
TruCluster Server
Cluster Highly Available Applications

Part Number: AA-RHH0E-TE

September 2002

Product Version: TruCluster Server Version 5.1B

Operating System and Version: Tru64 UNIX Version 5.1B

This manual describes how to make applications highly available on a
Tru64 UNIX TruCluster Server Version 5.1B cluster and describes the
application programming interface (API) libraries of the TruCluster
Server product. It is intended for system administrators who want
to deploy highly available applications on TruCluster Server or move
applications from a TruCluster Available Server or TruCluster Production
Server to a TruCluster Server environment. It is also intended for
developers who want to write distributed applications that need the
synchronization services of the distributed lock manager (DLM), cluster
alias features, or the high-performance capabilities of the Memory
Channel.

Hewlett-Packard Company
Palo Alto, California



© 2002 Hewlett-Packard Company

Microsoft®, Windows®, and Windows NT® are trademarks of Microsoft Corporation in the U.S. and/or other
countries. Motif®, OSF/1®, UNIX®, and X/Open® are trademarks of The Open Group in the U.S. and/or other
countries. All other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.



Contents

About This Manual

Part 1 Running Applications on TruCluster Server

1 Cluster Applications
1.1 Application Types . . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1–2
1.1.1 Single-Instance Applications .. . .. . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . 1–2
1.1.2 Multi-Instance Applications . .. . .. . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . 1–5
1.1.3 Distributed Applications . . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 1–8

2 Using CAA for Single-Instance Application Availability
2.1 When to Use CAA .. .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–1
2.2 Resource Profiles .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–2
2.2.1 Creating a Resource Profile . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 2–3
2.2.2 Application Resource Profiles . . .. . .. . . .. . .. . . . . . . . . . . . .. . . . . . . . 2–3
2.2.2.1 Required Resources .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–6
2.2.2.2 Application Resource Placement Policies .. . . .. . .. . .. . .. . 2–7
2.2.2.3 Optional Resources in Placement Decisions .. . .. . .. . .. . 2–8
2.2.3 Network Resource Profiles .. . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 2–8
2.2.4 Tape Resource Profiles . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–10
2.2.5 Media Changer Resource Profiles .. . . .. . .. . .. . .. . . . . . .. . . . . . . . 2–11
2.2.6 Validating Profiles . . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–13
2.3 Writing Action Scripts . . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–13
2.3.1 Guidelines for Writing Application Resource Action

Scripts .. . .. . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–15
2.3.2 Action Script Examples .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–16
2.3.3 Accessing Environment Variables .. . . .. . .. . .. . .. . . . . . .. . . . . . . . 2–16
2.3.4 Directing Output from Action Scripts .. . .. . .. . . . . . .. . .. . . . . . . . 2–18
2.4 Creating User-Defined Attributes . . .. . .. . . .. . .. . . . . . . . . . . . .. . . . . . . . 2–18
2.5 Registering Resources .. . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–19
2.6 Starting Application Resources . . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 2–19
2.7 Relocating Application Resources . . .. . .. . . .. . .. . . . . . . . . . . . .. . . . . . . . 2–21
2.8 Balancing Application Resources .. . .. . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . 2–22
2.9 Stopping Application Resources . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 2–24

Contents iii



2.10 Unregistering Application Resources . .. . . .. . .. . .. . . . . . . . . .. . . . . . . . 2–24
2.11 Displaying CAA Status Information . . .. . . .. . .. . .. . . . . . . . . .. . . . . . . . 2–25
2.12 Graphical User Interfaces . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–27
2.12.1 Using SysMan Menu to Manage CAA .. .. . .. . . . . . .. . .. . . . . . . . 2–27
2.12.2 Using SysMan Station to Manage and Monitor CAA ... . .. . 2–28
2.13 CAA Tutorial . .. . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–28
2.13.1 Preconditions . . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–29
2.13.2 Miscellaneous Setup .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–29
2.13.3 Example of an Action Script for dtcalc . . .. . .. . . . . . .. . .. . . . . . . . 2–30
2.13.4 Step 1: Creating the Application Resource Profile . .. . .. . .. . 2–31
2.13.5 Step 2: Validating the Application Resource Profile . . .. . .. . 2–32
2.13.6 Step 3: Registering the Application . . .. . .. . .. . . . . . . . . .. . . . . . . . 2–32
2.13.7 Step 4: Starting the Application . . .. . . .. . .. . .. . . . . . . . . .. . . . . . . . 2–32
2.13.8 Step 5: Relocating the Application . . . .. . .. . .. . .. . . . . . .. . . . . . . . 2–32
2.13.9 Step 6: Stopping the Application . .. . . .. . .. . .. . .. . . . . . .. . . . . . . . 2–33
2.13.10 Step 7: Unregistering the Application . . .. . .. . . . . . .. . .. . . . . . . . 2–33
2.14 Example Applications Managed by CAA ... . .. . .. . . . . . .. . .. . . . . . . . 2–33
2.14.1 OpenLDAP Directory Server .. . .. . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . 2–33
2.14.2 Creating a Single-Instance, Highly Available Apache

HTTP Server Using CAA ... . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 2–36
2.14.3 Creating a Single-Instance Oracle8i Server Using CAA .. . 2–37
2.14.4 Creating a Single-Instance Informix Server Using CAA .. . 2–39

3 Using Cluster Aliases with Multi-Instance Applications
3.1 When to Use Cluster Aliasing .. . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 3–1
3.2 Using the Default Cluster Alias to Access a Multi-Instance

Apache HTTP Server . .. . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 3–3

Part 2 Moving Applications to TruCluster Server

4 General Application Migration Issues
4.1 Clusterwide and Member-Specific Files . . .. . .. . .. . . . . . . . . .. . . . . . . . 4–1
4.1.1 Using a Single File . . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4–3
4.1.2 Using Multiple Files .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4–3
4.1.3 Using CDSLs . . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4–3
4.2 Device Naming . . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4–4
4.3 Interprocess Communication . .. . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 4–6
4.4 Synchronized Access to Shared Data . .. . . .. . .. . .. . .. . . . . . .. . . . . . . . 4–6
4.5 Member-Specific Resources .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4–7
4.6 Expanded PIDs . . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4–7

iv Contents



4.7 DLM Parameters Removed . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4–7
4.8 Licensing . . .. . .. . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4–7
4.8.1 TruCluster Server Clusterwide Licensing Not Supported . 4–8
4.8.2 Layered Product Licensing and Network Adapter

Failover . . .. . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4–8
4.9 Blocking Layered Products . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 4–9

5 Moving ASE Applications to TruCluster Server
5.1 Comparing ASE to CAA .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–1
5.1.1 Disk Service . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–2
5.1.2 NFS Service . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–3
5.1.3 User-Defined Service . . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–3
5.1.4 DRD Service .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–4
5.1.5 Tape Service . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–4
5.2 Preparing to Move ASE Services to TruCluster Server .. . .. . .. . 5–5
5.2.1 Saving ASE Database Content from TruCluster Available

Server and Production Server Version 1.5 or Later .. . .. . .. . 5–6
5.2.2 Saving ASE Database Content from TruCluster Available

Server and Production Server Version 1.4 or Earlier . .. . .. . 5–6
5.3 ASE Script Considerations . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–7
5.3.1 Replacing ASE Commands with CAA Commands . .. . .. . .. . 5–8
5.3.2 Combining Start and Stop Scripts .. . . .. . .. . .. . .. . . . . . .. . . . . . . . 5–9
5.3.3 Redirecting Script Output .. . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 5–9
5.3.4 Replacing nfs_ifconfig Script .. . .. . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . 5–9
5.3.5 Handling Errors Correctly .. . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 5–9
5.3.6 Removing Storage Management Information . . . .. . .. . .. . .. . 5–10
5.3.7 Converting Device Names .. . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 5–11
5.3.8 Replacing or Removing ASE Variables . .. . .. . . . . . .. . .. . . . . . . . 5–11
5.3.9 Exit Codes . . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–12
5.3.10 Posting Events . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–12
5.4 Networking Considerations .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–12
5.4.1 Using an Alias . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–12
5.4.1.1 Cluster Alias . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–13
5.4.1.2 Interface Alias . . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–14
5.4.2 Networking Services .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–14
5.5 File System Partitioning .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 5–15

6 Moving Distributed Applications to TruCluster Server
6.1 Preparing to Move Distributed Applications to TruCluster

Server .. . .. . .. . . . . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 6–1

Contents v



6.2 Running Oracle Parallel Server on TruCluster Server .. . .. . .. . 6–2
6.3 Moving Oracle Parallel Server to TruCluster Server .. . .. . .. . .. . 6–3

Part 3 Writing Cluster-Aware Applications

7 Programming Considerations
7.1 Modifications Required for RPC Programs . .. . .. . . . . . .. . .. . . . . . . . 7–1
7.2 Portable Applications: Standalone and Cluster . . .. . . .. . .. . .. . . . . 7–2
7.3 CLSM Support . . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 7–2
7.4 Diagnostic Utility Support . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 7–3
7.5 CDFS File System Restrictions . . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 7–3
7.6 Scripts Called from the /cluster/admin/run Directory . . .. . .. . .. . 7–4
7.7 Testing the Status of a Cluster Member During a Rolling

Upgrade .. . .. . . . . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 7–5
7.8 File Access Resilience in a Cluster . .. . .. . . .. . .. . . . . . . . . . . . .. . . . . . . . 7–5

8 Cluster Alias Application Programming Interface
8.1 Cluster Alias Port Terminology . . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 8–1
8.2 Cluster Alias Functions . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 8–2
8.3 Cluster Port Space . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 8–6
8.4 Binding to Reserved Ports (512 Through 1024) . . .. . . .. . .. . .. . . . . 8–7
8.5 setsockopt() Options . . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 8–8
8.6 Port Attributes: /etc/clua_services, clua_registerservice(), and

setsockopt() . . .. . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 8–9
8.7 UDP Applications and Source Addresses .. . .. . .. . . . . . .. . .. . . . . . . . 8–9

9 Distributed Lock Manager
9.1 DLM Overview .. .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–2
9.2 Resources . . .. . .. . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–5
9.2.1 Resource Granularity . . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–5
9.2.2 Namespaces . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–6
9.2.3 Uniquely Identifying Resources . . .. . . .. . .. . .. . . . . . . . . .. . . . . . . . 9–7
9.3 Using Locks . . .. . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–8
9.3.1 Lock Modes . . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–9
9.3.2 Levels of Locking and Compatibility . .. . .. . .. . . . . . . . . .. . . . . . . . 9–10
9.3.3 Lock Management Queues . . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 9–11
9.3.4 Lock Conversions . .. . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–12
9.3.5 Deadlock Detection . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–13
9.4 Dequeuing Locks .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–15

vi Contents



9.5 Canceling a Conversion Request .. . .. . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . 9–16
9.6 Advanced Locking Techniques .. . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 9–16
9.6.1 Asynchronous Completion of a Lock Request .. . . .. . .. . .. . .. . 9–16
9.6.2 Notification of Synchronous Completion . . .. . .. . . .. . .. . . . . . . . 9–17
9.6.3 Blocking Notifications . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–18
9.6.4 Lock Conversions . .. . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–19
9.6.4.1 Queuing Lock Conversions . .. . .. . . .. . .. . .. . . . . . . . . .. . . . . . . . 9–20
9.6.4.2 Forced Queuing of Conversions . . .. . .. . .. . . . . . . . . .. . . . . . . . 9–20
9.6.5 Parent Locks .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–21
9.6.6 Lock Value Blocks .. . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–22
9.7 Local Buffer Caching Using DLM Functions . . .. . .. . . .. . .. . . . . . . . 9–23
9.7.1 Using the Lock Value Block . .. . .. . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . 9–23
9.7.2 Using Blocking Notifications .. . .. . .. . . .. . .. . . . . . . . . . . . .. . . . . . . . 9–24
9.7.2.1 Deferring Buffer Writes . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 9–24
9.7.2.2 Buffer Caching . . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–24
9.7.3 Choosing a Buffer Caching Technique . . .. . .. . . . . . .. . .. . . . . . . . 9–25
9.8 Distributed Lock Manager Functions Code Example . . .. . .. . .. . 9–25

10 Memory Channel Application Programming Interface Library
10.1 Memory Channel Multirail Model . . .. . .. . . .. . .. . . . . . . . . . . . .. . . . . . . . 10–2
10.1.1 Single-Rail Style . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–2
10.1.2 Failover Pair Style . . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–3
10.1.3 Configuring the Memory Channel Multirail Model .. . .. . .. . 10–4
10.2 Initializing the Memory Channel API Library .. . .. . . .. . .. . .. . . . . 10–5
10.3 Initializing the Memory Channel API Library for a User

Program .. . .. . .. . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–6
10.4 Tuning Your Memory Channel Configuration . .. . .. . . .. . .. . .. . . . . 10–6
10.4.1 Extending Memory Channel Address Space . .. . . .. . .. . .. . .. . 10–6
10.4.2 Increasing Wired Memory .. . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 10–7
10.5 Troubleshooting . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–8
10.5.1 IMC_NOTINIT Return Code .. . .. . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . 10–8
10.5.2 Memory Channel API Library Initialization Failure . .. . .. . 10–8
10.5.3 Fatal Memory Channel Errors . .. . .. . . .. . .. . . . . . . . . . . . .. . . . . . . . 10–8
10.5.3.1 Rail Initialization Failure . . .. . .. . . .. . .. . . . . . . . . . . . .. . . . . . . . 10–9
10.5.4 IMC_MCFULL Return Code .. . .. . .. . . .. . .. . . . . . . . . . . . .. . . . . . . . 10–9
10.5.5 IMC_RXFULL Return Code . .. . .. . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . 10–10
10.5.6 IMC_WIRED_LIMIT Return Code . . . .. . .. . .. . .. . . . . . .. . . . . . . . 10–10
10.5.7 IMC_MAPENTRIES Return Code . . . .. . .. . .. . .. . . . . . .. . . . . . . . 10–10
10.5.8 IMC_NOMEM Return Code . .. . .. . . . . . .. . .. . . . . . . . . . . . .. . . . . . . . 10–10
10.5.9 IMC_NORESOURCES Return Code . .. . .. . .. . . . . . .. . .. . . . . . . . 10–11
10.6 Accessing Memory Channel Address Space .. . .. . .. . . .. . .. . . . . . . . 10–11

Contents vii



10.6.1 Attaching to Memory Channel Address Space . . .. . .. . .. . .. . 10–12
10.6.1.1 Broadcast Attach . . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–13
10.6.1.2 Point-to-Point Attach . .. . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 10–14
10.6.1.3 Loopback Attach .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–15
10.6.2 Initial Coherency . .. . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–16
10.6.3 Reading and Writing Memory Channel Regions .. . .. . .. . .. . 10–17
10.6.4 Address Space Example .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–17
10.6.5 Latency Related Coherency . . .. . .. . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . 10–21
10.6.6 Error Management . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–24
10.7 Clusterwide Locks . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–28
10.8 Cluster Signals . . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–31
10.9 Cluster Information . . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–32
10.9.1 Using Memory Channel API Functions to Access Memory

Channel API Cluster Information .. . . .. . .. . .. . .. . . . . . .. . . . . . . . 10–32
10.9.2 Accessing Memory Channel Status Information from the

Command Line .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–33
10.10 Comparison of Shared Memory and Message Passing Models . 10–34
10.11 Frequently Asked Questions . . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–34
10.11.1 IMC_NOMAPPER Return Code . . .. . . .. . .. . .. . . . . . . . . .. . . . . . . . 10–35
10.11.2 Efficient Data Copy . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–35
10.11.3 Memory Channel Bandwidth Availability . .. . .. . . .. . .. . . . . . . . 10–35
10.11.4 Memory Channel API Cluster Configuration Change .. . .. . 10–36
10.11.5 Bus Error Message . . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 10–36

Index

Examples
9–1 Locking, Lock Value Blocks, and Lock Conversion . . .. . .. . .. . .. . 9–26
10–1 Accessing Regions of Memory Channel Address Space .. . .. . .. . 10–18
10–2 System V IPC and Memory Channel Code Comparison . . .. . .. . 10–21
10–3 Error Detection Using the imc_rderrcnt_mr Function . .. . .. . .. . 10–25
10–4 Error Detection Using the imc_ckerrcnt_mr Function . .. . .. . .. . 10–27
10–5 Locking Memory Channel Regions . .. . .. . . .. . .. . .. . . . . . . . . .. . . . . . . . 10–29
10–6 Requesting Memory Channel API Cluster Information;

Waiting for Memory Channel API Cluster Events . . . .. . .. . .. . .. . 10–33

Figures
1–1 Accessing a Single-Instance Application . .. . .. . .. . . . . . .. . .. . . . . . . . 1–3
1–2 Application Failover Using CAA .. . .. . .. . . .. . .. . . . . . . . . . . . .. . . . . . . . 1–4
1–3 Accessing a Multi-Instance Application . . .. . .. . .. . . . . . . . . .. . . . . . . . 1–6

viii Contents



3–1 Accessing a Multi-Instance Application Through a Cluster
Alias . . .. . .. . .. . . . . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 3–2

9–1 Model Database . .. . .. . .. . . . . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–6
9–2 Three Lock Queues .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–12
9–3 Conversion Deadlock . .. . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–14
9–4 Multiple Resource Deadlock .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–14
10–1 Single-Rail Memory Channel Configuration . . .. . .. . . .. . .. . . . . . . . 10–3
10–2 Failover Pair Memory Channel Configuration .. . .. . . .. . .. . .. . . . . 10–4
10–3 Broadcast Address Space Mapping .. . .. . . .. . .. . .. . . . . . . . . .. . . . . . . . 10–13
10–4 Point-to-Point Address Space Mapping . . .. . .. . .. . . . . . . . . .. . . . . . . . 10–14
10–5 Loopback Address Space Mapping . .. . .. . . .. . .. . .. . . . . . . . . .. . . . . . . . 10–16

Tables
1–1 TruCluster Server Application Types . .. . . .. . .. . .. . .. . . . . . .. . . . . . . . 1–2
1–2 Single-Instance Application Architectural Differences .. . .. . .. . 1–5
1–3 Multi-Instance Application Architectural Differences . .. . .. . .. . 1–7
2–1 Application Profile Attributes . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–4
2–2 Network Profile Attributes . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–9
2–3 Tape Profile Attributes . . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–10
2–4 Media Changer Attributes . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 2–12
4–1 Application Migration Considerations .. . . .. . .. . .. . .. . . . . . .. . . . . . . . 4–1
5–1 ASE Services and Their TruCluster Server Equivalents . .. . .. . 5–2
7–1 CDFS Library Functions . . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 7–3
8–1 Cluster Alias Functions . .. . . .. . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 8–2
8–2 Relationship Among Cluster Alias Port Attributes . . .. . .. . .. . .. . 8–9
9–1 Distributed Lock Manager Functions . .. . . .. . .. . .. . .. . . . . . .. . . . . . . . 9–3
9–2 Lock Modes . . .. . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–10
9–3 Compatibility of Lock Modes . . .. . .. . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–11
9–4 Using the DLM_DEQALL Flag in a dlm_unlock Function

Call . . . .. . .. . .. . .. . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–16
9–5 Conversions Allowed When the DLM_QUECVT Flag Is

Specified .. . .. . . . . . .. . .. . .. . .. . . .. . .. . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9–21
9–6 Effect of Lock Conversion on Lock Value Block . . .. . . .. . .. . .. . . . . 9–22

Contents ix





About This Manual

This manual describes how to use HP TruCluster Server functionality to
make applications highly available and how to move applications to the
TruCluster Server environment.

This manual also describes how to use TruCluster Server application
programming interfaces (APIs) to take advantage of cluster technologies such
as the distributed lock manager (DLM), cluster alias, and Memory Channel.

Read the TruCluster Server Cluster Technical Overview for an understanding
of the TruCluster Server cluster subsystems before moving applications to
your TruCluster Server environment.

Audience

This manual is intended for system administrators who want to deploy
highly available applications on TruCluster Server or move applications
from a TruCluster Available Server or TruCluster Production Server to a
TruCluster Server environment. This manual is also intended for developers
who want to write distributed applications that need the synchronization
services of the DLM, cluster alias features, or the high-performance
capabilities of the Memory Channel.

New and Changed Features

The following changes have been made to this manual (and related reference
pages) since the Version 5.1A release:

• Section 2.3.3 describes those environmental variables that the cluster
application availability (CAA) facility passes to an action script, how to
access profile attributes from within the script, and how to determine
the reason why an action script has been called.

• Section 2.3.4 describes how to redirect output from a CAA action script.

• Section 2.4 describes how to extend the profile of an application resource
by defining custom attributes.

• Section 2.14 has been revised to incorporate newer examples of
applications using CAA.

• Chapter 3 has been revised to incorporate newer examples of applications
using the cluster alias.

About This Manual xi



Organization

This manual is organized as follows:

Part 1 Describes how to get single-instance and multi-instance
applications up and running on TruCluster Server.

Chapter 1 Describes the general types of cluster applications.

Chapter 2 Describes how to use the cluster application availability
(CAA) facility for single-instance application availabil-
ity on TruCluster Server.

Chapter 3 Describes how to use the default cluster alias for multi-instance
application availability on TruCluster Server.

Part 2 Describes how to move applications to a
TruCluster Server environment.

Chapter 4 Discusses general issues to consider before moving
applications to TruCluster Server.

Chapter 5 Describes how to move Available Server Environment
(ASE)-style applications to TruCluster Server.

Chapter 6 Describes how to move distributed applications to
TruCluster Server.

Part 3 Describes how to use APIs to take advantage of Tru-
Cluster Server technology.

Chapter 7 Describes how to change an application’s source code to
allow it to run in a clusterized environment.

Chapter 8 Describes how to use the features of the cluster alias API.

Chapter 9 Describes how to use the features of the DLM.

Chapter 10 Describes how to use the Memory Channel API library.

Related Documents

Consult the following TruCluster Server documentation for assistance in
cluster configuration, installation, and administration tasks:

• TruCluster Server QuickSpecs — Describes TruCluster Server
Version 5.1B, including information about its capabilities and
the hardware it supports. You can find the latest version of the
QuickSpecs at the following URL: http://www.tru64unix.com-
paq.com/docs/pub_page/spds.html.

• TruCluster Server Cluster Technical Overview — Provides an overview of
the TruCluster Server technology.

xii About This Manual



• TruCluster Server Cluster Release Notes — Provides important
information about TruCluster Server Version 5.1B, including new
features, known problems, and workarounds.

• TruCluster Server Cluster Hardware Configuration — Describes how to
set up the processors that are to become cluster members, and how to
configure cluster shared storage.

• TruCluster Server Cluster Installation — Describes how to install the
TruCluster Server software product.

• TruCluster Server Cluster Administration — Describes cluster-specific
administration tasks.

You can find the latest version of the TruCluster Server documentation at
the following URL:

http://www.tru64unix.compaq.com/docs/pub_page/cluster_list.html

In addition, have available the following manuals from the HP Tru64 UNIX
operating system software documentation set:

• Tru64 UNIX Release Notes

• Tru64 UNIX System Administration

• Tru64 UNIX Network Administration: Connections

• Tru64 UNIX Network Administration: Services

• Tru64 UNIX Programmer’s Guide

Icons on Tru64 UNIX Printed Manuals

The printed version of the Tru64 UNIX documentation uses letter icons on
the spines of the manuals to help specific audiences quickly find the manuals
that meet their needs. (You can order the printed documentation from HP.)
The following list describes this convention:

G Manuals for general users

S Manuals for system and network administrators

P Manuals for programmers

R Manuals for reference page users

Some manuals in the documentation help meet the needs of several
audiences. For example, the information in some system manuals is also
used by programmers. Keep this in mind when searching for information
on specific topics.

The Documentation Overview provides information on all of the manuals in
the Tru64 UNIX documentation set.

About This Manual xiii



Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

xiv About This Manual



Conventions

This manual uses the following typographical conventions:

# A number sign represents the superuser prompt.

% cat Boldface type in interactive examples indicates
typed user input.

file Italic (slanted) type indicates variable values,
placeholders, and function argument names.

...
A vertical ellipsis indicates that a portion of an
example that would normally be present is not
shown.

cat(1) A cross-reference to a reference page includes
the appropriate section number in parentheses.
For example, cat(1) indicates that you can find
information on the cat command in Section 1 of
the reference pages.

About This Manual xv





Part 1
Running Applications on TruCluster

Server





1
Cluster Applications

The TruCluster Server environment allows you to make existing applications
more highly available to their clients with minimal effort. You can also
develop new applications that take greater advantage of the performance
and availability features of a cluster. You can deploy highly available
applications having no embedded knowledge that they are executing in a
cluster, and that can access their disk data from any member in the cluster.

Using the TruCluster Server cluster application availability (CAA)
subsystem, applications can recover from member and resource failures by
restarting on another cluster member. If the cluster member on which an
application is running fails, or if a particular required resource fails, CAA
relocates or fails over the application to another member that either has
the required resources available or on which the required resource can be
started.

TruCluster Server also lets you run components of distributed applications
in parallel, providing high availability while taking advantage of
cluster-specific synchronization mechanisms and performance optimizations.

If you are new to TruCluster Server, read the TruCluster Server Cluster
Technical Overview manual for an overview of the TruCluster Server
product. Also, read the following chapters of this manual to understand
the TruCluster Server features that applications can use to become highly
available:

• Chapter 2 discusses using the CAA subsystem to make single-instance
applications highly available.

• Chapter 3 discusses using a cluster alias with multi-instance applications
to make the cluster appear as a single system to its network clients.

If you are moving from a TruCluster Available Server or TruCluster
Production Server environment, read Part 2, which discusses how to move
ASE-style applications to TruCluster Server.

This chapter discusses the following types of cluster applications. These
application types are described in Section 1.1.

• Single-instance

• Multi-instance

• Distributed

Cluster Applications 1–1



1.1 Application Types

Cluster applications can be divided into the basic types that are listed in
Table 1–1.

Table 1–1: TruCluster Server Application Types
Type Description Example

Single-instance A single-instance application
runs on only one member of a
cluster at a time.

Single-instance
Dynamic Host
Configuration Protocol
(DHCP) server

Multi-instance A multi-instance application runs
on one or more members of a
cluster. It has no restrictions that
prevent it from running more than
one copy in a cluster.

Multi-instance Apache
Web server

Distributed A distributed application runs
as independent, cooperating
modules that are distributed
among cluster members.

Oracle Parallel Server
(OPS), Oracle 9i Real
Application Clusters
(RAC)

The following sections describe these three application types in more detail.

1.1.1 Single-Instance Applications

A single-instance application runs on only one cluster member at a time. All
clients access the single-instance application on one member as shown in
Figure 1–1.

1–2 Cluster Applications



Figure 1–1: Accessing a Single-Instance Application

ZK-1691U-AI

Single-Instance Application

Member 1 Member 2

Client 1 Client 3Client 2

If the cluster member where the application is installed fails or loses access
to a resource, the CAA subsystem can fail the application over to another
running member. (See Chapter 2 for information on how to use CAA.)
Figure 1–2 shows how the failure of one cluster member results in the
failover of an application to the second cluster member.

Cluster Applications 1–3



Figure 1–2: Application Failover Using CAA

ZK-1692U-AI

Member 2Member 1

Single-Instance Application

Failover

Client 3Client 2Client 1

Table 1–2 summarizes single-instance application architectural differences
in TruCluster Server and the previous TruCluster software products.

1–4 Cluster Applications



Table 1–2: Single-Instance Application Architectural Differences

TruCluster Server Version 5.0 or Later

TruCluster Available Server and
TruCluster Production Server
Version 1.6 or Earlier

Application installation and
configuration on a single member
of the cluster can be seen on all members
because of the cluster file system
(CFS). However, the application can
be run only on one member at a time
because no synchronization has been
built into the application.

Application installation and
configuration on a single member
of the cluster is visible and usable
only on that member.

CAA is used to define application start,
stop, and resource dependency needs.
Storage is transparently handled by
CFS and the device request dispatcher.
You can use the cluster alias or an
interface alias within a CAA action script
to handle IP aliasing needs.

ASE is used to define application start,
stop, storage, and IP aliases.

Because TruCluster Server is binary compatible with Tru64 UNIX Version
5.1B, any application that runs properly on Tru64 UNIX and recognizes the
new-style device names (dsk) will run on at least one member of a cluster.
See Section 4.2 for more information about device naming.

1.1.2 Multi-Instance Applications

A multi-instance application can run multiple instances of itself on a single
system or on more than one member of a cluster. If multiple instances of an
application run on more than one system, the application has been modified
to have some cluster awareness, for example, temporary file names have
been changed to avoid being overwritten.

A multi-instance application is typically highly available; the failure of one
cluster member does not affect the instances of the application running on
other members. Multi-instance applications can take advantage of cluster
aliasing to distribute client requests among all cluster members as shown in
Figure 1–3. In this figure, clients are accessing a multi-instance application
through the cluster alias deli.

Cluster Applications 1–5



Figure 1–3: Accessing a Multi-Instance Application

ZK-1694U-AI

Member 1 Member 2

Multi-Instance Application

Client 1 Client 2

cluster alias deli 

Table 1–3 summarizes multi-instance application architectural differences
in TruCluster Server and previous TruCluster software products.

1–6 Cluster Applications



Table 1–3: Multi-Instance Application Architectural Differences

TruCluster Server Version 5.0 or Later

TruCluster Available Server and
TruCluster Production Server
Version 1.6 or Earlier

A multi-instance application that is
cluster-aware makes explicit use at
the source level of the distributed
lock manager (DLM) application
programming interface (API). Cluster
alias automates routing of client requests
among instances of the application.

An application can be run as
multi-instance by creating multiple
ASE services, each with its own interface
alias. There is no cluster alias. Load
balancing and delivery of client requests
to application instances must be designed
into the application. The application
must be able to access distributed raw
disk (DRD) devices for storage and
must use UNIX file locking semantics,
the DLM, or an application-specific
locking mechanism.

A multi-instance application that is
not cluster-aware must synchronize
access to shared data by using standard
UNIX file locking or the DLM.

Because there is no clusterwide
implementation of standard UNIX
file locking, an application that is
not cluster-aware must explicitly
use the DLM.

For an application to successfully run multiple instances in a cluster:

• Interprocess communication must be performed through remote
procedure calls (RPCs) or socket connections.

• Access to shared files or data must be synchronized. Use flock() system
calls or the distributed lock manager (DLM) to synchronize access to
shared data.

• Use context-dependent symbolic links (CDSLs) or other means to create
separate log and temporary files for multiple instances of an application.

• If an application has member-specific configuration requirements,
you might need to log on to each member where the application will
run and configure the application. For example, if an application’s
installation script is not cluster-aware (that is, the application does not
know that it is being installed in a cluster), you may need to tailor the
application’s configuration after installing it. For more information, see
the configuration documentation for the application.

• If you want to use the default cluster alias to distribute network
connections among members, define application ports in the
/etc/clua_services file. Add the in_multi alias attribute so that
the cluster alias subsystem distributes connection requests directed
to the default cluster alias among all members of the alias. See
clua_services(4) for more information about defining ports, and see
Chapter 3 for information on how to use cluster aliasing for transparent
client access to multi-instance applications.

Cluster Applications 1–7



See Chapter 4 for more information about these considerations and other
general application migration issues.

1.1.3 Distributed Applications

A distributed application is cluster-aware; that is, it knows it is running
in a cluster and typically takes advantage of the performance gains of
distributed execution. A distributed application uses the cluster application
programming interfaces (APIs) such as DLM and Memory Channel. See
Chapter 6 for more information about distributed applications.

1–8 Cluster Applications



2
Using CAA for Single-Instance

Application Availability

The cluster application availability (CAA) subsystem tracks the state of
members and resources (such as networks, applications, tape drives, and
media changers) in a cluster. CAA monitors the required resources of
application resources in a cluster, and ensures that applications run on
members that meet their needs.

This chapter covers the following topics:

• When to use CAA (Section 2.1)

• Creating resource profiles (Section 2.2)

• Writing action scripts (Section 2.3)

• Creating user-defined attributes (Section 2.4)

• Registering resources (Section 2.5)

• Starting application resources (Section 2.6)

• Relocating application resources (Section 2.7)

• Balancing application resources (Section 2.8)

• Stopping application resources (Section 2.9)

• Unregistering application resources (Section 2.10)

• Displaying CAA status information (Section 2.11)

• Using graphical user interfaces to manage CAA (Section 2.12)

• Learning CAA — a tutorial (Section 2.13)

• Creating highly available applications — examples (Section 2.14)

2.1 When to Use CAA

CAA is designed to work with applications that run on one cluster member at
a time. If the cluster member on which an application is running fails, or if a
particular required resource fails, CAA relocates or fails over the application
to another member that either has the required resources available or on
which the required resource can be started.

Using CAA for Single-Instance Application Availability 2–1



Multi-instance applications may find it more useful to use a cluster alias
to provide transparent application failover. Typically, multi-instance
applications achieve high availability to clients by using the cluster alias
as discussed in Chapter 3. However, CAA is useful for multi-instance
applications because it allows for simplified, central management (start and
stop) of the applications and restarting of an instance on failure. Using CAA
gives you the added value of automatic application startup and shutdown at
boot time or at shutdown time, without having to add additional rc3 scripts.

See the TruCluster Server Cluster Administration manual for a general
discussion of the differences between the cluster alias subsystem and CAA.
Also, see Chapter 3 for examples of how to use the default cluster alias with
multi-instance applications for high availability.

2.2 Resource Profiles

A resource profile is a file containing attributes that describe how a resource
is started, managed, and monitored by CAA. Profiles designate resource
dependencies and determine what happens to an application when it loses
access to a resource on which it depends.

There are four resource profile types: application, network, tape, and
changer. Each resource type has its own kind of resource profile in which
resource attributes are defined. The examples and tables in the following
sections show each type of resource profile and the attributes available
in that profile. For detailed descriptions of what defines each resource
type, including a complete list of profile attributes that can be defined, see
Section 2.2.2, Section 2.2.3, Section 2.2.4, and Section 2.2.5.

Some of the attributes that you can specify in a resource profile are:

• Resources that are required by the application (REQUIRED_RESOURCES).
CAA relocates or stops an application if a required resource becomes
unavailable.

• Rules for choosing the member on which to start or restart the
application (PLACEMENT).

• A list of members, in order of preference, to favor when starting or
failing over an application (HOSTING_MEMBERS). This list is used if the
placement policy (PLACEMENT) is favored or restricted.

All resource profiles are located in the clusterwide directory,
/var/cluster/caa/profile. The file names of resource profiles take the
form resource_name .cap. The CAA commands refer to the resources only
by the resource name resource_name.

There are required and optional profile attributes for each type of
profile. The optional profile attributes may be left unspecified in

2–2 Using CAA for Single-Instance Application Availability



the profile. Optional profile attributes that have default values are
merged at registration time with the values stored in the template
for that type and the generic template. Each resource type has a
template file that is stored in /var/cluster/caa/template, named
TYPE_resource_type.cap, with default values for attributes. A generic
template file for values that are used in all types of resources is stored in
/var/cluster/caa/template/TYPE_generic.cap.

The examples in the following sections show the syntax of a resource profile.
Lines starting with a pound sign (#) are treated as comment lines and are
not processed as part of the resource profile. A backslash (\) at the end of a
line indicates that the next line is a continuation of the previous line. For a
more detailed description of profile syntax, see caa(4).

2.2.1 Creating a Resource Profile

The first step to making an application highly available is to create a
resource profile. You can use any of the following methods to do this:

• Use the caa_profile command

• Access SysMan (/usr/sbin/sysman caa). This method does not
support setting scheduled rebalancing or failback of applications.

• Copy an existing resource profile in /var/cluster/caa/profile and
edit the copy with emacs, vi, or some other text editor

You can combine any of these methods. For example, you can use the
caa_profile command to create a resource profile and then use a text
editor to manually edit the profile.

You can find several example profiles in the /var/cluster/caa/examples
directory.

After you create a resource profile, you must register it with CAA before a
resource can be managed or monitored. See Section 2.5 for a description of
how to register an application.

2.2.2 Application Resource Profiles

Table 2–1 lists the application profile attributes. For each attribute, the
table indicates whether the attribute is required, its default value, and a
description.

Using CAA for Single-Instance Application Availability 2–3



Table 2–1: Application Profile Attributes
Attribute Re-

quired
Default Description

TYPE Yes None The type of the resource. The type
application is for application resources.

NAME Yes None The name of the resource. The resource
name is a string that contains a
combination of letters a-z or A-Z, digits
0-9, or the underscore (_) or period (.). The
resource name cannot start with a period.

DESCRIPTION No Name of the
resource

A description of the resource.

FAILURE_THRESHOLD No 0 The number of failures detected within
FAILURE_INTERVAL before CAA marks
the resource as unavailable and no longer
monitors it. If an application’s check script
fails this number of times, the application
resource is stopped and set offline. If the
value is zero (0), tracking of failures is
disabled. The maximum value is 20.

FAILURE_INTERVAL No 0 The interval, in seconds, during which
CAA applies the failure threshold.
If the value is zero (0), tracking of
failures is disabled.

