X Toolkit Intrinsics — C Language Interface
X Window System

X Version 11, Release 6

First Revision - April, 1994

Joel McCormack

Digital Equipment Corporation
Western Software Laboratory

Paul Asente

Digital Equipment Corporation
Western Software Laboratory

Ralph R. Swick

Digital Equipment Corporation
External Research Group
MIT X Consortium

version 6 edited by Donna Converse

X Consortium, Inc.

X Window System is a trademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The alwve copright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, Massachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted,
provided that the alwe cojyright notice appears in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of Digital not be used in in advertising or publicity per-
taining to distribution of the software without specific, written prior permission. Digital makes no representations
about the suitability of the software described herein for any purpose. lItis provided “as is” without express or implied
warranty.

Table of Contents

Acknowledgments

About This Manual . .
Chapter 1 - Intrinsics and Widgets

1.1. Intrinsics .

1.2. Languages

1.3. Procedures and Macros .

1.4. Widgets

1.4.1. Core Widgets . .

1.4.1.1. CoreClassPart Structure

1.4.1.2. CorePart Structure

1.4.1.3. Core Resources

1.4.1.4. CorePart Default Values

1.4.2. Composite Widgets. .
1.4.2.1. CompositeClassPart Structure
1.4.2.2. CompositePart Structure .
1.4.2.3. Composite Resources .

1.4.2.4. CompositePart Default Values
1.4.3. Constraint Widgets .

1.4.3.1. ConstraintClassPart Structure
1.4.3.2. ConstraintPart Structure

1.4.3.3. Constraint Resources

1.5. Implementation-Specific Types

1.6. Widget Classing. .

1.6.1. Widget Naming Conventions.

1.6.2. Widget Subclassing in Public .h Files.
1.6.3. Widget Subclassing in Private .h Files
1.6.4. Widget Subclassing in .c Files .
1.6.5. Widget Class and Superclass Look Up .
1.6.6. Widget Subclass Verification.

1.6.7. Superclass Chaining

1.6.8. Class Initialization: class_initialize and class_part_initialize Procedures.

1.6.9. Initializing a Widget Class

1.6.10. Inheritance of Superclass Operations .
1.6.11. Invocation of Superclass Operations
1.6.12. Class Extension Records

Chapter 2 — Widget Instantiation

. Xii

© 0o ® 0 N O oo U0 D W WNON R RPRP

T S SN (RS TRT
S m®oO®awNeE~, Lo b6 o

21
22
22
24
24
26

2.1. Initializing the X Toolkit .

2.2. Establishing the Locale .

2.3. Loading the Resource Database .

2.4. Parsing the Command Line.

2.5. Creating Widgets . e

2.5.1. Creating and Merging Argument Lists

2.5.2. Creating a Widget Instance . .o

2.5.3. Creating an Application Shell Instance .

2.5.4. Convenience Procedure to Initialize an Application .

2.5.5. Widget Instance Allocation: the allocate Procedure .

2.5.6. Widget Instance Initialization: the initialize Procedure . Coe
2.5.7. Constraint Instance Initialization: the ConstraintClassPart initialize Procedure.
2.5.8. Nonwidget Data Initialization: the initialize_hook Procedure .
2.6. Realizing Widgets . e e e
2.6.1. Widget Instance Window Creation: the realize Procedure.
2.6.2. Window Creation Convenience Routine .

2.7. Obtaining Window Information from a Widget

2.7.1. Unrealizing Widgets.

2.8. Destroying Widgets :

2.8.1. Adding and Removing Destroy Callbacks .

2.8.2. Dynamic Data Deallocation: the destroy Procedure.

2.8.3. Dynamic Constraint Data Deallocation: the ConstraintClassPart destroy Proce-
dure

2.8.4. Widget Instance Deallocation: the deallocate Procedure .

2.9. Exiting from an Application . : :

Chapter 3 — Composite Widgets and Their Children. Coe
3.1. Addition of Children to a Composite Widget: the insert_child Procedure
3.2. Insertion Order of Children: the insert_position Procedure .

3.3. Deletion of Children: the delete_child Procedure

3.4. Adding and Removing Children from the Managed Set .

3.4.1. Managing Children .

3.4.2. Unmanaging Children . . .

3.4.3. Bundling Changes to the Managed Set .

3.4.4. Determining If a Widget Is Managed .

3.5. Controlling When Widgets Get Mapped

3.6. Constrained Composite Widgets .

Chapter 4 — Shell Widgets.

4.1. Shell Widget Definitions .

4.1.1. ShellClassPart Definitions

26
30
31
34
36
37
39
41
42
44
46
47
47
48
49
50
51
52
53
54
54

55
55
56
57
58
58
59
59
59
61
62
64
64
65
67
67
68

4.1.2. ShellPart Definition .
4.1.3. Shell Resources . :
4.1.4. ShellPart Default Values .
4.2. Session Participation .
4.2.1. Joining a Session

4.2.2. Saving Application State .
4.2.2.1. Requesting Interaction .

4.2.2.2. Interacting with the User Durlng a Checkpomt .

4.2.2.3. Responding to a Shutdown Cancellation.
4.2.2.4. Completing a Save

4.2.3. Responding to a Shutdown .

4.2.4. Resigning from a Session.

Chapter 5 — Pop-Up Widgets.

5.1. Pop-Up Widget Types.

5.2. Creating a Pop-Up Shell.

5.3. Creating Pop-Up Children .

5.4. Mapping a Pop-Up Widget .

5.5. Unmapping a Pop-Up Widget .
Chapter 6 — Geometry Management .

6.1. Initiating Geometry Changes .

6.2. General Geometry Manager Requests.
6.3. Resize Requests .o

6.4. Potential Geometry Changes .

6.5. Child Geometry Management: the geometry_manager Procedure

6.6. Widget Placement and Sizing .
6.7. Preferred Geometry .

6.8. Size Change Management: the resize Procedure .

Chapter 7 — Event Management .

7.1. Adding and Deleting Additional Event Sources .
7.1.1. Adding and Removing Input Sources. .
7.1.2. Adding and Removing Blocking Notifications .
7.1.3. Adding and Removing Timeouts

7.1.4. Adding and Removing Signal Callbacks.

7.2. Constraining Events to a Cascade of Widgets .
7.2.1. Requesting Key and Button Grabs.

7.3. Focusing Events on a Child.

7.3.1. Events for Drawables which are not a Widget's Window .

7.4. Querying Event Sources.
7.5. Dispatching Events

72
75
77
82
82
83
84
85
85
86
86
86
88
88
89
90
90
93
95
95
96
98
98
99
100
102
103
105
105
105
107
107
108
109
111
114
116
117
118

7.6. The Application Input Loop .

7.7. Setting and Checking the Sensitivity State of a Wldget :

7.8. Adding Background Work Procedures .

7.9. X Event Filters .

7.9.1. Pointer Motion Compression.

7.9.2. Enter/Leave Compression

7.9.3. Exposure Compression

7.10. Widget Exposure and Visibility .

7.10.1. Redisplay of a Widget: the expose Procedure .
7.10.2. Widget Visibility.

7.11. X Event Handlers. .

7.11.1. Event Handlers that Select Events .

7.11.2. Event Handlers that Do Not Select Events
7.11.3. Current Event Mask . Co
7.11.4. Event Handlers for X11 Protocol Extensions.

7.12. Using the Intrinsics in a Multi-threaded Environment.

7.12.1. Initializing a Multithreaded Intrinsics Application
7.12.2. Locking X Toolkit Data Structures

7.12.2.1. Locking the Application Context

7.12.2.2. Locking the Process

7.12.3. Event Management in a Multi-Threaded Environment

Chapter 8 — Callbacks .

8.1. Using Callback Procedure and Callback List Definitions .

8.2. Identifying Callback Lists

8.3. Adding Callback Procedures .

8.4. Removing Callback Procedures .

8.5. Executing Callback Procedures .

8.6. Checking the Status of a Callback List .
Chapter 9 — Resource Management .

9.1. Resource Lists . .

9.2. Byte Offset Calculations .

9.3. Superclass-to-Subclass Chaining of Resource Lists .

9.4. Subresources

9.5. Obtaining Application Resources.

9.6. Resource Conversions

9.6.1. Predefined Resource Converters .
9.6.2. New Resource Converters

9.6.3. Issuing Conversion Warnings

9.6.4. Registering a New Resource Converter.

Vi

119
119
120

121
121

122

122
123
123

124

125
125
127

129
129
133
133
133
134

135
135

136
136

137

137
138

138
139

140

140

144
145

145
147

148
148

151

154
155

9.6.5. Resource Converter Invocation.
9.7. Reading and Writing Widget State
9.7.1. Obtaining Widget State

9.7.1.1. Widget Subpart Resource Data: the get_values_hook Procedure

9.7.1.2. Widget Subpart State
9.7.2. Setting Widget State .
9.7.2.1. Widget State: the set_values Procedure .

9.7.2.2. Widget State: the set_values_almost Procedure . .
9.7.2.3. Widget State: the ConstraintClassPart set_values Procedure.

9.7.2.4. Widget Subpart State

9.7.2.5. Widget Subpart Resource Data: the set_values_hook Procedure

Chapter 10 - Translation Management .

10.1. Action Tables . .

10.1.1. Action Table Registration S
10.1.2. Action Names to Procedure Translations .
10.1.3. Action Hook Registration

10.2. Translation Tables

10.2.1. Event Sequences .

10.2.2. Action Sequences.

10.2.3. Multi-click Time

10.3. Translation Table Management .

10.4. Using Accelerators . .o

10.5. KeyCode-to-KeySym Conversions .

10.6. Obtaining a KeySym in an Action Procedure
10.7. KeySym-to-KeyCode Conversions . .
10.8. Registering Button and Key Grabs For Actions
10.9. Invoking Actions Directly .

10.10. Obtaining a Widget's Action List .

Chapter 11 - Utility Functions oo

11.1. Determining the Number of Elements in an Array.
11.2. Translating Strings to Widget Instances .

11.3. Managing Memory Usage.

11.4. Sharing Graphics Contexts

11.5. Managing Selections

11.5.1. Setting and Getting the Selection Timeout Value .

11.5.2. Using Atomic Transfers .

11.5.2.1. Atomic Transfer Procedures.
11.5.2.2. Getting the Selection Value .
11.5.2.3. Setting the Selection Owner.

Vii

158
161
161
163
163
164
165
166
167
167
168
170
170
171
172
172
173
174
174
174
175
177
178
181
182
182
183
184
185
185
185
186
188
189
190
190
190
192
194

11.5.3. Using Incremental Transfers .
11.5.3.1. Incremental Transfer Procedures .

11.5.3.2. Getting the Selection Value Incrementally .
11.5.3.3. Setting the Selection Owner for Incremental Transfers
11.5.4. Setting and Retrieving Selection Target Parameters .

11.5.5. Generating MULTIPLE Requests.
11.5.6. Auxiliary Selection Properties .

11.5.7. Retrieving the Most Recent Timestamp
11.5.8. Retrieving the Most Recent Event
11.6. Merging Exposure Events into a Region .
11.7. Translating Widget Coordinates.

11.8. Translating a Window to a Widget .

11.9. Handling Errors .
11.10. Setting WM_COLORMAP_WINDOWS..
11.11. Finding File Names .

11.12. Hooks for External Agents .

11.12.1. Hook Object Resources

11.12.2. Querying Open Displays .

Chapter 12 — Nonwidget Objects

12.1. Data Structures

12.2. Object Objects. .

12.2.1. ObjectClassPart Structure .

12.2.2. ObjectPart Structure .

12.2.3. Object Resources . .

12.2.4. ObjectPart Default Values .

12.2.5. Object Arguments To Intrinsics Routines .

12.2.6. Use of Objects .

12.3. Rectangle Objects

12.3.1. RectObjClassPart Structure
12.3.2. RectObjPart Structure
12.3.3. RectObj Resources

12.3.4. RectObjPart Default Values

12.3.5.Widget Arguments To Intrinsics Routines .

12.3.6. Use of Rectangle Objects .

12.4. Undeclared Class.

12.5. Widget Arguments To Intrinsics Routines
Chapter 13 — Evolution of The Intrinsics .

13.1. Determining Specification Revision Level
13.2. Release 3 to Release 4 Compatibility .

viii

195
196
198
199
200
202
203
204
204
204
205
205
205
210
211
213
214
218
220
220
220
220
222
222
223
223
224
224
224
225
226
226
226
227
228
228
230
230
230

13.2.1. Additional Arguments.

13.2.2. set_values_almost Procedures
13.2.3. Query Geometry .o
13.2.4. unrealizeCallback Callback List .
13.2.5. Subclasses of WMShell .

13.2.6. Resource Type Converters.

13.2.7. KeySym Case Conversion Procedure .
13.2.8. Nonwidget Objects
13.3. Release 4 to Release 5 Compatibility .
13.3.1. baseTranslations Resource.

13.3.2. Resource File Search Path.

13.3.3. Customization Resource

13.3.4. Per-Screen Resource Database .
13.3.5. Internationalization of Applications .
13.3.6. Permanently Allocated Strings
13.3.7. Arguments to Existing Functions.
13.4. Release 5 to Release 6 Compatibility .
13.4.1. Widget Internals .o
13.4.2. General Application Development Ce
13.4.3. Communication with Window and Session Managers.
13.4.4. Geometry Management.

13.4.5.

13.4.6. Resource Management .

13.4.7. Translation Management

13.4.8. Selections .o

13.4.9. External Agent Hooks

Appendix A — Resource File Format .
Appendix B — Translation Table Syntax .
Appendix C — Compatibility Functions.
Appendix D - Intrinsics Error Messages .
Appendix E — Defined Strings

Index .

230
231
231
231
231
232
232
232
232
232
233
233
233
234
234
234
234
235
235
235
236
236
236
237
237
237
238
239
247
258
262
272

Acknowledgments

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digital WSL. Major
contributions to the design and implementation also were done by Charles Haynes, Mike Chow,
and Paul Asente of Digital WSL. Additional contributors to the design and/or implementation
were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)
Mary Larson (Digital UEG) Mark Manasse (Digital SRC)

Jim Gettys (Digital SRC) Leo Treggiari (Digital SDT)

Ralph Swick (Project Athena and Digital ERP) Mark Ackerman (Project Athena)
Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributors to the X10 toolkit also deserve mention. Although the X11 Intrinsics present an
entirely different programming style, they borrow heavily from the implicit and explicit concepts
in the X10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toolkit's sample widgets were by the above, as well as
by:

Ram Rao (Digital UEG)

Mary Larson (Digital UEG)

Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the X11 intrinsics.

Thanks go to Al Mento of Digital's UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of Berkeley for extensively reviewing early
drafts of it.

Finally, a special thanks to Mike Chow, whose extensive performance analysis of the X10 toolkit
provided the justification to redesign it entirely for X11.

Joel McCormack
Western Software Laboratory
Digital Equipment Corporation

March, 1988

The current design of the Intrinsics has benefited greatly from the input of several dedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned, the
following individuals have dedicated significant time to suggesting improvements to the Intrin-
sics:

Steve Pitschke (Stellar) C. Doug Blewett (AT&T)

Bob Miller (HP) David Schiferl (Tektronix)

Fred Taft (HP) Michael Squires (Sequent)

Marcel Meth (AT&T) Jim Fulton (MIT)

Mike Collins (Digital) Kerry Kimbrough (Texas Instruments)
Scott McGregor (Digital) Phil Karlton (Digital)

Julian Payne (ESS) Jacques Davy (Bull)

Gabriel Beged-Dov (HP) Glenn Widener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June, 1988

From Release 3 to Release 4, several new members joined the design team. We greatly appreciate
the thoughtful comments, suggestions, lengthy discussions, and in some cases implementation
code contributed by each of the following:

Don Alecci (AT&T) Ellis Cohen (OSF)
Donna Converse (MIT) Clive Feather (1XI)
Nayeem Islam (Sun) Dana Laursen (HP)
Keith Packard (MIT) Chris Peterson (MIT)
Richard Probst (Sun) Larry Cable (Sun)

In Release 5, the effort to define the internationalization additions was headed by Bill McMahon
of Hewlett Packard and Frank Rojas of IBM. This has been an educational process for many of
us and Bill and Frank’s tutelage has carried us through. Vania Joloboff of the OSF also con-
tributed to the internationalization additions. The implementation efforts of Bill, Gabe Beged-
Dov, and especially Donna Converse for this release are also gratefully acknowledged.

Ralph R. Swick
December, 1989

and
July, 1991

Xi

The Release 6 Intrinsics is a result of the collaborative efforts of participants in the X Consor-
tium’s intrinsics working group. A few individuals contributed substantial design proposals, par-
ticipated in lengthy discussions, reviewed final specifications, and in most cases, were also
responsible for sections of the implementation. They deserve recognition and thanks for their
major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)

Vania Joloboff (OSF) Kaleb Keithley (X Consortium)
Courtney Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and participated in a
significant subset of the process. The following people deserve thanks for their contributions:
Andy Bovingdon, Sam Chang, Chris Craig, George Erwin-Grotsky, Keith Edwards, Clive
Feather, Stephen Gildea, Dan Heller, Steve Humphrey, David Kaelbling, Jaime Lau, Rob Lem-
bree, Stuart Marks, Beth Mynatt, Tom Paquin, Chris Peterson, Kamesh Ramakrishna, Tom
Rodriguez, Jim VanGilder, Will Walker, and Mike Wexler.

| am especially grateful to two of my colleagues: Ralph Swick for expert editorial guidance, and
Kaleb Keithley for leadership in the implementation and the specification work.

Donna Converse
X Consortium
April, 1994

Xii

About This Manual

X Toolkit Intrinsics — C Language Interfaigintended to be read by both application program-
mers who will use one or more of the many widget sets built with the Intrinsics and by widget
programmers who will use the Intrinsics to build widgets for one of the widget sets. Not all the
information in this manual, however, applies to both audiences. That is, because the application
programmer is likely to use only a number of the Intrinsics functions in writing an application and
because the widget programmer is is likely to use many more, if not all, of the Intrinsics functions
in building a widget, an attempt has been made to highlight those areas of information that are
deemed to be of special interest for the application programmer. (It is assumed the widget pro-
grammer will have to be familiar with all the information.) Therefore, all entries in the table of
contents that are printed fild indicate the information that should be of special interest to an
application programmer.

It is also assumed that as application programmers become more familiar with the concepts dis-
cussed in this manual they will find it more convenient to implement portions of their applications
as special-purpose or custom widgets. It is possible, none the less, to use widgets without know-
ing how to build them.

Conventions Used in this Manual
This document uses the following conventions:

. Global symbols are printed this special font These can be either function names, sym-
bols defined in include files, data types, or structure names. Arguments to functions, proce-
dures, or macros are printeditalics.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. The function declaration itself follows, and each argument is specifically explained.
General discussion of the function, if any is required, follows the arguments.

. To eliminate any ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifieor, in the case of multiple arguments, the wspdcify The explanations for all
arguments that are returned to you start with the weitensor, in the case of multiple
arguments, the wonebturn.

Xiii

Chapter 1

Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network window system, specifically the X Window System. The Intrinsics
and a widget set make up an X Toolkit.

1.1. Intrinsics

The Intrinsics provide the base mechanism necessary to build a wide variety of interoperating
widget sets and application environments. The Intrinsics are a layer on top of Xlib, the C Library
X Interface. They extend the fundamental abstractions provided by the X Window System while
still remaining independent of any particular user interface policy or style.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture for
constructing and compaosing user interface components, known as widgets. This allows program-
mers to extend a widget set in new ways, either by deriving new widgets from existing ones (sub-
classing), or by writing entirely new widgets following the established conventions.

When the Intrinsics were first conceived, the root of the object hierarchy was a widget class
named Core. In release 4 of the Intrinsics, three nonwidget superclasses were adel€drab

These superclasses are described in Chapter 12. The name of the class now at the root of the
Intrinsics class hierarchy is Object. The remainder of this specification refers unifonwity- to
getsandCoreas if they were the base class for all Intrinsics operations. The argument descrip-
tions for each Intrinsics procedure and Chapter 12 describe which operations are defined for the
nonwidget superclasses of Core. The reader may determine by context whether a specific refer-
ence towidgetactually meansvidget or object

1.2. Languages

The Intrinsics are intended to be used for two programming purposes. Programmers writing wid-
gets will be using most of the facilities provided by the Intrinsics to construct user interface com-
ponents from the simple, such as buttons and scrollbars, to the complex, such as control panels
and property sheets. Application programmers will use a much smaller subset of the Intrinsics
procedures in combination with one or more sets of widgets to construct and present complete
user interfaces on an X display. The Intrinsics programming interfaces primarily intended for
application use are designed to be callable from most procedural programming languages. There-
fore, most arguments are passed by reference rather than by value. The interfaces primarily
intended for widget programmers are expected to be used principally from the C language. In
these cases, the usual C programming conventions apply. In this specification, ttleeteérm

refers to any module, widget, or application that calls an Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the headeXfll#8ntrinsic.h >
and <X11/StringDefs.h>, or their equivalent, and they may also includél¥/Xatoms.h> and
<X11/Shell.r>. In addition, widget implementations should includ€ld/IntrinsicP.h > instead
of <X11/Intrinsic.h >.

X Toolkit Intrinsics X11 Release 6

The applications must also include the additional header files for each widget class that they are
to use (for example, X11/Xaw/Label.h> or <X11/Xaw/Scrollbar.h>). On a POSIX-based sys-
tem, the Intrinsics object library file is namidolXt.a and is usually referenced as —IXt when

linking the application.

1.3. Procedures and Macros

All functions defined in this specification except those specified below may be implemented as C
macros with arguments. C applications may use “#undef” taoranamacro definition and

ensure that the actual function is referenced. Any such macro will expand to a single expression
which has the same precedence as a function call and that evaluates each of its arguments exactly
once, fully protected by parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do not have function equivalents and that may expand
their arguments in a manner other than that described aktiwheckSubclass XtNew,
XtNumber, XtOffsetOf, XtOffset, and XtSetArg.

1.4. Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combination
of an X window and its associated input and display semantics and which is dynamically allo-
cated and contains state information. Some widgets display information (for example, text or
graphics), and others are merely containers for other widgets (for example, a menu box). Some
widgets are output-only and do not react to pointer or keyboard input, and others change their dis-
play in response to input and can invoke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically allocated and initialized and
which contains the operations allowable on widgets of that class. Logically, a widget class is the
procedures and data associated with all widgets belonging to that class. These procedures and
data can be inherited by subclasses. Physically, a widget class is a pointer to a structure. The
contents of this structure are constant for all widgets of the widget class but will vary from class
to class. (Here, “constant” means the class structure is initialized at compile time and never
changed, except for a one-time class initialization and in-place compilation of resource lists,
which takes place when the first widget of the class or subclass is created.) For further informa-
tion, see Section 2.5.

The distribution of the declarations and code for a new widget class among a public .h file for
application programmer use, a private .h file for widget programmer use, and the implementation
.c file is described in Section 1.6. The predefined widget classes adhere to these conventions.

A widget instance is composed of two parts:
. A data structure which contains instance-specific values.
. A class structure which contains information that is applicable to all widgets of that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, border widths, and so on)
is customizable by users.

This chapter discusses the base widget classes, Core, Composite, and Constraint, and ends with a
discussion of widget classing.

X Toolkit Intrinsics X11 Release 6

1.4.1. Core Widgets

The Core widget class contains the definitions of fields common to all widgets. All widgets
classes are subclasses of the Core class, which is defined®@gréd®assPartand CorePart
structures.

1.4.1.1. CoreClassPart Structure
All widget classes contain the fields defined in @meClassPartstructure.

typedef struct {

WidgetClass superclass; See Section 1.6

String class_name;
Cardinal widget_size;
XtProc class_initialize;

See Chapter 9
See Section 1.6
See Section 1.6

XtwidgetClassProc class_part_initialize;See Section 1.6

XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtRealizeProc realize;
XtActionList actions;
Cardinal num_actions;

See Section 1.6

See Section 2.5

See Section 2.5
See Section 2.6

See Chapter 10

See Chapter 10

XtResourcelist resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean compress_motion;
XtEnum compress_exposure;
Boolean compress_enterleave;
Boolean visible_interest;
XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAImostProc set_values_almost;
XtArgsProc get_values_hook;
XtAcceptFocusProc accept_focus;
XtVersionType version;
XtPointer callback_private; Private to callbacks
String tm_table; See Chapter 10
XtGeometryHandler query_geometry; See Chapter 6
XtStringProc display_accelerator; See Chapter 10
XtPointer extension; See Section 1.6

} CoreClassPart;

See Chapter 9
See Chapter 9
Private to resource manager
See Section 7.9
See Section 7.9
See Section 7.9
See Section 7.10
See Section 2.8
See Chapter 6
See Section 7.10
See Section 9.7
See Section 9.7
See Section 9.7
See Section 9.7
See Section 7.3
See Section 1.6

All widget classes have the Core class fields as their first component. The protdtidiget-
Classand CoreWidgetClassare defined with only this set of fields.

typedef struct {
CoreClassPart core_class;
} WidgetClassRec, *WidgetClass, CoreClassRec, *CoreWidgetClass;

X Toolkit Intrinsics X11 Release 6

Various routines can cast widget class pointers, as needed, to specific widget class types.
The single occurrences of the class record and pointer for creating instances of Core are
In IntrinsicP.h :

extern WidgetClassRec widgetClassRec;
#define coreClassRec widgetClassRec

In Intrinsic.h :
extern WidgetClass widgetClass, coreWidgetClass;

The opaque type@/idget and WidgetClassand the opaque variabledgetClassare defined

for generic actions on widgets. In order to make these types opaque and ensure that the compiler
does not allow applications to access private data, the Intrinsics use incomplete structure defini-
tions inIntrinsic.h :

typedef struct _WidgetClassRec *WidgetClass, *CoreWidgetClass;

1.4.1.2. CorePart Structure
All widget instances contain the fields defined in @@ePart structure.

typedef struct _CorePart {

Widget self;

WidgetClass widget_class;
Widget parent;

Boolean being_destroyed;

XtCallbackList destroy_callbacks;

XtPointer constraints;
Position x;

Position y;

Dimension width;
Dimension height;
Dimension border_width;
Boolean managed;
Boolean sensitive;

Boolean ancestor_sensitive;
XtTranslations accelerators;
Pixel border_pixel;

Pixmap border_pixmap;
WidgetList popup_list;
Cardinal num_popups;
String name;

Screen *screen;

Colormap colormap;
Window window;

Cardinal depth;

Pixel background_pixel;

Pixmap background_pixmap;

Boolean visible;

described below
See Section 1.6
See Section 2.5
See Section 2.8
See Section 2.8
See Section 3.6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 6
See Chapter 3
See Section 7.7
See Section 7.7
See Chapter 10
See Section 2.6
See Section 2.6
See Chapter 5
See Chapter 5
See Chapter 9
See Section 2.6
See Setcion 2.6
See Section 2.6
See Section 2.6
See Section 2.6
See Section 2.6
See Section 7.10

X Toolkit Intrinsics X11 Release 6

Boolean mapped_when_managed; See Chapter 3
} CorePart;

All widget instances have the Core fields as their first component. The prototypicaVigpet
is defined with only this set of fields.

typedef struct {
CorePart core;
} WidgetRec, *Widget, CoreRec, *CoreWidget;

Various routines can cast widget pointers, as needed, to specific widget types.

