead, use xdr_wrapstring, which takes only two parameters and calls
xdr_string.

3.1.1.4 User-Defined Routines

Suppose that you want to send the following structure:

struct simple {
int a;
short b;

} simple;

To send it, you would use the following callrpc call:

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
xdr_simple, &simple ...);

With this call to callrpc, you could define the routine xdr_simple as in
the following example:

#include <rpc/rpc.h>

xdr_simple(xdrsp, simplep)
XDR *xdrsp;
struct simple *simplep;

{
if (!xdr_int(xdrsp, &simplep->a))

return (0);
if (!xdr_short(xdrsp, &simplep->b))

return (0);
return (1);

}

An XDR routine returns nonzero (evaluates to TRUE in C) if it completes
successfully; otherwise, it returns zero: For a complete description of XDR,
refer to RFC 1014, XDR Protocol Specification and Appendix A.

______________________ Note _______________________

It is best to use rpcgen to generate XDR routines. Use the -c
option of rpcgen to generate only the _xdr.c file.

As another example, if you want to send a variable array of integers, you
might package them as a structure like this:

struct varintarr {
int *data;
int arrlnth;

} arr;

Then, you would make an RPC call such as this:

3–6 RPC Programming Interface

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM,
xdr_varintarr, &arr...);

You could then define xdr_varintarr as shown:

xdr_varintarr(xdrsp, arrp)
XDR *xdrsp;
struct varintarr *arrp;

{
return (xdr_array(xdrsp, &arrp->data, &arrp->arrlnth,

MAXLEN, sizeof(int), xdr_int));
}

This routine takes as parameters the XDR handle, a pointer to the array, a
pointer to the size of the array, the maximum allowable array size, the size
of each array element, and an XDR routine for handling each array element.

If you know the size of the array in advance, you can use xdr_vector, which
serializes fixed-length arrays, as shown in the following example:

int intarr[SIZE];

xdr_intarr(xdrsp, intarr)
XDR *xdrsp;
int intarr[];

{
return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int),

xdr_int));
}

3.1.1.5 XDR Serializing Defaults

XDR always converts quantities to 4-byte multiples when serializing. If the
examples in Section 3.1.1.4 had used characters instead of integers, each
character would occupy 32 bits. This is why XDR has the built-in routine
xdr_bytes, which is like xdr_array except that it packs characters.
The xdr_bytes routine has four parameters, similar to the first four
of xdr_array. For null-terminated strings, XDR provides the built-in
routine xdr_string, which is the same as xdr_bytes without the length
parameter.

When serializing, XDR gets the string length from strlen, and on
deserializing it creates a null-terminated string. The following example
calls the user-defined routine xdr_simple, as well as the built-in functions
xdr_string and xdr_reference (which locates pointers):

struct finalexample {
char *string;
struct simple *simplep;

} finalexample;

RPC Programming Interface 3–7

xdr_finalexample(xdrsp, finalp)
XDR *xdrsp;
struct finalexample *finalp;

{

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
return (0);

if (!xdr_reference(xdrsp, &finalp->simplep,
sizeof(struct simple), xdr_simple);

return (0);
return (1);

}

Note that xdr_simple could be called here instead of xdr_reference.

3.1.2 Lowest Layer of RPC

Examples in previous sections show how RPC handles many details
automatically through defaults. The following sections describe how to
change the defaults by using the lowest layer of the RPC library.

The following capabilities are available only with the lowest layer of RPC:

• It enables you to use TCP as the underlying transport instead of UDP,
which restricts RPC calls to only 8K bytes of data.

• It enables you to allocate and free memory explicitly while serializing
or deserializing with XDR routines. For more explanation, see
Section 3.1.2.3.

• It enables authentication on either the client or server side, through
credential verification.

3.1.2.1 The Server Side and the Lowest RPC Layer

The server for the nusers program in Example 3–4 does the same work as
the previous nuser program that used registerrpc (see Example 3–3).
However, it uses the lowest layer of RPC.

Example 3–4: Server Program Using Lowest Layer of RPC

#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>
#include <rpcsvc/rusers.h>

main()
{

SVCXPRT *transp;
int nuser();

transp = svcudp_create(RPC_ANYSOCK);
if (transp == NULL){

fprintf(stderr, "can’t create an RPC server\n");

3–8 RPC Programming Interface

Example 3–4: Server Program Using Lowest Layer of RPC (cont.)

exit(1);
}
pmap_unset(RUSERSPROG, RUSERSVERS);
if (!svc_register(transp, RUSERSPROG, RUSERSVERS,

nuser, IPPROTO_UDP)) {
fprintf(stderr, "can’t register RUSER service\n");
exit(1);

}
svc_run(); /* Never returns */
fprintf(stderr, "should never reach this point\n");

}

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
unsigned long nusers;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can’t reply to RPC call\n");

return;
case RUSERSPROC_NUM:

/*
* Code here to compute the number of users
* and assign it to the variable nusers
*/
if (!svc_sendreply(transp, xdr_u_long, &nusers))

fprintf(stderr, "can’t reply to RPC call\n");
return;

default:
svcerr_noproc(transp);
return;

}
}

In this example, the server gets a transport handle for receiving and replying
to RPC messages. If the argument to svcudp_create is RPC_ANYSOCK, the
RPC library creates a socket on which to receive and reply to RPC calls.
Otherwise, svcudp_create expects its argument to be a valid socket
number. If you specify your own socket, it can be bound or unbound. If
it is bound to a port by the user, the port numbers of svcudp_create
and clntudp_create (the low-level client routine) must match. The
registerrpc routine uses svcudp_create to get a UDP handle. If you
need a more reliable protocol, call svctcp_create instead.

After creating a handle with the command SVCXPRT *transp, the next
step is to call pmap_unset so that if the nusers server crashed earlier, any
previous trace of it is erased before restarting. More precisely, pmap_unset
erases the entry for RUSERSPROG from the port mapper tables.

RPC Programming Interface 3–9

Finally, associate the program number RUSERSPROG and the version
RUSERSVERS with the procedure nuser, which in this case is IPPROTO_UDP.
Unlike registerrpc, there are no XDR routines in the registration process,
and registration is at the program level rather than the procedure level.

A service can register its port number with the local portmapper service
by specifying a non-zero protocol number in the final argument of
svc_register. A client determines the server’s port number by consulting
the portmapper on its server machine. Specifying a zero port number in
clntudp_create or clnttcp_create does this automatically.

The user routine nuser must call and dispatch the appropriate XDR
routines based on the procedure number. The nusers routine explicitly
handles two cases that are taken care of automatically by registerrpc:

• The procedure NULLPROC (currently zero) returns with no results. This
can be used as a simple test for detecting if a remote program is running.

• There is a check for invalid procedure numbers; if one is detected,
svcerr_noproc is called to handle the error.

The nusers service routine serializes the results and returns them to the
RPC caller via svc_sendreply. Its first parameter is the SVCXPRT handle,
the second is the XDR routine, and the third is a pointer to the data to be
returned. It is not necessary to have nusers declared as static here
because svc_sendreply is called within that function itself.

To show how a server handles an RPC program that receives data, you
could add to the previous example, a procedure called RUSERSPROC_BOOL,
which has an argument nusers, and returns TRUE or FALSE depending
on whether the number of users logged on is equal to nusers. It would
look like this:

case RUSERSPROC_BOOL: {
int bool;
unsigned nuserquery;

if (!svc_getargs(transp, xdr_u_int, &nuserquery) {
svcerr_decode(transp);
return;

}
/*
* Code to set nusers = number of users
*/
if (nuserquery == nusers)

bool = TRUE;
else

bool = FALSE;
if (!svc_sendreply(transp, xdr_bool, &bool))

fprintf(stderr, "can’t reply to RPC call\n");

3–10 RPC Programming Interface

return;
}

Here, the svc_getargs routine takes as arguments an SVCXPRT handle,
the XDR routine, and a pointer to where the input is to be placed.

3.1.2.2 The Client Side and the Lowest RPC Layer

When you use callrpc, you cannot control the RPC delivery mechanism
and socket that transport the data. The lowest layer of RPC enables you to
modify these parameters, as shown in Example 3–5, which calls the nusers
service.

Example 3–5: Using Lowest RPC Layer to Control Data Transport and
Delivery

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>
#include <sys/time.h>
#include <netdb.h>

main(argc, argv)
int argc;
char **argv;

{
struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int sock = RPC_ANYSOCK;
register CLIENT *client;
enum clnt_stat clnt_stat;
unsigned long nusers;

if (argc != 2) {
fprintf(stderr, "usage: nusers hostname\n");
exit(-1);

}
if ((hp = gethostbyname(argv[1])) == NULL) {

fprintf(stderr, "can’t get addr for %s\n",argv[1]);
exit(-1);

}
pertry_timeout.tv_sec = 3;
pertry_timeout.tv_usec = 0;
bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,

hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin_port = 0;
if ((client = clntudp_create(&server_addr, RUSERSPROG,

RUSERSVERS, pertry_timeout, &sock)) == NULL) {
clnt_pcreateerror("clntudp_create");
exit(-1);

}
total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;
clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr_void,

0, xdr_u_long, &nusers, total_timeout);
if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit(-1);

RPC Programming Interface 3–11

Example 3–5: Using Lowest RPC Layer to Control Data Transport and
Delivery (cont.)

}
printf("%d users on %s\n", nusers, argv[1]);
clnt_destroy(client);
exit(0);

}

In this example, CLIENT pointer is encoded with the transport mechanism.
The callrpc routine uses UDP and calls clntudp_create to get a CLIENT
pointer; to get TCP you would use clnttcp_create.

The parameters to clntudp_create are the server address, the program
number, the version number, a timeout value (between tries), and a pointer
to a socket. When the sin_port is 0, the remote portmapper is queried to
find out the address of the remote service.

The low-level version of callrpc is clnt_call, which takes a CLIENT
pointer rather than a host name. The parameters to clnt_call are a
CLIENT pointer, the procedure number, the XDR routine for serializing the
argument, a pointer to the argument, the XDR routine for deserializing
the return value, a pointer to where the return value will be placed, and
the time in seconds to wait for a reply. If the client does not hear from the
server within the time specified in pertry_timeout, the request may
be sent again to the server. The number of tries that clnt_call makes
to contact the server is equal to the clnt_call timeout divided by the
clntudp_create timeout.

The clnt_destroy call always deallocates the space associated with the
CLIENT handle. It closes the socket associated with the CLIENT handle
only if the RPC library opened it. If the socket was opened by the user, it
remains open. This makes it possible, in cases where there are multiple
client handles using the same socket, to destroy one handle without closing
the socket that other handles are using.

To make a stream connection, the call to clntudp_create is replaced with
clnttcp_create:

clnttcp_create(&server_addr, prognum, versnum, &sock,
inbufsize, outbufsize);

Here, there is no timeout argument; instead, the receive and send buffer
sizes must be specified. When the clnttcp_create call is made, a
TCP connection is established. All RPC calls using that CLIENT handle
would use this connection. The server side of an RPC call using TCP has
svcudp_create replaced by svctcp_create:

transp = svctcp_create(RPC_ANYSOCK, 0, 0);

3–12 RPC Programming Interface

The last two arguments to svctcp_create are “send” and “receive” sizes,
respectively. If, as here, 0 is specified for either of these, the system chooses
default values.