REQUIRED_RESOURCES No None A white-space separated, ordered list
of resource names that this resource
depends on. Each resource to be used
as a required resource in this profile
must be registered with CAA or profile
registration will fail. For a more detailed
explanation, see Section 2.2.2.1.

OPTIONAL_RESOURCES No None A white-space separated, ordered list of
optional resources that this resource uses
during placement decisions. Up to 58
optional resources can be listed. For a more
complete explanation, see Section 2.2.2.3.

PLACEMENT No balanced The placement policy (balanced,
favored, or restricted) specifies
how CAA chooses the cluster member
on which to start the resource.

HOSTING_MEMBERS Some-
times

None An ordered, white-space separated list
of cluster members that can host the
resource. This attribute is required
only if PLACEMENT equals favored or
restricted. This attribute must be
empty if PLACEMENT equals balanced.

2–4 Using CAA for Single-Instance Application Availability



Table 2–1: Application Profile Attributes (cont.)

Attribute Re-
quired

Default Description

RESTART_ATTEMPTS No 1 The number of times CAA will attempt
to restart the resource on a single cluster
member before attempting to relocate
the application. A value of 1 means
that CAA will only attempt to restart
the application once on a member. A
second failure will cause an attempt
to relocate the application.

FAILOVER_DELAY No 0 The amount of time, in seconds, CAA
will wait before attempting to restart
or fail over the resource.

AUTO_START No 0 A flag to indicate whether CAA should
automatically start the resource after
a cluster reboot, regardless of whether
the resource was running prior to the
cluster reboot. When set to 0, CAA
starts the application resource only if
it had been running before the reboot.
When set to 1, CAA always starts the
application after a reboot.

ACTION_SCRIPT Yes None The resource-specific script for starting,
stopping, and checking a resource.
You may specify a full path for the
action script file; otherwise, the path
/var/cluster/caa/script is assumed.
You may also specify a relative path with
this default path as the starting point.

ACTIVE_PLACEMENT No 0 When set to 1, CAA will reevaluate the
placement of an application on addition
or restart of a cluster member.

SCRIPT_TIMEOUT No 60 The maximum time, in seconds, that
an action script may take to complete
execution before an error is returned.

Using CAA for Single-Instance Application Availability 2–5



Table 2–1: Application Profile Attributes (cont.)

Attribute Re-
quired

Default Description

CHECK_INTERVAL No 60 The time interval, in seconds, between
repeated executions of the check entry
point of the resource’s action script.

REBALANCE No None A time at which the application will be
automatically reevaluated for optimal
placement. The field must be specified in
the form t:day:hour:min, where day is
the day of the week (0-6), hour is the hour
of the day (0-23), and min is the minute
of the hour (0–59) when the reevaluation
occurs. An asterisk may be used as a
wildcard to specify every day or every hour.

The following example creates an application resource with CAA using
caa_profile:

# /usr/sbin/caa_profile -create clock -t application -B /usr/bin/X11/xclock \
-d "Clock Application" -r network1 -l application2 \
-a clock.scr -o ci=5,ft=2,fi=12,ra=2,bt=*:12:00

The contents of the resource profile file that was created by the previous
example are as follows:

NAME=clock
TYPE=application
ACTION_SCRIPT=clock.scr
ACTIVE_PLACEMENT=0
AUTO_START=0
CHECK_INTERVAL=5
DESCRIPTION=Clock Application
FAILOVER_DELAY=0
FAILURE_INTERVAL=12
FAILURE_THRESHOLD=2
REBALANCE=t:*:12:00
HOSTING_MEMBERS=
OPTIONAL_RESOURCES=application2
PLACEMENT=balanced
REQUIRED_RESOURCES=network1
RESTART_ATTEMPTS=2
SCRIPT_TIMEOUT=60

For more information on the application resource profile syntax, see
caa_profile(8) and caa(4).

2.2.2.1 Required Resources

CAA uses the required resources list, in conjunction with the placement
policy and hosting members list, to determine which cluster members
are eligible to host the application resource. Required resources must be
ONLINE on any member on which the application is running or started. Only

2–6 Using CAA for Single-Instance Application Availability



application resources can have required resources, but any type of resource
can be defined as a required resource for an application resource.

A failure of a required resource on the hosting member causes CAA to initiate
failover of the application or to attempt to restart it on the current member
if RESTART_ATTEMPTS is not 0. This can cause CAA to fail the application
resource over to another member which provides the required resources, or
to stop the application if there is no suitable member. In the latter case, CAA
continues to monitor the required resources and restarts the application
when the resource is again available on a suitable cluster member.

Required resources lists can also be useful to start, stop, and relocate a group
of interdependent application resources when the caa_start, caa_stop, or
caa_relocate commands are run with the force (-f) option.

2.2.2.2 Application Resource Placement Policies

The placement policy specifies how CAA selects a cluster member on which
to start a resource, and where to relocate the resource after a failure.

______________________ Note _______________________

Only cluster members that have all the required resources
available (as listed in an application resource’s profile) are
eligible to be considered in any placement decision involving
that application.

The following placement policies are supported:

• balanced — CAA favors starting or restarting the application resource
on the member currently running the fewest application resources.
Placement based on optional resources is considered first. See
Section 2.2.2.3. Next, the host with the fewest application resources
running is chosen. If no cluster member is favored by these criteria,
any available member is chosen.

• favored — CAA refers to the list of members in the HOSTING_MEMBERS
attribute of the resource profile. Only cluster members that are in
this list and satisfy the required resources are eligible for placement
consideration. Placement due to optional resources is considered first.
See Section 2.2.2.3. If no member can be chosen based on optional
resources, the order of the hosting members decides which member will
run the application resource. If none of the members in the hosting
member list are available, CAA favors placing the application resource
on any available member. This member may or may not be included in
the HOSTING_MEMBERS list.

Using CAA for Single-Instance Application Availability 2–7



• restricted — Like favored except that, if none of the members on the
hosting list are available, CAA will not start or restart the application
resource. A restricted placement policy ensures that the resource will
never run on a member that is not on the list, even if you manually
relocate it to that member.

You must specify hosting members in the HOSTING_MEMBERS attribute to use
a favored or restricted placement policy. You must not specify hosting
members in the HOSTING_MEMBERS attribute with a balanced placement
policy, or else the resource will not validate and cannot be registered.

If ACTIVE_PLACEMENT is set to 1, the placement of the application resource
is reevaluated whenever a cluster member is either added to the cluster or
the cluster member restarts. This allows applications to be relocated to a
preferred member of a cluster after the member recovers from a failure.

To have an application relocate to a preferred member at a time other than
when the cluster member rejoins the cluster, use the REBALANCE attribute to
specify a time at which placement can be reevaluated.

2.2.2.3 Optional Resources in Placement Decisions

CAA uses optional resources to choose a hosting member based on the
number of optional resources that are in the ONLINE state on each hosting
member. If each member has an equal number of optional resources in the
ONLINE state, CAA considers the order of the optional resources as follows:

CAA compares the state of the optional resources on each member starting
at the first resource and proceeding successively through the list. For each
consecutive resource in the list, if the resource is ONLINE on one member,
any member that does not have the resource ONLINE is removed from
consideration. Each resource on the list is evaluated in this manner until
only one member is available to host the resource. The maximum number
of optional resources is 58.

If this algorithm results in multiple favored members, the application is
placed on one of these members chosen according to its placement policy.

2.2.3 Network Resource Profiles

Table 2–2 describes the network profile attributes. For each attribute, the
table indicates whether the attribute is required, its default value, and a
description.

2–8 Using CAA for Single-Instance Application Availability



Table 2–2: Network Profile Attributes
Attributes Required Default Description

TYPE Yes None The type of the resource. The type
network is for network resources.

NAME Yes None The name of the resource. The resource
name is a string that contains a
combination of letters a-z or A-Z, digits
0-9, or the underscore (_) or period (.). The
resource name cannot start with a period.

DESCRIPTION No None A description of the resource.

SUBNET Yes None The subnet address of the network
resource in nnn.nnn.nnn.nnn format (for
example, 16.140.112.0). The SUBNET
value is the bitwise AND of the IP
address and the netmask. If you consider
an IP address of 16.69.225.12 and a
netmask of 255.255.255.0, then the
subnet will be 16.69.225.0.

FAILURE_THRESHOLD No 0 The number of failures detected within
FAILURE_INTERVAL before CAA marks
the resource as unavailable and no
longer monitors it. If an application’s
check script fails this number of times,
the application resource is stopped
and set offline. If the value is zero
(0), tracking of failures is disabled.
The maximum value is 20.

FAILURE_INTERVAL No 0 The interval, in seconds, during which
CAA applies the failure threshold.
If the value is zero (0), tracking of
failures is disabled.

The following example creates a network resource profile:

# /usr/sbin/caa_profile -create network1 -t network -s "16.69.244.0" \
-d "Network1"

The contents of the profile in file /var/cluster/caa/profile/net-
work1.cap created by the preceding command are as follows:

NAME=network1
TYPE=network
DESCRIPTION=Network1
FAILURE_INTERVAL=0
FAILURE_THRESHOLD=0
SUBNET=16.69.244.0

For more information on the network resource profile syntax, see
caa_profile(8) and caa(4).

Using CAA for Single-Instance Application Availability 2–9



Through routing, all members in a cluster can indirectly access any network
that is attached to any member. Nevertheless, an application may require
the improved performance that comes by running on a member with direct
connectivity to a network. For that reason, an application resource may
define an optional or required dependency on a network resource. CAA
optimizes the placement of that application resource based on the location of
the network resource.

When you make a network resource an optional resource
(OPTIONAL_RESOURCES) for an application, the application may start on a
member that is directly connected to the subnet, depending on the required
resources, placement policy, and cluster state. If the network adapter fails,
the application may still access the subnet remotely through routing.

If you specify a network resource as a required resource
(REQUIRED_RESOURCES) and the network adapter fails, CAA relocates or
stops the application. If the network fails on all eligible hosting members,
CAA will stop the application.

2.2.4 Tape Resource Profiles

Table 2–3 describes the tape profile attributes. For each attribute, the
table indicates whether the attribute is required, its default value, and a
description.

Table 2–3: Tape Profile Attributes
Attributes Required Default Description

TYPE Yes None The type of the resource. The type
tape is for tape resources.

NAME Yes None The name of the resource. The resource
name is a string that contains a
combination of letters a-z or A-Z,
digits 0-9, or the underscore (_) or
period (.). The resource name may
not start with a period.

DESCRIPTION No None A description of the resource.

DEVICE_NAME Yes None The device name of the tape resource.
Use the full path to the device special file
(for example, /dev/tape/tape1).

2–10 Using CAA for Single-Instance Application Availability



Table 2–3: Tape Profile Attributes (cont.)

Attributes Required Default Description

FAILURE_THRESHOLD No 0 The number of failures detected within
FAILURE_INTERVAL before CAA marks
the resource as unavailable and no
longer monitors it. If an application’s
check script fails this number of times,
the application resource is stopped
and set offline. If the value is zero
(0), tracking of failures is disabled.
The maximum value is 20.

FAILURE_INTERVAL No 0 The interval, in seconds, during which
CAA applies the failure threshold.
If the value is zero (0), tracking of
failures is disabled.

Through the device request dispatcher, all cluster members can indirectly
access any tape device that is attached to any cluster member. Nevertheless,
an application may require the improved performance that comes from
running on a member with direct connectivity to the tape device. For
that reason, an application resource may define an optional or required
dependency on a tape resource. CAA optimizes the placement of that
application based on the location of the tape resource.

The following example creates a tape resource profile. After a tape resource
has been defined in a resource profile, an application resource profile can
designate it as a required or optional resource.

# /usr/sbin/caa_profile -create tape1 -t tape -n /dev/tape/tape1 -d "Tape Drive"

The contents of the profile that was created in the file /var/clus-
ter/caa/profile/tape1.cap by the preceding command are as follows:

NAME=tape1
TYPE=tape
DESCRIPTION=Tape Drive
DEVICE_NAME=/dev/tape/tape1
FAILURE_INTERVAL=0
FAILURE_THRESHOLD=0

2.2.5 Media Changer Resource Profiles

Media changer devices are similar to tape devices, but have access to
multiple tape cartidges.

Table 2–4 describes the media changer profile attributes. For each attribute,
the table indicates whether the attribute is required, its default value, and a
description.

Using CAA for Single-Instance Application Availability 2–11



Table 2–4: Media Changer Attributes
Attributes Required Default Description

TYPE Yes None The type of the resource. The type
changer is for media changer resources.

NAME Yes None The name of the resource. The resource
name is a string that contains a
combination of letters a-z or A-Z,
digits 0-9, or the underscore (_) or
period (.). The resource name may
not start with a period.

DESCRIPTION No None A description of the resource.

DEVICE_NAME Yes None The device name of the media changer
resource. Use the full path to the
device special file (for example,
/dev/changer/mc1).

FAILURE_THRESHOLD No 0 The number of failures detected within
FAILURE_INTERVAL before CAA marks
the resource as unavailable and no
longer monitors it. If an application’s
check script fails this number of times,
the application resource is stopped
and set offline. If the value is zero
(0), tracking of failures is disabled.
The maximum value is 20.

FAILURE_INTERVAL No 0 The interval, in seconds, during which
CAA applies the failure threshold.
If the value is zero (0), tracking of
failures is disabled.

Through the device request dispatcher, all cluster members can indirectly
access any media changer that is attached to any member. Nevertheless, an
application may require the improved performance that comes from running
on a member with direct connectivity to the media changer. For that reason,
an application resource may define an optional or required dependency on a
media changer resource. CAA optimizes the placement of that application
based on the location of the media changer resource.

The following example creates a media changer resource profile. After a
media changer resource has been defined in a resource profile, an application
resource profile can designate it as a dependency.

# /usr/sbin/caa_profile -create mchanger1 -t changer -n /dev/changer/mc1 \
-d "Media Changer Drive"

The contents of the profile that was created in the file /var/clus-
ter/caa/profile/mchanger1.cap by the preceding command are as
follows:

2–12 Using CAA for Single-Instance Application Availability



NAME=mchanger1
TYPE=changer
DESCRIPTION=Media Changer Drive
DEVICE_NAME=/dev/changer/mc1
FAILURE_INTERVAL=0
FAILURE_THRESHOLD=0

2.2.6 Validating Profiles

Resource profiles can be checked for correct syntax before registration. If a
profile does not pass validation it will not be allowed to be registered. The
caa_profile command can be used as follows to check that the profile
has been created correctly:
# /usr/sbin/caa_profile -validate resource

If there are any problems with the resource, an appropriate message telling
you which attributes are incorrect will be displayed.

2.3 Writing Action Scripts
Action scripts are necessary for application resources to start, stop, and
relocate an application that is managed and monitored by CAA.

You use action scripts to specify the following:

• How to start an application.

CAA calls the start entry point of the action script to start or restart
the application resource. The start entry point executes all commands
that are necessary to start the application and must return 0 (zero) for
success and a nonzero value for failure.

• How to stop an application and what cleanup occurs before the
application is failed over.

CAA calls the stop entry point of the action script to stop a running
application resource. It is not called when stopping an application
resource in state UNKNOWN. (See caa_stop(8) for details.) The stop entry
point executes all commands necessary to stop the application and must
return 0 (zero) for success and a nonzero value for failure. If the stop
script determines that there is nothing to stop, it should return 0.

• How to determine whether an application is still running.

CAA calls the check entry point of the action script to verify that an
application resource is running. The check entry point executes every
CHECK_INTERVAL seconds and must return 0 (zero) for success and a
nonzero value for failure.

Action scripts are located by default in the clusterwide /var/clus-
ter/caa/script directory. The file names of action scripts take the form
name.scr.

Using CAA for Single-Instance Application Availability 2–13



The easiest way to create an action script is to have the caa_profile
command automatically create one for you when you create the resource
profile. Do this by using the -B option. For example:

# caa_profile -create resource_name -t application -B application_path

Use the -B option in the caa_profile command to specify the full pathname
of an application executable; for example, /usr/local/bin/httpd. When
you use the -B option, the caa_profile command creates an action script
named /var/cluster/caa/script/resource_name.scr. To specify a
different action script name, use the -a option.

Depending on the application, you might need to edit the action script to
correctly set up the environment for the application. For example, for an X
application like xclock, you need to set the DISPLAY environment variable
on the command line in the action script as appropriate for the current shell.
It might look something like:

DISPLAY=‘hostname‘:0
export DISPLAY

Because an action script is required for an application resource, when you
use the caa_profile -create command to create an application resource
profile, one of the following conditions must be true:

• You must specify the caa_profile option -B application_exe-
cutable_pathname, so that an action script is automatically created.
You may also specify the name of the action script that is created with
the -a option.

• You must have already created an executable action script in the default
directory, /var/cluster/caa/script/. The root of the script name
must be the same as the name of the resource you create.

For example, if the action script is named /var/clus-
ter/caa/script/up-app-1.scr, then the resource name must be
up-app-1. Therefore, if you use the caa_profile command to create
the resource profile, the command line starts as follows:

# caa_profile -create up-app-1 -t application

• You must have already created an executable action script, and you must
use the caa_profile option -a action_script_pathname to inform
CAA where to find the action script. For example:

-a /usr/users/smith/caa/scripts/app.scr

___________________ Caution ____________________

For security reasons, make sure that action scripts are
writable only by root.

2–14 Using CAA for Single-Instance Application Availability



2.3.1 Guidelines for Writing Application Resource Action Scripts

When writing an action script for an application resource, note the following:

• CAA relies on the exit code from the action script to set the application
state to ONLINE or OFFLINE. Each entry point in the action script must
return an exit code of 0 to reflect success or a nonzero exit code to specify
failure.

• CAA sets the application state to UNKNOWN if an action script’s stop entry
point fails to exit within the number of seconds in the SCRIPT_TIMEOUT
value, or returns with a nonzero value. This may happen during a start
attempt, a relocation, or a stop attempt. Be sure that the action script
stop entry point exits with a 0 value if the application is successfully
stopped or if it is not running.

• When a daemon is started, it usually starts as a background process. For
an application that does not put itself into the background immediately
upon startup, start the application in the background by adding an
ampersand (&) to the end of the line that starts the application. An
application started in this way will always return success on a start
attempt. This means that the default scripts will have no way of
detecting failure due to a trivial reason, such as a misspelled command
path. When using such commands, we recommend that you execute the
commands used in the script interactively to rule out syntax and other
trivial errors before using the script with CAA.

For any X-windows applications that you may be running under CAA, you
must also consider the following:

• For a graphical application that is served by the cluster and monitored
by CAA, you must set the DISPLAY environment variable of the client
system in the action script. For example:

export DISPLAY=everest:0.0
/usr/bin/my_application &

• On the client system, add the default cluster alias to the list of allowed X
server connections. For example:

everest#> xhost +my_cluster

• CAA scripts generated by caa_profile or SysMan do not set the PATH
environment variable. When the scripts are executed, the PATH is set to
a default value of /sbin:/usr/sbin:/usr/bin. Therefore, you must
explicitly specify most path names that are used in scripts, or you must
modify the resulting scripts to explicitly set the PATH. Action scripts
that were automatically generated with previous releases may have a
PATH that includes the current directory (.). Because this situation
may be a potential security issue, modify these scripts to remove the
current directory from the path.

Using CAA for Single-Instance Application Availability 2–15



2.3.2 Action Script Examples

The action script template is located in /var/cluster/caa/tem-
plate/template.scr. It is the basis for action scripts that are created by
the caa_profile command, and it is a good example of the elements of
an action script.

The following action scripts for application resources can be used as
examples and are found in the /var/cluster/caa/script directory:

• cluster_lockd.scr

• dhcp.scr

• named.scr

• autofs.scr

The scripts shown in Section 2.14 are also good examples of action
scripts. These example scripts and others can be found in the
/var/cluster/caa/examples directory. There are examples of several
applications that are commonly administered using CAA. The script
sysres_templ.scr that is located in this directory is an example script
that contains extra system performance related code that can be used to
examine the system load, swap space usage, and disk space available. If you
incorporate these features in your scripts, set the values for variables that
are associated with these features appropriately for your system.

2.3.3 Accessing Environment Variables

An action script can access a number of environment variables, allowing you
to tailor your scripts to be responsive to the variables.

The variables that are accessible in to an action script executed in the CAA
environment include:

• Profile attributes

• Reason codes

• Locale information

• User-defined attributes

The CAA defined resource profile attributes can be accessed as an
environment variable in any action script by prefixing _CAA_ to the
attribute name. For example, the AUTO_START value is obtained using
_CAA_AUTO_START in the script.

Reason codes describe the reason that an action script was executed. The
environment variable _CAA_REASON can have one of the following reason
code values:

2–16 Using CAA for Single-Instance Application Availability



user Action script was invoked due to a user-initiated
command, such as caa_start, caa_stop, or
caa_relocate.

failure Action script was executed because of a failure
condition. A typical condition that sets this value is
a check script failure.

dependency Action script was invoked as a dependency of
another resource that has had a failure condition.

boot Action script was invoked as a result of an initial
cluster boot (resource was running in a prior system
invocation).

autostart Resource is being autostarted. If the AUTOSTART
profile attribute is set to 1, autostart occurs at
cluster boot time if the resource was previously
offline on the cluster before the last shutdown.

system Action script was initiated by the system due to
normal maintenance, for example, the check script
initiates a relocation.

unknown Internally unknown state when the script was
invoked. If this value occurs, record the state of the
cluster and application and contact your support
representative.

The locale of the environment where a CAA command invokes an action
script is available to the action script in the _CAA_CLIENT_LOCALE
environment variable. This variable contains the following locale information
in a string value separated by spaces: LC_ALL, LC_CTYPE, LC_MONETARY,
LC_NUMERIC, LC_TIME, LC_MESSAGES. The action script can use this
information, if desired, to set the locale in the action script environment.

See setlocale(3) and locale(1) for more information on locale.

An action script might use a code snippet similar to something below to
make use of reason codes:

if [ "$_CAA_REASON" = "user" ]; then
echo "Action invoked by User"

.

.

.
fi

Using CAA for Single-Instance Application Availability 2–17



2.3.4 Directing Output from Action Scripts

You can redirect output from an action script so that it is displayed when
caa_start, caa_stop, or caa_relocate are executed. Each line of output
can optionally have a prefix consisting of the cluster member and resource
name.

Default operation is for output not to be redirected.

To enable action script output redirection in CAA, you must set the
environment variable _CAA_UI_FMT for the environment in which you are
executing caa_start, caa_stop, or caa_relocate to either v or vs,
such as:

# export _CAA_UI_FMT=v
# caa_start db_2 ...
nodex:db_2:output text ...
nodex:db_2:output text ...
nodex:db_2:output text ...
nodex:db_2:output text ...

Use of the modifier s suppresses the node:resource prefix to the output.
For example:

# export _CAA_UI_FMT=vs
# caa_start db_2
output text ...
output text ...

2.4 Creating User-Defined Attributes
The format of application resource profiles can be extended with user-defined
attributes. These user-defined attributes can be accessed within the resource
action script as environment variables and apply to all application resources.

A user-defined attribute first must be defined in the application resource
type definition file located at /var/cluster/caa/template/applica-
tion.tdf. The values that must be defined are as follows.

attribute Defines the attribute for which a user can specify a
value. This attribute translates to an environment
variable accessible in all application resource action
scripts.

type Defines the type of values that are allowed for
this attribute. Types include: boolean, string,
name_list, name_string, positive_integer,
internet_address, file.

switch Defines the switch used with the caa_profile
command to specify a profile value.

2–18 Using CAA for Single-Instance Application Availability



default Defines the default value for this attribute, if it is
not specified in the profile.

required Defines whether the switch must be specified in a
profile or not.

A user-defined attribute can be specified on the command line of caa_start,
caa_relocate, or caa_stop as well as in a profile. The value specified
on the command line overrides any value specified in a profile. For more
information, see caa_start(8), caa_relocate(8), or caa_stop(8).

Any line in a type definition file that begins with a # is considered a comment.

An example entry in the type definition file is as follows:

#!==========================
attribute: USR_DEBUG
type: boolean
switch: -o d
default: 0
required: no

2.5 Registering Resources

Each resource must have a profile. Each resource must be registered with
CAA to be managed by CAA. Use the caa_register command to register
your resources. For example, to register the clock application, enter the
following command:

# /usr/sbin/caa_register clock

After a resource is registered, the information in the profile is stored in
the binary CAA registry. If the profile is modified, you must update the
database with caa_register -u.

See caa_register(8) for more information.

2.6 Starting Application Resources

To start an application that is registered with CAA, use the caa_start
command. The name of the application resource may or may not be the same
as the name of the application. For example:

# /usr/sbin/caa_start clock

The following text is an example of the command output:

Attempting to start ‘clock‘ on member ‘polishham‘
Start of ‘clock‘ on member ‘polishham‘ succeeded.

The application is now running on the system named polishham.

Using CAA for Single-Instance Application Availability 2–19



The command will wait up to the SCRIPT_TIMEOUT value to receive
notification of success or failure from the action script each time that the
action script is called.

Application resources can be started and non-application resources can
be restarted if they have stopped due to exceeding their failure threshold
values. (See the Cluster Administration manual for more information
on restarting non-application resources.) You must register a resource
(caa_register) before you can start it.

______________________ Note _______________________

Always use caa_start and caa_stop, or the equivalent SysMan
feature, to start and stop resources. Do not start or stop the
applications manually at the command line or by executing the
action scripts. Manual starts or stops outside of CAA will cause
resource status to be incorrect.

If you try to start a resource that has required resources that are ONLINE
on another cluster member, the start will fail. All required resources must
either be OFFLINE or ONLINE on the member where the resource will be
started.

If you use the command caa_start -f resource_name on a resource
that has required resources that are OFFLINE, the resource starts and all
required resources that are not currently ONLINE start as well.

Executing the caa_start command on an application resource actually only
sets the resource target value to ONLINE. The target value specifies which
state CAA will attempt to set the resource.

CAA attempts to change the state to match the target and attempts to start
the application by running the action script start entry point. When an
application is running, both the target state and current state are ONLINE.
The Cluster Administration manual has a more detailed description of how
target and state fields describe resources.

______________________ Note _______________________

When attempting to start an application on a cluster member that
undergoes a system crash, caa_start can give indeterminate
results. In this scenario, the start section of the action script
is executed but the cluster member crashes before notification
of the start is displayed on the command line. The caa_start
command returns a failure with the error Remote start for
[resource_name] failed on member [member_name]. The
application resource is actually ONLINE and fails over to another

2–20 Using CAA for Single-Instance Application Availability



member making the application appear as though it was started
on the wrong member.

If a cluster member fails while you are starting an application
resource on that member, you should check the state of the
resource on the cluster with caa_stat to determine the state
of that resource.

See caa_start(8) for more information.

2.7 Relocating Application Resources

Use the caa_relocate command to relocate application resources. You
cannot relocate network, tape, or changer resources.

To relocate an application resource to an available cluster member, or to a
specified cluster member, use the caa_relocate command. For example, to
relocate the clock application to member provolone, enter the following
command:

# /usr/sbin/caa_relocate clock -c provolone

The following text is an example of the command output:

Attempting to stop ‘clock‘ on member ‘polishham‘
Stop of ‘clock‘ on member ‘polishham‘ succeeded.
Attempting to start ‘clock‘ on member ‘provolone‘
Start of ‘clock‘ on member ‘provolone‘ succeeded.

To relocate the clock application to another member using the placement
policy that is defined in the application resource’s profile, enter the following
command:

# /usr/sbin/caa_relocate clock

The following text is an example of the command output:

Attempting to stop ‘clock‘ on member ‘pepicelli‘
Stop of ‘clock‘ on member ‘pepicelli‘ succeeded.
Attempting to start ‘clock‘ on member ‘polishham‘
Start of ‘clock‘ on member ‘polishham‘ succeeded.

The following text is an example of the command output if the application
cannot be relocated successfully due to a script returning a nonzero value or
a script timeout:

Attempting to stop ‘clock‘ on member ‘pepicelli‘
Stop of ‘clock‘ on member ‘pepicelli‘ succeeded.
Attempting to start ‘clock‘ on member ‘provolone‘
Start of ‘clock‘ on member ‘provolone‘ failed.
No more members to consider
Attempting to restart ‘clock‘ on member ‘pepicelli‘
Could not relocate resource clock.

Using CAA for Single-Instance Application Availability 2–21



Each time that the action script is called, the caa_relocate command will
wait up to the SCRIPT_TIMEOUT value to receive notification of success or
failure from the action script.

A relocate attempt will fail if:

• The resource has required resources that are ONLINE

• Resources that require the specified resource are ONLINE

If you use the caa_relocate -f resource_name command on a resource
that has required resources that are ONLINE, or has resources that require
it that are ONLINE, the resource is relocated and all resources that require
it and are ONLINE are relocated. All resources that are required by the
specified resource are relocated or started regardless of their state.

See caa_relocate(8) for more information.

2.8 Balancing Application Resources

Balancing application resources is the reevaluation of application resource
placement based on the current state of the resources on the cluster and the
rules of placement for the resources. Balancing applications can be done
on a clusterwide basis, a member-wide basis, or with specified resources.
Balancing decisions are made using the standard placement decision
mechanism of CAA and are not based on any load considerations.

Use the caa_balance command only with application resources. You cannot
balance network, tape, or changer resources.

Balancing on a per cluster basis reevaluates all ONLINE application
resources on a cluster and relocates each resource that is not running on the
cluster member chosen by the placement decision mechanism, as discussed
in Section 2.2.2.2.

To balance all applications on a cluster, enter the following command:

# /usr/sbin/caa_balance -all

Assuming that applications test and test2 are the only two applications
that are ONLINE and are running on member rye with balanced placement
policies, the following text is displayed:

Attempting to stop ‘test‘ on member ‘rye‘
Stop of ‘test‘ on member ‘rye‘ succeeded.
Attempting to start ‘test‘ on member ‘swiss‘
Start of ‘test‘ on member ‘swiss‘ succeeded.
Resource test2 is already well placed
test2 is placed optimally. No relocation is needed.

If more applications are ONLINE in the cluster, the output will reflect any
actions taken for each application resource.

2–22 Using CAA for Single-Instance Application Availability



To reevaluate placement of the applications running on the cluster member
rye, enter the following command:

# /usr/sbin/caa_balance -s rye

Assuming that applications test and test2 are the only two applications
that are ONLINE and are running on member rye with balanced placement
policies, the following text is displayed:

Attempting to stop ‘test‘ on member ‘rye‘
Stop of ‘test‘ on member ‘rye‘ succeeded.
Attempting to start ‘test‘ on member ‘swiss‘
Start of ‘test‘ on member ‘swiss‘ succeeded.
Resource test2 is already well placed
test2 is placed optimally. No relocation is needed.

If more applications are ONLINE in the cluster member, the output will
reflect any actions taken for each application resource.

To balance specified applications only, enter the following command:

# /usr/sbin/caa_balance test test2

Assuming that applications test and test2 are running on member rye
with balanced placement policies, the following text is displayed:

Attempting to stop ‘test‘ on member ‘rye‘
Stop of ‘test‘ on member ‘rye‘ succeeded.
Attempting to start ‘test‘ on member ‘swiss‘
Start of ‘test‘ on member ‘swiss‘ succeeded.
Resource test2 is already well placed
test2 is placed optimally. No relocation is needed.

The time value in the profile must be specified in the following format:
t:day:hour:min, where day is the day of the week (0-6), hour is the
hour of the day (0-23), and min is the minute of the hour (0–59) when the
re-evaluation occurs. An asterisk may be used as a wildcard to specify every
day, or every hour.

An example where the application will be rebalanced every Sunday at 0300
hours is:

REBALANCE=t:0:3:0

An example where the application will be rebalanced every day at 0230
hours is:

REBALANCE=t:*:2:30

An example of how to use the caa_profile command to specify this would
be:

# /usr/sbin/caa_profile -create testapp -t application
-B /usr/bin/true -o bt=*:2:30

The resulting profile will look like the following:

Using CAA for Single-Instance Application Availability 2–23



NAME=testapp
TYPE=application
ACTION_SCRIPT=testapp.scr
ACTIVE_PLACEMENT=0
AUTO_START=0
CHECK_INTERVAL=60
DESCRIPTION=testapp
FAILOVER_DELAY=0
FAILURE_INTERVAL=0
FAILURE_THRESHOLD=0
HOSTING_MEMBERS=
OPTIONAL_RESOURCES=
PLACEMENT=balanced
REBALANCE=t:*:2:30
REQUIRED_RESOURCES=
RESTART_ATTEMPTS=1
SCRIPT_TIMEOUT=60

See caa_balance(8) for more information.

2.9 Stopping Application Resources

To stop applications that are running in a cluster environment, use the
caa_stop command. Immediately after the caa_stop command is
executed, the target is set to OFFLINE. Because CAA always attempts
to match a resource’s state to its target, the CAA subsystem stops the
application. Only application resources can be stopped. Network, tape, and
media changer resources cannot be stopped.

In the following example, the clock application resource is stopped:

# /usr/sbin/caa_stop clock

The following text is an example of the command output:
Attempting to stop ‘clock‘ on member ‘polishham‘
Stop of ‘clock‘ on member ‘polishham‘ succeeded.

You cannot stop an application if it is a required resource for another ONLINE
application.

If you use the command caa_stop -f resource_name on a resource that
has resources that require it and are ONLINE, the resource is stopped and all
resources that require it and are ONLINE are stopped.

See caa_stop(8) for more information.

2.10 Unregistering Application Resources

To unregister an application resource, use the caa_unregister command.

You cannot unregister an application that is ONLINE or required by another
resource.In the following example, the clock application is unregistered:

# /usr/sbin/caa_unregister clock

2–24 Using CAA for Single-Instance Application Availability



See caa_unregister(8) for more information.

2.11 Displaying CAA Status Information
To display status information on resources on cluster members, use the
caa_stat command.

The following example displays the status information for the clock
resource:

# /usr/bin/caa_stat clock

NAME=clock
TYPE=application
TARGET=ONLINE
STATE=ONLINE on provolone

To view information on all resources, enter the following command:

# /usr/bin/caa_stat

NAME=clock
TYPE=application
TARGET=ONLINE
STATE=ONLINE on provolone

NAME=dhcp
TYPE=application
TARGET=ONLINE
STATE=ONLINE on polishham

NAME=named
TYPE=application
TARGET=ONLINE
STATE=ONLINE on polishham

NAME=network1
TYPE=network
TARGET=ONLINE on provolone
TARGET=ONLINE on polishham
STATE=ONLINE on provolone
STATE=ONLINE on polishham

To view information on all resources in a tabular form, enter the following
command:

# /usr/bin/caa_stat -t

Name Type Target State Host
----------------------------------------------------------------
cluster_lockd application ONLINE ONLINE provolone
dhcp application OFFLINE OFFLINE

Using CAA for Single-Instance Application Availability 2–25



network1 network ONLINE ONLINE provolone
network1 network ONLINE ONLINE polishham

To find out how many times a resource has been restarted or has failed
within the resource failure interval, the maximum number of times that a
resource can be restarted or fail, and the target state of the application, as
well as normal status information, enter the following command:

# /usr/bin/caa_stat -v

NAME=cluster_lockd
TYPE=application
RESTART_ATTEMPTS=30
RESTART_COUNT=0
FAILURE_THRESHOLD=0
FAILURE_COUNT=0
TARGET=ONLINE
STATE=ONLINE on provolone

NAME=dhcp
TYPE=application
RESTART_ATTEMPTS=1
RESTART_COUNT=0
FAILURE_THRESHOLD=3
FAILURE_COUNT=1
TARGET=ONLINE
STATE=OFFLINE

NAME=network1
TYPE=network
FAILURE_THRESHOLD=0
FAILURE_COUNT=0 on polishham
FAILURE_COUNT=0 on polishham
TARGET=ONLINE on provolone
TARGET=ONLINE on polishham
STATE=ONLINE on provolone
STATE=OFFLINE on polishham

To view verbose content in a tabular form, enter the following command:

# /usr/bin/caa_stat -v -t

Name Type R/RA F/FT Target State Host
----------------------------------------------------------------------
cluster_lockd application 0/30 0/0 ONLINE ONLINE provolone
dhcp application 0/1 0/0 OFFLINE OFFLINE
named application 0/1 0/0 OFFLINE OFFLINE
network1 network 0/5 ONLINE ONLINE
network1 network 0/5 ONLINE ONLINE polishham

To view the profile information that is stored in the database, enter the
following command:

2–26 Using CAA for Single-Instance Application Availability



# /usr/bin/caa_stat -p

NAME=cluster_lockd
TYPE=application
ACTION_SCRIPT=cluster_lockd.scr
ACTIVE_PLACEMENT=0
AUTO_START=1
CHECK_INTERVAL=5
DESCRIPTION=Cluster lockd/statd
FAILOVER_DELAY=30
FAILURE_INTERVAL=60
FAILURE_THRESHOLD=1
REBALANCE=
HOSTING_MEMBERS=
OPTIONAL_RESOURCES=
PLACEMENT=balanced
REQUIRED_RESOURCES=
RESTART_ATTEMPTS=2
SCRIPT_TIMEOUT=60
...

See the Cluster Administration manual and caa_stat(1) for more
information.

2.12 Graphical User Interfaces
The following sections discuss how to use the SysMan and SysMan Station
graphical user interfaces (GUIs) to manage CAA.

