
Tru64 UNIX
Security Programming

Part Number: AA-RSFDA-TE

September 2002

Product Version: Tru64 UNIX Version 5.1B or higher

This manual describes how to write programs that include the use of
Tru64 UNIX security features.

Hewlett-Packard Company
Palo Alto, California

© 2002 Hewlett-Packard Company

CyberSafe is a registered trademark, and ActiveTRUST and TrustBroker are trademarks of CyberSafe
Corporation. The Open Group™ and UNIX® are trademarks of The Open Group in the U.S. and/or other
countries.

All other product names mentioned herein may be the trademarks of their respective companies.

Confidential computer software. Valid license from Compaq Computer Corporation, a wholly owned
subsidiary of Hewlett-Packard Company, required for possession, use, or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

None of Compaq, HP, or any of their subsidiaries shall be liable for technical or editorial errors or omissions
contained herein. The information is provided “as is” without warranty of any kind and is subject to
change without notice. The warranties for HP or Compaq products are set forth in the express limited
warranty statements accompanying such products. Nothing herein should be construed as constituting
an additional warranty.

Contents

About This Manual

1 Introduction for Programmers
1.1 Security Programming Overview 1–2
1.1.1 Protecting TCB Files 1–3
1.2 Libraries and Header Files 1–3
1.3 Standard Trusted System Directories 1–5
1.4 Security-Relevant System Calls and Library Routines 1–5
1.4.1 System Calls 1–5
1.4.2 Library Routines 1–6

2 Trusted Programming Techniques
2.1 Writing SUID and SGID Programs 2–1
2.2 Handling Errors 2–2
2.3 Protecting Files 2–3
2.4 Specifying a Secure Search Path 2–4
2.5 Responding to Signals 2–4
2.6 Using Open File Descriptors with Child Processes 2–5
2.7 Security Concerns in the X Environment 2–6
2.7.1 Protect Keyboard Input 2–6
2.7.2 Block Keyboard and Mouse Events 2–6
2.7.3 Protect Device-Related Events 2–7
2.8 Protecting Shell Scripts 2–8

3 Authentication Database
3.1 Authentication Database Overview 3–1
3.1.1 Device Assignment Database (devassign) 3–1
3.1.2 File Control Database 3–2
3.1.3 System Default Database 3–2
3.1.4 Enhanced (Protected) Password Database 3–3
3.1.5 Terminal Control Database 3–4
3.2 Authentication Database Components 3–5
3.2.1 Database Form 3–5
3.2.2 Reading and Writing a Database 3–7

Contents iii

3.2.2.1 Buffer Management 3–7
3.2.2.2 Reading an Entry by Name or ID 3–8
3.2.2.3 Reading Entries Sequentially 3–8
3.2.2.4 Using System Defaults 3–9
3.2.2.5 Writing an Entry 3–10
3.3 Accessing the Authentication Databases 3–11

4 Identification and Authentication
4.1 The Audit ID 4–1
4.2 Identity Support Libraries 4–2
4.3 Using Daemons 4–2
4.4 Using the Enhanced (Protected) Password Database 4–2
4.4.1 Example: Password Expiration Program 4–4

5 Audit Record Generation
5.1 Audit Record Overview 5–1
5.2 Audit Events 5–2
5.3 Audit Records and Tokens 5–2
5.3.1 Public Tokens 5–2
5.3.2 Private Tokens 5–4
5.4 Audit Flag and Masks 5–4
5.5 Disabling System-Call Auditing for the Current Process 5–5
5.6 Modifying System-Call Auditing for the Current Process 5–6
5.7 Application-Specific Audit Records 5–6
5.8 Site-Defined Events 5–7
5.8.1 Sample site_events File 5–8
5.8.2 Example: Generating an Audit Record for a Site-Defined

Audit Event 5–8
5.9 Creating Your Own Audit Logs 5–9
5.10 Parsing an Audit Log 5–9
5.10.1 Overview of Audit Log Format and List of Common

Tuples 5–9
5.10.2 Token/Tuple Byte Descriptions 5–10
5.10.3 Parsing Tuples 5–13

6 Using the SIA Interface
6.1 SIA Overview 6–1
6.2 SIA Architecture 6–5
6.2.1 Libraries 6–6
6.2.2 Header Files 6–6

iv Contents

6.3 SIA System Initialization 6–6
6.4 SIAENTITY Structure 6–7
6.5 SIA Parameter Collection 6–7
6.6 Maintaining State 6–9
6.7 SIA Return Values 6–9
6.8 SIA Debugging and Logging 6–10
6.9 SIA Integrating Security Mechanisms 6–11
6.10 SIA Session Processing 6–12
6.10.1 Session Initialization 6–16
6.10.2 Session Authentication 6–16
6.10.3 Session Establishment 6–17
6.10.4 Session Launch 6–18
6.10.5 Session Release 6–18
6.10.6 Specific Session Processing 6–18
6.10.6.1 The login Process 6–18
6.10.6.2 The rshd Process 6–18
6.10.6.3 The rlogind Process 6–18
6.11 Changing Secure Information 6–19
6.11.1 Changing a User’s Password 6–19
6.11.2 Changing a User’s Finger Information 6–19
6.11.3 Changing a User’s Shell 6–19
6.12 Accessing Security Information 6–20
6.12.1 Accessing /etc/passwd Information 6–20
6.12.2 Accessing /etc/group Information 6–21
6.13 Session Parameter Collection 6–21
6.14 Packaging Products for the SIA 6–21
6.15 Security Mechanism-Dependent Interface 6–22
6.16 Single-User Mode 6–23
6.17 Symbol Preemption for SIA Routines 6–24
6.17.1 Overview of the Symbol Preemption Problem 6–24
6.17.2 The Tru64 UNIX Solution 6–24
6.17.3 Replacing the Single-User Environment 6–25

7 Programming with ACLs
7.1 ACL Overview 7–1
7.2 ACL Data Representations 7–2
7.2.1 Internal Data Representation 7–2
7.2.1.1 typedef struct acl *acl_t; 7–2
7.2.1.2 typedef struct acl_entry *acl_entry_t; 7–3
7.2.1.3 typedef uint_t acl_type_t; 7–3
7.2.1.4 typedef uint acl_tag_t; 7–3

Contents v

7.2.1.5 typedef uint_t acl_perm_t; 7–4
7.2.1.6 typedef acl_perm_t *acl_permset_t; 7–4
7.2.1.7 Contiguous Internal Representation ACL 7–4
7.2.2 External Representation 7–4
7.3 ACL Library Routines 7–5
7.4 ACL Rules 7–8
7.4.1 Object Creation 7–8
7.4.2 ACL Replication 7–8
7.4.3 ACL Validity 7–8
7.5 ACL Creation Example 7–9
7.6 ACL Inheritance Example 7–12

8 GSS-API
8.1 GSS-API Overview 8–1
8.1.1 GSS-API Assumptions 8–3
8.1.2 Further Information 8–4
8.2 Application Security SDK 8–4
8.3 Application Security SDK Functions 8–5
8.3.1 Name Management Functions 8–6
8.3.1.1 Default Names and Syntax 8–8
8.3.2 Credential Management Functions 8–9
8.3.2.1 Acquiring Initial Credentials 8–11
8.3.2.1.1 Initiator Applications 8–11
8.3.2.1.2 Acceptor Applications 8–12
8.3.2.1.3 DES3 8–12
8.3.2.2 Credential Attributes 8–12
8.3.2.3 Credentials Storage Location 8–13
8.3.2.4 Managing Credential Resources 8–13
8.3.3 Security Context Management Functions 8–14
8.3.3.1 Identifying a Mechanism 8–15
8.3.3.2 Token Exchange 8–15
8.3.3.3 Optional Security Measures 8–15
8.3.3.3.1 Channel Bindings 8–16
8.3.3.3.2 Confidentiality and Integrity 8–17
8.3.3.3.3 Replay Detection 8–17
8.3.3.3.4 Out-of-Sequence Message Detection 8–18
8.3.3.3.5 Mutual Authentication 8–18
8.3.3.3.6 Encryption Type: DES vs. DES3 8–18
8.3.3.3.7 Credentials Delegation 8–18
8.3.3.4 Identifying the Targeted Security Measures 8–18
8.3.4 Message Functions 8–19

vi Contents

8.3.4.1 Quality of Protection 8–20
8.3.5 Miscellaneous Support Functions 8–20
8.3.5.1 OID and OID sets 8–22
8.3.5.1.1 OSI 8–22
8.3.5.1.2 ASN.1 8–22
8.3.5.1.3 Object Identifiers 8–22
8.3.5.1.4 OID Sets 8–23
8.3.6 V1 Compliance Functions 8–23
8.4 Best Practices 8–23
8.4.1 Multi-threading 8–24
8.4.2 Cache Management 8–24
8.4.3 Encryption Types 8–24
8.4.4 Exported Security Contexts 8–24
8.4.5 Key Management with GSS and Kerberos 5 8–25
8.4.6 Multi-threaded Functions 8–26
8.4.7 Mutual Authentication 8–26
8.4.8 Protecting Passwords 8–27
8.4.9 Replay Protection 8–27
8.4.10 Refreshing Credentials 8–27
8.4.11 Resource Management 8–28
8.4.12 Service Key Table Files 8–28
8.4.13 Ticket Attributes 8–28
8.4.13.1 Forwardable Tickets 8–28
8.4.13.2 Preauthentication 8–28
8.4.13.3 Ticket Lifetime 8–29
8.4.13.4 Ticket Renew Time 8–29
8.4.13.4.1 General Rules for Lifetime and Renew Settings .. . 8–29
8.5 Building a Portable Application 8–30
8.5.1 Using Printable Names and Comparing Names 8–30
8.5.2 Specifying Mechanisms 8–31
8.5.3 Specifying a Quality of Protection (QOP) 8–31
8.5.4 Default Names 8–32
8.6 Quick Reference 8–32
8.6.1 Reference Page Conventions 8–35
8.7 Constants 8–36
8.8 Data Structures 8–39
8.8.1 gss_channel_bindings_t 8–39
8.8.2 gss_buffer_t 8–40
8.8.3 csf_gss_opts_t 8–41
8.9 Return Values 8–41
8.9.1 Status Codes Defined 8–41
8.9.2 Error Processing Macros 8–41

Contents vii

8.9.2.1 GSS_ERROR() 8–42
8.9.2.2 GSS_CALLING_ERROR() 8–42
8.9.2.3 GSS_ROUTINE_ERROR() 8–43
8.9.2.4 GSS_SUPPLEMENTARY_INFO() 8–44
8.9.3 Major Status 8–44
8.9.4 Minor Status 8–46
8.9.5 Kerberos-specific Codes 8–48

A Coding Examples
A.1 Source Code for a Reauthentication Program (sia-reauth.c) .. . A–1
A.2 Source Code for a Superuser Authentication Program

(sia-suauth.c) A–2

B Auditable Events and Aliases
B.1 Default Auditable Events File B–1
B.2 Sample Event Aliases File B–5

C GSS-API Tutorial
C.1 Security Primer C–1
C.1.1 Fundamental Concepts C–1
C.1.2 Kerberos Security Model C–2
C.1.2.1 Definitions C–2
C.1.2.2 Concepts and Processes C–3
C.1.2.2.1 A Shared Secret C–3
C.1.2.2.2 Trusted Third Party Arbitration C–3
C.1.2.2.3 The Kerberos Network C–3
C.1.2.2.4 Three Phases to Authentication C–4
C.1.2.2.5 Authentication Service Message Exchange C–4
C.1.2.2.6 Ticket-Granting Service Message Exchange C–5
C.1.2.2.7 Application Message Exchange C–5
C.1.2.3 Credential Attributes C–5
C.2 Getting Started C–6
C.3 Using Basic GSS-API Functions C–7
C.4 Step 1: Getting Names C–8
C.5 Step 2: Acquiring Credentials C–10
C.6 Step 3: Establishing a Security Context C–14
C.7 Step 4: Exchanging Messages C–20
C.7.1 Using gss_get_mic() and gss_verify_mic() C–23
C.7.2 Using gss_wrap() and gss_unwrap() C–25
C.8 Step 5: Terminating the Security Context C–28
C.9 Advanced Concepts C–29

viii Contents

C.9.1 Obtaining Initial Credentials C–29
C.9.2 Required time synchronization C–33
C.9.3 Using DES3 Encryption C–33
C.10 Status Codes for GSS-API Functions C–34
C.10.1 Minor Error Codes C–36
C.11 Sample Programs C–36
C.11.1 Building the Sample Programs C–39
C.11.2 Running the Sample Programs C–39
C.11.2.1 Prerequisites C–39
C.11.2.2 Starting the Sample Programs C–40
C.11.2.3 Server Command Line Switches (Optional) C–40
C.11.2.4 Client Command Line Switches (Optional) C–41
C.11.3 Sample Program Output C–42
C.11.4 Troubleshooting Guidelines C–44

Index

Examples
4–1 Password Expiration Program 4–4
6–1 The SIAENTITY Structure 6–7
6–2 The sia.h Definition for Parameter Collection 6–8
6–3 Typical /var/adm/sialog File 6–10
6–4 Session Processing Code for the login Command 6–14
6–5 Preempting Symbols in Single-User Mode 6–25
8–1 Constant Pointing to a Structure Containing a String 8–22
8–2 Constant Pointing to a String 8–23
A–1 Reauthentication Program A–1
A–2 Superuser Authentication Program A–2

Figures
6–1 SIA Layering 6–2
6–2 SIA Login Session Processing 6–12

Tables
1–1 Standard Trusted System Directories 1–5
1–2 Security-Relevant System Calls 1–6
1–3 Security-Relevant Library Routines 1–6
5–1 Default Tuples Common to Most Audit Records 5–10
5–2 Token/Tuple Byte Descriptions 5–10

Contents ix

6–1 Security-Sensitive Operating System Commands 6–2
6–2 SIA Mechanism-Independent Routines 6–2
6–3 SIA Mechanism-Dependent Routines 6–3
7–1 ACL Entry External Representation 7–5

x Contents

About This Manual

This manual describes how to write programs that include the use of HP
Tru64 UNIX security features.

Audience

This manual is intended for programmers who are modifying or creating
security-relevant programs and are familiar with programming in C on
UNIX systems.

Organization

The manual is organized as follows:

Chapter 1 Describes the approach to examples used throughout
this guide and provides information about the
trusted computing base.

Chapter 2 Provides specific techniques for designing trusted
programs, such as whether the program is to be a
directly executed command or a daemon.

Chapter 3 Describes the structure of the authentication database
and the techniques for querying it.

Chapter 4 Describes the various user and group identities of
the operating system and how you should use them,
particularly the audit ID that is not a part of traditional
UNIX systems. It also describes the contents of the
enhanced (protected) password database.

Chapter 5 Describes guidelines for when trusted programs
should make entries in the audit logs and the
mechanisms for doing so.

Chapter 6 Describes the Security Integration Architecture
(SIA) programming interface.

Chapter 7 Describes the use of access control lists (ACLs) in
applications that run on Tru64 UNIX.

Chapter 8 Describes the GSS-API standard and security
fundamentals and GSS Application Security SDK
function calls with best practices and portability
concerns for using them.

Appendix A Provides coding examples for trusted Tru64 UNIX systems.

About This Manual xi

Appendix B Contains the default auditable events (/etc/sec/au-
dit_events) and the default audit-event aliases
(/etc/sec/event_aliases) files.

Appendix C Describes how to use GSS-APIs to secure an
application using C-programming language example
code. It also explains the sample programs provided
Application Security SDK.

Related Documentation

The following documents provide important information that supplements
the information in certain chapters:

• The Security Administration manual describes how to perform common
Tru64 UNIX administrative tasks.

• The Release Notes might contain important undocumented information
about security.

Reader’s Comments

HP welcomes any comments and suggestions you have on this and other
Tru64 UNIX manuals.

You can send your comments in the following ways:

• Fax: 603-884-0120 Attn: UBPG Publications, ZKO3-3/Y32

• Internet electronic mail: readers_comment@zk3.dec.com

A Reader’s Comment form is located on your system in the following
location:

/usr/doc/readers_comment.txt

Please include the following information along with your comments:

• The full title of the manual and the order number. (The order number
appears on the title page of printed and PDF versions of a manual.)

• The section numbers and page numbers of the information on which
you are commenting.

• The version of Tru64 UNIX that you are using.

• If known, the type of processor that is running the Tru64 UNIX software.

The Tru64 UNIX Publications group cannot respond to system problems or
technical support inquiries. Please address technical questions to your local
system vendor or to the appropriate HP technical support office. Information
provided with the software media explains how to send problem reports to
HP.

xii About This Manual

Conventions

This manual uses the following typographical conventions:

\ A backslash at the end of a line in an example in-
dicates continuation.

A number sign represents the system prompt when you are logged
in to a Tru64 UNIX system using the root user account.

net stop Bold courier type indicates user input.

>>> The console subsystem prompt is three right angle brackets.

file Italic (slanted) type indicates variable values, placeholders,
and function argument names.

[|]
{ | }

In syntax definitions, brackets indicate items that are optional
and braces indicate items that are required. Vertical bars
separating items inside brackets or braces indicate that you
choose one item from among those listed.

. . . In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

cat(1) A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(1) indicates
that you can find information on the cat command in
Section 1 of the reference pages.

[Ctrl/x] This symbol indicates that you hold down the first named
key while pressing the key or mouse button that follows
the slash. In examples, this key combination is enclosed
in a box (for example, [Ctrl/C]).

About This Manual xiii

1
Introduction for Programmers

This chapter describes the implication of running trusted applications on a
trusted Tru64 UNIX system. Libraries, header files, the standard trusted
system directories and the trusted computing base (TCB) are discussed.
This chapter and the ones that follow use partial and complete C programs
to illustrate basic ideas. Although some of these can be used without
modification, they are not a collection of routines from which you can
assemble trusted programs.

In addition to the programming techniques described in this manual, you
can also use the following programming techniques:

• Common Data Security Architecture (CDSA)

CDSA is a multiplatform, industry standard security infrastructure.
It provides a standards-based, stable programming interface that
applications can use to access operating system security services,
allowing developers to create cross-platform, security-enabled
applications. Applications request security services, such as
cryptography and other public key operations, through a dynamically
extensible application programming interface (API). These requests are
serviced by a set of plug-in security service modules (SPIs), which can be
supplemented or changed as business needs and technologies evolve.

See cdsa(3) for more information about CDSA.

• Secure Socket Layer (SSL)

SSL is a commonly-used protocol for managing the security of a message
transmission on the Internet. SSL has recently been succeeded by
Transport Layer Security (TLS), which is based on SSL. SSL uses a
program layer located between the Hypertext Transfer Protocol (HTTP)
and Transport Control Protocol (TCP) layers. The provided OpenSSL
library implements the Secure Sockets Layer (SSL v2/v3) and Transport
Layer Security (TLS v1) protocols.

See ssl(3) for more information about SSL.

This chapter contains the following information:

• Security programming overview

• Libraries and header files

• Standard trusted system directories

Introduction for Programmers 1–1

• Security-relevant system calls and library routines

This chapter and the ones that follow use partial and complete C programs
to illustrate basic ideas. Although some of these can be used without
modification, they are not a collection of routines from which you can
assemble trusted programs.

1.1 Security Programming Overview

You must protect the trusted computing base (TCB) from unintended
modification. To do this, you first define which of your programs and data
files are a part of the TCB. The following list describes the components of
the TCB:

• Trusted Programs: Any program that could subvert a security rule
must be considered a trusted program. This includes programs that
make direct security decisions, and those that do not, but could subvert
security if they contained errors or malicious code. Consider a program
trusted if the program file has its user ID set to root (SUID).

• Indirect Programs: A program is trusted if another trusted program
invokes it or otherwise interacts with it and depends upon its actions for
security decisions. A program is also trusted if it modifies a data file or
other object upon which another trusted program depends.

• Program Files: Executable files that contain a trusted program are
considered a part of the TCB.

• Object Code and Libraries: All object (binary) code modules and their
files, whether statically or dynamically linked, that are included in a
trusted program are part of the TCB. This includes the standard C library
routines and interfaces, which are frequently used by trusted programs.

• Data Files: The TCB includes any file that contains data used by a
trusted program to make a security decision, for example, the ttys
database.

• Shell Scripts: A shell script is a data file that a shell program interprets,
performing the shell commands in the file. A shell script is considered
part of the TCB if it performs a function on behalf of a trusted program
or if it is needed for correct operation of the system. You can determine
if a shell script is security relevant if removing or replacing the script
would cause the system to perform improperly (for example, removing
some of the rc startup scripts) or provide an opportunity for a security
breach (installing a different cron startup file). Shell script files should
be protected as carefully as object code program files. Note that a shell
script must be readable to be executed.

• Antecedent Directories: Consider all parent directories of TCB files a part
of the TCB and protect them accordingly. If malicious users can remove

1–2 Introduction for Programmers

and redefine links in these directories, then they can create new, phony
files that might cause a trusted program to make an incorrect security
decision.

1.1.1 Protecting TCB Files

Each of the following mechanisms presents a way to protect the files and
directories of the TCB:

• Discretionary Access Control (DAC): Discretionary access control (the
owner, group, mode bits, and access control lists (ACLs)) is the most
important protection for TCB files. It must prevent untrusted users
and groups from modifying these files, although they might be allowed
to read the files. It is common to create pseudousers and pseudogroups
for this purpose.

Existing programs may copy only the mode bits when replicating a file
and therefore accidentally delete the ACL. This removes the protection
offered by the ACL. HP recommends that you use restrictive traditional
permissions, such as other::--- and group::---, and then grant
access to individual users with user entries. Using this approach, if
an ACL is lost, unintended access is not allowed. See Chapter 7 for
information on programming with ACLs.

• Read-Only File Systems: You can place all files that only need to be read
on a separate file system and mount that file system as read only. This
ensures that no program, no matter how privileged, can alter those
files (at least short of remounting the file system). You can, of course,
remount the file system as read/write if you need to alter the files. This
is somewhat drastic but offers good protection against corruption of
security data. You can also physically set a read only locking tab on
many kinds of removable media.

• Sticky Bit: Tru64 UNIX includes the sticky bit on directories. The sticky
bit restricts the removal of directory entries (links) to those owned by the
requesting user or the owner of the directory. Without this protection,
programs only need write access to the directory. Use the sticky bit
where appropriate; for example, when a program needs to store files
owned by different users in a single directory.

1.2 Libraries and Header Files

Your system documentation contains reference pages for all security system
calls (section 2) and routines (section 3).

Introduction for Programmers 1–3

The libsecurity.so, libaud.a, libaud.so, libpacl.a, and the
libpacl.so libraries hold the enhanced security interface binaries. Use the
−lsecurity compilation option to link these into your program, for example:

$ cc ... −lsecurity −ldb −lm −laud ...

Your programs need to include several header files that hold definitions
(constants, macros, structures, library interfaces, and so forth) necessary
to use the Tru64 UNIX security interfaces. Following traditional UNIX
practice, all Tru64 UNIX system call and library reference pages denote the
header files that you need to use their routines. You are likely to use the
following individual header files, in the order listed:

<sys/secdefines.h> Defines compilation constants that
determine the security configuration of
your system. You always need to include
this file first.

<sys/security.h> Holds general definitions. You almost
always need to include this file.

<sys/acl.h> For access control lists. You need this if
you manipulate access control lists.

<prot.h> Defines the authentication databases and
Tru64 UNIX protected subsystems. You
need these if your program accesses any
of the authentication databases.

<sys/audit.h> Defines the audit subsystem constants for
security audit interfaces. You need this if
you generate or process audit records.

<protcmd.h> Provides a few miscellaneous definitions
for trusted commands that are delivered
with Tru64 UNIX. You seldom need these.

<sia.h> SIA constants, structures, and macro
definitions

<siad.h> SIA constants, structures, and macro
definitions internally used by the
interfaces and security mechanisms

1–4 Introduction for Programmers

1.3 Standard Trusted System Directories

Tru64 UNIX defines several directories to hold its security information. You
can review the reference pages for a description of these files and directories,
primarily the section 4 reference pages.

You may need to create new files and directories in the standard trusted
system directories. Generally, you should create new directories for the files
you place in these trees. Do not simply insert new files in existing directories
unless that directory was explicitly created for such files. Table 1–1 lists the
directories you might use:

Table 1–1: Standard Trusted System Directories
Directory Contents

/tcb/bin, /usr/tcb/bin Contains directly executed trusted commands
and daemons.

/tcb/lib Contains programs that are run by other
trusted programs but are never invoked
from the command line.

/tcb/files Contains control files, databases, and scripts
used by the trusted computing base (TCB). You
can define a subdirectory of this directory for
your protected subsystem, if necessary.

/var/tcb Alternative to the /tcb directory.

1.4 Security-Relevant System Calls and Library Routines

The tables in the following sections list many of the Tru64 UNIX system
calls and library routines that have security implications for programmers.

Note that some system calls and library routines not covered in these
sections might also have implicit security concerns.

The misuse of a system call or library routine that does not seem to have
any security concerns could threaten the security of a computer system. For
example, all system calls bypass file access permissions when called by a
privileged process. Ultimately, programmers are responsible for the security
implications of their programs.

1.4.1 System Calls

Table 1–2 lists the system calls that have security relevance for
programmers.

Introduction for Programmers 1–5

Table 1–2: Security-Relevant System Calls
Category System Calls

File control creat, open, fcntl, read, mknoda, write

Process control fork, sigpause, execve, sigsetmask, setp-
grpa, sigvec, sigblock

File attributes access, chroota, chmoda, stat, chowna, umask

User and group ID getegid, getuid, getgid, setgroupsa, geteuid, setreuida

Auditing audcntla, audgena

General syscall
a These system calls can be called only by a privileged process or they may behave differently when called by
a nonprivileged process. See the associated reference pages for more information.

1.4.2 Library Routines

Library routines are system services that programs can call. Many library
routines use system calls. Table 1–3 lists Tru64 UNIX library routines that
have security implications.

Table 1–3: Security-Relevant Library Routines
Category Library Routines

File control fopen, popen

Password handling getpass, putpwent, getpwnam, setpwent, getpwent,
endpwent, getpwuid, passlen, pw_mapping,
randomword, time_lock

Process control signal

1–6 Introduction for Programmers

2
Trusted Programming Techniques

This chapter presents specific techniques for designing trusted programs.
This chapter contains the following information:

• Writing SUID and SGID programs

• Handling errors

• Protecting files

• Specifying a secure search path

• Responding to signals

• Using open file descriptors with child processes

• Security concerns in the X environment

2.1 Writing SUID and SGID Programs

SUID (set user ID) and SGID (set group ID) programs change the effective
UID or GID of a process to the UID or GID of the program. They are a
solution to the problem of providing controlled access to system-level files and
directories, because they give a process the access rights of the files’ owner.

The potential for security abuse is higher for programs in which the user ID
is set to root or the group ID is set to any group that provides write access
to system-level files. Do not write a program that sets the user ID to root
unless there is no other way to accomplish the task.

The chown system call automatically removes any SUID or SGID bits on a
file, unless the RUID of the executing process is set to zero. This prevents
the accidental creation of SUID or SGID programs owned by the root
account. For more information, see chown(2).

The following list provides suggestions for creating more secure SUID and
SGID programs:

• Verify all user-provided pathnames with the access system call.

• Trap all relevant signals to prevent core dumps.

• Test for all error conditions, such as system call return values and buffer
overflow.

Trusted Programming Techniques 2–1

When possible, create SGID programs rather than SUID programs. One
reason is that file access is generally more restrictive for a group than for
a user. If your SGID program is compromised, the restrictive file access
reduces the range of actions available to the attacker.

Another reason is that it is easier to access files owned by the user executing
the SGID program. When a user executes an SUID program, the original
effective UID is no longer available for use for file access. However, when a
user executes an SGID program, the user’s primary GID is still available
as part of the group access list. Therefore, the SGID process still has group
access to the files that the user could access.

The stack of all SUID programs is not executable by default. User
applications that rely on the stack being executable will fail. If absolutely
necessary, you can change the default setting. This allows the stack of SUID
programs to be executable. To change from default of zero (not executable) to
executable, use the following command:

sysconfig -r proc executable_stack=1

To ensure that the change persists across reboots, use the sysconfigdb
command to add the entry to the /etc/sysconfigtab file.

2.2 Handling Errors

Most system calls and library routines return an integer return code, which
indicates the success or failure of the call. Always check the return code to
make sure that a routine succeeded. If the call fails, test the global variable
errno to find out why it failed.

The errno variable is set when an error occurs in a system call. You can use
this value to obtain a more detailed description of the error condition. You
can use this information to determine how your program will respond or to
produce helpful diagnostic messages. This error code corresponds to an error
name in <errno.h>. For more information, see errno(2).

The following errno values indicate a possible security breach:

EPERM Indicates an attempt by someone other than the
owner to modify a file in a way reserved to the file
owner or superuser. It can also mean that a user
attempted to do something that is reserved for a
superuser.

EACCES Indicates an attempt to access a file for which the
user does not have permission.

2–2 Trusted Programming Techniques

EROFS Indicates an attempt to access a file on a mounted
file system when that permission has been revoked.

If your program makes a privileged system call but the resulting executable
program does not have superuser privilege, it will fail when it tries to
execute the privileged system call. If the security administrator has set up
the audit system to log failed attempts to execute privileged system calls,
the failure will be audited.

If your program detects a possible security breach, do not have it display a
diagnostic message that could help an attacker defeat the program. For
instance, do not display a message that indicates the program is about to
exit because the attacker’s real user ID (UID) did not match a UID in an
access file, or even worse, provide the name of the access file. Restrict this
information by using the audgen() routine for SUID root programs and using
syslog for other programs. In addition, you could program a small delay
before issuing a message to prevent programmed attempts to penetrate your
program by systematically trying various inputs.

2.3 Protecting Files

If your program uses any permanent files (for example, a database), make
sure these files have restrictive permissions and that your program provides
controlled access. These precautions also apply to shared memory segments,
semaphores, and interprocess communication mechanisms; set restrictive
permissions on all of these objects.

Programs sometimes create temporary files to store data while the program
is running. Follow these precautions when you use temporary files:

• Be sure your program deletes temporary files before it exits.

• Avoid storing sensitive information in temporary files, unless the
information has been encrypted.

• Give only the owner of the temporary file read and write permission. Set
the file creation mask to 077 by using the umask() system call at the
beginning of the program.

• Create temporary files in private directories that are writable only by
the owner or in /tmp. The /tmp directory has the sticky bit set (mode
1777), so that files in it can be deleted only by the file owner, the owner
of the directory, or the superuser.

A common practice is to create a temporary file, then unlink the file while it
is still open. This limits access to any processes that had the file open before
the unlink; when the processes exit, the inode is released.

Trusted Programming Techniques 2–3

Note that this use of unlink on an NFS-mounted file system takes a slightly
different action. The client kernel renames the file and the unlink is sent to
NFS only when the process exits. You cannot guarantee that the file will be
inaccessible to someone else, but you can be reasonably sure that the file will
be inaccessible when the process exits. In any case, always explicitly ensure
that no temporary files remain after the process exits.

2.4 Specifying a Secure Search Path

If you use the popen, system, or exec*p routines, which execute /bin/sh
or /sbin/sh, be careful when specifying a pathname or defining the shell
PATH variable. The PATH variable is a security-sensitive variable because
it specifies the search path for executing commands and scripts on your
system. For more information, see environ(5), popen(3), and system(3).

The following list describes how to create a secure search path:

• Specify absolute pathnames for the PATH variable.

• Do not include public or temporary directories, other users’ directories,
or the current working directory in your search path. Including these
directories increases the possibility of inadvertently executing the wrong
program or of being trapped by a malicious program.

• Be sure that system directories appear before user directories in the list.
This prevents you from mistakenly executing a program that might have
the same name as a system program.

• Analyze your path-list syntax, especially your use of nulls, decimal
points, and colons. A null entry or decimal point entry in a path list
specifies the current working directory and a colon is used to separate
entries in the path list. For this reason, the first entry following an equal
sign should never begin with a colon.

• If a path list ends with a colon, certain shells and exec*p routines
search the current working directory last. To avoid having various shells
interpret this trailing colon in different ways, use the decimal point
rather than a null entry to reference the current working directory.

You might want to use the execve system call rather than any of the
exec*p routines because execve requires that you specify the pathname.
For more information, see execve(2).

2.5 Responding to Signals

The Tru64 UNIX operating system generates signals in response to certain
events. The event could be initiated by a user at a terminal (such as quit,
interrupt, or stop), by a program error (such as a bus error), or by another
program (such as kill).

2–4 Trusted Programming Techniques

By default, most signals terminate the receiving process; however, some
signals only stop the receiving process. Many signals, such as SIGQUIT or
SIGTRAP, write the core image to a file for debugging purposes. A core
image file might contain sensitive information, such as passwords.

To protect sensitive information in core image files and protect programs
from being interrupted by input from the keyboard, write programs that
capture signals such as SIGQUIT, SIGTRAP, or SIGTSTP.

Use the signal routine to cause your process to change its response to a
signal. This routine enables a process to ignore a signal or call a subroutine
when the signal is delivered. (The SIGKILL and SIGSTOP signals cannot
be caught, ignored, or blocked. They are always passed to the receiving
process.) For more information, see signal(2) and sigvec(2).

Also, be aware that child processes inherit the signal mask that the parent
process sets before calling fork. The execve system call resets all caught
signals to the default action; ignored signals remain ignored. Therefore, be
sure that processes handle signals appropriately before you call fork or
execve. For more information, see the fork(2) and execve(2) reference
pages.

2.6 Using Open File Descriptors with Child Processes

A child process can inherit all the open file descriptors of its parent process
and therefore can have the same type of access to files. This relationship
creates a security concern.

For example, suppose you write a set user ID (SUID) program that does
the following:

• Allows users to write data to a sensitive, privileged file

• Creates a child process that runs in a nonprivileged state

Because the parent SUID process opens a file for writing, the child (or any
user running the child process) can write to that sensitive file.

To protect sensitive, privileged files from users of a child process, close all
file descriptors that are not needed by the child process before the child is
created. An efficient way to close file descriptors before creating a child
process is to use the fcntl system call. You can use this call to set the
close-on-exec flag on the file after you open it. File descriptors that have
this flag set are automatically closed when the process starts a new program
with the exec system call.

For more information, see the fcntl(2) reference page.

Trusted Programming Techniques 2–5

2.7 Security Concerns in the X Environment
The following sections discuss several ways to increase security in the X
programming environment:

• Restrict access control

• Protect keyboard input

• Block keyboard and mouse events

• Protect device-related events

2.7.1 Protect Keyboard Input

Users logged into hosts listed in the access control list can call the
XGrabKeyboard function to take control of the keyboard. When a client
has called this function, the X server directs all keyboard events only to
that client. Using this call, an attacker could grab the input stream from
a window and direct it to another window. The attacker could return
simulated keystrokes to the window to fool the user running the window.
Thus, the user might not realize that anything was wrong.

The ability of an attacker to capture a user’s keystrokes threatens the
confidentiality of the data stored on the workstation.

The X Windows System provides a secure keyboard mode that directs
everything a user types at the workstation keyboard to a single, secure
window. Users can set this mode by selecting the Secure Keyboard item from
the Commands menu in an X window.

Include a secure keyboard mode in programs that deal with sensitive data.
This precaution is especially important if your program prompts a user for
a password.

Some guidelines for implementing secure keyboard mode follow:

• Use the XGrabKeyboard call to the Xlib library.

• Use a visual cue to let the user know that secure keyboard mode has
been set; for example, reverse video on the screen.

• Use the XUngrabKeyboard function to release the keyboard grab when
the user reduces the window to an icon. Releasing the keyboard frees the
user to direct keystrokes to another window.

2.7.2 Block Keyboard and Mouse Events

Hosts listed in the access control list can send events to any window if they
know its ID. The XSendEvent call enables the calling application to send
keyboard or mouse events to the specified window. An attacker could use
this call to send potentially destructive data to a window. For example, this

2–6 Trusted Programming Techniques

data could execute the rm -rf * command or use a text editor to change
the contents of a sensitive file. If the terminal was idle, a user might not
notice these commands being executed.

The ability of an attacker to send potentially destructive data to a
workstation window threatens the integrity of the data stored on the
workstation.

The X Windows System blocks keyboard and mouse events sent from
another client if the allowSendEvents resource is set to False in the
.Xdefaults file.

You can write programs that block events sent from other clients. The
XSendEvent call sends an event to the specified window and sets the
send_event flag in the event structure to True. Test this flag for each
keyboard and mouse event that your program accepts. If the flag is set to
False, the event was initiated by the keyboard and is safe to accept.

2.7.3 Protect Device-Related Events

Device-related events, such as keyboard and mouse events, propagate
upward from the source window to ancestor windows until one of the
following conditions is met:

• An X client selects the event for a window by setting its event mask

• An X client rejects the event by including that event in the
do-not-propagate mask

You can use the XReparentWindow function to change the parent of a
window. This call changes a window’s parent to another window on the same
screen. All you need to know to change a window’s parent is the window
ID. With the window ID of the child, you can discover the window ID of its
parent.

The misuse of the XReparentWindow call can threaten security in a
windowing system. The new parent window can select any event that the
child window does not select.

Take these precautions to protect against this type of abuse:

• Have the child window select the device events that it needs. This
precaution prevents the new parent from intercepting events that
propagated upward from the child. Parent windows that centralize event
handling for child windows are at greater security risk. An attacker can
change the parent and intercept the events intended for the children.
Therefore, it is safer for each child window to handle its own device
events. Events that the child explicitly selects never propagate.

Trusted Programming Techniques 2–7

• Have the child window specify that device events will not propagate
further in the window hierarchy by setting the do-not-propagate
mask. This precaution prevents any device event from propagating to
the parent window, regardless of whether the child requested the event.

• Have the child window ask to be notified when its parent window is
changed by setting the StructureNotify or SubstructureNotify
bit in the child window’s event mask. For information on setting these
event masks, see the X Window System: The Complete Reference to Xlib,
X Protocol, ICCCM, XLFD.

2.8 Protecting Shell Scripts

When you write a shell script that handles sensitive data, set and export
the PATH variable before writing the body of the script. Do not make shell
scripts SUID or SGID.

2–8 Trusted Programming Techniques

3
Authentication Database

This chapter contains the following information:

• Authentication database overview

• Authentication database components

• Accessing the authentication database

3.1 Authentication Database Overview
The authentication database is a set of databases that store all Tru64 UNIX
security information when enhanced security is enabled. The following
databases comprise the authentication database:

• Device assignment

• File control

• System default

• Protected password

• Terminal control

The trusted programs (that is, any program that could subvert a security
rule) you create specifically for systems with enhanced security enabled need
to use the information in these databases. Except for a few specialized cases,
system administrators maintain these databases using the Tru64 UNIX
administrative interfaces. Therefore your programs usually only read them.

The following sections describe the authentication databases. The
authcap(4) reference page contains general information on the file format.

3.1.1 Device Assignment Database (devassign)

The device assignment database contains device attributes for devices on the
system. There are two kinds of devices included in the devassign database:

• Terminals

• X displays

The name of a device entry is used in the device-related commands. This
name is independent of the names of the device files that represent the
device.

Authentication Database 3–1

System administrators maintain the device assignment database; your
programs should not modify its contents.

The logical entries for this database have dynamic sizes (are not
self-contained). For this reason, you must use the copyesdvent() routine
to make a working copy of a structure that contains one of its entries. See
the getesdvent(3) reference page for details.

The text file /etc/auth/system/devassign holds the entire device
assignment database.

3.1.2 File Control Database

The file control database helps to assure that your security-sensitive files
have the correct protection attributes (owner, mode bits, and so forth). It
contains the absolute pathname and the correct attributes for each file (or
directory). These attributes include any combination of the following:

• File type (regular, block special, character special, directory, fifo, socket)

• Owner

• Group

• Permission mode bits

• Access control list (if the system is configured for access control lists)

Your programs should not read from or write to the file control database
other than to use its entries for newly created files through the
create_file_securely() interface. However, you should add all new
security-sensitive files and directories to the database. Include all of the
attributes that do not change. This ensures that these attributes are
regularly checked and corrected.