In order to make these types opaque and ensure that the compiler does not allow applications to
access private data, the Intrinsics use incomplete structure definitionisnsic.h .

typedef struct _WidgetRec *Widget, *CoreWidget;

1.4.1.3. Core Resources

The resource names, classes, and representation types specifiecbie@lassReaesource list
are

Name Class Representation
XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenManaged XtCMappedWhenManaged XtRBoolean
XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTranslations XtRTranslationTable

Additional resources are defined for all widgets viadghgctClassRecandrectObjClassRec
resource lists; see Sections 12.2 and 12.3 for details.

1.4.1.4. CorePart Default Values

The default values for the Core fields, which are filled in by the Intrinsics, from the resource lists,
and by the initialize procedures, are

Field Default Value
self Address of the widget structure (may not be changed).
widget_class widget_clasargument taXtCreateWidget (may not be changed).

X Toolkit Intrinsics

parent
being_destroyed
destroy_callbacks
constraints

X

y

width

height
border_width
managed
sensitive
ancestor_sensitive
accelerators
border_pixel
border_pixmap
popup_list
num_popups
name

screen

colormap

window

depth
background_pixel

background_pixmap

visible

X11 Release 6

parentargument toXtCreateWidget (may not be changed).
Parenteing_destroyedalue.
NULL
NULL

False
True
logical AND of parerdsnsitiveandancestor_sensitivealues.
NULL
XtDefaultForeground
XtUnspecifiedPixmap
NULL
0
nameargument taXtCreateWidget (may not be changed).
Parent'screentop-level widget gets screen from display specifier
(may not be changed).
Parent’'solormapvalue.
NULL
Parent'depth top-level widget gets root window depth.
XtDefaultBackground
XtUnspecifiedPixmap
True

mapped_when_managed True

XtUnspecifiedPixmapis a symbolic constant guaranteed to be unequal to any valid Pixmap id,
None, and ParentRelative.

1.4.2. Composite Widgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3). Composite
widgets are intended to be containers for other widgets. The additional data used by composite
widgets are defined by theompositeClassPartand CompositePart structures.

1.4.2.1. CompositeClassPart Structure
In addition to the Core class fields, widgets of the Composite class have the following class fields.

typedef struct {
XtGeometryHandler geometry_manager;
XtWidgetProc change_managed;
XtWidgetProc insert_child;
XtWidgetProc delete child;
XtPointer extension;

} CompositeClassPart;

See Chapter 6

See Chapter 3
See Chapter 3
See Chapter 3
See Section 1.6

X Toolkit Intrinsics X11 Release 6

The extension record defined iGompositeClassPartwith record_typesqual toNULLQUARK
is CompositeClassExtensionRec

typedef struct {
XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
Boolean accepts_objects; See Section 2.5.2
Boolean allows_change_managed_set; See Section 3.4.3

} CompositeClassExtensionRec, *CompositeClassExtension;
Composite classes have the Composite class fields immediately following the Core class fields.

typedef struct {
CoreClassPart core_class;
CompositeClassPart composite_class;

} CompositeClassRec, *CompositeWidgetClass;

The single occurrences of the class record and pointer for creating instances of Composite are
In IntrinsicP.h :

extern CompositeClassRec compositeClassRec;
In Intrinsic.h :
extern WidgetClass compositeWidgetClass;

The opaque type€ompositeWidgetand CompositeWidgetClassand the opaque variable
compositeWidgetClassare defined for generic operations on widgets whose class is Composite
or a subclass of Composite. The symbolic constant fo€tmapositeClassExtensiorversion
identifier isXtCompositeExtensionVersion(see Section 1.6.12)ntrinsic.h uses an incom-

plete structure definition to ensure that the compiler catches attempts to access private data.

typedef struct _CompositeClassRec *CompositeWidgetClass;

1.4.2.2. CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the following instance
fields defined in th€ompositePart structure.

typedef struct {
WidgetList children; See Chapter 3
Cardinal num_children; See Chapter 3
Cardinal num_slots; See Chapter 3
XtOrderProc insert_position; See Section 3.2

} CompositePart;

Composite widgets have the Composite instance fields immediately following the Core instance
fields.

X Toolkit Intrinsics X11 Release 6

typedef struct {
CorePart core;
CompositePart composite;

} CompositeRec, *CompositeWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access private data.

typedef struct _CompositeRec *CompositeWidget;

1.4.2.3. Composite Resources

The resource names, classes, and representation types that are specifiedmptsiteClass-
Recresource list are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtClInsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

1.4.2.4. CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite resource list
and by the Composite initialize procedure, are

Field Default Value
children NULL
num_children 0
num_slots 0

insert_position Internal function to insert at end

Thechildren num_childrenandinsert_positiorfields are declared as resources; XtNinsertPosi-
tion is a settable resource, XtNchildren and XtNnumChildren may be read by any client but
should only be modified by the composite widget class procedures.

1.4.3. Constraint Widgets

The Constraint widget class is a subclass of the Composite widget class (see Section 3.6). Con-
straint widgets maintain additional state data for each child; for example, client-defined con-
straints on the child’s geometry. The additional data used by constraint widgets are defined by the
ConstraintClassPart and ConstraintPart structures.

X Toolkit Intrinsics X11 Release 6

1.4.3.1. ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class have the fol-
lowing class fields.

typedef struct {

XtResourcelist resources; See Chapter 9
Cardinal num_resources; See Chapter 9
Cardinal constraint_size; See Section 3.6
XtInitProc initialize; See Section 3.6
XtWidgetProc destroy; See Section 3.6
XtSetValuesFunc set_values; See Section 9.7.2
XtPointer extension; See Section 1.6

} ConstraintClassPart;

The extension record defined fGonstraintClassPart with record_typesqual toNULLQUARK
is ConstraintClassExtensionRec

typedef struct {
XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
XtArgsProc get_values_hook; See Section 9.7.1

} ConstraintClassExtensionRec, *ConstraintClassExtension;

Constraint classes have the Constraint class fields immediately following the Composite class
fields.

typedef struct _ConstraintClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ConstraintClassPart constraint_class;

} ConstraintClassRec, *ConstraintWidgetClass;

The single occurrences of the class record and pointer for creating instances of Constraint are
In IntrinsicP.h :

extern ConstraintClassRec constraintClassRec;
In Intrinsic.h :
extern WidgetClass constraintWidgetClass;

The opaque type€onstraintWidget and ConstraintWidgetClass and the opaque variabt®n-
straintWidgetClass are defined for generic operations on widgets whose class is Constraint or a
subclass of Constraint. The symbolic constant forQbastraintClassExtensionversion identi-

fier is XtConstraintExtensionVersion (see Section 1.6.12)ntrinsic.h uses an incomplete
structure definition to ensure that the compiler catches attempts to access private data.

typedef struct _ConstraintClassRec *ConstraintWidgetClass;

X Toolkit Intrinsics X11 Release 6

1.4.3.2. ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint class have the
following unused instance fields defined in ®enstraintPart structure

typedef struct { int empty; } ConstraintPart;

Constraint widgets have the Constraint instance fields immediately following the Composite
instance fields.

typedef struct {
CorePart core;
CompositePart composite;
ConstraintPart constraint;

} ConstraintRec, *ConstraintWidget;

Intrinsic.h uses an incomplete structure definition to ensure that the compiler catches attempts to
access private data.

typedef struct _ConstraintRec *ConstraintWidget;

1.4.3.3. Constraint Resources

The constraintClassReccore_classaindconstraint_class resourcdiglds are NULL and the
num_resourceBelds are zero; no additional resources beyond those declared by the superclasses
are defined for Constraint.

1.5. Implementation-specific Types

To increase the portability of widget and application source code between different system envi-
ronments, the Intrinsics define several types whose precise representation is explicitly dependent
upon, and chosen by, each individual implementation of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzero value. Unless explicitly stated, clients
should not assume that the nonzero value is equal to the symbolicTuadue

Cardinal An unsigned integer datum with a minimum range of [0..2716-1]
Dimension An unsigned integer datum with a minimum range of [0..27°16-1]
Position A signed integer datum with a minimum range of [-2715..2715-1]

XtPointer A datum large enough to contain the largest of a char*, int*, function pointer, struc-
ture pointer, or long value. A pointer to any type or function, or a long value may
be converted to aKtPointer and back again and the result will compare equal to
the original value. In ANSI C environments it is expected ¥t&ointer will be
defined as void*.

XtArgVal A datum large enough to contain AtPointer, Cardinal , Dimension, or Posi-
tion value.

XtEnum An integer datum large enough to encode at least 128 distinct values, two of which
are the symbolic valueBrue andFalse. The symbolic valueSRUE and FALSE
are also defined to be equalTfime andFalse, respectively.

10

X Toolkit Intrinsics X11 Release 6

In addition to these specific types, the precise order of the fields within the structure declarations
for any of the instance part recor@bjectPart, RectObjPart, CorePart, CompositePart,

ShellPart, WMShellPart, TopLevelShellPart, and ApplicationShellPart is implementation-
defined. These structures may also have additional private fields internal to the implementation.
The ObjectPart, RectObjPart, and CorePart structures must be defined so that any member

with the same name appears at the same off$@bjactRec, RectObjRec and CoreRec

(WidgetRec). No other relations between the offsets of any two fields may be assumed.

1.6. Widget Classing

Thewidget_clasgield of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widgets usually do not imple-
ment directly callable procedures; rather, they implement procedures, called methods, that are
available through their widget class structure. These methods are invoked by generic procedures
that envelop common actions around the methods implemented by the widget class. Such proce-
dures are applicable to all widgets of that class and also to widgets whose classes are subclasses
of that class.

All widget classes are a subclass of Core and can be subclassed further. Subclassing reduces the
amount of code and declarations necessary to make a new widget class that is similar to an exist-
ing class. For example, you do not have to describe every resource your widget uses in an
XtResourcelist. Instead, you describe only the resources your widget has that its superclass
does not. Subclasses usually inherit many of their superclasses’ procedures (for example, the
expose procedure or geometry handler).

Subclassing, however, can be taken too far. If you create a subclass that inherits none of the pro-
cedures of its superclass, you should consider whether you have chosen the most appropriate
superclass.

To make good use of subclassing, widget declarations and naming conventions are highly styl-
ized. A widget consists of three files:

. A public .h file, used by client widgets or applications.
. A private .h file, used by widgets whose classes are subclasses of the widget class.
. A .c file, which implements the widget.

1.6.1. Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new widgets and organize a
collection of widgets into an application. To ensure that applications need not deal with as many
styles of capitalization and spelling as the number of widget classes it uses, the following guide-
lines should be followed when writing new widgets:

. Use the X library naming conventions that are applicable. For example, a record compo-
nent name is all lower case and uses underscores (_) for compound words (for example,
background_pixmap). Type and procedure names start with upper case and use capitaliza-
tion for compound words (for exampl&rgList or XtSetValues).

. A resource name is spelled identically to the field name except that compound names use
capitalization rather than underscore. To let the compiler catch spelling errors, each
resource name should have a symbolic identifier prefixed with “XtN”. For example, the
background_pixmafield has the corresponding identifier XtNbackgroundPixmap, which is
defined as the string “backgroundPixmap”. Many predefined names are listed in

11

X Toolkit Intrinsics X11 Release 6

<X11/StringDefs.h>. Before you invent a new name, you should make sure there is not
already a name that you can use.

. A resource class string starts with a capital letter and uses capitalization for compound
names (for example,“BorderWidth”). Each resource class string should have a symbolic
identifier prefixed with “XtC” (for example, XtCBorderWidth). Many predefined classes
are listed in X11/StringDefs.h>.

. A resource representation string is spelled identically to the type name (for example,
“TranslationTable”). Each representation string should have a symbolic identifier prefixed
with “XtR” (for example, XtRTranslationTable). Many predefined representation types are
listed in <X11/StringDefs.h>.

. New widget classes start with a capital and use upper case for compound words. Given a
new class name AbcXyz, you should derive several names:

- Additional widget instance structure part name AbcXyzPart.

- Complete widget instance structure names AbcXyzRec and _AbcXyzRec.
- Widget instance structure pointer type name AbcXyzWidget.

- Additional class structure part name AbcXyzClassPart.

- Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.
- Class structure pointer type name AbcXyzWidgetClass.

- Class structure variable abcXyzClassRec.

- Class structure pointer variable abcXyzWidgetClass.

. Action procedures available to translation specifications should follow the same naming
conventions as procedures. That is, they start with a capital letter, and compound names
use upper case (for example, “Highlight” and “NotifyClient”).

The symbolic identifiers XtN..., XtC... and XtR... may be implemented as macros, as global sym-
bols, or as a mixture of the two. The (implicit) type of the identifi@titng. The pointer value

itself is not significant; clients must not assume that inequality of two identifiers implies inequal-
ity of the resource name, class, or representation string. Clients should also note that although
global symbols permit savings in literal storage in some environments, they also introduce the
possibility of multiple definition conflicts when applications attempt to use independently devel-
oped widgets simultaneously.

1.6.2. Widget Subclassing in Public .h Files
The public .h file for a widget class is imported by clients and contains
. A reference to the public .h file for the superclass.

. Symbolic identifiers for the names and classes of the new resources that this widget adds to
its superclass. The definitions should have a single space between the definition name and
the value and no trailing space or comment in order to reduce the possibility of compiler
warnings from similar declarations in multiple classes.

. Type declarations for any new resource data types defined by the class.
. The class record pointer variable used to create widget instances.

. The C type that corresponds to widget instances of this class.

. Entry points for new class methods.

12

X Toolkit Intrinsics X11 Release 6

For example, the following is the public .h file for a possible implementation of a Label widget:

#ifndef LABEL_H
#define LABEL_H

/* New resources */

#define XtNjustify "justify"

#define XtNforeground "foreground"
#define XtNlabel "label"

#define XtNfont "font"

#define XtNinternalWidth "internalWidth"
#define XtNinternalHeight "internalHeight"

/* Class record pointer */
extern WidgetClass labelWidgetClass;

/* C Widget type definition */
typedef struct _LabelRec *LabelWidget;

/* New class method entry points */
extern void LabelSetText();

/* Widget w */

[* String text */

extern String LabelGetText();
/* Widget w */

#endif LABEL_H

The conditional inclusion of the text allows the application to include header files for different
widgets without being concerned that they already may be included as a superclass of another
widget.

To accommodate operating systems with file name length restrictions, the name of the public .h
file is the first ten characters of the widget class. For example, the public .h file for the Constraint
widget class i€Constraint.h.

1.6.3. Widget Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget and
contains

A reference to the public .h file for the class.
A reference to the private .h file for the superclass.

Symbolic identifiers for any new resource representation types defined by the class. The
definitions should have a single space between the definition name and the value and no
trailing space or comment.

A structure part definition for the new fields that the widget instance adds to its superclass’s
widget structure.

The complete widget instance structure definition for this widget.

13

X Toolkit Intrinsics X11 Release 6

A structure part definition for the new fields that this widget class adds to its superclass’s
constraint structure if the widget class is a subclass of Constraint.

The complete constraint structure definition if the widget class is a subclass of Constraint.

Type definitions for any new procedure types used by class methods declared in the widget
class part

A structure part definition for the new fields that this widget class adds to its superclass’s
widget class structure.

The complete widget class structure definition for this widget.
The complete widget class extension structure definition for this widget, if any.
The symbolic constant identifying the class extension version, if any.

The name of the global class structure variable containing the generic class structure for
this class.

An inherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:

#ifndef LABELP_H
#define LABELP_H

#include <X11/Label.h>

/* New representation types used by the Label widget */
#define XtRJustify "Justify"

/* New fields for the Label widget record */
typedef struct {
[* Settable resources */

Pixel foreground,;

XFontStruct *font;

String label, [* text to display */

XtJustify justify;

Dimension internal_width; [* # pixels horizontal border */
Dimension internal_height; [* # pixels vertical border */

/* Data derived from resources */
GC normal_GC;
GC gray_GC;
Pixmap gray_pixmap;
Position label_x;
Position label_y;
Dimension label width;
Dimension label_height;
Cardinal label_len;
Boolean display_sensitive;
} LabelPart;

/* Full instance record declaration */
typedef struct _LabelRec {

14

X Toolkit Intrinsics

To accommodate operating systems with file name length restrictions, the name of the private .h
file is the first nine characters of the widget class followed by a capital P. For example, the private

CorePart core;
LabelPart label;
} LabelRec;

/* Types for Label class methods */
typedef void (*LabelSetTextProc)();
[* Widget w */
[* String text */

typedef String (*LabelGetTextProc)();
/* Widget w */

/* New fields for the Label widget class record */
typedef struct {
LabelSetTextProc set_text;
LabelGetTextProc get_text;
XtPointer extension;
} LabelClassPart;

/* Full class record declaration */
typedef struct _LabelClassRec {
CoreClassPart core_class;
LabelClassPart label_class;
} LabelClassRec;

/* Class record variable */
extern LabelClassRec labelClassRec;

#define LabellnheritSetText((LabelSetTextProc) Xtinherit)
#define LabellnheritGetText((LabelGetTextProc)_Xtinherit)

#endif LABELP_H

.h file for the Constraint widget class@®nstrainP.h.

1.6.4. Widget Subclassing in .c Files

The .c file for a widget contains the structure initializer for the class record variable, which con-

tains the following parts:
Class information (for exampleuperclassclass _namgwidget_sizeclass_initialize and

Thesuperclasdield points to the superclass global class record, declared in the superclass private

class_initedl.

X11 Release 6

Data constants (for examplesourcesandnum_resourcesctionsandnum_actionsvisi-

ble_interestcompress_motiqrcompress_exposuyrandversion)

Widget operations (for examplgijtialize, realize destroy resize exposeset_values
accept_focusand any new operations specific to the widget).

.h file. For direct subclasses of the generic core widggerclasshould be initialized to the

address of thavidgetClassRecstructure. The superclass is used for class chaining operations

15

X Toolkit Intrinsics X11 Release 6

and for inheriting or enveloping a superclass’s operations (see Sections 1.6.7, 1.6.9, and 1.6.10).

Theclass_naméield contains the text name for this class, which is used by the resource manager.
For example, the Label widget has the string “Label”. More than one widget class can share the
same text class name. This string must be permanently allocated prior to or during the execution
of the class initialization procedure and must not be subsequently deallocated.

Thewidget_sizdield is the size of the corresponding widget instance structure (not the size of the
class structure).

Theversionfield indicates the toolkit implementation version number and is used for runtime
consistency checking of the X Toolkit and widgets in an application. Widget writers must set it to
the implementation-defined symbolic valdé/ersion in the widget class structure initialization.
Those widget writers who believe that their widget binaries are compatible with other implemen-
tations of the Intrinsics can put the special valtidersionDontCheck in theversionfield to

disable version checking for those widgets. If a widget needs to compile alternative code for dif-
ferent revisions of the Intrinsics interface definition, it may use the symbol
XtSpecificationReleaseas described in Chapter 13. UseXt¥/ersion allows the Intrinsics
implementation to recognize widget binaries that were compiled with older implementations.

Theextensiorfield is for future upward compatibility. If the widget programmer adds fields to

class parts, all subclass structure layouts change, requiring complete recompilation. To allow
clients to avoid recompilation, an extension field at the end of each class part can point to a record
that contains any additional class information required.

All other fields are described in their respective sections.

The .c file also contains the declaration of the global class structure pointer variable used to create
instances of the class. The following is an abbreviated version of the .c file for a Label widget.
The resources table is described in Chapter 9.

/* Resources specific to Label */
static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffset(LabelWidget, label.foreground), XtRString,
XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
XtOffset(LabelWidget, label.font),XtRString,
XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffset(LabelWidget, label.label), XtRString, NULL},

}

/* Forward declarations of procedures */
static void Classinitialize();

static void Initialize();

static void Realize();

static void SetText();

static void GetText();

16

X Toolkit Intrinsics

/* Class record constant */
LabelClassRec labelClassRec = {

{
[* core_class fields */

[* superclass */
[* class_name */
[* widget_size */
[* class_initialize *
[* class_part_initialize */
[* class_inited */
[* initialize */
[* initialize_hook */
[* realize */
[* actions */
/* num_actions */
[* resources */
/* num_resources */
[* xrm_class */
[* compress_motion */
[* compress_exposure */
[* compress_enterleave */
[* visible_interest */
[* destroy */
[* resize */
[* expose */
[* set_values */
[* set_values_hook */
/* set_values_almost */
/* get_values_hook */
[* accept_focus *
[* version */
/* callback_offsets */
/* tm_table */
[* query_geometry */
[* display_accelerator */
[* extension *

2

{

[* Label_class fields */

[* get_text *
[* set_text */
[* extension */

}

¥

/* Class record pointer */

X11 Release 6

(WidgetClass)&coreClassRec,
"Label",
sizeof(LabelRec),
Classlnitialize,
NULL,
False,
Initialize,
NULL,
Realize,
NULL,
0,
resources,
XtNumber(resources),
NULLQUARK,
True,
True,
True,
False,
NULL,
Resize,
Redisplay,
SetValues,
NULL,
XtInheritSetValuesAlmost,
NULL,
NULL,
XtVersion,
NULL,
NULL,
XtinheritQueryGeometry,
NULL,
NULL

GetText,
SetText,
NULL

17

X Toolkit Intrinsics X11 Release 6

WidgetClass labelWidgetClass = (WidgetClass) &labelClassRec;

/* New method access routines */
void LabelSetText(w, text)

Widget w;
String text;

{
Label WidgetClass Ilwc = (Label WidgetClass)XtClass(w);
XtCheckSubclass(w, labelWidgetClass, NULL);
*(lwc->label_class.set_text)(w, text)

}

[* Private procedures */

1.6.5. Widget Class and Superclass Look Up
To obtain the class of a widget, useClass.
WidgetClass XtClasg()
Widgetw;
w Specifies the widget. Must be of class Object or any subclass thereof.
The XtClass function returns a pointer to the widget's class structure.

To obtain the superclass of a widget, X$8uperclass
WidgetClass XtSuperclasg(
Widgetw;
w Specifies the widget. Must be of class Object or any subclass thereof.
The XtSuperclassfunction returns a pointer to the widget's superclass class structure.

1.6.6. Widget Subclass Verification
To check the subclass to which a widget belongs XtisSubclass

Boolean XtlsSubclasa(widget_clasp
Widgetw;
WidgetClassvidget_class

w Specifies the widget or object instance whose class is to be checked. Must be of
class Object or any subclass thereof.

widget_class Specifies the widget class for which to test. MusbljectClassor any subclass
thereof.

The XtlsSubclassfunction returnsTrue if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. Composite widgets that need
to restrict the class of the items they contain canXiESubclassto find out if a widget belongs

to the desired class of objects.

18

X Toolkit Intrinsics X11 Release 6

To test if a given widget belongs to a subclass of an Intrinsics-defined class, the Intrinsics define
macros or functions equivalent XilsSubclassfor each of the built-in classes. These proce-

dures areXtlsObject, XtlIsRectObj, XtlsWidget, XtlsComposite, XtlsConstraint ,

XtlsShell, XtlsOverrideShell, XtiIswMShell , XtlsVendorShell, XtlsTransientShell,
XtlsTopLevelShell, XtisApplicationShell and XtlsSessionShell

All these macros and functions have the same argument description.

Boolean Xtlsclass> (w)
Widgetw;

w Specifies the widget or object instance whose class is to be checked. Must be of
class Object or any subclass thereof.

These procedures may be faster than caMitigSubclassdirectly for the built-in classes.

To check a widget’s class and to generate a debugging error messagt;hisekSubclass
defined in X11/IntrinsicP.h >:

void XtCheckSubclasg(widget_classmessagge
Widgetw;
WidgetClassvidget_class
Stringmessage

w Specifies the widget or object whose class is to be checked. Must be of class
Object or any subclass thereof.

widget_class Specifies the widget class for which to test. MusbiyectClassor any subclass
thereof.

message Specifies the message to be used.

The XtCheckSubclassmacro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widget’s class can be any number of subclasses down the
chain and need not be an immediate subclass of the specified class. If the specified widget's class
is not a subclass{tCheckSubclassconstructs an error message from the supplied message, the
widget's actual class, and the expected class andXillsorMsg . XtCheckSubclassshould

be used at the entry point of exported routines to ensure that the client has passed in a valid wid-
get class for the exported operation.

XtCheckSubclassis only executed when the module has been compiled with the compiler sym-
bol DEBUG defined; otherwise, it is defined as the empty string and generates no code.

1.6.7. Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their cor-
responding fields in their superclass structures. With a linked field, the Intrinsics access the

field’s value only after accessing its corresponding superclass value (called downward superclass
chaining) or before accessing its corresponding superclass value (called upward superclass chain-
ing). The self-contained fields are

In all widget classes: class_name
class_initialize
widget_size
realize
visible_interest

19

X Toolkit Intrinsics X11 Release 6

resize

expose
accept_focus
compress_motion
compress_exposure
compress_enterleave
set_values_almost
tm_table

version

allocate

deallocate

In Composite widget classes: geometry_manager
change_managed
insert_child
delete_child
accepts_objects
allows_change_managed_set

In Constraint widget classes: constraint_size

In Shell widget classes: root_geometry_manager

With downward superclass chaining, the invocation of an operation first accesses the field from
the Object, RectObj, and Core class structures, then from the subclass structure, and so on down
the class chain to that widget's class structure. These superclass-to-subclass fields are

class_part_initialize
get_values_hook
initialize
initialize_hook
set_values
set_values_hook
resources

In addition, for subclasses of Constraint, the following fields ofxbestraintClassPart and
ConstraintClassExtensionRecstructures are chained from the Constraint class down to the sub-
class:

resources

initialize

set values

get_values_hook

With upward superclass chaining, the invocation of an operation first accesses the field from the
widget class structure, then from the superclass structure, and so on up the class chain to the Core,
RectObj, and Object class structures. The subclass-to-superclass fields are

destroy
actions

20

X Toolkit Intrinsics X11 Release 6

For subclasses of Constraint, the following fieldCainstraintClassPart is chained from the
subclass up to the Constraint class:

destroy

1.6.8. Class Initialization: class_initialize and class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some cases, however,
a class may need to register type converters or perform other sorts of once-only runtime initializa-
tion.