The simplest routine that creates a client handle is clnt_create:

clnt = clnt_create(server_host, prognum, versnum, transport);

The parameters here are the name of the host on which the service resides,
the program and version number, and the transport to be used. The
transport can be either udp for UDP or tcp for TCP. You can change the
default timeouts by using clnt_control. For more information, refer to
Section 2.6.

3.1.2.3 Memory Allocation with XDR

To enable memory allocation, the second parameter of xdr_array is
a pointer to an array, rather than the array itself. If it is NULL, then
xdr_array allocates space for the array and returns a pointer to it, putting
the size of the array in the third argument. For example, the following XDR
routine xdr_chararr1, handles a fixed array of bytes with length SIZE:

xdr_chararr1(xdrsp, chararr)
XDR *xdrsp;
char chararr[];

{
char *p;
int len;

p = chararr;
len = SIZE;
return (xdr_bytes(xdrsp, &p, &len, SIZE));

}

Here, if space has already been allocated in chararr, it can be called from a
server like this:

char chararr[SIZE];

svc_getargs(transp, xdr_chararr1, chararr);

If you want XDR to do the allocation, you must rewrite this routine in this
way:

xdr_chararr2(xdrsp, chararrp)
XDR *xdrsp;
char **chararrp;

{
int len;

len = SIZE;

RPC Programming Interface 3–13

return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));
}

The RPC call might look like this:

char *arrptr;

arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);
/*
* Use the result here
*/
svc_freeargs(transp, xdr_chararr2, &arrptr);

After using the character array, you can free it with svc_freeargs; this
will not free any memory if the variable indicating it is NULL. For example,
in the earlier routine xdr_finalexample, if finalp->string was NULL,
it would not be freed. The same is true for finalp->simplep.

To summarize, each XDR routine is responsible for serializing, deserializing,
and freeing memory as follows:

• When an XDR routine is called from callrpc, the serializing part is
used.

• When called from svc_getargs, the deserializer is used.

• When called from svc_freeargs, the memory deallocator is used.

When building simple examples as shown in this section, you can ignore
the three modes. See Appendix A for examples of more sophisticated XDR
routines that determine mode and any required modification.

3.2 Raw RPC

Raw RPC refers to the use of pseudo-RPC interface routines that do not
use any real transport at all. These routines, clntraw_create and
svcraw_create, help in debugging and testing the non-communications
oriented aspects of an application before running it over a real network.
Example 3–6 shows their use.

Example 3–6: Debugging and Testing Noncommunication Parts of an
Application

/*
* A simple program to increment the number by 1
*/
#include <stdio.h>
#include <rpc/rpc.h>
#include <rpc/raw.h> /* required for raw */

struct timeval TIMEOUT = {0, 0};
static void server();

3–14 RPC Programming Interface

Example 3–6: Debugging and Testing Noncommunication Parts of an
Application (cont.)

main()
{

CLIENT *clnt;
SVCXPRT *svc;
int num = 0, ans;

if (argc == 2)
num = atoi(argv[1]);

svc = svcraw_create();
if (svc == NULL) {

fprintf(stderr, "Could not create server handle\n");
exit(1);

}
svc_register(svc, 200000, 1, server, 0);
clnt = clntraw_create(200000, 1);
if (clnt == NULL) {

clnt_pcreateerror("raw");
exit(1);

}
if (clnt_call(clnt, 1, xdr_int, &num, xdr_int, &num1,

TIMEOUT) != RPC_SUCCESS) {
clnt_perror(clnt, "raw");
exit(1);

}
printf("Client: number returned %d\n", num1);
exit(0) ;

}

static void
server(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
int num;

switch(rqstp->rq_proc) {
case 0:

if (svc_sendreply(transp, xdr_void, 0) == NULL) {
fprintf(stderr, "error in null proc\n");
exit(1);

}
return;

case 1:
break;

default:
svcerr_noproc(transp);
return;

}
if (!svc_getargs(transp, xdr_int, &num)) {

svcerr_decode(transp);
return;

}
num++;
if (svc_sendreply(transp, xdr_int, &num) == NULL) {

fprintf(stderr, "error in sending answer\n");
exit(1);

}
return;

RPC Programming Interface 3–15

Example 3–6: Debugging and Testing Noncommunication Parts of an
Application (cont.)

}

In this example,

• All the RPC calls occur within the same thread of control.

• svc_run is not called.

• It is necessary that the server be created before the client.

• svcraw_create takes no parameters.

• The last parameter to svc_register is 0, which means that it will not
register with portmapper.

• The server dispatch routine is the same as it is for normal RPC servers.

3.3 Miscellaneous RPC Features

The following sections describe other useful features for RPC programming.

3.3.1 Using Select on the Server Side

Suppose a process simultaneously responds to RPC requests and performs
another activity. If the other activity periodically updates a data structure,
the process can set an alarm signal before calling svc_run. However, if the
other activity must wait on a file descriptor, the svc_run call does not work.
The code for svc_run is as follows:

void
svc_run()
{

fd_set readfds;
int dtbsz = getdtablesize();

for (;;) {
readfds = svc_fds;
switch (select(dtbsz, &readfds, NULL,NULL,NULL)) {

case -1:
if (errno != EBADF)

continue;
perror("select");
return;

case 0:
continue;

default:
svc_getreqset(&readfds);

}
}

}

3–16 RPC Programming Interface

You can bypass svc_run and call svc_getreqset if you know the file
descriptors of the sockets associated with the programs you are waiting on.
In this way, you can have your own select that waits on the RPC socket,
and you can have your own descriptors. Note that svc_fds is a bit mask of
all the file descriptors that RPC uses for services. It can change whenever
any RPC library routine is called, because descriptors are constantly being
opened and closed; for example, for TCP connections.

______________________ Note _______________________

If you are handling signals in your application, do not make any
system call that accidentally sets errno. If this happens, reset
errno to its previous value before returning from your signal
handler.

3.3.2 Broadcast RPC

The portmapper required by broadcast RPC is a daemon that converts RPC
program numbers into DARPA protocol port numbers. The main differences
between broadcast RPC and normal RPC are the following:

• Normal RPC expects one answer, whereas broadcast RPC expects many
answers (one or more from each responding server).

• Broadcast RPC is supported only by packet-oriented (connectionless)
transport protocols like UDP/IP.

• Broadcast RPC filters out all unsuccessful responses; if a version
mismatch exists between the broadcaster and a remote service, the user
of broadcast RPC never knows.

• All broadcast messages are sent to the portmap port; thus, only services
that register themselves with their portmapper are accessible via
broadcast RPC.

• Broadcast requests are limited in size to 1400 bytes. Replies can be up to
8800 bytes (the current maximum UDP packet size).

In the following example, the procedure eachresult is called each time a
response is obtained. It returns a Boolean that indicates whether or not
the user wants more responses. If the argument to eachresult is NULL,
clnt_broadcast returns without waiting for any replies:

#include <rpc/pmap_clnt.h>
.
.
.

enum clnt_stat clnt_stat;
.
.
.

RPC Programming Interface 3–17

clnt_stat = clnt_broadcast(prognum, versnum, procnum,
inproc, in, outproc, out, eachresult)

u_long prognum; /* program number */
u_long versnum; /* version number */
u_long procnum; /* procedure number */
xdrproc_t inproc; /* xdr routine for args */
caddr_t in; /* pointer to args */
xdrproc_t outproc; /* xdr routine for results */
caddr_t out; /* pointer to results */
bool_t (*eachresult)();/* call with each result gotten */

In the following example, if done is TRUE, broadcasting stops and
clnt_broadcast returns successfully. Otherwise, the routine waits for
another response. The request is rebroadcast after a few seconds of waiting.
If no responses come back in a default total timeout period, the routine
returns with RPC_TIMEDOUT:
bool_t done;
.
.
.

done = eachresult(resultsp, raddr)
caddr_t resultsp;
struct sockaddr_in *raddr; /* Addr of responding server */

For more information, refer to Section 2.7.1.

3.3.3 Batching

In normal RPC, clients send a call message and wait for the server to reply
by indicating that the call succeeded. This implies that clients must wait
idle while servers process a call. This is inefficient if the client does not want
or need an acknowledgment for every message sent. However, calls made
by clients are buffered, causing no processing on the servers. When the
connection is flushed, a normal RPC request is sent, and processed by the
server, which sends back the reply.

RPC messages can be placed in a “pipeline” of calls to a desired server; this
is called batching, in which:

• No RPC call in the pipeline requires a response from the server, and the
server does not send a response message.

• The pipeline of calls is transported on a reliable byte stream transport,
such as TCP/IP.

Because the server does not respond to every call, the client can generate
new calls in parallel with the server executing previous calls. Also, the
TCP/IP implementation holds several call messages in a buffer and sends
them to the server in one write system call. This overlapped execution
greatly decreases the interprocess communication overhead of the client and
server processes, and the total elapsed time of a series of calls. Because the
batched calls are buffered, the client must eventually do a nonbatched call
to flush the pipeline.

3–18 RPC Programming Interface

In the following example of batching, assume that a string-rendering service
(for example, a window system) has two similar calls: one provides a string
and returns void results, and the other provides a string and does nothing
else. The service (using the TCP/IP transport) may look like Example 3–7.

Example 3–7: Batching RPC Messages

#include <stdio.h>
#include <rpc/rpc.h>
#include <suntool/windows.h>

void windowdispatch();

main()
{

SVCXPRT *transp;

transp = svctcp_create(RPC_ANYSOCK, 0, 0);
if (transp == NULL){

fprintf(stderr, "can’t create an RPC server\n");
exit(1);

}
pmap_unset(WINDOWPROG, WINDOWVERS);
if (!svc_register(transp, WINDOWPROG, WINDOWVERS,

windowdispatch, IPPROTO_TCP)) {
fprintf(stderr, "can’t register WINDOW service\n");
exit(1);

}
svc_run(); /* Never returns */
fprintf(stderr, "should never reach this point\n");

}

void
windowdispatch(rqstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

{
char *s = NULL;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can’t reply to RPC call\n");

return;
case RENDERSTRING:

if (!svc_getargs(transp, xdr_wrapstring, &s)) {
fprintf(stderr, "can’t decode arguments\n");
/*
* Tell caller he erred
*/
svcerr_decode(transp);
return;

}
/*
* Code here to render the string "s"
*/
if (!svc_sendreply(transp, xdr_void, NULL))

fprintf(stderr, "can’t reply to RPC call\n");
break;

case RENDERSTRING_BATCHED:
if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "can’t decode arguments\n");

RPC Programming Interface 3–19

Example 3–7: Batching RPC Messages (cont.)