You can use the create_file_securely() routine to create files with
the attributes specified in the file control database. This routine can only
be used to create a new file. You should create new versions of files in a
different file. (The Tru64 UNIX convention is to append a :t to a pathname
for the file’s new contents.) Then rename the new file (using the rename()
system call) to the existing file name.

The file control database is a text file: /etc/auth/system/files. See the
files(4) reference page for a definition of the format of this file. The system
administrator can use the edauth −df command to add or remove entries
from this database. See the edauth(8) reference page for more information.

3.1.3 System Default Database

The system default database, /etc/auth/system/default, is a text file
that contains fields that are to be used when the corresponding fields are left

3–2 Authentication Database

undefined in other databases. Specifically, this database contains default
information for the enhanced (protected) password, device assignment, and
terminal control databases. (Note that all fields in each of the authentication
databases may be left undefined, but all fields do not have system default
values.)

The system default database also contains fields for miscellaneous system
parameters. Your programs should not need this miscellaneous information.

System administrators maintain this database and your programs should
never have to modify it. The access routines for other databases also return
the system default values. See Section 3.1.5, for an example of how to access
and use the information in the system default database.

The entire system default database has only one entry, the default entry.

3.1.4 Enhanced (Protected) Password Database

The enhanced password database (/tcb/files/auth.db and
/var/tcb/files/auth.db) are dbm files that hold a set of user
authentication profiles. User authentication profiles can also be distributed
between Tru64 UNIX systems using the NIS prpasswd map. Each
authentication profile entry is named with a user name (a name that a user
supplies during login). The authentication profile has many fields that
govern the user’s login session. Chapter 4 describes these fields in detail.

An authentication profile is associated with the account whose presence is
indicated by a line in the traditional /etc/passwd file or NIS passwd map.
The encrypted password has been moved from the /etc/passwd file to
the authentication profile.

The system assigns the traditional meanings for the other fields in the
/etc/passwd database. Each entry in /etc/passwd corresponds to exactly
one authentication profile in the protected password database with the same
user ID and name. (Both must be present for an account to be considered
valid.) The /etc/passwd entry contains a dummy encrypted password
field; the authentication profile holds the real one.

The traditional UNIX interfaces for querying the /etc/passwd file is
getpwent(). The interfaces’ functions are unchanged and always fetch their
information from the /etc/passwd file or NIS map. Note however, that the
encrypted password that is returned is a dummy value. (The routine is not
modified to retrieve the encrypted password from the authentication profile.)

Your programs should not modify the enhanced (protected) password
database. However, many trusted programs need to read the information
from the user authentication profiles.

Authentication Database 3–3

3.1.5 Terminal Control Database

The terminal control database, /etc/auth/system/ttys.db, is a dbm
file that contains fields used primarily during login that apply to the login
terminal, as opposed to the user who is logging in. This database consists
of an entry for each terminal upon which users may log in including X
terminals.

Each entry in the database has a name of the terminal that matches a name
in the file used to specify login ports (/etc/inittab). The entries in the
device assignment database correspond to each entry in the terminal control
database. Most trusted programs (for example, login) do not provide their
services if there is no corresponding entry in the device assignment database.

Each terminal control database entry contains the following fields:

• The name of the terminal.

• The user ID and time of the last unsuccessful login attempt. Because
the user ID is stored in the database, an unsuccessful login attempt that
specifies a user name that does not map to a user ID does not produce a
valid user ID in this database. If the user name maps to a valid ID, that
ID is placed in the appropriate field.

• The user ID and time of the last successful login.

• The number of unsuccessful login attempts since the last successful login.

• Whether the terminal is locked.

• The number of unsuccessful attempts that the system allows before
locking the terminal.

• The enforced time delay after a failed login attempt (enforced by the
login program).

• The number of seconds after which the login, once started, times out if
there is no keyboard input. Upon timeout, the login program terminates
the login attempt.

System administrators maintain the entries in the terminal control
database, although the Tru64 UNIX login programs modify many fields.
Your programs do not usually modify this database. Although it is unlikely,
trusted programs may need to read this database.

The file /etc/auth/system/ttys.db holds the entire terminal control
database.

3–4 Authentication Database

3.2 Authentication Database Components

Each database consists of a set of named entries. Programs primarily use
the name of the entry to request a specific entry from a database, although a
program can also sequentially search through the entries in a database.

Each entry contains a set of fields. Each field has an identifier, used to access
the field and a value. Each database has an allowed set of fields in one of
its entries. Individual fields are optional and can be omitted from an entry.
There are several types of fields including string, integer, and Boolean.

The general format for an entry is as follows:

entry_name:string_field=value:integer_field#value:\
:boolean_field_true:boolean_field_false@:chkent:

In general, library routines read or write an entry as a whole. A C structure
holds all possible fields for a given entry of the database. This structure is
always accompanied by a flags structure which holds a mask designating
which fields are to be read or written.

Your programs should take appropriate action when a field is undefined. In
many cases, the undefined fields should be fetched from the system defaults
database, as described in Section 3.2.1. Structures for each database include
system default fields and flags for that database. Thus, it is easy to retrieve
the system default values associated with a particular field because the
system default values are available from the same structure that stores
values for the individual entry.

3.2.1 Database Form

In general, you will not have to deal with the physical format of the
authentication databases. All databases have the same logical form and
similar access libraries. For example, the terminal control database consists
of an entry for each controlled terminal. The following ttys file sample
physical format entry for tty01 and the associated table illustrate the
database file format.

tty01:t_devname=tty01:t_uid#44:t_logtime#772479074:\
:t_login_timeout#20:t_failures#3:t_lock@:\
:chkent:

Meaning Field Value Description

Name t_devname tty01 Terminal 1

User of last login t_uid 44 UID of 44

Time of last login t_logtime 772479074 Fri Jun 24 13:31:13
EDT 1994

Authentication Database 3–5

Meaning Field Value Description

Login timeout t_login_timeout#20 20 Login timeout in
seconds

Attempts since
last login

t_failures#3 3 Failed login attempts
since last successful
login

Account status t_lock @ Unlocked (false)

Check entry :chkent:<EOL> chkent End of entry

The following C structure is used for fetching an entry from the ttys
database (see the include file <prot.h>):

struct es_term {
struct estc_field *ufld; /* fields for this entry */
struct estc_flag *uflg; /* flags for this entry */
struct estc_field *sfld; /* system default fields */
struct estc_flag *sflg; /* system default flags */

};

The estc_field holds the data for the fields of the entry, and estc_flag
holds the flags that designate which fields in estc_field are present or are
set. The following is the estc_field structure:

struct estc_field {
char *fd_devname; /* terminal name */
uid_t fd_uid; /* uid of last successful login */
time_t fd_slogin; /* time of last successful login*/
ushort fd_nlogins; /* consecutive failed attempts */
char fd_lock; /* terminal lock status */
ushort fd_login_timeout; /* login timeout value */

};

struct estc_flag {
unsigned short

fg_devname :1, /* name present? */
fg_uid :1, /* uid present? */
fg_slogin :1, /* time present? */
fg_nlogins :1, /* failed attempts present? */
fg_lock :1, /* lock status present? */
fg_login_timeout :1 /* login timeout present? */

};

The getestcent(3) reference page defines the library routines that you can
use to access the terminal control database. The access routines return or
set the fields for a specific entry ufld and uflg and for the system defaults
(sfld and sflg). For each database whose fields have system defaults, the
system defaults are returned in addition to the fields for that entry.

3–6 Authentication Database

3.2.2 Reading and Writing a Database

Each database is owned by a user/group, to which your program must have
discretionary access. Your program can be installed in two ways:

• SGID to the appropriate group as a standard program of the subsystem

• SUID 0 as a standard program of the subsystem

The library routines automatically enforce one database writer at a time.
However, the database is locked only for the duration of the time the
database is being rewritten. There is no way to lock an entry against access
across a retrieval and write operation. You should complete your writes
as quickly as possible.

3.2.2.1 Buffer Management

You must understand how the system allocates and returns buffers for
database entries to properly code programs that retrieve, replace, and add
database entries. All database routines are patterned after the getpwent()
routines in that they return pointers to static storage that is reused on each
call. You must save the buffer contents if you are going to retrieve another
entry and need to refer again to the previous entry, or if you need to rewrite
an existing entry or add a new entry. You cannot read a database entry,
change one or more field and flag values, and submit the same buffer to the
routine that modifies the database.

The logical form for some database entry fields is self-contained. Other fields
contain pointers to variable length data.

The devassign database logical form contains some fields that are pointers
to variable length data. The getesdvent(3) reference page describes
the copyesdvent() routine that allocates a structure to hold a device
assignment database entry and copies the contents of a buffer returned from
getesdvent() or getesdvnam() into it.

You can save an entry for a self-contained database by simple structure
assignment, as follows:

struct es_passwd *pr; /* returned value */
struct es_passwd *pwcopy; /* buffer for saved values */

/* Retrieve john’s protected password database entry */

pr = getesnam("john");

/* store values of john’s entry to a local buffer */

pwcopy = copyespwent(pr);
if (!pwcopy) abort();

Authentication Database 3–7

/* Change the password minimum change time to two weeks */

pwcopy->uflg->fg_min = 1;
pwcopy->ufld->fd_min = 14 * 24 * 60 * 60;

/* Rewrite john’s protected password database entry */

if (!putespwnam("john", pwcopy))
errmsg("Could not write protected password entry\n");

free(pwcopy);

3.2.2.2 Reading an Entry by Name or ID

You can read database entries by specifying their name or, in some
databases, some other identifying value. For example, you can fetch entries
from the enhanced (protected) password database by the entry name (the
user’s name) or the user ID. The following code reads the entry associated
with the name tty44 from the terminal control database:

.

.

.
struct es_term *entry;
.
.
.
if ((entry = getestcnam("tty44")) == NULL)

errmsg ("Entry not found");

Note that getestcnam() allocates the data structure for the returned entry.
Hence, entry is only a pointer to an es_term structure that is reused the
next time any of the prtc() or estc() routines is called.

3.2.2.3 Reading Entries Sequentially

You can also read database entries sequentially as illustrated in the
following code:

.

.

.
struct es_term *entry;
.
.
.
setprtcent(); /* rewind the database*/
while ((entry = getestcent()) != NULL){ /* read next entry */
. /* process the entry */
.

3–8 Authentication Database

.
}
endprtcent (); /* close */

Note that getestcent() also allocates the data structure for the entry. You
can restart the search from the beginning using setprtcent().

3.2.2.4 Using System Defaults

A system default is a field that is used when the corresponding field in an
entry is not defined. The system default database contains defaults for the
other databases. The following databases contain information for which
there are system defaults:

• Protected password

• Terminal control

• Device assignment

Note that only certain fields in these databases are allowed to have defaults.

When your program reads a logical entry, the library routine returns both
the fields for that entry (ufld and uflg) and for the system default (sfld
and sflg). If the entry does not contain the field you need, use the system
default. In some cases if the system default is also undefined, your program
should generate audit data to report the error and execute a failure path. In
other cases, you can safely define a default value.

For example, if you need to determine the timeout value for the terminal
tty14, your code might look like this:

struct es_term *entry; /* the entry for the terminal */
ushort time_out; /* final timeout value */
.
.
.

/*--- fetch the entry by name ---*/

if ((entry = getestcnam ("tty14")) == NULL)
errmsg ("Entry not found");

/*--- if defined for the terminal, use it ---*/

if (entry->uflg->fg_login_timeout)
time_out = entry->ufld->fd_login_timeout;

/*--- else if system default is defined, use it ---*/

else if (entry->sflg->fg_login_timeout)
time_out = entry->sfld->fd_login_timeout;

Authentication Database 3–9

/*--- otherwise, assume a value of 0 ---*/

else time_out = 0;

3.2.2.5 Writing an Entry

Your program should seldom have to modify a database, and even more
rarely a system default. However, if this is necessary, place the new fields in
ufld and set the corresponding flags in uflg, and then call the appropriate
library routine. For example, to set a new timeout value for the terminal
tty14 to 20, your code might look like this:

struct es_term *entry, *ecopy;
.
.
.

/*--- fetch the entry by name ---*/

if ((entry = getestcnam("tty14")) == NULL)
errmsg ("Entry not found");

/*--- change the desired field(s) ---*/

ecopy = copyestcent(entry); if (! ecopy) abort():
ecopy->ufld->fd_login_timeout = 20; /* set timeout value */
ecopy->uflg->fg_login_timeout = 1; /* set flag to show the

field has been set */
/*--- update the database ---*/

if (!putestcnam("tty14", ecopy))
errmsg ("Could not update database");

free(ecopy);

______________________ Note _______________________

You must call the appropriate copyes*() routine to save the
data for later use.

The copyes*() routines return pointers to a malloc() storage
area that the caller must clear.

You can only set system defaults using the putesdfnam() interface for
the system default database. You cannot, for example, set the sfld and
sflg fields in an es_term entry and then call putestcnam() to set system
defaults.

3–10 Authentication Database

3.3 Accessing the Authentication Databases

Tru64 UNIX includes a set of library routines to access each database. The
following reference pages describe the form and use of these databases; you
should read them with this chapter.

Subject Database Reference Page

Device
Assignment

devassign getesdvent(3)

File Control file getesfient(3)

System Default default getesdfent(3)

Protected
Password

auth.db/prpasswd (NIS) getespwent(3)

Terminal Control ttys.db getestcent(3)

The library routines defined on these reference pages hide the actual file
format of the databases. Trusted programs do not need to know the format;
they simply use these library routines.

Authentication Database 3–11

4
Identification and Authentication

This chapter contains the following information:

• The audit ID

• Identity support libraries

• Using daemons

• Using the enhanced (protected) password database

4.1 The Audit ID

Tru64 UNIX preserves all traditional process user and group identities.
Additionally, it provides the per-process audit ID (AUID), which is unique to
Tru64 UNIX. The AUID is similar in principle to the real user ID, except
that it remains unchanged even in cases where the real user ID changes.

The audit ID is associated with all audit records and establishes the user
identity even in those cases where the real and effective user IDs have been
changed from their values at login.

The audit ID can be set only once in a line of process descendants, regardless
of any process privileges. The audit ID is set at login to the authenticated
user (the same as the real and effective user IDs) and is inherited from
parent to child when a process forks using the fork() system call.

Programs that are created from startup scripts or that are created as a result
of respawn entries in the inittab file are created with an unset audit
ID. Such programs are normally authentication programs (getty/login
sequences, window managers, trusted path managers) that set the AUID
based on the user that authenticates through that interface.

Programs started through startup scripts typically receive requests for
service on behalf of users and spawn a process to service that request. Such
programs typically set the audit ID in the child service process based on
the requesting process’s effective identity. If you are writing this type of
program, you should use the SIA routines. The SIA routines properly set
up the user’s environment in the child process regardless of the security
mechanisms in use on the system (BASE, enhanced, DCE, and so forth).

The getluid() and setluid() system calls read and set the audit ID. See
their reference pages for details.

Identification and Authentication 4–1

4.2 Identity Support Libraries

The Tru64 UNIX operating system provides several library
routines for managing user and group identities. For example, the
set_auth_parameters() routine is required by some routines used by
enhanced security. It stores the initial user and group IDs that can later be
queried or tested by the other routines. If you are writing a program or
routine that will be used with the enhanced security option, you must call
set_auth_parameters() at the beginning of your program’s main() routine.

Several of the enhanced security routines for querying the
authentication database require the program to have previously called
set_auth_parameters() before changing any of the user or group IDs, or
the command arguments argc and argv.

See the identity(3) reference page for more information.

To keep your code portable between security mechanisms, use the SIA
session routines.

4.3 Using Daemons
Whenever a daemon performs an operation at the request of a user program
(the client), it acts in one of two ways:

• It can run under its own identities, authorizations, and privileges,
making its own decisions about what actions the requesting program
may or may not perform. In this case, it does not need to change any
of its own user identities.

• It can have the underlying operating system enforce operations as if the
daemon had the client’s security attributes (user IDs, authorizations,
and so forth).

In the latter case, the daemon needs to establish a set of security attributes.
The preferred technique is to fork a process, set the identities and privileges
using SIA, and then either perform the actions directly or execute a program
to perform them.

4.4 Using the Enhanced (Protected) Password Database
Although the enhanced (protected) password database is intended mainly
for Tru64 UNIX programs, your programs may need to use the fields
described in the following list. (These fields are also described in the
getespwent(3) and prpasswd(4) reference pages, the prot.h include file,
and the administrative part of this document.)

• User name (u_name) and ID (u_id) — These fields correspond to the
user name and ID in /etc/passwd.

4–2 Identification and Authentication

• Encrypted password (u_pwd) — This field is the real encrypted password.

• Retired status (u_retired) — This field indicates whether the
authentication profile is valid. If not valid, login sessions are not allowed.
Once retired, an account should never again be reused.

• Login session priority (u_priority) — The process priority assigned to
programs of the user login session using setpriority().

• User audit mask (u_auditmask) and control flags (u_audcntl) — This
mask and its control flags, with the system audit mask, designate the
events audited during the login session. The login program assigns a
mask to the user’s login shell. Audit masks and the control flags are
inherited across exec() and fork() calls. See auditmask(8) for more
information.

• Password parameters — The following parameters describe the login
password and its generation:

– Maximum length in characters for passwords chosen by the user
(u_maxchosen)

– Password expiration interval (u_exp)

– Minimum password lifetime (u_minchg)

– Password lifetime (u_life)

– Time and date of last successful password change (u_succhg)

– Time and date of last unsuccessful password change attempt
(u_unsucchg)

– User who last changed the password (u_pwchanger)

– Password generation parameters (u_genpwd)

– User generated password generation parameters (u_pickpw)

• Login password requirements (u_nullpw) — This is sometimes called
the “null password option” and controls attempts to set a null password.
Most administrators do not allow this option.

• Times during which a user may login (u_tod) — This field is formated
like the UUCP systems file. (The systems file describes when a remote
system can be contacted for file transfer.) It determines the valid times
for a user to log in.

• Time and date of last login (u_suclog) — Expressed as a canonical
UNIX time (in seconds since 1970).

• Terminal used during last login (u_suctty) — The terminal name is a
cross-reference to the device assignment and terminal control databases.

Identification and Authentication 4–3

• Number of unsuccessful login attempts since last login (u_numunsuclog)
— This value is used to compute whether the terminal is disabled due to
too many unsuccessful attempts.

• Number of unsuccessful login attempts allowed before disabling
(u_maxtries) — This value is the user-specific limit for the number of
unsuccessful attempts allowed until the account is disabled.

• Lock status (u_lock) — Whether or not the administrator has locked
the account. A locked profile cannot be used for login or other services.
Only an explicit request from the system administrator should unlock
an authentication profile, and only programs that handle such requests
should reset the locked field. A common programming error is to assume
that the lock indicates all lock conditions. This indicator shows only the
status of the administrative lock. An account may appear to be locked
due to being disabled by password lifetime expiration or exceeding the
number of unsuccessful attempts allowed for the account.

Your program can assume that with enhanced security enabled, the user
name and ID in the enhanced (protected) password database is maintained
by the system to have a corresponding entry in the /etc/passwd file.

4.4.1 Example: Password Expiration Program

The program named myexpire in Example 4–1 is a program for use with
enhanced security that prints the user’s password expiration time as defined
in the enhanced (protected) password database. This program is part of the
authentication protected subsystem and runs in the set group ID (SGID)
mode, setting the GID to auth.

Example 4–1: Password Expiration Program

#include <sys/types.h>
#include <stdio.h>
#include <sys/security.h>
#include <prot.h>

main (argc, argv)
int argc;
char *argv[];
{

struct es_passwd *acct;
time_t expire_time;
time_t expire_date;

/*--- Standard initialization ---*/

set_auth_parameters(argc, argv);
initprivs();

4–4 Identification and Authentication

Example 4–1: Password Expiration Program (cont.)

/*--- fetch account information using audit ID ---*/

if ((acct = getespwuid(getluid())) == NULL)
errmsg("Internal error");

/*-- test if personal or system default applies and print --*/

if (acct->uflg->fg_expire)
expire_time = acct->ufld->fd_expire;

else if (acct->sflg->fg_expire)
expire_time = acct->sfld->fd_expire;

else {
audit_db_error(acct); /* audit (externally defined) */
errmsg("No user-specific or system default \

expiration time.");
}

if (!acct->ufld->fg_schange) {
audit_db_error(acct); /* audit (externally defined) */
errmsg("Account does not have successful change time");

}

expire_date = acct->ufld->fd_schange + expire_time;

if (acct->uflg->fg_psw_chg_reqd && \
acct->ufld->fd_psw_chg_reqd) \

expire_date = time((time_t *) NULL);

audit_action(acct->ufld->fd_name, expire_date);
exit(0);

}

______________________ Note _______________________

The enhanced (protected) password database files are accessible
only to processes in the auth group. Programs that need to
read the enhanced password database files must set the group
ID to auth. (See the setgid(2) reference page.) To write this
information you must set the UID to 0 or to a user ID and have a
group ID of auth.

Identification and Authentication 4–5

5
Audit Record Generation

This chapter contains the following information:

• Audit record overview

• Audit events

• Audit records and tokens

• Audit flag and masks

• Disabling auditing for the current process

• Modifying auditing for the current process

• Application-specific audit records

• Site-defined events

• Creating your own audit logs

• Parsing audit logs

5.1 Audit Record Overview

Trusted programs often generate their own audit records because:

• Auditing at the application level avoids generating a large amount of
system-level audit records.

• When examining an audit report, it is difficult to deduce a user’s
intention solely from system-level audit records.

Trusted programs can use the audgen() system call, the audgenl() library
routine, or the audgen command to generate audit records; audgenl() is a
front-end to audgen(). For arguments, the program supplies an audit event
followed by audit data consisting of audit tokens and values.

The following code fragment shows how a program that checks boot
authentication can call audgenl() to audit authentication failure:

Audit Record Generation 5–1

if(audgenl(AUTH_EVENT, 1
AUD_T_LOGIN, pr->ufld.fd_name, 2
AUD_T_UID, pr->ufld.fd_uid,
AUD_T_CHARP, "boot authentication failed"),0)== -1)

perror("audgenl");

Notes:

1 AUTH_EVENT is the record event name.

2 AUD_T_LOGIN, AUD_T_UID, and AUD_T_CHARP are tokens, each with a
corresponding value.

These identifiers are defined in <sys/audit.h>. See Section 5.2 and
Section 5.3 for descriptions of events and tokens.

5.2 Audit Events

Each audit record has an audit event associated with it. The system
automatically adds the event when generating system call audit records.
Self-auditing application programs pass the event as an argument to
audgen() or audgenl() when generating audit records. There are two
types of audit events available to application programs:

• Trusted events, which are defined in <sys/audit.h> with values
between MIN_TRUSTED_EVENT and (MIN_TRUSTED_EVENT +
N_TRUSTED_EVENTS -1). For example, the LOGIN event.

• Site-defined events, which are defined in /etc/sec/audit_events
with values between MIN_SITE_EVENT and 1048576. The default range
for site-defined events is 64. For information on defining site events,
see Section 5.8.

5.3 Audit Records and Tokens
The audit subsystem has no fixed record type. Instead, an audit record is a
series of tuples (data objects containing two or more components). Each
tuple consists of an audit token and its corresponding value; depending on
the token type, the tuple might contain a length field.

The following sections describe the two types of tokens: public tokens
and private tokens. Application programs use public tokens.

5.3.1 Public Tokens

Public tokens are available to application programs that generate audit
records using audgen() and audgenl(). Public tokens are defined in
<sys/audit.h> and begin with AUD_T_; for example, AUD_T_CHARP.

5–2 Audit Record Generation

There are three basic types of public tokens:

pointer Used to represent data strings or structures
as pointers. AUD_T_CHARP (character string)
and AUD_T_HOMEDIR (home directory) are two
pointer-type tokens.

iovec Used to represent data as iovec-formatted data.
AUD_T_OPAQUE, and AUD_T_INTARRAY are two
iovec-type tokens. (Look for the iovec comments in
<sys/audit.h>. The iovec structure is defined in
<sys/uio.h>. For information about iovec, see
the readv(2) and writev(2) reference pages.)

fixed length Used to represent data as a 32- or 64-bit quantity.
(AUD_T_RESULT and AUD_TP_LONG are 64–bit;
others are 32-bit.) Most tokens use fixed-length
data. AUD_T_AUID (audit ID), AUD_T_UID (user
ID), and AUD_T_PID (process ID) are examples of
fixed-length tokens.

The following example generates an audit record using iovec-formatted
data:

#define AUD_COMPAT
#include <sys/audit.h>
#include <sys/uio.h>

main()
{

char buf[100];
int i;
struct iovec iov;

for (i = 0; i < sizeof(buf); i++)
buf[i] = i;

iov.iov_len = sizeof(buf);
iov.iov_base = buf;

if (audgenl (AUDGEN8,
AUD_T_CHARP, "opaque data test",
AUD_T_OPAQUE, &iov,
0) == -1)

perror ("audgenl");
}

Audit Record Generation 5–3

5.3.2 Private Tokens

Private tokens are used by the kernel; they are not available to application
programs. The audgen() system call rejects any attempts by application
programs to write records that contain private tokens. Private tokens
are defined in <sys/audit.h> and begin with AUD_TP_; for example
AUD_TP_AUID.

The kernel uses the private tokens when creating audit records. For
example, the kernel encapsulates each audit record with AUD_TP_LENGTH
tuples whose value is the length of the audit record. Another example is the
audgen() or audgenl() event argument, from which the kernel creates a
AUD_TP_EVENT tuple.

5.4 Audit Flag and Masks
Whether an audit event actually results in the generation of an audit record
depends on the following flag and mask settings:

• Process audit control flag

• Process audit mask

• System audit mask
The process audit control flag has four exclusive states:

AUDIT_OR An audit record is generated if either the system
audit mask or the process audit mask indicates such
an event should be audited.

AUDIT_AND An audit record is generated if both the system audit
mask and the process audit mask indicate such an
event should be audited.

AUDIT_OFF No audit records are generated for the current
process.

AUDIT_USR An audit record is generated if the process audit
mask indicates such an event should be audited.

The process audit control flag also has two nonexclusive states:

AUDIT_SYSCALL_OFF Turns off system call record generation
for the process.

AUDIT_HABITAT_USR Turns on the habitat system calls in
the user mask for the process even
if system calls are turned off for the

5–4 Audit Record Generation

system mask. The habitat system
calls are: System V – unlink()
and open(); real time – memlk(),
memunlk(), psx4_time_drift(), and
rt_setprio(). These habitat system
calls are turned on or off as a group. See
Appendix B for the habitat events.

The system administrator can establish a default audit level for users,
while retaining the ability to audit any individual user at whatever level
the administrator deems appropriate. (See Security Administration for
information on configuring and administering the audit subsystem.)

From a programmer’s perspective, a privileged process can set its audit
level (specify what gets audited), either as an absolute mask or in relation
to the system audit mask. See Section 5.6 for an example showing how to
set a process’s audit mask. See audcntl(2) and auditmask(8) for more
information.

5.5 Disabling System-Call Auditing for the Current Process

Controlling which events are audited is an important step in fine-tuning the
amount of audit data collected. System calls can generate large amounts of
audit data, but this data is not necessarily useful information. In general,
actively auditing the modification of fields in a security-relevant database or
auditing a specific security-relevant action provides more usable information
than trying to derive this information from a multitude of system-call audit
records. For example, the login process executes thousands of system calls,
but a single informative audit record written by the login process uses less
system resources and is easier to understand.

Application programs can disable system-call auditing but still allow
trusted-event auditing. The following code fragment shows how to use the
audcntl() system call to set AUDIT_SYSCALL_OFF:

/* OR the AUDIT_SYSCALL_OFF bit into the audcntl flag */
if ((cntlflag = audcntl(GET_PROC_ACNTL,

NULL, 0, 0, 0, 0)) == -1)
perror("audcntl");

else
audcntl(SET_PROC_ACNTL, NULL, 0,

cntlflag|AUDIT_SYSCALL_OFF, 0, 0);

Audit Record Generation 5–5

5.6 Modifying System-Call Auditing for the Current Process

A process can control what is audited for itself or another process by
modifying the target process’s auditmask and audcntl flags. You can
modify the current process’s audit mask as follows:

/* ex. set the process’s auditmask to audit only LOGIN
events and successful setgroups calls

*/
#include <sys/audit.h>
#include <sys/syscall.h>
char buf[AUDIT_MASK_LEN];
...
bzero (buf, sizeof(buf));
A_PROCMASK_SET (buf, LOGIN, 1, 1);
A_PROCMASK_SET (buf, SYS_setgroups, 1, 0);
if (audcntl (SET_PROC_AMASK, buf,

AUDIT_MASK_LEN, 0, 0, 0) == -1)
perror ("audcntl");

The A_PROCMASK_SET macro, defined in <sys/audit.h>, takes the
following arguments:

buf The buffer containing the mask.

event name The <sys/audit.h> header file contains trusted
event names. The <sys/*syscall.h> header files
contain system call names.

succeed Indicates whether to audit success; a 1 means audit
event success.

fail Indicates whether to audit failure; a 1 means audit
event failure.

See audcntl(2) for more information.

5.7 Application-Specific Audit Records

An application program provides application-specific audit data as
arguments to audgen() or audgenl().

The following code fragment sends an audit record to the kernel when
the specified event occurs. The event is either a trusted event from
<sys/audit.h> or a site-defined event from /etc/sec/site_events.
(Whether the kernel actually writes an audit record to the audit log depends
on the events audited for this process.)

5–6 Audit Record Generation

/* If bad_thing occurs, generate an event of type event_num,
* with string "bad thing happened", and a result of 66.
*/

#include <sys/audit.h>

if (bad_thing) {
if (audgenl (event_num,

AUD_T_CHARP, "bad thing happened",
AUD_T_RESULT, 66, 0) == -1)

perror ("audgenl");
}

In general, an application-generated audit record does not have to include
data for the tokens listed in Table 5–1. The kernel automatically adds this
information to each audit record. However, the audit subsystem does not
prevent you from putting any of the public token tuples in an audit record;
for example, you can add an AUD_T_AUID tuple to an audit record even
though the system will later add an AUD_TP_AUID to the record. Both tuples
are written to the audit log.

5.8 Site-Defined Events

A site can define its own set of audit events, called site-defined events, in
the locally created and maintained file /etc/sec/site_events. The file
contains one entry for each site event.

The potential range for site event numbers is MIN_SITE_EVENT (defined in
<sys/audit.h>) to 1048576. The default range is 64. To change this value,
set audit-site-events in /etc/sysconfigtab and reboot. For example,
to allow for up to 128 site-defined events:

sec:
audit-site-events=128

Each site-event entry can contain up to INT_MAX subevents. There is no
default range defined for subevents.

The maximum length for an event or subevent name is AUD_MAXEVENT_LEN,
defined in <sys/audit.h>.

Application programs can generate records containing both
site-defined events and the trusted events defined in <sys/audit.h>
(MIN_TRUSTED_EVENT to MAX_TRUSTED_EVENT).

The auditmask utility supports preselection for site-defined events, and
the audit_tool utility supposts postselection for site-defined events and
subevents.

Audit Record Generation 5–7

5.8.1 Sample site_events File

The syntax for a site-defined audit event entry is:

[event_name event_number [, subevent_name subevent_number ...] ;]

The following entries in a sample /etc/sec/site_events file demonstrate
how to create site-defined events and subevents:

essence 2048, 1
ess_read 0, 2
ess_write 1; 3

rdb 2049,
rdb_open 0,
rdb_close 1,
rdb_read 2,
rdb_write 3;

decinspect 2050;

Notes:

1 essence is the event; 2048 is the event number. Note that 2048 is
MIN_SITE_EVENT, the lowest number available for site-defined events.

2 ess_read is the first subevent; 0 is the first subevent number.

3 ess_write is the second subevent; 1 is the second subevent number.

See aud_sitevent(3) for more information on site-defined events.

5.8.2 Example: Generating an Audit Record for a Site-Defined Audit
Event

The following code fragment uses audgenl() to generate audit data for
an rdb_close event:

int event_num, subevent_num;

/* translate event name(s) into event numbers */
if (aud_sitevent_num ("rdb", "rdb_close",

&event_num, &subevent_num))
printf ("aud_sitevent_num failed");

/* generate audit data */
else if (audgenl (event_num,

AUD_T_SUBEVENT, subevent_num,
AUD_T_CHARP, "Trusted RDB V1.0 Close",
0) == -1)

perror ("audgenl");

You should include an AUD_T_CHARP, event name argument pair with
audgenl() when generating a record for a site-defined event. Doing so

5–8 Audit Record Generation

simplifies the task of analyzing audit data on a system that does not have a
copy of the local site_events file.

See aud_sitevent(3) and audgenl(3) for more information.

5.9 Creating Your Own Audit Logs
You can use the audgen() system call to create your own audit log. If the
size argument to audgen() is a nonzero value, audit data is copied to the
userbuff specified in audgen() rather than written to the system audit
logs. A trusted application can then write the data in userbuff to a unique
log file. See audgen(2) for more information.

You can use the audit_tool utility to read the new audit log. More detailed
information can be read from the log using the information in Section 5.10.

5.10 Parsing an Audit Log
Most people use audit_tool or dxaudit to read audit logs. The
audit_tool utility is a sophisticated program that converts audit data
into useful information, formats output, and handles audit records that
span audit log files. When audit_tool first reads an audit log, it creates
a corresponding .hdr file to maintain state information. This state
information reduces the time needed for subsequent reads of the audit logs.
Also, if an audit record spans audit logs, audit_tool opens both log files
and creates a complete record in the header file.

The following sections describe the format and construction of audit logs;
they provide:

• A description of an audit log plus a list of the token types generally found
in all audit records.

• The binary record format with examples showing an octal dump of a
record and its formatted output.

• A table of token/tuple byte descriptions, which lists the data types and
format for each public and private token.

• Sample macros for parsing tuples.
These sections do not provide the design information needed to create a
program similar to audit_tool; they do provide the basic information
required to parse an audit log into records and tuples.

5.10.1 Overview of Audit Log Format and List of Common Tuples

Audit logs are regular UNIX data files that contain audit records.
An audit record consists of a series of tuples whose format is either
token:value or token:length:value. Each record starts and ends with

Audit Record Generation 5–9

an AUD_TP_LENGTH tuple. (The audit_tool utility uses AUD_TP_LENGTH
to determine whether an audit record is valid. If the actual length of the
record does not match the AUD_TP_LENGTH value, audit_tool discards
the record and provides a warning.) Table 5–1 shows the default tuples
generally used for audit records.

Table 5–1: Default Tuples Common to Most Audit Records
Tuple Comment Tuple Comment

AUD_TP_LENGTH AUD_TP_VER-
SION

AUD_TP_AUID AUD_TP_RUID

AUD_TP_HOSTADDR AUD_TP_EVENTP if habitat

AUD_TP_HABITAT if habitat AUD_TP_EVENT

AUD_TP_UID AUD_TP_PID

AUD_TP_PPID AUD_TP_DEV if device is associated
with a process

AUD_TP_NCPU AUD_TP_TV_USEC

AUD_TP_SET_UIDS if uid
change

AUD_TP_TID if AUDIT_USR flag
is set

5.10.2 Token/Tuple Byte Descriptions

Table 5–2 lists public and private tokens with their octal values. For each
tuple, the third column lists the sequence in which tuple data is written to
an audit log by the kernel. Token is a 1–byte quantity; length is a 4–byte
quantity. Sample Parse Macro refers to the macro that audit_tool uses
to parse the tuple. These macros are provided, for reference purposes only,
in Section 5.10.3.

Table 5–2: Token/Tuple Byte Descriptions
Token Octal

Value
Tuple Format and Sample Parse Macro

AUD_T_CHARP 001 token:length:null-terminated ASCII string.
PARSE_DEF3

AUD_T_SOCK 003 token:length:struct sockaddr (4.3 style (u_short);
if family is > UCHAR_MAX, assume 4.4
style sockaddr of length (byte) then family
(byte)). PARSE_DEF3

AUD_T_LOGIN 004 token:length:null-terminated ASCII string.
PARSE_DEF3

5–10 Audit Record Generation

Table 5–2: Token/Tuple Byte Descriptions (cont.)

Token Octal
Value

Tuple Format and Sample Parse Macro

AUD_T_HOMEDIR 005 token:length:null-terminated ASCII string.
PARSE_DEF3

AUD_T_SHELL 006 token:length:null-terminated ASCII string.
PARSE_DEF3

AUD_T_DEVNAME 007 token:length:null-terminated ASCII string.
PARSE_DEF3

AUD_T_SERVICE 010 token:length:null-terminated ASCII string.
(reserved for future use)

AUD_T_HOSTNAME 011 token:length:null-terminated ASCII string.
PARSE_DEF3

AUD_T_INTP 012 token:length:int (First element is number of
elements in array; note that AUD_T_INTARRAY
is the preferred tuple when generating an
audit record.) PARSE_DEF3

AUD_T_LSOCK 016

AUD_T_RSOCK 017

AUD_T_LHOSTNAME 020

AUD_T_OPAQUE 030 token:length:value. (proplist or truly opaque;
check for proplist name/value pairs else
dump as hex) PARSE_DEF6

AUD_T_INTARRAY 031 token:length:int. PARSE_DEF3

AUD_T_GIDSET 032 token:length:int1, int2, ... (unaligned).
PARSE_DEF3

AUD_T_XDATA 033 token:struct aud_xdata (See <sys/audit.h>.)
PARSE_DEF8

AUD_T_AUID 040 token:int. PARSE_DEF2

AUD_T_RUID 041 token:int. PARSE_DEF2

AUD_T_UID 042 token:int. PARSE_DEF2

AUD_T_PID 043 token:int. PARSE_DEF2

AUD_T_PPID 044 token:int. PARSE_DEF2

AUD_T_GID 045 token:unsigned int. PARSE_DEF2

AUD_T_EVENT 046 token:int. PARSE_DEF2

AUD_T_SUBEVENT 047 token:int. PARSE_DEF2

AUD_T_DEV 050 token:int (Parse using the major()/minor()
macros from <sys/types.h>.) PARSE_DEF2

Audit Record Generation 5–11

Table 5–2: Token/Tuple Byte Descriptions (cont.)

Token Octal
Value

Tuple Format and Sample Parse Macro

AUD_T_ERRNO 051 token:int. PARSE_DEF1

AUD_T_RESULT 052 token:long. PARSE_DEF4

AUD_T_MODE 053 token:unsigned int. PARSE_DEF2

AUD_T_HOSTADDR 054 token:unsigned int. PARSE_DEF2

AUD_T_INT 055 token:int. PARSE_DEF2

AUD_T_DESCRIP 056 token:int (file descriptor). PARSE_DEF2

AUD_T_HOSTID 057 token:int. PARSE_DEF1

AUD_T_X_ATOM 060 token:unsigned int. PARSE_DEF2

AUD_T_X_CLIENT 061 token:int. PARSE_DEF2

AUD_T_X_PROPERTY 062 token:int. PARSE_DEF2

AUD_T_X_RES_CLASS 063 token:unsigned int. PARSE_DEF2

AUD_T_X_RES_TYPE 064 token:unsigned int. PARSE_DEF2

AUD_T_X_RES_ID 065 token:unsigned int. PARSE_DEF2

AUD_T_LHOSTNAME 066

AUD_T_SECEVENT 177 token:int. PARSE_DEF2

AUD_TP_ACCRGHT 201 token:length:cmsg_data (fd1, fd2, ... − See
<sys/socket.h>.) PARSE_DEF3

AUD_TP_MSGHDR 202 token:length:msghdr->msg_name. (See
<sys/socket.h>.) PARSE_DEF3

AUD_TP_EVENTP 203 token:length:string. PARSE_DEF3

AUD_TP_HABITAT 204 token:length:string. PARSE_DEF3

AUD_TP_ADDRVEC 205 token:length:struct sockaddr. (See socket.h.)
PARSE_DEF3

AUD_TP_INTP 206 token:length:int. PARSE_DEF3

AUD_TP_AUID 241 token:int. PARSE_DEF1

AUD_TP_RUID 0242 token:int. PARSE_DEF1

AUD_TP_UID 0243 token:int. PARSE_DEF1

AUD_TP_PID 0244 token:int. PARSE_DEF1

AUD_TP_PPID 0245 token:int. PARSE_DEF1

AUD_TP_HOSTADDR 246 token:unsigned int. PARSE_DEF1

AUD_TP_EVENT 247 token:int. PARSE_DEF1

5–12 Audit Record Generation

Table 5–2: Token/Tuple Byte Descriptions (cont.)

