
DIGITAL UNIX33333333333333333
Common Desktop Environment: Help
System Author’s and Programmer’s Guide
Order Number: AA-QTLYA-TE

March 1996

Product Version: DIGITAL UNIX Version 4.0 or higher

33333333333333333
Digital Equipment Corporation
Maynard, Massachusetts

Please
Recycle

Copyright 1995 Digital Equipment Corporation
Copyright 1994, 1995 International Business Machines Corp.
Copyright 1994, 1995 Sun Microsystems, Inc.
Copyright 1994, 1995 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright
1993, Interleaf, Inc.

UNIX is a trademark exclusively licensed through X/Open Company, Ltd.

OSF/Motif and Motif are trademarks of Open Software Foundation, Ltd.

X Window System is a trademark of X Consortium, Inc.

PostScript is a trademark of Adobe Systems, Inc., which may be registered in certain jurisdictions.

iii

Contents

Part 1 —Introduction

1. Introducing the Help System . 1

Introduction to the Help System. 1

Developer’s Toolkit. 2

Overview of Online Help . 2

 Help Information Model . 3

Part of the Application. 3

Types of Help . 3

How Users Get Help . 4

Help User Interface . 5

Help Windows . 6

Hyperlinks . 6

Help Navigation . 7

Help Menus . 8

Help Index . 8

iv CDE Help System Author’s and Programmer’s Guide

Printing from Help. 10

Help Topic Organization . 11

Help Topic. 11

Help Volume. 11

Help Family . 12

Help Browser Volume . 12

The Author’s Job . 14

Objectives for Online Help. 14

Know Your Audience . 14

Consider How Your Help Is Accessed 14

Evaluate How to Present Help . 15

Collaborate with the Application Programmer. 15

Author’s Workflow . 16

Write Help Topics with HelpTag 16

Think Structure, Not Format . 18

Create Run-Time Help Files . 19

Review Help as the User Will See It 19

 Programmer’s Job. 19

Consider How Your Help Is Accessed 20

Collaborate with the Help Author. 20

Identify Help Entry Points . 20

Create and Manage Help Dialogs 21

Package and Distribute Help . 21

Part 2 —The Author’s Job

Contents v

2. Organizing and Writing
a Help Volume . 25

Help Volume Components . 25

Home Topic. 26

Topics and Subtopics . 26

Entities. 26

Meta Information. 27

 Glossary. 28

General Markup Guidelines . 28

Markup in Your Source Files. 28

Displaying HelpTag Symbols. 30

A Help Volume at a Glance . 30

Help Source Files. 31

Creating Your volume.htg File . 31

Help Files in File Manager . 33

Writing Your First Help Volume: A Step-by-Step Example . 33

Create the Source Directory . 34

Create the Build Directory . 36

Create the Master HelpTag File 36

Create the helptag.opt File . 37

Create the Run-Time Help Files 37

Display the Help Volume . 38

Creating a Topic Hierarchy . 38

♦ To Create a Home Topic . 41

vi CDE Help System Author’s and Programmer’s Guide

♦ To Add a Topic to the Hierarchy 42

Creating Meta Information Topics . 43

♦ To Create a Meta Information Section 43

Adding a Nonhierarchical Topic . 44

♦ To Add a Nonhierarchical Topic. 45

Accessing Topics . 46

Rules for ID Names . 46

♦ To Add an ID to a Topic . 47

Built-in IDs . 47

♦ To Add an ID to an Element within a Topic 47

Examples . 48

 Using Entities. 48

Rules for Entity Declarations . 49

♦ To Create a Text Entity . 49

♦ To Create a File Entity. 51

3. Writing a Help Topic . 55

Creating Help Topics . 55

Creating Structure within a Topic . 56

♦ To Start a Paragraph . 57

♦ To Enter a List . 58

♦ To Enter a Lablist . 60

♦ To Enter a Lablist with Headings 61

♦ To Provide Subheadings within a Topic. 62

♦ To Show a Computer Listing 63

Contents vii

♦ To Add a Note, Caution, or Warning 65

Entering Inline Elements . 67

♦ To Emphasize a Word or Phrase 67

♦ To Enter a Book Title . 67

♦ To Emphasize Using a Bold Font. 68

♦ To Display a Computer Literal 68

♦ To Display a Variable . 68

Creating Hyperlinks . 69

Using the <xref> Element . 70

♦ To Create a Link Using <xref> 70

Using the Link Element . 71

♦ To Create a Link Using <link> 71

♦ To Create a Definition Link . 73

♦ To Create a Man Page Link . 74

♦ To Create an Application-Defined Link 76

♦ To Link to a Meta Information Topic 76

Execution Link Control . 77

Execution Policy Default Behavior 77

Execution Aliases. 77

Using Execution Aliases in Hyperlinks 79

DtNexecutionPolicy Resource . 80

Displaying Graphics . 81

♦ To Create a Figure . 81

♦ To Display an Inline Graphic. 83

viii CDE Help System Author’s and Programmer’s Guide

♦ To Wrap Text around a Graphic. 84

Including Special Characters . 85

♦ To Include a Special Character 85

Including Comments and Writer’s Memos 86

♦ To Insert a Comment . 87

♦ To Insert a Writer’s Memo . 87

Creating an Index . 88

♦ To Mark an Index Entry . 88

Creating a Glossary. 89

♦ To Mark a Glossary Term. 89

♦ To Define a Term in the Glossary 90

4. Processing and Displaying
a Help Volume . 93

Overview . 93

HelpTag Software . 94

 Viewing Your Volume . 94

Creating Run-Time Help Files . 95

♦ To Create a Run-Time Help Volume 95

HelpTag Output . 96

♦ To Run the dthelptag Command Manually 96

♦ To Review and Correct Parser Errors 97

Viewing a Help Volume . 98

♦ To Display a Help Volume . 99

Adding Your Help to the Browser Volume 100

Contents ix

Browser Volume . 101

Help Family File . 102

♦ To Create a Help Family . 102

♦ To Display the Browser Volume. 104

Printing Help Topics . 105

Testing Your Help . 106

Validating Hyperlinks . 106

Verifying Entry Points . 106

Checking Index Entries . 106

Testing Graphics . 107

Checking for Parser Errors . 107

5. HelpTag Markup Reference. 109

<!-- ... --> . 111

<abbrev> . 112

<abstract> . 113

<<annotation text>> . 115

<book> . 117

<caution> . 118

<chapter>. 119

<computer> . 120

<copyright> . 121

<dterm> . 122

<emph> . 123

<!entity> . 123

x CDE Help System Author’s and Programmer’s Guide

<esc> . 126

<ex> . 126

<figure> . 128

<glossary> . 130

<graphic>. 131

<head> . 133

<helpvolume> . 135

<hometopic> . 136

<idx> . 137

<image> . 139

<item> . 141

<keycap> . 141

<lablist>. 142

<lineno> . 145

<link>. 147

<list> . 150

<location> . 152

<memo> . 154

<metainfo>. 155

<newline> . 156

<note> . 157

<otherfront> . 158

<otherhead>. 159

<p> . 160

Contents xi

<procedure> . 162

<quote> . 163

<rsect> . 164

<s1>…<s9> . 165

<sub> . 167

<super> . 168

<term> . 168

<title> . 170

<user> . 170

<var> . 171

<vex> . 172

<warning> . 174

<xref>. 175

6. Summary of Special Character Entities 179

7. Command Summary . 187

Help System Commands . 187

Processing HelpTag Files (dthelptag) 188

Command Syntax. 188

Command Options . 188

Parser Options . 189

Displaying Help Topics (dthelpview) 190

Command Syntax. 190

Generating a Browser Help Volume (dthelpgen) 191

Command Syntax. 191

xii CDE Help System Author’s and Programmer’s Guide

Options . 192

8. Reading the HelpTag
Document Type Definition . 193

Document Type Definition. 193

Helptag 1.3 DTD . 194

DTD Components . 194

Element Declarations . 194

Element Declaration Keywords. 196

Attribute List Declarations . 197

Formal Markup . 197

Formal Markup Caveats . 198

Explicit Hierarchy of Elements . 198

 File Entity Declarations . 201

 Processing Formal Markup . 202

Part 3 —The Programmer’s Job

9. Creating and Managing
Help Dialog Boxes . 205

Help Dialog Boxes . 205

Standard Xt Paradigm. 206

General Help Dialog . 206

♦ To Create a General Help Dialog. 207

Quick Help Dialog . 209

♦ To Create a Quick Help Dialog 209

Summary of Application Program Interface. 212

10. Responding to Help Requests . 213

Contents xiii

Requesting Help . 213

Context Sensitivity . 214

Entry Points . 214

Displaying Help Topics . 214

♦ To Display a Help Topic . 215

♦ To Display a String of Text. 216

♦ To Display a Text File . 217

♦ To Display a Man Page. 218

Enabling the Help Key (F1) . 219

♦ To Add a Help Callback . 219

Importance of Client Data . 220

Providing a Help Menu . 222

Supporting Item Help Mode . 223

♦ To Add Support for Item Help 224

11. Handling Events in Help Dialogs 227

Supporting Help Dialog Events . 227

Hyperlink Events. 227

When Dialogs Are Dismissed . 228

Quick Help Buttons . 228

Responding to Hyperlink Events . 228

♦ To Provide a Hyperlink Callback. 229

Detecting When Help Dialogs Are Dismissed 230

Using the Application-Configured Button 231

♦ To Enable the Application-Configured Button 231

xiv CDE Help System Author’s and Programmer’s Guide

12. Providing Help on Help . 233

Providing Help on Help . 233

For Application Help . 234

 For Standalone Help. 234

How Help on Help Is Found . 234

Accessing Help on Help in an Application 234

♦ To Set the helpOnHelpVolume Resource 235

♦ To Provide a Using Help Command. 235

♦ To Display Help on Help . 236

Writing Your Own Help on Help Volume 237

Required Entry Points . 238

♦ To Copy the Help4Help Source Files 239

13. Preparing an Installation Package 241

Overview . 241

Delivering Online Help . 242

Creating an Installation Package . 242

Run-Time Help File . 243

Graphics Files . 244

Help Family File . 244

Registering Your Application and Its Help. 245

Standalone Help. 245

What Happens When the Application Is Registered . . . 246

How a Help Volume Is Found . 246

Product Preparation Checklists . 246

Contents xv

For Authors . 246

For Product Integrators. 247

For Programmers. 248

Part 4 —Internationalization

14. Native Language Support . 251

Internationalized Online Help . 251

Internationalization Factors . 252

Character Sets and Multibyte Characters 252

Language and Territory Names. 253

Locale and Character Set . 255

HelpTag Software . 256

DtHelp Message Catalog . 256

LANG Environment Variable . 257

helplang.ent File . 257

Formatting Tables . 258

Font Schemes . 258

Understanding Font Schemes. 259

Font Resources. 259

♦ To Choose a Font Scheme. 262

Creating a Formatting Table . 262

Sample Formatting Table . 263

♦ To Create a Message Catalog. 264

Displaying a Localized Help Volume 264

Preparing Online Help for International Audiences 264

xvi CDE Help System Author’s and Programmer’s Guide

Glossary . 277

Index. 285

CDE Help System Author’s and Programmer’s Guide xvii

Figures

Figure 1-1 Application Help menu . 5

Figure 1-2 General help and quick help window. 6

Figure 1-3 Formats for graphic and text hyperlinks. 7

Figure 1-4 Topic tree in a general help dialog box 7

Figure 1-5 Index search dialog box . 9

Figure 1-6 Index entry prefix notation . 10

Figure 1-7 Print dialog box . 10

Figure 1-8 Hierarchy of topics . 11

Figure 1-9 Browser help volume . 13

Figure 2-1 Help volume topic organization. 26

Figure 2-2 File Manager view of help files . 33

Figure 3-1 Note, warning, and caution help icons 66

Figure 4-1 Browser help volume displaying help families. 101

Figure 4-2 Help print dialog box . 105

Figure 9-1 General help dialog . 207

Figure 9-2 Quick help dialog with four standard buttons 209

xviii

Figure 13-1 Application installation package. 243

Figure 13-2 Relationship of build directories and installation package . 244

Figure 14-1 Sample formatting table . 263

xix

Tables

Table 6-1 Typographical Symbols . 179

Table 6-2 Greek Characters . 180

Table 6-3 Math Symbols. 182

Table 6-4 Arrow Symbols . 183

Table 6-5 Miscellaneous Symbols . 184

Table 14-1 Common Desktop Environment Character Sets 252

Table 14-2 Help System Language and Territory Names 253

xx CDE Help System Author’s and Programmer’s Guide

xxi

Preface

This manual describes how to develop online help for Common Desktop
Environment application software. It covers how to create help topics and
how to integrate online help into an OSF/Motif™ application.

Who Should Use This Book

The audience for this book includes:

• Authors who design, create, and view online help information

• Developers who want to create software applications that provide a fully
integrated help facility

How This Book Is Organized

This book has four parts. Part 1 describes the collaborative role that
authors and developers undertake to design application help. Part 2
provides information for authors organizing and writing online help. Part 3
describes the Help System application programmer’s toolkit. Part 4
contains information for both authors and programmers about preparing
online help for different language environments.

xxii CDE Help System Author’s and Programmer’s Guide

This book includes these chapters:

Part 1— Introduction

Chapter 1, “Introducing the Help System,” provides an overview of
authors’ and developers’ collaborative role in producing online help.

Part 2— The Author’s Job

Chapter 2, “Organizing and Writing a Help Volume,” describes the
components that make up a help volume.

Chapter 3, “Writing a Help Topic,” introduces the Help System markup
language and gives examples of elements used to format different types of
information. It describes how to include graphics and create hyperlinks.

Chapter 4, “Processing and Displaying a Help Volume,” describes
how to process a marked-up file (or files) to generate a single run-time file
for online viewing.

Chapter 5, “HelpTag Markup Reference,” lists in alphabetical order the
HelpTag markup language elements, with an example of each element.

Chapter 6, “Summary of Special Character Entities,” provides a list
of characters and associated entity names that can be used to insert special
characters into help topic text.

Chapter 7, “Command Summary,” summarizes how to process and view
a help volume by entering commands in a terminal emulator window.

Chapter 8, “Reading the HelpTag Document Type Definition,”
describes the HelpTag DTD and how to use it to create fully compliant
Standard Generalized Markup Language (SGML) help files.

Part 3— The Programmer’s Job

Chapter 9, “Creating and Managing Help Dialog Boxes,” introduces
the Help Dialog widgets and explains how to use them.

Chapter 10, “Responding to Help Requests,” explains how an
application provides entry points to access different types of help.

Chapter 11, “Handling Events in Help Dialogs,” shows how an
application can use a callback structure to handle hyperlink events.

Preface xxiii

Chapter 12, “Providing Help on Help,” describes how an application
can provide a help module that tells users how to use the Help System.

Chapter 13, “Preparing an Installation Package,” covers what to
include in an installation package to supply online help with an
application.

Part 4— Internationalization

Chapter 14, “Native Language Support,” identifies language-dependent
files used by the Help System.

Glossary is a list of words and phrases found in this book and their
definitions.

Related Books

Related Common Desktop Environment books that you may find helpful
are:

• CDE Advanced User’s and System Administrator’s Guide
• CDE Internationalization Programmer’s Guide
• CDE Style Guide and Certification Checklist
• CDE User’s Guide

For a technical description of Standard Generalized Markup Language
(SGML), refer to:

• The SGML Handbook by Charles F. Goldfarb, Oxford University Press
(ISBN 0-19-853737-9).

xxiv CDE Help System Author’s and Programmer’s Guide

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this
book.

Table P-1 Typographic Conventions

Typeface
or Symbol Meaning Example

AaBbCc123 The names of commands,
files, and directories;
onscreen computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 Command-line placeholder:
replace with a real name or
value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or
terms, or words to be
emphasized

Read Chapter 6 in the User’s
Guide.
These are called class options.
You must be root to do this.

Part 1 — Introduction

1

Introducing the Help System 1

This chapter introduces the Help System and briefly describes the user
interface. It shows how help information is organized, outlines how to
create and process help modules, and discusses the collaborative role of
authors and developers in the design and creation of application help.

Introduction to the Help System

The Help System provides a complete set of tools to develop online help for
application software. It enables authors to write online help that includes
graphics and text formatting, hyperlinks, and communication with the
application.

Developer’s Toolkit 2

Overview of Online Help 2

Help Information Model 3

Help User Interface 5

Help Topic Organization 11

The Author’s Job 14

Programmer’s Job 19

2 CDE Help System Author’s and Programmer’s Guide

1

The Help System also provides a programmer’s toolkit for integrating
online help into an application. The Help System application program
interface supplies two specialized help dialogs and supporting routines that
are used to display, navigate, search, and print online help modules.

Developer’s Toolkit

The Help System Developer’s Toolkit contains tools to write, process, and
view online help and contains an application programming library.

For Authors
• HelpTag markup language—a set of tags used in text files to mark

organization and content of your online help.

• HelpTag software—a set of software tools for converting the HelpTag
files you write into run-time help files.

• Helpview application—a viewer program for displaying your online help
so you can read and interact with it just as your audience will.

Refer to Chapter 2, “Organizing and Writing a Help Volume,” to learn more
about creating and processing online help.

For Application Developers
• DtHelp programming library—an application program interface (API)

for integrating help windows into your application.

• A sample program—a simple example that shows how to integrate the
Help System into an OSF/Motif application (see page 20).

Chapters 9 through 13 discuss the application programming library.

Overview of Online Help

It’s virtually impossible—and certainly impractical—for anyone to learn
and remember everything there is to know about the computer hardware
and software they use to do their job. Nearly every computer user needs
help at one time or another.

Introducing the Help System 3

1

Online help, unlike a printed manual, has the power of the computer at its
disposal. Most importantly, this power makes it possible to adapt the
information to the user’s current "context." Context-sensitive help provides
just enough help to get the user back on task. In developing your online
help, remember that users need different types of help at different times.
By anticipating users’ questions, you can design your application help to
respond in a logical and intuitive manner.

 Help Information Model

There are two general styles of online help:

• Application help, whose primary role is to be an integrated part of an
OSF/Motif application.

• Standalone help, whose primary role is to provide online access to task,
reference, or tutorial information, independent of any application
software.

If you are developing online help for an application, you may choose to
organize the information exclusively for access within the application. Or,
you may design the information such that it can be browsed without the
application present, as in standalone help.

Part of the Application

Help promotes a high degree of integration between the application and its
online help. From the user’s perspective, the help is part of the application.
This approach minimizes the perceived "distance" away from the
application that the user must travel to get help.

Staying close to the application makes users more comfortable with online
help and gets them back on task as quickly as possible.

Types of Help

Online help can be divided into three general categories:

• Automatic help—The application determines when help is needed and
what to present. This is sometimes called system-initiated help.

4 CDE Help System Author’s and Programmer’s Guide

1

• Semiautomatic help—The user decides when help is needed, but the
system determines what to present. Semiautomatic help is initiated by a
user’s gesture or request for help, such as pressing F1. The system’s
response is called context-sensitive help because it considers the user’s
current context in deciding what information to display.

• Manual help—The user requests specific information, such as from a
Help menu.

How Users Get Help

A user can request help in several ways. Most applications provide a Help
menu and Help key as well as Help buttons in dialog boxes.

Help Key

Within most applications, the primary way for a user to request help is by
pressing the help key. In recent years, the F1 function key has become a
defacto standard help key for many workstation and personal computer
products.

The CDE Style Guide and Certification Checklist recommends the use of F1
as the help key, and the OSF/Motif programmer’s toolkit even provides
some built-in behavior to make it easier to implement the help key in
OSF/Motif applications.

Some computers provide a Help key on the keyboard.

Help Menu

The Help menu is a common way to provide access to help information.
OSF/Motif applications provide a Help menu, which is right-justified in the
menu bar. The CDE Style Guide and Certification Checklist makes
recommendations regarding the commands contained in a Help menu.

Introducing the Help System 5

1

Figure 1-1 Application Help menu

Help Buttons

Many dialog boxes also provide a Help button to get help on the dialog. The
CDE Style Guide and Certification Checklist recommends that choosing the
Help button in a dialog box be equivalent to pressing the Help key while
using that dialog. Exceptions should be made for complex dialogs, where
help on individual controls within the dialog box is appropriate.

Help User Interface

This section is an overview of the graphical interface provided by the Help
System. For a detailed description of Help features and capabilities, refer to
the CDE User’s Guide; or, to view the corresponding online help, you can
open the desktop Front Panel Help Viewer (see “To Display the Browser
Volume” on page 104). Then choose Common Desktop Environment and
Desktop Help System.

While using an application, a user can request help by pressing the Help
key or by selecting the application’s Help menu. In addition, applications
integrating the Help System can be installed so that their respective help
modules are accessible from the desktop Help Viewer. This enables a user
to browse help information supplied by different applications without
having to run each application.

6 CDE Help System Author’s and Programmer’s Guide

1

Help Windows

When a user requests help, the Help System displays a help window. There
are two types of help windows: general help and quick help. A general help
window has a menu bar, topic tree, and a topic display area. The topic tree
lists help topics that a user can choose. The lower portion of the
window—the topic display area—displays the selected topic.

A quick help window is a streamlined help window. It has only a topic
display area and one or more dialog buttons. Quick help windows are often
used for short, self-contained information such as a definition.

Figure 1-2 General help and quick help window

Hyperlinks

Help topics often contain hyperlinks that “jump” to related help
information. Both text and graphics can be used as hyperlinks. Figure 1-3
on page 7 shows formatting styles used to identify hyperlinks.

Solid or dashed underscores identify words or phrases that are hyperlinks.
The solid underscore, or standard hyperlink, is most common. When the
hyperlink is selected, the related topic is displayed. An author designates
whether the hyperlink topic is displayed in the current help window or a

Introducing the Help System 7

1

new window. The dashed underscore represents a definition link. When
selected, the related topic is displayed in a quick help window. A gray, open-
corner box (dashed or solid line) designates a graphic hyperlink.

Figure 1-3 Formats for graphic and text hyperlinks

Help Navigation

The topic tree shown in Figure 1-4 is an outline of topics in the current help
volume. The first topic at the top of the list is the home topic, or beginning
of the help volume. An arrow (⇒) points to the current topic and shows the
user’s location in the help volume.

Figure 1-4 Topic tree in a general help dialog box

To display a help topic, a user selects a title in the topic tree or a hyperlink
within the topic display area. The user can browse the outline of topics by
scrolling the list and then select any topic. Navigation commands enable
the user to return to previous topics or to the beginning of the help volume.

8 CDE Help System Author’s and Programmer’s Guide

1

Help Navigation Buttons

The general help dialog includes three dialog buttons: Backtrack, History,
and Index. These features are also available as menu selections.

• Backtrack — returns to the previous topic. To retrace topics visited,
press Backtrack repeatedly until the desired topic is displayed.

• History — displays the History dialog box. This dialog box lists the help
volumes and topics that have been visited. To return to any topic in the
list, select its title.

• Index — displays the Index Search dialog box. This dialog lists all the
words and phrases that the author has marked as index entries.
Selecting an index entry, then one of the topics where the entry occurs,
displays that topic in the general help dialog.

When using the Help Viewer from the desktop Front Panel, the general
help dialog includes an additional dialog button called Top Level. After
exploring different help volumes, a user can select this button to return to
the top-level of the desktop browser help volume.

Help Menus

A general help dialog menu bar has five menus: File, Edit, Search,
Navigate, and Help. The Search and Navigate menus contain commands for
the index and navigation buttons described previously. In addition, the
Navigate menu has a Home Topic command that returns to the beginning
of the help volume. The remaining menus provide these features:

• File menu — duplicates a help window, prints a help topic or the current
help volume, or closes the help window.

• Edit menu — copies text from the help window to another application.

• Help menu — provides help information that describes features of the
help dialogs and how to use them.

Help Index

A help volume has an index of important words and phrases that the user
can search to find help topics on a subject. A user can browse or search the
index of the current volume, selected volumes, or all help volumes available

Introducing the Help System 9

1

on the system. Regular expressions such as * (asterisk) and ? (question
mark) can be used to search for topics. To view the corresponding help
topic, the user selects the index entry.

Figure 1-5 Index search dialog box

Because the help index can be large even for a single volume, index entries
can be expanded or contracted. A prefix notation, either a + (plus) or -
(minus) sign, is used to show whether an index entry is expanded or
contracted. A minus sign indicates that all of the entries are displayed,
whereas a plus sign indicates that the entry can be expanded to show
additional index entries.

In Figure 1-6 on page 10, the -36 prefix means there are 36 index entries
displayed. The +3 notation identifies contracted entries. Selecting a
contracted entry causes the list to expand, and the + sign changes to a -
sign. The last index entry shown in the figure has been expanded in this
manner.

10 CDE Help System Author’s and Programmer’s Guide

1

Figure 1-6 Index entry prefix notation

Printing from Help

The user can print an individual help topic, a table of contents and index, or
the entire help volume. Printed output is text-only. Printing options, such as
paper size, number of copies, and destination printer, can also be set in the
Print dialog box.

Figure 1-7 Print dialog box

Introducing the Help System 11

1

Help Topic Organization

An author organizes help information into a logical framework. Most times,
but not always, this results in an outline, or a hierarchy of topics. The topic
hierarchy in Figure 1-8 consists of a main level, three sections, and
subordinate topics. Although Help has been optimized for information that
is organized in a hierarchy, you are free to create any kind of organization
you want.

Figure 1-8 Hierarchy of topics

Help Topic

A help topic is a unit of information identified with a unique ID. A set of
tags provided by the Help System is used to mark help topics and create a
structural framework. The Help Viewer, which is part of the Help System,
is able to directly access and display a help topic.

Help Volume

A help volume is a collection of topics that describe an application or a
particular subject. If you are developing application help, typically there’s
one help volume per application. However, for complex applications, or a
collection of related applications, you might develop several help volumes.

12 CDE Help System Author’s and Programmer’s Guide

1

Help Family

Often, software is available as a set of related applications known as a
product family. For example, a set of office productivity applications may
include a word processor, a spreadsheet application, and a drawing
program. Because each application may have its own help volume, it may
be desirable to group the related help volumes in a help family. A help
family can include a single help volume or several volumes.

Assembling your help volumes into a help family is optional. It is required
only if you want your help available for browsing within a help browser
such as the Help Viewer in the Front Panel.

Refer to “To Create a Help Family” on page 102 for a description of help
family files and how they are used.

Help Browser Volume

The desktop provides a special help volume called the browser volume that
lists help installed on your system. Clicking the Help Viewer control in the
Front Panel displays the browser volume shown in Figure 1-9 on page 13.

It lists help families (underlined titles) and any volumes that are members
of the help family.

Introducing the Help System 13

1

Figure 1-9 Browser help volume

The browser volume allows access to application-specific help without using
the application. Or, if you are writing standalone help, this is the only way
for users to get to your help. Even if you have only a single help volume, it
must belong to a help family to be browsable using the Help Viewer.

“Adding Your Help to the Browser Volume” on page 100 describes how to
create a family file and what you need to do to make your help volume
accessible from the browser volume.

14 CDE Help System Author’s and Programmer’s Guide

1

The Author’s Job

Writing online help differs from writing printed manuals, so it is important
to understand who you are writing for, how the information is accessed, and
how the information fits into an application.

Objectives for Online Help

The two most important objectives for designing quality online help are:

• Get the user back on task as quickly and successfully as possible.

• Educate the user to prevent future need for assistance.

Applying these objectives will help you make decisions regarding what type
of help is best and what amount of detail is needed.

Know Your Audience

Just as with any writing, to do a good job, you must know your audience
and understand what they require from the information you are writing.
Most importantly, with online help, you need to know the tasks they are
attempting and the problems they may encounter.

Consider How Your Help Is Accessed

It is just as important to understand how users will access your help as it
is to identify your audience correctly.

Application Help

If you are writing help for an application, you need to decide which topics
are browsable and which topics are available from the application as
context-sensitive help. A topic is browsable if you can navigate to it using
the topic tree or hyperlinks. Topics designed exclusively for context-
sensitive help might not be browsable because the only way to display the
topic may be from within a particular context in the application.

Introducing the Help System 15

1

You must also decide if you want your application’s help volume to be
registered. Registered help volumes can be displayed by other applications
(such as the Help Viewer), making the information more widely accessible.
If another help volume contains hyperlinks to topics in your help volume,
your help volume must be registered.

See “Registering Your Application and Its Help” on page 245 for
information about installing and registering your application.

Standalone Help Volumes

If you are writing a standalone help volume (a help volume not associated
with an application), you may choose to do things differently.

First, you must provide a path for users to get to all the topics you’ve
written. That is, every topic must be browsable through at least one
hyperlink. Also, because there’s no application associated with your help,
you must rely on a help viewer (such as Help Viewer) to display your help
volume.

Evaluate How to Present Help

An application can incorporate different types of help. It is important to
evaluate what kind of help is best suited for your application. For example,
the same help information may be presented in a variety of ways. Some
choices include key features, a tutorial, examples, task instructions,
shortcuts, troubleshooting, reference information, glossary of terms, or
referral to hard copy or other online documentation. A help volume often
combines different presentations.

Collaborate with the Application Programmer

If you are writing application help, you should work closely with the
application programmer. The degree to which the Help System is integrated
into an application is a design decision that you make collectively.

If an application and its help have very loose ties, there may be only a
handful of topics that the application is able to display directly. This is
easier to implement.

16 CDE Help System Author’s and Programmer’s Guide

1

In contrast, the application could provide specific help for nearly every
situation in the application. This requires more work, but benefits the user
if done well.

It’s up to you and your project team to determine the right level of help
integration for your project.

Author’s Workflow

After designing your help, you create and process help topics to produce a
help volume. Your focus as an author is on these key tasks:

• Write help topics
• Create run-time help files
• View the help volume

Write Help Topics with HelpTag

Online help is written in ordinary text files. You use special codes, or tags,
to markup elements within the information. The tags form a markup
language called HelpTag.

The HelpTag markup language defines a hierarchy of elements that define
high-level elements, such as chapters, sections, and subsections, and low-
level elements such as paragraphs, lists, and emphasized words.

“General Markup Guidelines” on page 28 gives a brief description of using
markup. For a detailed description of each element see “HelpTag Markup
Reference” on page 109.

Shorthand Markup

The tag set can be used in two different ways to produce run-time help
files: shorthand markup or formal markup. The first approach, called
shorthand markup, is optimized for authors using a standard text editor to
“hand-tag” information. That is, the author types the tags in addition to the
actual help topic text. To minimize the impact of hand-tagging, shorthand
markup incorporates several shortcuts. First, it reduces the number of
required start and end tags. It also offers simple character combinations for
frequently used markup and stylistic changes.

Introducing the Help System 17

1

Formal Markup

Formal markup is a Standard Generalized Markup Language (SGML) that
an author can use to create fully compliant SGML help topics. It requires
start and end tags for all elements. Additionally, the structure of each
element must be explicitly tagged. Therefore, the number of tags increases
significantly using formal markup. Although an author can enter formal
markup using a standard editor, a structured editor is recommended.

Structured Editors
New tools, called structured editors, are becoming available in response to
the need to create SGML markup efficiently. Typically, a structured editor
provides a context-sensitive menu. That is, the elements that appear in the
menu dynamically change based on the location of the cursor in the
document.

For example, if you are entering a list, then the menu contains only
elements that are valid within the context of a list element. This built-in
“intelligence” allows an author to create markup easily.

When an author chooses an element, such as section, head, or list, the
editor generates the corresponding start, end, and any intermediate
structural tags. For example, when an author selects a chapter element,
the editor automatically inserts the intermediate tags required by this
element. The author simply types the chapter title. Viewing the generated
tags is optional; authors can suppress the tags.

Note – Either markup approach— shorthand or formal— produces
identical online information when compiled and displayed. Choosing which
markup approach to use depends on the requirements for your help
information and your available authoring tools.

Using Formal Markup
If you intend to use formal markup, first read the chapters in Part 2 - The
Author’s Job to become familiar with the set of HelpTag elements. Although
shorthand and formal markup share the same tag set, there are several
important differences.

18 CDE Help System Author’s and Programmer’s Guide

1

Chapter 8, “Reading the HelpTag Document Type Definition,” explains key
components of the Document Type Definition (DTD) and shows you how to
create formal markup. The complete HelpTag Document Type Definition
appears in Appendix A.

Note – The Developer’s Kit includes the HelpTag Document Type
Definition. The file is located in the /usr/dt/dthelp/dthelptag/dtd
directory and is named helptag.dtd .

See Also

• Chapters 2, 3, and 4 introduce and explain how to use shorthand
markup.

• Chapter 5 gives a detailed description of each tag listed in alphabetical
order.

• Chapter 8, “Reading the HelpTag Document Type Definition,” describes
formal markup.

• dthelptagdtd(4) man page

Think Structure, Not Format

If you are familiar with other publishing systems, you may be accustomed
to formatting information as you like to see it. Authoring with HelpTag
requires you to think about structure and content, not format.

As you write, you use tags to mark certain types of information. When you
do so, you are identifying what the information is, but not how it should be
formatted.

For instance, to refer to a book title, include markup like this:

<book>System Administrator’s Reference Guide</book>

This abstraction separates structure and content from format, which allows
the same information to be used by other systems and perhaps formatted
differently. For instance, Help displays book titles using an italic font.
However, on another system an italic font may not be available, so the
formatter could decide that book titles are underlined.

Introducing the Help System 19

1

Create Run-Time Help Files

The text files you write must be "compiled" using the HelpTag software to
create run-time help files. It’s the run-time help files that are accessed
when the user requests help. Run-time files use the Semantic Delivery
Language (SDL) format. This delivery language is based on an SGML
document type definition designed expressly for online information delivery.

The Help System defines desktop actions and data types for help-specific
files. This lets you easily create a run-time file from your desktop by
selecting the icon of a help source file and choosing a menu command that
processes the file. A .sdl extension is used to identify run-time help files.
If any errors occurred during processing, they are reported in an error file
(volume.err).

Refer to “Creating Run-Time Help Files” on page 95 for complete
instructions to create a run-time help file. For general information about
desktop actions and data types, refer to the CDE Advanced User’s and
System Administrator’s Guide.

Review Help as the User Will See It

During the authoring process, you will need to display your help so you can
interact with it just as your audience will. To display a help volume from
the desktop, double-click the file icon of the run-time help volume
(volume.sdl). Or, you can also display any help topic using the dthelpview
command. Chapter 4, “Processing and Displaying a Help Volume,” describes
both methods.

If you are writing application help, and the Help System has been
integrated into your application, you can view your help by running the
application and making help requests just as the user will.

 Programmer’s Job

As a programmer, you add code into your application so that when a user
requests context-sensitive help, the application displays help information
that is relevant to what the application is doing at that time.

20 CDE Help System Author’s and Programmer’s Guide

1

Note – The/usr/dt/share/examples/dthelp directory contains source
code for a sample program called dthelpdemo . It demonstrates how to add
help dialogs to an OSF/Motif application.

Consider How Your Help Is Accessed

Providing useful information to the user requires considering the following:

• What confusing situation commonly arise? Specific help in these
situations can save users lots of time.

• Why is the user asking for help now instead of earlier or later? If there
are several steps in a process and the user is not at the first step, branch
to information that is specific to the step being done. This is more helpful
than displaying the same information at each step. If the user is at the
first step, make available both detailed information about the first step
and an overview of all the steps.

• Is the user requesting context-specific help or just browsing the help
information? If it is context-specific, supply information that’s relevant to
the task now being done.

Collaborate with the Help Author

Close collaboration with the online help author is needed because the
author needs to know how each context-specific topic is reached and the
programmer needs to know what is explained in each context-specific topic.
Without such coordination, the user may see irrelevant, ambiguous, or
misleading information.

Collaboration makes the best use of the programmer’s understanding of the
application and the author’s understanding of how to best communicate
relevant information to the user.

Identify Help Entry Points

An application provides online help by establishing help entry points. Entry
points are defined in the application and associated with specific help
topics. Each of the ways that a user can request help—the Help key, button,
or menu—represent entry points. For example, consider an application with

Introducing the Help System 21

1

a Print dialog box that has a Help button. The author writes a help topic
that describes the contents of the dialog box and supplies you with the ID
of the topic. You can then associate the ID of the help topic with the Help
button using a callback routine.

Create and Manage Help Dialogs

The Help System application program interface is designed especially for
use with OSF/Motif applications. Specifically, Help extends the OSF/Motif
widget set by providing two new widget classes (plus convenience functions
to manipulate them):

• General help dialog, which provides a help window that includes a menu
bar and a topic tree, in addition to a help topic display area.

• Quick help dialog, which provides a simple help window with a topic
display area and a few dialog buttons.

You can use either or both of these types of help windows within your
application. Once the application is compiled (with the Help library), the
help windows become part of the application.

Chapter 9, “Creating and Managing Help Dialog Boxes,” describes the
general help and quick help dialog boxes.

Package and Distribute Help

Your product package includes both the run-time help file (volume.sdl) and
its graphics files. Additionally, you can provide a help family file that
enables your volume to be viewed using the Front Panel Help Viewer.

If the help volume uses execution links, you should collaborate with the
author to include the appropriate execution link resources in your
application’s application defaults file. Chapter 13, “Preparing an
Installation Package,” discusses which help files are delivered with your
application.

22 CDE Help System Author’s and Programmer’s Guide

1

Part 2 — The Author’s Job

25

Organizing and Writing
a Help Volume 2

This chapter describes the organization and components of a help source
file. It also provides a step-by-step example that shows how to process a
help source file to create an online help volume.

Help Volume Components

A help volume has six major types of components: the home topic, topics,
subtopics, entity declarations, meta information, and the glossary.

Help Volume Components 25

General Markup Guidelines 28

A Help Volume at a Glance 30

Help Source Files 31

Help Files in File Manager 33

Writing Your First Help Volume: A Step-by-Step Example 33

Creating a Topic Hierarchy 38

Accessing Topics 46

Using Entities 48

26 CDE Help System Author’s and Programmer’s Guide

2

Home Topic

The home topic is the top-level topic in the topic hierarchy. It is the first
topic, or beginning of the help volume. All other topics are subtopics. Your
topic hierarchy may be several levels deep. However, to help prevent users
from getting lost, you should keep your hierarchy as shallow as possible.

Topics and Subtopics

Topics and subtopics form a hierarchy below the home topic. Typically, the
first level of topics following the hometopic are divided into chapters, using
the <chapter> element. Within a chapter, topics are organized into
sections. Subtopics of an <s1> section are entered with <s2> , subtopics of
<s2> entered as <s3> , and so on.

Either element, chapter or section, can follow the home topic. There is no
visible difference to the user if you start your hierarchy with <chapter> or
<s1> . Figure 2-1 shows a simple hierarchy that includes three chapters.
Each chapter contains several first-level sections. The third chapter adds
two second-level sections.

Figure 2-1 Help volume topic organization

Entities

An author-defined entity can represent a string of characters or a file name.
An entity declaration defines the entity name and the string or file it
represents.

Organizing and Writing a Help Volume 27

2

Entities are useful for:

• Referencing a common string of text. This is useful if there is some
likelihood that the text may change or you simply don’t want to type it
repeatedly. Each place you want the text inserted, you reference the
entity name.

• Referencing an external file. Entities are required for accessing graphics
files. The <figure> and <graphic> elements have a required
parameter that specifies an entity name, which refers to a graphic image
file.

All entity declarations must be entered before any other markup in your
help volume. To include an entity that you have defined, you use an entity
reference. Entity references can be used anywhere within your help volume.
When you process your help volume with the HelpTag software, each entity
reference is replaced with the text or file that the entity represents. “Using
Entities” on page 48 describes how to define and use entities.