2.12.1 Using SysMan Menu to Manage CAA

You can start the SysMan Menu from the command line with
/usr/sbin/sysman. To access the CAA tools, select the Cluster Application
Availablility (CAA) Management task under the TruCluster Specific branch.

.

.

.
+ TruCluster Specific

|Cluster Application Availability (CAA) Management

To start only the Cluster Application Availability (CAA) Management task,
use /usr/sbin/sysman caa.

See the Tru64 UNIX System Administration manual for more information
on accessing SysMan Menu.

Using the SysMan Menu you can:

• Manage resource profiles

Using CAA for Single-Instance Application Availability 2–27



• Monitor CAA resources

• Register resources

• Start resources

• Relocate resources

• Stop resources

• Unregister resources

The CAA GUI provides graphical assistance for cluster administration based
on event reports from the Event Manager (EVM) and CAA daemon.

2.12.2 Using SysMan Station to Manage and Monitor CAA

SysMan Station gives users a comprehensive graphical view of their cluster.
SysMan Station lets you view the current status of CAA resources on a
whole cluster, and manage those resources. SysMan Station also contains
the management tool SysMan Menu to manage individual CAA resources.
See the Tru64 UNIX System Administration manual for further information
on accessing the SysMan Station.

To access the CAA SysMan Menu tools in the SysMan Station, follow these
steps:

1. Select one of the views under Views, for example, CAA_Applica-
tions_(active) or CAA_Applications_(all).

2. Select the cluster name under the Views window, for example,
CAA_Applications_(active) View or CAA_Applications_(all)
View.

3. From the Tools menu, select SysMan Menu. The Cluster Application
Availablility (CAA) Management task is located under the TruCluster
Specific branch.

For more detailed descriptions of the SysMan Menu and SysMan Station,
see the online help or the Tru64 UNIX System Administration manual.

2.13 CAA Tutorial
This CAA tutorial helps you with the basic instructions necessary to quickly
make an application highly available using CAA. For in-depth details on
specific commands, you must read all the necessary documentation that
pertains to the CAA commands.

• Preconditions (Section 2.13.1)

• Miscellaneous Setup (Section 2.13.2)

• Example of an action script for dtcalc (Section 2.13.3)

2–28 Using CAA for Single-Instance Application Availability



• Step 1: Creating the application resource profile (Section 2.13.4)

• Step 2: Validating the application resource profile (Section 2.13.5)

• Step 3: Registering the application (Section 2.13.6)

• Step 4: Starting the application (Section 2.13.7)

• Step 5: Relocating the application (Section 2.13.8)

• Step 6: Stopping the application (Section 2.13.9)

• Step 7: Unregistering the application (Section 2.13.10)

In this tutorial the example cluster contains the members provolone,
polishham, and pepicelli. Wherever you see these member names in a
command line, use one of your own cluster member names instead.

2.13.1 Preconditions

You must have root access to a two-member TruCluster Server cluster.

In this tutorial you use CAA to make the Tru64 UNIX application dtcalc
highly available. Make sure that the test application /usr/dt/bin/dtcalc
exists.

An X-based application is used only for demonstrative purposes in this
example. The X-based application is used to provide immediate viewing of
the results of starts, stops, and relocation. You will most likely not find a
use for highly available applications of this sort.

2.13.2 Miscellaneous Setup

If you are making an application with a graphical interface highly available
using CAA, make sure that you set your DISPLAY variable correctly in the
ActionScript.scr file. Modify the DISPLAY variable, and copy the file
ActionScript.scr into the scripts directory /var/cluster/caa/script.

Verify that the host on which you want to display the application is able to
display X applications from the cluster. If you need to modify the access,
execute a command similar to following command on the machine that is
displaying the application:

# xhost + clustername

If you are not sure of the actual names of each member, look in the
/etc/hosts file on your system to get the names of each member. You also
can use the clu_get_info command to get information on each cluster
member, including the host names.

The following command is an example showing the results of the
clu_get_info command:

Using CAA for Single-Instance Application Availability 2–29



# clu_get_info

Cluster information for cluster deli

Number of members configured in this cluster = 3
memberid for this member = 3
Quorum disk = dsk10h
Quorum disk votes = 1

Information on each cluster member

Cluster memberid = 1
Hostname = polishham.zk4.com
Cluster interconnect IP name = polishham=ics0
Member state = UP

Cluster memberid = 2
Hostname = provolone.zk4.com
Cluster interconnect IP name = provolone=ics0
Member state = UP

Cluster memberid = 3
Hostname = pepicelli.zk4.com
Cluster interconnect I name = pepicelli=ics0
Member state = UP

2.13.3 Example of an Action Script for dtcalc

The following example is an action script that you can use for the dtcalc
tutorial, or you can use the more complex action script that is created by
the caa_profile command:

#!/usr/bin/ksh -p
#
# This action script will be used to launch dtcalc.
#
export DISPLAY=‘hostname‘:0
PATH=/sbin:/usr/sbin:/usr/bin
export PATH
CAATMPDIR=/tmp

CMDPATH=/usr/dt/bin

APPLICATION=${CMDPATH}/dtcalc

CMD=‘basename $APPLICATION‘

case $1 in

’start’) 1 if [ -f $APPLICATION ]; then
$APPLICATION & exit 0 else

echo "Found exit1" >/dev/console exit 1
fi ;; ’stop’) 2

PIDLIST=‘ps ax | grep $APPLICATION | grep -v ’caa_’ \

2–30 Using CAA for Single-Instance Application Availability



| grep -v ’grep’ | awk ’{print $1}’‘
if [ -n "$PIDLIST" ]; then
kill -9 $PIDLIST
exit 0

fi
exit 0
;;

’check’) 3
PIDLIST=‘ps ax | grep $CMDPATH | grep -v ’grep’ | awk ’{print $1}’‘
if [ -z "$PIDLIST" ]; then
PIDLIST=‘ps ax | grep $CMD | grep -v ’grep’

| awk ’{print $1}’‘
fi
if [-n "$PIDLIST" ]; then
exit 0

else
echo "Error: CAA could not find $CMD." >/dev/console
exit 1

fi
;;

esac

1 The start entry point is executed when an application is started.

2 The stop entry point is executed when an application is stopped.

3 The check entry point is executed every CHECK_INTERVAL seconds.

2.13.4 Step 1: Creating the Application Resource Profile

Create the resource profile for dtcalc with the following options to the
caa_profile command:
# /usr/sbin/caa_profile -create dtcalc -t application -B /usr/dt/bin/dtcalc \
-d "dtcalc application" -p balanced

When you examine the dtcalc.cap file that is located in
/var/cluster/caa/profile/, you will see the following:

# cat dtcalc.cap

NAME=dtcalc
TYPE=application
ACTION_SCRIPT=dtcalc.scr
ACTIVE_PLACEMENT=0
AUTO_START=0
CHECK_INTERVAL=60
DESCRIPTION=dtcalc application
FAILOVER_DELAY=0
FAILURE_INTERVAL=0
FAILURE_THRESHOLD=0
HOSTING_MEMBERS=
OPTIONAL_RESOURCES=
PLACEMENT=balanced
REQUIRED_RESOURCES=
RESTART_ATTEMPTS=1
SCRIPT_TIMEOUT=60

Using CAA for Single-Instance Application Availability 2–31



2.13.5 Step 2: Validating the Application Resource Profile

To validate the resource profile syntax, enter the following command:

# caa_profile -validate dtcalc

If there are syntax errors in the profile, caa_profile displays messages
indicating that the profile did not pass validation.

2.13.6 Step 3: Registering the Application

To register the application, enter the following command:

# /usr/sbin/caa_register dtcalc

If the profile cannot be registered, messages are displayed explaining why.

To verify that the application is registered, enter the following command:

# /usr/bin/caa_stat dtcalc

NAME=dtcalc
TYPE=application
TARGET=OFFLINE
STATE=OFFLINE

2.13.7 Step 4: Starting the Application

To start the application, enter the following command:

# /usr/bin/caa_start dtcalc

The following messages are displayed:
Attempting to start ‘dtcalc‘ on member ‘provolone‘
Start of ‘dtcalc‘ on member ‘provolone‘ succeeded.

You can execute the /usr/bin/caa_stat dtcalc command to check that
the dtcalc action script start entry point executed successfully and dtcalc
is started. For example:

# /usr/bin/caa_stat dtcalc

NAME=dtcalc
TYPE=application
TARGET=ONLINE
STATE=ONLINE on provolone

If the DISPLAY variable is set correctly in the script, dtcalc appears on
your display.

2.13.8 Step 5: Relocating the Application

To relocate the application, enter the following command:

2–32 Using CAA for Single-Instance Application Availability



# /usr/bin/caa_relocate dtcalc -c polishham

Execute the command /usr/bin/caa_stat dtcalc to verify that dtcalc
started successfully. An example follows:

# /usr/bin/caa_stat dtcalc

NAME=dtcalc
TYPE=application
TARGET=ONLINE
STATE=ONLINE on polishham

The cluster member is listed in the STATE attribute.

2.13.9 Step 6: Stopping the Application

To stop the application, enter the following command:

# /usr/bin/caa_stop dtcalc

The following information is displayed:
Attempting to stop ‘dtcalc‘ on member ‘provolone‘
Stop of ‘dtcalc‘ on member ‘provolone‘ succeeded.

You can execute the /usr/bin/caa_stat dtcalc command to verify that
the stop entry point of the dtcalc action script executed successfully and
dtcalc is stopped. For example:

# /usr/bin/caa_stat dtcalc

NAME=dtcalc
TYPE=application
TARGET=OFFLINE
STATE=OFFLINE

2.13.10 Step 7: Unregistering the Application

To unregister the application, enter the following command:

# /usr/sbin/caa_unregister dtcalc

2.14 Example Applications Managed by CAA
The following sections contain examples of highly available single-instance
applications that are managed by CAA.

2.14.1 OpenLDAP Directory Server

The OpenLDAP (Lightweight Directory Access Protocol) Directory Server is
part of the Internet Express for Tru64 UNIX product suite, a collection of pop-
ular Internet software combined with administration tools developed by HP.

Using CAA for Single-Instance Application Availability 2–33



(Internet Express ships with every HP Tru64 UNIX AlphaServer system, and
is also available from the following URL: http://www.tru64unix.com-
paq.com/docs/pub_page/iass_docs.html.) The products in this suite
are cluster-ready and can be configured to run with high availability in a
cluster.

The LDAP Module for System Authentication allows user identification
and authentication information stored in an LDAP server to be used for all
applications, including the following:

• Login authentication (rlogin, ftp, and telnet)

• POP and IMAP authentication

• Transparent LDAP database access for the getpw*( ) and getgr*( )
routines in the libc library

To create a highly available OpenLDAP Directory Server in a TruCluster
Server environment, perform the following:

Using the Internet Express Installation graphical user interface (GUI),
install the Internet Express kit. Select the Internet Express Administration
Utility and the OpenLDAP subsets for installation.

The installation procedure creates a CAA resource profile in the
/var/cluster/caa/profile directory for the OpenLDAP application
resource:
TYPE = application
NAME = openldap
DESCRIPTION = OpenLDAP Directory Server
CHECK_INTERVAL = 60
FAILURE_THRESHOLD = 0
FAILURE_INTERVAL = 0
REQUIRED_RESOURCES =
OPTIONAL_RESOURCES =
HOSTING_MEMBERS =
PLACEMENT = balanced
RESTART_ATTEMPTS = 1
FAILOVER_DELAY = 0
AUTO_START = 0
ACTION_SCRIPT = openldap.scr

It also creates an action script for the resource in the /var/clus-
ter/caa/script directory:
#!/sbin/sh

#
# Start/stop the OpenLDAP Directory Server.
#

OLPIDFILE=/data/openldap/var/openldap_slapd.pid
OPENLDAP_CAA=1
export OPENLDAP_CAA

case "$1" in
’start’)

2–34 Using CAA for Single-Instance Application Availability



/sbin/init.d/openldap start
;;

’stop’)
/sbin/init.d/openldap stop

;;
’check’)
# return non-zero if the service is stopped

if [ -f "$OLPIDFILE" ]
then

MYPID=‘cat $OLPIDFILE‘
RUNNING=‘/usr/bin/ps -e -p $MYPID -o command | grep slapd‘

fi

if [ -z "$RUNNING" ]
then

exit 1
else

exit 0
fi

;;
*)
echo "usage: $0 {start|stop|check}"

;;
esac

The following init.d script starts and stops the OpenLDAP service in a
cluster by calling the appropriate CAA command:

#!/sbin/sh
#
# Start the OpenLDAP Directory Server daemon.
#
NAME="OpenLDAP Directory Server"
HOME=/usr/internet/openldap

OLPIDFILE=/data/openldap/var/openldap_slapd.pid
MYPID=
RUNNING=

if [ -x /usr/sbin/clu_get_info ] && /usr/sbin/clu_get_info -q
then
CLUSTER="YES"

fi

check_running()
{

if [ -f "$OLPIDFILE" ]
then

MYPID=‘cat $OLPIDFILE‘
RUNNING=‘/usr/bin/ps -e -p $MYPID -o command | grep slapd‘

fi

if [ ! -z "$RUNNING" ]
then

return 1
else

return 0
fi

}

case "$1" in
’start’)

Using CAA for Single-Instance Application Availability 2–35



if [ "$CLUSTER" = "YES" -a "$OPENLDAP_CAA" != "1" ]
then

/usr/sbin/caa_start -q openldap
else

check_running
checkres=$?
if [ $checkres = 1 ]
then

echo "$NAME already running"
else

$HOME/libexec/slapd -f $HOME/etc/slapd.conf
fi

fi

;;
’stop’)

if [ "$CLUSTER" = "YES" -a "$OPENLDAP_CAA" != "1" ]
then

exit 1
else

check_running
checkres=$?

if [ $checkres = 1 ]
then

kill -TERM $MYPID
fi

fi
;;

*)
echo "usage: $0 {start|stop}"

;;
esac

It also adds the following line in the /etc/clua_services file:
openldap 389/tcp in_single,out_alias

2.14.2 Creating a Single-Instance, Highly Available Apache HTTP
Server Using CAA

To create a single-instance Apache HTTP server with failover capabilities,
follow these steps:

1. Download the latest, standard Apache distribution from the
www.apache.org Web site to the cluster and follow the
site’s instructions for building and installing Apache in the
/usr/local/apache directory.

2. Create a default CAA application resource profile and action script
with the following command:
# caa_profile -create httpd -t application -B /usr/local/apache/bin/httpd

The default profile adopts a failover policy that causes the httpd service
to fail over to another member when the member on which it is running
leaves the cluster. It also allows the httpd service to be placed on any

2–36 Using CAA for Single-Instance Application Availability



active cluster member. You can edit the profile to employ other failover
and placement policies and resource dependencies.

The default action script contains a start entry point that starts the
httpd service and a stop entry point that stops the httpd service.

3. Register the profile with CAA by entering the following command on
one member:

# caa_register httpd

4. Start the httpd service through CAA by entering the following
command on one member:

# caa_start httpd

2.14.3 Creating a Single-Instance Oracle8i Server Using CAA

To create a single-instance Oracle8i Version 8.1.7 database server with
failover capabilities, follow these steps:

1. Install and configure Oracle8i 8.1.7 using the instructions in the
Oracle8i documentation.

Oracle requires that certain kernel attributes be set to specific values,
that specific UNIX groups (dba, oinstall) be created, and that special
environment variables be initialized.

2. Before proceeding to set up the CAA service for the Oracle8i single
server, you must decide how client applications will reach the service.
You can use either the cluster alias feature of TruCluster Server or
use an interface (IP) alias. If you choose to use a cluster alias, create
a new cluster alias for each cluster member that will be an Oracle8i
server because you can tune the routing and scheduling attributes of
each alias independently. (For information on how to create a cluster
alias, see cluamgr(8).)

If you want to use a cluster alias, add the IP address and name of each
cluster alias to the /etc/hosts file.

Add the following line to the /etc/clua_services file to set up the
properties of the port that the Oracle8i listener uses:

listener 1521/tcp in_single

Setting the in_single attribute means that the cluster alias subsystem
will distribute connection requests directed to a cluster alias to one
member of the alias. If that member becomes unavailable, the cluster
alias subsystem will select another member of that cluster alias to
receive all requests.

To reload service definitions, enter the following command on all
members:

Using CAA for Single-Instance Application Availability 2–37



# cluamgr -f

3. If you choose to use an interface address as the target of client requests
to the Oracle8i service, add the IP address and name of the cluster
alias to the /etc/hosts file.

4. In the listener.ora and tnsnames.ora files, edit the HOST field
so that it contains each cluster alias that clients will use to reach the
service. For example:

.

.

.
(ADDRESS = (PROTOCOL = TCP) (HOST = alias1) (PORT = 1521))
.
.
.

5. An example Oracle CAA script is located in /var/clus-
ter/caa/examples/DataBase/oracle.scr. Copy the script to
/var/cluster/caa/script/oracle.scr, and edit it to meet your
environment needs such as e-mail accounts, log file destinations, alias
preference, and so on. Do not include any file system references in the
script.

6. Perform some initial testing of the scripts by first executing the start
and stop entry points outside of CAA. For example:

# cd /var/cluster/caa/script
# ./oracle.scr start

7. Create a CAA application resource profile using the SysMan Station or
by entering the following command:

# caa_profile -create oracle -t application \
-d "ORACLE Single-Instance Service" -p restricted -h "member1 member2"

Make sure that your Oracle CAA resource profile looks like the example
profile in /var/cluster/caa/examples/DataBase/oracle.cap.

8. Register the oracle profile with CAA using the SysMan Station or by
entering the following command on one member:

# caa_register oracle

9. Start the oracle service using the SysMan Station or by entering the
following command on one member:

# caa_start oracle

2–38 Using CAA for Single-Instance Application Availability



2.14.4 Creating a Single-Instance Informix Server Using CAA

To create a single-instance Informix server with failover capabilities, follow
these steps:

1. Install and configure Informix using the instructions in the Informix
documentation.

Informix requires that specific UNIX groups (dba, informix) be
created.

2. Before proceeding to set up the CAA service for the Informix single
server, you must decide how client applications will reach the service.
You can use either the cluster alias feature of the TruCluster Server
product or use an interface (IP) alias. If you choose to use a cluster
alias, create a new cluster alias for each cluster member that will be
an Informix server because you can tune the routing and scheduling
attributes of each alias independently. (For information on how to create
a cluster alias, see cluamgr(8).)

If you want to use a cluster alias, add the IP address and name of each
cluster alias to the /etc/hosts file.

Add the following line to the /etc/clua_services file to set up the
properties of the port that the Informix listener uses:

informix 8888/tcp in_single

Setting the in_single attribute means that the cluster alias subsystem
will distribute connection requests directed to the cluster alias to one
member of the alias. If that member becomes unavailable, the cluster
alias subsystem will select another member of that cluster alias to
receive all requests.

To reload service definitions, enter the following command on all
members:

# cluamgr -f

3. If you choose to use an interface address as the target of client requests
to the Informix service, add the IP address and name of the cluster
alias to the /etc/hosts file.

4. An example Informix CAA script is located in /var/clus-
ter/caa/examples/DataBase/informix.scr. Copy the script to
/var/cluster/caa/script/informix.scr, and edit it to meet your
environment needs such as e-mail accounts, log file destinations, alias
preference, and so on. Do not include any file system references in the
script.

5. Perform some initial testing of the scripts by first executing the start
and stop entry points outside of CAA. For example:

Using CAA for Single-Instance Application Availability 2–39



# cd /var/cluster/caa/script
# ./informix.scr start

6. Create a CAA application resource profile using the SysMan Station or
by entering the following command:

# caa_profile -create informix -t application \
-d "INFORMIX Single-Instance Service" -p restricted -h "member1 member2"

Make sure that your Informix CAA resource profile looks like the example
profile in /var/cluster/caa/examples/DataBase/informix.cap.

7. Register the informix profile with CAA using the SysMan Station or
by entering the following command on one member:

# caa_register informix

8. Start the informix service using the SysMan Station or by entering
the following command on one member:

# caa_start informix

2–40 Using CAA for Single-Instance Application Availability



3
Using Cluster Aliases with Multi-Instance

Applications

A cluster alias is an IP address that makes some or all of the systems in a
cluster look like a single system to clients rather than individual systems.
A cluster can have more than one cluster alias. The default cluster alias
includes all members of a cluster, and all members can receive packets
addressed to this alias.

This chapter provides examples of multi-instance applications that use the
default cluster alias to distribute requests among all cluster members.
See the Cluster Administration manual for information on how to modify
alias attributes.

This chapter covers the following topics:

• When to use cluster aliasing (Section 3.1)

• Example applications (Section 3.2)

3.1 When to Use Cluster Aliasing

Because a cluster alias sends requests and packets to members of aliases, it
is most useful for applications that run on more than one cluster member.
Incoming packets or connection requests are distributed among members of
a cluster alias. If one member belonging to that alias fails, the cluster alias
software transparently routes application-related traffic to the remaining
members of the cluster alias. Any new requests will be distributed among
members according to administrator-provided metrics. (See the Cluster
Technical Overview manual for a summary of the cluster alias features.)
Figure 3–1 shows how the cluster alias subsystem distributes client requests.

Using Cluster Aliases with Multi-Instance Applications 3–1



Figure 3–1: Accessing a Multi-Instance Application Through a Cluster Alias

ZK-1693U-AI

Member 1 Member 2 Member 3

Multi-Instance Application

cluster alias deli 

Client 1 Client 3Client 2

Clients requesting
a service from deli

Cluster alias routes
requests to members
providing service

For single-instance applications, use the cluster application availability
(CAA) facility for application control and failover. The cluster alias
subsystem still routes packets addressed to an alias, but because CAA
ensures that only one member is running the application, the cluster alias
will always route requests to that member. (Make sure that the member who
is running the application is also a member of the cluster alias being used.)
See the Cluster Administration manual for a general discussion about the
differences between the cluster alias subsystem and CAA.

3–2 Using Cluster Aliases with Multi-Instance Applications



3.2 Using the Default Cluster Alias to Access a
Multi-Instance Apache HTTP Server

To access a highly available, multi-instance Apache HTTP server using the
default cluster alias to distribute requests among all cluster members, follow
these steps:

1. Download the latest standard Apache distribution from
www.apache.org and follow the site’s instructions for building and
installing Apache in the /usr/local/apache directory.

2. Edit the apache/conf/http.conf configuration file to set the
KeepAlive parameter to off:

KeepAlive Off

If the KeepAlive parameter is set to on, the Apache server daemon
(httpd) will keep an existing TCP connection open and reuse it for
however many seconds are defined in KeepAliveTimeout. (The
default is 15 seconds.) If you want to load balance requests on a
request-by-request basis, turn off the KeepAlive timer that keeps
these connections open.

3. Create member-specific subdirectories for Apache log files in the
/usr/local/apache directory:

# mkdir -p /usr/local/apache/member1/logs
# mkdir -p /usr/local/apache/member2/logs

4. Create a context-dependent symbolic link (CDSL) for the log directory:

# mkcdsl /usr/local/apache/{memb}/logs /usr/local/apache/logs

____________________ Note _____________________

If you are using the C shell, you must escape the braces in
the {memb} string; that is: \{memb\}. Otherwise, the braces
are stripped by the shell. If you are using the Bourne shell or
the Korn shell, you do not have to escape the braces.

5. Add the following entry to the cluster alias services file,
/etc/clua_services:

http 80/tcp in_multi,out_alias

Setting the in_multi attribute for port 80 means that the cluster alias
subsystem will distribute connection requests directed to the default
cluster alias among all members of the alias.

6. To reload service definitions, enter the following command on all
members:

Using Cluster Aliases with Multi-Instance Applications 3–3



# cluamgr -f

7. On each member, start the Apache server daemon:

# /usr/local/apache/bin/httpd

3–4 Using Cluster Aliases with Multi-Instance Applications



Part 2
Moving Applications to TruCluster Server





4
General Application Migration Issues

This chapter describes general migration issues that are relevant to all
types of applications. Table 4–1 lists each migration issue and the types
of applications that might encounter them, as well as where to find more
information.

Table 4–1: Application Migration Considerations

Issues
Application Types
Affected For More Information

Clusterwide and
member-specific files

Single-instance
Multi-instance
Distributed

Section 4.1

Device naming Single-instance
Multi-instance
Distributed

Section 4.2

Interprocess communication Multi-instance
Distributed

Section 4.3

Synchronized access to
shared data

Multi-instance
Distributed

Section 4.4

Member-specific resources Single-instance Section 4.5

Expanded process IDs (PIDs) Multi-instance
Distributed

Section 4.6

Distributed lock manager
(DLM) parameters removed

Multi-instance
Distributed

Section 4.7

Licensing Single-instance
Multi-instance
Distributed

Section 4.8

Blocking layered products Single-instance
Multi-instance
Distributed

Section 4.9

4.1 Clusterwide and Member-Specific Files

A cluster has two sets of configuration data:

• Clusterwide data

General Application Migration Issues 4–1



Clusterwide data pertains to files and logs that can be shared by all
members of a cluster. For example, when two systems are members
of a cluster, they share a common /etc/passwd file that contains
information about the authorized users for both systems.

Sharing configuration or management data makes file management
easier. For example, Apache and Netscape configuration files can be
shared, allowing you to manage the application from any node in the
cluster.

• Member-specific data

Member-specific data pertains to files that contain member-specific data.
These files cannot be shared by all members of a cluster. Member-specific
data may be configuration details that pertain to hardware found only on
a specific system, such as a layered product driver for a specific printer
connected to one cluster member.

Because the cluster file system (CFS) makes all files visible to and
accessible by all cluster members, those applications that require
clusterwide configuration data can easily write to a configuration file that
all members can view. However, an application that must use and maintain
member-specific configuration information needs to take some additional
steps to avoid overwriting files.

To avoid overwriting files, consider using one of the following methods:

Method Advantage Disadvantage

Single file Easy to manage. Application must be
aware of how to access
member-specific data in
the single file.

Multiple files Keeps configuration
information in a set of
clusterwide files.

Multiple copies of files
need to be maintained.
Application must be
aware of how to access
member-specific files.

Context-dependent
symbolic links (CDSLs)

Keeps configuration
information in
member-specific areas.
CDSLs are transparent to
the application; they look
like symbolic links.

Moving or renaming files
will break symbolic links.
Application must be aware
of how to handle CDSLs.
Using CDSLs makes it more
difficult for an application
to find out about other
instances of that application
in the cluster.

You must decide which method best fits your application’s needs. The
following sections describe each approach.

4–2 General Application Migration Issues



4.1.1 Using a Single File

Using a single, uniquely named file keeps application configuration
information in one clusterwide file as separate records for each node. The
application reads and writes the correct record in the file. Managing a single
file is easy because all data is in one central location.

As an example, in a cluster the /etc/printcap file contains entries for
specific printers. The following parameter can be specified to indicate which
nodes in the cluster can run the spooler for the print queue:

:on=nodename1,nodename2,nodename3,...:

If the first node is up, it will run the spooler. If that node goes down, the next
node, if it is up, will run the spooler, and so on.

4.1.2 Using Multiple Files

Using uniquely named multiple files keeps configuration information in
a set of clusterwide files. For example, each cluster member has its own
member-specific gated configuration file in /etc. Instead of using a
context-dependent symbolic link (CDSL) to reference member-specific files
through a common file name, the naming convention for these files takes
advantage of member IDs to create a unique name for each member’s file.
For example:

# ls -l /etc/gated.conf.member*
-rw-r--r-- 1 root system 466 Jun 21 17:37 /etc/gated.conf.member1
-rw-r--r-- 1 root system 466 Jun 21 17:37 /etc/gated.conf.member2
-rw-r--r-- 1 root system 466 Jun 21 13:28 /etc/gated.conf.member3

This method requires more work to manage because multiple copies of
files need to be maintained. For example, if the member ID of a cluster
member changes, you must find and rename all member-specific files
belonging to that member. Also, if the application is unaware of how to
access member-specific files, you must configure it to do so.

4.1.3 Using CDSLs

Tru64 UNIX Version 5.0 introduced a special form of symbolic link, called
a context-dependent symbolic link (CDSL), that TruCluster Server uses to
point to the correct file for each member. CDSLs are useful when running
multiple instances of an application on different cluster members on
different sets of data.

Using a CDSL keeps configuration information in member-specific areas.
However, the data can be referenced through the CDSL. Each member
reads the common file name, but is transparently linked to its copy of the
configuration file. CDSLs are an alternative to maintaining member-specific

General Application Migration Issues 4–3



configuration information when an application cannot be easily changed
to use multiple files.

The following example shows the CDSL structure for the file
/etc/rc.config:

/etc/rc.config -> ../cluster/members/{memb}/etc/rc.config

For example, where a cluster member has a member ID of 3, the
pathname /cluster/members/{memb}/etc/rc.config resolves to
/cluster/members/member3/etc/rc.config.

Tru64 UNIX provides the mkcdsl command, which lets system
administrators create CDSLs and update a CDSL inventory file. For
more information on this command, see the TruCluster Server Cluster
Administration manual and mkcdsl(8). For more information about CDSLs,
see the Tru64 UNIX System Administration manual, hier(5), ln(1), and
symlink(2).

4.2 Device Naming

Tru64 UNIX Version 5.0 introduced a new device-naming convention that
consists of a descriptive name for the device and an instance number. These
two elements form the basename of the device. For example:

Location in /dev Device Name Instance Basename

./disk dsk 0 dsk0

./disk cdrom 1 cdrom1

./tape tape 0 tape0

Moving a disk from one physical connection to another does not change the
device name for the disk. For a detailed discussion of this device-naming
model, see the Tru64 UNIX System Administration manual.

Although Tru64 UNIX recognizes both the old-style (rz) and new-style (dsk)
device names, TruCluster Server recognizes only the new-style device names.
Applications that depend on old-style device names or the /dev directory
structure must be modified to use the newer device-naming convention.

You can use the hwmgr utility, a generic utility for managing hardware, to
help map device names to their bus, target, and LUN position after installing
Tru64 UNIX Version 5.1B. For example, enter the following command to
view devices:

4–4 General Application Migration Issues



# hwmgr -view devices

HWID: Device Name Mfg Model Location
--------------------------------------------------------------------

45: /dev/disk/floppy0c 3.5in floppy fdi0-unit-0
54: /dev/disk/cdrom0c DEC RRD47 (C) DEC bus-0-targ-5-lun-0
55: /dev/disk/dsk0c COMPAQ BB00911CA0 bus-1-targ-0-lun-0
56: /dev/disk/dsk1c COMPAQ BB00911CA0 bus-1-targ-1-lun-0
57: /dev/disk/dsk2c DEC HSG80 IDENTIFIER=7
.
.
.

Use the following command to view devices clusterwide:

# hwmgr -view devices -cluster

HWID: Device Name Mfg Model Hostname Location
-----------------------------------------------------------------------
45: /dev/disk/floppy0c 3.5in floppy swiss fdi0-unit-0
54: /dev/disk/cdrom0c DEC RRD47 (C) DEC swiss bus-0-targ-5-lun-0
55: /dev/disk/dsk0c COMPAQ BB00911CA0 swiss bus-1-targ-0-lun-0
56: /dev/disk/dsk1c COMPAQ BB00911CA0 swiss bus-1-targ-1-lun-0
57: /dev/disk/dsk2c DEC HSG80 swiss IDENTIFIER=7
.
.
.

For more information on using this command, see hwmgr(8) and the Cluster
Administration manual.

When modifying applications to use the new-style device-naming convention,
look for the following:

• Disks that are included in Advanced File System (AdvFS) domains

• Raw disk devices

• Disks that are encapsulated in Logical Storage Manager (LSM) volumes
or that are included in disk groups

• Disk names in scripts

• Disk names in data files (Oracle OPS and Informix XPS)

• SCSI bus renumbering

______________________ Note _______________________

If you previously renumbered SCSI buses in your ASE, carefully
verify the mapping from physical device to bus number during
an upgrade to TruCluster Server. See the Cluster Installation
manual for more information.

General Application Migration Issues 4–5



4.3 Interprocess Communication

The following mechanisms for clusterwide interprocess communication
(IPC) are supported:

• TCP/IP connections using sockets

• Buffered I/O or memory-mapped files

• UNIX file locks

• Distributed lock manager (DLM) locks

• Clusterwide kill signal

• Memory Channel application programming interface (API) library
(memory windows, low level locks, and signals)

The following mechanisms are not supported for clusterwide IPC:

• UNIX domain sockets

• Named pipes (FIFO special files)

• Signals

• System V IPC (messages, shared memory, and semaphores)
If an application uses any of these IPC methods, it must be restricted to
running as a single-instance application.

4.4 Synchronized Access to Shared Data

Multiple instances of an application running within a cluster must
synchronize with each other for most of the same reasons that multiprocess
and multithreaded applications synchronize on a standalone system.
However, memory-based synchronization mechanisms (such as critical
sections, mutexes, simple locks, and complex locks) work only on the local
system and not clusterwide. Shared file data must be synchronized, or files
must be used to synchronize the execution of instances across the cluster.

Because the cluster file system (CFS) is fully POSIX compliant, an
application can use flock() system calls to synchronize access to shared
files among instances. You can also use the distributed lock manager
(DLM) API library functions for more sophisticated locking capabilities
(such as additional lock modes, lock conversions, and deadlock detection).
Because the DLM API library is supplied only in the TruCluster Server
product, make sure that code that uses its functions and that is meant also
to run on nonclustered systems precedes any DLM function calls with a
call to clu_is_member(). The clu_is_member() function verifies that
the system is in fact a cluster member. For more information about this
command, see clu_is_member(3). For more information about the DLM
API, see Chapter 9.

4–6 General Application Migration Issues



4.5 Member-Specific Resources

If multiple instances of an application are started simultaneously on more
than one cluster member, some instances of the application may not work
properly because they depend on resources that are available only from a
specific member, such as large CPU cycles or a large amount of physical
memory. This may restrict the application to running as a single instance in
a cluster. Changing these characteristics in an application may be enough to
allow it to run as multiple instances in a cluster, or, if more than one member
has the resources, only run the application on those members.

4.6 Expanded PIDs

In TruCluster Server, process identifiers (PIDs) are expanded to a full 32-bit
value. The data type PID_MAX is increased to 2147483647 (0x7fffffff);
therefore, any applications that test for PID <= PID_MAX must be
recompiled.

To ensure that PIDs are unique across a cluster, PIDs for each cluster
member are based on the member ID and are allocated from a range of
numbers unique to that member. The formula for available PIDs in a cluster
is:

PID = (memberid * (2**19)) + 2

Typically, the first two values are reserved for the kernel idle process
and /sbin/init. For example, PIDs 524,288 and 524,289 are assigned to
kernel idle and init, respectively, on a cluster member whose memberid
is 1.

Use PIDs to uniquely identify log and temporary files. If an application does
store a PID in a file, make sure that that file is member-specific.

4.7 DLM Parameters Removed

Because the distributed lock manager (DLM) persistent resources, resource
groups, and transaction IDs are enabled by default in TruCluster Available
Server and TruCluster Production Server Version 1.6 and TruCluster Server
Version 5.0 and later, the dlm_disable_rd and dlm_disable_grptx
attributes are unneeded and have been removed from the DLM kernel
subsystem.

4.8 Licensing

This section discusses licensing constraints and issues.

General Application Migration Issues 4–7



4.8.1 TruCluster Server Clusterwide Licensing Not Supported

TruCluster Server Version 5.1B does not support clusterwide licensing. Each
time that you add an additional member to the cluster, you must register
all required application licenses on that member for applications that may
run on that member.

4.8.2 Layered Product Licensing and Network Adapter Failover

The Redundant Array of Independent Network Adapters (NetRAIN) and the
Network Interface Failure Finder (NIFF) provide mechanisms for facilitating
network failover and replace the monitored network interface method that
was employed in the TruCluster Available Server and Production Server
products.

NetRAIN provides transparent network adapter failover for multiple adapter
configurations. NetRAIN monitors the status of its network interfaces
with NIFF, which detects and reports possible network failures. You can
use NIFF to generate events when network devices, including a composite
NetRAIN device, fail. You can monitor these events and take appropriate
actions when a failure occurs. For more information about NetRAIN and
NIFF, see the Tru64 UNIX Network Administration: Connections manual.

In a cluster, an application can fail over and restart itself on another
member. If it performs a license check when restarting, it may fail because
it was looking for a particular member’s IP address or its adapter’s media
access control (MAC) address.

Licensing schemes that use a network adapter’s MAC address to uniquely
identify a machine can be affected by how NetRAIN changes the MAC
address. All network drivers support the SIOCRPHYSADDR ioctl
that fetches MAC addresses from the interface. This ioctl returns two
addresses in an array:

• Default hardware address — the permanent address that is taken from
the small PROM that each LAN adapter contains.

• Current physical address — the address that the network interface
responds to on the wire.

For licensing schemes that are based on MAC addresses, use the default
hardware address that is returned by SIOCRPHYSADDR ioctl; do not use
the current physical address because NetRAIN modifies this address for its
own use. See the reference page for your network adapter (for example,
tu(7)) for a sample program that uses the SIOCRPHYSADDR ioctl.