Token Octal
Value

Tuple Format and Sample Parse Macro

AUD_TP_SUBEVENT 250 token:int (Reserved for future use.) PARSE_DEF1

AUD_TP_NCPU 251 token:int. PARSE_DEF1

AUD_TP_DEV 252 token:int (Parse using the major()/minor()
macros from sys/types.h.) PARSE_DEF1

AUD_TP_LENGTH 253 token:int. PARSE_DEF1

AUD_TP_IPC_GID 254 token:unsigned int (ipc|msg|shm_perm.gid).
PARSE_DEF2

AUD_TP_IPC_MODE 255 token:unsigned int (ipc|msg|shm_perm.mode).
PARSE_DEF2

AUD_TP_IPC_UID 256 token:int (ipc|msg|shm_perm.uid).
PARSE_DEF2

AUD_TP_TV_SEC 257 token:timeval.tv_sec (See <sys/time.h>.)
PARSE_DEF1

AUD_TP_TV_USEC 260 token:timeval.tv_usec (See <sys/time.h>.)
PARSE_DEF1

AUD_TP_SHORT 261 token:short. PARSE_DEF2

AUD_TP_LONG 262 token:long. PARSE_DEF5

AUD_TP_VNODE_DEV 263 token:int. PARSE_DEF2

AUD_TP_VNODE_ID 264 token:unsigned int. PARSE_DEF2

AUD_TP_VN-
ODE_MODE

265 token:unsigned int. PARSE_DEF2

AUD_TP_VERSION 266 token:unsigned int. (See <sys/audit.h>.)
(AUD_VERSION | AUD_VERS_LONG).
PARSE_DEF1

AUD_TP_SET_UIDS 267 token:int. PARSE_DEF2

AUD_TP_CONT 270 token:unsigned int (A unique int for each
component of a record.) PARSE_DEF1

AUD_TP_TID 271 token:long. PARSE_DEF4

AUD_TP_PRIV 272 token:unsigned short. PARSE_DEF1

5.10.3 Parsing Tuples

The algorithm for reading a stream of audit records is as follows:

1. Open the audit log.

Audit Record Generation 5–13

2. Find the first audit record (starts and ends with AUD_TP_LENGTH
tuples).

3. Check that the record length matches the value in the AUD_TP_LENGTH
tuple. (If the length does not match, discard the record.)

4. Retrieve the first tuple following the AUD_TP_LENGTH tuple.

5. If the tuple length is variable, determine the size of the data.

6. Extract the data.

7. Retrieve the next tuple, check the length if necessary, and extract the
data.

8. Repeat until no more records.

9. Close the audit log.

The following macros illustrate how audit_tool parses tuples. The macros
are provided for reference purposes only; they illustrate one approach. Note
that indx values are maintained and used by audit_tool; they are not
part of the audit record tuple.

/* fixed length scalar value */
#define PARSE_DEF1(tokentype,field) \
bcopy (&rec_ptr[i+sizeof token], &field, sizeof(field)); \
i += (sizeof token + sizeof(field)); \
break;

/* fixed length field in array */
#define PARSE_DEF2(tokentype,field,indx) \
if (indx < AUD_NPARAM) \

bcopy (&rec_ptr[i+sizeof token], &field[indx++], sizeof(field[0])); \
i += (sizeof token + sizeof(field[0])); \
break;

/* array of strings */
#define PARSE_DEF3(tokentype,len,field,indx) \
bcopy (&rec_ptr[i+sizeof token], &j, sizeof(int)); \
if (j >= rec_len) j = 0; \
if (indx < AUD_NPARAM) { \

len[indx] = j; \
field[indx++] = (char *)&rec_ptr[i+(sizeof token)+(sizeof *intp)]; \

} \
i += (sizeof token + sizeof *intp + j); \
break;

/* fixed length scalar value whose size is h/w dependent (32 or 64-bit) */
#define PARSE_DEF4(tokentype,field) \
bzero (field.val, sizeof(field.val)); \
j = af->version & AUD_VERS_LONG ? sizeof(int)*2 : sizeof(int); \
bcopy (&rec_ptr[i+sizeof token], field.val, j); \
i += (sizeof token + j); \
break;

/* fixed length field in array whose size is h/w dependent (32 or 64-bit) */
#define PARSE_DEF5(tokentype,field,indx) \
bzero (field[indx].val, sizeof(field[indx].val)); \
j = af->version & AUD_VERS_LONG ? sizeof(int)*2 : sizeof(int); \
if (indx < AUD_NPARAM) \

5–14 Audit Record Generation

bcopy (&rec_ptr[i+sizeof token], field[indx++].val, j); \
i += (sizeof token + j); \
break;

/* array of opaque data streams */
#define PARSE_DEF6 PARSE_DEF3

/* iovec element in array */
#define PARSE_DEF7(tokentype,field,indx) \
j = sizeof(field[0]); \
if (indx < AUD_NPARAM) { \

bcopy (&rec_ptr[i+sizeof token], &j, sizeof(int)); \
if (j > rec_len) j = 0; \
bcopy (&rec_ptr[i+sizeof token+sizeof(int)], &field[indx++], j); \

} \
i += (sizeof token + sizeof(int) + j); \
break;

/* array of iovec elements with variable length components */
#define PARSE_DEF8(tokentype,field,ptr,indx) \
j = sizeof(field[0]); \
if (indx < AUD_NPARAM) { \

bcopy (&rec_ptr[i+sizeof token], &j, sizeof(int)); \
if (j > rec_len) j = 0; \
bcopy (&rec_ptr[i+sizeof token+sizeof(int)], &field[indx], j); \
ptr[indx++] = ((struct aud_xdata *) \

&rec_ptr[i+sizeof token+sizeof(int)])->xdata; \
} \
i += (sizeof token + sizeof(int) + j); \
break;

Audit Record Generation 5–15

6
Using the SIA Interface

This chapter contains the following information:

• SIA overview

• SIA architecture

• SIA system initialization

• SIAENTITY structure

• SIA parameter collection

• Maintaining state

• SIA return values

• SIA debugging and logging

• Integrating security mechanisms

• SIA session processing

• Changing secure information

• Accessing Security Information

• Session parameter collection

• Packaging products for the SIA

• Security mechanism-dependent interface

• Single-user mode

• Symbol preemption for SIA routines

6.1 SIA Overview

The Security Integration Architecture (SIA) allows the layering of local
and distributed security authentication mechanisms onto the Tru64
UNIX operating system. The SIA configuration framework isolates
security-sensitive commands from the specific security mechanisms. The
Tru64 UNIX security-sensitive commands have been modified to call a set
of mechanism-dependent routines. By providing a library with a unique
set of routines, developers can change the behavior of security-sensitive
commands, without changing the commands themselves. The SIA defines
the security mechanism-dependent interfaces (siad_*() routines) required

Using the SIA Interface 6–1

for SIA configurability. Figure 6–1 illustrates the relationship of the
components that make up the SIA.

Figure 6–1: SIA Layering

ZK−1086U−AI

Independent
Layer

Mechanism
dependent
Layer

Configuration
File

Application

Security sensitive command

Ind Ind

Matrix.conf

DCE Enhanced Base
Application
 Library

SIA
Entity

The security-sensitive commands are listed in Table 6–1.

Table 6–1: Security-Sensitive Operating System Commands
Command Description

chfn Changes finger information

chsh Changes login shell information

dnascd Spans DECnet

ftpd Serves the Internet File Transfer Protocol

login Authenticates users

passwd Creates or changes user passwords

rshd Serves remote execution

su Substitutes a user ID

Table 6–2 and Table 6–3 list the SIA porting routines.

Table 6–2: SIA Mechanism-Independent Routines

SIA Routine Description

sia_init() Initializes the SIA configuration

sia_chk_invoker() Checks the calling application for privileges

sia_collect_trm() Collects parameters

6–2 Using the SIA Interface

Table 6–2: SIA Mechanism-Independent Routines (cont.)

SIA Routine Description

sia_chg_finger() Changes finger information

sia_chg_password() Changes the user’s password

sia_chg_shell() Changes the login shell

sia_ses_init() Initializes SIA session processing

sia_ses_authent() Authenticates an entity

sia_ses_reauthent() Revalidates a user’s password

sia_ses_suauthent() Processes the su command

sia_ses_estab() Establishes the context for a session

sia_ses_launch() Logs session startup and any TTY conditioning

sia_ses_release() Releases resources associated with session

sia_make_entity_pwd() Provides the password structure for SIAENTITY

sia_audit() Generates the audit records

sia_chdir() Changes the current directory safely (NFS-safe)

sia_timed_action() Calls with a time limit and signal protection

sia_become_user() su routine

sia_validate_user() Validate a user’s password

sia_get_groups() Gets groups

Table 6–3: SIA Mechanism-Dependent Routines
SIA Routine Description

siad_init() Initializes processing once per reboot

siad_chk_invoker() Verifies the calling program privileges

siad_ses_init() Initializes the session

siad_ses_authent() Authenticates the session

siad_ses_estab() Checks resources and licensing

siad_ses_launch() Logs the session startup

siad_ses_suauthent() Processes the su command

siad_ses_reauthent() Revalidates a user’s password

siad_ses_release() Releases session resources

siad_chg_finger() Processes the chfn command

Using the SIA Interface 6–3

Table 6–3: SIA Mechanism-Dependent Routines (cont.)

SIA Routine Description

siad_chg_password() Invokes a function to change passwords

siad_chg_shell() Processes the chsh command

siad_getpwent() Processes getpwent() and getpwent_r()

siad_getpwuid() Processes getpwuid() and getpwuid_r()

siad_getpwnam() Processes getpwnam() and getpwnam_r()

siad_setpwent() Initializes a series of getpwent() calls

siad_endpwent() Releases resources after a series of
getpwent() calls

siad_getgrent() Processes getgrent() and getgrent_r()

siad_getgrgid() Processes getgrgid() and getgrgid_r()

siad_getgrnam() Processes getgrnam() and getgrnam_r()

siad_setgrent() Initializes a series of getgrent() calls

siad_endgrent() Closes series of getgrent() calls

siad_chk_user() Determines if a mechanism can change
the requested information

siad_get_groups() Fills in the array of a user’s supple-
mentary groups

The SIA establishes a layer between the security-sensitive commands and
the security mechanisms that deliver the security mechanism-dependent
functions. Each of the security-dependent SIA routines can be configured to
use up to four security mechanisms, called in varying orders.

The selection and order of the calls to the different security mechanisms is
established by a switch table file, /etc/sia/matrix.conf (see Security
Administration), similar to the way /etc/svc.conf is used to control libc
get* functions. However, the calling mechanism is distinctly different.

The SIA calling mechanism looks up the addresses of routines in the shared
libraries and calls them to access the specific security mechanism routine.
SIA provides alternative control and configuration for the getpw* and
getgr* functions in Tru64 UNIX.

SIA layering establishes internationalized message catalog support and
thread-safe porting interfaces for new security mechanisms and new
security-sensitive commands that need transparency. The thread safety is
provided by a set of locks pertaining to types of SIA interfaces. However,
because SIA is a layer between utilities and security mechanisms, it is the

6–4 Using the SIA Interface

responsibility of the layered security mechanisms to provide reentrancy in
their implementations.

The primary focus for SIA is to provide transparent interfaces for
security-sensitive commands like login, su, and passwd that are
sufficiently flexible and extensible to suit future security requirements.
Any layered product on Tru64 UNIX that is either creating a new
security mechanism or includes security-sensitive commands requires SIA
integration to preserve these transparent interfaces.

The SIA components consist of only user-level modules. The components
resolve the configuration issues with respect to the security-sensitive
command’s utilization of multiple security mechanisms. The SIA
components do not resolve any kernel issues pertaining to the configuration
and utilization of multiple security mechanisms.

6.2 SIA Architecture

The layering architecture introduced by SIA in Tru64 UNIX consists of the
following two groups of interface routines:

sia_*() The security mechanism-independent interface used
by security-sensitive commands.

siad_*() The security mechanism-dependent interface
supplied by each specific security mechanism.

Each security mechanism delivers a shared library containing the siad_*()
routines and provides a unique security mechanism name to satisfy the
configuration. The one word security mechanism name and the library name
are used as keys in the matrix.conf file to specify which mechanisms to
call and in what order.

The Tru64 UNIX security-sensitive commands have been modified to use
the mechanism-independent sia_*() routines. These routines are used
by the commands and utilities to access security functions yet remain
isolated from the specific security technologies. Each sia_*() routine calls
the associated mechanism-dependent siad_*() routines, depending on the
selected configuration specified in the matrix.conf file. See Security
Administration for a more detailed discussion of the file.

The mechanism-dependent siad_*() interface routines are defined by SIA
as callouts to security mechanism-dependent functions provided by the
security mechanisms. The matrix.conf file is used to determine which
security mechanisms are called and in what order they are called for each
SIA function.

Using the SIA Interface 6–5

The process of calling a particular module within a specified
security mechanism and passing the required state is done by the
mechanism-independent layer. The calling process uses shared library
functions to access and look up specific module addresses within specified
shared libraries provided by the security mechanisms.

The naming of the security mechanism-dependent modules, siad_*()
routines, is fixed to alleviate name conflicts and to simplify the calling
sequence. Tru64 UNIX uses the dlopen() and dlsym() shared library
interfaces to open the specified security-mechanism shared library and look
up the siad_*() function addresses. If you need to preempt the siad_*()
routines, your names must be of the form _ _siad_* in your library and the
library must be linked ahead of libc. See Section 6.17 for more information
on the naming and preempting requirements.

6.2.1 Libraries

SIA security mechanisms are configured as separate shared libraries with
entry points that are SIA defined names. Each mechanism is required
to have a unique mechanism identifier. The actual entry points in the
shared library provided by the security mechanism are the same for each
mechanism, siad_*() form entry points.

The default security configuration is the BASE security mechanism
contained in libc. The default BASE security mechanism uses the
/etc/passwd file, or a hashed database version, as the user database and
the /etc/group file as the group’s database. The default BASE mechanism
also uses the Network Information Service (NIS) if it is configured. In
single-user mode or during installation, the BASE security mechanism is
in effect.

6.2.2 Header Files

The SIA interfaces and structures are defined in the /usr/include/sia.h
and /usr/include/siad.h files. The sia*.h files are part of the program
development subsets.

6.3 SIA System Initialization

The SIA provides a callout to each security mechanism on each reboot
of the system. This callout is performed by the /usr/sbin/siainit
program, which calls each of the configured security mechanisms at their
siad_init() entry point. This allows the security mechanisms to perform
a reboot initialization. A SIADFAIL response from the siad_init() call
causes the system to not reboot and an SIA INITIALIZATION FAILURE
message to be sent to the console. Consequently, only problems that would

6–6 Using the SIA Interface

cause a security risk or would not allow root to log in should warrant a
SIADFAIL response from the siad_init() call.

6.4 SIAENTITY Structure

The SIAENTITY structure contains session processing parameters and
is used to transfer session state between the session processing stages.
Example 6–1 shows the SIAENTITY structure.

Example 6–1: The SIAENTITY Structure

typedef struct siaentity {
char *name; /* collected name */
char *password; /* entered or collected password */
char *acctname; /* verified account name */
char **argv; /* calling command argument list */
int argc; /* number of arguments */
uid_t suid; /* starting ruid */
char *hostname; /* requesting host NULL=>local */
char *tty; /* pathname of local tty */
int can_collect_input; /* 1 => yes, 0 => no input */
int error; /* error message value */
int authcount; /* Number of consecutive */

/* failed authent attempts */
int authtype; /* Type of last authent */
struct passwd *pwd; /* pointer to passwd struct */
char *gssapi; /* for gss_api prototyping */
char *sia_pp; /* for passport prototyping */
int *mech[SIASWMAX]; /* pointers to mech-specific data */

/* allocated by mechanisms indexed */
/* by the mechind argument */

} SIAENTITY;

6.5 SIA Parameter Collection

The SIA provides parameter collection callback capability so that
any graphical user interface (GUI) can provide a callback. The
sia_collect_trm() routine is used for terminal parameter collection.
Commands calling the sia_*() routines pass as an argument to the
appropriate collection routine pointer, thus allowing the security mechanism
to prompt the user for specific input. If the collection routine argument is
NULL, the security mechanism assumes that no collection is allowed and
that the other arguments must be used to satisfy the request. The NULL
case is used for noninteractive commands. For reliability, use a collection
routine whenever possible.

Using the SIA Interface 6–7

The can_collect_input argument is included in the session processing
and disables the collection facility for input while allowing the output of
warnings or error messages. Collection routines support simple form and
menu data collection. Some field verification is supported to check parameter
lengths and content (alphanumeric, numeric only, letters only, and invisible).
The collection routine supplied by the security-sensitive command or utility
is responsible for providing the appropriate display characteristics.

The parameter collection capability provided by SIA uses the
sia_collect_trm()interface which is defined in sia.h. See Example 6–2.

Example 6–2: The sia.h Definition for Parameter Collection

int sia_collect_trm(timeout, rendition, title,
num_prompts, prompts);

int timeout /* number of seconds to wait */
/* 0 => wait forever */

int rendition
SIAMENUONE 1 /* select one of the choices given */
SIAMENUANY 2 /* select any of the choices given */
SIAFORM 3 /* fill out the form */
SIAONELINER 4 /* One question with one answer */
SIAINFO 5 /* Information only */
SIAWARNING 6 /* ERROR or WARNING message */

unsigned char *title /* pointer to a title string. */
/* NULL => no title */

int num_prompts /* Number of prompts in collection */
prompt_t *prompts /* pointer to prompts */

typedef struct prompt_t
{
unsigned char *prompt;
unsigned char *result;
int max_result_length; /* in chars */
int min_result_length; /* in chars */
int control_flags;
} prompt_t;

control_flags
SIARESINVIS 0x2 result is invisible
SIARESANY 0x10 result can contain any ASCII chars
SIAPRINTABLE 0x20 result can contain only printable chars
SIAALPHA 0x40 result can contain only letters
SIANUMBER 0x80 result can contain only numbers
SIAALPHANUM 0x100 result can contain only letters and numbers

6–8 Using the SIA Interface

See the sia_collect_trm(3) reference page for more information on
parameter collection.

6.6 Maintaining State

Some commands require making multiple calls to sia_*() routines and
maintaining state across those calls. The state is always associated with a
particular user (also called an entity). SIA uses the term entity to mean a
user, program, or system which can be authenticated. The entity identifier is
the user ID (UID). All security mechanisms which are ported to Tru64 UNIX
must be administered such that a particular UID maps equivalently across
each mechanism. This constraint allows for the interaction and coexistence
of multiple security mechanisms. If a security mechanism has an alternative
identifier for a user, it must provide a mapping to a unique UID for other
mechanisms to properly interoperate and provide synchronized security
information.

A pointer to the SIAENTITY structure (see Section 6.4) is used as an
argument containing intermediate state identifying the entity requesting
a security session function. The SIAENTITY structure also allows for the
sharing of state between security mechanisms while processing a session.

The libc library provides for the allocating and freeing of primitives for
SIAENTITY structures. The allocation of the SIAENTITY structures
occurs as part of the session initialization routine, sia_ses_init(). The
deallocation of the SIAENTITY structure occurs in the call to the session
release sia_ses_release() routine. If errors occur during session
processing (such as in the sia_ses_*authent() routines) and you give up
instead of retrying, sia_ses_release() must be called to clean or free up
the SIAENTITY structure related to the session. If errors occur during an
sia_ses_estab() or sia_ses_launch() routine causing failure status to
be returned, the routines call sia_ses_release().

6.7 SIA Return Values

SIA supports the passing of a success or failure response back to the calling
command or utility. The SIAENTITY structure has a reserved error code
field (error), which is available for finer error definition.

The siad_ses_*() routines return bitmapped values that indicate the
following status:

SIADFAIL Indicates conditional failure. Lowest bit
set to 0. Continue to call subsequent
security mechanisms.

Using the SIA Interface 6–9

SIADSUCCESS Indicates conditional success. Lowest bit
set to 1.

SIADSTOP Modifies the return to be unconditional.
Second lowest bit set to 1. Included with
either SIADFAIL or SIADSUCCESS.

6.8 SIA Debugging and Logging
SIA supports a debugging and logging capability that allows appending
data to the /var/adm/sialog file. The SIA logging facility supports the
following three log-item types:

EVENT Success cases within the SIA processing

ERROR Failures within the SIA processing

ALERT Security configuration or security risks
within the SIA interfaces

The sia_log() logging routine is available to security mechanisms and
accepts formatting strings compatible to printf() format. Each log entry is
time stamped. Example 6–3 is a typical /var/adm/sialog file.

Example 6–3: Typical /var/adm/sialog File

SIA:EVENT Wed Feb 3 05:21:31 1999
Successful SIA initialization
SIA:EVENT Wed Feb 3 05:22:08 1999
Successful session authentication for terry on :0
SIA:EVENT Wed Feb 3 05:22:08 1999
Successful establishment of session
SIA:ERROR Wed Feb 3 05:22:47 1999
Failure to authenticate session for root on :0
SIA:ERROR Wed Feb 3 05:22:52 1999
Failure to authenticate session for root on :0
SIA:EVENT Wed Feb 3 05:22:59 1999
Successful session authentication for root on :0
SIA:EVENT Wed Feb 3 05:22:59 1999
Successful establishment of session
SIA:EVENT Wed Feb 3 05:23:00 1999
Successful launching of session
SIA:EVENT Wed Feb 3 05:24:40 1999
Successful authentication for su from root to terry
SIA:EVENT Wed Feb 3 05:25:46 1999
Successful password change for terry

6–10 Using the SIA Interface

The sia_log() routine is for debugging only. The _ses_* routines use
audgen() for audit logging.

6.9 SIA Integrating Security Mechanisms

Depending on the class or type of SIA processing being requested, the
selection and order of security mechanisms may vary. A typical set of
security mechanisms might include a local mechanism (one that is only
concerned with the local system security) and a distributed security
mechanism (one that is concerned with aspects of security that span several
systems). SIA layering allows these two security mechanisms to either
coexist or be better integrated.

An example of security mechanism integration is the log in or session
processing. SIA layering passes state (SIAENTITY) between the various
security mechanisms during the session processing. This state contains
collected names and passwords and the current state of session processing.
The local security mechanism can be designed to trust the authentication
process of a previously run security mechanism, thus allowing authentication
vouching. In this case, if a user is successfully authenticated by the
distributed mechanism, the local mechanism can accept or trust that
authentication and continue with session processing.

SIA also allows the local mechanism to not accept vouching. In this case,
the local mechanism would be forced to do its own authentication process
regardless of previous authentication outcomes. This typically results in the
user being asked for several sets of user names and passwords. Although
SIA allows any ordering of security mechanisms, it makes sense that those
mechanisms that accept vouching should be ordered after those that do not.

______________________ Notes ______________________

The default security mechanism, BASE, accepts authentication
vouching.

The SIA layer deals with the isolation of security mechanisms from the
commands’ specific user interface preferences. To accomplish this isolation,
the calling command provides a pointer to a parameter collection routine as
an argument to the sia_*() routines. The collection routine must support
simple form and menu type processing. The definitions or the requirements
of the collection routine are defined in sia.h. This separation of user
interface from the security mechanisms allows the flexibility to change the
user interface to suit any workstation or dumb terminal model.

Using the SIA Interface 6–11

6.10 SIA Session Processing

The session processing interfaces are associated with the process of a utility
or command that needs to become or act as some other entity. Figure 6–2
illustrates the SIA routines and their relationship in a typical login session.

Figure 6–2: SIA Login Session Processing

ZK−1085U−AI

si
a_

se
s_

in
it

[s
ia

_s
es

_a
ut

h]

si
a_

se
s_

es
ta

bl
is

h

si
a_

se
s_

la
un

ch

si
a_

se
s_

re
le

as
e

si
ad

_s
es

_i
ni

t

[s
ia

d_
se

s_
au

th
]

si
ad

_s
es

_e
st

ab
lis

h

si
ad

_s
es

_l
au

nc
h

si
ad

_s
es

_r
el

ea
se

Login Code

Mech Implementation

SIA Entity

Independent Layer

Dependent Layer

The session processing interfaces to the security mechanism-dependent
routines (siad_*()) use the same returns to determine the state of the
session and whether it should continue. The returns are as follows:

SIADFAIL A SIADFAIL response from a security mechanism
siad_*() routine indicates that the security
mechanism has failed but that processing should
continue.

SIAD-
FAIL|SIASTOP

A SIADFAIL | SIADSTOP response from a security
mechanism siad_*() routine indicates that the
security mechanism has failed and that the session

6–12 Using the SIA Interface

processing should be stopped. This return is used
if some major security problem or risk is found.
Such an event should be sent to the sialog file
as an ALERT.

SIADSUCCESS The final response is SIADSUCCESS, which
indicates that the security mechanism has
successfully completed that phase of session
processing. Under some conditions, a return of
SIADSUCCESS | SIADSTOP is also useful.

Not all security mechanisms have processing required in each phase of
the session processing. In general, the default response is SIADFAIL to
force the other configured security mechanisms to produce the required
SIADSUCCESS response. The only exceptions to this are the first and
last stages of session processing. If a security mechanism has nothing to
do in either session initialization or session release, it should return a
SIADSUCCESS response. For all other phases of session processing, a
SIADFAIL response is the default.

The session processing interfaces are typically called in the following order:

sia_ses_init() Initialize the session.

sia_ses_authent() Authenticate the session. Can be recalled
on failure for retries.

sia_ses_estab() Establish the session. On failure, calls
sia_ses_release().

sia_ses_launch() Launch the session. On failure, calls
sia_ses_release().

sia_ses_release() Release the session.

The session routines must all have the same number and order of
mechanisms to keep the mechanism index (mechind) consistent.

Example 6–4 is a code fragment that shows session processing for the login
command.

Using the SIA Interface 6–13

Example 6–4: Session Processing Code for the login Command

.

.

.
/* SIA LOGIN PROCESS BEGINS */

/* Logging of failures to sia_log is done within the libsia */
/* Logging to syslog is responsibility of calling routine */

if((sia_ses_init(&entity, oargc, oargv, hostname, loginname, \
ttyn, 1, NULL)) == SIASUCCESS) {

/***** SIA SESSION AUTHENTICATION *****/

if(!fflag) {
for(cnt=5; cnt; cnt--) {

if((authret=sia_ses_authent(sia_collect,NULL,entity)) \
== SIASUCCESS)

break;
else if(authret & SIASTOP)

break;
fputs(MSGSTR(INCORRECT, "Login incorrect\n"), stderr);

}
if(cnt <= 0 || (authret & SIASTOP)) {

sia_ses_release(&entity);
exit(1);

}
}

/***** SIA SESSION ESTABLISHMENT *****/

if(sia_ses_estab(sia_collect,entity) == SIASUCCESS) {
/****** set up environment *******/
/* destroy environ. unless user requested preservation */
if (!pflag) {

pp = getenv("TERM");
if (pp)
strncpy(term, pp, sizeof term);
clearenv();

}
(void)setenv("HOME", entity->pwd->pw_dir, 1);

if(entity->pwd->pw_shell && *entity->pwd->pw_shell)
strncpy(shell, entity->pwd->pw_shell, sizeof shell);

(void)setenv("SHELL", shell, 1);
if (term[0] == ’ ’)

(void)strncpy(term, stypeof(tty), sizeof(term));
(void)setenv("TERM", term, 0);
(void)setenv("USER", entity->pwd->pw_name, 1);
(void)setenv("LOGNAME", entity->pwd->pw_name, 1);

6–14 Using the SIA Interface

Example 6–4: Session Processing Code for the login Command (cont.)

(void)setenv("PATH", _PATH_DEFPATH, 0);

/***** SIA LAUNCHING SESSION *****/

if(sia_ses_launch(sia_collect,entity) == SIASUCCESS) {
/* 004 - start */
if ((entity -> pwd != NULL) &&

(entity -> pwd -> pw_dir != NULL) &&
(entity -> pwd -> pw_dir [0] != 0))

sprintf (hush_path, "%s/%s",
entity -> pwd -> pw_dir,
_PATH_HUSHLOGIN);

else strcpy (hush_path, _PATH_HUSHLOGIN);
quietlog = access(hush_path, F_OK) == 0;
/* 004 - end */
if(!quietlog)

quietlog = !*entity->pwd->pw_passwd && \
!usershell(entity->pwd->pw_shell);

if (!quietlog) {
struct stat st;
motd();
(void)sprintf(tbuf, "%s/%s", _PATH_MAILDIR, \

entity->pwd->pw_name);
if (stat(tbuf, &st) == 0 && st.st_size != 0)

(void)printf(MSGSTR(MAIL, "You have %smail.\n"),
(st.st_mtime > st.st_atime) ? MSGSTR(NEW, \

"new ") :);
}
sia_ses_release(&entity);

/******* Setup default signals **********/

(void)signal(SIGALRM, SIG_DFL);
(void)signal(SIGQUIT, SIG_DFL);
(void)signal(SIGINT, SIG_DFL);
(void)signal(SIGTSTP, SIG_IGN);

tbuf[0] = ’-’;
(void)strcpy(tbuf + 1, (p = rindex(shell, ’/’)) ?

p + 1 : shell);

/****** Nothing left to fail *******/

if(setreuid(geteuid(),geteuid()) < 0) {
perror("setreuid()");
exit(3);

}

Using the SIA Interface 6–15

Example 6–4: Session Processing Code for the login Command (cont.)

execlp(shell, tbuf, 0);
(void)fprintf(stderr, MSGSTR(NO_SHELL, \

"login: no shell: %s.\n"), strerror(errno));
exit(0);

}
/***** SIA session launch failure *****/

}
/***** SIA session establishment failure *****/
}
logerror(entity);
exit(1);

}

logerror(entity)
SIAENTITY *entity;
{
if(entity != NULL)

{
sia_ses_release(&entity);
}

syslog(LOG_ERR, MSGSTR(FAILURE3," LOGIN FAILURE "));
}
.
.
.

6.10.1 Session Initialization

Session initialization is performed by the sia_ses_init() routine. The
sia_ses_init() routine calls each configured security mechanism’s
siad_ses_init() entry point to do any processing associated with the
start of a session processing sequence. The session initialization stage
is responsible for setting up the SIAENTITY structure, which is used to
maintain state though the different stages of session processing.

6.10.2 Session Authentication

The authentication stage of session processing is responsible for proving the
identity for the session. This stage of the processing must determine the
entity associated with the session. If the entity cannot be determined, the
authentication fails. If the authentication is successful, an entity is derived.

The top level SIA session authentication routine, sia_ses_authent(),
calls the security mechanism-dependent siad_ses_authent() routines
according to the configured sequence stored in the matrix.conf file. As

6–16 Using the SIA Interface

the multiple authentication routines are called, the SIAENTITY structure
is used to hold precollected parameters like the name, password, and
eventually the associated /etc/passwd entry of the entity.

By using precollected arguments, the security mechanisms avoid recollecting
arguments. An example is when root attempts to log in to a system
configured to first call the DCE siad_ses_authent() routine followed by
the local ENHANCED (enhanced security) siad_ses_authent() routine.

It is likely that the DCE authentication process will not be capable
of authenticating root. However, it is capable of asking the user for
a name and password, which are then passed to the ENHANCED
siad_ses_authent() routine using the SIAENTITY structure. This
allows the ENHANCED mechanism to verify the root name and password,
thus authenticating root. As soon as the session authentication stage is
complete, the password field is cleared.

Each security mechanism-dependent authentication routine must have the
ability to determine and set the entity on a successful authentication. If
a security mechanism has its own private interpretation of the entity, it
must provide a translation to the common SIA entity, user name and UID.
Without this restriction there is no way to synchronize security mechanisms
with respect to a common entity.

At the successful completion of the session authentication stage, the
SIAENTITY structure must contain the user name and UID of the
authenticated entity. If the session authentication fails, the calling command
or program can call sia_ses_authent() again to retry the authentication
process. Certain mechanisms may allow other mechanisms to vouch for this
stage of session processing. This usually occurs when local mechanisms
default their authentication process to other distributed mechanisms.

6.10.3 Session Establishment

The session establishment stage is invoked with sia_ses_estab()
following a successful session authentication stage. The sia_ses_estab()
routine is configured to call multiple security mechanism’s
siad_ses_estab() routines in the order defined in the matrix.conf file.
The session establishment stage of session processing is responsible for
checking mechanism resources and licensing to determine whether this
session can be successfully launched. The determination of the passwd
struct entry and any other required security context must occur in this
stage. At the successful completion of the session establishment stage, the
system is prepared to grant the session launching.

Using the SIA Interface 6–17

6.10.4 Session Launch

The session launch stage is responsible for the logging and the accounting
of the session startup. The local mechanism is additionally responsible
for setting the wtmp and utmp entries and for setting the effective UID to
the UID associated with the entity. The processing by the setgid() and
initgroup() routines as well as lastlog updating are also done by the
local mechanism. Only catastrophic errors should be able to stop the session
from continuing.

6.10.5 Session Release

The last stage of the session processing sequence (either successful or failed)
is the call to the sia_ses_release() routine. This routine frees all session
processing resources, such as the SIAENTITY structure. Each configured
mechanism is called to release any resources which are no longer required
for the session.

6.10.6 Specific Session Processing

The following sections describe specific session processing for the login,
rshd, and rlogind commands.

6.10.6.1 The login Process

The most common case of session processing is when the login process
becomes the entity associated with a user. The entity is the unique SIA
identifier for any person or process that can be authenticated and authorized.
The code in Example 6–4 is part of the login command.

6.10.6.2 The rshd Process

Session processing for /usr/sbin/rshd differs from login. The rshd
process calls ruserok() to check the .rhosts and host.equiv files for
authorization. If ruserok() fails, the rshd fails.

6.10.6.3 The rlogind Process

The rlogind, program executes the login command with the −f flag if
its call to ruserok() is successful, and without the −f flag if the call to
ruserok() is unsuccessful. If login is executed without the −f flag,
sia_ses_authent() is called, which prompts for a user name and
password, if required.

6–18 Using the SIA Interface

6.11 Changing Secure Information

The routines described in this section handle the changing of the traditional
/etc/passwd entry information. This class of routines could be extended
to handle other types of common secure information. Only the traditional
passwd, chfn, and chsh types of command processing are specified. Each of
these routines follows the same operational model. When a user requests a
change, the routines in this class check each mechanism that was configured
by calling siad_chk_user() to determine whether the user is registered
with the mechanism. Once it is determined that the user is registered with
more than one security mechanism, the user is given a menu selection
by the collection routine to choose which mechanism is targeted for the
change. If only one mechanism is configured to handle the request, then
that mechanism is called directly.

6.11.1 Changing a User’s Password

To change a password, the sia_chg_password() routine calls the
configured mechanisms by using the siad_chg_password() routine.
To determine which mechanisms support a particular user, the
siad_chk_user() call is made to all mechanisms configured for the
siad_chg_passwd() routine. When multiple mechanisms claim registry
of a user, the user is given a selection to choose from. If the user is only
registered with one mechanism, then that mechanism is called.

6.11.2 Changing a User’s Finger Information

The sia_chg_finger() routine calls the configured mechanisms by the
siad_chg_finger() routine to change finger information. To determine
which mechanisms support a particular user, the siad_chk_user() call is
made to all mechanisms configured for the siad_chg_finger() routine.
When multiple mechanisms claim registry of the user, the user is given a
selection menu to choose one from. If the user is only registered with one
mechanism, then that mechanism is called.

6.11.3 Changing a User’s Shell

The sia_chg_shell() routine calls the configured mechanisms by the
siad_chg_shell() routine to change a user’s login shell. To determine
which mechanisms support a particular user, the siad_chk_user() call
is made to all mechanisms configured for the siad_chg_shell() routine.
When multiple mechanisms claim registry of the user, the user is given
a selection menu from which to choose a mechanism. If the user is only
registered with one mechanism, then that mechanism is called.

Using the SIA Interface 6–19

6.12 Accessing Security Information

The SIA interfaces described in the following sections handle the access to
the traditional UNIX /etc/passwd and /etc/group information. You can
create routines to handle the access of other common secure information.
Mechanism-dependent security information access should not be handled
by the SIA interfaces unless nearly all mechanisms support the type of
information being accessed.

The sia_context and mech_contexts structures, defined in sia.h, are
used to maintain state across mechanisms. The structures are as follows:

struct mech_contexts {
void *value;
void (*destructor)();

};

struct sia_context {
FILE *fp;
union {
struct group *group;
struct passwd *pass;
} value;
int pkgind;
unsigned buflen;
char *buffer;
struct mech_contexts mech_contexts[SIASWMAX];

};

Because the getgr*() and the getpw*() routines have SIA interfaces,
security mechanisms need provide only one routine for both reentrant
and nonreentrant, threadsafe applications. This is accomplished by the
sia_getpasswd() and sia_getgroup() routines which encapsulate
the arguments in a common form for the security mechanism’s siad_*()
routines.

6.12.1 Accessing /etc/passwd Information

Access to traditional /etc/passwd entries is accomplished by the getpw*()
routines in libc and libc_r. The sia_getpasswd() routine in the SIA
layer preserves the calling semantics of the current getpw*() routines
and converts them into one common routine used for both single and
multithreaded processes. By doing this conversion, security mechanisms
need only support one set of getpw*() routines. The processing of the
getpwent() routine is accomplished by calling each configured security
mechanism in the predefined order until all entries have been exhausted.

6–20 Using the SIA Interface

6.12.2 Accessing /etc/group Information

Access to traditional /etc/group entries is accomplished by the getgr*()
routines in libc and libc_r. The sia_getgroup() routine in the SIA
layer preserves the calling semantics of the current getgr*() routines
and converts them into one common routine used for both single and
multithreaded processes. The conversion to a single routine eases the
security mechanism port by reducing the number of routines required.
The processing of the getgrent() routine is accomplished by calling each
configured security mechanism in the predefined order until all group
entries have been exhausted.

6.13 Session Parameter Collection

The SIA session interfaces and the interfaces that change secure information
use a predefined parameter collection capability. The calling application
passes the address to a parameter collection routine through the SIA to
the siad_*() routines. The collection routine allows different security
mechanisms to prompt the user for different parameters without having to
be aware of the user interface details.

This capability isolates the SIA security mechanisms from the user
interface and the ability to do simple forms and menus. This collection
capability is sufficiently limited to allow ease of implementation by different
user-interface packages or windowing systems. However, the collection
routines must support simple (up to eight item) menu or form styles of
processing. On dumb terminals, forms processing becomes a set of one line
questions. Without this capability, the application needs to be modified to
support new security questions.

6.14 Packaging Products for the SIA

The SIA defines the security mechanism components that are required to
port to the Tru64 UNIX system. These components are as follows:

• A shared library containing the mechanism-dependent (siad_*())
routines used as an interface to commands and utilities

• A default /etc/sia/matrix.conf file, which is installed to use the
security mechanism through SIA

The shared library must contain all of the siad_*() routines described
in Table 6–3. The default dummy routine for any siad_*() routine
always returns the SIADFAIL failure response. If a security mechanism is
supplying dummy routines, these routines should not be configured into
the matrix.conf file.