Meta Information

Meta information is information about your information. It includes
information such as the volume’s title, copyright notice, and abstract. The
abstract is a brief description of the volume’s contents.

The Help System uses the meta information to display the title of a help
volume and its copyright information. The abstract description is displayed
by the desktop Help Viewer in the Front Panel. Other applications capable
of displaying help volumes could also make use of this information.

Meta information can also include help topics that are not part of the
normal topic hierarchy. Nonhierarchical topics placed in the meta
information section are accessed with links.

“Creating Meta Information Topics” on page 43 shows you how to create a
meta information section.

28 CDE Help System Author’s and Programmer’s Guide

2

 Glossary

The glossary includes definitions for terms that you’ve used throughout
your help volume. If a term is entered using the <term> element, then it
automatically becomes a definition link that, when selected, displays the
glossary entry for that term.

General Markup Guidelines

Online help is written in ordinary text files. You use special codes, or tags,
to markup elements within the information. The tags form a markup
language called HelpTag. If a standard text editor is used, HelpTag markup
is typed. Or, if the editor provides a macro package, tags can be stored and
inserted using command keys. HelpTag markup can also be generated
using a structured editor (see “Formal Markup” on page 17).

The HelpTag markup language defines a hierarchy of elements that define
high-level elements, such as chapters, sections, and subsections, and low-
level elements, such as paragraphs, lists, and emphasized words.

Markup in Your Source Files

The markup for most elements consists of a start tag and an end tag. Start
tags are entered with the element name between angle brackets (< and >).
End tags are similar, but the element name is preceded by a \ (backslash).

<element> ... text ... <\ element>

For example, to mark the start and end of a book title you use markup like
this:

<book>Geographical Survey of Northern Wisconsin<\book>

Where <book> is the start tag, and <\book> is the end tag.

Shorthand Markup

Shorthand markup is a streamlined tag set designed for authors who are
using a standard text editor to “hand-tag” information. Shorthand markup
provides several shortcuts. First, it minimizes the use of end tags. For
example, you do not need to enter end tags for chapters, sections, or

Organizing and Writing a Help Volume 29

2

paragraphs. In addition, when possible, intermediate tags are
automatically assumed. For instance, the chapter and section elements
allow you to omit a <head> tag; you just type your headline.

Shorthand markup also simplifies the markup for many inline elements as
well as stylistic changes. Rather than entering a begin and end tag, vertical
bars are used to delimit the text like this:

<element| ... text ... |

For example, here’s the short form of the <book> element shown
previously:

<book| Geographical Survey of Northern Wisconsin|

If the element has parameters, they’re entered before the first vertical bar
like this:

<element parameters| ... text ... |

Some elements support an even shorter form where the start and end tags
are replaced with a special two-character shortcut. For example, the
<emph> (emphasis) element, whose normal syntax looks like this:

<emph> ... text ... <\emph>

can be entered using this shorthand form:

!! ... text ... !!

Chapter 3, “Writing a Help Topic,” introduces shorthand markup and gives
examples of the most frequently used elements. Chapter 5, “HelpTag
Markup Reference,” provides an alphabetical list of elements and describes
each element in detail.

Formal Markup

If you intend to use formal markup, you still need to become familiar with
the information covered in Part 2 of this book. Then refer to Chapter 8,
“Reading the HelpTag Document Type Definition,” for a description of
formal markup.

30 CDE Help System Author’s and Programmer’s Guide

2

Displaying HelpTag Symbols

At times, you may need to use the < (left angle bracket), the \ (backslash),
or the & (ampersand) as text characters. To do so, precede each with an
ampersand (&<, &\ , or &&).

A Help Volume at a Glance

The following markup illustrates important elements of a help volume and
the tags used to enter them. This example uses shorthand markup, which
omits intermediate SGML structural tags and minimizes the number of
required end tags. Indentation is used to highlight the hierarchical
relationship of the elements; you don’t need to indent the help files that you
write.

Organizing and Writing a Help Volume 31

2

All entity declarations go here (before any other markup).
<helpvolume>
 <metainfo>
 <title> Volume Title
 <copyright>

Copyright topic goes here ...
 <abstract>

The abstract describing your help volume goes here.
 There may be other meta information topics.
 .
 .
 .
 <\metainfo>

 <hometopic> Home Topic Title
Help volume introduction goes here ...

 <s1> Title of First Topic Goes Here
Body of the first topic goes here ...

 <s1> Title of Second Topic
Body of the second topic goes here ...

 <s2> Title of Suptopic
Body of the subtopic goes here ...

 .
 .
 .

 <glossary>
The body of the glossary, which contains term definitions, goes here ...

<\helpvolume>

Help Source Files

Online help is written in ordinary text files. You process, or compile, these
files with the HelpTag software to create run-time help files that can be
read by the Help System.

Creating Your volume.htg File

HelpTag expects a primary control file named volume.htg or volume.ctg ,
where volume is a name you choose. File extensions are used to distinguish
whether the control file references shorthand (.htg) or formal (.ctg)
markup.

32 CDE Help System Author’s and Programmer’s Guide

2

Be sure your volume name is unique and meaningful. If your volume name
is too general, it may conflict with another volume that someone else has
created. If you are writing application help, one recommended practice is to
use the application’s class name. For example, the class name for the Icon
Editor is Dticon, so its help volume is named Dticon.htg .

Multiple Source Files

The volume.htg file contains entity declarations and entity references to
files that make up the help volume. Although HelpTag expects a single
volume.htg file as input, you can separate your work into multiple source
files. Additional files are sourced into the volume.htg file using file entities.
A file entity is like a pointer to another file. That file, in effect, is inserted
wherever the entity’s name appears in the volume.htg file. The referenced
files can also contain entity references to yet other files. (Entities can also
be used to reference text strings.)

Example

Suppose a help volume has six chapters and each chapter is a separate file.
The files are: HomeTopic, Metainfo, TOC, Tasks, Reference, and Glossary.
The volume.htg file for the help volume includes file entities for each of
the six files and a list of entity references that instruct the HelpTag
software to process the files.

<!entity HomeTopic FILE “HomeTopic”>
<!entity MetaInformation FILE “Metainfo”>
<!entity TableOfContents FILE “TOC”>
<!entity Tasks FILE “Tasks”>
<!entity Reference FILE “Reference”>
<!entity Glossary FILE “Glossary”>

&HomeTopic;
&MetaInformation;
&TableOfContents;
&Tasks;
&Reference;
&Glossary;

The details of running HelpTag are covered in “To Create a Run-Time Help
Volume” on page 95.

Organizing and Writing a Help Volume 33

2

Help Files in File Manager

File Manager represents help files as file icons with a question mark. In
Figure 2-2 on page 33, there are two source files (.ctg and.htg extensions)
and one run-time file (.sdl extension). If you double-click a markup file,
your standard editor opens the file for editing. Double-clicking a .sdl file
displays the run-time file using the Help Viewer.

Figure 2-2 File Manager view of help files

To create a run-time help volume, first select the .htg or .ctg file icon in
File Manager. Then, choose Compile from the File Manager Selected menu.

See Also

• dthelpaction(4) man page

Writing Your First Help Volume: A Step-by-Step Example

Typically you organize your help files in a help directory. This step-by-step
example demonstrates how to create and view a standalone help volume.
(As a standalone volume, it does not involve interaction with an
application.)

To create and process a help volume, you follow these steps:

1. Create the source directory for help files.

2. Create the build directory.

34 CDE Help System Author’s and Programmer’s Guide

2

3. Create the master HelpTag file.

4. Create the helptag.opt file.

5. Create the run-time help files.

6. Display the help volume.

Each task is described in the section that follows. The markup language
used in the text files is introduced later in this chapter. HelpTag markup is
described more fully in Chapter 3, “Writing a Help Topic,” and Chapter 5,
“HelpTag Markup Reference.”

Create the Source Directory

1. Create a directory named helpfiles where you will create and process
your help files.

2. Create a text file named Commands in the directory just created.

For this example, all the information is put into a single file. Typically,
you will use multiple files to fully explain the system or application you
are writing help for.

The Commands file contains text and element tags. The element tags
within the < and > (angle brackets) indicate the structure of the
information.

3. Type the following markup text in the Commands file.

 <hometopic> Command Summary
 <idx|commands|

Your &product; is capable of the following operations:

<list bullet>
 * <xref ChannelChange>
 * <xref VolumeUp>
 * <xref VolumeDown>
 * <xref VolumeMute>
<\list>

Choose one of the hyperlinks (underlined phrases)
to find out how to perform that operation.

Organizing and Writing a Help Volume 35

2

<s1 id=ChannelChange> Changing the Channel
 <idx|channel, changing|
Speak the command:
<ex> channel<\ex>
followed by a number from one to ninety nine.

<s1 id=VolumeUp> Turning Up the Volume
 <idx|volume, changing|
Speak the command:
<ex> volume up<\ex>

For additional volume, speak the command:
<ex> more<\ex>

(See also <xref VolumeDown>)

<s1 id=VolumeDown> Turning Down the Volume
 <idx|volume, changing|
Speak the command:
<ex> volume down<\ex>

To further reduce the volume, speak the command:
<ex> more<\ex>

(See also <xref VolumeUp> and <xref VolumeMute>)

<s1 id=VolumeMute> Turning Off the Sound
 <idx|volume, changing|
 <idx|sound, on/off|
Speak the command:
<ex> sound off<\ex>

To restore the sound, speak the command:
<ex> sound on<\ex>

(See also <xref VolumeDown> and <xref VolumeUp>)

4. Create a text file that gives the information a title, provides copyright
information, and provides other information about the online help.

In this example, the following text is put into a file called Metainfo in
the same directory as the Commands file.

<metainfo>
 <title> Using the &product;
 <copyright>

36 CDE Help System Author’s and Programmer’s Guide

2

 © 1995 Voice Activation Company. All rights reserved.
 <abstract> Help for Using the &product;.
<\metainfo>

Create the Build Directory

Create a subdirectory named build in the helpfiles directory.

Create the Master HelpTag File

1. In the build subdirectory, create a text file whose name is of the form
volume.htg . In this example, the file is named voiceact.htg .

2. In the .htg file, define entities that associate the names of the Commands
and Metainfo files with entity names. Also, define any entities that are
used (either directly or indirectly) in the Commands and Metainfo files.
Finally, refer to the Commands and Metainfo files by their entity names.

In this example, the contents of the voiceact.htg file look like this. The
text within the <!-- …--> elements are comments, which are ignored.

<!-- Declare an entity for each of the source text files. -->
<!entity MetaInformation FILE "Metainfo">
<!entity Commands FILE "Commands">

<!-- Define an entity that names the product and includes
 the trademark symbol (&tm;). -->

<!entity product "VoAc&tm; Voice-Activated Remote Control">

<!-- Include the text files. -->

&MetaInformation;
&Commands;

Organizing and Writing a Help Volume 37

2

Create the helptag.opt File

1. In the build subdirectory, create a file named helptag.opt and put the
following text into it. This information selects HelpTag options and
indicates where to search for any files defined in FILE entity
declarations.

onerror=go
memo
search=./
search=../

The onerror=go option instructs the HelpTag software to continue
processing input files even if an error occurred. See “Parser Options” on
page 189 for an explanation of parser options. For a complete list and
description of parser options, refer to the dthelptag(1) man page.

2. Verify that the /usr/dt/bin directory is in your search path by typing
this command in a terminal window:

echo $PATH

If the directory is not in your path, add it to your PATH environment
variable. If you’re not sure how to do this, refer to your system
documentation or ask your system administrator.

Create the Run-Time Help Files

1. Open File Manager and change to the build subdirectory. Select the
voiceact.htg file icon and choose Compile from the Selected menu in
File Manager.

This executes the HelpTag software which creates a run-time version of
your online help volume (voiceact.sdl). Status and error messages
are placed in a new file, whose name is of the form volume.err .

2. Open the voiceact.err file to check that your file processed without
errors. If errors occurred, fix them by editing or renaming the text files
as needed.

Note – You can run HelpTag manually in a terminal window.

To do so, execute the following command:

38 CDE Help System Author’s and Programmer’s Guide

2

dthelptag -verbose voiceact.htg

The -verbose option tells HelpTag to display its progress on your screen.

Display the Help Volume

From the build subdirectory, double-click the voiceact.sdl file icon.

This displays the help volume using the desktop Help Viewer. You can now
scroll the information and jump to related information by choosing
hyperlinks.

Note – You can run the Help Viewer manually in a terminal window.

To do so, execute the following command. It displays the new help volume.

dthelpview -h voiceact.sdl

See Also

• Chapter 4, “Processing and Displaying a Help Volume,” on page 93
• Chapter 7, “Command Summary,” on page 187

Creating a Topic Hierarchy

The topic hierarchy within your help volume begins with the home topic.
Each help volume must have one home topic. The first level of subtopics
below the home topic may be entered with <chapter> or <s1> .

Additional levels of subtopics are entered with <s2> , <s3> , and so on. The
HelpTag markup language supports nine topic levels, <s1> to <s9> .
However, information more than three or four levels deep often leads many
readers to feel lost.

When a help volume is displayed, the help window displays a list of topics
in its topic tree. Any topic entered with a <chapter> or <s1...s9> tag
automatically appears in the topic tree. This provides an easy way to
browse and view topics.

Organizing and Writing a Help Volume 39

2

To enable users to display other related information from within a topic,
you create hyperlinks. To do so, you assign a unique ID to each destination
topic. Hyperlinks make it possible to reference a specific ID anywhere in
your help information.

40 CDE Help System Author’s and Programmer’s Guide

2

Example

Suppose you want to create a hierarchy to match this simple outline:

Tutorial for New Users
Module 1: Getting Started
Module 2: Creating Your First Report
Module 3: Printing the Report
Module 4: Saving Your Work and Quitting

Task Reference
Starting and Stopping

To Start the Program
To Quit the Program

Creating Reports
To Create a Detailed Report
To Create a Summary Report

Concepts for Advanced Users
Using Report Hot Links
Sharing Reports within a Workgroup

Reference
Command Summary
Report Attributes Summary

Then the general outline of your help volume would look like this. (The
body of each topic and IDs for the topics are not shown.)
<hometopic> Welcome to Report Master
 <chapter> Tutorial for New Users
 <s1> Module 1: Getting Started
 <s1> Module 2: Creating Your First Report
 <s1> Module 3: Printing the Report
 <s1> Module 4: Saving Your Work and Quitting
 <chapter> Task Reference
 <s1> Starting and Stopping
 <s2> To Start the Program
 <s2> To Quit the Program
 <s1> Creating Reports
 <s2> To Create a Detailed report
 <s2> To Create a Summary report
 <chapter> Concepts for Advanced Users
 <s1> Using Report Hot Links
 <s1> Sharing Reports within a Workgroup

Organizing and Writing a Help Volume 41

2

 <chapter> Reference
 <s1> Command Summary
 <s1> Report Attributes Summary

Indentation is used here to make it easier to see the structure of the help
volume. You do not have to indent your files.

See Also

• “Accessing Topics” on page 46 describes assigning IDs to topics
• “Creating Hyperlinks” on page 69 describes how to create hyperlinks

♦ To Create a Home Topic

◊ Use the <hometopic> element as follows:

<hometopic> Title
Body of topic.

If you include a meta information section (<metainfo>), the home topic
must follow it.

Examples

Here’s a home topic with a title and a single sentence as its body:

<hometopic> Welcome to My Application

Congratulations, you’ve entered
the online help for My Application.
Here’s a sample home topic that includes hyperlinks to its four
subtopics:
<hometopic> Welcome to Report Master

Welcome to the online help for Report Master.
Choose one of the following hyperlinks:

<list bullet>
 * <xref Tutorial>
 * <xref Tasks>
 * <xref Concepts>
 * <xref Reference>
<\list>
If you need help, press F1.

42 CDE Help System Author’s and Programmer’s Guide

2

The preceding markup produces this output:

♦ To Add a Topic to the Hierarchy

◊ To add another topic at the same level, repeat the same element.

Or, to add a subtopic (a topic one level deeper in the hierarchy), use the
element that is one level deeper than the preceding topic.

Example

If the current topic is an <s1> , enter a subtopic using <s2> .

<s1 id=getting-started> Getting Started

<s2 id=starting-the-program> Starting the Program
Here’s the body of the first subtopic.

<s2 id=stopping-the-program> Stopping the Program
Here’s the body of the second subtopic.

The second <s2> is also a subtopic of the <s1> .

Note – Sometimes a parent-child-sibling metaphor is used to describe the
relationships between topics in a hierarchy. In the preceding example, the
<s1> topic is the "parent" of both <s2> s (the "children" topics). The two
<s2> s are "siblings" of one another. All three topics are "descendents" of
the home topic.

Organizing and Writing a Help Volume 43

2

Creating Meta Information Topics

The meta information section is primarily intended for information about
information. Similar to providing a copyright page in a book, this section
includes information such as the volume title, copyright, trademark, and
other notices.

A secondary use of the meta information section is to enter help topics that
are not part of the normal topic hierarchy. These nonhierarchical topics are
useful for creating custom definition links that pop-up a topic in a quick
help dialog box.

♦ To Create a Meta Information Section

1. Enter the <metainfo> tag to start the section, and enter the required
subelements <title> and <copyright> as shown:

<metainfo>

<title> Volume Title Here

<copyright>
Body of copyright topic here.
.
.
.

2. Enter any of the optional elements as shown:

<abstract>
Body of the abstract topic here.
Do not use any HelpTag markup within the abstract!

3. Enter the <\metainfo> end tag to end the section.

.

.

.
<\metainfo>

Note – Some elements in the meta information section require a <head>
tag before the topic heading.

44 CDE Help System Author’s and Programmer’s Guide

2

The <abstract> section is recommended. Applications that access help
volumes can use this information to present a brief description of the
volume. Because the abstract might be displayed in plain text windows
(that do not support multiple fonts and graphic formatting), avoid including
any HelpTag markup in the abstract.

Example

Here’s a typical meta information section:

<metainfo>
 <title> Report Master, Version 1.0

 <copyright>
 <otherhead> Report Master

 <image>
 Version 1.0
 © Copyright Reports Incorporated 1995
 All rights reserved.
 <\image>

 <abstract>
 This is the online help for the mythical Report Master
 application. This help includes a self-guided tutorial,
 a summary of common tasks, general concepts, and quick
 reference summaries.

<\metainfo>

The <image> element is used to preserve the author’s line breaks. The
© entity inserts the copyright symbol.

See Also

• “To Link to a Meta Information Topic” on page 76

Adding a Nonhierarchical Topic

Topics entered with a <chapter> or <s1...s9> element tag automatically
appear in the topic tree. When a title is selected in the topic tree, the
corresponding help topic is displayed in a general help dialog box. However,

Organizing and Writing a Help Volume 45

2

sometimes you may want to create and display a topic independent of the
topic hierarchy you have created. For example, you might want to display a
topic in a separate, quick help window.

♦ To Add a Nonhierarchical Topic

◊ Add the topic just before the end of your meta information section using the
<otherfront> element as follows:

<otherfront id= id><head> Topic Title
Body of topic.

The ID parameter and <head> tag are required.

You can add as many <otherfront> topics as you want. They may be in
any order, but they must be the last topics in the <metainfo> …
<\metainfo> section.

Example

This partial help volume shows how a general topic is added to the meta
information section. The topic’s title is "Pop-up!" and its ID is my-popup-
topic .

<metainfo>

 <title> My Help
 <copyright>
 This is My Help, Version 1.0. © 1995.
 .
 .
 .
 <otherfront id=my-popup-topic> <head> Pop-up!

 This is a pop-up topic, displayed via a definition link
 somewhere in my help volume.
<\metainfo>

<hometopic> Welcome to My Help
 .
 .
 .

46 CDE Help System Author’s and Programmer’s Guide

2

Presumably, within some other topic in the help volume, there’s a definition
link to display this topic.

The link might look like this:

Here’s a sample of a pop-up <link my-popup-topic Definition>
definition link<\link>.

The words "definition link" become the active hyperlink and will be
displayed with a dashed underline. Selecting the link displays the "Pop-up!"
topic in a quick help dialog box.

See Also

• “Creating Hyperlinks” on page 69
• “<otherfront>” on page 158

Accessing Topics

Many elements in the HelpTag language support an ID attribute. An ID is
a unique name used internally to identify topics and elements within
topics. An ID is defined only once, but multiple hyperlinks and cross-
references can refer to the same ID. IDs are not seen by the user.

If you are writing help for an application, IDs are also used by the
application to identify particular topics to display when the user requests
help. For example, you might write several topics that describe an
application’s menus. The IDs that you assign to the topics are used by the
application developer. By defining identical IDs within the application code,
the developer can integrate specific topics. This allows the application to
access and display the correct topic when help is requested for a particular
menu.

Rules for ID Names
• ID strings may contain letters (A - Z and a - z), digits (0 - 9), and the

minus (−) sign, and must begin with a letter.

• Author-defined IDs may not use the _ (underscore character); it is
reserved for IDs that are built into some HelpTag elements.

• Case is not significant, but is often used to increase readability.

Organizing and Writing a Help Volume 47

2

• ID strings cannot be longer than 64 characters.

• Each ID within a single help volume must be unique.

♦ To Add an ID to a Topic

◊ Use the id parameter for the element as follows:

<element id= id> ...

The elements that start a new topic and support an author-defined ID are:

• <chapter id=id>
• <otherfront id=id>
• <rsect id=id>
• <s1 id=id>
• <s2 id=id> . . .<s9 id=id>

Built-in IDs

A few elements have built-in IDs and, therefore, do not support an author-
defined ID. Each of the following elements also starts a new topic, but these
elements have predefined IDs (shown in parentheses):

<abstract> (_abstract)
<copyright> (_copyright)
<glossary> (_glossary)
<hometopic> (_hometopic)
<title> (_title)

♦ To Add an ID to an Element within a Topic

◊ If the element supports an author-defined ID, use the id parameter for the
element as follows:

<element id= id> ...

The elements (within a topic) that support an ID attribute are:
• <figure id=id>
• <graphic id=id>
• <image id=id>

48 CDE Help System Author’s and Programmer’s Guide

2

• <location id=id>
• <p id=id>

Or, use the <location> element to set an ID at an arbitrary point within
the topic as follows:

<location id= id> text <\location>

Where text is any word or phrase where you want to add an ID. The
<\location> end tag is required. When you activate a link to a location
ID, the Help Viewer displays the topic containing the ID and scrolls the
window to the ID position.

Examples

If you add an ID to a figure, you must have a caption. The caption is needed
in case a cross reference is made to the figure’s ID. In that case, the caption
becomes a hyperlink to the figure.

Here’s the markup for a figure with the ID my-big-picture .
<figure id=my-big-picture entity=big-picture-TIFF>
Here’s My Figure
<\figure>

Here’s a paragraph where the phrase "easier than ever" has been assigned
the ID easy-spot :

Getting help is <location id=easy-spot> easier than ever<\location>.

 Using Entities

An entity can represent a string of characters or the contents of a file. An
entity declaration defines the entity by associating the entity name with a
specific character string or file name. An entity reference is replaced by the
string or file contents when you process the help volume with the
dthelptag command.

Entities are useful for:

• Referencing a common string of text. This is useful if there is some
likelihood that the text may change or you simply don’t want to type it
repeatedly. Each place you want the text inserted, you reference the
entity name.

Organizing and Writing a Help Volume 49

2

• Referencing an external file. Entities are required for accessing graphics
files. The <figure> and <graphic> elements have a required
parameter that you use to specify an entity name, which refers to a
graphic image file.

File entities are also useful for splitting your HelpTag source into multiple
files. Use entity references to include other files into your master HelpTag
file for processing.

Rules for Entity Declarations
• Entity names may contain letters (A - Z and a - z), digits (0 - 9), and the

minus (−) sign, and must begin with a letter.
• Case is not significant in entity names, but is often used to increase

readability.
• Entity names cannot be longer than 64 characters.
• Each entity name must be unique within a single volume.

♦ To Create a Text Entity

1. Declare an entity as follows:

<!entity Entityname " text">

Where Entityname is the name of the entity and text is the string that
you want substituted for every reference to the entity. Remember, all
entity declarations must come before any other markup in your help
volume.

2. For each location where you want the text string to be inserted, enter the
entity reference as follows:

&Entityname;

The & (ampersand) and ; (semicolon) characters are required for the
HelpTag software to properly recognize the entity reference.

Example

The following line declares a text entity named Assoc that contains the
string "Society of Agricultural Engineers":

<!entity Assoc "Society of Agricultural Engineers">

50 CDE Help System Author’s and Programmer’s Guide

2

The following sentence includes a reference to the entity:

Welcome to the &Assoc;.

Organizing and Writing a Help Volume 51

2

When the help volume is processed with the HelpTag software, the entity
reference is replaced with the value of the entity. So, the sentence reads:

Welcome to the Society of Agricultural Engineers.

♦ To Create a File Entity

1. Declare an entity as follows:

<!entity Entityname FILE " filename">

Where Entityname is the name of the entity and filename is the name of
the file. The keyword FILE is required.

2. Reference the entity as follows:
• If the file is a text file, enter the following entity reference at each

location where you want the contents of the file inserted.

&Entityname;

The & (ampersand) and ; (semicolon) characters are required for the
HelpTag software to properly recognize the entity reference.

• If the file is a graphics file, include the name of the entity as a
parameter in one of the following markup lines:

<figure entity= Entityname ... >

Or:

<graphic entity= Entityname ... >

Or:

<p gentity= Entityname ... >

Note – Do not include any path in the file name. If the file is not in the
current directory when you run the HelpTag software, add the appropriate
search path to the helptag.opt file. (See “To Create a Run-Time Help
Volume” on page 95.)

52 CDE Help System Author’s and Programmer’s Guide

2

Example: Text File Entities

Suppose you wrote the text for your help volume in three files named
file1 , file2 , and file3 , plus a fourth file containing your <metainfo>
…</metainfo> section. You could include them in your volume.htg file
like this:

<!entity MetaInformation FILE "metainfo">
<!entity MyFirstFile FILE "file1">
<!entity MySecondFile FILE "file2">
<!entity MyThirdFile FILE "file3">

&MetaInformation;

<hometopic> My Home Title

Welcome to my application’s help volume.

&MyFirstFile;
&MySecondFile;
&MyThirdFile;

Example: A Graphic File Entity

Suppose a simple help volume has a figure in the home topic and the
graphic image for the figure is stored in a file named picture.tif . The
following example shows how that image would be used in a figure.

<!entity MetaInformation FILE "metainfo">
<!entity MyPicture FILE "picture.tif">

&MetaInformation;

<hometopic> A Sample Graphic

Welcome to my application’s help volume

<figure nonumber entity=MyPicture>
A Picture
<\figure>

The text "A Picture" is the figure’s caption.

Organizing and Writing a Help Volume 53

2

The markup produces this output:

See Also

• “Displaying Graphics” on page 81

54 CDE Help System Author’s and Programmer’s Guide

2

55

Writing a Help Topic 3

This chapter describes elements that you can use to format your text. It
also explains how to include graphics and how to create hyperlinks to other
help topics. Examples shown in this chapter use shorthand markup.

Creating Help Topics

A help topic is a unit of information identified with a unique ID. Help topics
are grouped into a logical framework that best describes the product you
are writing online help for.

Creating Structure within a Topic 56

Entering Inline Elements 67

Creating Hyperlinks 69

Displaying Graphics 81

Including Special Characters 85

Including Comments and Writer’s Memos 86

Creating an Index 88

Creating a Glossary 89

56 CDE Help System Author’s and Programmer’s Guide

3

Each topic you write should have an element (or tag) that marks the start
of the topic:

<element id= id> Help Topic’s Title
The body of the topic

Where element is one of the following: chapter, s1, s2, …, s9 . The body
of the topic may begin on any line after the title.

The topic’s position within the topic hierarchy is determined by the element
used to start the topic and by the element used to start the immediately
preceding topic. For example, a topic that starts with <s2> and
immediately follows a topic that starts with <s1> makes the <s2> topic a
subtopic of the <s1> topic.

The id is required if the topic is to be accessed either from the application
(if you are writing application help) or from a hyperlink.

The help topic title can be any string. If the title string occupies more than
one line in your source file, end all but the last line with an & (ampersand).
To force a line break at a particular place within the title, use a \
(backslash) character.

Example

The following line marks the start of a topic using the <s1> tag:

<s1 id=welcome>Welcome to My Application

To force the title to be displayed on two lines, you use a \(backslash) like
this:

<s1 id=welcome> Welcome to \ My Application

See Also

• Chapter 2, “Organizing and Writing a Help Volume,” describes the
general structure of a help volume, including how to create a topic
hierarchy.

Creating Structure within a Topic

Within the body of a help topic, you have the following elements to choose
from to organize and present your information:

Writing a Help Topic 57

3

• Paragraphs are used for bodies of text.

• Lists are used for itemized information. There are several types of lists
including bulleted, ordered (numbered), and plain.

• Subheadings are used to partition sections within a topic.

• Graphics can be included within your text as inline graphics or displayed
between paragraphs as standalone figures.

• Hyperlinks provide references to related topics. A hyperlink may lead to
a subtopic, deeper in the hierarchy, or branch to a topic in a completely
different part of the hierarchy, or even in another help volume.

• Computer literals are computer-recognized text, such as file names and
variable names, that can be displayed as either separate example
listings or inline elements.

• Notes, cautions, and warnings call the reader’s attention to important
information.

• Emphasis is used to highlight important words and phrases within
paragraph text.

♦ To Start a Paragraph

◊ Insert a blank line after the previous paragraph or other element.

Or, use the <p indent> element and parameter if the paragraph is to be
indented.

Or, use the <image> element if you want the paragraph to maintain the
line breaks that you enter in your source file.

An end tag for <p> is not required. However, the <\image> end tag is
required with the <image> element.

Examples

Here are two paragraphs, separated by a blank line. Because neither
paragraph has any special parameters, the <p> tag does not have to be
entered (it is assumed when you enter one or more blank lines):

58 CDE Help System Author’s and Programmer’s Guide

3

The Application Builder provides an interactive, graphical
environment that facilitates the development of desktop
applications.

The Application Builder is designed to make it easier for developers
to construct applications that integrate well into the desktop. It
provides two basic services: assembles Motif objects into the
desired application user interface, and generates appropriate calls
to the routines that support desktop integration services.

If you want a paragraph indented from the left margin, include the optional
indent parameter:

<p indent> An indented paragraph can be used to draw the reader’s
attention to an idea.

The following paragraph overrides the automatic word wrap in help
windows and maintains the line breaks exactly as entered in the source file.
The <image> element is especially useful for entering addresses.

<image>
Brown and Reed Financial Investors
100 Baltic Place Suite 40 New York, New York
<\image>

♦ To Enter a List

◊ Use the <list> element as shown:

<list type spacing>
* item
* item
 .
 .
 .
* item
<\list>

Where type indicates the type of list you want: bullet (default), order , or
plain ; and spacing is loose (default) or tight . Each item in the list is
marked with an * (asterisk).

Writing a Help Topic 59

3

Examples

Here’s a simple list. Because the type isn’t specified, it defaults to a bulleted
list. Because spacing isn’t specified, it defaults to loose, which leaves a
blank line between each item.

60 CDE Help System Author’s and Programmer’s Guide

3

<list>
* Creating a Mail Message
* Sending a Message
* Reading Your Mail
<\list>

The online format of the preceding markup is:

To format the same list with numbers and reduced spacing between items,
use:

<list order tight>
* Creating a Mail Message
* Sending a Message
* Reading Your Mail
<\list>

The output is:

♦ To Enter a Lablist

A lablist is a two column list with optional column headings.

◊ To create a labeled list without headings, use the <lablist> element as
shown:

Writing a Help Topic 61

3

<lablist spacing>
 \ label 1\ item 1 text
 \ label 2\ item 2 text
 .
 .
 .
 \ label N\ item N text
<\lablist>

Where spacing is loose (default) or tight .

Example

Here’s a list of labeled chapter descriptions. The optional label headings are
not provided.

<lablist tight>
\Chapter 1\ An Overview of the System
\Chapter 2\ Installing the Operating System
\Chapter 3\ Configuring the Desktop
\Appendix A\ System Commands Quick Reference
<\lablist>

The output is:

♦ To Enter a Lablist with Headings

◊ Use the <lablist> and <labheads> elements as shown:

<lablist spacing>

 <labheads> \ heading for labels \ heading for items

 \ label 1\ item 1 text
 \ label 2\ item 2 text

62 CDE Help System Author’s and Programmer’s Guide

3

 .
 .
 .

 \ label N\ item N text
<\lablist>

Example

This markup:

<lablist>
<labheads>\Key \Action
\Previous\ Scroll to previous page
\Next\ Scroll to next page
\First\ Go to first page in document
\Last\ Go to last page in document
<\lablist>

produces this output:

See Also

• “<list>” on page 150 summarizes the use of the <list> element.
• “<lablist>” on page 142 summarizes the use of the <lablist> .

♦ To Provide Subheadings within a Topic

◊ For medium headings (slightly smaller than the topic title), use the
following markup:

 <otherhead> Heading

Writing a Help Topic 63

3

Or, for small headings, use the following markup:

 <procedure> Heading

Subheadings add structure within a topic, but they do not appear in the list
of topics in the topic tree.

Example

Here, the <procedure> element is used to add a small heading before each
list.

<procedure>Keyboard
<list order>
* Use the Tab and direction keys to move the highlight to the icon
 you want to select.
* Press Return or Spacebar.
<\list>
<procedure>Mouse
<list bullet>
* Click the icon.
<\list>

This markup creates this output:

♦ To Show a Computer Listing

For computer listings that do not contain any special character sequences
that will be interpreted as HelpTag markup, use the <ex> (example)
element as shown:

<ex size>
Computer text here.
<\ex>

64 CDE Help System Author’s and Programmer’s Guide

3

For computer listings that contain special character sequences used by
HelpTag, use the <vex> (verbatim example) element as shown:

<vex size>
Computer text here.
<\vex>

The optional size attribute, which determines the size of the font used to
display the example, can be specified as smaller or smallest .

Example

Here the <ex> element is used to represent a directory listing in a terminal
window.

In this tutorial, you will edit these graphics files:
<ex>
H_ActionIcons.xwd H_HelpWindows.xwd
H_AppHelp.xwd H_Hyperlinks.xwd
H_Canonical.xwd H_Icons.xwd
H_FrontPanel.xwd H_InlineGraphic.xwd
<\ex>

The markup produces this output:

Line breaks appear where you enter them in your source file. If the
example is too wide for the help window, a horizontal scroll bar appears so
the user can scroll to see all the example text.

See Also

• “To Display a Computer Literal” on page 68
• “<ex>” on page 126
• “<vex>” on page 172

Writing a Help Topic 65

3

♦ To Add a Note, Caution, or Warning

◊ Include the <note> , <caution> , or <warning> element as follows:

<note>
Body of note here.
<\note>

<caution>
Body of caution here.
<\caution>

<warning>
Body of warning here.
<\warning>

To associate an icon with the note, caution, or warning element, define a
file entity that identifies the graphics file containing the icon. Use one of
the predefined entity names:

• <!ENTITY NoteElementDefaultIconFile FILE "filename">
• <!ENTITY CautionElementDefaultIconFile FILE "filename">
• <!ENTITY WarningElementDefaultIconFile FILE "filename">

If you do not want icons with notes, cautions, or warnings, don’t declare the
corresponding entities. (Remember, all entity declarations must come
before any other markup at the beginning of your help volume.) If you
include such an entity reference, be sure the graphics file is in your
HelpTag search path (helptag.opt).

Names of the default icons used by the Help System for note, caution, and
warning elements are specified in the following entities.

• <!ENTITY NoteElementDefaultIconFile FILE "noteicon.pm">
• <!ENTITY CautionElementDefaultIconFile FILE "cauticon.pm">
• <!ENTITY WarningElementDefaultIconFile FILE "warnicon.pm">

These default icons are located in the /usr/dt/dthelp/dthelptag/icons
directory.

If you create your own icon images for notes, cautions, and warnings, be
sure to keep them small so they will fit into the area allotted. Also, the
graphic images must be in your HelpTag search path, which is specified in
your helptag.opt file.

66 CDE Help System Author’s and Programmer’s Guide

3

Example

The following markup for a note, warning, and caution produces the output
shown in Figure 3-1.

<note>
Before installing your application, complete the options checklist
to determine the amount of disk space required.
<\note>

<warning>
This product is highly acidic and can cause skin irritation. Wearing
protective gloves is mandatory when applying this product.
<\warning>

<caution>
 Do not place your fingers near the parrot cage!
<\caution>

Figure 3-1 Note, warning, and caution help icons

See Also

• “To Create a Run-Time Help Volume” on page 95 describes using a
helptag.opt file.

• “Using Entities” on page 48.

Writing a Help Topic 67

3

Entering Inline Elements

Inline elements are used to mark words or phrases within a paragraph of
text. These elements affect the font used to format particular items.

♦ To Emphasize a Word or Phrase

◊ Use the <emph> element (emphasis) as shown:

<emph> text <\emph>

Or, use the shorthand form:

!! text !!

Emphasized text is displayed using an italic font.

Example

Here’s how you might emphasize an important word:

A thousand times <emph>no<\emph>

Or, using the shorthand form:

A thousand times !!no!!

In both cases, the word "no" is displayed in italics.

♦ To Enter a Book Title

◊ Use the <book> element as shown:

 <book> title <\book>

Or, use the short form:

 book| title |

Book titles are displayed using an italic font.

Example

Here’s how you would enter the title of this guide:

<book|The Help System Author’s and Programmer’s Guide|

68 CDE Help System Author’s and Programmer’s Guide

3

♦ To Emphasize Using a Bold Font

◊ Use the <term> element as shown:

<term nogloss> bold text <\term>

Or, use the shorthand form:

<term nogloss | bold text |

The <term> element is used to create a glossary entry. However, by
adding the nogloss parameter, the text is displayed in a bold font
without being added to the glossary.

♦ To Display a Computer Literal

◊ Use the <computer> element as shown:

 <computer> text <\computer>

Or, use the shorthand form:

‘‘ text ’’

Example

Computer text is useful for identifying a file name. Here the helptag.opt
file name is tagged using shorthand markup. The file name will be
displayed in computer text.

This markup:

Add the search path to your “helptag.opt” file.

produces this output:

Add the search path to your helptag.opt file.

♦ To Display a Variable

◊ Use the <var> element (variable) as shown:

<var> text <\var>

Or, use the short form:

<var |text |

Writing a Help Topic 69

3

Or, use the shorthand form:

%%text %%

Variables are displayed using an italic font.

Example

This command-line syntax uses a variable to show that the user supplies a
file name.

dtpad %%filename%%

It produces this output:

dtpad filename

Variables can appear within computer text or computer example listings.
This example specifies volume as a variable part of a file name:

The HelpTag software takes your “%%volume%%.htg” file as input.

It produces:

The HelpTag software takes your volume .htg file as input.

In both of these examples, the %% pairs could have been entered with the
long form (<var> …<\var>) or the short form (<var| …|).

Creating Hyperlinks

A hyperlink references a specific topic or location in a help volume. This
requires that the element you want to reference is given a unique ID. These
HelpTag elements can be assigned IDs: <chapter> , <s1...s9> ,
<location> , <p> , <image> , <figure> , and <graphic> .

Help supports five types of hyperlinks:

• Hypertext links "jump" to another help topic. By default the new topic is
displayed in the same window, but you may request that the new topic
be displayed in a new window.

