I nter-Client Communication Conventions M anual
Version 2.0
X Consortium Standard

X Version 11, Release 6

David Rosenthal
Sun Microsystems, Inc.

Version 2 edited by Stuart W. Marks
SunSoft, Inc.

X Window System is atrademark of X Consortium, Inc.

Copyright [0 1988, 1991, 1993, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the
Software.

THE SOFTWARE ISPROVIDED "ASIS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright 00 1987, 1988, 1989, 1993, 1994 Sun Microsystems, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without feeis hereby granted,
provided that the above copyright notice and this permission notice appear in al copies. Sun Microsystems makes no
representations about the suitability for any purpose of the information in this document. This documentation is pro-
vided as is without express or implied warranty.

I nter-Client Communication Conventions

Table of Contents

Prefaceto VErsion 2.0o.ooieieeiieee e
Prefaceto VErSION L1 ..o
L. INEOTUCTION ..ttt
1.1. Evolution of the CONVENLIONSc.coviirerenisierieeeesese s
1.2, ALOIMIS ottt bbbttt st r e b e ne
1.2.1. What Ar€ ALOIMS?oiviieieiniesiesie ettt
1.2.2. Predefined ALOMSocooieiiiiereeeeee et
1.2.3. Naming CONVENLIONSc.ccvveeeerieieeiese e sie e
12,4, SEMENLICS ...vevveeenieiieiesie sttt sttt
1.2.5. NAME SPBCES ..ovvviveeieiireiieersteste e seesaeseesreessee e sneesnaesneessee e
1.2.6. Discriminated NaMEScoerereririniieerese e
2. Peer-to-Peer Communication by Means of Selectionscccccv...
2.1. Acquiring Selection OWNErshipcccccevveeevene v
2.2. Responsibilities of the Selection OWNEScccccvveeeevevrieceesieinns
2.3. Giving Up Selection OWNErshipccccveeevevenieeese e
2.3.1. Voluntarily Giving Up Selection Ownershipcccccccovvvevverienene.
2.3.2. Forcibly Giving Up Selection OWnershipccoceeeeevvieeeesennenne.
2.4. Requesting @ SEleCtioNcccocvveeieie e
25, Large DataTransferscooiiiece e
2.6. Use Of SEleCtion ALOMScocoiiieiiirerieie e
2.6.1. SElECtiON ATOMScveiiiiiiiieee e
2.6.1.1. The PRIMARY SelECHONoceeiriiriirieieeiesiese e
2.6.1.2. The SECONDARY SEECiONccceviriieriririerieeeeeese e
2.6.1.3. The CLIPBOARD SeleCtionccccoveieeireniinieisesesiesieeeeeee
A I IF- (0 = BN (0] 01 SR
2.6.3. Selection Targets with Side Effectscccecvevevviecce e
2.6.3. L. DELETE ..ottt st
2.6.3.2. INSERT_SELECTIONooiiiiriirienieieenene e
2.6.3.3. INSERT_PROPERTY ..ottt
2.7. Use of Selection Propertiescccecvveeeve v
2.7.1. TEXT ProPErti€S ...cccveeeeeeciesieeee ettt
2.7.2. INCR PrOperti€scccoviueeeecisie et sie ettt
2.7.3. DRAWABLE Properti€Sscoooveveveiiee e
2.7.4. SPAN PrOPErti€Socvvieeeeeciestieese e
2.8. Manager SEIECIONSccceeviiiieice e
3. Peer-to-Peer Communication by Means of Cut Buffers

X11, Release 6

00 00O N~NOT P, WWDNDNNNPRE PR PP

PR R R RPRRERRRRRBRRRERRRR
©ONN~NOOOOWUUuMDMNRREREOOO

I nter-Client Communication Conventions X11, Release 6

4. Client to Window Manager COMMUNICELIONccevvevieiiiieeriesesreeeesie e seesseste e seessesnens 19
I O 1= S AN 1 o TSRS 20
4.1.1. Creating a TOP-Level WINUOWcccoiviiiiieiececese e 20
R O 1T . 0 0= (1= 20
4.1.2.1. WM_NAME PrOPEITY ...ooueiuiieeieiisiesiesie ettt sttt snas 21
4.1.2.2. WM_ICON_NAME PrOPEMY ..c.cceiiriirieieisiesesie ettt 21
4.1.2.3. WM_NORMAL_HINTS PrOPETYccveeeieriiriesieeeesiesie et 22
4.1.24. WM_HINTS PrOPEIY .veecveeiieeiiesieesieeseeseesieesteesie et teesseesse s ssnesse e eseenssensssnsesnes 23
4.1.2.5. WM _CLASS PrOPEIY .ooceeieeieeiiesieesieesieesieesieesteesseesseesseessessseessessseessesssesssesssesssesnns 25
4.1.2.6. WM_TRANSIENT_FOR PrOPEIY ...ccooeeeriniirienieieenes st 26
4.1.27. WM_PROTOCOLS PrOPEITY ..ocveeveiiiiieeeretesisstssseseesesssesssssssssesssesssssssssnsesnees 26
4.1.2.8. WM_COLORMAP_WINDOWS PrOPEtYcceoeeeririenieereresieseesesesiessesseseesesseseens 27
4.1.2.9. WM_CLIENT_MACHINE PrOpertycocoeereeerererenienesesesie s e 27
4.1.3. Window Manager ProPETIEScceeveiiieeiese sttt sie sttt sae e ans 27
St IR VY Y AN o o] o 1 S 27
4.1.3.2. WM _ICON_SIZE PrOPertY ..cuecceeeieeieesieeieesteeseesieesieesieesseesseesseessesssesssesssesssesssessses 28
4.1.4. Changing WINAOW SEELEccccvvuieierieiiiiere e seesee st sttt s sae e ae e sreeneensenre s 28
4.1.5. Configuring the WINAOWcciiuieiei ettt 30
4.1.6. Changing Window AMITDULEScocvieieeiece ettt 32
O 1 0T o | o SRS 33
IS T O] 0 1 7= o1 O 35
I T Lot] 4 = TP PR RSP PRPRO 37
4.1.20. POP-UP WINUOWSccvevieieeiiitecieie ettt ste et este st stesbesseesaetesnesnaenessesneensesseneas 38
g I I I VLY g To (o Y (0T oL RS 38
4.2. Client Responses to Window Manager ACHONSccceevveieeveieieece e 39
A R (= o = 0111 SRRSO 39
4.2.2. Redirection Of OPErationScccceviiiieeeieiiseese s eeeste s see e re e aesrenreas 39
4.2.3. WINJOW MOVE ..ottt sttt b e 41
4.2.4. WINJOW RESIZE ..ottt sttt st b et 41
4.2.5. [conify and DEICONITYcceeviiiciecece et ee e 41
4.2.6. COlOrMEaP ChaNGJEcceiuieeeiesie ettt st s re et b e ra e e e resreeneeneenras 41
A.2.7. INPUL FOCUSeviieieiiecie ettt et ettt et et et be e be et e e te e be e teenseenseenseensenns 41
4.2.8. ClIeNtMESSAQE EVENLSoeeeiicieceece sttt sttt sttt ne e nenne e 42
4.2.8.1. WIiNJOW DEIBLION ..ottt 42
4.2.9. REAIFECHING REQUESESovieeieiicieeteee sttt ettt sttt st e s re e e e besneeneenne s 43
4.3. Communication with the Window Manager by Means of Selectionscccceevvurnee. 44
4.4, Summary of Window Manager Property TYPESocvevveveiieeece s 44
5. SESSION MANAQEMENTcviiieeeeee sttt sttt st e e s re e e e tesbessaeaestesreeneentesrennean 44
5.1. Client Support for Session Managementcccceceeviiiieerese e 44
5.2. Window Manager Support for Session Managementccccceveecevesenieeseseseeee e 45
6. Manipulation of Shared RESOUICEScccvviiieeieii sttt se e es 45
6.1, THEINPUL FOCUSoveeieiecie ettt sttt sttt e st e teena et e sresreennennens 45

I nter-Client Communication Conventions X11, Release 6

B.2. TNEPOINLEY ...ttt bbbt sb e bt b et ns e nne s 46
LR A 1 oSSR 46
L I 0o (0] 0= LS 47
6.5. The Keyboard MapPiNgcccccviieieriiiiiesie s seeeese st eae s s se et st sneeaeste e ennesrennas 48
6.6. The Modifier MapPINgccceeieiiiiciese ettt nnas 49
7. Device Color CharaCteriZatioNcccoererieiririsie et 50
7.1 XYZ « RGB CONVErSION MEITCESocveueeiiriisiiriesieieesieste et 51
7.2. Intensity « RGB Valug CONVEISIONc.cccveiiiiiiiieie e sieeeesie st seeesaes s sae e nae e sns 51
LS @] Tox U1 Lo o ISR 53
ST I I 0T (=TT 1 Y P 53
F N = S Lo T T (o] Y/ 54
AL TREXTIRZ DIEt ..veueieeuiieeiesieesieieses ettt sttt et nae e ss s e nse s 54
A.2. The JUly 27, 1988 DIaftcccccceiieieiesie ettt st sttt aenaenre s 54
A.3. The PUDIIC REVIEW DIEfTScoiieiiirieieieee st 54
A4 Version 1.0, JUY 1989ooiciiececeee sttt sttt st a et reeae st 55
F N ST A= = Lo I I PSPPSR 56
A.6. Public Review Draft, December 1993 ... 56
AT.Version 2.0, APFil 1994 ...ttt nre s 57
B. Suggested ProtoCOl REVISIONSccvcieiiiiiiiee ettt 58
C. Obsolete Session Manager CONVENTIONSccveieiieeeriesie e eee e eseesie e sreeee e sreseense s 59
(ORI . oo =1 (1= O 59
C.1.1. WM_COMMAND PIOPEIMY ..oveuereeeierieisieisieesieesieesesesesiesessesessesessesesessesessenssseneases 59
C.1.2. WM_CLIENT_MACHINE PrOPEIY ...ccccueerieirieinieesesesisiesese s e sessenessns 59
(O3 = 11171147 1 o] o PSSPV 59
C.3. Client Responses to Session Manager ACHIONScocveeereneieeee e se e 60
C.3.1. SAVING CHENE SEALEvecveieeeieiiecieeiese sttt te e be st sreeaestesre e e e snesrenns 60
C.3.2. WINAOW DEIBLION ...ttt 60
C.4. Summary of Session Manager Property TYPESccviveeereneiiee e s seesie e seeae e e 60

Vi

Prefaceto Version 2.0

The goal of the ICCCM Version 2.0 effort was to add new facilities, to fix problems with earlier
drafts, and to improve readability and understandability, while maintaining compatibility with the
earlier versions. This document is the product of over two years of discussion among the
members of the X Consortium’s wmtalk working group. The following people deserve thanks
for their contributions:

Gabe Beged-Dov Bill Janssen
Chan Benson V ania Jol oboff
Jordan Brown Phil Karlton
Larry Cable Kaleb Keithley
Ellis Cohen Mark Manasse
Donna Converse Ralph Mor
Brian Cripe Todd Newman
Susan Dahlberg Baob Scheifler
Peter Daifuku Keith Taylor
Andrew deBlois Jm VanGilder
Clive Feather Mike Wexler
Stephen Gildea Michael Yee
Christian Jacobi

It has been a privilege for me to work with this fine group of people.

Stuart W. Marks
December 1993

Vii

Prefaceto Version 1.1

David Rosenthal had overall architectural responsibility for the conventions defined in this docu-
ment; he wrote most of the text and edited the document, but its the devel opment has been a com-
munal effort. The details were thrashed out in meetings at the January 1988 MIT X Conference
and at the 1988 Summer Usenix conference, and through months (and megabytes) of argument on
the wmtalk mail alias. Thanks are due to everyone who contributed, and especially to the fol-
lowing people.

For the Selection section:

Jerry Farrell

Phil Karlton

Loretta Guarino Reid
Mark Manasse

Bob Scheifler

For the Cut-Buffer section:

Andrew Palay.

For the Window and Session Manager sections:

Todd Brunhoff Matt Landau
Ellis Cohen Mark Manasse
Jim Fulton Bob Scheifler
Hania Gajewska Ralph Swick
Jordan Hubbard Mike Wexler
Kerry Kimbrough Glenn Widener
Audrey |shizaki

For the Device Color Characterization section:

Keith Packard.

In addition, thanks are due to those who contributed to the public review:

Gary Combs John Irwin
Errol Crary Vania Jol oboff
Nancy Cyprych John Laporta
John Diamant Ken Lee
Clive Feather Stuart Marks
Burns Fisher Alan Mimms
Richard Greco Colas Nahaboo
Tim Greenwood Mark Patrick
Kee Hinckley Steve Pitschke
Brian Holt Brad Reed
John Interrante John Thomas

viii

1. Introduction

It was an explicit design goal of X Version 11 to specify mechanism, not policy. Asaresult, a
client that converseswith the server using the protocol defined by the X Window System Protocaol,
Version 11 may operate correctly in isolation but may not coexist properly with others sharing the
same server.

Being agood citizen in the X Version 11 world involves adhering to conventions that govern
inter-client communications in the following areas:

* Selection mechanism

e Cut buffers

e Window manager

e Session manager

e Manipulation of shared resources
e Devicecolor characterization

This document proposes suitable conventions without attempting to enforce any particular user
interface. To permit clients written in different languages to communicate, these conventions are
expressed solely in terms of protocol operations, not in terms of their associated Xlib interfaces,
which are probably more familiar. The binding of these operations to the Xlib interface for C and
to the equivaent interfaces for other languages is the subject of other documents.

1.1. Evolution of the Conventions

In the interests of timely acceptance, the Inter-Client Communication Conventions Manual
(ICCCM) coversonly aminimal set of required conventions. These conventions will be added to
and updated as appropriate, based on the experiences of the X Consortium.

Asfar as possible, these conventions are upwardly compatible with those in the February 25,
1988, draft that was distributed with the X Version 11, Release 2 of the software. In some areas,
semantic problems were discovered with those conventions, and, thus, compl ete upward compati-
bility could not be assured. These areas are noted in the text and are summarized in Appendix A.

In the course of developing these conventions, a number of minor changes to the protocol were
identified as desirable. They also areidentified in the text, are summarized in Appendix B, and
are offered asinput to afuture protocol revision process. If and when a protocol revision incor-
porating these changesis undertaken, it is anticipated that the ICCCM will need to be revised.
Becauseit is difficult to ensure that clients and servers are upgraded simultaneously, clients using
the revised conventions should examine the minor protocol revision number and be prepared to
use the older conventions when communicating with an older server.

It is expected that these revisions will ensure that clients using the conventions appropriate to pro-
tocol minor revision n will interoperate correctly with those that use the conventions appropriate
to protocol minor revision n+1 if the server supports both.

1.2. Atoms

Many of the conventions use atoms. To assist the reader, the following sections attempt to
amplify the description of atoms that is provided in the protocol specification.

1.2.1. What Are Atoms?

At the conceptual level, atoms are unique names that clients can use to communicate information
to each other. They can be thought of as abundle of octets, like a string but without an encoding
bei nglspecifi ed. The elements are not necessarily ASCII characters, and no case folding hap-
pens.

1 The comment in the protocol specification for InternAtom that 1SO Latin-1 encoding should be used is in the nature of a convention;
the server treats the string as a byte sequence.

I nter-Client Communication Conventions X11, Release 6

The protocol designersfelt that passing these sequences of bytes back and forth across the wire
would be too costly. Further, they thought it important that events as they appear on the wire
have afixed size (in fact, 32 bytes) and that because some events contain atoms, afixed-size
representation for them was needed.

To allow afixed-size representation, a protocol request (I nternAtom) was provided to register a
byte sequence with the server, which returns a 32-bit value (with the top three bits zero) that maps
to the byte sequence. Theinverse operator is also available (GetAtomName).

1.2.2. Predefined Atoms
The protocol specifies a number of atoms as being predefined:

Predefined atoms are not strictly necessary and may not be useful in al environments,
but they will eliminate many InternAtom requestsin most applications. Note that
they are predefined only in the sense of having numeric values, not in the sense of
having required semantics.
Predefined atoms are an implementation trick to avoid the cost of interning many of the atoms
that are expected to be used during the startup phase of all applications. The results of the
InternAtom requests, which require a handshake, can be assumed a priori.

Language interfaces should probably cache the atom-name mappings and get them only when
required. The CLX interface, for instance, makes no distinction between predefined atoms and
other atoms; all atoms are viewed as symbols at the interface. However, a CLX implementation
will typically keep asymbol or atom cache and will typically initialize this cache with the
predefined atoms.

1.2.3. Naming Conventions

The built-in atoms are composed of uppercase ASCII characterswith the logical words separated
by an underscore character (), for example, WM_ICON_NAME. The protocol specification
recommends that atoms used for private vendor-specific reasons should begin with an underscore.
To prevent conflicts among organizations, additional prefixes should be chosen (for example,
_DEC_WM_DECORATION_GEOMETRY).

The names were chosen in this fashion to make it easy to use them in anatural way within L1SP.
Keyword constructors allow the programmer to specify the atoms as LISP atoms. If the atoms
were not all uppercase, specia quoting conventions would have to be used.

1.2.4. Semantics

The core protocol imposes ho semantics on atoms except as they are used in FONTPROP struc-
tures. For further information on FONTPROP semantics, see the X Logical Font Description
Conventions.

1.2.5. Name Spaces

The protocol defines six distinct spacesin which atoms are interpreted. Any particular atom may
or may not have some valid interpretation with respect to each of these name spaces.

Space Briefly Examples

Property name Name WM_HINTS, WM_NAME, RGB_BEST_MAP, ...
Property type Type WM_HINTS, CURSOR, RGB_COLOR_MAP, ...
Selection name Selection PRIMARY, SECONDARY, CLIPBOARD

Selection target Target FILE_NAME, POSTSCRIPT, PIXMAP, ...

Font property QUAD_WIDTH, POINT_SIZE, ...

ClientM essage type WM_SAVE_YOURSELF, DEC SAVE_EDITS, ...

I nter-Client Communication Conventions X11, Release 6

1.2.6. Discriminated Names

Sometimes a protocol requires there to be an arbitrary number of similar objects which need
unique names (usually because the objects are created dynamically, so that names cannot be
invented in advance). For example, a colormap-generating program might use the selection
mechanism to offer colormaps for each screen, and so needs a selection name for each screen.
Such names are called ** discriminated names’ and are discriminated by some entity. This entity
can be:

ascreen
an X resource (awindow, acolormap, avisual, etc.)
aclient

If it is only necessary to generate afixed set of names for each value of the discriminating entity,
then the discriminated names are formed by suffixing an ordinary name according to the value of
the entity.

If name is a descriptive portion for the name, d is adecimal number with no leading zeroes, and x
is a hexadecimal number with exactly 8 digits, and using uppercase letters, then such discrim-
inated names shall have the form:

Name Discriminated By Form Example
screen number name Sd WM_COMMS S2
X resource name Rx GROUP_LEADER_R1234ABCD

To discriminate a name by client, use an X resource ID created by that client. This resource can
be of any type.

Sometimes it is simply necessary to generate a unique set of names (for example, for the proper-
ties on awindow used by a MULTIPLE selection). These names should have the form:

ud (eg. UO UL U2 U3 ..)

if the names stand totally alone, and the form:
name_Ud (e.g. FOO_UO BAR UO FOO U1l BAR U1 ..)

if they comein sets (here there are two sets, named *“FOO” and “BAR’’). The stand-alone Ud
form should only be used if it is clear that the module using it has complete control over the
relevant namespace, or has the active cooperation of al other entities which might also use these
names. (Naming properties on awindow created specifically for a particular selectionis such a
use; naming properties on the root window is amost certainly not.)

In aparticularly difficult case, it might be necessary to combine both forms of discrimination. If
this happens, the U form should come after the other form, thus:

FOO_R12345678 U23

Rationale

Existing protocols will not be changed to use these naming conventions, because
doing so will cause too much disruption. However, it is expected that future proto-
cols— both standard and private — will use these conventions.