4–8 General Application Migration Issues



4.9 Blocking Layered Products

Check whether an application that you want to migrate is a blocking
layered product. A blocking layered product is a product that prevents the
installupdate command from completing during an update installation of
TruCluster Server Version 5.1B. Blocking layered products must be removed
from the cluster before starting a rolling upgrade that will include running
the installupdate command.

Unless a layered product’s documentation specifically states that you can
install a newer version of the product on the first rolled member, and that the
layered product knows what actions to take in a mixed-version cluster, we
strongly recommend that you do not install either a new layered product or a
new version of a currently installed layered product during a rolling upgrade.

The TruCluster Server Cluster Installation manual lists layered products
that are known to break an update installation on TruCluster Server Version
5.1B.

General Application Migration Issues 4–9





5
Moving ASE Applications to TruCluster

Server

This chapter describes how to move Available Server Environment (ASE)
applications to TruCluster Server Version 5.1B.

To continue single-instance application availability and failover, TruCluster
Server provides the cluster application availability (CAA) subsystem. In
TruCluster Server, CAA replaces the Available Server Environment (ASE),
which, in previous TruCluster Software products, provided the ability to
make applications highly available. However, unlike the case with ASE, in
a TruCluster Server cluster, you do not have to explicitly manage storage
resources and mount file systems on behalf of a highly available application.
The cluster file system (CFS) and device request dispatcher make file and
disk storage available clusterwide.

Before moving ASE services to TruCluster Server, make sure that you are
familiar with CAA. See Chapter 2 for detailed information on how to use
CAA.

This chapter discusses the following topics:

• Comparing ASE to CAA (Section 5.1)

• Preparing to move ASE services to TruCluster Server (Section 5.2)

• Reviewing ASE scripts (Section 5.3)

• Using an IP alias or networking services (Section 5.4)

• Partitioning file systems (Section 5.5)

5.1 Comparing ASE to CAA

CAA provides resource monitoring and application restart capabilities.
It provides the same type of application availability that is provided by
user-defined services in the TruCluster Available Server Software and
TruCluster Production Server Software products. Table 5–1 compares ASE
services with their equivalents in the TruCluster Server product.

Moving ASE Applications to TruCluster Server 5–1



Table 5–1: ASE Services and Their TruCluster Server Equivalents
ASE Service ASE Description TruCluster Server Equivalent

Disk service
(Section 5.1.1)

One or more highly available
file systems, Advanced File
System (AdvFS) filesets, or
Logical Storage Manager
(LSM) volumes. Can
also include a disk-based
application.

Cluster file system (CFS),
device request dispatcher,
and CAA

Network file system
(NFS) service
(Section 5.1.2)

One or more highly available
file systems, AdvFS filesets,
or LSM volumes that are
exported. Can also include
highly available applications.

Automatically provided
for exported file systems
by CFS and the default
cluster alias. No service
definition required.

User-defined service
(Section 5.1.3)

An application that fails over
using action scripts.

CAA

Distributed raw
disk (DRD) service
(Section 5.1.4)

Allows a disk-based,
user-level application to
run within a cluster by
providing clusterwide access
to raw physical disks.

Automatically provided by the
device request dispatcher. No
service definition required.

Tape service
(Section 5.1.5)

Depends on a set of one
or more tape devices for
configuring the NetWorker
server and other servers
for failover.

CFS, device request
dispatcher, and CAA

The following sections describe these ASE services and explain how to
handle them in a TruCluster Server environment.

5.1.1 Disk Service

ASE

An ASE disk service includes one or more highly available file systems,
Advanced File System (AdvFS) filesets, or Logical Storage Manager (LSM)
volumes. Disk services can also include a disk-based application and are
managed within the ASE.

TruCluster Server

There are no explicit disk services in TruCluster Server. The cluster file
system (CFS) makes all file storage available to all cluster members, and
the device request dispatcher makes disk storage available clusterwide.
Because file systems and disks are now available throughout the cluster, you
do not need to mount and fail them over explicitly in your action scripts. For

5–2 Moving ASE Applications to TruCluster Server



more information about using CFS, see the Cluster Administration manual
and cfsmgr(8).

Use CAA to define a disk service’s relocation policies and dependencies. If
you are not familiar with CAA, see Chapter 2.

Disk services can be defined to use either a cluster alias or an IP alias for
client access.

5.1.2 NFS Service

ASE

An ASE network file system (NFS) service includes one or more highly
available file systems, AdvFS filesets, or LSM volumes that a member
system exports to clients making the data highly available. NFS services
can also include highly available applications.

TruCluster Server

There are no explicit NFS services in TruCluster Server. When configured as
an NFS server, a TruCluster Server cluster provides highly available access
to the file systems it exports. CFS makes all file storage available to all
cluster members. You no longer need to mount any file systems within your
action scripts. Define the NFS file system to be served in the /etc/exports
file, as you would on a standalone server.

Remote clients can mount NFS file systems that are exported from the
cluster by using the default cluster alias or by using alternate cluster aliases,
as described in exports.aliases(4).

5.1.3 User-Defined Service

ASE

An ASE user-defined service consists only of an application that you want
to fail over using your own action scripts. The application in a user-defined
service cannot use disks.

TruCluster Server

In ASE you may have created a highly available Internet login service by
setting up user-defined start and stop action scripts that invoked ifconfig.
In TruCluster Server you do not need to create a login service. Clients can
log in to the cluster by using the default cluster alias. CFS makes disk
access available to all cluster members.

Use CAA to define a user-defined service’s failover and relocation policies
and dependencies. If you are not familiar with CAA, see Chapter 2.

Moving ASE Applications to TruCluster Server 5–3



5.1.4 DRD Service

ASE

An ASE distributed raw disk (DRD) service provides clusterwide access to
raw physical disks. A disk-based, user-level application can run within a
cluster, regardless of where in the cluster the physical storage it depends
upon is located. A DRD service allows applications, such as database and
transaction processing (TP) monitor systems, parallel access to storage
media from multiple cluster members. When creating a DRD service, you
specify the physical media that the service will provide clusterwide.

TruCluster Server

There are no explicit DRD services in TruCluster Server. The device request
dispatcher subsystem makes all disk and tape storage available to all cluster
members, regardless of where the physical storage is located. You no longer
need to explicitly fail over disks when an application fails over to another
member.

Prior to Tru64 UNIX Version 5.0, a separate DRD namespace was provided
in a TruCluster Production Server environment. When DRD services were
added, the asemgr utility assigned DRD special file names sequentially
in the following form:

/dev/rdrd/drd1
/dev/rdrd/drd2
/dev/rdrd/drd3
...

In a TruCluster Server cluster, you access a raw disk device partition in a
TruCluster Server configuration in the same way that you do on a Tru64
UNIX Version 5.0 or later standalone system — by using the device’s special
file name in the /dev/rdisk directory. For example:

/dev/rdisk/dsk2c

5.1.5 Tape Service

ASE

An ASE tape service depends on a set of one or more tape devices. It
may also include media changer devices and file systems. A tape service
enables you to configure the Legato NetWorker server and servers for
other client/server-based applications for failover. The tape drives, media
changers, and file systems all fail over as one unit.

5–4 Moving ASE Applications to TruCluster Server



TruCluster Server

There are no explicit tape services in TruCluster Server. CFS makes all file
storage available to all cluster members, and the device request dispatcher
makes disk and tape storage available clusterwide. Because file systems,
disks, and tapes are now available throughout the cluster, you do not need to
mount and fail them over explicitly in your action scripts.

Use CAA to define a tape resource’s failover and relocation policies and
dependencies. If you are not familiar with CAA, see Chapter 2.

Applications that access tapes and media changers can be defined to use
either a cluster alias or an IP alias for client access.

5.2 Preparing to Move ASE Services to TruCluster Server

TruCluster Server Version 5.1B includes the following scripts that you
can use to move storage from the Available Server Environment (ASE) to
the new cluster:

• clu_migrate_check

• clu_migrate_save

• clu_migrate_configure

The scripts and associated utility programs are available from the
TruCluster Server Version 5.1B directory on the Tru64 UNIX Associated
Products Volume 2 CD-ROM, in the TCRMIGRATE540 subset. See the
Cluster Installation manual for a description of the scripts and installation
instructions.

In general and where possible, we recommend that you use the procedures
and scripts described in the Cluster Installation manual. However, if your
storage topology, system configurations, or site policy make it impossible to
do so, you can manually gather and configure ASE storage information.
You are responsible for mapping old-style (rz*) device names to new-style
(dsk*) device names. See the Cluster Installation manual for instructions on
manually gathering device and storage information and configuring storage
on the new Tru64 UNIX system.

If you decide to manually gather storage information and configure
storage on the new Tru64 UNIX system, you should save both the
var/ase/config/asecdb database and a text copy of the database before
shutting down your ASE cluster. Having the ASE database content available
makes it easier to set up applications on TruCluster Server.

How ASE database content is saved differs between versions of TruCluster
Available Server and TruCluster Production Server. The following sections

Moving ASE Applications to TruCluster Server 5–5



explain how to save ASE database content on a Version 1.5 or later system
and a Version 1.4 or earlier system.

5.2.1 Saving ASE Database Content from TruCluster Available Server
and Production Server Version 1.5 or Later

To save both the /var/ase/config/asecdb database and a text copy of
the database, enter the following commands:

# cp /var/ase/config/asecdb asecdb.copy
# asemgr -d -C > asecdb.txt

The following information, saved from a sample ASE database, is helpful
when creating a CAA profile:

!! ASE service configuration for netscape

@startService netscape
Service name: netscape
Service type: DISK
Relocate on boot of favored member: no
Placement policy: balanced
.
.
.

The following information, saved from a sample ASE database, is helpful
when installing and configuring an application on TruCluster Server:

IP address: 16.141.8.239
Device: cludemo#netscape
cludemo#netscape mount point: /clumig/Netscape
cludemo#netscape filesystem type: advfs
cludemo#netscape mount options: rw
cludemo#netscape mount point group owner: staff

Device: cludemo#cludemo
cludemo#cludemo mount point: /clumig/cludemo
cludemo#cludemo filesystem type: advfs
cludemo#cludemo mount options: rw
cludemo#cludemo mount point group owner: staff

AdvFS domain: cludemo
cludemo volumes: /dev/rz12c

.

.

.

5.2.2 Saving ASE Database Content from TruCluster Available Server
and Production Server Version 1.4 or Earlier

On a TruCluster Available Server or Production Server Version 1.4 or
earlier system, you cannot use the asemgr command to save all ASE service
information. The asemgr command does not capture ASE script information.
You must use the asemgr utility if you want to save all information.

5–6 Moving ASE Applications to TruCluster Server



To save script data, follow these steps:

1. Start the asemgr utility.

2. From the ASE Main Menu, choose Managing ASE Services.

3. From the Managing ASE Services menu, choose Service Configuration.

4. From the Service Configuration menu, choose Modify a Service.

5. Select a service from the menu.

6. Choose General service information.

7. From the User-defined Service Modification menu, choose User-defined
action scripts.

8. Choose Start action from the menu. Record the values for script
argument and script timeout.

9. From the menu, choose Edit the start action script.

Write the internal script to a file on permanent storage where it will
not be deleted.

Repeat these steps as necessary for all stop, add, and delete scripts. For
user-defined services, also save the check script.

To save ASE database content and the rest of your ASE service information
(placement policies, service names, and so on), enter the following commands:

# asemgr -dv > ase.services.txt
# asemgr -dv {ServiceName}

The name of the service, ServiceName, is taken from the output that is
produced by asemgr -dv. Execute asemgr -dv {ServiceName} for each
service.

______________________ Note _______________________

For TruCluster Available Server Software or TruCluster
Production Server Software products earlier than Version 1.5, you
must perform a full installation of Tru64 UNIX Version 5.1B and
TruCluster Server Version 5.1B.

5.3 ASE Script Considerations

Review ASE scripts carefully. Consider the following issues for scripts to
work properly on TruCluster Server:

• Replace ASE commands with cluster application availability (CAA)
commands (Section 5.3.1).

Moving ASE Applications to TruCluster Server 5–7



• Combine separate start and stop scripts (Section 5.3.2).

• Redirect script output (Section 5.3.3).

• Replace nfs_config with ifconfig or create a cluster alias
(Section 5.3.4).

• Handle errors correctly (Section 5.3.5).

• Remove storage management information from action scripts
(Section 5.3.6).

• Convert device names (Section 5.3.7).

• Remove references to ASE-specific environment variables (Section 5.3.8).

• Exit codes (Section 5.3.9).

• Post events with Event Manager (EVM) (Section 5.3.10).

5.3.1 Replacing ASE Commands with CAA Commands

In TruCluster Server Version 5.1B, the asemgr command is replaced by
several CAA commands. The following table compares ASE commands with
their equivalent CAA commands:

ASE Command CAA Command Description

asemgr -d caa_stat Provides status on CAA
resources clusterwide

asemgr -m caa_relocate Relocates an application
resource from one cluster
member to another

asemgr -s caa_start Starts application resources

asemgr -x caa_stop Stops application resources

caa_profile Creates, validates, deletes,
and updates a CAA resource
profile

caa_register Registers a resource with CAA

caa_unregister Unregisters a resource
with CAA

caa_balance Optimally relocates
applications based on the
status of their resources

caa_report Reports availability statistics
for application resources

The caa_profile, caa_register, caa_unregister, caa_balance,
and caa_report commands provide functionality that is unique to the

5–8 Moving ASE Applications to TruCluster Server



TruCluster Server product. For information on how to use any of the CAA
commands, see Chapter 2.

5.3.2 Combining Start and Stop Scripts

CAA does not call separate scripts to start and stop an application. If you
have separate start and stop scripts for your application, combine them
into one script. Refer to /var/cluster/caa/template/template.scr
for an example.

5.3.3 Redirecting Script Output

CAA scripts run with standard output and standard error streams directed
to /dev/null. If you want to capture these streams, we recommend that
you employ one of the following methods, listed in order of preference:

1. Use the Event Manager (EVM) (as demonstrated in the template script
/var/cluster/caa/template/template.scr). This is the preferred
method because of the output management that EVM provides.

Refer to the sample CAA scripts in /var/cluster/caa/examples for
examples of using EVM to redirect output.

2. Use the logger command to direct output to the system log file
(syslog). See logger(1) for more information. This method is not
as flexible as using EVM. For example, messages stored in syslog
are simple text and cannot take advantage of the advanced formatting
and searching capabilities of EVM.

3. Direct output to /dev/console. This method does not have a persistent
record; messages appear only at the console.

4. Direct output to a file. With this method, be aware of log file size, and
manage file space appropriately.

5.3.4 Replacing nfs_ifconfig Script

TruCluster Server no longer includes an nfs_ifconfig script like
TruCluster ASE. Replace nfs_ifconfig scripts with either an ifconfig
alias/-alias statement in a CAA action script or use a cluster alias.

For more information about using an interface alias in a CAA script, see
Section 5.4.1. See the the examples in Section 2.14 for information on using
a cluster alias with CAA single-instance applications.

5.3.5 Handling Errors Correctly

Make sure that scripts in TruCluster Server handle errors properly. The
"filesystem busy" message is no longer returned. Therefore, an application

Moving ASE Applications to TruCluster Server 5–9



may be started twice, even if some of its processes are still active on another
member.

To prevent an application from starting on another node, make sure that
your stop script can stop all processes, or use fuser(8) to stop application
processes.

The following example shows a shell routine that uses the fuser utility
added to an application’s action script. This shell routine attempts to
close all open files on the application directories /AppDir, /AppDir2, and
/AppDir3. If the routine cannot close the files, the routine will then return
with an error, and the script can then exit with an error to signal that user
intervention is required.
FUSER="/usr/sbin/fuser" # Command to use for closing
ADVFSDIRS="/AppDir /AppDir2 /AppDir3" # Application directories
#
# Close open files on shared disks
#
closefiles () {
echo "Killing processes"

for i in ${ADVFSDIRS}
do

echo "Killing processes on $i"
$FUSER -ck $i
$FUSER -uv $1 > /dev/null 2>&1
if [ $? -ne 0 ]; then

echo "Retrying to close files on ${i} ..."
$FUSER -ck $i
$FUSER -uv $1 > /dev/null 2>&1
if [ $? -ne 0 ]; then

echo "Failed to close files on ${i} aborting"
$FUSER -uv $i
return 2

fi
fi

done
echo "Processes on ${ADVFSDIRS} stopped"

}

5.3.6 Removing Storage Management Information

An ASE service’s storage needed to be:

• On a bus that was shared by all cluster members

• Defined as part of the service using the asemgr utility

• Managed by service scripts

Because the cluster file system (CFS) in TruCluster Server makes all file
storage available to all cluster members (access to storage is built into the
cluster architecture), you no longer need to manage file system mounting
and failover within action scripts.

You can remove all storage management information from scripts on
TruCluster Server. For example, SAP R/3 scripts may have been set up to

5–10 Moving ASE Applications to TruCluster Server



mount file systems within their own scripts. You can remove these mount
points.

5.3.7 Converting Device Names

As described in Section 4.2, scripts that reference old-style device names
must be modified to use the new-style device-naming model that was
introduced with Tru64 UNIX Version 5.0.

During an upgrade the clu_migrate_save and clu_migrate_configure
scripts gather information for mapping device names and configure storage
on the new system.

If you are not using the clu_migrate_save and clu_migrate_configure
scripts, you must manually map old-style (rz*) device names to their
new-style (dsk*) counterparts. See the Cluster Installation manual for
information on how to manually configure storage when upgrading a cluster.

If you used the ase_fix_config command to renumber buses, save the
output from the command during the upgrade and use it to verify physical
devices against bus numbers.

5.3.8 Replacing or Removing ASE Variables

ASE scripts may contain the following ASE environment variables:

• MEMBER_STATE

In ASE the MEMBER_STATE variable is placed in a stop script to
determine whether or not the script is executing on a running system
or on a system that is booting. The MEMBER_STATE variable has one
of the following variables:

– RUNNING

– BOOTING

During system startup, TruCluster Server does not provide the option
to run the stop section of an action script. To perform file cleanup of
references, log files, and so on, move these cleanup actions to the start
section of your action script.

• ASEROUTING

The ASEROUTING variable no longer exists. Its function is replaced by
the TruCluster Server cluster alias subsystem functionality. Remove this
variable from TruCluster Server application action scripts.

• ASE_PARTIAL_MIRRORING

Moving ASE Applications to TruCluster Server 5–11



The ASE_PARTIAL_MIRRORING variable does not exist in TruCluster
Server. Remove this variable from TruCluster Server application action
scripts.

5.3.9 Exit Codes

ASE exit codes for all scripts return 0 for success; anything else equals
failure.

Each entry point of a CAA script returns an exit code of 0 for success and a
nonzero value for failure. (Scripts that are generated by the caa_profile
command from the script template return a 2 for failure.) For the check
section of a CAA script, an exit code of 0 means that the application is
running.

5.3.10 Posting Events

The Event Manager (EVM) provides a single point of focus for the multiple
channels (such as log files) through which system components report event
and status information. EVM combines these events into a single event
stream, which the system administrator can monitor in real time or view as
historical events retrieved from storage. Use the evmpost(1) command to
post events into EVM from action scripts.

______________________ Note _______________________

The CAA sample scripts that are located in the
/var/cluster/caa/examples directory all use EVM to post
events. Refer to any one of them for an example.

5.4 Networking Considerations
The following sections discuss networking issues to consider when moving
ASE services to TruCluster Server:

• Using an alias (Section 5.4.1)

• Networking services (Section 5.4.2)

5.4.1 Using an Alias

If an application requires the use of an alias, you can use either a cluster
alias or an interface alias.

Using a cluster alias is most appropriate when:

• Multiple member systems must appear as a single system to clients
of Transport Control Protocol (TCP)-based or User Datagram Protocol

5–12 Moving ASE Applications to TruCluster Server



(UDP)-based applications. Often multiple instances of a given application
may be active across cluster members, and cluster aliases provide a
simple, reliable, and transparent mechanism for establishing client
connections to those members that are hosting the target application.

• You want to take advantage of the cluster alias’s ability to handle
network availability transparently.

Using an interface alias is the preferred mechanism when:

• You are running a single-instance service and one cluster member
satisfies all client requests at any given time.

• Performance is critical; you want all clients to reach the one member
that is providing the service, and you can never afford to take an extra
routing hop.

• You are able to provide for client network availability on each cluster
member that can host the service, by using a Redundant Array of
Independent Network Adapters (NetRAIN) interface and by setting up a
dependency on a client network resource in the application’s CAA profile.

5.4.1.1 Cluster Alias

You must use cluster aliasing to provide client access to multi-instance
network services. Because the TruCluster Server cluster alias subsystem
creates and manages cluster aliases on a clusterwide basis, you do not have
to explicitly establish and remove interface aliases with the ifconfig
command. See Chapter 3 for information about using cluster aliasing with
multi-instance applications. See the Cluster Administration manual for
more information about how to use cluster aliasing in general.

You can use a cluster alias to direct client traffic to a single cluster member
that is hosting a single-instance application, like the Oracle8i single server.
When you configure a service under a cluster alias and set the in_single
cluster alias attribute, the alias subsystem ensures that all client requests
that are directed at that alias are routed to a cluster member that is running
the requested service as long as it is available. However, for single-instance
applications, consider using CAA for more control and flexibility in managing
application failover. See Chapter 2 for information about using CAA.

Although you do not need to define NFS services in a TruCluster Server
cluster to allow clients to access NFS file systems exported by the cluster,
you may need to deal with the fact that clients know these services by the IP
addresses that are provided by the ASE environment. Clients must access
NFS file systems that are served by the cluster by using the default cluster
alias or a cluster alias listed in the /etc/exports.aliases file.

Moving ASE Applications to TruCluster Server 5–13



5.4.1.2 Interface Alias

If a single-instance application cannot easily use a cluster alias, you
can continue to use an interface alias by either modifying an existing
nfs_ifconfig entry to use ifconfig(8), or add a call to ifconfig in
a CAA action script.

When modifying a CAA action script, call ifconfig alias to assign an
alias to an interface. Use the following command prior to starting up the
application; otherwise, the application might not be able to bind to the alias
address:

ifconfig interface_id alias alias_address netmask mask

To deassign an alias from an interface, call ifconfig -alias after all
applications and processes have been stopped; otherwise, an application or
process might not be able to continue to communicate with the interface
alias.

The following example contains a section from a sample script:

.

.

.
# Assign an IP alias to a given interface
IFCNFG_ALIAS_ADD="/sbin/ifconfig tu0 alias 16.141.8.118 netmask 255.255.255.0"
#
#Deassign an IP alias to an interface
IFCNFG_ALIAS_DEL="/sbin/ifconfig tu0 -alias 16.141.8.118 netmask 255.255.255.0"
.
.
.

5.4.2 Networking Services

In the TruCluster Available Server Software and TruCluster Production
Server Software products, the asemgr utility provided a mechanism to
monitor client networks.

In Tru64 UNIX Version 5.0 or later, client network monitoring is a feature
of the base operating system. The NetRAIN interface provides protection
against certain kinds of network connectivity failures. The Network
Interface Failure Finder (NIFF) is an additional feature that monitors the
status of its network interfaces and reports indications of network failures.
Applications that are running in a TruCluster Server cluster can use the
NetRAIN and NIFF features in conjunction with the Tru64 UNIX Event
Manager (EVM) to monitor the health of client networks.

For more information about NetRAIN and NIFF, see the Tru64 UNIX
Network Administration: Connections manual, niffd(8), niff(7), and nr(7).

5–14 Moving ASE Applications to TruCluster Server



5.5 File System Partitioning

CFS makes all files accessible to all cluster members. Each cluster member
has the same access to a file, whether the file is stored on a device that is
connected to all cluster members or on a device that is private to a single
member. However, CFS does allow you to mount an AdvFS file system so
that it is accessible to only a single cluster member. This is called file system
partitioning.

ASE offered functionality like that of file system partitioning. File system
partitioning is provided in Version 5.1B to ease migration from ASE. See the
TruCluster Server Cluster Administration manual for information on how to
mount partitioned file systems and any known restrictions.

Moving ASE Applications to TruCluster Server 5–15





6
Moving Distributed Applications to

TruCluster Server

A distributed application is an application that has already been modified
for use in a cluster. It is cluster-aware; that is, it knows it is running in
a cluster. Just running an application in a cluster does not make that
application cluster-aware. Components of distributed applications often use
the application programming interface (API) libraries that ship with the
TruCluster Server product to communicate across member systems and
coordinate their access to shared data.

The following subsystem APIs are fully compatible with those that were
provided in earlier TruCluster products:

• Cluster alias (clua_*.3)

• Distributed lock manager (DLM) (dlm_*.3)

• Memory Channel (imc_*.3)

For more information about using the cluster alias, DLM, and Memory
Channel APIs, see Chapter 8, Chapter 9, and Chapter 10, respectively.

This chapter discusses the following topics:

• Preparing to move distributed applications to TruCluster Server
(Section 6.1)

• Creating Oracle Parallel Server on TruCluster Server (Section 6.2)

• Moving Oracle Parallel Server to TruCluster Server (Section 6.3)

6.1 Preparing to Move Distributed Applications to
TruCluster Server

When preparing to move distributed applications to TruCluster Server, note
the following:

• Device names may be hard coded in data files. You can rename the data
files, create symbolic links, or re-create the database. Symbolic links are
easiest to manage. Create symbolic links that point to the raw devices
and update the permissions.

Moving Distributed Applications to TruCluster Server 6–1



_____________________ Note _____________________

While you can rename OPS data files, the renaming of
Informix XPS data files is not supported; use symbolic
links instead. See the Informix Installation Guide for more
information.

• Do not edit control files. Save your original control files.

• Relink the Oracle binary code after you have created a single-member
TruCluster Server cluster because there are new entry points in the
connection manager library for TruCluster Server.

6.2 Running Oracle Parallel Server on TruCluster Server

This section explains how to get the Oracle Parallel Server (OPS) option of
Oracle 8i Release 3 (8.1.7) up and running in a TruCluster Server Version
5.1 or later cluster. Oracle8i 8.1.7 takes advantage of the direct I/O feature
introduced in TruCluster Server Version 5.1 to allow you to configure OPS
on a TruCluster Server Version 5.1B or later cluster file system. Previous
versions of Oracle required the use of raw disk partitions or volumes in a
cluster. See the TruCluster Server Cluster Administration manual for a
discussion of direct I/O in a cluster.

______________________ Note _______________________

To run Oracle9i Real Application Cluster (RAC) on Tru64 UNIX
and TruCluster Server Version 5.1B, refer to the Installation Guide
offered at the following site: http://otn.oracle.com/prod-
ucts/oracle9i/pdf/Oracle_9i_on_Tru64_UNIX.pdf

This document describes Oracle9i RAC and how to install and
configure Tru64 UNIX, TruCluster Server, and Oracle in a
clustered environment.

To run OPS on TruCluster Server, follow these steps:

1. Install and configure Oracle8i Release 3 (8.1.7) using the instructions in
the Oracle8i Release 3 (8.1.7) documentation. You only need to install
Oracle8i on one cluster member.

Oracle has special requirements, including that certain kernel attributes
be set to specific values, that specific UNIX groups (dba, oinstall) be
created, and that special environment variables be initialized.

Configure the Oracle Parallel Server option, using the instructions in
the Oracle8i Release 3 (8.1.7) documentation.

6–2 Moving Distributed Applications to TruCluster Server



2. Configure the Net8 listener to use a cluster alias for load balancing
of client requests. You can also use the multi-threaded server (MTS)
capability of OPS to provide load balancing of client requests. See the
Oracle8i documentation.

To use a cluster alias, add the following line to the /etc/clua_services
file to set up the properties of the port that the Oracle8i listener uses:

listener 1521/tcp in_multi

Setting the in_multi attribute for port 1521 means that the cluster
alias subsystem will distribute connection requests directed to a cluster
alias among all members of the alias.

3. Reload the cluster alias service definitions by entering the following
command on each cluster member:

# cluamgr -f

4. After you have set up OPS within the cluster, and have verified that
it can be accessed by both local and remote clients, you must ensure
that each member, when it is booted, starts its database instance and,
when it is shut down, stops its database instance. The recommended
method involves placing a script in the /sbin/init.d directory; see
the Oracle8i Installation Guide, Release 3 (8.1.7) for Compaq Tru64
UNIX for more information.

You can also create a cluster application availability (CAA) action script
to automatically start and stop the database instance, but you will have
to restrict OPS to one member of the cluster. For more information
about starting and stopping OPS, see the Oracle8i Release 3 (8.1.7)
documentation.

6.3 Moving Oracle Parallel Server to TruCluster Server

To move OPS to TruCluster Server, note the following:

• If you are moving from TruCluster Software Products Version 1.6 or
earlier, pay careful attention to device names. There are no special
device names for DRD-managed storage. If your database references
/dev/drd or /dev/rdrd, create symbolic links, as described in step 3 of
Section 6.2, to point to the new devices.

• OPS allows renaming of datafiles. If you prefer to rename datafiles
instead of creating symbolic links, follow these steps:

1. Save your original control files. Do not edit these control files.

2. Start up the database using the nomount option.

3. Rename the datafile to a generic file name using the following
command:

Moving Distributed Applications to TruCluster Server 6–3



SVRMGR> alter database rename file ...

4. After renaming the datafile, use the following command to validate
the database. This guarantees that your database is consistent and
detects any incorrect symbolic links.

SVRMGR> analyze table validate structure cascade

6–4 Moving Distributed Applications to TruCluster Server



Part 3
Writing Cluster-Aware Applications





7
Programming Considerations

This chapter describes modifications that you can make to an application’s
source code to allow it to run in a cluster. You must have access to the
application’s source files to make the required changes.

This chapter discusses the following topics:

• Modifications that are required for remote procedure call (RPC)
programs (Section 7.1)

• Portable applications — Developing applications that run in a cluster or
on a standalone system (Section 7.2)

• Support for the Cluster Logical Storage Manager (CLSM) (Section 7.3)

• Diagnostic utility support (Section 7.4)

• Compact Disc-Read Only Memory File System (CDFS) file system
restrictions (Section 7.5)

• Scripts called from the /cluster/admin/run directory (Section 7.6)

• Cluster member status during a rolling upgrade (Section 7.7)

• File access resilience in a cluster (Section 7.8)

7.1 Modifications Required for RPC Programs

Make the following modifications to existing, nonclusterized remote
procedure call (RPC) programs to allow them to run in a clustered
environment:

• Conditionalize the code to replace calls to bind() with calls to
clusvc_getcommport() or clusvc_getresvcommport() when the
code is executed in a cluster environment. Use these functions only
if you want to run an RPC application on multiple cluster members,
making them accessible via a cluster alias. In addition to ensuring
that each instance of an RPC application uses the same common port,
these functions also inform the portmapper that the application is a
multi-instance, alias application. See clusvc_getcommport(3) and
clusvc_getresvcommport(3) for more information.

• Services that are not calling svc_register() must call
clua_registerservice() to allow the service to accept incoming cluster
alias connections. See clua_registerservice(3) for more information.

Programming Considerations 7–1



(clusvc_getcommport() and clusvc_getresvcommport()
automatically call clua_registerservice().)

7.2 Portable Applications: Standalone and Cluster

Tru64 UNIX Version 5.0 or later provides the following built-in features
that make it easier to develop applications that run either in a cluster or on
a standalone system:

• Stub libraries in Tru64 UNIX Version 5.0 or later let you build
applications that call functions in the libclu.so API library that ships
with TruCluster Server.

• The clu_is_member() function, which is provided in libc, determines
whether the local system is a cluster member. If the local system is
a cluster member, the function returns TRUE; otherwise, it returns
FALSE.

• The clu_is_ready() function, which is also provided in libc,
determines whether the local system has been configured to run in a
cluster (that is, TruCluster Server Software is installed and the system is
running a clusterized kernel). If the local system is configured to run in
a cluster, the function returns TRUE; otherwise, it returns FALSE. The
clu_is_ready() function is most useful in code that runs in the boot
path before the connection manager establishes cluster membership.

• The clu_info() function and the clu_get_info() command return
information about the configuration or a value indicating that the system
is not configured to be in a cluster.

For more information, see clu_info(3), clu_is_member(3), and
clu_get_info(8).

7.3 CLSM Support

The Cluster Logical Storage Manager (CLSM) does not provide interlocking
support for normal I/O on mirrored volumes between different nodes. CLSM
assumes any application that simultaneously opens the same volume from
different nodes already performs the necessary locking to prevent two
nodes from writing to the same block at the same time. In other words, if
a cluster-aware application is not well-behaved and issues simultaneous
writes to the same block from different nodes on a CLSM mirrored volume,
data integrity will be compromised.

This is not an issue with Oracle Parallel Server (OPS) because OPS uses the
distributed lock manager (DLM) to prevent this situation. Also, it is not an
issue with the cluster file system (CFS), because only one node can have a
file system mounted at a time.

7–2 Programming Considerations



Although steady-state I/O to mirrored volumes is not interlocked by CLSM
between different nodes, CLSM does provide interlocking between nodes to
accomplish mirror recovery and plex attach operations.

7.4 Diagnostic Utility Support

If you have, or want to write, a diagnostic utility for an application or
subsystem, the TruCluster Server clu_check_config command calls
diagnostic utilities, provides an execution environment, and maintains log
files.

See clu_check_config(8) for a description of how to add a diagnostic utility
to the cluster environment and have it called by the clu_check_config
command.

7.5 CDFS File System Restrictions

The TruCluster Server environment has some restrictions on managing
Compact Disc-Read Only Memory File System (CDFS) file systems in a
cluster. Some commands and library functions behave differently on a
cluster than on a standalone system.

Table 7–1 lists the CDFS library functions and their expected behavior in
a TruCluster Server environment.

Table 7–1: CDFS Library Functions

Library Function
Expected Result
on Server

Expected Result
on Client

cd_drec Success Not supported

cd_ptrec Success Not supported

cd_pvd Success Not supported

cd_suf Success Not supported

cd_type Success Not supported

cd_xar Success Not supported

cd_nmconv
CD_GETNMCONV

Success Success

cd_nmconv
CD_SETNMCONV

Success Success

cd_getdevmap No map Not supported

cd_setdevmap Not supported Not supported

Programming Considerations 7–3



Table 7–1: CDFS Library Functions (cont.)

Library Function
Expected Result
on Server

Expected Result
on Client

cd_idmap
CD_GETUMAP
CD_GETGMAP

Success Not supported

cd_idmap
CD_SETUMAP
CD_SETGMAP

Success Success

cd_defs
CD_GETDEFS

Success Success

cd_defs
CD_SETDEFS

Success Success

For information about managing CDFS file systems in a cluster, see the
TruCluster Server Cluster Administration manual.

7.6 Scripts Called from the /cluster/admin/run Directory

An application that needs to have specific actions taken on its behalf when a
cluster is created, or when members are added or deleted, can place a script
in the /cluster/admin/run directory. These scripts are called during the
first boot of the initial cluster member following the running of clu_create,
each cluster member (including the newest one) following clu_add_member,
and all remaining cluster members following clu_delete_member.

The scripts in /cluster/admin/run must use the following entry points:

• -c

For actions to take when clu_create runs.

• -a

For actions to take when clu_add_member runs.

• -d memberid

For actions to take when clu_delete_member runs.

Place only files or symbolic links to files that are executable by root in
the /cluster/admin/run directory. We recommend that you adhere to
the following file-naming convention:

• Begin the executable file name with an uppercase letter C.

• Make the next two characters a sequential number as used in
/sbin/rc3.d for your area. Lower numbered scripts are run first.
These scripts are run in single-user mode so not all daemons and services
are available.

7–4 Programming Considerations



• For the remaining characters, use a name that is associated with your
script.

The following file name is an example of this naming convention:

/cluster/admin/run/C40sendmail

The clu_create, clu_add_member, and clu_delete_member commands
create the required it(8) files and links to ensure that the scripts are run at
the correct time.

7.7 Testing the Status of a Cluster Member During a Rolling
Upgrade

The following example program shows one way to determine whether the
cluster is in the middle of a rolling upgrade, and whether this cluster
member has rolled:

#include <stdio.h>
#include <sys/clu.h> /* compile with -lclu */

#define DEBUG 1

main()
{
struct clu_gen_info *clu_gen_ptr = NULL;
char cmd[256];

if (clu_is_member()) {
if (clu_get_info(&clu_gen_ptr) == 0) {

if(system("/usr/sbin/clu_upgrade -q status") == 0) {
sprintf(cmd, "/usr/sbin/clu_upgrade -q check roll %d",

clu_gen_ptr->my_memberid);
if (system(cmd) == 0) {

if (DEBUG) printf("member has rolled\n");
}
else if (DEBUG) printf("member has not rolled\n");

}
else if (DEBUG) printf("no rolling upgrade in progress\n");

}
else if (DEBUG) printf("nonzero return from clu_get_info(\n");

}
else if (DEBUG) printf("not a member of a cluster\n");

}

7.8 File Access Resilience in a Cluster

While a cluster application is transferring files, read and write operations
may fail if the member running the application is shut down or fails.
Typically, a client of the application will see the connection to the server as
lost. Be aware of how your application handles lost connections. Some ways
applications handle lost connections are:

• The client application simply fails (for example, an error is written and
the application exits).