Using the SIA Interface 6–21

The /etc/sia/matrix.conf file contains one line for each siad_*()
routine. This line contains the mechanism identifiers (called mech_types)
and the actual path to the security mechanism library. The sia_*()
routines use this set of keys to call mechanisms in a right to left ordering.
See Security Administration for the default matrix.conf settings for Tru64
UNIX.

If the DCE security mechanism is to be called first followed by the BASE
(BSD) security mechanism, the configuration line for siad_init() might
look like the following:

siad_init=(DCE,/usr/shlib/libdcesia.so)(BSD,libc.so)

Layered security products must deliver pretested matrix.conf files on
their kits. The modification of an SIA matrix.conf file must be followed
by a reboot. System administrators must never be required to edit a live
matrix.conf file hand.

See Security Administration for a more detailed discussion of the
matrix.conf file.

6.15 Security Mechanism-Dependent Interface
Security mechanisms are required to provide all of the siad_*() entry
points. (See Table 6–3.) The default stub routine should return SIADFAIL.
With the exception of the session routines, no stubs should ever be called
in the /etc/sia/matrix.conf file. The session routines must all have
the same number and order of mechanism to keep the mechanism index
(mechind) consistent. However, if an error in configuration occurs, the stub
routines deliver the appropriate SIADFAIL response.

The order of security mechanisms in the /etc/sia/matrix.conf file is
the same for each class of interfaces. Therefore, if a security mechanism
supports session processing, it is called in the same order for all the session
related interfaces.

The layered security mechanism should provide a set of private entry points
prefixed by mechanism_name__ for each of the siad_*() entries used for
internal calls within the mechanism to siad_*() routines. An example
of this is in the BASE mechanism in libc. To assure that the BASE
mechanism is calling its own siad_getpwuid() routine, a separate entry
point is created and called from the siad_getpwuid() entry as follows:

int siad_getpwuid(uid_t uid, struct passwd *result, \
char *buffer, int buflen)

{
return(bsd_siad_getpwuid(uid,result,buffer,buflen));
}

6–22 Using the SIA Interface

static int bsd_siad_getpwuid(uid_t uid, struct passwd *result, \
char *buffer, int buflen)

{
/* The BSD security mechanism siad_getpwuid() routine */
}

If the convention of supplying internal names is used for all of the siad_*()
entry points, a layered security mechanism can then produce a separate
library containing all the security mechanism-dependent code. This leaves
the configured shared library with only stubs that call the other library.

Security mechanisms generally fall into two categories: local and distributed.
The local security mechanism is responsible for establishing all of the local
context required to establish a session on the local system. There are two
local security mechanisms in Tru64 UNIX: the BASE mechanism and the
ENHANCED mechanism.

Distributed mechanisms, like DCE, are more concerned with establishing
distributed session context like Kerberos tickets. However, the distributed
security mechanism may provide some local context that can be used by the
local security mechanism. The distributed security mechanism may also
provide a sufficiently strong authentication to allow a local mechanism to
trust it for authentication. This notion of one mechanism trusting another
is called vouching and allows the user to be authenticated only once to
establish a login session. Local mechanisms should always be configured
last in the calling sequences.

All of the SIA capabilities listed in this section can be configured to use
multiple security mechanisms.

6.16 Single-User Mode

If you want to have your own single-user security mode, you need to rebuild
and replace the commands and utilities affected, such as any statically
linked binaries found in /sbin. This can be accomplished by providing an
siad_*() routine library to precede libc in the link order for the affected
commands.

The new routines need to override the _ _siad_*() routines, as opposed
to the siad_*() routines. The siad_*() naming convention is the weak
symbol entry point, while the _ _siad_*() convention is the strong symbol
entry point that is actually used. See Section 6.17 for more information
about routine-naming conventions.

Using the SIA Interface 6–23

6.17 Symbol Preemption for SIA Routines
This section describes the naming convention for routines (added by
developers) that must be followed to stay in compliance with ANSI C routine
naming rules.

6.17.1 Overview of the Symbol Preemption Problem

Overriding the symbols used by the SIA routines in libc is not as simple
as providing routines named the same as the SIA routines (such as,
siad_ses_init()) in a library loaded before libc.a. This is because of
the ANSI C convention for libc routine names and the symbols that must
be reserved to the user.

A conflict exists between the requirements of ANSI C and the expectations
of the application developers regarding what entry points can exist in
the libc.a and libc.so libraries. The ANSI C standard lists the
symbols allowed, and the only other symbols that are valid must be of the
“reserved-to-vendor” form. That is, they must start with two underscores, or
one underscore and a capital letter. This set of symbols is limited, and does
not meet the expectations of the general user community.

6.17.2 The Tru64 UNIX Solution

To satisfy both ANSI C and developer expectations, Tru64 UNIX uses
“strong” and “weak” symbols to provide the additional names. If a routine
such as bcopy() is not allowed by ANSI C, it has a weak symbol named
bcopy() and a strong symbol named _ _bcopy().

The weak symbol can be preempted by the user with no effect on the
bcopy() routine within libc, because the library uses the strong symbols
for these “namespace-protected” routines.

For the SIA routines, this means that there is a weak symbol for
siad_ses_init which is normally bound to the strong symbol
_ _siad_ses_init(). If other code already uses the symbol
siad_ses_init(), only the binding of the weak symbol is affected.

The SIA code in libc references the strong symbol _ _siad_ses_init()
for its own uses. Thus, to override the default BASE security mechanism
for single-user mode, it is necessary to provide a replacement for the
_ _siad_ses_init() routine.

For a library that is only dynamically loaded under the control of the SIA
routines and the /etc/sia/matrix.conf file, it is only necessary to
provide the siad_ses_init() form of the symbol name. If the dynamically
loaded library is only used through the matrix.conf file, it is acceptable
to provide both forms of symbols. This simplifies the code, but is not safe if

6–24 Using the SIA Interface

the library usage ever changes to require that the library be linked against,
not just dynamically loaded.

6.17.3 Replacing the Single-User Environment

Example 6–5 shows the code to use if a security mechanism library developer
needs to replace the single-user environment as well as provide a normal
shared library for matrix.conf.

Example 6–5: Preempting Symbols in Single-User Mode

/* preempt libc.a symbols in single-user mode */
#ifdef SINGLE_USER
pragma weak siad_ses_init = _ _siad_ses_init
define siad_ses_init _ _siad_ses_init
#endif
#include <sia.h>
#include <siad.h>

The single-user (static) library modules are then compiled as follows:

% cc −DSINGLE_USER ...

This keeps the shared library from interfering with the libc.so symbols,
but allows the preemption of the libc.a symbols for the nonshared images
used in single-user mode. The nonshared images are then built with the
replacement mechanism library supplied to the linker before libc.a as in
the following example:

% cc −non_shared −o passwd passwd.o −ldemo_mech

The shared library is built in the normal fashion.

Using the SIA Interface 6–25

7
Programming with ACLs

This chapter contains the following information:

• ACL overview

• ACL data representations

• ACL library routines

• ACL rules

• ACL creation example

• ACL inheritance example

7.1 ACL Overview

Tru64 UNIX access control lists (ACLs) are an optional extension to the
discretionary access control (DAC) traditionaly provided on a UNIX system.
Traditional UNIX DAC is the traditional UNIX permission bits; ACLs are
an extension of the UNIX permission bits. A file or directory that has only
the permission bits may be considered an object with an ACL containing
only the three required or base entries that correspond to the usr, group,
and other permission bits.

There are two types of ACLs:

• An access ACL is associated with a file or directory, and is used to
determine if a process may access the file or directory.

• Default ACLs are associated with a directory. Default ACLs are used to
determine the ACLs applied to new files and subdirectories created in
the given directory. See Section 7.6 for more information.

The Tru64 UNIX ACL implementation is based on Draft 13 with some Draft
15 extensions of the POSIX P1003.6 standard.

ACLs can be applied to any file or directory on a file system that supports
property lists. The file systems that support property lists are:

• UFS

• AdvFS

• NFS (between Tru64 UNIX systems)

Programming with ACLs 7–1

ACLs can be applied even if ACL processing is not enabled on the system;
however, ACL access checks and default ACL inheritance do not take place.

See Security Administration for a more detailed description of using and
administering ACLs. See the acl(4) reference page for more information on
using and programming with ACLs. See the proplist(4) reference page for
more information on property lists.

7.2 ACL Data Representations
An ACL has an internal and an external representation. The external
representation consists of text and is used to enter and display ACLs.
Library routines manipulate ACLs in working storage in an internal
representation that is only indirectly accessible to the calling routine. This
internal representation can be interpreted with the acl.h header file.

7.2.1 Internal Data Representation

The ACL routines manipulate the working storage representation, which is
a set of opaque data structures for ACLs and ACL entries. Your program
should operate on these data structures only through the defined routines.
Because the working storage data structures are subject to change, the
interface is the only reliable way to access the data.

The working storage representation is not contiguous in memory. Also, a
program cannot determine the sizes of ACL entries and ACL descriptors.
The working storage data structures contain internal pointer references and
are therefore meaningless if passed between processes or stored in a file. A
program can convert the working storage representation of an ACL to other
representations of an ACL.

The two types most commonly used to access the opaque data are acl_t,
a pointer to type acl (the ACL structure), and acl_entry_t, a pointer
to an ACL entry structure.

______________________ Note _______________________

The structures in the following sections are opaque internal data
structures that are subject to change. Always use the defined
types and the supplied library routines to access these structures.

The internal representation uses the following basic types and data
structures.

7.2.1.1 typedef struct acl *acl_t;

The acl_t type is used to specify an internal (working storage) format ACL.

7–2 Programming with ACLs

struct acl {
int acl_magic; /* validation member */
int acl_num; /* number of actual acl entries */
int acl_alloc_size; /* size available in the acl */
acl_entry_t acl_current; /* pointer to current entry in */
acl_entry_t acl_first; /* pointer to ACL linked list */
attribute_t *attr_data; /* Pointer to the attr data */

};

7.2.1.2 typedef struct acl_entry *acl_entry_t;

The acl_entry_t type is used to specify an entry within an ACL.

struct acl_entry{
acle_t *entry;
void *head;
struct acl_entry *next;
struct acl_entry *prev;
int acl_magic;
int size;

};

7.2.1.3 typedef uint_t acl_type_t;

The ACL types supported are as follows:

#define ACL_TYPE_ACC 0
#define ACL_TYPE_ACCESS ACL_TYPE_ACC
/* The ACL is an access ACL. The property list

entry name for an access ACL is "DEC_ACL_ACC" */

#define ACL_TYPE_DEF 1
#define ACL_TYPE_DEFAULT ACL_TYPE_DEF
/* The ACL is a default access ACL. The property list

entry name for a default access ACL is "DEC_ACL_ACC" */
#define ACL_TYPE_DEF_DIR 2
#define ACL_TYPE_DEFAULT_DIR ACL_TYPE_DEF_DIR
/* The ACL is a default directory ACL. The property list

entry name for a default directory ACL is "DEC_ACL_DEF_DIR" */

acl_type_t is used to specify the ACL type.

7.2.1.4 typedef uint acl_tag_t;

The acl_tag_t type is used to specify the tag (the type) of an ACL entry.
ACL entries with a tag type of ACL_USER or ACL_GROUP also have an
associated tag qualifier. The tag qualifier is the ID of the user or group. The
ACL entry tag types supported are:

Programming with ACLs 7–3

#define ACL_USER_OBJ 0
/* entry that equates to the owning user permission bits. */
#define ACL_GROUP_OBJ 1
/* entry that equates to the owning group permission bits. */
#define ACL_OTHER 2
#define ACL_OTHER_OBJ ACL_OTHER
/* entry that equates to the other permission bits. */
#define ACL_USER 23
/* entry specifying permissions for a given user. */
#define ACL_GROUP 24
/* entry specifying permissions for a given group. */

7.2.1.5 typedef uint_t acl_perm_t;

The acl_perm_t permission bit definitions are as follows:

#define ACL_EXECUTE 0X001
#define ACL_WRITE 0X002
#define ACL_READ 0X004

7.2.1.6 typedef acl_perm_t *acl_permset_t;

The acl_permset_t type is used to point to the permissions assigned to
an ACL entry.

7.2.1.7 Contiguous Internal Representation ACL

There is also a contiguous persistent data type for an ACL. This
representation should be used only when the internal format ACL must
persist between processes.

7.2.2 External Representation

The human-readable external representation of an ACL consists of a
sequence of lines, each of which is terminated by a new-line character. The
POSIX routines use the external representation when converting between
the working storage representation and the text package.

The external representation is described in Security Administration.
Table 7–1 shows the structure of individual entries.

7–4 Programming with ACLs

Table 7–1: ACL Entry External Representation
Entry Type acl_tag_t Value Entry

base user USER_OBJ user::perms

base group GROUP_OBJ group::perms

base other OTHER_OBJ other::perms

user USER user:user_name:perms

group GROUP group:group_name:perms

7.3 ACL Library Routines

The ACL routines are contained in the libpacl.a library. The ACL library
routines are based on Draft 13 of the POSIX P1003.6 standard. See the
reference page for each individual routine for detailed information.

The following routines are used to get, set, and validate ACLs:

acl_valid() Checks the specified internal
representation ACL for valid format.

acl_delete_def_fd() Deletes the default access ACL from
the designated directory using the file
descriptor.

acl_delete_def_file() Deletes the default access ACL from the
designated directory.

acl_get_fd() Retrieves the internal representation of
the specified ACL type associated with
the specific file or directory using the
file descriptor.

acl_get_file() Retrieves the internal representation of
the specified ACL type associated with
the specific file or directory.

acl_set_fd() Sets the specified ACL type on the given
file or directory to the specified ACL
internal representation using the file
descriptor.

Programming with ACLs 7–5

acl_set_file() Sets the specified ACL type on the given
file or directory to the specified ACL
internal representation.

The following routines retrieve and manipulate ACL entries:

acl_copy_entry() Copies an ACL entry into the memory
provided.

acl_create_entry() Creates an empty ACL entry for the given
ACL, allocating memory as necessary.

acl_delete_entry() Deletes the designated ACL entry from
an ACL.

acl_first_entry() Resets the current ACL entry so that the
next call to acl_get_entry() returns
the first entry.

acl_get_entry() Returns a pointer to the next ACL entry
of the given ACL.

The following routines retrieve and manipulate fields in an ACL entry:

acl_add_perm() Adds a permission to a set of permissions
belonging to an ACL entry.

acl_clear_perm() Clears a permission in a given ACL entry.

acl_delete_perm() Removes permissions from a set of
permissions belonging to an ACL entry.

acl_get_permset() Copies the permissions from a given ACL
entry to the location provided.

acl_get_qualifier() Returns a pointer to the tag qualifier (ID)
associated with a given ACL entry.

acl_get_tag_type() Copies the tag (type) from the given ACL
entry to the location provided.

acl_set_permset() Sets the permissions in a given ACL entry
to the given permissions.

7–6 Programming with ACLs

acl_set_qualifier() Sets the tag qualifier (ID) of the specified
ACL entry to the given UID or GID.

acl_set_tag_type() Sets the tag (type) of the specified ACL
entry to the given type.

The following routines manage working storage for the ACL manipulation:

acl_free() Releases all working storage associated
with the given ACL.

acl_free_qualifier() Releases working storage associated with
the given tag qualifier.

acl_free_text() Releases the buffer associated with the
given external representation (text) ACL.

acl_init() Allocates and initializes ACL internal
representation working storage.

acl_copy_ext() Copies the working storage internal
format ACL data to the contiguous
persistent ACL format.

acl_copy_int() Copies contiguous persistent ACL data to
working storage.

acl_dup() Creates a copy of the designated ACL. The
copy is independent of the original entry.

acl_size() Calculates the size of the given ACL.

The following routines convert ACLs between external and internal
representations:

acl_from_text() Creates an internal representation ACL
from the given external representation
(text) ACL.

acl_to_text() Creates an external representation
(text) ACL from the given internal
representation ACL.

Programming with ACLs 7–7

7.4 ACL Rules

Some interactions between the ACL and the UNIX permissions are subtle.
Unless you understand the interaction between ACL routines and the
system calls that manipulate UNIX DAC attributes, you might get different
permissions than you intended.

The following sections describe rules for programs that handle ACLs.

7.4.1 Object Creation

If ACLs are enabled and are supported on the file system, the open(),
creat(), and mkdir() functions perform ACL inheritance when creating a
file or directory. See for a description of ACL inheritance.

When ACL inheritance is performed, the permissions on a created file come
from the mode you provide and the inherited ACL, not the umask. Therefore,
your program must set the mode when creating files and directories. The
program must not depend on umask to protect the files and directories.

When copying one file to another, it is a common practice for a program to
create a new file and propagate the owner, group, and mode. If the source
file has an ACL, your program should propagate that ACL to the target file
in all cases where the mode is propagated.

7.4.2 ACL Replication

Programs that replicate permissions must preserve the ACL. The
discretionary protection of a file or directory is no longer described by the
owner, group, and permissions; it includes the ACL which is a superset of
the permissions. Neglecting to copy the ACL could allow unintended access
to the file or directory.

7.4.3 ACL Validity

Any ACL you create must be valid according to the following POSIX ACL
rules:

• It must have at least the three base entries

• The user entries must have unique valid qualifiers

• The group entries must have unique valid qualifiers

• The user and group identifiers must be valid

You can use the acl_valid() routine to check your ACLs.

7–8 Programming with ACLs

7.5 ACL Creation Example
Assume that you want to set a file’s access ACL to the following permissions:

user::rwx
user:june:r-x
user:sally:r-x
group::rwx
group:mktg:rwx
other::r-x

The following code takes a tabular form of the ACL, creates a working
storage representation of the ACL, and applies it to a file. If you extract
the following code into a file named acl_example.c, use the following
command to compile it:
cc -o acl_example -lpacl -lsecurity acl_example.c

#include <unistd.h>
#include <sys/types.h>
#include <prot.h>
#include <errno.h>
#include <sys/acl.h>

struct entries {
acl_tag_t tag_type;
char *qualifier;
acl_perm_t perms;

} table[] = {
/* An ACL must (at a minimum) have the three base */
/* entries that correspond to the permission bits */
{ ACL_USER_OBJ, NULL, ACL_READ | ACL_WRITE | ACL_EXECUTE },
{ ACL_USER, "june", ACL_READ | ACL_EXECUTE },
{ ACL_USER, "sally", ACL_READ | ACL_EXECUTE },
{ ACL_GROUP_OBJ, NULL, ACL_READ | ACL_WRITE | ACL_EXECUTE },
{ ACL_GROUP, "mktg", ACL_READ | ACL_WRITE | ACL_EXECUTE },
{ ACL_OTHER_OBJ, NULL, ACL_READ | ACL_EXECUTE },

};

#define TABLE_ENTRIES (sizeof(table)/sizeof(table[0]))

main (argc, argv)
int argc;
char *argv[];
{

acl_t acl_p;
acl_entry_t entry_p;
acl_entry_t check_p;
int i, ret;
uid_t uid;
gid_t gid;

Programming with ACLs 7–9

/* Did the user enter a filename? */
if (argc != 2) {

printf("Usage: %s filename\n",argv[0]);
exit(1);

}

/* Check to see if ACLs are supported and enabled for filename */
ret = pathconf(argv[1], _PC_ACL_EXTENDED); /*1*/
if (ret == 1) {

printf(" ACLs are enabled for file %s\n",argv[1]);
}
else if (ret == 0) {

printf(" ACLs are supported for file %s,\n",argv[1]);
printf(" but ACLs are not currently enabled on \n");
printf(" the system\n");

}
else if ((ret == -1) && (errno == EINVAL)) {

printf(" ACLs not supported on filesystem\n");
exit(1);

}
else {

printf(" Error checking file ACL status for \n");
printf(" file %s, exiting...\n",argv[1]);
perror("pathconf");
exit(1);

}

/* Allocate an ACL */
acl_p = acl_init(1024); /* 2 */

/* Walk through the table creating corresponding ACL entries */
for(i=0;i<TABLE_ENTRIES;i++) {

/* Initialize the entry */
entry_p = acl_create_entry(&acl_p); /* 3 */

/* Set the permissions for the entry */
acl_set_permset(entry_p,&table[i].perms); /* 4 */

/* Set the user or group information for the entry */
switch(table[i].tag_type) {

case ACL_USER:

/* Get the uid from the user name */
uid=pw_nametoid(table[i].qualifier); /* 5 */
if (uid == (uid_t) -1) {

printf(" No translation for user name %s\n",
table[i].qualifier);

7–10 Programming with ACLs

printf(" Exiting...\n");
exit(1);

}

/* Specify this is a "USER:" entry */
acl_set_tag_type(entry_p,table[i].tag_type); /* 6 */

/* Set the uid (entry qualifier) */
acl_set_qualifier(entry_p,(void *)&uid); /* 7 */
break;

case ACL_GROUP:

/* Get the gid from the group name */
gid=gr_nametoid(table[i].qualifier); /* 8 */
if (gid == (gid_t) -1) {

printf(" No translation for group name %s\n",
table[i].qualifier);
printf(" Exiting...\n");
exit(1);

}

/* Specify this is a "GROUP:" entry */
acl_set_tag_type(entry_p,table[i].tag_type);

/* Set the gid (entry qualifier) */
acl_set_qualifier(entry_p,(void *) &gid);
break;

default:

/* The three entries corresponding to the */
/* Permission bits don’t have qualifiers */
acl_set_tag_type(entry_p,table[i].tag_type);
acl_set_qualifier(entry_p,NULL);
break;

}
}

/* Is the created ACL valid? */
if (acl_valid(acl_p, &check_p) < 0) { /* 9 */

printf(" Not Valid ACL\n");
if (check_p) printf(" Duplicate entries\n");
printf(" Exiting...\n");
exit(1);

}

/* Set the ACL on the file */
if (acl_set_file(argv[1],ACL_TYPE_ACCESS, acl_p) < 0)

perror("acl_set_file");

Programming with ACLs 7–11

/* Free the storage allocated for the ACL */
acl_free(acl_p);

}

1 The _PC_ACL_ENABLED attribute of pathconf() returns the status of
ACL processing for the given file.

2 This demonstrates the use of the initialization call for a working storage
representation of the ACL. If the storage allocated is not big enough
for all of the entries in the completed ACL, the acl_create_entry()
routine will allocate more memory.

3 A new ACL entry is allocated with this call. The tag type, qualifier, and
permissions in this new entry are unspecified.

4 The acl_set_permset() routine sets the permissions for the ACL entry.

5 The pw_nametoid() routine is an optimized mapping from user name to
user ID and works with either Base or Enhanced security enabled. The
pw_nametoid() routine is described in the pw_mapping(3) reference
page.

6 The acl_set_tag_type() function sets the type for the given ACL
entry. The current tag types are: ACL_USER_OBJ (owner permission
bits), ACL_GROUP_OBJ (group permission bits), ACL_OTHER_OBJ
(other permission bits), ACL_USER (permissions for specified user),
ACL_GROUP (permissions for specified group).

7 The acl_set_qualifier() function sets the ID for the ACL_USER and
ACL_GROUP tag types. This specifies which user or group the entry
refers to. The other tag types do not require an ID.

8 The gr_grouptoid() routine provides an optimized mapping from
group name to group ID and works with either Base or Enhanced
security enabled. It is described in the pw_mapping(3) reference page.

9 The acl_valid() routine checks for missing and duplicate entries.

7.6 ACL Inheritance Example

This section shows how a program can specify a default access ACL on a
directory and then describes what happens when a file and a directory
are created in that directory. There is another type of default ACL called
a default directory ACL. ACLs are inherited differently if a directory has a
default directory ACL in addition to or in place of a default access ACL. See
Security Administration for a complete description of the ACL inheritance
rules.

7–12 Programming with ACLs

Assume that directory /usr/john/acl_dir has the following access and
default access ACLs:

% getacl /usr/john/acl_dir

file: /usr/john/acl_dir
owner: john
group: prog
#
user::rwx
user:june:r-x
user:fred:r-x
group::rwx
group:mktg:rwx
other::r-x

% getacl -d /usr/john/acl_dir

file: /usr/john/acl_dir
owner: john
group: prog
#
user::rwx
user:june:r-x
user:sally:r-x
group::rwx
group:mktg:rwx
other::rwx

The following program can be used to update the default access ACL on a
directory to remove read and write permissions from a group entry and then
create a regular file and a directory in the given directory. If you extract the
following code into a file named acl_inheritance.c, it can be compiled
with the following command:

% cc -o acl_inheritance -lpacl -lsecurity acl_inheritance.c

#include <unistd.h>
#include <sys/types.h>
#include <prot.h>
#include <errno.h>
#include <sys/acl.h>

#define REGULAR_FILE "regular"
#define DIRECTORY_FILE "dir"

main (argc, argv)
int argc;
char *argv[];
{

acl_permset_t acl_permset;

Programming with ACLs 7–13

gid_t *qualifier = NULL;
acl_tag_t tag_type;
acl_t acl;
acl_entry_t acl_entry;
gid_t my_gid;
int ret;
char pathname[PATH_MAX + 1];
int fd;

/* Did the user enter a directory name and group name? */
if (argc != 3) {

printf("Usage: %s directory group\n",argv[0]);
exit(1);

}

/* Map the group name to a gid */
my_gid = gr_nametoid(argv[2]);
if (my_gid == (gid_t) -1) {

printf("No translation for group %s\n",argv[2]);
exit(1);

}

/* Read the default ACL from the directory */
acl = acl_get_file(argv[1], ACL_TYPE_DEFAULT);
if (!acl) {

if (errno) {
perror("acl_get_file");

}
else {

printf("No default ACL found on %s\n", argv[1]);
}
exit(1);

}

ret = acl_first_entry(acl);
if (ret) {

perror("acl_first_entry");
exit(1);

}

/* Scan the ACL looking for the entry */
while (acl_entry = acl_get_entry(acl)) {

/* retrieve the entry type */
ret = acl_get_tag_type(acl_entry, &tag_type);
if (ret) {

perror("acl_get_tag_type");
exit(1);

}

7–14 Programming with ACLs

if (tag_type != ACL_GROUP) continue;

qualifier = (gid_t *)acl_get_qualifier(acl_entry);
if (!qualifier) {

perror("acl_get_qualifier");
exit(1);

}

/* Check for appropriate entry */
if (*qualifier != my_gid) continue;

ret = acl_get_permset(acl_entry, &acl_permset);
if (ret) {

perror("acl_get_permset");
exit(1);

}

*acl_permset = *acl_permset & ~(ACL_READ | ACL_WRITE);

ret = acl_set_permset(acl_entry, acl_permset);
if (ret) {

perror("acl_set_permset");
exit(1);

}

ret = acl_set_file(argv[1], ACL_TYPE_DEFAULT, acl);
if (ret) {

perror("acl_set_file");
exit(1);

}

break;

}

if (!acl_entry) {
if (errno) {

perror("acl_get_entry");
}
else {

printf("ACL entry for %s not found\n", argv[2]);
}
exit(1);

}

/* Create the regular file */
sprintf(pathname, "%s/%s", argv[1], REGULAR_FILE);

fd = creat(pathname, 0644);
if (fd == -1) {

Programming with ACLs 7–15

perror("creat");
exit(1);

}
close(fd);

/* Create the directory */
sprintf(pathname, "%s/%s", argv[1], DIRECTORY_FILE);

ret = mkdir(pathname, 0700);
if (ret == -1) {

perror("mkdir");
exit(1);

}
}

When you run the previous example program, it removes the read and write
permissions from the mktg group in the default ACL shown above. The
program then creates a regular file and a directory in that directory to
demonstrate ACL inheritance. Enter the following command to execute
the example program:
% ./acl_inheritance /usr/john/acl_dir mktg

When the example program is executed, the access ACL on the newly
created file and the access and default access ACLs on the newly created
directory are as follows:
% getacl /usr/john/acl_dir/regular
file: /usr/john/acl_dir/regular
owner: john
group: prog
#
user::rw-
user:june:r-x
user:sally:r-x
group::r--
group:mktg:--x
other::r--

Note that the permissions for the owning user, the owning group, and other
are set to the logical AND of the default access ACL and the mode specified
with the creat() call. The umask is not used when ACL inheritance takes
place. The other entries are taken from the default access ACL of the parent
directory, not the access ACL.
% getacl /usr/john/acl_dir/dir
file: /usr/john/acl_dir/dir
owner: john
group: prog
#
user::rwx
user:june:r-x
user:sally:r-x
group::---
group:mktg:--x

7–16 Programming with ACLs

other::---

Note that the access ACL inheritance rules for a subdirectory created in a
directory that has a default access ACL are the same as those for a file. This
is true only if there is not a default directory ACL on the parent directory in
addition to the default access ACL.

The following command line displays the default access ACL:

% getacl -d /usr/john/acl_dir/dir
file: /usr/john/acl_dir/dir
owner: john
group: prog
#
user::rwx
user:june:r-x
user:sally:r-x
group::rwx
group:mktg:--x
other::rwx

Note that the default ACL is inherited from the directory’s parent.

Programming with ACLs 7–17

8
GSS-API

The Generic Security Service Application Program Interface (GSS-API)
functions enable applications in a distributed network environment to use
the following security services on the network:

• Authentication — The application can verify the identity of a user or
service.

• Integrity — The application can detect message tampering or corruption
when it receives the message.

• Confidentiality — A message can be encrypted to render it unintelligible
to eavesdroppers during transmission.

This chapter contains the following information:

• GSS-API overview

• Application security SDK

• Application security SDK functions

• Best practices

• Building a portable application

8.1 GSS-API Overview

The GSS-API is a standard programming interface that defines a set of
generic C functions that can be used to secure distributed applications.
The GSS-API has two primary design goals which are fundamental to its
operation:

• Security mechanism independence

• Transport protocol independence

Because it is an open standard, the GSS-API has been designed to be generic
so that as security and network technologies evolve, the API does not have to
change.

The GSS-API supports a wide range of underlying security mechanisms and
technologies using the following architecture.

GSS-API 8–1

ZK-1825U-AI

application

GSS

security
mechanism

security
mechanism

security
mechanism

A security mechanism is a method of providing security (such as Kerberos
or public-key encryption). It is not only the cryptographic technology used,
but also the syntax and semantics of the data that the technology employs.
An application secured using the GSS-API standard may use one or more
security mechanisms.

The GSS-API can be used in a broad range of network environments (for
example, TCP/IP, SNA, and DECnet). The standard was not designed
to provide a transport mechanism. Rather, the design provides security
over an arbitrary network transport. The transport must be provided
by the application. The communications protocol can be an interprocess
communications path or a series of networks.

8–2 GSS-API

ZK-1826U-AI

application

GSS

security
mechanism

security
mechanism

communications
protocol

network

GSS-API functions return information to the application, which then sends
the information across the communications protocol in use. The other side of
the distributed application passes the information to the GSS-API library.

For a developer securing an application using the GSS-API standard,
these design goals of mechanism and transport independence provide a
consistent interface that is independent of the underlying hardware and
software platform — a one-time programming investment. The investment
in modifications to secure an application remains constant even as the
technologies evolve.

8.1.1 GSS-API Assumptions

The GSS-API standard makes the following assumptions:

• The application is distributed.

The GSS-API standard assumes that the application is a distributed
network application or divided into two parts using a peer-to-peer or
a initiator-acceptor relationship.

• The source code can be modified.

The GSS-API standard assumes that you can incorporate GSS-API
functions in the application source code.

• The application guarantees token delivery.

A token is an opaque data object returned by the GSS-API that an
application needs to communicate with its peer. The GSS-API standard

GSS-API 8–3

assumes that your application can deliver tokens generated during
context establishment and context termination in the order in which
they are generated.

• The application deallocates its data objects.

The GSS-API standard assumes that if an application allocated a data
object, it is responsible for deallocating it. If a data object is returned by a
GSS-API function, the application must use the corresponding GSS-API
function to release the object, thereby deallocating it. Otherwise, there
can be a memory leak or memory fault in the application. Failure to use
the proper functions for deallocation may create a situation where the
security network may be compromised.

8.1.2 Further Information

The GSS-API is an industry standard created as part of the ongoing Internet
RFC (Request For Comments) process.

Application Security SDK is based on the following RFCs:

• RFC 2078 “Generic Security Service Application Program Interface,
Version 2, Update 1” September 3, 1998

• “Generic Security Service API Version 2: C-bindings,” August 7, 1998

• RFC 1964 “The Kerberos Version 5 GSS-API Mechanism,” June 1996

• RFC 1510 “The Kerberos Network Authentication Service (V5),”
September 1993

• Internet Draft “Public Key Cryptography for Initial Authentication in
Kerberos” (updates RFC 1510)

File name: draft-ietf-cat-kerberos-pk-init-07.txt

The GSS-API standard is monitored by the Common Authentication
Technology Internet Engineering Task Force (CAT-IETF) working group. For
more information on the GSS-API, see the IETF web site at www.ietf.org.

8.2 Application Security SDK

HP implements the GSS-API functions through the Application Security
Service Developers Kit (SDK). The Application Security SDK is an
implementation of the GSS-API version 2.0 that provides several unique
contributions to the GSS-API standard.

• Application Security SDK supports the Kerberos 5 mechanism. The
sample code and documentation provide clear instructions for securing
distributed applications using Kerberos 5 with the GSS-API, complete
with considerations that are specific to this security mechanism.

8–4 GSS-API

• Application Security SDK has many additional functions to enhance the
capabilities of the GSS-API. These functions, termed extensions, permit
additional Kerberos 5 security features, including:

– complete support for Triple DES (DES3), including encryption of
authentication tokens and user data. HP recommends that all data
be encrypted using DES3, which provides significantly increased
security in comparison to DES encryption.

– programmatic support for acquiring the initial credentials needed
before the initiator application can establish a security context.
Using the HP extension function eliminates the need to use kinit,
ActiveTRUST SignOn (available from CyberSafe Corporation), or HP
Single SignOn to obtain these initial credentials.

– recognition of hardware authentication devices, such as token
cards. This adds an extra level of security at the client level during
authentication requests.

– ability to renew Kerberos 5 credentials. This prolongs the lifetime
of an existing valid credential, and reduces the number of times
the number of times the user is required to provide their username
and password.

8.3 Application Security SDK Functions

Application Security SDK functions can be grouped into categories, of which
only a subset is required to secure a distributed application. The functions
can be divided according to these categories:

• Name Management Functions — Describes functions used to manipulate
the internal and external names used by the GSS-API.

• Credential Management Functions — Describes functions used to
acquire, query, and release credentials. This category also contains
the HP extension functions included in Application Security SDK
that are not part of the GSS-API standard. These functions are used
to implement initial authentication, and include support for DES3
encryption, hardware authentication, and credential renewal.

• Security Context Management Functions — Describes functions used to
initiate, accept, export, import, query and delete security contexts.

• Message Functions — Describes functions used to protect messages by
ensuring data integrity, data origin, and, optionally, confidentiality.

• Miscellaneous Functions — Describes other support functions used to
display status, release buffers, and manipulate object identifier (OID)
sets.

GSS-API 8–5

• V1 Compliance Functions — Describes the functions that are supported
for GSS-API Version 1 interoperability. These functions have been
replaced for GSS-API Version 2.

8.3.1 Name Management Functions

The GSS-API uses names to identify entities in a network, just as a person
uses a username to log in to a system on the network. The username
identifies the person according to the system’s naming structure. In the
GSS-API standard, names identify an application or person using the
application.

In the Kerberos 5 mechanism, names translate to principals. A principal
is any user, client, network service, application, or system that has shared
a secret with Kerberos (usually a password). Principals must have unique
names within a realm, as well as an associated key.

The GSS-API utilizes four forms of names: external, exported, internal, and
mechanism names. Functions are provided to convert between the various
name forms.

• External names are text strings that are used as input to the GSS-API
standard.

• Exported names are octet strings in a standard format, which are
produced by a GSS-API function for use in name comparisons outside
the standard.

• Internal names are opaque. This means the name cannot be displayed in
an error message, for example. This type of name is used for all purposes
internal to the GSS-API. An example of the usage with the Kerberos 5
mechanism is locating a credential belong to a specific username.

• Mechanism names are a special case of internal names that are
mechanism-specific; meaning they are specific to a single mechanism.
For single mechanism support, as in the case of Application Security
SDK, the internal name and mechanism name are identical.

In the GSS-API, names are used to:

• Acquire credentials — Each side of an application imports its name into
the GSS-API internal format for acquiring credentials.

• Establish a security context — The initiator identifies by name the
acceptor with which it wants to establish a security context.

• Compare names — After the security context is established, name
comparison may be required. This can be inside or outside the GSS-API
standard, provided the proper name format is used.

8–6 GSS-API

– Inside the GSS-API standard, the internal name can be used for
comparisons (using gss_compare_name()).

– Outside the GSS-API standard, the exported name should be used
for comparisons. The acceptor, for example, may want to compare
the initiator’s name against an access control list (ACL). There is no
function call provided in the API to perform this comparison.

The name of the application or person using the application does not follow a
syntax, structure, or convention defined by the GSS-API. The application’s
name is dependent on the application itself. Because the GSS-API is
generic, it is possible to provide names in different formats. These different
methods to represent names are called name types, and are passed as object
identifiers (OIDs).

The application can also use the GSS-API default for its name. This
eliminates the requirement to provide the particular name, and avoids the
need to pass the OID. In this case, the name is dependent on the GSS-API
implementation.

GSS-API Function Description

gss_canonicalize_name() Convert an internal name to a mechanism
specific name.

gss_compare_name() Compares two internal form names for equality.

gss_display_name() Translates a name to human readable or
printable form. The name’s format is specific to
the GSS-API implementation. Therefore, do not
compare the printable form of names returned
from gss_display_name() with other names.
Use the function gss_export_name() to
generate the names required for comparison
purpose. Do not import this name using
gss_import_name().
The printable form generated by this function
is placed in a buffer that must be released by
calling gss_release_buffer().

gss_duplicate_name() Creates a copy of an existing internal
form name.

gss_export_name() Converts an internal name to an export form
(a string), which is in a standard format.

GSS-API 8–7

GSS-API Function Description

gss_import_name() Converts the application’s name (external
form) into the GSS-API internal form. The
application passes in an object identifier (OID)
that specifies how to parse its name. For
example, the name could be a UNIX uid or
login name.
The name is returned in a structure that must
be released by calling gss_release_name().
You cannot call gss_import_name() and
specify the default name. You can specify the
default name only when acquiring credentials
with gss_acquire_cred().

gss_in-
quire_mechs_for_name()

Identifies the mechanism that supports the
indicated name type. In Application Security
SDK, this is always Kerberos 5.

gss_in-
quire_names_for_mech()

Lists the name types supported by the specified
mechanism. In Application Security SDK, this
is always Kerberos 5 supported name types.

gss_release_name() Frees storage of the GSS-API name allocated
when gss_import_name() is called.

8.3.1.1 Default Names and Syntax

Kerberos principal names are of the following form: name/instance@REALM,
where the /instance and @REALM parts are optional. If the /instance is
omitted, an empty instance is assumed. If the @REALM is omitted, the default
realm is assumed. Multiple instances are allowed, each separated by a /.

If the application uses the GSS-API default for its name when acquiring
credentials using the Kerberos 5 mechanism, the name used is the default
principal from the default credential in the default credentials cache, if the
cache exists. If it does not exist, the default name is determined according
to the following rules:

• The default principal for a user (that is, a person) is the user’s login name

• The default principal for a service is host/fqdn@REALM, where fqdn is
the fully qualified domain name of the system on which the service is
running and REALM is the system’s default realm.

HP recommends that for additional security, a service have its own
principal name rather than share the use of the system’s default
host/ principal name. For example, a secure FTP service might use
the principal name ftp/fqdn@REALM or ftp@REALM, (skipping the
fqdn instance); a secure telnet service might use the principal name
telnet/fqdn@REALM or telnet@REALM.

8–8 GSS-API

When an application calls gss_import_name() and does not use
the default input format, it passes in an object identifier (OID) that
specifies how to parse the application’s name. For example, the
GSS_KRB5_NT_HOSTBASED_SERVICE_NAME OID specifies the parsing
syntax for a name of the format service@host. The NT in this parameter
stands for name type.