2. Peer-to-Peer Communication by M eans of Selections

Selections are the primary mechanism that X Version 11 defines for the exchange of information
between clients, for example, by cutting and pasting between windows. Note that there can be an

I nter-Client Communication Conventions X11, Release 6

arbitrary number of selections (each named by an atom) and that they are global to the server.
Section 2.6 discusses the choice of an atom. Each selection is owned by aclient and is attached
to awindow.

Selections communicate between an owner and arequestor. The owner has the data representing
the value of its selection, and the requestor receivesit. A regquestor wishing to obtain the value of
a selection provides the following:

* Thename of the selection

e Thename of aproperty

* A window

e Theatom representing the data type required

e Optionaly, some parametersfor the request

If the selection is currently owned, the owner receives an event and is expected to do the follow-
ing:

e Convert the contents of the selection to the requested data type

» Placethis datain the named property on the named window

» Send the requestor an event to let it know the property is available

Clients are strongly encouraged to use this mechanism. In particular, displaying text in a per-
manent window without providing the ability to select and convert it into a string is definitely
considered antisocial.

Note that all data transferred between an owner and a requestor must usually go by means of the
server inan X Version 11 environment. A client cannot assume that another client can open the
same files or even communicate directly. The other client may be talking to the server by means
of acompletely different networking mechanism (for example, one client might be DECnet and

the other TCP/IP). Thus, passing indirect referencesto data (such as file names, host names and
port numbers, and so on) is permitted only if both clients specifically agree.

2.1. Acquiring Selection Owner ship

A client wishing to acquire ownership of a particular selection should call SetSelectionOwner,
which is defined as follows:

Set SelectionOwner

selection: ATOM
owner: WINDOW or None
time: TIMESTAMP or CurrentTime

The client should set the specified selection to the atom that represents the selection, set the
specified owner to some window that the client created, and set the specified time to some time
between the current last-change time of the selection concerned and the current server time. This
time value usually will be obtained from the timestamp of the event that triggers the acquisition
of the selection. Clients should not set the time valueto CurrentTime, becauseif they do so,
they have no way of finding when they gained ownership of the selection. Clients must use a
window they created so that requestors can route events to the owner of the selection.?

2 At present, no part of the protocol requires requestors to send events to the owner of a selection. This restriction isimposed to prepare
for possible future extensions.

I nter-Client Communication Conventions X11, Release 6

Convention

Clients attempting to acquire a selection must set the time value of the SetSelection-
Owner request to the timestamp of the event triggering the acquisition attempt, not
to CurrentTime. A zero-length append to a property is away to obtain atimestamp
for this purpose; the timestamp isin the corresponding PropertyNotify event.

If the time in the SetSelectionOwner request isin the future relative to the server’s current time
or isin the past relative to the last time the specified selection changed hands, the SetSelec-
tionOwner request appearsto the client to succeed, but ownership is not actually transferred.

Because clients cannot name other clients directly, the specified owner window is used to refer to
the owning client in the repliesto GetSelectionOwner , in SelectionRequest and Selection-
Clear events, and possibly as a placeto put properties describing the selection in question. To
discover the owner of a particular selection, a client should invoke GetSelectionOwner, whichis
defined as follows:

GetSelectionOwner
selection: ATOM

owner: WINDOW or None

Convention

Clients are expected to provide some visible confirmation of selection ownership. To
make this feedback reliable, a client must perform a sequence like the following:

SetSel ectionOwner(selection=PRIMARY , owner=Window, time=timestamp)
owner = GetSel ectionOwner(selection=PRIMARY)
if (owner '= Window) Failure

If the SetSelectionOwner request succeeds (not merely appears to succeed), the client that issues
it is recorded by the server as being the owner of the selection for the time period starting at the
specified time.

2.2. Responsibilities of the Selection Owner

When arequestor wants the value of a selection, the owner receives a SelectionRequest event,
which is defined as follows:

SelectionRequest

owner : WINDOW

selection: ATOM

target: ATOM

property: ATOM or None

reguestor : WINDOW

time: TIMESTAMP or CurrentTime

The specified owner and selection will be the values that were specified in the SetSelection-
Owner request. The owner should compare the timestamp with the period it has owned the
selection and, if the time is outside, refuse the SelectionRequest by sending the requestor win-
dow a SelectionNotify event with the property set to None (by means of a SendEvent request
with an empty event mask).

I nter-Client Communication Conventions X11, Release 6

More advanced selection owners are free to maintain a history of the value of the selection and to
respond to requests for the value of the selection during periods they owned it even though they
do not own it now.

If the specified property is None, the requestor is an obsolete client. Owners are encouraged to
support these clients by using the specified target atom as the property name to be used for the
reply.

Otherwise, the owner should use the target to decide the form into which the selection should be
converted. Some targets may be defined such that requestors can pass parameters along with the
request. The owner will find these parametersin the property named in the selection request. The
type, format, and contents of this property are dependent upon the definition of the target. If the
target is not defined to have parameters, the owner should ignore the property if it is present. If
the selection cannot be converted into aform based on the target (and parameters, if any), the
owner should refuse the SelectionRequest as previously described.

If the specified property is not None, the owner should place the data resulting from converting
the selection into the specified property on the requestor window and should set the property’s
type to some appropriate value, which need not be the same as the specified target.

Convention

All properties used to reply to SelectionRequest events must be placed on the
requestor window.

In either case, if the data comprising the selection cannot be stored on the requestor window (for
example, because the server cannot provide sufficient memory), the owner must refuse the Selec-
tionRequest, as previously described. See also section 2.5.

If the property is successfully stored, the owner should acknowledge the successful conversion by
sending the requestor window a SelectionNotify event (by means of a SendEvent request with
an empty mask). SelectionNotify is defined as follows:

SelectionNotify

requestor : WINDOW

selection, target: ATOM

property: ATOM or None

time: TIMESTAMP or CurrentTime

The owner should set the specified selection, target, time, and property arguments to the values
received in the SelectionRequest event. (Note that setting the property argument to None indi-
cates that the conversion regquested could not be made.)

Convention

The selection, target, time, and property argumentsin the SelectionNotify event
should be set to the values received in the SelectionRequest event.

If the owner receives more than one SelectionRequest event with the same requestor, selection,
target, and timestamp, it must respond to them in the same order in which they were received.

Rationale

It is possible for arequestor to have multiple outstanding requests that use the same
reguestor window, selection, target, and timestamp, and that differ only in the pro-
perty. If thisoccurs, and one of the conversion requests fails, the resulting
SelectionNotify event will haveits property argument set to None. This may make
it impossible for the requestor to determine which conversion request had failed,

I nter-Client Communication Conventions X11, Release 6

unless the requests are responded to in order.

The data stored in the property must eventually be deleted. A convention is needed to assign the
responsibility for doing so.

Convention

Selection requestors are responsible for deleting properties whose names they receive
in SelectionNotify events (see section 2.4) or in properties with type MULTIPLE.

A selection owner will often need confirmation that the data comprising the selection has actually
been transferred. (For example, if the operation has side effects on the owner’ sinternal data
structures, these should not take place until the requestor has indicated that it has successfully
received the data.) Owners should expressinterest in PropertyNotify eventsfor the specified
reguestor window and wait until the property in the SelectionNotify event has been deleted
before assuming that the selection data has been transferred. For the MULTIPLE request, if the
different conversions require separate confirmation, the selection owner can also watch for the
deletion of the individual properties named in the property in the SelectionNotify event.

When some other client acquires a selection, the previous owner receives a SelectionClear event,
which is defined as follows:

SelectionClear

owner: WINDOW
salection: ATOM
time: TIMESTAMP

The timestamp argument is the time at which the ownership changed hands, and the owner argu-
ment is the window the previous owner specified in its SetSelectionOwner request.

If an owner loses ownership while it has atransfer in progress (that is, beforeit receives
notification that the requestor has received all the data), it must continue to service the ongoing
transfer until it is complete.

If the selection value completely changes, but the owner happensto be the same client (for exam-
ple, selecting atotally different piece of text in the same xterm as before), then the client should
reacquire the selection ownership as if it were not the owner, providing a new timestamp. If the
selection value is modified, but can still reasonably be viewed as the same selected object, the
owner should take no action.

2.3. Giving Up Selection Owner ship

Clients may either give up selection ownership voluntarily or lose it forcibly as the result of some
other client’s actions.

2.3.1. Voluntarily Giving Up Selection Owner ship

To relinquish ownership of a selection voluntarily, a client should execute a Set SelectionOwner
regquest for that selection atom, with owner specified as None and the time specified as the time-
stamp that was used to acquire the selection.

Alternatively, the client may destroy the window used as the owner value of the SetSelection-
Owner request, or the client may terminate. In both cases, the ownership of the selection
involved will revert to None.

3 The division between these two casesis amatter of judgement on the part of the software developer.

I nter-Client Communication Conventions X11, Release 6

2.3.2. Forcibly Giving Up Selection Ownership

If aclient gives up ownership of a selection or if some other client executes a SetSelection-
Owner for it and thus reassignsit forcibly, the previous owner will receive a SelectionClear
event. For the definition of a SelectionClear event, see section 2.2.

The timestamp is the time the selection changed hands. The specified owner is the window that
was specified by the current owner in its SetSelectionOwner regquest.

2.4. Requesting a Selection

A client that wishes to obtain the value of a selection in a particular form (the requestor) issues a
ConvertSelection request, which is defined as follows:

ConvertSelection

selection, target: ATOM

property: ATOM or None

reguestor : WINDOW

time: TIMESTAMP or CurrentTime

The selection argument specifies the particular selection involved, and the target argument
specifies the required form of the information. For information about the choice of suitable atoms
to use, see section 2.6. The requestor should set the requestor argument to awindow that it
created; the owner will place the reply property there. The requestor should set the time argument
to the timestamp on the event that triggered the request for the selection value. Notethat clients
should not specify CurrentTime.

Convention

Clients should not use CurrentTime for the time argument of a ConvertSelection
request. Instead, they should use the timestamp of the event that caused the request
to be made.

The requestor should set the property argument to the name of a property that the owner can use
to report the value of the selection. Requestors should ensure that the named property does not
exist on the window beforeissuing the ConvertSelection request.* The exception to thisruleis
when the requestor intends to pass parameters with the request; see below.

Rationale

It is necessary for requestors to delete the property before issuing the request so that
the target can later be extended to take parameters without introducing an incompati-
bility. Also note that the requestor of a selection need not know the client that owns
the selection nor the window on which the selection was acquired.

Some targets may be defined such that requestors can pass parameters along with the request. If
the requestor wishes to provide parametersto arequest, they should be placed in the specified
property on the requestor window before the requestor issues the ConvertSelection request, and
this property should be named in the request.

Some targets may be defined so that parameters are optional. If no parameters are to be supplied
with the request of such atarget, the requestor must ensure that the property does not exist before
issuing the ConvertSelection request.

4 This requirement is new in version 2.0, and in general, existing clients do not conform to this requirement. To prevent these clients
from breaking, no existing targets should be extended to take parameters until sufficient time has passed for clients to be updated. Note that
the MULTIPLE target was defined to take parametersin version 1.0 and its definition is not changing. There is thus no conformance prob-
lem with MULTIPLE.

I nter-Client Communication Conventions X11, Release 6

The protocol allows the property field to be set to None, in which case the owner is supposed to
choose a property name. However, it is difficult for the owner to make this choice safely.

Conventions

1 Requestors should not use None for the property argument of a ConvertSelection
request.

2. Ownersreceiving ConvertSelection requests with a property argument of None are
talking to an obsolete client. They should choose the target atom as the property
name to be used for the reply.

Theresult of the ConvertSelection request is that a SelectionNotify event will be received. For
the definition of a SelectionNotify event, see section 2.2.

The requestor, selection, time, and target arguments will be the same as those on the Convert-
Selection request.

If the property argument is None, the conversion has been refused. This can mean either that
thereis no owner for the selection, that the owner does not support the conversion implied by the
target, or that the server did not have sufficient space to accommodate the data.

If the property argument is not None, then that property will exist on the requestor window. The
value of the selection can be retrieved from this property by using the GetProperty request,
which is defined as follows:

GetProperty

window: WINDOW

property: ATOM

type: ATOM or AnyPropertyType
long-offset, long-length: CARD32
delete: BOOL

type: ATOM or None

format: {0, 8, 16, 32}

bytes-after: CARD32

value: LISTofINT8 or LISTofINT16 or LISTofINT32

When using GetProperty to retrieve the value of a selection, the property argument should be set
to the corresponding value in the SelectionNotify event. Because the requestor has no way of
knowing beforehand what type the selection owner will use, the type argument should be set to
AnyPropertyType. Several GetProperty requests may be needed to retrieve al the datain the
selection; each should set the long-offset argument to the amount of data received so far, and the
size argument to some reasonabl e buffer size (see section 2.5). If the returned value of bytes-after
is zero, the whole property has been transferred.

Once all the data in the selection has been retrieved (which may require getting the values of
several properties — see section 2.7), the requestor should del ete the property in the Selection-
Notify request by using a GetProperty request with the delete argument set to True. As previ-
ously discussed, the owner has no way of knowing when the data has been transferred to the
reguestor unless the property is removed.

I nter-Client Communication Conventions X11, Release 6

Convention

The requestor must del ete the property named in the SelectionNotify once al the
data has been retrieved. The requestor should invoke either DeleteProperty or
GetProperty(delete==True) after it has successfully retrieved all the datain the
selection. For further information, see section 2.5.

25. LargeData Transfers
Selections can get large, which poses two problems:
* Transferring large amounts of datato the server is expensive.

* All serverswill have limits on the amount of datathat can be stored in properties. Exceed-
ing this limit will result in an Alloc error on the ChangeProperty request that the selection
owner uses to store the data.

The problem of limited server resourcesis addressed by the following conventions:
Conventions

1. Sdection owners should transfer the data describing a large selection (relative to the
maximum-request-size they received in the connection handshake) using the INCR
property mechanism (see section 2.7.2).

2. Any client using SetSelectionOwner to acquire selection ownership should arrange
to process Alloc errorsin property change requests. For clients using Xlib, this
involves using the XSetErrorHandler function to override the default handler.

3. A selection owner must confirm that no Alloc error occurred while storing the pro-
perties for a selection before replying with a confirming SelectionNotify event.

4. When storing large amounts of data (relative to maximum-regquest-size), clients
should use a sequence of ChangePr operty (mode==Append) requests for reasonable
guantities of data. This avoids locking servers up and limits the waste of dataan
Alloc error would cause.

5. If an Alloc error occurs during the storing of the selection data, all properties stored
for this selection should be deleted and the ConvertSelection request should be
refused (see section 2.2).

6. Toavoidlocking servers up for inordinate lengths of time, requestors retrieving large
guantities of datafrom a property should perform a series of GetProperty requests,
each asking for a reasonable amount of data.

Advice to Implementors

Single-threaded servers should take care to avoid locking up during large data
transfers.

2.6. Useof Selection Atoms

Defining a new atom consumes resources in the server that are not released until the server reini-
tializes. Thus, reducing the need for newly minted atoms is an important goal for the use of the
selection atoms.

2.6.1. Sdlection Atoms

There can be an arbitrary number of selections, each named by an atom. To conform with the
inter-client conventions, however, clients need deal with only these three selections:

10

I nter-Client Communication Conventions X11, Release 6

+ PRIMARY

+ SECONDARY

+ CLIPBOARD

Other selections may be used freely for private communication among related groups of clients.

2.6.1.1. ThePRIMARY Selection

The selection named by the atom PRIMARY is used for all commands that take only asingle
argument and is the principal means of communication between clients that use the selection
mechanism.

2.6.1.2. The SECONDARY Selection

The selection named by the atom SECONDARY is used:

e Asthe second argument to commands taking two arguments (for example, ** exchange pri-
mary and secondary selections”)

» Asameans of obtaining datawhen thereis a primary selection and the user does not want to
disturb it

2.6.1.3. The CLIPBOARD Selection

The selection named by the atom CLIPBOARD is used to hold data that is being transferred
between clients, that is, datathat usually is being cut or copied, and then pasted. Whenever a
client wants to transfer datato the clipboard:

e It should assert ownership of the CLIPBOARD.

» If it succeedsin acquiring ownership, it should be prepared to respond to arequest for the
contents of the CLIPBOARD in the usual way (retaining the data to be able to return it).
The request may be generated by the clipboard client described below.

» Ifitfailsto acquire ownership, a cutting client should not actually perform the cut or provide
feedback that would suggest that it has actually transferred data to the clipboard.

The owner should repeat this process whenever the data to be transferred would change.

Clients wanting to paste data from the clipboard should request the contents of the CLIPBOARD

selection in the usua way.

Except while aclient is actually deleting or copying data, the owner of the CLIPBOARD selec-

tion may be asingle, specia client implemented for the purpose. This client maintains the con-

tent of the clipboard up-to-date and responds to requests for data from the clipboard as follows:

e It should assert ownership of the CLIPBOARD selection and reassert it any time the clip-
board data changes.

» If it losesthe selection (because another client has some new datafor the clipboard), it
should:

- Obtain the contents of the selection from the new owner by using the timestamp in the
SelectionClear event.

- Attempt to reassert ownership of the CLIPBOARD selection by using the same time-
stamp.

- Restart the process using a newly acquired timestamp if this attempt fails. Thistime-
stamp should be obtained by asking the current owner of the CLIPBOARD selection
to convertit toa TIMESTAMP. If this conversionisrefused or if the same timestamp
is received twice, the clipboard client should acquire a fresh timestamp in the usual
way (for example by a zero-length append to a property).

» It should respond to requests for the CLIPBOARD contents in the usual way.

11

I nter-Client Communication Conventions

X11, Release 6

A special CLIPBOARD client is not necessary. The protocol used by the cutting client and the
pasting client is the same whether the CLIPBOARD client is running or not. The reasonsfor run-

ning the special client include:

» Stability — If the cutting client wereto crash or terminate, the clipboard value would still be

available.

* Feedback — The clipboard client can display the contents of the clipboard.

« Simplicity — A client deleting data does not have to retain it for so long, thus reducing the
chance of race conditions causing problems.

The reasons not to run the clipboard client include:
» Peformance— Datais only transferred if it is actually required (that is, when some client

actually wants the data).

* Flexibility — The clipboard datamay be available as more than one target.

2.6.2. Target Atoms

The atom that a requestor supplies as the target of a ConvertSelection request determines the
form of the data supplied. The set of such atoms is extensible, but a generally accepted base set
of target atomsis needed. Asastarting point for this, the following table contains those that have

been suggested so far.
Atom Type Data Received
ADOBE_PORTABLE_DOCUMENT_FORMAT

STRING [1]
APPLE_PICT APPLE_PICT [2]
BACKGROUND PIXEL A list of pixel values
BITMAP BITMAP A list of bitmap IDs
CHARACTER_POSITION SPAN The start and end of the selection in bytes
CLASS TEXT (see section 4.1.2.5)
CLIENT_WINDOW WINDOW Any top-level window owned by the selection

owner

COLORMAP COLORMAP A list of colormap IDs
COLUMN_NUMBER SPAN The start and end column numbers

COMPOUND_TEXT
DELETE
DRAWABLE

COMPOUND_TEXT
NULL
DRAWABLE

ENCAPSULATED_POSTSCRIPT

STRING

ENCAPSULATED_POSTSCRIPT_INTERCHANGE

FILE_NAME
FOREGROUND
HOST_NAME
INSERT_PROPERTY
INSERT_SELECTION
LENGTH
LINE_NUMBER
LIST_LENGTH
MODULE
MULTIPLE

NAME

STRING

TEXT
PIXEL
TEXT
NULL
NULL
INTEGER
SPAN
INTEGER
TEXT
ATOM_PAIR
TEXT

12

Compound Text
(see section 2.6.3.1)
A list of drawable IDs

[3], Appendix H 6

[3], Appendix H

Thefull path name of afile

A list of pixel values

(see section 4.1.2.9)

(see section 2.6.3.3)

(see section 2.6.3.2)

The number of bytes in the selection’
The start and end line numbers

The number of digjoint parts of the selection
The name of the selected procedure
(see the discussion that follows)
(seesection 4.1.2.1)

I nter-Client Communication Conventions

X11, Release 6

Atom Type Data Received

ODIF TEXT SO Office Document Interchange Format
OWNER_OS TEXT The operating system of the owner client
PIXMAP PIXMAP?® A list of pixmap IDs

POSTSCRIPT STRING [3]

PROCEDURE TEXT The name of the selected procedure
PROCESS INTEGER, TEXT The process ID of the owner

STRING STRING ISO Latin-1 (+TAB+NEWLINE) text
TARGETS ATOM A list of valid target atoms

TASK INTEGER, TEXT Thetask ID of the owner

TEXT TEXT The text in the owner’ s choice of encoding
TIMESTAMP INTEGER The timestamp used to acquire the selection
USER TEXT The name of the user running the owner
References:

[1] Adobe Systems, Incorporated. Portable Document Format Reference Manual. Addison-

Wedley, ISBN 0-201-62628-4.