Because the C language does not have initialization procedures that are invoked automatically
when a program starts up, a widget class can declare a class_initialize procedure that will be auto-
matically called exactly once by the Intrinsics. A class initialization procedure pointer is of type
XtProc:

typedef void (*XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class_initializefield.

In addition to the class initialization that is done exactly once, some classes perform initialization
for fields in their parts of the class record. These are performed not just for the particular class
but for subclasses as well, and are done in the class’s class part initialization procedure, a pointer
to which is stored in thelass_part_initializdield. The class_part_initialize procedure pointer is

of type XtWidgetClassProc.

typedef void (*XtWidgetClassProc)(WidgetClass);
WidgetClassvidget_class

widget_class Points to the class structure for the class being initialized.

During class initialization, the class part initialization procedures for the class and all its super-
classes are called in superclass-to-subclass order on the class record. These procedures have the
responsibility of doing any dynamic initializations necessary to their class’s part of the record.

The most common is the resolution of any inherited methods defined in the class. For example, if
a widget class C has superclasses Core, Composite, A, and B, the class record for C first is passed
to Core s class_part_initialize procedure. This resolves any inherited Core methods and com-
piles the textual representations of the resource list and action table that are defined in the class
record. Next, Composite’s class_part_initialize procedure is called to initialize the composite part
of C’s class record. Finally, the class_part_initialize procedures for A, B, and C, in that order, are
called. For further information, see Section 1.6.9. Classes that do not define any new class fields
or that need no extra processing for them can specify NULL iclélss_part_initializdield.

All widget classes, whether they have a class initialization procedure or not, must start with their
class_initedield False.

The first time a widget of a class is creatét;reateWidget ensures that the widget class and
all superclasses are initialized, in superclass-to-subclass order, by checkictasacimitedield
and, if it isFalse, by calling the class_initialize and the class_part_initialize procedures for the
class and all its superclasses. The Intrinsics then selag® initedield to a nonzero value.

After the one-time initialization, a class structure is constant.

The following example provides the class initialization procedure for a Label class.

static void ClasslInitialize()

21

X Toolkit Intrinsics X11 Release 6

XtSetTypeConverter(XtRString, XtRJustify, CvtStringToJustify,
NULL, 0, XtCacheNone, NULL);

1.6.9. Initializing a Widget Class

A class is initialized when the first widget of that class or any subclass is created. To initialize a
widget class without creating any widgets, ddmitializeWidgetClass.

void XtlnitializeWidgetClassibject_clasy
WidgetClasbject_class
object_class Specifies the object class to initialize. MaydigectClassor any subclass
thereof.
If the specified widget class is already initializ&dinitializeWidgetClass returns immediately.

If the class initialization procedure registers type converters, these type converters are not avail-
able until the first object of the class or subclass is creat&tmtializeWidgetClass is called
(see Section 9.6).

1.6.10. Inheritance of Superclass Operations

A widget class is free to use any of its superclass’s self-contained operations rather than imple-
menting its own code. The most frequently inherited operations are

expose
realize
insert_child
delete_child
geometry_manager
set_values_almost
To inherit an operatioryz specify the constarXtinherit Xyzin your class record.

Every class that declares a new procedure in its widget class part must provide for inheriting the
procedure in its class_part_initialize procedure. The chained operations declared in Core and
Constraint records are never inherited. Widget classes that do nothing beyond what their super-
class does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with a known, special value and by copying
in the superclass’s value for that field if a match occurs. This special value, called the inheritance
constant, is usually the Intrinsics internal valu&inherit cast to the appropriate type Xtin-

herit is a procedure that issues an error message if it is actually called.

For example CompositeP.hcontains these definitions:

#define XtinheritGeometryManager ((XtGeometryHandler) _Xtinherit)
#define XtinheritChangeManaged ((XtWidgetProc) _Xtinherit)
#define XtinheritinsertChild ((XtArgsProc) _Xtinherit)

#define XtinheritDeleteChild ((XtWidgetProc) _Xtlinherit)

22

X Toolkit Intrinsics X11 Release 6

Composite’s class_part_initialize procedure begins as follows:

static void CompositeClassPartlnitialize(widgetClass)
WidgetClass widgetClass;
{

CompositeWidgetClass wc = (CompositeWidgetClass)widgetClass;
CompositeWidgetClass super = (CompositeWidgetClass)wc->core_class.superclass;

if (wc->composite_class.geometry_manager == XtlnheritGeometryManager) {
wc->composite_class.geometry_manager = super->composite_class.geometry_manager;

}

if (wc->composite_class.change_managed == XtinheritChangeManaged) {
wc->composite_class.change_managed = super->composite_class.change_managed;

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may
declare any reserved value it wishes for the inheritance constant for its new fields. The following
inheritance constants are defined:

For Object:
XtinheritAllocate
XtinheritDeallocate

For Core:
XtInheritRealize
XtInheritResize
XtinheritExpose
XtInheritSetValuesAlmost
XtInheritAcceptFocus
XtInheritQueryGeometry
XtInheritTranslations
XtinheritDisplayAccelerator

For Composite:
XtinheritGeometryManager
XtInheritChangeManaged
XtInheritInsertChild
XtInheritDeleteChild

For Shell:
XtInheritRootGeometryManager

23

X Toolkit Intrinsics X11 Release 6

1.6.11. Invocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not chained. For example, a wid-
get’'s expose procedure might call its superclesg®send then perform a little more work on

its own. For example, a Composite class with predefined managed children can implement
insert_child by first calling its superclassisert_childand then calling<tManageChild to add

the child to the managed set.

Note

A class method should not u¥¢Superclassbut should instead call the class

method of its own specific superclass directly through the superclass record. That is,
it should use its own class pointers only, not the widget’s class pointers, as the wid-
get’s class may be a subclass of the class whose implementation is being referenced.

This technique is referred to asvelopinghe superclass’s operation.

1.6.12. Class Extension Records

It may be necessary at times to add new fields to already existing widget class structures. To per-
mit this to be done without requiring recompilation of all subclasses, the last field in a class part
structure should be an extension pointer. If no extension fields for a class have yet been defined,
subclasses should initialize the value of the extension pointer to NULL.

If extension fields exist, as is the case with the Composite, Constraint and Shell classes, sub-
classes can provide values for these fields by settingxthasiompointer for the appropriate part

in their class structure to point to a statically declared extension record containing the additional
fields. Setting thextensiorfield is never mandatory; code that uses fields in the extension record
must always check trextensiorfield and take some appropriate default action if it is NULL.

In order to permit multiple subclasses and libraries to chain extension records from extamgle
sionfield, extension records should be declared as a linked list and each extension record defini-
tion should contain the following four fields at the beginning of the structure declaration:

struct {
XtPointer next_extension;
XrmQuark record_type;
long version;
Cardinal record_size;

2

next_extension Specifies the next record in the list, or NULL.

record_type Specifies the particular structure declaration to which each extension record
instance conforms.

version Specifies a version id symbolic constant supplied by the definer of the struc-
ture.

record_size Specifies the total number of bytes allocated for the extension record.

Therecord_typdfield identifies the contents of the extension record and is used by the definer of
the record to locate its particular extension record in the list.rédued_typdield is normally

assigned the result ®rmStringToQuark for a registered string constant. The Intrinsics reserve
all record type strings beginning with the two characters “XT” for future standard uses. The
value NULLQUARK may also be used by the class part owner in extension records attached to its

24

X Toolkit Intrinsics X11 Release 6

own class part extension field to identify the extension record unique to that particular class.

Theversionfield is an owner-defined constant that may be used to identify binary files that have
been compiled with alternate definitions of the remainder of the extension record data structure.
The private header file for a widget class should provide a symbolic constant for subclasses to use
to initialize this field. Theecord_sizdield value includes the four common header fields and

should normally be initialized witkizeof).

Any value stored in the class part extension field€aipositeClassPart
ConstraintClassPart, or ShellClassPartmust point to an extension record conforming to this
definition.

The Intrinsics provide a utility function for widget writers to locate a particular class extension
record in a linked list, given a widget class and the offset oéxtensiorfield in the class record.

To locate a class extension record, ¥88etClassExtension

XtPointer XtGetClassExtensianifject_classbyte offsettype version record_sizg
WidgetClassbject_class
Cardinalbyte_offset
XrmQuarktype
long version
Cardinalrecord_size

object_class Specifies the object class containing the extension list to be searched.

byte offset Specifies the offset in bytes from the base of the class record of the extension
field to be searched.

type Specifies the record_type of the class extension to be located.
version Specifies the minimum acceptable version of the class extension required for a
match.

record_size Specifies the minimum acceptable length of the class extension record required
for a match, or 0.

The list of extension records at the specified offset in the specified object class will be searched
for a match on the specified type, a version greater than or equal to the specified version, and a
record size greater than or equal the specified record_size if it is noxt&etClassExtension
returns a pointer to a matching extension record or NULL if no match is found. The returned
extension record must not be modified or freed by the caller if the caller is not the object class
owner.

25

X Toolkit Intrinsics X11 Release 6

Chapter 2

Widget Instantiation

A hierarchy of widget instances constitutes a widget tree. The shell widget returdXedsy
pCreateShellis the root of the widget tree instance. The widgets with one or more children are
the intermediate nodes of that tree, and the widgets with no children of any kind are the leaves of
the widget tree. With the exception of pop-up children (see Chapter 5), this widget tree instance
defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain children, but the
Intrinsics provide a set of management mechanisms for constructing and interfacing between
composite widgets, their children, and other clients.

Composite widgets, that is, members of the ctasapositeWidgetClassare containers for an

arbitrary but widget implementation-defined collection of children, which may be instantiated by
the composite widget itself, by other clients, or by a combination of the two. Composite widgets
also contain methods for managing the geometry (layout) of any child widget. Under unusual cir-
cumstances, a composite widget may have zero children, but it usually has at least one. By con-
trast, primitive widgets that contain children typically instantiate specific children of known

classes themselves and do not expect external clients to do so. Primitive widgets also do not have
general geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, realization and
destruction) on composite widgets and all their children. Primitive widgets that have children
must be prepared to perform the recursive operations themselves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For exam{fiRealizeWidget tra-

verses the tree downward and recursively realizes all pop-up widgets and children of composite
widgets. XtDestroyWidget traverses the tree downward and destroys all pop-up widgets and
children of composite widgets. The functions that fetch and modify resources traverse the tree
upward and determine the inheritance of resources from a widget's ancégtdeke-
GeometryRequesttraverses the tree up one level and calls the geometry manager that is respon-
sible for a widget child’s geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its parent widget.
The Shell widget thaXtAppCreateShell returns has parentpointer of NULL.

To facilitate downward traversal of the widget tree,adhiédrenfield of each composite widget is

a pointer to an array of child widgets, which includes all normal children created, not just the sub-
set of children that are managed by the composite widget's geometry manager. Primitive widgets
that instantiate children are entirely responsible for all operations that require downward traversal
below themselves. In addition, every widget has a pointer to an array of pop-up children.

2.1. Initializing the X Toolkit

Before an application can call any Intrinsics function other KSetLanguageProcand
XtToolkitThreadInitialize , it must initialize the Intrinsics by using

. XtToolkitInitialize , which initializes the Intrinsics internals.

26

X Toolkit Intrinsics X11 Release 6

. XtCreateApplicationContext, which initializes the per-application state.
. XtDisplaylnitialize or XtOpenDisplay, which initializes the per-display state.
. XtAppCreateShell, which creates the root of a widget tree.

or an application can call the convenience procedt@penApplication which combines the
functions of the preceding procedures. An application wishing to use the ANSI C locale mecha-
nism should calXtSetLanguageProcprior to callingXtDisplaylnitialize , XtOpenDisplay,
XtOpenApplication, or XtApplnitialize .

Multiple instances of X Toolkit applications may be implemented in a single address space. Each
instance needs to be able to read input and dispatch events independently of any other instance.
Further, an application instance may need multiple display connections to have widgets on multi-
ple displays. From the application’s point of view, multiple display connections usually are

treated together as a single unit for purposes of event dispatching. To accommodate both require-
ments, the Intrinsics define application contexts, each of which provides the information needed

to distinguish one application instance from another. The major component of an application
context is a list of one or more Bisplay pointers for that application. The Intrinsics handle all
display connections within a single application context simultaneously, handling input in a round-
robin fashion. The application context tygeAppContext is opaque to clients.

To initialize the Intrinsics internals, usé@Toolkitlnitialize .
void XtToolkitInitialize()
If XtToolkitInitialize was previously called, it returns immediately. WhgToolkitThrea-

dinitialize is called beforeXtToolkitlnitialize , the latter is protected against simultaneous acti-
vation by multiple threads.

To create an application context, bsreateApplicationContext.
XtAppContext XtCreateApplicationContext()

The XtCreateApplicationContext function returns an application context, which is an opaque
type. Every application must have at least one application context.

To destroy an application context and close any remaining display connections in it, use
XtDestroyApplicationContext.

void XtDestroyApplicationContexafpp _context
XtAppContextapp_context
app_context Specifies the application context.

The XtDestroyApplicationContext function destroys the specified application context. If called
from within an event dispatch (for example, in a callback proced¥tBestroyApplication-
Context does not destroy the application context until the dispatch is complete.

To get the application context in which a given widget was created, use
XtWidgetToApplicationContext .

XtAppContext XtWidgetToApplicationContexti
Widgetw;

w Specifies the widget for which you want the application context. Must be of class
Object or any subclass thereof.

27

X Toolkit Intrinsics X11 Release 6

The XtWidgetToApplicationContext function returns the application context for the specified
widget.

To initialize a display and add it to an application context XtBesplaylnitialize .

void XtDisplaylnitialize@pp_contextdisplay, application_namgapplication_class
options num_optionsargc, argv)
XtAppContextapp_context
Display *display,
Stringapplication_namg
Stringapplication_class
XrmOptionDescRecdptions
Cardinalnum_options
int *argc;
String *argy,

app_context Specifies the application context.

display Specifies a previously opened display connection. Note that a single dis-
play connection can be in at most one application context.

application_name Specifies the name of the application instance.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies how to parse the command line for any application-specific
resources. Theptionsargument is passed as a parameter to
XrmParseCommand. For further information, see Section 15.Kiib -
C Language X Interfacand Section 2.4 of this specification.

num_options Specifies the number of entries in the options list.
argc Specifies a pointer to the number of command line parameters.
argv Specifies the list of command line parameters.

The XtDisplaylnitialize function retrieves the language string to be used for the specified display
(see Section 11.11), calls the language procedure (if set) with that language string, builds the
resource database for the default screen, calls thexxiitarseCommand function to parse

the command line, and performs other per-display initialization. AfterParseCommand has
been calledargc andargv contain only those parameters that were not in the standard option
table or in the table specified by thgtionsargument. If the modifiedrgcis not zero, most
applications simply print out the modifiatgv along with a message listing the allowable

options. On POSIX-based systems, the application name is usually the final component of
argV0]. If the synchronous resourceTsue, XtDisplaylnitialize calls the XlibXSynchronize
function to put Xlib into synchronous mode for this display connection and any others currently
open in the application context. See Sections 2.3 and 2.4 for detailsapptioation_name
application_classoptions andnum_optionarguments.

XtDisplaylnitialize calls XrmSetDatabaseto associate the resource database of the default
screen with the display before returning.

28

X Toolkit Intrinsics X11 Release 6

To open a display, initialize it, and then add it to an application contexkt@eenDisplay.

Display *XtOpenDisplaydpp_contextdisplay_stringapplication_namgapplication_class
options num_optionsargc, argv)
XtAppContextapp_context
Stringdisplay_string
Stringapplication_namg
Stringapplication_class
XrmOptionDescRecdptions
Cardinalnum_options
int *argc;
String *argyv;

app_context Specifies the application context.
display_string Specifies the display string, or NULL.
application_name Specifies the name of the application instance, or NULL.

application_class Specifies the class name of this application, which is usually the generic
name for all instances of this application.

options Specifies how to parse the command line for any application-specific
resources. The options argument is passed as a parameter to
XrmParseCommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the list of command line parameters.

The XtOpenDisplay function callsXOpenDisplay with the specifiedlisplay_string If dis-
play_stringis NULL, XtOpenDisplay uses the current value of the —display option specified in
argv. If no display is specified iargv, the user’s default display is retrieved from the environ-
ment. On POSIX-based systems, this is the value dDIRBLAY environment variable.

If this succeedsXtOpenDisplay then callsXtDisplaylnitialize and passes it the opened display
and the value of the —name option specifiedrgv as the application name. If no —name option
is specified andpplication_nameés non-NULL, application_names passed to

XtDisplaylnitialize . If application_namés NULL and if the environment variable
RESOURCE_NAME is set, the value dcRESOURCE_NAME is used. Otherwise, the application
name is the name used to invoke the program. On implementations that conform to ANSI C
Hosted Environment support, the application name witliige{0] less any directory and file type
components, that is, the final componenagf{0], if specified. Ifargv{0] does not exist or is the
empty string, the application name is “mainXtOpenDisplay returns the newly opened display
or NULL if it failed.

See Section 7.12 for information regarding the usét@penDisplay in multiple threads.

To close a display and rawe itfrom an application context, uséCloseDisplay.
void XtCloseDisplaydisplay)

Display *display,
display Specifies the display.

The XtCloseDisplay function callsXCloseDisplay with the specifiedlisplayas soon as it is
safe to do so. If called from within an event dispatch (for example, a callback procedure),
XtCloseDisplay does not close the display until the dispatch is complete. Note that applications

29

X Toolkit Intrinsics X11 Release 6

need only calXtCloseDisplay if they are to continue executing after closing the display; other-
wise, they should caKtDestroyApplicationContext.

See Section 7.12 for information regarding the usét@ioseDisplay in multiple threads.

2.2. Establishing the Locale

Resource databases are specified to be created in the current process locale. During display ini-
tialization prior to creating the per-screen resource database, the Intrinsics will call out to a speci-
fied application procedure to set the locale according to options found on the command line or in
the per-display resource specifications.

The callout procedure provided by the application is of fteanguageProc.

typedef String (*XtLanguageProc)(Display*, String, XtPointer);
Display *display;
Stringlanguage
XtPointerclient_data

display Passes the display.

language Passes the initial language value obtained from the command line or server per-
display resource specifications.

client data Passes the additional client data specified in the cxliSetLanguageProc

The language procedure allows an application to set the locale to the value of the language
resource determined B¥tDisplaylnitialize . The function returns a new language string that
will be subsequently used IXtDisplaylnitialize to establish the path for loading resource files.
The returned string will be copied by the Intrinsics into new memory.

Initially, no language procedure is set by the Intrinsics. To set the language procedure for use by
XtDisplaylnitialize useXtSetLanguageProc

XtLanguageProc XtSetLanguagePigmf contextproc, client_datg
XtAppContextapp_context
XtLanguageProgroc;
XtPointerclient_data

app_context Specifies the application context in which the language procedure is to be used,

or NULL.

proc Specifies the language procedure.

client_data Specifies additional client data to be passed to the language procedure when it is
called.

XtSetLanguageProcsets the language procedure that will be called fxaDisplaylnitialize

for all subsequent Displays initialized in the specified application contexpplfcontexis

NULL, the specified language procedure is registered in all application contexts created by the
calling process, including any future application contexts that may be creatpuhcig NULL a
default language procedure is register&dSetLanguageProcreturns the previously registered
language procedure. If a language procedure has not yet been registered, the return value is
unspecified but if this return value is used in a subsequent céisttl anguageProg it will

cause the default language procedure to be registered.

30

X Toolkit Intrinsics X11 Release 6

The default language procedure does the following:

. Sets the locale according to the environment. On ANSI C-based systems this is done by
calling setlocald LC_ALL , language). If an error is encountered a warning message is
issued withXtWarning .

. Calls XSupportsLocale to verify that the current locale is supported. If the locale is not
supported, a warning message is issued Xitharning and the locale is set to “C”".
. Calls XSetLocaleModifiers specifying the empty string.

. Returns the value of the current locale. On ANSI C-based systems this is the return value
from a final call tosetlocalg LC_ALL , NULL).

A client wishing to use this mechanism to establish locale can do so by ¢éiietl anguage-
Proc prior to XtDisplaylnitialize , as in the following example.

Widget top;
XtSetLanguageProc(NULL, NULL, NULL);
top = XtOpenApplication(...);

2.3. Loading the Resource Database

The XtDisplaylnitialize function first determines the language string to be used for the specified
display. It then creates a resource database for the default screen of the display by combining the
following sources in order, with the entries in the first named source having highest precedence:

. Application command lineafgc, argv).
. Per-host user environment resource file on the local host.
. Per-screen resource specifications from the server.

. Per-display resource specifications from the server or from
the user preference file on the local host.

. Application-specific user resource file on the local host.
. Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either internally, or
when XtScreenDatabaseis called), it is created in the following manner using the sources listed
above inthe same order:

. A temporary database, the “server resource database”, is created from the string returned
by XResourceManagerStringor, if XResourceManagerStringreturns NULL, the con-
tents of a resource file in the user’'s home directory. On POSIX-based systems, the usual
name for this user preference resource file is $HOXAEfaults.

. If a language procedure has been XéDisplaylnitialize first searches the command line
for the option “-xnlLanguage”, or for a -xrm option that specifies the xnlLan-
guage/XnlLanguage resource, as specified by Section 2.4. If such a resource is found, the
value is assumed to be entirely in XPCS, the X Portable Character Set. If neither option is
specified on the command lingtDisplaylnitialize queries the server resource database

31

X Toolkit Intrinsics X11 Release 6

(which is assumed to be entirely in XPCS) for the resommoeexnlLanguage class
ClassXnlLanguage wherenameandClassare theapplication_namendapplica-
tion_classspecified toXtDisplaylnitialize . The language procedure is then invoked with

the resource value if found, else the empty string. The string returned from the language
procedure is saved for all future references in the Intrinsics that require the per-display lan-
guage string.

. The screen resource database is initialized by parsing the command line in the manner
specified by Section 2.4.

. If a language procedure has not been set, the initial database is then queried for the resource
namexnlLanguage classClassXnlLanguage as specified above. If this database query
fails, the server resource database is queried; if this query also fails, the language is deter-
mined from the environment; on POSIX-based systems, this is done by retrieving the value
of the LANG environment variable. If no language string is found, the empty string is
used. This language string is saved for all future references in the Intrinsics that require the
per-display language string.

. After determining the language string, the user’s environment resource file is then merged
into the initial resource database if the file exists. This file is user-, host-, and process-
specific and is expected to contain user preferences that are to override those specifications
in the per-display and per-screen resources. On POSIX-based systems, the user’s environ-
ment resource file name is specified by the value oXEMVIRONMENT environment
variable. If this environment variable does not exist, the user's home directory is searched
for a file namedXdefaults-host, wherehostis the host name of the machine on which the
application is running.

. The per-screen resource specifications are then merged into the screen resource database, if
they exist. These specifications are the string returneXiSoyeenResourceStringor the
respective screen and are owned entirely by the user.

. Next, the server resource database created earlier is merged into the screen resource
database. The server property, and corresponding user preference file, are owned and con-
structed entirely by the user.

. The application-specific user resource file from the local host is then merged into the screen
resource database. This file contains user customizations and is stored in a directory owned
by the user. Either the user or the application or both can store resource specifications in
the file. Each should be prepared to find and respect entries made by the other. The file
name is found by callingkrmSetDatabasewith the current screen resource database, after
preserving the original display-associated database, then cétiResolvePathnamewith
the parametersdisplay, NULL, NULL, NULL, path NULL, O, NULL) wherepathis
defined in an operating-system-specific way. On POSIX-based sygaimis defined to
be the value of the environment varialléSERFILESEARCHPATH if this is defined. If
XUSERFILESEARCHPATH is not defined, an implementation-dependent default value is
used. This default value is constrained in the following manner:

32

X Toolkit Intrinsics X11 Release 6

— If the environment variabl¥APPLRESDIR is not defined, the defaulUSERFILE-
SEARCHPATH must contain at least six entries. These entries must contain $HOME as
the directory prefix, plus the following substitutions:

%C, %N, %L or %C, %N, %l, %t, %c
%C, %N, %l

%C, %N

%N, %L or %N, %l, %t, %cC

%N, %l

%N

ok wnpE

The order of these six entries within the path must be as given above. The order and
use of substitutions within a given entry is implementation dependent.

— If XAPPLRESDIR is defined, the defauKUSERFILESEARCHPATH must contain at
least seven entries. These entries must contain the following directory prefixes and sub-

stitutions:

1. $XAPPLRESDIR with %C, %N, %L or %C, %N, %l, %t, %c
2. $XAPPLRESDIR with %C, %N, %l

3. $XAPPLRESDIR with %C, %N

4. $XAPPLRESDIR with %N, %L or %N, %l, %t, %c

5. $XAPPLRESDIR with %N, %l

6. $XAPPLRESDIR with %N

7. $HOME with %N

The order of these seven entries within the path must be as given above. The order and
use of substitutions within a given entry is implementation dependent.

. Lastly, the application-specific class resource file from the local host is merged into the
screen resource database. This file is owned by the application and is usually installed in a
system directory when the application is installed. It may contain site-wide customizations
specified by the system manager. The name of the application class resource file is found
by calling XtResolvePathnamewith the parameterslisplay, “app-defaults”, NULL,

NULL, NULL, NULL, 0, NULL). This file is expected to be provided by the developer of

the application and may be required for the application to function properly. A simple
application that wants to be assured of having a minimal set of resources in the absence of
its class resource file can declare fallback resource specifications with
XtAppSetFallbackResources Note that the customization substitution string is retrieved
dynamically byXtResolvePathnameso that the resolved file name of the application class
resource file can be affected by any of the earlier sources for the screen resource database,
even though the contents of the class resource file have lowest precedence. After calling
XtResolvePathname the original display-associated database is restored.