/*
* We are silent in the face of protocol errors
*/
break;

}
/*
* Code here to render string s, but send no reply!
*/
break;

default:
svcerr_noproc(transp);
return;

}
/*
* Now free string allocated while decoding arguments
*/

svc_freeargs(transp, xdr_wrapstring, &s);
}

In this example, the service could have one procedure that takes the string
and a Boolean to indicate whether or not the procedure will respond. For
a client to use batching effectively, the client must perform RPC calls on a
TCP-based transport and the actual calls must have the following attributes:

• The XDR routine of the result must be zero (NULL).

• The timeout of the RPC call must be zero. (Do not rely on clnt_control
to assist in batching.)

If a UDP transport is used instead, the client call becomes a message to the
server and the RPC mechanism becomes simply a message passing system,
with no batching possible. In Example 3–8, a client uses batching to supply
several strings; batching is flushed when the client gets a null string (EOF).

Example 3–8: Client Batching

#include <stdio.h>
#include <rpc/rpc.h>
#include <suntool/windows.h>

main(argc, argv)
int argc;
char **argv;

{
struct timeval total_timeout;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[1000], *s = buf;

if ((client = clnt_create(argv[1],
WINDOWPROG, WINDOWVERS, "tcp")) == NULL) {

perror("clnttcp_create");
exit(-1);

}
total_timeout.tv_sec = 0; /* set timeout to zero */

3–20 RPC Programming Interface

Example 3–8: Client Batching (cont.)

total_timeout.tv_usec = 0;
while (scanf("%s", s) != EOF) {

clnt_stat = clnt_call(client, RENDERSTRING_BATCHED,
xdr_wrapstring, &s, NULL, NULL, total_timeout);

if (clnt_stat != RPC_SUCCESS) {
clnt_perror(client, "batching rpc");
exit(-1);

}
}

/* Now flush the pipeline */

total_timeout.tv_sec = 20;
clnt_stat = clnt_call(client, NULLPROC, xdr_void, NULL,

xdr_void, NULL, total_timeout);
if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "batching rpc");
exit(-1);

}
clnt_destroy(client);
exit(0);

}

In this example, the server sends no message, making the clients unable to
receive notice of any failures that may occur. Therefore, the clients must
handle any errors. This example was completed to render all of the lines
(approximately 2000) in the file /etc/termcap. The rendering service
simply discarded the entire file. The example was run in four configurations,
in different amounts of time:

• Machine to itself, regular RPC: 50 seconds

• Machine to itself, batched RPC: 16 seconds

• Machine to another, regular RPC: 52 seconds

• Machine to another, batched RPC: 10 seconds

Running only fscanf on /etc/termcap requires 6 seconds. These timings
show the advantage of protocols that enable overlapped execution, although
they are difficult to design.

3.3.4 Authentication of RPC Calls

In the examples presented so far, the caller never identified itself to
the server, nor did the server require it from the caller. Every RPC call
is authenticated by the RPC package on the server, and similarly, the
RPC client package generates and sends authentication parameters.
Just as different transports (TCP/IP or UDP/IP) can be used when
creating RPC clients and servers, different forms of authentication can
be associated with RPC clients; the default authentication type is none.

RPC Programming Interface 3–21

The authentication subsystem of the RPC package, with its ability to
create and send authentication parameters, can support commercially
available authentication software. This manual describes only one type of
authentication, authentication through the operating system.

3.3.5 Authentication Through the Operating System

The following sections describe client and server side authentication through
the operating system.

3.3.5.1 The Client Side

Assume that a caller creates the following new RPC client handle:

clnt = clntudp_create(address, prognum, versnum, wait, sockp)

The transport for this client handle defaults to the following associate
authentication handle:

clnt->cl_auth = authnone_create();

The RPC client can choose to use authentication that is native to the
operating system by setting clnt->cl_auth after creating the RPC client
handle:

clnt->cl_auth = authunix_create_default();

This causes each RPC call associated with clnt to carry with it the following
authentication credentials structure:

/*
* credentials native to the operating system
*/
struct authunix_parms {

u_long aup_time; /* credentials creation time */
char *aup_machname; /* host name where client is */
int aup_uid; /* client’s UNIX effective uid */
int aup_gid; /* client’s current group id */
u_int aup_len; /* element length of aup_gids */
int *aup_gids; /* array of groups user is in */

};

In this example, the fields are set by authunix_create_default by
invoking the appropriate system calls. Because the RPC user created this
new style of authentication, the user is responsible for destroying it (to save
memory) with the following:

auth_destroy(clnt->cl_auth);

3.3.5.2 The Server Side

It is difficult for service implementors to handle authentication because
the RPC package passes the service dispatch routine a request that has an

3–22 RPC Programming Interface

arbitrary authentication style associated with it. Consider the fields of a
request handle passed to a service dispatch routine:
/*
* An RPC Service request
*/
struct svc_req {

u_long rq_prog; /* service program number */
u_long rq_vers; /* service protocol vers num */
u_long rq_proc; /* desired procedure number */
struct opaque_auth rq_cred; /* raw credentials from wire */
caddr_t rq_clntcred; /* credentials (read only) */

};

The rq_cred is mostly opaque, except for one field, the style of
authentication credentials:
/*
* Authentication info. Mostly opaque to the programmer.
*/
struct opaque_auth {

enum_t oa_flavor; /* style of credentials */
caddr_t oa_base; /* address of more auth stuff */
u_int oa_length; /* not to exceed MAX_AUTH_BYTES */

};

The RPC package guarantees the following to the service dispatch routine:

• The rq_cred field of the request is well-formed; that is, the service
implementor can use the rq_cred.oa_flavor field of the request
to determine the authentication style used by the caller. The service
implementor can also inspect other fields of rq_cred if the style is not
supported by the RPC package.

• The rq_clntcred field of the request is either NULL or points to
a well-formed structure that corresponds to a supported style of
authentication credentials.

The rq_clntcred field also could be cast to a pointer to an authunix_parms
structure. If rq_clntcred is NULL, the service implementor can inspect
the other (opaque) fields of rq_cred to determine whether the service knows
about a new type of authentication that is unknown to the RPC package.

Example 3–9 extends the previous remote users service (see Example 3–3)
so that it computes results for all users except UID 16.

Example 3–9: Modifying the Remote Users Service

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
struct authunix_parms *unix_cred;
int uid;
unsigned long nusers;

/*
* we don’t care about authentication for null proc

RPC Programming Interface 3–23

Example 3–9: Modifying the Remote Users Service (cont.)

*/
if (rqstp->rq_proc == NULLPROC) {

if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can’t reply to RPC call\n");

return;
}
/*
* now get the uid
*/

switch (rqstp->rq_cred.oa_flavor) {

case AUTH_UNIX:
unix_cred =

(struct authunix_parms *)rqstp->rq_clntcred;
uid = unix_cred->aup_uid;
break;

case AUTH_NULL:

default: /* return weak authentication error */
svcerr_weakauth(transp);
return;

}
switch (rqstp->rq_proc) {

case RUSERSPROC_NUM:
/*
* make sure caller is allowed to call this proc
*/
if (uid == 16) {

svcerr_systemerr(transp);
return;

}
/*
* Code here to compute the number of users
* and assign it to the variable nusers
*/
if (!svc_sendreply(transp, xdr_u_long, &nusers))

fprintf(stderr, "can’t reply to RPC call\n");
return;

default:
svcerr_noproc(transp);
return;

}
}

As in this example, it is not customary to check the authentication
parameters associated with NULLPROC (procedure number zero). Also, if
the authentication parameter type is not suitable for your service, have
your program call svcerr_weakauth.

The service protocol itself returns status for access denied; in this example,
the protocol does not do this; instead, a call to the service primitive,
svcerr_systemerr, is made. RPC deals only with authentication and not
with the access control of an individual service. The services themselves

3–24 RPC Programming Interface

must implement their own access control policies and reflect these policies
as return statuses in their protocols.

3.3.6 Using the Internet Service Daemon (inetd)

You can start an RPC server from inetd. The only difference from the
usual code is that it is best to have the service creation routine called in the
following form because inetd passes a socket as file descriptor 0:

transp = svcudp_create(0); /* For UDP */
transp = svctcp_create(0,0,0); /* For listener TCP sockets */
transp = svcfd_create(0,0,0); /* For connected TCP sockets */

Also, call svc_register as follows, with the last parameter flag set to 0,
because the program is already registered with the portmapper by inetd:

svc_register(transp, PROGNUM, VERSNUM, service, 0);

If you want to exit from the server process and return control to inetd, you
must do so explicitly, because svc_run never returns.

The format of entries in /etc/inetd.conf for RPC services is in one of the
following two forms:

p_name/version dgram rpc/udp wait/nowait user server args

p_name/version stream rpc/tcp wait/nowait user server args

The variable, p_name, is the symbolic name of the program as it appears in
the file /etc/rpc; server is the program implementing the server; and
program and version are the program and version numbers of the service.
For more information, see inetd.conf(5)

If the same program handles multiple versions, then the version number
can be a range, as in this example:

rstatd/1-2 dgram rpc/udp wait root /usr/etc/rpc.rstatd

3.4 Additional Examples

The following sections present additional examples for server and client
sides, TCP, and callback procedures.

3.4.1 Program Versions on the Server Side

By convention, the first version of program PROG is designated as
PROGVERS_ORIG and the most recent version is PROGVERS. Suppose there
is a new version of the user program that returns an unsigned short
rather than a long. If you name this version RUSERSVERS_SHORT, then a
server that wants to support both versions would register both. It is not

RPC Programming Interface 3–25

necessary to create another server handle for the new version, as shown in
this segment of code:

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG,
nuser, IPPROTO_TCP)) {

fprintf(stderr, "can’t register RUSER service\n");
exit(1);

}
if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT,
nuser, IPPROTO_TCP)) {

fprintf(stderr, "can’t register new service\n");
exit(1);

}

You can handle both versions with the same C procedure, as in Example 3–10.

Example 3–10: C Procedure that Returns Two Different Data Types

nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

{
unsigned long nusers;
unsigned short nusers2;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "can’t reply to RPC call\n");
return;

}
return;

case RUSERSPROC_NUM:
/*
* Code here to compute the number of users
* and assign it to the variable, nusers
*/
nusers2 = nusers;
switch (rqstp->rq_vers) {
case RUSERSVERS_ORIG:

if (!svc_sendreply(transp, xdr_u_long,
&nusers)) {

fprintf(stderr,"can’t reply to RPC call\n");
}
break;

case RUSERSVERS_SHORT:
if (!svc_sendreply(transp, xdr_u_short,

&nusers2)) {
fprintf(stderr,"can’t reply to RPC call\n");

}
break;

3–26 RPC Programming Interface

Example 3–10: C Procedure that Returns Two Different Data Types (cont.)

}
default:

svcerr_noproc(transp);
return;

}
}

3.4.2 Program Versions on the Client Side

The network can have different versions of an RPC server. For example,
one server might run RUSERSVERS_ORIG, and another might run
RUSERSVERS_SHORT.