[2] Apple Computer, Incorporated. Inside Macintosh, Volume V. Chapter 4, ** Color Quick-
Draw,” Color Picture Format. 1SBN 0-201-17719-6.

[3] Adobe Systems, Incorporated. PostScript Language Reference Manual. Addison-Wesley,

ISBN 0-201-18127-4.

It is expected that this table will grow over time.

Selection owners are required to support the following targets. All other targets are optional.

» TARGETS- The owner should return alist of atoms that represent the targets for which an
attempt to convert the current selection will succeed (barring unforseeable problems such as
Alloc errors). Thislist should include al the required atoms.

e MULTIPLE —-The MULTIPLE target atom is valid only when a property is specified on the
ConvertSelection request. If the property argument in the SelectionRequest event is
None and the target is MULTIPLE, it should be refused.

When a selection owner receives a SelectionRequest (target==MUL TIPLE) request, the

contents of the property named in the request will be alist of atom pairs: the first atom nam-
ing atarget and the second naming a property (None is not valid here). The effect should be
asif the owner had received a sequence of SelectionRequest events (one for each atom pair)

except that:

— The owner should reply with a SelectionNotify only when all the requested conver-

sions have been performed.

— If the owner fails to convert the target named by an atom in the MULTIPLE property,
it should replace that atom in the property with None.

5 Earlier versions of this document erroneously specified that conversion of the PIXMAP target return a property of type DRAWABLE
instead of PIXMAP. Implementors should be aware of this and may want to support the DRAWABLE type as well to allow for compatibil-
ity with older clients.

6 The targets ENCAPSULATED_POSTSCRIPT and ENCAPSULATED_POSTSCRIPT_INTERCHANGE are equivalent to the targets
_ADOBE_EPS and _ADOBE_EPS! (respectively) that appear in the selection targets registry. The _ADOBE_ targets are deprecated, but
clients are encouraged to continue to support them for backward compatibility.

7 This definition is ambiguous, as the selection may be converted into any of several targets which may return differing amounts of data.
The requestor has no way of knowing which, if any, of these targets corresponds to the result of LENGTH. Clients are advised that no
guarantees can be made about the result of aconversion to LENGTH; its use is thus deprecated.

13

I nter-Client Communication Conventions X11, Release 6

Convention

Theentriesin aMULTIPLE property must be processed in the order they
appear in the property. For further information, see section 2.6.3.

The requestor should delete each individual property when it has copied the data from that
conversion, and the property specified in the MULTIPLE request when it has copied all the
data.

The requests are otherwise to be processed independently, and they should succeed or fail
independently. The MULTIPLE target is an optimization that reduces the amount of proto-
col traffic between the owner and the requestor; it is not a transaction mechanism. For exam-
ple, aclient may issue aMULTIPLE request with two targets: a datatarget and the DELETE
target. The DELETE target will still be processed even if the conversion of the data target
fals.

» TIMESTAMP —To avoid some race conditions, it isimportant that requestors be able to dis-
cover the timestamp the owner used to acquire ownership. Until and unless the protocol is
changed so that a GetSelectionOwner request returns the timestamp used to acquire owner-
ship, selection owners must support conversion to TIMESTAMP, returning the timestamp
they used to obtain the selection.

2.6.3. Selection Targetswith Side Effects

Some targets (for example, DELETE) have side effects. To render these targets unambiguous, the
entriesin aMULTIPLE property must be processed in the order that they appear in the property.

In general, targets with side effects will return no information, that is, they will return a zero-
length property of type NULL. (Type NULL meansthe result of InternAtom on the string
“NULL", not the value zero.) In all cases, the requested side effect must be performed before the
conversion is accepted. If the requested side effect cannot be performed, the corresponding
conversion request must be refused.

Conventions
1. Targetswith side effects should return no information (that is, they should have a
zero-length property of type NULL).
2. Theside effect of atarget must be performed before the conversion is accepted.

3. If the side effect of atarget cannot be performed, the corresponding conversion
regquest must be refused.

Problem

The need to delay responding to the ConvertSelection request until a further conver-
sion has succeeded poses problems for the Intrinsics interface that need to be
addressed.

These side effect targets are used to implement operations such as ** exchange PRIMARY and
SECONDARY selections.”

26.3.1. DELETE

When the owner of a selection receives arequest to convert it to DELETE, it should delete the
corresponding selection (whatever doing so means for its internal data structures) and return a
zero-length property of type NULL if the deletion was successful.

14

I nter-Client Communication Conventions X11, Release 6

2.6.3.2. INSERT_SELECTION

When the owner of a selection receives arequest to convert it to INSERT_SELECTION, the pro-
perty named will be of type ATOM_PAIR. Thefirst atom will name a selection, and the second
will name atarget. The owner should use the selection mechanism to convert the named selection
into the named target and should insert it at the location of the selection for which it got the
INSERT_SELECTION request (whatever doing so means for itsinternal data structures).

2.6.3.3. INSERT_PROPERTY

When the owner of a selection receives arequest to convert it to INSERT_PROPERTY, it should
insert the property named in the request at the location of the selection for which it got the
INSERT_SELECTION request (whatever doing so meansfor itsinternal data structures).

2.7. Use of Selection Properties

The names of the properties used in selection data transfer are chosen by the requestor. The use
of None property fieldsin ConvertSelection regquests (which request the selection owner to
choose aname) is nhot permitted by these conventions.

The selection owner always chooses the type of the property in the selection datatransfer. Some
types have special semantics assigned by convention, and these are reviewed in the following sec-
tions.

In al cases, arequest for conversion to atarget should return either a property of one of the types
listed in the previoustable for that target or a property of type INCR and then a property of one of
the listed types.

Certain selection properties may contain resource IDs. The selection owner should ensure that
the resource is not destroyed and that its contents are not changed until after the selection transfer
iscomplete. Requestorsthat rely on the existence or on the proper contents of a resource must
operate on the resource (for example, by copying the contents of a pixmap) before deleting the
selection property.

The selection owner will return alist of zero or more items of the type indicated by the property
type. Ingeneral, the number of itemsin the list will correspond to the number of digjoint parts of
the selection. Some targets (for example, side-effect targets) will be of length zero irrespective of
the number of digoint selection parts. In the case of fixed-size items, the requestor may deter-
mine the number of items by the property size. Selection property types arelisted in the table
below. For variable-length items such as text, the separators are also listed.

Type Atom Format Separator
APPLE_PICT 8 Self-sizing
ATOM 32 Fixed-size
ATOM_PAIR 32 Fixed-size
BITMAP 32 Fixed-size
C_STRING 8 Zero

COLORMAP 32 Fixed-size
COMPOUND_TEXT 8 Zero

DRAWABLE 32 Fixed-size
INCR 32 Fixed-size
INTEGER 32 Fixed-size
PIXEL 32 Fixed-size
PIXMAP 32 Fixed-size
SPAN 32 Fixed-size
STRING 8 Zero

WINDOW 32 Fixed-size

15

I nter-Client Communication Conventions X11, Release 6

It is expected that this table will grow over time.

2.7.1. TEXT Properties

In general, the encoding for the charactersin atext string property is specified by itstype. Itis
highly desirable for there to be a simple, invertible mapping between string property types and
any character set names embedded within font namesin any font naming standard adopted by the
Consortium.

The atom TEXT is apolymorphic target. Requesting conversion into TEXT will convert into

whatever encoding is convenient for the owner. The encoding chosen will be indicated by the
type of the property returned. TEXT is not defined as atype; it will never be the returned type
from a selection conversion request.

If the requestor wants the owner to return the contents of the selection in a specific encoding, it
should regquest conversion into the name of that encoding.

Inthetablein section 2.6.2, the word TEXT (in the Type column) is used to indicate one of the
registered encoding names. The type would not actually be TEXT; it would be STRING or some
other ATOM naming the encoding chosen by the owner.

STRING as atype or atarget specifiesthe SO Latin-1 character set plus the control characters
TAB (octal 11) and NEWLINE (octal 12). The spacing interpretation of TAB is context depen-
dent. Other ASCII control charactersare explicitly not included in STRING at the present time.

COMPOUND_TEXT as atype or atarget specifies the Compound Text interchange format; see
the Compound Text Encoding.

There are some text objects where the source or intended user, as the case may be, does not have a
specific character set for the text, but instead merely requires a zero-terminated sequence of bytes
with no other restriction; no element of the selection mechanism may assume that any byte value
is forbidden or that any two differing sequences are equivalent.8 For these objects, the type
C_STRING should be used.

Rationale

An example of the need for C_STRING isto transmit the names of files; many
operating systems do not interpret filenames as having a character set. For example,
the same character string uses a different sequence of bytesin ASCII and EBCDIC,
and so most operating systems see these as different filenames, and offer no way to
treat them as the same. Thus no character-set based property type is suitable.

Type STRING, COMPOUND_TEXT, and C_STRING propertieswill consist of alist of ele-
ments separated by null characters; other encodings will need to specify an appropriatelist for-
mat.

2.7.2. INCR Properties

Requestors may receive a property of type INCR? in response to any target that resultsin selec-
tion data. Thisindicates that the owner will send the actual dataincrementally. The contents of
the INCR property will be an integer, which represents alower bound on the number of bytes of
datain the selection. The requestor and the selection owner transfer the datain the selectionin
the following manner.

The selection requestor starts the transfer process by deleting the (type==INCR) property forming
the reply to the selection.

8 Note that this is different from STRING, where many byte values are forbidden, and from COMPOUND_TEXT, where, for example,
inserting the sequence 27, 40, 66 (designate ASCII into GL) at the start does not alter the meaning.

9 These properties were called INCREMENTAL in an earlier draft. The protocol for using them has changed, and so the name has
changed to avoid confusion.

16

I nter-Client Communication Conventions X11, Release 6

The selection owner then:

» Appendsthe datain suitable-size chunks to the same property on the same window as the
selection reply with atype corresponding to the actual type of the converted selection. The
size should be less than the maximum-request-size in the connection handshake.

e Waits between each append for a PropertyNotify(state==Deleted) event that shows that the
requestor has read the data. The reason for doing thisisto limit the consumption of spacein
the server.

e Waits (after the entire data has been transferred to the server) until a

PropertyNotify(state==Del eted) event that shows that the data has been read by the reques-
tor and then writes zero-length data to the property.

The selection requestor:
» Waitsfor the SelectionNotify event.
 Loops:

- Retrieving data using GetProperty with the delete argument True.
- Waiting for a PropertyNotify with the state argument NewValue.
» Waitsuntil the property named by the PropertyNotify event is zero-length.
o Deletesthe zero-length property.

The type of the converted selection is the type of the first partial property. The remaining partial
properties must have the same type.

2.7.3. DRAWABLE Properties

Requestors may receive properties of type PIXMAP, BITMAP, DRAWABLE, or WINDOW,
which contain an appropriate ID. While information about these drawablesis available from the
server by means of the GetGeometry request, the following items are not:

* Foreground pixel
» Background pixel
e Colormap ID

In general, requestors converting into targets whose returned type in the table in section 2.6.2 is
one of the DRAWABLE types should expect to convert also into the following targets (using the
MULTIPLE mechanism):

. FOREGROUND returns a PIXEL vaue.
. BACKGROUND returns a PIXEL value.
e COLORMAP returnsacolormap ID.

2.7.4. SPAN Properties

Properties with type SPAN contain alist of cardinal-pairs with the length of the cardinals deter-
mined by the format. The first specifies the starting position, and the second specifies the ending
position plus one. The baseis zero. If they arethe same, the span is zero-length and is before the
specified position. The units areimplied by the target atom, such as LINE_NUMBER or
CHARACTER_POSITION.

2.8. Manager Selections

Certain clients, often called managers, take on responsibility for managing shared resources. A
client that manages a shared resource should take ownership of an appropriate selection, named
using the conventions described in sections 1.2.3 and 1.2.6. A client that manages multiple
shared resources (or groups of resources) should take ownership of a selection for each one.

The manager may support conversion of various targets for that selection. Managersare
encouraged to use this technique as the primary means by which clients interact with the managed

17

I nter-Client Communication Conventions X11, Release 6

resource. Note that the conventions for interacting with the window manager predate this section;
as aresult many interactions with the window manager use other techniques.

Before a manager takes ownership of amanager selection, it should use the GetSelectionOwner

reguest to check whether the selection is already owned by another client, and where appropriate,
it should ask the user if the new manager should replacethe old one. If so, it may then take own-
ership of the selection. Managers should acquire the selection using awindow created expressly

for this purpose. Managers must conform to the rules for selection owners described in sections

2.1 and 2.2, and they must also support the required targets listed in section 2.6.2.

If amanager loses ownership of a manager selection, this means that a new manager is taking
over itsresponsibilities. The old manager must release all resourcesit has managed, and must
then destroy the window that owned the selection. For example, awindow manager losing own-
ership of WM_S2 must deselect from Substructur eRedirect on the root window of screen 2
before destroying the window that owned WM_S2.

When the new manager notices that the window owning the selection has been destroyed, it
knows that it can successfully proceed to control the resourceit is planning to manage. If the old
manager does not destroy the window within a reasonabl e time, the new manager should check
with the user before destroying the window itself or killing the old manager.

If amanager wants to give up, on its own, management of a shared resource controlled by a selec-
tion, it must do so by releasing the resourcesit is managing, and then by destroying the window
that owns the selection. It should not first disown the selection, since this introduces a race condi-
tion.

Clients who areinteresting in knowing when the owner of a manager selection is no longer
managing the corresponding shared resource should select for StructureNotify on the window
owning the selection so they can be notified when the window is destroyed. Clients are warned
that after doing a GetSelectionOwner and selecting for StructureNotify, they should do a Get-
SelectionOwner again to ensure that the owner did not change after initially getting the selection
owner and before selecting for StructureNotify.

Immediately after a manager successfully acquires ownership of a manager selection, it should
announce its arrival by sending a ClientM essage event. This event should be sent using the Sen-
dEvent protocol request with the following arguments:

Argument Value
destination: the root window of screen O, or the root window of the appropriate screen
if the manager is managing a screen-specific resource
propagate: False
event-mask: StructureNotify
event: ClientM essage
type: MANAGER
format: 32
data[0]: 10 timestamp
data[1]: manager selection atom
data[2] the window owning the selection
date[3]: manager-sel ection-specific data
data[4]: manager-sel ection-specific data

Clients that wish to know when a specific manager has started should select for StructureNotify
on the appropriate root window, and should watch for the appropriate MANAGER Client-
M essage.

10 We use the notation data[n] to indicate the n" element of the LISTofINT8, LISTofINT16, or LISTofINT32 in the data field of the
ClientM essage, according to the format field. Thelist isindexed from zero.

18

I nter-Client Communication Conventions X11, Release 6

3. Peer-to-Peer Communication by M eans of Cut Buffers

The cut buffer mechanism is much simpler but much less powerful than the selection mechanism.
The selection mechanism is activein that it provides alink between the owner and requestor
clients. The cut buffer mechanism is passive; an owner places datain a cut buffer from which a
reguestor retrieves the data at some later time.

The cut buffers consist of eight properties on the root of screen zero, named by the predefined
atoms CUT_BUFFERO to CUT_BUFFER?7. These properties must, at present, have type
STRING and format 8. A client that uses the cut buffer mechanism must initially ensure that all
eight properties exist by using ChangeProperty requests to append zero-length data to each.

A client that stores datain the cut buffers (an owner) first must rotate the ring of buffers by plus 1
by using RotatePr operties requests to rename each buffer; that is, CUT_BUFFERO to
CUT_BUFFER1, CUT_BUFFER1 to CUT_BUFFER?2, ..., and CUT_BUFFER7 to
CUT_BUFFERQ. It then must store the datainto CUT_BUFFERO by using a ChangeProperty
reguest in mode Replace.

A client that obtains data from the cut buffers should use a GetProperty request to retrieve the
contents of CUT_BUFFERO.

In response to a specific user request, a client may rotate the cut buffers by minus 1 by using
RotateProperties requests to rename each buffer; that is, CUT_BUFFER7 to CUT_BUFFERS,
CUT_BUFFER6 to CUT_BUFFERS, ..., and CUT_BUFFERO to CUT_BUFFER?.

Data should be stored to the cut buffers and the ring rotated only when requested by explicit user
action. Usersdepend on their mental model of cut buffer operation and need to be able to identify
operations that transfer datato and fro.

4. Client to Window Manager Communication

To permit window managers to perform their role of mediating the competing demands for
resources such as screen space, the clients being managed must adhere to certain conventions and
must expect the window managersto do likewise. These conventions are covered here from the
client’s point of view.

In general, these conventions are somewhat complex and will undoubtedly change as new win-
dow management paradigms are developed. Thus, there is a strong bias toward defining only
those conventions that are essential and that apply generally to all window management para-
digms. Clients designed to run with a particular window manager can easily define private proto-
cols to add to these conventions, but they must be aware that their users may decide to run some
other window manager no matter how much the designers of the private protocol are convinced
that they have seen the “onetruelight” of user interfaces.

It isaprinciple of these conventions that a general client should neither know nor care which win-
dow manager is running or, indeed, if oneisrunning at all. The conventions do not support all
client functions without a window manager running; for example, the concept of Iconic is not
directly supported by clients. If ho window manager is running, the concept of Iconic does not
apply. A goal of the conventionsisto makeit possible to kill and restart window managers
without loss of functionality.

Each window manager will implement a particular window management policy; the choice of an
appropriate window management policy for the user’s circumstancesis not one for an individual
client to make but will be made by the user or the user’s system administrator. This does not
exclude the possibility of writing clients that use a private protocol to restrict themselvesto
operating only under a specific window manager. Rather, it merely ensuresthat no claim of gen-
eral utility is made for such programs.

For example, the claim is often made: “ The client I’m writing is important, and it needsto be on
top.” Perhapsit isimportant when it is being run in earnest, and it should then be run under the

control of awindow manager that recognizes *‘important” windows through some private proto-
col and ensures that they are on top. However, imagine, for example, that the “important” client

19

I nter-Client Communication Conventions X11, Release 6

is being debugged. Then, ensuring that it is always on top is no longer the appropriate window
management policy, and it should be run under awindow manager that allows other windows (for
example, the debugger) to appear on top.

4.1. Client’s Actions

In general, the object of the X Version 11 design is that clients should, as far as possible, do
exactly what they would do in the absence of awindow manager, except for the following:

» Hinting to the window manager about the resources they would like to obtain

» Cooperating with the window manager by accepting the resourcesthey are allocated even if
they are not those requested

» Being prepared for resource allocations to change at any time

4.1.1. Creatinga Top-Level Window

A client’ stop-level window is awindow whose override-redirect attributeis False. It must either
be a child of aroot window, or it must have been a child of aroot window immediately prior to
having been reparented by the window manager. If the client reparents the window away from
the root, the window is no longer atop-level window; but it can become atop-level window again
if the client reparentsit back to the root.