To obtain the resource database for a particular screeXt8seenDatabase

XrmDatabase XtScreenDatabaszéen)
Screen screen

33

X Toolkit Intrinsics X11 Release 6

screen Specifies the screen whose resource database is to be returned.

The XtScreenDatabasefunction returns the fully merged resource database as specified above,
associated with the specified screen. If the spedfiezbndoes not belong to Risplay initial-
ized by XtDisplaylnitialize , the results are undefined.

To obtain the default resource database associated with a particular dispktatsdase.

XrmDatabase XtDatabash$play)
Display *display,

display Specifies the display.

The XtDatabasefunction is equivalent tXrmGetDatabase. It returns the database associated
with the specified display, or NULL if a database has not been set.

To specify a default set of resource values that will be used to initialize the resource database if no
application-specific class resource file is found (the last of the six sources listed above), use
XtAppSetFallbackResources

void XtAppSetFallbackResources(p_contextspecification_list
XtAppContextapp_context
String *specification_list

app_context Specifies the application context in which the fallback specifications will be
used.

specification_list Specifies a NULL-terminated list of resource specifications to preload the
database, or NULL.

Each entry irspecification_lispoints to a string in the format dfrmPutLineResource. Fol-

lowing a call toXtAppSetFallbackResources when a resource database is being created for a
particular screen and the Intrinsics are not able to find or read an application-specific class
resource file according to the rules giveoadand if specification_lists not NULL the resource
specifications irspecification_liswill be merged into the screen resource database in place of the
application-specific class resource filétAppSetFallbackResourcesis not required to copy
specification_listthe caller must ensure that the contents of the list and of the strings addressed
by the list remain valid until all displays are initialized or utiRppSetFallbackResourcesis

called again. The value NULL fapecification_listemoves any previous fallback resource spec-
ification for the application context. The intended use for fallback resources is to provide a mini-
mal number of resources that will make the application usable (or at least terminate with helpful
diagnostic messages) when some problem exists in finding and loading the application defaults
file.

2.4. Parsing the Command Line
The XtOpenDisplay function first parses the command line for the following options:

—display Specifies the display name K@penDisplay.
—name Sets the resource name prefix, which overrides the application name passed to
XtOpenDisplay.

—xnllanguage Specifies the initial language string for establishing locale and for finding appli-
cation class resource files.

34

X Toolkit Intrinsics X11 Release 6

XtDisplaylnitialize has a table of standard command line options that are passadfar-
seCommandfor adding resources to the resource database, and it takes as a parameter additional
application-specific resource abbreviations. The format of this table is described in Section 15.9
in Xlib — C Language X Interface

typedef enum {

XrmoptionNoArg, /* Value is specified in OptionDescRec.value */
XrmoptionlsArg, [* Value is the option string itself */
XrmoptionStickyArg, /* Value is characters immediately following option */
XrmoptionSepArg, /* Value is next argument in argv */
XrmoptionResArg, /* Use the next argument as input to XrmPutLineResource*/
XrmoptionSkipArg, /* Ignore this option and the next argument in argv */
XrmoptionSkipNArgs, * Ignore this option and the next */
[* OptionDescRec.value arguments in argv */

XrmoptionSkipLine /* Ignore this option and the rest of argv */

} XrmOptionKind;

typedef struct {

char *option;
char *specifier;

/* Option name in argv */

/* Resource name (without application name) */
XrmOptionKind argKind; /* Location of the resource value */
XPointer value; /* Value to provide if XrmoptionNoArg */

} XrmOptionDescRec, *XrmOptionDescList;

The standard table contains the following entries:

Option String Resource Name Argument Kind Resource Value

—background *background SepArg next argument
-bd *borderColor SepArg next argument
-bg *background SepArg next argument
—borderwidth .borderWidth SepArg next argument
—bordercolor *borderColor SepArg next argument
—bw .borderWidth SepArg next argument
—display display SepArg next argument
—fg *foreground SepArg next argument
-fn *font SepArg next argument
—font *font SepArg next argument
—foreground *foreground SepArg next argument
—geometry .geometry SepArg next argument
—iconic .iconic NoArg “true”

—name .name SepArg next argument
—reverse .reverseVideo NoArg “on”

-rv .reverseVideo NoArg “on”

+rv .reverseVideo NoArg “off”
—selectionTimeout .selectionTimeout SepArg next argument
—-synchronous .synchronous NoArg “on”
+synchronous .synchronous NoArg “off”

—title title SepArg next argument

35

X Toolkit Intrinsics X11 Release 6

—xnllanguage xnlLanguage SepArg next argument
—Xrm next argument ResArg next argument
—xtsessionID .sessionlD SepArg next argument

Note that any unique abbreviation for an option name in the standard table or in the application
table is accepted.

If reverseVideo islrue, the values oXtDefaultForeground and XtDefaultBackground are
exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into synchronous
mode. If a value is found in the resource database during display initializ&tdisplaylnitial-

ize makes a call ta(Synchronize for all display connections currently open in the application
context. Therefore, when multiple displays are initialized in the same application context, the
most recent value specified for the synchronous resource is used for all displays in the application
context.

The value of the selectionTimeout resource applies to all displays opened in the same application
context. When multiple displays are initialized in the same application context, the most recent
value specified is used for all displays in the application context.

The —xrm option provides a method of setting any resource in an application. The next argument
should be a quoted string identical in format to a line in the user resource file. For example, to
give a red background to all command buttons in an application namledyou can start it up

as

xmh —xrm 'xmh*Command.background: red’

When it parses the command lin@DisplayInitialize merges the application option table with

the standard option table before calling the XitmParseCommand function. An entry in the
application table with the same name as an entry in the standard table overrides the standard table
entry. If an option name is a prefix of another option name, both names are kept in the merged
table. The Intrinsics reserve all option names beginning with the characters “-xt” for future stan-
dard uses.

2.5. Creating Widgets
The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added to the
managed subset of their parent.

2. All composite widgets are notified of their managed children in a bottom-up traversal of the
widget tree.

3. The widgets create X windows, which then are mapped.

To start the first phase, the application cXli€reateWidget for all its widgets and adds some

(usually, most or all) of its widgets to their respective parents’ managed set by calling
XtManageChild. To avoid arO(n?) creation process where each composite widget lays itself

out each time a widget is created and managed, parent widgets are not notified of changes in their
managed set during this phase.

After all widgets have been created, the application éaRealizeWidget with the top-level
widget to execute the second and third pha3@RealizeWidget first recursively traverses the

36

X Toolkit Intrinsics X11 Release 6

widget tree in a postorder (bottom-up) traversal and then notifies each composite widget with one
or more managed children by means of its change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry negoti-
ation. A parent deals with constraints on its size imposed fravedfor example, when a user
specifies the application window size) and suggestions made from below (for example, when a
primitive child computes its preferred size). One difference between the two can cause geometry
changes to ripple in both directions through the widget tree. The parent may force some of its
children to change size and position and may issue geometry requests to its own parent in order to
better accommodate all its children. You cannot predict where anything will go on the screen

until this process finishes.

Consequently, in the first and second phases, no X windows are actually created, because it is
likely that they will get moved around after creation. This avoids unnecessary requests to the X
server.

Finally, XtRealizeWidget starts the third phase by making a preorder (top-down) traversal of the
widget tree, allocates an X window to each widget by means of its realize procedure, and finally
maps the widgets that are managed.

2.5.1. Creating and Merging Argument Lists

Many Intrinsics functions may be passed pairs of resource names and values. These are passed as
an arglist, a pointer to an array Afg structures, which contains

typedef struct {
String name;
XtArgVal value;
} Arg, *ArgList;
whereXtArgVal is as defined in Section 1.5.

If the size of the resource is less than or equal to the sizeXtiagVal , the resource value is
stored directly irvalue otherwise, a pointer to it is storedvalue

To set values in aArgList , useXtSetArg.
void XtSetArgarg, name valug
Arg arg;
Stringname
XtArgVal value
arg Specifies th@mame/valugair to set.
name Specifies the name of the resource.
value Specifies the value of the resource if it will fit in 4tArgVal , else the address.

The XtSetArg function is usually used in a highly stylized manner to minimize the probability of
making a mistake; for example:

Arg args[20];

int n;

n=0;

XtSetArg(args[n], XtNheight, 100); n++;
XtSetArg(args[n], XtNwidth, 200); n++;

37

X Toolkit Intrinsics X11 Release 6

XtSetValues(widget, args, n);
Alternatively, an application can statically declare the argument list angthsenber :

static Args args[] ={
{XtNheight, (XtArgVal) 100},
{XtNwidth, (XtArgVal) 200},

2

XtSetValues(Widget, args, XtNumber(args));

Note that you should not use expressions with side effects such as auto-increment or auto-
decrement within the first argumentXeSetArg. XtSetArg can be implemented as a macro
that evaluates the first argument twice.

To merge two arglist arrays, ud¢MergeArgLists .

ArgList XtMergeArgListsargsl, num_argslargs2 num_args2
ArgList args],
Cardinalnum_argsi
ArgList args2
Cardinalnum_args2

argsl Specifies the first argument list.

num_argsl Specifies the number of entries in the first argument list.
args2 Specifies the second argument list.

num_args2 Specifies the number of entries in the second argument list.

The XtMergeArgLists function allocates enough storage to hold the combined arglist arrays and
copies them into it. Note that it does not check for duplicate entries. The length of the returned
list is the sum of the lengths of the specified lists. When it is no longer needed, free the returned
storage by usingtFree.

All Intrinsics interfaces that requirrgList arguments have analogs conforming to the ANSI C
variable argument list (traditionally called “varargs”) calling convention. The name of the analog
is formed by prefixing “Va” to the name of the correspondiugList procedure; e.g.,
XtVaCreateWidget. Each procedure namedVasomethingakes as its last arguments, in place

of the correspondindrgList / Cardinal parameters, a variable parameter list of resource name
and value pairs where each name is of $§fring and each value is of typ&ArgVval . The end

of the list is identified by aameentry containing NULL. Developers writing in the C language
wishing to pass resource name and value pairs to any of these interfaces mayAngkisheand
varargs forms interchangeably.

Two special names are defined for use only in varargs Xst&TypedArg and
XtVaNestedList.

#define XtVaTypedArg "XtVaTypedArg"

If the nameXtVaTypedArg is specified in place of a resource name, then the following four
arguments are interpreted asaame/type/value/sizaplewherename is of typestring, typeis of
type String, valueis of typeXtArgVal , andsizeis of type int. When a varargs list containing
XtVaTypedArg is processed, a resource type conversion (see Section 9.6) is performed if

38

X Toolkit Intrinsics X11 Release 6

necessary to convert the value into the format required by the associated resdypesgs If
XtRString thenvaluecontains a pointer to the string asidecontains the number of bytes allo-
cated, including the trailing null byte. tifpeis not XtRString, theif size is less than or equal to
sizeo{XtArgVal), the value should be the data cast to the ¥tg#egVal , otherwisevalueis a

pointer to the data. If the type conversion fails for any reason, a warning message is issued and
the list entry is skipped.

#define XtVaNestedList "XtVaNestedList"

If the nameXtVaNestedList is specified in place of a resource name, then the following argu-
ment is interpreted as aftVarArgsList value, which specifies another varargs list that is logi-
cally inserted into the original list at the point of declaration. The end of the nested list is identi-
fied with a name entry containing NULL. Varargs lists may nest to any depth.

To dynamically allocate a varargs list for use wittvaNestedList in multiple calls, use
XtVaCreateArgsList.

typedef XtPointer XtVarArgsList;

XtVarArgsList XtVaCreateArgsList(nused...)
XtPointerunused

unused This argument is not currently used and must be specified as NULL.
Specifies a variable parameter list of resource name and value pairs.

The XtVaCreateArgsList function allocates memory and copies its arguments into a single list
pointer, which may be used wiKtVaNestedList. The end of both lists is identified byname

entry containing NULL. Any entries of typ¥tVaTypedArg are copied as specified without
applying conversions. Data passed by reference (including Strings) are not copied, only the
pointers themselves; the caller must ensure that the data remain valid for the lifetime of the cre-
ated varargs list. The list should be freed usfigree when no longer needed.

Use of resource files and the resource database is generally encouraged over lengthy arglist or
varargs lists whenever possible in order to permit modification without recompilation.

2.5.2. Creating a Widget Instance
To create an instance of a widget, X¢€reateWidget.

Widget XtCreateWidget@me object_classparent args, num_arg3
Stringname
WidgetClassbject_class
Widgetparent
ArgList args
Cardinalnum_args

name Specifies the resource instance name for the created widget, which is used for
retrieving resources and, for that reason, should not be the same as any other wid-
get that is a child of the same parent.

object_class Specifies the widget class pointer for the created object. MuijbetClassor
any subclass thereof.

39

X Toolkit Intrinsics X11 Release 6

paren
args

t Specifies the parent widget. Must be of class Object or any subclass thereof.
Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.
The XtCreateWidget function performs all the boilerplate operations of widget creation, doing

the fo

llowing in order:

Checks to see if the class_initialize procedure has been called for this class and for all
superclasses and, if not, calls those necessary in a superclass-to-subclass order.

If the specified class is nabreWidgetClassor a subclass thereof, and the parent’s class is
a subclass ofompositeWidgetClassand either no extension record in the parent’s com-
posite class part extension field exists withrbeord_typeNULLQUARK or the
accepts_objectield in the extension record izalse, XtCreateWidget issues a fatal error;
see Section 3.1 and Chapter 12.

If the specified class contains an extension record in the object classtpasiorfield

with record_typeNULLQUARK and theallocatefield is not NULL, the procedure is

invoked to allocate memory for the widget instance. If the parent is a member of the class
constraintWidgetClass, the procedure also allocates memory for the parent’s constraints
and stores the address of this memory intctmstraintsfield. If no allocate procedure is
found, the Intrinsics allocate memory for the widget and, when applicable, the constraints,
and initializes theonstraintsfield.

Initializes the Core nonresource data fieddK parent widget_classbeing_destroyed
name managedwindow; visible popup_list andnum_popups

Initializes the resource fields (for exampgdackground_pixélby using theCoreClassPart
resource lists specified for this class and all superclasses.

If the parent is a member of the clasmstraintWidgetClass, initializes the resource
fields of the constraints record by using @enstraintClassPart resource lists specified
for the parent’s class and all superclasses wotstraintWidgetClass.,

Calls the initialize procedures for the widget starting at the Object initialize procedure on
down to the widget'’s initialize procedure.

If the parent is a member of the clasmstraintWidgetClass, calls theConstraintClass-
Part initialize procedures, starting abnstraintWidgetClasson down to the parent’s
ConstraintClassPart initialize procedure.

If the parent is a member of the clagsnpositeWidgetClass puts the widget into its par-
ent’s children list by calling its parent’s insert_child procedure. For further information,
see Section 3.1.

To create an instance of a widget using varargs listsXt\sCreateWidget.
Widget XtVaCreateWidget@me object_classparent ...)

St

ringname

WidgetClasbject_class
Widgetparent

name

Specifies the resource name for the created widget.

object_class Specifies the widget class pointer for the created object. MuijbetClassor

paren

any subclass thereof.
t Specifies the parent widget. Must be of class Object or any subclass thereof.

40

X Toolkit Intrinsics X11 Release 6

Specifies the variable argument list to override any other resource specifications.

The XtVaCreateWidget procedure is identical in function ¥tCreateWidget with theargsand
num_arggarameters replaced by a varargs list, as described in Section 2.5.1.

2.5.3. Creating an Application Shell Instance

An application can have multiple top-level widgets, each of which specifies a unique widget tree
which can potentially be on different screens or displays. An applicatiorXusppCre-
ateShellto create independent widget trees.

Widget XtAppCreateShelame application_classwidget_classdisplay,

args num_arg$

Stringname

Stringapplication_class

WidgetClassvidget_class

Display *display,

ArglList args

Cardinalnum_args

name Specifies the instance name of the shell widgetatfieis NULL, the appli-
cation name passed ¥iDisplaylnitialize is used.

application_class Specifies the resource class string to be used in place of the widget
class_nametring whenwidget_classs applicationShellWidgetClassor a
subclass thereof.

widget_class Specifies the widget class for the top-level widget (e.g.,
applicationShellwidgetClas9g

display Specifies the display for the default screen and for the resource database used
to retrieve the shell widget resources.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtAppCreateShell function creates a new shell widget instance as the root of a widget tree.
The screen resource for this widget is determined by first scaamgafpr the XtNscreen argu-
ment. If no XtNscreen argument is found, the resource database associated with the default
screen of the specified display is queried for the resmancescreen, clas€lassScreen where
Classis the specifie@pplication_classf widget_classs applicationShellWidgetClassor a

subclass thereof. ifidget classs notapplicationShellwidgetClassor a subclas<;lassis the
class_namdield from theCoreClassPartof the specifiedvidget_class If this query fails, the
default screen of the specified display is used. Once the screen is determined, the resource
database associated with that screen is used to retrieve all remaining resources for the shell widget
not specified irargs The widget name andlassas determined @lveare used as the leftmost

(i.e., root) components in all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WMShell, the nam€lassas determined above
will be stored into th&VM_CLASS property on the widget’s window when it becomes realized.
If the specifiedvidget classs applicationShellWidgetClassor a subclass thereof the
WM_COMMAND property will also be set from the values of the XtNargv and XtNargc
resources.

41

X Toolkit Intrinsics X11 Release 6

To create multiple top-level shells within a single (logical) application, you can use one of two
methods:

. Designate one shell as the real top-level shell and create the others as pop-up children of it
by usingXtCreatePopupShell

. Have all shells as pop-up children of an unrealized top-level shell.

The first method, which is best used when there is a clear choice for what is the main window,
leads to resource specifications like the following:

xmail.geometry:... (the main window)
xmail.read.geometry:... (the read window)
Xmail.compose.geometry:... (the compose window)

The second method, which is best if there is no main window, leads to resource specifications like
the following:

xmail.headers.geometry:... (the headers window)
xmail.read.geometry:... (the read window)
xmail.compose.geometry:... (the compose window)

To create a top-level widget that is the root of a widget tree using varargs lists, use
XtVaAppCreateShell.

Widget XtVaAppCreateSheh@me application_classwidget_classdisplay; ...)
Stringname
Stringapplication_class
WidgetClassvidget_class
Display *display,

name Specifies the instance name of the shell widgehamheis NULL, the applica-
tion name passed ¥tDisplaylnitialize is used.

application_class
Specifies the resource class string to be used in place of the alakgetname
string whenwidget_classs applicationShellWidgetClassor a subclass thereof.

widget_class Specifies the widget class for the top-level widget.

display Specifies the display for the default screen and for the resource database used to
retrieve the shell widget resources.

Specifies the variable argument list to override any other resource specifications.

The XtVaAppCreateShell procedure is identical in function ¥tAppCreateShell with theargs
andnum_argarameters replaced by a varargs list, as described in Section 2.5.1.

2.5.4. Convenience Procedure to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial root shell instance, an application ma)Xi@eenApplication or
XtVaOpenApplication .

42

X Toolkit Intrinsics X11 Release 6

Widget XtOpenApplicatiordgpp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback_resourceswvidget_classargs, num_arg3
XtAppContext "app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_out
String *argv_in_ouf
String *fallback_resources
WidgetClassvidget_class
ArgList args
Cardinalnum_args

app_context_return Returns the application context, if non-NULL.
application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesoptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies a pointer to the command line arguments.

fallback_resources Specifies resource values to be used if the application class resource file
cannot be opened or read, or NULL.

widget_class Specifies the class of the widget to be created. Must be shellWidgetClass
or a subclass.

args Specifies the argument list to override any other resource specifications
for the created shell widget.

num_args Specifies the number of entries in the argument list.

The XtOpenApplication function callsXtToolkitInitialize followed by
XtCreateApplicationContext, then callsXtOpenDisplay with display_stringNULL and appli-
cation_nameNULL, and finally callsXtAppCreateShell with nameNULL, the specifiedvid-
get_classan argument list and count, and returns the created shell. The recommvahded
get_classs sessionShellWidgetClass The argument list and count are created by merging the
specifiedargsandnum_argswith a list containing the specifieslgc andargv. The modified
argcandargv returned byXtDisplaylnitialize are returned iargc_in_outandargv_in_out If
app_context_returis not NULL, the created application context is also returned. If the display
specified by the command line cannot be opened, an error message is issxidpamdppli-
cation terminates the application. fillback resourcess non-NULL, XtAppSetFallbackRe-
sourcesis called with the value prior to callingtOpenDisplay.

43

X Toolkit Intrinsics X11 Release 6

Widget XtVaOpenApplicatior®@pp_context_returrapplication_classoptions num_options
argc_in_outargv_in_out fallback_resourceswvidget_class...)
XtAppContext "app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_out
String *argv_in_ouf
String *fallback_resources
WidgetClasswvidget_class

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesoptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies the command line arguments array.

fallback resources Specifies resource values to be used if the application class resource file
cannot be opened, or NULL.

widget_class Specifies the class of the widget to be created. Must be shellWidgetClass
or a subclass.

Specifies the variable argument list to override any other resource specifi-
cations for the created shell.

The XtVaOpenApplication procedure is identical in function XtOpenApplication with the
argsandnum_arggparameters replaced by a varargs list, as described in Section 2.5.1.

2.5.5. Widget Instance Allocation: the allocate Procedure

A widget class may optionally provide an instance allocation procedure @itjeetClassEx-
tension record.

When the call to create a widget includes a varargs list contaitveglypedArg , these argu-
ments will be passed to the allocation procedure iKtdgpedArgList .

typedef struct {
String name;
String type;
XtArgVal value;
int size;
} XtTypedArg, *XtTypedArgList;

The allocate procedure pointer in &jectClassExtensionrecord is of typexXtAllocateProc.

44

X Toolkit Intrinsics X11 Release 6

typedef void (*XtAllocateProc)(WidgetClass, Cardinal*, Cardinal*, ArgList, Cardinal*,
XtTypedArgList, Cardinal*, Widget*, XtPointer*);
WidgetClassvidget_class
Cardinal*constraint_sizp
Cardinal*more_bytes
ArgList args
Cardinal*num_args
XtTypedArgListtyped_args
Cardinal*num_typed_args
Widget* new_return
XtPointer* more_bytes_return

widget_class Specifies the widget class of the instance to allocate.

constraint_size Specifies the size of the constraint record to allocate, or 0.

more_bytes Specifies the number of auxiliary bytes of memory to allocate.

args Specifies the argument list as given in the call to create the widget.

num_args Specifies the list of arguments.

typed_args Specifies the list of typed arguments given in the call to create the wid-
get.

num_typed_args Specifies the number of typed arguments.

new_return Returns a pointer to the newly allocated instance, or NULL in case of
error.

more_bytes_return Returns the auxiliary memory if it was requested, or NULL if requested
and an error occurred; otherwise, unchanged.

At widget allocation time, if an extension record witicord typeequal toNULLQUARK is

located through the object class pattensiorfield and theallocatefield is not NULL, theXtAl-
locateProcwill be invoked to allocate memory for the widget. If no ObjectClassPart extension
record is declared witlfecord_type equab NULLQUARK , then XtInheritAllocate and XtIn-
heritDeallocate are assumed. If n&tAllocateProc is found, the Intrinsics will allocate mem-
ory for the widget.

An XtAllocateProc must perform the following:

. Allocate memory for the widget instance and return itéw_return The memory must be
at leastwc->core_class.widget_sizgytes in length, double word aligned.

. Initialize thecore.constraintgield in the instance record to NULL or to point to a con-
straint record. Itonstraint_sizés not 0, the procedure must allocate memory for the con-
straint record. The memory must be double word aligned.

. If more_bytess not 0, then the address of a block of memory at teast_bytesn size,
double word aligned, must be returned inniere_bytes_returparameter, or NULL to
indicate an error.

A class allocation procedure which envelopes the allocation procedure of a superclass must rely
on the enveloped procedure to perform the instance and constraint allocation. Allocation proce-
dures are discouraged from initializing fields in the widget record but if they choose to do so they
should not touch the instance part of any superclass.

45

X Toolkit Intrinsics X11 Release 6

2.5.6. Widget Instance Initialization: the initialize Procedure
The initialize procedure pointer in a widget class is of tffaitProc .
typedef void (*XtInitProc)(Widget, Widget, ArgList, Cardinal*);

Widgetrequest
Widgetnew
ArglList args
Cardinal num_args
request Specifies a copy of the widget with resource values as requested by the argument
list, the resource database, and the widget defaults.
new Specifies the widget with the new values, both resource and nonresource, that are
actually allowed.
args Specifies the argument list passed by the client, for computing derived resource

values. If the client created the widget using a varargs form, any resources speci-
fied via XtVaTypedArg are converted to the widget representation and the list is
transformed into thérgList format.

num_args Specifies the number of entries in the argument list.
An initialization procedure performs the following:

Allocates space for and copies any resources referenced by address that the client is
allowed to free or modify after the widget has been created. For example, if a widget has a
field that is aString, it may choose not to depend on the characters at that address remain-
ing constant but dynamically allocate space for the string and copy it to the new space.
Widgets that do not copy one or more resources referenced by address should clearly so
state in their user documentation.

Note
It is not necessary to allocate space for or to copy callback lists.

Computes values for unspecified resource fields. For exampligltifandheightare zero,
the widget should compute an appropriate width and height based on its other resources.

Note

A widget may only directly assign its owvidth andheightwithin the initial-
ize, initialize_hook, set_values and set_values_hook procedures; see Chapter 6.

Computes values for uninitialized nonresource fields that are derived from resource fields.
For example, graphics contexts (GCs) that the widget uses are derived from resources like
background, foreground, and font.

An initialization procedure also can check certain fields for internal consistency. For example, it
makes no sense to specify a colormap for a depth that does not support that colormap.

Initialization procedures are called in superclass-to-subclass order after all fields specified in the
resource lists have been initialized. The initialize procedure does not need to exaymarel

num_

argdf all public resources are declared in the resource list. Most of the initialization code

for a specific widget class deals with fields defined in that class and not with fields defined in its
superclasses.

If a subclass does not need an initialization procedure because it does not need to perform any of
the almve operations, it can specify NULL for theitialize field in the class record.