Programming Considerations 7–5



• The client application sees a problem with the connection and
automatically retries its read or write operation.

• The client application sees a problem with the connection and displays a
window that allows the user to abort, retry, or cancel the operation.

If your client application fails when it loses its connection to the server
application (regardless of whether it is running on a single system or a
cluster), consider implementing the following:

• When updating files, first write the update to a new temporary file.
If the write operation is successful, copy the temporary file over the
original file. If the write operation encountered a problem, you have not
destroyed the original file. You need only to clean up your temporary
files and start again.

• When reading files, make sure that your application is set up to deal
with read operation errors and recover from them (for example, retry
the operation).

7–6 Programming Considerations



8
Cluster Alias Application Programming

Interface

This chapter discusses the following topics:

• Cluster alias port terminology (Section 8.1)

• Cluster alias functions (Section 8.2)

• Cluster port space (Section 8.3)

• Information for multi-instance services that bind to reserved ports
(Section 8.4)

• Cluster alias setsockopt() options (Section 8.5)

• Port attributes: the relationship between the port attributes set
by /etc/clua_services, clua_registerservice(), and the
setsockopt() cluster alias socket options (Section 8.6)

• UDP applications and source addresses (Section 8.7)

8.1 Cluster Alias Port Terminology

The following port-related terms are used in this chapter:

well-known port A port whose number is known by both the client
and server. For example, those ports whose numbers
are listed in /etc/services. The server explicitly
binds to and listens on its well-known port because
clients know the port number and expect to connect
to the server via its well-known port.

dynamic port The inverse of a well-known port. The application
does not explicitly specify a port number; it is
assigned the first open port that is found by the
operating system.

ephemeral port A dynamic port within the ephemeral port space
(ports with numbers greater than 1024, or more
explicitly, between IPPORT_RESERVED and
IPPORT_USERRESERVED).

Cluster Alias Application Programming Interface 8–1



locked port A port that is dedicated to an individual cluster
member and is not available clusterwide. When
a port is locked, an attempt by an application to
bind to the port fails with EADDRINUSE, unless
the application attempting to bind sets the
SO_REUSEALIASPORT option on the socket.

reserved port In the cluster alias subsystem, a port whose number
is greater than 512 and less than IPPORT_RESERVED
(1024). The default cluster behavior is that a bind
to a reserved port automatically locks the port.
(Ports with numbers less than or equal to 512 are
never locked.)

8.2 Cluster Alias Functions

The cluster alias library, libclua.a and libclua.so, provides functions
for getting and setting cluster alias subsystem attributes. Table 8–1 lists the
functions that the cluster alias library provides. See the specific section 3
reference pages for more information.

Table 8–1: Cluster Alias Functions
Function Description

clua_error Map a cluster alias message ID to a printable
character string, returning the string to the caller.

clua_getaliasaddress Get the IP address of one cluster alias
known to the local node.

clua_getaliasinfo Get information about one cluster alias
and its members.

clua_getdefaultalias Get the IP address of the default cluster alias.

clua_isalias Determine whether an IP address is that
of a cluster alias.

clua_registerservice Register a dynamic port as eligible to receive
incoming connections.

clua_unregisterservice Release a port.

clusvc_getcommport Bind to a common port within a cluster.

clusvc_getresvcommport Bind to a reserved port within a cluster.

print_clua_liberror Map a cluster alias message ID to a printable
character string, returning the string to stderr.

Use the following #include files and libraries when writing and compiling
programs that use cluster alias functions:

8–2 Cluster Alias Application Programming Interface



• Programs that use the clua functions #include <clua/clua.h> and
are compiled with -lclua.

• Programs that use the following functions are compiled with -lclua
-lcfg:

– clua_getaliasaddress()

– clua_getaliasinfo()

– clua_getdefaultalias()

– clua_isalias()

– clua_registerservice()

– clua_unregisterservice()

• Programs that use the clusvc functions #include <netinet/in.h>,
and are compiled with -lclu.

The following list describes the cluster alias functions in more detail:

clua_error() and print_clua_liberror()

The clua_error() and print_clua_liberror() functions map
a cluster alias message ID to a printable character string. The
clua_error() function returns the string to the caller. The
print_clua_liberror() function prints the string to stderr. See
clua_error(3) for more information.

clua_getaliasaddress() and clua_getaliasinfo()

A call to the clua_getaliasaddress function gets the IP address of
one cluster alias known to the local node. Each subsequent call returns
another alias IP address. When the list of aliases that are known to the
node is exhausted, the function returns CLUA_NOMOREALIASES.

When clua_getaliasinfo() is passed the address of an alias in
a sockaddr structure, it populates a clu_info structure with
information about that alias.

Programs usually make iterative calls to clua_getaliasaddress()
and pass each alias address to clua_getaliasinfo() to get
information about that alias. The following example shows this
iterative loop (wrapped inside a short main() program with some calls
to printf()):
/* compile with -lclua -lcfg */
#include <sys/socket.h> /* AF_INET */
#include <clua/clua.h> /* includes <netinet/in.h> */
#include <netdb.h> /* gethostbyaddr() */
#include <arpa/inet.h> /* inet_ntoa() */

main ()
{

int context = 0;

Cluster Alias Application Programming Interface 8–3



struct sockaddr addr;
struct clua_info outbuf, *pout;
clua_status_t result1, result2;
struct hostent *hp;
pout=&outbuf;

while ((result1=clua_getaliasaddress(&addr,
&context)) == CLUA_SUCCESS)

{
if ((result2=clua_getaliasinfo(&addr, pout)) == CLUA_SUCCESS) {
hp = gethostbyaddr((const void *)&pout->addr,

sizeof (struct in_addr), AF_INET);
printf ("\nCluster alias name:\t\t %s\n", hp->h_name);
printf ("Cluster alias IP address:\t %s\n",

inet_ntoa(pout->addr)));
printf ("Cluster alias ID (aliasid):\t %d\n", pout->aliasid);
printf ("Connections rcvd from net:\t %d\n",

pout->count_cnx_rcv_net);
printf ("Connections forwarded:\t\t %d\n",

pout->count_cnx_fwd_clu);
printf ("Connections rcvd within cluster: %d\n",

pout->count_cnx_rcv_clu);
} else {

print_clua_liberror(result2);
break;

}
}

if (result1 != CLUA_SUCCESS && result1 != CLUA_NOMOREALIASES)
print_clua_liberror(result1);

}

See clua_getaliasaddress(3) and clua_getaliasinfo(3) for
more information.

clua_getdefaultalias()

Where the clua_getaliasaddress() function can iteratively return
the IP addresses of all cluster aliases that are known to the local node,
the clua_getdefaultalias() function returns only the address of
the default cluster alias. See clua_getdefaultalias(3) for more
information.

clua_isalias()

When clua_isalias() is passed an IP address, it determines whether
the address is that of a cluster alias. See clua_isalias(3) for more
information.

clua_registerservice() and clua_unregisterservice()

The clua_registerservice() function registers a dynamic port
as eligible to receive incoming connections. For ports in the range
512-1024, use the CLUSRV_STATIC option. Otherwise, the port is
reserved clusterwide by the first node to bind to the port and the
remaining cluster members will not be able to bind to the port.

The clua_unregisterservice() function releases a port.

8–4 Cluster Alias Application Programming Interface



See clua_registerservice(3) for more information.

clusvc_getcommport() and clusvc_getresvcommport()

Programs that use RPC can call the clusvc_getcommport() and
clusvc_getresvcommport() functions to bind to a common port
within a cluster. Use clusvc_getresvcommport() when binding to
a reserved (privileged) port, a port number in the range 0-1024. See
Section 8.4 for information on binding to reserved ports. The following
example shows a typical calling sequence (wrapped inside a short
main() program with some calls to printf()):

/* compile with -lclu */
#include <rpc/rpc.h> /* includes <netinet/in.h> */
#include <syslog.h> /* LOG_ERR */
#include <unistd.h> /* gethostname() */
#include <sys/param.h> /* MAXHOSTLEN */

main () {
int s, i, namelen;
int cluster = 0;
uint prog = 100999; /* replace with real program number */
struct sockaddr_in addr;
int len = sizeof(struct sockaddr_in);
char local_host[MAXHOSTNAMELEN +1];

gethostname (local_host, sizeof (local_host) - 1);
cluster = clu_is_member();
printf ("\nSystem %s %s a cluster member\n",

local_host, cluster?"is":"is not");

if ((s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) < 0) {
syslog(LOG_ERR, "socket: %m");
exit(1);

}

bzero(&addr, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;

if (cluster) {
if (clusvc_getcommport(s, prog, IPPROTO_UDP, &addr) < 0) {

syslog(LOG_ERR, "clusvc_getcommport: %m");
exit(1);

}
} else {

addr.sin_port = 0;
if (bind(s, (struct sockaddr *)&addr, sizeof(addr)) < 0) {

syslog(LOG_ERR, "bind: %m");
exit(1);

}
if (getsockname(s, (struct sockaddr *)&addr, &len) != 0) {

syslog(LOG_ERR, "getsockname: %m");
(void) close(s);
exit(1);

}
}
printf (" addr.sin_family: %d\n", addr.sin_family);
printf (" addr.sin_port: %u\n", addr.sin_port);
printf (" addr.sin_addr: %x\n", addr.sin_addr);
printf (" addr.sin_zero: ");

Cluster Alias Application Programming Interface 8–5



for (i = 0; i<8;i++)
printf("%d ", (int)addr.sin_zero[i]);

putchar(’\n’);
}

8.3 Cluster Port Space

The cluster emulates single-system port semantics by using the same port
space across the cluster. The following list provides a brief overview of how
the cluster alias subsystem handles port space:

• Ports less than 512 (0 < (IPPORT_RESERVED1 / 2): These well-known
ports are never locked. In a single system, more than one process cannot
bind to the same port without using the SO_REUSEPORT socket option. In
a cluster, a port whose number is less than 512 is never locked in order
to allow one process on each cluster member to bind to the port.

• Ports from 512 through 1024 ((IPPORT_RESERVED / 2) to
IPPORT_RESERVED): If there is an explicit bind to the port, a reserved
port is locked unless the port is marked as static. See Section 8.4 for
information on binding to reserved ports.

• Ports greater than 1024 (IPPORT_RESERVED to IPPORT_USERRESERVED):
An ephemeral port is locked if sin_port=0. An ephemeral port is not
locked if there is an explicit bind to the port.

The port space has the following implications for single-instance and
multi-instance applications. In general:

• Make sure that single-instance applications use a locked port because
only one instance of the application should be handling network requests.
Therefore, you can use one of the following approaches:

– Explicitly bind to a reserved port (512 through 1024).

– Use an ephemeral port (sin.port=0). (This locks the port, but
has the problem that the client must somehow be notified of the
port number.)

– Use CAA to make sure that only one instance of the application is
running in the cluster.

• A multi-instance application does not want to restrict access to the first
instance of the application to bind to a port. Therefore, you can use one
of the following approaches:

– Use a port that is less than 512.

– Use a reserved port (512 through 1024) and set SO_REUSEALIASPORT.

– Do an explicit bind to an ephemeral port.

1 IPPORT_RESERVED and IPPORT_USERRESERVED are defined in <netinet/in.h>.

8–6 Cluster Alias Application Programming Interface



– Use an ephemeral port (sin_port=0) and set SO_REUSEALIASPORT.
(This keeps the port from being locked, but still has the problem that
the client must somehow be notified of the port number.)

For a detailed description of cluster alias port space, see the cluster alias
chapter in the Cluster Technical Overview.

8.4 Binding to Reserved Ports (512 Through 1024)
The following information is useful background for multi-instance services
binding to reserved ports.

Reserved ports receive special treatment because they can be used as either
well-known ports or dynamic ports. By default, if a process explicitly binds
to a port in the range 512-1024, the port is assumed to be dynamic: it is
reserved clusterwide (locked), and binds on other members will fail. This is
primarily done because many programs call bind() looking for free ports in
this range, expecting to fail when a port is in use.

The cluster alias subsystem treats reserved ports differently for the following
reasons:

• There is no way to differentiate between an application that is searching
for a dynamic reserved port and one that knows which well-known port
it wants.

• Dynamic ports are sometimes used as the local port for an outbound
connection, which are identified only by port/address pairs. If a dynamic
port is used for an outbound connection and if the address is that of a
cluster alias, the alias subsystem cannot allow multiple nodes to have
the same port. If that were allowed, the alias subsystem would not be
able to distinguish between, for example, connection 1000/alias from
different nodes in the cluster. Therefore, if the alias subsystem does not
know that a reserved port will be static (available clusterwide), it
must lock it down.

Ports above 1024 do not encounter this because there is a standard way to
allocate a dynamic port: bind to port 0 (sin_port=0) and the system picks a
port from the ephemeral port space. Therefore, the cluster alias subsystem
assumes that a process that is explicitly binding to a port below 512 or above
1024 knows what it is doing and is getting a well-known port.

Make sure that multi-instance services that use well-known ports in the
512-1024 range for inbound connections register that port as static with
the cluster alias subsystem. To register a port as static, either put an
entry for the port in /etc/clua_services or modify the program to
call clua_registerservice with the CLUASRV_STATIC option. See
clua_registerservice(3) and clua_services(4) for more information
about these functions. (The static option also serves another purpose for

Cluster Alias Application Programming Interface 8–7



ports greater than 1024: it directs the system to leave a port designated as
static out of the ephemeral port space.)

______________________ Note _______________________

Only specify the static attribute in /etc/clua_services
for multi-instance services that are started every time a
cluster member boots. For example, services with entries in
/etc/inetd.conf. Otherwise, different applications on different
cluster members that are looking for a dynamic port might bind
to the same port.

8.5 setsockopt() Options

The setsockopt() and getsockopt() system calls support the following
cluster alias socket options:

SO_CLUA_DEFAULT_SRC

If the local address has not already been set through a call to bind(),
the socket uses the default cluster alias as its source address.

SO_CLUA_IN_NOALIAS

Attempts to bind the socket to a cluster alias address will fail. Use
this option for services that you do not want to be accessed using
a cluster alias.

A bind to an dynamic port (greater than or equal to IPPORT_RESERVED
and less than IPPORT_USERRESERVED) does not result in that port
being locked.

A bind to a reserved port with a wildcard address (INADDR_ANY or
in6addr_any) does not result in that port being locked.

The source address for outgoing UDP sends or TCP connection requests
is a local host address (never a cluster alias address).

The SO_CLUA_IN_NOLOCAL and SO_CLUA_IN_NOALIAS options are
mutually exclusive.

SO_CLUA_IN_NOLOCAL

The socket must receive packets that are addressed to a cluster alias
and will drop any packets that are not addressed to a cluster alias.
Use this option for services that you want only to be accessed using
a cluster alias.

The SO_CLUA_IN_NOLOCAL and SO_CLUA_IN_NOALIAS options are
mutually exclusive.

8–8 Cluster Alias Application Programming Interface



SO_RESVPORT

An attempt to bind the socket to a port in the reserved range
(512-1024) will fail if the port is marked static, either by a static
entry for the port in /etc/clua_services or through a call to
clua_registerservice() with the CLUASRV_STATIC option. The call
to bind() returns EADDRINUSE.

SO_REUSEALIASPORT

The socket can reuse a locked cluster alias port. When this option is
set, a bind() is distributed clusterwide. (A distributed application can
use this side effect to determine whether or not a port is in use.)

8.6 Port Attributes: /etc/clua_services, clua_registerser-
vice(), and setsockopt()

The strings that are used in the /etc/clua_services file have a
one-to-one mapping with the CLUASRV_* options that are used by
clua_registerservice(). Some of these strings/options also have a
relationship with the cluster alias setsockopt() options. Table 8–2 lists
these relationships.

Table 8–2: Relationship Among Cluster Alias Port Attributes
clua_services clua_registerservice() setsockopt()

in_multi CLUASRV_MULTI

in_single CLUASRV_SINGLE

in_noalias CLUASRV_IN_NOALIAS SO_CLUA_IN_NOALIAS

out_alias CLUASRV_OUTa SO_CLUA_DEFAULT_SRC b

in_nolocal CLUASRV_IN_NOLOCAL SO_CLUA_IN_NOLOCAL

static CLUASRV_STATIC

SO_REUSEALIASPORT

SO_RESVPORT
a The CLUASRV_OUT option forces the default cluster alias as the source address only if the destination port
for the service has the out_alias attribute set in the clua_services file.
b The SO_CLUA_DEFAULT_SRC option does not examine the attributes that are associated with the
destination port. (Neither CLUASRV_OUT nor SO_CLUA_DEFAULT_SRC override the manual setting of an
address. These two options set the source address to the default cluster alias only if the address is not yet set.)

8.7 UDP Applications and Source Addresses

Some User Datagram Protocol (UDP)-based applications require that
messages from the server to the client come from the same server address
that is used by the client when sending the UDP request. Because systems

Cluster Alias Application Programming Interface 8–9



in a cluster do not normally use a cluster alias as the source address for
outbound UDP messages, these applications may have problems using
cluster aliases.

This section describes how to make a UDP-based server application in a
cluster respond with the address that was used to reach it (whether the
address is a cluster alias or a local address) as follows:

• The preferred approach is to bind a socket to each local IP address,
plus an additional socket to the default cluster alias address. (Use
clua_getdefaultalias to get the alias’s address.) Respond to
requests using the same socket that received the request; the address
will automatically be the one used by the client. This approach replaces
using one listen on the wildcard.

• A somewhat simpler approach is to use two sockets: one listening on
the wildcard and one on the default cluster alias. (Like the previous
example, reuse the incoming socket for outbound packets.) If there are
multiple local addresses in the same subnet, this approach does not
always supply the correct local address, but handles the default cluster
alias address properly. If there are multiple cluster aliases and you want
the application to respond with the right one (the one used for input),
use the multiple sockets approach, with a separate listen() on each
cluster alias. Use clua_getaliasaddress() to create a list of defined
cluster aliases.

______________________ Note _______________________

If you want the application to be accessed only using a cluster
alias and you want the application to always respond using the
default cluster alias, listen on the wildcard with a single socket
but set the socket with the SO_CLUA_DEFAULT_SRC option. The
application will always use the default cluster alias address for
outbound traffic.

8–10 Cluster Alias Application Programming Interface



9
Distributed Lock Manager

This chapter describes how to use the distributed lock manager (DLM) to
synchronize access to shared resources in a cluster. The Cluster File System
(CFS) is fully POSIX compliant, so an application can use flock system
calls to synchronize access to shared files among instances. Alternatively,
applications can use the functions that are supplied by the cluster DLM.

The DLM provides features beyond those supplied by traditional POSIX file
locks. These include:

• A larger set of lock modes, beyond exclusive and shared locks.

• Asynchronous notification and callback to a lock holder when the holder
is blocking the granting of the lock to another process.

• Asynchronous notification and callback to a lock waiter when the
requested lock is granted.

• The ability to request and wait for conversion of existing locks to higher
or lower lock modes.

• Independent namespaces in which locks exist, and various security
mechanisms protecting access to these namespaces.

• A value block within the lock structure that processes sharing a resource
can use to communicate and coordinate their actions.

• Sophisticated deadlock detection mechanisms.

______________________ Note _______________________

The DLM applications programming interface (API) library is
supplied with the TruCluster Server cluster software and not
with the Tru64 UNIX base operating system. For this reason,
make sure that code intended to run on both standalone systems
and in a cluster, and calls DLM functions, uses clu_is_member
to determine whether the application is running in a cluster.

This chapter also contains examples that show how to use basic DLM
operations. You will find these code files in the /usr/examples/cluster/
directory.

Distributed Lock Manager 9–1



This chapter discusses the following topics:

• How the DLM synchronizes the accesses of multiple processes to a
specific resource (Section 9.1)

• Concepts of resources, resource granularity, namespaces, resource
names, and lock groups (Section 9.2)

• Concepts of locks, lock modes, lock compatibility, lock management
queues, lock conversions, and deadlock detection (Section 9.3)

• How to use the dlm_unlock function to dequeue lock requests
(Section 9.4)

• How to use the dlm_cancel function to cancel lock conversion requests
(Section 9.5)

• Specialized locking techniques, such as lock request completion, the
expediting of lock requests, blocking notifications, lock conversions,
parent locks and sublocks, and lock value blocks (Section 9.6)

• How applications can perform local buffer caching (Section 9.7)

• Code example showing the basic DLM operations (Section 9.8)

9.1 DLM Overview

The distributed lock manager (DLM) provides functions that allow
cooperating processes in a cluster to synchronize access to a shared resource,
such as a raw disk device, a file, or a program. For the DLM to effectively
synchronize access to a shared resource, all processes in the cluster that
share the resource must use DLM functions to control access to the resource.

DLM functions allow callers to:

• Request a new lock on a resource

• Release a lock or group of locks

• Convert the mode of an existing lock

• Cancel a lock conversion request

• Wait for a lock request to be granted, or continue operation and be
notified asynchronously of the request’s completion

• Receive asynchronous notification when a lock granted to the caller is
blocking another lock request

Table 9–1 lists the functions the DLM provides. These functions are
available in the libdlm library for use by applications.

9–2 Distributed Lock Manager



Table 9–1: Distributed Lock Manager Functions
Function Description

dlm_cancel Cancels a lock conversion request

dlm_cvt Synchronously converts an existing lock to a new mode

dlm_detach Detaches a process from all namespaces

dlm_get_lkinfo Obtains information about a lock request
associated with a given process

dlm_get_rsbinfo Obtains locking information about resources
managed by the DLM

dlm_glc_attach Attaches a process to an existing process
lock group container

dlm_glc_create Creates a group lock container

dlm_glc_destroy Destroys a group lock container

dlm_glc_detach Detaches from a process lock group

dlm_lock Synchronously requests a lock on a named resource

dlm_locktp Synchronously requests a lock on a named resource,
using group locks or transaction IDs

dlm_notify Requests delivery of outstanding completion
and blocking notifications

dlm_nsjoin Connects the process to the specified namespace

dlm_nsleave Disconnects the process from the specified namespace

dlm_perrno Prints the message text associated with a
given DLM message ID

dlm_perror Prints the message text associated with a given DLM
message ID, plus a caller-specified message string

dlm_quecvt Asynchronously converts an existing lock to a new mode

dlm_quelock Asynchronously requests a lock on a named resource

dlm_quelocktp Asynchronously requests a lock on a named resource,
using group locks or transaction IDs

dlm_rd_attach Attaches a process or process lock group to
a recovery domain

dlm_rd_collect Initiates the recovery procedure for a specified recovery
domain by collecting those locks on resources in the
domain that have invalid lock value blocks

dlm_rd_detach Detaches a process or process lock group from
a recovery domain

Distributed Lock Manager 9–3



Table 9–1: Distributed Lock Manager Functions (cont.)

Function Description

dlm_rd_validate Completes the recovery procedure for a specified
recovery domain by validating the resources in the
specified recovery domain collection

dlm_set_signal Specifies the signal to be used for completion
and blocking notifications

dlm_sperrno Obtains the character string associated with a given
DLM message ID and stores it in a variable

dlm_unlock Releases a lock

The DLM itself does not ensure proper access to a resource. Rather,
the processes that are accessing a resource agree to access the resource
cooperatively, use DLM functions when doing so, and respect the rules for
using the lock manager. These rules are as follows:

• All processes must always refer to the resource by the same name. The
name must be unique within a given namespace.

• For user ID and group ID qualified namespaces, the protections and
ownership (that is, the user IDs and group IDs) that are employed within
the namespace must be consistent throughout the cluster. A public
namespace has no such access restrictions. (See Section 9.2.2 for more
information.)

• Before accessing a resource, all processes must acquire a lock on the
resource by queuing a lock request. Use the dlm_lock, dlm_locktp,
dlm_quelock, and dlm_quelocktp functions for this purpose.

Because locks are owned by processes, applications that use the DLM must
take into account the following points:

• Because the DLM delivers signals, completion notifications, and blocking
notifications to the process, avoid using the DLM API functions in a
threaded application. Most signals are delivered to an arbitrary thread
within a multithreaded process. Any signal that is defined as the DLM
notification signal (by dlm_set_signal) can be delivered to a thread
that is not the one waiting for the lock grant or blocking notification (and
thus never be delivered to the one that is waiting).

• When a process forks, the child process does not inherit its parent’s
lock ownership or namespace attachment. Before accessing a shared
resource, the child process must attach to the namespace that includes
the resource and acquire any needed locks.

• Because the DLM maintains process-specific information (such as the
process-space addresses of the blocking and completion routines), a
call to the exec routine invalidates this information and results in

9–4 Distributed Lock Manager



unpredictable behavior. Before issuing a call to the exec routine, a
process must release its locks using the dlm_unlock and dlm_detach
functions. If the process does not call these functions, the DLM causes
the call to the exec routine to fail.

9.2 Resources

A resource can be any entity in a cluster (for example, a file, a data structure,
a raw disk device, a database, or an executable program). When two or
more processes access the same resource concurrently, they must often
synchronize their access to the resource to obtain correct results.

The lock management functions allow processes to associate a name or
binary data with a resource and to synchronize access to that resource.
Without synchronization, if one process is reading the resource while
another is writing new data, the writer can quickly invalidate anything that
is being read by the reader.

From the viewpoint of the DLM, a resource is created when a process (or
a process on behalf of a DLM process group) first requests a lock on the
resource’s name. At that point, the DLM creates the structure that contains,
among other things, the resource’s lock queues and its lock value block.

As long as at least one process owns a lock on the resource, the resource
continues to exist. After the last lock on the resource is dequeued, the
DLM can delete the resource. Normally, a lock is dequeued by a call to the
dlm_unlock function, but a lock (and potentially a resource as well) can be
freed abnormally if the process exits unexpectedly.

9.2.1 Resource Granularity

Many resources can be divided into smaller parts. As long as a part of a
resource can be identified by a resource name, the part can be locked.

Figure 9–1 shows a model of a database. The database is divided into
volumes, which in turn are subdivided into files. Files are further divided
into records, and the records are further divided into items.

The processes that request locks on the database that are shown in
Figure 9–1 can lock the whole database, a volume in the database, a file, a
record, or a single item. Locking the entire database is considered locking
at a coarse granularity; locking a single item is considered locking at a fine
granularity.

Parent locks and sublocks are the mechanism by which the DLM allows
processes to achieve locking at various degrees of granularity. See
Section 9.6.5 for more information about parent locks and sublocks.

Distributed Lock Manager 9–5



Figure 9–1: Model Database

ZK-1099U-AI

Volume

File File

Record Record Record Record Record

Item Item Item Item Item Item Item Item Item Item Item Item

9.2.2 Namespaces

You can view a namespace as a container for resource names. Multiple
namespaces exist to provide separation of unrelated applications for reasons
of security and modularity.

A namespace can be qualified by effective user ID or effective group ID, or it
can be a public namespace that is accessible by all processes, regardless of
their user or group ID.

Access to a namespace that is based on a user ID is limited to holders of
that user ID. Access to a namespace that is based on a group ID is limited
to members of that group. Any process can join a public namespace and
manipulate locks in that namespace.

For namespaces that are qualified by user ID or group ID, security is based
by determining a process’s right to access the namespace, as evidenced
by its holding the effective user ID or effective group ID. As a result, the
user and group ID namespaces must be consistent across the cluster. After
access to the namespace has been granted to a process, its individual locking
operations within that namespace are unrestricted.

Applications using a public namespace must provide their own security
and access mechanisms. One safe way to control access to locks in a public
namespace is for the lock owner to hold onto a lock in Protected Read (PR)
mode or a higher mode and not respond to any blocking notification. This
prevents any other process from changing the lock value block for as long as
the lock owner is executing.

Cooperating processes must use the same namespace to coordinate locks for
a given resource. A process must join a namespace before attempting to call

9–6 Distributed Lock Manager



the dlm_lock, dlm_locktp, dlm_quelock, or dlm_quelocktp function to
acquire a lock on a resource in that namespace. When a process calls the
dlm_nsjoin function for a user ID or group ID qualified namespace, the
DLM verifies that it is permitted to access a namespace by verifying that
the process holds the group or user ID appropriate to that namespace. If the
process passes this check, the DLM returns a handle to the namespace.
When a process calls the dlm_nsjoin function for a public namespace, the
DLM returns a handle to the namespace.

The process must present this handle on subsequent calls to DLM functions
to acquire root locks (that is, the base parent lock for a given resource
in a namespace). You can add sublocks under root locks without further
namespace access checks.

A process can be a member of up to DLM_NSPROCMAX namespaces.

9.2.3 Uniquely Identifying Resources

The DLM distinguishes resources by using the following parameters:

• A namespace (nsp) — Use the dlm_nsjoin function to obtain a
namespace handle before issuing a call to the dlm_lock, dlm_locktp,
dlm_quelock, or dlm_quelocktp function to obtain a top-level (root)
lock in a namespace. A root lock has no parent.

• The resource name that is specified by the process (resnam) — The name
that is specified by the process represents the resource being locked.
Other processes that need to access the resource must refer to it using
the same name. The correlation between the name and the resource is a
convention that is agreed upon by the cooperating processes.

• The resource name length (resnlen).

• The identification of the lock’s parent (parid), if specified in a request —
If a lock request is queued that specifies a parent lock ID of zero (0), the
lock manager considers it to be a request for a root lock on a resource. If
the lock request specifies a nonzero parent lock ID, it is considered to be
a request for a sublock on the resource. In this case, the DLM accepts
the request only if the root lock has been granted. This mechanism
enables a process to lock a resource at different degrees of granularity
and build lock trees.

Distributed Lock Manager 9–7



For example, the following two sets of parameters identify the same resource:

Parameter nsp resnam resnlen parid

Resource 1 14 disk1 5 80

Resource 1 14 disk1 5 80

The following two sets of parameters also identify the same resource:

Parameter nsp resnam resnlen parid

Resource 1 14 disk1 5 40

Resource 1 14 disk12345 5 40

The following two sets of parameters identify different resources:

Parameter nsp resnam resnlen parid

Resource 1 0 disk1 5 80

Resource 2 0 disk1 5 40

9.3 Using Locks

To use distributed lock manager (DLM) functions, a process must request
access to a resource (request a lock) using the dlm_lock, dlm_locktp,
dlm_quelock, or dlm_quelocktp function. The request specifies the
following parameters:

• A namespace handle that is obtained from a prior call to the dlm_nsjoin
function — For those namespaces that are qualified by effective user ID
or group ID, the DLM verifies a process’s right to access a namespace
before allowing it to obtain and manipulate locks on resources in
that namespace. All processes can access public namespaces. See
Section 9.2.2 for more information on namespaces.

• The resource name that represents the resource — The meaning of a
resource name is defined by the application program. The DLM uses
the resource name as a mechanism for matching lock requests that are
issued by multiple processes. Resource names exist within a namespace.
The same resource name in different namespaces is considered by the
DLM to be a different name.

• The length of the resource name — A resource name can be from 1
through DLM_RESNAMELEN bytes in length.

9–8 Distributed Lock Manager



• The identification of the lock’s parent — You can specify as a parent ID
either zero (0) to request a root lock, or a nonzero parent ID to request a
sublock of that parent. See Section 9.2.2 for more information.

• The address of a location to which the DLM returns a lock ID — The
dlm_lock, dlm_locktp, dlm_quelock, and dlm_quelocktp functions
return a lock ID when the request has been accepted. The application
then uses this lock ID to refer to the lock on subsequent operations, such
as calls to the dlm_cvt, dlm_quecvt, and dlm_unlock functions.

• A lock request mode — The DLM functions compare the lock mode of the
newly requested lock to the lock modes of other locks with the same
resource name. See Section 9.3.1 for more information about lock modes.

Null mode locks (Section 9.3.1) are compatible with all other lock modes
and are always granted immediately.

New locks are granted immediately in the following instances:

• If no other process has a lock on the resource.

• If another process has a lock on the resource, the mode of the new
request is compatible with the existing lock, and no locks are waiting
in the CONVERTING or WAITING queue. See Section 9.3.2 for more
information about lock mode compatibility.

New locks are not granted in the following instance:

• If another process already has a lock on the resource and the mode of the
new request is not compatible with the lock mode of the existing lock, the
new request is placed in a first-in first-out (FIFO) queue, where the lock
waits until the resource’s currently granted lock mode (resource group
grant mode) becomes compatible with the lock request.

Processes can also use the dlm_cvt and dlm_quecvt functions to change
the lock mode of a lock. This is called a lock conversion. See Section 9.3.4
for more information.

9.3.1 Lock Modes

The mode of a lock determines whether or not the resource can be shared
with other lock requests. Table 9–2 describes the six lock modes.

Distributed Lock Manager 9–9



Table 9–2: Lock Modes
Mode Description

Null (DLM_NLMODE) Grants no access to the resource; the Null mode is
used as a placeholder for future lock conversions,
or as a means of preserving a resource and its
context when no other locks on it exist.

Concurrent Read
(DLM_CRMODE)

Grants read access to the resource and allows it
to be shared with other readers and writers. The
Concurrent Read mode is generally used when
additional locking is being performed at a finer
granularity with sublocks, or to read data from a
resource in an unprotected fashion (that is, while
allowing simultaneous writes to the resource).

Concurrent Write
(DLM_CWMODE)

Grants write access to the resource and allows it to be
shared with other writers. The Concurrent Write mode
is typically used to perform additional locking at a finer
granularity, or to write in an unprotected fashion.

Protected Read
(DLM_PRMODE)

Grants read access to the resource and allows it to
be shared with other readers. No writers are allowed
access to the resource. This is the traditional share lock.

Protected Write
(DLM_PWMODE)

Grants write access to the resource and allows it
to be shared with Concurrent Read mode readers.
No other writers are allowed access to the resource.
This is the traditional update lock.

Exclusive (DLM_EXMODE) Grants write access to the resource and prevents it
from being shared with any other readers or writers.
This is the traditional Exclusive lock.

9.3.2 Levels of Locking and Compatibility

Locks that allow the process to share a resource are called low-level locks;
locks that allow the process almost exclusive access to a resource are called
high-level locks. Null and Concurrent Read mode locks are considered
low-level locks; Protected Write and Exclusive mode locks are considered
high-level locks. The lock modes from lowest to highest level access modes
are as follows:

1. Null (NL)

2. Concurrent Read (CR)

3. Concurrent Write (CW) and Protected Read (PR)

4. Protected Write (PW)

5. Exclusive (EX)

The Concurrent Write (CW) and Protected Read (PR) modes are considered
to be of equal level.

9–10 Distributed Lock Manager



Locks that can be shared with other granted locks on a resource (that is,
the resource’s group grant mode) are said to have compatible lock modes.
Higher-level lock modes are less compatible with other lock modes than
are lower-level lock modes.

Table 9–3 lists the compatibility of the lock modes.

Table 9–3: Compatibility of Lock Modes
Mode of Requested Lock Resource Group Grant Mode

NL CR CW PR PW EX

Null (NL) Yes Yes Yes Yes Yes Yes

Concurrent Read (CR) Yes Yes Yes Yes Yes No

Concurrent Write (CW) Yes Yes Yes No No No

Protected Read (PR) Yes Yes No Yes No No

Protected Write (PW) Yes Yes No No No No

Exclusive (EX) Yes No No No No No

9.3.3 Lock Management Queues

A lock on a resource can be in one of the following three states:

• GRANTED — The lock request has been granted.

• CONVERTING — The lock is granted at one mode and a convert request
is waiting to be granted at a mode that is compatible with the current
resource group grant mode.

• WAITING — The new lock request is waiting to be granted.

A queue is associated with each of the three states, as shown in Figure 9–2.

Distributed Lock Manager 9–11



Figure 9–2: Three Lock Queues

ZK-1098U-AI

GRANTED

CONVERTING

WAITING

conversions
granted

compatible
conversions

waiting locks
granted

new lock queued

new 
lock
granted

incompatible
conversions

When you request a new lock on an existing resource, the DLM determines
if any other locks are waiting in either the CONVERTING or WAITING
queue, as follows:

• If other locks are waiting in either queue, the new lock request is placed
at the end of the WAITING queue, except if the requested lock is a Null
mode lock, in which case it is granted immediately.

• If both the CONVERTING and WAITING queues are empty, the lock
manager determines whether the new lock is compatible with the other
granted locks. If the lock request is compatible, the lock is granted. If
the lock request is not compatible, it is placed on the WAITING queue.
(You can specify the DLM_NOQUEUE flag to the dlm_lock, dlm_locktp,
dlm_quelock, dlm_quelocktp, dlm_cvt, or dlm_quecvt call to direct
the DLM not to queue a lock request if it cannot be granted immediately.
In this case, the lock request is granted if it is compatible with the
resource’s group grant mode, or is rejected with a DLM_NOTQUEUED error
if it is not.)

9.3.4 Lock Conversions

Lock conversions allow processes to change the mode of locks. For example,
a process can maintain a low-level lock on a resource until it decides to limit
access to the resource by requesting a lock conversion.

9–12 Distributed Lock Manager



You specify lock conversions by using either the dlm_cvt or the dlm_quecvt
function with the lock ID of a previously granted lock that you want to
convert. If the requested lock mode is compatible with the currently granted
locks, the conversion request is granted immediately. If the requested lock
mode is incompatible with the existing locks in the GRANTED queue, the
request is placed at the end of the CONVERTING queue. The lock retains
its granted mode until the conversion request is granted.