A client usually would expect to createits top-level windows as children of one or more of the
root windows by using some boilerplate like the following:

win = X CreateSimpleWindow(dpy, DefaultRootWindow(dpy), xsh.x, xsh.y,
xsh.width, xsh.height, bw, bd, bg);

If aparticular one of the root windows was required, however, it could use something like the fol-
lowing:

win = X CreateSimpleWindow(dpy, RootWindow(dpy, screen), xsh.x, xsh.y,
xsh.width, xsh.height, bw, bd, bg);

Ideally, it should be possible to override the choice of aroot window and allow clients (including
window managers) to treat a nonroot window as a pseudo-root. Thiswould allow, for example,
the testing of window managers and the use of application-specific window managersto control
the subwindows owned by the members of arelated suite of clients. Doing so properly requires
an extension, the design of which is under study.

From the client’s point of view, the window manager will regard its top-level window asbeingin
one of three states:

. Norma
. Iconic
Withdrawn

Newly created windows start in the Withdrawn state. Transitions between states happen when the
top-level window is mapped and unmapped and when the window manager receives certain mes-
sages. For further details, see sections 4.1.2.4 and 4.1.4.

4.1.2. Client Properties

Once the client has one or more top-level windows, it should place properties on those windows
to inform the window manager of the behavior that the client desires. Window managerswill
assume values they find convenient for any of these properties that are not supplied; clients that
depend on particular values must explicitly supply them. The window manager will not change
properties written by the client.

20

I nter-Client Communication Conventions X11, Release 6

The window manager will examine the contents of these properties when the window makes the
transition from the Withdrawn state and will monitor some properties for changes while the win-
dow isinthe Iconic or Normal state. When the client changes one of these properties, it must use
Replace mode to overwrite the entire property with new data; the window manager will retain no
memory of the old value of the property. All fields of the property must be set to suitable values
in asingle Replace mode ChangeProperty request. This ensuresthat the full contents of the
property will be available to a new window manager if the existing one crashes, if it is shut down
and restarted, or if the session needs to be shut down and restarted by the session manager.

Convention

Clients writing or rewriting window manager properties must ensure that the entire
content of each property remainsvalid at all times.

Some of these properties may contain the |Ds of resources, such as windows or pixmaps. Clients
should ensure that these resources exist for at least as long as the window on which the property
resides.

If these properties are longer than expected, clients should ignore the remainder of the property.
Extending these propertiesis reserved to the X Consortium; private extensions to them are forbid-
den. Private additional communication between clients and window managers should take place
using separate properties. The only exception to thisrule isthe WM_PROTOCOLS property,
which may be of arbitrary length and which may contain atoms representing private protocols; see
section 4.1.2.7.

The next sections describe each of the properties the clients need to set, in turn. They are sum-
marized in the table in section 4.4.

4.12.1. WM_NAME Property

The WM_NAME property is an uninterpreted string that the client wants the window manager to
display in association with the window (for example, in awindow headline bar).

The encoding used for this string (and all other uninterpreted string properties) isimplied by the
type of the property. The type atoms to be used for this purpose are described in section 2.7.1.

Window managers are expected to make an effort to display this information. Simply ignoring
WM_NAME is not acceptable behavior. Clients can assumethat at least thefirst part of this
string is visible to the user and that if the information is not visible to the user, it is because the
user has taken an explicit action to makeit invisible.

On the other hand, there is no guarantee that the user can seethe WM_NAME string even if the
window manager supports window headlines. The user may have placed the headline off-screen
or have covered it by other windows. WM_NAME should not be used for application-critical
information or to announce asynchronous changes of an application’ s state that require timely
user response. The expected uses are to permit the user to identify one of a number of instances
of the same client and to provide the user with noncritical state information.

Even window managers that support headline bars will place some limit on the length of the
WM_NAME string that can be visible; brevity here will pay dividends.

4.1.2.2. WM_ICON_NAME Property

The WM _ICON_NAME property is an uninterpreted string that the client wants to be displayed
in association with the window when it isiconified (for example, in anicon label). In other
respects, including the type, it issimilar to WM_NAME. For obvious geometric reasons, fewer
characterswill normally bevisiblein WM_ICON_NAME than WM_NAME.

Clients should not attempt to display this string in their icon pixmaps or windows; rather, they
should rely on the window manager to do so.

21

I nter-Client Communication Conventions X11, Release 6

4.1.2.3. WM_NORMAL_HINTS Property

Thetype of the WM_NORMAL_HINTS property isWM_SIZE HINTS. Itscontents are asfol-
lows:

Field Type Comments

flags CARD32 (see the next table)

pad 4* CARD32 For backwards compatibility
min_width INT32 If missing, assume base width
min_height INT32 If missing, assume base_height
max_width INT32

max_height INT32

width_inc INT32

height_inc INT32

min_aspect (INT32,INT32)

max_aspect (INT32,INT32)

base width INT32 If missing, assume min_width
base height INT32 If missing, assume min_height
win_gravity INT32 If missing, assume NorthWest

The WM_SIZE_HINTS.flags bit definitions are as follows:

Name Value Field

USPosition 1 User-specified x, y

USSize 2 User-specified width, height
PPosition 4 Program-specified position

PSize 8 Program-specified size

PMinSize 16 Program-specified minimum size
PMaxSize 32 Program-specified maximum size
PResizelnc 64 Program-specified resize increments
PAspect 128 Program-specified min and max aspect ratios
PBaseSize 256 Program-specified base size
PWinGravity 512 Program-specified window gravity

To indicate that the size and position of the window (when atransition from the Withdrawn state
occurs) was specified by the user, the client should set the USPosition and USSize flags, which
allow awindow manager to know that the user specifically asked where the window should be
placed or how the window should be sized and that further interaction is superfluous. To indicate
that it was specified by the client without any user involvement, the client should set PPosition
and PSize.

The size specifiersrefer to the width and height of the client’s window excluding borders.

Thewin_gravity may be any of the values specified for WINGRAVITY in the core protocol
except for Unmap: NorthWest (1), North (2), NorthEast (3), West (4), Center (5), East (6),
SouthWest (7), South (8), and SouthEast (9). It specifies how and whether the client window
wants to be shifted to make room for the window manager frame.

If thewin_gravity is Static, the window manager frame is positioned so that the inside border of
the client window inside the frameisin the same position on the screen as it was when the client
reguested the transition from Withdrawn state. Other values of win_gravity specify a window
reference point. For NorthWest, NorthEast, SouthWest, and SouthEast the referencepoint is
the specified outer corner of the window (on the outside border edge). For North, South, East,
and West the reference point is the center of the specified outer edge of the window border. For

22

I nter-Client Communication Conventions X11, Release 6

Center thereference point is the center of the window. The reference point of the window
manager frame is placed at the location on the screen where the reference point of the client win-
dow was when the client requested the transition from Withdrawn state.

The min_width and min_height elements specify the minimum size that the window can be for
the client to be useful. The max_width and max_height elements specify the maximum size. The
base width and base_height elements in conjunction with width_inc and height_inc define an
arithmetic progression of preferred window widths and heights for nonnegative integersi and j:

width = base width + (i x width_inc)

height = base height + (j x height_inc)

Window managers are encouraged to use i and j instead of width and height in reporting window
sizesto users. If abase sizeis not provided, the minimum sizeisto be used in its place and vice
versa

The min_aspect and max_aspect fields are fractions with the numerator first and the denominator
second, and they allow a client to specify the range of aspect ratiosit prefers. Window managers
that honor aspect ratios should take into account the base size in determining the preferred win-
dow size. If abasesizeis provided along with the aspect ratio fields, the base size should be sub-
tracted from the window size prior to checking that the aspect ratio fallsin range. If abasesizeis
not provided, nothing should be subtracted from the window size. (The minimum sizeis not to
be used in place of the base size for this purpose.)

4.1.24. WM_HINTS Property

The WM_HINTS property (whose typeis WM_HINTS) is used to communicate to the window
manager. It conveys the information the window manager needs other than the window
geometry, which is available from the window itself; the constraints on that geometry, whichis
available from the WM_NORMAL _HINTS structure; and various strings, which need separate
properties, suchasWM_NAME. The contents of the properties are as follows:

Field Type Comments

flags CARD32 (see the next table)

input CARD32 The client’ sinput model
initial_state CARD32 The state when first mapped

icon_pixmap PIXMAP The pixmap for theicon image
icon_window WINDOW Thewindow for theicon image

icon_x INT32 Theicon location
icon_y INT32
icon_mask PIXMAP The mask for the icon shape

window_group WINDOW ThelD of the group leader window

The WM_HINTS.flags bit definitions are as follows:

Name Value Field
InputHint 1 input

StateHint 2 initial_state

I conPixmapHint 4 icon_pixmap
conWindowHint 8 icon_window

I conPositionHint 16 icon_x & icon_y
IconMaskHint 32 icon_mask

23

I nter-Client Communication Conventions X11, Release 6

Name Value Field
WindowGroupHint 64 window_group

M essageHint 128 (this bit is obsolete)
UrgencyHint 256 urgency

Window managers are free to assume convenient values for al fields of the WM_HINTS property
if awindow is mapped without one.

Theinput field is used to communicate to the window manager the input focus model used by the
client (see section 4.1.7).

Clients with the Globally Active and No Input models should set the input flag to False. Clients
with the Passive and Locally Active models should set the input flag to True.

From the client’s point of view, the window manager will regard the client’ s top-level window as
being in one of three states:

. Normal
. Iconic
. Withdrawn

The semantics of these states are described in section 4.1.4. Newly created windows start in the
Withdrawn state. Transitions between states happen when a top-level window is mapped and
unmapped and when the window manager receives certain messages.

The value of the initia_state field determines the state the client wishes to be in at the time the
top-level window is mapped from the Withdrawn state, as shown in the following table:

State Value Comments
Nor mal State 1 The window isvisible
| conicState 3 Theiconisvisible

Theicon_pixmap field may specify a pixmap to be used as anicon. This pixmap should be:

* One of the sizes specified in the WM _ICON_SIZE property on the root if it exists (see sec-
tion 4.1.3.2).

e 1-bit deep. Thewindow manager will select, through the defaults database, suitable back-
ground (for the O bits) and foreground (for the 1 bits) colors. These defaults can, of course,
specify different colors for the icons of different clients.

Theicon_mask specifies which pixels of the icon_pixmap should be used as the icon, allowing
for icons to appear nonrectangular.

Theicon_window field isthe ID of awindow the client wants used asitsicon. Most, but not al,
window managerswill support icon windows. Those that do not are likely to have a user inter-
face in which small windows that behave like icons are completely inappropriate. Clients should
not attempt to remedy the omission by working around it.

Clients that need more capabilities from the icons than a simple two-color bitmap should use icon
windows. Rulesfor clientsthat do are set out in section 4.1.9.

The (icon_x,icon_y) coordinate is a hint to the window manager asto where it should position the
icon. The policies of the window manager control the positioning of icons, so clients should not
depend on attention being paid to this hint.

Thewindow_group field lets the client specify that this window belongsto a group of windows.
An exampleis asingle client manipulating multiple children of the root window.

24

I nter-Client Communication Conventions X11, Release 6

Conventions

1. Thewindow_group field should be set to the ID of the group leader. The window
group leader may be awindow that exists only for that purpose; a placeholder group
leader of this kind would never be mapped either by the client or by the window
manager.

2. Theproperties of the window group leader are those for the group as awhole (for
example, the icon to be shown when the entire group is iconified).

Window managers may provide facilities for manipulating the group asawhole. Clients, at
present, have no way to operate on the group as awhole.

The messages hit, if set in the flags field, indicates that the client is using an obsolete window
manager communication protocol 11 rather than the WM_PROTOCOL S mechanism of section
41.27.

The UrgencyHint flag, if set in the flags field, indicates that the client deems the window con-
tents to be urgent, requiring the timely response of the user. The window manager must make
some effort to draw the user’ s attention to this window while this flag is set. The window
manager must also monitor the state of this flag for the entire time the window is in the Normal or
I conic state and must take appropriate action when the state of the flag changes. The flag is other-
wise independent of the window’ s state; in particular, the window manager is not required to
deiconify the window if the client sets the flag on an Iconic window. Clients must provide some
means by which the user can cause the UrgencyHint flag to be set to zero or the window to be
withdrawn. The user’s action can either mitigate the actual condition that made the window
urgent, or it can merely shut off the alarm.

Rationale

This mechanism is useful for alarm dialog boxes or reminder windows, in cases
where mapping the window is not enough (e.g. in the presence of multi-workspace or
virtual desktop window managers), and where using an override-redirect window is
too intrusive. For example, the window manager may attract attention to an urgent
window by adding an indicator to itstitle bar or itsicon. Window managers may
also take additional action for awindow that is newly urgent, such as by flashing its
icon (if the window isiconic) or by raising it to the top of the stack.

41.25. WM_CLASS Property

The WM_CLASS property (of type STRING without control characters) contains two consecu-
tive null-terminated strings. These specify the Instance and Class names to be used by both the
client and the window manager for looking up resources for the application or asidentifying
information. This property must be present when the window |eaves the Withdrawn state and
may be changed only while the window isin the Withdrawn state. Window managers may exam-
ine the property only when they start up and when the window |eaves the Withdrawn state, but
there should be no need for a client to change its state dynamically.

The two strings, respectively, are:

* A string that names the particular instance of the application to which the client that owns
this window belongs. Resourcesthat are specified by instance name override any resources
that are specified by class name. Instance names can be specified by the user in an
operating-system specific manner. On POSIX-conformant systems, the following conven-
tions are used:

11 This obsolete protocol was described in the July 27, 1988 draft of the ICCCM. Windows using it can also be detected because their
WM_HINTS properties are four bytes longer than expected. Window managers are free to support clients using the obsolete protocol in a
backwards compatibility mode.

25

I nter-Client Communication Conventions X11, Release 6

- If “—name NAME" is given on the command line, NAME is used as the instance
name.

- Otherwisg, if the environment variable RESOURCE_NAME is set, its value will be
used as the instance name.

- Otherwise, the trailing part of the name used to invoke the program (argv[Q] stripped
of any directory names) is used as the instance name.

» A string that names the general class of applicationsto which the client that owns this win-
dow belongs. Resourcesthat are specified by class apply to al applications that have the
same class name. Class names are specified by the application writer. Examples of com-
monly used class namesinclude: “Emacs’, “ XTerm”, “XClock”, “XLoad"”, and so on.

Note that WM_CLASS strings are null-terminated and, thus, differ from the general conventions
that STRING properties are null-separated. Thisinconsistency is necessary for backwards com-
patibility.

4.1.2.6. WM_TRANSIENT_FOR Property

The WM_TRANSIENT_FOR property (of type WINDOW) containsthe ID of another top-level
window. Theimplication isthat this window is a pop-up on behalf of the named window, and
window managers may decide not to decorate transient windows or may treat them differently in
other ways. In particular, window managers should present newly mapped
WM_TRANSIENT_FOR windows without requiring any user interaction, even if mapping top-
level windows normally does require interaction. Diaogue boxes, for example, are an example of
windows that should have WM_TRANSIENT_FOR set.

It isimportant not to confuse WM_TRANSIENT_FOR with override-redirect.
WM_TRANSIENT_FOR should be used in those cases where the pointer is not grabbed while
the window is mapped (in other words, if other windows are allowed to be active while the tran-
sientisup). If other windows must be prevented from processing input (for example, when
implementing pop-up menus), use override-redirect and grab the pointer while the window is
mapped.

4.1.2.7. WM_PROTOCOL S Property

The WM_PROTOCOLS property (of type ATOM) isalist of atoms. Each atom identifies a com-
munication protocol between the client and the window manager in which the client is willing to
participate. Atoms can identify both standard protocols and private protocols specific to indivi-
dual window managers.

All the protocolsin which a client can volunteer to take part involve the window manager sending
the client a ClientM essage event and the client taking appropriate action. For details of the con-
tents of the event, see section 4.2.8. In each case, the protocol transactions areinitiated by the
window manager.

The WM_PROTOCOLS property is not required. If it isnot present, the client does not want to
participate in any window manager protocols.

The X Consortium will maintain aregistry of protocolsto avoid collisions in the name space.
The following table lists the protocols that have been defined to date.

Protocol Section Purpose

WM_TAKE_FOCUS 4.1.7 Assignment of input focus
WM_SAVE YOURSELF Appendix C Saveclient state request (deprecated)
WM_DELETE WINDOW 4281 Request to delete top-level window

It is expected that this table will grow over time.

26

I nter-Client Communication Conventions X11, Release 6

4.1.2.8. WM_COLORMAP_WINDOWS Property

The WM_COLORMAP_WINDOWS property (of type WINDOW) on atop-level window isa
list of the IDs of windows that may need colormapsinstalled that differ from the colormap of the
top-level window. Thewindow manager will watch this list of windows for changesin their
colormap attributes. The top-level window is aways (implicitly or explicitly) on the watch list.
For the details of this mechanism, see section 4.1.8.

4.1.2.9. WM_CLIENT_MACHINE Property

The client should set the WM_CLIENT_MACHINE property (of one of the TEXT types) to a
string that forms the name of the machine running the client as seen from the machine running the
server.

4.1.3. Window Manager Properties

The properties that were described in the previous section are those that the client is responsible
for maintaining on its top-level windows. This section describes the properties that the window
manager places on client’ stop-level windows and on the root.

4.1.3.1. WM_STATE Property

The window manager will placeaWM_STATE property (of type WM_STATE) on each top-
level client window that is not in the Withdrawn state. Top-level windows in the Withdrawn state
may or may not have the WM__STATE property. Once the top-level window has been with-
drawn, the client may re-useit for another purpose. Clients that do so should remove the
WM_STATE property if it isstill present.

Some clients (such as xprop) will ask the user to click over awindow on which the program is to
operate. Typically, theintent isfor thisto be atop-level window. To find atop-level window,
clients should search the window hierarchy beneath the selected location for awindow with the
WM_STATE property. This search must be recursive in order to cover all window manager
reparenting possibilities. If no window withaWM_STATE property isfound, it is recommended
that programs use a mapped child-of-root window if oneis present beneath the selected location.

The contents of the WM _STATE property are defined as follows:

Fiedd Type Comments

state CARD32 (see the next table)
icon WINDOW |ID of icon window

Thefollowing table lists the WM_STATE.state values:

State Value
WithdrawnState 0
Nor malState 1
| conicState 3

Adding other fields to this property is reserved to the X Consortium. Valuesfor the state field
other than those defined in the above table are reserved for use by X Consortium.

The state field describes the window manager’ sidea of the state the window is in, which may not
match the client’ sidea as expressed in theinitial_state field of the WM_HINTS property (for
example, if the user has asked the window manager to iconify the window). If it is Normal State,
the window manager believes the client should be animating its window. If itis IconicState, the
client should animate its icon window. In either state, clients should be prepared to handle

27

I nter-Client Communication Conventions X11, Release 6

exposure events from either window.

When the window is withdrawn, the window manager will either change the state field’' s value to
WithdrawnState or it will removethe WM_STATE property entirely.

Theicon field should contain the window ID of the window that the window manager uses as the
icon for the window on which this property is set. 1f no such window exists, the icon field should
be None. Note that this window could be but is not necessarily the same window as the icon
window that the client may have specified inits WM_HINTS property. The WM_STATE icon
may be awindow that the window manager has supplied and that contains the client’ s icon pix-
map, or it may be an ancestor of the client’s icon window.

4.1.3.2. WM_ICON_SIZE Property

A window manager that wishes to place constraints on the sizes of icon pixmaps and/or windows
should place a property called WM_ICON_SIZE on theroot. The contents of this property are
listed in the following table.

Field Type Comments

min_width CARD32 Thedatafor theicon size series
min_height CARD32
max_width CARD32
max_height CARD32
width_inc CARD32
height_inc CARD32

For more details see section 14.1.12 in Xlib — C Language X I nterface.

4.1.4. Changing Window State

From the client’s point of view, the window manager will regard each of the client’ s top-level
windows as being in one of three states, whose semantics are as follows:

* NormalState — The client’ s top-level window is viewable.