46

X Toolkit Intrinsics X11 Release 6

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass are often incorrect for a subclass, and in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and
height calculated by the superclass initialize procedure are too small and need to be incremented
by the size of the surround. The subclass needs to know if its superclass’s size was calculated by
the superclass or was specified explicitly. All widgets must place themselves into whatever size is
explicitly given, but they should compute a reasonable size if no size is requested.

Therequestandnewarguments provide the necessary information for a subclass to determine the
difference between an explicitly specified field and a field computed by a superclassquidss

widget is a copy of the widget as initialized by the arglist and resource databassevilieget

starts with the values in the request, but it has been updated by all superclass initialization proce-
dures called so far. A subclass initialize procedure can compare these two to resolve any potential
conflicts.

In the alove xample, the subclass with the visual surround can seewithie andheightin the
requestwidget are zero. If so, it adds its surround size tontidéh andheightfields in thenew
widget. If not, it must make do with the size originally specified.

Thenewwidget will become the actual widget instance record. Therefore, the initialization pro-
cedure should do all its work on thewwidget; therequestwidget should never be modified. If
the initialize procedure needs to call any routines that operate on a widget, it shouldrepecify
as the widget instance.

2.5.7. Constraint Instance Initialization: the ConstraintClassPart initialize Procedure

The constraint initialization procedure pointer, found in@wnstraintClassPart initialize field

of the widget class record, is of typ@lnitProc . The values passed to the parent constraint ini-
tialization procedures are the same as those passed to the child’s class widget initialization proce-
dures.

Theconstraintdfield of therequestwidget points to a copy of the constraints record as initialized
by the arglist and resource database.

The constraint initialization procedure should compute any constraint fields derived from con-
straint resources. It can make further changes toghavidget to make the widget and any other
constraint fields conform to the specified constraints, for example, changing the widget'’s size or
position.

If a constraint class does not need a constraint initialization procedure, it can specify NULL for
theinitialize field of theConstraintClassPart in the class record.
2.5.8. Nonwidget Data Initialization: the initialize_hook Procedure

Note

The initialize_hook procedure is obsolete, as the same information is now available
to the initialize procedure. The procedure has been retained for those widgets that
used it in previous releases.

The initialize_hook procedure pointer is of tygArgsProc:

47

X Toolkit Intrinsics X11 Release 6

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widgetw;
ArglList args
Cardinal num_args

w Specifies the widget.

args Specifies the argument list passed by the client. If the client created the widget
using a varargs form, any resources specifieckiaTypedArg are converted
to the widget representation and the list is transformed intAieist format.
num_args Specifies the number of entries in the argument list.
If this procedure is not NULL, it is called immediately after the corresponding initialize proce-
dure or in its place if thimitialize field is NULL.

The initialize_hook procedure allows a widget instance to initialize nonresource data using infor-
mation from the specified argument list as if it were a resource.

2.6. Realizing Widgets
To realize a widget instance, uxeRealizeWidget.
void XtRealizeWidgetf)

Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is already realizeXtRealizeWidget simply returns. Otherwise it performs the fol-
lowing:

. Binds all action names in the widget's translation table to procedures (see Section 10.1.2).

. Makes a postorder traversal of the widget tree rooted at the specified widget and calls each
non-NULL change_managed procedure of all composite widgets that have one or more
managed children.

. Constructs arXSetWindowAttributes structure filled in with information derived from
the Core widget fields and calls the realize procedure for the widget, which adds any wid-
get-specific attributes and creates the X window.

. If the widget is not a subclass cdbmpositeWidgetClass XtRealizeWidget returns; oth-
erwise it continues and performs the following:

- Descends recursively to each of the widget's managed children and calls the realize
procedures. Primitive widgets that instantiate children are responsible for realizing
those children themselves.

- Maps all of the managed children windows that hmapped_when_managddue .
If a widget is managed butapped_when_managedFalse, the widget is allocated
visual space but is not displayed.

If the widget is a top-level shell widget (that is, it has no parent)reapbed when_managed
True, XtRealizeWidget maps the widget window.

XtCreateWidget, XtVaCreateWidget, XtRealizeWidget, XtManageChildren,
XtUnmanageChildren, XtUnrealizeWidget, XtSetMappedWhenManaged and XtDestroy-
Widget maintain the following invariants:

. If a composite widget is realized, then all its managed children are realized.

48

X Toolkit Intrinsics X11 Release 6

If a composite widget is realized, then all its managed children that have
mapped_when_managddue are mapped.

All Intrinsics functions and all widget routines should accept either realized or unrealized wid-
gets. When calling the realize or change_managed procedures for children of a composite wid-
get, XtRealizeWidget calls the procedures in reverse order of appearance @ampositePart
childrenlist. By default, this ordering of the realize procedures will result in the stacking order of
any newly created subwindows being top-to-bottom in the order of appearance on the list, and the
most recently created child will be at the bottom.

To check whether or not a widget has been realizedXtisRealized.
Boolean XtlsRealizedy)
Widgetw;
w Specifies the widget. Must be of class Object or any subclass thereof.

The XtIsRealized function returnsTrue if the widget has been realized, that is, if the widget has
a nonzero window ID. If the specified object is not a widget, the state of the nearest widget
ancestor is returned.

Some widget procedures (for example, set_values) might wish to operate differently after the wid-
get has been realized.

2.6.1. Widget Instance Window Creation: the realize Procedure
The realize procedure pointer in a widget class is of KtiealizeProc.
typedef void (*XtRealizeProc)(Widget, XtValueMask*, XSetWindowAttributes*);
Widgetw;
XtValueMask *alue_mask
XSetWindowAttributes attributes
w Specifies the widget.
value_mask Specifies which fields in thegtributesstructure are used.
attributes Specifies the window attributes to use in ¥ereateWindow call.
The realize procedure must create the widget's window.

Before calling the class realize procedure, the genéRealizeWidget function fills in a mask
and a correspondingSetWindowAttributes structure. It sets the following fields a@ttributes
and corresponding bits iralue_maskased on information in the widget core structure:

. Thebackground_pixmafor background_pixef background_pixmajs
XtUnspecifiedPixmap) is filled in from the corresponding field.

. Theborder_pixmagor border_pixelif border_pixmaps XtUnspecifiedPixmap) is filled
in from the corresponding field.

. Thecolormapis filled in from the corresponding field.

. Theevent_masis filled in based on the event handlers registered, the event translations
specified, whether thexposdield is non-NULL, and whetherisible_interests True.

. Thebit_gravityis set toNorthWestGravity if the exposdield is NULL.

These or any other fields in attributes and the corresponding batiim_maskan be set by the
realize procedure.

49

X Toolkit Intrinsics X11 Release 6

Note that because realize is not a chained operation, the widget class realize procedure must
update theXSetWindowAttributes structure with all the appropriate fields from non-Core super-
classes.

A widget class can inherit its realize procedure from its superclass during class initialization. The
realize procedure defined fooreWidgetClasscalls XtCreateWindow with the passed
value_maslandattributesand withwindow_classandvisualset toCopyFromParent. Both
compositeWidgetClassand constraintWidgetClassinherit this realize procedure, and most

new widget subclasses can do the same (see Section 1.6.10).

The most common noninherited realize procedureBisegravityin the mask and attributes to

the appropriate value and then create the window. For example, depending on its justification,
Label might sebit_gravityto WestGravity, CenterGravity , or EastGravity. Consequently,
shrinking it would just ravethe bits appropriately, and no exposure event is needed for repaint-
ing.

If a composite widget’s children should be realized in an order other than that specified (to control
the stacking order, for example), it should ¢célRealizeWidget on its children itself in the
appropriate order from within its own realize procedure.

Widgets that have children and whose class is not a subclasmpbsiteWidgetClassare
responsible for calling{tRealizeWidget on their children, usually from within the realize proce-
dure.

Realize procedures cannot manage or unmanage their descendants.

2.6.2. Window Creation Convenience Routine

Rather than call the XlilXCreateWindow function explicitly, a realize procedure should nor-
mally call the Intrinsics analo¥tCreateWindow, which simplifies the creation of windows for
widgets.

void XtCreateWindow, window_classvisual value_maskattributeg
Widgetw;
unsigned invindow_class
Visual *visual
XtValueMaskvalue_mask
XSetWindowAttributes attributes

w Specifies the widget that defines the additional window attributed. Must be of
class Core or any subclass thereof.

window_class Specifies the Xlib window class (for exampleputOutput , InputOnly , or

CopyFromParent).
visual Specifies the visual type (usualfopyFromParent).
value_mask Specifies which fields in thetributesstructure are used.
attributes Specifies the window attributes to use in ¥ereateWindow call.

The XtCreateWindow function calls the XlibXCreateWindow function with values from the
widget structure and the passed parameters. Then, it assigns the created window to the widget's
windowfield.

XtCreateWindow evaluates the following fields of the widget core structdepth screen par-
ent->core.windowyx, y, width, height andborder_width

50

X Toolkit Intrinsics X11 Release 6

2.7. Obtaining Window Information from a Widget

The Core widget class definition contains the screen and window idswiitewfield may be
NULL for a while (see Sections 2.5 and 2.6).

The display pointer, the parent widget, screen pointer, and window of a widget are available to the
widget writer by means of macros and to the application writer by means of functions.

Display *XtDisplay{w)

Widgetw;
w Specifies the widget. Must be of class Core or any subclass thereof.
XtDisplay returns the display pointer for the specified widget.

Widget XtParentf)
Widgetw;
w Specifies the widget. Must be of class Object or any subclass thereof.

XtParent returns the parent object for the specified widget. The returned object will be of class
Object or a subclass.

Screen *XtScreemy)

Widgetw;
w Specifies the widget. Must be of class Core or any subclass thereof.
XtScreen returns the screen pointer for the specified widget.

Window XtWindow{w)

Widgetw;
w Specifies the widget. Must be of class Core or any subclass thereof.
XtWindow returns the window of the specified widget.

The display pointer, screen pointer, and window of a widget or of the closest widget ancestor of a
nonwidget object are available by mean&tDisplayOfObject, XtScreenOfObject, and
XtWindowOfObiject .

Display *XtDisplayOfObject¢bjec)
Widgetobject
object Specifies the object. Must be of class Object or any subclass thereof.

XtDisplayOfObiject is identical in function toXtDisplay if the object is a widget; otherwise
XtDisplayOfObiject returns the display pointer for the nearest ancestobjettthat is of class
Widget or a subclass thereof.

Screen *XtScreenOfObjectibjec)
Widgetobject

51

X Toolkit Intrinsics X11 Release 6

object Specifies the object. Must be of class Object or any subclass thereof.

XtScreenOfObiject is identical in function toXtScreen if the object is a widget; otherwise
XtScreenOfObiject returns the screen pointer for the nearest ancestdj@ttthat is of class
Widget or a subclass thereof.

Window XtWindowOfObjectobjec)
Widgetobject

object Specifies the object. Must be of class Object or any subclass thereof.

XtWindowOfObiject is identical in function toXtWindow if the object is a widget; otherwise
XtWindowOfObject returns the window for the nearest ancestalpéctthat is of class Widget
or a subclass thereof.

To retrieve the instance name of an object, Xthéame.

String XtNamegbjec)
Widgetobject

object Specifies the object whose name is desired. Must be of class Object or any sub-
class thereof.

XtName returns a pointer to the instance name of the specified object. The storage is owned by
the Intrinsics and must not be modified. The name is not qualified by the names of any of the
object’s ancestors.

Several window attributes are locally cached in the widget instance. Thus, they can be set by the
resource manager andSetValuesas well as used by routines that derive structures from these
values (for exampledepthfor deriving pixmapsbackground_pixefor deriving GCs, and so on)

or in theXtCreateWindow call.

Thex, y, width, height andborder_widthwindow attributes are available to geometry managers.
These fields are maintained synchronously inside the Intrinsics. Whe@amnfigureWindow

is issued by the Intrinsics on the widget's window (on request of its parent), these values are
updated immediately rather than some time later when the server gendZategareNotify

event. (Infact, most widgets do not sel8atbstructureNotify events.) This ensures that all
geometry calculations are based on the internally consistent toolkit world rather than on either an
inconsistent world updated by asynchron@uonfigureNotify events or a consistent but slow

world in which geometry managers ask the server for window sizes whenever they need to lay out
their managed children (see Chapter 6).

2.7.1. Unrealizing Widgets

To destroy the windows associated with a widget and its non-pop-up descendants, use
XtUnrealizeWidget.

void XtUnrealizeWidgetf)
Widgetw;
w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is currently unrealizeXtUnrealizeWidget simply returns. Otherwise it performs
the following:

. Unmanages the widget if the widget is managed.

52

X Toolkit Intrinsics X11 Release 6

. Makes a postorder (child-to-parent) traversal of the widget tree rooted at the specified wid-
get and, for each widget that has declared a callback list resource named “unrealizeCall-
back”, executes the procedures on the XtNunrealizeCallback list.

. Destroys the widget’s window and any subwindows by caliiestroyWindow with the
specified widget'svindowfield.

Any events in the queue or which arrive following a calKttnrealizeWidget will be dis-
patched as if the window(s) of the unrealized widget(s) had never existed.

2.8. Destroying Widgets
The Intrinsics provide support

. To destroy all the pop-up children of the widget being destroyed and destroy all children of
composite widgets.

. To remove(and unmap) the widget from its parent.

. To call the callback procedures that have been registered to trigger when the widget is
destroyed.

. To minimize the number of things a widget has to deallocate when destroyed.
. To minimize the number akDestroyWindow calls when destroying a widget tree.

To destroy a widget instance, uxeDestroyWidget.

void XtDestroyWidgetf)
Widgetw;

w Specifies the widget. Must be of class Object or any subclass thereof.

The XtDestroyWidget function provides the only method of destroying a widget, including wid-
gets that need to destroy themselves. It can be called at any time, including from an application
callback routine of the widget being destroyed. This requires a two-phase destroy process in
order to avoid dangling references to destroyed widgets.

In phase 1XtDestroyWidget performs the following:
. If the being_destroyefleld of the widget isTrue, it returns immediately.

. Recursively descends the widget tree and setseimg_destroyetield to True for the
widget and all normal and pop-up children.

. Adds the widget to a list of widgets (the destroy list) that should be destroyed when it is
safe to do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after wl on the destroy list, then
w2 is not a descendent, either normal or pop-up, of wl.

Phase 2 occurs when all procedures that should execute as a result of the current event have been
called, including all procedures registered with the event and translation managers, that is, when
the current invocation oXtDispatchEvent is about to return, or immediately if not in
XtDispatchEvent.

In phase 2XtDestroyWidget performs the following on each entry in the destroy list in the
order specified:

. If the widget is not a pop-up child and the widget’s parent is a subclassmfosite-
WidgetClass, and if the parent is not being destroyed, it cdt'dnmanageChild on the
widget and then calls the widget’s parent’s delete child procedure (see Section 3.3).

53

X Toolkit Intrinsics X11 Release 6

. Calls the destroy callback procedures registered on the widget and all normal and pop-up
descendants in postorder (it calls child callbacks before parent callbacks).

The XtDestroyWidget function then makes second traversal of the widget and all normal and
pop-up descendants to perform the following three items on each widget in postorder:

. If the widget is not a pop-up child and the widget’s parent is a subclasssiraint-
WidgetClass, it calls theConstraintClassPart destroy procedure for the parent, then for
the parent’s superclass, until finally it calls thenstraintClassPart destroy procedure for
constraintWidgetClass.

. Calls theCoreClassPartdestroy procedure declared in the widget class, then the destroy
procedure declared in its superclass, until finally it calls the destroy procedure declared in
the Object class record. Callback lists are deallocated.

. If the widget class object class part contain®dmjectClassExtensionrecord with the
record_typeNULLQUARK and thedeallocatefield is not NULL, calls the deallocate pro-
cedure to deallocate the instance and if one exists, the constraint record. Otherwise, the
Intrinsics will deallocate the widget instance record and if one exists, the constraint record.

. Calls XDestroyWindow if the specified widget is realized (that is, has an X window). The
server recursively destroys all normal descendant windows. (Windows of realized pop-up
Shell children, and their descendants, are destroyed by a shell class destroy procedure.)

2.8.1. Adding and Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction of a widget, it
should register a destroy callback procedure for the widget. The destroy callback procedures use
the mechanism described in Chapter 8. The destroy callback list is identified by the resource
name XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback pro€dumbe-
stroywith client data to a widget by callingtAddCallback .

XtAddCallbackgv, XtNdestroyCallbackClientDestroy client_datg

Similarly, the following removes the application-supplied destroy callback proc€diereDe-
stroyby calling XtRemoveCallback.

XtRemoveCallbacky, XtNdestroyCallbackClientDestroy client_datg

TheClientDestroyargument is of typtCallbackProc; see Section 8.1.

2.8.2. Dynamic Data Deallocation: the destroy Procedure

The destroy procedure pointers in fbjectClassPart, RectObjClassPart, and CoreClass-
Part structures are of typ¥tWidgetProc.
typedef void (*XtWidgetProc)(Widget);

Widgetw;

w Specifies the widget being destroyed.

The destroy procedures are called in subclass-to-superclass order. Therefore, a widget's destroy
procedure only should deallocate storage that is specific to the subclass and should ignore the
storage allocated by any of its superclasses. The destroy procedure should only deallocate
resources that have been explicitly created by the subclass. Any resource that was obtained from

54

X Toolkit Intrinsics X11 Release 6

the resource database or passed in an argument list was not created by the widget and therefore
should not be destroyed by it. If a widget does not need to deallocate any storage, the destroy
procedure entry in its class record can be NULL.

Deallocating storage includes, but is not limited to, the following steps:

. Calling XtFree on dynamic storage allocated wittMalloc , XtCalloc, and so on.
. Calling XFreePixmap on pixmaps created with direct X calls.

. Calling XtReleaseGCon GCs allocated witiXtGetGC.

. Calling XFreeGC on GCs allocated with direct X calls.

. Calling XtRemoveEventHandler on event handlers added to other widgets.

. Calling XtRemoveTimeOut on timers created witXtAppAddTimeOut .

. Calling XtDestroyWidget for each child if the widget has children and is not a subclass of
compositeWidgetClass

During destroy phase 2 for each widget, the Intrinsicowertne widget from the modal cascade,
unregister all event handlers, remeall key, keyboard, button, and pointer grabs andorenall
callback procedures registered on the widget. Any outstanding selection transfers will time out.

2.8.3. Dynamic Constraint Data Deallocation: the ConstraintClassPart destroy Procedure

The constraint destroy procedure identified in@wnstraintClassPart structure is called for a
widget whose parent is a subclassonstraintWidgetClass. This constraint destroy procedure
pointer is of typeXtWidgetProc. The constraint destroy procedures are called in subclass-to-
superclass order, starting at the class of the widget’s parent and endamg@int-

WidgetClass. Therefore, a parent’s constraint destroy procedure only should deallocate storage
that is specific to the constraint subclass and not storage allocated by any of its superclasses.

If a parent does not need to deallocate any constraint storage, the constraint destroy procedure
entry in its class record can be NULL.

2.8.4. Widget Instance Deallocation: the deallocate Procedure

The deallocate procedure pointer in bjectClassExtensionrecord is of type
XtDeallocateProc.

typedef void (*XtDeallocateProc)(Widget, XtPointer);
Widgetwidget
XtPointermore_bytes

widget Specifies the widget being destroyed.

more_bytes Specifies the auxiliary memory received from the corresponding allocator along
with the widget, or NULL.

When a widget is destroyed, if @bjectClassExtensionrecord exists in the object class part
extensiorfield with record_typeNULLQUARK and thedeallocatefield is not NULL, the
XtDeallocateProcwill be called. If no ObjectClassPart extension record is declared with
record_typesqual toNULLQUARK , thenXtinheritAllocate and XtinheritDeallocate are

assumed. The responsibilities of the deallocate procedure are to deallocate the memory specified
by more_bytedf it is not NULL, to deallocate the constraints record as specified by the widget’s
core.constraintgield if it is not NULL, and to deallocate the widget instance itself.

55

X Toolkit Intrinsics X11 Release 6

If no XtDeallocateProcis found, it is assumed that the Intrinsics originally allocated the memory
and is responsible for freeing it.

2.9. Exiting from an Application

All X Toolkit applications should terminate by callingDestroyApplicationContext and then

exiting using the standard method for their operating system (typically, by ceXinépr

POSIX-based systems). The quickest way to make the windows disappear while exiting is to call
XtUnmapWidget on each top-level shell widget. The Intrinsics have no resources beyond those
in the program image, and the X server will free its resources when its connection to the applica-
tion is broken.

Depending upon the widget set in use, it may be necessary to explicitly destroy individual wid-
gets or widget trees witKtDestroyWidget before callingXtDestroyApplicationContext in

order to ensure that any required widget cleanup is properly executed. The application developer
must refer to the widget documentation to learn if a widget needs to perform additional cleanup
beyond that performed automatically by the operating system. If the client is a session participant
(see section 4.2) then the client may wish to resign from the session before exiting. See section
4.2.4 for details.

56

X Toolkit Intrinsics X11 Release 6

Chapter 3

Composite Widgets and Their Children

Composite widgets (widgets whose class is a subclassngpositeWidgetClas3 can have an
arbitrary number of children. Consequently, they are responsible for much more than primitive
widgets. Their responsibilities (either implemented directly by the widget class or indirectly by
Intrinsics functions) include

. Overall management of children from creation to destruction.
. Destruction of descendants when the composite widget is destroyed.

. Physical arrangement (geometry management) of a displayable subset of children (that is,
the managed children).

. Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procediitareateWidget and

XtDestroyWidget. XtCreateWidget adds children to their parent by calling the parent’s
insert_child procedureXtDestroyWidget removes children from their parent by calling the par-
ent’s delete_child procedure and ensures that all children of a destroyed composite widget also
get destroyed.

Only a subset of the total number of children is actually managed by the geometry manager and
hence possibly visible. For example, a composite editor widget supporting multiple editing

buffers might allocate one child widget for each file buffer, but it might only display a small num-
ber of the existing buffers. Widgets that are in this displayable subset are called managed widgets
and enter into geometry manager calculations. The other children are called unmanaged widgets
and, by definition, are not mapped by the Intrinsics.

Children are added to and removed from their parent’s managed set byXtMimgageChild,
XtManageChildren, XtUnmanageChild, XtUnmanageChildren, and
XtChangeManagedSet which notify the parent to recalculate the physical layout of its children
by calling the parent’s change_managed procedure. XtGeeateManagedWidget convenience
function callsXtCreateWidget and XtManageChild on the result.

Most managed children are mapped, but some widgets can be in a state where they take up physi-
cal space but do not show anything. Managed widgets are not mapped automatically if their
map_when_managdeld is False. The default isTrue and is changed by using
XtSetMappedWhenManaged

Each composite widget class declares a geometry manager, which is responsible for figuring out
where the managed children should appear within the composite widget's window. Geometry
management techniques fall into four classes:

Fixed boxes Fixed boxes have a fixed number of children created by the parent. All
these children are managed, and none ever makes geometry manager
requests.

Homogeneous boxes Homogeneous boxes treat all children equally and apply the same
geometry constraints to each child. Many clients insert and delete wid-
gets freely.

57

X Toolkit Intrinsics X11 Release 6

Heterogeneous boxes Heterogeneous boxes have a specific location where each child is
placed. This location usually is not specified in pixels, because the
window may be resized, but is expressed rather in terms of the relation-
ship between a child and the parent or between the child and other spe-
cific children. The class of heterogeneous boxes is usually a subclass
of Constraint .

Shell boxes Shell boxes typically have only one child, and the child’s size is usually
exactly the size of the shell. The geometry manager must communicate
with the window manager, if it exists, and the box must also accept
ConfigureNotify events when the window size is changed by the win-
dow manager.

3.1. Addition of Children to a Composite Widget: the insert_child Procedure

To add a child to the parent’s list of children, Ki€reateWidget function calls the parent’s
class routine insert_child. The insert_child procedure pointer in a composite widget is of type
XtWidgetProc.

typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Passes the newly created child.

Most composite widgets inherit their superclass’s operation. The insert_child routine in
CompositeWidgetClasgalls and inserts the child at the specified position ichiidrenlist,
expanding it if necessary.

Some composite widgets define their own insert_child routine so that they can order their children
in some convenient way, create companion controller widgets for a new widget, or limit the num-
ber or class of their child widgets. A composite widget class that wishes to allow nonwidget chil-
dren (see Chapter 12) must specif@@mpositeClassExtensiorextension record as described in
section 1.4.2.1 and set thecepts_objectfield in this record tdlrue . If the CompositeClas-
sExtensionrecord is not specified or tlaecepts_objectiield is False, the composite widget can
assume that all its children are of a subclass of Core without an explicit subclass test in the
insert_child procedure.

If there is not enough room to insert a new child indhidrenarray (that isnum_childreris

equal tonum_slot} the insert_child procedure must first reallocate the array and update
num_slots The insert_child procedure then places the child at the appropriate position in the
array and increments timeim_childrerfield.

3.2. Insertion Order of Children: the insert_position Procedure

Instances of composite widgets sometimes need to specify more about the order in which their
children are kept. For example, an application may want a set of command buttons in some logi-
cal order grouped by function, and it may want buttons that represent file names to be kept in
alphabetical order without constraining the order in which the buttons are created.

An application controls the presentation order of a set of children by supplying an XtNinsertPosi-
tion resource. The insert_position procedure pointer in a composite widget instance is of type
XtOrderProc .

58

X Toolkit Intrinsics X11 Release 6

typedef Cardinal (*XtOrderProc)(Widget);
Widgetw;

w Passes the newly created widget.

Composite widgets that allow clients to order their children (usually homogeneous boxes) can call
their widget instance’s insert_position procedure from the class’s insert_child procedure to deter-
mine where a new child should go indtsildrenarray. Thus, a client using a composite class can
apply different sorting criteria to widget instances of the class, passing in a different
insert_position procedure resource when it creates each composite widget instance.

The return value of the insert_position procedure indicates how many children should go before
the widget. Returning zero indicates that the widget should go before all other children, and
returningnum__childrenndicates that it should go after all other children. The default
insert_position function returmsum_childrerand can be overridden by a specific composite wid-
get’s resource list or by the argument list provided when the composite widget is created.