After the DLM grants the conversion request, it grants any compatible
requests that are immediately following it on the CONVERTING queue. The
DLM continues to grant requests until the CONVERTING queue is empty or
it encounters an incompatible lock.

When the CONVERTING queue is empty, the DLM examines the WAITING
queue. It grants the first lock request on the WAITING queue if it is
compatible with the locks currently granted. The DLM continues to grant
requests until the WAITING queue is empty or it encounters an incompatible
lock.

9.3.5 Deadlock Detection

The DLM can detect two forms of deadlock:

• Conversion deadlock — A conversion deadlock occurs when a conversion
request has a granted mode that is incompatible with the requested mode
of another conversion request that is ahead of it in the CONVERTING
queue. For example, in Figure 9–3, there are two granted PR mode
locks on a resource (that is, the resource grant mode is PR). One PR
mode lock tries to convert to EX mode and, as a result, must wait in
the CONVERTING queue. Then, the second PR mode lock also tries to
convert to EX mode. It, too, must wait, behind the first lock’s request, in
the CONVERTING queue. However, the first lock’s request can never
be granted, because its requested mode (EX) is incompatible with the
second lock’s granted mode (PR). The second lock’s request can never
be granted because it is waiting behind the first lock’s request in the
CONVERTING queue.

Distributed Lock Manager 9–13



Figure 9–3: Conversion Deadlock

ZK-1180U-AI

GRANTED QUEUE

CONVERTING QUEUE
waits waits

Time Line:
A

PR1 PR2

PR1-EX PR2-EXPR1-EX

B C

PR1 PR1PR2 PR1 PR2

• Multiple resource deadlock — A multiple resource deadlock occurs when
a list of processes are each waiting for each other in a circular fashion.
For example, in Figure 9–4, three processes have queued requests for
resources that cannot be accessed until the current locks that are held
are dequeued (or converted to a lower lock mode). Each process is waiting
for another process to dequeue its lock request.

Figure 9–4: Multiple Resource Deadlock

Waiting for
the resource
that A has 

A B

C

ZK-1097U-AI

Waiting for
the resource 
that C has 

Waiting for
the resource
that B has 

If the DLM determines that either a conversion deadlock or a multiple
resource deadlock exists, it chooses a lock to use as a victim to break the

9–14 Distributed Lock Manager



deadlock. Although the victim is arbitrarily selected, it is guaranteed to
be either on the CONVERTING or WAITING queue (that is, it is not in
the GRANTED queue).

The DLM returns a DLM_DEADLOCK final completion status code to the
process that issued this dlm_lock, dlm_locktp, or dlm_cvt function
call (or provides this status in the completion_status parameter to
the completion routine that is specified in the call to the dlm_quelock,
dlm_quelocktp, or dlm_quecvt function). Granted locks are never
revoked; only converting and waiting lock requests can receive the
DLM_DEADLOCK status code.

______________________ Note _______________________

Do not make assumptions about which lock the DLM will choose
to break a deadlock. Also, undetectable deadlocks can occur
when other services such as semaphores or file locks are used in
conjunction with the DLM. The DLM detects only those deadlocks
that involve its own locks.

9.4 Dequeuing Locks

When a process no longer needs a lock on a resource, it can release the lock
by calling the dlm_unlock function.

When a lock is released, the specified lock request is removed from whatever
queue it is in. Locks are dequeued from any queue: GRANTED, WAITING,
or CONVERTING. When the last lock on a resource is dequeued, the
resource is deleted from the DLM database.

The dlm_unlock function can write or invalidate the resource’s lock value
block if it specifies the valb_p parameter and the DLM_VALB flag. If the
lock to be dequeued has a granted mode of PW or EX, the contents of the
process’s value block are stored in the resource value block. If the lock that
is being dequeued is in any other mode, the lock value block is not used.
If the DLM_INVVALBLK flag is specified, the resource’s lock value block is
marked invalid.

The dlm_unlock function uses the following flags:

• The DLM_DEQALL flag indicates that all locks that are held by the
process are to be dequeued or that a subtree of locks are to be dequeued,
depending on the value of the lkid_p parameter, as listed in Table 9–4.

Distributed Lock Manager 9–15



Table 9–4: Using the DLM_DEQALL Flag in a dlm_unlock Function Call
lkid_p DLM_DEQALL Result

≠ 0 Clear Only the lock specified by lkid_p
is released.

≠ 0 Set All sublocks of the indicated lock
are released. The lock specified by
lkid_p is not released.

= 0 Clear Returns the invalid lock ID condition
value (DLM_IVLOCKID).

= 0 Set All locks held by the process
are released.

• The DLM_INVVALBLK flag causes the DLM to invalidate the resource lock
value block of granted or converting PW or EX mode locks. The resource
lock value block remains marked as invalid until it is again written. See
Section 9.6.6 for more information about lock value blocks.

• The DLM_VALB flag causes the DLM to write the resource lock value
block for granted or converting PW or EX mode locks.

You cannot specify both the DLM_VALB and DLM_INVVALBLK flags in the
same request.

9.5 Canceling a Conversion Request

The dlm_cancel function cancels a lock conversion. A process can cancel a
lock conversion only if the lock request has not yet been granted, in which
case the request is in the CONVERTING queue. Cancellation causes a
lock in the CONVERTING queue to revert to the granted lock mode it had
before the conversion request. The blkrtn and notprm values of the lock
also revert to the old values. The DLM calls any completion routine that is
specified in the conversion request to indicate that the request has been
canceled. The returned status is DLM_CANCEL.

9.6 Advanced Locking Techniques

The previous sections discussed locking techniques and concepts that are
useful to all applications. The following sections discuss specialized features
of the distributed lock manager (DLM).

9.6.1 Asynchronous Completion of a Lock Request

The dlm_lock, dlm_locktp, and dlm_cvt functions complete when the
lock request has been granted or has failed, as indicated by the return
status value.

9–16 Distributed Lock Manager



If you want an application not to wait for completion of the lock request,
have it use the dlm_quelock, dlm_quelocktp, and dlm_quecvt functions.
These functions return control to the calling program after the lock request
is queued. The status value that is returned by these functions indicates
whether the request was queued successfully or was rejected. After a
request is queued, the calling program cannot access the resource until the
request is granted.

Calls to the dlm_quelock, dlm_quelocktp, and dlm_quecvt functions
must specify the address of a completion routine. The completion routine
runs when the lock request is successful or unsuccessful. The DLM passes
to the completion routines status information that indicates the success or
failure of the lock request.

______________________ Note _______________________

If an application wants the DLM to deliver completion
notifications, it must call the dlm_set_signal function once
before making the first lock request requiring one. Alternatively,
the application can periodically call the dlm_notify function.
The dlm_notify function enables a process to poll for pending
notifications and request their delivery, without needing to
call the dlm_set_signal function. The polling method is not
recommended.

9.6.2 Notification of Synchronous Completion

The DLM provides a mechanism that allows processes to determine whether
a lock request is granted synchronously; that is, if the lock is not placed on
the CONVERTING or WAITING queue. By avoiding the overhead of signal
delivery and the resulting execution of a completion routine, an application
can use this feature to improve performance in situations where most locks
are granted synchronously (as is normally the case). An application can
also use this feature to test for the absence of a conflicting lock when the
request is processed.

This feature works as follows:

• If the DLM_SYNCSTS flag is set in a call to the dlm_lock, dlm_locktp,
dlm_cvt, dlm_quelock, dlm_quelocktp, or dlm_quecvt function,
and a lock is granted synchronously, the function returns a status
value of DLM_SYNCH to its caller. In the case of the dlm_quelock,
dlm_quelocktp, and dlm_quecvt functions, the DLM delivers no
completion notification.

• If a lock request that is initiated by a dlm_quelock, dlm_quelocktp,
and dlm_quecvt function call is not completed synchronously, the

Distributed Lock Manager 9–17



function returns a status value of DLM_SUCCESS, indicating that the
request has been queued. The DLM delivers a completion notification
when the lock is granted successfully or the lock grant fails.

9.6.3 Blocking Notifications

In some applications that use the DLM functions, a process must know
whether it is preventing another process from locking a resource. The DLM
informs processes of this by using blocking notifications. To enable blocking
notifications, the blkrtn parameter of the lock request must contain the
address of a blocking notification routine. When the lock prevents another
lock from being granted, a blocking notification is delivered and the blocking
notification routine is executed.

The DLM provides the blocking notification routine with the following
parameters:

notprm Context parameter of the blocking lock. This
parameter was supplied by the caller of the
dlm_lock, dlm_locktp, dlm_quelock,
dlm_quelocktp, dlm_cvt, or dlm_quecvt function
in the lock request for the blocking lock.

blocked_hint The hint parameter from the first blocked lock.
This parameter was supplied by the caller of
the dlm_lock, dlm_locktp, dlm_quelock,
dlm_quelocktp, dlm_cvt, or dlm_quecvt function
in the lock request for the first blocked lock.

lkid_p Pointer to the lock ID of the blocking lock.

blocked_mode Requested mode of the first blocked lock.

By the time the notification is delivered, the following conditions can still
exist:

• The lock can still be blocked.

• The blocked lock can be released by the application; therefore, no locks
are actually blocked.

• The blocked lock can be selected as a deadlock victim and the request
failed to break a deadlock cycle.

• The blocked lock can be released by the application and another lock
queued that is now blocked; therefore, a completely different lock is
actually blocked.

9–18 Distributed Lock Manager



• Other locks are backed up behind the original blocked lock or
subsequently queued blocked lock.

Because these conditions are possible, the DLM can make no guarantees
about the validity of the blocked_hint and blocked_mode parameters at
the time that the blocking routine is executed.

______________________ Note _______________________

If an application wants the DLM to deliver blocking notifications,
it must call the dlm_set_signal function once before making
the first lock request requiring a blocking notification.

Also, if the signal that is specified in the dlm_set_signal call is
blocked, the blocking notification will not be delivered until the
signal is unblocked. Alternatively, the application can periodically
call the dlm_notify function. The dlm_notify function enables
a process to poll for pending notifications and request their
delivery. The polling method is not recommended.

9.6.4 Lock Conversions

Lock conversions perform the following functions:

• Promoting or demoting lock modes — The DLM provides mechanisms
to maintain a low-level lock and convert it to a higher-level lock mode
when necessary. A procedure normally needs an Exclusive (EX) or
Protected Write (PW) mode lock while writing data. However, you do not
want the procedure to keep the resource exclusively locked all the time,
because writing may not always be necessary. Maintaining an EX or PW
mode lock prevents other processes from accessing the resource. Lock
conversions allow a process to request a low-level lock at first and then
convert the lock to a higher-level lock mode (PW mode, for example)
only when it needs to write data. However, because the process may
not always need to write to the resource, make sure it requests a lock
conversion to a lower-level lock mode when it has finished writing.

_____________________ Note _____________________

Other types of applications, for which shared write access
may not be all that important, can also use the DLM’s lock
conversion features. For example, an application may require
a master instance, while allowing for slave or secondary
instances of the same application. Locks and lock conversions

Distributed Lock Manager 9–19



can be used to implement a quick recovery scheme in case the
master instance fails.

• Maintaining values that are stored in a resource lock value block —
A lock value block is a small piece of memory that is shared between
holders of locks on the same resource. Some applications of locks require
the use of the lock value block. If a version number or other data is
maintained in the lock value block, you need to maintain at least one
lock on the resource so that the value block is not lost. In this case,
processes convert their locks to Null locks rather than dequeuing them
when they have finished accessing the resource. See Section 9.6.6 for
further discussion of using lock value blocks.

• Improving performance in some applications — To improve performance
in some applications, all resources that might be locked are locked with
Null (NL) mode locks during initialization. You can convert the NL mode
locks to higher-level locks as needed. Usually a conversion request is
faster than a new lock request, because the necessary data structures
have already been built. However, maintaining any lock for the life of
a procedure uses system dynamic memory. Therefore, the technique
of creating all necessary locks as NL mode locks and converting them
as needed improves performance at the expense of increased memory
requirements.

9.6.4.1 Queuing Lock Conversions

To perform a lock conversion, a procedure calls the dlm_cvt or dlm_quecvt
function. The lock that is being converted is identified by the lkid_p
parameter. A lock must be granted before it can be the object of a conversion
request.

9.6.4.2 Forced Queuing of Conversions

To promote more equitable access to a given resource, you can force certain
conversion requests to be queued that would otherwise be granted. A
conversion request with the DLM_QUECVT flag set is forced to wait behind
any already queued conversions. In this manner, you can specify the
DLM_QUECVT flag to give other locks a chance of being granted. However,
the conversion request is granted immediately if no conversions are already
queued.

The DLM_QUECVT behavior is valid only for a subset of all possible
conversions. Table 9–5 defines the set of conversion requests that are
permitted when you specify the DLM_QUECVT flag. Illegal conversion
requests fail with a return status of DLM_BADPARAM.

9–20 Distributed Lock Manager



Table 9–5: Conversions Allowed When the DLM_QUECVT Flag Is Specified
Mode at Which Lock
Is Held Mode to Which Lock Is Converted

NL CR CW PR PW EX

Null (NL) — Legal Legal Legal Legal Legal

Concurrent Read (CR) — — Legal Legal Legal Legal

Concurrent Write (CW) — — — — Legal Legal

Protected Read (PR) — — — — Legal Legal

Protected Write (PW) — — — — — —

Exclusive (EX) — — — — — —

9.6.5 Parent Locks

When a process calls the dlm_lock, dlm_locktp, dlm_quelock, or
dlm_quelocktp function to issue a lock request, it can declare a parent
lock for the new lock by specifying the parent ID in the parid parameter.
Locks with parents are called sublocks. A parent lock must be granted
before the sublocks belonging to the parent can be granted in the same or
some other mode.

The benefit of using parent locks and sublocks is that they allow low-level
locks (Concurrent Read or Concurrent Write) to be held at a coarse
granularity, while higher-level (Protected Write or Exclusive mode) sublocks
are held on resources of a finer granularity. For example, a low-level lock
might control access to an entire file, while higher-level sublocks protect
individual records or data items in the file.

Assume that a number of processes need to access a database. The database
can be locked at two levels: the file and individual records. When updating
all the records in a file, locking the whole file and updating the records
without additional locking is faster and more efficient. But, when updating
selected records, locking each record as it is needed is preferable.

To use parent locks in this way, all processes request locks on the file.
Processes that need to update all records must request Protected Write (PW)
or Exclusive (EX) mode locks on the file. Processes that need to update
individual records request Concurrent Write (CW) mode locks on the file,
and then use sublocks to lock the individual records in PW or EX mode.

In this way, the processes that need to access all records can do so by locking
the file, while processes that share the file can lock individual records. A
number of processes can share the file-level lock at concurrent write mode,
while their sublocks update selected records.

Distributed Lock Manager 9–21



9.6.6 Lock Value Blocks

The lock value block is a structure of DLM_VALBLKSIZE unsigned longwords
in size that a process associates with a resource by specifying the valb_p
parameter and the DLM_VALB option in calls to DLM functions. When the
lock manager creates a resource, it also creates a lock value block for that
resource. The DLM maintains the resource lock value block until there
are no more locks on the resource.

When a process specifies the DLM_VALB option and a valid address in the
valb_p parameter in a new lock request and the request is granted, the
contents of the resource lock value block are copied to the process’s lock
value block from the resource lock value block.

When a process specifies the valb_p parameter and the DLM_VALB option in
a conversion from PW mode or EX mode to the same or a lower mode, the
contents of the process’s lock value block are stored in the resource lock
value block.

In this manner, processes can pass (and update) the value in the lock value
block along with the ownership of a resource. Table 9–6 indicates how
lock conversions affect the contents of the process’s and the resource’s lock
value block.

Table 9–6: Effect of Lock Conversion on Lock Value Block
Mode at Which Lock
Is Held Mode to Which Lock Is Converted

NL CR CW PR PW EX

Null (NL) Read Read Read Read Read Read

Concurrent Read (CR) — Read Read Read Read Read

Concurrent Write (CW) — — Read — Read Read

Protected Read (PR) — — — Read Read Read

Protected Write (PW) Write Write Write Write Write Read

Exclusive (EX) Write Write Write Write Write Write

When granted PW or EX mode locks are released using the dlm_unlock
function, the address of a lock value block is specified in the valb_p
parameter and the DLM_VALB option is specified, the contents of the process’s
lock value block are written to the resource lock value block. If the lock being
released is in any other mode, the lock value block is not used.

In some situations, the resource lock value block can become invalid. When
this occurs, the DLM warns the caller of a function specifying the valb_p
parameter by returning the completion status of DLM_SUCCVALNOTVALID or

9–22 Distributed Lock Manager



DLM_SYNCVALNOTVALID. The following events can invalidate the resource
lock value block:

• A process holding a PW or EX mode lock on a resource terminates
abnormally.

• A node participating in locking fails and a process on that node was
holding (or might have been holding) a PW or EX mode lock on the
resource.

• A process holding a PW or EX mode lock on the resource calls the
dlm_unlock function to dequeue this lock and specifies the flag
DLM_INVVALBLK in the flags parameter.

9.7 Local Buffer Caching Using DLM Functions

Applications can use the distributed lock manager (DLM) to perform local
buffer caching (also called distributed buffer management). Local buffer
caching allows a number of processes to maintain copies of data (for example,
disk blocks) in buffers that are local to each process, and to be notified when
the buffers contain invalid data due to modifications by another process. In
applications where modifications are infrequent, you may save substantial
I/O by maintaining local copies of buffers — hence, the names local buffer
caching or distributed buffer management. Either the lock value block or
blocking notifications (or both) can be used to perform buffer caching.

9.7.1 Using the Lock Value Block

To support local buffer caching using the lock value block, each process
maintaining a cache of buffers maintains a Null (NL) mode lock on a
resource that represents the current contents of each buffer. (For this
discussion, assume that the buffers contain disk blocks.) The lock value
block that is associated with each resource is used to contain a disk block
version number. The first time that a lock is obtained on a particular disk
block, the application returns the current version number of that disk block
in the lock value block of the process.

If the contents of the buffer are cached, this version number is saved along
with the buffer. To reuse the contents of the buffer, the NL mode lock must be
converted to Protected Read (PR) mode or Exclusive (EX) mode, depending
on whether the buffer is to be read or written. This conversion returns
the latest version number of the disk block. The application compares the
version number of the disk block with the saved version number. If they are
equal, the cached copy is valid. If they are not equal, the application must
read a fresh copy of the disk block from disk.

Whenever a procedure modifies a buffer, it writes the modified buffer to disk
and then increments the version number before converting the corresponding

Distributed Lock Manager 9–23



lock to NL mode. In this way, the next process that attempts to use its local
copy of the same buffer finds a version number mismatch and must read the
latest copy from disk, rather than use its cached (now invalid) buffer.

9.7.2 Using Blocking Notifications

Blocking notifications are used to notify processes with granted locks that
another process with an incompatible lock mode has been queued to access
the same resource.

You may use blocking notifications to support local buffer caching in two
ways. One technique involves deferred buffer writes; the other technique is
an alternate method of local buffer caching without using lock value blocks.

9.7.2.1 Deferring Buffer Writes

When local buffer caching is being performed, a modified buffer must be
written to disk before the EX mode lock can be released. If a large number of
modifications are expected (particularly over a short period of time), you can
reduce disk I/O by maintaining the EX mode lock for the entire time that the
modifications are being made, and writing the buffer once.

However, this prevents other processes from using the same disk block
during this interval. This can be avoided if the process holding EX mode
lock has a blocking notification. The notification will notify the process if
another process needs to use the same disk block. The holder of the EX
mode lock can then write the buffer to disk and convert its lock to NL mode
(which allows the other process to access the disk block). However, if no
other process needs the same disk block, the first process can modify it many
times, but write it only once.

______________________ Note _______________________

After a blocking notification is delivered to a process, the process
must convert the lock to receive any subsequent blocking
notifications.

9.7.2.2 Buffer Caching

To perform local buffer caching using blocking notifications, processes do not
convert their locks to NL mode from PR or EX mode when they are finished
with the buffer. Instead, they receive blocking notifications whenever
another process attempts to lock the same resource in an incompatible lock
mode. With this technique, processes are notified that their cached buffers
are invalid as soon as a writer needs the buffer, rather than the next time
that the process tries to use the buffer.

9–24 Distributed Lock Manager



9.7.3 Choosing a Buffer Caching Technique

The choice between using version numbers or blocking notifications to
perform local buffer caching depends on the characteristics of the application.
An application that uses version numbers performs more lock conversions,
while one that uses blocking notifications delivers more notifications. Note
that these techniques are compatible; some processes can use one technique
at the same time that other processes use the other. Generally speaking,
blocking notifications are preferred in a low-contention environment, while
version numbers are preferred in a high-contention environment. You may
even invent combined or adaptive strategies.

In a combined strategy, if a process is expected to reuse the contents of a
buffer in a short amount of time, blocking notifications are used; if there is
no reason to expect a quick reuse, version numbers are used.

In an adaptive strategy, an application makes evaluations on the rate of
blocking notifications and conversions. If blocking notifications arrive
frequently, the application changes to using version numbers; if many
conversions take place and the same cached copy remains valid, the
application changes to using blocking notifications.

For example, consider the case where one process continually displays
the state of a database, while another occasionally updates it. If version
numbers are used, the displaying process must always verify to see that its
copy of the database is valid (by performing a lock conversion); if blocking
notifications are used, the displaying process is informed every time that the
database is updated. However, if updates occur frequently, using version
numbers is preferable to continually delivering blocking notifications.

9.8 Distributed Lock Manager Functions Code Example
The following programs show the basic mechanisms that an application
uses to join a namespace and establish an initial lock on a resource in
that namespace. They also demonstrate key DLM concepts such as lock
conversion, the use of lock value blocks, and the use of blocking notification
routines.

The api_ex_master.c and api_ex_client.c programs, which are listed
in Example 9–1 and available from the /usr/examples/cluster directory
(when the TCRMANxxx subset is installed), can execute in parallel on the
same cluster member or on different cluster members. You must run both
programs from accounts with the same user ID (UID) and you must start
the api_ex_master.c program first. They display output similar to the
following:
% api_ex_master &
api_ex_master: grab a EX mode lock
api_ex_master: value block read

Distributed Lock Manager 9–25



api_ex_master: expected empty value block got <>
api_ex_master: start client and wait for the blocking notification to

continue
% api_ex_client &

api_ex_client: grab a NL mode lock
api_ex_client: value block read
api_ex_client: expected empty value block got <>
api_ex_client: converting to NL→EX to get the value block.
api_ex_client: should see blocking routine run on master

api_ex_master: blk_and_go hold the lock for a couple of seconds
api_ex_master: blk_and_go sleeping
api_ex_master: blk_and_go sleeping
api_ex_master: blk_and_go sleeping
api_ex_master: blk_and_go setting done
api_ex_master: now convert (EX→EX) to write the value block <abc>
api_ex_master: blkrtn: down convert to NL
api_ex_master: waiting for blocking notification
api_ex_master: trying to get the lock back as PR to read value block

api_ex_client: blkrtn: dequeue EX lock to write value block <>
api_ex_client: hold the lock for a couple of seconds
api_ex_client: sleeping
api_ex_client: sleeping
api_ex_client: sleeping
api_ex_client: value block read
api_ex_client: expected <abc> got <abc>
api_ex_client: sleeping waiting for blocking notification
api_ex_client: done

api_ex_master: value block read
api_ex_master: expected <efg> got <efg>
api_ex_master done

Example 9–1: Locking, Lock Value Blocks, and Lock Conversion

/********************************************************************
* *
* api_ex_master.c *
* *
********************************************************************/

/* cc -g -o api_ex_master api_ex_master.c -ldlm */

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <signal.h>

#include <sys/dlm.h>

char *resnam = "dist shared resource";
char *prog;
int done = 0;

#ifdef DLM_DEBUG
int dlm_debug = 2;
#define Cprintf if(dlm_debug)printf
#define Dprintf if(dlm_debug >= 2 )printf
#else /* DLM_DEBUG */
#define Cprintf ;
#define Dprintf ;
#endif /* DLM_DEBUG */

void
error(dlm_lkid_t *lk, dlm_status_t stat)

9–26 Distributed Lock Manager



Example 9–1: Locking, Lock Value Blocks, and Lock Conversion (cont.)

{
printf("%s: lock error %s on lkid 0x%lx\n",

prog, dlm_sperrno(stat), lk);
abort();

}

void
blk_and_go(callback_arg_t x, callback_arg_t y,

dlm_lkid_t *lk, dlm_lkmode_t blkmode)
{

int i;

printf("%s: blk_and_go hold the lock for a couple of seconds\n",
prog);

for (i = 0; i < 3; i++) {
printf("%s: blk_and_go sleeping\n", prog);
sleep(1);

}
printf("%s: blk_and_go setting done\n", prog);
/* done waiting */
done = 1; 13

}

void
blkrtn(callback_arg_t x, callback_arg_t y,

dlm_lkid_t *lk, dlm_lkmode_t blkmode)
{

dlm_status_t stat;

Cprintf("%s: blkrtn: x 0x%lx y 0x%lx lkid 0x%lx blkmode %d\n",
prog, x, y, *lk, blkmode);

printf("%s: blkrtn: down convert to NL\n", prog);
if ((stat = dlm_cvt(lk, DLM_NLMODE, 0, 0, 0, 0, 0, 0)) != DLM_SUCCESS)

error(lk, stat); 16
/* let waiters know we’re done */
done = 1;

}

main(int argc, char *argv[])
{

int resnlen, i;
dlm_lkid_t lkid;
dlm_status_t stat;
dlm_valb_t vb;
dlm_nsp_t nsp;

/* this prog must be run first */

/* first we need to join a namespace */
if ((stat = dlm_nsjoin(getuid(), &nsp, DLM_USER)) != DLM_SUCCESS) { 1

printf("%s: can’t join namespace\n", argv[0]);
error(0, stat);

}

prog = argv[0];

/* now let DLM know what signal to use for blocking routines */
dlm_set_signal(SIGIO, &i); 2
Cprintf("%s: dlm_set_signal: i %d\n", prog, i);

resnlen = strlen(resnam); 3
Cprintf("%s: dlm_set_signal: i %d\n", prog, i);

printf("%s: grab a EX mode lock\n", prog);
stat = dlm_lock(nsp, (uchar_t *)resnam, resnlen, 0, &lkid,

DLM_EXMODE, &vb, (DLM_VALB | DLM_SYNCSTS), 0, 0,
blk_and_go, 0); 4

/*
* since we’re the only one running it
* had better be granted SYNC status
*/

if(stat != DLM_SYNCH) { 5

Distributed Lock Manager 9–27



Example 9–1: Locking, Lock Value Blocks, and Lock Conversion (cont.)

printf("%s: dlm_lock failed\n", prog);
error(&lkid, stat);

}
printf("%s: value block read\n", prog);
printf("%s: expected empty value block got <%s>\n",

prog, (char *)vb.valblk);
if (strlen((char *)vb.valblk)) { 6

printf("%s: lock: value block not empty\n", prog);
error(&lkid, stat);

}
printf("%s: start client and wait for the blocking

notification to continue\n",
prog);

while (!done)
sleep(1); 7

done = 0;
/* put a known string into the value block */
(void) strcat((char *)vb.valblk, "abc"); 14
printf("%s: now convert (EX→EX) to write the value block <%s>\n",

prog, (char *)vb.valblk);
/* use a new blocking routine */
stat = dlm_cvt(&lkid, DLM_EXMODE, &vb, (DLM_VALB | DLM_SYNCSTS),

0, 0, blkrtn, 0); 15
/*
* since we own (EX) the resource the
* convert had better be granted SYNC
*/

if(stat != DLM_SYNCH) {
printf("%s: convert failed\n", prog);
error(&lkid, stat);

}

printf("%s: waiting for blocking notification\n", prog);
while (!done)

sleep(1);
printf("%s: trying to get the lock back as PR to read value block\n",

prog);
stat = dlm_cvt(&lkid, DLM_PRMODE, &vb, DLM_VALB, 0, 0, 0, 0); 19
if (stat != DLM_SUCCESS) {

printf("%s: error on conversion lock\n", prog);
error(&lkid, stat);

}
printf("%s: value block read\n", prog);
printf("%s: expected <efg> got <%s>\n", prog, (char *)vb.valblk);
/* compare to the other known string */
if (strcmp((char *)vb.valblk, "efg")) {

printf("%s: main: value block mismatch <%s>\n",
prog, (char *)vb.valblk);

error(&lkid, stat); 23
}
printf("%s done\n", prog); 24
exit(0);

}

/********************************************************************
* *
* api_ex_client.c *
* *
********************************************************************/

/* cc -g -o api_ex_client api_ex_client.c -ldlm */

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <signal.h>

#include <sys/dlm.h>

9–28 Distributed Lock Manager



Example 9–1: Locking, Lock Value Blocks, and Lock Conversion (cont.)

char *resnam = "dist shared resource";
char *prog;
int done = 0;

#ifdef DLM_DEBUG
int dlm_debug = 2;
#define Cprintf if(dlm_debug)printf
#define Dprintf if(dlm_debug >= 2 )printf
#else /* DLM_DEBUG */
#define Cprintf ;
#define Dprintf ;
#endif /* DLM_DEBUG */

void
error(dlm_lkid_t *lk, dlm_status_t stat)
{

printf("\t%s: lock error %s on lkid 0x%lx\n",
prog, dlm_sperrno(stat), *lk);

abort();
}

/*
* blocking routine that will release the lock and in doing so will
* write the resource value block.
*/

void
blkrtn(callback_arg_t x, callback_arg_t y, dlm_lkid_t *lk, dlm_lkmode_t blkmode\
)
{

dlm_status_t stat;
dlm_valb_t vb;
int i;

Cprintf("\t%s: blkrtn: x 0x%lx y 0x%lx lkid 0x%lx blkmode %d\n",
prog, x, y, *lk, blkmode);

printf("\t%s: blkrtn: dequeue EX lock to write value block <%s>\n",
prog, (char *)vb.valblk);

printf("\t%s: hold the lock for a couple of seconds\n",
prog);

for (i = 0; i < 3; i++) {
printf("\t%s: sleeping\n", prog);
sleep(1);

}
/* make sure its clean */
bzero(vb.valblk, DLM_VALBLKSIZE);
/* write something different */
(void) strcat((char *)vb.valblk, "efg"); 20
if((stat = dlm_unlock(lk, &vb, DLM_VALB)) != DLM_SUCCESS)

error(lk, stat); 21
/* let waiters know we’re done */
done = 1;

}

main(int argc, char *argv[])
{

int resnlen, i;
dlm_lkid_t lkid;
dlm_status_t stat;
dlm_nsp_t nsp;
dlm_valb_t vb;

/* first we need to join a namespace */
if ((stat = dlm_nsjoin(getuid(), &nsp, DLM_USER)) != DLM_SUCCESS) {

printf("\t%s: can’t join namespace\n", argv[0]);
error(0, stat); 8

}

prog = argv[0];

/* now let DLM know what signal to use for blocking routines */
dlm_set_signal(SIGIO, &i);
Cprintf("\n\t%s: dlm_set_signal: i %d\n", prog, i); 9

Distributed Lock Manager 9–29



Example 9–1: Locking, Lock Value Blocks, and Lock Conversion (cont.)

resnlen = strlen(resnam);
Cprintf("\t%s: resnam %s\n", prog, resnam);

printf("\n\t%s: grab a NL mode lock\n", prog);
stat = dlm_lock(nsp, (uchar_t *)resnam, resnlen, 0, &lkid,

DLM_NLMODE, &vb, (DLM_VALB | DLM_SYNCSTS), 0, 0, 0, 0);
/* NL mode better be granted SYNC status */
if(stat != DLM_SYNCH) { 10

printf("\t%s: dlm_lock failed\n", prog);
error(&lkid, stat);

}
/* should be nulls since master hasn’t written anything yet */
printf("\t%s: value block read\n", prog);
printf("\t%s: expected empty value block got <%s>\n", prog, (char *)vb.\

valblk);
if (strlen((char *)vb.valblk)) { 11

printf("\t%s: value block not empty\n", prog);
error(&lkid, stat);

}

done = 0;
printf("\t%s: converting to NL->EX to get the value block.\n", prog);
printf("\t%s: should see blocking routine run on master\n", prog);
stat = dlm_cvt(&lkid, DLM_EXMODE, &vb, DLM_VALB, 0, 0, blkrtn, 0); 12
if(stat != DLM_SUCCESS) {

printf("\t%s: dlm_cvt failed\n", prog);
error(&lkid, stat);

}
/* should have read what master wrote, "abc" */
printf("\t%s: value block read\n", prog);
printf("\t%s: expected <abc> got <%s>\n", prog, (char *)vb.valblk);
if (strcmp((char *)vb.valblk, "abc")) { 17

printf("\t%s: main: value block mismatch <%s>\n",
prog, (char *)vb.valblk);
error(&lkid, stat);

}
/* now wait for blocking from master */
printf("\t%s: sleeping waiting for blocking notification\n", prog);
while (!done)

sleep(1); 18
printf("\t%s: done\n", prog); 22
exit(0);

}

1 The api_ex_master.c program calls the dlm_nsjoin function to join
the namespace of the resource on which it will request a lock. This
namespace is the current process’s UID, as obtained from the getuid
system call. This namespace allows access from processes that are
holding the effective UID of the resource owner, as indicated by the
DLM_USER parameter. If successful, the function returns a namespace
handle to the location that is indicated by the nsp parameter.

2 The api_ex_master.c program calls the dlm_set_signal function to
specify that the DLM is to use the SIGIO signal to send completion and
blocking notifications to this process.

9–30 Distributed Lock Manager



3 The api_ex_master.c program obtains the length of the resource
name to be supplied in the subsequent call to the dlm_lock function
call. The name of the resource is dist shared resource.

4 The api_ex_master.c program calls the dlm_lock function to obtain
an Exclusive mode (DLM_EXMODE) lock on the dist shared resource
resource in the uid namespace. The namespace handle, resource name,
and resource name length are all supplied as required parameters.

The DLM_SYNCSTS flag causes DLM to return DLM_SYNCH status if the
lock request is granted immediately. If the function call is successful,
the DLM returns the lock ID of the Exclusive mode (EX) lock to the
location that is specified by the lkid parameter.

This function call also specifies the DLM_VALB flag and a location to
and from which the contents of the lock value block for the resource
are written or read. The DLM copies the resource’s lock value to this
location when the lock requested by the dlm_lock function call is
granted. Finally, the function call specifies the blocking notification
routine blk_and_go. The DLM will call this routine after the lock has
been granted and is blocking another lock request.

5 The api_ex_master.c program examines the status value that is
returned from the dlm_lock function call. If the status value is not
DLM_SYNCH status (the successful condition value that is requested by
the DLM_SYNCSTS flag in the dlm_lock function call), the lock request
has had to wait for the lock to be granted. Because no other programs
that are interested in this lock are currently running, this cannot be
the case.

6 The api_ex_master.c program verifies that the contents of the value
block that the DLM has written to the location that is specified by the
vb parameter are empty.

7 The api_ex_master.c program waits for you to start the
api_ex_client.c program. It will resume when its Exclusive mode
(DLM_EXMODE) lock on the dist shared resource receives blocking
notification that it is blocking a lock request on the same resource from
the api_ex_client.c program.

8 After you start it, the api_ex_client.c program calls the
dlm_nsjoin function to join the uid namespace; that is, the same
namespace that the process that is running the api_ex_master.c
program previously joined.

9 The api_ex_client.c program, like the api_ex_master.c program,
calls the dlm_set_signal function to specify that the DLM is to use
the SIGIO signal to send completion and blocking notifications to this
process.

Distributed Lock Manager 9–31



10 The api_ex_client.c program calls the dlm_lock function to obtain
a Null mode (DLM_NLMODE) lock on the same resource on which the
process that is running the api_ex_master.c already holds an
Exclusive mode lock. The DLM_SYNCSTS flag causes DLM to return
DLM_SYNCH status if the lock request is granted immediately. This
lock request should be granted immediately, because the Null mode
(NL) lock is compatible with the previously granted Exclusive mode
lock. This function call also specifies the DLM_VALB flag and a pointer
to a lock value block. The DLM copies the resource’s lock value to this
location when the lock that is requested by the dlm_lock function call
is granted.

11 The api_ex_client.c program examines the contents of the value
block that the DLM has written to the location that is specified by
the vb parameter. The value block should be empty because the
api_ex_master.c program has not yet written to it.

12 The api_ex_client.c program calls the dlm_cvt function to convert
its Null mode lock on the resource to Exclusive mode. It specifies a
blocking notification routine named blkrtn. Because the process that
is running the api_ex_master.c program already holds an Exclusive
lock on this resource, it is blocking the api_ex_client.c program’s
lock conversion request. However, because the Exclusive mode lock that
is taken out by the api_ex_master.c program specifies a blocking
notification routine, the DLM uses the SIGIO signal to send the process
that is running the api_ex_master.c program a blocking notification,
triggering its blocking notification routine (blk_and_go).

13 The blk_and_go routine sleeps for 3 seconds and then sets the done
flag, which causes the api_ex_master.c program to resume.