If the version of the server running does not match the version
number in the client creation routines, then clnt_call fails with a
RPCPROGVERSMISMATCH error. You can determine the version numbers
supported by the server and then create a client handle with an appropriate
version number. To do this, use clnt_create_vers (refer to rpc(3) for
more information) or the routine shown in Example 3–11.

Example 3–11: Determining Server-Supported Versions and Creating
Associated Client Handles

main()
{

enum clnt_stat status;
u_short num_s;
u_int num_l;
struct rpc_err rpcerr;
int maxvers, minvers;

clnt = clnt_create(host, RUSERSPROG,
RUSERSVERS_SHORT, "udp");

if (clnt == NULL) {
clnt_pcreateerror("clnt");
exit(-1);

}
to.tv_sec = 10; /* set the time outs */
to.tv_usec = 0;
status = clnt_call(clnt, RUSERSPROC_NUM,

xdr_void, NULL, xdr_u_short, &num_s, to);
if (status == RPC_SUCCESS) { /* We found the latest version number */

clnt_destroy(clnt);
printf("num = %d\n",num_s);
exit(0);

}
if (status != RPC_PROGVERSMISMATCH) { /* Some other error */

clnt_perror(clnt, "rusers");
exit(-1);

}
clnt_geterr(clnt, &rpcerr);
maxvers = rpcerr.re_vers.high; /* highest version supported */

RPC Programming Interface 3–27

Example 3–11: Determining Server-Supported Versions and Creating
Associated Client Handles (cont.)

minvers = rpcerr.re_vers.low; /* lowest version supported */
if (RUSERSVERS_ORIG < minvers ||

RUSERS_ORIG > maxvers) {
/* doesn’t meet minimum standards */
clnt_perror(clnt, "version mismatch");
exit(-1);

}
/* This version not supported */
clnt_destroy(clnt); /* destroy the earlier handle */
clnt = clnt_create(host, RUSERSPROG,

RUSERSVERS_ORIG, "udp"); /* try different version */
if (clnt == NULL) {

clnt_pcreateerror("clnt");
exit(-1);

}
status = clnt_call(clnt, RUSERSPROCNUM,

xdr_void, NULL, xdr_u_long, &num_l, to);
if (status == RPC_SUCCESS) { /* We found the latest version number */

printf("num = %d\n", num_l);
} else {

clnt_perror(clnt, "rusers");
exit(-1);

}
}

3.4.3 Using the TCP Transport

Example 3–12 works like the remote file copy command rcp; that is, the
initiator of the RPC call, snd, takes its standard input and sends it to the
server rcv, which prints it on standard output; the RPC call uses TCP.
The example also shows how an XDR procedure behaves differently on
serialization than on deserialization.

Example 3–12: RPC Call That Uses TCP Protocol

/*
* The xdr routine:
* on decode, read from wire, write onto fp
* on encode, read from fp, write onto wire
*/
#include <stdio.h>
#include <rpc/rpc.h>

xdr_rcp(xdrs, fp)
XDR *xdrs;
FILE *fp;

{
unsigned long size;
char buf[BUFSIZ], *p;

if (xdrs->x_op == XDR_FREE) /* nothing to free */
return (1);

while (1) {
if (xdrs->x_op == XDR_ENCODE) {

3–28 RPC Programming Interface

Example 3–12: RPC Call That Uses TCP Protocol (cont.)

if ((size = fread(buf, sizeof(char), BUFSIZ,
fp)) == 0 && ferror(fp)) {
fprintf(stderr, "can’t fread\n");
return (1);

}
}
p = buf;
if (!xdr_bytes(xdrs, &p, &size, BUFSIZ))

return (0);
if (size == 0)

return (1);
if (xdrs->x_op == XDR_DECODE) {

if (fwrite(buf, sizeof(char), size,
fp) != size) {
fprintf(stderr, "can’t fwrite\n");
return (1);

}
}

}
}
/*
* The sender routines
*/
#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include "rcp.h" /* for prog, vers definitions */

main(argc, argv)
int argc;
char **argv;

{
int xdr_rcp();
int err;

if (argc < 2) {
fprintf(stderr, "usage: %s servername\n", argv[0]);
exit(-1);

}
if ((err = callrpctcp(argv[1], RCPPROG, RCPPROC,

RCPVERS, xdr_rcp, stdin, xdr_void, 0) > 0)) {
clnt_perrno(err);
fprintf(stderr, "can’t make RPC call\n");
exit(1);

}
exit(0);

}

callrpctcp(host, prognum, procnum, versnum,
inproc, in, outproc, out)

char *host, *in, *out;
xdrproc_t inproc, outproc;

{
struct sockaddr_in server_addr;
int socket = RPC_ANYSOCK;
enum clnt_stat clnt_stat;
struct hostent *hp;
register CLIENT *client;
struct timeval total_timeout;

RPC Programming Interface 3–29

Example 3–12: RPC Call That Uses TCP Protocol (cont.)

if ((hp = gethostbyname(host)) == NULL) {
fprintf(stderr, "can’t get addr for ’%s’\n", host);
return (-1);

}
bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,

hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin_port = 0;
if ((client = clnttcp_create(&server_addr, prognum,

versnum, &socket, BUFSIZ, BUFSIZ)) == NULL) {
clnt_createerror("rpctcp_create");
return (-1);

}
total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;
clnt_stat = clnt_call(client, procnum,

inproc, in, outproc, out, total_timeout);
clnt_destroy(client);
return ((int)clnt_stat);

}
/*
* The receiving routines
*/
#include <stdio.h>
#include <rpc/rpc.h>
#include "rcp.h" /* for prog, vers definitions */

main()
{

register SVCXPRT *transp;
int rcp_service(), xdr_rcp();

if ((transp = svctcp_create(RPC_ANYSOCK,
BUFSIZ, BUFSIZ)) == NULL) {
fprintf("svctcp_create: error\n");
exit(1);

}
pmap_unset(RCPPROG, RCPVERS);
if (!svc_register(transp, RCPPROG,

RCPVERS, rcp_service, IPPROTO_TCP)) {
fprintf(stderr, "svc_register: error\n");
exit(1);

}
svc_run(); /* never returns */
fprintf(stderr, "svc_run should never return\n");

}
rcp_service(rqstp, transp)

register struct svc_req *rqstp;
register SVCXPRT *transp;

{
switch (rqstp->rq_proc) {
case NULLPROC:

if (svc_sendreply(transp, xdr_void, 0) == 0)
fprintf(stderr, "err: rcp_service");

return;
case RCPPROC_FP:

if (!svc_getargs(transp, xdr_rcp, stdout)) {
svcerr_decode(transp);
return;

}
if (!svc_sendreply(transp, xdr_void, 0))

3–30 RPC Programming Interface

Example 3–12: RPC Call That Uses TCP Protocol (cont.)

fprintf(stderr, "can’t reply\n");
return;

default:
svcerr_noproc(transp);
return;

}
}

3.4.4 Callback Procedures

It is sometimes useful to have a server become a client, and make an RPC
call back to the process that is its client. An example of this is remote
debugging, where the client is a window-system program and the server is a
debugger running on the remote machine. Mostly, the user clicks a mouse
button at the debugging window (converting this to a debugger command),
and then makes an RPC call to the server (where the debugger is actually
running), telling it to execute that command. However, when the debugger
reaches a breakpoint, the roles are reversed, and the debugger wants to
make an RPC call to the window program, so that it can tell the user that a
breakpoint has been reached.

Callbacks are also useful when the client cannot block (that is, wait) to hear
back from the server (possibly because of excessive processing in serving
the request). In such cases, the server could acknowledge the request and
use a callback to reply.

To do an RPC callback, you need a program number on which to make the
RPC call. The program number is dynamically generated, so it must be
in the transient range 0x40000000. The routine gettransient returns
a valid program number in the transient range, and registers it with the
portmapper. It only communicates with the portmapper running on the
same machine as the gettransient routine itself.

The call to pmap_set is a test-and-set operation, because it indivisibly tests
whether or not a program number has been registered; if not, it is reserved.
The following example shows the gettransient routine:

#include <stdio.h>
#include <rpc/rpc.h>

gettransient(proto, vers, portnum)
int proto;
u_long vers;
u_short portnum;

{
static u_long prognum = 0x40000000;

RPC Programming Interface 3–31

while (!pmap_set(prognum++, vers, proto, portnum))
continue;

return (prognum - 1);
}

Note that the call to ntohs for portnum is unnecessary because it was
already passed in host byte order (as pmap_set expects).

The following list describes how the client/server programs in Example 3–13
use the gettransient routine:

• The client makes an RPC call to the server, passing it a transient
program number.

• The client waits to receive a callback from the server at that program
number.

• The server registers the program (EXAMPLEPROG), so that it can receive
the RPC call informing it of the callback program number.

• At some random time (on receiving an ALRM signal in this example), it
sends a callback RPC call, using the program number it received earlier.

In Example 3–13, both the client and the server are on the same machine;
otherwise, host name handling would be different.

Example 3–13: Client-Server Usage of gettransient Routine

/*
* client
*/
#include <stdio.h>
#include <rpc/rpc.h>
#include "example.h"

int callback();

main()
{

int tmp_prog;
char hostname[256];
SVCXPRT *xprt;
int stat;

gethostname(hostname, sizeof(hostname));
if ((xprt = svcudp_create(RPC_ANYSOCK)) == NULL) {

fprintf(stderr, "rpc_server: svcudp_create\n");
exit(1);

}
if (tmp_prog = gettransient(IPPROTO_UDP, 1,

xprt->xp_port) == 0) {
fprintf(stderr, "failed to get transient number\n");
exit(1);

}
fprintf(stderr, "client gets prognum %d\n", tmp_prog);

/* protocol is 0 - gettransient does registering */

3–32 RPC Programming Interface

Example 3–13: Client-Server Usage of gettransient Routine (cont.)

(void)svc_register(xprt, tmp_prog, 1, callback, 0);
stat = callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, xdr_int, &tmp_prog, xdr_void, 0);

if (stat != RPC_SUCCESS) {
clnt_perrno(stat);
exit(1);

}
svc_run();
fprintf(stderr, "Error: svc_run shouldn’t return\n");

}

callback(rqstp, transp)
register struct svc_req *rqstp;
register SVCXPRT *transp;

{
switch (rqstp->rq_proc) {

case 0:
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "err: exampleprog\n");
return (1);

}
return (0);

case 1:
fprintf(stderr, "client got callback\n");
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf(stderr, "err: exampleprog\n");
return (1);

}
}
return (0);

}
/*
* server
*/
#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/signal.h>
#include "example.h"

char *getnewprog();
char hostname[256];
int docallback();
int pnum = -1; /* program number for callback routine */

main()
{

gethostname(hostname, sizeof(hostname));
registerrpc(EXAMPLEPROG, EXAMPLEVERS,

EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);
signal(SIGALRM, docallback);
alarm(10);
svc_run();
fprintf(stderr, "Error: svc_run shouldn’t return\n");

}

char *
getnewprog(pnump)

int *pnump;

RPC Programming Interface 3–33

Example 3–13: Client-Server Usage of gettransient Routine (cont.)