* lconicState — The client’ stop-level window isiconic (whatever that means for this window
manager). The client can assume that its top-level window is not viewable, itsicon_window
(if any) will be viewable and, failing that, itsicon_pixmap (if any) or its WM_ICON_NAME
will be displayed.

* WithdrawnState — Neither the client’s top-level window nor itsiconisvisible.

In fact, the window manager may implement states with semantics other than those described

above. For example, awindow manager might implement a concept of an *‘inactive” statein

which an infrequently used client’s window would be represented as a string in amenu. But this

state isinvisible to the client, which would see itself merely as being in the Iconic state.

Newly created top-level windows are in the Withdrawn state. Once the window has been pro-

vided with suitable properties, the client is free to change its state as follows:

e Withdrawn - Normal — The client should map the window with WM_HINTS.initial_state
being Nor mal State.

e Withdrawn - Iconic— The client should map the window with WM_HINTS.initial_state
being | conicState.

* Norma - Iconic— The client should send a ClientM essage event as described later in this
section.

* Norma - Withdrawn — The client should unmap the window and follow it with a synthetic
UnmapNotify event as described later in this section.

28

I nter-Client Communication Conventions X11, Release 6

e lconic - Normal — The client should map the window. The contents of
WM_HINTS.initial_state areirrelevant in this case.

e lconic —» Withdrawn — The client should unmap the window and follow it with a synthetic
UnmapNotify event as described later in this section.

Only the client can effect atransition into or out of the Withdrawn state. Once aclient’s window
has | eft the Withdrawn state, the window will be mapped if it isin the Normal state and the win-
dow will be unmapped if it isin the Iconic state. Reparenting window managers must unmap the
client’swindow when it isin the Iconic state, even if an ancestor window being unmapped
renders the client’swindow unviewable. Conversely, if areparenting window manager renders
the client’ s window unviewable by unmapping an ancestor, the client’s window is by definition in
the Iconic state and must also be unmapped.

Advice to Implementors

Clients can select for StructureNotify on their top-level windows to track transitions
between Normal and Iconic states. Receipt of a MapNotify event will indicate a
transition to the Normal state, and receipt of an UnmapNotify event will indicate a
trangition to the Iconic state.

When changing the state of the window to Withdrawn, the client must (in addition to unmapping
the window) send a synthetic UnmapNotify event by using a SendEvent request with the fol-
lowing arguments:

Argument Value
destination: Theroot
propagate: False
event-mask: (SubstructureRedirect|Substructur eNotify)
event: an UnmapNotify with:
event: Theroot
window: The window itself
from-configure: False

Rationale

The reason for requiring the client to send a synthetic UnmapNotify event isto
ensure that the window manager gets some notification of the client’s desire to
change state, even though the window may aready be unmapped when the desireis
expressed.

Advice to Implementors

For compatibility with obsolete clients, window managers should trigger the transi-
tion to the Withdrawn state on the real UnmapNotify rather than waiting for the syn-
thetic one. They should also trigger the transition if they receive a synthetic Unmap-
Notify on awindow for which they have not yet received areal UnmapNotify.

When a client withdraws a window, the window manager will then update or remove the
WM_STATE property as described in section 4.1.3.1. Clients that want to re-use a client window
(e.g. by mapping it again or reparenting it elsewhere) after withdrawing it must wait for the with-
drawal to be complete before proceeding. The preferred method for doing thisis for clientsto
wait for the window manager to update or remove the WM_STATE property.12

12 Earlier versions of these conventions prohibited clients from reading the WM_STATE property. Clients operating under the earlier

29

I nter-Client Communication Conventions X11, Release 6

If the transition is from the Normal to the Iconic state, the client should send a ClientM essage
event to the root with:

e Window == the window to beiconified

« Type!3 == the atom WM_CHANGE_STATE
e Format == 32

o Datg0] == IconicState

Rationale

The format of this ClientM essage event does not match the format of
ClientM essages in section 4.2.8. Thisis because they are sent by the window
manager to clients, and this message is sent by clients to the window manager.

Other values of data[0] are reserved for future extensions to these conventions. The parameters of
the SendEvent request should be those described for the synthetic UnmapNotify event.

Advice to Implementors

Clients can also select for VisibilityChange events on their top-level or icon win-
dows. They will then receive a VisibilityNotify (state==FullyObscured) event when
the window concerned becomes completely obscured even though mapped (and thus,
perhaps awaste of time to update) and a VisibilityNotify (state! =FullyObscured)
event when it becomes even partly viewable.

Advice to Implementors

When awindow makes a transition from the Normal state to either the Iconic or to
the Withdrawn state, clients should be aware that the window manager may make
transients for this window inaccessible. Clients should not rely on transient windows
being available to the user when the transient owner window is not in the Normal
state. When withdrawing awindow, clients are advised to withdraw transients for
the window.

4.1.5. Configuring the Window

Clients can resize and reposition their top-level windows by using the ConfigureWindow
request. The attributes of the window that can be altered with this request are as follows:

* The[x,y] location of the window’s upper |eft-outer corner

* The[width,height] of the inner region of the window (excluding borders)

* Theborder width of the window

* Thewindow’s position in the stack

The coordinate system in which the location is expressed is that of the root (irrespective of any
reparenting that may have occurred). The border width to be used and win_gravity position hint
to be used are those most recently regquested by the client. Client configure requests are inter-
preted by the window manager in the same manner asthe initial window geometry mapped from

the Withdrawn state, as described in section 4.1.2.3. Clients must be aware that thereis no
guarantee that the window manager will allocate them the requested size or location and must be

conventions used the technique of tracking ReparentNotify events to wait for the top-level window to be reparented back to the root win-
dow. Thisisstill avalid technique; however, it works only for reparenting window managers, and the WM_STATE technique is to be pre-
ferred.

13 The type field of the ClientM essage event (called the message_type field by Xlib) should not be confused with the code field of the
event itself, which will have the value 33 (ClientM essage).

30

I nter-Client Communication Conventions X11, Release 6

prepared to deal with any size and location. If the window manager decides to respond to a
ConfigureRequest request by:

* Not changing the size, location, border width, or stacking order of the window at all

A client will receive a synthetic ConfigureNotify event that describes the (unchanged)
geometry of the window. The (X,y) coordinates will be in the root coordinate system,
adjusted for the border width the client requested, irrespective of any reparenting that has
taken place. The border_width will be the border width the client requested. The client will
not receiveareal ConfigureNotify event because no change has actually taken place.

e Moving or restacking the window without resizing it or changing its border width

A client will receive asynthetic ConfigureNotify event following the change that describes
the new geometry of the window. The event’s (x,y) coordinates will be in the root coordi-
nate system adjusted for the border width the client requested. The border_width will be the
border width the client requested. The client may not receive areal ConfigureNotify event
that describes this change because the window manager may have reparented the top-level
window. If the client does receive areal event, the synthetic event will follow the real one.

* Resizing the window or changing its border width (regardless of whether the window was
also moved or restacked)

A client that has selected for StructureNotify eventswill receiveareal ConfigureNotify
event. Note that the coordinatesin this event are relative to the parent, which may not be the
root if the window has been reparented. The coordinates will reflect the actual border width
of the window (which the window manager may have changed). The Trandate-

Coor dinates reguest can be used to convert the coordinatesif required.

The general ruleisthat coordinatesin real ConfigureNotify events arein the parent’s space; in
synthetic events, they are in the root space.

Advice to Implementors

Clients cannot distinguish between the case where atop-level window is resized and
moved from the case where the window is resized but not moved, since areal
ConfigureNotify event will be received in both cases. Clients that are concerned
with keeping track of the absolute position of atop-level window should keep a piece
of state indicating whether they are certain of its position. Upon receipt of areal
ConfigureNotify event on the top-level window, the client should note that the posi-
tion is unknown. Upon receipt of a synthetic ConfigureNotify event, the client
should note the position as known, using the position in this event. If the client
receivesa KeyPress, KeyRelease, ButtonPress, ButtonRelease, M otionNotify,
Enter Notify, or LeaveNotify event on the window (or on any descendant), the
client can deduce the top-level window’ s position from the difference between the
(event-x, event-y) and (root-x, root-y) coordinates in these events. Only when the
position is unknown does the client need to use the TranslateCoor dinates request
to find the position of atop-level window.

Clients should be aware that their borders may not be visible. Window managers are freeto use
reparenting techniques to decorate client’ s top-level windows with borders containing titles, con-
trols, and other detailsto maintain a consistent look-and-feel. If they do, they are likely to over-
ride the client’ s attempts to set the border width and set it to zero. Clients, therefore, should not
depend on the top-level window’ s border being visible or use it to display any critical informa-
tion. Other window managers will allow the top-level windows border to be visible.

31

I nter-Client Communication Conventions X11, Release 6

Convention

Clients should set the desired value of the border-width attribute on all
ConfigureWindow requeststo avoid arace condition.

Clients that change their position in the stack must be aware that they may have been reparented,
which means that windows that used to be siblings no longer are. Using anonsibling as the
sibling parameter on a ConfigureWindow request will cause an error.

Convention

Clients that use a ConfigureWindow reguest to request achange in their position in
the stack should do so using None in the sibling field.

Clients that must position themselves in the stack relative to some window that was originaly a
sibling must do the ConfigureWindow reguest (in case they are running under a nonreparenting
window manager), be prepared to deal with aresulting error, and then follow with a synthetic
ConfigureRequest event by invoking a SendEvent request with the following arguments:

Argument Value
destination: The root
propagate: False
event-mask: (SubstructureRedirect|Substructur eNotify)
event: a ConfigureRequest
with:
event: The root
window: The window itself

Other parameters from the ConfigureWindow request

Window managers are in any case free to position windows in the stack as they seefit, and so
clients should not rely on receiving the stacking order they have requested. Clients should ignore
the above-sibling field of both real and synthetic ConfigureNotify events received on their top-
level windows because this field may not contain useful information.

4.1.6. Changing Window Attributes

The attributes that may be supplied when awindow is created may be changed by using the
ChangeWindowAttributes request. The window attributes are listed in the following table.

Attribute Privateto Client
Background pixmap Yes
Background pixel Yes
Border pixmap Yes
Border pixel Yes
Bit gravity Yes
Window gravity No
Backing-store hint Yes
Save-under hint No
Event mask No
Do-not-propagate mask Yes
Override-redirect flag No
Colormap Yes
Cursor Yes

32

I nter-Client Communication Conventions X11, Release 6

Attribute Privateto Client

Most attributes are private to the client and will never be interfered with by the window manager.
For the attributes that are not private to the client:

e Thewindow manager is freeto override the window gravity; a reparenting window manager
may want to set the top-level window’ swindow gravity for its own purposes.

* Clients arefreeto set the save-under hint on their top-level windows, but they must be aware
that the hint may be overridden by the window manager.

* Windows, in effect, have per-client event masks, and so, clients may select for whatever
events are convenient irrespective of any events the window manager is selecting for. There
are some events for which only one client at atime may select, but the window manager
should not select for them on any of the client’ s windows.

* Clients can set override-redirect on top-level windows but are encouraged not to do so
except as described in sections 4.1.10 and 4.2.9.

4.1.7. Input Focus
There are four models of input handling:

* NoInput — The client never expects keyboard input. An example would be xload or another
output-only client.

* Passive Input — The client expects keyboard input but never explicitly sets the input focus.
An example would be asimple client with no subwindows, which will accept input in Poin-
ter Root mode or when the window manager sets the input focus to its top-level window (in
click-to-type mode).

* Localy Active Input — The client expects keyboard input and explicitly sets the input focus,
but it only does so when one of its windows already hasthe focus. An example would be a
client with subwindows defining various data entry fields that uses Next and Prev keysto
move the input focus between the fields. It does so when its top-level window has acquired
the focusin Pointer Root mode or when the window manager sets the input focus to its top-
level window (in click-to-type mode).

* Globally Active Input — The client expects keyboard input and explicitly sets the input focus,
even when it isin windows the client does not own. An example would be aclient with a
scroll bar that wants to allow usersto scroll the window without disturbing the input focus
even if it isin some other window. It wantsto acquire the input focus when the user clicks
in the scrolled region but not when the user clicks in the scroll bar itself. Thus, it wantsto
prevent the window manager from setting the input focus to any of its windows.

The four input models and the corresponding values of the input field and the presence or absence
of the WM_TAKE_FOCUS atom in the WM_PROTOCOLS property arelisted in the following
table:

Input Model Input Field WM_TAKE_FOCUS
No Input False Absent
Passive True Absent
Locally Active True Present
Globaly Active False Present

Passive and Locally Active clients set the input field of WM_HINTSto True, which indicates
that they require window manager assistance in acquiring the input focus. No Input and Globally
Active clients set the input field to False, which requests that the window manager not set the

33

I nter-Client Communication Conventions X11, Release 6

input focusto their top-level window.

Clients that use a Setl nputFocus request must set the time field to the timestamp of the event
that caused them to make the attempt. This cannot be a Focusln event because they do not have
timestamps. Clients may also acquire the focus without a corresponding Enter Notify. Note that
clients must not use CurrentTime in the time field.

Clients using the Globally Active model can only use a Setl nputFocus request to acquire the
input focus when they do not already have it on receipt of one of the following events:

. ButtonPress

* ButtonRelease

» Passive-grabbed KeyPress

e Passive-grabbed K eyRelease

In generdl, clients should avoid using passive-grabbed key events for this purpose, except when
they are unavoidable (as, for example, a selection tool that establishes a passive grab on the keys
that cut, copy, or paste).

The method by which the user commands the window manager to set the focus to awindow is up
to the window manager. For example, clients cannot determine whether they will see the click
that transfers the focus.

Windows with the atom WM_TAKE_FOCUS in their WM_PROTOCOL S property may receive
a ClientM essage event from the window manager (as described in section 4.2.8) with
WM_TAKE _FOCUS initsdatg]0] field and avalid timestamp (i.e. not CurrentTime) in its
data[1] field. If they want the focus, they should respond with a Setl nputFocus request with its
window field set to the window of theirsthat last had the input focus or to their default input win-
dow, and the time field set to the timestamp in the message. For further information, see section
4.2.7.

A client could receive WM_TAKE_FOCUS when opening from an icon or when the user has
clicked outside the top-level window in an areathat indicates to the window manager that it
should assign the focus (for example, clicking in the headline bar can be used to assign the focus).

The goal isto support window managers that want to assign the input focusto atop-level window
in such away that the top-level window either can assign it to one of its subwindows or can
decline the offer of the focus. For example, aclock or atext editor with no currently open frames
might not want to take focus even though the window manager generally believes that clients
should take the input focus after being deiconified or raised.

Clients that set the input focus need to decide avalue for the revert-to field of the SetlnputFocus
request. This determines the behavior of the input focusif the window the focus has been set to
becomes not viewable. The value can be any of the following:

e Parent —In general, clients should use this value when assigning focus to one of their
subwindows. Unmapping the subwindow will cause focusto revert to the parent, whichis
probably what you want.

e PointerRoot — Using this value with a click-to-type focus management policy leadsto race
conditions because the window becoming unviewable may coincide with the window
manager deciding to move the focus elsewhere.

* None — Using this value causes problems if the window manager reparents the window, as
most window managerswill, and then crashes. The input focus will be None, and there will
probably be no way to changeit.

Note that neither Pointer Root nor None isreally safeto use.

34

I nter-Client Communication Conventions X11, Release 6

Convention

Clients that invoke a Setl nputFocus request should set the revert-to argument to
Parent.

A convention is also required for clients that want to give up the input focus. Thereis no safe
value set for them to set the input focus to; therefore, they should ignore input material.

Convention

Clients should not give up the input focus of their own volition. They should ignore
input that they receiveinstead.

4.1.8. Colormaps

The window manager is responsible for installing and uninstalling colormaps on behalf of clients
with top-level windows that the window manager manages.

Clients provide the window manager with hints as to which colormaps to install and uninstall.
Clients must not install or uninstall colormaps themselves (except under the circumstances noted
below). When aclient’s top-level window gets the colormap focus (as aresult of whatever color-
map focus policy isimplemented by the window manager), the window manager will ensure that
one or more of the client’s colormaps are installed.

Clients whose top-level windows and subwindows all use the same colormap should set its ID in
the colormap field of the top-level window’ s attributes. They should not set a
WM_COLORMAP_WINDOWS property on the top-level window. If they want to change the
colormap, they should change the top-level window’ s colormap attribute. The window manager
will track changesto the window’ s colormap attribute and install colormaps as appropriate.

Clients that create windows can use the value CopyFromPar ent to inherit their parent’s color-
map. Window managerswill ensure that the root window’ s colormap field contains a colormap
that is suitable for clients to inherit. In particular, the colormap will provide distinguishable
colorsfor BlackPixel and WhitePixel.

Top-level windows that have subwindows or override-redirect pop-up windows whose colormap
regquirements differ from the top-level window should have aWM_COLORMAP_WINDOWS
property. This property containsalist of 1Ds for windows whose colormaps the window manager
should attempt to have installed when, in the course of itsindividua colormap focus policy, it
assigns the colormap focus to the top-level window (see section 4.1.2.8). Thelist is ordered by
the importance to the client of having the colormapsinstalled. The window manager will track
changes to this property and will track changes to the colormap attribute of the windowsin the
property.

If the relative importance of colormaps changes, the client should update the
WM_COLORMAP_WINDOWS property to reflect the new ordering. If the top-level window
does not appear in the list, the window manager will assume it to be of higher priority than any
window in thelist.

WM_TRANSIENT_FOR windows either can have their own WM_COLORMAP_WINDOWS
property or can appear in the property of the window they are transient for, as appropriate.

Rationale

An dternative design was considered for how clients should hint to the window
manager about their colormap requirements. This alternative design specified alist
of colormapsinstead of alist of windows. The current design, alist of windows, was
chosen for two reasons. First, it allows window managersto find the visuals of the
colormaps, thus permitting visual-dependent colormap installation policies. Second,
it allows window managersto select for VisibilityChange events on the windows
concerned and to ensure that colormaps are only installed if the windows that need

35

I nter-Client Communication Conventions X11, Release 6

them arevisible. The alternative design allows for neither of these policies.

Adviceto Implementors

Clients should be aware of the min-installed-maps and max-installed-maps fields of
the connection setup information, and the effect that the minimum value has on the
“required list” defined by the Protocol in the description of the I nstallColor map
request. Briefly, the min-installed-maps most recently installed maps are guaranteed
to beinstalled. Thisvalueis often one; clients needing multiple colormaps should
beware.

Whenever possible, clients should use the mechanisms described above and let the window
manager handle colormap installation. However, clients are permitted to perform colormap ins-
tallation on their own while they have the pointer grabbed. A client performing colormap instal-
lation must notify the window manager prior to the first installation. When the client has finished
its colormap installation, it must also notify the window manager. The client notifies the window
manager by issuing a SendEvent request with the following arguments:

Argument Value
destination: the root window of the screen on which the colormap is
being installed
propagate: False
event-mask: ColormapChange
event: a ClientM essage with:
window: the root window, as above
type: WM_COLORMAP_NOTIFY
format: 32
data[Q]: the timestamp of the event that caused the client to start
or stop installing colormaps
data[1]: 1if theclient is starting colormap installation, O if the
client is finished with colormap installation
data[2]: reserved, must be zero
data[3]: reserved, must be zero
data[4]: reserved, must be zero

This feature was introduced in version 2.0 of this document, and there will be a significant period
of time before all window managers can be expected to implement this feature. Before using this
feature, clients must check the compliance level of the window manager (using the mechanism
described in section 4.3) to verify that it supports this feature. Thisis necessary to prevent color-
map installation conflicts between clients and older window managers.

Window managers should refrain from installing colormaps while a client has requested control
of colormap installation. The window manager should continue to track the set of installed color-

maps so that it can reinstate its colormap focus policy when the client has finished colormap ins-
tallation.

This technique has race conditions that may result in the colormaps continuing to be installed
even after aclient hasissued its notification message. For example, the window manager may
have issued some I nstallColor map requests that are not executed until after the client’s
SendEvent and InstallColormap requests, thus uninstalling the client’s colormaps. If this
occurs while the client still has the pointer grabbed and before the client has issued the ** finished”
message, the client may reinstall the desired colormaps.