• Definition links display a topic in a simple pop-up help window. Most
frequently, definition links are used to access the definition of a new
term or phrase used within a sentence.

• Man page links display any man page installed on the system.

70 CDE Help System Author’s and Programmer’s Guide

3

• Execution links execute a shell command or program. This greatly
expands the possibilities for what happens when the user activates a
hyperlink.

• Application-defined links create custom links that the application
interprets. This provides facilities for communication between the Help
System and the application.

To create a hyperlink to an element, you include its ID in a hyperlink
command. HelpTag provides two elements, <xref> and <link> , that can
be used to create hyperlinks to an ID. In addition, the <p> , <image> , and
<figure> elements can be used to create hyperlinks using a graphic
image.

Using the <xref> Element

If you are linking to an element with a title, such as a chapter or section,
the simplest way to do so is with the <xref> element. When you use
<xref> to create a link, you specify the ID of the topic that you want to
link to. The title of the topic is inserted in place of the <xref> element and
becomes the active hyperlink.

Hypertext links created with <xref> display the new topic in the same
window. If you desire different behavior by using the other link types, then
you must use the <link> element.

Also, you cannot use <xref> to jump to topics that have built-in IDs (such
as <hometopic> or <glossary>). To create a hyperlink to any of those
elements, you must use the <link> element.

♦ To Create a Link Using <xref>

◊ Use the <xref> element as shown:

 <xref id>

where id is the ID of the chapter or section that you want to create a link
to. Notice that capitalization of the ID is not significant.

Writing a Help Topic 71

3

Here’s an example that creates a link to a section title.

<s1 id=colorpalettes>Desktop Color Palettes
.
.
.
To learn how to change the colors used on your desktop,
refer to <xref colorpalettes>.

The section title replaces the <xref> element. The title is a hyperlink,
designated by an underline. This is how the sentence would appear in a
help volume.

Using the Link Element

You can use either the <xref> or <link> element to create standard
hypertext links. However, to use the other types of links listed on page 69,
you must use the <link> element.

♦ To Create a Link Using <link>

◊ To jump to a topic within the same volume, use the <link> element as
shown:

<link id>text<\link>

Where id is an ID declared somewhere in the help volume, and text is the
portion of your help text that is underlined to indicate it is an active
hyperlink.

72 CDE Help System Author’s and Programmer’s Guide

3

Example

Here is the previous example using the <link> element instead of the
<xref> element.

<s1 id=colorpalettes>Desktop Color Palettes
.
.
.
To learn how to change the colors used on your desktop,
refer to <link colorpalettes>Desktop Color Palettes<\link>.

♦ To Create a Link to a Predefined ID

◊ To jump to a topic (within the same volume) that has a predefined ID, use
the <link> element as shown:

<link hyperlink=" id"> text<\link>

All the predefined IDs start with a _ (underscore) character. So this
makes it necessary to use the hyperlink= " id" form.

Example

This link jumps to the home topic of the current volume:

Return to <link hyperlink="_hometopic">Introduction<\link>.

♦ To Create a Link to a Topic in a Different Volume

◊ To jump to a topic in another help volume:

<link hyperlink=" volume id" JumpNewView> text<\link>

If the other volume is registered, the volume parameter is just the base
name of the volume file. If the volume is not registered, you must include
a complete path name to the volume.

The JumpNewView parameter is recommended for links to other volumes
so that users realize they have jumped into another volume. The
previous view remains displayed so they can see where they came from.

Writing a Help Topic 73

3

Examples

This link jumps to the home topic of a help volume called GeoMap:

To view a map of the United States, see <link hyperlink="GeoMap
_hometopic"> Geography Maps <\link>.

Here’s the same link, but it displays the topic in a new window:

To view a map of the United States, see <link hyperlink=”GeoMap
_hometopic” type=JumpNewView> Geography Maps <\link>.

This link jumps to the topic, DesktopKeyboardNav , in the help volume
named Intromgr .

For more information, see <link hyperlink=”Intromgr
DesktopKeyboardNav”>Keyboard Shortcuts for the Desktop<\link>.

If the help volume you are targeting is not registered on the desktop, then
you must provide a complete path name to the volume or specify the
appropriate search path in your helptag.opt file.

See Also

• “Registering Your Application and Its Help” on page 245
• “<figure>” on page 128
• “<image>” on page 139
• “<link>” on page 147
• “<p>” on page 160
• “<xref>” on page 175

♦ To Create a Definition Link

◊ If you are linking to a term in the glossary, use the <term> element as
shown:

<term> text<\term>

Or, use the shorthand form:

++text++

Whenever you use the <term> element, be sure you include the
corresponding definition in the Glossary.

74 CDE Help System Author’s and Programmer’s Guide

3

If you are linking to a topic within the same help volume, use the
<link> element as shown:

<link id Definition> text<\link>

Where id is a topic ID (or the ID of an element within the topic) and text
is the portion of your help text that you want to be the active hyperlink.
The Definition keyword specifies that the link should pop-up a quick
help dialog box.

Or, if you are linking to a topic in another help volume, use the <link>
element as shown:

<link hyperlink=" volume id" Definition> text<\link>

If the other volume is registered, the volume parameter is just the base
name of the volume file. If the volume is not registered, you must include
a complete path name to the volume.

Example

The following link creates a definition link that displays the copyright topic
in the meta information:

<link hyperlink="_copyright" type=Definition>Version
Information<\link>

The phrase "Version Information" becomes the hyperlink text (dashed
underline).

See Also

• “Creating a Glossary” on page 89
• “<term>” on page 168
• “<link>” on page 147

♦ To Create a Man Page Link

◊ Use the <link> element as shown:

<link manpage Man> text<\link>

Writing a Help Topic 75

3

To request a man page from a particular section, use the hyperlink
parameter like this:

<link hyperlink=" section manpage" Man> text<\link>

For man page links, the hyperlink parameter is the same string you
would enter if executing the man command in a terminal emulator window.

Note – If you are writing help for an application and you include any man
page links, your application must include special support for man pages.
See “To Display a Man Page” on page 218. (The desktop Help Viewer
includes support for man page links.)

Example

Here’s a link that displays the man page for the grep command:

Refer to the <link grep Man> grep(1)<\link> command.

"Man" is a keyword for the <link> element, so if you want to create a link
that displays the man page for the man command, you must use the
hyperlink parameter:

Refer to the <link hyperlink="man" Man>man(1)<\link> command.

To display a man page in a particular section, precede the man page name
with the section number. The following link displays the "mkdir" man page
from section 2 (which is different from the man page of the same name in
section 1):

Refer to the <link hyperlink= "2 mkdir" Man>mkdir(2)<\link> command.

See Also

• “<link>” on page 147

76 CDE Help System Author’s and Programmer’s Guide

3

♦ To Create an Application-Defined Link

◊ Use the <link> element with the AppDefined parameter as shown:

<link hyperlink=" data" AppDefined> text<\link>

Where data is a text string passed to the application when the link is
invoked and text is the hyperlink.

Example

Suppose you are writing help for an application that prints three styles of
reports. You might create three hyperlinks like this:

Choose a report type:
<list plain tight>
* <link hyperlink="Report-Daily" AppDefined>Daily Report<\link>
* <link hyperlink="Report-Month-To-Date" AppDefined>MTD
Report<\link>
* <link hyperlink="Report-Year-To-Date" AppDefined>YTD
Report<\link>
<\list>

If your application is set up to handle these special links and to interpret
the hyperlink strings, it could generate the appropriate report based on the
hyperlink chosen by the user.

For a complete example, refer to the sample application code located in the
/usr/dt/share/examples/dthelp directory.

♦ To Link to a Meta Information Topic

◊ Use the <link> element as shown:

<link hyperlink="_ id"> text<\link>

Where id is the predefined ID associated with the element you want to
link to and text is the word or phrase that you want to be the active
hyperlink.

Most topics within the meta information section have predefined IDs, so
they do not allow author-defined IDs. The predefined IDs consist of the
element name preceded by an underscore character. For example, the ID for
the <copyright> topic is _copyright . (Case is not significant.)

Writing a Help Topic 77

3

The predefined IDs for the meta information topics are listed below:

<abstract> (_abstract)
<copyright> (_copyright)
<title> (_title)

Topics entered with the <otherfront> element can be linked to just like
any normal topic in the topic hierarchy.

See Also

• “Built-in IDs” on page 47 lists the Help System predefined IDs.

Execution Link Control

Most hyperlinks display a related help topic, but hyperlinks can also
execute shell commands and scripts. Links of this type are called execution
links. Because execution links interact with a user’s system, the Help
System provides an execution policy to control how execution links are
handled.

The Help System uses resources to define the behavior of execution links.
The DtNexecutionPolicy resource is set in an application’s application
defaults file to modify how execution links are handled by the Help System.
In addition the Help System uses a set of resources called execution aliases.
An execution alias is a resource that assigns a name (or label) to the
command string or script that an execution link executes.

Execution Policy Default Behavior

When an execution link is selected, if the link has an execution alias, the
Help System retrieves the value of the alias and executes the command. If
an execution alias has not been defined, the Help System displays a
confirmation dialog box that shows the command to be executed and asks
the user whether to execute the command or to cancel the operation.

Execution Aliases

When using execution links in a help volume, it is recommended to create
execution aliases. That is, in the application’s application defaults file you
define an alias (a name) that represents the actual command to be

78 CDE Help System Author’s and Programmer’s Guide

3

executed. One advantage of this method is that it isolates the actual
commands from the help volume source files. This makes it possible to edit
the commands in the application defaults file without changing the
hyperlinks in the help volume. Each hyperlink references an alias name,
which remains unchanged even though its content may have been edited.
For instance, a tutorial help volume that uses scripts could be easily
customized to accommodate a particular shell environment by modifying
the shell script commands in the application defaults file.

♦ To Create an Execution Alias

To create an execution alias in an application’s application defaults file, use
this resource specification syntax:

application_name .executionAlias. alias_name : command

Where:

application_name Name or class name of the application that owns the
help volume

executionAlias Keyword that identifies the resource is an alias

alias_name Name assigned to the command

command Shell command or script to be executed for this link

There is no restriction on the length of the command string. To enter
commands with multiple lines, end each line (except the last) with a \
(backslash).

Examples

This resource entry creates an execution alias named, StartDtterm , which
starts a terminal emulator. The & (ampersand) starts the command in the
background.

Dtterm.executionAlias.StartDtterm: dtterm &

This entry creates an alias named, xclockAlias , that executes the
xclock application in an application named NightAlert.

NightAlert.executionAlias.xclockAlias: xclock &

Writing a Help Topic 79

3

Using Execution Aliases in Hyperlinks

An execution alias can be referenced using the <link> element or used in
conjunction with elements that have a hyperlink parameter, such as <p> or
<figure> .

♦ To Create an Execution Link Using an Execution Alias

◊ Use the <link> element as shown:

<link “DtHelpExecAlias alias_name [default_command]” Execute
>text<\link>

Where:

DtHelpExecAlias Keyword that identifies this link has an
execution alias

alias_name Name defined as an alias in the execution alias
resource specification

default_command Optional. If provided, this command is executed
when an execution alias has not been loaded
from an application’s application defaults file.
For example, application resources are not
loaded when a help volume is displayed from an
information viewer, such as Help View.

text The portion of your help text that you want to
designate as the hyperlink text (underlined)

Note – If the command you are executing doesn’t finish immediately, run it
in the background by appending an &(ampersand) to the command. If you
don’t, the help window will not operate until the command finishes.

Examples

This hyperlink references the execution alias named, xclockAlias . The
resource definition for the alias is shown in the section “Execution Aliases”
on page 77.

The link starts the xclock program running in the background. The
phrase "Start the Clock" becomes the hyperlink. Clicking the hyperlink
runs the xclock program in a separate window. To end the program, close
the window.

80 CDE Help System Author’s and Programmer’s Guide

3

<link “DtHelpExecAlias xclockAlias” Execute>Start the Clock<\link>

Here is the same hyperlink including an optional default command.

<link “DtHelpExecAlias xclockAlias xclock &” Execute>Start the
Clock<\link>

DtNexecutionPolicy Resource

The DtNexecutionPolicy resource enables a system administrator or
user to select an appropriate level of security for a given application.

The resource values that can be set are:

help_execute_query_all Query all execution links.

help_execute_query_unaliased Query only link commands that do
not have execution aliases defined.

help_execute_none Do not execute any execution links.

help_execute_all Execute all execution links.

The default value is help_execute_query_unaliased . Any execution
links defined as execution aliases will be automatically executed, whereas
the Help System will display a confirmation dialog box for any other
execution links.

It is not recommended for the application developer to set the
DtNexecutionPolicy because this prevents a system administrator or
user from altering the value.

See Also

• “<link>” on page 147
• “<figure>” on page 128
• “<p>” on page 160
• DtHelpDialog(3)
• DtHelpQuickDialog(3)

Writing a Help Topic 81

3

Displaying Graphics

Help supports four graphics formats:

• Tagged Image File Format (TIFF)—Color, grayscale, and black-and-white
images created by many standard drawing and scanning applications
(filename.tif).

• X Window dump—Screen dumps from the X Window System™ created
with the xwd utility (filename.xwd).

• X pixmap—Color icon images (filename.pm).

• X bitmap—Two-color icon images (filename.bm).

Each graphic is maintained as a separate file. The file format is determined
using the file name extensions listed.

♦ To Create a Figure

1. Declare a file entity to identify the image file to be included in the
figure.

<!entity graphic-entity FILE " filename. ext">

Remember, all entity declarations must come before any other markup at
the top of your help volume.

2. Use the <figure> element as shown:

<figure entity= graphic-entity>
caption string
<\figure>

Where graphic-entity is the entity name for the graphic file you want to
display, and caption string is an optional string. Caption text is displayed
above the graphic.

By default, figures are numbered and the number is prepended to your
caption string. To create a nonnumbered figure, include the nonumber
parameter (as shown in one of the following examples).

If you want the figure to be a hyperlink, use the ghyperlink (graphic
hyperlink) and glinktype (graphic link type) parameters as shown:

82 CDE Help System Author’s and Programmer’s Guide

3

<figure entity= graphic-entity ghyperlink=" id" glinktype= type>
caption string
<\figure>

The ghyperlink and glinktype parameters work just like the hyperlink
and type parameters for the <link> element.

Examples

For these examples, assume that you’ve declared these two file entities at
the top of your help volume:

<!entity FirstPicture FILE "first.tif">
<!entity SecondPicture FILE "second.pm">

• The following figure displays the graphic in the first.tif file and
displays a number (by default) and caption:

<figure entity=FirstPicture>
Here’s the First Picture
<\figure>

• Here’s a figure that displays the second.pm file without a number or a
caption:

<figure nonumber entity=SecondPicture>
<\figure>

If you add an ID to a figure, you must have a caption. The caption is
needed in case an <xref> uses the figure’s ID; if so, the caption is
inserted in place of the <xref> and becomes a hyperlink to the figure.

• The following figure is an execution hyperlink that runs the xclock
program:

<figure entity=SecondPicture ghyperlink="xclock &"
glinktype=execute>
Choose This Figure to Start the Clock
<\figure>

See Also

• “<figure>” on page 128
• “<link>” on page 147

Writing a Help Topic 83

3

♦ To Display an Inline Graphic

1. Declare a file entity to identify the image file to be used in the figure.

<!entity graphic-entity FILE " filename. ext">

Remember, all entity declarations must come before any other markup at
the top of your help volume.

2. Use the <graphic> element as shown:

... text <graphic entity= graphic-entity> text ...

Where graphic-entity is the entity name for the graphic file you want to
display.

To use a graphic as a hyperlink, place it inside a <link> element:

<link parameters><graphic entity= graphic-entity><\link>

Note – The <graphic> element is intended for small graphics, although
larger images can be used. Additional white space is added between lines to
accommodate the height of the graphic.

Example

Here’s an example that uses a small X bitmap image in the middle of a
sentence. First, at the top of the volume, the bitmap file must be declared
as a file entity:

<!entity StopWatch FILE "stopwatch.bm">

Within the help text, the image is inserted using the <graphic> element:

Whenever you see the <graphic entity=StopWatch> symbol, stop and
answer the quiz questions.

This markup produces this output.

84 CDE Help System Author’s and Programmer’s Guide

3

♦ To Wrap Text around a Graphic

1. Declare a file entity to identify the image file to be included with the
paragraph.

<!entity graphic-entity FILE " filename. ext">

2. Use the <p> element (paragraph) with the gentity parameter as
shown:

<p gentity= graphic-entity> Paragraph text here ...

Where graphic-entity is an entity name that refers to the graphic file you
want inserted.

Example

Suppose you want to display an icon named sample.pm and wrap
paragraph text around it. First, declare the file entity:

<!entity HelpKeyIcon FILE "helpkey.xwd">

Then, enter the paragraph:

<p gentity=HelpKeyIcon gposition=left> The F1 key is a Help key. When
you press F1, the application you are using displays the help topic
most closely related to your current activity.

To right-justify the graphic, add the gposition parameter like this:

<p gentity=HelpKeyIcon gposition=right>Many desktop components
support multicolor icons, in addition to two-color images.

Writing a Help Topic 85

3

Here’s the markup for a paragraph wrapped around an icon, where the icon
is a hyperlink that displays a topic with the ID icon-editor in a new
window:

<p gentity=my-icon ghyperlink="icon-editor" glinktype=JumpNewView>
Many desktop components support multicolor icons, in addition to the
two-color images.

See Also

• “<p>” on page 160

Including Special Characters

Many special characters and symbols are available within HelpTag. You
display a particular character by entering the appropriate entity reference.

Some special character entities are declared in the file helpchar.ent . The
helpchar.ent file is located in the /usr/dt/dthelp/dthelptag
directory. To access these characters, either copy the particular entity
declaration into your own volume, or include the entire helpchar.ent file.
Unused entity declarations are ignored.

Refer to Chapter 6, “Summary of Special Character Entities,” for a
complete list of the available characters.

♦ To Include a Special Character

1. Refer to Chapter 6, “Summary of Special Character Entities,” to
determine the entity name for the character you want to display. Also,
note whether it is a built-in special character.

2. If the character is not a built-in special character, add the following two
lines among your other entity declarations (where entity-name is a
meaningful name to you):

<!entity entity-name FILE "helpchar.ent"> & entity-name;
&entity-name ;

Also, add this line to your helptag.opt file:

search=/usr/dt/dthelp/dthelptag

If the character is built into HelpTag, you can skip step 2.

86 CDE Help System Author’s and Programmer’s Guide

3

3. Wherever you want to display the special character, enter its entity
reference:

&entity-name;

Examples

The entity for the copyright symbol (©) is a built-in special character, so all
you have to do to display it is use this entity:

©

To display the uppercase greek letter sigma (∑), you must first include the
helpchar.ent file (at the top of your help volume with your other entity
declarations) as shown here:

<!entity SpecialCharacterEntities FILE "helpchar.ent">
&SpecialCharacterEntities;

Then you can place the following entity reference where the sigma
character is to appear:

&Usigma;

As with any entity, case is not significant in the entity names for special
characters.

See Also

• Chapter 6, “Summary of Special Character Entities,” on page 179

Including Comments and Writer’s Memos

Frequently it is useful to include within your source files comments that
are not intended to be part of the help text. Text marked with the comment
element is always ignored by the HelpTag software. Comments can be used
to make notes to yourself or to another author, or to exclude some markup
without taking it out of the file.

In addition to standard comments, HelpTag also provides a <memo> element
for entering writer’s memos. Memo notes appear in your help topics during
reviews, but not when you make your final help files. Authors commonly
use the <memo> element to write questions or make notes to reviewers.

Writing a Help Topic 87

3

♦ To Insert a Comment

◊ Use the comment begin marker (<!--) and end marker (-->) as shown:

<!-- text here is completely ignored -->

The HelpTag software ignores all markup between the <!-- and --> . A
comment cannot be nested within another comment.

Example

Here’s an example that has two comments, a line before the paragraph, and
a single word within the paragraph.

<!-- Here is my rough draft of the introduction: -->

Welcome to my application. This software
is <!-- perhaps --> the fastest and most
efficient software you’ll ever own.

♦ To Insert a Writer’s Memo

◊ Use the <memo> element as shown:

<memo> text <\memo>

By default, the text within the <memo> element is ignored by the HelpTag
software (just like a comment). However, if you add the memo option to your
helptag.opt file (or specify the memo option with the dthelptag
command), all memos within your help volume appear in a bold font.

Example

Suppose you are writing about your application and have a question for the
project team. You can include the question within the text using the
<memo> element like this:

<memo>Team: Will the product also
support 32-bit characters?<\memo>

If you process the help volume with the following command (or include
memo in your helptag.opt file), the memo appears in the help text in a
bold font.

dthelptag volume memo

88 CDE Help System Author’s and Programmer’s Guide

3

If the memo option is not used (or the nomemo option is used), the text
within the memo is ignored and does not appear in the help text.

Creating an Index

The index for a help volume is similar to the index for a book. As an author,
it is important to create index entries for your topics that will allow users
to search for keywords or concepts. Creating a thorough index ensures that
users will be able to find topics quickly and accurately.

♦ To Mark an Index Entry

◊ Within the topic you want to index, use the <idx> element as shown:

<idx> keyword<\idx>

Or, the short form:

 <idx| keyword|

Or, to control how the entry is sorted, use the <sort> subelement as
shown:

<idx> keyword<sort> sortkey<\idx>

Where keyword is the text you want to display in the index and sortkey is
the text used during sorting.

The <idx> element can be used anywhere within the topic. Neither the
keyword nor the optional sortkey are displayed in the topic.

Examples

Here’s the start of a topic with two keyword index entries:

<s1 id=getting-started>Getting Started with Helpview
<idx>starting Helpview<\idx>
<idx> Helpview, starting<\idx>

Welcome ...
.
.
.

Writing a Help Topic 89

3

The following example indexes the + (plus character), putting it in the
keyword index where the word "plus" would appear:

<idx>+<sort>plus<\idx>

Creating a Glossary

Like a glossary in a book, your help volume can contain a glossary that
defines important terms. The glossary, which is marked using the
<glossary> element, is the last topic in your help volume.

Throughout your help volume, each key word or phrase that you enter with
the <term> element automatically becomes a definition hyperlink to the
term’s definition in the glossary.

See Also

• “<dterm>” on page 122
• “<glossary>” on page 130
• “<term>” on page 168

♦ To Mark a Glossary Term

◊ Use the <term> element as shown:

<term> word or phrase<\term>

Or, use the short form:

<term| word or phrase|

Or, use the shorthand form:

++word or phrase++

If the term within the help text isn’t spelled exactly the same as the
definition in the glossary, you can specify the "glossary form" of the term
like this:

<term "glossary form"> word or phrase<\term>

Where glossary form is the term exactly as it appears in the glossary. This
is useful if the term must be plural in a help topic (because of its context),
but must be singular in the glossary.

90 CDE Help System Author’s and Programmer’s Guide

3

Terms are displayed using a bold font and automatically become a
definition hyperlink. When the term is chosen, its glossary definition
appears in a quick help dialog.

Note – If you mark a term that you intentionally do not define in the
glossary, add the nogloss attribute to the <term> element. This allows the
term to be displayed in the bold font used for terms, but without creating a
link to the glossary.

Examples

If your glossary has a definition for the term "widget", you can enter it as a
term like this:

A ++widget++ is the fundamental building block of OSF/Motif user
interfaces.

If the glossary entry is "widget", but you need to use the plural form within
the sentence, you could enter the term like this:

<term "widget">Widgets<\term> are the fundamental building blocks
of OSF/Motif user interfaces.

If you want to enter the same term, but you either don’t want to include it
in the glossary or you don’t want it to be a hyperlink, use the nogloss
parameter like this:

<term nogloss> Widgets<\term>are the fundamental building blocks of
OSF/Motif user interfaces.

The equivalent short form is:

<term nogloss|Widgets| are the fundamental building blocks of
OSF/Motif user interfaces.

♦ To Define a Term in the Glossary

◊ Enter the <dterm> element into the glossary as shown:

<glossary>
.
.
.
<dterm> word or phrase
Definition of the term

Writing a Help Topic 91

3

.

.

.

Be sure to keep the <dterm> words and phrases sorted within the glossary.

Example

Here’s part of a glossary that includes the definition of the term SGML:

<glossary>
.
.
.
<dterm>SGML
Standard Generalized Markup Language. An
international standard [ISO 8859: 1986] that
establishes a method for information interchange.
SGML describes constructs for marking the
structure of information separate from its
intended presentation or format.

92 CDE Help System Author’s and Programmer’s Guide

3

93

Processing and Displaying
a Help Volume 4

This chapter shows you how to process your marked-up help files to create
an online format that you view using the Help System. It also describes
how to make your help volume accessible from the desktop Front Panel
Help Viewer.

Overview

Before a help volume can be displayed, you must create a run-time help file
by processing your files with the HelpTag software. Run-time files use an
online presentation format called Semantic Delivery Language. A.sdl file
extension identifies a run-time help file.

Creating Run-Time Help Files 95

To Create a Run-Time Help Volume 95

Viewing a Help Volume 98

To Display a Help Volume 99

Adding Your Help to the Browser Volume 100

Printing Help Topics 105

Testing Your Help 106

94 CDE Help System Author’s and Programmer’s Guide

4

The Help System defines desktop actions and data types for help-specific
files. This lets you easily process and view a run-time help file from the
desktop.

HelpTag Software

The HelpTag software can be invoked automatically by double-clicking a
help source file in File Manager or by running the dthelptag command
manually in a terminal window.

Helptag does two significant tasks:

1. The HelpTag parser converts your marked-up files into an internal
format (Semantic Delivery Language) understood by the Help System. If
you’ve made any markup errors, the errors are reported in a file named
volume.err .

2. If there are no parser errors, the master help volume file (volume.sdl)
is created.

 Viewing Your Volume

After processing your source files with HelpTag, your help volume is ready
to be displayed. You can display it by double-clicking the volume.sdl file
icon in File Manager, or use the dthelpview command in a terminal
window.

Processing and Displaying a Help Volume 95

4

If you have written help for an application and the application is ready to
use, you can display your help by running the application and asking for
help.

Creating Run-Time Help Files

When you run HelpTag, it reads your volume.htg or volume.ctg file and
any additional source files that are included using entities. Also, graphics
file names are validated.

Be sure the /usr/dt/bin/dthelptag command is in your search path. (If
you’re not sure how to do this, ask your system administrator.)

♦ To Create a Run-Time Help Volume

1. Open File Manager and change to the directory where your volume.htg
file is located.

2. Select the file icon.

3. Choose Compile from the File Manager Selected menu.

The volume.htg file is processed and creates a volume.sdl file and
volume.err file.

96 CDE Help System Author’s and Programmer’s Guide

4

HelpTag Output

The output from HelpTag is a run-time help volume, named volume.sdl . If
any errors occurred during processing, they are reported in an error file
(volume.err). If no errors were encountered, the volume.err file contains
copyright information and several status lines.

Setting the onerror=go option in your helptag.opt file allows the parser
to continue processing (if possible) after encountering an error. Without the
onerror=go option, the parser halts when the first error is detected. The
volume.sdl file is not created until the source file is without errors.

The volume.sdl file, plus your graphics files, are read by the Help System
to display help topics. The run-time help file has the same base name as
your volume.htg file. For example, if your volume.htg is named
Librarian.htg , then the help volume name is Librarian.sdl .

Caution – Never rename a run-time help file or graphics file after running
HelpTag. The information stored in the volume.sdl file depends on the
original names. If you rename your volume.htg file or any of your graphic
files, be sure to rerun HelpTag.

♦ To Run the dthelptag Command Manually

◊ Run the dthelptag command as follows:

dthelptag command-options volume parser-options

Where command-options are options entered before the volume name
and parser-options are options entered after the volume name.
“Processing HelpTag Files (dthelptag)” on page 188 lists all available
options.

Example: Commands

The following command processes a help volume named MyVolume:

dthelptag MyVolume

Using the -verbose option causes the progress of the processing to be
displayed on your screen:

dthelptag -verbose MyVolume

Processing and Displaying a Help Volume 97

4

Adding a search path enables HelpTag to find files stored in a subdirectory
(of the current directory) named graphics :

dthelptag -verbose MyVolume search=graphics

Example: A helptag.opt File

Here’s a sample helptag.opt file showing that each option is on a
separate line. It would be appropriate for creating a draft version of the
volume.

memo
onerror=go
search=graphics/
search=entityFiles/

Before producing the final version of the help volume, you would remove
the memo and onerror=go lines.

See Also

• Chapter 13, “Preparing an Installation Package,” explains which help
files are included in your application installation package.

♦ To Review and Correct Parser Errors

◊ Look at the contents of the volume.err file after running HelpTag (where
volume is the base name of your volume.htg file).

Each error listed in the volume.err file begins with a string of asterisks
(*****). For example, the following error was detected at line 54 of the file
actions :

Line 54 of actions,
Missing end tag for LIST:
...the execution host becomes the current working directory.

<s2 id=EverythingYouNeedToKnow> E...
Current element is LIST begun on Line 28 of actions.

98 CDE Help System Author’s and Programmer’s Guide

4

A few lines of the file are shown to give you some context for the error. Also,
there is a hint that the current element is a LIST started on line 28 of the
same file. An <s2> is not allowed within a list, so it appears that the
author forgot to enter the <\list> end tag.

It’s possible for a single, simple error to produce several error messages.
This is because the first error may cause the parser to lose track of the
intended context, making it impossible to interpret subsequent markup
properly.

Common Errors

Most processing errors result from these common mistakes:

• Omitting an end tag
• Using an incorrect entity name
• Referring to an invalid element ID

Omitting an end tag for an element is a common mistake. When creating
elements, such as a list, figure, note, caution, or warning, be sure to include
the end tag. Check your markup carefully especially if you have nested one
element within another, such as a figure within a list,

Errors can also be introduced by using an incorrect entity name. In most
instances, it is simply a misspelled word. In other cases, an entity name
may have been changed, but cross-references to the original name were
overlooked. When you change an entity name, remember to search your
source file (or files) for all instances of the entity name.

Similarly, changing the ID assigned to an element affects any cross-
reference or link to that topic.

Viewing a Help Volume

The Help Viewer can be used to display any help volume. It supports all
types of hyperlinks except application-defined links (because it cannot
know how your links are to be interpreted).

If you are writing application help and your application is ready to use, you
can also view your help by running your application, then requesting help
just as a user would.

Processing and Displaying a Help Volume 99

4

♦ To Display a Help Volume

1. Open File Manager and change to the directory where the volume.sdl
file is located.

2. Double-click its icon.

The default action displays the file using the Help Viewer.

♦ To Run the dthelpview Command Manually

◊ If the volume.sdl file for the volume you want to display is either in the
current directory or has been registered, execute this command:

dthelpview -helpVolume volume.sdl

Or, if the volume.sdl is in another directory (and hasn’t been
registered), execute this command:

dthelpview -helpVolume / full-path/ volume.sdl

The -helpVolume parameter can be shortened to -h in any of these
commands.

Example

Suppose you just edited your help volume. First, process it with the
HelpTag software:

dthelptag MyVolume

If no errors occurred, you could then display it with this command:

dthelpview -h MyVolume.sdl

See Also

• “Registering Your Application and Its Help” on page 245

Example: A Personal Help Directory

During a project, you may want to access the help volume you are
developing, but not expose it to all users on your system. For example,
suppose your working directory is /projects/help and your help volume
is named Myvolume .

100 CDE Help System Author’s and Programmer’s Guide

4

First, create the personal help directory in your home directory where you
can register the volume:

mkdir -p $HOME/.dt/help/C

Now create a symbolic link to the Myvolume.sdl file (which is created by
the HelpTag software):

ln -s /projects/help/Myvolume.sdl $HOME/.dt/help/C/Myvolume.sdl

You can now display the volume with the following command (regardless of
your current directory) because the.dt/help/C directory within your home
directory is one of the first places the Help System looks for help volumes.

dthelpview -helpVolume Myvolume

Adding Your Help to the Browser Volume

The desktop provides a special help volume called the browser volume that
lists help volumes available on your system. The browser volume is
displayed by clicking the Help Viewer control in the Front Panel.

Processing and Displaying a Help Volume 101

4

You can view assorted help volumes directly from the browser volume. This
allows access to application-specific help without starting the application.
Or, if you are writing standalone help, this is the only way for users to get
to your help.

Figure 4-1 Browser help volume displaying help families

To make your help volume available in the browser volume, you create a
help family file. When your application is registered on the desktop, the
presence of a family file causes the help volume to be included in the
browser volume.

Browser Volume

A desktop utility creates and updates the browser volume. When a user
clicks on the Front Panel Help Viewer for the first time, the utility is
automatically run. It identifies help volumes and help family files that are

102 CDE Help System Author’s and Programmer’s Guide

4

located in the help search path directories. It creates a file called
browser.hv in the user’s HomeDirectory/.dt/help/$DTUSERSESSION
directory. After initial creation, the volume is updated only if changes have
occurred.

To manually update the browser volume, refer to “Generating a Browser
Help Volume (dthelpgen)” on page 191.

Any help volume listed in the browser volume can be viewed by selecting
the volume title. Because you can display and navigate through different
volumes, the browser help window includes an additional button, called Top
Level. You can use this button to return to the browser list after displaying
one or more volumes.

Help Family File

The desktop utility examines help family files to identify which help
volumes are gathered into the browser volume. Figure 4-1 on page 101
shows two help families, Common Desktop Environment and Overview and
Basic Desktop Skills, listed in the browser volume. Each family file consists
of one or more related help volumes. For example, the Common Desktop
Environment family includes different volumes that describe the desktop.

Refer to the CDE Advanced User’s and System Administrator’s Guide for a
detailed explanation of how an application and its help files are installed on
the desktop.

♦ To Create a Help Family

1. Pick a file name that is unique to your product. Use the.hf extension to
identify the file as a help family.

family.hf

2. Enter the following lines into the file:

*.charSet: character-set
*.title: family title
*.bitmap: icon file
*.abstract: family abstract
*.volumes: volume volume volume ...

Processing and Displaying a Help Volume 103

4

Where character-set specifies the character set used by the family title
and family abstract strings. See “Understanding Font Schemes” on
page 259 for a list of supported character sets. The family title and
family abstract should not contain any HelpTag markup; this file is not
processed with the HelpTag software.

The icon file is optional. If you provide one, the path you use to specify
the location of the file should be a complete path name. If you do not
provide an icon, do not include the *.bitmap resource in your family
file.

The list of volume names identifies which volumes belong to the family.
The volumes will be listed in the order they appear on this line. A
volume may be listed in more than one family.

If any of the values occupy more than one line, end each line — except
the last — with a backslash (\).

Any line in the file that begins with an ! (exclamation mark) is a
comment line and is ignored.

3. When you prepare your final product, you should install your family.hf
file with the rest of your help files. When the desktop integration script,
(dtappintegrate) is run, it creates the symbolic links to your family
file.

The CDE Advanced User’s and System Administrator’s Guide describes
how to run the dtappintegrate script.

Example

Here’s a family file for the desktop’s online help. Comments at the top of
the file identify the family and release version.

104 CDE Help System Author’s and Programmer’s Guide

4

!##
!# #
!# Desktop Help Family #
!# #
!# Version 1.0 #
!# #
!##
*.charSet: ISO-8859-1
*.title: Desktop Version 1.0
*.bitmap: /usr/dt/appconfig/help/C/cdelogo.pm
*.abstract: Overview and Basic Desktop Skills \
 * File Manager and the Desktop \
 * Front Panel \
 * Application Manager \
 * Style Manager \
 * Text Editor \
 * Mailer

*.volumes: Intromgr.sdl Filemgr.sdl FPanel.sdl
 Appmanager.sdl Stylemgr.sdl
 Textedit.sdl Mailer.sdl

The help family file actually included with the desktop software may not
exactly match this example.

See Also

• “Character Sets and Multibyte Characters” on page 252 for a list of
supported character set names

♦ To Display the Browser Volume

1. Choose the Help Viewer control from the desktop’s Front Panel.

2. Scroll the help window to view the help families available on your
system.

3. If desired, display a volume by selecting the help family title.

Processing and Displaying a Help Volume 105

4

Note – To view help information about the Help System, choose the title
Common Desktop Environment and then Desktop Help System.

♦ To Display the browser Volume Manually

◊ Run the dthelpview command as follows:

dthelpview -helpVolume browser

See Also

• “Displaying Help Topics (dthelpview)” on page 190 lists dthelpview
command line.

• dthelpgen (1) man page

Printing Help Topics

After displaying your help volume, you can print help topics. Using the
Print dialog box shown in Figure 4-2 you can print an individual topic, a
table of contents and index information, or the entire help volume. Printed
output omits graphics.

Figure 4-2 Help print dialog box

106 CDE Help System Author’s and Programmer’s Guide

4

Testing Your Help

Testing your help volume is as important as testing any software product.
Here are some tips to help you plan your testing.

Validating Hyperlinks
• Display your help volume and try every hyperlink. Any underlined text

(solid or dashed underlines) is a hyperlink. Also, test any graphics that
are hyperlinks. Graphic hyperlinks use an open-cornered border (dashed
or solid) around the image as a hyperlink cue.

• If you are writing application-specific help and you have included any
JumpNewView, Man, or AppDefined links, you must test these links from
your application. Testing such links using dthelpview does not ensure
that the links will operate correctly from within your application.

Verifying Entry Points

If you are writing application-specific help that uses IDs to access
particular help topics, there are two ways to verify that the IDs have been
properly established within the help volume:

• Run your application and request help just as a user will, trying each of
the entry points. This also verifies that the application is using the
correct IDs.

• If your application is not ready to use (still under development), you can
test each ID by running dthelpview for each ID:

dthelpview -helpVolume volume.sdl -locationId id

Where id is the location ID that you want to test. If dthelpview
displays the correct topic, then the ID is okay.

Checking Index Entries

Users search or browse a help volume index to find help topics. Examine
your index entries carefully to eliminate any vague terms or duplicate
entries. Also select each index entry to verify that the topic displayed is the
most appropriate information.

Processing and Displaying a Help Volume 107

4

Testing Graphics
• Physically run your application on various displays to verify that the

graphics are acceptable on color, grayscale, and monochrome displays.

• You can also simulate other displays by changing the number of colors
used by the desktop. To do so, open Style Manager, choose Number Of
Colors, and select a different color option.

Checking for Parser Errors

When developing a help volume, it is often convenient to set the
onerror=go option in the helptag.opt file. If you have done this, you
should remove the option and process your source files a final time to
ensure that no errors are encountered.

See Also

• “Generating a Browser Help Volume (dthelpgen)” on page 191

108 CDE Help System Author’s and Programmer’s Guide

4

109

HelpTag Markup Reference 5

This chapter describes all of the HelpTag markup elements (and their
associated tags) in alphabetical order. To help determine the name of a tag
based on how it is used, the elements are grouped below according to use.
(A few elements appear in more than one group.)

Meta information (information about your volume):

 <metainfo>
 <title>
 <copyright>
 <abstract>

<otherfront> (nonhierarchical topic)

Structure of a help volume:

 <!entity>
 <helpvolume>
 <hometopic>
 <chapter>
 <s1> …<s9> (heading)
 <rsect> (reference section)
 <otherhead>
 <procedure>
 <p> (paragraph)

110 CDE Help System Author’s and Programmer’s Guide

5

Inline elements:

 <book>
 <computer> (shorthand: “text”)
 <emph> (emphasis) (shorthand: !! text!!)
 <ex> (example) and <vex> (verbatim example)
 <image>

<keycap> (shorthand: [[text]])
 <lineno> (line number)
 <newline>
 <p> (paragraph)
 <quote> (directional quotes)

<sub> (subscript) (shorthand: _ _ text _ _)
<super> (superscript) (shorthand: ^^text^^)

 <term> (shorthand: ++text++)
 <user> (user input)
 <var> (variable) (shorthand: %%text%%)
 & …; (see <!entity>)

Important information:

 <note>
 <caution>
 <warning>
 <emph> (emphasis) (shorthand: !! text!!)