{
pnum = *(int *)pnump;
return NULL;

}

docallback()
{

int ans;

if (pnum == -1) {
signal(SIGALRM, docallback);
return; /* program number not yet received */

}
ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0,

xdr_void, 0);
if (ans != RPC_SUCCESS)

fprintf(stderr, "server: %s\n",clnt_sperrno(ans));
}

3–34 RPC Programming Interface

A
External Data Representation: Technical

Notes

This appendix contains technical notes on the External Data Representation
(XDR) standard, a set of library routines that enable C programmers to
describe arbitrary data structures in a machine-independent way. For a
formal specification of the XDR standard, see RFC1014 , External Data
Representation: Protocol Specification.

XDR is the backbone of the Open Network Computing Remote Procedure
Call (ONC RPC) package, because data for remote procedure calls is
transmitted using the XDR standard. Use the XDR library routines to
transmit data that is read or written from several types of machine. For a
complete specification of the system External Data Representation routines,
see the xdr(3) reference page.

This appendix also contains a short tutorial overview of the XDR library
routines, a guide to accessing currently available XDR streams, and
information on defining new streams and data types.

XDR was designed to work across different languages, operating systems,
and machine architectures. Most users (particularly RPC users) only need
the information on number filters (Section A.1.3.1), floating-point filters
(Section A.1.3.2), and enumeration filters (Section A.1.3.3). Programmers
who want to implement RPC and XDR on new machines should read the
rest of the appendix.

______________________ Note _______________________

You can use rpcgen to write XDR routines regardless of whether
RPC calls are being made.

C programs that need XDR routines must include the file <rpc/rpc.h>,
which contains all necessary interfaces to the XDR system. The C library
libc.a contains all the XDR routines, so you can compile as usual.

A.1 Usefulness of XDR

Consider the following two programs, writer.c and reader.c:

External Data Representation: Technical Notes A–1

#include <stdio.h>

main() /* writer.c */
{
long i;

for (i = 0; i < 8; i++) {
if (fwrite((char *)&i, sizeof(i), 1, stdout) != 1) {
fprintf(stderr, "failed!\n");
exit(1);

}
}
exit(0);
}

#include <stdio.h>

main() /* reader.c */
{
long i, j;

for (j = 0; j < 8; j++) {
if (fread((char *)&i, sizeof (i), 1, stdin) != 1) {
fprintf(stderr, "failed!\n");
exit(1);

}
printf("%ld ", i);
}
printf("\n");
exit(0);
}

The two programs appear to be portable because:

• They pass lint checking.

• They work the same when executed on two different hardware
architectures, a Sun and a MIPS.

Piping the output of the writer.c program to the reader.c program gives
identical results on a MIPS or a Sun, as shown:

sun% writer | reader
0 1 2 3 4 5 6 7
sun%

mips% writer | reader
0 1 2 3 4 5 6 7
mips%

With local area networks and Berkeley UNIX 4.2BSD came the concept
of network pipes, in which a process produces data on one machine, and

A–2 External Data Representation: Technical Notes

a second process on another machine uses this data. You can construct a
network pipe with writer.c and reader.c. Here, the first process (on a
Sun) produces data used by a second process (on a MIPS):

sun% writer | rsh mips reader
0 16777216 33554432 50331648 67108864 83886080 100663296
117440512
sun%

You get identical results by executing writer.c on the MIPS and reader.c
on the Sun. These results occur because the byte ordering of long integers
differs between the MIPS and the Sun, although the word size is the same.
Note that 16777216 is equal to 2 24; when four bytes are reversed, the 1 is
in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for
portable data. You can make programs data-portable by replacing the read
and write calls with calls to an XDR library routine xdr_long, which is
a filter that recognizes the standard representation of a long integer in its
external form. Here are the revised versions of writer.c (Example A–1)
and reader.c (Example A–2):

Example A–1: Revised Version of writer.c

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

main() /* writer.c */
{
XDR xdrs;
long i;

xdrstdio_create(&xdrs, stdout, XDR_ENCODE);
for (i = 0; i < 8; i++) {
if (!xdr_long(&xdrs, &i)) {
fprintf(stderr, "failed!\n");
exit(1);

}
}
exit(0);
}

Example A–2: Revised Version of reader.c

#include <stdio.h>
#include <rpc/rpc.h> /* XDR is a sub-library of RPC */

main() /* reader.c */
{

External Data Representation: Technical Notes A–3

Example A–2: Revised Version of reader.c (cont.)

XDR xdrs;
long i, j;

xdrstdio_create(&xdrs, stdin, XDR_DECODE);
for (j = 0; j < 8; j++) {
if (!xdr_long(&xdrs, &i)) {
fprintf(stderr, "failed!\n");
exit(1);

}
printf("%ld ", i);
}
printf("\n");
exit(0);
}

The new programs were executed on a MIPS, a Sun, and from a Sun to
a MIPS; the results are as follows:

sun% writer | reader
0 1 2 3 4 5 6 7
sun%

mips% writer | reader
0 1 2 3 4 5 6 7
mips%

sun% writer | rsh mips reader
0 1 2 3 4 5 6 7
sun%

______________________ Note _______________________

Arbitrary data structures create portability problems, particularly
with alignment and pointers:

• Alignment on word boundaries may cause the size of a
structure to vary on different machines.

• A pointer has no meaning outside the machine where it is
defined.

A.1.1 A Canonical Standard

The XDR approach to standardizing data representations is canonical,
because XDR defines a single byte order (big-endian), a single floating-point

A–4 External Data Representation: Technical Notes

representation (IEEE), and so on. A program running on any machine can
use XDR to create portable data by translating its local representation to
the XDR standard. Similarly, any such program can read portable data by
translating the XDR standard representation to the local equivalent.

The single standard treats separately those programs that create or send
portable data and those that use or receive the data. A new machine or
language has no effect upon existing portable data creators and users.
Any new machine simply uses the canonical standards of XDR; the local
representations of other machines are irrelevant. To existing programs
on other machines, the local representations of the new machine are
also irrelevant. There are strong precedents for the canonical approach
of XDR. For example, TCP/IP, UDP/IP, XNS, Ethernet, and all protocols
below layer five of the ISO model, are canonical protocols. The advantage
of any canonical approach is simplicity; in the case of XDR, a single set of
conversion routines is written once.

The canonical approach does have one disadvantage of little practical
importance. Suppose two little-endian machines transfer integers according
to the XDR standard. The sending machine converts the integers from
little-endian byte order to XDR (big-endian) byte order, and the receiving
machine does the reverse. Because both machines observe the same byte
order, the conversions were really unnecessary. Fortunately, the time
spent converting to and from a canonical representation is insignificant,
especially in networking applications. Most of the time required to prepare
a data structure for transfer is not spent in conversion but in traversing
the elements of the data structure.

A.1.2 The XDR Library

The XDR library enables you to write and read arbitrary C constructs
consistently. This makes it useful even when the data is not shared among
machines on a network. The XDR library can do this because it has filter
routines for strings (null-terminated arrays of bytes), structures, unions,
and arrays. Using more primitive routines, you can write your own specific
XDR routines to describe arbitrary data structures, including elements of
arrays, arms of unions, or objects pointed at from other structures. The
structures themselves may contain arrays of arbitrary elements, or pointers
to other structures.

The previous writer.c and reader.c routines manipulate data by using
standard I/O routines, so xdrstdio_create was used. The parameters to
XDR stream creation routines vary according to their function. For example,
xdrstdio_create takes the following parameters:

• A pointer to an XDR structure that it initializes

• A pointer to a FILE that the input or output acts upon

External Data Representation: Technical Notes A–5

• The operation — either XDR_ENCODE for serializing in writer.c or
XDR_DECODE for deserializing in reader.c

It is not necessary for RPC users to create XDR streams; the RPC system
itself can create these streams and pass them to the users. There is a family
of XDR stream creation routines in which each member treats the stream of
bits differently.

The xdr_long primitive is characteristic of most XDR library primitives
and all client XDR routines for two reasons:

• The routine returns FALSE (0) if it fails, and TRUE (1) if it succeeds.

• For each data type xxx, there is an associated XDR routine of the form:

xdr_xxx(xdrs, xp)
XDR *xdrs;
xxx *xp;

{
}

In this case, xxx is long, and the corresponding XDR routine is a primitive,
xdr_long. The client could also define an arbitrary structure xxx in
which case the client would also supply the routine xdr_xxx, describing
each field by calling XDR routines of the appropriate type. In all cases,
the first parameter, xdrs, is treated as an opaque handle and passed to
the primitive routines.

XDR routines are direction-independent; that is, the same routines are
called to serialize or deserialize data. This feature is important for portable
data. Calling the same routine for either operation practically guarantees
that serialized data can also be deserialized. Thus, one routine is used by
both producer and consumer of networked data.

You implement direction independence by passing the address of an object
rather than the object itself (only with deserialization is the object modified).
If needed, the user can obtain the direction of the XDR operation. See
Section A.1.5 for details.

For a more complicated example, assume that a person’s gross assets and
liabilities are to be exchanged among processes, and each is a separate data
type:

struct gnumbers {
long g_assets;
long g_liabilities;
};

The corresponding XDR routine describing this structure would be as follows:

bool_t /* TRUE is success, FALSE is failure */
xdr_gnumbers(xdrs, gp)

A–6 External Data Representation: Technical Notes

XDR *xdrs;
struct gnumbers *gp;
{
if (xdr_long(xdrs, &gp->g_assets) &&

xdr_long(xdrs, &gp->g_liabilities))
return(TRUE);
return(FALSE);
}

In this example, the parameter, xdrs, is never inspected or modified; it is
only passed to subcomponent routines. The program must inspect the return
value of each XDR routine call and stop immediately and return FALSE
upon subroutine failure.

This example also shows that the type bool_t is declared as an integer
whose only value is TRUE (1) or FALSE (0). The following definitions apply:

#define bool_t int
#define TRUE 1
#define FALSE 0

With these conventions, you can rewrite xdr_gnumbers as follows:

xdr_gnumbers(xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;
{
return(xdr_long(xdrs, &gp->g_assets) &&
xdr_long(xdrs, &gp->g_liabilities));

}

Either coding style can be used.

A.1.3 XDR Library Primitives

The following sections describe the XDR primitives (basic and constructed
data types) and XDR utilities. The include file <rpc/xdr.h>, (automatically
included by <rpc/rpc.h>) defines the interface to these primitives and
utilities.