14 The api_ex_master.c program writes the string abc to its local copy
of the resource’s value block.

15 The api_ex_master.c program calls the dlm_cvt function to write
to the lock value block. To do so, it converts its Exclusive mode lock on
the resource to Exclusive mode (DLM_EXMODE), specifying the lock ID,
the location of its copy of the value block, and the DLM_VALB flag as
parameters to the function call. The DLM_SYNCSTS flag causes DLM to
return DLM_SYNCH status if the lock request is granted immediately.
This lock conversion request should be granted immediately because
the process already holds an Exclusive mode lock on the resource.

The dlm_cvt function call also specifies the blkrtn routine as
a blocking notification routine. The DLM will call this blocking
notification routine immediately because this Exclusive mode lock on the
resource blocks the lock conversion request from the api_ex_client.c
program.

9–32 Distributed Lock Manager



16 The api_ex_master.c program’s blkrtn routine runs and
immediately tries to downgrade its lock on the resource from Exclusive
mode to Null mode by calling the dlm_cvt function. This call should
succeed immediately.

17 As soon as this conversion takes place, the api_ex_client.c
program’s lock conversion request succeeds. (The Null mode lock that
is held by the process running the api_ex_master.c program is
compatible with the Exclusive mode lock that is now held by the process
running the api_ex_client.c program.) In upgrading the Null mode
lock to Exclusive mode, the DLM copies the resource lock value block to
the process that is running the api_ex_client.c program. At this
point, the api_ex_client.c program can see the abc text string that
the api_ex_master.c program wrote previously to the resource’s lock
value block.

18 The api_ex_client.c program goes to sleep waiting for a blocking
notification.

19 The api_ex_master.c program, which has been sleeping since it
downgraded its lock on the dist shared resource resource, calls
the dlm_cvt function to convert its Null mode lock on the resource
to Protected Read (DLM_PRMODE) mode. Because the process that is
running the api_ex_client.c program already holds an Exclusive
lock on this resource, it is blocking the api_ex_master.c program’s
lock conversion request. (That is, the Exclusive mode and Protected
Read locks are incompatible.) However, because the Exclusive mode
lock that is taken out by the api_ex_client.c program specifies a
blocking notification routine, the DLM delivers it a blocking notification
by sending it a SIGIO signal, triggering its blocking notification routine
(blkrtn).

20 The blkrtn blocking notification routine in the api_ex_client.c
program sleeps for a few seconds and writes the text string efg to its
local copy of the resource’s value block.

21 The blkrtn blocking notification routine in the api_ex_client.c
program calls the dlm_unlock function to release its lock on the
resource. In specifying the address of its local copy of the resource’s
lock value block and the DLM_VALB flag, it requests the DLM to write
the local copy of the value block to the resource when its lock granted
mode is Protected Write (DLM_PWMODE) or Exclusive (DLM_EXMODE). The
granted mode here is DLM_EXMODE so the local copy of the value block
will be written to the resource’s lock value block.

22 The api_ex_client.c program completes and exists.

23 As soon as the process that is running the api_ex_client.c program
releases its lock on the resource, the api_ex_master.c program’s

Distributed Lock Manager 9–33



lock conversion request succeeds. In upgrading the Null mode lock to
Protected Read mode, the DLM copies the resource lock value block to
the process that is running the api_ex_master.c program. At this
point, the api_ex_master.c program can see the efg text string that
the api_ex_client.c program wrote previously to the resource’s lock
value block.

24 The api_ex_master.c program completes and exits.

9–34 Distributed Lock Manager



10
Memory Channel Application

Programming Interface Library

The Memory Channel Application Programming Interface (API) implements
highly efficient memory sharing between Memory Channel API cluster
members, with automatic error-handling, locking, and UNIX style
protections. This chapter contains information to help you develop
applications based on the Memory Channel API library. It explains the
differences between Memory Channel address space and traditional shared
memory, and describes how programming using Memory Channel as a
transport differs from programming using shared memory as a transport.

______________________ Note _______________________

The Memory Channel API library is supported only in clusters
configured with Memory Channel hardware. In a cluster not
equipped with Memory Channel hardware, applications may
find the clusterwide kill mechanism (documented in kill(1) and
kill(2)) a useful substitute for one common use of the Memory
Channel API.

This chapter also contains examples that show how to use the Memory
Channel API library functions in programs. You will find these code files in
the /usr/examples/cluster/ directory. Each file contains compilation
instructions.

The chapter discusses the following topics:

• Understanding the Memory Channel multirail model (Section 10.1)

• Initializing the Memory Channel API library (Section 10.2)

• Initializing the Memory Channel API library for a user program
(Section 10.3)

• Tuning your Memory Channel configuration (Section 10.4)

• Troubleshooting (Section 10.5)

• Accessing Memory Channel address space (Section 10.6)

• Using clusterwide locks (Section 10.7)

• Using cluster signals (Section 10.8)

Memory Channel Application Programming Interface Library 10–1



• Accessing cluster information (Section 10.9)

• Comparing shared memory and message passing models (Section 10.10)

• Answering questions asked by programmers who use the Memory
Channel API to develop programs for TruCluster Server systems
(Section 10.11)

10.1 Memory Channel Multirail Model

The Memory Channel multirail model supports the concept of physical
rails and logical rails. A physical rail is defined as a Memory Channel hub
(physical or virtual) with its cables and Memory Channel adapters, and
the Memory Channel driver for the adapters on each node. A logical rail is
made up of one or two physical rails.

A cluster can have one or more logical rails up to a maximum of four. Logical
rails can be configured in the following styles:

• Single-rail (Section 10.1.1)

• Failover pair (Section 10.1.2)

10.1.1 Single-Rail Style

If a cluster is configured in the single-rail style, there is a one-to-one
relationship between physical rails and logical rails. This configuration has
no failover properties; if the physical rail fails, the logical rail fails.

A benefit of the single-rail configuration is that applications can access
the aggregate address space of all logical rails and utilize their aggregate
bandwidth for maximum performance.

Figure 10–1 shows a single-rail Memory Channel configuration with three
logical rails, each of which is also a physical rail.

10–2 Memory Channel Application Programming Interface Library



Figure 10–1: Single-Rail Memory Channel Configuration

Physical Rail 0 Physical Rail 1 Physical Rail 2

Logical Rail 0 Logical Rail 1 Logical Rail 2

ZK-1653U-AI

10.1.2 Failover Pair Style

If a cluster is configured in the failover pair style, a logical rail consists of
two physical rails, with one physical rail active and the other inactive. If
the active physical rail fails, a failover takes place and the inactive physical
rail is used, allowing the logical rail to remain active after the failover. This
failover is transparent to the user.

The failover pair style can only exist in a Memory Channel configuration
consisting of two physical rails.

The failover pair configuration provides availability in the event of a physical
rail failure, because the second physical rail is redundant. However, only
the address space and bandwidth of a single physical rail are available at
any given time.

Figure 10–2 shows a multirail Memory Channel configuration in the failover
pair style. The illustrated configuration has one logical rail, which is made
up of two physical rails.

Memory Channel Application Programming Interface Library 10–3



Figure 10–2: Failover Pair Memory Channel Configuration

Physical Rail 0 Physical Rail 1

Logical Rail 0

ZK-1654U-AI

10.1.3 Configuring the Memory Channel Multirail Model

When you implement the Memory Channel multirail model, all nodes in a
cluster must be configured with an equal number of physical rails, which
are configured into an equal number of logical rails, each with the same
failover style.

The system configuration parameter rm_rail_style, in the
/etc/sysconfigtab file, is used to set multirail styles. The
rm_rail_style parameter can be set to one of the following values:

• Zero (0) for a single-rail style

• 1 for a failover pair style

The default value of the rm_rail_style parameter is 1.

The rm_rail_style parameter must have the same value for all nodes in a
cluster, or configuration errors may occur.

To change the value of the rm_rail_style parameter to zero (0) for
a single-rail style, change the /etc/sysconfigtab file by adding or
modifying the following stanza for the rm subsystem:

rm: rm_rail_style=0

10–4 Memory Channel Application Programming Interface Library



______________________ Note _______________________

We recommend that you use sysconfigdb(8) to modify or to add
stanzas in the /etc/sysconfigtab file.

If you change the rm_rail_style parameter, you must halt the entire
cluster and then reboot each member system.

Error handling for the Memory Channel multirail model is implemented
for specified logical rails. See Section 10.6.6 for a description of Memory
Channel API library error-management functions and code examples.

______________________ Note _______________________

The Memory Channel multirail model does not facilitate any type
of cluster reconfiguration, such as the addition of hubs or Memory
Channel adapters. For such reconfiguration, you must first shut
down the cluster completely.

10.2 Initializing the Memory Channel API Library

To run applications that are based on the Memory Channel API library, the
library must be initialized on each host in the Memory Channel API cluster.
The imc_init command initializes the Memory Channel API library and
allows applications to use the API. Initialization of the Memory Channel API
library occurs either by automatic execution of the imc_init command at
system boot time, or when the system administrator invokes the command
from the command line after the system boots.

Initialization of the Memory Channel API library at system boot time is
controlled by the IMC_AUTO_INIT variable in the /etc/rc.config file. If
the value of this variable is set to 1, the imc_init command is invoked at
system boot time. When the Memory Channel API library is initialized at
boot time, the values of the -a maxalloc and -r maxrecv flags are set to
the values that are specified by the IMC_MAX_ALLOC and IMC_MAX_RECV
variables in the /etc/rc.config file. The default value for the maxalloc
parameter and the maxrecv parameter is 10 MB.

If the IMC_AUTO_INIT variable is set to zero (0), the Memory Channel API
library is not initialized at system boot time. The system administrator
must invoke the imc_init command to initialize the library. The parameter
values in the /etc/rc.config file are not used when the imc_init
command is manually invoked.

The imc_init command initializes the Memory Channel API library the
first time it is invoked, whether this happens at system boot time or after

Memory Channel Application Programming Interface Library 10–5



the system has booted. The value of the -a maxalloc flag must be the same
on all hosts in the Memory Channel API cluster. If different values are
specified, the maximum value that is specified for any host determines the
clusterwide value that applies to all hosts.

After the Memory Channel API library has been initialized on the current
host, the system administrator can invoke the imc_init command again
to reconfigure the values of the maxalloc and maxrecv resource limits,
without forcing a reboot. The system administrator can increase or decrease
either limit, but the new limits cannot be lower than the current usage of
the resources. Reconfiguring the cluster from the command line does not
read or modify the values that are specified in the /etc/rc.config file.
The system administrator can use the rcmgr(8) command to modify the
parameters and have them take effect when the system reboots.

You must have root privileges to execute the imc_init command.

10.3 Initializing the Memory Channel API Library for a User
Program
The imc_api_init function is used to initialize the Memory Channel API
library in a user program. Call the imc_api_init function in a process
before any of the other Memory Channel API functions are called. If a
process forks, the imc_api_init function must be called before calling any
other API functions in the child process, or an undefined behavior will result.

10.4 Tuning Your Memory Channel Configuration
The imc_init command initializes the Memory Channel API library
with certain resource defaults. Depending on your application, you may
require more resources than the defaults allow. In some cases, you can
change certain Memory Channel parameters and virtual memory resource
parameters to overcome these limitations. The following sections describe
these parameters and explain how to change them.

10.4.1 Extending Memory Channel Address Space

The amount of total Memory Channel address space that is available to the
Memory Channel API library is specified using the maxalloc parameter
of the imc_init command. The maximum amount of Memory Channel
address space that can be attached for receive on a host is specified using the
maxrecv parameter of the imc_init command. The default limit in each
case is 10 MB. (Section 10.2 describes how to initialize the Memory Channel
API library using the imc_init command.)

You can use the rcmgr(8) command to change the value that is used during
an automatic initialization by setting the variables IMC_MAX_ALLOC and

10–6 Memory Channel Application Programming Interface Library



IMC_MAX_RECV. For example, you can set the variables to allow a total of 80
MB of Memory Channel address space to be made available to the Memory
Channel API library clusterwide, and to allow 60 MB of Memory Channel
address space to be attached for receive on the current host, as follows:

rcmgr set IMC_MAX_ALLOC 80
rcmgr set IMC_MAX_RECV 60

If you use the rcmgr(8) command to set new limits, they will take effect
when the system reboots.

You can use the Memory Channel API library initialization command,
imc_init, to change both the amount of total Memory Channel address
space available and the maximum amount of Memory Channel address space
that can be attached for receive, after the Memory Channel API library has
been initialized. For example, to allow a total amount of 80 MB of Memory
Channel address space to be made available clusterwide, and to allow 60 MB
of Memory Channel address space to be attached for receive on the current
host, use the following command:

imc_init -a 80 -r 60

If you use the imc_init command to set new limits, they will be lost
when the system reboots, and the values of the IMC_MAX_ALLOC and
IMC_MAX_RECV variables will be used as limits.

10.4.2 Increasing Wired Memory

Every page of Memory Channel address space that is attached for receive
must be backed by a page of physical memory on your system. This
memory is nonpageable; that is, it is wired memory. The amount of wired
memory on a host cannot be increased infinitely; the system configuration
parameter vm_syswiredpercent will impose a limit. You can change the
vm_syswiredpercent parameter in the /etc/sysconfigtab file.

For example, to set the vm_syswiredpercent parameter to 80, the vm
stanza in the /etc/sysconfigtab file must contain the following entry:

vm: vm_syswiredpercent=80

If you change the vm_syswiredpercent parameter, you must reboot the
system.

______________________ Note _______________________

The default amount of wired memory is sufficient for most
operations. We recommend that you exercise caution in changing
this limit.

Memory Channel Application Programming Interface Library 10–7



10.5 Troubleshooting

The following sections describe error conditions that you may encounter
when using the Memory Channel API library functions, and suggest
solutions.

10.5.1 IMC_NOTINIT Return Code

The IMC_NOTINIT status is returned when the imc_init command has not
been run, or when the imc_init command has failed to run correctly.

The imc_init command must be run on each host in the Memory Channel
API cluster before you can use the Memory Channel API library functions.
(Section 10.2 describes how to initialize the Memory Channel API library
using the imc_init command.)

If the imc_init command does not run successfully, see Section 10.5.2 for
suggested solutions.

10.5.2 Memory Channel API Library Initialization Failure

The Memory Channel API library may fail to initialize on a host; if this
happens, an error message is displayed on the console and is written to the
messages log file in the /usr/adm directory. Use the following list of error
messages and solutions to eliminate the error:

• Memory Channel is not initialized for user access

This error message indicates that the current host has not been
initialized to use the Memory Channel API.

To solve this problem, ensure that all Memory Channel cables are
correctly attached to the Memory Channel adapters on this host.

• Memory Channel API - insufficient wired memory

This error message indicates that the value of the IMC_MAX_RECV
variable in the /etc/rc.config file or the value of the -r option to the
imc_init command is greater than the wired memory limit that is
specified by the configuration parameter vm_syswiredpercent.

To solve this problem, invoke the imc_init command with a smaller
value for the maxrecv parameter, or increase the system wired memory
limit as described in Section 10.4.2.

10.5.3 Fatal Memory Channel Errors

Sometimes the Memory Channel API fails to initialize because of problems
with the physical Memory Channel configuration or interconnect. Error
messages that are displayed on the console in these circumstances do not

10–8 Memory Channel Application Programming Interface Library



mention the Memory Channel API. The following section describes a more
common reason for such a failure.

10.5.3.1 Rail Initialization Failure

If the rail configuration for a rail on this node does not match that of a rail
on other cluster members, a system panic occurs on one or more hosts in
the cluster, and error messages of the following form are displayed on the
console:
rm_slave_init
rail configuration does not match cluster expectations for rail 0
rail 0 has failed initialization
rm_delete_context: lcsr = 0x2a80078, mcerr = 0x20001, mcport =
0x72400001
panic (cpu 0): rm_delete_context: fatal MC error

This error can occur if the configuration parameter rm_rail_style is not
identical on every node.

To solve this problem, follow these steps:

1. Halt the system.

2. Boot /genvmunix.

3. Modify the /etc/sysconfigtab file as described in Section 10.1.3.

4. Reboot the kernel with Memory Channel API cluster support (/vmunix).

10.5.4 IMC_MCFULL Return Code

The IMC_MCFULL status is returned if there is not enough Memory Channel
address space to perform an operation.

The amount of total Memory Channel address space that is available to the
Memory Channel API library is specified by using the maxalloc parameter
of the imc_init command, as described in Section 10.5.2.

You can use the rcmgr(8) command or the Memory Channel API library
initialization command, imc_init, to increase the amount of Memory
Channel address space that is available to the library clusterwide. See
Section 10.4.1 for more details.

If there is insufficient Memory Channel address space in a cluster, a booting
node may have problems joining the cluster. When this is the case, one or
more members may panic with an assertion failure (ICS MCT Assertion
Failed), or the booting member may hang early in its boot.

Memory Channel resources are dynamically allocated as new members
join the cluster. Running applications that call the Memory Channel
application programming interface (API) library functions can consume
required Memory Channel resources, and prevent a member from getting

Memory Channel Application Programming Interface Library 10–9



the resources it needs to join the cluster. To avoid this problem, boot all
cluster members before starting any applications that call the Memory
Channel API library functions.

10.5.5 IMC_RXFULL Return Code

The IMC_RXFULL status is returned by the imc_asattach function, if
receive mapping space is exhausted when an attempt is made to attach
a region for receive.

______________________ Note _______________________

The default amount of receive space on the current host is 10 MB.

The maximum amount of Memory Channel address space that can be
attached for receive on a host is specified using the maxrecv parameter of
the imc_init command, as described in Section 10.2.

You can use the rcmgr(8) command or the Memory Channel API library
initialization command, imc_init, to extend the maximum amount of
Memory Channel address space that can be attached for receive on the host.
See Section 10.4.1 for more details.

10.5.6 IMC_WIRED_LIMIT Return Code

The IMC_WIRED_LIMIT return value indicates that an attempt has been
made to exceed the maximum quantity of wired memory.

The system configuration parameter vm_syswiredpercent specifies the
wired memory limit; see Section 10.4.2 for information on changing this limit.

10.5.7 IMC_MAPENTRIES Return Code

The IMC_MAPENTRIES return value indicates that the maximum number of
virtual memory map entries has been exceeded for the current process.

10.5.8 IMC_NOMEM Return Code

The IMC_NOMEM return status indicates a malloc function failure while
performing a Memory Channel API function call.

This will happen if process virtual memory has been exceeded, and can
be remedied by using the usual techniques for extending process virtual
memory limits; that is, by using the limit command and the unlimit
command for the C shell, and by using the ulimit command for the Bourne
shell and the Korn shell.

10–10 Memory Channel Application Programming Interface Library



10.5.9 IMC_NORESOURCES Return Code

The IMC_NORESOURCES return value indicates that there are insufficient
Memory Channel data structures available to perform the required
operation. However, the amount of available Memory Channel data
structures is fixed, and cannot be increased by changing a parameter. To
solve this problem, amend the application to use fewer regions or locks.

10.6 Accessing Memory Channel Address Space

The Memory Channel interconnect provides a form of memory sharing
between Memory Channel API cluster members. The Memory Channel API
library is used to set up the memory sharing, allowing processes on different
members of the cluster to exchange data using direct read and write
operations to addresses in their virtual address space. When the memory
sharing has been set up by the Memory Channel API library, these direct
read and write operations take place at hardware speeds without involving
the operating system or the Memory Channel API library software functions.

When a system is configured with Memory Channel, part of the physical
address space of the system is assigned to the Memory Channel address
space. The size of the Memory Channel address space is specified by the
imc_init command. A process accesses this Memory Channel address
space by using the Memory Channel API to map a region of Memory Channel
address space to its own virtual address space.

Applications that want to access the Memory Channel address space on
different cluster members can allocate part of the address space for a
particular purpose by calling the imc_asalloc function. The key parameter
associates a clusterwide key with the region. Other processes that allocate
the same region also specify this key. This allows processes to coordinate
access to the region.

To use an allocated region of Memory Channel address space, a process
maps the region into its own process virtual address space, using the
imc_asattach function or the imc_asattach_ptp function. When a
process attaches to a Memory Channel region, an area of virtual address
space that is the same size as the Memory Channel region is added to the
process virtual address space. When attaching the region, the process
indicates whether the region is mapped to transmit or receive data, as
follows:

• Transmit — Indicates that the region is to be used to transmit data on
Memory Channel. When a process writes to addresses in this virtual
address region, the data is transmitted over the Memory Channel
interconnect to the other members of the Memory Channel API cluster.

Memory Channel Application Programming Interface Library 10–11



To map a region for transmit, specify the value IMC_TRANSMIT for the
dir parameter to the imc_asattach function.

• Receive — Indicates that the region is to be used to receive data from
Memory Channel. In this case, the address space that is mapped into the
process virtual address space is backed by a region of physical memory
on the system. When data is transmitted on Memory Channel, it is
written into the physical memory of any hosts that have mapped the
region for receive, so that processes on that system read from the same
area of physical memory. The process does not receive any data that is
transmitted before the region is mapped.

To map a region for receive, use the value IMC_RECEIVE as the dir
parameter for the imc_asattach function.

Memory sharing using the Memory Channel interconnect is similar to
conventional shared memory in that, after it is established, simple accesses
to virtual address space allow two different processes to share data.
However, you must allow for two differences between these memory-sharing
mechanisms, as follows:

• When conventional shared memory is created, it is assigned a virtual
address. In C programming terms, there is a pointer to the memory. This
single pointer can be used both to read and write data to the shared
memory. However, a Memory Channel region can have two different
virtual addresses assigned to it: a transmit virtual address and a receive
virtual address. In C programming terms, there are two different
pointers to manage; one pointer can only be used for write operations,
the other pointer is used for read operations.

• In conventional shared memory, write operations are made directly to
memory and are immediately visible to other processes that are reading
from the same memory. However, when a write operation is made to a
Memory Channel region, the write operation is not made directly to
memory but to the I/O system and the Memory Channel hardware. This
means that there is a delay before the data appears in memory on the
receiving system. This is described in more detail in Section 10.6.5.

10.6.1 Attaching to Memory Channel Address Space

The following sections describe how a process can attach to Memory Channel
address space. A process can attach to Memory Channel address space in
the following ways:

• Broadcast attach (Section 10.6.1.1)

• Point-to-point attach (Section 10.6.1.2)

• Loopback attach (Section 10.6.1.3)

10–12 Memory Channel Application Programming Interface Library



This section also explains initial coherency, reading and writing Memory
Channel regions, latency-related coherency, error management, and includes
some code examples.

10.6.1.1 Broadcast Attach

When one process maps a region for transmit and other processes map the
same region for receive, the data that the transmit process writes to the
region is transmitted on Memory Channel to the receive memory of the other
processes. Figure 10–3 shows a three-host Memory Channel implementation
that shows how the address spaces are mapped.

Figure 10–3: Broadcast Address Space Mapping

Process A

Host A

Memory Channel
address space

Process B

Host B

Process C

Host C

1

2

3 4

2

ZK-1650U-AI

With the address spaces that are mapped as shown in Figure 10–3, note
the following:

1. Process A allocates a region of Memory Channel address space. Process
A then maps the allocated region to its virtual address space when it
attaches the region for transmit using the imc_asattach function.

2. Process B and Process C both allocate the same region of Memory
Channel address space as Process A. However, unlike Process A, Process
B and Process C both attach the region to receive data.

Memory Channel Application Programming Interface Library 10–13



3. When data is written to the virtual address space of Process A, the data
is transmitted on Memory Channel.

4. When the data from Process A appears on Memory Channel, it is written
to the physical memory on Hosts B and C that backs the virtual address
spaces of Processes B and C that were allocated to receive the data.

10.6.1.2 Point-to-Point Attach

An allocated region of Memory Channel address space can be attached for
transmit in point-to-point mode to the virtual address space of a process
on another node. This is done by calling the imc_asattach_ptp function
with a specified host as a parameter. This means that writes to the region
are sent only to the host that is specified in the parameter, and not to all
hosts in the cluster.

Regions that are attached using the imc_asattach_ptp function are
always attached in transmit mode, and are write-only. Figure 10–4 shows
a two-host Memory Channel implementation that shows point-to-point
address space mapping.

Figure 10–4: Point-to-Point Address Space Mapping

Memory Channel
address space

Host B

Process 2

2

Process 1

Host A

1

3

4

ZK-1652U-AI

10–14 Memory Channel Application Programming Interface Library



With the address spaces mapped as shown in Figure 10–4, note the following:

1. Process 1 allocates a region of Memory Channel address space. It then
maps the allocated region to its virtual address space when it attaches
the region point-to-point to Host B using the imc_asattach_ptp
function.

2. Process 2 allocates the region and then attaches it for receive using the
imc_asattach function.

3. When data is written to the virtual address space of Process 1, the data
is transmitted on Memory Channel.

4. When the data from Process 1 appears on Memory Channel, it is written
to the physical memory that backs the virtual address space of Process
2 on Host B.

10.6.1.3 Loopback Attach

A region can be attached for both transmit and receive by processes on a
host. Data that is written by the host is written to other hosts that have
attached the region for receive. However, by default, data that is written
by the host is not also written to the receive memory on that host; it is
written only to other hosts. If you want a host to see data that it writes, you
must specify the IMC_LOOPBACK flag to the imc_asattach function when
attaching for transmit.

The loopback attribute of a region is set up on a per-host basis, and is
determined by the value of the flag parameter to the first transmit attach
on that host.

If you specify the value IMC_LOOPBACK for the flag parameter, two Memory
Channel transactions occur for every write, one to write the data and one
to loop the data back.

Because of the nature of the point-to-point attach method, looped-back
writes are not permitted.

Figure 10–5 shows a configuration in which a region of Memory Channel
address space is attached both for transmit with loopback and for receive.

Memory Channel Application Programming Interface Library 10–15



Figure 10–5: Loopback Address Space Mapping

Process A

Host A

Memory Channel
address space

Mapped
region

Transmit

Receive

ZK-1651U-AI

10.6.2 Initial Coherency

When a Memory Channel region is attached for receive, the initial contents
are undefined. This situation can arise because a process that has mapped
the same Memory Channel region for transmit might update the contents of
the region before other processes map the region for receive. This is referred
to as the initial coherency problem. You can overcome this in two ways:

• Write the application in a way that ensures that all processes attach the
region for receive before any processes write to the region.

• At allocation time, specify that the region is coherent by specifying
the IMC_COHERENT flag when you allocate the region using the
imc_asalloc function. This ensures that all processes will see every
update to the region, regardless of when the processes attach the region.

Coherent regions use the loopback feature. This means that two Memory
Channel transactions occur for every write, one to write the data and
one to loop the data back; because of this, coherent regions have less
available bandwidth than noncoherent regions.

10–16 Memory Channel Application Programming Interface Library



10.6.3 Reading and Writing Memory Channel Regions

Processes that attach a region of Memory Channel address space can only
write to a transmit pointer, and can only read from a receive pointer. Any
attempt to read a transmit pointer will result in a segmentation violation.

Apart from explicit read operations on Memory Channel transmit pointers,
segmentation violations will also result from operations that cause the
compiler to generate read-modify-write cycles; for example:

• Postincrement and postdecrement operations.

• Preincrement and predecrement operations.

• Assignment to simple data types that are not an integral multiple of
four bytes.

• Use of the bcopy(3) library function, where the length parameter is not
an integral multiple of eight bytes, or where the source or destination
arguments are not 8-byte aligned.

• Assignment to structures that are not quadword-aligned (that is, the
value returned by the sizeof function is not an integral multiple of
eight). This refers only to unit assignment of the whole structure; for
example, mystruct1 = mystruct2.

10.6.4 Address Space Example

Example 10–1 shows how to initialize, allocate, and attach to a region of
Memory Channel address space, and also shows two of the differences
between Memory Channel address space and traditional shared memory:

• Initial coherency, as described in Section 10.6.2

• Asymmetry of receive and transmit regions, as described in Section 10.6.3

The sample program shown in Example 10–1 executes in master or slave
mode, as specified by a command-line parameter. In master mode, the
program writes its own process identifier (PID) to a data structure in the
global Memory Channel address space. In slave mode, the program polls a
data structure in the Memory Channel address space to determine the PID
of the master process.

______________________ Note _______________________

Individual applications should define their own naming scheme
for keys. Make sure that your programs are flexible in their
use of keys to prevent problems resulting from key clashes. We
recommend that you use meaningful, application-specific keys.

Memory Channel Application Programming Interface Library 10–17



The example is in /usr/examples/cluster/mc_ex1.c. After compiling,
start the slave (mc_ex1 0) on one cluster member, then start the master
(mc_ex1 1) on another cluster member.

Example 10–1: Accessing Regions of Memory Channel Address Space

/*
* To compile: cc -g -o mc_ex1 mc_ex1.c -limc
*/

#include <c_asm.h>
#include <sys/types.h>
#include <sys/imc.h>

#define mb() asm("mb")
#define VALID 756

main (int argc, char *argv[])
{

imc_asid_t glob_id;
typedef struct {

pid_t pid;
volatile int valid; 1
} clust_pid;

clust_pid *global_record;
caddr_t add_rx_ptr = 0, add_tx_ptr = 0;
int status;
int master;
int logical_rail=0;
char *prog;

prog = argv[0];

/* check for correct number of arguments */

if (argc != 2) {
printf("usage: %s 0|1\n", prog);
exit(-1);
}

/* test if process is master or slave */

master = atoi(argv[1]); 2

/* initialize Memory Channel API library */

status = imc_api_init(NULL); 3

if (status < 0) {
imc_perror("imc_api_init",status); 4
exit(-2);

}

imc_asalloc(123, 8192, IMC_URW, 0, &glob_id,
logical_rail); 5

if (master) {
imc_asattach(glob_id, IMC_TRANSMIT, IMC_SHARED,

0, &add_tx_ptr); 6

10–18 Memory Channel Application Programming Interface Library



Example 10–1: Accessing Regions of Memory Channel Address Space
(cont.)

global_record = (clust_pid*)add_tx_ptr; 7
global_record->pid = getpid();
mb(); 8
global_record->valid = VALID;
mb();
}

else { /* secondary process */

imc_asattach(glob_id, IMC_RECEIVE, IMC_SHARED,
0, &add_rx_ptr); 9

(char*)global_record = add_rx_ptr;

while ( global_record->valid != VALID)
; /* continue polling */ 10

printf("pid of master process is %d\n",
global_record->pid);

}
imc_asdetach(glob_id);
imc_asdealloc(glob_id); 11

}

1 The valid flag is declared as volatile to prevent the compiler from
performing any optimizations that might prevent the code from reading
the updated PID value from memory.

2 The first argument on the command line indicates whether the process is
a master (argument equal to 1) or a slave process (argument equal to 0).

3 The imc_api_init function initializes the Memory Channel API
library. Call it before calling any of the other Memory Channel API
library functions.

4 All Memory Channel API library functions return a zero (0) status if
successful. The imc_perror function decodes error status values. For
brevity, this example ignores the status from all functions other than
the imc_api_init function.

5 The imc_asalloc function allocates a region of Memory Channel
address space with the following characteristics:

• key=123 — This value identifies the region of Memory Channel
address space. Other applications that attach this region will use
the same key value.

• size=8192 — The size of the region is 8192 bytes.

• perm=IMC_URW — The access permission on the region is user read
and write.

Memory Channel Application Programming Interface Library 10–19



• id=glob_id — The imc_asalloc function returns this value,
which uniquely identifies the allocated region. The program uses
this value in subsequent calls to other Memory Channel functions.

• logical_rail=0 — The region is allocated using Memory Channel
logical rail zero (0).

6 The master process attaches the region for transmit by calling the
imc_asattach function and specifying the glob_id identifier,
which was returned by the call to the imc_asalloc function. The
imc_asattach function returns add_tx_ptr, a pointer to the address
of the region in the process virtual address space. The IMC_SHARED
value signifies that the region is shareable, so other processes on this
host can also attach the region.

7 The program points the global record structure to the region of virtual
memory in the process virtual address space that is backed by the
Memory Channel reason, and writes the process ID in the pid field of
the global record. Note that the master process has attached the region
for transmit; therefore, it can only write data in the field. An attempt to
read the field will result in a segmentation violation; for example:

(pid_t)x = global_record->pid;

8 The program uses memory barrier instructions to ensure that the pid
field is forced out of the Alpha CPU write buffer before the VALID
flag is set.

9 The slave process attaches the region for receive by calling the
imc_asattach function and specifying the glob_id identifier,
which was returned by the call to the imc_asalloc function. The
imc_asattach function returns add_rx_ptr, a pointer to the address
of the region in the process virtual address space. On mapping, the
contents of the region may not be consistent on all processes that
map the region. Therefore, start the slave process before the master
to ensure that all writes by the master process appear in the virtual
address space of the slave process.

10 The slave process overlays the region with the global record structure
and polls the valid flag. The earlier declaration of the flag as volatile
ensures that the flag is immune to compiler optimizations, which might
result in the field being stored in a register. This ensures that the loop
will load a new value from memory at each iteration and will eventually
detect the transition to VALID.

11 At termination, the master and slave processes explicitly detach and
deallocate the region by calling the imc_asdetach function and the
imc_asdealloc function. In the case of abnormal termination, the
allocated regions are automatically freed when the processes exit.

10–20 Memory Channel Application Programming Interface Library



10.6.5 Latency Related Coherency

As described in Section 10.6.2, the initial coherency problem can be overcome
by retransmitting the data after all mappings of the same region for receive
have been completed, or by specifying at allocation time that the region is
coherent. However, when a process writes to a transmit pointer, several
microseconds can elapse before the update is reflected in the physical
memory that corresponds to the receive pointer. If the process reads the
receive pointer during that interval, the data it reads might be incorrect.
This is known as the latency-related coherency problem.

Latency problems do not arise in conventional shared memory systems.
Memory and cache control ensure that store and load instructions are
synchronized with data transfers.

Example 10–2, which is in /usr/examples/cluster/mc_ex2.c, shows
two versions of a program that decrements a global process count and
detects the count reaching zero (0). The first program uses System V shared
memory and interprocess communication. The second uses the Memory
Channel API library.

Example 10–2: System V IPC and Memory Channel Code Comparison

/*
* To compile : cc -o mc_ex2 -g mc_ex2.c -limc
*/

#if 0

/****************************************
********* System V IPC example *******
****************************************/

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
main()
{

typedef struct {
int proc_count;
int remainder[2047];

} global_page;
global_page *mypage;
int shmid;

shmid = shmget(123, 8192, IPC_CREAT | SHM_R | SHM_W);

(caddr_t)mypage = shmat(shmid, 0, 0); /* attach the
global region */

mypage->proc_count ++; /* increment process
count */

/* body of program goes here */
.
.

Memory Channel Application Programming Interface Library 10–21



Example 10–2: System V IPC and Memory Channel Code Comparison
(cont.)

.
/* clean up */

mypage->proc_count --; /* decrement process
count */

if (mypage->proc_count == 0 )
printf("The last process is exiting\n");

.

.

.
}

/****************************************
******* Memory Channel example *******
****************************************/

#include <sys/types.h>
#include <sys/imc.h>
main()
{

typedef struct {
int proc_count;
int remainder[2047];

} global_page;
global_page *mypage_rx, *mypage_tx; 1
imc_asid_t glob_id;
int logical_rail=0;
int temp;

imc_api_init(NULL);

imc_asalloc(123, 8192, IMC_URW | IMC_GRW, 0, &glob_id,
logical_rail); 2

imc_asattach(glob_id, IMC_TRANSMIT, IMC_SHARED,
IMC_LOOPBACK, &(caddr_t)mypage_tx); 3

imc_asattach(glob_id, IMC_RECEIVE, IMC_SHARED,
0, &(caddr_t)mypage_rx); 4

/* increment process count */

mypage_tx->proc_count = mypage_rx->proc_count + 1; 5

/* body of program goes here */
.
.
.

/* clean up */

/* decrement process count */

temp = mypage_rx->proc_count - 1; 6

mypage_tx->proc_count = temp;

/* wait for MEMORY CHANNEL update to occur */

while (mypage_rx->proc_count != temp)
;

10–22 Memory Channel Application Programming Interface Library



Example 10–2: System V IPC and Memory Channel Code Comparison
(cont.)

if (mypage_rx->proc_count == 0 )
printf("The last process is exiting\n");

}

1 The process must be able to read the data that it writes to the Memory
Channel global address space. Therefore, it declares two addresses, one
for transmit and one for receive.

2 The imc_asalloc function allocates a region of Memory Channel
address space. The characteristics of the region are as follows:

• key=123 — This value identifies the region of Memory Channel
address space. Other applications that attach this region will use
the same key value.

• size=8192 — The size of the region is 8192 bytes.

• perm=IMC_URW | IMC_GRW — The region is allocated with user
and group read and write permission.

• id=glob_id — The imc_asalloc function returns this value,
which uniquely identifies the allocated region. The program uses
this value in subsequent calls to other Memory Channel API library
functions.

• logical_rail=0 — The region is allocated using Memory Channel
logical rail zero (0).

3 This call to the imc_asattach function attaches the region for transmit
at the address that is pointed to by the mypage_tx variable. The value
of the flag parameter is set to IMC_LOOPBACK, so that any time the
process writes data to the region, the data is looped back to the receive
memory.

4 This call to the imc_asattach function attaches the region for receive
at the address that is pointed to by the mypage_rx variable.