3.3. Deletion of Children: the delete_child Procedure

To removethe child from the parentshildrenlist, the XtDestroyWidget function eventually
causes a call to the Composite parent’s class delete_child procedure. The delete_child procedure
pointer is of typeXtWidgetProc.
typedef void (*XtWidgetProc)(Widget);
Widgetw;

w Passes the child being deleted.

Most widgets inherit the delete_child procedure from their superclass. Composite widgets that
create companion widgets define their own delete_child procedure doease companion
widgets.

3.4. Adding and Removing Children from the Managed Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to or the removal
of widgets from a composite widget's managed set. These generic routines eventually call the
composite widget’s change_managed procedure if the procedure pointer is non-NULL. The
change_managed procedure pointer is of ifWidgetProc. The widget argument specifies the
composite widget whose managed child set has been modified.

3.4.1. Managing Children

To add a list of widgets to the geometry-managed (and hence displayable) subset of their Com-
posite parent, ustManageChildren.

typedef Widget *WidgetList;

void XtManageChildrerghildren num_children
WidgetListchildren
Cardinalnum_children

children Specifies a list of child widgets. Each child must be of class RectObj or any sub-
class thereof.

59

X Toolkit Intrinsics X11 Release 6

num_children Specifies the number of children in the list.
The XtManageChildren function performs the following:

. Issues an error if the children do not all have the same parent or if the parent’s class is not a
subclass otompositeWidgetClass

. Returns immediately if the common parent is being destroyed; otherwise, for each unique
child on the list XtManageChildren ignores the child if it already is managed or is being
destroyed, and marks it if not.

. If the parent is realized and after all children have been marked, it makes some of the newly
managed children viewable:

- Calls the change _managed routine of the widgets’ parent.
- Calls XtRealizeWidget on each previously unmanaged child that is unrealized.
- Maps each previously unmanaged child thatrhap_when_managettue .

Managing children is independent of the ordering of children and independent of creating and
deleting children. The layout routine of the parent should consider children mlaosgedield

is True and should ignore all other children. Note that some composite widgets, especially fixed
boxes, callXtManageChild from their insert_child procedure.

If the parent widget is realized, its change_managed procedure is called to notify it that its set of
managed children has changed. The parent can reposition and resize any of its children. It moves
each child as needed by calliXgMoveWidget, which first updates theandy fields and which

then callsXMoveWindow .

If the composite widget wishes to change the size or border width of any of its children, it calls
XtResizeWidget, which first updates theidth, height andborder_widthfields and then calls
XConfigureWindow. Simultaneous repositioning and resizing may be done with
XtConfigureWidget; see Section 6.6.

To add a single child to its parent widget's set of managed childreiXtimageChild .

void XtManageChildghild)
Widgetchild;

child Specifies the child. Must be of class RectObj or any subclass thereof.

The XtManageChild function constructs &VidgetList of length 1 and calls
XtManageChildren.

To create and manage a child widget in a single procedur&tGseateManagedWidget or
XtVaCreateManagedWidget.

Widget XtCreateManagedWidgagme widget_classparent args, num_arg$
Stringname
WidgetClasswvidget_class
Widgetparent
ArglList args
Cardinalnum_args

name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Musth@bjClass
or any subclass thereof.

60

X Toolkit Intrinsics X11 Release 6

parent Specifies the parent widget. Must be of class Composite or any subclass thereof.
args Specifies the argument list to override any other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreateManagedWidget function is a convenience routine that ca{t€reateWidget
and XtManageChild.

Widget XtVaCreateManagedWidgef{me widget_classparent ...)
Stringname
WidgetClassvidget_class
Widgetparent
name Specifies the resource instance name for the created widget.

widget_class Specifies the widget class pointer for the created widget. Musth@bjClass
or any subclass thereof.

parent Specifies the parent widget. Must be of class Composite or any subclass thereof.
Specifies the variable argument list to override any other resource specifications.

XtVaCreateManagedW|dget is identical in function toXtCreateManagedWidget with the
argsandnum_arggparameters replaced by a varargs list, as described in Section 2.5.1.

3.4.2. Unmanaging Children
To remove dist of children from a parent widget's managed list, X8gnmanageChildren.

void XtUnmanageChildrechildren num_childrei
WidgetListchildren
Cardinalnum_children

children Specifies a list of child widgets. Each child must be of class RectObj or any sub-
class thereof.

num_children Specifies the number of children.

The XtUnmanageChildren function performs the following:

. Returns immediately if the common parent is being destroyed.

. Issues an error if the children do not all have the same parent or if the parent is not a sub-
class ofcompositeWidgetClass

. For each unique child on the lig¢tUnmanageChildren ignores the child if it is unman-
aged; otherwise it performs the following:

- Marks the child as unmanaged.
- If the child is realized and threap_when_managditld is True, it is unmapped.

. If the parent is realized and if any children have become unmanaged, calls the
change_managed routine of the widgets’ parent.

XtUnmanageChildren does not destroy the child widgets. Removing widgets from a parent’s
managed set is often a temporary banishment, and some time later the client may manage the
children again. To destroy widgets entireftDestroyWidget should be called instead; see Sec-
tion 2.9.

61

X Toolkit Intrinsics X11 Release 6

To remove aingle child from its parent widget's managed set, XtdénmanageChild.

void XtUnmanageChildihild)
Widgetchild;

child Specifies the child. Must be of class RectObj or any subclass thereof.

The XtUnmanageChild function constructs a widget list of length 1 and calls
XtUnmanageChildren.

These functions are low-level routines that are used by generic composite widget building rou-
tines. In addition, composite widgets can provide widget-specific, high-level convenience proce-
dures.

3.4.3. Bundling Changes to the Managed Set

A client may simultaneously unmanage and manage children with a single call to the Intrinsics.

In this same call the client may provide a callback procedure that can modify the geometries of
one or more children. The composite widget class defines whether this single client call results in
separate invocations of the change_managed method, one to unmanage and the other to manage,
or in just a single invocation.

To simultaneously reovefrom and add to the geometry-managed set of children of a composite
parent, useXtChangeManagedSet

void XtChangeManagedSat{manage_childremum_unmanage_children

do_change_praclient_data
manage_childrenum_manage_childrgn

WidgetListunmanage_children

Cardinalnum_unmanage_children

XtDoChangeProdo_change_prac

XtPointerclient_data

WidgetListmanage_children

Cardinalnum_manage_children

unmanage_children Specifies the list of widget children to initially rexefrom the
managed set.

num_unmanage_children Specifies the number of entries in thananage_childrehst.

do_change_proc Specifies a procedure to invoke between unmanaging and managing
the children, or NULL.
client_data Specifies client data to be passed to the do_change_proc.
manage_children Specifies the list of widget children to finally add to the managed
set.

num_manage_children Specifies the number of entries in thanage_childretist.
The XtChangeManagedSetfunction performs the following:
. Returns immediately ifium_unmanage_childreandnum_manage_childreare both O.

. Issues a warning and returns if the widgets specified im#mage_childreand the
unmanage_childrelists do not all have the same parent, or if that parent is not a subclass
of compositeWidgetClass

. Returns immediately if the common parent is being destroyed.

62

X Toolkit Intrinsics X11 Release 6

. If do_change_prois not NULL and the parent€ompositeClassExtension
allows_change_managed_d$ield is False then XtChangeManagedSetperforms the fol-
lowing:

- Calls XtUnmanageChildren (unmanage_childremum_unmanage_children
- Calls thedo_change_prac
- Calls XtManageChildren (manage_childremmum_manage_childrén

. Otherwise, the following is performed:

- For each child on thenmanage_childrelist; if the child is already unmanaged it is
ignored, otherwise it is marked as unmanaged and if it is realized and its
map_when_managdild is True, it is unmapped.

- If do_change_prots non-NULL the procedure is invoked.

- For each child on themanage_childretist; if the child is already managed or is
being destroyed it is ignored, otherwise it is marked as managed.

- If the parent is realized and after all children have been marked, the change_managed
method of the parent is invoked and subsequently some of the newly managed chil-
dren are made viewable by callidXgRealizeWidget on each previously unmanaged
child that is unrealized and mapping each previously unmanaged child that has
map_when_manag€efbtue .

If no CompositeClassExtensiomecord is found in the parent’s composite class gdagnsion
field with record typeNULLQUARK and version greater than 1 anciinheritChangeMan-
agedwas specified in the parent’s class record during class initialization, the value of the
allows_change_managed_d$ield is inherited from the superclass. The value inherited from
compositeWidgetClasdor theallows_change_managed_g$ietd is False.

It is not an error to include a child in both tlemanage_childreand themanage_childrefists.
The effect of such a call is that the child remains managed following the call but the
do_change_prots able to affect the child while it is in an unmanaged state.

Thedo_change_prots of type XtDoChangeProc.

typedef void (XtDoChangeProc*)(Widget, WidgetList, Cardinal*, WidgetList, Cardinal*, XtPointer);
Widgetcomposite_parent
WidgetListunmange_children
Cardinal num_unmanage_children
WidgetListmanage_children
Cardinal "num_manage_children
XtPointerclient_data

composite_parent Passes the composite parent whose managed set is being altered.
unmanage_children Passes the list of children just removed from the managed set.
num_unmanage_children Passes the number of entries inuhenanage_childrefist.
manage_children Passes the list of children about to be added to the managed set.
num_manage_children Passes the number of entries initenage_childrefist.

client_data Passes the client data passeXtGhangeManagedSet

Thedo_change_proprocedure is used by the callerXiChangeManagedSetto make changes
to one or mare children at the point when the managed set contains the fewest entries. These
changes may involve geometry requests and in this case the calk&hefngeManagedSet

63

X Toolkit Intrinsics X11 Release 6

may take advantage of the fact that the Intrinsics internally grant geometry requests made by
unmanaged children without invoking the parent’s geometry manager. To achieve this advantage,
if the do_change_proprocedure changes the geometry of a child or of a descendant of a child
then that child should be included in th@manage_childreandmanage_childrefists.

3.4.4. Determining If a Widget Is Managed
To determine the managed state of a given child widgetKtismanaged.
Boolean XtlsManage#()
Widgetw;
w Specifies the widget. Must be of class Object or any subclass thereof.

The XtlsManaged function returnsTrue if the specified widget is of class RectObj or any sub-
class thereof and is managed Faitse otherwise.

3.5. Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. However, this behavior can be overridden by set-
ting the XtNmappedWhenManaged resource for the widget when it is created or by setting the
map_when_managditld to False.

To change the value of a given widgetiap_when_managdild, use
XtSetMappedWhenManaged

void XtSetMappedWhenManaged(map_when_managgd
Widgetw;
Booleanmap_when_managged

W Specifies the widget. Must be of class Core or any subclass thereof.

map_when_managed
Specifies a Boolean value that indicates the new value that is stored into the wid-
get'smap_when_managditid.
If the widget is realized and managed anmap_when_managesl True , XtSetMappedWhen-
Managed maps the window. If the widget is realized and managed andpf when_managesl
False, it unmaps the windowXtSetMappedWhenManagedis a convenience function that is
equivalent to (but slightly faster than) calli¥XgSetValuesand setting the new value for the XtN-
mappedWhenManaged resource then mapping the widget as appropriate. As an alternative to
using XtSetMappedWhenManagedto control mapping, a client may set
mapped_when_managaaFalse and useXtMapWidget and XtUnmapWidget explicitly.

To map a widget explicitly, us&tMapWidget .
XtMapWidget{w)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

To unmap a widget explicitly, usétUnmapWidget .

64

X Toolkit Intrinsics X11 Release 6

XtUnmapWidget{)
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

3.6. Constrained Composite Widgets

The Constraint widget class is a subclassarhpositeWidgetClass The name is derived from

the fact that constraint widgets may manage the geometry of their children based on constraints
associated with each child. These constraints can be as simple as the maximum width and height
the parent will allow the child to occupy or can be as complicated as how other children should
change if this child is moved or resized. Constraint widgets let a parent define constraints as
resources that are supplied for their children. For example, if the Constraint parent defines the
maximum sizes for its children, these new size resources are retrieved for each child as if they
were resources that were defined by the child widget's class. Accordingly, constraint resources
may be included in the argument list or resource file just like any other resource for the child.

Constraint widgets have all the responsibilities of normal composite widgets and, in addition,
must process and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has @nstraintsfield, which is the address of a parent-specific structure that
contains constraint information about the child. If a child’s parent does not belong to a subclass
of constraintWidgetClass, then the child'constraintdfield is NULL.

Subclasses of Constraint can add constraint data to the constraint record defined by their super-
class. To allow this, widget writers should define the constraint records in their private .h file by
using the same conventions as used for widget records. For example, a widget class that needs to
maintain a maximum width and height for each child might define its constraint record as fol-

lows:

typedef struct {
Dimension max_width, max_height;
} MaxConstraintPart;

typedef struct {
MaxConstraintPart max;
} MaxConstraintRecord, *MaxConstraint;

A subclass of this widget class that also needs to maintain a minimum size would define its con-
straint record as follows:

typedef struct {
Dimension min_width, min_height;
} MinConstraintPart;

typedef struct {
MaxConstraintPart max;
MinConstraintPart min;

} MaxMinConstraintRecord, *MaxMinConstraint;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as possible by
the Intrinsics. The Constraint class record part has several entries that facilitate this. All entries

65

X Toolkit Intrinsics X11 Release 6

in ConstraintClassPart are fields and procedures that are defined and implemented by the par-
ent, but they are called whenever actions are performed on the parent’s children.

The XtCreateWidget function uses theonstraint_sizdield in the parent’s class record to allo-

cate a constraint record when a child is creabéCreateWidget also uses the constraint

resources to fill in resource fields in the constraint record associated with a child. It then calls the
constraint initialize procedure so that the parent can compute constraint fields that are derived
from constraint resources and can possibbyenorresize the child to conform to the given con-
straints.

When theXtGetValues and XtSetValuesfunctions are executed on a child, they use the con-
straint resources to get the values or set the values of constraints associated with that child.
XtSetValuesthen calls the constraint set_values procedures so that the parent can recompute
derived constraint fields andave orresize the child as appropriate. If a Constraint widget class
or any of its superclasses have declaré&bastraintClassExtensionrecord in theConstraint-
ClassPart extensiorfields with a record type dULLQUARK and theget_values_hoakeld in

the extension record is non-NULKtGetValues calls the get_values_hook procedure(s) to allow
the parent to return derived constraint fields.

The XtDestroyWidget function calls the constraint destroy procedure to deallocate any dynamic
storage associated with a constraint record. The constraint record itself must not be deallocated
by the constraint destroy procedukDestroyWidget does this automatically.

66

X Toolkit Intrinsics X11 Release 6

Chapter 4
Shell Widgets

Shell widgets hold an application’s top-level widgets to allow them to communicate with the win-
dow manager and session manager. Shells have been designed to be as nearly invisible as possi-
ble. Clients have to create them, but they should never have to worry about their sizes.

If a shell widget is resized from the outside (typically by a window manager), the shell widget

also resizes its managed child widget automatically. Similarly, if the shell's child widget needs to
change size, it can make a geometry request to the shell, and the shell negotiates the size change
with the outer environment. Clients should never attempt to change the size of their shells
directly.

The five types of public shells are:

OverrideShell Used for shell windows that completely bypass the window manager
(for example, pop-up menu shells).

TransientShell Used for shell windows that have tiév_TRANSIENT_FOR prop-
erty set. The effect of this property is dependent upon the window
manager being used.

TopLevelShell Used for normal top-level windows (for example, any additional top-
level widgets an application needs).

ApplicationShell Formerly used for the single main top-level window that the window
manager identifies as an application instance and made obsolete by
SessionShell.

SessionShell Used for the single main top-level window that the window manager

identifies as an application instance and that interacts with the ses-
sion manager.

4.1. Shell Widget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that directly
contains them. Widgets at the top of the hierarchy do not have parent widgets. Instead, they must
deal with the outside world. To provide for this, each top-level widget is encapsulated in a special
widget, called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other widgets and
can allow a widget to avoid the geometry clipping imposed by the parent-child window relation-
ship. They also can provide a layer of communication with the window manager.

The eight different types of shells are

Shell The base class for shell widgets; provides the fields needed for all types
of shells. Shell is a direct subclassooimpositeWidgetClass

67

X Toolkit Intrinsics

OverrideShell

WMShell

VendorShell

TransientShell

TopLevelShell
ApplicationShell

SessionShell

X11 Release 6

A subclass of Shell; used for shell windows that completely bypass the
window manager.

A subclass of Shell; contains fields needed by the common window man-
ager protocol .

A subclass of WMShell; contains fields used by vendor-specific window
managers.

A subclass of VendorShell; used for shell windows that desire the
WM_TRANSIENT_FOR property.

A subclass of VendorShell; used for normal top level windows.

A subclass of TopLevelShell; may be used for an application’s additional
root windows.

A subclass of ApplicationShell; used for an application’s main root win-
dow.

Note that the classes Shell, WMShell, and VVendorShell are internal and should not be instantiated
or subclassed. Only OverrrideShell, TransientShell, TopLevelShell, ApplicationShell, and Ses-
sionShell are intended for public use.

4.1.1. ShellClassPart Definitions

Only the Shell class has additional class fields, which are all contained in the
ShellClassExtensionRec None of the other Shell classes have any additional class fields:

typedef struct { XtPointer extension; } ShellClassPart, OverrideShellClassPart,
WMShellClassPart, VendorShellClassPart, TransientShellClassPart,
TopLevelShellClassPart, ApplicationShellClassPart, SessionShellClassPart;

The full Shell class record definitions are

typedef struct _ShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;

} ShellClassRec;

typedef struct {
XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
XtGeometryHandler root_geometry _manager; See below

} ShellClassExtensionRec, *ShellClassExtension;

68

X Toolkit Intrinsics

typedef struct _OverrideShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
OverrideShellClassPart override_shell_class;
} OverrideShellClassRec;

typedef struct _WMShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell _class;

} WMShellClassRec;

typedef struct _VendorShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell _class;
VendorShellClassPart vendor_shell_class;
} VendorShellClassRec;

typedef struct _TransientShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TransientShellClassPart transient_shell_class;

} TransientShellClassRec;

typedef struct _TopLevelShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;

} TopLevelShellClassRec;

typedef struct _ApplicationShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;

ApplicationShellClassPart application_shell_class;

} ApplicationShellClassRec;

69

X11 Release 6

X Toolkit Intrinsics X11 Release 6

typedef struct _SessionShellClassRec {
CoreClassPart core_class;
CompositeClassPart composite_class;
ShellClassPart shell_class;
WMShellClassPart wm_shell_class;
VendorShellClassPart vendor_shell_class;
TopLevelShellClassPart top_level_shell_class;
ApplicationShellClassPart application_shell_class;
SessionShellClassPart session_shell_class;

} SessionShellClassRec;

The single occurrences of the class records and pointers for creating instances of shells are

extern ShellClassRec shellClassRec;

extern OverrideShellClassRec overrideShellClassRec;
extern WMShellClassRec wmShellClassRec;

extern VendorShellClassRec vendorShellClassRec;

extern TransientShellClassRec transientShellClassRec;
extern TopLevelShellClassRec topLevelShellClassRec;
extern ApplicationShellClassRec applicationShellClassRec;
extern SessionShellClassRec sessionShellClassRec;

extern WidgetClass shellWidgetClass;

extern WidgetClass overrideShellWidgetClass;
extern WidgetClass wmShellWidgetClass;

extern WidgetClass vendorShellWidgetClass;
extern WidgetClass transientShellWidgetClass;
extern WidgetClass topLevelShellWidgetClass;
extern WidgetClass applicationShellwidgetClass;
extern WidgetClass sessionShellWidgetClass;

70

X Toolkit Intrinsics X11 Release 6

The following opaque types and opaque variables are defined for generic operations on widgets
whose class is a subclass of Shell.

Types Variables

ShellWidget shellWidgetClass
OverrideShellWidget overrideShellWidgetClass
WMShellWidget wmShellWidgetClass
VendorShellWidget vendorShellWidgetClass
TransientShellWidget transientShellwidgetClass
TopLevelShellwidget topLevelShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass

ShellWidgetClass
OverrideShellwWidgetClass
WMShellWidgetClass
VendorShellWidgetClass
TransientShellWidgetClass
TopLevelShellwWidgetClass
ApplicationShellWidgetClass
SessionShellWidgetClass

The declarations for all Intrinsics-defined shells except VendorShell appghelich and
ShellP.h. VendorShell has separate public and private .h files which are includguetiyh and
ShellP.h.

Shell.h uses incomplete structure definitions to ensure that the compiler catches attempts to
access private data in any of the Shell instance or class data structures.

The symbolic constant for tHehellClassExtensionversion identifier isXtShellExtensionVer-
sion (see Section 1.6.12).

The root_geometry_manager procedure acts as the parent geometry manager for geometry
requests made by shell widgets. When a shell widget calls eithakeGeometryRequestor
XtMakeResizeRequestthe root_geometry_manager procedure is invoked to negotiate the new
geometry with the window manager. If the window manager permits the new geometry, the
root_geometry_manager procedure should reXii@®eometryYes; if the window manager

denies the geometry request or it does not change the window geometry within some timeout
interval (equal tavm_timeoutn the case of WMShells), the root_geometry _manager procedure
should returnXtGeometryNo. If the window manager makes some alternative geometry change,
the root_geometry_manager procedure may either rei@eometryNo and handle the new
geometry as a resize, or may retdt@GeometryAlmost in anticipation that the shell will accept

the compromise. If the compromise is not accepted, the new size must then be handled as a
resize. Subclasses of Shell that wish to provide their own root_geometry _manager procedures are
strongly encouraged to use enveloping to invoke their superclass’s root_geometry _manager pro-
cedure under most situations, as the window manager interaction may be very complex.

If no ShellClassPartextension record is declared wititord_typesqual toNULLQUARK , then
XtInheritRootGeometryManager is assumed.

71

X Toolkit Intrinsics X11 Release 6

4.1.2. ShellPart Definition

The various shell widgets have the following additional instance fields defined in their widget
records:

typedef struct {
String geometry;
XtCreatePopupChildProc create_popup_child_proc;
XtGrabKind grab_kind;
Boolean spring_loaded;
Boolean popped_up;
Boolean allow_shell resize;
Boolean client_specified;
Boolean save_under;
Boolean override_redirect;
XtCallbackList popup_callback;
XtCallbackList popdown_callback;
Visual* visual;

} ShellPart;

typedef struct { int empty; } OverrideShellPart;

typedef struct {
String title;
int wm_timeout;
Boolean wait_for_wm;
Boolean transient;
Boolean urgency;
Widget client_leader;
String window_role;
struct _OIldXSizeHints {
long flags;
intx,y;
int width, height;
int min_width, min_height;
int max_width, max_height;
int width_inc, height_inc;
struct {
int x;
inty;
} min_aspect, max_aspect;
} size_hints;
XWMHints wm_hints;
int base_width, base_height, win_gravity;
Atom title_encoding;
} WMShellPart;

typedef struct {

int vendor_specific;
} VendorShellPart;

72

X Toolkit Intrinsics

typedef struct {
Widget transient_for;
} TransientShellPart;

typedef struct {

String icon_name;

Boolean iconic;

Atom icon_name_encoding;
} TopLevelShellPart;

typedef struct {
char *class;
XrmClass xrm_class;
int argc;
char **argv;

} ApplicationShellPart;

typedef struct {
SmcConn connection;
String session_id,;
String * restart_command,;
String * clone_command;
String * discard_command;
String * resign_command,
String * shutdown_command;
String * environment;
String current_dir;
String program_ path;
unsigned char restart_style;
Boolean join_session;
XtCallbackList save_callbacks;
XtCallbackList interact_callbacks;
XtCallbackList cancel_callbacks;
XtCallbackList save_complete_callbacks;
XtCallbackList die_callbacks;
XtCallbackList error_callbacks;

} SessionShellPart;

The full shell widget instance record definitions are

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;

} ShellRec, *ShellWidget;

73

X11 Release 6

X Toolkit Intrinsics

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
OverrideShellPart override;
} OverrideShellRec, *OverrideShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;

} WMShellRec, *WMShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;

} VendorShellRec, *VendorShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TransientShellPart transient;
} TransientShellRec, *TransientShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;

} TopLevelShellRec, *TopLevelShellWidget;

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel,
ApplicationShellPart application;

} ApplicationShellRec, *ApplicationShellWidget;

74

X11 Release 6

X Toolkit Intrinsics X11 Release 6

typedef struct {
CorePart core;
CompositePart composite;
ShellPart shell;
WMShellPart wm;
VendorShellPart vendor;
TopLevelShellPart topLevel;
ApplicationShellPart application;
SessionShellPart session;

} SessionShellRec, *SessionShellWidget;

4.1.3. Shell Resources

The resource names, classes, and representation types specifieshiglltblassReaesource list
are

Name Class Representation
XtNallowShellResize XtCAllowShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProc ~ XtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOverrideRedirect XtRBoolean
XtNpopdownCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaveUnder XtRBoolean
XtNvisual XtCVisual

OverrideShell declares no additional resources beyond those defined by Shell.
The resource names, classes, and representation types specifiadrinshellClassRec

resource list are

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWidth XtCBaseWidth XtRInt
XtNclientLeader XtCClientLeader XtRWidget
XtNheightinc XtCHeightlnc XtRInt
XtNiconMask XtClconMask XtRBitmap
XtNiconPixmap XtClconPixmap XtRBitmap
XtNiconWindow XtClconWindow XtRWindow
XtNiconX XtClconX XtRInt
XtNiconY XtClconY XtRInt
XtNinitialState XtClnitialState XtRInitialState
XtNinput XtClnput XtRBool
XtNmaxAspectX XtCMaxAspectX XtRInt
XtNmaxAspectY XtCMaxAspectY XtRInt
XtNmaxHeight XtCMaxHeight XtRInt

75

X Toolkit Intrinsics X11 Release 6

XtNmaxWidth XtCMaxWidth XtRInt
XtNminAspectX XtCMinAspectX XtRInt
XtNminAspectY XtCMinAspectY XtRInt
XtNminHeight XtCMinHeight XtRInt
XtNminWidth XtCMinWidth XtRInt
XtNtitle XtCTitle XtRString
XtNtitleEncoding XtCTitleEncoding XtRAtom
XtNtransient XtCTransient XtRBoolean
XtNwaitforwm, XtNwaitForWwm XtCWaitforwm, XtCWaitForwm XtRBoolean
XtNwidthiInc XtCWidthinc XtRInt
XtNwindowRole XtCwindowRole XtRString
XtNwinGravity XtCWinGravity XtRGravity
XtNwindowGroup XtCWindowGroup XtRWindow
XtNwmTimeout XtCWmTimeout XtRInt
XtNurgency XtCUrgency XtRBoolean

The class resource list for VendorShell is implementation-defined.