8.3.2 Credential Management Functions

Credentials are used by an application to prove its identity. Each side of a
distributed application needs to obtain credentials, which are used to initiate
and accept a security context.

In Kerberos 5, there are three types of credentials:

• initial tickets — This type of credential is received from the Kerberos
security server after initial authentication of a user principal. An initial
ticket is properly termed a ticket-granting-ticket or TGT, and is required
by the initiator application.

• service tickets — This ticket permits a user principal to gain access to a
protected application. A TGT must be acquired before a service ticket
can be received.

• service key table entry — This is a copy of the secret key associated
with the principal in the principal database. This key must be extracted
from the principal database to the service key table file using a database
administration program. The key in the service key table file is used by
an acceptor application instead of acquiring initial tickets.

For more information on Kerberos 5 security terms and infrastructure, see
Security Primer.

When using the Kerberos 5 mechanism with the GSS-API standard, initial
tickets are held and presented by a Kerberos principal as proof that it is
what or who it claims to be. These credentials are used by the principal to
prove that the trusted KDC has been contacted for initial authentication.
Typically, initial tickets provided by the security server are placed in a
central storage location called the credential cache.

In the GSS-API, initial tickets are retrieved from storage and used to
establish a security context. In the standard GSS-API with the Kerberos 5
mechanism, the initiator application must already have obtained an initial
ticket (TGT) prior to calling gss_acquire_cred(). A user can obtain an
initial ticket by running kinit or an equivalent application (for example,
Single SignOn). The acceptor application will use the key stored in the
service key table file to verify its identity.

GSS-API 8–9

The Application Security SDK provides additional functions called the HP
extension functions that are used to perform a variety of tasks, including:

• Obtaining initial credentials before initiating a context. This can be done
either through a program prompt to obtain secret information from the
user, or by allowing the initiator application to also use a secret key
stored in a service key table file on the initiator’s host.

• Retrieving public-key credentials from a smart card device to obtain
a TGT.

• Requesting initial credentials with specific options such as forwardable
or renewable credentials.

• Renewing credentials before expiration to prolong the usable lifetime.

• Releasing buffers associated with credentials after they are no longer
needed.

Using these special HP extension functions, the initial credential is received
by the calling application, and placed in a credentials cache. The initial
credential then can be retrieved using GSS-API functions, and be used to
obtain the service tickets required for establishing the security context.

GSS-API Function Description

gss_acquire_cred() Retrieves initial credentials from a storage
location for use by an application. This
step is required before a context can be
established. The credential must exist before
the function can be called.

gss_add_cred() Constructs credentials incrementally. This
function is used when multiple mechanisms
are supported. For single-mechanism
implementations, HP recommends using the
function gss_acquire_cred().

gss_inquire_cred() Returns information about credentials (for
example, the list of mechanisms supported
by this credential, credential type, and the
lifetime of the credential). For Kerberos 5, this
information is about the initial credential.

8–10 GSS-API

GSS-API Function Description

gss_in-
quire_cred_by_mech()

Obtains information about an existing credential
specific to a particular mechanism. For
Application Security SDK, information is
obtained from a TGT obtained from the
Kerberos security server.

gss_release_cred() Releases credentials from the application
after use. Any credentials acquired by calling
gss_acquire_cred() or gss_add_cred()
must be released using this function. For
Kerberos 5, this does not affect the initial
credential entry in the credentials cache.

These functions may block pending exchanges between network entities
such as authentication servers or network file systems. Blocking depends
on the characteristics of the operating system and the security mechanism
being used. In the Kerberos 5 mechanism, the credential management
functions may block pending exchanges between other network entities such
as directories or authentication servers.

8.3.2.1 Acquiring Initial Credentials

In the GSS-API standard before attempting to establish a context, the
initiator application is required to have obtained initial credentials, and
placed them in a central storage location called the credentials cache.
The credentials are then retrieved from the cache using the function
gss_acquire_cred().

8.3.2.1.1 Initiator Applications

Application Security SDK provides a special function to perform initial
authentication for initiator applications, and places credentials into
the cache for retrieval using the GSS-API standard. The function
csf_gss_acq_user() can be used as a replacement for the authentication
process controlled by Single Sign-On, Credentials Manager, or kinit.

Parameters specified for this function indicate the type of secret that is
being retrieved from the principal in order to prove their identity. In the
case of a user principal, the secret is typically in the form of a principal
name and password that are provided at a prompt, though it can be a service
key table entry.

The initial tickets or TGTs can be obtained with selected Kerberos ticket
flags, indicating such attributes as forwardable, or proxiable tickets, and
designating the ticket lifetime and renew time.

GSS-API 8–11

8.3.2.1.2 Acceptor Applications

An acceptor service principal requires the use of a service key table file.
This file is used to store the service principal’s secret, which is in the form
of a random key that was initially generated and provided by a Kerberos
database administration program. This type of initial authentication is
performed using the GSS-API function gss_acquire_cred().

8.3.2.1.3 DES3

Application Security SDK provides support for DES3 encryption. Using
DES3 provides greatly enhanced security protection over DES encryption.

The following conditions must be met before DES3 encryption can used
to encrypt messages:

• ActiveTRUST Security Server must be configured for DES3.

• The principals for the initiating and accepting applications must have
a DES3 key stored in the principal database.

• The initiator principal must obtain a TGT using DES3.

• The initiating application must indicate the use of DES3 when initiating
the security context.

______________________ Note _______________________

Multiple encryption systems for a single security context are not
allowed. You must use one or the other.

8.3.2.2 Credential Attributes

The function gss_inquire_cred() is used to determine the properties or
attributes associated with a particular credential. Some of the Kerberos
information returned by this function includes the credential lifetime,
the mechanisms supported, and the credential usage. The attributes
assigned to an initial credential depend upon the attributes requested when
acquiring the TGT. Service tickets obtained with a particular TGT inherit
the attributes assigned to the TGT.

Credentials may have a defined lifetime, after which they expire. The
gss_inquire_cred() function can be used to determine if the credential
has expired.

In some mechanism implementations, an application can no longer use
credentials after they have expired. The application must release the
credentials and acquire credentials again before it can continue. In
the Kerberos 5 mechanism, the lifetime of the credentials is defined

8–12 GSS-API

as the Kerberos ticket lifetime. After the credentials have expired, an
application can no longer use them to establish a new security context.
The application must release the credentials and acquire new ones using
csf_gss_acq_user() and then gss_acquire_cred().

______________________ Note _______________________

The GSS-API standard does not provide a function for renewing
credentials beyond their initially established lifetime. However,
you can use the HP extension function csf_gss_renew_cred()
to renew credentials if they have not already expired. Note that
in order to renew a credential, the initial ticket must be requested
from the security server with the renewable attribute flag.

8.3.2.3 Credentials Storage Location

For Kerberos 5, credentials are assumed to be stored on disk or other
persistent storage medium on the local host.

For user principals, the credentials cache default location is assumed
(unless the location is overridden by environment variables). The location is
platform-dependent.

The default UNIX user’s credentials cache file is located in
krb5/tmp/cc/krb5cc_uid (where uid is the user identification number
retrieved from the password file) unless the CSFC5CCNAME environment
variable is set to an alternate path name.

For service principals, the default service key table file is contained in
the platform-dependent locations; for UNIX systems, the default file is
/krb5/v5srvtab, unless the CSFC5KTNAME environment variable is set
to an alternate path name.

For more information on these credentials cache and service key table file
settings, see the SSO Installation and Administration Guide.

8.3.2.4 Managing Credential Resources

Any credentials acquired with gss_acquire_cred() must be released by
calling gss_release_cred(). The exact behavior that occurs when the
credentials are released is dependent on the security mechanism used. In
some cases, the internal buffers may be the only aspects of the credentials
which are released. In other cases, the credentials stored on disk may be
released as well. In the Kerberos 5 mechanism, only the internal buffers are
released with this function.

GSS-API 8–13

Before deciding when to release credentials, the application must determine
if it is going to be initiating or accepting security contexts more than once
during the application’s execution. If so, the application needs to acquire
credentials and reuse them later with the initiate or accept security context
functions, rather than releasing them immediately after this first use. In
Kerberos 5 implementations, this provides improved performance.

8.3.3 Security Context Management Functions

A security context, once established, defines a unique conversation between
each side of an application in a distributed environment. A security context
is initiated by one side of the application, and then is accepted by the other
side. A security context must be established prior to exchanging secured
messages.

For Kerberos 5 implementations of the GSS-API standard, when a context is
established, the Kerberos processes required for managing service tickets
are performed. This includes obtaining, transferring and verification of
these tickets. Once a context is established, it contains keys and other
security parameters. The contents of a security context are used directly to
apply protection to messages.

GSS-API Function Description

csf_gss_get_context_options () Obtains information about an existing
security context, including verifying the
type of encryption being used. This is
an HP extension function included in
Application Security SDK.

gss_accept_sec_context() Accepts a request to establish a security
context from an initiator application.

gss_context_time() Indicates how much time remains in
the security context’s life. How this
lifetime is determined and what it means
is mechanism-dependent.

gss_delete_sec_context() Destroys a context when it is no longer
needed. Each security context that
was initiated or accepted must be
destroyed using this function.

gss_export_sec_context() Transfers a security context to
another process.

gss_import_sec_context() Imports a previously exported
security context.

8–14 GSS-API

GSS-API Function Description

gss_init_sec_context() Initiates a security context with a
context acceptor application.

gss_inquire_context() Obtains information about a security
context.

These functions may block pending exchanges between applications and
security servers.

8.3.3.1 Identifying a Mechanism

The GSS-API standard is designed to be used in an environment where there
are multiple security mechanisms available. This means that the targeted
security mechanism must be identified programmatically.

One parameter passed to gss_init_sec_context() is the security
mechanism identifier (or mech_type) that the initiator desires to use. The
mechanism identifier is passed as an object identifier (OID). Alternatively,
the initiator can use the default mechanism identifier. The default that
would be selected is dependent on the GSS-API implementation. For
Application Security SDK, the default mechanism is Kerberos 5.

8.3.3.2 Token Exchange

During the gss_init_sec_context() call, Application Security SDK
searches the user’s credentials cache for a service ticket. If the service ticket
is not in the cache, Application Security SDK fetches a service ticket from the
KDC. The returned service ticket is stored in the user’s credentials cache.
The GSS-API encodes the service ticket, along with other information, and
returns it in a token to be sent to the other side of the application.

During the gss_accept_sec_context() call, the GSS-API decodes
the token and extracts and verifies the service ticket, using its secret key
from the service key table file. If verification was successful and mutual
authentication was requested, the GSS-API generates a token in response.
If mutual authentication was not requested, no return token is generated. If
an error occurred, the GSS-API may generate an error token.

8.3.3.3 Optional Security Measures

When initiating a context, the application can identify a number of optional
security measures. The GSS-API implementation of these optional security
measures is dependent on the security mechanism in use.

The following sections introduce the optional security measures:

• Channel Bindings

GSS-API 8–15

• Confidentiality and Integrity

• Replay Detection

• Out-of-Sequence Message Detection

• Mutual Authentication

• Encryption Type: DES vs. DES3

• Credentials Delegation

8.3.3.3.1 Channel Bindings

Channel bindings are used to strengthen the quality of the authentication
between two sides of a distributed application during context establishment,
by limiting the scope within which an intercepted context establishment
token can be reused by an imposter. Channel bindings accomplish this by
adding additional items of data (specified by the distributed application) into
the security context.

Channel bindings are composed of two main parts:

• Address information

• Optional application data

The address information consists of an address type and an address value for
both the initiator and the acceptor. The address type specifies the protocol
type contained in the address value buffer. The address value is the actual
address of the initiator or the acceptor (in a format that corresponds to the
address type).

In Kerberos 5, when the KDC builds a service ticket, it encodes the client
address into the ticket. When the initiator presents that ticket to the
acceptor and channel bindings are passed to gss_accept_sec_context(),
the GSS-API verifies that the client address in the ticket is identical to
the initiator address in the channel bindings. However, this check is not
performed when using a TCP connection.

______________________ Note _______________________

The only address format supported is GSS_C_AF_INET.

The other component of the channel bindings data structure is application
data, which the initiator can send to the other side of the application to be
compared by the acceptor. Application data, if used, is determined by the
application. The data supplied when the context is initiated must exactly
match on the acceptor side. For example, the application may insert its
“version number” in the application data, thereby prohibiting establishment

8–16 GSS-API

of a security context with another application that is not a compatible
version.

Channel bindings are encoded into the token generated by
gss_init_sec_context(), which is then sent to the acceptor. The channel
bindings are verified by gss_accept_sec_context(). The application
initiating the security context must determine the channel binding values
before calling gss_init_sec_context(), and both applications must
provide consistent values to the security context functions. The GSS-API
checks the channel bindings on the accepting side of the application.

When channel bindings are passed to gss_init_sec_context(), a hash
value is computed using the channel bindings. The hash value is encoded
into the token. During the call to gss_accept_sec_context(), the
GSS-API computes a hash value using the channel bindings passed to it and
compares the computed hash value against the hash value in the token
passed to it.

8.3.3.3.2 Confidentiality and Integrity

The initiator can specify that it wants message confidentiality or integrity,
or both, to be available when sending and receiving messages. The acceptor
can query to see if message confidentiality or integrity, or both, is required
for this context. This information is then passed back to the initiator.

______________________ Note _______________________

The initiator can request confidentiality, but if the acceptor
cannot supply it, confidentiality is not used.

Use the GSS_C_CONF_FLAG and the GSS_C_INTEG_FLAG of the
gss_init_sec_context() function to specify the confidentiality and
integrity requirements.

8.3.3.3.3 Replay Detection

Replay detection means one side of the application checks to see if the token
or message has been sent to it previously.

The initiator can specify that it wants messages to be checked against a
message replay cache. This is used to determine if the message is a replay of
a previous message.

The replay cache expands as required, allocating more resources for the
cache as more messages are cached. Note that there is an upper limit on the
cache size. Once a replay cache reaches a certain size, adding a new entry

GSS-API 8–17

will be accompanied by freeing an older entry. The resources associated with
the entire cache are freed when the security context is deleted.

______________________ Note _______________________

There are two different replay caches supported in Kerberos
5. The message replay cache is a memory-based cache that is
controlled by parameters set during context establishment. The
authentication replay cache is a file-based cache with settings
controlled by UNIX environment variables.

8.3.3.3.4 Out-of-Sequence Message Detection

The initiator can specify that it wants messages to be sequenced (or
numbered) to verify that all messages are received and that they are received
in the order sent. Message sequencing also provides replay detection.

8.3.3.3.5 Mutual Authentication

The initiator can specify that it wants the acceptor to also perform
authentication to the initiator. This way, both sides of the application can be
assured that they are talking to the genuine other side of the application.

8.3.3.3.6 Encryption Type: DES vs. DES3

The initiator can specify the DES3 encryption standard during initial
authentication. The initiator can also request DES3 encryption when
initiating a security context. DES3 encryption offers significantly enhanced
security over DES encryption.

8.3.3.3.7 Credentials Delegation

For Kerberos 5 implementations, the initiator can set the
GSS_C_DELEG_FLAG delegation flag to specify that it wants initial tickets
(TGTs) to be forwarded from one network host to another. Note that a TGT
can be forwarded only if it has the Kerberos forwardable TGT attribute.

8.3.3.4 Identifying the Targeted Security Measures

The initiator calls gss_init_sec_context() and identifies the security
measures that it wants the security mechanism to use. Flags are returned
to the application, indicating which security measures are provided by the
security mechanism. Not all security measures defined by the GSS-API
standard may be provided by a security mechanism.

When the initiator specifies the security measures to use when establishing
a security context, the acceptor must accept them. There is no room for

8–18 GSS-API

negotiation at this time. For example, if the initiator specifies sequencing
or replay detection when it calls gss_init_sec_context(), the acceptor
must provide it.

If channel bindings are specified when the initiator calls
gss_init_sec_context(), the acceptor must supply the exact same
channel bindings in its call to gss_accept_sec_context().

8.3.4 Message Functions

The GSS-API message functions perform protection on a per-message basis.
They can be invoked by either side of the application. When the application
calls these functions, it specifies the quality of protection (QOP), which
identifies the cryptographic algorithm that will be used to process the
message. The values of the QOP are mechanism-dependent. The key used to
apply the cryptographic algorithm is taken from the security context.

GSS-API Function Description

gss_get_mic() Generates a signature from a message, ensuring
data integrity and data origin authentication; a
token (the signature) is returned. The original
message is not encapsulated into the token.

gss_unwrap() Deciphers and validates the token to determine
its integrity, decrypts the message if needed,
and returns the message.

gss_verify_mic() Validates the message against its signature
to ensure it was not tampered with during
transmission.

gss_wrap() Encapsulates a message into a token, encrypting
it if confidentiality is specified, and includes a
signature to ensure that the message was not
tampered with during transit and to provide
data origin authentication.

gss_wrap_size_limit() Determine the message size limit for the
gss_wrap() on a context, given a token size
maximum that can be sent by your network.

These four functions are related to each other as pairs:

• gss_get_mic() and gss_verify_mic()

• gss_wrap() and gss_unwrap()

An application may use gss_get_mic() and gss_verify_mic() if it
wants to send the signature separately from the data. For example, in
PGP mail (Pretty Good Privacy), the message is sent first, followed by the
signature. The signature is verified and the results are displayed, indicating
the message was not modified in transit.

GSS-API 8–19

______________________ Note _______________________

These functions are new in GSS-API V2. The previous release
used the functions gss_sign(), gss_verify(), gss_seal(),
and gss_unseal().

8.3.4.1 Quality of Protection

When the application calls these functions, it specifies the QOP, which
identifies the integrity or confidentiality algorithm that will be applied to
the message. Six algorithms are defined for the quality of protection in
Kerberos 5:

• DES-MAC-MD5

• DES3-MAC-MD5

• MD2.5

• DES-MAC

• DES-CBC

• DES3-CBC

______________________ Note _______________________

Given the same quality of protection, gss_get_mic() and
gss_wrap() calculate the signature the same way.

8.3.5 Miscellaneous Support Functions

This section lists miscellaneous support functions that may be used when
securing applications.

GSS-API Function Description

gss_add_oid_set_member() Adds an object identifier (OID) to a set.

gss_create_empty_oid_set() Creates a set containing no object identifiers.

gss_display_status() Converts a GSS-API status code to a printable
text form. An application may need to call
this function multiple times to receive the
multiple status messages some errors indicate.
The application releases the buffers by calling
gss_release_buffer(). This function
operates on both major and minor status codes.

8–20 GSS-API

GSS-API Function Description

gss_indicate_mechs() Returns the mechanism identifiers supported
on the local system. The structure must
be released by the application using
gss_release_oid_set().

gss_release_buffer() Frees storage of printable names, buffers,
and tokens. Used after calls to gss_dis-
play_status(), gss_display_name(),
gss_export_name(), gss_ex-
port_sec_context(), gss_init_sec_con-
text(), gss_accept_sec_context(),
csf_gss_acq_user(), gss_wrap(),
gss_get_mic(), and gss_unwrap().

gss_release_oid_set() Frees storage of OID set objects.

gss_test_oid_set_member() Determine if an object identifier is
member of a set.

In addition, there are some HP extension functions.

Application Security SDK
Function

Description

cs_oid_cmp() Compares two OIDs.

cs_oid_dup() Duplicates an OID.

cs_oid_free() Frees resources associated with an OID.

cs_oid_in_set() Determines if an OID is included in an OID set.

cs_oid_set_cmp() Compares two OID sets.

cs_oid_set_dup() Duplicates an OID set.

cs_oid_set_free() Frees resources associated with an OID set.

cs_oid_set_insert() Inserts an OID into an OID set. The function
gss_add_oid_set_member() is preferred
for GSS-API v2 compliance.

cs_oid_set_isect() Creates a new set that is an intersection
of two OID sets.

cs_oid_set_union() Creates a new set that is an union of two OID sets.

csf_gss_get_OidAddress() Retrieves the address of the built-in OID set.

csf_gss_get_RfcOidSet() Retrieves the address of the built-in
Kerberos OID set.

csfgss_pPtr() Retrieves the a pointer to an OID mechanism
or OID mechanism set.

GSS-API 8–21

8.3.5.1 OID and OID sets

In order to understand OIDs (Object Identifiers) and OID sets, it is useful to
review some background information.

8.3.5.1.1 OSI

OSI, described in CCITT X.200, is an internationally standardized
architecture that governs the interconnection of computers from the physical
layer up to the user application layer. Objects at higher layers are defined
abstractly and intended to be implemented with objects at lower layers.

8.3.5.1.2 ASN.1

OSI’s method of specifying abstract objects is called ASN.1 (Abstract Syntax
Notation One, defined in CCITT X.208), which defines a set of rules for
representing such objects as strings of ones and zeros. ASN.1 is a flexible
notation that allows the definition of a variety of data types, including
simple types such as integers and bit strings, structured types such as sets
and sequences, and complex types defined in terms of other types.

8.3.5.1.3 Object Identifiers

An OID (Object Identifier) is one such data type, being a simple data type
used to identify objects such as algorithms and attribute types. OIDs
are composed of a sequence of integer components, values that are given
meanings by registration authorities.

In the GSS-API, OIDs are used to identify parameters such as name types
and mechanisms. The following examples shows how they work.

Example 8–1: Constant Pointing to a Structure Containing a String

The constant GSS_C_NT_USER_NAME is a gss_OID type initialized to point to a gss_OID_desc structure
containing the following OID string:

{10, (void *)"\x2a\x86\x48\x86\xf7\x12\x01\x02\x01\x01"}

This can be converted to the decimal object identifier values:

{ 1 2 840 113554 1 2 1 1 }

which in turn represent the following hierarchy of objects:

{iso(1) member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
generic(1) user_name(1)}

8–22 GSS-API

Example 8–2: Constant Pointing to a String

The constant rfc_krb5_c_OID is a gss_OID type which points to the OID string for:

{iso(1) member-body(2) United States(840) mit(113554) infosys(1) gssapi(2)
krb5v2(3)}

8.3.5.1.4 OID Sets

An OID set is a GSS-API data structure that contains a set of OIDs,
and a integer representing the number of OIDs in the set. Some
GSS-API functions use sets to input and output a large number and/or
a large variety of mechanism and attribute objects. For example,
when you call gss_acquire_cred(), an OID set is returned that
contains object identifiers for all supported mechanisms. You can use
gss_test_oid_set_member() to see if a certain OID is in the set.

OID sets can also be created using the functions gss_cre-
ate_empty_oid_set() and gss_add_oid_set_member().

8.3.6 V1 Compliance Functions

There are several functions included in Application Security SDK that are
not supported in the GSS-API Version 2. HP continues to support these
functions in this release for v1 interoperability. New applications being
written using GSS-API Version 2 should not use the following v1 functions;
instead use the v2 replacement.

GSS-API v1 Function GSS-API v2 Replacement

gss_open() Action no longer required

gss_close() Action no longer required

gss_process_context_token() Action no longer required

gss_seal() gss_wrap()

gss_sign() gss_get_mic()

gss_unseal() gss_unwrap()

gss_verify() gss_verify_mic()

8.4 Best Practices

The following sections provide information regarding security considerations
and recommendations that should be followed when you are using
Application Security SDK to create a custom application.

GSS-API 8–23

8.4.1 Multi-threading

The following functions are not thread-safe:

• gss_acquire_cred()

• gss_add_cred()

• csf_gss_acq_user()

• csf_gss_inq_user()

• csf_gss_release_user()

• csf_gss_renew_cred()

All of these functions pertain to the acquisition of initial tickets, and should
therefore not be used in the multi-thread portion of your application.

Special care has been taken to ensure that gss_init_sec_context()
and gss_accept_sec_context() are both multi-thread safe. All other
function calls are thread-safe, provided that each thread uses a unique
security context.

8.4.2 Cache Management

Cache sharing between principals is a security risk. One principal that
shares the cache may impersonate another principal that also uses the
cache. This can result in exploitation of the principals or the servers that
trust the principals, or the passing of replayed messages.

HP recommends that you use a unique credentials cache for each initiator,
and a unique key table entry for each acceptor. Ideally, each acceptor
application should have a separate key table file.

8.4.3 Encryption Types

Application Security SDK supports both DES and DES3 encryption types.
HP recommends using DES3 encryption as it provides significantly enhanced
protection over DES.

Note that using DES3 restricts portability. Applications that use DES3
encryption can only be used with Application Security SDK implementations.

8.4.4 Exported Security Contexts

The gss_export_sec_context() function creates a token that can be
used to pass a security context between processes. This token contains
the context’s secret key, and therefore is extremely sensitive data. These
exported security contexts cannot be secured by the GSS-API, and must be
protected by the application.

8–24 GSS-API

Applications that use this GSS-API feature must be sure to pass an exported
security context between processes in a secure manner. Exported security
contexts should be kept within the boundaries of the host that created the
security context.

8.4.5 Key Management with GSS and Kerberos 5

Secret keys are used with encryption algorithms and keyed checksum
algorithms, and should be changed periodically. How often depends on the
algorithms used and the amount of data that is protected by them. One
way to decrease the frequency is by using a stronger encryption algorithm,
such as DES3 instead of DES.

There are five different types of keys that are used:

• A user principal has a secret key (password) stored in the principal
database. This key is used to acquire ticket-granting-tickets (TGTs).
If a user principal acquires many TGTs with the same password, the
password may need to be changed in advance of its expiration time.

• Each TGT contains a session key. This key is used to acquire service
tickets and to renew tickets. If a user principal, or a service principal
acting as a client to other services, acquires many service tickets with
the same TGT, you may need to acquire a new TGT in advance of its
expiration time.

You can also shorten the lifetime of the TGT. When specifying the lifetime
with csf_gss_acq_user(), the function treats it as the minimum
lifetime. To ensure that you don’t use a TGT with a greater lifetime, use
the CSF_GSS_C_ACQ_USER_OPT_ALWAYS_FETCH option which will force
csf_gss_acq_user() to obtain a new TGT with the desired lifetime
from the KDC.

• Each service ticket contains a session key. This key is used when
establishing a security context. If a user principal, or a service principal
acting as a client to another service, establishes many security contexts
using the same service ticket, you may need to replace the service ticket
before it expires. Service tickets generally expire at the same time as the
TGT used to obtain them. The only way to replace a service ticket before
it expires is to acquire a new TGT, which will re-initialize the credentials
cache in which the tickets are stored.

• A service principal has a secret key stored in the principal database and
also in a service key table file. When accepting a security context, this
key is used to encrypt data. Each service ticket that a user principal
acquires for the service principal contains the encrypted data.

Also, a service principal that acts as a client to other services uses its
secret key to acquire TGTs. A service principal’s secret key is typically

GSS-API 8–25

used often and therefore needs to be changed often. This is one reason
why HP recommends against sharing of a service principal amongst
server applications.

• Each security context contains a session key. This key is used when
protecting messages. Security contexts do not expire. If you use one
security context to exchange a lot of data or if you have a long-lived
conversation, you may need to delete the security context and establish a
new one periodically.

Since all but the security context session keys are stored in either a
credentials cache or a service key table file, credentials caches and service
key table files need to be protected.

8.4.6 Multi-threaded Functions

The following Application Security SDK functions are not thread-safe:

• gss_acquire_cred()

• gss_add_cred()

• csf_gss_acq_user()

• csf_gss_inq_user()

• csf_gss_release_user()

• csf_gss_renew_cred()

All of these functions pertain to the acquisition of initial tickets, and should
therefore not be used in a multi-thread environment. If credentials are
fetched before a program creates threads, the credential may be passed into
the threads for a multi-threaded acceptor or initiator.

Special care has been taken to ensure that gss_init_sec_context()
and gss_accept_sec_context() are both multi-thread safe. All other
Application Security SDK calls are thread-safe, provided that each thread
uses a unique security context.

8.4.7 Mutual Authentication

Mutual authentication means that both the initiator and acceptor principals
are required to verify their identities before the security context can be
established. The GSS_C_MUTUAL_FLAG option in the req_flags parameter
of the function gss_init_sec_context() indicates whether mutual
authentication is required.

If principals are not required to perform mutual authentication, there
is a risk of getting a replayed message. If mutual authentication is

8–26 GSS-API

not performed, message replay detection should be enabled using the
GSS_C_REPLAY_FLAG of the req_flags parameter.

8.4.8 Protecting Passwords

HP recommends that all dialog boxes or forms used to obtain password
information from principals should have the keyboard echo turned-off. This
prevents other persons in the room from reading the user’s password on
the computer display.

Buffers used to store passwords should be set to zero immediately after use.

8.4.9 Replay Protection

The gss_init_sec_context() function contains a flag
(GSS_C_REPLAY_FLAG of the req_flags parameter) that indicates
if message replay detection should be enabled. Enabling message
replay detection is important if applications are not performing mutual
authentication during context establishment, as indicated by the
GSS_C_MUTUAL_FLAG in the req_flags parameter being set to FALSE.

Message replay detection requires that a replay cache be used to store
message received from the other application. There is a cache located on both
the initiator and acceptor hosts. These caches are memory-based, and can
expand in size to an upper limit. Consequently, replay detection will have
an impact on the size of the process. New replay cache entries are allocated
during gss_unwrap() and gss_verify_mic(), giving the appearance of
a memory leak in the application. This is normal behavior. When a security
context that uses message replay detection is deleted, the entire message
replay cache is also deleted.

There is a different type of replay cache that is used for authentication replay
detection. This is by default a file-based cache, as controlled by the UNIX
CSFC5RCNAME environment variables or the Windows RepCache registry
entries. This cache should never be configured to be a memory-based cache
as that would introduce a security vulnerability. This cache type is always
active, and is not controlled by the initiating application.

8.4.10 Refreshing Credentials

There are two security parameters containing cryptographic keys that do
not expire. One is the service key table entry. The other is the security
context. HP advises that these parameters should be refreshed periodically
to minimize the potential for cryptographic exploitation of these keys.

GSS-API 8–27

8.4.11 Resource Management

Many functions create strings, buffers or other resources that are used to
store security information for use by the application. It is very important
that these resources are properly freed or released after use by calling the
appropriate function included in the SDK. Failure to do so may compromise
your security. A mismanaged resource may be able to be retrieved and read
in a security attack.

In the Reference section of the SDK Manuals, information is provided on
the appropriate resource management call that is used to free or release
the contents of each function that creates a sensitive resource. Be sure to
read the Reference sections of the individual SDK manuals thoroughly to
determine the correct procedures to avoid this security exposure.

8.4.12 Service Key Table Files

The service key table file contains the credentials used by the acceptor
application to verify its identity. Access to this file should be very restricted,
allowing no user permission to read the contents of the file. Only trusted
services should have the permissions to access the file.

The credentials in the service key table file do not expire. HP recommends
that these credentials be refreshed periodically. To refresh an entry in
the service key table file, a new random key should be generated by the
security server, and extracted to the service host using a principal database
administration program.

8.4.13 Ticket Attributes

Kerberos 5 initial tickets can be requested with a variety of attributes, as
specified by flags in the csf_gss_acq_user() function. The following
sections describe the attributes that can be requested.

8.4.13.1 Forwardable Tickets

Forwarding is a mechanism that sends a TGT from one host to another. The
forwarded TGT can be used to generate a new service ticket on the second
host on behalf of the initial principal named in the TGT. Tickets should only
be forwarded to trusted principals.

8.4.13.2 Preauthentication

Preauthentication means that additional encrypted data is sent with a TGT
request. The additional encrypted data is in the form of the Encrypted
Timestamp. This added information provides extra security during the

8–28 GSS-API

authentication process. If the CSF_GSS_C_ACQ_USER_OPT_NOPREAUTH is
indicated, preauthentication is not required.

HP does not recommend skipping preauthentication, unless there is some
need to do so unrelated to security, and therefore recommends that you avoid
using this option unless absolutely necessary. Specifically for the Kerberos 5
security mechanism, preauthentication during acquisition of initial tickets
prevents an impostor from getting tickets written in your name. In normal
circumstances these tickets are only usable by the principal that is named
in the ticket, as only they possess the secret key to decrypt it. However in
the event there is some cryptographic exploitation capability held by an
adversary, preauthentication prevents them from getting information from
the security server that they can exploit. It also guarantees freshness of
the ticket request.

8.4.13.3 Ticket Lifetime

The requested ticket lifetime is designated by the
CSF_GSS_ACQ_USER_OPT_LIFETIME flag. The security server may return
an initial ticket with a shorter lifetime than requested. This is because the
maximum lifetime for a ticket issued to a principal in a given realm is
controlled by the settings for the special principal krbtgt/REALM@REALM.

There are also ticket lifetime limits imposed by the Kerberos version. The
maximum ticket lifetime for a Kerberos 4 ticket is 21 hours and 15 minutes.
If you permit a maximum lifetime of 1 day, a Kerberos 5 ticket will last a full
24 hours, but a Kerberos 4 ticket expires after 21 hours and 15 minutes.

8.4.13.4 Ticket Renew Time

A ticket can be requested with a renewable attribute using the
CSF_GSS_C_ACQ_USER_OPT_RENEWABLE flag. Note that the security server
may return an initial ticket with a shorter renew time than requested.
This is because the maximum renew time for a ticket issued to a principal
in a given realm is controlled by the settings for the special principal
krbtgt/REALM@REALM.

Once a renewable ticket is received, the renew time is controlled by a set of
rules. When a principal initially requests a TGT, lifetime and renew time are
not related. The granted renewable time has no relationship to the lifetime
when the original ticket is issued. However, the two times do interact when
a ticket is renewed.

8.4.13.4.1 General Rules for Lifetime and Renew Settings

When you renew a ticket, the resulting lifetime is determined according
to the following rules:

GSS-API 8–29

• A ticket can only be renewed if it has a renewable ticket attribute.

• Renewable tickets may be renewed at any point during the ticket’s
lifetime.

• An expired ticket cannot be renewed.

• A renewable ticket can be renewed multiple times, until the renew time
limit has expired.

• A renewed ticket will have the same lifetime as the original lifetime of
the renewable ticket. As an example, assume a ticket has a lifetime of 30
minutes but is renewable for 50 minutes. After 15 minutes, the ticket is
renewed. The renewed ticket lifetime is also 30 minutes.

• The rule is modified when a ticket is renewed if the remaining renew
time is shorter than the original ticket lifetime. The renewed ticket
expiration time cannot be later than the renew expiration time when the
original ticket was issued. Referring to the example above, suppose the
ticket is renewed before the ticket expires, say at 25 minutes after it is
originally obtained as a renewable ticket. The renewed ticket will be
valid for 25 minutes---not 30 minutes (25 + 25 = 50 minutes). The total
time that the renewable and renewed ticket are valid must be less than
or equal to the renew time limit set on the original ticket.

• Any proxy (service) tickets obtained with a renewable TGT inherit the
renewable option and the renew time, and are renewed along with
the TGT. This follows the general idea that service tickets inherit the
attributes (when possible) of the TGT used to obtain them.

• Renewing tickets does not require a password.

8.5 Building a Portable Application

The GSS-API standard is designed to be generic, and to allow applications
that incorporate the GSS-API to be source-level compatible. However, if you
use GSS-API implementations from different vendors, you may encounter
some portability problems between these vendors.

The following sections provide recommendations to help minimize this
impact and make your GSS-API applications created using Application
Security SDK more portable across platforms.

8.5.1 Using Printable Names and Comparing Names

The gss_display_name() function converts an internal name (i.e.,
a name returned by gss_import_name()) to a text form suitable for
printing. Since the GSS-API standard does not require that the printable
name and name-type OID returned from gss_display_name() be
suitable for input to gss_import_name(), the printable name format is

8–30 GSS-API

implementation-specific and operating system-dependent. The format of
printable names may differ across GSS-API implementations, whether the
implementations are cross-vendor, cross-platform, or incremental vendor
releases. Consequently, printable names are not reliable as input to name
comparison functions outside the GSS-API standard. You should use the
export name format created with the gss_export_name() function for this
purpose. Examples where the export name may be used include ACL (access
control list) functions, accounting functions, or diagnostic aids.

8.5.2 Specifying Mechanisms

Passing an OID set to gss_acquire_cred() or csf_gss_acq_user() and
passing an OID to gss_init_sec_context() and gss_import_name()
reduce the portability of an application as technology changes. For example,
your enterprise may start out using the Kerberos security mechanism,
but may later change to a public-key security mechanism. If application
developers hard-coded OID sets specifying Kerberos, those applications
would have to be modified. Also, mechanism OIDs can change.

To increase portability, an application should pass default OID and OID set
values to functions, thus permitting the GSS-API implementation to choose
whatever mechanisms are available and appropriate.

8.5.3 Specifying a Quality of Protection (QOP)

The gss_wrap() and gss_get_mic() functions accept a QOP parameter
that specifies the algorithm to be applied to the message. The QOP
parameter value is mechanism-specific. Specifying anything other than the
default value (in which case the GSS-API implementation chooses a value)
hard-codes the application to a mechanism.

Consequently, should you change the mechanism used, or the mechanism
you currently use changes functionally, application source code modifications
may be required.

The gss_unwrap() and gss_verify_mic() functions and their inverse
functions of gss_wrap() and gss_get_mic() are supposed to return
the actual QOP used to protect the message. If an application specifies the
default QOP when it encodes a message, the QOP returned by the inverse
function is mechanism-dependent.

To increase portability, an application should specify the default QOP
value when calling gss_wrap() and gss_get_mic() and should not
rely on the value returned by their inverse functions (gss_unwrap() and
gss_verify_mic(), respectively).

The default integrity QOPs are as follows:

GSS-API 8–31

• CSF_GSS_KRB5_INTEG_C_QOP_DES3_MD5 for DES3.

• GSS_KRB5_INTEG_C_QOP_DES_MD5 for DES

The confidentiality QOPs are as follows:

• CSF_GSS_KRB5_CONF_C_QOP_DES3 for DES3

• GSS_KRB5_CONF_C_QOP_DES for DES

The default QOP used depends on the encryption type selected when the
security context was established.

______________________ Note _______________________

The DES3 QOP is not portable; designating this QOP renders the
application to be Kerberos 5 mechanism-specific.

8.5.4 Default Names

Some GSS-API functions accept a parameter that selects a default name.
However, the GSS-API standard does not define how default names are
formed; it is mechanism-dependent and operating system-dependent.
For example, one GSS-API implementation may form a default name
by interrogating an environment variable, whereas another may form it
from the user’s ID (for example, a UNIX UID). There are also GSS-API
implementations that form a default name based on indirect selection
criteria and mechanism common sense. For example, Application Security
SDK Kerberos mechanism implementation forms the default name
user@REALM for credentials of usage GSS_C_INITIATE and the default
host/hostname@REALM for credentials of usage GSS_C_ACCEPT.

HP recommends that to increase portability, you do not use
mechanism-dependent default names.

8.6 Quick Reference

Application Security SDK consists of standard and proprietary functions
described in that are used to secure applications:

• Function calls beginning with the letters gss correspond to the GSS-API
standard.

• Function calls beginning with the letters cs or csf are HP-specific
extensions.

8–32 GSS-API

Function Description

cs_oid_cmp() Compare two OIDs.

cs_oid_dup() Duplicate an OID.

cs_oid_free() Free an OID.

cs_oid_in_set() Determine if an OID is in an OID set.

cs_oid_set_cmp() Compare two OID sets.

cs_oid_set_dup() Duplicate an OID set.

cs_oid_set_free() Free an OID set.

cs_oid_set_insert() Insert an OID into an OID set.

cs_oid_set_isect() Create a new OID set that is an intersection
of two existing OID sets.

cs_oid_set_union() Create a new OID set that is a union of
two existing OID sets.

csf_gss_acq_user() Acquire a user prior to initiating a
security context.

csf_gss_get_context_op-
tions()

Verify the type of encryption being used.

csf_gss_get_OidAddress() Returns address of built-in OID.

csf_gss_get_RfcOidSet() Returns address of built-in Kerberos OID set.

csf_gss_inq_user() Obtain information about a user.

csfgss_pPtr() Get a pointer to an OID mechanism or
OID mechanism set.

csf_gss_release_user() Delete a user when no longer needed.

csf_gss_renew_cred() Renew credentials.

gss_accept_sec_context() Accept a security context initiated by
a peer application.

gss_acquire_cred() Retrieve stored credentials for use by
an application.

gss_add_cred() Construct credentials incrementally.

gss_add_oid_set_member() Add an object identifier (OID) to a set.

gss_canonicalize_name() Convert an internal name to a mechanism-
specific name (MN).

gss_close() Support for this function is for v1 interoperability.

gss_compare_name() Compare two internal form names.

gss_context_time() Determine how long a security context
remains valid.