5 The program increments the global process count by adding 1 to the
value in the receive pointer, and by assigning the result into the
transmit pointer. When the program writes to the transmit pointer, it
does not wait to ensure that the write instruction completes.

6 After the body of the program completes, the program decrements the
process count and tests that the decremented value was transmitted
to the other hosts in the cluster. To ensure that it examines the

Memory Channel Application Programming Interface Library 10–23



decremented count (rather than some transient value), the program
stores the decremented count in a local variable, temp. It writes the
decremented count to the transmit region, and then waits for the value
in the receive region to match the value in temp. When the match
occurs, the program knows that the decremented process count has been
written to the Memory Channel address space.

In this example, the use of the local variable ensures that the program
compares the value in the receive memory with the value that was
transmitted. An attempt to use the value in the receive memory before
ensuring that the value had been updated may result in erroneous data
being read.

10.6.6 Error Management

In a shared memory system, the process of reading and writing to memory is
assumed to be error-free. In a Memory Channel system, the error rate is of
the order of three errors per year. This is much lower than the error rates of
standard networks and I/O subsystems.

The Memory Channel hardware reports detected errors to the Memory
Channel software. The Memory Channel hardware provides two guarantees
that make it possible to develop applications that can cope with errors:

• It does not write corrupt data to host systems.

• It delivers data to the host systems in the sequence in which the data
is written to the Memory Channel hardware.

These guarantees simplify the process of developing reliable and efficient
messaging systems.

The Memory Channel API library provides the following functions to help
applications implement error management:

• imc_ckerrcnt_mr — The imc_ckerrcnt_mr function looks for the
existence of errors on a specified logical rail on Memory Channel hosts.
This allows transmitting processes to learn whether or not errors occur
when they send messages.

• imc_rderrcnt_mr — The imc_rderrcnt_mr function reads the
clusterwide error count for the specified logical rail and returns the value
to the calling program. This allows receiving processes to learn the error
status of messages that they receive.

The operating system maintains a count of the number of errors that occur
on the cluster. The system increments the value whenever it detects a
Memory Channel hardware error in the cluster, and when a host joins or
leaves the cluster.

10–24 Memory Channel Application Programming Interface Library



The task of detecting and processing an error takes a small, but finite,
amount of time. This means that the count that is returned by the
imc_rderrcnt_mr function might not be up-to-date with respect to an error
that has just occurred on another host in the cluster. On the local host, the
count is always up-to-date.

Use the imc_rderrcnt_mr function to implement a simple and effective
error-detection mechanism by reading the error count before transmitting
a message, and including the count in the message. The receiving process
compares the error count in the message body with the local value that is
determined after the message arrives. The local value is guaranteed to be
up-to-date, so if this value is the same as the transmitted value, then it
is certain that no intervening errors occurred. Example 10–3 shows this
technique. The example is in /usr/examples/cluster/mc_ex3.c.

Example 10–3: Error Detection Using the imc_rderrcnt_mr Function

/*
*
* To compile : cc -DTRANSMIT -o mc_ex3_tx -g mc_ex3.c -limc
* cc -o mc_ex3_rx -g mc_ex3.c -limc
*
*/

#ifdef TRANSMIT

/*****************************************
********* Transmitting Process *********
******************************************/

#include <c_asm.h>
#define mb() asm("mb")

#include <sys/imc.h>

main()
{

typedef struct {
volatile int msg_arrived;
int send_count;
int remainder[2046];

} global_page;
global_page *mypage_rx, *mypage_tx;
imc_asid_t glob_id;
int i;
volatile int err_count;

imc_api_init(NULL);

imc_asalloc (1234, 8192, IMC_URW, 0, &glob_id,0);
imc_asattach (glob_id, IMC_TRANSMIT, IMC_SHARED, IMC_LOOPBACK,

&(caddr_t)mypage_tx);
imc_asattach (glob_id, IMC_RECEIVE, IMC_SHARED, 0,

&(caddr_t)mypage_rx);

/* save the error count */
while ( (err_count = imc_rderrcnt_mr(0) ) < 0 )

Memory Channel Application Programming Interface Library 10–25



Example 10–3: Error Detection Using the imc_rderrcnt_mr Function (cont.)

;

mypage_tx->send_count = err_count;

/* store message data */
for (i = 0; i < 2046; i++)

mypage_tx->remainder[i] = i;

/* now mark as valid */
mb();

do {
mypage_tx->msg_arrived = 1;

} while (mypage_rx->msg_arrived != 1); /* ensure no error on
valid flag */

}

#else

/*****************************************
*********** Receiving Process **********
******************************************/

#include <sys/imc.h>
main()
{

typedef struct {
volatile int msg_arrived;
int send_count;
int remainder[2046];

} global_page;
global_page *mypage_rx, *mypage_tx;
imc_asid_t glob_id;
int i;
volatile int err_count;

imc_api_init(NULL);

imc_asalloc (1234, 8192, IMC_URW, 0, &glob_id,0);
imc_asattach (glob_id, IMC_RECEIVE, IMC_SHARED, 0,

&(caddr_t)mypage_rx);

/* wait for message arrival */
while ( mypage_rx->msg_arrived == 0 )

;

/* get this systems error count */
while ( (err_count = imc_rderrcnt_mr(0) ) < 0 )

;

if (err_count == mypage_rx->send_count) {
/* no error, process the body */

}
else {

/* do error processing */

}
}

10–26 Memory Channel Application Programming Interface Library



Example 10–3: Error Detection Using the imc_rderrcnt_mr Function (cont.)

#endif

As shown in Example 10–3, the imc_rderrcnt_mr function can be safely
used to detect errors at the receiving end of a message. However, it cannot
be guaranteed to detect errors at the transmitting end. This is because there
is a small, but finite, possibility that the transmitting process will read
the error count before the transmitting host has been notified of an error
occurring on the receiving host. In Example 10–3, the program must rely on
a higher-level protocol informing the transmitting host of the error.

The imc_ckerrcnt_mr function provides guaranteed error detection for
a specified logical rail. This function takes a user-supplied local error
count and a logical rail number as parameters, and returns an error in the
following circumstances:

• An outstanding error is detected on the specified logical rail

• Error processing is in progress

• The error count is higher than the supplied parameter

If the function returns successfully, no errors have been detected between
when the local error count was stored and the imc_ckerrcnt_mr function
was called.

The imc_ckerrcnt_mr function reads the Memory Channel
adapter hardware error status for the specified logical rail; this is
a hardware operation that takes several microseconds. Therefore,
the imc_ckerrcnt_mr function takes longer to execute than the
imc_rderrcnt_mr function, which reads only a memory location.

Example 10–4 shows an amended version of the send sequence shown in
Example 10–3. In Example 10–4, the transmitting process performs error
detection. The example is in /usr/examples/cluster/mc_ex4.c.

Example 10–4: Error Detection Using the imc_ckerrcnt_mr Function

/*
*
* To compile: cc -o mc_ex4 -g mc_ex4.c -limc
*
*/

#include <c_asm.h>
#define mb() asm("mb")

#include <sys/imc.h>
main()
{

typedef struct {

Memory Channel Application Programming Interface Library 10–27



Example 10–4: Error Detection Using the imc_ckerrcnt_mr Function (cont.)

volatile int msg_arrived;
int send_count;
int remainder[2046];

} global_page;
global_page *mypage_rx, *mypage_tx;
imc_asid_t glob_id;
int i, status;
volatile int err_count;

imc_api_init(NULL);

imc_asalloc (1234, 8192, IMC_URW, 0, &glob_id,0);
imc_asattach (glob_id, IMC_TRANSMIT, IMC_SHARED, IMC_LOOPBACK,

&(caddr_t)mypage_tx);
imc_asattach (glob_id, IMC_RECEIVE, IMC_SHARED, 0,

&(caddr_t)mypage_rx);

/* save the error count */
while ( (err_count = imc_rderrcnt_mr(0) ) < 0 )

;

do {
mypage_tx->send_count = err_count;

/* store message data */
for (i = 0; i < 2046; i++)

mypage_tx->remainder[i] = i;

/* now mark as valid */
mb();

mypage_tx->msg_arrived = 1;

/* if error occurs, retransmit */

} while ( (status = imc_ckerrcnt_mr(&err_count,0)) != IMC_SUCCESS);
}

10.7 Clusterwide Locks

In a Memory Channel system, the processes communicate by reading and
writing regions of the Memory Channel address space. The preceding
sections contain sample programs that show arbitrary reading and writing
of regions. In practice, however, a locking mechanism is sometimes needed
to provide controlled access to regions and to other clusterwide resources.
The Memory Channel API library provides a set of lock functions that enable
applications to implement access control on resources.

The Memory Channel API library implements locks by using mapped pages
of the global Memory Channel address space. For efficiency reasons, locks
are allocated in sets rather than individually. The imc_lkalloc function
allows you to allocate a lock set. For example, if you want to use 20 locks,

10–28 Memory Channel Application Programming Interface Library



it is more efficient to create one set with 20 locks than five sets with four
locks each, and so on.

To facilitate the initial coordination of distributed applications, the
imc_lkalloc function allows a process to atomically (that is, in a single
operation) allocate the lock set and acquire the first lock in the set. This
feature allows the process to determine whether or not it is the first process
to allocate the lock set. If it is, the process is guaranteed access to the lock
and can safely initialize the resource.

Instead of allocating the lock set and acquiring the first lock atomically, a
process can call the imc_lkalloc function and then the imc_lkacquire
function. In that case, however, there is a risk that another process might
acquire the lock between the two function calls, and the first process will
not be guaranteed access to the lock.

Example 10–5 shows a program in which the first process to lock a region
of Memory Channel address space initializes the region, and the processes
that subsequently access the region simply update the process count. The
example is in /usr/examples/cluster/mc_ex5.c.

Example 10–5: Locking Memory Channel Regions

/*
*
* To compile: cc -o mc_ex5 -g mc_ex5.c -limc
*
*/

#include <sys/types.h>
#include <sys/imc.h>

main ( )
{

imc_asid_t glob_id;
imc_lkid_t lock_id;
int locks = 4;
int status;

typedef struct {
int proc_count;
int pattern[2047];
} clust_rec;

clust_rec *global_record_tx, *global_record_rx; 1
caddr_t add_rx_ptr = 0, add_tx_ptr = 0;
int j;

status = imc_api_init(NULL);

imc_asalloc(123, 8192, IMC_URW, 0, &glob_id, 0);

imc_asattach(glob_id, IMC_TRANSMIT, IMC_SHARED,
IMC_LOOPBACK, &add_tx_ptr);

imc_asattach(glob_id, IMC_RECEIVE, IMC_SHARED,
0, &add_rx_ptr);

Memory Channel Application Programming Interface Library 10–29



Example 10–5: Locking Memory Channel Regions (cont.)

global_record_tx = (clust_rec*) add_tx_ptr; 2
global_record_rx = (clust_rec*) add_rx_ptr;

status = imc_lkalloc(456, &locks, IMC_LKU, IMC_CREATOR,
&lock_id); 3

if (status == IMC_SUCCESS)
{

/* This is the first process. Initialize the global region */

global_record_tx->proc_count = 0; 4
for (j = 0; j < 2047; j++)

global_record_tx->pattern[j] = j;

/* release the lock */
imc_lkrelease(lock_id, 0); 5

}

/* This is a secondary process */

else if (status == IMC_EXISTS)
{

imc_lkalloc(456, &locks, IMC_LKU, 0, &lock_id); 6

imc_lkacquire(lock_id, 0, 0, IMC_LOCKWAIT); 7

/* wait for access to region */

global_record_tx->proc_count = global_record_rx->proc_count+1; 8

/* release the lock */

imc_lkrelease(lock_id, 0);

}

/* body of program goes here */

/* clean up */

imc_lkdealloc(lock_id); 9
imc_asdetach(glob_id);
imc_asdealloc(glob_id);

}

1 The process, in order to read the data that it writes to the Memory
Channel global address space, maps the region for transmit and for
receive. See Example 10–2 for a detailed description of this procedure.

10–30 Memory Channel Application Programming Interface Library



2 The program overlays the transmit and receive pointers with the global
record structure.

3 The process tries to create a lock set that contains four locks and a key
value of 456. The call to the imc_lkalloc function also specifies the
IMC_CREATOR flag. Therefore, if the lock set is not already allocated,
the function will automatically acquire lock zero (0). If the lock set
already exists, the imc_lkalloc function fails to allocate the lock set
and returns the value IMC_EXISTS.

4 The process that creates the lock set (and consequently holds lock zero
(0)) initializes the global region.

5 When the process finishes initializing the region, it calls the
imc_lkrelease function to release the lock.

6 Secondary processes that execute after the region has been initialized,
having failed in the first call to the imc_lkalloc function, now call the
function again without the IMC_CREATOR flag. Because the value of the
key parameter is the same (456), this call allocates the same lock set.

7 The secondary process calls the imc_lkacquire function to acquire
lock zero (0) from the lock set.

8 The secondary process updates the process count and writes it to the
transmit region.

9 At the end of the program, the processes release all Memory Channel
resources.

When a process acquires a lock, other processes executing on the cluster
cannot acquire that lock.

Waiting for locks to become free entails busy spinning and has a significant
effect on performance. Therefore, in the interest of overall system
performance, make your applications acquire locks only as they are needed
and release them promptly.

10.8 Cluster Signals

The Memory Channel API library provides the imc_kill function to allow
processes to send signals to specified processes executing on a remote host
in a cluster. This function is similar to the UNIX kill(2) function. When
the kill function is used in a cluster, the signal is sent to all processes
whose process group number is equal to the absolute value of the PID, even
if that process is on another cluster member. The PID is guaranteed to be
unique across the cluster.

The main differences between the imc_kill function and the kill function
are that the imc_kill function does not allow the sending of signals across

Memory Channel Application Programming Interface Library 10–31



cluster members nor does it support the sending of signals to multiple
processes.

10.9 Cluster Information

The following sections discuss how to use the Memory Channel API functions
to access cluster information, and how to access status information from
the command line.

10.9.1 Using Memory Channel API Functions to Access Memory
Channel API Cluster Information

The Memory Channel API library provides the imc_getclusterinfo
function, which allows processes to get information about the hosts in a
Memory Channel API cluster. The function returns one or more of the
following:

• A count of the number of hosts in the cluster, and the name of each host.

• The number of logical rails in the cluster.

• The active Memory Channel logical rails bitmask, with a bit set for each
active logical rail.

The function does not return information about a host unless the Memory
Channel API library is initialized on the host.

The Memory Channel API library provides the imc_wait_cluster_event
function to block a calling thread until a specified cluster event occurs. The
following Memory Channel API cluster events are valid:

• A host joins or leaves the cluster.

• The logical rail configuration of the cluster changes.

The imc_wait_cluster_event function examines the current
representation of the Memory Channel API cluster configuration item that
is being monitored, and returns the new Memory Channel API cluster
configuration.

Example 10–6 shows how you can use the imc_getclusterinfo function
with the imc_wait_cluster_event function to request the names of
the members of the Memory Channel API cluster and the active Memory
Channel logical rails bitmask, and then wait for an event change on either.
The example is in /usr/examples/cluster/mc_ex6.c.

10–32 Memory Channel Application Programming Interface Library



Example 10–6: Requesting Memory Channel API Cluster Information;
Waiting for Memory Channel API Cluster Events

/*
*
* To compile: cc -o mc_ex6 -g mc_ex6.c -limc
*
*/

#include <sys/imc.h>

main ( )
{

imc_railinfo mask;
imc_hostinfo hostinfo;

int status;
imc_infoType items[3];
imc_eventType events[3];

items[0] = IMC_GET_ACTIVERAILS;
items[1] = IMC_GET_HOSTS;
items[2] = 0;

events[0] = IMC_CC_EVENT_RAIL;
events[1] = IMC_CC_EVENT_HOST;
events[2] = 0;

imc_api_init(NULL);

status = imc_getclusterinfo(items,2,mask,sizeof(imc_railinfo),
&hostinfo,sizeof(imc_hostinfo));

if (status != IMC_SUCCESS)
imc_perror("imc_getclusterinfo:",status);

status = imc_wait_cluster_event(events, 2, 0,
mask, sizeof(imc_railinfo),
&hostinfo, sizeof(imc_hostinfo));

if ((status != IMC_HOST_CHANGE) && (status != IMC_RAIL_CHANGE))
imc_perror("imc_wait_cluster_event didn’t complete:",status);

} /*main*/

10.9.2 Accessing Memory Channel Status Information from the
Command Line

The Memory Channel API library provides the imcs command to report on
Memory Channel status. The imcs command writes information to the
standard output about currently active Memory Channel facilities. The
output is displayed as a list of regions or lock sets, and includes the following
information:

Memory Channel Application Programming Interface Library 10–33



• The type of subsystem that created the region or lock set (possible values
are IMC or PVM)

• An identifier for the Memory Channel region

• An application-specific key that refers to the Memory Channel region
or lock set

• The size, in bytes, of the region

• The access mode of the region or lock set

• The username of the owner of the region or lock set

• The group of the owner of the region or lock set

• The Memory Channel logical rail that is used for the region

• A flag specifying the coherency of the region

• The number of locks that are available in the lock set

• The total number of regions that are allocated

• Memory Channel API overhead

• Memory Channel rail usage

10.10 Comparison of Shared Memory and Message Passing
Models

There are two models that you can use to develop applications that are based
on the Memory Channel API library:

• Shared memory

• Message passing

At first, the shared memory approach might seem more suited to the Memory
Channel features. However, developers who use this model must deal with
the latency, coherency, and error-detection problems that are described in
this chapter. In some cases, it might be more appropriate to develop a simple
message-passing library that hides these problems from applications. The
data transfer functions in such a library can be implemented completely in
user space. Therefore, they can operate as efficiently as implementations
based on the shared memory model.

10.11 Frequently Asked Questions

This section contains answers to questions that are asked by programmers
who use the Memory Channel API to develop programs for TruCluster
systems.

10–34 Memory Channel Application Programming Interface Library



10.11.1 IMC_NOMAPPER Return Code

Question: An attempt was made to do an attach to a coherent region
using the imc_asattach function. The function returned the value
IMC_NOMAPPER. What does this mean?

Answer: This return value indicates that the imc_mapper process is
missing from a system in your Memory Channel API cluster.

The imc_mapper process is automatically started in the following cases:

• On system initialization, when the configuration variable
IMC_AUTO_INIT has a value of 1. (See Section 10.2 for more information
about the IMC_AUTO_INIT variable.)

• When you execute the imc_init command for the first time.

To solve this problem, reboot the system from which the imc_mapper
process is missing.

This error may occur if you shut down a system to single-user mode from
init level 3, and then return the system to multi-user mode without doing a
complete reboot. If you want to reboot a system that runs TruCluster Server
software, you must do a full reboot of that system.

10.11.2 Efficient Data Copy

Question: How can data be copied to a Memory Channel transmit region in
order to obtain maximum Memory Channel bandwidth?

Answer: The Memory Channel API imc_bcopy function provides an
efficient way of copying aligned or unaligned data to Memory Channel.
The imc_bcopy function has been optimized to make maximum use of the
buffering capability of an AlphaServer CPU.

You can also use the imc_bcopy function to copy data efficiently between
two buffers in standard memory.

10.11.3 Memory Channel Bandwidth Availability

Question: Is maximum Memory Channel bandwidth available when using
coherent Memory Channel regions?

Answer: No. Coherent regions use the loopback feature to ensure local
coherency. Therefore, every write data cycle has a corresponding cycle to
loop the data back; this halves the available bandwidth. See Section 10.6.1.3
for more information about the loopback feature.

Memory Channel Application Programming Interface Library 10–35



10.11.4 Memory Channel API Cluster Configuration Change

Question: How can a program determine whether a Memory Channel API
cluster configuration change has occurred?

Answer: You can use the new imc_wait_cluster_event function to
monitor hosts that are joining or leaving the Memory Channel API cluster,
or to monitor changes in the state of the active logical rails. You can write a
program that calls the imc_wait_cluster_event function in a separate
thread; this blocks the caller until a state change occurs.

10.11.5 Bus Error Message

Question: When a program tries to set a value in an attached transmit
region, it crashes with the following message:

Bus error (core dumped)

Why does this happen?

Answer: The data type of the value may be smaller than 32 bits (in C, an
int is a 32–bit data item, and a short is a 16–bit data item). The HP Alpha
processor, like other RISC processors, reads and writes data in 64–bit units
or 32–bit units. When you assign a value to a data item that is smaller than
32 bits, the compiler generates code that loads a 32–bit unit, changes the
bytes that are to be modified, and then stores the entire 32–bit unit. If such
a data item is in a Memory Channel region that is attached for transmit, the
assignment causes a read operation to occur in the attached area. Because
transmit areas are write-only, a bus error is reported.

You can prevent this problem by ensuring that all accesses are done on
32–bit data items. See Section 10.6.3 for more information.

10–36 Memory Channel Application Programming Interface Library



Index

A
accessing CAA information, 2–25
accessing Memory Channel

addresses, 10–11
action scripts

accessing environment variables
from, 2–16

accessing profile attributes from,
2–16

determining reason why called by
CAA, 2–16

redirecting output from, 2–18
writing, 2–13

address mapping
defined, 10–11
how to implement, 10–11

alias
( See cluster alias )

application development models,
10–34

application migration
clusterwide and member-specific

files, 4–1
device names, 4–4
expanded PIDs, 4–7
interprocess communication, 4–6
packaging and licensing, 4–8

application modifications
required for RPC programs, 7–1

application packaging and
licensing, 4–8

application programming
considerations, 7–1

application resource scripts
writing guidelines, 2–15

application resources
placement policies, 2–7
profiles, 2–3
starting, 2–19
stopping, 2–24

application types, 1–2
ASE applications

disk service, 5–2
DRD service, 5–4
moving to TruCluster Server, 5–1
NFS service, 5–3
preparing to move to TruCluster

Server, 5–5
tape service, 5–4
user-defined service, 5–3

ASE database
saving content from Version 1.4 or

earlier, 5–6
saving content from Version 1.5 or

later, 5–6
ASE script considerations

replacing ASE commands with CAA
commands, 5–8

ASE scripts, 5–7
ASE variables, 5–11
combining start and stop scripts,

5–9
device names, 5–11
error handling, 5–9
exit codes, 5–12
networking services, 5–14
posting events, 5–12
redirecting script output, 5–9
replacing nfs_ifconfig, 5–9
storage management, 5–10

Index–1



using an alias, 5–12
ASE to CAA comparison, 5–1
ASE variables, 5–11
asynchronous lock request, 9–16
attach

broadcast mode, 10–12, 10–13
loopback mode, 10–12, 10–15,

10–35
point-to-point mode, 10–12, 10–14

Available Server Environment
( See individual ASE entries )

B
balancing application resources,

2–22
binding to reserved ports and

cluster alias, 8–7
blocking layered products, 4–9
blocking notification routine,

9–18
choosing a buffer technique, 9–24
using in local buffer caching, 9–24

broadcast attach, 10–13
buffer caching

( See caching )

C
CAA

accessing profile attributes from
within an action script, 2–16

application resource placement
policies, 2–7

defining custom application
resource attributes, 2–18

environment variables accessible by
an action script, 2–16

media changer resource profiles,
2–11

network resource profiles, 2–8
optional resources, 2–8
reason codes, 2–16

redirecting output from action
scripts, 2–18

required resources, 2–6
resource profiles, 2–2
status information, 2–25
tape resource profiles, 2–10
tutorial, 2–28
unregistering resources, 2–24
using for single-instance application

availability, 2–1
using SysMan Menu to manage,

2–27
writing action scripts, 2–13

CAA to ASE comparison, 5–1
caching

using lock value block for local
buffer, 9–23

CDFS file system restrictions, 7–3
CDSLs, 4–3
clua_error() function, 8–2t, 8–3
clua_getaliasaddress() function,

8–2t, 8–3
example, 8–3

clua_getaliasinfo() function, 8–2t,
8–3
example, 8–3

clua_getdefaultalias() function,
8–2t, 8–4

clua_isalias() function, 8–2t, 8–4
clua_registerservice() function,

8–2t, 8–4
port attributes, 8–9

clua_services file, 8–9
clua_unregisterservice() function,

8–2t, 8–4
cluster alias

application programming interface,
8–1

binding to reserved ports, 8–7
compiling programs that use

clua_*() functions, 8–3
socket options, 8–8

Index–2



UDP applications and source
addresses, 8–9

using with multi-instance
applications, 3–1

cluster application availability
( See CAA )

cluster applications, 1–1, 1–2
cluster information functions,

10–32
cluster port space, 8–6
cluster signals, 10–31
clusterwide address space, 10–11
clusterwide and member-specific

files, 4–1
clusterwide locks

allocating, 10–31
defined, 10–28
example, 10–29e
performance impact, 10–31
single-threaded access, 10–31

clusvc_getcommport() function,
8–2t, 8–5
example, 8–5

clusvc_getresvcommport()
function, 8–2t, 8–5
example, 8–5

coherency
initial, 10–16, 10–17
latency related, 10–21

comparing ASE to CAA, 5–1
completing asynchronous lock

request, 9–16
completing synchronous lock

request, 9–17
concurrent read lock, 9–9
concurrent write lock, 9–9
console error messages, 10–8
context-dependent symbolic links

for member-specific files
( See CDSLs )

CONVERTING queue, 9–11
creating a resource profile, 2–3

D
deadlock detection

by distributed lock manager, 9–13
device names, 4–4, 5–11

identifying, 4–4
device request dispatcher, 5–4
diagnostic utility support, 7–3
disk service, 5–2
distributed applications, 1–8

moving to TruCluster Server, 6–1
distributed lock manager

( See DLM )
DLM

converting, 9–9, 9–12
converting locks, 9–19
deadlock detection, 9–13
dequeuing locks, 9–15
lock mode, 9–9
lock queues, 9–11
lock request mode, 9–9
locks, 9–8
parameters removed, 4–7
parent, 9–7
programming interfaces, 9–2
ranking, 9–10
releasing locks, 9–15
resource definition, 9–5
rules for using, 9–4
unlocking locks, 9–15
when locks are granted, 9–9

dlm_cancel function, 9–16
dlm_cvt function, 9–9, 9–12, 9–20
dlm_detach function, 9–5
dlm_lock function, 9–8
dlm_locktp function, 9–8
dlm_notify function, 9–17, 9–19
dlm_nsjoin function, 9–7, 9–8
dlm_quecvt function, 9–9, 9–12,

9–16, 9–20
dlm_quelock function, 9–8, 9–16

Index–3



dlm_quelocktp function, 9–8, 9–9,
9–16

dlm_set_signal function, 9–17,
9–19

dlm_unlock function, 9–5, 9–15,
9–22

DRD service, 5–4
dynamic port, 8–1

E
environment variables

accessible to an action script, 2–16
ephemeral port, 8–1, 8–6
error handling, 5–9
error management, 10–24

using imc_ckerrcnt_mr, 10–27
example, 10–27e

using imc_rderrcnt_mr, 10–27
example, 10–25e

error messages, 10–8
fatal, 10–8

/etc/clua_services file, 8–9
/etc/rc.config file

IMC_AUTO_INIT variable, 10–5
/etc/sysconfigtab file

setting rm_rail_style parameter,
10–4

using sysconfigdb(8) to amend,
10–4

vm_syswiredpercent parameter,
10–7, 10–8

events
posting, 5–12

exclusive lock, 9–9
exit codes, 5–12
expanded process IDs, 4–7

F
failover

network adapter, 4–8
fatal error

rm_slave_init, 10–9

file access resilience in a cluster,
7–5

file system partitioning, 5–15
files

avoiding overwriting, 4–2

G
GRANTED queue, 9–11

H
handling errors, 10–24

using imc_ckerrcnt_mr, 10–27
example, 10–27e

using imc_rderrcnt_mr, 10–27
example, 10–25e

high-level lock, 9–10

I
identifying device names, 4–4
imc_api_init function, 10–6, 10–19
imc_asalloc function, 10–19,

10–23
key parameter, 10–11

imc_asattach function, 10–20,
10–23, 10–35
dir parameter, 10–11

imc_asattach_ptp function, 10–11
imc_asdealloc function, 10–20
imc_asdetach function, 10–20
IMC_AUTO_INIT variable, 10–5,

10–35
imc_bcopy function, 10–17, 10–35
imc_ckerrcnt_mr function, 10–24
IMC_EXISTS return status, 10–31
imc_getclusterinfo function,

10–32
example, 10–33e

imc_init command, 10–5, 10–9,
10–10, 10–11, 10–35
IMC_NOTINIT return status, 10–8

Index–4



maxalloc parameter, 10–6
maxrecv parameter, 10–6

imc_kill function, 10–31
imc_lkacquire function, 10–29,

10–31
imc_lkalloc function, 10–28
imc_lkrelease function, 10–31
IMC_MAPENTRIES return status,

10–10
imc_mapper process

not present, 10–35
IMC_MAX_ALLOC variable, 10–6
IMC_MAX_RECV variable, 10–6,

10–8
IMC_MCFULL return status, 10–9
IMC_NOMAPPER return status,

10–35
IMC_NOMEM return status, 10–10
IMC_NORESOURCES return

status, 10–11
IMC_NOTINIT return status, 10–8
imc_perror function, 10–19
imc_rderrcnt_mr function, 10–24
IMC_RXFULL return status, 10–6,

10–10
imc_wait_cluster_event function,

10–32, 10–36
example, 10–33e

IMC_WIRED_LIMIT return status,
10–7, 10–10

imcs command, 10–33
initial coherency, 10–16, 10–17
initialization failure, 10–8

vm_syswiredpercent parameter,
10–8

initializing Memory Channel API
library, 10–5, 10–6

interprocess communication, 4–6

K
kill

clusterwide, 10–1

L
latency-related coherency, 10–21
layered products

blocking, 4–9
libcfg system library, 8–3
libclu system library, 8–3
libclua system library, 8–2, 8–3
libdlm system library, 9–2
licensing

application, 4–8
limitations

resource, 10–6, 10–7, 10–10
lock completion routine, 9–17
lock conversion, 9–19

canceling, 9–16
deadlock, 9–13
defined, 9–9

lock mode
compatibility table, 9–11
defined, 9–9
summary, 9–9

lock queue, 9–11
lock request

asynchronous completion of, 9–16
mode, 9–9
synchronous completion of, 9–17

lock states, 9–11
lock value block

defined, 9–20
effect of conversion on, 9–22
effect of dlm_unlock on, 9–22
invalidation, 9–22
using, 9–22
using for local buffer caching, 9–23

locked port, 8–1
locks

Index–5



allocating, 10–31
concurrent, 9–9
defined, 10–28
example, 10–29e
high-level, 9–10
low-level, 9–10
performance impact, 10–31
single-threaded access, 10–31

( See also DLM and individual
lock entries )

Logical Storage Manager
( See LSM )

loopback attach, 10–15, 10–35
low-level lock, 9–10
LSM, 7–2

M
malloc failure, 10–10
media changer resource profiles,

2–11
member-specific and clusterwide

files, 4–1
using CDSLs, 4–3

member-specific resources, 4–7
Memory Channel

addresses, 10–11
configuration tuning, 10–6
error rates, 10–24
multirail model, 10–2
troubleshooting, 10–8
tuning, 10–6

Memory Channel address space
extending, 10–9

Memory Channel API library
developing applications, 10–1
imc_api_init function, 10–6, 10–19
imc_asalloc function, 10–11, 10–19
imc_asattach function, 10–11,

10–20, 10–23, 10–35
imc_asattach_ptp function, 10–11
imc_asdealloc function, 10–20

imc_bcopy function, 10–17, 10–35
imc_ckerrcnt_mr function, 10–24
imc_getclusterinfo function, 10–32
imc_init command, 10–8, 10–11,

10–35
imc_lkacquire function, 10–29,

10–31
imc_lkalloc function, 10–28
imc_lkrelease function, 10–31
imc_perror function, 10–19
imc_rderrcnt_mr function, 10–24
imc_wait_cluster_event function,

10–32, 10–36
imcs command, 10–33
initializing, 10–5, 10–6

Memory Channel region
allocating, 10–19, 10–23
attaching for transmit, 10–20,

10–23
detaching, 10–20

message-passing and shared
memory
comparison, 10–34

messages
console error, 10–8

methods to avoid overwriting
files, 4–2

moving ASE services to TruCluster
Server, 5–5

moving distributed applications
to TruCluster Server, 6–1

multi-instance applications
running in a cluster, 1–5
using cluster aliases with, 3–1

multiple resource deadlock, 9–13
multirail model, 10–2

default style, 10–3
failover pair, 10–3
logical rail, 10–2
physical rail, 10–2
rm_rail_style parameter, 10–4
single-rail, 10–2

Index–6



N
namespace, 9–6
network adapter failover, 4–8
Network File System

( See NFS service )
network resource profiles, 2–8
networking services, 5–14
NFS service, 5–3
null mode lock, 9–9

O
optional resources, 2–8
overwriting files

avoiding, 4–2

P
parent lock, 9–7, 9–21
PID

expanded, 4–7
point-to-point attach, 10–14
portable applications, 7–2
ports

attributes, 8–9
binding to reserved, 8–7
cluster port space, 8–6
dynamic, 8–1
ephemeral, 8–1, 8–6
locked, 8–1
multi-instance applications, 8–6
multi-instance applications and

reserved ports, 8–7
reserved, 8–2, 8–6
single-instance applications, 8–6
well-known, 8–1

posting events, 5–12
preparing to move ASE services to

TruCluster Server, 5–5

preparing to move distributed
applications to TruCluster
Server, 6–1

print_clua_liberror() function,
8–2t, 8–3

process ID
( See PID )

process virtual memory
extending, 10–10

profiles
( See CAA )

protected read lock, 9–9
protected write lock, 9–9

R
rails

( See multirail model )
rc.config file

IMC_AUTO_INIT variable, 10–5
read lock protected, 9–9
reading from transmit area

segmentation violation, 10–36
reading from transmit pointer

segmentation violation, 10–17
receive address space

extending, 10–10
redirecting script output, 5–9
registering resources, 2–19
relocating application resources,

2–21
Remote Procedure Call

( See RPC programs )
replacing ASE commands with

CAA commands, 5–8
replacing nfs_ifconfig, 5–9
required resources, 2–6
reserved port

used as either well-known or
dynamic, 8–7

reserved ports, 8–2, 8–6
resource, 2–1

Index–7



( See also CAA )
as defined by distributed lock

manager, 9–5
granularity, 9–5
namespace, 9–6
naming, 9–7
optional, 2–8
required, 2–6

resource group grant mode, 9–9
resource limitations

IMC_MAPENTRIES return status,
10–10

IMC_MCFULL return status, 10–9
IMC_NOMEM return status,

10–10
IMC_NORESOURCES return

status, 10–11
IMC_RXFULL return status, 10–6,

10–10
IMC_WIRED_LIMIT return status,

10–7, 10–10
resource profiles, 2–2

media changer, 2–11
network, 2–8

rm_rail_style parameter
possible values, 10–4

rm_slave_init
fatal error, 10–9

RPC programs
application modifications required,

7–1
running multiple instances of an

application in a cluster, 1–6

S
scripts, 5–6

( See also ASE scripts )
action, 2–13
application resource, 2–15
redirecting output, 5–9

scripts called from /cluster/ad-
min/run, 7–4

segmentation violation

reading from transmit area, 10–36
reading from transmit pointer,

10–17
setsockopt() function

socket options, 8–8
socket options relation to port

attributes, 8–9
shared memory and message

passing
comparison, 10–34

signals, 10–31
single-instance applications, 1–2
SO_CLUA_DEFAULT_SRC socket

option, 8–8
SO_CLUA_IN_NOALIAS socket

option, 8–8
SO_CLUA_IN_NOLOCAL socket

option, 8–8
SO_RESVPORT socket option, 8–8
SO_REUSEALIASPORT socket

option, 8–9
socket options, 8–8
starting application resources,

2–19
stopping application resources,

2–24
storage management, 5–10
sublock, 9–21
synchronized access to shared

data among multiple instances
of an application, 4–6

synchronous lock request, 9–17
sysconfigtab file, 10–4, 10–7
SysMan Menu, 2–27
SysMan Station, 2–28

T
tape resource profiles, 2–10
tape service, 5–4
testing the status of a cluster

member during a rolling
upgrade, 7–5

Index–8



tuning Memory Channel, 10–6
types of cluster applications, 1–1

U
UDP applications

returning source addresses, 8–9
unregistering resources, 2–24
User Datagram Protocol

( See UDP applications )
user-defined attributes

in CAA application resource
profiles, 2–18

user-defined service, 5–3
using an alias, 5–12
using flock() to synchronize access

to shared files among multiple
instances of an application, 4–6

using SysMan Menu to manage
CAA, 2–27

using SysMan Station, 2–28
/usr/var/adm

messages file, 10–8

V
variables

ASE, 5–11
virtual memory map entries

extending, 10–10
vm-mapentries parameter, 10–10
vm_syswiredpercent parameter,

10–8, 10–10

W
WAITING queue, 9–11
well-known port, 8–1, 8–6
wired memory limit

extending, 10–10
write lock protected, 9–9
writing action scripts, 2–13
writing application resource

scripts, 2–15

Index–9