The resource names, classes, and representation types that are specifiteeriniémg-
ShellClassReaesource list are

Name Class Representation

XtNtransientFor XtCTransientFor XtRWidget

The resource names, classes, and representation types that are specifitegpiretteShell-

ClassRecresource list are

Name Class Representation
XtNiconName XtClconName XtRString
XtNiconNameEncoding XtClconNameEncoding XtRAtom
XtNiconic XtClconic XtRBoolean

The resource names, classes, and representation types that are specifiagplict#on-
ShellClassReaesource list are

Name Class Representation
XtNargc XtCArgc XtRInt
XtNargv XtCArgv XtRStringArray

76

X Toolkit Intrinsics

The resource names, classes, and representation types that are specifisglssiath&hellClass-

Recresource list are

X11 Release 6

Name Class Representation
XtNcancelCallback XtCCallback XtRCallback
XtNcloneCommand XtCCloneCommand XtRCommandArgArray
XtNconnection XtCConnection XtRSmcConn
XtNcurrentDirectory XtCCurrentDirectory XtRDirectoryString
XtNdieCallback XtCCallback XtRCallback
XtNdiscardCommand XtCDiscardCommand XtRCommandArgArray
XtNenvironment XtCEnvironment XtREnvironmentArray
XtNerrorCallback XtCCallback XtRCallback
XtNinteractCallback XtCCallback XtRCallback
XtNjoinSession XtCJoinSession XtRBoolean
XtNprogramPath XtCProgramPath XtRString
XtNresignCommand XtCResignCommand XtRCommandArgArray
XtNrestartCommand XtCRestartCommand XtRCommandArgArray
XtNrestartStyle XtCRestartStyle XtRRestartStyle
XtNsaveCallback XtCCallback XtRCallback
XtNsaveCompleteCallback XtCCallback XtRCallback
XtNsessionID XtCSessionID XtRString
XtNshutdownCommand XtCShutdownCommand XtRCommandArgArray

4.1.4. ShellPart Default Values

The default values for fields common to all classes of public shells (filled in by the Shell resource

lists and the Shell initialize procedures) are

Field Default Value
geometry NULL
create_popup_child_proc NULL
grab_kind (none)
spring_loaded (none)
popped_up False
allow_shell_resize False
client_specified (internal)

save_under

override_redirect

True for OverrideShell and TransientShell,

False otherwise

True for OverrideShell False otherwise

popup_callback NULL
popdown_ callback NULL
visual CopyFromParent

Thegeometnyfield specifies the size and position and is usually given only on a command line or
in a defaults file. If thgeometnyfield is non-NULL when a widget of class WMShell is realized,
the geometry specification is parsed uskWyMGeometry with a default geometry string con-
structed from the values gfy, width, height width_ing andheight_incand the size and position

77

X Toolkit Intrinsics X11 Release 6

flags in the window manager size hints are set. If the geometry specifies an x or y position, then
USPositionis set. If the geometry specifies a width or height, ti&%izeis set. Any fields in

the geometry specification override the corresponding values in the,Govadth, andheight

fields. Ifgeometryis NULL or contains only a partial specification, then the Goyewidth, and
heightfields are used andPosition and PSizeare set as appropriate. The geometry string is not
copied by any of the Intrinsics Shell classes; a client specifying the string in an arglist or varargs
list must ensure that the value remains valid until the shell widget is realized. For further infor-
mation on the geometry string, see Section 10Xdim— C Language X Interface

Thecreate_popup_child_progrocedure is called by thé&tPopup procedure and may remain
NULL. Thegrab_kind spring_loadedandpopped_ugields maintain widget state information

as described undettPopup, XtMenuPopup, XtPopdown, and XtMenuPopdown. The
allow_shell_resizéield controls whether the widget contained by the shell is allowed to try to
resize itself. If allow_shell_resize Ralse, any geometry requests made by the child will always
return XtGeometryNo without interacting with the window manager. Settsaye undefirue
instructs the server to attempt to save the contents of windows obscured by the shell when it is
mapped and to restore those contents automatically when the shell is unmapped. It is useful for
pop-up menus. Settimyerride_redirectTrue determines whether the window manager can
intercede when the shell window is mapped. For further information on override_redirect, see
Section 3.2 irKlib — C Language X Interfacend Sections 4.1.10 and 4.2.2 in bhier-Client
Communication Conventions Manudihe pop-up and pop-down callbacks are called during
XtPopup and XtPopdown. The default value of thésualresource is the symbolic value
CopyFromParent. The Intrinsics do not need to query the parent’s visual type when the default
value is used; if a client usingtGetValues to examine the visual type receives the value
CopyFromParent, it must then us&XGetWindowAttributes if it needs the actual visual type.

The default values for Shell fields in WMShell and its subclasses are

Field Default Value

title Icon name, if specified, otherwise the application’s name.
wm_timeout Five seconds, in units of milliseconds.
wait_for_wm True

transient True for TransientShellFalse otherwise
urgency False

client_leader NULL

window_role NULL

min_width XtUnspecifiedShellint

min_height XtUnspecifiedShellint

max_width XtUnspecifiedShellint

max_height XtUnspecifiedShellint

width_inc XtUnspecifiedShellint

height_inc XtUnspecifiedShellint

min_aspect_x XtUnspecifiedShellint
min_aspect_y XtUnspecifiedShellint
max_aspect x XtUnspecifiedShellint
max_aspect y XtUnspecifiedShellint
input False

initial_state Normal

78

X Toolkit Intrinsics X11 Release 6

icon_pixmap None

icon_window None

icon_x XtUnspecifiedShellint
icon_y XtUnspecifiedShellint
icon_mask None

window_group XtUnspecifiedWindow
base_width XtUnspecifiedShellint
base_height XtUnspecifiedShellint
win_gravity XtUnspecifiedShellint
title_encoding See text

Thetitle andtitle_encodindields are stored in the/M_NAME property on the shell's window

by the WMShell realize procedure. If tlite _encodindield is None, thetitle string is assumed

to be in the encoding of the current locale and the encoding 8iNheNAME property is set to
XStdICCTextStyle. If alanguage procedure has not been set the default vaiitie afncoding

is XA_STRING, otherwise the default value Mone. Thewm_timeoufield specifies, in millisec-
onds, the amount of time a shell is to wait for confirmation of a geometry request to the window
manager. If none comes back within that time, the shell assumes the window manager is not
functioning properly and setgait_for_ wmto False (later events may reset this value). When
wait_for_wmis False, the shell does not wait for a response but relies on asynchronous notifica-
tion. If transientis True, the WM_TRANSIENT_FOR property will be stored on the shell win-

dow with a value as specified below. The interpretation of this property is specific to the window
manager under which the application is run; seéntes-Client Communication Conventions
Manualfor more details.

The realize and set_values procedures of WMShell stor&/MeCLIENT_LEADER property

on the shell window. Whedlient_leadelis not NULL and the client leader widget is realized,
the property will be created with the value of the window of the client leader widget. When
client_leadeiis NULL and the shell widget has a NULL parent, the widget’s window is used as
the value of the property. Whetient_leadelis NULL and the shell widget has a non-NULL
parent, a search is made for the closest shell ancestor with a nond\ehil leaderand if none

is found the shell ancestor with a NULL parent is the result. If the resulting widget is realized,
the property is created with the value of the widget’s window.

When the value ofvindow_roleis not NULL, the realize and set_values procedures store the
WM_WINDOW_ROLE property on the shell's window with the value of the resource.

All other resources specify fields in the window manager hints and the window manager size
hints. The realize and set_values procedures of WMShell set the corresponding flag bits in the
hints if any of the fields contain non-default values. In addition, if a flag bit is set that refers to a
field with the valueXtUnspecifiedShellint, the value of the field is modified as follows:

Field Replacement
base_width, base height 0
width_inc, height_inc 1
max_width, max_height 32767
min_width, min_height 1
min_aspect_x, min_aspect_y -1
max_aspect_x, max_aspect_y -1

79

X Toolkit Intrinsics X11 Release 6

icon_x, icon_y -1
win_gravity value returned bXWMGeometry if called,
elseNorthWestGravity

If the shell widget has a non-NULL parent, then the realize and set_values procedures replace the
value XtUnspecifiedWindow in thewindow_grougfield with the window id of the root widget

of the widget tree if the root widget is realized. The symbolic con3ithtispecifiedWindow-

Group may be used to indicate that tendow_grouphint flag bit is not to be set. ffansientis

True and the shell’s class is not a subclass of TransientSheliaddw_grougs not XtUn-
specifiedWindowGroup the WMShell realize and set_values procedures then store the
WM_TRANSIENT_FOR property with the value afindow_group

Transient shells have the following additional resource:

Field Default Value

transient_for NULL

The realize and set_values procedures of TransientShell stoMMhERANSIENT_FOR prop-
erty on the shell window tfransientis True. If transient_foris non-NULL and the widget speci-
fied bytransient_foris realized, then its window is used as the value of the
WM_TRANSIENT_FOR property; otherwise, the value window_grougs used.

TopLevel shells have the the following additional resources:

Field Default Value
icon_name Shell widget’s name
iconic False

icon_name_encoding See text

Theicon_namendicon_name_encodiniields are stored in the/M_ICON_NAME property on

the shell's window by the TopLevelShell realize procedure. licha_name_encodiniigeld is

None, theicon_namestring is assumed to be in the encoding of the current locale and the encod-
ing of theWM_ICON_NAME property is set t&XStdICCTextStyle. If a language procedure has
not been set the default valueiadn_name_encoding XA_STRING, otherwise the default value

is None. Theiconicfield may be used by a client to request that the window manager iconify or
deiconify the shell; the TopLevelShell set_values procedure will send the appropriate
WM_CHANGE_STATE message (as specified by theer-Client Communication Conventions
Manua) if this resource is changed froRalseto True, and will call XtPopup specifying
grab_kindas XtGrabNone if iconicis changed fronTrue to False. The XtNiconic resource is
also an alternative way to set the XtNinitialState resource to indicate that a shell should be ini-
tially displayed as an icon; the TopLevelShell initialize procedure wilh#t&tl_stateto Iconic-
Stateif iconicis True.

Application shells have the following additional resources:

Field Default Value

80

X Toolkit Intrinsics X11 Release 6

argc 0
argv NULL

Theargcandargvfields are used to initialize the standard prop&ty COMMAND . See the
Inter-Client Communication Conventions Mant@ more information.

The default values for the SessionShell instance fields, which are filled in from the resource lists
and by the initialize procedure, are

Field Default Value
cancel_callbacks NULL
clone_command See text
connection NULL
current_dir NULL
die_callbacks NULL
discard_command NULL
environment NULL
error_callbacks NULL
interact_callbacks NULL
join_session True
resign_command NULL
restart_command See text
restart_style SmRestartlfRunning
program_path See text
save_callbacks NULL
save_complete_callbacks NULL
session_id NULL
shutdown_command NULL

Theconnectiorfield contains the session connection object, or NULL if a session connection is
not being managed by this widget.

Thesession_ids an identification assigned to the session participant by the session manager.
Thesession_idvill be passed to the session manager as the client identifier of the previous ses-
sion. When a connection is established with the session manager, the client id assigned by the
session manager is stored in session_idield. When not NULL, thesession_idf the Session

shell widget which is at the root of the widget tree of the client leader widget will be used to cre-
ate theSM_CLIENT_ID property on the client leader’s window.

If join_sessions False, the widget will not attempt to establish a connection to the session man-
ager at shell creation time. See sections 4.3 and 4.6 for more information on the functionality of
this resource.

Therestart_commanclone_commandliscard_commandesign_commandhut-
down_commandnvironmentcurrent_dir, program_pathandrestart_styldfields contain stan-
dard session properties.

When a session connection is established or newly managed by the shell, the shell initialize and
set_values methods check the values ofdbtart commancdlone_commandndpro-
gram_pathresources. At that time, iestart_ command NULL, the value of thargvresource

will be copied taestart_commandWhether or notestart_commangvas NULL, if

81

X Toolkit Intrinsics X11 Release 6

“-xtsessionID” “<session id>" does not already appear in tastart_commandt will be added

by the initialize and set_values methods at the beginning of the command arguments; if the
“-xtsessionID” argument already appears with an incorrect session id in the following argument,
that argument will be replaced with the current session id.

After this, the shell initialize and set_values procedures cheatdhe _commandIf
clone_commanis NULL, restart_commangill be copied tcclone_commandexcept the
“-xtsessionID” and following argument will not be copied.

Finally, the shell initialize and set_values procedures chegirtiggam_path If program_path
is NULL, the first element akstart_commands copied tgorogram_path

The possible values ofstart_styleare SmRestartlifRunning, SmRestartAnyway,
SmRestartimmediately, and SmRestartNever. A resource converter is registered for this
resource; for the strings that it recognizes see section 9.6.1.

The resource type EnvironmentArray is an array of pointers to strings; each string has the format
"name=value". The ‘=’ character may not appear in the name, and the string is terminated by a
null character.

4.2. Session Participation

Applications can participate in a user’s session, exchanging messages with the session manager as
described in th&X Session Management Protoemid theX Session Management Library

When a widget oSessionShellWidgetClassr a subclass is created, the widget provides support
for the application as a session participant, and continues to provide support until the widget is
destroyed.

4.2.1. Joining a Session

When a Session shell is created;ahnectioris NULL, and ifjoin_sessions True, and ifargv

or restart_commandk not NULL, and if in POSIX environments tIS£SSION_MANAGER envi-
ronment variable is defined, the shell will attempt to establish a new connection with the session
manager.

To transfer management of an existing session connection from an application to the shell at wid-
get creation time, pass the existing session connection ID aesrthectiorresource value when
creating the Session shell, and if the other creation-time conditions on session participation are
met, the widget will maintain the connection with the session manager. The application must
insure that only one Session shell manages the connection.

In the Session shell set_values proceduiejnf sessiorchanges frontalseto True andcon-
nectionis NULL and when in POSIX environments tBESSION_MANAGER environment vari-

able is defined, the shell will attempt to open a connection to the session managenettion
changes from NULL to non-NULL, the Session shell will take over management of that session
connection and will sgbin_sessiorno True. If join_sessiorchanges fronfalseto True and
connectioris not NULL, the Session shell will take over management of the session connection.

When a successful connection has been establisbedectiorcontains the session connection

ID for the session participant. When the shell begins to manage the connection, it WiApall
pAddinput to register the handler which watches for protocol messages from the session man-
ager. When the attempt to connect fails, a warning message is issuszhaadtioris set to

NULL.

82

X Toolkit Intrinsics X11 Release 6

While the connection is being managed, 8aeYourself SaveYourselfPhase2Interact,
ShutdownCancelled SaveComplete or Die message is received from the session manager, the
Session shell will call out to application callback procedures registered on the respective callback
list of the Session shell, and will seBdveYourselfPhase2RequestnteractRequest,

InteractDone, SaveYourselfDone and ConnectionClosedmessages as appropriate. Initially,

all of the client’s session properties are undefined. When any of the session property resource
values are defined or change, the Session shell initialize and set_values procedures will update the
client’s session property value bysatPropertiesor a DeletePropertiesmessage, as appropri-

ate. The session ProcessID and UserlID properties are always set by the shell when it is possible
to determine the value of these properties.

4.2.2. Saving Application State

The session manager instigates an application checkpoint by sertig ¥ourselfrequest.
Applications are responsible for saving their state in response to the request.

When theSaveYourselfrequest arrives, the procedures registered on the Session shell’s save call-
back list are called. If the application does not register any save callback procedures on the save
callback list, the shell will report to the session manager that the application failed to save its
state. Each procedure on the save callback list receives a tokercall tliataparameter.

The checkpoint token in theall_dataparameter is of typ&tCheckpointToken.

typedef struct {
int save_type;
int interact_style;
Boolean shutdown;
Boolean fast;
Boolean cancel_shutdown
int phase;
int interact_dialog_type; [* return */
Boolean request_cancel, [* return */
Boolean request_next_phase; [* return */
Boolean save_success; [* return */

} XtCheckpointTokenRec, *XtCheckpointToken;

Thesave_typginteract_styleshutdownandfastfields of the token contain the parameters of the
SaveYourselfmessage. The possible valuesabe_typare SmSavelLocal] SmSaveGloba)

and SmSaveBoth these indicate the type of information to be saved. The possible values of
interact_styleare SminteractStyleNone SminteractStyleErrors, and SminteractStyleAny;

these indicate whether user interaction would be permitted and if so, what kind of interaction. If
shutdownis True, the checkpoint is being performed in preparation for the end of the session. If
fastis True, the client should perform the checkpoint as quickly as possib&antel_shutdown

is True, a ShutdownCancelledmessage has been received for the current save operation. (See
section 4.4.4.) Thphaseis used by manager clients, such as a window manager, to distinguish
between the first and second phase of a save operatiophasewill be either 1 or 2. The
remaining fields in the checkpoint token structure are provided for the application to communi-
cate with the shell.

Upon entry to the first application save callback procedure, the return fields in the token have the
following initial values:interact_dialog_typdés SmDialogNormal; request_canceat False;
request_next_phage False andsave_success True. When a token is returned with any of

83

X Toolkit Intrinsics X11 Release 6

the four return fields containing a non-initial value, and when the field is applicable, subsequent
tokens passed to the application during the current save operation will always contain the non-
initial value.

The purpose of the tokersswve_succedteld is to indicate the outcome of the entire operation to
the session manager and ultimately, to the user. RetuFalsgindicates some portion of the
application state could not be successfully saved. If any token is returned to the shell with
save_succedsalse, tokens subsequently received by the application for the current save opera-
tion will showsave_successs False. When the shell sends the final status of the checkpoint to
the session manager, it will indicate failure to save application state if any token was returned
with save_succedsalse.

Session participants which manage and save the state of other clients should structure their save
or interact callbacks to setquest_next phage True when phase is 1, which will cause the

shell to send th&aveYourselfPhase2Requesthen the first phase is complete. When the
SaveYourselfPhase2nessage is received, the shell will invoke the save callbacks a second time
with phaseequal to 2. Manager clients should save the state of other clients when the callbacks
are invoked the second time gplshseequal to 2.

The application may request additional tokens while a checkpoint is under way, and these addi-
tional tokens must be returned by an explicit call.

To request an additional token for a save callback response which has a deferred outcome, use
XtSessionGetToken

XtCheckpointToken XtSessionGetTokadge)
Widgetwidget
widget Specifies the Session shell widget which manages session participation.

The XtSessionGetTokenfunction will return NULL if no checkpoint operation is currently
under way.

To indicate the completion of checkpoint processing including user interaction, the application
must signal the Session shell by returning all tokens. (See Sections 4.2.2.2 and 4.2.2.4). To
return a token usitSessionReturnToken

void XtSessionReturnToketoken

XtCheckpointTokerioken
token Specifies a token which was received ascéile databy a procedure on the
interact callback list, or a token which was received by a call to
XtSessionGetToken

Tokens passed asll_datato save callbacks are implicitly returned when the save callback pro-
cedure returns. A save callback procedure should noXtcaéssionReturnTokenon the token
passed in itsall_data

4.2.2.1. Requesting Interaction

When the tokeinteract_styleallows user interaction, the application may interact with the user
during the checkpoint, but must wait for permission to interact. Applications request permission
to interact with the user during the checkpointing operation by registering a procedure on the Ses-
sion shell’'s interact callback list. When all save callback procedures have returned, and each time

84

X Toolkit Intrinsics X11 Release 6

a token which was granted by a calXtSessionGetTokenis returned, the Session shell exam-

ines the interact callback list. If interaction is permitted and the interact callback list is not empty,
the shell will send amnteractRequestto the session manager when an interact request is not
already outstanding for the application.

The type of interaction dialog that will be requested is specified bptdract_dialog_typdield

in the checkpoint token. The possible valuedriteract_dialog_typare SmDialogError and
SmbDialogNormal. If a token is returned witteract_dialog_typeontainingSmDialogError ,

the interact request and any subsequent interact requests will be for an error dialog; otherwise, the
request will be for a normal dialog with the user.

When a token is returned wiiave_succedsalse or interact_dialog_typeSmDialogError,

tokens subsequently passed to callbacks during the sameSati¥ourselfresponse will

reflect these changed values, indicating that an error condition has occurred during the check-
point.

Therequest_cancdileld is a return value for interact callbacks only. Upon return from a proce-
dure on the save callback list, the value of the tokesest _cancdleld is not examined by the
shell. This is also true of tokens received through a calt8essionGetToken

4.2.2.2. Interacting with the User

When the session manager grants the application’s request for user interaction, the Session shell
receives arinteract message. The procedures registered on the interact callback list are
executed, but not as if executing a typical callback list. These procedures are individually
executed in sequence, with a checkpoint token functioning as the sequencing mechanism. Each
step in the sequence begins by removing a procedure from the interact callback list and executing
it with a token passed in tloall_data The interact callback will typically pop up a dialog box

and return. When the user interaction and associated application checkpointing has completed,
the application must return the token by callXigessionReturnToken Returning the token
completes the current step, and triggers the next step in the sequence.

During interaction the client may request cancellation of a shutdown. When a token passed as
call_datato an interact procedure is returnedshititdowris True andcancel_shutdowis False,
request_cancehdicates whether the application requests that the pending shutdown be cancelled.
If request_canceb True, the field will also belrue in any tokens subsequently granted during

the checkpoint operation. When a token is returned requesting cancellation of the session shut-
down, pending interact procedures will still be called by the Session shell. When all interact pro-
cedures have been removed from the interact callback list, executed, and the final interact token
returned to the shell, dnteractDone message is sent to the session manager, indicating whether
a pending session shutdown is requested to be cancelled.

4.2.2.3. Responding to a Shutdown Cancellation

Callbacks registered on the cancel callback list are invoked when the Session shell processes a
ShutdownCancelledmessage from the session manager. This may occur during the processing
of save callbacks, while waiting for interact permission, during user interaction, or after the save
operation is complete and the application is expectiSgueCompleteor aDie message. The
call_datafor these callbacks is NULL.

When the shell notices that a pending shutdown has been cancelled, theataeinshutdown
field will be True in tokens subsequently given to the application.

85

X Toolkit Intrinsics X11 Release 6

Receiving notice of a shutdown cancellation does not cancel the pending execution of save call-
backs or interact callbacks. After the cancel callbacks execunégrifict_stylds not Sminter-
actStyleNoneand the interact list is not empty, the procedures on the interact callback list will be
executed and passed a token witlkeract_styleSminteractStyleNone The application should

not interact with the user, and the Session shell will not sehatarmctDone message.

4.2.2.4. Completing a Save

When there is no user interaction, the shell regards the application as having finished saving state
when all callback procedures on the save callback list have returned, and any additional tokens
passed out bXtSessionGetTokenhave been returned by corresponding calls to
XtSessionReturnToken |If the save operation involved user interaction, th@/abompletion
conditions apply, and in addition, all requests for interaction have been granted or cancelled, and
all tokens passed to interact callbacks have been returned through calls to
XtSessionReturnToken If the save operation involved a manager client that requested the sec-
ond phase, the alie conditions apply to both the first and second phase of the save operation.

When the application has finished saving state, the Session shell will report the result to the ses-
sion manager by sending tBaveYourselfDonemessage. If the session is continuing, the shell

will receive theSaveCompletemessage when all applications have completed saving state. This
message indicates that applications may again allow changes to their state. The shell will execute
the save_complete callbacks. Tdadl_datafor these callbacks is NULL.

4.2.3. Responding to a Shutdown

Callbacks registered on the die callback list are invoked when the session manageiDsends a
message. The callbacks on this list should do whatever is appropriate to quit the application.
Before executing procedures on the die callback list, the Session shell will close the connection to
the session manager and will mvathe handler which watches for protocol messages. The
call_datafor these callbacks is NULL.

4.2.4. Resigning from a Session

When the Session shell widget is destroyed, the destroy method will close the connection to the
session manager by sendin@annectionClosedprotocol message, and will rewethe input
callback which was watching for session protocol messages.

When XtSetValuesis used to sgbin_sessiono False, the set_values method of the Session
shell will close the connection to the session manager if one exists by sel@bngection-
Closedmessage, ancbnnectiorwill be set to NULL.

Applications which exit in response to user actions and which do not wait for phase 2 destroy to
complete on the Session shell should@et sessionto False before exiting.

When XtSetValuesis used to setonnectiorto NULL, the Session shell will stop managing the
connection, if one exists. However that session connection will not be closed.

Applications which wish to ensure continuation of a session connection beyond the destruction of
the shell, should first retrieve thennectiorresource value, then set tt@nnectiorresource to

NULL, and then they may safely destroy the widget without losing control of the session connec-
tion.

The error callback list will be called if an unrecoverable communications error occurs while the
shell is managing the connection. The shell will close the connecticgresstctiorto NULL,

86

X Toolkit Intrinsics X11 Release 6

removethe input callback, and call the procedures registered on the error callback list. The
call_datafor these callbacks is NULL.

87

X Toolkit Intrinsics X11 Release 6

Chapter 5

Pop-Up Widgets

Pop-up widgets are used to create windows outside of the window hierarchy defined by the wid-
get tree. Each pop-up child has a window that is a descendant of the root window, so that the
pop-up window is not clipped by the pop-up widget’s parent window. Therefore, pop-ups are cre-
ated and attached differently to their widget parent than normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it usually does
not operate upon them in any way. Tgapup_listfield in the CorePart structure contains the

list of its pop-up children. This pop-up list exists mainly to provide the proper place in the widget
hierarchy for the pop-up to get resources and to provide a plag¢DestroyWidget to look for

all extant children.

A composite widget can have both normal and pop-up children. A pop-up can be popped up from
almost anywhere, not just by its parent. The tehiid always refers to a normal, geometry-
managed widget on the composite widget'’s list of children, and thepprup childalways

refers to a widget on the pop-up list.

5.1. Pop-Up Widget Types

There are three kinds of pop-up widgets:

. Modeless pop-ups
A modeless pop-up (for example, a dialog box that does not prevent continued interaction
with the rest of the application) can usually be manipulated by the window manager and

looks like any other application window from the user’s point of view. The application
main window itself is a special case of a modeless pop-up.