GSS-API 8–33

Function Description

gss_cre-
ate_empty_oid_set()

Create a set containing no object identifiers.

gss_delete_sec_context() Delete a security context.

gss_display_name() Convert an internal form name to text.

gss_display_status() Convert a GSS-API status code to text.

gss_duplicate_name() Create a copy of an internal form name.

gss_export_name() Convert a mechanism specific name to
an export form.

gss_export_sec_context() Transfer a security context to another process.

gss_get_mic() Calculate a signature, called a message integrity
code (MIC), for a message.

gss_import_name() Convert a text name to internal form.

gss_import_sec_context() Import a previously exported security context.

gss_indicate_mechs() Determine the available security mechanisms.

gss_init_sec_context() Initiate a security context with a peer application.

gss_inquire_context() Obtain information about a security context.

gss_inquire_cred() Obtain information about credentials.

gss_in-
quire_cred_by_mech()

Obtain per-mechanism information about
credentials

gss_in-
quire_mechs_for_name()

List the mechanisms that support the name type.

gss_in-
quire_names_for_mech()

List the name types supported by the
specified mechanism.

gss_oid_to_str() Display OID as string.

gss_open() Support for this function is for v1 interoperability.

gss_process_context_to-
ken()

Process the token on a security context from
a peer application. Support for this function
is for v1 interoperability.

gss_release_buffer () Delete a buffer.

gss_release_cred() Delete credentials after use.

gss_release_name() Delete an internal form name.

gss_release_oid() Free storage of OID object.

gss_release_oid_set() Delete a set of object identifiers.

gss_seal() Replaced by gss_wrap().

gss_sign() Replaced by gss_get_mic().

8–34 GSS-API

Function Description

gss_str_to_oid() Construct OID from string.

gss_test_oid_set_member() Determine whether an object identifier
is a member of a set.

gss_unseal() Replaced by gss_unwrap().

gss_unwrap() Verify the signature attached to a message and
decrypt the message content if necessary.

gss_verify() Replaced by gss_verify_mic().

gss_verify_mic() Verify the signature for a received message.

gss_wrap() Attach a signature to a message and, optionally,
encrypt the message content.

gss_wrap_size_limit() Determine the message size limit for
gss_wrap() on a context, given a maximum
token size dictated by the network.

8.6.1 Reference Page Conventions

Each function is described in a reference page using the following categories:

Purpose

A brief description of the function purpose.

Syntax

A complete listing of permitted parameters and command line arguments.

Input parameters are those parameters passed from the application to
Application Security SDK.

Output parameters are those parameters, passed from Application Security
SDK to the application.

If an input parameter is optional, the application can supply a default value
for that parameter.

If an output parameter is optional, Application Security SDK does not need
to return a value to the application because the application does not need it.
Use NULL in the output parameter to indicate this.

______________________ Note _______________________

To avoid memory leaks, the application must always release the
storage associated with returned values after use.

GSS-API 8–35

Parameters

A list of variables passed to and returned from the function. For binary
values:

• Logical 1 represents true.

• Logical 0 represents false.

Parameters initialized to NULL may also be zero.

Description

The definition, purpose, and usage tips for a function.

Portability Considerations

Concerns for porting an HP secured application to another environment.

Return Values

A list of major status values returned by the function.

See Also

A list of related function calls.

8.7 Constants
The header files included with Application Security SDK include many
constants. The constant definitions from the header files are included here
for reference.

Context Flags Definition

GSS_C_DELEG_FLAG 1

GSS_C_MUTUAL_FLAG 2

GSS_C_REPLAY_FLAG 4

GSS_C_SEQUENCE_FLAG 8

GSS_C_CONF_FLAG 16

GSS_C_INTEG_FLAG 32

GSS_C_ANON_FLAG 64

GSS_C_PROT_READY_FLAG 128

GSS_C_TRANS_FLAG 256

CSF_GSS_C_DES_FLAG 268435456

CSF_GSS_C_DES3_FLAG 536870912

8–36 GSS-API

Credentials Usage Definitions

GSS_C_BOTH 0

GSS_C_INITIATE 1

GSS_C_ACCEPT 2

Status Code Types Definitions

GSS_C_GSS_CODE 1

GSS_C_MECH_CODE 2

Address Types Definitions

GSS_C_AF_UNSPEC 0

GSS_C_AF_LOCAL 1

GSS_C_AF_INET 2

GSS_C_AF_IMPLINK 3

GSS_C_AF_PUP 4

GSS_C_AF_CHAOS 5

GSS_C_AF_NS 6

GSS_C_AF_NBS 7

GSS_C_AF_ECMA 8

GSS_C_AF_DATAKIT 9

GSS_C_AF_CCITT 10

GSS_C_AF_SNA 11

GSS_C_AF_DECnet 12

GSS_C_AF_DLI 13

GSS_C_AF_LAT 14

GSS_C_AF_HYLINK 15

GSS_C_AF_APPLETALK 16

GSS_C_AF_BSC 17

GSS_C_AF_DSS 18

GSS_C_AF_OSI 19

GSS_C_AF_X25 21

GSS_C_AF_NULLADDR 255

GSS-API 8–37

Various NULL Values Definitions

GSS_C_NO_NAME NULL

GSS_C_NO_BUFFER NULL

GSS_C_NO_OID NULL

GSS_C_NO_OID_SET NULL

GSS_C_NO_CONTEXT NULL

GSS_C_NO_CREDENTIAL NULL

GSS_C_NO_CHANNEL_BINDINGS NULL

CSF_GSS_C_NO_USER NULL

CSF_GSS_C_ACQ_USER_OPT_NONE NULL

QOPs Definitions

GSS_C_QOP_DEFAULT 0

GSS_KRB5_CONF_C_QOP_DES 0

GSS_KRB5_INTEG_C_QOP_MD5 1

GSS_KRB5_INTEG_C_QOP_DES_MD5 2

GSS_KRB5_INTEG_C_QOP_DES_MAC 3

CSF_GSS_KRB5_INTEG_C_QOP_DES3_MD5 5341

CSF_GSS_KRB5_CONF_C_QOP_DES3 5342

User Options Definitions

CSF_GSS_C_ACQ_USER_OPT_LIFETIME 1

CSF_GSS_C_ACQ_USER_OPT_RENEWABLE 2

CSF_GSS_C_ACQ_USER_OPT_CCNAME 4

CSF_GSS_C_ACQ_USER_OPT_KTNAME 8

CSF_GSS_C_ACQ_USER_OPT_SVCKEY 16

CSF_GSS_C_ACQ_USER_OPT_ALWAYS_FETCH 256

CSF_GSS_C_ACQ_USER_OPT_FORWARDABLE 32

CSF_GSS_C_ACQ_USER_OPT_PROXIABLE 64

CSF_GSS_C_ACQ_USER_OPT_NOPREAUTH 128

Encryption Types Definitions

CSF_GSS_C_ENCTYPE_DES_CBC_CRC 1

CSF_GSS_C_ENCTYPE_DES_CBC_MD5 3

CSF_GSS_C_ENCTYPE_DES3_CBC_MD5 5

8–38 GSS-API

Preauthentication Types Definitions

CSF_GSS_C_PREAUTH_NONE 0

CSF_GSS_C_PREAUTH_ENC_TIMESTAMP 2

CSF_GSS_C_PREAUTH_ENC_UNIX_TIME 5

Challenge States Definitions

CSF_GSS_C_USER_STATE_NULL 0

CSF_GSS_C_USER_STATE_PASSWORD_NOECHO 1

CSF_GSS_C_USER_STATE_CHALLENGE_ECHO 2

CSF_GSS_C_USER_STATE_OTP_ECHO 3

CSF_GSS_C_USER_STATE_PASSWORD_ECHO 4

CSF_GSS_C_USER_STATE_CHAL-
LENGE_NOECHO

5

CSF_GSS_C_USER_STATE_OTP_NOECHO 6

Miscellaneous Definitions

GSS_C_INDEFINITE 0xFFFFFFFF

CSF_GSS_C_PURGE_FLAG 1

8.8 Data Structures

Application Security SDK uses the following data structures to pass data
to and from function calls:

• gss_channel_bindings_t — identifies the communications channel
for a security context

• gss_buffer_t — specifies input or output data for a function call

• csf_gss_opts_t — specifies options for a user context

8.8.1 gss_channel_bindings_t

gss_channel_bindings_t is a pointer to the data structure containing
information that identifies the communications channel for a security
context. Channel bindings explains how channel bindings work.

The structure is defined in the gssapi.h header file as follows:

typedef struct _gss_channel_bindings_struct {
OM_uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM_uint32 acceptor_addrtype;
gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;

GSS-API 8–39

} gss_channel_bindings_desc, *gss_channel_bindings_t;

The initiator_addrtype and acceptor_addrtype fields denote
the type of addresses contained in the initiator_address and
acceptor_address buffers. Application Security SDK supports the
address format GSS_C_AF_INET.

The following function calls use channel_bindings_t structures:

gss_accept_sec_context()
gss_init_sec_context()

8.8.2 gss_buffer_t

gss_buffer_t is a pointer to a data structure that passes data to and from
function calls. The actual data structure, a buffer descriptor, consists of a
length field that contains the total number of data bytes and a value field
that contains a pointer to the actual data.

The structure is defined in the gssapi.h header file as follows:

typedef struct gss_buffer_desc_struct {
size_t length;
void *value
} gss_buffer_desc, *gss_buffer_t;

Storage for the data returned to an application by a function call using this
data structure is allocated by the function. The application must free this
storage after use by invoking gss_release_buffer(). Unused buffers
may be initialized to the value of GSS_C_EMPTY_BUFFER.

The following function calls use options structures:

csf_gss_acq_user()
gss_accept_sec_context()
gss_delete_sec_context()
gss_display_name()
gss_display_status()
gss_export_name()
gss_export_sec_context()
gss_get_mic()
gss_import_name()
gss_import_sec_context()
gss_init_sec_context()
gss_process_context_token()
gss_release_buffer()
gss_unwrap()
gss_verify_mic()
gss_wrap()

8–40 GSS-API

8.8.3 csf_gss_opts_t

csf_gss_opts_t is a pointer to the data structure that stores optional
parameters for a user context.

The structure used to store a single option is defined in the ext.h header
file as follows:

typedef struct csf_gss_mech_opt_desc_struct {
gss_OID mechOID; /* Mech to specify option for */
OM_uint32 id; /* Identifier of option */
void * val; /* Value associated with option if appropriate */
} csf_gss_mech_opt_desc, *csf_gss_opts_t;

An array of these structures, one for each option desired, must be
constructed. Initialize the mechOID field of the last record of the array to
GSS_C_NO_OID.

The following function calls use options structures:

csf_gss_acq_user()

8.9 Return Values

The following information is provided to aid in debugging and
troubleshooting applications.

8.9.1 Status Codes Defined

Many Application Security SDK functions have two return values: major
status and minor status.Both status codes are returned in a common
structure.

If the major status is zero, then the function was executed successfully.If
the major status was non-zero, then it indicates what error occurred in
Application Security SDK or that there was a failure in the underlying
Kerberos 5 mechanism. When a non-zero major status is returned, see the
minor status for a more detailed error code regarding the failure.

To programmatically check for error conditions and to recover from the error,
see the header files included as part of Application Security SDK.

Application Security SDK also provides macros that evaluate major status
values.

8.9.2 Error Processing Macros

Use the following macros to process return values.

GSS-API 8–41

Name Description

GSS_ERROR() Indicates either a routine or calling
error has occurred.

GSS_CALLING_ERROR() Indicates a calling error has occurred.

GSS_ROUTINE_ERROR() Indicates a routine error has occurred.

GSS_SUPPLEMENTARY_INFO() Indicates whether any supplementary
information bits are set.

8.9.2.1 GSS_ERROR()

Syntax
GSS_ERROR(major_status)

Parameters
major_status Major status being examined for an error. It uses the

OM_uint32 type.

Description

The GSS_ERROR() macro evaluates to true if the major status indicates a
routine error or a calling error.

See Also

GSS_CALLING_ERROR(), GSS_ROUTINE_ERROR()

8.9.2.2 GSS_CALLING_ERROR()

Syntax
GSS_CALLING_ERROR(major_status)

Parameters
major_status Major status being examined for an error. It uses the

OM_uint32 type.

Description

The GSS_CALLING_ERROR() macro evaluates to logical one (1) if a calling
bit representing a calling error is set; logical zero (0) if no bits are set.

8–42 GSS-API

Calling Error Bits
GSS_S_CALL_INACCESSIBLE_READ 01xxxxxx

GSS_S_CALL_INACCESSIBLE_WRITE 02xxxxxx

GSS_S_CALL_BAD_STRUCTURE 03xxxxxx

See Also

GSS_ERROR(), GSS_ROUTINE_ERROR()

8.9.2.3 GSS_ROUTINE_ERROR()

Syntax
GSS_ROUTINE_ERROR(major_status)

Parameters
major_status Major status being examined for an error. It uses the

OM_uint32 type.

Description

The GSS_ROUTINE_ERROR() macro evaluates to logical one (1) if a calling
bit representing a routine error is set; logical zero (0) if no bits are set.

Calling Error Bits
GSS_S_BAD_BINDINGS xx04xxxx

GSS_S_BAD_STATUS xx05xxxx

GSS_S_BAD_SIG xx06xxxx

GSS_S_BAD_MECH xx01xxxx

GSS_S_BAD_NAME xx02xxxx

GSS_S_BAD_NAMETYPE xx03xxxx

GSS_S_CONTEXT_EXPIRED xx0Cxxxx

GSS_S_CREDENTIALS_EXPIRED xx0Bxxxx

GSS_S_DEFECTIVE_CREDENTIAL xx0Axxxx

GSS_S_DEFECTIVE_TOKEN xx09xxxx

GSS_S_FAILURE xx0Dxxxx

GSS_S_NO_CRED xx07xxxx

GSS_S_NO_CONTEXT xx08xxxx

See Also

GSS_CALLING_ERROR(), GSS_ERROR()

GSS-API 8–43

8.9.2.4 GSS_SUPPLEMENTARY_INFO()

Syntax
GSS_SUPPLEMENTARY_ERROR(major_status)

Parameters
major_status Major status being examined for supplementary

information bits. It uses the OM_uint32 type.

Description

The GSS_SUPPLEMENTARY_INFO() macro evaluates to logical 1 if any
supplementary information bit is set; logical 0 if no bits are set. To test
whether a specific bit is set, the application must AND the major status with
the macro of the information bit being tested.

Supplementary Information Bits
GSS_S_CONTINUE_NEEDED xxxx0001

GSS_S_DUPLICATE_TOKEN xxxx0002

GSS_S_OLD_TOKEN xxxx0004

GSS_S_UNSEQ_TOKEN xxxx0008

See Also

GSS_ERROR()

8.9.3 Major Status

Major status codes returned by Application Security SDK function calls
are listed in numerical order.

Hex value Return Code Description

00000000 GSS_S_COMPLETE The function call
completed successfully.

01xxxxxx GSS_S_CALL_INACCESSI-
BLE_READ

A required input
parameter could not
be read.

02xxxxxx GSS_S_CALL_INACCESSI-
BLE_WRITE

A required output
parameter could not
be written.

03xxxxxx GSS_S_CALL_BAD_STRUCTURE A parameter was
malformed.

8–44 GSS-API

Hex value Return Code Description

xx01xxxx GSS_S_BAD_MECH The requested mechanism
is unavailable.

xx02xxxx GSS_S_BAD_NAME An invalid name was
supplied.

xx03xxxx GSS_S_BAD_NAMETYPE A supplied name was of
an unsupported type.

xx04xxxx GSS_S_BAD_BINDINGS Incorrect channel
bindings were supplied.

xx05xxxx GSS_S_BAD_STATUS An invalid status code
was supplied.

xx06xxxx GSS_S_BAD_SIG or
GSS_S_BAD_MIC

A token had an invalid
MIC

xx07xxxx GSS_S_NO_CRED No credentials
were supplied, or
were unavailable or
inaccessible

xx08xxxx GSS_S_NO_CONTEXT No context has been
established.

xx09xxxx GSS_S_DEFECTIVE_TOKEN A token was invalid.

xx0Axxxx GSS_S_DEFECTIVE_CRE-
DENTIAL

A credential was invalid.

xx0Bxxxx GSS_S_CREDENTIALS_EXPIRED The referenced credentials
have expired.

xx0Cxxxx GSS_S_CONTEXT_EXPIRED The security context
has expired.

xx0Dxxxx GSS_S_FAILURE An error has occurred
at the GSS-API level for
unspecified reasons.
The minor_status
parameter contains
more information.

xx0Exxxx GSS_S_BAD_QOP The requested quality of
protection could not be
provided by the context.

xx0Fxxxx GSS_S_UNAUTHORIZED The operation is forbidden
by local security policy.

GSS-API 8–45

Hex value Return Code Description

xx10xxxx GSS_S_UNAVAILABLE The operation or option is
unavailable. GSS_S_CON-
TINUE_NEEDED is a
supplementary in-
formation bit flag.
Test for GSS_S_CON-
TINUE_NEEDED by first
testing the major sta-
tus for an error using
GSS_ERROR() and, if no
error is indicated, bit-
wise ANDing the major
status with GSS_S_CON-
TINUE_NEEDED.

xx11xxxx GSS_S_DUPLICATE_ELEMENT The requested credential
element already exists.

xx12xxxx GSS_S_NAME_NOT_MN The provided name
provided was not a
mechanism name.

xxxx0001 GSS_S_CONTINUE_NEEDED A token from the peer
application is required to
complete the security con-
text establishment. Either
gss_init_sec_con-
text() or gss_ac-
cept_sec_context()
must be called again to
produce the token.

xxxx0002 GSS_S_DUPLICATE_TOKEN The token was a duplicate
of an earlier token.

xxxx0004 GSS_S_OLD_TOKEN The validity period for the
token has expired.

xxxx0008 GSS_S_UNSEQ_TOKEN A later token has already
been processed.

xxxx0010 GSS_S_GAP_TOKEN An expected per-message
token was not received.

8.9.4 Minor Status

Hybrid GSS\Kerberos error codes are listed below.

8–46 GSS-API

Hex value Return Code Description

087F979E4 GSS_KRB5_S_KG_CTX_BIND-
INGS

Peer context binding
validation failed

087F979E5 GSS_KRB5_S_KG_BAD_AU-
THENTICATOR

Bad GSS Authenticator

087F979E6 GSS_KRB5_S_KG_NO_MECH No mechanism

087F979E7 GSS_KRB5_S_KG_KRB_ERR Token is KRB-ERR

087F979E8 GSS_KRB5_S_KG_RECV_ADDR Decoding requires sender
address

087F979E9 GSS_KRB5_S_KG_SENDER_ADDR Encoding requires sender
address

087F979EA GSS_KRB5_S_KG_BAD_MSG Token not private or
safe message

087F979EB GSS_KRB5_S_KG_CTX_IN-
COMPLETE

Attempt to use incomplete
security context

087F979EC GSS_KRB5_S_KG_BAD_LENGTH Invalid field length
in token

087F979ED GSS_KRB5_S_KG_BAD_QOP_US-
AGE

QOP usage invalid or
not supported

087F979EE GSS_KRB5_S_KG_CONTEXT_ES-
TABLISHED

Context is already fully
established

087F979EF GSS_KRB5_S_KG_NO_SUBKEY Authenticator has no
subkey

087F979F0 GSS_KRB5_S_KG_TGT_MISSING Credential cache has
no TGT

087F979F1 GSS_KRB5_S_KG_KEYTAB_NO-
MATCH

No principal in keytab
matches desired name

087F979F2 GSS_KRB5_S_KG_CCACHE_NO-
MATCH

Principal in credential
cache does not match
desired name

087F979F3 GSS_KRB5_S_G_BAD_KEYGEN Unable to generate
subkey

087F979F4 GSS_KRB5_S_G_BAD_STATUS Unknown display
status code

087F979F5 GSS_KRB5_S_G_UNKNOWN_QOP Unknown quality of
protection specified

087F979F6 GSS_KRB5_S_G_BAD_USAGE Credential usage type
is unknown

087F979F7 GSS_KRB5_S_G_WRONG_SIZE Buffer is the wrong size

GSS-API 8–47

Hex value Return Code Description

087F979F8 GSS_KRB5_S_G_BAD_MSG_CTX Message context invalid

087F979F9 GSS_KRB5_S_G_BUFFER_ALLOC Couldn’t allocate
gss_buffer_t data

087F979FA GSS_KRB5_S_G_VALI-
DATE_FAILED

Validation error

087F979FB GSS_KRB5_S_G_NOSRVC No SERVICE: prefix in
name string

087F979FC GSS_KRB5_S_G_UID_LEN Buffer has wrong length
for uid_t

087F979FD GSS_KRB5_S_G_NOUSER UID does not resolve
to user name

087F979FE GSS_KRB5_S_G_BAD_UID_NO-
SUPP

UID not supported on this
operating system

087F979FF GSS_KRB5_S_G_BAD_SER-
VICE_NAME

No @ in SERVICE-NAME
name string

8.9.5 Kerberos-specific Codes

The Kerberos-specific error codes are minor error codes.

To obtain a text representations of status codes, use the function
gss_display_status().

To see the complete list of error codes that can be returned, see
the header files included in the ...\include\csf\sts and the
...\include\csfc5\sts directories.

8–48 GSS-API

A
Coding Examples

The examples in this appendix illustrate how to use some of the routines
in the trusted Tru64 UNIX system.

A.1 Source Code for a Reauthentication Program
(sia-reauth.c)
Example A–1 is a program that performs password checking.

Example A–1: Reauthentication Program

#include <sia.h>
#include <siad.h>

#ifndef NOUID
#define NOUID ((uid_t) -1)
#endif

main (argc, argv)
int argc;
char **argv;
{

int i;
SIAENTITY *entity = NULL;
int (*sia_collect)() = sia_collect_trm;
char uname[32];
struct passwd *pw;
uid_t myuid;

myuid = getluid();
if (myuid == NOUID)
myuid = getuid(); /* get ruid */
pw = getpwuid(myuid);
if (!pw || !pw->pw_name || !*pw->pw_name) {
sleep(3); /* slow down attacks */
(void) fprintf(stderr, "sorry");
return 1;
}
(void) strcpy(uname, pw->pw_name);
i = sia_ses_init(&entity, argc, argv, NULL, uname, \

NULL, TRUE, NULL);
if (i != SIASUCCESS) {
sleep(3); /* slow down attacks */
(void) fprintf(stderr, "sorry");
return 1;
}
i = sia_ses_reauthent(sia_collect, entity);
if (i != SIASUCCESS) {
(void) sia_ses_release(&entity);
sleep(3); /* slow down attacks */
(void) fprintf(stderr, "sorry");

Coding Examples A–1

Example A–1: Reauthentication Program (cont.)

return 1;
}
i = sia_ses_release(&entity);
if (i != SIASUCCESS) {
sleep(3); /* slow down attacks */
(void) fprintf(stderr, "sorry");
return 1;
}

(void) fprintf(stderr, "Ok");

return 0;
}

A.2 Source Code for a Superuser Authentication Program
(sia-suauth.c)
Example A–2 is a program that allows root to become a user to run daemons
(such as crontab or sendmail) for the user.

Example A–2: Superuser Authentication Program

#include <sia.h>
#include <siad.h>

main (argc, argv)
int argc;
char **argv;
{

int i;

i = sia_auth(getuid());
printf("result is %d", i);

}

int sia_auth(uid)
int uid;
{

char uname[32];
static SIAENTITY *entity=NULL;
static int oargc = 1;
static char *oargv[1] = { "siatest" };
static int (*sia_collect)()=sia_collect_trm;

struct passwd *pw;

pw = getpwuid(uid);
if (!pw) {

printf("getpwuid failure");
return 8;

}
(void) strcpy(uname, pw->pw_name);

printf("SIA authentication for uid: %d, uname: %s ", \
uid, uname);

if (sia_ses_init(&entity,oargc,oargv,NULL,uname,NULL, \

A–2 Coding Examples

Example A–2: Superuser Authentication Program (cont.)

FALSE, NULL) == SIASUCCESS) {
printf("sia_ses_init successful");
entity->authtype = SIA_A_SUAUTH;

if (sia_make_entity_pwd(pw, entity) == SIASUCCESS) {
printf("sia_make_entity_pwd successful");

}
else {

printf("sia_make_entity_pwd un-successful");
}

if ((sia_ses_launch(NULL, entity)) == SIASUCCESS) {
printf("sia_ses_launch successful");

}
else {

printf("sia_ses_launch un-successful");
entity = NULL;

}
if ((sia_ses_release(&entity)) == SIASUCCESS) {

printf("sia_ses_release successful");
}
else {

printf("sia_ses_release un-successful");
return(4);

}

}
else {

printf("sia_ses_init un-successful");
return(5);

}
printf("sia **** successful");
return(6);

}

Coding Examples A–3

B
Auditable Events and Aliases

This appendix contains the default auditable events
(/etc/sec/audit_events) and the default audit event aliases
(/etc/sec/event_aliases) as they as delivered on Tru64 UNIX.

B.1 Default Auditable Events File
The following is the default /etc/sec/audit_events file:

! Audited system calls:
exit succeed fail
fork succeed fail
old open succeed fail
close succeed
old creat succeed fail
link succeed fail
unlink succeed fail
execv succeed fail
chdir succeed fail
fchdir succeed fail
mknod succeed fail
chmod succeed fail
chown succeed fail
getfsstat succeed fail
mount succeed fail
unmount succeed fail
setuid succeed fail
exec_with_loader succeed fail
ptrace succeed fail
nrecvmsg succeed fail
nsendmsg succeed fail
nrecvfrom succeed fail
naccept succeed fail
access succeed fail
kill succeed fail
old stat succeed fail
setpgid succeed fail
old lstat succeed fail
dup succeed fail
pipe succeed fail
open succeed fail
setlogin succeed fail
acct succeed fail

Auditable Events and Aliases B–1

classcntl succeed fail
ioctl succeed fail
reboot succeed fail
revoke succeed fail
symlink succeed fail
readlink succeed fail
execve succeed fail
chroot succeed fail
old fstat succeed fail
vfork succeed fail
stat succeed fail
lstat succeed fail
mmap succeed fail
munmap succeed fail
mprotect succeed fail
old vhangup succeed fail
kmodcall succeed fail
setgroups succeed fail
setpgrp succeed fail
table succeed fail
sethostname succeed fail
dup2 succeed fail
fstat succeed fail
fcntl succeed fail
setpriority succeed fail
socket succeed fail
connect succeed fail
accept succeed fail
bind succeed fail
setsockopt succeed fail
recvmsg succeed fail
sendmsg succeed fail
settimeofday succeed fail
fchown succeed fail
fchmod succeed fail
recvfrom succeed fail
setreuid succeed fail
setregid succeed fail
rename succeed fail
truncate succeed fail
ftruncate succeed fail
setgid succeed fail
sendto succeed fail
shutdown succeed fail
socketpair succeed fail
mkdir succeed fail
rmdir succeed fail
utimes succeed fail
adjtime succeed fail
sethostid succeed fail

B–2 Auditable Events and Aliases

old killpg succeed fail
setsid succeed fail
pid_unblock succeed fail
getdirentries succeed fail
statfs succeed fail
fstatfs succeed fail
setdomainname succeed fail
exportfs succeed fail
getmnt succeed fail
alternate setsid succeed fail
swapon succeed fail
msgctl succeed fail
msgget succeed fail
msgrcv succeed fail
msgsnd succeed fail
semctl succeed fail
semget succeed fail
semop succeed fail
lchown succeed fail
shmat succeed fail
shmctl succeed fail
shmdt succeed fail
shmget succeed fail
utc_adjtime succeed fail
security succeed fail
kloadcall succeed fail
priocntlset succeed fail
sigsendset succeed fail
msfs_syscall succeed fail
sysinfo succeed fail
uadmin succeed fail
fuser succeed fail
proplist_syscall succeed fail
ntp_adjtime succeed fail
audcntl succeed fail
setsysinfo succeed fail
swapctl succeed fail
memcntl succeed fail
SystemV/unlink succeed fail
SystemV/open succeed fail
RT/memlk succeed fail
RT/memunlk succeed fail
RT/psx4_time_drift succeed fail
RT/rt_setprio succeed fail

! Audited trusted events:
audit_start succeed fail
audit_stop succeed fail
audit_setup succeed fail
audit_suspend succeed fail

Auditable Events and Aliases B–3

audit_log_change succeed fail
audit_log_creat succeed fail
audit_xmit_fail succeed fail
audit_reboot succeed fail
audit_log_overwrite succeed fail
audit_daemon_exit succeed fail
login succeed fail
logout succeed fail
auth_event succeed fail
audgen8 succeed fail
net_tcp_stray_packet succeed fail
net_tcp_syn_timeout succeed fail
net_udp_stray_packet succeed fail
net_tcp_rejected_conn succeed fail

! Audited mach traps:
lw_wire succeed fail
lw_unwire succeed fail
init_process succeed fail
host_priv_self succeed fail
semop_fast succeed fail

! Audited mach ipc events:
task_create succeed fail
task_terminate succeed fail
task_threads succeed fail
thread_terminate succeed fail
vm_allocate succeed fail
vm_deallocate succeed fail
vm_protect succeed fail
vm_inherit succeed fail
vm_read succeed fail
vm_write succeed fail
vm_copy succeed fail
vm_region succeed fail
task_by_unix_pid succeed fail
bind_thread_to_cpu succeed fail
task_suspend succeed fail
task_resume succeed fail
task_get_special_port succeed fail
task_set_special_port succeed fail
thread_create succeed fail
thread_suspend succeed fail
thread_resume succeed fail
thread_set_state succeed fail
thread_get_special_port succeed fail
thread_set_special_port succeed fail
port_allocate succeed fail
port_deallocate succeed fail
port_insert_send succeed fail

B–4 Auditable Events and Aliases

port_extract_send succeed fail
port_insert_receive succeed fail
port_extract_receive succeed fail
host_processors succeed fail
processor_start succeed fail
processor_exit succeed fail
processor_set_default succeed fail
xxx_processor_set_default_priv succeed fail
processor_set_tasks succeed fail
processor_set_threads succeed fail
host_processor_set_priv succeed fail
host_processors_name succeed fail
host_processor_priv succeed fail

B.2 Sample Event Aliases File
The following is the sample /etc/sec/event_aliases file provided with
the Tru64 UNIX system:

This is a SAMPLE alias list. Your alias list should be built to
satisfy your site’s requirements.

obj_creat: "old open" "old creat" link mknod open symlink mkdir SystemV/open

obj_delete: unlink truncate ftruncate SystemV/unlink rmdir

exec: execv exec_with_loader execve

obj_access: access "old stat" "old lstat" "old open" open statfs fstatfs \
readlink "old fstat" stat lstat fstat close:1:0 dup dup2 fcntl \
"old creat" mmap munmap mprotect memcntl SystemV/open

obj_modify: chmod chown fchown fchmod lchown utimes rename

ipc: recvmsg nrecvmsg recvfrom nrecvfrom sendmsg nsendmsg sendto accept \
naccept connect socket bind shutdown socketpair pipe sysV_ipc \
kill "old killpg" setsockopt sigsendset net_tcp_rejected_conn \
net_udp_stray_packet

sysV_ipc: msgctl msgget msgrcv msgsnd shmat shmctl shmdt shmget semctl \
semget semop

proc: exit fork chdir fchdir setuid ptrace setpgid setlogin chroot vfork \
setgroups setpgrp setpriority setreuid setregid setgid audcntl \
RT/rt_setprio setsid "alternate setsid" priocntlset

system: getfsstat mount unmount acct reboot table sethostname settimeofday \
adjtime sethostid setdomainname exportfs getmnt swapon utc_adjtime \
audcntl setsysinfo kloadcall getdirentries revoke "old vhangup" kmodcall \
security sysinfo uadmin swapctl

misc: ioctl msfs_syscall fuser

trusted_event: login logout auth_event audgen8

all: obj_creat obj_delete exec obj_access obj_modify ipc proc system misc \
trusted_event

Auditable Events and Aliases B–5

#+++

adjtime is being called once a sec?

profile_audit: audit_start:1:1 audit_stop:1:1 audit_setup:1:1 audit_log_creat:1:
1 audit_xmit_fail:1:1 \
audit_reboot:1:1 audit_log_overwrite:1:1 audit_daemon_exit:1:1 \
settimeofday:1:1 ntp_adjtime:1:1 utc_adjtime:1:1

profile_net: connect:1:1 accept:1:1 bind:1:1 net_udp_stray_packet:1:1 net_tcp_re
jected_conn:1:1

profile_netmon: net_tcp_rejected_conn:1:1 net_tcp_syn_timeout:1:1 net_tcp_stray_
packet:1:1 net_udp_stray_packet:1:1

profile_auth: login:1:1 logout:1:1 auth_event:1:1

profile_filesys: mount:1:1 unmount:1:1

profile_creat: "old creat" link mknod symlink mkdir

profile_proc: setuid setgid setlogin chroot \
setsid "alternate setsid"

Definition of catagories
#==
Desktop:
Provides suggested minimal auditing configuration for a single user system. C
onfiguration provides
monitoring of tusted audit events, no monitoring of files, or network related
events.
--
This alias assumes:
- Local access is primarily interactive login, generally limited to one user
at a time, activity tracked and controlled by the system.
- Individual accountability is primarily maintained by the system.
- User related file area access is only limited by file owner choice.
Browsing is unrestricted.
- System related file areas are mostly readonly. Browsing is unrestricted.
- Login uid is converted to username.
- Access to the network is monitored.
- Access to controlled files are unmonitored.
Desktop: \
profile_audit \
profile_auth

Servers:
Provides suggested auditing configuration for a system which is used as a ser
ver for networked based
applications (such as databases, web server, etc.). Configuration provides mon
itoring of trusted
events, system files, network related files, and network related events.
--
This alias assumes:
-Network access is restricted to application (mail, db server, firewall,
etc.) controlled access through network mechanisms (tcp/ip reserved port,
DECnet objects, etc.) with the application being responsible for tracking
activity. Interactive access is strictly controlled by the system, activity
is tracked by the system. Application primarily handle access control,
system control is secondary.
- Local access logins are strictly controlled, activity is tracked by the
system.
- Individual accountability is primarily maintained by the applications.
- User related file area access is strictly limited to application related

B–6 Auditable Events and Aliases

files. Browsing is controlled.
- system related file areas are at most readonly for user aplication related
functions. Browsing is controlled by applications.
- Login uid is converted to username.
- Access to the network is monitored.
- Access to controlled files are monitored.
Server: \
profile_audit \
profile_auth \
profile_net \
profile_filesys \
profile_proc \
profile_creat obj_delete obj_modify

Timesharing:
Provides suggested minimal auditing configuration for a system which is used
to support multiple
interactive users. Configuration provides monitoring of trusted events, no mon
itoring of system
files,or network related events or files.
--
This alias assumes:
- Local access is primarily interactive login, activity is tracked and
controlled by the system.
- Individual accountability is primarily maintained by the system.
- Interactive logins are generally unrestricted.
- User related file area access is only limited by file owner choice.
Browsing is unrestricted.
- System related file areas are mostly readonly. Browsing is unrestricted.
- Login uid is converted to username.
- Access to the network is unmonitored.
- Access to controlled files is unmonitored.
Timesharing: \
profile_audit \
profile_auth

Timesharing_extended_audit:
Provides suggested auditing configuration for a system which is used to suppo
rt multiple interactive
users. Configuration provides monitoring of trusted events, system files, and
no monitoring of network
related events or files.
--
This alias assumes:
- Local access is primarily interactive login, activity is tracked and
controlled by the system.
- Individual accountability is primarily maintained by the system.
- Interactive logins are generally unrestricted.# - User related file area
access is only limited by file owner choice.
Browsing is unrestricted.
- System related file areas are mostly readonly. Browsing is unrestricted.
- Access to the network is monitored.
- Access to controlled files is monitored.
Timesharing_extended_audit: \
profile_audit \
profile_auth \
profile_filesys \
profile_proc \
profile_creat obj_delete obj_modify

Networked_system:
Provides suggested auditing configuration for a system which has networking e
nabled. Should be used in

Auditable Events and Aliases B–7

conjuction with Desktop, Timesharing, or Timesharing_extended_audit templates.
Configuration provides
monitoring of trusted events, network related files and network related events
.
--
This alias assumes:
- Network access is through application (mail, pinter, etc.) controlled
network mechanisms (tcp/ip reserved port, DECnet objects, etc.) which are
responsible tracking activity and controlling access, and Interative login
with the system tracking activity and controlling access.
- Access to the network is monitored.
- Access to controlled files is monitored.
Networked_system: \
profile_audit \
profile_auth \
profile_net \
profile_creat obj_delete obj_modify

NIS_server:
Provides suggested auditing configuration for a system used as a NIS server.
Should be used in
conjuction with Desktop, Timesharing, or Timesharing_extended_audit templates.
Configuration provides
monitoring of trusted events, NIS related files and network related events.
--
This alias assumes:
- Network access is through application (mail, pinter, etc.) controlled
network mechanisms (tcp/ip reserved port, DECnet objects, etc.) which are
responsible tracking activity and controlling access, and Interative login
with the system tracking activity and controlling access. NIS is enabled.
- Access to the network is monitored.
- Access to controlled files is monitored.
NIS_server: \
profile_audit \
profile_net \
profile_creat obj_delete obj_modify

B–8 Auditable Events and Aliases

C
GSS-API Tutorial

This appendix shows you how to use GSS-APIs to secure an application
using C-programming language example code. It also explains the sample
programs provided Application Security SDK. This appendix contains the
following information:

• Security primer

• Getting started

• Using Basic GSS-API Functions

• Step 1: Getting Names

• Step 2: Acquiring Credentials

• Step 3: Establishing a Security Context

• Step 4: Exchanging Messages

• Step 5: Terminating the Security Context

• Advanced Concepts

• Status Codes for GSS-API Functions

• Sample Programs

C.1 Security Primer

Read this section if you are unfamiliar with network authentication using
Kerberos. The following information is contained in this section:

• Fundamental Concepts

• Kerberos Security Model

C.1.1 Fundamental Concepts

Start with the fundamental concepts explained below:

• Identification — Who are you? A secure system answers this question
based on your system identity and a unique personal characteristic such
as a smart card or a password.

• Authentication — Can you prove who you are? The authentication
process verifies that you are who you say you are, generally through a

GSS-API Tutorial C–1

third party such as a security server. Authentication is also used to
prove the origin of a message.

• Authorization — What are you allowed to do on the system?
Authorization depends on authentication. Once the system knows you
are who you say you are, your access privileges are allocated based on
your identity.

• Confidentiality — Is the message protected from unauthorized
disclosure? Encryption is a method for implementing confidentiality.
Only people who know how to decrypt the information can access it.
Encryption and decryption is usually provided by some kind of key
(secret) and an algorithm (public).

• Integrity — Was a message corrupted in transit? Integrity is usually
achieved by comparing checksums computed on the message before and
after transmission. Message stream integrity is also provided by features
such as replay detection, message sequencing, and so forth.

C.1.2 Kerberos Security Model

Kerberos is a two-way third-party authentication and key distribution
system that was developed at the Massachusetts Institute of Technology.

C.1.2.1 Definitions

Client—A program or process that makes use of a network service on a
user’s behalf. Note that in some cases a server may itself be a client of some
other server (for example, a print server may be a client of a file server).