Lists:

 <list>
 <lablist> (labeled list)
 <item> (shorthand: *)

Graphics:

 <figure>
 <graphic>

Glossary and index:

 <glossary>
 <dterm> (definition of term)
 <term> (shorthand: ++text++)
 <idx> (index)

HelpTag Markup Reference 111

5

Cross-references and hyperlinks:

 <xref> (cross-reference)
 <link>
 <location>
 <term>

Hidden text:

 <!-- … --> (comment)
 <memo>

Titles and headings:

 <abbrev>
 <head>
 <otherhead>
 <procedure>
 <title> (title of help volume)

Override meaning of HelpTag markup:

 <vex> (verbatim example)

<!-- ... -->

Comment

Identifies text you want the HelpTag software to ignore. Comments cannot
be nested.

Syntax

<!-- comment text here -->

The comment text can contain any text except two dashes (--).

Example

The following markup hides both a comment and a figure:

<!-- Let’s leave out this figure for now:

112 CDE Help System Author’s and Programmer’s Guide

5

<figure entity=ProcessFlowChart>
Before and After Processing
<\figure>
-->

See Also

• “<memo>” on page 154

<abbrev>

Abbreviated title

Indicates an alternate, typically shorter, heading for a topic that has a long
title. When an abbreviated title is provided, it is used in the Index and
History dialog boxes rather than the full title.

If a heading contains a graphical element, you must provide an <abbrev>
that contains only the text of the heading. Although the graphic image can
be displayed in the topic tree, the Index and History dialog boxes cannot
display graphic elements.

An <abbrev> should not contain any markup.

Syntax

<topic-element> title
<abbrev> short title

Where topic-element is <hometopic> , <chapter> , <s1> , or any other
element that begins a new topic.

The <abbrev> tag must appear on the line immediately following the
heading.

An end tag is not required.

Examples

Here is a simple example:

<chapter> Ways of Treating Headings that are Too Long
<abbrev> Long Headings

HelpTag Markup Reference 113

5

Suppose you want to have a topic that doesn’t have its title displayed in the
help topic display area, but you do want a title to appear in the topic tree.
The following markup shows how this can be done:

<chapter> ∅
<abbrev> chapter title

See Also

• “<chapter>” on page 119

<abstract>

Abstract

Provides a short description of the help volume.

Syntax

<metainfo>
 .
 .
 .
 <abstract>

abstract text here ...
 <\abstract>
 .
 .
 .
<\metainfo>

The abstract text should not contain HelpTag markup because the abstract
may be read and displayed by applications that don’t recognize markup.

The <abstract> element is automatically assigned the ID string
_abstract . An author-defined ID cannot be assigned. The _abstract ID
can be used with the <link> element, but not with the <xref> element.

Abstract text may contain an optional <head> .

Example

This markup briefly describes the contents of a help volume:

114 CDE Help System Author’s and Programmer’s Guide

5

<abstract>
Online help for the Application Manager Version 1.0.
<\abstract>

Note

When creating a link to an element within the <metainfo> element, be
sure it is a type=Definition link.

HelpTag Markup Reference 115

5

The following markup shows how to create a link to the abstract:

<link hyperlink= "_abstract" type=Definition>
Choose this link for an abstract.<\link>

See Also

• “<metainfo>” on page 155
• “<head>” on page 133

<<annotation text>>

Annotation

Provides an explanatory note or comment within an example (<ex> tag).

Syntax

<ex [side | stack]>
text of the example ...<<annotation text >>
<\ex>

Where:

side Default. Places the annotation to the right of the example text
and on the same line as the first line of the example.

stack Places the annotation below the example text.

Enclose the text of an annotation in double angle brackets, as follows:
<< this is the annotation text>>. An annotation can only be used within an
<ex> tag. The side and stack parameters of the <ex> tag can be used to
position the annotation in relation to the example text.

To insert a blank line in an annotation, use a space followed by an empty
annotation, wordspace <<>>.

Example

The following markup uses the default side placement for the annotation:

<ex>
Login: <<Enter your name>>
<\ex>

116 CDE Help System Author’s and Programmer’s Guide

5

It produces:

Login: Enter your name

HelpTag Markup Reference 117

5

The following markup uses the stack parameter to accommodate a long
annotation:

<ex stack>
Quarterly Sales Reports

<<Q1: January, February, March Q2: April, May, June Q3: July, August,
September Q4: October, November, December>>
<\ex>

It produces:

<book>

Book title

Identifies the title of a book.

Syntax

<book> book title<\book>

Or:

<book| book title|

HelpTag formats book titles using an italic font.

Example

Either of the following two variations:

Refer to <book>The Elements of Style<\book>
for further details.

Or:

Refer to <book|The Elements of Style|
for further details.

118 CDE Help System Author’s and Programmer’s Guide

5

produce:

Refer to The Elements of Style for further details.

<caution>

Caution notice

Specifies information that warns the user about a potential loss of data or
hazard.

Syntax

<caution>
text of caution
<\caution>

The default heading is "Caution". To specify a different heading, use the
<head> tag as shown here:

<caution><head> alternate heading
text of caution
<\caution>

The <\caution> end tag is required.

To specify that an icon be displayed with the caution, define a file entity at
the top of your help volume as follows:

<!entity CautionElementDefaultIconFile FILE " filename">

Where filename is the name of the icon graphic. A sample caution icon
named cauticon.pm is provided in the
/usr/dt/dthelp/dthelptag/icons directory.

Example

Here is a caution message:

<caution>
There is no Undo for this selection. Before performing this task,
save any changes to your document.
<\caution>

HelpTag Markup Reference 119

5

The markup produces this output:

See Also

• “<note>” on page 157 includes an example of changing a heading.
• “<warning>” on page 174.
• “<figure>” on page 128.
• “<head>” on page 133.

<chapter>

Chapter

Indicates the start of a new topic with a new title.

Syntax

<chapter id= id>title
topic text ...

An end tag is not required.

If the topic title is long, you may want to provide an alternate abbreviated
title using <abbrev> . The short title is used in the Index and History
dialog boxes. If the title contains a graphical element, create an <abbrev>
with the title text only.

Example

Here are two markups that begin a new topic:

<chapter>A Manual of Style
<chapter id=DesktopTools>Desktop Tools

120 CDE Help System Author’s and Programmer’s Guide

5

See Also

• “<abbrev>” on page 112
• “<link>” on page 147
• “<rsect>” on page 164
• “<s1>…<s9>” on page 165
• “<xref>” on page 175

<computer>

Computer literal

Displays text that represents computer input or output.

Syntax

<computer> text<\computer>

Or:

“text”

The shorthand form uses two “ (left apostrophes) and two ”(right
apostrophes).

Examples

• The following markup:

<computer>Enter the correct numerical value.<\computer>

produces the following output:

Enter the correct numerical value.

• The following markup uses the shorthand form:

Everything in “computer ” comes out looking “like this. ”

and it produces:

Everything in computer comes out looking like this .

• Variables can be nested within computer text. For example, this markup:

‘‘void DisplayTopic (%%topic%%); ’’

produces:

HelpTag Markup Reference 121

5

void DisplayTopic (topic);

See Also

• “<ex>” on page 126
• “<user>” on page 170
• “<var>” on page 171

<copyright>

Copyright notice

Identifies text for the copyright notice.

Syntax

<metainfo>
 <title> Title (always before copyright)
 <copyright>
 © Copyright notice here ...

This element is optional within the <metainfo> section. If used, it must
follow the <title> element.

The end tag is not required.

The predefined entity © produces the copyright symbol (©).

Example

The following markup assigns a title to the help volume and provides
copyright information:

<metainfo>
<title>XYZ World Almanac
<copyright>
© Copyright 1995 XYZ Company. All rights reserved.

It produces:

© Copyright 1995 XYZ Company. All rights reserved.

122 CDE Help System Author’s and Programmer’s Guide

5

See Also

• “<metainfo>” on page 155
• “<title>” on page 170

<dterm>

Defined term

Identifies a term and the term’s definition within the glossary.

Syntax

<glossary>
 <dterm> first term

definition of first term
 .
 .
 .
 <dterm> Nth term

definition of Nth term

This element is used within the <glossary> section.

The name of the term follows the <dterm> tag and appears on the same
line. The term’s definition begins on the line following the <dterm> tag.

An end tag is not required.

Example

The following markup defines the first two words in a glossary:

<glossary>

<dterm>algorithm
A mathematical rule or procedure for solving a problem.

<dterm>click
To press and release a mouse button.

See Also

• “<glossary>” on page 130

HelpTag Markup Reference 123

5

• “<term>” on page 168

<emph>

Emphasized text

Formats the text in a font that draws attention to the text.

Syntax

<emph>text<\emph>

Or:

!! text!!

The shorthand form for the <emph> element is a set of double exclamation
marks (!!) before and after the text.

If you use the <emph> start tag, the <\emph> end tag is required.

Example

Either of the following two markups:

A thousand times <emph>no<\emph>.
A thousand times !!no!!.

produces:

A thousand times no.

See Also

• “<book>” on page 117
• “<var>” on page 171

<!entity>

Entity declaration

Assigns an entity name to a string of characters or to an external file.

124 CDE Help System Author’s and Programmer’s Guide

5

Syntax

<!entity entityname " string">

Or:

<!entity entityname FILE " filename">

An entity name can contain up to 64 letters, digits, and hyphens. Case is
not significant in entity names, but is often used to improve readability for
the author. The first character must be a letter. No space is permitted
between the < (left angle bracket), ! (exclamation mark), and entity in an
<!entity> declaration.

Entity declarations must always precede any other markup or text in the
help volume.

Where you want the defined entity to appear, insert an entity reference
using this syntax:

&entityname;

The entity reference consists of an & (ampersand), followed by the entity
name (as defined in the entity declaration), and ends with a ; (semicolon).

Purposes for Entities

There are four common reasons for defining an entity:

• Text that is associated with an entity name appears only once so that
changing the text requires making a change in only one place. All
references to the entity automatically change when HelpTag reprocesses
the files.

• The inefficiency of typing the same long or complex text string many
times can be avoided (along with typing mistakes) by typing just a short
entity reference wherever that text string will appear. The full text
string needs to be typed only once.

• The <figure> and <graphic> elements do not accept a file name. The
name of the file that contains the figure must be specified in an entity
declaration.

HelpTag Markup Reference 125

5

• It is convenient to put the help text into multiple files, yet HelpTag
accepts only one source file. These needs can be balanced by creating one
file that contains entity declarations and entity references that refer to
the files that contain the actual help text.

Examples

• The volume.htg source file can contain the following entity declarations
and entity references so that the actual text can be put into the named
files:

<!entity topic1 FILE "topic1">
<!entity topic2 FILE "topic2">
<!entity topic3 FILE "topic3">

&topic1;
&topic2;
&topic3;

• The following entity declaration causes the words "Architectural
Analysis of Aircraft Precision Components" to be displayed wherever the
&apc; entity reference appears in the marked-up files.

<!entity apc "Architectural Analysis of Aircraft Precision
Components">

• The following entity declaration for a figure is placed at the beginning of
the source file:

<!entity CloseUpFig FILE "figname.tif">

and the figure would be inserted where the following markup appears:

<figure entity=CloseUpFig>
Close Up View
<\figure>

See Also

• “Using Entities” on page 48
• “<figure>” on page 128
• “<xref>” on page 175
• Chapter 6, “Summary of Special Character Entities”

126 CDE Help System Author’s and Programmer’s Guide

5

<esc>

Escape

Causes text to be passed directly to the run-time help file without being
interpreted by HelpTag. In a customized application for example, an author
could embed Semantic Delivery Language (SDL) markup in the help
source file. The <esc> element prevents the SDL markup from being read
by the HelpTag parser. When the help volume is displayed with the Help
Viewer, the authored SDL markup is processed.

Do not use the <esc> tag to escape individual HelpTag symbols or markup
examples. To display HelpTag symbols, such as < (left angle bracket), \
(backslash), or & (ampersand), precede each symbol with an ampersand.
Use the <vex> element to provide HelpTag markup examples in a help
volume.

Syntax

<esc> text<\esc>

Or:

<esc| text|

Note – If the long form is used, the text cannot contain the three-character
sequence <\ x (the less-than symbol followed by a backslash followed by a
letter). If the short form is used, the text cannot contain the | (vertical bar)
character.

If you use the first syntax, the <\esc> end tag is required.

See Also

• “Displaying HelpTag Symbols” on page 30
• “<vex>” on page 172

<ex>

Computer example

Shows computer text without changing the spacing or line breaks.

HelpTag Markup Reference 127

5

Syntax

<ex [nonumber | number] [smaller | smallest] [side | stack]>
example text here ...
<\ex>

Where:

nonumber (Default.) Omits the adding of line numbers to the
beginning of each line.

number Puts a line number at the beginning of each line.

smaller Displays the example using smaller fonts.

smallest Displays the example using smallest fonts. This makes
long lines fit within a narrower width.

side Applicable only when using an annotation within the
example. Specifies the position of the annotation text in
relation to the example text. The default position is side ,
which places the annotation to the right of the example
text and on the same line as the first line of the example.

stack Places the annotation below the example text.

Examples are printed in computer font, and they are indented from the
left text margin.

If you include the number attribute, the line numbers of the example will
be numbered. This is useful for referring to specific lines.

The following character pairs, which have special meanings in other
contexts, are treated as ordinary text within an example:

!! double exclamation
-- double minus sign
++ double plus sign
" double quote

The <\ex> end tag is required.

Example

The following markup:

128 CDE Help System Author’s and Programmer’s Guide

5

<ex>
Examples are printed in computer
font. Line breaks are preserved.
<\ex>

produces:

See Also

• “<computer>” on page 120
• “<user>” on page 170
• “<vex>” on page 172

<figure>

Figure

Inserts a graphical image.

Syntax

<figure entity= entity [id= id [nonumber | number= n]
[left |center | right] [cappos=[capleft | capcenter | capright]]
[ghyperlink= id [glinktype= type] [gdescription= text]]] >
caption string
<\figure>

entity =name Specifies a file entity which identifies the file that
contains the graphic image to be inserted.

id =name Optional. Defines an ID name that can be used in
cross-references to this figure.

nonumber Optional. Suppresses the word “Figure” and the
automatically generated figure number.

number =n Optional. Used to override the automatically
generated figure number.

HelpTag Markup Reference 129

5

left , center , or right
Specifies horizontal alignment of the image within the
current page width.

cappos =position Specifies the horizontal alignment of the caption using
the values capleft , capcenter or capright . A
caption is optional.

ghyperlink ="id" Optional. Specifies that the graphic portion of the
figure be a hyperlink. Follows the same usage as the
hyperlink attribute in the <link> element. References
to this location would use the specified id identifier.

glinktype =type Optional. Specifies the type of hyperlink. The default
type is Jump. Other type values include JumpNewView,
Definition , Man, Execute , and AppDefined . The
ghyperlink parameter and id value are required
when using parameter. Follows the same usage as the
type attribute in the <link> element.

gdescription ="text"
Optional. Provides a description of the hyperlink. The
ghyperlink parameter and id value are required
when using this parameter.

The <\figure> end tag is required.

To integrate an external graphics file into a help topic, you must have an
entity declaration (<!entity entityname FILE " filename">) that
associates the entity name with the graphic’s file name.

Examples

• The following markup inserts a graphic with the specified caption and an
automatically generated figure number:

<!entity MapFigure FILE "worldmap.xwd">
 .
 .
 .
<figure entity=MapFigure>
Caption for Figure
<\figure>

• The following markup inserts a figure that is numbered but does not
have a caption.

130 CDE Help System Author’s and Programmer’s Guide

5

<!entity StateMap FILE "oregon.xwd">

 .
 .
 .
<figure entity=StateMap>
<\figure>
 .
 .
 .

• The following markup inserts a figure using a specific figure number and
a caption. The caption is split into two lines where the \ (backslash)
character appears.

<figure number=99 entity=SchemDiag>
Schematic that Illustrates\the Overall System Design
<\figure>

See Also

• “<!entity>” on page 123

• “<graphic>” on page 131

• “<link>” on page 147

• “<xref>” on page 175

• “Execution Aliases” on page 77 provides information about using
execution links

<glossary>

Glossary

Starts the glossary section which contains the definitions for all the terms
that are marked with the <term> element.

Syntax

<glossary>
<dterm> first term
definition of first term can continue over multiple lines or paragraphs

<dterm> second term

HelpTag Markup Reference 131

5

definition of second term ...
 .
 .
 .

"Glossary" is automatically used as the heading for the glossary section.

A <dterm> element identifies each term and its definition.

All terms marked with <term> without the nogloss parameter are
required to be in the glossary. If the term is not in the glossary, omitted
terms are listed in the volume.err file, which is created when you run
HelpTag.

An end tag for <glossary> is not required.

Example

Here is a simple glossary with two definitions:

<glossary>

<dterm>oxymoron
A combination of contradictory words.
<dterm>veritable
Being in fact the thing named. Authentic.

See Also

• “<term>” on page 168
• “<dterm>” on page 122

<graphic>

Inline graphic

Inserts a graphical element within a line of text.

Syntax

<graphic entity= name [id=id]>

Where:

132 CDE Help System Author’s and Programmer’s Guide

5

name An entity name that is defined in an entity declaration. The
entity declaration associates the entity name with the name of
the file that contains the graphic to be inserted.

id =name Optional. Defines an ID name that can be used in cross-
references to this figure.

The <graphic> element is similar to <figure> except that the <graphic>
element is intended for embedding small graphics within text, whereas the
<figure> element inserts figures between paragraphs.

Examples:

• The following markup first defines an entity (mini-icon) as being
associated with the contents of a graphics file (named mini.pm). Then
the <graphic> element indicates the location of the graphic within a
line of text.

<!entity mini-icon FILE "mini.pm">

 .
 .
 .
The <graphic entity=mini-icon> icon is used to represent very
small images.

• The following markup first defines a topic whose ID is mini-icon-
topic . It then shows how to use the inline graphic as a hyperlink to this
topic.

HelpTag Markup Reference 133

5

<s1 id=mini-icon-topic>When you click on the inline graphic, it
will bring you to this topic.

.

.

.
The <link mini-icon-topic> <graphic entity=mini-icon> <\link>
icon is to represent very small things.

See Also

• “<!entity>” on page 123
• “<figure>” on page 128
• “<link>” on page 147
• “<p>” on page 160

<head>

Heading

Indicates the title for elements that normally do not have a title (such as
<abstract> , <paragraph> , <list> , or <otherfront>) or have a default
title (such as <note> , <caution> , and <warning>).

Syntax

<element><head> title text

A heading starts with the first nonblank character after the <head> tag.
The <head> tag can appear on the same line as the element to which a
heading is being added, or on the following line.

The <head> element can be used with elements that expect a title, but it is
not required in those cases.

Headings that are wider than the heading area are automatically wrapped
onto successive lines. To force a specific line break, put a \ (backslash)
where you want the line to break.

A heading ends at the end of the line in the source file unless the line ends
with an & (ampersand). If a heading spans multiple lines in your source
file, put an ampersand after all the lines except the last.

The <\head> end tag is not required.

134 CDE Help System Author’s and Programmer’s Guide

5

Examples

• The following markup adds a title to a list and specifies the start of a
new line where the \ (backslash) appears:

<list><head>Printing Options\for the QRZ Hardware

It produces this output:

HelpTag Markup Reference 135

5

• The following markup overrides the default "Note" heading:

<note><head>Tips and Shortcuts

Keyboard menu accelerators provide quick access to menu commands.
<\note>

It produces this output:

See Also

• “<abstract>” on page 113
• “<caution>” on page 118
• “<image>” on page 139
• “<lablist>” on page 142
• “<location>” on page 152
• “<note>” on page 157
• “<otherfront>” on page 158
• “<p>” on page 160
• “<warning>” on page 174

<helpvolume>

Application help volume

This is the "root" structural element; it contains all the markup for an
entire help volume.

Syntax

all entity declarations
 .
 .
 .
<helpvolume>
 .

136 CDE Help System Author’s and Programmer’s Guide

5

 .
 .

 all of your help is included here, either
 literally or using file entity references

 .
 .
 .
<\helpvolume>

If you do not enter this tag, its presence is automatically assumed by the
HelpTag software.

All entity declarations must appear before the <helpvolume> start tag.

See Also

• “<abstract>” on page 113
• “A Help Volume at a Glance” on page 30
• “<!entity>” on page 123
• “<hometopic>” on page 136
• “<metainfo>” on page 155

<hometopic>

"Home" or top-level help topic

Identifies the start of the top-level help topic.

Syntax

<hometopic> heading
topic text begins here ...

There is only one home topic for a help volume. It comes after the meta
information (<metainfo>) and before the first <chapter> or <s1> .

The <hometopic> element does not support an author-defined ID. The
HelpTag software assigns the predefined ID _hometopic .

To create a hyperlink to the home topic, use this syntax:

<link hyperlink= "_hometopic">…<\link>.

HelpTag Markup Reference 137

5

Example

<hometopic>Welcome to Online Help
This is the home topic for the online help ...

<chapter>First Subtopic
This is the first subtopic ...

<chapter>Second Subtopic
This is the second subtopic ...
 .
 .
 .

See Also

• “A Help Volume at a Glance” on page 30
• “<link>” on page 147
• “To Create a Home Topic” on page 41
• “<metainfo>” on page 155

<idx>

Index entry

Defines an entry to appear in the help volume index.

Syntax

<idx> text<\idx>

Or:

<idx| text|

Or:

<idx> text<sort> sort key<\idx>

Where:

text The text string that appears in the keyword index.

sort key An optional text string used when sorting the index. The sort key
influences where the text appears in the keyword index. The sort
key string does not appear in the keyword index.

138 CDE Help System Author’s and Programmer’s Guide

5

Choosing the Index button in a general help dialog box displays a help
index. Adding index entries to help topics is important because a user can
search the index for a word or phrase to find help on a subject.

Either the <idx> start and end tags or the short form can be used.

The <sort> element changes the sort order for an index entry. Specifically,
the <sort> element is used within the <idx> element to request that the
keyword appear at the location indicated by the sort key string. No end tag
for <sort> is required.

Examples

• The following markup shows the definition of some simple index entries
using the shortform. The index entries are indented to make the source
text easier to read.

HelpTag Markup Reference 139

5

A portable personal computer has a full-sized keyboard, built-in
disk drives and a detachable LCD screen.

<idx|keyboard|
<idx|disk drive|
<idx|screen, LCD|
<idx|personal computer, portable|
<idx|portable, personal computer|

• The following example displays "+" in the index, but it appears where
"plus" would appear in the alphabetical list of entries.

<idx>+<sort>plus<\idx>

<image>

As-is image

Shows text with the same line breaks as the source text.

Syntax

<image [indent][id= id][gentity= graphic-ent [gposition= pos]
[ghyperlink= gid [glinktype= type]]]>
text
<\image>

Where:

indent Optional. Specifies that the paragraph be indented
6 spaces from the current left margin.

id =id Optional. Defines an ID name that can be used in
cross-references to this location.

gentity =graphic-ent Optional. The name of a graphic entity around
which the text is to be wrapped. The gentity
parameter and graphic-ent value are required if
the gposition , ghyperlink , or glinktype
parameter is used.

gposition =pos Optional. Either left or right to indicate
whether the optional graphic is to be left-justified
or right-justified.

140 CDE Help System Author’s and Programmer’s Guide

5

ghyperlink =gid Optional. Specifies that the graphic be a hyperlink
and specifies the destination of the hyperlink. The
ghyperlink parameter and gid value are required
if the glinktype parameter is used. Follows the
same usage as the hyperlink attribute in the
<link> element. (The id value, not the gid value,
would be used to reference the location of the
image text.)

glinktype =type Optional. Specifies the type of hyperlink. The
default type is Jump. Other type values include
JumpNewView, Definition , Man, Execute , and
AppDefined . Follows the same usage as the type
attribute in the <link> element.

text The text of the paragraph that wraps around the
graphic.

Text between the <image> and <\image> tags is shown with the same
spacing, indentation, and line breaks that appear in the actual text. No
justification, word wrapping, or removal of empty lines is done. However, a
proportional font is used, so columns of text that are lined up on a
computer screen may not line up in the displayed help information. If the
displayed text is too wide to fit within the display area, a horizontal scroll
bar automatically appears.

All inline text elements and special characters are recognized.

An optional <head> can be used with <image> . If you intend to create a
cross-reference to the element using <xref> , the <head> tag is required.

The indent parameter causes the displayed text to be indented from the
left margin.

Either the start and end tags (<image> and <\image>) or the short form
(<image|…|) can be used.

See Also

• “<ex>” on page 126

• “<vex>” on page 172

• “<p>” on page 160
• “Execution Aliases” on page 77 provides information about using

execution links

HelpTag Markup Reference 141

5

<item>

List item

Identifies an item in a list.

Syntax

<list [id= id]>
 * List item
 * List item
<\list>
Or:
<list order>
 <item id= name1>List item
 <item id= name2>List item
 <item id= name3>List item
 .
 .
 .
<\list>

The shorthand form, which is an * (asterisk), is almost always used.

The long form allows you to cross-reference an item in a list. You can only
cross-reference items in an ordered (numbered) list. The automatically
assigned item numbers are used in the cross-reference text (which HelpTag
substitutes for the <xref> element). Unlike a number, a bullet character is
not a meaningful substitution for the cross-reference text.

See Also

• “<list>” on page 150
• “<head>” on page 133
• “<xref>” on page 175

<keycap>

Keyboard keys

Represents keyboard keys.

142 CDE Help System Author’s and Programmer’s Guide

5

Syntax

<keycap> keycap characters<\keycap>

Or:

[[keycap characters]]

The shorthand form is [[(two left square brackets) and]] (two right square
brackets) before and after the keycap characters.

Entity references for special symbol characters, such as arrows, can be
used. Multiline keycaps are not available.

Example

The following markup:

Press [[Control]] + [[Home]] to go to the beginning of your document.

produces this output:

See Also

• “<list>” on page 150
• “<head>” on page 133
• “<xref>” on page 175

<lablist>

Labeled list

Starts a labeled list in which the labels appear in the left column and the
items (to which the labels refer) appear in the right column.

Syntax

<lablist [loose | tight][wrap | nowrap]>

HelpTag Markup Reference 143

5

[<labheads> \Heading 1 \ Heading 2]
\ label\ text for the first item
\ label\ text for the second item
 .
 .
 .
<\lablist>

Where:

loose Default. Requests a vertical gap between the items in the list.

tight Requests no extra vertical space between items in the list.

wrap Default. Allows long labels to wrap to multiple lines.

nowrap Prevents labels from wrapping to multiple lines.

Backslashes (\) indicate the start and end of a label; leading and trailing
spaces are ignored. Long labels are broken into multiple lines unless
nowrap is used. The predefined character entity, (&sigspace;), can be
used to insert a nonbreaking space into a label.

The text of the labeled item follows the second backslash, either on the
same line or on the following line. The end of the item is indicated by one of
the following:

• An empty line
• Start of another labeled item
• <\lablist> end tag

If a labeled item consists of more than one paragraph, leave an empty line
between the paragraphs. The end of the labeled list is indicated by the
required <\lablist> end tag.

The optional column headings, one for each column, immediately follow the
<labheads> tag (on the same line). The column headings are separated
from one another by the \ (backslash). The <\labheads> end tag is not
required. However, the <lablist> end tag is required.

Example

The following markup:

144 CDE Help System Author’s and Programmer’s Guide

5

<lablist tight>
<labheads> \ Unit \ Meaning

\in\ inches
\mm\ millimeters
\cm\ centimeters

<\lablist>

produces this output:

Unit Meaning

in inches

mm millimeters

cm centimeters

The following markup allows long labels to break into multiple lines.

<lablist>
\Creating Your System Password:\
To log into your computer, you must enter a password.

\Viewing the Message of the Day:\
To view the message of the day when you log into your computer, edit
your startup configuration file.

\Setting the System Time and Date:\
To set the date enter the day, month, and year in the format dd-mm-
yy. To set the time, use the format hh-mm-ss.
<\lablist>

HelpTag Markup Reference 145

5

It produces the following output:

Adding the nowrap parameter in the same markup produces
this output:

See Also

• “<head>” on page 133
• “<list>” on page 150

<lineno>

Line number

Provides a cross-reference to a specified line in an example.

Syntax

<ex number>
example text <lineno id=name>

146 CDE Help System Author’s and Programmer’s Guide

5

.

.

.
<\ex>

This element is used only in a numbered example. Enter the <lineno> tag
at the end of the line you want to refer to. The id parameter assigns an ID
that can be used to create a cross-reference to the line number.

Example

This markup creates a numbered example that includes a cross-reference to
the third line.

<ex number>
Enter Daily Account Total
Run Invoice Summary Report
Go to Monthly Ledger <lineno id=ledger>
Run Daily Update
<\ex>
.
.
.
To run closing reports, return to <xref ledger> and run the Past Due
Accounts Report.

The line number where the ID is located is substituted for the <xref
ledger> cross-reference. It produces this sentence:

To run closing reports, return to 3 and run the Past Due Accounts Report.

HelpTag Markup Reference 147

5

The end tag is not required for <lineno> .

See Also

• “<ex>” on page 126

<link>

Hyperlink

Delimits text or an inline <graphic> to be used as a hyperlink.

Syntax

<link hyperlink [type] [" description"]> text<\link>

Or:

<link hyperlink= " hyperlink" [type= type] [description= " description"]>

The hyperlink attribute, which is required, is a value that identifies the
destination or the behavior for the link. For a standard "jump" link,
hyperlink is the ID of the element you want to jump to.

The type parameter can have the following values:

Jump Default. Jumps to the topic that contains the ID
hyperlink.

JumpNewView Jumps to the topic that contains the ID hyperlink, but
requests that the hosting application display the topic in
a new window.

Definition Displays, in a temporary pop-up window, the topic that
contains the ID hyperlink.

Execute Executes the hyperlink string as a command.

Man Displays a man page using the hyperlink string as the
parameter to the man command.

AppDefined Sends the hyperlink string to the hosting application for
special processing.

148 CDE Help System Author’s and Programmer’s Guide

5

The text between the start and end tag becomes the "hot spot" that the user
will choose to invoke the link. Any word or phrase used as a hyperlink is
underlined when displayed. Capitalization is not significant for the
hyperlink and type values.

A hyperlink that executes a command is called an execution link. The
command to be executed can be included in the <link> command or
defined as an execution alias, which is a type of resource. For information
about using execution links, see “Execution Link Control” on page 77.

Notes

• Avoid using the type keywords (listed above) as values for hyperlink. If
you must do so, explicitly identify the parameters as shown in the second
syntax line.

• The <link> element is not needed in a cross-reference that uses the
<xref> element because a hyperlink is automatically created where the
<xref> element is used.

Examples

• The following markup defines a simple hyperlink to a topic with the ID
Intro . Notice that capitalization of the ID is not significant.

<s1 id=Intro>Introducing the Desktop
.
.
.
Refer to the <link intro>Introduction<\link>.

• The following markup defines the same hyperlink jump as in the
previous example but the <link> element is not used because a cross-
reference (<xref…>) is automatically a hyperlink. In this case, the title
of the Intro topic is automatically supplied by HelpTag.

Refer to <xref intro>.

This markup produces this output:

Refer to Introducing the Desktop.

• The following markup defines a hyperlink that is activated when the
inline graphic is chosen. A new window is opened to display the
“clockfeatures” topic.

HelpTag Markup Reference 149

5

Whenever you see the <link clockfeatures JumpNewView>
<graphic entity=StopWatchIcon><\link> symbol, stop and answer the
quiz questions.

150 CDE Help System Author’s and Programmer’s Guide

5

It produces this output:

• The following markup creates a link that displays the man page for the
grep command:

For more details, refer to the <link grep Man>grep man
page<\link>.

• The following markup creates an execution link using an execution alias
named startDtterm . The alias name and the command it executes are
defined in the application’s application defaults file.

To open a terminal window, click <link hyperlink=”DtHelpExecAlias
startDtterm” Execute>Start Terminal Emulator.<\link>

For information about execution aliases and how to define them, see
“Execution Aliases” on page 77.

See Also

• “<figure>” on page 128
• “<hometopic>” on page 136
• “<idx>” on page 137
• “<image>” on page 139
• “<location>” on page 152
• “<xref>” on page 175
• “Execution Link Control” on page 77

<list>

List

Starts a list consisting of items that are optionally marked with bullets or
automatically generated numbers or letters.

Syntax

<list [bullet | order | plain] [loose | tight][continue]

HelpTag Markup Reference 151

5

[lalpha |ualpha | lroman | uroman | arabic] >

 * first item
 * second item
 .
 .
 .
<\list>

Where:

bullet Default. Displays a bullet before each item.

order Displays a number in front of each item. The numbers are
automatically generated and begin with the number one.
The default is Arabic numbers. Ordered lists can also use
alphabetical sequences or Roman numerals.

plain Does not put a bullet, number, or letter in front of each
item.

continue Requests that the numbering of items continue from the
previous list.

loose Default. Requests a vertical gap between the items.

tight Requests no extra vertical spacing between the items.

lalpha Lowercase alphabet.

ualpha Uppercase alphabet.

lroman Lowercase Roman numeral.

uroman Uppercase Roman numeral.

arabic Default for order list type.

Each item must start on a new line preceded by either an asterisk (*) or
the <item> tag. The asterisk is the shorthand form of the <item> tag.
Spaces and tabs may appear on either side of the asterisk. Items may
continue over multiple lines. An item can consist of multiple paragraphs, in
which case an empty line must separate the paragraphs. The nesting of
lists is allowed, so a list can appear within a list.

The <\list> end tag is required.

152 CDE Help System Author’s and Programmer’s Guide

5

Examples

The following markup examples:

<list>
* chocolate
* raspberry
* vanilla
<\list>

<list plain tight>
* Word Processing
* Graphics
* Printing
<\list>

<list order lalpha>
* Word Processing
* Graphics
* Printing
<\list>

produce:

See Also

• “<item>” on page 141
• “<lablist>” on page 142
• “<head>” on page 133

<location>

Location

HelpTag Markup Reference 153

5

Defines an ID as referring to the location of the <location> element. The
<location> element enables a portion of a topic to serve as a destination
for a hyperlink using the <link> or <xref> element.

Syntax

<location id= id>text<\location>

Or:

<location id= id| text|

Where:

id The identifier for the current location, which can be used as a
destination for hyperlinks.

text The block of text where you want to assign the ID.

The <location> element is not needed at locations where there is already
an element (such as <hometopic> or <figure>) that has a built-in ID or
accommodates an author-defined id parameter.

Cross-references created with the <xref> element substitute the text
between the <location> start and end tag for the <xref> element.

Examples

The following markup names a location and elsewhere creates a hyperlink
to the location.

<s1 id=ConfigTopic> Configuration
...

<location id=ConfigTopicBody> some text<\location>
 ...
<s1 id=UseTopic> Usage
 ...
See <link ConfigTopicBody>Configuration<\link>
for additional information.

The advantage of linking to the ID in the <location> element is that the
help window automatically scrolls to the point where the <location> tag
is entered. In contrast, a link to the topic’s ID ("ConfigTopic" in this case),
always goes to the top of the topic.

154 CDE Help System Author’s and Programmer’s Guide

5

The <location> element can also reference a position in your file using
the predefined entity, (∅), as a placeholder.

Adding this markup at a key position in your file, allows you to create a
link to that specific location:

paragraph text
.
.
.
<location id=pointA>∅<\location>
.
.
.

See Also

• “<link>” on page 147
• “<xref>” on page 175

<memo>

Memo

Identifies a writer’s comments or questions, which do not appear in the
final help volume.

Syntax

<memo>
memo text
<\memo>

Or:

<memo|memo text|

Memo text is printed in drafts of your help volume if you specify memo in
the helptag.opt file. Otherwise, memo text is not printed, especially when
you create the final version of the help volume. Memo text, when it appears,
is printed in a different typeface. Do not use markup within memo text.

HelpTag Markup Reference 155

5

Examples

Here is an example of a memo:

<memo>
Patti: We need a drawing to illustrate this.
<\memo>

The following markup uses the short form of the <memo> element:

<memo|Mike: Please explain how the following
command is supposed to work|

See Also

• “To Insert a Writer’s Memo” on page 87
• Sample helptag.opt file on page 97

<metainfo>

Meta information

Starts the meta information section, which contains information about the
information contained in the help volume. Meta information includes the
volume’s title and a copyright notice.

Syntax

<helpvolume>
 <metainfo>
 <title> volume title
 <copyright>
 © Copyright XYZ Company 1995...
 <abstract>

brief description of help volume
 .
 .
 .
 <\metainfo>
<hometopic> ...
 .
 .
 .

156 CDE Help System Author’s and Programmer’s Guide

5

The meta information section is optional, but it is typically included in a
help volume. Although optional, the title, copyright, and abstract
subsections provide useful information about your help volume and are
recommended.

If you include any of these subsections, the meta information section is
required.

The <otherfront> element can be used to define subsections other than
the predefined title, copyright, and abstract subsections.

The <\metainfo> end tag is required.

Example

<metainfo>

<title>Inventory Tracking Software

<copyright>
© Copyright 1995 XYZ Company.
All rights reserved.

<abstract>
Explains how to use the Inventory Tracking Software

<\metainfo>

See Also

• “<title>” on page 170
• “<copyright>” on page 121
• “<abstract>” on page 113
• “<otherfront>” on page 158

<newline>

New line

Starts a new line within a paragraph or annotation.

HelpTag Markup Reference 157

5

Syntax

text<newline> text on next line

Text that follows the <newline> element begins on a new line.

Example

The following markup ensures that the path name begins on a new line:

Put your files for the manual in the special directory
<newline>/projects/userguide/draftdoc.

See Also

• “<vex>” on page 172
• “<ex>” on page 126
• “<image>” on page 139

<note>

Note

Creates a special format which attracts attention to text that makes an
important point.

Syntax

<note>
text of note
<\note>

The default heading for the note is "Note". To specify a different heading,
use the <head> element.

If you want an icon to appear with the note, define
NoteElementDefaultIconFile in an <!entity …> declaration.

The default note icon named note icon.pm is located in the
/usr/dt/dthelp/dthelptag/icons directory.

The <\note> end tag is required.

158 CDE Help System Author’s and Programmer’s Guide

5

Examples

• The following markup uses the default heading:

<note>
Warranty information is in your installation manual.
<\note>

• The following markup specifies a different heading:

<note><head>Read This First
Warranty information is in your installation manual.
<\note>

See Also

• “<caution>” on page 118
• “<warning>” on page 174
• “<head>” on page 133

<otherfront>

Other meta information (front matter)

Used for meta information (front matter) that does not fit within one of the
predefined categories such as title, copyright, and abstract. The
<otherfront> element can also be used to create a nonhierarchical topic.
Because a nonhierarchical topic does not appear in the topic tree, a
hyperlink must be added to display the topic. The <link> or <xref>
element can be used to create a hyperlink to the <otherfront> element.

Syntax

<metainfo>
 .
 .
 .
<otherfront [id= id]><head> title of section

text

If a heading is needed, use the <head> element.