36

I nter-Client Communication Conventions X11, Release 6

Advice to Implementors

Clients are expected to use this mechanism for things such as popup windows and for
animations that use override-redirect windows.

If aclient failsto issue the *“finished” message, the window manager may beleftin a
state where its colormap installation policy is suspended. Window manager imple-
mentors may want to implement afeature that resets colormap installation policy in
response to a command from the user.

4.1.9. lcons
A client can hint to the window manager about the desired appearance of its icon by setting:
* Astringin WM_ICON_NAME

All clients should do this because it provides afallback for window managers whose ideas
about icons differ widely from those of the client.

* A Pixmap into theicon_pixmap field of the WM_HINTS property and possibly another into
theicon_mask field

The window manager is expected to display the pixmap masked by the mask. The pixmap
should be one of the sizes found in the WM _ICON_SIZE property on theroot. If this pro-
perty is not found, the window manager is unlikely to display icon pixmaps. Window
managers usually will clip or tile pixmaps that do not match WM_ICON_SIZE.

* A window into theicon_window field of the WM_HINTS property

The window manager is expected to map that window whenever the client isin the Iconic
state. In general, the size of the icon window should be one of those specified in
WM_ICON_SIZE on theroot, if it exists. Window managers are freeto resizeicon win-
dows.

In the Iconic state, the window manager usually will ensure that:
o If thewindow’sWM_HINTS.icon_window is set, the window it namesisvisible.

e If thewindow’sWM_HINTS.icon_window is not set but the window’s
WM_HINTS.icon_pixmap is set, the pixmap it namesisvisible.

e Otherwise, the window’sWM_ICON_NAME string isvisible.
Clients should observe the following conventions about their icon windows:

Conventions

1. Theiconwindow should be an InputOutput child of the root.

2. Theicon window should be one of the sizes specified in the WM_ICON_SIZE pro-
perty on the root.

The icon window should use the root visual and default colormap for the screenin
guestion.

Clients should not map their icon windows.
Clients should not unmap their icon windows.
Clients should not configure their icon windows.

Clients should not set override-redirect on their icon windows or select for Resize-
Redirect events on them.

8. Clients must not depend on being able to receive input events by means of their icon
windows.

9. Clients must not manipulate the borders of their icon windows.

w

N o g A

37

I nter-Client Communication Conventions X11, Release 6

10. Clients must select for Exposure events on their icon window and repaint it when
requested.

Window managerswill differ asto whether they support input eventsto client’ sicon windows;
most will alow the client to receive some subset of the keys and buttons.

Window managerswill ignore any WM_NAME, WM_ICON_NAME, WM_NORMAL_HINTS,
WM_HINTS, WM_CLASS, WM_TRANSIENT_FOR, WM_PROTOCOLS,
WM_COLORMAP_WINDOWS, WM_COMMAND, or WM_CLIENT_MACHINE properties
they find on icon windows.

4.1.10. Pop-up Windows
Clients that wish to pop up awindow can do one of three things:

1. They can create and map another normal top-level window, which will get decorated and
managed as normal by the window manager. See the discussion of window groups that fol-
lows.

2. If the window will be visible for arelatively short time and deserves a somewhat lighter
treatment, they can set the WM_TRANSIENT_FOR property. They can expect less
decoration but can set all the normal window manager properties on the window. An
example would be a dialog box.

3. If the window will be visible for avery short time and should not be decorated at al, the
client can set override-redirect on the window. In general, this should be done only if the
pointer is grabbed while the window is mapped. The window manager will never interfere
with these windows, which should be used with caution. An example of an appropriate use
iS a pop-up menu.

Adviceto Implementors

The user will not be able to move, resize, restack, or transfer the input focusto
override-redirect windows, since the window manager is not managing them.
If it is necessary for aclient to receive keystrokes on an override-redirect win-
dow, either the client must grab the keyboard, or the client must have another
top-level window that is not override-redirect and that has selected the Locally
Active or Globally Active focus model. The client may set the focus to the
override-redirect window when the other window receives a
WM_TAKE_FOCUS message or one of the eventslisted in section 4.1.7 in
the description of the Globally Active focus model.

Window managers are free to decide if WM_TRANSIENT_FOR windows should be iconified
when the window they aretransient for is. Clients displaying WM_TRANSIENT_FOR windows
that have (or request to have) the window they are transient for iconified do not need to request
that the same operation be performed on the WM_TRANSIENT_FOR window; the window
manager will changeits state if that is the policy it wishes to enforce.

4.1.11. Window Groups

A set of top-level windows that should be treated from the user’s point of view as related (even
though they may belong to a number of clients) should be linked together using the
window_group field of the WM_HINTS structure.

One of the windows (that is, the one the others point to) will be the group leader and will carry
the group as opposed to the individual properties. Window managers may treat the group leader
differently from other windows in the group. For example, group leaders may have the full set of
decorations, and other group members may have arestricted set.

38

I nter-Client Communication Conventions X11, Release 6

It is not necessary that the client ever map the group leader; it may be awindow that exists solely
as aplaceholder.

It is up to the window manager to determine the policy for treating the windowsin agroup. At
present, thereis no way for aclient to request a group, as opposed to an individual, operation.

4.2. Client Responsesto Window Manager Actions

The window manager performs a number of operations on client resources, primarily on their
top-level windows. Clients must not try to fight this but may elect to receive notification of the
window manager’ s operations.

4.2.1. Reparenting

Clients must be aware that some window managers will reparent their top-level windows so that a
window that was created as a child of the root will be displayed as a child of some window
belonging to the window manager. The effectsthat this reparenting will have on the client are as
follows:

e Theparent value returned by a QueryTree request will no longer be the value supplied to
the CreateWindow request that created the reparented window. There should be no need
for the client to be aware of the identity of the window to which the top-level window has
been reparented. In particular, aclient that wishes to create further top-level windows
should continue to use the root as the parent for these new windows.

* Theserver will interpret the (x,y) coordinatesin a ConfigureWindow request in the new
parent’ s coordinate space. In fact, they usually will not be interpreted by the server because
areparenting window manager usually will have intercepted these operations (see section
4.2.2). Clients should use the root coordinate space for these requests (see section 4.1.5).

» ConfigureWindow requests that name a specific sibling window may fail because the win-
dow named, which used to be a sibling, no longer is after the reparenting operation (see sec-
tion 4.1.5).

e The(x,y) coordinates returned by a GetGeometry request arein the parent’s coordinate
space and are thus not directly useful after areparent operation.

* A background of ParentRelative will have unpredictable results.
* A cursor of None will have unpredictable results.

Clients that want to be notified when they are reparented can select for StructureNotify events
on their top-level window. They will receive a ReparentNotify event if and when reparenting
takes place. When a client withdraws a top-level window, the window manager will reparent it
back to the root window if the window had been reparented el sewhere.

If the window manager reparents a client’ s window, the reparented window will be placed in the
save-set of the parent window. This meansthat the reparented window will not be destroyed if
the window manager terminates and will be remapped if it was unmapped. Note that this applies
to all client windows the window manager reparents, including transient windows and client icon
windows.

4.2.2. Redirection of Operations

Clients must be aware that some window managers will arrange for some client requests to be
intercepted and redirected. Redirected requests are not executed; they result instead in events
being sent to the window manager, which may decide to do nothing, to alter the arguments, or to
perform the request on behalf of the client.

The possibility that a request may be redirected means that a client cannot assume that any
redirectable request is actually performed when the request isissued or is actually performed at
al. Therequeststhat may be redirected are MapWindow, ConfigureWindow, and Circulate-
Window.

39

I nter-Client Communication Conventions X11, Release 6

Advice to Implementors

The following is incorrect because the MapWindow request may be intercepted and
the PolyL ine output made to an unmapped window:

MapWindow A
PolyLine A GC <point> <point> ...

The client must wait for an Expose event before drawing in the window.14

This next exampleincorrectly assumes that the ConfigureWindow request is actually exe-
cuted with the arguments supplied:

ConfigureWindow width=N height=M
<output assuming window isN by M>

The client should select for StructureNotify on its window and monitor the window’ s size
by tracking ConfigureNotify events.

Clients must be especially careful when attempting to set the focusto awindow that they
have just mapped. This sequence may result in an X protocol error:

MapWindow B
SetlnputFocus B

If the MapWindow request has been intercepted, the window will still be unmapped, caus-
ing the Setl nputFocus request to generate the error. The solution to this problem is for
clientsto select for VisibilityChange on the window and to delay the issuance of the
SetlnputFocus request until they have received a VisibilityNotify event indicating that
the window isvisible.

This technique does not guarantee correct operation. The user may have iconified the win-
dow by the time the Setl nputFocus request reachesthe server, still causing an error. Or,
the window manager may decide to map the window into Iconic state, in which case the
window will not be visible. Thiswill delay the generation of the VisibilityNotify event
indefinitely. Clients must be prepared to handle these cases.

A window with the override-redirect bit set isimmune from redirection, but the bit should be set
on top-level windows only in cases where other windows should be prevented from processing
input while the override-redirect window is mapped (see section 4.1.10) and while responding to
ResizeRequest events (see section 4.2.9).

Clients that have no non-Withdrawn top-level windows and that map an override-redirect top-
level window are taking over total responsibility for the state of the system. It istheir responsi-
bility to:

* Prevent any preexisting window manager from interfering with their activities

* Restore the status quo exactly after they unmap the window so that any preexisting window
manager does not get confused

In effect, clients of this kind are acting as temporary window managers. Doing so is strongly
discouraged because these clients will be unaware of the user interface policies the window
manager is trying to maintain and because their user interface behavior islikely to conflict with
that of less demanding clients.

14 This is true even if the client set the backing-store attribute to Always. The backing-store attribute is a only a hint, and the server
may stop maintaining backing store contents at any time.

40

I nter-Client Communication Conventions X11, Release 6

4.2.3. Window Move

If the window manager moves atop-level window without changing its size, the client will
receive a synthetic ConfigureNotify event following the move that describes the new location in
terms of the root coordinate space. Clients must not respond to being moved by attempting to
move themselves to a better location.

Any real ConfigureNotify event on atop-level window implies that the window’ s position on
the root may have changed, even though the event reports that the window’ s position in its parent
is unchanged because the window may have been reparented. Note that the coordinatesin the
event will not, in this case, be directly useful.

The window manager will send these events by using a SendEvent request with the following
arguments:

Argument Value

destination: The client’s window
propagate: False
event-mask: StructureNotify

4.2.4, Window Resize

The client can elect to receive notification of being resized by selecting for StructureNotify
eventson its top-level windows. 1t will receive a ConfigureNotify event. The sizeinformation
in the event will be correct, but the location will be in the parent window (which may not be the
root).

The response of the client to being resized should be to accept the size it has been given and to do
its best with it. Clients must not respond to being resized by attempting to resize themselvesto a
better size. If the size isimpossible to work with, clients are free to request to change to the
Iconic state.

4.2.5. lconify and Deiconify

A top-level window that is not Withdrawn will be in the Normal stateif it is mapped and in the
Iconic stateif it isunmapped. Thiswill be true even if the window has been reparented; the win-
dow manager will unmap the window as well asits parent when switching to the Iconic state.

The client can elect to be notified of these state changes by selecting for StructureNotify events
on the top-level window. It will receivea UnmapNotify event when it goes Iconic and a M ap-
Notify event when it goes Normal.

4.2.6. Colormap Change

Clients that wish to be notified of their colormaps being installed or uninstalled should select for
ColormapNotify events on their top-level windows and on any windows they have named in
WM_COLORMAP_WINDOWS properties on their top-level windows. They will receive
ColormapNotify events with the new field FALSE when the colormap for that window is
installed or uninstalled.

4.2.7. Input Focus

Clients can request notification that they have the input focus by selecting for FocusChange
events on their top-level windows; they will receive Focusin and FocusOut events. Clients that
need to set the input focus to one of their subwindows should not do so unless they have set
WM_TAKE_FOCUS in their WM_PROTOCOLS property and have done one of the following:

* Settheinput field of WM_HINTSto True and actually have the input focusin one of their
top-level windows

41

I nter-Client Communication Conventions X11, Release 6

e Settheinput field of WM_HINTSto False and have received a suitable event as described
in section 4.1.7

 HavereceivedaWM_TAKE_FOCUS message as described in section 4.1.7

Clients should not warp the pointer in an attempt to transfer the focus; they should set the focus
and leave the pointer alone. For further information, see section 6.2.

Once aclient satisfies these conditions, it may transfer the focus to another of its windows by
using the SetlnputFocus request, which is defined as follows:

SetlnputFocus

focus: WINDOW or Pointer Root or None
revert-to: { Parent, Pointer Root, None}
time: TIMESTAMP or CurrentTime

Conventions

1. Clientsthat use a SetlnputFocus request must set the time argument to the time-
stamp of the event that caused them to make the attempt. This cannot be a Focusln
event because they do not have timestamps. Clients may also acquire the focus
without a corresponding Enter Notify event. Clients must not use CurrentTime for
the time argument.

2. Clientsthat use a Setl nputFocus request to set the focus to one of their windows
must set the revert-to field to Parent.

4.2.8. ClientMessage Events
Thereis no way for clients to prevent themselves being sent ClientM essage events.

Top-level windows withaWM_PROTOCOLS property may be sent ClientM essage events
specific to the protocols named by the atoms in the property (see section 4.1.2.7). For all proto-
cols, the ClientM essage events have the following:

e WM_PROTOCOLS asthetypefield

Format 32

e Theatom that namestheir protocol in the data[0] field

e Atimestamp in their data[1] field

The remaining fields of the event, including the window field, are determined by the protocol.
These events will be sent by using a SendEvent request with the following arguments:

Argument Value

destination: ~ The client’s window
propagate: False

event-mask: () empty

event: As specified by the protocol

4.2.8.1. Window Deletion

Clients, usualy those with multiple top-level windows, whose server connection must survive the
deletion of some of their top-level windows, should include the atom WM_DELETE_WINDOW
in the WM_PROTOCOLS property on each such window. They will receive a ClientM essage
event as described above whose datg[0] fieldisWM_DELETE_WINDOW.

42

I nter-Client Communication Conventions X11, Release 6

ClientsreceivingaWM_DELETE _WINDOW message should behave asiif the user selected
“delete window’ from a hypothetical menu. They should perform any confirmation dialog with
the user and, if they decide to complete the deletion, should do the following:

e Either change the window’ s state to Withdrawn (as described in section 4.1.4) or destroy the
window

» Destroy any internal state associated with the window

If the user aborts the deletion during the confirmation dialog, the client should ignore the mes-
sage.

Clients are permitted to interact with the user and ask, for example, whether afile associated with
the window to be deleted should be saved or the window deletion should be cancelled. Clients
are not required to destroy the window itself; the resource may be reused, but all associated state
(for example, backing store) should be released.

If the client aborts a destroy and the user then selects DELETE WINDOW again, the window
manager should start the WM _DELETE_WINDOW protocol again. Window managers should
not use DestroyWindow requests on awindow that hasWM_DELETE WINDOW in its
WM_PROTOCOLS property.

Clients that choose not to include WM_DELETE_WINDOW in the WM_PROTOCOLS property
may be disconnected from the server if the user asks for one of the client’ s top-level windows to
be deleted.

4.2.9. Redirecting Requests

Normal clients can use the redirection mechanism just as window managers do by selecting for
SubstructureRedirect events on a parent window or ResizeRedirect events on awindow itself.
However, at most, one client per window can select for these events, and a convention is needed
to avoid clashes.

Convention

Clients (including window managers) should select for SubstructureRedirect and
ResizeRedir ect events only on windows that they own.

In particular, clients that need to take some special action if they are resized can select for Resize-
Redirect events on their top-level windows. They will receive a ResizeRequest event if the
window manager resizestheir window, and the resize will not actually take place. Clients arefree
to make what use they like of the information that the window manager wants to change their
size, but they must configure the window to the width and height specified in the event in atimely
fashion. To ensurethat the resize will actually happen at this stage instead of being intercepted
and executed by the window manager (and thus restarting the process), the client needs tem-
porarily to set override-redirect on the window.

Convention
Clients receiving ResizeRequest events must respond by doing the following:
» Setting override-redirect on the window specified in the event

e Configuring the window specified in the event to the width and height specified in the
event as soon as possible and before making any other geometry requests

» Clearing override-redirect on the window specified in the event

If awindow manager detects that aclient is not obeying this convention, it is free to take what-
ever measures it deems appropriate to deal with the client.

43

I nter-Client Communication Conventions X11, Release 6

4.3. Communication with the Window M anager by M eans of Selections

For each screen they manage, window managers will acquire ownership of a selection named

WM _Sn, where n is the screen number, as described in section 1.2.6. Window managers should
comply with the conventions for *“ Manager Selections’ described in section 2.8. Theintent isfor
clients to be able to request a variety of information or services by issuing conversion requests on
this selection. Window managers should support conversion of the following target on their
manager selection:

Atom Type Data Received

VERSION INTEGER Two integers, which are the maor and minor release
numbers (respectively) of the ICCCM with which the
window manager complies. For thisversion of the
ICCCM, the numbers are 2 and 0.1°

4.4. summary of Window M anager Property Types

The window manager properties are summarized in the following table (see aso section 14.1 of
Xlib — C Language X Interface).

Name Type Format See Section
WM_CLASS STRING 8 4125
WM_CLIENT_MACHINE TEXT 4129
WM_COLORMAP_WINDOWS WINDOW 32 4128
WM_HINTS WM_HINTS 32 4124
WM _ICON_NAME TEXT 4122
WM_ICON_SIZE WM_ICON_SIZE 32 4132
WM_NAME TEXT 4121
WM_NORMAL_HINTS WM_SIZE _HINTS 32 4123
WM_PROTOCOLS ATOM 32 4.1.2.7
WM_STATE WM_STATE 32 4131
WM_TRANSIENT_FOR WINDOW 32 4126

5. Session Management

This section contains some conventions for clients that participate in session management. See X
Session Management Protocol for further details. Clients that do not support this protocol cannot
expect their window state (e.g. WM_STATE, position, size and stacking order) to be preserved
across sessions.

5.1. Client Support for Session Management

Each session participant will obtain a unique client identifier (client-1D) from the session
manager. The client must identify one top level window asthe *“ client leader.” This window
must be created by the client. It may bein any state, including the Withdrawn state. The client
leader window must havea SM_CLIENT _ID property, which contains the client-1D obtained
from the session management protocol. That property must:

15 As a special case, clients not wishing to implement a selection request may simply issue a GetSelectionOwner request on the ap-
propriate WM_Sn selection. If this selection is owned, clients may assume that the window manager complies with ICCCM version 2.0 or
later.

I nter-Client Communication Conventions X11, Release 6

» beof type STRING;
* beof format 8; and
e contain the client-ID as a string of XPCS characters encoded using 1SO 8859-1.

All top-level, non-transient windows created by a client on the same display as the client leader
must haveaWM_CLIENT_LEADER property. This property contains awindow ID that
identifies the client leader window. The client leader window must have a
WM_CLIENT_LEADER property containing its own window ID (i.e. the client leader window is
pointing to itself). Transient windows need not haveaWM_CLIENT_LEADER property if the
client leader can be determined using the information in the WM_TRANSIENT_FOR property.
The WM _CLIENT_LEADER property must:

* beof type WINDOW;
. be of format 32; and
. contain the window ID of the client leader window.

A client must withdraw all of its top level windows on the same display before modifiying either
theWM_CLIENT_LEADER or the SM_CLIENT _ID property of its client |eader window.

It is necessary that other clients be able to uniquely identify awindow (across sessions) among all
windows related to the same client-ID. For example, awindow manager can require this unique
ID to restore geometry information from a previous session, or a workspace manager could use it
to restore information about which windows are in which workspace. A client may optionally
provideaWM_WINDOW_ROLE property to uniquely identify awindow within the scope
specified above. The combination of SM_CLIENT _ID and WM_WINDOW_ROLE can be used
by other clients to uniquely identify awindow across sessions.