A.1.3.1 Number Filters

The XDR library provides primitives that translate between numbers and
their corresponding external representations. Primitives include the set of
numbers in:

[signed, unsigned] * [short, int, long]

Specifically, the eight primitives are:

bool_t xdr_char(xdrs, cp)
XDR *xdrs;

External Data Representation: Technical Notes A–7

char *cp;

bool_t xdr_u_char(xdrs, ucp)
XDR *xdrs;
unsigned char *ucp;

bool_t xdr_hyper(xdrs, hp)
XDR *xdrs;
longlong_t *hp;

bool_t xdr_u_hyper(xdrs, uhp)
XDR *xdrs;
u_longlong_t *uhp;

bool_t xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

bool_t xdr_u_int(xdrs, up)
XDR *xdrs;
unsigned *up;

bool_t xdr_long(xdrs, lip)
XDR *xdrs;
long *lip;

bool_t xdr_u_long(xdrs, lup)
XDR *xdrs;
u_long *lup;

bool_t xdr_longlong_t(xdrs, hp)
XDR *xdrs;
longlong_t *hp;

bool_t xdr_u_longlong_t(xdrs, uhp)
XDR *xdrs;
u_long *uhp;

bool_t xdr_short(xdrs, sip)
XDR *xdrs;
short *sip;

bool_t xdr_u_short(xdrs, sup)
XDR *xdrs;
u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter
is the address of the number that provides data to the stream or receives
data from it. All routines return TRUE if they complete successfully, and
FALSE otherwise.

A–8 External Data Representation: Technical Notes

For more information on number filters, see the xdr(3) reference page.

A.1.3.2 Floating Point Filters

The XDR library also provides primitive routines for floating point types in C:

bool_t xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

bool_t xdr_double(xdrs, dp)
XDR *xdrs;
double *dp;

The first parameter, xdrs, is an XDR stream handle. The second parameter
is the address of the floating point number that provides data to the stream
or receives data from it. Both routines return TRUE if they complete
successfully, and FALSE otherwise.

______________________ Note _______________________

Because the numbers are represented in IEEE floating point,
routines may fail when decoding a valid IEEE representation into
a machine-specific representation, or vice versa.

A.1.3.3 Enumeration Filters

The XDR library provides a primitive for generic enumerations; it assumes
that a C enum has the same representation inside the machine as a C
integer. The Boolean type is an important instance of the enum. The
external representation of a Boolean is always TRUE (1) or FALSE (0) as
shown here:

#define bool_t int
#define FALSE 0
#define TRUE 1

#define enum_t int

bool_t xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

bool_t xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

The second parameters ep and bp are addresses of the associated type that
provides data to, or receives data from, the stream xdrs.

External Data Representation: Technical Notes A–9

A.1.3.4 Possibility of No Data

Occasionally, an XDR routine must be supplied to the RPC system, even
when no data is passed or required. The following routine does this:

bool_t xdr_void(); /* always returns TRUE */

A.1.3.5 Constructed Data Type Filters

Constructed or compound data type primitives require more parameters
and perform more complicated functions than the primitives previously
discussed. The following sections include primitives for strings, arrays,
unions, and pointers to structures.

Constructed data type primitives may use memory management. In many
cases, memory is allocated when deserializing data with XDR_DECODE.
XDR enables memory deallocation through the XDR_FREE operation. The
three XDR directional operations are XDR_ENCODE, XDR_DECODE, and
XDR_FREE.

A.1.3.5.1 Strings

In C, a string is defined as a sequence of bytes terminated by a NULL byte,
which is not considered when calculating string length. When a string is
passed or manipulated, there must be a pointer to it. Therefore, the XDR
library defines a string to be a char *, not a sequence of characters. The
external and internal representations of a string are different. Externally,
strings are represented as sequences of ASCII characters; internally, with
character pointers. The xdr_string routine converts between the two, as
shown:

bool_t xdr_string(xdrs, sp, maxlength)
XDR *xdrs;
char **sp;
u_int maxlength;

The first parameter, xdrs, is the XDR stream handle; the second, sp, is
a pointer to a string (type char **). The third parameter, maxlength,
specifies the maximum number of bytes allowed during encoding or
decoding; its value is usually specified by a protocol. For example, a protocol
may specify that a file name cannot be longer than 255 characters. Keep
maxlength small because overflow conditions may occur if xdr_string
has to call malloc for space. The routine returns FALSE if the number of
characters exceeds maxlength; otherwise, it returns TRUE.

The behavior of xdr_string is similar to that of other routines in this
section. For the direction, XDR_ENCODE, the parameter sp points to a string
of a certain length; if the string does not exceed maxlength, the bytes are
serialized.

A–10 External Data Representation: Technical Notes

The effect of deserializing a string is subtle. First, the length of the
incoming string is determined; it must not exceed maxlength. Next, sp is
dereferenced; if the value is NULL, then a string of the appropriate length
is allocated and *sp is set to this string. If the original value of *sp is
non-NULL, then XDR assumes that a target area (which can hold strings
no longer than maxlength) has been allocated. In either case, the string is
decoded into the target area, and the routine appends a NULL character to it.

In the XDR_FREE operation, the string is obtained by dereferencing sp. If the
string is not NULL, it is freed and *sp is set to NULL. In this operation,
xdr_string ignores the maxlength parameter.

A.1.3.5.2 Byte Arrays

Often, variable-length arrays of bytes are preferable to strings. Byte arrays
differ from strings in the following three ways:

• The length of the array (the byte count) is explicitly located in an
unsigned integer.

• The byte sequence is not terminated by a NULL character.

• The external and internal byte representation is the same.

The primitive xdr_bytes converts between the internal and external
representations of byte arrays:

bool_t xdr_bytes(xdrs, bpp, lp, maxlength)
XDR *xdrs;
char **bpp;
u_int *lp;
u_int maxlength;

The usage of the first, second, and fourth parameters are identical to the
same parameters of xdr_string. The length of the byte area is obtained
by dereferencing lp when serializing; *lp is set to the byte length when
deserializing.

A.1.3.5.3 Arrays

The XDR library provides a primitive for handling arrays of arbitrary
elements. The xdr_bytes routine treats a subset of generic arrays, in which
the size of array elements is known to be 1, and the external description of
each element is built-in. The generic array primitive, xdr_array requires
parameters identical to those of xdr_bytes in addition to two more: the size
of array elements, and an XDR routine to handle each of the elements.

This routine encodes or decodes each array element:

bool_t
xdr_array(xdrs, ap, lp, maxlength, elementsiz, xdr_element)

External Data Representation: Technical Notes A–11

XDR *xdrs;
char **ap;
u_int *lp;
u_int maxlength;
u_int elementsiz;
bool_t (*xdr_element)();

The parameter ap is the address of the pointer to the array. If *ap is
NULL when the array is being deserialized, XDR allocates an array of the
appropriate size and sets *ap to that array. The element count of the array
is obtained from *lp when the array is serialized; *lp is set to the array
length when the array is deserialized. The parameter maxlength is the
maximum allowable number of array elements; elementsiz is the byte size
of each array element. (You can also use the C function sizeof to obtain
this value.) The xdr_element routine is called to serialize, deserialize, or
free each element of the array.

Consider the following three examples, which show the recursiveness of the
XDR library routines already discussed.

• A user on a networked machine can be identified in three ways:

– The machine name, such as krypton; (see the gethostname(2)
reference page)

– The user’s UID; (see the geteuid(2) reference page)

– The group numbers to which the user belongs; (see the getgroups(2)
reference page)

A structure with this information and its associated XDR routine could
be coded like this:

struct netuser {
char *nu_machinename;
int nu_uid;
u_int nu_glen;
int *nu_gids;

};
#define NLEN 255 /* machine names < 256 chars */
#define NGRPS 20 /* user can’t be in > 20 groups */
bool_t
xdr_netuser(xdrs, nup)
XDR *xdrs;
struct netuser *nup;

{
return(xdr_string(xdrs, &nup->nu_machinename, NLEN) &&
xdr_int(xdrs, &nup->nu_uid) &&
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen,
NGRPS, sizeof (int), xdr_int));

}

A–12 External Data Representation: Technical Notes

• A party of network users could be implemented as an array of netuser
structure. The declaration and its associated XDR routines are as follows:

struct party {
u_int p_len;
struct netuser *p_nusers;

};
#define PLEN 500 /* max number of users in a party */

bool_t
xdr_party(xdrs, pp)
XDR *xdrs;
struct party *pp;

{
return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,

sizeof (struct netuser), xdr_netuser));
}

• The parameters to main— argc and argv— can be combined into a
structure, and an array of these structures can make up a history of
commands. The declarations and XDR routines might look like:

struct cmd {
u_int c_argc;
char **c_argv;

};
#define ALEN 1000 /* args cannot be > 1000 chars */
#define NARGC 100 /* commands cannot have > 100 args */

struct history {
u_int h_len;
struct cmd *h_cmds;

};
#define NCMDS 75 /* history is no more than 75 commands */

bool_t
xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;

{
return(xdr_string(xdrs, sp, ALEN));
}

bool_t
xdr_cmd(xdrs, cp)
XDR *xdrs;
struct cmd *cp;

{
return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,

sizeof (char *), xdr_wrapstring));
}

External Data Representation: Technical Notes A–13

bool_t
xdr_history(xdrs, hp)
XDR *xdrs;
struct history *hp;

{
return(xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,

sizeof (struct cmd), xdr_cmd));
}

The routine xdr_wrapstring is needed to package the xdr_string
routine, because the implementation of xdr_array only passes two
parameters to the array element description routine; xdr_wrapstring
supplies the third parameter to xdr_string.

A.1.3.5.4 Opaque Data

Some protocols pass handles from a server to a client. The client later passes
back the handles, without first inspecting them; that is, handles are opaque.
The xdr_opaque primitive describes fixed-size, opaque bytes:

bool_t xdr_opaque(xdrs, p, len)
XDR *xdrs;
char *p;
u_int len;

The parameter p is the location of the bytes; len is the number of bytes in
the opaque object. By definition, the data within the opaque object is not
machine-portable.

A.1.3.5.5 Arrays of Fixed Size

The XDR library provides a primitive, xdr_vector, for fixed-length arrays:

#define NLEN 255 /* machine names must be < 256 chars */
#define NGRPS 20 /* user belongs to exactly 20 groups */

struct netuser {
char *nu_machinename;
int nu_uid;
int nu_gids[NGRPS];
};

bool_t
xdr_netuser(xdrs, nup)
XDR *xdrs;
struct netuser *nup;
{
int i;

if (!xdr_string(xdrs, &nup->nu_machinename, NLEN))

A–14 External Data Representation: Technical Notes

return(FALSE);
if (!xdr_int(xdrs, &nup->nu_uid))
return(FALSE);
if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int),

xdr_int)) {
return(FALSE);

}
return(TRUE);
}

A.1.3.5.6 Discriminated Unions

The XDR library supports discriminated unions. A discriminated union is
a C union and an enum_t value that selects an arm of the union:

struct xdr_discrim {
enum_t value;
bool_t (*proc)();
};

bool_t xdr_union(xdrs, dscmp, unp, arms, defaultarm)
XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr_discrim *arms;
bool_t (*defaultarm)(); /* may equal NULL */

In this example, the routine translates the discriminant of the union at
*dscmp. The discriminant is always an enum_t. Next, the union at *unp is
translated. The parameter arms is a pointer to an array of xdr_discrim
structures. Each structure contains an ordered pair of [value,proc].

If the union’s discriminant is equal to the associated value, then the proc
is called to translate the union. The end of the xdr_discrim structure
array is denoted by a routine of value NULL. If the discriminant is not in
the arms array, then the defaultarm procedure is called if it is non-null;
otherwise the routine returns FALSE.