<otherfront> must follow all other subsections of <metainfo> .

HelpTag Markup Reference 159

5

See Also

• “<metainfo>” on page 155
• “<head>” on page 133

<otherhead>

Other heading

Creates a subheading within a topic.

Syntax

<otherhead> heading

Headings may occur anywhere within the text of a topic. The <otherhead>
element does not appear in the list of help topics displayed in the topic tree.

The <\otherhead> end tag is not required.

Example

Here is an example in which <otherhead> elements identify two
subsections within an <s1> topic:

<s1>Integration Tasks
There are two main tasks required to integrate your application.

<otherhead> Editing Configuration Files
Configuration files identify the colors, icons, and actions used by
an application.

<otherhead> Archiving Configuration Files
.
.
.

160 CDE Help System Author’s and Programmer’s Guide

5

This markup produces:

See Also

• “<head>” on page 133
• “<procedure>” on page 162
• “<rsect>” on page 164
• “<s1>…<s9>” on page 165

<p>

New paragraph

Starts a paragraph that is indented or wrapped around a graphic.

Syntax

<p [indent] [gentity= graphic-ent [gposition= pos]
[ghyperlink= gid [glinktype= type]]] [id= id] > text...

Where:

indent Optional. Specifies that the paragraph be indented
6 spaces from the current left margin.

gentity =graphic-ent Optional. The name of a graphic entity around
which the paragraph is to be wrapped. The
gentity parameter and graphic-ent value are
required if the gposition , ghyperlink , or
glinktype parameter is used.

gposition =pos Optional. Either left or right to indicate
whether the optional graphic is to be left-justified
or right-justified.

HelpTag Markup Reference 161

5

ghyperlink =gid Optional. Specifies that the graphic be a hyperlink
and specifies the destination of the hyperlink. The
ghyperlink parameter and gid value are required
if the glinktype parameter is used. Follows the
same usage as the hyperlink attribute in the
<link> element. (The id value, not the gid value,
would be used to reference this paragraph’s
location.)

glinktype =type Optional. Specifies the type of hyperlink. The
default type is Jump. Other type values include
JumpNewView, Definition , Man, Execute , and
AppDefined . Follows the same usage as the type
attribute in the <link> element.

id =id Optional. Defines an ID name that can be used in
cross-references to this location.

text The text of the paragraph that wraps around the
graphic.

Use the <p> element if you need to indent a paragraph, wrap the
paragraph around a graphic, or use a run-in head style paragraph.

An optional <head> can be used with <p> . If you intend to create a
cross-reference to the element using <xref> , a <head> tag is required. Use
the <head> and <\head> tags to delimit the heading text.

A <\p> end tag is not required.

Examples

• Here are two paragraphs, the second of which is indented:

Some people do not like to read instruction manuals.
<p indent>This is not always a good idea.

produces:

Some people do not like to read instruction manuals.
 This is not always a good idea.

• This markup creates a paragraph style with a run-in head.

<p><head>Examples and Illustrations <\head>
Examples, perhaps the most common pattern of organization, are
appropriate whenever the reader might be tempted to ask <quote>
For example?<\quote>

162 CDE Help System Author’s and Programmer’s Guide

5

It produces this output:

See Also

• “<head>” on page 133

• “<procedure>” on page 162

• “<s1>…<s9>” on page 165

• “To Wrap Text around a Graphic” on page 84

• “Execution Aliases” on page 77 provides information about
using execution links

<procedure>

Procedure

Starts a section within a topic.

Syntax

<procedure> heading
procedure text...

Procedures may occur anywhere within the text of a topic. They are not
included in the list of topics displayed in the topic tree.

The end tag is not needed.

Example

This markup:

<procedure> Entering Special Characters

To enter Greek or mathematical characters in your document, use the
Symbols font.

HelpTag Markup Reference 163

5

produces this output:

See Also

• “<head>” on page 133
• “<otherhead>” on page 159
• “<s1>…<s9>” on page 165

<quote>

Quote

Puts text within double quotation marks using open and close quote
characters.

Syntax

<quote> text<\quote>

Or:

"text"

Use the start and end tags (<quote> …<\quote>) or a pair of double
quotation marks (" …") to delimit the text.

Example

The following markup:

... referred to in this manual as "the Standard" ...

produces:

…referred to in this manual as “the Standard”…

164 CDE Help System Author’s and Programmer’s Guide

5

See Also

• “<book>” on page 117
• “<computer>” on page 120
• “<var>” on page 171

<rsect>

Reference section

Identifies an entry in the reference section.

Syntax

<rsect [id= id]> reference section heading
 .
 .
 .
<rsub> reference subsection heading

The <rsect> element can be used to identify a reference section. It is
useful to identify reference material that is presented in a series of similar
sections. For example, each reference section could describe one software
command.

An <rsect> consists of:

• Required heading
• Optional introductory text
• Optional reference subsections (<rsub>)

Each <rsect> section can have multiple <rsub> sections. Each <rsub>
element must have a heading. A cross-reference to a reference subsection is
not allowed.

The topic tree includes <rsect> headings but excludes <rsub> headings.

End tags (for either <rsect> or <rsub>) are not required.

Example

The following markup illustrates the use of this element:
<rsect>purge

HelpTag Markup Reference 165

5

 .
 .
 .
<rsub>Syntax
purge filename

<rsub>Example
purge file01

<rsub>Related Commands
delete

See Also

• “<chapter>” on page 119
• “<s1>…<s9>” on page 165

<s1>…<s9>

Subsection (<s1> , <s2> , ... , <s9>)

Starts a topic in the hierarchy.

Syntax

<sn [id= name]> heading
topic text...

Where n is the level number (1, 2,…, or 9).

Topics entered with <chapter> can have subtopics entered with <s1> ,
<s1> topics can have <s2> subtopics, and so on. You cannot skip a level.

The heading for a section can be on the same line as the <sn> tag or on the
next line; a heading is required. Text within a section is optional.

The end tag is usually omitted, but in some instances the end tag may be
necessary. For example, when a section is followed by an <rsect> element
that is on the same level, an end tag for the section is required. Without the
end tag, the <rsect> element would be considered a subsection of the
section preceding it.

166 CDE Help System Author’s and Programmer’s Guide

5

Examples

• The following illustrates a three-level hierarchy within a topic.

<chapter>Running the Processor
topic text...

<s1>Getting Started
To run the program, type in the usercode and your password.

<s1>Customizing
You may now set up this conversion program to change your computer from beige to
red.

<s2>Configuration
Use either the disk drive or the tape drive to archive your files.

<s3>Disk Drive Advantages
See data sheet for specifications.

<s3>Tape Drive Advantages
See data sheet for specifications.

<s2>Support
If you really need help, call technical support.

• In the following markup, a section end tag (<\s1>) is used to make the
<rsect> section be at the same level in the hierarchy.

<s1> first-level heading
text

<s1> first-level heading
text
<\s1>
<rsect> first-level heading
text

In contrast, leaving out the end tag causes the <rsect> section
to become a subtopic of the second <s1> section:

<s1> first-level heading
text

<s1> first-level heading
text

HelpTag Markup Reference 167

5

<rsect> second- level heading
text

See Also

• “<chapter>” on page 119
• “<head>” on page 133
• “<rsect>” on page 164

<sub>

Subscript

Creates a subscript character.

Syntax

<sub> character to subscript<\sub>

Or:

__text__

The shorthand form uses two __ (underscore) characters before and after
the characters to subscript.

Example

The following markup:

<p>The chemical element H<sub>2<\sub>O contains
two hydrogen molecules.

produces the following output:

The chemical element H2O contains two hydrogen molecules.

See Also

• “<super>” on page 168

168 CDE Help System Author’s and Programmer’s Guide

5

<super>

Superscript

Creates a superscript character.

Syntax

<super> character to superscript<\super>

Or:

^^text^^

The shorthand form uses two ^^ (caret) characters before and after the
characters to superscript.

Example

The following markup:

<p>The answer to the problem is 2<super>8<\super>.

produces this output:

The answer to the problem is 2 8 .

See Also

• “<sub>” on page 167

<term>

Glossary term

Writes a newly introduced term in a special font and establishes a
hyperlink to its definition in the glossary.

Syntax

<term baseform [gloss | nogloss]> text <\term>

Or:

<term baseform [gloss | nogloss]| text |

HelpTag Markup Reference 169

5

Or:

++text++

Where:

baseform The form of the term as it appears in the glossary if it is not
the same as used in the text. This difference can occur, for
example, when the term is used in the text in its plural form
but appears in the glossary in its singular form. If the term
includes spaces or special characters, put the baseform string
in quotes.

gloss Default. Requests that HelpTag verify that the term is in the
glossary.

nogloss Omits the term from the glossary; however, the term is
formatted in a bold font.

The shorthand form uses two ++ (plus signs) before and after the glossary
term.

Note – If your help volume does not include a glossary, use the nogloss
parameter.

When HelpTag processes the help volume, warning messages are issued to
indicate glossary terms that were not marked with the nogloss parameter
and do not have corresponding definitions in the glossary.

Tagging a term with the <term> element automatically creates a hyperlink
to the glossary. If there is no glossary, the link will not work.

A <\term> end tag is required if the long form is used.

Example

The following markup puts "structural elements" in a special font (boldface
with a dotted underscore) to indicate it is a glossary term and creates a
hyperlink to the glossary. Because the glossary entry contains a space, the
text is in quotes. The plural form appears in the text. HelpTag checks for
the singular form in the glossary and reports an error if it is not found.

SGML views a document as a hierarchy
of <term "structural element"|structural elements|.

170 CDE Help System Author’s and Programmer’s Guide

5

See Also

• “<glossary>” on page 130
• “<dterm>” on page 122

<title>

Help volume title

Specifies the title of the help volume.

Syntax

<metainfo>
<title> help volume title

The <title> element is an optional element in the <metainfo> (meta
information) section. It is recommended, however, because the title provides
the volume name displayed in the help dialog boxes.

The <title> follows immediately after the <metainfo> tag. Because the
title of the volume may be displayed by other applications (information
viewers, for example) that may not be able to format the title, you should
use only plain text within the title.

The <\title> end tag is not required.

Example

Here is a sample volume title:

<metainfo>
<title> The Super Hyperlink User’s Guide

See Also

• “<metainfo>” on page 155

<user>

User’s response

Indicates the user’s response to a computer prompt.

HelpTag Markup Reference 171

5

Syntax

<user> response<\user>

Or:

<user| response|

This element is used to distinguish user input from computer output in a
computer dialog. It is typically used within the <ex> element, where spaces
and line breaks between the <user> start tag and the <\user> end tag are
significant.

If used within a paragraph, <user> text must not break across lines in
your source file.

The <user> end tag is required if the long form is used.

Example

The following markup produces two different fonts, one to indicate what
the computer displays and another to indicate what the user types:

<ex>
Do you wish to continue? (Yes or No) <user>Yes<\user>
<\ex>

The output looks like this:

Do you wish to continue? (Yes or No) Yes

See Also

• “<computer>” on page 120
• “<ex>” on page 126
• “<vex>” on page 172

<var>

Variable

Indicates a user-supplied variable in a command.

172 CDE Help System Author’s and Programmer’s Guide

5

Syntax

<var>
text
<\var>

Or:

%%text%%

The <\var> end tag is required if the long form is used.

The shorthand form uses two %% (percent signs) before and after the text.

Example

These markups:

INPUT <var>filename<\var>

Or:

INPUT %%filename%%

produce:

INPUT filename

See Also

• “<ex>” on page 126
• “<computer>” on page 120

<vex>

Verbatim example

Indicates a verbatim example in which HelpTag elements are not
interpreted as elements.

Syntax

<vex [number | nonumber][smaller | smallest]> text<\vex>

Where:

HelpTag Markup Reference 173

5

nonumber Default. Omits line numbers.

number Puts a line number at the beginning of each line.

smaller or smallest Displays the example using smaller fonts.This
makes long lines fit within a narrower width.

Within a verbatim example, no HelpTag elements are recognized except <\ ,
which is assumed to be an end tag.

Use this element when you need to display markup tags or other characters
that could otherwise be interpreted as markup. Line breaks and spacing
are preserved as they appear in the source file.

The smaller and smallest fonts enable wide examples to fit within the
margins.

Example

The following markup:

<vex>
<!ELEMENT copyright - O (text)
 -memo | location | idx) >
<\vex>

174 CDE Help System Author’s and Programmer’s Guide

5

produces this output:

See Also

• “<ex>” on page 126
• “<image>” on page 139

<warning>

Warning

Calls the user’s attention to a situation that could be dangerous to the user.

Syntax

<warning>

text

<\warning>

The text of the warning message is printed in boldface.

The default heading for the warning is "Warning". To specify a different
heading, use the <head> element.

To display a graphic with the warning, define
WarningElementDefaultIconFile in an <!entity> declaration. The
default warning icon named warnicon.pm is located in the
/usr/dt/dthelp/dthelptag/icons directory.

The <\warning> end tag is required.

Example

• The following markup creates a warning message:

HelpTag Markup Reference 175

5

<warning>
Failure to follow these guidelines could result
in serious consequences.
<\warning>

• The following markup specifies a different heading for the warning
message:

<warning><head>Danger!
Do not open the high-voltage compartment.
<\warning>

See Also

• “<note>” on page 157
• “<caution>” on page 118
• “<head>” on page 133

<xref>

Cross-reference

Inserts text that identifies another location in the help volume and creates
a hyperlink to that location.

Syntax

<xref id>

Where:

id is the identifier of the topic or location that is being cross-referenced.

Cross-references are translated into chapter or section titles, heads, figure
captions, list items, or line numbers. The cross-reference text becomes a
hyperlink that, when chosen by a user, jumps to the cross-referenced
location.

To create a cross-reference, an id must be defined in the element that you
intend to refer to. You use the id of the destination element as the id
parameter in the <xref> tag. This creates a hyperlink from the <xref>
element to the destination element. The id must be spelled exactly the
same. Capitalization, however, is not significant.

176 CDE Help System Author’s and Programmer’s Guide

5

The id parameter can appear with:

<chapter>
<s1>, <s2>,…<s9>
<otherfront>
<p>
<image>
<item>
<figure>
<location>
<rsect>

A cross-reference to an id that contains an underscore (such as "_abstract"
or "_hometopic") is not allowed. Instead, use the <link> element.

Examples

To refer a reader to a chapter for more information, use the chapter’s id to
create a reference. For instance, to refer to a chapter titled "Window
Management" whose id is windowmgr, you would write, "Refer to <xref
windowmgr> for details."

In your online help volume, the result would be: "Refer to Window
Management for details." The chapter title, "Window Management", is
substituted for the id and is a hyperlink.

The following markup assigns an id named "analyzer" to a section element:

<s1 id=analyzer>Logic Analyzers

Here is markup that contains a cross-reference to this topic:

The DX16500A logic analysis system, described in
<xref analyzer>, can be configured to a user’s needs.

After processing, the <xref> element would be replaced by "Logic
Analyzers" as shown here:

The text "Logic Analyzers" is a hyperlink that, when chosen by a user,
jumps to the cross-referenced help topic.

HelpTag Markup Reference 177

5

See Also

• “<chapter>” on page 119
• “<!entity>” on page 123
• “<figure>” on page 128
• “<graphic>” on page 131
• “<image>” on page 139
• “<link>” on page 147
• “<location>” on page 152
• “<otherfront>” on page 158
• “<p>” on page 160
• “<rsect>” on page 164
• “<s1>…<s9>” on page 165

178 CDE Help System Author’s and Programmer’s Guide

5

179

Summary of Special Character
Entities 6

This chapter provides a list of special characters that can be used when
writing a help topic. The following special characters can be inserted into
text by typing the associated entity name in the position where the special
character is to appear.

To use any of the entities whose description is marked with an * (asterisk),
you must use the helpchar.ent file (see “Including Special Characters” on
page 85).

Table 6-1 Typographical Symbols

Symbol Entity Name Description

© © Copyright symbol

® ® Registered symbol

™ &tm; Trademark symbol

– &endash; En dash (short dash)

— &emdash; Em dash (long dash)

• • * Bullet

↵ &cr; Carriage return

… &ellipsis; Ellipsis (horizontal)

.… &pellipsis; Ellipsis (end-of-sentence)

&vellipsis; Vertical ellipsis

180 CDE Help System Author’s and Programmer’s Guide

6

' &squote; Single quote

" &dquote; Double quote

&vblank; Vertical blank

() ∅ Empty (no text)

() &sigspace; Significant space

- &sigdash; Non line-breaking hyphen

§ &S; * Section

¶ &P; * Paragraph

Table 6-2 Greek Characters

Symbol Entity Name Description

Lowercase Greek Letters

α α * Lowercase Greek Alpha

β β * Lowercase Greek Beta

χ χ * Lowercase Greek Chi

δ δ * Lowercase Greek Delta

ε &varepsilon ; * Alternate lowercase Greek Epsilon

φ φ * Lowercase Greek Phi

ϕ ϕ * Open lowercase Greek Phi

γ γ * Lowercase Greek Gamma

η η * Lowercase Greek Eta

ι ι * Lowercase Greek Iota

κ κ * Lowercase Greek Kappa

λ λ * owercase Greek Lambda

µ μ * Lowercase Greek Mu

ν ν * Lowercase Greek Nu

π π * Lowercase Greek Pi

Table 6-1 Typographical Symbols (Continued)

Symbol Entity Name Description

Summary of Special Character Entities 181

6

ϖ ϖ * Alternate lowercase Greek Pi
(or Omega)

θ θ * Lowercase Greek Theta

ϑ ϑ * Open lowercase Greek Theta

ρ ρ * Lowercase Greek Rho

σ σ * Lowercase Greek Sigma

ς &tsigma; * Lowercase Greek Sigma1

τ τ * Lowercase Greek Tau

υ υ * Lowercase Greek Upsilon

ω ω * Lowercase Greek Omega

ξ ξ * Lowercase Greek Xi

ψ ψ * Lowercase Greek Psi

ζ ζ * Lowercase Greek Zeta

Uppercase Greek Letters

∆ &Udelta; * Uppercase Greek Delta

Φ &Uphi; * Uppercase Greek Phi

Γ &Ugamma; * Uppercase Greek Gamma

Λ &Ulambda; * Uppercase Greek Lambda

Π &Upi; * Uppercase Greek Pi

Θ &Utheta; * Uppercase Greek Theta

Σ &Usigma; * Uppercase Greek Sigma

Υ &Uupsilon; * Uppercase Greek Upsilon

Ω &Uomega; * Uppercase Greek Omega

Ξ &Uxi; * Uppercase Greek Xi

Ψ ϒ * Uppercase Greek Psi

Table 6-2 Greek Characters (Continued)

Symbol Entity Name Description

182 CDE Help System Author’s and Programmer’s Guide

6

Table 6-3 Math Symbols

Symbol Entity Name Description

Basic Math Symbols

− − Minus

± ± Plus over minus

÷ ÷ Divide

× × Multiply

≤ ≤ Less than or equal to

≥ ≥ Greater than or equal to

≠ &neq; Not equal to

Advanced Math Symbols
2 &squared; * Squared

3 &cubed; * Cubed

1/4 &one-fourth; * One-fourth

1/2 &one-half; * One-half

3/4 &three-fourths; * Three-fourths

∞ &infty; * Infinity

≡ ≡ * Exactly equals

≠ ¬-eq; * Not equal to

≈ ≈ * Approximate sign

¬ &neg; * Not

∩ ∩ * Cap (Set intersection)

∪ ∪ * Cup (Set union)

∨ ∨ * Vee (Logical OR)

Λ ∧ * Wedge (Logical AND)

∈ ∈ * In

⊂ ⊂ * Proper subset

⊆ ⊆ * Subset

⊃ ⊃ * Proper superset

Summary of Special Character Entities 183

6

⊇ ⊇ * Superset

∀ ∀ * For all (Universal symbol)

∃ &exists; * There exists (Existential symbol)

∉ ¬-in; Not element

ƒ &function; * Function symbol (or florin sign)

∠ ∠ * Angle

≅ ≅ * Congruent

∝ ∝ * Proportional to

⊥ ⊥ * Perpendicular to

⋅ ċ * Centered dot

⊕ ⊕ * Plus in circle

⊗ ⊗ * Times in circle

∅ ø * Slash in circle (Empty set)

∂ &partial; * Partial differential delta

∑ ∑ * Summation (Uppercase Greek
Sigma)

× ∏ * Product (Uppercase Greek Pi)

Table 6-4 Arrow Symbols

Symbol Entity Name Description

← ← * Left arrow

→ → * Right arrow

↑ ↑ * Up arrow

↓ ↓ * Down arrow

↔ ↔ * Left/right arrow

⇐ &bigleftarrow; * Big left arrow

⇒ &bigrightarrow; * Big right arrow

Table 6-3 Math Symbols (Continued)

Symbol Entity Name Description

184 CDE Help System Author’s and Programmer’s Guide

6

⇑ &biguparrow; * Big up arrow

⇓ &bigdownarrow; * Big down arrow

⇔ &bigleftrightarrow; * Big left/right arrow

Table 6-5 Miscellaneous Symbols

Symbol Entity Name Description

Current Date and Time

5/18/95 &date; Today’s date (when HelpTag is run)

09:50 &time; Current time (when HelpTag is run)

Currency Symbols

¢ ¢s; Cents

£ &sterling; Sterling

¥ ¥ Yen

Units

° ° Degrees

′ &minutes; Minutes, prime, or feet

″ &seconds; Seconds, double prime, or inches

AM &a.m.; AM

PM &p.m.; PM

Card Suits

◊ ♦ * Diamond suit

♥ ♥ * Heart suit

♠ ♠ * Spade suit

♣ ♣ * Club suit

Other Symbols

◊ ⋄ * Diamond

¿ &invert-question; Inverted question mark

¡ &invert exclamation; Inverted exclamation mark

Table 6-4 Arrow Symbols (Continued)

Symbol Entity Name Description

Summary of Special Character Entities 185

6

¤ ¤cy; Currency

∴ ∴ Therefore

« &openanglequote; Open angle quotes

» &closeanglequote; Close angle quotes

ℵ ℵ * Hebrew Aleph

∇ ∇ * Nabla (Inverted uppercase Greek
Delta)

√ &surd; Radical segment, diagonal

℘ ℘ * Weierstraussain symbol

ℜ ℜ * Fraktur R

ℑ &im; * Fraktur I

Table 6-5 Miscellaneous Symbols (Continued)

Symbol Entity Name Description

186 CDE Help System Author’s and Programmer’s Guide

6

187

Command Summary 7

This chapter summarizes the command-line options available when the
help commands are run manually in a terminal window.

Help System Commands

Desktop actions and data types provided by the Help System enable you to
compile and view run-time help files by clicking a help file icon or choosing
a menu item. However, if you want to select particular command options,
you must enter the command manually in a terminal window or create new
actions.

Help actions and data types are defined in two files, dthelp.dt and
dthelptag.dt , located in the /usr/dt/appconfig/types/ lang
directory.

The commands summarized here are:

dthelptag Compiles HelpTag source files into a run-time file.

dthelpview Displays a help volume, help topic, text file, or man
page.

Processing HelpTag Files (dthelptag) 188

Displaying Help Topics (dthelpview) 190

Generating a Browser Help Volume (dthelpgen) 191

188 CDE Help System Author’s and Programmer’s Guide

7

dthelpgen Collects help family files into a new help volume,
browser.hv , which contains an entry for each family
file.

Processing HelpTag Files (dthelptag)

The HelpTag software, invoked with the dthelptag command, compiles
your HelpTag source files into a run-time help file. You run dthelptag in
the directory where your volume.htg file is located.

Command Syntax
dthelptag [command-options] volume [parser-options]

Where command-options are options entered before the volume name and
parser-options are options entered after the volume name.

Command Options

-clean Removes all files generated from any previous run of
HelpTag for the given volume.

-shortnames Causes the names of all generated files to be limited to a
maximum of eight characters for the base name and three
characters for the extension. This allows run-time help
files to be moved to systems where longer names may not
be supported.

-verbose Displays the progress of the dthelptag command and
displays any parser errors that occur. Parser errors are
also saved in a file named volume.err .

-formal Uses the formal parser to interpret help files tagged with
SGML-compliant markup. If not specified, dthelptag
assumes the input file contains shorthand markup.

Because there are two types of markup—shorthand and formal—it is
recommended to distinguish the types by using a file extension. Use.htg
for shorthand markup and use.ctg for formal markup.

Command Summary 189

7

Parser Options

Parser options, which are entered after the volume name, are passed
directly to the parser, which is the part of the HelpTag software that
converts your marked-up files into a run-time file.

These options can be applied in the following ways:

• Entered on the command line after the volume name

• Listed in a file named helptag.opt located in the current directory

• Listed in a file named volume.opt in the current directory

• Set using the DTTAGOPT environment variable

Options entered on the command line override those options that may have
also been set using a different method.

onerror Specifies whether the dthelptag command should
continue if a parser error is encountered. The default is
onerror=stop , which causes the command to stop even
if one parser error is encountered. If you specify
onerror=go , processing will continue, but the created
run-time help file may not work properly.

charset Specifies which character set was used to author the text
files. The correct character set name is needed to ensure
that the help topics are displayed in the proper font. The
default is charset=ISO-8859-1. You can also specify a
character set within your help volume by declaring an
entity named LanguageElementDefaultCharset . The
/usr/dt/dthelp/dthelptag/helplang.ent file
includes this entity declaration. See Chapter 14, “Native
Language Support,” for a list of supported character
sets.

search Adds another directory to the list of directories that are
searched to find referenced file entities. To specify
multiple directories, use multiple search= directory
options. If no search options are used, only the current
directory is searched.

clearsearch Ignores the list of search directories. This option is
useful in the command line to override search options
specified in the helptag.opt file.

190 CDE Help System Author’s and Programmer’s Guide

7

memo Causes author’s memos (which are entered using the
<memo>element) to be included. The default is nomemo,
which causes HelpTag to ignore memos.

nomemo Causes HelpTag to ignore author’s memos (which are
entered with the <memo> element). This is the default.

See Also

• “Creating Run-Time Help Files” on page 95
• “Creating an Installation Package” on page 242
• “Viewing a Help Volume” on page 98
• dthelptag (1) man page

Displaying Help Topics (dthelpview)

The dthelpview command can be used to display a help volume,
individual help topic, text file, or man page.

Command Syntax

The various ways to invoke Helpview are:

• dthelpview -helpVolume volume [-locationId id]

• dthelpview -man

• dthelpview -manPage man

• dthelpview -file filename

Where:

-helpVolume volume
Specifies the name of the volume.sdl file you want
to view. A path name is not required unless the
volume is not in the current directory and the
volume has not been registered.

-locationId id Specifies an ID. dthelpview displays the topic that
contains id. If you do not specify an ID, Helpview
uses _hometopic by default.

-man Displays a dialog that prompts for a man page to
view, then displays the requested man page.

Command Summary 191

7

-manPage man Specifies that a particular man page be displayed.

-file filename Specifies that a particular text file be displayed.

The default volume and id can be set in dthelpview’s app-defaults file,
/usr/dt/app-defaults/C/Dthelpview .

See Also

• “Registering Your Application and Its Help” on page 245
• “Viewing a Help Volume” on page 98
• dthelpview (1) man page

Generating a Browser Help Volume (dthelpgen)

The dthelpgen utility creates a special help volume that enables users to
display help volumes registered on their system using the Front Panel Help
Viewer. When a user initially clicks the Help Viewer control in the Front
Panel, dthelpgen is run automatically. It locates help family files by
searching the help search path directories (local or networked), and then
creates a browser volume (browser.hv) in the user’s
HomeDirectory/.dt/help/$DTUSERSESSION directory. Once built, the
volume is updated in response to any of these actions:

• Add, remove, or modify family files or help volumes
• Change the LANG environment variable
• Invoke the ReloadApps action
• Run dthelpgen manually in a terminal window

The browser volume is displayed by clicking the Help Viewer control in the
Front Panel. Or, you can manually run dthelpview and supply the
browser volume name as shown in this command line:

dthelpview -h browser.hv

Command Syntax
dthelpgen -dir [options]

192 CDE Help System Author’s and Programmer’s Guide

7

Where:

-dir Specifies the directory in which to place the browser
volume and intermediate files. This is a required
parameter.

Options

-generate Specifies that a new browser help volume should be
created even if the family files and help volumes on the
system have not been modified.

-file basename
Specifies the name of the help volume and any
intermediate files generated by dthelpgen . The default
name is browser.hv .

-lang Specifies which language directories to search for help
families and help volumes. If the -lang option is set, it
takes precedence over the current value of the LANG
environment variable.

Note – If you run dthelpgen while the browser volume is displayed in a
help window, you should close the window, then reopen the browser volume.

See Also

• “Registering Your Application and Its Help” on page 245
• dthelpgen(1) man page

193

Reading the HelpTag
Document Type Definition 8

This chapter explains how to read the HelpTag 1.3 Document Type
Definition (DTD) and how to use it to create fully compliant Standard
Generalized Markup Language (SGML) help files.

Document Type Definition

A Document Type Definition (DTD) defines a set of elements to create a
structured (or hierarchical) document. The DTD specifies the syntax for
each element and governs how and where elements can be used in a
document.

Helptag 1.3 DTD 194

DTD Components 194

Element Declarations 194

Element Declaration Keywords 196

Attribute List Declarations 197

Formal Markup 197

194 CDE Help System Author’s and Programmer’s Guide

8

Helptag 1.3 DTD

The Helptag 1.3 DTD tag set and its associated rules are referred to as
formal markup. The DTD conforms to the Standard Generalized Markup
Language (SGML) ISO specification 8879:1986. This means that you can
use formal markup to create help files that are SGML compliant.

Appendix A contains the complete DTD specification. The DTD is also
available in the Developer’s Toolkit. It is located in the
/usr/dt/dthelp/dthelptag/dtd directory and is named helptag.dtd.

See Also

• dthelptagdtd(4) man page

DTD Components

The DTD defines each of the HelpTag elements described in previous
chapters in a technical notation. This section introduces some key terms
and explains how to read the syntax of the element notations. It does not
attempt to fully describe each section of the DTD.

Element Declarations

The DTD defines each element in an element declaration. The declaration
uses a precise notation to describe an element, its required components,
and any elements it can or cannot contain. An element may also have
characteristics defined in an attribute declaration, which is discussed in the
section “Attribute List Declarations” on page 197.

The syntax of an element declaration is:

<ELEMENTelement_type minimization (content model) >

Where:

element_ type Specifies the element name, which is also used as the
tag name. For example, the tag for the element type
head is <head> .

minimization A two-character entry that indicates whether a start or
an end tag is required. The first character represents
the start tag; the second character represents the end

Reading the HelpTag Document Type Definition 195

8

tag. A space separates the two characters. The letter o
means that the tag is optional. A - (minus sign)
indicates the tag is required. For example, an entry like
this, - - , indicates that the element requires both start
and end tags. The DTD for Helptag 1.3 requires start
and end tags for every element.

content model Specifies a list of the required and optional elements
that the element type can contain. It defines the
sequence of elements and, if applicable, the number of
occurrences that may occur.

The content model uses these notations:

| A vertical bar represents “or”.

+ Element must appear at least once. It can be repeated.

* Element can appear zero or more times.

? Element can appear zero or one time.

, A comma describes sequence, that is, the element type must be
followed by the element specified after the comma.

+ (element_ type(s))
The + (plus sign) indicates that the listed element or elements can
be used within the element type or within any of the elements it
contains. It is called an inclusion. Parentheses are used to enclose
one or more elements.

- (element_ type(s))
A - (minus sign) indicates that the listed element or elements
cannot be used within this element, or within any of the elements it
contains. It is called an exclusion. Parentheses are used to enclose
one or more elements.

Examples

Each example contains a word description for the element declaration
provided. Required start and end tags are assumed.

• A chapter requires a <chaphead> followed by text. A chapter can
contain zero or more s1 elements followed by zero or more rsect
elements.

<!ELEMENT chapter - - (chaphead, text, (s1*, rsect*)) >

196 CDE Help System Author’s and Programmer’s Guide

8

• A chaphead requires a head followed by an optional abbrev . A
chaphead cannot contain these elements: memo,location, or idx .

<!ELEMENT chaphead - - (head, abbrev?)
 -(memo | location | idx) >

• The paragraph element requires a start tag (-) and an end tag (-). It can
contain an optional head (?) followed by the partext element. newline
elements can be used within p or any of the elements it contains.

<!ELEMENT p - - (head?, partext) +(newline) >

• A note contains text. It can have an optional head. A note cannot
contain these elements: note, caution, or warning .

<!ELEMENT note - - (head?, text)
 -(note | caution | warning) >

• A list may contain an optional head. It requires at least one item,
which can be repeated.

<!ELEMENT list - - (head?, item+) >

• The book element declaration uses an exclusion to specify that it cannot
contain another book element.

<!ELEMENT book - - (partext) -(book) >

Element Declaration Keywords

Some elements include a keyword in the element declaration that describes
the data content of the element. Three keywords appear in the DTD:
EMPTY, CDATA, and #PCDATA.

EMPTY Specifies that the element has no data content that will be
displayed in the online information. newline and xref
elements are examples.

CDATA Represents “character data”; that is, the data content of the
element is not recognized as markup.

#PCDATA Represents “parsed character data”; that is, the data content
may include both text and markup characters that the Help
System parser interprets accordingly.

Reading the HelpTag Document Type Definition 197

8

Attribute List Declarations

An attribute list declares additional properties that further describe an
element. An attribute list declaration has the syntax:

<!ATTLIST element_type attribute_values default_value >

For example, a list element has four attributes: type, ordertype,
spacing, and continue . Values for each type are declared. The last
column shows the default values. Because only one value exists for the
continue attribute, a default value is omitted.

<!ATTLIST list type (order
 bullet
 plain
 check) bullet
 ordertype (ualpha
 lalpha
 arabic
 uroman
 lroman) arabic
 spacing (tight
 loose) tight
 continue (continue) #IMPLIED >

This markup creates a numbered list (uppercase alphabet) that supplies
extra spacing between list items.

<list order ualpha loose>
 <item>
 <text>
 <p>
 <partext>Introducing the Front Panel></partext>
 </p>
 </text>
 </item>

Formal Markup

Using a structured editor is the best approach for creating formal markup.
After learning the basic set of elements, an author can get started. This is
done by choosing elements from a menu. In response, the structured editor
generates all of the tags required for each element. In addition, the
application verifies that the structural framework being created conforms
to the Document Type Definition.

198 CDE Help System Author’s and Programmer’s Guide

8

See the section “Write Help Topics with HelpTag” on page 16 for a
description of shorthand and formal markup, and structured editors.

Formal Markup Caveats

Shorthand and formal markup share a common set of elements, such as
chapter, section, head, list, paragraph, and so forth. However, formal
markup differs from shorthand markup in these important ways:

• Every element requires a start and an end tag.

• Tags for each subcomponent of an element must be entered.

• The / (forward slash) is the end tag delimiter in formal markup. End tags
use this format, </tagname>.

• Entity declarations use the SYSTEM parameter instead of the FILE
parameter used in shorthand declarations.

Explicit Start and End Tags

Each element, its component parts, and elements it contains must be
explicitly tagged. For example, here is the formal markup for a chapter
head. To read this, and other markup examples easily, tags are indented.
Indentation is not required in actual markup.

<chaphead>
 <head>
 <partext>Front Panel Help</partext>
 </head>
</chaphead>

Notice the additional tags, <head> and <partext> ; these are
subcomponents of the <chaphead> element. Each of these elements
requires an explicit start and end tag.

Explicit Hierarchy of Elements

Each element declaration contributes to a set of rules that governs how and
where elements can be used. Because elements contain other elements,
which may contain other elements, a document is a hierarchy of elements.
At the top level, <helpvolume> is a container for every other element.

Reading the HelpTag Document Type Definition 199

8

To decide what markup is necessary to create a help topic, you need to
become familiar with the rules. For example, suppose you want to create a
chapter. First, look at the declaration for chapter listed below. It specifies
that a chaphead is required. Next, look at the rules for chaphead . It, in
turn, requires a head . Consequently, look at the declaration for head , and
continue until you have reached the last nested element—in this case,
partext . Until you are familiar with the elements you commonly use, this
approach will help you enter markup correctly.

<!ELEMENT chapter - - (chaphead, text?, (s1*, rsect*)) >
<!ELEMENT chaphead - - (head, abbrev?)
 -(memo | location | idx | footnote) >
<!ELEMENT head - - (partext)
 -(memo | location | idx)>
<!ELEMENT partext - - ((#PCDATA . . .))>

Using a structured editor minimizes what an author needs to know about
the DTD. The editor application “reads” the DTD and creates each
element’s required tags, many of which are intermediate structural tags.

Example

This formal markup sample is an excerpt from the desktop Text Editor help
volume. To view the corresponding online information, choose the Help
Viewer in the Front Panel. Select Common Desktop Environment and then
choose Text Editor Help from the listed volumes. In the Text Editor volume,
choose Text Editor Tasks and then To Open an Existing Document.

Indentation is used in this example to make it easier to read the text and
corresponding element tags.

<s2 id=”TOOPENANEXISTINGDOCUMENT”>
<chaphead><head>
<partext>To Open an Existing Document</partext>
 </head></chaphead>
<text>
<p>
<partext>You can use Text Editor or File Manager to open an existing
document.
</partext></p>
<idx><indexprimary>
<partext>document</partext></indexprimary>
 <indexsub>
<partext>opening</partext></indexsub></idx>

200 CDE Help System Author’s and Programmer’s Guide

8

<idx><indexprimary>
<partext>opening</partext></indexprimary>
 <indexsub>
<partext>existing document</partext></indexsub></idx>
<procedure>
<chaphead><head>
<partext>From Text Editor</partext>
 </head></chaphead>
<text>
<list type=”ORDER”>
<item><text><p>
<partext>Choose Open from the File menu.</partext></p>
<p>
<partext>The Open a File dialog box lists files and folders on your
system.You can browse the documents listed, or change to a new folder
to locate other files on your system.</partext>
 </p></text></item>
<item><text><p>
<partext>Select the document you want to open in the Files list or
type the file name in the Open a File field.</partext></p>
<p>
<partext><emph><partext>Or,</partext></emph> if the document is not
in the current folder, first change to the folder that contains your
document. Then choose a name in the Folders list or type the path
name of the folder you wish to change to in the Enter path or folder
name field.</partext></p></text></item>
<item><text><p>
<partext>Press Return or click OK.
</partext></p></text></item></list>
<figure tonumber=”NONUMBER” entity=”TEXTEDITOROPENFILE”>
</figure></text></procedure>

<procedure><chaphead><head>
<partext>From File Manager</partext>
 </head></chaphead>
<idx><indexprimary>
<partext>opening</partext></indexprimary>
 <indexsub>
<partext>document from File Manager</partext></indexsub></idx>
<idx><indexprimary>
<partext>document</partext></indexprimary>
 <indexsub>
<partext>opening from File Manager</partext></indexsub></idx>
<idx><indexprimary>
<partext>File Manager</partext></indexprimary>
 <indexsub>

Reading the HelpTag Document Type Definition 201

8

<partext>opening document</partext></indexsub></idx>
<text>
<list type=”BULLET”>
<item><text><p>
<partext>Display the document’s file icon in a File Manager
window.</partext>
 </p></text></item>
<item><text><p>
<partext>Do <emph><partext>one</partext></emph> of the
following:</partext></p>
<list type=”BULLET”>
<item><text><p>
<partext>Double-click the document’s file icon.</partext>
 </p></text></item>
<item><text><p>
<partext>Select the document, then choose Open from the Selected
menu.</partext>
 </p></text></item>
<item><text><p>
<partext>Drag the document to Text Editor’s control in the Front
Panel.</partext>
 </p></text></item></list></text>
 </item></list><text> </procedure>
<procedure><chaphead><head>
<partext>See Also</partext>
 </head></chaphead>
<text>
<list type=”BULLET” spacing=”TIGHT”>
<item><text><p>
<partext><xref id=”ENTERINGANDEDITINGTEXT”></partext>
 </p></text></item>
<item><text><p>
<partext><xref id=”TOSAVEADOCUMENTTOTHECURRENTFILE”></partext>
 </p></text></item>
<item><text><p>
<partext><xref id=”TABLEOFCONTENTS”></partext>
 </p></text></item></list></text>
 </procedure></text></s2>

 File Entity Declarations

To declare a file entity in formal markup, use this syntax:

<!entity entityname SYSTEM “filename ”>

202 CDE Help System Author’s and Programmer’s Guide

8

Where entityname is the name of the entity and filename is the name of the
file. The keyword SYSTEM is required.