If the WM_WINDOW _ROLE property is not specified on atop level window, aclient that needs
to uniquely identify that window will try to use instead the values of WM_CLASS and
WM_NAME. If aclient has multiple windows with identical WM_CLASS and WM_NAME
properties, then it should provideaWM_WINDOW_ROLE property.

The client must set the WM_WINDOW _ROLE property to a string that uniquely identifies that
window among all windows that have the same client leader window. The property must:

» beof type STRING;
* beof format 8; and
e contain astring restricted to the XPCS characters, encoded in 1 SO 8859-1.

5.2. Window Manager Support for Session Management

A window manager supporting session management must register with the session manager and
obtain its own client-ID. The window manager should save and restore information such as the
WM_STATE, the layout of windows on the screen, and their stacking order, for every client win-
dow that hasavalid SM_CLIENT _ID property (on itself, or on the window named by
WM_CLIENT_LEADER) and that can be uniquely identified. Clients are allowed to change this
state during the first phase of the session checkpoint process. Therefore, window managers
should reguest a second checkpoint phase and save clients' state only during that phase.

6. Manipulation of Shared Resources

X Version 11 permits clients to manipulate a number of shared resources, for example, the input
focus, the pointer, and colormaps. Conventions are required so that clients share resourcesin an
orderly fashion.

6.1. Thelnput Focus
Clients that explicitly set the input focus must observe one of two modes:

45

I nter-Client Communication Conventions X11, Release 6

e Localy active mode
e Globaly active mode

Conventions

1 Locally active clients should set the input focus to one of their windows only when it
is already in one of their windows or when they receiveaWM_TAKE_FOCUS mes-
sage. They should set the input field of the WM_HINTS structureto True.

2. Globally active clients should set the input focus to one of their windows only when
they receive a button event and a passive-grabbed key event, or when they receivea
WM_TAKE_FOCUS message. They should set theinput field of the WM_HINTS
structureto False.

3. In addition, clients should use the timestamp of the event that caused them to attempt
to set the input focus as the time field on the Setl nputFocus request, not Current-
Time.

6.2. The Pointer

In general, clients should not warp the pointer. Window managers, however, may do so (for
example, to maintain the invariant that the pointer is always in the window with the input focus).
Other window managers may want to preservetheillusion that the user isin sole control of the
pointer.

Conventions

1. Clients should not warp the pointer.

2. Clientsthat insist on warping the pointer should do so only with the src-window
argument of the War pPointer request set to one of their windows.

6.3. Grabs

A client’ s attempt to establish a button or akey grab on awindow will fail if some other client
has already established a conflicting grab on the same window. The grabs, therefore, are shared
resources, and their use reguires conventions.

In conformance with the principle that clients should behave, as far as possible, when a window
manager is running as they would when it is not, a client that has the input focus may assume that
it can receive all the available keys and buttons.

Convention

Window managers should ensure that they provide some mechanism for their clients
to receive events from all keys and all buttons, except for eventsinvolving keys
whose KeySyms are registered as being for window management functions (for
example, a hypothetical WINDOW KeySym).

In other words, window managers must provide some mechanism by which aclient can receive
events from every key and button (regardless of modifiers) unless and until the X Consortium
registers some KeySyms as being reserved for window management functions. Currently, no
KeySyms are registered for window management functions.

Even so, clients are advised to allow the key and button combinations used to elicit program
actions to be modified, because some window managers may choose not to observe this conven-
tion or may not provide a convenient method for the user to transmit events from some keys.

46

I nter-Client Communication Conventions X11, Release 6

Convention
Clients should establish button and key grabs only on windows that they own.

In particular, this convention means that a window manager that wishes to establish a grab over
the client’ s top-level window should either establish the grab on the root, or reparent the window
and establish the grab on a proper ancestor. 1n some cases, a window manager may want to con-
sume the event received, placing the window in a state where a subsequent such event will go to
the client. Examples are:

* Clicking in awindow to set focus with the click not being offered to the client
. Clicking in a buried window to raiseit, again, with the click not offered to the client

More typically, awindow manager should add to rather than replace the client’ s semantics for
key+button combinations by allowing the event to be used by the client after the window
manager is done with it. To ensurethis, the window manager should establish the grab on the
parent by using the following:

pointer/keyboard-mode == Synchronous

Then, the window manager should release the grab by using an AllowEvents request with the
following specified:

mode == ReplayPointer/Keyboard

In thisway, the client will receive the events asif they had not been intercepted.

Obviously, these conventions place some constraints on possible user interface policies. Thereis
atrade-off here between freedom for window managersto implement their user interface policies
and freedom for clientsto implement theirs. The dilemmalis resolved by:

* Allowing window managersto decide if and when a client will receive an event from any
given key or button

* Placing arequirement on the window manager to provide some mechanism, perhaps a
“Quote” key, by which the user can send an event from any key or button to the client

6.4. Colormaps

Section 4.1.8 prescribes conventions for clients to communicate with the window manager about
their colormap needs. If your clients are DirectColor type applications, you should consult sec-
tion 14.3 of Xlib — C Language X Interface for conventions connected with sharing standard
colormaps. They should look for and create the properties described there on the root window of
the appropriate screen.

The contents of the RGB_COLOR_MAP type property are as follows:

Field Type Comments

colormap COLORMAP 1D of the colormap described
red_max CARD32 Valuesfor pixel calculations
red_mult CARD32

green_max CARD32

green_mult CARD32

blue_max CARD32

blue_mult CARD32

base pixel CARD32

visual_id VISUALID Visual to which colormap belongs
kill_id CARD32 ID for destroying the resources

47

I nter-Client Communication Conventions X11, Release 6

When deleting or replacing an RGB_COLOR_MAP, it is not sufficient to delete the property; it is
important to free the associated colormap resourcesaswell. If kill_id is greater than one, the
resources should be freed by issuing a KillClient request with kill _id as the argument. If kill_id
is one, the resources should be freed by issuing a FreeColormap request with colormap as the
colormap argument. |If kill_id is zero, no attempt should be made to free the resources. A client
that createsan RGB_COLOR_MAP for which the colormap resourceis created specifically for
this purpose should set kill_id to one (and can create more than one such standard colormap using
asingle connection). A client that createsan RGB_COLOR_MAP for which the colormap
resourceis shared in some way (for example, is the default colormap for the root window) should
create an arbitrary resource and use its resource 1D for kill_id (and should create no other standard
colormaps on the connection).

Convention

If an RGB_COLOR_MAP property istoo short to contain the visua_id field, it can
be assumed that the visual _id isthe root visual of the appropriate screen. If an
RGB_COLOR_MAP property istoo short to contain the kill_id field, avalue of zero
can be assumed.

During the connection handshake, the server informs the client of the default colormap for each
screen. Thisisacolormap for the root visual, and clients can use it to improve the extent of
colormap sharing if they use the root visual.

6.5. TheKeyboard Mapping

The X server contains atable (which is read by GetK eyboar dM apping requests) that describes
the set of symbols appearing on the corresponding key for each keycode generated by the server.
This table does not affect the server’ s operationsin any way; it is simply a database used by
clients that attempt to understand the keycodes they receive. Nevertheless, it is a shared resource
and requires conventions.

It is possible for clients to modify this table by using a ChangeK eyboardM apping request. In
general, clients should not do this. In particular, thisis not the way in which clients should
implement key bindings or key remapping. The conversion between a sequence of keycodes
received from the server and a string in a particular encoding is a private matter for each client (as
it must be in aworld where applications may be using different encodings to support different
languages and fonts). See the Xlib reference manual for converting keyboard eventsto text.

The only valid reason for using a ChangeK eyboar dM apping request is when the symbols writ-
ten on the keys have changed as, for example, when a Dvorak key conversion kit or a set of APL
keycaps has been installed. Of course, aclient may have to take the change to the keycap on
trust.

The following illustrates a permissible interaction between a client and a user:

Client: “You just started me on a server without a Pause key. Please choose akey to be the
Pause key and pressit now.”

User: Presses the Scroll Lock key

Client: ““ Adding Pause to the symbols on the Scroll Lock key: Confirm or Abort.”

User: Confirms

Client: Uses a ChangeK eyboar dM apping request to add Pause to the keycode that already
contains Scroll Lock and issues this request, *“ Please paint Pause on the Scroll Lock

key.”

48

I nter-Client Communication Conventions X11, Release 6

Convention
Clients should not use ChangeK eyboar dM apping requests.

If aclient succeedsin changing the keyboard mapping table, all clients will receive
M appingNotify (request==K eyboard) events. Thereis no mechanism to avoid receiving these
events.

Convention

Clients receiving M appingNotify (request==K eyboard) events should update any
internal keycode trandation tables they are using.

6.6. TheModifier Mapping

X Version 11 supports eight modifier bits of which three are preassigned to Shift, Lock, and Con-
trol. Each modifier bit is controlled by the state of a set of keys, and these sets are specified in a
table accessed by GetM odifier M apping and SetM odifier M apping requests. Thistableisa
shared resource and reguires conventions.

A client that needsto use one of the preassigned modifiers should assume that the modifier table
has been set up correctly to control these modifiers. The Lock modifier should be interpreted as

Caps Lock or Shift Lock according as the keycodesin its controlling set include XK_Caps L ock
or XK_Shift_L ock.

Convention

Clients should determine the meaning of a modifier bit from the KeySyms being used
to control it.

A client that needs to use an extramodifier (for example, META) should do the following:

» Scan the existing modifier mappings. If it finds a modifier that contains a keycode whose set
of KeySymsincludes XK_Meta L or XK_Meta R, it should use that modifier bit.

» If thereisno existing modifier controlled by XK_Meta L or XK_Meta R, it should select
an unused modifier bit (one with an empty controlling set) and do the following:

- If thereis akeycodewith XL_Meta L in its set of KeySyms, add that keycode to the
set for the chosen madifier.

- If thereis akeycodewith XL_Meta Rinits set of KeySyms, add that keycode to the
set for the chosen madifier.

- If the controlling set is still empty, interact with the user to select one or more keysto
be META.

. If there are no unused modifier bits, ask the user to take corrective action.
Conventions

1 Clients needing amodifier not currently in use should assign keycodes carrying suit-
able KeySyms to an unused modifier bit.

2. Clients assigning their own modifier bits should ask the user politely to remove his
or her hands from the key in question if their SetM odifier M apping request returns a
Busy status.

There is no good solution to the problem of reclaiming assignments to the five nonpreassigned
maodifiers when they are no longer being used.

49

I nter-Client Communication Conventions X11, Release 6

Convention

The user must use xmodmap or some other utility to deassign obsolete modifier
mappings by hand.

When a client succeedsin performing a SetM odifier M apping request, all clients will receive

M appingNotify (request==Modifier) events. Thereis no mechanism for preventing these events
from being received. A client that uses one of the nonpreassigned modifiers that receives one of
these events should do a GetM odifier M apping request to discover the new mapping, and if the
modifier it isusing has been cleared, it should reinstall the modifier.

Note that a GrabServer request must be used to make the GetM odifier M apping and
SetM odifier M apping pair in these transactions atomic.

7. Device Color Characterization

The X protocol provides explicit RGB values, which are used to directly drive a monitor, and
color names. RGB values provide a mechanism for accessing the full capabilities of the display
device, but at the expense of having the color perceived by the user remain unknowable through
the protocol. Color names were originally designed to provide accessto a device-independent
color database by having the server vendor tune the definitions of the colorsin that textual data-
base. Unfortunately, this still does not provide the client any way of using an existing device-
independent color, nor for the client to get device-independent color information back about
colorsthat it has selected.

Furthermore, the client must be able to discover which set of colors are displayable by the device
(the device gamut), both to allow colorsto be intelligently modified to fit within the device capa-
bilities (gamut compression) and to enable the user interface to display a representation of the
reachable color spaceto the user (gamut display).

Therefore, a system is needed that will provide full accessto device-independent color spaces for
X clients. This system should use a standard mechanism for naming the colors, be able to pro-
vide names for existing colors, and provide means by which unreachable colors can be modified
to fall within the device gamui.

We are fortunate in this areato have a semina work, the 1931 CIE color standard, which is nearly
universally agreed upon as adequate for describing colors on CRT devices. This standard uses a
tri-stimulus model called CIE XY Z in which each perceivable color is specified as atriplet of
numbers. Other appropriate device-independent color models do exist, but most of them are
directly traceable back to this original work.

X device color characterization provides device-independent color spacesto X clients. It does
this by providing the barest possible amount of information to the client that allows the client to
construct a mapping between CIE XY Z and the regular X RGB color descriptions.

Device color characterization is defined by the name and contents of two window properties that,
together, permit converting between CIE XY Z space and linear RGB device space (such as stan-

dard CRTs). Linear RGB devicesrequirejust two pieces of information to completely character-
ize them:

. A 3x3 matrix M and itsinverse M-1, which convert between XY Z and RGB intensity
(RGBi ntensity) .

RGBirensty =M X XYZ
XYZ =M-1x RGBintensity

. A way of mapping between RGB intensity and RGB protocol value. XDCCC supports
three mechanisms which will be outlined below.

If other device types are eventually necessary, additional properties will be required to describe
them.

50

I nter-Client Communication Conventions X11, Release 6

7.1. XYZ RGB Conversion Matrices

Because of the limited dynamic range of both XY Z and RGB intensity, these matrices will be
encoded using afixed-point representation of a 32-bit two's complement number scaled by 227,
giving arange of -16 to 16-¢, wheree = 2-27.

These matrices will be packed into an 18-element list of 32-bit values, XYZ — RGB matrix first,
in row major order and stored in the XDCCC_LINEAR_RGB_MATRICES properties (format =
32) on the root window of each screen, using values appropriate for that screen.

Thiswill be encoded as shown in the following table:
XDCCC_LINEAR _RGB_MATRICES property contents

Field Type Comments

Moo INT32 Interpreted as afixed-point number -16 < x < 16
Mo INT32

Mss INT32

M _10,0 INT32

M-11 INT32

Mg INT32

7.2. Intensity -« RGB Value Conversion

XDCCC provides two representations for describing the conversion between RGB intensity and
the actual X protocol RGB values:

0 RGB value/RGB intensity level pairs
1 RGB intensity ramp

In both cases, the relevant data will be stored inthe XDCCC_LINEAR_RGB_CORRECTION
properties on the root window of each screen, using values appropriate for that screen, in what-
ever format provides adequate resolution. Each property can consist of multiple entries con-
catenated together, if different visuals for the screen require different conversion data. An entry
with aVisuallD of 0 specifiesdatafor all visuals of the screen that are not otherwise explicitly
listed.

Thefirst representation is an array of RGB value/intensity level pairs, with the RGB valuesin
strictly increasing order. When converting, the client must linearly interpolate between adjacent
entriesin the table to compute the desired value. This allows the server to perform gamma
correction itself and encode that fact in a short two-element correction table. Theintensity will be
encoded as an unsigned number to be interpreted as a value between 0 and 1 (inclusive). The pre-
cision of this value will depend on the format of the property in whichiit is stored (8, 16 or 32
bits). For 16-bit and 32-bit formats, the RGB value will simply be the value stored in the pro-
perty. When stored in 8-bit format, the RGB value can be computed from the value in the pro-

perty by:
RGB, g = -Property \Q?,'ge x 65535

Because the three electron guns in the device may not be exactly alike in response characteristics,
it is necessary to allow for three separate tables, one each for red, green, and blue. Therefore,
each table will be preceded by the number of entriesin that table, and the set of tableswill be pre-
ceded by the number of tables. When three tables are provided, they will bein red, green, blue
order.

51

I nter-Client Communication Conventions X11, Release 6

Thiswill be encoded as shown in the following table:
XDCCC _LINEAR _RGB_CORRECTION Property Contents for Type O Correction

Field Type Comments

VisualDO CARD Most-significant portion of VisuallD

VisualD1 CARD Existsif and only if the property format is 8

VisualD2 CARD Existsif and only if the property format is 8

VisualD3 CARD L east-significant portion, existsif and only if the
property format is 8 or 16

type CARD 0 for this type of correction

count CARD Number of tables following (either 1 or 3)

length CARD Number of pairs— 1 following in this table

value CARD X Protocol RGB value

intensity CARD Interpret asanumber 0 < intensity < 1

.. . Total of length+1 pairs of value/intensity values

lengthg CARD Number of pairs— 1 following in this table (if
and only if count is 3)

value CARD X Protocol RGB value

intensity CARD Interpret asanumber 0 < intensity < 1

.. . Total of lengthg+ 1 pairs of value/intensity values

lengthb CARD Number of pairs— 1 following in this table (if
and only if count is 3)

value CARD X Protocol RGB value

intensity CARD Interpret asanumber 0 < intensity < 1

Total of lengthb+ 1 pairs of value/intensity values

The VisualID is stored in 4, 2, or 1 pieces, depending on whether the property format is 8, 16, or
32, respectively. The VisualD is always stored most-significant piecefirst. Note that the length
fields are stored as one less than the actual length, so 256 entries can be stored in format 8.

The second representation is asimple array of intensities for alinear subset of RGB values. The
expected size of this table is the bits-per-rgb-value of the screen, but it can be any length. Thisis
similar to the first mechanism, except that the RGB value numbers are implicitly defined by the
index in the array (indices start at 0):

— Array Index x 65535
RGBualue = Atay 9z - 1

When converting, the client may linearly interpolate between entriesin thistable. The intensity
values will be encoded just asin the first representation.

Thiswill be encoded as shown in the following table:
XDCCC _LINEAR_RGB_CORRECTION Property Contents for Type 1 Correction

Field Type Comments
VisualDO CARD Most-significant portion of VisuallD
VisualD1 CARD Existsif and only if the property format is 8
VisualD2 CARD Existsif and only if the property format is 8
VisualD3 CARD L east-significant portion, existsif and only if

the property format is 8 or 16

type CARD 1 for this type of correction
count CARD Number of tables following (either 1 or 3)
length CARD Number of elements— 1 following in this table
intensity CARD Interpret asanumber 0 < intensity <1

52

I nter-Client Communication Conventions X11, Release 6

Tota of length+ 1 intensity elements

lengthg CARD Number of elements— 1 following in this table
(if and only if count is 3)

intensity CARD Interpret as anumber 0 < intensity < 1

Total of lengthg+1 intensity elements

lengthb CARD Number of elements— 1 following in this table
(if and only if count is 3)

intensity CARD Interpret as anumber 0 < intensity < 1

Total of lengthb+1 intensity elements

8. Conclusion

This document provides the protocol-level specification of the minimal conventions needed to
ensurethat X Version 11 clients can interoperate properly. This document specifies interoperabil -
ity conventions only for the X Version 11 protocol. Clients should be aware of other protocols
that should be used for better interoperation in the X environment. The reader is referred to X
Session Management Protocol for information on session management, and to Inter-Client
Exchange Protacol for information on general-purpose communication among clients.

8.1. The X Registry

The X Consortium maintains aregistry of certain X-related items, to aid in avoiding conflicts and
to aid in sharing of such items. Readers are encouraged to use the registry. The classes of items
kept in the registry that are relevant to the ICCCM include property names, property types, selec-
tion names, selection targets, WM_PROTOCOLS protocoals, ClientM essage types, and applica
tion classes. Requeststo register items, or questions about registration, should be addressed to

Xregistry@x.org
or to

Registry

X Consortium

1 Memoria Dr

Cambridge MA 02142-1301
USA

Electronic mail will be acknowledged upon receipt. Please allow up to four weeks for aformal
response to registration and inquiries.

Theregistry is published as part of the X software distribution from the X Consortium. All
registered items must have the postal address of someone responsible for the item, or areference
to adocument describing the item and the postal address of where to write to obtain the docu-
ment.

53

I nter-Client Communication Conventions X11, Release 6

Appendix A

A. Revision History

This appendix describes the revision history of this document and summarizes the incompatibili-
ties between this and earlier versions.