The following example shows how to serialize or deserialize a discriminated
union. Suppose that the type of a union is an integer, character pointer (a
string), or a gnumbers structure. Also, assume the union and its current
type are declared in a structure, as follows:

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u_tag {
enum utype utype; /* the union’s discriminant */
union {
int ival;
char *pval;

External Data Representation: Technical Notes A–15

struct gnumbers gn;
} uval;
};

The following constructs and XDR procedure serialize or deserialize the
discriminated union:

struct xdr_discrim u_tag_arms[4] = {
{ INTEGER, xdr_int },
{ GNUMBERS, xdr_gnumbers }
{ STRING, xdr_wrapstring },
{ __dontcare__, NULL }
/* always terminate arms with a NULL xdr_proc */
}

bool_t
xdr_u_tag(xdrs, utp)
XDR *xdrs;
struct u_tag *utp;
{
return(xdr_union(xdrs, &utp->utype, &utp->uval,
u_tag_arms, NULL));

}

The routine xdr_gnumbers was presented in Section A.1.2 and
xdr_wrapstring was presented in Example C in Section A.1.3.5.3. The
default arm parameter to xdr_union (the last parameter) is NULL in
Example D. Therefore, the value of the union’s discriminant can only be
a value listed in the u_tag_arms array. Example D also shows that the
elements of the arm’s array do not need to be sorted.

The values of the discriminant may be sparse, though in Example D they
are not. It is always good practice to assign explicitly integer values to
each element of the discriminant’s type. This will document the external
representation of the discriminant and guarantee that different C compilers
provide identical discriminant values.

A.1.3.5.7 Pointers

In C it is useful to put within a structure any pointers to another structure.
The xdr_reference primitive makes it easy to serialize, deserialize, and
free these referenced structures. A structure of structure pointers is shown
here:

bool_t xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int ssize;
bool_t (*proc)();

A–16 External Data Representation: Technical Notes

Parameter pp is the address of the pointer to the structure, ssize is the size
in bytes of the structure (use the C function sizeof to obtain this value),
and proc is the XDR routine that describes the structure. When decoding
data, storage is allocated if *pp is NULL.

There is no need for a primitive xdr_struct to describe a structure within
a structure, because pointers are always sufficient.

______________________ Note _______________________

The xdr_reference and xdr_array primitives are not
interchangeable external representations of data.

The following example describes a structure (and its corresponding XDR
routine) that contains an item of data and a pointer to a gnumbers structure
that has more information about that item of data. Suppose there is a
structure containing a person’s name and a pointer to a gnumbers structure
containing the person’s gross assets and liabilities. This structure has the
following construct:

struct pgn {
char *name;
struct gnumbers *gnp;
};

This structure has the following corresponding XDR routine:

bool_t
xdr_pgn(xdrs, pp)
XDR *xdrs;
struct pgn *pp;
{
if (xdr_string(xdrs, &pp->name, NLEN) &&
xdr_reference(xdrs, &pp->gnp,
sizeof(struct gnumbers), xdr_gnumbers))

return(TRUE);
return(FALSE);
}

In many applications, C programmers attach double meaning to the values of
a pointer. Typically the value NULL means data is not necessary, but some
application-specific interpretation applies. In essence, the C programmer is
encoding a discriminated union efficiently by overloading the interpretation
of the value of a pointer.

For example, in the previous structure, a NULL pointer value for gnp could
indicate that the person’s assets and liabilities are unknown; that is, the
pointer value encodes two things: whether or not the data is known, and

External Data Representation: Technical Notes A–17

if it is known, where it is located in memory. Linked lists are an extreme
example of the use of application-specific pointer interpretation.

The primitive xdr_reference cannot attach any special meaning to a
NULL-value pointer during serialization. That is, passing an address of a
pointer whose value is NULL to xdr_reference when serializing data will
most likely cause a memory fault and a core dump.

The xdr_pointer correctly handles NULL pointers. For more information
about its use, see Section A.2.

A.1.4 Non-filter Primitives

The non-filter primitives that follow are for manipulating XDR streams:

u_int xdr_getpos(xdrs)
XDR *xdrs;

bool_t xdr_setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

xdr_destroy(xdrs)
XDR *xdrs;

The routine xdr_getpos returns an unsigned integer that describes the
current position in the data stream.

______________________ Note _______________________

In some XDR streams, the returned value of xdr_getpos is
meaningless; the routine returns a −1 in this case (though −1
should be a legitimate value).

The routine xdr_setpos sets a stream position to pos. However, in some
XDR streams, setting a position is impossible; in such cases, xdr_setpos
returns FALSE. This routine also fails if the requested position is
out-of-bounds. The definition of bounds varies according to the stream.

The xdr_destroy primitive destroys the XDR stream. Usage of the stream
after calling this routine is undefined.

A.1.5 XDR Operation Directions

Though not recommended, you may want to optimize XDR routines by
using the direction of the operation — XDR_ENCODE, XDR_DECODE, or
XDR_FREE. For example, the value xdrs->x_op contains the direction

A–18 External Data Representation: Technical Notes

of the XDR operation. An example in Section A.2 shows the usefulness of
the xdrs->x_op field.

A.1.6 XDR Stream Access

An XDR stream is obtained by calling the appropriate creation routine,
which takes arguments for the specific properties of the stream. Streams
currently exist for serialization or deserialization of data to or from standard
I/O FILE streams, TCP/IP connections and files, and memory.

A.1.6.1 Standard I/O Streams

XDR streams can be interfaced to standard I/O using the xdrstdio_create
routine as follows:

#include <stdio.h>
#include <rpc/rpc.h> /* XDR streams part of RPC */
void
xdrstdio_create(xdrs, fp, x_op)
XDR *xdrs;
FILE *fp;
enum xdr_op x_op;

The routine xdrstdio_create initializes an XDR stream pointed to by
xdrs. The XDR stream interfaces to the standard I/O library. Parameter
fp is an open file, and x_op is an XDR direction.

A.1.6.2 Memory Streams

A memory stream enables the streaming of data into or out of a specified
area of memory:

#include <rpc/rpc.h>

void
xdrmem_create(xdrs, addr, len, x_op)
XDR *xdrs;
char *addr;
u_int len;
enum xdr_op x_op;

The routine xdrmem_create initializes an XDR stream in local memory that
is pointed to by parameter addr; parameter len is the length in bytes of the
memory. The parameters xdrs and x_op are identical to the corresponding
parameters of xdrstdio_create. Currently, the UDP/IP implementation
of ONC RPC uses xdrmem_create. Complete call or result messages are
built in memory before calling the sendto system routine.

External Data Representation: Technical Notes A–19

A.1.6.3 Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record marking
standard; that is, in turn, built on top of a file or a Berkeley UNIX 4.2BSD
connection interface, as shown:

#include <rpc/rpc.h> /* xdr streams part of rpc */

xdrrec_create(xdrs,
sendsize, recvsize, iohandle, readproc, writeproc)
XDR *xdrs;
u_int sendsize, recvsize;
char *iohandle;
int (*readproc)(), (*writeproc)();

The routine xdrrec_create provides an XDR stream interface that allows
for a bidirectional, arbitrarily long sequence of records. The contents of the
records are meant to be data in XDR form. The stream’s primary use is for
interfacing RPC to TCP connections. However, it can be used to stream data
into or out of ordinary files.

The parameter xdrs is similar to the corresponding parameter described
in Section A.1.6.2. The stream does its own data buffering, similar to that
of standard I/O. The parameters sendsize and recvsize determine the
size in bytes of the output and input buffers, respectively; if their values are
zero, defaults are used. When a buffer needs to be filled or flushed, the
routine readproc or writeproc is called, respectively. The usage of these
routines is similar to the system calls read and write. However, the first
parameter to each routine is the opaque parameter iohandle. The other
two parameters (buf and nbytes) and the results (byte count) are identical
to the system routines. If xxx is readproc or writeproc, then it has the
following form:

/* returns the actual number of bytes transferred;
* −1 is an error
*/

int
xxx(iohandle, buf, len)
char *iohandle;
char *buf;
int nbytes;

The XDR stream enables you to delimit records in the byte stream. This is
discussed in Section A.2. The following primitives are specific to record
streams:

bool_t
xdrrec_endofrecord(xdrs, flushnow)

A–20 External Data Representation: Technical Notes

XDR *xdrs;
bool_t flushnow;

bool_t
xdrrec_skiprecord(xdrs)
XDR *xdrs;

bool_t
xdrrec_eof(xdrs)
XDR *xdrs;

The routine xdrrec_endofrecord causes the current outgoing data to be
marked as a record. If the parameter flushnow is TRUE, then the stream’s
writeproc will be called; otherwise, writeproc will be called when the
output buffer has been filled.

The routine xdrrec_skiprecord causes an input stream’s position to be
moved past the current record boundary and onto the beginning of the next
record in the stream. If there is no more data in the stream’s input buffer,
then the routine xdrrec_eof returns TRUE. This does not mean that there
is no more data in the underlying file descriptor.

A.1.7 XDR Stream Implementation

This section provides the abstract data types needed to implement new
instances of XDR streams.

The following structure defines the interface to an XDR stream:

enum xdr_op { XDR_ENCODE=0, XDR_DECODE=1, XDR_FREE=2 };

typedef struct {
enum xdr_op x_op; /* operation; fast added param */
struct xdr_ops {
bool_t (*x_getlong)(); /* get long from stream */
bool_t (*x_putlong)(); /* put long to stream */
bool_t (*x_getbytes)(); /* get bytes from stream */
bool_t (*x_putbytes)(); /* put bytes to stream */
u_int (*x_getpostn)(); /* return stream offset */
bool_t (*x_setpostn)(); /* reposition offset */
caddr_t (*x_inline)(); /* ptr to buffered data */
VOID (*x_destroy)(); /* free private area */
} *x_ops;
caddr_t x_public; /* users’ data */
caddr_t x_private; /* pointer to private data */
caddr_t x_base; /* private for position info */
int x_handy; /* extra private word */
} XDR;

External Data Representation: Technical Notes A–21

The x_op field is the current operation being performed on the stream. This
field is important to the XDR primitives, but is not expected to affect the
implementation of a stream. The fields x_private, x_base, and x_handy
pertain to a particular stream implementation. The field x_public is for the
XDR client and must not be used by the XDR stream implementations or the
XDR primitives. The macros x_getpostn, x_setpostn, and x_destroy,
access operations. The operation x_inline takes two parameters: an XDR
*, and an unsigned integer, which is a byte count. The routine returns a
pointer to a piece of the stream’s internal buffer. The caller can then use
the buffer segment for any purpose. To the stream, the bytes in the buffer
segment have been consumed or put. The routine may return NULL if it
cannot return a buffer segment of the requested size. (The x_inline routine
is for maximizing efficient use of machine cycles. The resulting buffer is not
data-portable, so using this feature is not recommended.)