Note – To use entity declarations previously created for shorthand markup,
you must replace the FILE parameter with SYSTEM.

Example

Here are the entity declarations for a help volume that consists of three
text files and contains a graphic image.

<!entity MetaInformation SYSTEM “metainfo>”
<!entity BasicTasks SYSTEM “basics”>
<!entity AdvancedFeatures SYSTEM “advanced”>
<!entity process_diagram SYSTEM “process.tif”>

Entities are referenced in formal markup exactly as they are in shorthand
markup.

 Processing Formal Markup

When you process formal markup using dthelptag , you must use the
-formal command-line option. For example, to process a formal markup
file named Icons.ctg in verbose mode, enter this command:

dthelptag -verbose -formal Icons.ctg

Note – The command option specifies the type of markup in the input file.
The run-time file created by running dthelptag is always volume.sdl . The
online format is identical whether you used shorthand or formal markup.

Part 3 — The Programmer’s Job

205

Creating and Managing
Help Dialog Boxes 9

This chapter describes the Help dialog widgets and how to create them.

Help Dialog Boxes

For application programmers, the Help System provides a programming
library that adds help dialog boxes to any OSF/Motif application. The
library provides two types of help dialog boxes:

• General help dialogs have a menu bar, a topic tree, and a help topic
display area. The topic tree lists the help volume’s topics and subtopics.
Users use the topic tree to select topics to view, to browse available
topics, and to locate where they are in the help volume.

• Quick help dialogs contain a topic display area and one or more dialog
buttons at the bottom.

Help Dialog Boxes 205

General Help Dialog 206

To Create a General Help Dialog 207

Quick Help Dialog 209

To Create a Quick Help Dialog 209

Summary of Application Program Interface 212

206 CDE Help System Author’s and Programmer’s Guide

9

Standard Xt Paradigm

In terms of programming, you interact with the help dialogs the same as
you do with any other OSF/Motif widgets in your applications. The two
types of help dialog boxes are defined as two new widget classes:
DtHelpDialog and DtHelpQuickDialog .

Nearly every attribute of the help windows—including the volume name
and topic ID—are manipulated as widget resources. For instance, to display
a new topic, you just execute an XtSetValues() call to set the
DtNhelpVolume , DtNlocationId , and DtNhelpType resources. For more
information, refer to “Displaying Help Topics” on page 214.

Note – Integrating the Help System into an application requires a working
knowledge of the C programming language, the OSF/Motif programmer’s
toolkit, and the Xt Intrinsics toolkit.

General Help Dialog

A general help dialog has two display areas: the topic tree and topic display
area. The topic tree provides a scrollable list of help topics. The home topic
title is always the first item. When a user chooses a title, an arrow (⇒)
marks the title and its help information is displayed in the topic display
area. Figure 9-1 on page 207 shows the topic tree and topic display area of
a general help window. The current topic, “To select a palette”, is displayed.

The general help dialog includes three dialog buttons: Backtrack, History,
and Index. These commands are also available in the Help menus. For an
overview of the Help dialogs and the graphical user interface, refer to the
section, “Help User Interface” on page 5.

Creating and Managing Help Dialog Boxes 207

9

Figure 9-1 General help dialog

♦ To Create a General Help Dialog

1. Include the appropriate header files:

#include <Help.h>
#include <HelpDialog.h>

2. Create an instance of the general help dialog widget:
• Use the DtCreateHelpDialog() convenience function.

Or, use the XtCreateManagedWidget() function.

3. Add a callback for handling hyperlink events that occur within the
dialog. (For more information, see “Responding to Hyperlink Events” on
page 228.)

4. Add a close callback for handling the Close command.

208 CDE Help System Author’s and Programmer’s Guide

9

Example

The following code segment creates a general help dialog (as a child of
parent) using the convenience function. The dialog is left
unmanaged—presumably it is managed elsewhere in the application when
a help request is made.

Widget mainHelpDialog, moreButton, helpButton;
ac = 0;
XtSetArg (al[ac], XmNtitle, "My Application - Help"); ac++;
XtSetArg (al[ac], DtNhelpVolume, "My Help Volume"); ac++;
XtSetArg (al[ac], DtNlocationId, "Getting Started"); ac++;
XtSetArg (al[ac], DtNhelpType, "DtHELP_TYPE_TOPIC"); ac++;

mainHelpDialog =
 DtCreateHelpDialog (parent, "mainHelpDialog", al, ac);

The following two calls add the hyperlink and close callbacks to the dialog.
Presumably, the functions HyperlinkCB() and CloseHelpCB() are
declared elsewhere in the application.

XtAddCallback (mainHelpDialog, DtNhyperLinkCallback,
HyperlinkCB, (XtPointer)NULL);

XtAddCallback (mainHelpDialog, DtNcloseCallback,
 CloseHelpCB, (XtPointer)NULL);

See Also

• “Providing Help on Help” on page 233
• “To Enable the Application-Configured Button” on page 231
• DtCreateHelpDialog(3) man page
• DtHelpDialog(3) man page

Creating and Managing Help Dialog Boxes 209

9

Quick Help Dialog

The quick help dialog box is designed to help you meet the first objective of
online help: Get the user back on task as quickly and successfully as
possible. This simple user interface helps keep the user focused on the
information. The information should be useful enough that the user
dismisses the dialog after reading it and continues working.

Figure 9-2 Quick help dialog with four standard buttons

The quick help dialog has five buttons, four of which are managed. The
remaining dialog button is configurable, so this button can be used for
anything. However, its intended purpose is to provide a path to more help
in one of these two ways:

• Let the user ask for more detailed information. In this case, the default
button label (More) is appropriate. This is called progressive disclosure.

• Let the user open a general help dialog for general browsing of the
application’s help volume. In this case, Browse… is the most appropriate
button label.

The Developer’s toolkit includes a convenience function,
DtHelpQuickDialogGetChild() , for determining the widget ID for any
of the quick help dialog buttons.

♦ To Create a Quick Help Dialog

1. Include the appropriate header files:

#include <Help.h>
#include <HelpQuickD.h>

210 CDE Help System Author’s and Programmer’s Guide

9

2. Create an instance of the quick help dialog widget:
• Use the DtCreateHelpQuickDialog() convenience function.

Or, use the XtCreateManagedWidget() function.

3. Add a callback for handling hyperlink events that occur within the
dialog. (For more information, see “Responding to Hyperlink Events” on
page 228.)

4. Add a close callback for handling the OK button.

5. Configure the dialog buttons that you want to use:
• If you intend to use the application-configured button, manage it and

add an activate callback.
• If you want to disallow printing, unmanage the Print button.
• Manage the Help button and add a help callback to the dialog to allow

the user to get help on help.

Example

The following code segment creates a quick help dialog (as a child of parent)
using the convenience function. The dialog is left unmanaged; presumably,
it is managed elsewhere in the application when a help request is made. In
this example, the application-configured button is enabled and used to
request more help.

Widget quickHelpDialog, moreButton, helpButton;

ac = 0;
XtSetArg (al[ac], XmNtitle, "My Application - Help"); ac++;
XtSetArg (al[ac], DtNhelpVolume, "My Help Volume"); ac++;
XtSetArg (al[ac], DtNlocationId, "Getting Started"); ac++;
XtSetArg (al[ac], DtNhelpType, "DtHELP_TYPE_TOPIC"); ac++;

quickHelpDialog =
 DtCreateHelpQuickDialog (parent, "quickHelpDialog", al, ac);

The following two calls add the hyperlink and close callbacks to the dialog.
Presumably, the functions HyperlinkCB() and CloseHelpCB() are
declared elsewhere in the application.

XtAddCallback (quickHelpDialog, DtNhyperLinkCallback,
HyperlinkCB, (XtPointer)NULL);

Creating and Managing Help Dialog Boxes 211

9

XtAddCallback (quickHelpDialog, DtNcloseCallback,
 CloseHelpCB, (XtPointer)NULL);

Here, the application-configured button is managed and assigned an
activate callback that invokes the application’s MoreHelpCB() function.

moreButton = DtHelpQuickDialogGetChild (quickHelpDialog,
DT_HELP_QUICK_MORE_BUTTON);

XtManageChild (moreButton);
XtAddCallback (moreButton, XmNactivateCallback,
 MoreHelpCB, (XtPointer)NULL);

To provide "help on help," the dialog’s Help button is managed and a help
callback is added to the dialog.

helpButton = DtHelpQuickDialogGetChild (quickHelpDialog,
DT_HELP_QUICK_HELP_BUTTON);

XtManageChild (helpButton);
XtAddCallback (quickHelpDialog,DtNhelpCallback,
 HelpRequestCB, USING_HELP);

Like other OSF/Motif dialogs, when you add a help callback to a quick help
dialog, it is used by both the F1 key and the Help button.

See Also

• “To Enable the Application-Configured Button” on page 231
• Chapter 12, “Providing Help on Help”
• DtCreateHelpQuickDialog(3) man page
• DtHelpQuickDialog(3) man page
• DtHelpQuickDialogGetChild(3) man page

212 CDE Help System Author’s and Programmer’s Guide

9

Summary of Application Program Interface

Related man pages for the Help System are:

• Functions for creating and working with dialogs:

DtHelp(5)
DtHelpDialog(5)
DtHelpQuickD(5)
DtCreateHelpDialog()
DtCreateHelpQUickDialog()
DtHelpQuickDialogGetChild()

• Function for implementing item help mode:

DtHelpReturnSelectedWidgetId()

• Function for specifying the message catalog for the Help library:

DtHelpSetCatalogName()

• Applications and actions for creating and viewing a help volume:

dthelptag(1)
dthelpview(1)
dthelpgen(1)
dthelpaction(5)
dtmanaction(5)

• Document Type Definitions:

dthelptagdtd(4)
dtsdldtd(4)

213

Responding to Help Requests 10

This chapter explains how to display different types of help information by
setting Help Dialog widget resources.

Requesting Help

When a user requests help while using your application, it’s the
application’s responsibility to determine what help topic should be
displayed.

Requesting Help 213

Displaying Help Topics 214

To Display a Help Topic 215

To Display a String of Text 216

To Display a Text File 217

To Display a Man Page 218

Enabling the Help Key (F1) 219

Providing a Help Menu 222

Supporting Item Help Mode 223

214 CDE Help System Author’s and Programmer’s Guide

10

Context Sensitivity

Some help requests amount to an explicit request for specific information,
such as help on "version" (which usually displays the copyright topic).
Other help requests, however, may require some degree of context
sensitivity. That is, some processing might be needed to determine the
appropriate help topic based on the user’s current context within the
application.

For instance, your application might test the status of certain modes or
settings to determine the appropriate help topic. Or, it might test the value
of an input field and provide detailed help if the value is not valid, and
general help if the value is valid.

Entry Points

An entry point is a specific location within a help volume—usually the
beginning of a topic—that can be directly accessed by requesting help
within the application.

From the author’s point of view, entry points are established by assigning
IDs at the appropriate places within the help volume. From the
programmer’s point of view, entry points are created by enabling the user
to request help and using the appropriate ID when a particular request is
made.

There are four general ways for users to request help:

• Pressing the help key (which is F1 on most keyboards)
• Clicking the Help button in a dialog box
• Choosing a command from the application’s Help menu
• Choosing On Item help

Displaying Help Topics

When a help request is made, the application determines what help topic to
display. It then creates (if necessary) and manages a help dialog, and sets
the appropriate resources to display a help topic.

Most requests display help topics that are part of the application’s help
volume. But, the Help System’s help dialogs are also capable of displaying
man pages, text files, and simple text strings.

Responding to Help Requests 215

10

The Help System’s help dialogs are based exclusively on Xt Intrinsics and
OSF/Motif programming, so you change the values within a help dialog just
like any other widget: by setting resources.

The DtNhelpType resource determines what type of information is
displayed. It can be set to any of these values:

• DtHELP_TYPE_TOPIC for displaying normal help topics that are part of a
help volume. The volume is specified by setting the DtNhelpVolume
resource; the topic is specified by setting the DtNlocationId resource.

• DtHELP_TYPE_STRING for displaying a string supplied by the
application. Automatic word wrap is disabled, so line breaks are
observed as specified in the string. The string is specified by setting the
DtNstringData resource.

• DtHELP_TYPE_DYNAMIC_STRING for displaying a string supplied by the
application, using word wrap to format the text. Line breaks within the
string are used to separate paragraphs. The string is specified by setting
the DtNstringData resource.

• DtHELP_TYPE_FILE for displaying a text file. The name of the file to be
displayed is specified by setting the DtNhelpFile resource.

• DtHELP_TYPE_MAN_PAGE for displaying a manual reference page (man
page) in a help dialog. The man page to be displayed is specified by
setting the DtNmanPage resource.

These values are defined in the Help.h file.

See Also

• “Creating and Managing Help Dialog Boxes” on page 205

♦ To Display a Help Topic

1. Create a help dialog.

2. Set the following resources for the help dialog:

DtNhelpType Set to DtHELP_TYPE_TOPIC.

DtNhelpVolume Set to the volume name for your application.

216 CDE Help System Author’s and Programmer’s Guide

10

DtNlocationId Set to the topic ID that you want to display.

You can also set other values for the dialog, such as its size and title.

3. Manage the dialog using XtManageChild() .

Example

This program segment displays a topic with the ID getting-started in
the volume MyVolume.

ac = 0;
XtSetArg (al[ac], DtNhelpType, DtHELP_TYPE_TOPIC); ac++;
XtSetArg (al[ac], DtNhelpVolume, "MyVolume"); ac++;
XtSetArg (al[ac], DtNlocationId, "getting-started"); ac++;
XtSetArg (al[ac], DtNcolumns, 40); ac++;
XtSetArg (al[ac], DtNrows, 12); ac++;
XtSetValues (helpDialog, al, ac);
XtManageChild (helpDialog);

If the help volume MyVolume is not registered, then a complete path to the
MyVolume.sdl file is required for the value of DtNhelpVolume .

♦ To Display a String of Text

1. Create a quick help dialog.

You can use a general help dialog to display string data, but this isn’t
recommended because most of its features do not apply to string data.

2. Set the following resources for the help dialog:

DtNhelpType Set to DtHELP_TYPE_DYNAMIC_STRING (if you
want word wrap enabled) or
DtHELP_TYPE_STRING (if you want the line breaks
within the string to be maintained) .

DtNstringData Set to the string you want to display. A copy of the
string is kept internally, so you need not maintain
your copy of it.

You can also set other values for the dialog, such as its size and title.

3. Manage the dialog using XtManageChild() .

Responding to Help Requests 217

10

Example

This program segment displays a string stored in the variable
descriptionString .

ac = 0;
XtSetArg (al[ac], DtNhelpType, DtHELP_TYPE_DYNAMIC_STRING); ac++;
XtSetArg (al[ac], DtNstringData, (char *)descriptionString); ac++;
XtSetValues (quickHelpDialog, al, ac);
XtManageChild (quickHelpDialog);

If the string is no longer needed within the application, the memory can be
freed, because the help dialog makes its own copy of the data.

XtFree (descriptionString);

♦ To Display a Text File

1. Create a quick help dialog or retrieve one from your dialog cache.

You can use a general help dialog to display a text file, but this isn’t
recommended because most of its features are useful only for standard
help topics.

2. Set the following resources for the help dialog:

DtNhelpType Set to DtHELP_TYPE_FILE ..

DtNhelpFile Set to the file name you want to display. If the file
is not in the application’s current directory, provide
a path to the file.

You can also set other values for the dialog, such as its size and title. In
particular, you might want to set the width to 80 columns, which is the
standard width for text files.

3. Manage the dialog using XtManageChild() .

Example

The following program segment displays a file named
/tmp/printer.list . It also sets the size of the dialog to better suit a text
file.

ac = 0;

218 CDE Help System Author’s and Programmer’s Guide

10

XtSetArg (al[ac], DtNhelpType, DtHELP_TYPE_FILE); ac++;
XtSetArg (al[ac], DtNhelpFile, "/tmp/printer.list"); ac++;
XtSetArg (al[ac], DtNcolumns, 80); ac++;
XtSetArg (al[ac], DtNrows, 20); ac++;
XtSetValues (quickHelpDialog, al, ac);
XtManageChild (quickHelpDialog);

♦ To Display a Man Page

1. Create a quick help dialog.

You can use a general help dialog to display a man page, but this isn’t
recommended because most of its features are useful only with standard
help topics.

2. Set the following resources for the help dialog:

DtNhelpType Set to DtHELP_TYPE_MAN_PAGE.

DtNmanPage Set to the name of the man page. The value of this
resource is passed directly to the system man
command. So, to specify a particular section of a
man page, precede the man page name by a section
number, just as you would if you were typing the
man command conventionally.

You can also set other values for the dialog, such as its size and title.

3. Manage the dialog using XtManageChild() .

Example

The following program segment displays the man page for the grep
command. It also sets the size of the dialog to better suit a man page.

ac = 0;
XtSetArg (al[ac], DtNhelpType, DtHELP_TYPE_MAN_PAGE); ac++;
XtSetArg (al[ac], DtNmanPage, "grep"); ac++;
XtSetArg (al[ac], DtNcolumns, 80); ac++;
XtSetArg (al[ac], DtNrows, 20); ac++;
XtSetValues (quickHelpDialog, al, ac);
XtManageChild (quickHelpDialog);

Responding to Help Requests 219

10

Enabling the Help Key (F1)

The help key mechanism is a feature built into all OSF/Motif manager
widgets and primitive widgets. The help key is enabled by adding a help
callback to the widget where you want the help key active.

Within your application, you should add a help callback to each widget
where you want a unique entry point into help. The help callback
mechanism automatically "walks" up the widget hierarchy (up to the shell
widget) until it finds a widget with a help callback, then invokes that
callback.

If you add a help callback to a manager widget, when the help key is
pressed for any of its children, the manager’s help callback is invoked
(unless the child widget has a help callback of its own).

♦ To Add a Help Callback

◊ Use the XtAddCallback() function as follows:

XtAddCallback (
 Widget widget,
 String DtNhelpCallback,
 XtCallbackProc HelpRequestCB,
 XtPointer clientData);

Where:

widget The widget where you want to activate the help key.

HelpRequestCB() The function in your application that handles the
help request when the user presses the help key.

clientData The data you want passed to the HelpRequestCB()
function. Typically, this data identifies the topic to be
displayed.

When the user presses the help key, the help callback is invoked for the
widget with the current keyboard focus. If that widget does not have a help
callback, the help callback for its nearest ancestor that does have a help
callback is invoked.

If no help callbacks are found, nothing happens. Therefore, it is
recommended that you add a help callback to each shell in your application.
This ensures that no user requests for help are lost.

220 CDE Help System Author’s and Programmer’s Guide

10

Adding a help callback to a dialog shell automatically enables the Help
button on the dialog to invoke the help callback.

Importance of Client Data

Specifying a unique value for clientData in each help callback you add
saves you the trouble of writing a separate function to process each help
callback. Your application can have a single callback procedure to process
all help requests (see “To Add a Help Callback” on page 219). Within the
callback procedure, use the clientData to identify where the user requested
help. That is, each time you add a help callback, you should provide a
unique value for clientData.

Example

The following example demonstrates one way to associate IDs with entry
points. A HelpEntryIds.h file is used to define a unique integer for each
clientData value for each help callback. Also defined are two ID strings for
each widget: one for normal F1 help, the other for item help mode (where
the user picks a widget to get a description).

For this example, assume that the application’s user interface is just a
main window with three input fields: Name, Address, and Telephone
Number. Here’s what the HelpEntryIds.h file would contain:

#define HELP_volumeName "MyVolume"

#define HELP_MainWindow 100
#define HELP_MainWindow_ID "basic-tasks"
#define HELP_MainWindow_ITEM_ID "main-window-desc"

#define HELP_NameField 101
#define HELP_NameField_ID "specifying-a-name"
#define HELP_NameField_ITEM_ID "name-field-desc"

#define HELP_AddressField 102
#define HELP_AddressField_ID "specifying-an-address"
#define HELP_AddressField_ITEM_ID "address-field-desc"

#define HELP_PhoneField 103
#define HELP_PhoneField_ID "specifying-a-phone-no"
#define HELP_PhoneField_ITEM_ID "phone-field-desc"

Responding to Help Requests 221

10

Within the part of the application that initially creates the widgets, a help
callback is added to each widget as follows:

XtAddCallback (mainWindow, DtNhelpCallback,
 HelpRequestCB, HELP_MainWindow);
XtAddCallback (nameField, DtNhelpCallback,
 HelpRequestCB, HELP_NameField);
XtAddCallback (addressField, DtNhelpCallback,
 HelpRequestCB, HELP_AddressField);
XtAddCallback (phoneField, DtNhelpCallback,
 HelpRequestCB, HELP_PhoneField);

Within the HelpRequestCB() function, the clientData parameter is used to
dispatch the help requests (through a switch() statement). Within each
case, the value of a global flag itemHelp is tested to see if the help callback
was invoked by the F1 key (the flag is "false") or by the user picking the
widget in item help mode (the flag is "true").

XtCallbackProc HelpRequestCB (
 Widget w,
 XtPointer clientData,
 XtPointer callData)
{
 char *topicToDisplay;
 Boolean useQuickHelpDialog;
 /* Determine the topic ID for the given ` clientData.’ */
 switch ((int)clientData)
 {
 case HELP_MainWindow:
 useQuickHelpDialog = False;
 if (itemHelpFlag)
 topicToDisplay = HELP_MainWindow_ITEM_ID;
 else
 topicToDisplay = HELP_MainWindow_ID;
 break; case HELP_NameField:
 useQuickHelpDialog = True;
 if (itemHelpFlag)
 topicToDisplay = HELP_NameField_ITEM_ID;
 else
 topicToDisplay = HELP_NameField_ID;
 break; case HELP_AddressField:
 useQuickHelpDialog = True;
 if (itemHelpFlag)
 topicToDisplay = HELP_AddressField_ITEM_ID;
 else
 topicToDisplay = HELP_AddressField_ID;

222 CDE Help System Author’s and Programmer’s Guide

10

 break; case HELP_PhoneField:
 useQuickHelpDialog = True;
 if (itemHelpFlag)
 topicToDisplay = HELP_PhoneField_ITEM_ID;
 else
 topicToDisplay = HELP_PhoneField_ID;
 break; default:
 /* An unknown clientData was received. */
 /* Put your error handling code here. */
 return;
 break;
 }
 /* Display the topic. */
 ac = 0;
 XtSetArg (al[ac], DtNhelpType, DtHELP_TYPE_TOPIC); ac++;
 XtSetArg (al[ac], DtNhelpVolume, HELP_volumeName); ac++;
 XtSetArg (al[ac], DtNhelpType, topicToDisplay); ac++;
 if (useQuickHelpDialog)
 {
 XtSetValues (mainQuickHelpDialog, al, ac);
 XtManageChild (mainQuickHelpDialog);
 }
 else
 {
 XtSetValues (mainHelpDialog, al, ac);
 XtManageChild (mainHelpDialog);
 }
 /* Clear the ` item help’ flag. */
 itemHelpFlag = False;
 }

The preceding function assumes that the application uses two help dialogs
for all help requests (mainHelpDialog and mainQuickHelpDialog), and
that those dialogs have already been created. It also assumes that al and
ac (used in assembling Xt argument lists) are declared elsewhere.

Providing a Help Menu

The CDE Style Guide and Certification Checklist recommends that each
menu bar include a Help menu. The Help menu may contain a variety of
commands that let the user access different types of online help for your
application.

Responding to Help Requests 223

10

The most important commands include:

• Introduction displays the home topic of your application’s help, allowing
the user to use hyperlinks to navigate to any desired information.

• Using Help displays help on help. This is information that tells the user
how to use the Help System.

• Version displays your application’s version and copyright information.
The copyright topic (created using the <copyright> element) has the ID
_copyright .

Additional commands may display help on special keyboard usage,
application tasks, reference, or tutorials. You should design your Help
menu to best suit your application, while staying within the guidelines and
recommendations of the CDE Style Guide and Certification Checklist.

See Also

• “To Create a Home Topic” on page 41 describes how authors create the
home topic for a help volume.

• “To Create a Meta Information Section” on page 43 describes how
authors create a copyright topic.

• Chapter 12, “Providing Help on Help” describes how help on help is
found and how to add it to your application.

Supporting Item Help Mode

Some applications provide an On Item or Help Mode command in their
Help menu. This command temporarily redefines the mouse pointer as a ?
(question mark) to prompt the user to select an item on the screen. When
an item is selected, the application is expected to display a description of
the item.

The convenience function, DtHelpReturnSelectedWidgetId() , changes
the pointer to a question mark and waits for the user to pick a widget. The
ID of the selected widget is returned. This function is similar to the
XmTrackingLocate() function except that
DtHelpReturnSelectedWidgetId() returns NULL if the user presses
Escape to cancel the operation.

224 CDE Help System Author’s and Programmer’s Guide

10

To display help on the selected item, your application can simply invoke the
help callback for the returned widget. This is equivalent to the user
pressing F1 while using that widget.

If you want the application to differentiate between item help and F1 help,
you can set a flag before calling the widget’s help callback. The help
callback procedure can then use that flag to determine that the callback
was invoked as a result of item help and alter its response accordingly.

♦ To Add Support for Item Help

1. Write a function that uses the DtHelpReturnSelectedWidgetId()
function. Within this function, invoke the help callback for the selected
widget. In the following steps, this function is called
ProcessOnItemHelp() , but you can name it whatever you want.

2. Add to your Help menu a command button labeled On Item. Add an
activate callback that invokes your ProcessOnItemHelp() function.

3. Add a help callback to each widget in your application where you want
item help to be available.

If the selected widget does not have a help callback, the application should
try its parent widget. Similarly, if the parent does not have a help callback,
the application should continue to walk up the widget hierarchy until it
finds a help callback.

Example

The following procedure is a sample ProcessOnItemHelp() function that
would be invoked by choosing On Item from the Help menu.

void ProcessOnItemHelp(
 Widget widget)
{
 /* Declare a variable for the selected widget. */
 Widget selWidget=NULL;
 int status=DtHELP_SELECT_ERROR;
 /* Get an application shell widget from our widget hierarchy to
 * pass into DtHelpReturnSelectedWidgetId().
 */
 while (!XtIsSubclass(widget, applicationShellWidgetClass))
 widget = XtParent(widget);

Responding to Help Requests 225

10

 status = DtHelpReturnSelectedWidgetId(widget, NULL, &selWidget);
 switch ((int)status)
 {
 case DtHELP_SELECT_ERROR:
 printf(“Selection Error, cannot continue\n”);
 break;
 case DtHELP_SELECT_VALID:
 /* We have a valid widget selection, now let’s look for a registered help
 * callback to invoke.
 */
 while (selWidget != NULL)
 {
 if ((XtHasCallbacks(selWidget, XmNhelpCallback)
 == XtCallbackHasSome))
 {
 /* Found a help callback, so just call it */
 XtCallCallbacks((Widget)selWidget,
 XmNhelpCallback,NULL);
 break;
 }
 else
 /* No help callback on current widget, so try the widget’s parent */
 selWidget = XtParent(selWidget);
 }
 break;
 case DtHELP_SELECT_ABORT:
 printf(“Selection Aborted by user.\n”);
 break;
 case DtHELP_SELECT_INVALID:
 printf(“You must select a component within your app.\n”);
 break;
 }
}

226 CDE Help System Author’s and Programmer’s Guide

10

227

Handling Events in Help Dialogs 11

This chapter describes several Help dialog events that an application must
be equipped to handle.

Supporting Help Dialog Events

Like other widgets within your application, help windows have some
behavior that must be supported by the application.

Hyperlink Events

Most standard hyperlink events are handled internally by the Help System.
However, there are four types of hyperlinks that your application is
responsible for handling:

• Jump-new-view hyperlinks—Your application must create a new help
dialog to honor the author’s request for a topic to be displayed in a new
help window.

Supporting Help Dialog Events 227

Responding to Hyperlink Events 228

Detecting When Help Dialogs Are Dismissed 230

Using the Application-Configured Button 231

228 CDE Help System Author’s and Programmer’s Guide

11

• Man page links—Your application must create a new quick help dialog
(or get one from your cache) to display a man page. Typically, the size of
man page windows is different from all other help windows.

• Application-defined links—Your application must interpret the data
associated with these links. Application-defined links exist only if you
and the author have collaborated to create them.

• Text file links—Your application must create a quick help dialog (or get
one from you cache) to display the text file.

When Dialogs Are Dismissed

When the user closes a help dialog, your application needs to know so it can
store the dialog in its cache, or destroy it. The general help dialog supports
a help closed callback. To detect when a quick dialog is dismissed, add a
callback to its Close button.

Quick Help Buttons

The behavior for some of the buttons in quick help dialogs must be handled
by your application. These buttons can be managed and unmanaged as
needed. You add behavior just like any other push button: using an activate
callback.

See Also

• “Creating Hyperlinks” on page 69 describes the types of links supported
by the Help System and explains how to create them.

Responding to Hyperlink Events

Your application needs to provide support only for the types of hyperlinks
used within the help volume to be displayed. In general, it is recommended
that you provide support for all link types.

For your application to be notified when a hyperlink is chosen, it must add
a hyperlink callback to the help dialog. You must write a callback function
that handles the hyperlink appropriately.

Handling Events in Help Dialogs 229

11

♦ To Provide a Hyperlink Callback

1. Add a hyperlink callback to each help dialog as shown:

XtAddCallback (helpDialog, DtNhyperlLinkCallback,
HyperlinkCB, (XtPointer)NULL);

Where helpDialog is the widget ID of the help dialog and HyperlinkCB is
the name of the callback function for handling hyperlinks.

2. Write the HyperlinkCB function to handle the hyperlink events that can
occur within the dialog.

Within the hyperlink callback, you have access to the following callback
structure (which is declared in <Dt/Help.h>):

typedef struct
{

int reason;
XEvent *event;
char *locationId;
char *helpVolume;
char *specification;
int hyperType;
int windowHint;

} DtHelpDialogCallbackStruct;

The hyperType element indicates which type of link was executed. Its
possible values are: DtHELP_LINK_TOPIC , DtHELP_LINK_MAN_PAGE,
DtHELP_LINK_APP_DEFINE, or DtHELP_LINK_TEXT_FILE . For a
description of which structure elements are valid for different types refer to
the DtHelpDialog(3) man page.

The windowHint element indicates a window type. Its possible values are:
DtHELP_CURRENT_WINDOW, DtHELP_POPUP_WINDOW, or
DtHELP_NEW_WINDOW.

Example

The following function, HyperlinkCB() , illustrates the general structure
needed to handle hyperlink callbacks.

XtCallbackProc
HyperlinkCB (widget, clientData, callData)
 Widget widget;
 XtPointer clientData;

230 CDE Help System Author’s and Programmer’s Guide

11

 XtPointer callData;
 {
 DtHelpDialogCallbackStruct *hyperData =
 (DtHelpDialogCallbackStruct *) callData;
 switch ((int)hyperData-> hyperType)
 {
 case DtHELP_LINK_TOPIC:
 /* Handles "jump new view”hyperlinks. */
 break;
 case DtHELP_LINK_MAN_PAGE:
 /* Handles "man page" hyperlinks. */
 break;
 case DtHELP_LINK_APP_DEFINE:
 /* Handles ‘‘application-defined" hyperlinks. */
 break;
 case DtHELP_LINK_TEXT_FILE:
 /* Handles ‘‘text file" hyperlinks. */
 break;
 default:
 break;
 }

Detecting When Help Dialogs Are Dismissed

To detect when a general help dialog is closed, add the following callback to
the dialog:

XtAddCallback (helpDialog, DtNcloseCallback,
HelpCloseCB, (XtPointer)NULL);

Where helpDialog is the widget ID for the help dialog and HelpCloseCB is
the name of the callback procedure you’ve written to handle closing dialogs.

To detect when a quick help dialog is closed, add the following callback to
the dialog’s OK button:

XtAddCallback (DtHelpQuickDialogGetChild (helpDialog,
DtHELP_QUICK_OK_BUTTON), XmNactivateCallback, HelpCloseCB,
(XtPointer)NULL);

Where helpDialog is the widget ID for the help dialog and HelpCloseCB is
the name of the callback procedure you’ve written to handle closing dialogs.

Handling Events in Help Dialogs 231

11

Using the Application-Configured Button

The quick help dialog’s application-configured button lets you add custom
behavior to any quick help dialog. This button can be used for anything you
want, but its intended purpose is to provide a path to more help in one of
these two ways:

• Lets the user progressively ask for more information. This is sometimes
called progressive disclosure. In this case, the default button label (More)
is appropriate.

• Lets the user open a general help dialog for general browsing of the
application’s help volume. In this case, Browse… is the most appropriate
button label.

♦ To Enable the Application-Configured Button

1. Get the button’s ID.

2. Add an activate callback to the button.

3. Manage the button.

Example

The following code segment gets the button’s ID, assigns a callback, and
manages the button. It assumes that quickHelpDialog was just created.

Widget moreButton;
moreButton = DtHelpQuickDialogGetChild (quickHelpDialog,
 DtHELP_QUICK_MORE_BUTTON);
XtAddCallback (moreButton, XmNactivateCallback,
 MoreHelpCB, NULL);
XtManageChild (moreButton);

See Also

• “To Create a Quick Help Dialog” on page 209
• DtHelpDialog(3) man page
• DtHelpQuickDialog(3) man page

232 CDE Help System Author’s and Programmer’s Guide

11

233

Providing Help on Help 12

This chapter explains how to incorporate a help volume into your
application that describes the features of the Help System and how to use
them. This help volume provides help on using the Help dialog boxes.

Providing Help on Help

Help on help tells users how to use the Help System. Specifically, it
describes such tasks as using hyperlinks, navigating topics, using the
index, and printing help topics. Normally, help on help is supplied as an
individual help volume named Help4Help.

The Help4Help volume and its source files are included in the Developer’s
Toolkit. You can use the default volume “as is,” or modify it for your
application’s design.

Accessing Help on Help in an Application 234

To Set the helpOnHelpVolume Resource 235

To Provide a Using Help Command 235

To Display Help on Help 236

Writing Your Own Help on Help Volume 237

To Copy the Help4Help Source Files 239

234 CDE Help System Author’s and Programmer’s Guide

12

For Application Help

If you are writing application-specific help, there are two ways to ensure
that your application has help on help for its own help dialogs:

• Rely on the desktop’s help on help volume. For example, on workstations
running the desktop, the standard Help4Help volume is installed.

• Supply your own help on help volume. The HelpTag source files for the
Help4Help volume are provided in the /usr/dt/dthelp/help4help/C
directory. A control subdirectory contains HelpTag processing files. You
run HelpTag in this directory to create the run-time help file. Graphics
files used in the help on help volume are stored in the
control/graphics subdirectory.

 For Standalone Help

If you are writing standalone help, you are probably relying on the
Helpview program already being installed and ready to use. If this is the
case, you don’t have to worry about help on help because Helpview accesses
the standard Help4Help volume by default.

How Help on Help Is Found

Each application that uses the Help System (including Helpview) has a
helpOnHelpVolume resource that identifies a help volume to be accessed
for help on help topics. For Helpview, this resource is set as follows:

DtHelpview*helpOnHelpVolume: Help4Help

If you provide your own help on help volume, be sure to give it a unique
name so it doesn’t conflict with another help on help volume that may be
installed on the system.

Accessing Help on Help in an Application

Your application should do the following to support help on help:

• Set the helpOnHelpVolume resource to identify the help volume you
want to access.

• Add a Using Help command to the application’s Help menu.

Providing Help on Help 235

12

♦ To Set the helpOnHelpVolume Resource

◊ Add a line to your application’s application-defaults file like this:

App-class*helpOnHelpVolume: volume

Where App-class is the application’s class name and volume is the name
of the help on help volume you want to access.

Or, within your application, set the helpOnHelpVolume resource for
each help dialog you create.

Examples

• This line in dthelpview’s application-defaults file (DtHelpview)
specifies the help on help volume:

DtHelpview*helpOnHelpVolume: Help4Help

• To specify the help on help volume when creating a help dialog, add it to
the argument list passed to the create function as shown here:

ac = 0;
XtSetArg (al[ac], XmNtitle, "My Application - Help"); ac++;
XtSetArg (al[ac], DtNhelpOnHelpVolume, "Help4Help"); ac++;
helpDialog = DtCreateHelpDialog (parent, "helpDialog", al, ac);

♦ To Provide a Using Help Command

1. Add to your Help menu a button labeled Using Help. Also add the
necessary activate callback to call your HelpRequestCB() function.

2. Add support to your HelpRequestCB() function to display help on help.
Specifically:
• Create a quick help dialog.
• Set the dialog’s title to Help On Help.
• Display the home topic of the help on help volume.
• Manage the quick help dialog.

Example

The following lines create a menu button labeled Using Help… that calls
the HelpRequestCB() function.

236 CDE Help System Author’s and Programmer’s Guide

12

/* Create the ` Using Help ...’ button. */
labelStr = XmStringCreateLtoR ("Using Help ...",
XmSTRING_DEFAULT_CHARSET);
ac = 0;
XtSetArg (al[ac], XmNlabelString, labelStr); ac++;
button = XmCreatePushButtonGadget (parent, "usingHelpButton", al,
ac);
 XtManageChild (button);
 XmStringFree (labelStr);
 /* Add a callback to the button. */
 XtAddCallback (button,XmNactivateCallback,HelpRequestCB,
 USING_HELP);

USING_HELP is the client data passed to the HelpRequestCB() function
when the menu button is chosen by the user. Presumably it has been
defined somewhere in the application (perhaps in a Help.h file) as a
unique integer:

#define USING_HELP 47

To see how the HelpRequestCB() function handles the USING_HELP case,
see the example in the next section, “To Display Help on Help.”

♦ To Display Help on Help

1. Create a quick help dialog (or retrieve one from your cache).

2. Display in the dialog the home topic of your help on help volume.

Help on help can be displayed in a general help window. However, a quick
help dialog is recommended because its user interface is simpler, which is
less intimidating to new users who commonly need help on help.

Example

The following program segment is part of a HelpRequestCB() function.
Presumably, the USING_HELP constant is passed to the function because the
user chose Using Help from the application’s Help menu or chose the Help
button in a quick help dialog.

This example assumes that the application never creates more than one
Help On Help dialog and maintains its widget ID in a variable called
onHelpDialog .