A.l. The X11R2 Draft

The February 25, 1988 draft that was distributed as part of X Version 11, Release 2 was clearly
labeled as such, and many areas were explicitly labeled as liable to change. Nevertheless, in the
revision work since then, we have been very careful not to introduce gratuitous incompatibility.
Asfar as possible, we have tried to ensure that clients obeying the conventionsin the X 11R2 draft
would still work.

A.2. TheJuly 27, 1988 Dr aft

The Consortium review was based on a draft dated July 27, 1988. This draft included severa
areas in which incompatibilities with the X 11R2 draft were necessary:

e Theuseof property None in ConvertSelection regquestsis no longer allowed. Ownersthat
receive them are free to use the target atom as the property to respond with, which will work
in most cases.

e Theprotocol for INCREMENTAL type properties as selection replies has changed, and the
name has been changed to INCR. Selection requestors are free to implement the earlier pro-
tocol if they receive properties of type INCREMENTAL.

e Theprotocol for INDIRECT type properties as sel ection replies has changed, and the name
has been changed to MULTIPLE. Selection requestors are freeto implement the earlier pro-
tocol if they receive properties of type INDIRECT.

e Theprotocol for the special CLIPBOARD client has changed. The earlier protocol is subject
to race conditions and should not be used.

e Thesetof statevaluesin WM_HINTS.initial_state has been reduced, but the values that are
still valid are unchanged. Window managers should treat the other values sensibly.

» Themethods an application uses to change the state of its top-level window have changed
but in such away that cases that used to work will still work.

e Thex,y, width, and height fields have been removed from the WM_NORMAL_HINTS pro-
perty and replaced by pad fields. Values set into these fields will beignored. The position
and size of the window should be set by setting the appropriate window attributes.

» A pair of basefields and awin_gravity field have been added to the

WM_NORMAL_HINTS property. Window managers will assume values for these fields if
the client sets a short property.

A.3. ThePublic Review Drafts

The Consortium review resulted in several incompatible changes. These changes were included
in drafts that were distributed for public review during the first half of 1989.

» Themessagesfield of the WM_HINTS property was found to be unwieldy and difficult to
evolve. It has been replaced by the WM_PROTOCOLS property, but clients that use the
earlier mechanism can be detected because they set the messages bit in the flags field of the
WM_HINTS property, and window managers can provide a backwards-compatibility mode.

» The mechanism described in the earlier draft by which clients installed their own subwindow
colormaps could not be made to work reliably and mandated some features of the look and

I nter-Client Communication Conventions X11, Release 6

feel. It has been replaced by the WM _COLORMAP_WINDOWS property. Clients that use
the earlier mechanism can be detected by the WM _COL ORMAPS property they set on their
top-level window, but providing areliable backwards compatibility mode is not possible.

The recommendations for window manager treatment of top-level window borders have
been changed as those in the earlier draft produced problems with Visibility events. For
nonwindow manager clients, there is no incompatibility.

The pseudoroot facility in the earlier draft has been removed. Although it has been success-
fully implemented, it turns out to be inadequate to support the uses envisaged. An extension
will be required to support these uses fully, and it was felt that the maximum freedom should
be left to the designers of the extension. In general, the previous mechanism wasinvisible to
clients and no incompatibility should result.

The addition of the WM_DELETE_WINDOW protocol (which prevents the danger that
multi-window clients may be terminated unexpectedly) has meant some changesin the
WM_SAVE_YOURSELF protocal, to ensure that the two protocols are orthogonal. Clients
using the earlier protocol can be detected (see WM_PROTOCOL S above) and supportedin a
backwards-compatibility mode.

The conventionsin Section 14.3.1. of Xlib — C Language X Interface regarding properties of
type RGB_COLOR_MAP have been changed, but clients that use the earlier conventions
can be detected because their properties are four bytes shorter. These clients will work
correctly if the server supports only asingle Visual or if they use only the Visual of the root.
These are the only casesin which they would have worked, anyway.

A.4. Version 1.0, July 1989

The public review resulted in a set of mostly editorial changes. The changesin version 1.0 that
introduced some degree of incompatibility with the earlier drafts are:

A new section (6.3) was added covering the window manager’s use of Grabs. The restric-
tions it imposes should affect only window managers.

The TARGETS selection target has been clarified, and it may be necessary for clients to add
some entries to their replies.

A selection owner using INCR transfer should no longer replacetargetsinaMULTIPLE
property with the atom INCR.

The contents of the ClientM essage event sent by a client to iconify itself has been clarified,
but there should be no incompatibility because the earlier contents would not in fact have
worked.

The border-width in synthetic ConfigureNotify eventsis now specified, but this should not
cause any incompatibility.

Clients are now asked to set a border-width on all ConfigureéWindow requests.

Window manager properties on icon windows now will be ignored, but there should be no
incompatibility because there was no specification that they be obeyed previoudly.

The ordering of real and synthetic ConfigureNotify eventsis now specified, but any incom-
patibility should affect only window managers.

The semantics of WM_SAVE_Y OURSELF have been clarified and restricted to be a check-
point operation only. Clients that were using it as part of a shutdown sequence may need to
be modified, especialy if they were interacting with the user during the shutdown.

A kill_id field has been added to RGB_COLOR_MAP properties. Clients using earlier con-
ventions can be detected by the size of their RGB_COLOR_MAP properties, and the cases
that would have worked will still work.

55

I nter-Client Communication Conventions X11, Release 6

A5. Verson 1.1

Version 1.1 was released with X 11R5 in September, 1991. In addition to some minor editorial
changes, there were afew semantic changes since Version 1.0:

» The section on Device Color Characterization was added.
e Themeaning of the NULL property type was clarified.
» Appropriate referencesto Compound Text were added.

A.6. Public Review Draft, December 1993
The following changes have been made in preparing the public review draft for Version 2.0.

e [P0O1] Addition of adviceto clients on how to keep track of atop-level window’s absolute
position on the screen.

» [PO3] A technique for clients to detect when it is safe to re-use a top-level window has been
added.

e [P0O6] Section 4.1.8, on colormaps, has been rewritten. A new feature that allows clientsto
install their own colormaps has also been added.

e [PO8] The LENGTH target has been deprecated.
» [P11] The manager selections facility was added.

» [P17] The definition of the aspect ratio fields of the WM_NORMAL_HINTS property has
been changed to include the base size.

e [P19] StaticGravity has been added to the list of values allowed for the win_gravity field of
the WM _HINTS property. The meaning of the Center Gravity value has been clarified.

* [P20] A meansfor clientsto query the ICCCM compliance level of the window manager has
been added.

* [P22] The definition of the MULTIPLE selection target has been clarified.

* [P25] A definition of ““top-level window" has been added. The WM_STATE property has
been defined and exposed to clients.

» [P26] The definition of window states has been clarified and the wording regarding window
state changes has been made more consistent.

e [P27] Clarified the rules governing when window managers are required to send synthetic -
ConfigureNotify events.

e [P28] Added arecommended technique for setting the input focus to awindow as soon as it
is mapped.

» [P29] Therequired lifetime of resource IDs named in window manager properties has been
specified.

e [P30] Advicefor dealing with keystrokes and override-redirect windows has been added.

e [P31] A statement on the ownership of resources transferred through the selection mechan-
ism has been added.

e [P32] Thedefinition of the CLIENT_WINDOW target has been clarified.

e [P33] A rule about requiring the selection owner to re-acquire the selection under certain cir-
cumstances has been added.

* [P42] Added several new selection targets.

e [P44] Ambiguous wording regarding the withdrawal of top-level windows has been
removed.

» [P45] A facility for requestors to pass parameters during a selection request has been added.
e [P49] A convention on discrimated names has been added.

56

I nter-Client Communication Conventions X11, Release 6

e [P57] The C_STRING property type was added.
» [P62] An ordering requirement on processing selection requests was added.
e [P63] The VisibleHint flag was added.

» [P64] The session management section has been updated to align with the new session
management protocol. The old session management conventions have been moved to
Appendix C.

» Referencesto the never-forthcoming Window and Session Manager Conventions Manual
have been removed.

» Information on the X Registry and referencesto the session management and | CE documents
have been added.

* Numerous editorial and typographical improvements have been made.

A.7. Version 2.0, April 1994

The following changes have been made in preparation for releasing the final edition of Version
2.0 with X11R6.

ThePIXMAP selection target has been revised to return a property of type PIXMAP instead
of type DRAWABLE.

e The session management section has been revised slightly to correspond with the changesto
the X Session Management Protocol.

* Window managers are now prohibited from placing CurrentTime in the timestamp field of
WM_TAKE_FOCUS messages.

* Inthe WM_HINTS property, the VisibleHint flag has been renamed to UrgencyHint. Its
semantics have also been defined more thoroughly.

» Additional editorial and typographical changes have been made.

57

I nter-Client Communication Conventions X11, Release 6

Appendix B

B. Suggested Protocol Revisions

During the development of these conventions, a number of inadequacies have been discovered in
the core X11 protocol. They are summarized here as input to an eventual protocol revision design
process.

Thereis no way for anyoneto find out the last-change time of aselection. The Get-
SelectionOwner request should be changed to return the last-change time as well asthe
owner.

Thereisno way for aclient to find out which selection atoms are valid.

There would be no need for WM_TAKE_FOCUSIif the Focusl n event contained atime-
stamp and a previous-focusfield. This could avoid the potential race condition. Thereis
spacein the event for thisinformation; it should be added at the next protocol revision.

Thereisarace condition in the I nstallColormap request. It does not take atimestamp and
may be executed after the top-level colormap has been uninstalled. The next protocol revi-
sion should provide the timestamp in the InstallColormap, UninstallColormap, List-
InstalledColormaps requests and in the Color mapNotify event. The timestamp should be
used in asimilar way to the last-focus-changetime for the input focus. The lack of time-
stamps in these packets is the reason for restricting colormap installation to the window
manager.

The protocol needs to be changed to provide some way of identifying the Visual and the
Screen of a colormap.

There should be some way to reclaim assignments to the five non-preassigned modifiers
when they are no longer needed. The manual method is unpleasantly low-tech.

58

I nter-Client Communication Conventions X11, Release 6

Appendix C

C. Obsolete Session Manager Conventions

This appendix contains obsol ete conventions for session management using X properties and
messages. The conventions described here are deprecated, and are described only for historical
interest. For further information on session management, see X Session Management Protocol.

C.1. Properties

The client communicates with the session manager by placing two properties (WM_COMMAND
and WM_CLIENT_MACHINE) on its top-level window. If the client has a group of top-level
windows, these properties should be placed on the group leader window.

The window manager is responsible for placing aWM_STATE property on each top-level client
window for use by session managers and other clients that need to be able to identify top-level
client windows and their state.

C.1.1. WM_COMMAND Property

The WM_COMMAND property represents the command used to start or restart the client. By
updating this property, clients should ensure that it always reflects acommand that will restart
themin their current state. The content and type of the property depends on the operating system
of the machine running the client. On POSIX-conformant systems using 1SO Latin-1 characters
for their command lines, the property should:

 Beof type STRING
e Contain alist of null-terminated strings
e Beinitidized from argv

Other systems will need to set appropriate conventions for the type and contents of
WM_COMMAND properties. Window and session managers should not assume that
STRING isthe type of WM_COMMAND or that they will be able to understand or display
its contents.

Note that WM_COMMAND strings are null-terminated and differ from the general conventions
that STRING properties are null-separated. This inconsistency is necessary for backwards com-
patibility.

A client with multiple top-level windows should ensure that exactly one of them has a
WM_COMMAND with nonzero length. Zero-length WM_COMMAND properties can be used
to reply to WM_SAVE_Y OURSEL F messages on other top-level windows but will otherwise be
ignored.

C.1.2. WM_CLIENT_MACHINE Property
This property is described in section 4.1.2.9.

C.2. Termination

Because they communicate by means of unreliable network connections, clients must be prepared
for their connection to the server to be terminated at any time without warning. They cannot
depend on getting notification that termination isimminent or on being able to use the server to
negotiate with the user about their fate. For example, clients cannot depend on being able to put
up adialog box.

Similarly, clients may terminate at any time without notice to the session manager. When aclient
terminates itself rather than being terminated by the session manager, it is viewed as having
resigned from the session in question, and it will not be revived if the session is revived.

59

I nter-Client Communication Conventions X11, Release 6

C.3. Client Responsesto Session Manager Actions

Clients may need to respond to session manager actionsin two ways.
e Saving their internal state

e Deleting awindow

C.3.1. Saving Client State

Clients that want to be warned when the session manager feels that they should save their internal
state (for example, when termination impends) should include the atom
WM_SAVE_YOURSELF inthe WM_PROTOCOLS property on their top-level windows to par-
ticipatein the WM_SAVE_YOURSELF protocol. They will receive a ClientM essage event as
described in section 4.2.8 with the atom WM_SAVE_YOURSELF in its data[0] field.

Clients that receive WM_SAVE_YOURSELF should place themselvesin a state from which they
can be restarted and should update WM_COMMAND to be acommand that will restart themin
this state. The session manager will be waiting for a PropertyNotify event on
WM_COMMAND as a confirmation that the client has saved its state. Therefore,
WM_COMMAND should be updated (perhaps with a zero-length append) even if its contents are
correct. No interactions with the user are permitted during this process.

Onceit has received this confirmation, the session manager will feel free to terminate the client if
that is what the user asked for. Otherwise, if the user asked for the session to be put to sleep, the
session manager will ensure that the client does not receive any mouse or keyboard events.

After receivingaWM_SAVE YOURSELF, saving its state, and updating WM_COMMAND,
the client should not change its state (in the sense of doing anything that would require a change
to WM_COMMAND) until it receives amouse or keyboard event. Once it does so, it can assume
that the danger is over. The session manager will ensure that these events do not reach clients
until the danger is over or until the clients have been killed.

Irrespective of how they are arranged in window groups, clients with multiple top-level windows
should ensure the following:

e Only one of their top-level windows has a nonzero-length WM_COMMAND property.
e Theyrespondto aWM_SAVE YOURSELF message by:
- First, updating the nonzero-length WM_COMMAND property, if necessary

- Second, updating the WM_COMMAND property on the window for which they
received the WM_SAVE_YOURSELF message if it was not updated in the first step

Receiving WM_SAVE_YOURSELF on awindow is, conceptually, acommand to save the entire
client state.16

C.3.2. Window Deletion

Windows are deleted using the WM_DELETE_WINDOW protocol, which is described in section
4.2.8.1.

C.4. Summary of Session Manager Property Types
The session manager properties are listed in the following table:

16 This convention has changed since earlier drafts because of the introduction of the protocol in the next section. In the public review
draft, there was ambiguity as to whether WM_SAVE_YOURSELF was a checkpoint or a shutdown facility. It is now unambiguously a
checkpoint facility; if a shutdown facility is judged to be necessary, a separate WM_PROTOCOLS protocol will be developed and re-
gistered with the X Consortium.

60

I nter-Client Communication Conventions

Name Type Format See Section
WM_CLIENT_MACHINE TEXT 41.2.9
WM_COMMAND TEXT Cl1
WM_STATE WM_STATE 32 4131

61

X11, Release 6

I nter-Client Communication Conventions X11, Release 6

62

I nter-Client Communication Conventions

X11, Release 6

| ndex

ConfigureNotify, 56
MapWindow, 39

A

Alloc, 10, 13
AllowEvents, 47
Always, 40
AnyPropertyType, 9

B

BlackPixel, 35

Busy, 49
ButtonPress, 31, 34
ButtonRelease, 31, 34

C

Center, 22

CenterGravity, 56

ChangeProperty, 19

ChangeK eyboardMapping, 48, 49
ChangeProperty, 10, 19, 21
ChangeWindowAttributes, 32
CirculateWindow, 39

ClientMessage, 18, 53
ClientMessage, 2, 18, 26, 28, 30, 34, 36, 42, 55, 60
ClientM essages, 30

ColormapNotify, 58
ColormapChange, 36
ColormapNotify, 41
ConfigureNotify, 40
ConfigureWindow, 39
ConfigureNotify, 31, 32, 41, 55
ConfigureRequest, 31, 32
ConfigureWindow, 30, 32, 39, 40, 55
ConvertSelection, 8
ConvertSelection, 8, 9, 10, 12, 13, 14, 15, 54
CopyFromParent, 35

CreateWindow, 39

CurrentTime, 4, 5, 6, 8, 34, 42, 46, 57

D

DeleteProperty, 10
DestroyWindow, 43

63

DirectColor, 47
E

East, 22

EnterNotify, 31, 34, 42
Expose, 40

Exposure, 38

F

False, 20, 24, 29, 32, 33, 36, 41, 42, 46
FocusChange, 41

Focusin, 34, 41, 42, 58

FocusOut, 41

FreeColormap, 48

G

GetSelectionOwner, 58
GetAtomName, 2

GetGeometry, 17, 39

GetK eyboardM apping, 48
GetModifierMapping, 49, 50
GetProperty, 9, 10, 17, 19
GetSelectionOwner, 18
GetSelectionOwner, 5, 14, 18, 44
GrabServer, 50

IconicState, 24, 27, 28
lconMaskHint, 23
IconPixmapHint, 23
IconPositionHint, 23
IconWindowHint, 23
InputHint, 23
InputOutput, 37
InstallColormap, 36, 58
InternAtom, 2
InternAtom, 1, 2, 14

K

KeyPress, 31, 34
KeyRelease, 31, 34

I nter-Client Communication Conventions

KillClient, 48
L

LeaveNotify, 31
ListInstalledCol ormaps, 58

M

MapWindow, 40
MapNotify, 29, 41
MappingNotify, 49, 50
MapWindow, 40
MessageHint, 23
MotionNoatify, 31

N

NewValue, 17

None, 4,5, 6, 7, 8, 9, 13, 15, 28, 32, 34, 39, 42, 54
Normal State, 27

Normal State, 24, 27, 28

North, 22

NorthEast, 22

NorthWest, 22

P

Parent, 34, 35, 42
ParentRelative, 39
PAspect, 22
PBaseSize, 22

Pixmap, 37

PMaxSize, 22
PMinSize, 22
PointerRoot, 33, 34, 42
PolyLine, 40
PPosition, 22
PResizelnc, 22
PropertyNotify, 5
PropertyNotify, 7, 17, 60
PSize, 22
PWinGravity, 22

Q
QueryTree, 39
R

Registry, 53
ReparentNotify, 29, 39
Replace, 19, 21

X11, Release 6

ResizeRedirect, 37, 43
ResizeRedirect, 43
ResizeRequest, 40, 43
RotateProperties, 19

S

SelectionClear, 8

SelectionNotify, 6, 7
SelectionRequest, 6

SelectionClear, 5, 7, 11
SelectionNatify, 5, 6, 7, 9, 10, 13, 17
SelectionRequest, 5, 6, 13
SendEvent, 36

SendEvent, 5, 6, 18, 29, 30, 32, 36, 41, 42
SetSelectionOwner, 5

SetlnputFocus, 40

SetInputFocus, 34, 35, 42, 46
SetModifierMapping, 49, 50
SetSelectionOwner, 5, 7, 8
SetSelectionOwner,, 4
SetSelectionOwner, 4, 5, 7, 8, 10
South, 22

SouthEast, 22

SouthWest, 22

StateHint, 23

Static, 22

StaticGravity, 56

StructureNotify, 18, 40
StructureNotify, 18, 29, 31, 39, 41
SubstructureRedirect, 18, 43
SubstructureRedirect|SubstructureNotify, 29, 32

T

TransateCoordinates, 31
True, 9, 17, 24, 33, 41, 46

U

UninstallColormap, 58
Unmap, 22

UnmapNotify, 28, 29, 30, 41
UrgencyHint, 23, 25, 57
USPosition, 22

USSize, 22

\Y,

VisibilityChange, 35, 40
VisibilityNotify, 40
VisibilityChange, 30
VisibilityNotify, 30

I nter-Client Communication Conventions

VisibleHint, 57
W

WarpPointer, 46

West, 22

WhitePixel, 35
WindowGroupHint, 23
WithdrawnState, 28
WithdrawnState, 27, 28
wmtalk, 8

X

X Registry, 53

xload, 33

xmodmap, 50
XSetErrorHandler, 10

65

X11, Release 6