The operations x_getbytes and x_putbytes get and put sequences of
bytes from or to the underlying stream; they return TRUE if successful, and
FALSE otherwise. The routines have identical parameters (replace xxx):

bool_t
xxxbytes(xdrs, buf, bytecount)
XDR *xdrs;
char *buf;
u_int bytecount;

The x_getlong and x_putlong routines receive and put long numbers
to and from the data stream. These routines must translate the numbers
between the machine representation and the (standard) external
representation. The operating system primitives htonl and ntohl help
to do this. The higher-level XDR implementation assumes that signed
and unsigned long integers contain the same number of bits, and
that nonnegative integers have the same bit representations as unsigned
integers. The routines return TRUE if they succeed, and FALSE otherwise.
They have identical parameters:

bool_t
xxxlong(xdrs, lp)
XDR *xdrs;
long *lp;

Implementors of new XDR streams must make an XDR structure (with new
operation routines) available to clients, using some kind of creation routine.

A.2 Advanced Topics

This section describes advanced techniques for passing data structures,
such as linked lists (of arbitrary length). The examples in this section are

A–22 External Data Representation: Technical Notes

written using both the XDR C library routines and the XDR data description
language.

The following example presents a C data structure and its associated XDR
routines for an individual’s gross assets and liabilities. The example is
duplicated here:

struct gnumbers {
long g_assets;
long g_liabilities;
};
bool_t
xdr_gnumbers(xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;
{
if (xdr_long(xdrs, &(gp->g_assets)))
return(xdr_long(xdrs, &(gp->g_liabilities)));
return(FALSE);
}

If you want to implement a linked list of such information, you could
construct the following data structure:

struct gnumbers_node {
struct gnumbers gn_numbers;
struct gnumbers_node *gn_next;
};

typedef struct gnumbers_node *gnumbers_list;

The head of the linked list can be thought of as the data object; that is, the
head is not merely a convenient shorthand for a structure. Similarly the
gn_next field indicates whether the object has terminated. Unfortunately,
if the object continues, the gn_next field is also the address of where it
continues. The link addresses carry no useful information when the object
is serialized.

The XDR data description of this linked list is described by the recursive
declaration of gnumbers_list:

struct gnumbers {
int g_assets;
int g_liabilities;
};

struct gnumbers_node {
gnumbers gn_numbers;
gnumbers_node *gn_next;
};

External Data Representation: Technical Notes A–23

Here, the Boolean indicates whether there is more data following it. If
the Boolean is FALSE, then it is the last data field of the structure; if
TRUE, then it is followed by a gnumbers structure and (recursively) by a
gnumbers_list. Note that the C declaration has no Boolean explicitly
declared in it (though the gn_next field implicitly carries the information),
while the XDR data description has no pointer explicitly declared in it. From
the XDR description in the previous paragraph, you can determine how to
write the XDR routines for a gnumbers_list. That is, the xdr_pointer
primitive would implement the XDR union. Unfortunately — due to
recursion — using XDR on a list with the following routines causes the C
stack to grow linearly with respect to the number of nodes in the list:

bool_t
xdr_gnumbers_node(xdrs, gn)
XDR *xdrs;
gnumbers_node *gn;
{
return(xdr_gnumbers(xdrs, &gn->gn_numbers) &&
xdr_gnumbers_list(xdrs, &gp->gn_next));

}
bool_t
xdr_gnumbers_list(xdrs, gnp)
XDR *xdrs;
gnumbers_list *gnp;
{
return(xdr_pointer(xdrs, gnp,
sizeof(struct gnumbers_node),
xdr_gnumbers_node));

}

The following routine combines these two mutually recursive routines into
a single, non-recursive one:

bool_t
xdr_gnumbers_list(xdrs, gnp)
XDR *xdrs;
gnumbers_list *gnp;
{
bool_t more_data;
gnumbers_list *nextp;

for (;;) {
more_data = (*gnp != NULL);
if (!xdr_bool(xdrs, &more_data)) {
return(FALSE);

}
if (! more_data) {
break;

}
if (xdrs->x_op == XDR_FREE) {

A–24 External Data Representation: Technical Notes

nextp = &(*gnp)->gn_next;
}
if (!xdr_reference(xdrs, gnp,
sizeof(struct gnumbers_node), xdr_gnumbers)) {

return(FALSE);
}
gnp = (xdrs->x_op == XDR_FREE) ?
nextp : &(*gnp)->gn_next;

}
*gnp = NULL;
return(TRUE);
}

The first task is to find out whether there is more data or not, so that
Boolean information can be serialized. Notice that this is unnecessary in the
XDR_DECODE case, because the value of more_data is not known until it is
deserialized in the next statement, which uses XDR on the more_data field
of the XDR union. If there is no more data, this last pointer is set to NULL to
indicate the list end, and a TRUE is returned to indicate completion. Setting
the pointer to NULL is only important in the XDR_DECODE case, since it is
already NULL in the XDR_ENCODE and XDR_FREE cases.

Next, if the direction is XDR_FREE, the value of nextp is set to indicate the
location of the next pointer in the list. This is for dereferencing gnp to find
the location of the next item in the list; after the next statement, the storage
pointed to by gnp is deallocated and is no longer valid. This cannot be done
for all directions because, in the XDR_DECODE direction, the value of gnp
is not set until the next statement.

Next, XDR operates on the data in the node through the primitive
xdr_reference, which is like xdr_pointer (which was used before).
However, xdr_reference does not send over the Boolean indicating
whether there is more data; it is used instead of xdr_pointer because XDR
has already been used on this information. Notice that the XDR routine
passed is not the same type as an element in the list. The routine passed
is xdr_gnumbers, for using XDR on gnumbers; however, each element in
the list is of type gnumbers_node. The xdr_gnumbers_node is not passed
because it is recursive; instead, use xdr_gnumbers, which uses XDR on all
of the non-recursive part. Note that this works only if the gn_numbers field
is the first item in each element, so that the addresses are identical when
passed to xdr_reference.

Next, gnp is updated to point to the next item in the list. If the direction
is XDR_FREE, it is set to the previously saved value; otherwise, gnp is
dereferenced to get the proper value. Although more difficult to understand
than the recursive version, the non-recursive routine is much less likely
to overflow the C stack. It also runs more efficiently because a lot of

External Data Representation: Technical Notes A–25

procedure call overhead has been removed. Most lists are small though (in
the hundreds of items or less) and the recursive version should be sufficient
for them.

A–26 External Data Representation: Technical Notes

Index

A
arbitrary data types, 3–5
assigning program numbers, 1–5
authentication, 3–21, 3–22

of client, 2–20

B
broadcast RPC, 2–21, 3–17
built-in routines of XDR, 3–5

C
C-preprocessor and rpcgen, 2–16
callback

and RPC, 3–31
caller process, 1–1
calling program

RPC, 3–11
callrpc routine, 3–2
client

authentication, 2–20
compiling with rpcgen, 2–8
programming with rpcgen, 2–19
versions of, 3–27

client handle used by rpcgen, 2–7
constant

and rpcgen, 2–24

D
daemon

inetd, 2–18, 3–25
data types

arbitrary, 3–5
debugging with rpcgen, 2–16
declaration, 2–24
define statements, 2–18
direction of XDR operations, A–18
dispatch table, 2–18

E
enum clnt_stat in RPC

programming, 3–3
enumerations and rpcgen, 2–23

I
inetd daemon

rpcgen support for, 2–18
using to start an RPC server, 3–25

L
layers of RPC, 3–1

lowest, 3–2
middle, 3–1

library primitives for XDR, A–7
lowest layer of RPC, 3–8

M
memory allocation with XDR,

3–13
messages

batching, 3–18

Index–1

N
network types, 2–17

O
ONC RPC

(See RPC)

P
pointer semantics and XDR, A–17
program number assignment, 1–5
program versions

on client side, 3–27
on server side, 3–25

programming with rpcgen, 2–17

R
raw RPC, 3–14
registerrpc routine, 3–4
remote procedure call, 1–1
RPC, 1–1, 3–1

(See also rpcgen)
administration, 1–6
advanced example of, 2–9
authentication, 3–21
broadcast, 3–17
built-in routines, 3–5
callback procedures, 3–31
calling side, 3–11
generating XDR routines, 2–9
language, 2–22
layers, 3–1
lowest layer, 3–2, 3–8
middle layer, 3–1
miscellaneous features, 3–16
raw, 3–14
select, 3–16
server side, 3–8
simplified interface, 3–2
versions on client side, 3–27

versions on server side, 3–25
RPC language

overview, 1–1
RPC programming, 3–1

enum clnt_stat, 3–3
RPC server

starting with the inetd daemon,
3–25

rpcgen, 2–1
(See also RPC)
broadcast RPC, 2–21
client authentication, 2–20
client programming, 2–19
constants, 2–24
debugging with, 2–16
declarations, 2–24
definitions, 2–22
dispatch tables, 2–18
enumerations, 2–23
inetd support, 2–18
local procedures, 2–2
network types, 2–17
programming with, 2–17, 2–27
remote procedures, 2–2
server programming, 2–21
special cases, 2–28
structures, 2–25
timeout changes, 2–20
typedef, 2–23
unions, 2–26
using C-preprocessor with, 2–16
using client handles with, 2–7

rpcgen protocol compiler
running, 2–7

S
select, 3–17
select system call

using on the server side, 3–16
server, 3–8

compiling with rpcgen, 2–8
programming of, 2–21

Index–2

versions of, 3–25
server process, 1–1
simplified interface of RPC, 3–2
stream implementation in XDR,

A–21
structures

XDR, 2–25

T
TCP, 3–28
timeout change, 2–20
typedef

using with rpcgen, 2–23

U
UDP 8K warning, 3–5
unions

XDR, 2–26

V
versions

(See program versions)
program versions, 3–25

X
XDR, 2–1, A–1

advanced topics, A–22
canonical standard, A–4
enumerations, 2–23
library for, A–5
library primitives, A–7
linked lists, A–23
memory allocation, 3–13
memory streams, A–19
non-filter primitives, A–18
object, A–21
operation directions, A–18

portable data, A–4
record (TCP/IP) streams, A–20
standard I/O streams, A–19
stream access, A–19
stream implementation, A–21
system routines, A–1
technical notes, A–1
unions in, 2–26
using pointer semantics with, A–17

XDR library, A–7
arrays, A–11
byte arrays, A–11
constructed data type filters, A–10
discriminated unions, A–15
enumeration filters, A–9
fixed sized arrays, A–14
floating point filters, A–9
no data, A–10
number filters, A–7
opaque data, A–14
pointers, A–16
strings, A–10

XDR routine
compiling, 2–14
unions, 2–26

xdr_array, A–11
xdr_bytes, A–11
xdr_destroy, A–18
xdr_element, A–12
xdr_getpos, A–18
xdr_long, A–6
xdr_opaque, A–14
xdr_reference, A–16, A–18
xdr_setpos, A–18
xdr_string, A–10
xdrmem_create, A–19
xdrrec_endofrecord, A–21
xdrrec_eof, A–21
xdrrec_skiprecord, A–21
xdrstdio_create, A–5, A–19

Index–3