User—A person who uses a client program.

Application Servers and Services—A host system which provides
services from one side of a distributed application. Users run client programs
to access services running on application servers.

Principal—Means for identifying entities using the HP security system,
that is, any user, client, service, application, or host system that has stored a
secret key with the security server.

Key Distribution Center (KDC)—The security server that contains the
principal database, authentication service, and ticket-granting service.
These KDC components provide principals with credentials that allow the
principals to prove their identity and subsequently exchange messages:

• The principal database holds the secret keys for all principals used in
network authentication.

• The Authentication Service verifies the identity of a principal and issues
Ticket-Granting Tickets (TGT).

C–2 GSS-API Tutorial

• The Ticket-Granting Service distributes service tickets after validating
the TGT and the authenticator.

Principal Database—A database (usually located on the same machine as
the KDC) that holds the shared secrets (that is, secret keys) used in Kerberos
authentication. Each user has a principal in the database.

Realm—A name for a collection of principals in a network served by one or
more KDCs. All principal names within a realm must be unique. Within a
realm, the administration policy is the same for all principals.

Service—An application running on a server that is available to clients
on a network.

Key—A secret value such as a password that is used during the process of
encryption and decryption.

Ticket—A credential used to authenticate one principal to another. Only
a KDC can issue a Kerberos ticket.

C.1.2.2 Concepts and Processes

The following sections describe Kerberos concepts and processes.

C.1.2.2.1 A Shared Secret

Two principals that wish to communicate with each other securely first need
to share a secret key. This secret key, called a session key, is generated
randomly and given to the two principals and no one else. The session key is
used by both principals for authentication and encryption.

C.1.2.2.2 Trusted Third Party Arbitration

Each principal has a secret key, which remains unchanged until the principal
changes it. The session key, on the other hand, is random and exists only for
as long as a session is needed between the two principals.

A service doesn’t trust a client, and a client doesn’t trust a service. The
client and service trust only the Key Distribution Center, which generates
and distributes session keys.

C.1.2.2.3 The Kerberos Network

A Kerberos network is divided into security domains, called realms. Each
realm has its own authentication server (KDC) and implements its own
security policy. This allows organizations implementing Kerberos to have
different levels of security for different information classes within the
organization.

GSS-API Tutorial C–3

A realm can accept authentication from other realms or not accept them
without a re-authentication if the information security policy requires
re-authentication. This is called inter-realm authentication.

Realms are hierarchical. That is, each realm may have child realms, and
each realm may have a parent. This structure allows realms that have no
direct contact to share authentication information.

C.1.2.2.4 Three Phases to Authentication

There are three phases to the Kerberos authentication process:

1. The client obtains an initial credential (ticket-granting ticket or TGT)
for use in requesting access to other services by using their password.

The client and the KDC exchange Authentication Service messages
when acquiring initial credentials.

2. The client requests authentication to a specific service.

The client and the KDC exchange Ticket-Granting Service messages
when acquiring a service ticket.

3. The client presents a service ticket to the service.

The client and the requested service exchange application messages
to do this.

C.1.2.2.5 Authentication Service Message Exchange

The Authentication Service (AS) exchange provides the client with its
initial credentials and a session key (shared secret) to be used with the
Ticket-Granting Service (TGS). These credentials can be presented to the
Ticket-Granting Service to request credentials (that is, a service ticket) that
prove the client’s identity to a specific service.

This message exchange consists of a request generated by the client and
the reply generated by the KDC Authentication Service. At the end of this
exchange, the client has initial credentials (the Ticket-Granting Ticket) that
allow it to authenticate itself to the Ticket-Granting Service.

When the Authentication Service receives the request message from the
client, it checks to see if it knows the client. If it does, it generates a
random session key (which becomes a shared secret between the client and
the Ticket-Granting Service) and the TGT (which is used by the client to
authenticate itself to the Ticket-Granting Service).

The Authentication Service sends both the session key and the TGT as part
of a reply message. Since the Authentication Service doesn’t know if the
client is authentic, it encrypts part of the reply message using the client’s
secret key, knowing that only the authentic client will be able to decrypt it.

C–4 GSS-API Tutorial

C.1.2.2.6 Ticket-Granting Service Message Exchange

A ticket is only good for a single service; this includes the TGT, which is
a ticket to use the services of the Ticket-Granting Service. As such, it is
necessary to obtain a separate service ticket for each service the client wants
to use. The client obtains service tickets from the ticket-granting service
by sending a message to the KDC Ticket-Granting Service. No prompt for
a username and password is required in this case since the TGT is used
to prove identity.

When a client presents a ticket (including the TGT) to a service, it also
presents an authenticator. The authenticator contains the client’s name
encrypted in the session key of the ticket. In this way, if the service can
decrypt the authenticator using the ticket’s session key, and the client’s
name matches the one in the ticket, it can be guaranteed that the client
is authentic. It certifies a client’s knowledge of a session key and aids in
detection of an unauthorized replay of credentials. Authenticators can only
be used once.

After receiving the ticket request message, the Ticket-Granting Service
decrypts the TGT. The session key is then used to decrypt the authenticator.
If the client name matches in both the authenticator and the TGT, the client
has successfully authenticated itself to the Ticket-Granting Service and can
be granted a service ticket.

The service ticket is sent to the client in the reply message encrypted in the
service’s secret key. The encrypted part of the message is encrypted using
the TGT session key instead of the client’s secret key. This way, there is no
need for the user to enter her/his password again.

After receiving the reply message, the client decrypts the encrypted part.
It then stores the service ticket and the corresponding session key in the
credentials cache.

C.1.2.2.7 Application Message Exchange

After a client obtains a service ticket for a service, it can authenticate and
exchange messages with the service securely. The client sends the service
ticket along with an authenticator to the service for verification.

C.1.2.3 Credential Attributes

The client can request that the credentials issued to it by the KDC carry
certain characteristics:

• LIFETIME — credentials are issued for a specific length of time. This
time is usually determined by the local security policy.

GSS-API Tutorial C–5

• RENEWABLE — an attribute that allows the client to renew its
credentials before they expire without entering a principal name and
password.

• POSTDATED — the client can request a POSTDATED ticket for later
use. For example, this ticket could be used by applications to process
batch jobs.

• FORWARDABLE — these credentials are used when it is necessary for
a client to allow a service to perform an operation on its behalf using
the client’s ticket.

C.2 Getting Started

Initial decisions you need to think about before using Application Security
SDK to secure a distributed application are listed below:

1. Before the application is started, will an initial credential (TGT) already
exist for the application user?

If no, the application will need to establish a user context by calling
csf_gss_acq_user(). This function fetches a initial credential (TGT)
from the security server for the application user. These credentials are
then used by the initiating application during subsequent processes,
and are frequently referred to in this documentation as the initiator’s
credentials.

If DES3 encryption or public-key credentials are being used, the
application will need to pass these attributes to csf_gss_acq_user().

2. Will the application require mutual authentication?

Mutual authentication is recommended when the initiating application
needs to verify the identify of the accepting application, such as in
the case of submitting sensitive data like a credit card number to the
accepting application.

If yes, the initiating application will need to request mutual
authentication during context establishment when it calls
gss_init_sec_context().

3. What messages (if any) need to be secured between the application
and its peer?

In some cases, authentication is the only needed service required by
an application.

4. In the case where messages need to be protected, what kind of protection
is required?

Types of protection fall into two basic categories: confidentiality and
integrity.

C–6 GSS-API Tutorial

• Confidentiality (or privacy) protects a message from being viewed
by an intruder.

• Integrity protects a message from being tampered with by an
intruder. For example, during a financial transaction, integrity
services would be used to protect the currency amount from being
altered, or from the account number from being changed.

5. What Quality of Protection (QOP) is required for message protection?

Lowest quality (DES encryption) will be the fastest but less secure;
highest quality (DES3 encryption) will be the slowest but most
secure. If the application is using DES3 encryption, there are several
prerequisites that must be met.

C.3 Using Basic GSS-API Functions

In the GSS-API world, a security context is either initiated or accepted. The
role of the application determines whether it is initiating or accepting the
security context. In a client-server application, typically the client initiates
the security context and the server accepts the security context. A server
may also act as a client of another secure service.

The process of implementing security between an initiator and an acceptor
using GSS-API functions entails five major steps:

1. Getting names

2. Acquiring credentials

3. Establishing a security context

4. Exchanging messages

5. Terminating the security context

Both the initiating and the accepting applications should incorporate the
steps in the same order. However, not all the steps may be necessary. For
example, acquiring credentials can be omitted if default credentials are to
be used.

Both applications must execute these steps in the order shown below. For
example, each application must acquire credentials before a context can be
established between them.

GSS-API Tutorial C–7

ZK-1827U-AI

client server

Get name

Obtain credentials

Establish security context

Send and receive data

Terminate security context

Get name

Obtain credentials

Establish security context

Send and receive data

Terminate security context

In this explanation of basic GSS functions, it is assumed that the initiating
application (or initiator), is a user and the accepting application (or acceptor)
is a service.

This explanation further assumes that both applications already possess
initial credentials, that is, a TGT or a service key, from a security server. If
you want to acquire the initial credentials at runtime, you must use the HP
GSS-API extension csf_gss_acq_user() to establish a user context.

The functions described for each of the steps in this section are a subset
of the available GSS-API functions. They represent the minimum calls
necessary to secure an application with Application Security SDK.

C.4 Step 1: Getting Names

Before you can secure an application, you must get names for the parties
involved. This step demonstrates how to import a user name for the initiator
and a service name for the acceptor. These names are used to acquire
credentials and establish a security context.

Use the gss_import_name() function to convert a name to an internal
format which other GSS-API functions can use. There are many formats, or
name types, from which to choose for the conversion.

An internal form name is unintelligible if printed out but you can convert it
into a human-readable form using gss_display_name(). This function is
handy for displaying the principal associated with an existing credential if
the default credential was acquired.

The same process occurs when either an initiator or the acceptor imports
and displays a principal name, either a user name or a service name.

C–8 GSS-API Tutorial

GSS-API Name Management Functions describes what you can do with
other naming functions.

______________________ Note _______________________

The call by the initiator to gss_import_name() is optional.
If gss_import_name() was not called by the initiator for
itself, then the default principal name is retrieved from
the credentials cache when the gss_acquire_cred() or
gss_init_sec_context() call is made if default credentials
are requested. The initiator must still import the name of the
acceptor as it is required by the gss_init_sec_context() call.

The call by the acceptor to gss_import_name() is also
optional. If gss_import_name() was not called by
the acceptor for itself, then the default service principal
name (host/hostname@REALM) is created when the
gss_acquire_cred() or gss_accept_sec_context() call
is made.

The gss_import_name() function includes the following parameters:

Input Parameters

input_name_buffer Text name to be converted

input_name_type Type of name — public key, Kerberos, and
generic name types are supported

Output Parameters

minor_status Kerberos 5 error code

output_name Returned name in internal form

The following excerpt from the sample programs illustrates importing
a name for the initiator and converting it to human-readable form.
The name type specifies the Kerberos 5 default which, in this case, is
GSS_C_NT_USER_NAME, a name type that is commonly used for user
principals. This name type converts a user name user into the form
user@LOCAL_REALM.

/***/

char szUserName[] = "walth@APPSEC.CYBERSAFE.COM";
OM_uint32 gMaj, gMin = 0;
gss_buffer_desc input_name = GSS_C_EMPTY_BUFFER;
gss_buffer_desc display_name = GSS_C_EMPTY_BUFFER;
gss_name_t principal_name = GSS_C_NO_NAME;
gss_OID display_name_type = GSS_C_NO_OID;

/* Copy the principal name into the GSS buffer structure */

GSS-API Tutorial C–9

input_name.length = strlen(szUserName);
input_name.value = strdup(szUserName);

/* Convert the user principal name into GSS internal form */
gMaj = gss_import_name(&gMin,

&input_name,
GSS_C_NT_USER_NAME,
&principal_name);

/* Convert the imported name to human-readable form */
gMaj = gss_display_name(&gMin,

principal_name,
&display_name,
&display_name_type);

/***/

The following excerpt from the sample programs illustrates importing
a name for the acceptor and converting it to human-readable form.
The name type specifies the Kerberos 5 default which, in this case,
is GSS_KRB5_NT_HOSTBASED_SERVICE_NAME, a name type that
is often used for an unattended host. This name type converts
the Kerberos host service principal service@host into the form
service/fqdn@REALM. As an example, the converts ftp@fuji to
ftp/fuji.company.com@COMPANY.COM.

/***/

char szHostName[] = "host@dev007.cybersafe.com";
OM_uint32 gMaj, gMin = 0;
gss_buffer_desc input_name = GSS_C_EMPTY_BUFFER;
gss_buffer_desc display_name = GSS_C_EMPTY_BUFFER;
gss_name_t principal_name = GSS_C_NO_NAME;
gss_OID display_name_type = GSS_C_NO_OID;

/* Copy the host service principal name
into the GSS buffer structure */

input_name.length = strlen(szHostName);
input_name.value = strdup(szHostName);

/* Convert the host service principal name
into GSS internal form */

gMaj = gss_import_name(&gMin,
&input_name,
GSS_KRB5_NT_HOSTBASED_SERVICE_NAME,
&principal_name);

/* Convert the imported name to human-readable form */
gMaj = gss_display_name(&gMin,

principal_name,
&display_name,
&display_name_type);

/***/

C.5 Step 2: Acquiring Credentials

This step demonstrates how credentials can be acquired for the initiator
and the acceptor. The credentials contain TGTs and service key table

C–10 GSS-API Tutorial

entries from the security server that the initiator and the acceptor use to
authenticate themselves to each other. Therefore, both the initiator and the
acceptor must obtain credentials before a security context can be established.

Three types of credentials may be requested:

• GSS_C_INITIATE— for an application that is going to initiate a security
context by calling gss_init_sec_context().

• GSS_C_ACCEPT — for an application that is going to accept a security
context by calling gss_accept_sec_context().

• GSS_C_BOTH — for an application that is going to be both initiating
and accepting security contexts, in other words, acting as both a client
and a server.

As shown below, acquiring credentials is a local process. No communication
with a peer application is needed.

ZK-1828U-AI

initiator
user principal

GSS

disk disk

credentials
cache

service
key table
file

initiator
credentials

gss_acquire_cred(initiator)

acceptor
service principal

GSS

acceptor
credentials

gss_acquire_cred(acceptor)

The gss_acquire_cred() function uses an imported name to look for a
valid ticket associated with the user or service name. The credentials must
already exist in the HP credentials cache for the initiator or the service
key table for the acceptor. An exception is an acceptor application that also
initiates security contexts with other acceptor applications. A common
example is a proxy. In this case, both a credentials cache and a service key
table file entry is required to support either role.

The service key table file is named v5srvtab by default on the Windows
and UNIX platforms.

GSS-API Tutorial C–11

When gss_acquire_cred() is called by an initiator requesting
GSS_C_INITIATE credentials, the function verifies that a principal name
was passed in and looks for a corresponding TGT in the credentials cache.
If a principal name was not specified, the function looks for a valid TGT in
the credentials cache using a default name which is the same as default
principal name of the credential cache. (User login name is not used.)

When gss_acquire_cred() is called by an acceptor requesting
GSS_C_ACCEPT credentials, the function verifies that a principal name
was passed in and looks for a corresponding entry in the service key table
file. If a principal name was not specified, the function looks for a service
key table file entry corresponding to the default acceptor principal name of
host/fqdn@REALM.

An application that is going to be both initiating and accepting security
contexts should have both a credentials cache and a service key table. In this
case, when gss_acquire_cred() is called by the application requesting
GSS_C_INITIATE credentials, the function verifies that a principal name
was passed in and looks for a valid TGT for the principal name in the
credentials cache. If a TGT is not found in the credentials cache, the function
looks for an appropriate entry in the service key table. If a service key table
entry is found, the function fetches a TGT from the KDC using the key from
the table file.

______________________ Note _______________________

The initiator’s call to gss_acquire_cred() is optional. If
the initiator does not call gss_acquire_cred() before the
gss_init_sec_context() call is made, credentials with the
default name and type GSS_C_INITIATE are acquired.

The acceptor’s call to gss_acquire_cred() is also optional. In
this case, gss_accept_sec_context() obtains credentials
with the default name and type GSS_C_ACCEPT. You will have
improved performance if the accepting application acquires the
credentials with gss_acquire_cred(), and then re-uses them
as required.

The following parameters are used by gss_acquire_cred():

Input Parameters

desired_name Principal or service name requiring credentials. If
unspecified, the default principal is used.

C–12 GSS-API Tutorial

Input Parameters

time_req Credential lifetime requested (ignored). You
cannot specify the lifetime of the credentials
because the credentials already exist. The
lifetime is dictated by the circumstances under
which the credentials were created.

desired_mechs Security mechanism desired (Kerberos 5)

cred_usage Credentials usage (initiate, accept, or both)

Output Parameters

minor_status Kerberos 5 error code

output_cred_handle Credentials acquired

actual_mechs Security mechanism used (Kerberos 5)

time_rec Credential lifetime received. This is only supported
for initiators; acceptor lifetimes are indefinite.

The following excerpt from the sample programs illustrates acquiring
GSS_C_INITIATE credentials for the initiator and GSS_C_ACCEPT
credentials for the acceptor. The principal names were imported in Step 1.

/**\

OM_uint32 gMaj, gMin = 0;
OM_uint32 cred_lifetime_requested = 600;
OM_uint32 cred_lifetime_received = 0;
i_32 cred_usage = GSS_C_INITIATE;
gss_cred_id_t cred_handle = GSS_C_NO_CREDENTIAL;
gss_OID_set actual_mechs = GSS_C_NO_OID_SET;

/* Get an Initiator credential from the cred cache */
gMaj = gss_acquire_cred(&gMin,

principal_name,
cred_lifetime_requested,
rfc_krb5_c_OID_set,
cred_usage,
&cred_handle,
&actual_mechs,
&cred_lifetime_received);

:
:
:

OM_uint32 gMaj, gMin = 0;
OM_uint32 cred_lifetime_received = 0;
i_32 cred_usage = GSS_C_ACCEPT;
gss_cred_id_t cred_handle = GSS_C_NO_CREDENTIAL;
gss_OID_set actual_mechs = GSS_C_NO_OID_SET;

/* Get an Acceptor credential from the cred cache
or from the v5srvtab key table file */

gMaj = gss_acquire_cred(&gMin,
principal_name,
GSS_C_INDEFINITE,
GSS_C_NO_OID_SET,

GSS-API Tutorial C–13

cred_usage,
&cred_handle,
&actual_mechs,
&cred_lifetime_received);

/**\

After the credentials are acquired, it is necessary to free storage allocated
using the gss_release_cred() function. The sample programs contain
examples.

In general, if a buffer was locally allocated by the user (using malloc or
strdup, for example), the application must free it. If a buffer was allocated
by a GSS-API function, it must be freed using gss_release_xxx()
functions. These actions prevent memory leaks.

Credential Management Functions shows you what you can do with other
credentials functions.

C.6 Step 3: Establishing a Security Context

Once an application and its peer have credentials, a security context can be
established. A security context is essentially a set of security parameters
used to secure a conversation between the application and its peer.

Several security contexts may exist simultaneously between an application
and its peer. However, one context should not be used for more than one
conversation. For example, in a client-server application, if ten clients were
communicating with a server application, each client would have a unique
security context and the server would manage ten security contexts, one for
each client.

When initiating a context, an application can select various security options
which are discussed further in Security Context Management Functions:

• Channel bindings

• Confidentiality and integrity

• Replay detection

• Out-of-sequence message detection

• Mutual authentication

• Encryption algorithm (DES or DES3)

• Ticket forwarding (credentials delegation)

The sequence of steps taken when an application establishes a security
context is described below. Several invocations of the function calls used by
the initiator and the acceptor may be necessary before the context is fully
established.

C–14 GSS-API Tutorial

ZK-1829U-AI

GSS

17

6

3

2

initiator

credentials

gss_init_sec_context()

token 1

token 1

token 1token 2

token 2

security
context

GSS

4

5

acceptor

credentials

gss_accept_sec_context()

token 2

security
context

1. The initiator starts a security context with the acceptor by calling
gss_init_sec_context(), passing the credentials it previously
acquired and the identity used by the acceptor.

2. The gss_init_sec_context() function returns a partially-built
security context plus a token and a status code.

The token contains GSS-API information that must be sent to the
acceptor. The token is opaque to the initiating application, although the
application knows the length of the token so it can transfer the token
to the acceptor.

The status code indicates whether the function will need to be called
again. If the function is called again, a return token must be received
from the acceptor and passed to it.

A token may even be returned when an error status is returned.
Regardless of the status code returned, the token must be transferred
to the other application.

3. The initiator sends the token across the communications protocol to the
acceptor, which is waiting for a context to be established.

How tokens are transferred is application dependent. However, the
GSS-API standard requires that tokens be sent in the sequence in which
they are generated during context establishment.

4. The acceptor reads the token from the communications protocol
and calls gss_accept_sec_context(), passing the credentials it
previously acquired and the token it received.

5. The gss_accept_sec_context() function returns a status code and
may return a token.

GSS-API Tutorial C–15

The status code indicates whether the function will need to be called
again. If the function is called again, a return token must be received
from the initiator and passed to it.

A token may even be returned when an error status is returned.
Regardless of the returned status code, the token must be transferred
to the other application.

6. If gss_accept_sec_context() returned a token, the acceptor must
send it across the communications protocol to the initiator, which is
waiting for this token to continue the security context establishment.

7. If the initiator received a return token, it calls gss_init_sec_con-
text() and passes the token to it.

Steps 1 through 5 show the minimum set of exchanges between the initiator
and the acceptor. Steps 6 and 7 illustrate multiple invocations of the
gss_init_sec_context() and gss_accept_sec_context() functions.
These functions loop when the GSS_S_CONTINUE major status is returned.
When a token is returned from gss_init_sec_context(), it must be sent
to the acceptor. If GSS_S_CONTINUE is returned, a token is expected back
from the acceptor and must be provided as input to the next invocation of
gss_init_sec_context(). This behavior typically occurs when Kerberos
performs mutual authentication.

When a GSS_S_CONTINUE status is returned as the major status code and
any token returned by the call is sent to the peer application, the security
context is fully established on the local application.

The gss_init_sec_context() function uses the following parameters:

Input Parameters

initiator_cred_handle Credentials for the initiator (or default
credentials from the credentials cache).

target_name Name of the acceptor

mech_type Security mechanism desired (Kerberos 5)

req_flags Service options such as DES3/DES
encryption, credentials delegation, mutual
authentication, and detection of replayed
or out-of-sequence messages

time_req Context lifetime requested (ignored)

input_chan_bindings Channel bindings

input_token Token returned from the acceptor

Output Parameters

minor_status Kerberos 5 error code

C–16 GSS-API Tutorial

Input Parameters

context_handle Security context to be initiated

actual_mech_type Security mechanism used (Kerberos 5)

output_token Token to be sent to the acceptor

ret_flags Flags identifying the service options
supported by the context

time_rec Context lifetime received (always indefinite)

The following excerpt from the sample programs illustrates how to use the
gss_init_sec_context() call to establish a security context with the
following options:

• Mutual authentication

• Replay detection

• Out-of-sequence message detection

Since no encryption method is specified, it defaults to that assigned to the
credentials in the principal database.

/***/

char szHostName[] = "host@dev007.cybersafe.com";
OM_uint32 gMaj, gMin = 0;
OM_uint32 req_flags = GSS_C_MUTUAL_FLAG |

GSS_C_REPLAY_FLAG |
GSS_C_SEQUENCE_FLAG;

OM_uint32 req_time = 3600;
OM_uint32 ret_flags = 0;
OM_uint32 ret_time; = 0;
gss_buffer_desc input_name = GSS_C_EMPTY_BUFFER;
gss_buffer_desc input_token = GSS_C_EMPTY_BUFFER;
gss_buffer_desc output_token = GSS_C_EMPTY_BUFFER;
gss_buffer_t token_handle = GSS_C_NO_BUFFER;
gss_ctx_id_t context_handle = GSS_C_NO_CONTEXT;
gss_name_t service_name = GSS_C_NO_NAME;
gss_OID actual_mech_type = GSS_C_NO_OID;

/* Copy the host service principal name
into the GSS buffer structure */

input_name.length = strlen(szHostName);
input_name.value = strdup(szHostName);

/* Convert the host service principal name
into GSS internal form */

gMaj = gss_import_name(&gMin,
&input_name,
GSS_KRB5_NT_HOSTBASED_SERVICE_NAME,
&service_name);

/* Establish a context. The default claimant credential is
specified. In that case, the credential is pulled from the
credential cache. Alternatively, the claimant credential
could have been acquired via gss_acquire_cred and passed
to gss_init_sec_context. */

do {

GSS-API Tutorial C–17

token_handle = input_token.length ?
&input_token : GSS_C_NO_BUFFER;

/* Initiate a security context with the Acceptor */
gMaj = gss_init_sec_context(&gMin,

GSS_C_NO_CREDENTIAL,
&context_handle,
service_name,
GSS_C_NO_OID,
req_flags,
req_time,
GSS_C_NO_CHANNEL_BINDINGS,
token_handle,
&actual_mech_type,
&output_token,
&ret_flags,
&ret_time);

/* If there is a token to send, regardless of
error condition, then send it to the peer */

if (output_token.length != 0) {
SendToken(&output_token);

}

/* Clear the buffers for the next iteration */
Local_Release_Buffer(&input_token);
gss_release_buffer(&tmpMinor, &output_token);

/* Now is the proper time to check the status code */
if (GSS_ERROR(gMaj) {

/* Process error and exit */
}

/* If context establishment requires a token in response,
then fetch it from the peer */

if (gMaj & GSS_S_CONTINUE_NEEDED) {
RecvToken(&input_token);

}

} while (gMaj & GSS_S_CONTINUE_NEEDED);

/***/

After the context is no longer needed, it should be destroyed using the
gss_delete_sec_context() function. The sample programs contain
examples.

The gss_accept_sec_context() function uses the following parameters:

Input Parameters

context_handle Security context being established

acceptor_cred_handle Credentials for the acceptor

input_token_buffer Token from the initiator

input_chan_bindings Channel bindings

Output Parameters

C–18 GSS-API Tutorial

minor_status Kerberos 5 error code

src_name Name of the initiator

mech_type Security mechanism used (Kerberos 5)

output_token Token to be sent to the initiator

ret_flags Flags identifying the service options
supported by the context

time_rec Context lifetime received (always indefinite)

delegated_cred_handle Delegated credentials from the context initiator

The following excerpt from the sample programs illustrates how to use the
gss_accept_sec_context() call to establish a security context.

OM_uint32 gMaj, gMin = 0;
OM_uint32 ret_flags = 0;
OM_uint32 ret_time = 0;
OM_uint32 ctx_flags = 0;
gss_buffer_desc input_token = GSS_C_EMPTY_BUFFER;
gss_buffer_desc output_token = GSS_C_EMPTY_BUFFER;
gss_cred_id_t delegated_cred = GSS_C_NO_CREDENTIAL;
gss_ctx_id_t context_handle = GSS_C_NO_CONTEXT;
gss_name_t src_name = GSS_C_NO_NAME;
gss_OID actual_mech_type = GSS_C_NO_OID;

/* Loop based on the example in
"draft-ietf-cat-gssv2-cbind-07.txt" */

do {
OM_uint32 tmpMinor = 0;

/* Fetch next security context token from the Initiator */
RecvToken(&input_token);

/* Wait for the Initiator to try to establish a security
context. The acceptor will use a previously acquired
acceptor credential. */

gMaj = gss_accept_sec_context(&gMin,
&context_handle,
cred_handle,
&input_token,
GSS_C_NO_CHANNEL_BINDINGS,
&src_name,
&actual_mech_type,
&output_token,
&ret_flags,
&ret_time,
&delegated_cred);

/* If the authentication routine forms a token to send to
the Initiator, then send it now -- before function error
checking, so that if an error token is generated, the
Initiator will receive it. */

if (output_token.length != 0) {
SendToken(&output_token);

}

/* Clear the buffers for the next iteration */

GSS-API Tutorial C–19

Local_Release_Buffer(&input_token);
gss_release_buffer(&tmpMinor, &output_token);

/* Now is the proper time to check the status code */
if (GSS_ERROR(gMaj)) {

/* Process error and exit */
}

} while (gMaj & GSS_S_CONTINUE_NEEDED);

**

After the context is no longer needed, it should be destroyed using the
gss_delete_sec_context() function. The sample programs contain
examples.

C.7 Step 4: Exchanging Messages

After credentials are acquired and the security context is established
between an application and its peer, messages can be secured and sent.
This step explains the options for securing messages that are available in
Application Security SDK.

Version 2 of the GSS-API standard has two pairs of functions for securing
data:

• gss_get_mic() and gss_verify_mic() provide message integrity.

• gss_wrap() and gss_unwrap() provide message integrity and,
optionally, confidentiality.

When a sending application calls one of these functions, a token is returned
by the function. The token contains a signature computed on the message
being sent using an integrity algorithm. In the case of gss_wrap(), the
token may also contain the message itself which, optionally, can be encrypted
for confidentiality.

Application Security SDK provides four integrity algorithms:

• DES3 MD5

• DES MAC

• DES MD5

• MD5

Two encryption algorithms are provided: DES3 and DES.

The application then uses a communications protocol such as TCP/IP to send
the token (and the message if it is not included in the token) to the receiving
application. The receiving application calls the complementary function to
perform the reciprocal action on the data passed to it.

C–20 GSS-API Tutorial

These functions offer three options for securing data:

1. Message and signature are sent separately.

With this option, the token contains a signature created by the sending
application using the gss_get_mic() function. The message is not
part of the token.

When the receiving application gets the token and the message, it calls
the gss_verify_mic() function which verifies the signature to ensure
that the message and the signature were not modified in transit.

2. Message and signature sent together.

With this option, the token contains a signature created by the
sending application using the gss_wrap() function. The message is
encapsulated in the token.

When the receiving application gets the token, it calls the
gss_unwrap() function, which verifies the signature to ensure that
the message and the signature were not modified in transit.

3. Encrypted message and signature sent together.

This option is the same as option 2 except that the message and the
signature are encrypted by the gss_wrap() function and decrypted
by the gss_unwrap() function.

Each option serves a specific use when securing distributed application data.

For example, if an application has some data that needs to be secured and
other data that does not need to be secured, the application can choose
to secure only the data that must be secured. These considerations are
application dependent, based on the length of the data and the speed,
efficiency, and strength of the encryption algorithm. If the data length is
large, it may be efficient to secure only a piece of the message; however, it is
not unusual to secure the entire message.

An example of when an application might use gss_wrap() with
confidentiality is below.

GSS-API Tutorial C–21

ZK-1830U-AI

Information to send to the other side of an application:

 person's name,
 social security number,
 credit card number,
 home address,
 phone number,
 etc.

Message may look like:

Bob Smith, XXXXXXXXXXXX, home address, phone number, etc.

Encrypt SSN and credit card number only

In another example, if an application wanted to ensure that a message’s
integrity was preserved during transmission, and the application
requires that data be sent on one channel and checksum on another,
out-of-band (control), channel such as ftp, the application needs to use the
gss_get_mic() function as shown below.

ZK-1831U-AI

Information to send to the other side of an application:

 text of electronic mail message

Message may look like:

file

signature

sent on data channel

sent on control channel

C–22 GSS-API Tutorial

C.7.1 Using gss_get_mic() and gss_verify_mic()

Calling gss_get_mic() allows an application to create a signature for
data that can be verified by a peer application using gss_verify_mic().
This ensures message integrity, that is, that the message and its signature
were not modified in transit.

The sequence of steps for using these functions to send a message from an
initiator to an acceptor follows:

ZK-1832U-AI

GSS

1

4

3

2

initiator

gss_get_mic()

token

token

GSS

5 6

acceptor

gss_verify_mic()

data data

data

token

1. The initiator calls gss_get_mic(), passing the data for which it wants
to have a signature generated.

2. The function returns a token, which contains a signature for the data,
but not the data itself.

3. The initiator sends the data to the acceptor.

The token and data can be sent in any order, as separate messages,
within the same message, or any other option.

4. The initiator sends the token to the acceptor.

5. The acceptor calls gss_verify_mic(), passing the data and the token
it received from the initiator.

6. The gss_verify_mic() function returns a status indicating whether
the signature was successfully verified against the data.

The gss_get_mic() function includes the following parameters:

GSS-API Tutorial C–23

Input Parameters

context_handle Security context being used

qop_req Quality of protection (QOP) requested.

message_buffer Message to be protected

Output Parameters

minor_status Kerberos 5 error code

message_token Token containing a signature

The following excerpt from the sample programs illustrates sending a
message with this function call. The default QOP is specified which, in this
case, is determined by the encryption type specified for the security context.

/**/

char szMessage[] = "This is a test message";
OM_uint32 gMaj, gMin = 0;
gss_buffer_desc input_buffer = GSS_C_EMPTY_BUFFER;
gss_buffer_desc output_buffer = GSS_C_EMPTY_BUFFER;
gss_qop_t qop_req = GSS_C_QOP_DEFAULT;

/* Stuff plaintext message into the input buffer*/
input_buffer.value = strdup(szMessage);
input_buffer.length = strlen(szMessage);

/* Create a message integrity code (MIC) from the message */
gMaj = gss_get_mic(&gMin,

context_handle,
qop_req,
&input_buffer,
&output_buffer);

/* Send the MIC token */
SendToken(&output_buffer);

/**/

Storage associated with the token should be freed after use using the
gss_release_buffer() function to avoid memory leaks.

The gss_verify_mic() function includes the following parameters:

Input Parameters

context_handle Security context being used

message_buffer Message to be verified

token_buffer Token containing a signature

Output Parameters

minor_status Kerberos 5 error code

qop_state Quality of protection used

C–24 GSS-API Tutorial

When the gss_verify_mic() function returns GSS_S_COMPLETE, the
signature was verified successfully.

The following excerpt from the sample programs illustrates receiving a
message with this function call.

/**/

char szMessage[] = "This is a test message";
OM_uint32 gMaj, gMin = 0;
gss_buffer_desc input_buffer = GSS_C_EMPTY_BUFFER;
gss_buffer_desc message_buffer = GSS_C_EMPTY_BUFFER;
gss_qop_t qop_state = 0;

/* Stuff plaintext message into the message buffer*/
message_buffer.value = strdup(szMessage);
message_buffer.length = strlen(szMessage);

/* Receive the MIC token */
RecvToken(&input_buffer);

/* Verify the message against the message integrity code (MIC) */
gMaj = gss_verify_mic(&gMin,

context_handle,
&message_buffer,
&input_buffer,
&qop_state);

/**/

C.7.2 Using gss_wrap() and gss_unwrap()

Calling gss_wrap() allows an application to wrap data that can be verified
by the peer application using gss_unwrap(). This ensures that the
message has not been modified in transit (message integrity).

Additionally, the application can encrypt the data being sent for
confidentiality, ensuring that no one can view the data. Encapsulating
data into a token creates a secure envelope for data that can be sent over
the network.

The sequence of steps for using these functions to send a message from an
initiator to an acceptor follows:

GSS-API Tutorial C–25

ZK-1833U-AI

GSS

1

3

2

initiator

gss_wrap()

token

token

GSS

4

5

acceptor

gss_unwrap()

data datatoken

1. The initiator calls gss_wrap() with data that it wants to wrap into a
token. Confidentiality may be requested at the same time.

2. A token is returned containing the data and the signature of the data. If
confidentiality was requested, both are encrypted.

3. The initiator sends the token to the acceptor.

4. The acceptor calls gss_unwrap(), passing the token it received from
the initiator.

5. The gss_unwrap() function returns both a status code, verifying
the signature, and the original data. The data is also decrypted if
confidentiality was originally requested.

The gss_wrap() function includes the following parameters:

Input Parameters

context_handle Security context being used

conf_req_flag Confidentiality request (true or false)

qop_req Quality of protection (QOP) requested

input_message_buffer Message to be protected

Output Parameters

minor_status Kerberos 5 error code

conf_state Confidentiality confirmation (true or false)

conf_state Protected message

C–26 GSS-API Tutorial

The following excerpt from the sample programs illustrates sending an
encrypted message with this function call. The default QOP is specified
which, in this case, is determined by the encryption type specified for the
security context.

/**/
char szMessage[] = "This is a test message";
OM_uint32 gMaj, gMin = 0;
int conf_req_flag = 1;
i_32 conf_state = 0;
gss_buffer_desc input_buffer = GSS_C_EMPTY_BUFFER;
gss_buffer_desc output_buffer = GSS_C_EMPTY_BUFFER;
gss_qop_t qop_req = GSS_C_QOP_DEFAULT;

/* Stuff plaintext message into the input buffer*/
input_buffer.value = strdup(szMessage);
input_buffer.length = strlen(szMessage);

/* Wrap (Seal) the message into a token */
gMaj = gss_wrap(&gMin,

context_handle,
conf_req_flag,
qop_req,
&input_buffer,
&conf_state,
&output_buffer);

/* Send the message token */
SendToken(&output_buffer);
/**/

Storage associated with the protected message should be freed after use
using the gss_release_buffer() function to avoid memory leaks.

The gss_unwrap() function includes the following parameters:

Input Parameters

context_handle Security context being used

input_message_buffer Message to be unwrapped, verified, and,
optionally, decrypted

Output Parameters

minor_status Kerberos 5 error code

output_message_buffer Unwrapped message

conf_state Confidentiality confirmation (true or false)

qop_state Quality of protection used

When the gss_unwrap() function returns GSS_S_COMPLETE, the signature
was verified successfully.

The following excerpt from the sample programs illustrates receiving a
message with this function call.

GSS-API Tutorial C–27

/**/

char szMessage[256];
OM_uint32 gMaj, gMin = 0;
i_32 conf_state = 0;
gss_buffer_desc input_buffer = GSS_C_EMPTY_BUFFER;
gss_buffer_desc output_buffer = GSS_C_EMPTY_BUFFER;
gss_qop_t qop_state = 0;

/* Receive the message token */
RecvToken(&input_buffer);

/* Unwrap (Unseal) the message token */
gMaj = gss_unwrap(&gMin,

context_handle,
&input_buffer,
&output_buffer,
&conf_state,
&qop_state);

/* Extract plaintext message from the output buffer*/
if (output_buffer.value != NULL) {

strcpy(szMessage, output_buffer.value);
}

/**/

Storage associated with the unwrapped message should be freed after use
using the gss_release_buffer() function to avoid memory leaks.

C.8 Step 5: Terminating the Security Context

When either application has completed communications with its peer, it may
terminate the security context. The GSS-API standard allows a security
context to be terminated by the initiating and the accepting application.

The process for terminating a security context is the same for both the
initiator and the acceptor. If several security contexts coexist between an
application and its peer, each context must be terminated separately.

The gss_delete_sec_context() function includes the following
parameters:

Input Parameters

context_handle Security context being deleted

Output Parameters

minor_status Kerberos 5 error code

output_token Specify GSS_C_NO_BUFFER to request local
deletion. This is recommended by HP.

The following excerpt from the sample programs illustrates terminating a
security context and releasing credentials acquired earlier.

C–28 GSS-API Tutorial

/**/

/* The V2 GSS_API specs recommend setting the output token
parameter to NULL to signify that no token is to be
returned. */

gMaj = gss_delete_sec_context(&gMin,
&context_handle,
GSS_C_NO_BUFFER);

context_handle = GSS_C_NO_CONTEXT;
:
:
:

..gMaj = gss_release_cred(&gMin,
&cred_handle);

cred_handle = GSS_C_NO_CREDENTIAL;

/**/

C.9 Advanced Concepts

HP extensions to the GSS-API standard give applications better control of
their security environment. These extensions allow you to:

• Obtain initial credentials for a user

• Set the required time synchronization between initiators, acceptors,
and security servers

• Use DES3 encryption for improved confidentiality

These extensions are mechanism and implementation specific. If you use
them, the portability of your application may be affected. For example, the
HP implementation of DES3 will not interoperate with other GSS-API
vendors offering DES3.