Providing Help on Help 237

12

case USING_HELP:
 if (onHelpDialog == (Widget)NULL)
 {
 /* Get a quick help dialog for use as the ` help on help’ dialog. */
 onHelpDialog = FetchHelpDialog (True);

 if (onHelpDialog == (Widget)NULL)
 /* We didn’t get a dialog! Add your error handling code here. */
 }

 /* Set the proper volume and ID to display the home topic of
the help on help volume. Also, set the dialog’s title. */

 ac = 0; XtSetArg (al[ac], XmNtitle, "Help On Help"); ac++;
 XtSetArg (al[ac], XmNhelpType, DT_HELP_TYPE_TOPIC); ac++;
 XtSetArg (al[ac], XmNhelpVolume, "Help4Help"); ac++;
 XtSetArg (al[ac], XmNlocationId, "_hometopic"); ac++;
 XtSetValues (onHelpDialog, al, ac);

 /* If the ` help on help’ dialog is already managed, it might
be in another workspace, so unmanage it. */

 if (XtIsManaged (onHelpDialog))
 XtUnmanageChild (onHelpDialog);

 /* Manage the ` help on help’ dialog. */
 XtManageChild (onHelpDialog);

 break;

To see how the rest of the HelpRequestCB() function might be structured,
refer to the example in “To Add a Help Callback” on page 219.

See Also

• “To Create a Quick Help Dialog” on page 209
• “To Display a Help Topic” on page 215

Writing Your Own Help on Help Volume

If you need to provide your own help on help volume, you should start with
the existing Help4Help volume and then make the necessary changes. All
the source files used to write the Help4Help volume are provided in the
/usr/dt/dthelp/help4help/C directory.

238 CDE Help System Author’s and Programmer’s Guide

12

To prevent installation conflicts, name your help on help volume something
other than Help4Help. Consider picking a name that is specific to your
product. For example, if your application’s help volume is Newapp, your
help for help volume could be NewappH4H.

Required Entry Points

To ensure that context-sensitive help within a help dialog operates
correctly, you must provide the following entry points (IDs) within your
help on help volume. (These are already included in the Help4Help source
files.)

ID Topic Description

_hometopic Displays an introduction to using the help system.
This topic is displayed when you choose Using Help
from the general help dialog’s Help menu, or when
you press F1 in a quick help dialog. (The ID
_hometopic is created automatically by the
<hometopic> element.)

_copyright Displays the copyright and version information for
the help on help volume. This topic is displayed
when you choose Version from the general help
dialog’s Help menu. (The ID _copyright is created
automatically by the <copyright> element.)

history Displays a topic that describes how to use the
History dialog. This topic is displayed when you
choose Help or press F1 within the History dialog.

printing Displays a topic describing how to use the Print
dialog. This topic is displayed when you choose Help
or press F1 within the Print dialog.

index-search Displays a topic describing how to use the Index
Search dialog. This topic is displayed when you
choose Help or press F1 within the Index Search
dialog.

volume-select Displays a topic describing how to use the Search
Volume Selection Dialog. This topic is displayed
when you choose Help or press F1 within the Search
Volume Selection Dialog.

Providing Help on Help 239

12

♦ To Copy the Help4Help Source Files

1. Copy the entire /usr/dt/dthelp/help4help/ C directory to a new
working directory (new-dir) using a command like this:

 cp -r /usr/dt/dthelp/help4help/C new-dir

This creates new-dir and copies all the files and directories into it.

2. To permit editing the files (which are copied as read only), change the
permissions using a command like this:

 chmod -R u+w new-dir

The Help4Help volume uses these HelpTag source files:

• MetaInfo
• Toc
• Tasks
• HomeTopic
• Concepts
• Reference
• Glossary

Also included is a control directory, where you run HelpTag to create the
run-time help file. Graphics are stored in the control/graphics
subdirectory.

Be sure to rename the Help4Help.htg file before running HelpTag. Your
help on help volume should have a unique name to prevent conflicts with
other help on help volumes.

Example

The following commands create a copy of the help on help volume and make
its files writable. (Presumably the projects subdirectory already exists.)

cp -r /usr/dt/dthelp/help4help/C /users/dex/projects/NewHelp4Help
chmod -R u+w /users/dex/projects/NewHelp4Help

To build a new version of the run-time help files, first ensure that the
directory /usr/dt/bin is in your search path. Then, change to the new
directory, rename the Help4Help.htg file, and run HelpTag:

cd /users/dex/projects/NewHelp4Help
mv Help4Help.htg NewH4H.htg
dthelptag NewH4H

240 CDE Help System Author’s and Programmer’s Guide

12

When the HelpTag software is done, you can display the new help on help
volume using this command:

dthelpview -helpVolume NewH4H

241

Preparing an Installation Package 13

This chapter identifies the help files that are included in an application
installation package. It also describes how help files are handled when your
application is registered on the desktop.

Overview

When it comes time to prepare your final product, you must be sure that all
your help files are created and installed properly. Your product package
includes both the run-time help file (volume.sdl) and its graphic files.
Additionally, you can provide a help family file that enables your volume to
be viewed using the Front Panel Help Viewer.

Delivering Online Help 242

Creating an Installation Package 242

Registering Your Application and Its Help 245

Product Preparation Checklists 246

242 CDE Help System Author’s and Programmer’s Guide

13

Delivering Online Help

Online help can be fully integrated into an application or provided as a
standalone help volume. Fully integrated help allows a user to directly
access help information from an application by using a Help menu or Help
key. A standalone volume on the other hand, can only be displayed using
the desktop Help Viewer.

A system administrator may choose to add a standalone help volume to the
desktop when an application does not provide integrated help or a
customized environment provides a supplemental help volume. See
“Standalone Help” on page 245 for instructions to install a standalone
volume on the desktop.

Creating an Installation Package

Your installation package should include these help files:

• Run-time help files
• Graphics files
• Help family file (optional)
• Application defaults file (optional)

The run-time help file and any graphics used in the online help are
included in your installation package. A help family file is optional for
integrated application help. However, if you want your application help to
be browsable using the desktop Help Viewer, you must provide a family file.
If you are delivering a standalone help volume, you must provide a help
family file. See “To Create a Help Family” on page 102.

If your application’s help volume includes execution links, it is
recommended that the author define execution aliases in an application
defaults file. This takes advantage of the Help System’s default execution
policy which will automatically execute links with execution aliases.
However, if the help volume is viewed as an independent volume using a
separate information viewer, such as the Help Viewer, the Help System will
display a confirmation dialog box when an execution link is selected.

Preparing an Installation Package 243

13

Figure 13-1 on page 243 shows a typical installation package for an
application and its help files. Help files are grouped in a separate help
subdirectory which contains a default language directory (C is the default).
The run-time help file, family file, and graphics files are located in this
directory.

Figure 13-1 Application installation package

If your application provides online help in multiple languages, you should
create a language subdirectory to accommodate each language (where
language matches the user’s LANG environment variable). For example, an
application that provides both an English and German user interface stores
its corresponding online help in two subdirectories: C for English and
german for German.

Run-Time Help File

HelpTag creates a single run-time help file, volume.sdl . The base name,
volume, is the same as the base name of your volume.htg file. The Help
Viewer uses information stored in this master help file and also accesses
any associated graphic files.

You don’t need to ship the volume.htg or any additional files generated by
the HelpTag software.

244 CDE Help System Author’s and Programmer’s Guide

13

Graphics Files

If your help volume uses graphics, the image files are typically stored in a
separate directory for convenience. However, you may choose to store them
in the same location as your volume.htg file.

A run-time help file does not include actual graphic images. Instead, it
contains a "reference" to the location of each graphic file. When you run
HelpTag, the dthelptag compiler incorporates the relative path names of
the graphics files into the help volume.

When the help files are installed, the graphics files must be in the same
relative position as when the run-time file was built. Otherwise, the help
volume will be unable to locate the graphics files. For example, if your
graphics files are in a subdirectory named graphics one level below your
volume.htg file, then your installation package must preserve that relative
position. The graphics files must be placed in a subdirectory named
graphics one level below the volume.sdl file.

Figure 13-2 Relationship of build directories and installation package

Help Family File

You can optionally provide a help family file (volume.hf). A family file
briefly describes your help volume and includes copyright information. It
can also be used to group one or more related volumes into a single product
category.

Preparing an Installation Package 245

13

If you want your help volume to be accessible from the desktop browser
volume, then you must provide a family file in your installation package. To
create a family file, see “To Create a Help Family” on page 102.

Registering Your Application and Its Help

The desktop’s integration utility, dtappintegrate , registers your
application and its help files by creating symbolic links between the
installed application files and specific desktop directories. Application
registration ensures that your help files are located in the directory search
paths used by the Help System.

Registration enables two important features of the Help System:

• Cross-volume hyperlinks — A hyperlink in one help volume can refer to
another help volume using just the volume name and an ID within the
volume. If the destination volume is registered, the link does not have to
specify where the volume is stored on the file system.

• Help family browsing — If you also register a "help family", then your
help volumes will be browsable using the Help Viewer.

Registering your online help makes it easier to access the help you provide.
For authors and programmers, it’s easier because references to your volume
can use just the volume name — without specifying the volume’s actual
location.

If you register a help family with one or more help volumes, you make your
help available for general browsing from the Front Panel Help Viewer. This
allows access to application-specific help without using the application. Or,
if you are writing standalone help, this is the only way for users to get to
your help.

Standalone Help

A standalone help volume for an application or a customized environment
can be created using the Help System Developer’s Kit. To make the help
volume accessible from in the desktop browser volume, a system
administrator installs the run-time help file, associated graphics, and
family file in the /etc/dt/appconfig/help/ language directory.

246 CDE Help System Author’s and Programmer’s Guide

13

Remember that the run-time help file and its graphics files must be
installed in the same relative position as when the help volume was built.
See “Graphics Files” on page 244 to review the installation of graphics files.

What Happens When the Application Is Registered

Application registration creates symbolic links from the run-time help file
and family located in app_root/dt/appconfig/help / language to the
/etc/dt/appconfig/help /language directory.

Refer to the CDE Advanced User’s and System Administrator’s Guide for
detailed instructions for application registration.

How a Help Volume Is Found

The Help System uses desktop search paths to locate help volumes. When
help is requested within an application or a help volume is specified in a
command line, the help volume is found by checking a set of search path
directories. You can control the directory search path for help volumes by
modifying several environment variables. Refer to the CDE Advanced
User’s and System Administrator’s Guide for detailed information about
specifying search paths.

Product Preparation Checklists

The following checklists should help you verify that you’ve prepared your
product correctly. Of course, there’s no substitute for testing your product
by using it as a user will.

For Authors

1. A final version of the run-time help file was created.

Here are the recommended commands for creating the run-time file:

dthelptag -clean volume
dthelptag volume nomemo onerror=stop

Preparing an Installation Package 247

13

The -clean option removes files from any previous dthelptag
command, the nomemo option ensures that writer’s memos are not
displayed, and the onerror=stop option stops processing if any parser
errors occur. You should not distribute a help volume that has any parser
errors.

2. All hyperlinks have been tested.

Each hyperlink displays the proper topic or performs the correct action.

3. Execution aliases have been defined for execution links.

Execution aliases are defined as resources in the application’s
application defaults file. An execution alias associates a name with a
shell command to be executed. If you have used execution links in your
help volume, coordinate with the application developer to add these
resources to the application defaults file. For more information, refer to
“Execution Aliases” on page 77.

4. All graphics are acceptable.

The graphics have been tested on various color, grayscale, and
monochrome displays.

For Product Integrators

1. The run-time file is installed.

2. All graphics are installed in the proper locations.

Each graphics file must be installed in the same relative position to the
.sdl file that it was in relative to the.htg file when the HelpTag
software was run.

3. The help volume is registered.

The dtappintegrate script was run to create symbolic links from the
installation directory to the registration directory.

4. A product family file is installed and registered.

248 CDE Help System Author’s and Programmer’s Guide

13

The family file is installed with the other help files. When
dtappintegrate is run, it creates a symbolic link for the family file.
Registering a family file for your help volume is optional. However, if you
choose not to register a family file, your help volume will not be
accessible from the Front Panel Help Viewer.

For Programmers

1. The application sets the correct values for these required resources:

App-class*helpVolume: volume
App-class*helpOnHelpVolume: help-on-help-volume

The helpVolume resource identifies the help volume for your
application.The helpOnHelpVolume identifies the help volume that
contains the help on using the help system.

2. Execution aliases are included in the application defaults file.

An author defines execution aliases as application resources. An
execution alias associates a name with a shell command to be executed.
If execution links have been used in the help volume, check with the
author to identify the resources that need to be added. For more
information, refer to “Execution Aliases” on page 77.

3. The application sets the desired values for the following optional
resources:

App-class*DtHelpDialogWidget*onHelpDialog*rows: rows
App-class*DtHelpDialogWidget*onHelpDialog*columns: columns
App-class*DtHelpDialogWidget*definitionBox*rows: rows
App-class*DtHelpDialogWidget*definitionBox*columns: columns

The onHelpDialog resources control the size of the quick help dialogs
used to display Help on Help. The definitionBox resources control the
size of the quick help dialog used for definition links.

4. The application uses either the default font resources or defines font
resources in the application’s application-defaults file.

In most cases an application can rely on the default font resources.
However, when custom fonts are used, they must be defined in the
application-defaults file. Sample font schemes are provided in the
/usr/dt/dthelp/fontschemes directory. See Chapter 14, “Native
Language Support,” for additional information about font schemes.

Part 4 — Internationalization

251

Native Language Support 14

This chapter identifies files used by the Help System that require
modification when a help volume is provided in multiple languages.

Internationalized Online Help

If your product is intended for an international audience, then providing
online help in the user’s native language is important. The Help System
supports the authoring and displaying of online help in virtually any
language.

Internationalized Online Help 251

Character Sets and Multibyte Characters 252

Locale and Character Set 255

DtHelp Message Catalog 256

LANG Environment Variable 257

Understanding Font Schemes 259

Creating a Formatting Table 262

Displaying a Localized Help Volume 264

Preparing Online Help for International Audiences 264

252 CDE Help System Author’s and Programmer’s Guide

14

When you process a help volume to create run-time help files, the HelpTag
software must be told what language and character set you used to author
your files. The language and character set information is also used to
determine the proper fonts for displaying the help volume.

Internationalization Factors

Several factors, which are explained in the following section, contribute to
providing online help in the user’s native language.

Character Sets and Multibyte Characters

A character set determines how a computer’s internal character codes
(numbers) are mapped to recognizable characters. In most languages,
single-byte characters are sufficient for representing an entire character
set. However, there are some languages that use thousands of characters.
These languages require two, three, or four bytes to represent each
character uniquely.

Character sets supported by the Help System are listed in Table 14-1.
However, some characters sets may not exist on all platforms.

Table 14-1Common Desktop Environment Character Sets

Language
Character Set
Name Description

Western Europe
and Americas

ISO-8859-1
HP-ROMAN8

ISO Latin 1
HP Roman

IBM-850 PC Multi-lingual

Central Europe ISO-8859-2 ISO Latin 2

Cyrillic ISO-8859-5 ISO Latin/Cyrillic

Arabic ISO-8859-6 ISO Latin/Arabic
HP-ARABIC8 HP Arabic8
IBM-1046 PC Arabic

Hebrew ISO-8859-8 ISO Latin/Hebrew
HP-HEBREW8 HP Hebrew8
IBM-856 PC Hebrew

Greek ISO-8859-7 ISO Latin/Greek
HP GREEK8 HP Greek8

Turkish ISO-8859-9 ISO Latin 5
HP-TURKISH8 HP Turkish8

Native Language Support 253

14

When writing HelpTag files, you may use multibyte characters for any help
text. However, the HelpTag markup itself (tag names, entity names, IDs,
and so on) must be entered using eight-bit characters

Language and Territory Names

When choosing a language, you select both a character set and a language
and territory name. The language and territory name is used to
accommodate variations, such as currency and date format, for a given
country or region.

The language and territory names supported by the Help System are listed
in the following table. Before you choose a language, refer to your system
documentation to identify the languages and character sets supported on
your platform.

Japanese EUC-JP Japanese EUC (JISX0201, JISX0208,
JISX0212)

HP-SJIS HP Japanese Shift JIS
HP-KANA8 HP Japanese Katakana8 (JISX0201 1976)
IBM-932 PC Japanese Shift JIS

Korean EUC-KR Korean EUC

Chinese EUC-CN Simplified Chinese EUC (China) (GB2312)
EUC-TW Traditional Chinese EUC (Taiwan) (CNS

11643.*)
HP-BIG5 HP Traditional Chinese Big5
HP-CCDC HP Traditional Chinese CCDC
HP-15CN HP Traditional Chinese EUC

Thai TIS-620 Thai

Table 14-2Help System Language and Territory Names

Languages
Language/Territory
Name Language, Territory

Standards compliance
C C
POSIX C

Western Europe/Americas
da_DK Danish, Denmark
de_AT German, Austria

Table 14-1Common Desktop Environment Character Sets (Continued)

Language
Character Set
Name Description

254 CDE Help System Author’s and Programmer’s Guide

14

de_CH German, Switzerland
de_DE German, Germany
en_AU English, Australia
en_CA English, Canada
en_DK English, Denmark
en_GB English, U.K.
en_IE English, Ireland
en_MY English, Malaysia

en_NZ English, New Zealand
en_US English, USA
es_AR Spanish, Argentina
es_BO Spanish, Bolivia
es_CL Spanish, Chile
es_CO Spanish, Columbia
es_CR Spanish, Costa Rica
es_EC Spanish, Ecuador
es_ES Spanish, Spain
es_GT Spanish, Guatemala
es_MX Spanish, Mexico
es_PE Spanish, Peru
es_UR Spanish, Uruguay
es_VE Spanish, Venezuela
et_EE Estonian, Estonia
fi_FI Finnish, Finland
fo_FO Faroese, Faeroe Island
fr_BE French, Belgium
fr_CA French, Canada
fr_CH French, Switzerland
fr_FR French, France
is_IS Icelandic, Iceland
it_CH Italian, Switzerland
it_IT Italian, Italy
kl_GL Greenlandic, Greenland
lt_LT Lithuanian, Lithuania
lv_LV Latvian, Latvia
nl_BE Dutch, Belgium
nl_NL Dutch, The Netherlands
no_NO Norwegian, Norway
pt_BR Portuguese, Brazil
pt_PT Portuguese, Portugal
sv_FI Swedish, Finland
sv_SE Swedish, Sweden

Central Europe
cs_CS Czech
hr_HR Croatian, Croatia
hu_HU Hungarian, Hungary
pl_PL Polish, Poland
ro_RO Rumanian, Romania
sh_YU Serbocroatian, Yugoslavia
si_CS Slovenian
si_SI Slovenian

Table 14-2Help System Language and Territory Names (Continued)

Languages
Language/Territory
Name Language, Territory

Native Language Support 255

14

Locale and Character Set

A help volume’s default language and character set can be defined as an
entity in the helplang.ent file. To specify a complete locale name,
combine the language and territory name with the character set name
using this syntax:

language-and-territory-name. character-set-name

For a description of the helplang.ent file, see “helplang.ent File” on
page 257.

Examples

• The following entity declaration specifies a complete locale name for the
C standard language and the ISO-8859-1 character set:

<!ENTITY LanguageElementDefaultLocale SDATA “C.ISO-8859-1”>

sk_SK Slovak
Cyrillic

bg_BG Bulgarian, Bulgaria
mk_MK Macedonian
ru_RU Russian
ru_SU Russian
sp_YU Serbian, Yugoslavia

Arabic*
ar_SA Arabic

ar_AA Arabic
ar_DZ Arabic

Hebrew
iw_IL Hebrew, Israel

Greek
el_GR Greek, Greece

Turkish
tr_TR Turkish, Turkey

Asia
ja_JP Japanese, Japan
ko_KR Korean, Korea
zh_CN Chinese, China
zh_TW Chinese, Taiwan

Thai
th_TH Thai, Thailand

* No ISO territory name exists for the Arabic-speaking regions of the world. Vendors have supplied their own,
which have been adopted for use in the Common Desktop Environment.

Table 14-2Help System Language and Territory Names (Continued)

Languages
Language/Territory
Name Language, Territory

256 CDE Help System Author’s and Programmer’s Guide

14

• The same information could also be entered using two entity
declarations as follows:

<!ENTITY LanguageElementDefaultLocale SDATA “C”>
<!ENTITY LanguageElementDefaultCharset SDATA “ISO-8859-1”>

• To specify the German language using the same character set, use this
declaration:

<!ENTITY LanguageElementDefaultLocale SDATA “de_DE.ISO-8859-1”>

• Or, to specify the Japanese language using the EUC-JP character set,
use this declaration:

<!ENTITY LanguageElementDefaultLocale SDATA “ja_JP.EUC-JP”>

If the locale is not specified in the helplang.ent file, then the value is
derived from the value of the LANG environment variable.

HelpTag Software

When you process a help volume to create run-time help files, the HelpTag
software must be told what language and character set you used to author
your files. The language and character set information is used to determine
the proper fonts for displaying help topics. If you do not specify a language
and character set, HelpTag assumes the default, which is English and ISO-
8859-1.

The language and character set can be defined in the helplang.ent file
(see page 257). Or, the character set can be specified as an option on the
command line when running dthelptag in a terminal window.

Note – When writing HelpTag files, you may use multibyte characters for
any help text. However, the HelpTag markup itself (tag names, entity
names, IDs, and so on) must be entered using eight-bit characters.

DtHelp Message Catalog

The menus, buttons, and labels that appear in help dialogs should also be
displayed in the user’s native language. To enable this, Help dialogs read
such strings from a message catalog named DtHelp.cat .

Native Language Support 257

14

The message catalog source file, DtHelp.msg , contains strings for menus,
buttons, and messages. If the language you need is not supplied, you must
translate the sample message catalog
(/usr/dt/dthelp/nls/C / DtHelp.msg) and then use the gencat
command to create the run-time message catalog file. See “To Create a
Message Catalog” on page 264 for instructions.

Refer to your system documentation to determine the correct directory
where your new message catalog should be installed.

LANG Environment Variable

The user’s LANG environment variable is important for two reasons:

• The value of LANG is used to locate the correct help volume.

• When a help topic is displayed, the correct fonts and formatting rules are
chosen based on the user’s LANG variable. This is especially important
for Asian languages that have word-wrap rules that are more
sophisticated than European and American languages.

See Also

• CDE Internationalization Programmer’s Guide

• NLS documentation for your computer’s operating system
or programmer’s kit

helplang.ent File

The helplang.ent file defines text entities used by the Helptag software
to determine the default locale and character set for a help volume. See
“Locale and Character Set” on page 255 to learn how to specify a language
and character set for your help volume.

The helplang.ent file also defines text entities for default strings such as
Note, Caution, and Warning. If you want to override the English strings
built into the HelpTag software, copy the file and localize the strings. The
file is located in the directory /usr/dt/dthelp/dthelptag.

Here is an excerpt from the helplang.ent file:

<! ENTITY LanguageElementDefaultLocale SDATA “C.ISO-8859-1”>

258 CDE Help System Author’s and Programmer’s Guide

14

<! ENTITY NoteElementDefaultHeadingString SDATA “NOTE”>
<! ENTITY CautionElementDefaultHeadingString SDATA “CAUTION”>
<! ENTITY WarningElementDefaultHeadingString SDATA “WARNING”>
<! ENTITY ChapterElementDefaultHeadingString SDATA “Chapter”>
<! ENTITY FigureElementDefaultHeadingString SDATA “Figure”>
<! ENTITY GlossaryElementDefaultHeadingString SDATA “Glossary”>
.
.
.

Formatting Tables

A multibyte language, such as Japanese or Chinese, requires a formatting
table. This table specifies a list of characters that cannot start a line and
those characters that cannot end a line. When help files are processed, the
formatting table ensures that lines wrap correctly. “Creating a Formatting
Table” on page 262 explains how to create a new table or edit the sample
table provided in the Help Developer’s Kit.

Font Schemes

One of the primary functions of the HelpTag software is to convert your
marked-up files into a run-time format that the Help System understands.
Text is formatted by specifying particular attributes such as type family,
size, slant, and weight. A font scheme is simply a name, like an alias, that
the Help System uses to assign fonts to HelpTag elements such as heads,
procedures, lists, and so forth. It provides a way to map a group of text
attributes used by the Help System with specific fonts.

Applications that use the standard Common Desktop Environment fonts do
not need to define additional font resources. If your application relies on a
different set of fonts, you must create and add a font scheme to your
application.

See Also

• DtStdInterfaceFontNames (5) man page
• DtStdAppFontNames (5) man page

Native Language Support 259

14

Understanding Font Schemes

When you write a help volume using the HelpTag markup language, you
don’t specify the fonts and sizes of the text. When you run the HelpTag
software, the elements that you’ve entered are formatted into run-time help
files that include text attributes.

A font scheme maps text attributes to actual font specifications. For
example, if a help topic is formatted using a bold, sans serif typeface, the
font scheme identifies which Common Desktop Environment standard font
or X font is actually used to display the text.

One of the primary uses of font schemes is to provide a choice of font sizes.
The HelpTag software formats the body of most topics as 10-point text.
However, because the actual display font is determined by the font scheme
being used, all 10-point text could be specified to use a 14-point font.

Font Resources

Each font scheme is actually a set of X resources. These resources are read
by the application displaying the help. If you want to change the font
scheme, you can set font resources in your application’s application defaults
file.

Each resource within a font scheme has this general form:

*pitch.size.slant.weight.style.lang.char-set: font specification

Where:

pitch Specifies the horizontal spacing of characters. This field
should be either p (proportional) or m (monospace).

size Specifies the height of the desired font. For help files
formatted with HelpTag, this value should be 6, 8, 10 , 12 , or
14 .

slant Specifies the slant of the desired font. Usually this field is
either roman for upright letters or italic for slanted
letters

weight Specifies the weight of the desired font. Usually this field is
either medium or bold .

260 CDE Help System Author’s and Programmer’s Guide

14

style Specifies the general style of the desired font. For help files
formatted with HelpTag, this value should be either serif
or sans_serif .

lang Specifies that volumes compiled using this language should
use these fonts. Usually the entry uses an * (asterisk) so
that all volumes using the specified char_set will use these
fonts.

char-set Specifies the character set used to author the help text. This
value must match the character set that was specified when
HelpTag was run. The default is ISO-8859-1 . Some special
characters are displayed using a symbol character set.

An * (asterisk) can be used in a field to specify a font that has any value of
that particular attribute. For instance, the symbol set (for special
characters and special symbols) distinguishes a unique font based only on
size and character set.

Native Language Support 261

14

 Its font resources appear like this within a font scheme:

.6..*.*.*.DT-SYMBOL-1: -adobe-symbol-medium-r-normal-*-*-60-*-*-
p-*-adobe-fontspecific
.8..*.*.*.DT-SYMBOL-1: -adobe-symbol-medium-r-normal-*-*-80-*-*-
p-*-adobe-fontspecific
.10..*.*.*.DT-SYMBOL-1: -adobe-symbol-medium-r-normal-*-*-100-*-
-p--adobe-fontspecific
.12..*.*.*.DT-SYMBOL-1: -adobe-symbol-medium-r-normal-*-*-120-*-
-p--adobe-fontspecific
.14..*.*.*.DT-SYMBOL-1: -adobe-symbol-medium-r-normal-*-*-140-*-
-p--adobe-fontspecific

The char-set field is the only field that cannot use the * (asterisk).

To display multibyte languages, such as Japanese or Korean, font resources
must be specified using a font set. A font set is actually a group of fonts. A
resource entry for a font set is similar to a single font, except a , (comma)
separates multiple font names and the specification ends with a : (colon).
Here is an example of a fully specified font resource for a Japanese font set.

bridge-gothic-medium-r-normal--18-180-75-75-c-80-jisx0201.1976-0,
bridge-gothic-medium-r-normal--18-180-75-75-c-160-jisx0208.1983-0,
bridge-gothic-medium-r-normal--18-180-75-75-c-160-jisx0212.1990-0:

You can also specify fonts for a multibyte language by providing a minimal
XLFD font specification and allowing the system to supply the character set
value to produce a font set.

.12.roman.medium..ja_JP.EUC-JP: -*-*-*-*-*-*-*-120-*-*-*-*-*-*:

When specifying a font set, remember to end the specification with a :
(colon). This instructs the Help System to load a set of fonts to display the
information. Font sets are used to display multibyte languages. For
volumes containing single-byte information, use the standard font
specification.

Sample Font Schemes

The /usr/dt/dthelp/fontschemes directory contains four font schemes:

fontDef.fns Default fonts used by the Help System

fontLarge.fns Example of a larger font

fontMulti.fns Example of a multi-byte font

262 CDE Help System Author’s and Programmer’s Guide

14

fontX11.fns Example of standard X11 fonts

♦ To Choose a Font Scheme

◊ Edit the application-defaults file for the application that displays the online
help. Replace the current font resources (if any) with the new scheme.

If you are making this change just for yourself, copy the application-
defaults file into your home directory before editing it.

Example

To use a larger size font (in the help dialogs) of a personal application
named DtStopWatch , perform these steps:

Change to your home directory:

cd

Then copy the DtStopWatch application-defaults file and make it writable:

cp /usr/dt/app-defaults/C/DtStopWatch .
chmod u+w DtStopWatch

Edit the DtStopWatch file to add the largest scheme (fontLarge.fns) .
Go to the end of the file, and insert the contents of this file:

/usr/dt/dthelp/fontschemes/fontLarge.fns

Save your new DtStopWatch file .

Start the DtStopWatch application, select Help, and verify that help topics
are displayed using the new font scheme.

Creating a Formatting Table

A multibyte language, such as Japanese or Chinese, requires a formatting
table. This table contains three message sets. The first set consists of
characters that cannot start a line; the second set lists any characters that
cannot end a line; and the third set indicates how to handle newline
characters that occur between a single-byte and a multibyte character.

Native Language Support 263

14

A formatting table is an ASCII file whose file name must end with a.msg
extension. Figure 14-1 shows an excerpt from a formatting table for
Simplified Chinese.

Figure 14-1 Sample formatting table

Any line that begins with a $ (dollar sign) followed by a space is a
comment.

Sample Formatting Table

A sample formatting table for a multibyte character set is located in the
/usr/dt/dthelp/nls/zh_CN.dt-eucCN directory and is named
fmt_tbl.msg.

264 CDE Help System Author’s and Programmer’s Guide

14

The sample table can be modified by adding or removing characters. To edit
the formatting table, use an editor capable of composing characters in the
language you have chosen for the help information. If you intend to create
help information using a multibyte language, you need to create a
formatting table.

♦ To Create a Message Catalog

If you translate the DtHelp.msg file, create a new formatting table, or
modify the sample table (fmt_tbl.msg), you must update the message
catalog used by the Help System.

◊ Use this command syntax to generate the catalog file:

gencat file.cat file.msg

Message catalogs for the standard desktop applications are located in the
/usr/dt/lib/nls/msg/ lang directory. To install a message catalog, refer
to your operating system documentation for guidelines.

See Also

• gencat (1) man page

Displaying a Localized Help Volume

To view a help volume created for a locale different from your current
system, you must set your LANG environment variable to match the help
volume. The value of the LANG environment variable is platform-specific.
If you are not familiar with this variable, check with your system
administrator for the correct value and procedure to set your environment.

Preparing Online Help for International Audiences

The following checklist summarizes the questions you should answer when
providing online help for international audiences.

• Are help topics written with an international audience in mind?

• Did you copy the /usr/dt/dthelp/dthelptag/helplang.ent file and
localize the string entities it contains? Using the entities in this file, you
can override the English strings built into the HelpTag software.

Native Language Support 265

14

• Was the HelpTag software run using the correct character set and
language option? If you author in another character set, you may have to
translate the DtHelp.msg message catalog file and provide a font
scheme that supports the new character set.

• Within your HelpTag markup, are all tag names, entity names, and IDs
entered using an eight-bit character set, even if the help text uses
multibyte characters?

• When the user’s LANG environment variable is set to the correct
language, are the help files installed so they are found and displayed
appropriately?

• If you have integrated the Help System into an application, have you
properly set the locale using the XtSetLanguageProc() function?

See Also

• “How a Help Volume Is Found” on page 246

• XtSetLanguageProc(3) man page

• gencat(1) man page

• NLS documentation for your computer’s operating system
or programmer’s kit

266 CDE Help System Author’s and Programmer’s Guide

14

267

HelpTag 1.3 DTD A

 The HelpTag Document Type Definition (DTD) defines each HelpTag
element and the syntax for its use. If you are not familiar with DTDs, refer
to Chapter 8, “Reading the HelpTag Document Type Definition,” for a
description of the specification.

The HelpTag 1.3 DTD is also available in the Developer’s Toolkit. It is
located in the /usr/dt/dthelp/dthelptag/dtd directory and named
helptag.dtd .

268 CDE Help System Author’s and Programmer’s Guide

A

HelpTag 1.3 DTD
<!SGML “ISO 8879:1986”
-- SGML Declaration--
CHARSET
BASESET “ISO 646-1983//CHARSET International Reference Version
 (IRV)//ESC 2/5 4/0”
DESCSET 0 9 UNUSED
 9 2 9
 11 2 UNUSED
 13 1 13
 14 18 UNUSED
 32 95 32
 127 1 UNUSED
BASESET “ISO Registration Number 100//CHARSET ECMA-94
 Right Part of Latin Alphabet Nr. 1//ESC 2/13 4/1”
DESCSET 128 32 UNUSED
 160 5 32
 165 1 UNUSED
 166 88 38
 254 1 127
 255 1 UNUSED
CAPACITY SGMLREF
 TOTALCAP 350000
 ENTCAP 100000
 ENTCHCAP 50000
 ELEMCAP 50000
 GRPCAP 210000
 EXGRPCAP 50000
 EXNMCAP 50000
 ATTCAP 50000
 ATTCHCAP 50000
 AVGRPCAP 50000
 NOTCAP 50000
 NOTCHCAP 50000
 IDCAP 50000
 IDREFCAP 50000
 MAPCAP 210000
 LKSETCAP 50000
 LKNMCAP 50000
SCOPE DOCUMENT
SYNTAX -- The Core Reference Syntax except with ATTCNT,LITLEN,
 NAMELEN,GRPCNT, and GRPGTCNT changed --

HelpTag 1.3 DTD 269

A

SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29
 30 31 127 255

BASESET “ISO 646-1983//CHARSET International Reference Version
 (IRV)//ESC 2/5 4/0”
DESCSET 0 128 0
FUNCTION RE 13
 RS 10
 SPACE 32
 TAB SEPCHAR 9
NAMING
 LCNMSTRT ““
 UCNMSTRT ““
 LCNMCHAR “-.”
 UCNMCHAR “-.”
 NAMECASE
 GENERAL YES
 ENTITY YES
DELIM
 GENERAL SGMLREF
 SHORTREF SGMLREF -- Removed short references --
 NAMES SGMLREF
 QUANTITY SGMLREF
 ATTCNT 140
 LITLEN 4096
 NAMELEN 64
 GRPCNT 100
 GRPGTCNT 253
 TAGLVL 48
FEATURES
 MINIMIZE
 DATATAG NO
 OMITTAG NO
 RANK NO
 SHORTTAG YES
 LINK
 SIMPLE NO
 IMPLICIT NO
 EXPLICIT NO
 OTHER

270 CDE Help System Author’s and Programmer’s Guide

A

 CONCUR NO
 SUBDOC NO
 FORMAL NO
 APPINFO NONE
>
<!DOCTYPE helpvolume [
<!ELEMENT helpvolume - - (metainfo?,
 hometopic?,
 (chapter* | (s1*, rsect*)),
 message?,
 glossary?)
 +(memo | idx) >
<!ELEMENT metainfo - - (idsection, abstract?, otherfront*)

-(footnote) >
<!ELEMENT idsection - - (title, copyright?) >
<!ELEMENT title - - (partext)
 -(memo | location | idx) >
<!ELEMENT partext - - ((#PCDATA | acro | emph | computer |
 user | term | var | circle |

 quote | keycap | graphic | super |
 sub | book | xref | footnote |
 esc | link | location | newline)*) >

<!ELEMENT acro - - ((#PCDATA | esc | super | sub)*) >
<!ELEMENT emph - - (partext) -(emph) >
<!ELEMENT computer - - ((#PCDATA | quote | var | user | esc)*) >
<!ELEMENT user - - ((#PCDATA | var | esc)*) >
<!ELEMENT term - - (partext)
 -(emph | computer | term | var |
 quote | user | book | footnote) >
<!ATTLIST term base CDATA #IMPLIED
 gloss (gloss | nogloss) gloss >
<!ELEMENT var - - ((#PCDATA | esc)*) >
<!ELEMENT circle - - CDATA >
<!ELEMENT quote - - (partext) -(quote) >
<!ELEMENT keycap - - ((#PCDATA | super | sub | esc)+) >
<!ELEMENT graphic - O EMPTY >
<!ATTLIST graphic id ID #IMPLIED
 entity ENTITY #REQUIRED >
<!ELEMENT super - - (#PCDATA) >
<!ELEMENT sub - - (#PCDATA) >
<!ELEMENT book - - (partext) -(book) >
<!ELEMENT xref - O EMPTY >
<!ATTLIST xref id IDREF #REQUIRED >
<!ELEMENT footnote - - (p+) -(footnote) >
<!ELEMENT esc - - CDATA >

HelpTag 1.3 DTD 271

A

<!ELEMENT link - - (partext) -(link | xref) >
<!ATTLIST link hyperlink CDATA #REQUIRED
 type (jump |
 jumpnewview |
 definition |
 execute |
 appdefined |
 man) jump
 description CDATA #IMPLIED >
<!ELEMENT location - - (partext) -(location) >
<!ATTLIST location id ID #REQUIRED >
<!ELEMENT copyright - - (text)
 -(memo | location | idx) >
<!ELEMENT text - - ((p | note | caution | warning |
 lablist | list | ex | vex |
 esc | otherhead | procedure | syntax |
 figure | image)*) >
<!ELEMENT p - - (head?, partext)
 +(newline) >
<!ATTLIST (p | image) indent (indent) #IMPLIED
 id ID #IMPLIED
 gentity ENTITY #IMPLIED
 gposition (left | right) left
 ghyperlink CDATA #IMPLIED
 glinktype (jump |
 jumpnewview |
 definition |
 execute |
 appdefined |
 man) jump
 gdescription CDATA #IMPLIED >
<!ELEMENT head - - (partext)
 -(memo | location | idx) >
<!ELEMENT newline - O EMPTY >
<!ELEMENT (note |

 caution |
 warning) - - (head?, text)

 -(note | caution | warning | footnote) >

<!ELEMENT lablist - - (head?, labheads?, lablistitem+) >
<!ATTLIST lablist spacing (loose | tight) loose
 longlabel (wrap | nowrap) wrap >
<!ELEMENT labheads - - (labh, labhtext)
 -(memo | location | idx) >
<!ELEMENT labh - - (partext) >
<!ELEMENT labhtext - - (partext) >

272 CDE Help System Author’s and Programmer’s Guide

A

<!ELEMENT lablistitem - - (label, text) >
<!ELEMENT label - - (partext) >
<!ELEMENT list - - (head?, item+) >
<!ATTLIST list type (order |
 bullet |
 plain |
 check) bullet
 ordertype (ualpha |
 lalpha |
 arabic |
 uroman |
 lroman) arabic
 spacing (tight |
 loose) tight
 continue (continue) #IMPLIED >
<!ELEMENT item - - (text) >
<!ATTLIST item id ID #IMPLIED >
<!ELEMENT ex - - (head?, (exampleseg, annotation?)+)
 -(ex |

 vex |
 note |
 caution |
 warning |
 syntax |
 footnote) >

<!ATTLIST ex notes (side | stack) side
 lines (number |
 nonumber) nonumber
 textsize (normal |
 smaller |
 smallest) normal >
<!ELEMENT exampleseg - - (partext) +(lineno) >
<!ELEMENT annotation - - (partext) +(newline) >
<!ELEMENT lineno - O EMPTY >
<!ATTLIST lineno id ID #IMPLIED >