C.9.1 Obtaining Initial Credentials

When the standard GSS-API functions are used with Kerberos 5, the
application must already have obtained a ticket-granting ticket (TGT) prior
to running the GSS-API secured application. A user can obtain a TGT by
running kinit or an equivalent application (for example, HP Single Sign-On).

In some situations it may be desirable to have the user execute only a single
program that incudes the acquisition of the TGT. Therefore, Application
Security SDK includes extension functions that can be used to obtain initial
credentials from a security server.

The csf_gss_acq_user() function is an HP extension that acquires
initial credentials from within an application using secret key or public key
authentication, optionally, with DES3 encryption.

GSS-API Tutorial C–29

When this function establishes a user context, it constructs a credentials
cache for the user if it does not exist. If the credentials cache does exist
but contains credentials that do not match those requested, the cache
is re-initialized. In this case, the application must ensure that no other
application is using the credentials cache.

This function also provides prompts and labels that the application must
display. The application must collect the resulting responses and return
them to GSS.

The csf_gss_acq_user() function includes the following parameters:

Input Parameters

user_name Name of user or service needing initial
credentials. If not specified, a default principal
or login name can be used.

desired_mechs Security mechanism desired (Kerberos 5)

options Options that determine the protocol key, attributes
(such as lifetime, renewable, forwardable,
pre-authenticated and proxiable), and encryption
method (DES or DES3) of the initial credentials.

user_response Passes a user response to an application prompt

Output Parameters

minor_status Kerberos 5 error code

user User context being acquired

user_prompt Passes prompts to the application

user_label Passes prompting information to the application

prompt_state Passes prompting display hints to the application

prompting_mech Security mechanism used (Kerberos 5)

pwd_exp_time Expiration time of user’s password

To use the csf_gss_acq_user() function:

• Specify Kerberos 5 as the security mechanism.

• Select the desired options for the TGT.

• Respond to prompts. The function returns parameters that identify how
the prompt should be processed and any user input needed.

This function is a looping function, that is, it may need to be called more
than once:

• If it returns GSS_S_COMPLETE, the function has completed its task.

C–30 GSS-API Tutorial

• If it returns GSS_S_CONTINUE_NEEDED, one or more prompts from
Kerberos 5 must be satisfied.

Other special HP functions are available for managing initial credentials,
for example, csf_gss_inq_user() for querying the TGT. To release the
storage associated with a user context after it is no longer needed, use
csf_gss_release_user().

The following excerpt from the sample programs illustrates establishing a
user context for initial credentials with the following options:

• Forwardable

• Lifetime of 10 hours

• Renew time of 48 hours

• DES3 encryption

It also checks for prompts of a password, challenge, and one-time password
(OTP). The principal name was imported previously. Calls releasing storage
no longer needed are not shown.
/**/

OM_uint32 gMaj = 0;
OM_uint32 gMin = 0;
i_32 done = 0;
i_32 prompt_state = CSF_GSS_C_USER_STATE_NULL;
int optCount = 0;
gss_buffer_desc user_prompt1 = GSS_C_EMPTY_BUFFER;
gss_buffer_desc user_label1 = GSS_C_EMPTY_BUFFER;
gss_buffer_desc response1 = GSS_C_EMPTY_BUFFER;
gss_buffer_t user_prompt = &user_prompt1;
gss_buffer_t user_label = &user_label1;
gss_buffer_t response = GSS_C_NO_BUFFER;
csf_gss_user_t gss_user = CSF_GSS_C_NO_USER;
gss_OID prompting_mech = GSS_C_NO_OID;
csf_gss_mech_opt_desc opts[10];
char buff[256];
time_t pwd_exp_time;

/* Set up the csf_gss_acq_user options */
opts[optCount].mechOID = rfc_krb5_c_OID;
opts[optCount].id = CSF_GSS_C_ACQ_USER_OPT_FORWARDABLE;
++optCount;

opts[optCount].mechOID = rfc_krb5_c_OID;
opts[optCount].id = CSF_GSS_C_ACQ_USER_OPT_LIFETIME;
opts[optCount].val = "10h";
++optCount;

opts[optCount].mechOID = rfc_krb5_c_OID;
opts[optCount].id = CSF_GSS_C_ACQ_USER_OPT_RENEWABLE;
opts[optCount].val = "48h";
++optCount;

opts[optCount].mechOID = rfc_krb5_c_OID;
opts[optCount].id = CSF_GSS_C_ACQ_USER_OPT_DES3;
++optCount;

GSS-API Tutorial C–31

opts[optCount].mechOID = GSS_C_NO_OID;

/* Acquire the user context */
do {

gMaj = csf_gss_acq_user(&gMin,
principal_name,
rfc_krb5_c_OID_set,
opts,
response,
&gss_user,
user_prompt,
user_label,
&prompt_state,
&prompting_mech,
&pwd_exp_time);

/* Check whether user needs to provide more information */
if (gMaj & GSS_S_CONTINUE_NEEDED) {

switch (prompt_state)
{

case CSF_GSS_C_USER_STATE_PASSWORD_NOECHO:
case CSF_GSS_C_USER_STATE_PASSWORD_ECHO:
printf("Password information is requested...\n");
break;

case CSF_GSS_C_USER_STATE_CHALLENGE_NOECHO:
case CSF_GSS_C_USER_STATE_CHALLENGE_ECHO:
printf("Challenge information is requested...\n");
break;

case CSF_GSS_C_USER_STATE_OTP_NOECHO:
case CSF_GSS_C_USER_STATE_OTP_ECHO:
printf("OTP information is requested...\n");
break;

default:
printf("Unrecognized prompt state.\n");

}

printf("%s\n", user_label->value);
printf("Enter %s", user_prompt->value);
fflush(stdout);

response = &response1;

fgets(buff, 256, stdin);
response->value = buff;
response->length = strlen(buff);
buff[response->length - 1] = ’\0’;

}
else {

done = 1;
}

} while (!done);

/***/

C–32 GSS-API Tutorial

C.9.2 Required time synchronization

The host for an accepting application must be synchronized within five
minutes of the security server granting credentials. If the host for an
initiating application is synchronized to within five minutes of the security
server, it must also be synchronized within five minutes of the accepting
application. If the clock skew is greater than five minutes, authentication
will fail. When credentials are being forwarded from an application to its
peer, the clocks on all systems must be synchronized to within five minutes.

As a consequence of the allowed five minute variation in host clocks, the
security server will reject tickets before the actual expiration time if the
remaining lifetime is less than the time skew limit. The actual valid
lifetime in minutes required by the time skew limit depends on whether
the initiator’s clock is ahead or lags the security server’s clock, but ranges
from 1 to 5 minutes. As an example of a GSS failure related to this time
skew limit, the function gss_init_sec_context() will fail and set the
context_handle parameter to GSS_C_NO_CONTEXT if the initiator’s Kerberos
credentials are within the time skew limit of expiration. If this occurs, the
function returns the Kerberos error “Credentials Not Found” (hex value
C0001507). In this case, the initiator application must acquire a new initial
credential (TGT) from the security server before a context can be established
with an acceptor application using gss_init_sec_context().

C.9.3 Using DES3 Encryption

Application Security SDK supports both DES and DES3 encryption.
However, multiple encryption systems for a single security context are not
allowed.

The following conditions must be met before DES3 encryption can used
to encrypt messages:

• TrustBroker Security Server must be configured for DES3 when its
database is created.

• The principals for the initiating and accepting applications must be DES3
enabled in the principal database. This means that if a user is running
the initiating application, that user’s principal must be DES3 enabled.

• The initiating application must obtain a TGT using DES3. The preceding
excerpt contains an example using csf_gss_acq_user(). The acceptor
must have a key table entry for DES3.

• The initiating application must use the DES3 flag when initiating the
security context.

It is not necessary to use HP extensions to enable DES3. However, you
should always make sure the requested encryption is being used. A

GSS-API Tutorial C–33

context can be downgraded from DES3 to DES if the above conditions are
not met. After the context is established, check the flags returned with
csf_gss_get_context_options() to determine whether DES or DES3
was used.

C.10 Status Codes for GSS-API Functions

GSS-API functions have two return status codes: major status and minor
status. It is important for an application to efficiently handle errors returned
from the GSS-API using these status codes.

The major status is the GSS-API function error code. The major status is
composed of three bit fields: the routine (function) error, the calling error,
and supplementary information.

The minor status is a mechanism-specific error code. It may provide
additional error information when GSS_ERROR() indicates there was an
error with the Kerberos 5 mechanism.

The presence of an error code is determined by sending a major status to the
GSS_ERROR() macro and by testing the result obtained. If zero is returned,
there was no error; any other value indicates an error.

_____________________ Warning _____________________

You must use the GSS_ERROR() macro to test for the presence of
an error; do not compare the status to the number zero.

The GSS_ERROR() macro indicates errors by testing whether a code is
present in the routine (function), calling, or supplementary information
fields. The following code excerpt shows an example of this usage.
/***/

OM_uint32 status_value = <--- value passed in to test
OM_uint32 majErr, minErr = 0;
OM_uint32 message_context = 0;
gss_buffer_desc status_string = GSS_C_EMPTY_BUFFER;

if (GSS_ERROR(status_value) ||
GSS_SUPPLEMENTARY_INFO(status_value)) {

/* First process the Major status code */
do {

/* Get the status string associated
with the Major (GSS=API) status code */

majErr = gss_display_status(&minErr,
status_value,
GSS_C_GSS_CODE,
GSS_C_NO_OID,
&message_context,
&status_string);

C–34 GSS-API Tutorial

/* Print the status string */
printf("Major status string: %s\n",
(char*)status_string.value);

/* Free the status string buffer */
gss_release_buffer(&minErr, &status_string);

} while(message_context && !GSS_ERROR(majErr));

/* Then process the Minor status code */
do {

/* Get the status string associated
with the Minor (mechanism) status code */

majErr = gss_display_status(&minErr,
status_value,
GSS_C_MECH_CODE,
GSS_C_NO_OID,
&message_context,
&status_string);

/* Print the status string */
printf("Minor status string: %s\n",
(char*)status_string.value);

/* Free the status string buffer */
gss_release_buffer(&minErr, &status_string);

} while(message_context && !GSS_ERROR(majErr));
}

/***/

The supplemental information field provides additional function information.
For example, if the gss_init_sec_context() function returned a
major status code indicating no error, the supplemental information field
may indicate that gss_init_sec_context() requires a response token
from the other side of the application. In another example, if the function
gss_unwrap() returned a major status code indicating an error, the
supplemental information field indicates whether the error is because the
token is out of sequence, a replay, or old.

Supplemental information values are tested by ANDing the major status
code with a named identifier. The example code fragment below shows the
processing that occurs if gss_unwrap() detects a replay.

/***/

major_status = gss_unwrap(. . .);
if (GSS_ERROR(major_status)) {

/* An error has occurred. */
. . .
if (major_status & GSS_S_DUPLICATE_TOKEN) {

/* The token is a replay of a previous token. */
printf ("Warning: Replay detected\n");

}
}

/***/

GSS-API Tutorial C–35

C.10.1 Minor Error Codes

The minor error codes for Kerberos mechanism are located in the .hs files in
the include/csf/sts and include/csfc5/sts directories.

Any of these error codes may be referenced by your application, and your
code may branch as needed, depending on the Kerberos error conditions that
result. Applications need to refer to the macro that defines the value (the
symbol after the #define).

Typically a minor error indicates a Kerberos configuration issue or a problem
with a principal in the principal database.

C.11 Sample Programs

Application Security SDK includes a client/server sample application. The
programs demonstrate the use of GSS-API functions. The sample program
uses the following GSS-API functions:

• gss_accept_sec_context()

• gss_acquire_cred()

• gss_delete_sec_context()

• gss_display_name()

• gss_display_status()

• gss_export_sec_context()

• gss_get_mic()

• gss_import_name()

• gss_import_sec_context()

• gss_init_sec_context()

• gss_inquire_context()

• gss_inquire_names_for_mech()

• gss_oid_to_str()

• gss_release_buffer()

• gss_release_cred()

• gss_release_name()

• gss_release_oid()

• gss_release_oid_set()

• gss_str_to_oid()

• gss_unwrap()

C–36 GSS-API Tutorial

• gss_verify_mic()

• gss_wrap()

The client program initiates a security context with the server program.
After a security context is established, the client and server exchange
protected messages. The client and server programs can be distrubuted
across any two systems in the same realm, or across two systems in different
realms (which have been set up for interrealm authentication).

Each time the client is invoked, it performs one or more exchanges with the
server. Each exchange with the server consists primarily of the following
steps:

1. A TCP/IP connection is established.

2. (Optional, on by default:) The client and server establish a GSS-API
context, and the server prints the identity of the client.

3. The client sends a message to the server. The message may be plaintext,
cryptographically “signed” but not encrypted, or encrypted (default).

4. The server decrypts the message (if necessary), verifies its signature (if
there is one) and prints it.

5. The server sends either a signature block (the default) or an empty
token back to the client to acknowledge the message.

6. If the server sent a signature block, the client verifies it and prints a
message indicating that it was verified.

7. The client sends an empty block to the server to tell it that the exchange
is finished.

8. The client and server close the TCP/IP connection and destroy the
GSS-API context.

Source Code Description

gss-server.c Main server source code

gss-client.c Main client source code

gss-misc.h Header file for miscellaneous tasks

gss-misc.c Performs miscellaneous tasks

Makefile_CPQ Build file

README Information file

The following diagram shows how the GSS functions are implemented in
the sample programs.

GSS-API Tutorial C–37

ZK-1834U-AI

client server

Acquire Client Credentials Acquire Server Credentials

gss_acquire_cred() gss_acquire_cred()

Initiate a Context Accept the Context

gss_init_sec_context() gss_accept_sec_context()

Wrap Messages

Receive Messages

gss_wrap()

Sock_RecvToken()

Send Messages

Unwrap Messages

Sock_SendToken()

gss_unwrap()

Delete Context

gss_delete_sec_context()

Delete Context

gss_delete_sec_context()

Release Credentials

gss_release_cred()

Release Credentials

gss_release_cred()

C–38 GSS-API Tutorial

C.11.1 Building the Sample Programs

HP recommends that you copy the sample code to a new location, so the
original code is preserved in case you need to make changes to it. A makefile
(Makefile_CPQ) is provided that needs little or no modification. Debugging
is disabled by default.

To build the executables, use the make command as follows:

• To build the executables with the default settings, enter:

make -f Makefile_CPQ

• To enable debugging, enter:

make -f Makefile_CPQ OPTDEBUG=-g2

• To remove objects and executables, enter:

make -f Makefile_CPQ clean

C.11.2 Running the Sample Programs

This section describes:

• Prerequisites that must be met before the sample programs can run

• How to start the sample programs

• Sample server program commands

• Sample client program commands

• Typical sample program output

• Troubleshooting guidelines

C.11.2.1 Prerequisites

You must satisfy the following requirements before you can run the sample
programs.

1. Define a principal for the client.

The client program authenticates using the principal
host/host_name@REALM, where host_name is the acceptor host’s fully
qualified domain name and REALM is the acceptor host’s default realm.
Therefore, the principal host/host_name@REALM must be registered
with the security server (KDC).

2. Extract the server principal.

The host principal for the server must be present in the service key table
file (called v5srvtab), and the service key table file must be readable
by the server program. If the service key table file is not present on the
security server, it can be created by extracting the host principal.

GSS-API Tutorial C–39

3. Add a principal for the client to the principal database.

To run the server on a host, you need to make sure that the principal
corresponding to service_name is in the default keytab on the server
host (/krb5/v5srvtab), and that the gss-server process can read the
keytab. For example, the service name “sample@server” corresponds
to the Kerberos principal “sample/KDChost.domain.com@REALM.”

C.11.2.2 Starting the Sample Programs

Always run the sample server program first, then start the sample client
program. Run each program in a separate shell so that you can see the
sample output separately. The client and server may be run on the same
machine or separate machines.

The client/server programs accept mandatory command line arguments
and all switches are optional.

The server program requires the following arguments:

• service_name—The GSS-API service name of the form
“service@host.”

For example:

gss-server sample@REALM

The client program requires the following arguments:

host The host running the server.

service_name The service name that the server will use to
establish connections.

If gss-server is running on a different machine from
gss-client, and you do not specify the host name in
the service name when running gss-client, you must
specify the server’s host name in the service name
you specify to gss-client.

msg The message.

For more than one word you must enclose the
message within double quotes; for example:

gss-client unix1 sample@REALM "Hello
Kerberos"

C.11.2.3 Server Command Line Switches (Optional)

The server command line switches are defined below. All are optional.

C–40 GSS-API Tutorial

-port The TCP port on which to accept connections.

-once Tells the server to exit after a single exchange,
rather than persisting.

-inetd Tells the server that it is running out of inetd, so it
should interact with the client on stdin rather than
binding to a network port. Implies -once.

-export Tells the server to test the gss_export_sec_con-
text() function after establishing a context with a client.

-logfile The file to which the server should append its output,
rather than sending it to stdout.

C.11.2.4 Client Command Line Switches (Optional)

The client command line switches are defined below. All are optional.

-port The TCP port to which to connect. Default is 4444.

-mech The OID of the GSS-API mechanism to use.

-d Tells the client to delegate credentials to the server. For
the Kerberos GSS-API mechanism, this means that a
forwardable TGT will be sent to the server, which will
put it in its credential cache (you must have acquired
your tickets with kinit -f for this to work).

-f Tells the client that the msg argument is actually
the name of a file whose contents should be
used as the message.

-q Tells the client to be quiet, i.e., to only
print error messages.

-ccount Specifies how many sessions the client should initiate
with the server (the “connection count”).

-mcount Specifies how many times the message should be sent to
the server in each session (the “message count”).

-na Tells the client not to do any authentication with
the server. Implies -nw, -nx and -nm.

-nw Tells the client not to “wrap” messages. Implies -nx.

-nx Tells the client not to encrypt messages.

-nm Tells the client not to ask the server to send back
a cryptographic checksum (“MIC”).

The client/server sample usage message will be displayed if no arguments
are specified or when the program is not used correctly:

gss-server
Usage: gss-server [-port port] [-verbose] [-once]

GSS-API Tutorial C–41

[-inetd] [-export] [-logfile file] [service_name]

gss-client
Usage: gss-client [-port port] [-mech mechanism] [-d]

[-f] [-q] [-ccount count] [-mcount count]
[-na] [-nw] [-nx] [-nm] host service msg

C.11.3 Sample Program Output

This section contains output from the sample client and server programs,
demonstrating the client passing a text file as the message and the server
authenticating the client and printing out the message.

gss-server -verbose -once sample@REALM
Server waiting:
Received token (size=600):
60 82 02 54 06 05 2b 05 01 05 02 01 00 6e 82 02
47 30 82 02 43 a0 03 02 01 05 a1 03 02 01 0e a2
07 03 05 00 20 00 00 00 a3 82 01 56 61 82 01 52
30 82 01 4e a0 03 02 01 05 a1 15 1b 13 43 59 42
45 52 4e 54 2e 5a 4b 33 2e 44 45 43 2e 43 4f 4d
a2 28 30 26 a0 03 02 01 03 a1 1f 30 1d 1b 06 73
61 6d 70 6c 65 1b 13 63 79 62 65 72 6e 74 2e 7a
6b 33 2e 64 65 63 2e 63 6f 6d a3 82 01 04 30 82
01 00 a0 03 02 01 05 a1 03 02 01 01 a2 81 f3 04
81 f0 8e 80 d6 1d b4 11 51 61 75 24 f4 e4 96 c5
db 1b ba 94 be c1 60 11 1a 24 c3 13 ae 22 50 90
e2 ba 18 7b 9e 8f 6a 42 ca fa 96 b8 cf f0 8c 3f
b8 ea 33 e9 21 24 ab ab e2 7e 4a 90 ee 75 93 11
99 4e 15 ad 2e 47 83 5b de 74 eb b7 92 ad 86 e6
27 fd c0 02 13 6d 56 38 3d 7e 80 dc ea a0 1c 79
37 34 6f fa 4b dc 79 ed 2b ee ef 93 37 ae 6c 1f
2c 83 62 c1 7a 0b 5a aa 10 47 e4 70 1d 31 9c 2c
24 ee 8e 69 4a e2 c2 cd 7e 52 d4 ff 19 d6 d4 77
e9 ee 78 19 e8 2d 5b 31 5c a0 89 28 f5 b2 e2 ef
bf 2a 12 b5 1b 88 e3 e8 a3 21 5b d5 93 a1 21 44
77 e8 e1 71 f3 2f b8 e1 06 20 fe 21 42 9a f5 bf
e3 7b 55 76 a2 54 34 05 43 14 0b aa 2e d2 da 91
31 02 8d 65 53 fe 4d 32 b6 b6 31 6f b2 7c d4 77
bb 87 0f 85 6d 61 8d 2c 21 e8 be 3d fb fd a7 72
bd 71 a4 81 d3 30 81 d0 a0 03 02 01 05 a1 03 02
01 00 a2 81 c3 04 81 c0 aa b1 ae d7 0a 9b 75 c9
ce ca b4 b1 1d a4 a4 4b bc 3a 73 4d b8 9e c0 fb
51 44 8a 67 8d ad 25 87 6e 66 ed bf d7 fb fc b1
6b 38 89 74 2b f8 eb 04 be 76 70 03 e3 2f db 7d
15 53 53 9e 8d e4 f1 a1 60 b6 01 33 42 90 60 a5
4c 75 dd af af 64 75 86 5a f8 25 57 c1 22 bc 12
b1 54 c9 c1 0b a6 27 c0 44 2a 84 48 a6 6a 00 62
f8 4d d7 27 9e 35 a5 74 2c 8f 04 c0 a8 c4 48 b6
d9 52 84 40 5b 19 fe 4d bf eb 07 d0 e0 f9 46 8c

C–42 GSS-API Tutorial

72 5b bc df d0 0e 55 4a e2 e8 39 10 83 63 9f 02
cd 07 8b 00 f9 d6 46 77 29 6d 13 64 e4 3c b3 53
f7 46 12 9c 88 8b 5d e6 9e 05 f2 f7 6d 4e d8 15
dd eb 9b a6 37 28 77 9a
Sending accept_sec_context token (size=107):
60 69 06 05 2b 05 01 05 02 02 00 6f 5e 30 5c a0
03 02 01 05 a1 03 02 01 0f a2 50 30 4e a0 03 02
01 05 a1 03 02 01 00 a2 42 04 40 b1 61 8f 22 03
93 d2 d4 df 6f 6e 19 99 99 68 64 78 53 27 22 8a
c4 e8 42 b3 b5 23 3f 5d 0d 6a 6d 87 42 7b ca 8b
10 13 ff 34 66 23 cf 75 a0 24 e9 4a a7 d6 cd 9c
e2 a5 1b 98 55 02 ba 85 e8 3c b3
context flag: GSS_C_MUTUAL_FLAG
context flag: GSS_C_REPLAY_FLAG
context flag: GSS_C_CONF_FLAG
context flag: GSS_C_INTEG_FLAG
Accepted connection using mechanism OID { 1 2 840 113554 1 2 2 }.
Accepted connection: "user@REALM"
Message token (flags=228):
60 57 06 05 2b 05 01 05 02 02 01 dd fa de fa ff
ff e7 ad 91 9a ca e2 08 aa 32 27 86 fa 8a 0c 17
44 18 9c 8c 7b f4 65 8c 63 88 6f be 70 f0 a8 ef
95 17 da 92 48 44 e6 70 1c 4a 80 97 c0 f3 d3 34
39 1f 03 b3 55 df 50 75 f0 40 9d 8a 9b 5d 0f aa
3d 6b a0 c6 6d 34 42 29 58
Received message: "
Hello Kerberos.
I am a text file.
"
NOOP token
#

The following is the output from the client, using a test file called test:

gss-client -f unix1 sample@REALM "test"
Sending init_sec_context token (size=600)...continue needed...
context flag: GSS_C_MUTUAL_FLAG
context flag: GSS_C_REPLAY_FLAG
context flag: GSS_C_CONF_FLAG
context flag: GSS_C_INTEG_FLAG
"user@REALM" to "sample/host.domain@REALM", lifetime -1,
flags 1b6, locally initiated, open
Name type of source name is { 1 2 840 113554 1 2 2 1 }.
Mechanism { 1 2 840 113554 1 2 2 } supports 7 names
0: { 1 2 840 113554 1 2 1 1 }
1: { 1 2 840 113554 1 2 1 2 }
2: { 1 2 840 113554 1 2 1 3 }
3: { 1 2 840 113554 1 2 1 4 }
4: { 0 18 18 18 18 18 18 18 18 18 18 }
5: { 1 2 840 113554 1 2 2 1 }
6: { 1 2 840 113554 1 2 2 2 }

GSS-API Tutorial C–43

Signature verified.
#

C.11.4 Troubleshooting Guidelines

Most problems associated with running the sample programs are related to
the setup and administration of the security server. However, if you have
trouble getting the sample program to run correctly, there are several things
to check:

• A non-root user typically runs the server program. However, by default,
the service key table file is readable only by root.

Make sure the server program can read the service key table file and
that the file contains an entry for sample/KDC_host_name@REALM.

• The Kerberos library for Application Security SDK supports two
environment variables that specify the location of the service key table
file: CSFC5KTNAME and KRB5KTNAME. If both variables are set, the
former variable has precedence. Make sure these variables properly
specify where the service key table file is located, and ensure that you
have a valid TGT (klist).

• The sample programs work across realms only if those realms are set
up for interrealm authentication.

Remember that Application Security SDK overlays the Kerberos mechanism,
so, if anything goes wrong, it’s usually a failure in the underlying mechanism.
The sample program is merely passing on the error. For example, if the
wrong password is entered, Kerberos generates a message such as “Decrypt
integrity check failed” and sends it to Application Security SDK. In this case,
the sample program simply reports the error, cleans up, and exits.

C–44 GSS-API Tutorial

Index

A
A_PROCMASK_SET macro, 5–6
absolute pathname, 2–4
ACCEPT

default name, 8–32
acceptor, C–8
access control list, 8–7
accessing the authentication

databases, 3–11
account lock, 4–4
ACL

default, 7–13
entry rules, 7–8
example of setting for file, 7–9
external representation, 7–4
inheritance, 7–12
library routines, 7–7
object creation rule, 7–8
propagation, 7–8
replication rule, 7–8
umask, 7–8
working storage, 7–2
working storage: example, 7–9

aliases for audit events, B–5
allowSendEvents resource, 2–7
ANSI C

symbol preemption, 6–24
antecedent directories, 1–2
Application Security SDK, 8–4
assumptions, 8–3
AUD_MAXEVENT_LEN, 5–7
AUD_T public audit tokens, 5–2
AUD_TP private audit tokens, 5–4
audgen system call, 5–1

specifying audit log, 5–9

audgenl library routine
example, 5–1

audgenl system call
example, 5–8

audgenl()
example, 5–6

audit
application-specific records, 5–6
AUD_T public tokens, 5–2
AUD_TP private tokens, 5–4
audcntl flag, 5–6
auditmask flag, 5–6
creating own log, 5–9
disabling system-call auditing, 5–5
event types, 5–2
fixed-length tokens, 5–3
iovec-type tokens, 5–3
masks, 5–4
modifying for process, 5–6
pointer-type tokens, 5–3
process control flag, 5–4
record as series of tuples, 5–2
site-defined events, 5–7
tokens, 5–2
tuples, 5–2

audit events
default events, B–1

audit log
reading, 5–9
reading algorithm, 5–13
tuple formats, 5–9

audit subsystem
default auditable events, B–1
default event aliases, B–5

auditable events, B–1
authentication, 4–1, 8–1, C–1

Index–1

mutual, 8–18, 8–26, C–6
authentication profile, 3–3
authentication program, 4–1
Authentication Service, C–2
authenticator, C–5
authorization, C–2

B
buffer management, 3–7

C
cache

default location, 8–13
management, 8–24

channel bindings, 8–16
application data, 8–16

child process
inherited file access, 2–5
signal mask and, 2–5

chown system call
SUID or SGID permissions, 2–1

client, C–2
clock skew, C–33
close-on-exec flag, 2–5
confidentiality, 8–1, 8–17, C–2
constants, 8–36
context

establishing, C–14
terminating, C–28

conventions, 8–35
core files, 2–5
create_file_securely() library

routine, 3–2
credentials

acceptor, C–12
acquiring, C–10

for user, C–29
default Kerberos cache, 8–13
delegation, 8–18
expire, 8–12
initial, C–4

managing, C–31
initiator, C–12
management, 8–9
refreshing, 8–27
types, C–11

D
DAC

protecting the TCB, 1–3
daemon programs, 4–2
data

storing in a secure location, 2–3
data files, 1–2
data structures, 8–39
database

writing entries, 3–10
databases

accessing, 3–11
entries, 3–5
fields, 3–5
system defaults, 3–5
terminal control, 3–5
update, 3–7, 3–10

decisions at start, C–6
default names, 8–32

(See also names)
default principal, 8–8
DES-CBC, 8–20
DES-MAC, 8–20
DES-MAC-MD5, 8–20
DES3, C–33
DES3-CBC, 8–20
DES3-MAC-MD5, 8–20
devices

database, 3–1

E
EACCES errno value, 2–2
encrypted password, 3–3
encryption

algorithms, C–20
types, 8–24

Index–2

using DES3, C–33
enhanced password database,

3–3, 4–2
entry points, 6–24
environment variable

CSFC5CCNAME, 8–13
CSFC5KTNAME, 8–13, C–44
CSFC5RCNAME, 8–27
KRB5KTNAME, C–44

EPERM errno value, 2–2
EROFS errno value, 2–3
errno variable, 2–2
error codes, C–34

Kerberos-specific, 8–48
error processing macros, 8–41
/etc/auth/system/ttys file, 3–4
/etc/passwd file, 3–3, 4–4
/etc/sec/audit_events file, B–1
/etc/sec/event_aliases file, B–5
/etc/sec/site_events file, 5–7
/etc/sysconfigtab

setting audit-site-events, 5–7
events

aliases, B–5
audit, 5–2, B–1

example
ACL creation, 7–9
ACL inheritance, 7–12
ACL permission removal, 7–13
application-specific audit record,

5–6
audgenl(), 5–1
audit tuple parsing macros, 5–14
audit: iovec-type record, 5–3
auditmask, 5–6
site-defined audit event, 5–8

executable stack, 2–2
execve system call, 2–5
exported

names, 8–6
security contexts, 8–24

external names, 8–6

external representation
ACL, 7–4

F
fcntl system call

close-on-exec flag, 2–5
file control database

description, 3–2
file descriptors, 2–5
files

protecting, 2–3
fork system call, 2–5, 4–1
forwardable tickets, 8–18, 8–28
functions

name management, 8–6
other support, 8–20
performing basic tasks, C–7
reference, 8–32
security context management, 8–14

G
getluid system call, 4–1
getting started, C–6
gss_accept_sec_context function,

8–15, 8–17
channel bindings, 8–16

gss_acquire_cred function
passing OID to, 8–31

GSS-API
assumptions, 8–3
context management, 8–14
design goals, 8–1
mechanism independence, 8–1
names used for, 8–6
primary goals, 8–1
security mechanisms, 8–2
standards, 8–4
transport protocol independence,

8–1
GSS_C_AF_INET

Index–3

address format supported, 8–16
GSS_CALLING_ERROR function,

8–42
gss_compare_name function, 8–7
gss_display_name function

comparing names, 8–30
printable names, 8–30

GSS_ERROR function, 8–42
gss_get_mic function

specifying QOP, 8–31
gss_import_name function

comparing names, 8–30
name parsing, 8–9
printable names, 8–30

gss_init_sec_context function
channel bindings, 8–17
initiator responsibility, 8–18
mechanism identifier, 8–15
optional protection

channel bindings, 8–16
confidentiality, 8–17
forwarding tickets, 8–18
integrity, 8–17
out-of-sequence message

detection, 8–18
replay detection, 8–17

passing OID to, 8–31
gss_release_name function

when used, 8–8
GSS_ROUTINE_ERROR function,

8–43
gss_seal function, 8–23t

(See also gss_wrap function)
gss_sign function, 8–23t

(See also gss_get_mic function)
GSS_SUPPLEMENTARY_INFO

function, 8–44
gss_unseal function, 8–23t

(See also gss_unwrap function)
gss_unwrap function

return QOP, 8–31
gss_verify function, 8–23t

(See also gss_verify_mic
function)

gss_verify_mic function
return QOP, 8–31

gss_wrap function
specifying QOP, 8–31

H
header files, 1–3

I
identification, 4–1, C–1
initial credentials

managing, C–31
INITIATE

default name, 8–32
initiator, C–8
integrating security mechanisms,

6–11
integrity, 8–1, 8–17, C–2

algorithms, C–20
internal names, 8–6, C–8
Internet Drafts

Generic Security Service API
Version 2: C-bindings, 8–4

interprocess communication
security consideration, 2–3

iovec
audit record using, 5–3

K
Kerberos

overview, C–1
Kerberos-specific error codes,

8–48
key

secret, C–3
Key Distribution Center (KDC),

C–2
keyboard

securing, 2–6

Index–4

L
libaud library, 1–3
libraries

as part of the TCB, 1–2
routines, 1–5
routines for ACLs, 7–7
security relevent, 1–3

libsecurity library, 1–3

M
macro

audit tuple parsing, 5–14
major status, 8–44, C–34
matrix.conf file, 6–22
MD2.5, 8–20
mechanism

independence, 8–1
names, 8–6
specifying, 8–31

mechanism-dependent interface,
6–22

messages
confidentiality, C–20
exchange between applications,

C–5
exchange with KDC, C–5
exchanging between applications,

C–20
integrity, C–20
sequencing, 8–18

MIN_SITE_EVENT, 5–7
minor status, 8–46, C–34, C–36
modifying database entries, 3–10
mouse

securing, 2–6
multi-threaded functions, 8–26
mutual authentication, 8–18,

8–26, C–6

N
name type, 8–6, 8–7

Kerberos 5, C–9
names

comparing, 8–30
default, 8–32, C–9

ACCEPT, 8–32
INITIATE, 8–32
principal name, 8–8
service principal name, C–9

exported, 8–6
external, 8–6
human-readable, C–8
internal, 8–6, C–8
mechanism, 8–6
obtaining, C–8
printable, 8–30
used for, 8–6

naming routines, 6–24
null password, 4–3

O
object code, 1–2
object identifier

(See OID)
OID, 8–15, 8–21t

used for, 8–8
OID set

hard-coded, 8–31
one-time passwords, C–31
open file descriptor, 2–5

P
password

coding example, A–1
passwords

protecting, 8–27
PATH variable

defining, 2–4

Index–5

null entry in, 2–4
secure shell scripts, 2–8

pathname
absolute, 2–4
relative, 2–4

permanent file, 2–3
preauthentication, 8–28
Pretty Good Privacy (PGP), 8–19
principal, C–2

service name, C–9
unattended host, C–10

principal database, C–2
principal name, 8–8
private audit tokens, 5–4
process

audit control flag, 5–4
process priority, 3–3
protected subsystem

pseudogroup, 3–7
protecting passwords, 8–27

Q
QOP

Kerberos, 8–20
specifying, 8–31
use default, 8–31
used by, 8–19

quality of protection
(See QOP)

R
read-only file systems, 1–3
realm, C–3
reference, 8–32
refreshing credentials, 8–27
relative pathname, 2–4
replay

detection, 8–17
protection, 8–27

resource management, 8–28
return values, 8–41
RFCs

1510 Kerberos Network
Authentication Service (V5), 8–4

1964 Kerberos Version 5 GSS-API
Mechanism, 8–4

2078 Generic Security Service
Application Program Interface
Version 2, 8–4

S
sample application, C–36
sample programs

building, C–39
displaying names, C–9
importing names, C–9
prerequisites, C–39
running, C–39

Secure Keyboard menu item, 2–6
security

considerations, 8–23
mechanism, 8–2
recommendations, 8–23

security breach
possible program responses to, 2–3

security context
establishing, C–14
optional security, C–14

availability, 8–15
channel bindings, 8–16
confidentiality and integrity,

8–17
message sequencing, 8–18
replay detection, 8–17

terminating, C–28
security-sensitive commands, 6–2
segments, 2–3
semaphores, 2–3
service, C–2, C–3
service key table file, 8–28

default name, C–11
storing credentials, C–11

service principal name, C–9
service ticket, C–4

Index–6

set_auth_parameters() library
routine, 4–2

setluid system call, 4–1
SGID

set group ID programs, 2–1
shell

defining variables, 2–4
path variable syntax, 2–4

shell script, 1–2
security consideration, 2–8

shell variable
specific shell variables, 2–4

SIA
accessing secure information, 6–20
audit logging, 6–11
callbacks, 6–7
changing a user shell, 6–19
changing finger information, 6–19
changing secure information, 6–19
coding example, A–1
debugging, 6–11
group information, 6–21
header files, 6–6
initialization, 6–6
integrating mechanisms, 6–11
interface routines, 6–2
layering, 6–5
login process, 6–18
logs, 6–10
maintaining state, 6–9
matrix.conf file, 6–22
mechanism-dependent interface,

6–22
packaging layered products, 6–21
parameter collection, 6–7, 6–21
password, accessing, 6–20
passwords, changing, 6–19
return values, 6–9, 6–12
rlogind process, 6–18
rshd process, 6–18
security-sensitive commands, 6–2
session authentication, 6–16

session establishment, 6–17
session initialization, 6–16
session launch, 6–18
session processing, 6–12
session release, 6–18
SIAENTITY structure, 6–7
siainit command, 6–6
sialog file, 6–10
vouching, 6–11

signal
secure response to, 2–4

signal routine, 2–5
SIGQUIT signal

security consideration, 2–5
SIGTRAP signal

security consideration, 2–5
site-defined audit events, 5–7
site_events file, 5–7
stack

executable, 2–2
standards information, 8–4
startup script, 4–1
status codes

return values, C–34
sticky bit, 1–3

using to secure temporary files, 2–3
strong symbols, 6–24
SUID

executable stack, 2–2
set user ID programs, 2–1

symbol preemption, 6–24
system call

common return value, 2–2
security consideration for a failed

call, 2–3
system defaults database

description, 3–2
undefined fields, 3–5

T
TCB, 1–2

Index–7

executable file, 1–2
indirect programs, 1–2
security configuration, 1–4
trusted program, 1–2
trusted system directories, 1–5

temporary files, 2–3, 3–2
terminal control database, 3–4,

3–5
threads, 8–24
ticket, C–3

attributes, 8–28
forwardable, 8–28
initial, C–4
lifetime, 8–29, C–33
preauthentication, 8–28
renew time, 8–29
service, C–4

Ticket-Granting Service (TGS),
C–4

ticket-granting ticket (TGT), C–4
fetching, C–12

time delay, 3–4
time synchronization, C–33
tmp file

security consideration, 2–4
token

audit fixed-length, 5–3
audit iovec-type, 5–3
audit pointer-type, 5–3
audit private, 5–4
audit public, 5–2

token cards, 8–5
one-time passwords, C–31

token exchange, 8–15, C–14
transport protocol independence,

8–1
triple DES, C–33
trusted computing base

(See TCB)
trusted program, 1–2
trusted programming techniques,

2–1

tuple
common to audit logs, 5–9
detailed description, 5–10
parsing audit, 5–14

U
umask system call, 7–8

using to secure temporary files, 2–3
undefined field, 3–5
unlink system call

protecting file access, 2–3
user context, C–6
user input

security consideration, 2–6
/usr/tmp file, 2–4

V
v5srvtab file, C–11
vouching, 6–11

W
weak symbols, 6–24
working storage

ACL, 7–2

X
X environment

use of in a secure environment, 2–6
writing secure programs in, 2–6

X window
(See X environment)

XGrabKeyboard() routine, 2–6
XReparentWindow() routine

using in a secure environment, 2–7
XSendEvent() routine, 2–6

Index–8