<!ELEMENT vex - - CDATA >
<!ATTLIST vex lines (number |
 nonumber) nonumber
 textsize (normal |
 smaller |
 smallest) normal >
<!ELEMENT otherhead - - (head, text?) >
<!ELEMENT procedure - - (chaphead, text?)
 -(procedure) >

HelpTag 1.3 DTD 273

A

<!ELEMENT chaphead - - (head, abbrev?)
 -(memo | location | idx | footnote) >
<!ELEMENT abbrev - - (partext) -(footnote) >
<!ELEMENT syntax - - (head?, synel) >
<!ELEMENT synel - - ((#PCDATA | esc | var |
 optblock | reqblock)+) >
<!ELEMENT (optblock |
 reqblock) - - (synel+) >
<!ELEMENT figure - - (caption?)
 -(figure | graphic) >
<!ATTLIST figure number NUMBER #IMPLIED
 tonumber (number |
 nonumber) number
 id ID #IMPLIED
 entity ENTITY #REQUIRED
 figpos (left |
 center |
 right) #IMPLIED
 cappos (capleft |
 capcenter |
 capright) #IMPLIED
 ghyperlink CDATA #IMPLIED
 glinktype (jump |
 jumpnewview |
 definition |
 execute |
 appdefined |
 man) jump
 gdescription CDATA #IMPLIED >
<!ELEMENT caption - - (partext, abbrev?)
 -(memo | location | idx) >
<!ELEMENT image - - (head?, partext) -(footnote) >
<!ELEMENT abstract - - (head?, text?, frontsub*) >
<!ELEMENT frontsub - - (head?, text) >
<!ELEMENT otherfront - - (head?, text?, frontsub*) >
<!ATTLIST otherfront id ID #IMPLIED >
<!ELEMENT hometopic - - (chaphead, text?) >
<!ELEMENT chapter - - (chaphead, text?, (s1*, rsect*)) >
<!ATTLIST (chapter |
 s1 |
 s2 |
 s3 |
 s4 |
 s5 |
 s6 |

274 CDE Help System Author’s and Programmer’s Guide

A

 s7 |
 s8 |
 s9) id ID #IMPLIED >
<!ELEMENT s1 - - (chaphead, text?, s2*, rsect*) >
<!ELEMENT s2 - - (chaphead, text?, s3*, rsect*) >
<!ELEMENT s3 - - (chaphead, text?, s4*, rsect*) >
<!ELEMENT s4 - - (chaphead, text?, s5*, rsect*) >
<!ELEMENT s5 - - (chaphead, text?, s6*, rsect*) >
<!ELEMENT s6 - - (chaphead, text?, s7*, rsect*) >
<!ELEMENT s7 - - (chaphead, text?, s8*, rsect*) >
<!ELEMENT s8 - - (chaphead, text?, s9*, rsect*) >
<!ELEMENT s9 - - (chaphead, text?) >
<!ELEMENT rsect - - (chaphead, text?, rsub*) >
<!ATTLIST rsect id ID #IMPLIED >
<!ELEMENT rsub - - (chaphead, text?) >
<!ELEMENT message - - (chaphead?, text?, (msg+ | msgsub+)) >
<!ELEMENT msg - - (msgnum?, msgtext, explain?) +(newline) >
<!ELEMENT msgnum - - ((#PCDATA | esc)+) >
<!ELEMENT msgtext - - (partext) >
<!ELEMENT explain - - (text) >
<!ELEMENT msgsub - - (chaphead, text?, msg+) >
<!ELEMENT glossary - - (text?, glossent+) >
<!ELEMENT glossent - - (dterm, definition) >
<!ELEMENT dterm - - (partext) -(term) >
<!ELEMENT definition - - (text) >
<!ELEMENT idx - - (indexprimary, indexsub?)
 -(term | footnote | location | idx) >
<!ELEMENT indexprimary - - (partext, sort?) >
<!ELEMENT indexsub - - (partext, sort?) >
<!ELEMENT sort - - ((#PCDATA | esc)+) >
<!ELEMENT memo - - CDATA >
<!ENTITY MINUS SDATA “-”>
<!ENTITY PM SDATA ‘[plusmn]’> <!-- ISOnum -->
<!ENTITY DIV SDATA ‘[divide]’> <!-- ISOnum -->
<!ENTITY TIMES SDATA ‘[times]’> <!-- ISOnum -->
<!ENTITY LEQ SDATA ‘[le]’> <!-- ISOtech -->
<!ENTITY GEQ SDATA ‘[ge]’> <!-- ISOtech -->
<!ENTITY NEQ SDATA ‘[ne]’> <!-- ISOtech -->
<!ENTITY COPY SDATA ‘[copy]’> <!-- ISOnum -->
<!ENTITY REG SDATA ‘[reg]’> <!-- ISOnum -->
<!ENTITY TM SDATA ‘[trade]’> <!-- ISOnum -->
<!ENTITY ELLIPSIS SDATA ‘[hellip]’> <!-- ISOpub -->
<!ENTITY VELLIPSIS SDATA ‘[vellip]’> <!-- ISOpub -->
<!ENTITY PELLIPSIS SDATA “....”>
<!-- ellipsis followed by a period -->
<!ENTITY A.M. SDATA “a.m.”>

HelpTag 1.3 DTD 275

A

<!ENTITY P.M. SDATA “p.m.”>
<!ENTITY MINUTES SDATA ‘[prime]’> <!-- ISOtech -->
<!ENTITY SECONDS SDATA ‘[Prime]’> <!-- ISOtech -->
<!ENTITY DEG SDATA ‘[deg]’> <!-- ISOnum -->
<!ENTITY SQUOTE SDATA “`”>
<!ENTITY DQUOTE SDATA ‘”’>
<!ENTITY ENDASH SDATA “-”>
<!ENTITY EMDASH SDATA ‘[mdash]’> <!-- ISOpub -->
<!ENTITY VBLANK SDATA “_”>
<!ENTITY CENTS SDATA ‘[cent]’> <!-- ISOnum -->
<!ENTITY STERLING SDATA ‘[pound]’> <!-- ISOnum -->
<!ENTITY SPACE SDATA “ “>
<!ENTITY SIGSPACE SDATA “& “>
<!ENTITY SIGDASH SDATA “&-”>
<!ENTITY MICRO SDATA ‘[micro]’> <!-- ISOnum -->
<!ENTITY OHM SDATA ‘[ohm]’> <!-- ISOnum -->
<!ENTITY UP SDATA ‘[uarr]’> <!-- ISOnum -->
<!ENTITY DOWN SDATA ‘[darr]’> <!-- ISOnum -->
<!ENTITY LEFT SDATA ‘[larr]’> <!-- ISOnum -->
<!ENTITY RIGHT SDATA ‘[rarr]’> <!-- ISOnum -->
<!ENTITY HOME SDATA “home key”>
<!ENTITY BACK SDATA “<--”>
<!ENTITY HALFSPACE SDATA “ “>

<!ENTITY % user-defined-entities SYSTEM “helptag.ent”>
%user-defined-entities;
] >

276 CDE Help System Author’s and Programmer’s Guide

A

277

Glossary

application help
Online help for a particular application (software).

application-defined link
A hyperlink designed especially for invoking some application behavior. To
invoke the behavior, the help must be displayed in dialogs created by the
application. (Application-defined hyperlinks are ignored by Helpview.)

automatic help
Help presented by the system as the result of a particular condition or
error. Sometimes called "system initiated" help. For example, error dialogs
are a form of "automatic help." See also semi-automatic help and manual
help.

browser volume
The desktop uses the Helpview program as a "help browser" by displaying a
special browser volume that lists the help installed on the system. A utility
called dthelpgen creates this volume in the user’s home directory.

caution
A warning to the user about possible loss of data. See also note and
warning.

close callback
An application function called when a help dialog box is closed.

278 CDE Help System Author’s and Programmer’s Guide

context-sensitive help
Online information that is relevant to what the user is doing within an
application. Sometimes, pressing the F1 key is referred to as "context-
sensitive help" because the choice of help topic is based on the user’s
context.

cross-volume hyperlink
A hyperlink that jumps to a topic in a different help volume. Cross-volume
hyperlinks are entered using the <link> element, where the hyperlink
parameter specifies the volume name and an ID (separated by a space):

<link hyperlink=" volume"> text<\link>

dialog cache
A list of help dialogs that has been created but may not be in use. When the
application needs a new help dialog, it first searches its dialog cache for an
unused dialog. If one is found, it is used. Otherwise, all dialogs are in use,
so a new one is created.

Document Type Definition

A description of a set of elements used to create a structured (or
hierarchical) information. The Document Type Definition (DTD) specifies
the syntax for each element and governs how and where elements can be
used in a document.

element
A logical portion of information, such as a book title, a paragraph, a list, or
a topic. Normally, the extent of an element is marked by tags, although the
tags for some elements are assumed by context.

emphasis
An element of text that calls attention to the text (usually by being
formatted as italic).

entity
A text string or file with a name. Most entities are named by the author
(using the <!entity> element), but some entities are predefined. See also
entity declaration and entity reference.

entity declaration
Markup that establishes an entity name and its value. See also entity and
entity reference.

Glossary 279

entity reference
Use of an entity name preceded by an & (ampersand) and followed by a ;
(semicolon) that indicates to HelpTag that the entity is to be inserted where
the entity name appears. See also entity and entity declaration.

entry point
A point within a help volume that may be displayed directly as the result of
a request for help. That is, a topic where the user may " "enter" or begin
reading online help. Any topic, or location within a topic, that has an ID
can become an entry point.

example listing
A body of text in which line breaks are left as they are and which is
displayed in a computer font. The text is typically an example of a portion
of a computer file. Example listings are entered using the <ex> or <vex>
elements.

execution alias
A resource that assigns a name to a command string or script that an
execution link executes.

execution link
A hyperlink that executes a shell command or script.

execution policy
The Help System provides a resource that can be set to control the behavior
of execution links. This enables a system administrator or user to establish
an appropriate level of security for any given application.

figure
A graphic or illustration that appears in the help information.

formal markup
A tag set and accompanying usage rules that are specified in the Helptag
1.3 Document Type Defnition (DTD). By following the rules set forth in the
DTD, an author can produce Standard Generalized Markup Language
(SGML) compliant help source files.

general help dialog box
A window in which help information is displayed. General help dialog boxes
have a menu bar, a topic tree (which provides a list of topics), and a help
topic display area. See also quick help dialogbox.

280 CDE Help System Author’s and Programmer’s Guide

help callback
An application function called when the user presses the F1 key.

help family

A set of help volumes that are related to one another because the
applications they refer to are related.

help key
A designated key, usually the F1 function key, used to request help on the
current context. Some keyboards have a dedicated Help key that may take
the place of F1. In OSF/Motif applications, the help key is enabled by
adding a help callback to a widget.

help on help
Help information about how to use the help dialog boxes. The user gets this
information by pressing F1 while using a help window, or by choosing
Using Help from the Help menu in a general help dialog box.

help volume
A complete body of information about a subject. Also, this term can refer to
either the set of source files that contain the marked-up text or the run-
time files generated by running HelpTag.

History dialog box
A dialog box that shows a list of the sequence of topics the user has visited.
The history sequence can be traversed in reverse order to make it easy for
the user to return to earlier topics.

home topic
The topic at the top of the hierarchy in a help volume. This is the topic that
is displayed when the user indicates a desire to browse a help volume.
HelpTag provides a built-in ID for the home topic: _hometopic .

hyperlink
A segment of text (word or phrase) or graphic image that has some
behavior associated with it. The most common type of hyperlink is a "jump"
link, which connects to a related topic. When the user chooses a jump link,
the related topic is displayed. Hyperlinks can also be used to invoke other
kinds of behavior, such as executing a system command or invoking specific
application behavior.

Glossary 281

hyperlink callback
An application function that is invoked when a user chooses a hyperlink.
This function is responsible for handling the types of hyperlinks not
handled automatically within the help dialog.

index
A list of important words and phrases that appear throughout a help
volume. The index is an alphabetical list of the words or phrases that can
be searched to find help on a subject. The Help System displays the index
when the user chooses the Index button (in a general help dialog box). See
also Index Search dialog box.

Index Search dialog box
A dialog box that shows a list of index entries for a help volume. An index
can be displayed for the current volume, selected volumes, or all help
volumes. A user can search the index for a word or phrase and any
corresponding topics that contain the search string will be listed.

inline graphic
A small graphic (illustration) that appears within a line of text.

jump-new-view hyperlink
A hyperlink that, when chosen, displays its information in a new dialog
box. Jump-new-view links are intended for cross-volume links. The user
senses a "new context" by a new window being displayed.

man page link
A hyperlink that, if activated, displays a "man page," which is a brief online
explanation of a system command. The information in man pages are not
supplied through the HelpTag system.

manual help
A style of online help that requires the user to know what help is needed
and how to get it. For example, most commands in a Help menu are
considered "manual" help because the user chooses when and what to view.
See also automatic help and semi-automatic help.

note
A message to the user that draws attention to important information. If the
information is critically important, a caution or warning is used instead.
See also caution and warning.

282 CDE Help System Author’s and Programmer’s Guide

parser
The portion of the HelpTag software that reads the source files (which are
created by the author) and converts them into run-time help files that the
Help System dialogs can read. If the author uses markup incorrectly (or
incompletely), the parser detects the problems and indicates that "parser
errors" have occurred.

quick help dialog box
A streamlined help dialog box that has a help topic display area and one or
more push buttons. See also general help dialog box, which offers additional
capabilities.

registration
The process of declaring a help volume to be accessible for browsing or
cross-volume linking.

run-time help files
The files generated by the dthelptag command. These are the files
distributed to users who will use the Help System.

Search Volume Selection dialog box
A dialog box that lists the help volumes available on a user’s system. When
a user chooses Selected from the Index Search dialog box, this dialog box
lists help volumes that the user can select. One or more volume names can
be selected and the corresponding index information is reported in the
Index Search dialog box.

semi-automatic help
A style of online help in which the user requests help and the system
decides, based on the current circumstances, which help information to
display. "Context-sensitive" help (pressing the F1 key) is an example of
semi-automatic help. See also automatic help and manual help.

short form markup
An abbreviated way of marking an element where the end tag is marked
with a single vertical bar and the last character of the begin tag is also a
vertical bar. For example, the short form of the <book> element is:

<book| text|

Glossary 283

shorthand markup
An abbreviated way of marking an element where the start and end tags
are replaced with a special two-character sequence. For example, the
shorthand form of the <computer> element is two opening single quotation
marks followed by two closing single quotation marks like this:

‘‘ text’’

standalone help
Help information intended to be used independently of application
software. For example, online help that explains the basics of computer
programming may not be associated with a particular application. A
standalone help volume can be displayed using the dthelpview command.

Standard Generalized Markup Language (SGML)
An international standard [ISO 8879: 1986] that establishes a method for
information interchange. SGML prescribes constructs for marking the
structure of information separate from its intended presentation or format.
The HelpTag markup language conforms to this SGML standard.

tag
A text string that marks the beginning or end of an element. A start tag
consists of a < (left angle bracket) followed by a special character string
(consisting of only letters), optional parameters and values, and terminated
by a > (right angle bracket).
An end tag consists of a < (left angle bracket), a \ (backslash), the same
special character string, and a > (right angle bracket). Formal markup uses
a / (forward slash) in the end tag syntax.

Tagged Image File Format (TIFF)
A standard graphics file format. The Help System dialog boxes support
TIFF 5.0 images. TIFF images are identified by the .tif file-name
extension.

topic
Information about a specific subject. Usually, this is approximately one
screenful of information. Online help topics are linked to one another
through hyperlinks.

topic hierarchy
A help volume’s branching structure in which the home topic branches out
(through hyperlinks) to progressively more detailed topics. See also home
topic.

284 CDE Help System Author’s and Programmer’s Guide

topic tree
In a general help dialog box, a list of topics that can be selected to display
help information.

warning
Information that warns the user about possible injury or unrecoverable loss
of data. See also caution and note.

widget
The fundamental building block of graphical user interfaces. The OSF/Motif
widget set provides widgets of all sorts, suitable for constructing an
application user interface.

X bitmap
A two-tone image that has one foreground color and one background color.
Bitmap image files are identified by the.bm file-name extension.

X pixmap
A multicolor image. Pixmap image files are identified by the.pm file-name
extension.

X window dump
An image captured from an X Window System display. The xwd utility is
used to capture a window image. X window dump image files are identified
by the .xwd file-name extension.

285

Index

Symbols
! (exclamation mark), used in shorthand

markup, 123
% (percent symbol), used in shorthand

markup, 69, 171
& (ampersand)

entity reference, 49, 124
used as text character, 30

© , 155
∅ , 113
* (asterisk), used in list, 58
+ (plus), used in shorthand markup, 73,

89, 168
.htg file , 31
; (semicolon), 49, 124
< (angle bracket)

used as text character, 30
<!-- ... --> , used as comment, 87
<!entity> , 49, 51, 123
<s1> ... <s9> , 26
\ (backslash)

end tag syntax, 28
used as text character, 30
used in multiline head, 133

A
<abbrev> , 112
abbreviating long titles, 112
<abstract> , 43, 115
abstract for help volume, 115
_abstract ID, 47
actions, help, 19
alias, used in execution links, 77
ampersand (&)

entity reference, 124
used as text character, 30

angle bracket (<)
used as text character, 30

<annotation> , 115
API, list of functions, 212
apostrophe, 120
AppDefined parameter, 76
appearance, determining font

scheme, 259
application entry points, verifying, 106
application help, 14
application package, 242
application program interface, list of

functions, 212
application programmer, collaborating

with, 15

286 CDE Help System Author’s and Programmer’s Guide

application registration, 242
application-configured, button

enabling, 231
application-defaults file, for

dthelpview , 235
application-defined

hyperlink, 69
link, creating, 76

arrows, 183
asterisk (*) , used in list, 58
audience

knowing, 14
writing for international, 264

author
collaboration with application

programmer, 15
responsibilities, 14
workflow, 16

B
backslash (\)

to create a multiline head, 133
used as text character, 30
used in end tag, 28

bitmap, 81
blank leader, 150
bold font, 68
<book> , 67, 117
book title, creating, 67, 117
break, forcing line, 156
browser help volume

adding your help to, 100
creating, 101
defined, 12
displaying, 104

bullet
entity name for, 179
parameter in list, 150
used in list, 150

bulleted list, 150
button, application-configured, 231
buttons, navigation, 8

C
callback

adding close callback, 210
adding help callback, 219
close callback example, 230
hyperlink, providing, 229

caption
figure, 81

card suit symbols, 184
<caution> , 118
caution statement, adding, 65
CDE Help System, introduction to, 1
CDE HelpTag markup reference, 109
<chapter> , 26, 56, 119
chapter

creating, 119
in topic hierarchy, 26

character set
defined, 252
names of supported sets, 252

character, inserting special, 85, 179
checklist

application programmer’s, 248
author’s, 246
internationalized help, 264
product integrator’s, 247
product preparation, 246

class, dialog widgets, 206
clean parameter, 188
CloseHelpCB() , 210
column heading in labeled list, 142
command

dthelpgen , 191
dthelpview , 190
gencat , 256
summary of help commands, 187

command variable, marking, 171
command, Using Help menu, 235
comment, inserting, 86, 87
components, in help volume, 25
<computer> , 68, 120

Index 287

computer, displaying input/output, 68,
126

continue parameter, 150
copying Help4Help source files, 239
<copyright> , 43, 121
copyright

entity name of, 179
notice, 43, 121
predefined help ID, 238
used in meta information, 155

_copyright ID, 47, 239
correcting errors, 97
creating

application-defined link, 76
definition link, 73
figure, 81
file entity, 51
general help dialog box, 207
glossary, 89
help dialog boxes, 205, 209
help family, 102
home topic, 41
hyperlink, 69
index, 88
language formatting table, 262
man page link, 74
message catalog, 264
meta information topic, 43
quick help dialog box, 209
run-time help files, 19, 95
structure within topic, 56
text entity, 49
topic hierarchy, 38

cross-reference
ID value, 175
to list items, 141
using link element, 147
using location ID, 152
using xref element, 175

current date and time, 179

D
danger, warning of, 174

dash character
em dash, 179
en dash, 179

data types, help, 19
date, current, 179
definition

entering in glossary, 90
of term, 130

definition hyperlink, 69
definition link

creating, 73
for term, 28

delivery, preparing for product, 246
destination

cross-reference, 152
hyperlink, 152

dialog
detecting when dismissed, 230
handling event in, 227

dialog box
creating quick help, 209

dialog boxes
creating and managing, 205
creating general help, 207
general help, 205, 207
quick help, 205

display, font scheme for, 262
displaying

computer input/output
examples, 126

computer literal, 68
graphics, 81
help on help, 236
help topic, 215
help volume, 93
inline graphic, 83
man page, 218
text file, 217
text string, 216
variable, 68

displays, testing graphics on
various, 106

document title, 170

288 CDE Help System Author’s and Programmer’s Guide

Document Type Definition (DTD), 193
dotted leader, 150
draft comment or question, 154
DtCreateHelpQuickDialog() , 209
DtHelp.cat , 256
DtHelp.msg , message catalog

source, 257
DtHelp_TYPE_DYNAMIC_STRING, 216,

217
DtHELP_TYPE_FILE , 217
DtHELP_TYPE_MAN_PAGE, 218
DtHELP_TYPE_STRING, 216, 217
DtHelpDialogCallbackStruct , 229
DtHelpExecAlias , keyword in

execution link, 79
dthelpgen , command line options, 191
DtHelpReturnSelectedWidgetId() ,

223, 224
dthelptag command

command line options, 188
run from command line, 96

dthelpview command
command line options, 190
run from the command line, 99

DtNhelpType , 215
DtNhelpVolume , 215
DtNlocationId , 215
DtNmanPage, 218
DTTAGOPT environment variable, 189
dump, X Window, 81

E
editor, structured, 17
element

entering inline, 67
hierarchical structure, 56
parameters, 29
start and end tags, 28
within topic, adding ID to, 47

element tag
<!entity> , 49, 51, 123
<abbrev> , 112

<abstract> , 43, 115
<book> , 67, 117
<caution> , 118
<chapter> , 26, 38, 56, 119
<computer> , 68, 120
<copyright> , 43, 121
<dterm> , 90
<emph>, 123
<esc> , 126
<ex> , 63, 126
<figure> , 48, 81, 128
<glossary> , 89, 90, 130
<graphic> , 48, 83, 131
<head> , 133
<helpvolume> , 135
<hometopic> , 41, 136
<idx> , 88, 137
<image> , 57, 139
<item> , 141
<keycap> , 141
<labheads> , 142
<lablist> , 60, 142
<lineno> , 145
<link>

application-defined, 76
definition link, 73
examples, 147
man page, 74
meta information, 76

<list> , 58, 150
<location> , 47, 152
<memo>, 87, 154
<metainfo> , 43, 155
<newline> , 156
<note> , 157
<otherfront> , 45, 158
<otherhead> , 62, 159
<p>, 57, 84, 160
<procedure> , 62, 162
<quote> , 163
<rsect> , 164
<rsub> , 164
<s1> ... <s9>

adding topics, 42, 56
examples, 165
topic hierarchy, 26, 38

Index 289

<sort> , 88, 137
<sub> , 167
<super> , 168
<term> , 28, 73, 89, 168
<title> , 43, 170
<user> , 170
<var> , 68, 171
<vex> , 63, 172
<warning> , 174
<xref> , 175

em dash, entity name, 179
<emph>, 123
emphasis

using a note, 157
using bold font, 68
using italic font, 123

empty (no text), 180
end tag, 28
en-dash, entity name, 179
entities

multiple source files, 32
special character, 179
uses for, 48

<!entity> , 123
entity

∅ , 180
creating file entity, 51
creating text entity, 49
declaration, 26, 123
examples of, 125
LanguageElementDefaultCharse

t , 256, 257
LanguageElementDefaultLocale

, 256
entity parameter, 81, 128, 131
entity reference, 85
entity reference, for special

characters, 85
entry points in application,

verifying, 106
environment variable

DTTAGOPT, for parser options, 189
LANG, 257
system help search path, 246

user help search path, 246
errors, correcting, 97
<esc> , 126
escape text, 126
event

hyperlink, responding to, 228
in help dialog, handling, 227

<ex> , 63, 126
example

complete standalone help
volume, 33

displayed verbatim, 172
graphic file entity declarations, 52
text entity declarations, 52
using <user> , 170
using markup in, 172

exclamation mark (!)
used in shorthand markup, 67, 123

execution alias
creating, 77
used in hyperlinks, 79

execution hyperlink, 69
execution link

control policy, 77
default behavior, 77

external file, referencing, 48

F
F1 (help key), 219
family

definition of, 12
finding, 246

family file
creating, 102

<figure> , 48, 81, 128
figure

caption, 81
creating, 81
entity, 123
ID, 81
including, 128
number, 81

file

290 CDE Help System Author’s and Programmer’s Guide

displaying text, 217
DtHelp.cat , 256
DtHelp.msg , 257
helpchar.ent , 85
helptag.dtd , 194
helptag.opt , 87, 97
.htg , 31
inserting contents of, 48

file entity, creating, 51
FILE parameter, 51, 123
files, run-time help

creating, 19, 95
finding help files, 246
font

changing to bold, 68
for computer literal, 68
italic, 67, 68, 171
scheme, determining actual

appearance, 259
scheme, for display, 262

font resources, specifying, 259
foreign language, creating help

volume, 251
formal markup

caveats, 198
defined, 17
Document Type Defintion, 193
entity declarations, 201
processing of, 202
SGML compliance, 193

formal parameter, 188
formatting table, 258
front matter, 155

uncategorized, 158
function

DtHelpReturnSelectedWidgetId
() , 223, 224

HelpRequestCB() , 235, 236
ProcessOnItemHelp() , 224
XtAddCallback() , 219, 229

G
gencat command, 256

general help dialog box
creating, 207
dialog buttons, 207
features, 205, 207

general markup guidelines, 28
gentity parameter, 84, 160
getting help, 3
ghyperlink parameter, 81, 160
glinktype parameter, 81, 160
gloss parameter, 168
<glossary> , 89, 90, 130
glossary

component of help volume, 28
creating, 89
defining term in, 90
element tag, 130
term, marking, 89
term, newly introduced, 168

_glossary ID, 47
goals for online help, 14
gposition parameter, 160
<graphic> , 48, 83, 131
graphic

displaying, 81
displaying inline, 83
element within text, 131
formats, 81
including, 128
used as a hyperlink, 147
wrapping text around, 84

graphics, testing on various
displays, 106

Greek letters, 180, 181
group of related volumes, family as, 12
guidelines, markup, 28

H
<head> , 133
heading

section, 165
starting new line, 133

heading line, continuing, 134

Index 291

help
actions, 19
data types, 19
topic organization, 11
types of access, 14

help browser, 12
help dialog

detecting when dismissed, 230
handling events in, 227

help entry points, required, 238
help family

creating, 102
defined, 12

help files, finding, 246
help key, 219
help menu, providing, 222
help on help

accessing, 211
application resource, 234
displaying, 236
in quick help dialog box, 211
quick help dialog box, 209
writing volume, 237

help topic
adding an ID, 46
assigning ID names, 46
defined, 11

help volume
components, 25
creating, 33
defined, 11
displaying, 98
dthelpview command, 98
overview, 30
sample markup, 30

help volume, processing, 93
help, how users get, 3
Help4Help

accessing from application, 234
copying source files, 239
helpOnHelpVolume resource, 234
location of Help4Help volume, 238
required entry points, 238

helpchar.ent file, 179

helplang.ent file, 257
helpOnHelpVolume resource,

setting, 234, 235
HelpRequestCB() , 235, 236
helptag software, 94
helptag.dtd file, 194
helptag.opt file

memo option, 87
sample of, 97
search option, 85

<helpvolume> , 135
hierarchy

adding nonhierarchical topic, 45
adding topic to, 42
organizing elements, 56
topic, creating, 38

history, help ID for History dialog
box, 238

home topic
creating, 41
defined, 26
in topic tree list, 7
menu command, 8
predefined help ID, 238

<hometopic> , 41, 136
_hometopic ID, 47
horizontal space, 180
hyperlink

application-defined link, 69
attribute in link element, 147
callback, 209
callback, providing, 229
creating, 69
definition link, 69
destination, 152
display formats, 6
event, responding to, 228
execution link, 69
jump type, 69
man page link, 69
types, 69
validating hyperlinks, 106

hyperlink parameter, 74, 76

292 CDE Help System Author’s and Programmer’s Guide

HyperlinkCB() , 209

I
ID

adding to element within topic, 47
adding to topic, 47
figure, 81
in list, 141
naming rules, 46
predefined names, 47
used in <xref> , 175

ID parameter
in <chapter> , 119, 128
in <image> , 139
in <item> , 141
in <location> , 152
in <otherfront> , 158
in <p>, 160
in <rsect> , 164
in <s1> ... <s9> , 165
in element, 47

<idx> , 88, 137
<image> , 57, 139
indent parameter

for image element, 139
for paragraph element, 160

index
creating, 88
help ID for Index Search dialog

box, 238
help ID for Search Volume Selection

Dialog box, 238
Index search dialog index, 8
marking entry, 88
providing index-search ID, 239
sort order, 137

information model, help, 3
information, meta, 27
inline elements

entering, 67
inline elements, entering, 67
inline graphic, displaying, 83
input files, multiple, 32

inserting
comment, 87
contents of another file, 48
special character, 85
writer’s memo, 87

installation package, 242
international audiences, writing

for, 264
introduction to Help System, 1
italic font, 67, 68, 171
<item> , 141, 150
item help

adding support for, 224
invoking, 224

item in list, 141

J
job of author, 14
jump type hyperlink, 69

K
key, enabling help (F1), 219
<keycap> , 141

L
labeled list, 142
<labheads> , 61, 142
<lablist> , 60, 142
LANG environment variable, 257
language

foreign, 251
formatting table, 258
multibyte, 252

leader
blank, 150
dotted, 150

line
continuing heading, 134
definition spanning more than

one, 122
starting new heading, 133

Index 293

wrapping, 133
line break

forcing, 156
within head, 133
within title, 56

line breaks, preserving, 126, 139, 173
line endings, preserving, 139
<link> , 73, 74, 76, 147
link

creating application-defined, 76
creating definition, 73
creating execution alias, 77
creating man page, 74
hypertext, 147
to meta information, 76

<list> , 58, 150
list

<item> , 141
<labheads> , 61, 142
<lablist> , 60, 142
bulleted, 150
cross reference to item, 141
entering, 58
item in, 141
labeled, 142
labeled, heading, 142
leader, 150
numbered, 150
plain, 150

literal, displaying computer, 68
locale

creating entity for, 255
specifying for help volume, 255

localization, 251
<location> , 47, 152
location IDs, predefined, 47
loose parameter, 58, 142, 150

M
man page

creating link, 74
displaying, 218
hyperlink, 69

Man parameter, 74
managing help dialog boxes, 205
manual title, 170
markup

formal (SGML), 17
guidelines, 28
sample help volume, 30
shorthand, 16, 28

markup language
formal markup, SGML-

compliant, 17, 193
shorthand markup, 16

markup reference, 109
math symbols, 182
<memo>, 87, 154
memo option, 87
memo, inserting writer’s, 87
menu

Edit, 8
File, 8
Help, 8
Navigate, 8
providing help menu, 222
Search, 88

message catalog
creating, 264
DtHelp.msg file, 256
translating, 256

meta information, 155
defined, 27
topic, creating, 43
topic, linking to, 76
volume title, 170

<metainfo> , 43, 155
mode, item help, 223
model, help information, 3
MoreHelpCB() , 209
Motif, 3
multibyte language support, 252
multiple lines, definition spanning, 122
multiple occurrences of same string of

text, 48
multiple source files, 32

294 CDE Help System Author’s and Programmer’s Guide

N
native language support

checklist for authors and
translators, 264

creating online help, 251
navigation, help buttons, 8
new line

forcing start of, 156
within title, 56

new paragraph, starting, 160
<newline> , 156
nogloss parameter, 89, 168
nonhierarchical topic, adding, 45
nonumber parameter, 81, 128
<note> , 157
note, adding, 65
number parameter, 126, 128
number, figure, 81
numbered list, 150

O
online help

objectives, 14
online presentation format, 93
option, memo, 87
order parameter, 58, 150
order, keyword index sort, 137
OSF/Motif, 3
<otherfront> , 45, 158
<otherhead> , 62, 159
overview

Help graphical user interface, 5
help volume, 30

P
<p>, 57, 84, 160
paragraph

indenting, 160
starting, 57

parameter

alias_name, 79
AppDefined, 76
bullet, 58, 150
clean, 188
continue, 150
default_command, 79
entity, 81, 128, 131
FILE, 51, 123
format, 188
gentity, 84, 160
ghyperlink, 81, 160
glinktype, 81, 160
gloss, 168
gposition, 160
hyperlink, 74, 76
ID in <chapter> , 119
ID in <figure> , 128
ID in <image> , 139
ID in <item> , 141
ID in <location> , 152
ID in <otherfront> , 158
ID in <p>, 160
ID in <rsect> , 164
ID in <s1> ... <s9> , 165
indent, 57, 139, 160
loose, 58, 142, 150
Man, 74
nogloss, 89, 168
nonumber, 81, 128
number, 126, 128
order, 58, 150
plain, 58, 150
search, 85
shortnames, 188
smaller, 126, 172
smallest, 126, 172
tight, 58, 142, 150
verbose, 188

parameters in element, 29
parser, 94
parser errors, 97
percent symbol (%), used in shorthand

markup, 69
perspective, seeing help from user’s, 19
pixmap, 81

Index 295

plain list, 150
plain parameter, 58, 150
plus (+) , used in shorthand markup, 89,

168
points, entry, verifying in

application, 106
predefined entities, 179
predefined ID

_abstract , 47
_copyright , 47
_glossary , 47
_hometopic , 47
_title , 47

printing
dialog box, 10
help ID for Print dialog box, 238,

239
help information, 10
help topics, 105

<procedure> , 62, 162
ProcessOnItemHelp() , 224
product family

creating, 102
finding, 246

product preparation checklist, 246
programmer, application

collaborating with, 15
responsibility, 19

prompt, user response to computer, 170

Q
quick help dialog box

buttons, 209
creating, 209

quotation mark
double, entity name for, 180
element for directional quotes, 163
entity name for straight quotes, 163
used in shorthand markup, 68, 120

quotation marks, printing text
within, 163

<quote> , 163

R
reference

entity reference, 85
section, 164
subsection, 164
to entity, 123

referencing external file, 48
registration

help family, 242
help volume, 242

related volumes, family as group of, 12
requests, responding to help, 213
reserved IDs, 47
resource

DtNexecutionPolicy , 80
DtNhelpType , 215
DtNhelpVolume , 215
DtNlocationId , 215
DtNmanPage, 218
helpOnHelpVolume , 235

resources
help dialog boxes, 206
specifying fonts, 259

responding to
help requests, 213
hyperlink event, 228

responsibility
author, 14
programmer, 19

reviewing
errors, 97
help as user will see it, 19

<rsect> , 164
<rsub> , 164
run-time files

creating, 19, 95

S
<s1> ... <s9> , 42, 56, 165
sample application, integrated help, 20
sample help volume markup, 30
sample standalone help volume

296 CDE Help System Author’s and Programmer’s Guide

steps to create, 33
SDL (Semantic Delivery Language), 19,

93
Search menu, 88
section

describing procedure, 162
heading, 165
heading within topic, 165
reference, 164
subsection within reference, 164
topic, 165

Semantic Delivery Language (SDL), 19,
93

semicolon (;), 49, 124
SGML, compliance, 193
shorthand markup, 16, 28
shortnames parameter, 188
smaller parameter, 126, 172
smallest parameter, 126, 172
<sort> , 88, 137
sort order, index, 137
source files, multiple, 32
space

horizontal, 180
significant, 180
vertical, 182

spacing, preserving, 126, 139, 173
special characters

list of, 179
special characters, inserting, 85
standalone help, 3, 15
standalone help volume

sample, 33
Standard Generalized Markup

Language (SGML), 194
start tag, 28
starting new line within title, 56
starting paragraph, 57, 160
string of text

displaying, 216
multiple occurrences of same, 48

structure

DtHelpDialogCallbackStruct , 2
29

structure within topic, creating, 56
structured editor, 17
<sub> , 167

subheading, within topic, 62, 159
subsection within reference section, 164
subtopics

creating, 42
definition, 26

summary
CDE HelpTag markup, 109
Help System commands, 187

<super> , 168
supporting item help mode, 223
symbol

inserting, 85
list of symbols, 179
plus (+), 168

T
tag, 28
Tagged Image File Format (TIFF), 81
tags, element, 109
<term> , 73, 89, 90, 168
term

defining in glossary, 90
definition, 130
glossary, marking, 89
newly introduced, 168

testing
graphics on various displays, 106
help, 106

text
entity, creating, 49
file, displaying, 217
preserving line endings, 139
string, displaying, 216
untranslated, 126
wrapping around graphic, 84

TIFF (Tagged Image File Format), 81
tight parameter, 58, 142, 150

Index 297

time, current, 179
<title> , 43, 170
title

abbreviating, 112
book, 117
entering book title, 67
help volume, 170
line break within, 56
list, 133
note, 133
section, 133
topic, 56, 119, 165

_title ID, 47
topic

<hometopic> , 136
accessing, 46
adding ID to, 47
adding ID to element within, 47
adding nonhierarchical, 45
adding to hierarchy, 42
creating hierarchy, 38
creating structure within, 56
defined, 11
displaying, 215
home, 26
home, creating, 41
linking to meta information, 76
providing subheadings within, 62
starting new, 119
structure of elements, 56
subheading within, 159
subordinate, 26
title, 119, 165
volume as collection of, 11
writing, 56

topic tree
in general help dialog, 7
selecting topic, 7

trademark, entity name, 179
typographical symbols, 179

U
unformatted text, 139
untranslated text, 126

<user> , 170
user’s perspective, seeing help from, 19
Using Help command, providing, 235

V
validating hyperlinks, 106
<var> , 68, 171
variable

displaying, 68
marking in command, 171

verbatim example, 172
verbose parameter, 188
verifying application entry points, 106
vertical bar, used in shorthand

markup, 67
vertical space, 182
<vex> , 63, 172
viewing help volume, 98
volume

<helpvolume> , 135
abstract, 115
as collection of topics, 11
components, 25
defined, 11
desktop browser volume, 12
displaying, 93
family of volumes, 12
finding, 246
overview, 30
registering, 241
sample standalone help volume, 33
standalone help, 15
title, 170
viewing, 98

W
<warning> , 174
warning statement, adding, 65
warning, of danger, 174
widget classes, 206
widget resources, 206
window dump, 81

298 CDE Help System Author’s and Programmer’s Guide

wrapping text around graphic, 84
writer’s memo, inserting, 86, 87
writing

for international audiences, 264
help on help volume, 237
topic, 56

X
X Window Dump, 81
<xref>

creating cross-references, 70
examples, 175

XtAddCallback , 229
XtAddCallback() , 219
xwd graphic format, 81