. Modal pop-ups
A modal pop-up (for example, a dialog box that requires user input to continue) can some-

times be manipulated by the window manager, and except for events that occur in the dia-
log box, it disables user-event distribution to the rest of the application.

. Spring-loaded pop-ups

A spring-loaded pop-up (for example, a menu) can seldom be manipulated by the window
manager, and except for events that occur in the pop-up or its descendants, it disables user-
event distribution to all other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded as if they were
the same. In fact, the same widget (for example, a ButtonBox or Menu widget) can be used both
as a modal pop-up and as a spring-loaded pop-up within the same application. The main differ-
ence is that spring-loaded pop-ups are brought up with the pointer and, because of the grab that
the pointer button causes, require different processing by the Intrinsics. Further, all user input
remap events occurring outside the spring-loaded pop-up (e.g., in a descendant) are also delivered
to the spring-loaded pop-up after they have been dispatched to the appropriate descendant, so
that, for example, button-up can take down a spring-loaded pop-up no matter where the button-up
occurs.

88

X Toolkit Intrinsics X11 Release 6

Any kind of pop-up, in turn, can pop up other widgets. Modal and spring-loaded pop-ups can
constrain user events to the most recent such pop-up or allow user events to be dispatched to any
of the modal or spring-loaded pop-ups currently mapped.

Regardless of their type, all pop-up widget classes are responsible for communicating with the X
window manager and therefore are subclasses of one of the Shell widget classes.

5.2. Creating a Pop-Up Shell

For a widget to be popped up, it must be the child of a pop-up shell widget. None of the Intrin-
sics-supplied shells will simultaneously manage more than one child. Both the shell and child
taken together are referred to as the pop-up. When you need to use a pop-up, you always refer to
the pop-up by the pop-up shell, not the child.

To create a pop-up shell, uX¢CreatePopupShell

Widget XtCreatePopupSheaidme widget_classparent args num_arg$
Stringname
WidgetClassvidget_class
Widgetparent
ArglList args
Cardinalnum_args

name Specifies the instance name for the created shell widget.

widget_class Specifies the widget class pointer for the created shell widget.

parent Specifies the parent widget. Must be of class Core or any subclass thereof.
args Specifies the argument list to override any other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtCreatePopupShellfunction ensures that the specified class is a subclass of Shell and,

rather than using insert_child to attach the widget to the paoiltsenlist, attaches the shell to

the parent'popup_listdirectly.

The screen resource for this widget is determined by first scaargafpr the XtNscreen argu-

ment. If no XtNscreen argument is found, the resource database associated with the parent’s

screen is queried for the resoun@emescreen, clasSlassScreen wher€lassis theclass_name

field from theCoreClassPartof the specifiedvidget_class If this query fails, the parent’s

screen is used. Once the screen is determined, the resource database associated with that screen is
used to retrieve all remaining resources for the widget not speciféggsin

A spring-loaded pop-up invoked from a translation tableXtidenuPopup must already exist at

the time that the translation is invoked, so the translation manager can find the shell by name.
Pop-ups invoked in other ways can be created when the pop-up actually is needed. This delayed
creation of the shell is particularly useful when you pop up an unspecified number of pop-ups.
You can look to see if an appropriate unused shell (that is, not currently popped up) exists and
create a new shell if needed.

To create a pop-up shell using varargs lists Xts@CreatePopupShell

89

X Toolkit Intrinsics X11 Release 6

Widget XtVaCreatePopupShei{me widget_classparent ...)

Stringname
WidgetClassvidget_class
Widgetparent
name Specifies the instance name for the created shell widget.
widget_class Specifies the widget class pointer for the created shell widget.
parent Specifies the parent widget. Must be of class Core or any subclass thereof.

Specifies the variable argument list to override any other resource specifications.

XtVaCreatePopupShellls identical in function toXtCreatePopupShellwith theargs and
num_arggparameters replaced by a varargs list as described in Section 2.5.1.

5.3. Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created either statically
or dynamically.

At startup, an application can create the child of the pop-up shell, which is appropriate for pop-up
children composed of a fixed set of widgets. The application can change the state of the subparts
of the pop-up child as the application state changes. For example, if an application creates a static
menu, it can calKtSetSensitive(or, in general XtSetValues) on any of the buttons that make up

the menu. Creating the pop-up child early means that pop-up time is minimized, especially if the
application callsXtRealizeWidget on the pop-up shell at startup. When the menu is needed, all

the widgets that make up the menu already exist and need only be mapped. The menu should pop
up as quickly as the X server can respond.

Alternatively, an application can postpone the creation of the child until it is needed, which mini-
mizes application startup time and allows the pop-up child to reconfigure itself each time it is
popped up. In this case, the pop-up child creation routine might poll the application to find out if
it should change the sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, even if you create the child aXtReall-
izeWidget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either to make
last-minute changes to a pop-up child before it is popped up or to change it after it is popped
down. Note that excessive use of pop-up callbacks can make popping up occur more slowly.

5.4. Mapping a Pop-Up Widget
Pop-ups can be popped up through several mechanisms:
. A call to XtPopup or XtPopupSpringLoaded.

. One of the supplied callback procedurd€allbackNone, XtCallbackNonexclusive, or
XtCallbackExclusive.

. The standard translation actidttMenuPopup.
Some of these routines take an argument of ¥gégrabKind , which is defined as

typedef enum {XtGrabNone, XtGrabNonexclusive, XtGrabExclusive} XtGrabKind;

90

X Toolkit Intrinsics X11 Release 6

The create_popup_child_proc procedure pointer in the shell widget instance record is of type
XtCreatePopupChildProc.

typedef void (*XtCreatePopupChildProc)(Widget);
Widgetw;

w Specifies the shell widget being popped up.

To map a pop-up from within an application, d&@opup.
void XtPopuppopup_shellgrab_king
Widgetpopup_shell
XtGrabKindgrab_kind
popup_shell Specifies the shell widget.
grab_kind Specifies the way in which user events should be constrained.
The XtPopup function performs the following:
. Calls XtCheckSubclassto ensurgopup_shel class is a subclass sffiellWidgetClass
. Raises the window and returns if the shqdbpped_ugield is alreadyTrue .

. Calls the callback procedures on the shelipup_callbackist, specifying a pointer to the
value ofgrab_kindas thecall _dataargument.

. Sets the shepopped_upield to True, the shelspring_loadedield to False, and the shell
grab_kindfield fromgrab_kind

. If the shell’'screate_popup_child_praield is non-NULL, XtPopup calls it with
popup_shelas the parameter.

. If grab_kindis eitherXtGrabNonexclusive or XtGrabExclusive, it calls

XtAddGrabpopup_shell(grab_kind== XtGrabExclusive), False)

Calls XtRealizeWidget with popup_shelspecified.
Calls XMapRaised with the window ofpopup_shell

To map a spring-loaded pop-up from within an application XiBepupSpringLoaded.

void XtPopupSpringLoaded6pup_shell
Widgetpopup_shell

popup_shell Specifies the shell widget to be popped up.

The XtPopupSpringLoaded function performs exactly astPopup except that it sets the shell
spring_loadedield to True and always callXtAddGrab with exclusiveTrue andspring-
loadedTrue.

To map a pop-up from a given widget'’s callback list, you also can register one of the
XtCallbackNone, XtCallbackNonexclusive, or XtCallbackExclusive convenience routines as
callbacks, using the pop-up shell widget as the client data.
void XtCallbackNoneg, client_data call_datg

Widgetw;

XtPointerclient_data

XtPointercall _datg

91

X Toolkit Intrinsics X11 Release 6

w Specifies the widget.
client_ data Specifies the pop-up shell.
call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackNonexclusive\, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies the widget.
client_data Specifies the pop-up shell.
call_data Specifies the callback data argument, which is not used by this procedure.

void XtCallbackExclusivef, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

W Specifies the widget.
client_data Specifies the pop-up shell.
call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive functions call

XtPopup with the shell specified by thefient_dataargument angrab_kindset as the name
specifies. XtCallbackNone, XtCallbackNonexclusive, and XtCallbackExclusive specify
XtGrabNone, XtGrabNonexclusive, and XtGrabExclusive, respectively. Each function then

sets the widget that executed the callback list to be insensitive by célfiegSensitive Using

these functions in callbacks is not required. In particular, an application must provide customized
code for callbacks that create pop-up shells dynamically or that must do more than desensitizing
the button.

Within a translation table, to pop up a menu when a key or pointer button is pressed or when the
pointer is moved into a widget, u¥@MenuPopup, or its synonymMenuPopup. From a trans-
lation writer’s point of view, the definition for this translation action is

void XtMenuPopuxhell_namg
Stringshell_name

shell_name Specifies the name of the shell widget to pop up.

XtMenuPopup is known to the translation manager, which registers the corresponding built-in
action procedurXtMenuPopupAction using XtRegisterGrabAction specifyingowner_events
True, event_maskButtonPressMask | ButtonReleaseMaskandpointer_modend
keyboard_modé&rabModeAsync.

If XtMenuPopup is invoked onButtonPress, it calls XtPopupSpringLoaded on the specified
shell widget. IfXtMenuPopup is invoked onKeyPressor EnterWindow , it calls XtPopup on
the specified shell widget witjrab_kindset toXtGrabNonexclusive. Otherwise, the transla-
tion manager generates a warning message and ignores the action.

XtMenuPopup tries to find the shell by searching the widget tree starting at the widget in which
it is invoked. If it finds a shell with the specified name in the pop-up children of that widget, it

92

X Toolkit Intrinsics X11 Release 6

pops up the shell with the appropriate parameters. Otherwise, it moves up the parent chain to find
a pop-up child with the specified name. XifMenuPopup gets to the application top-level shell
widget and has not found a matching shell, it generates a warning and returns immediately.

5.5. Unmapping a Pop-Up Widget

Pop-ups can be popped down through several mechanisms:
. A call to XtPopdown

. The supplied callback procedué@CallbackPopdown

. The standard translation actidttMenuPopdown

To unmap a pop-up from within an application, ¥XsBopdown.
void XtPopdowngopup_she)l
Widgetpopup_shell
popup_shell Specifies the shell widget to pop down.
The XtPopdown function performs the following:
. Calls XtCheckSubclassto ensurgopup_shel class is a subclass shiellWidgetClass
. Checks that thpopped_ugdield of popup_shelis True ; otherwise, it returns immediately.

. Unmapspopup_shel window and, ifoverride_redirecis False, sends a synthetic
UnmapNotify event as specified by thater-Client Communication Conventions Manual

. If popup_shels grab_kindis eitherXtGrabNonexclusive or XtGrabExclusive, it calls
XtRemoveGrab.
. Setspopup_shel popped_ugdield to False.

. Calls the callback procedures on the shelipdown_callbackst, specifying a pointer to
the value of the shellgrab_kindfield as thecall _dataargument.

To pop down a pop-up from a callback list, you may use the calltcklibackPopdown.

void XtCallbackPopdowny, client_data call_datg
Widgetw;
XtPointerclient_data
XtPointercall_datg

w Specifies the widget.
client_ data Specifies a pointer to thétPopdownID structure.
call_data Specifies the callback data argument, which is not used by this procedure.

The XtCallbackPopdown function casts thelient_dataparameter to a pointer of type
XtPopdownID.

typedef struct {
Widget shell_widget;
Widget enable_widget;

} XtPopdownIDRec, *XtPopdownID;

Theshell_widgets the pop-up shell to pop down, and #émable_widgeis usually the widget
that was used to pop it up in one of the pop-up callback convenience procedures.

93

X Toolkit Intrinsics X11 Release 6

XtCallbackPopdown calls XtPopdown with the specifiedhell_widgetind then callxtSet-
Sensitiveto resensitizenable_widget

Within a translation table, to pop down a spring-loaded menu when a key or pointer button is
released or when the pointer is moved into a widgetXtiskeenuPopdown or its synonym,
MenuPopdown. From a translation writer’'s point of view, the definition for this translation
action is

void XtMenuPopdowrghell_namg
Stringshell_nameg

shell_ name Specifies the name of the shell widget to pop down.

If a shell name is not giveixXtMenuPopdown calls XtPopdown with the widget for which the
translation is specified. #hell_names specified in the translation tabtMenuPopdown tries

to find the shell by looking up the widget tree starting at the widget in which it is invoked. If it
finds a shell with the specified name in the pop-up children of that widget, it pops down the shell;
otherwise, it moves up the parent chain to find a pop-up child with the specified name. If
XtMenuPopdown gets to the application top-level shell widget and cannot find a matching shell,
it generates a warning and returns immediately.

94

X Toolkit Intrinsics X11 Release 6

Chapter 6

Geometry Management

A widget does not directly control its size and location; rather, its parent is responsible for con-
trolling them. Although the position of children is usually left up to their parent, the widgets
themselves often have the best idea of their optimal sizes and, possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget and its parent,
the Intrinsics provide the geometry management mechanism. Almost all composite widgets have
a geometry manager specified in §ggmetry _managdield in the widget class record that is
responsible for the size, position, and stacking order of the widget's children. The only exception
is fixed boxes, which create their children themselves and can ensure that their children will never
make a geometry request.

6.1. Initiating Geometry Changes

Parents, children, and clients each initiate geometry changes differently. Because a parent has
absolute control of its children’s geometry, it changes the geometry directly by calling
XtMoveWidget, XtResizeWidget, or XtConfigureWidget. A child must ask its parent for a
geometry change by callingtMakeGeometryRequestor XtMakeResizeRequest An appli-

cation or other client code initiates a geometry change by calliigtValueson the appropriate
geometry fields, thereby giving the widget the opportunity to modify or reject the client request
before it gets propagated to the parent and the opportunity to respond appropriately to the parent’s
reply.

When a widget that needs to change its size, position, border width, or stacking depth asks its par-
ent's geometry manager to make the desired changes, the geometry manager can allow the
request, disallow the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geometry manager
may also rearrange and resize any or all of the other children that it controls. The geometry man-
ager can ravechildren around freely usingtMoveWidget. When it resizes a child (that is,

changes the width, height, or border width) other than the one making the request, it should do so
by calling XtResizeWidget The requesting child may be given special treatment; see Section

6.5. It can simultaneouslyaweand resize a child with a single callXeConfigureWidget.

Often, geometry managers find that they can satisfy a request only if they can reconfigure a wid-
get that they are not in control of; in particular, the composite widget may want to change its own
size. In this case, the geometry manager makes a request to its parent's geometry managetr.
Geometry requests can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended negotiation, windows
are not actually allocated to widgets at application startup until all widgets are satisfied with their
geometry; see Sections 2.5 and 2.6.

95

X Toolkit Intrinsics X11 Release 6

Notes

1. The Intrinsics treatment of stacking requests is deficient in several areas. Stacking requests
for unrealized widgets are granted but will have no effect. In addition, there is no way to
do anXtSetValuesthat will generate a stacking geometry request.

2. After a successful geometry request (one that retuxt@dometryYes), a widget does not
know whether its resize procedure has been called. Widgets should have resize procedures
that can be called more than once without ill effects.

6.2. General Geometry Manager Requests
When making a geometry request, the child specifiestéfidgetGeometry structure.

typedef unsigned long XtGeometryMask;

typedef struct {
XtGeometryMask request_mode;
Position x, y;
Dimension width, height;
Dimension border_width;
Widget sibling;
int stack_mode;

} XtWidgetGeometry;

To make a general geometry manager request from a widgeXtMsé&e GeometryRequest

XtGeometryResult XtMakeGeometryRequestiequestreply_returr)
Widgetw;
XtwidgetGeometry Ffequest
XtwidgetGeometry feply_return

w Specifies the widget making the request. Must be of class RectObj or any sub-
class thereof.

request Specifies the desired widget geometry (size, position, border width, and stacking
order).

reply_return Returns the allowed widget size, or may be NULL if the requesting widget is not
interested in handlingtGeometryAlmost.

Depending on the conditioXXtMakeGeometryRequestperforms the following:

. If the widget is unmanaged or the widget's parent is not realized, it makes the changes and
returnsXtGeometryYes.

. If the parent’s class is not a subclassompositeWidgetClassor the parent'geome-
try_manageffield is NULL, it issues an error.

. If the widget'sbeing_destroyefield is True, it returnsXtGeometryNo.

. If the widgetx, y, width, heightand,border_widthfields are all equal to the requested val-

ues, it returnXtGeometryYes;, otherwise, it calls the parent’s geometry_manager proce-
dure with the given parameters.

. If the parent’'s geometry manager retut&SeometryYes and if XtCWQueryOnly is not
set inrequest->request_moadmd if the widget is realizektMakeGeometryRequest

96

X Toolkit Intrinsics X11 Release 6

calls theXConfigureWindow Xlib function to reconfigure the widget’'s window (set its
size, location, and stacking order as appropriate).

. If the geometry manager returksGeometryDone, the change has been approved and
actually has been done. In this cagtylakeGeometryRequestdoes no configuring and
returnsXtGeometryYes. XtMakeGeometryRequestnever returns<tGeometryDone.

. Otherwise XtMakeGeometryRequestjust returns the resulting value from the parent’s
geometry manager.

Children of primitive widgets are always unmanaged; thereKtdakeGeometryRequest
always returnXtGeometryYes when called by a child of a primitive widget.

The return codes from geometry managers are

typedef enum {
XtGeometryYes,
XtGeometryNo,
XtGeometryAlmost,
XtGeometryDone

} XtGeometryResult;

Therequest_moddefinitions are from X11/X.h>.

#define CWX (1<<0)
#define CWY (1<<1)
#define CWWidth (1<<2)
#define CWHeight (1<<3)
#define CWBorderWidth (1<<4)
#define CWSibling (1<<b)
#define CWStackMode (1<<6)

The Intrinsics also support the following value.
#define XtCWQueryOnly (1<<7)

XtCWQueryOnly indicates that the corresponding geometry request is only a query as to what
would happen if this geometry request were made and that no widgets should actually be
changed.

XtMakeGeometryRequest like the XConfigureWindow Xlib function, usesequest_modio
determine which fields in th&tWidgetGeometry structure the caller wants to specify.

Thestack_modelefinitions are from X11/X.h>:

#define Above 0
#define Below 1
#define Toplf 2
#define Bottomlf 3
#define Opposite 4
The Intrinsics also support the following value.

#define XtSMDontChange 5

For definition and behavior dibove, Below, Toplf , BottomlIf , and Opposite, see Section 3.7
in Xlib — C Language X InterfaceXtSMDontChange indicates that the widget wants its current
stacking order preserved.

97

X Toolkit Intrinsics X11 Release 6

6.3. Resize Requests

To make a simple resize request from a widget, you caiXiMakeResizeRequests an alter-
native toXtMakeGeometryRequest

XtGeometryResult XtMakeResizeRequestf/idth, height width_return height_returi
Widgetw;
Dimensionwidth, height
Dimension #width_return *height_return

w Specifies the widget making the request. Must be of class RectObj or any sub-
class thereof.

width

height Specify the desired widget width and height.

width_return
height_return Return the allowed widget width and height.

The XtMakeResizeRequesftunction, a simple interface t§tMakeGeometryRequest creates

an XtWidgetGeometry structure and specifies that width and height should change by setting
request_mode CWWidth | CWHeight . The geometry manager is free to modify any of the
other window attributes (position or stacking order) to satisfy the resize request. If the return
value isXtGeometryAlmost, width_returnandheight_returncontain a compromise width and
height. If these are acceptable, the widget should immediatelXtbdlikeResizeRequesiagain

and request that the compromise width and height be applied. If the widget is not interested in
XtGeometryAlmost replies, it can pass NULL favidth_returnandheight_return

6.4. Potential Geometry Changes

Sometimes a geometry manager cannot respond to a geometry request from a child without first
making a geometry request to the widget's own parent (the original requestor’s grandparent). If
the request to the grandparent would allow the parent to satisfy the original request, the geometry
manager can make the intermediate geometry request as if it were the originator. On the other
hand, if the geometry manager already has determined that the original request cannot be com-
pletely satisfied (for example, if it always denies position changes), it needs to tell the grandparent
to respond to the intermediate request without actually changing the geometry because it does not
know if the child will accept the compromise. To accomplish this, the geometry manager uses
XtCWQueryOnly in the intermediate request.

When XtCWQueryOnly is used, the geometry manager needs to cache enough information to

exactly reconstruct the intermediate request. If the grandparent’s response to the intermediate
guery wasXtGeometryAlmost, the geometry manager needs to cache the entire reply geometry
in the event the child accepts the parent's compromise.

If the grandparent’s response wéakseometryAlmost, it may also be necessary to cache the

entire reply geometry from the grandparent wk@@WQueryOnly is not used. If the geometry
manager is still able to satisfy the original request, it may immediately accept the grandparent’s
compromise and then act on the child’s request. If the grandparent's compromise geometry is
insufficient to allow the child's request and if the geometry manager is willing to offer a different
compromise to the child, the grandparent’s compromise should not be accepted until the child has
accepted the new compromise.

Note that a compromise geometry returned Wit@eometryAlmost is guaranteed only for the
next call to the same widget; therefore, a cache of size 1 is sufficient.

98

X Toolkit Intrinsics X11 Release 6

6.5. Child Geometry Management: the geometry_manager Procedure

The geometry_manager procedure pointer in a composite widget class is of type
XtGeometryHandler .

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetw;
XtwidgetGeometry fequest
XtWidgetGeometry eometry_return

w Passes the widget making the request.

request Passes the new geometry the child desires.

geometry return Passes a geometry structure in which the geometry manager may store a com-
promise.

A class can inherit its superclass’'s geometry manager during class initialization.

A bit set to zero in the requestisquest_modéeld means that the child widget does not care
about the value of the corresponding field, so the geometry manager can change this field as it
wishes. A bit set to 1 means that the child wants that geometry element set to the value in the
corresponding field.

If the geometry manager can satisfy all changes requested ét@\ifQueryOnly is not speci-
fied, it updates the widgetsy, width, height andborder_widthfields appropriately. Then, it
returnsXtGeometryYes, and the values pointed to by tipeometry returrargument are unde-
fined. The widget's window is moved and resized automaticallXthfakeGeometryRequest

Homogeneous composite widgets often find it convenient to treat the widget making the request
the same as any other widget, including reconfiguring it ust@pnfigureWidget or XtRe-
sizeWidgetas part of its layout process, unléd€WQueryOnly is specified. If it does this, it
should returnXtGeometryDone to inform XtMakeGeometryRequestthat it does not need to

do the configuration itself.

Note

To remain compatible with layout techniques used in older widgets (béfGeom-
etryDone was added to the Intrinsics), a geometry manager should avoid using
XtResizeWidgetor XtConfigureWidget on the child making the request because
the layout process of the child may be in an intermediate state in which it is not pre-
pared to handle a call to its resize procedure. A self-contained widget set may
choose this alternative geometry management scheme, however, provided that it
clearly warns widget developers of the compatibility consequences.

Although XtMakeGeometryRequestresizes the widget's window (if the geometry manager
returnsXtGeometryYes), it does not call the widget class’s resize procedure. The requesting
widget must perform whatever resizing calculations are needed explicitly.

If the geometry manager disallows the request, the widget cannot change its geometry. The val-
ues pointed to bgeometry_returrare undefined, and the geometry manager returns
XtGeometryNo.

Sometimes the geometry manager cannot satisfy the request exactly but may be able to satisfy a
similar request. That is, it could satisfy only a subset of the requests (for example, size but not
position) or a lesser request (for example, it cannot make the child as big as the request but it can
make the child bigger than its current size). In such cases, the geometry manager fills in the
structure pointed to byeometry returnwith the actual changes it is willing to make, including

an appropriateequest_modenask, and returnxtGeometryAlmost. If a bit in

99

X Toolkit Intrinsics X11 Release 6

geometry_return->request_modezero, the geometry manager agrees not to change the corre-
sponding value iffeometry_returris used immediately in a new request. If a bitis 1, the geome-
try manager does change that element to the corresponding vgkemetry return More bits

may be set igeometry_return->request_motiean in the original request if the geometry man-
ager intends to change other fields should the child accept the compromise.

When XtGeometryAlmost is returned, the widget must decide if the compromise suggested in
geometry_returtis acceptable. If it is, the widget must not change its geometry directly; rather, it
must make another call dtMakeGeometryRequest

If the next geometry request from this child usegggmmetry_returwvalues filled in by the

geometry manager with axtGeometryAlmost return and if there have been no intervening
geometry requests on either its parent or any of its other children, the geometry manager must
grant the request, if possible. That is, if the child asks immediately with the returned geometry;, it
should get an answer dtGeometryYes. However, dynamic behavior in the user’s window
manager may affect the final outcome.

To returnXtGeometryYes, the geometry manager frequently rearranges the position of other
managed children by callingtMoveWidget. However, a few geometry managers may some-
times change the size of other managed children by ca{liRgsizeWidgetor

XtConfigureWidget. If XtCWQueryOnly is specified, the geometry manager must return data
describing how it would react to this geometry request without actually moving or resizing any
widgets.

Geometry managers must not assume thaetipgestandgeometry_returrarguments point to
independent storage. The caller is permitted to use the same field for both, and the geometry
manager must allocate its own temporary storage, if necessary.

6.6. Widget Placement and Sizing

To move asibling widget of the child making the geometry request, the parent uses
XtMoveWidget.

void XtMoveWidgetg, X, y)
Widgetw;
Positionx;
Positiony;

w Specifies the widget. Must be of class RectObj or any subclass thereof.

X
y Specify the new widget x and y coordinates.

The XtMoveWidget function returns immediately if the specified geometry fields are the same as
the old values. Otherwis&XtMoveWidget writes the newx andy values into the object and, if

the object is a widget and is realized, issues an XlwoveWindow call on the widget’s win-

dow.

To resize a sibling widget of the child making the geometry request, the parent uses
XtResizeWidget

100

X Toolkit Intrinsics X11 Release 6

void XtResizeWidgetf, width, height border_width
Widgetw;
Dimensionwidth;
Dimensionheight
Dimensionborder_width

w Specifies the widget. Must be of class RectObj or any subclass thereof.

width
height
border_width Specify the new widget size.

The XtResizeWidgetfunction returns immediately if the specified geometry fields are the same
as the old values. Otherwis€tResizeWidgetwrites the newvidth, height andborder_width
values into the object and, if the object is a widget and is realized, issX&€oafigureWindow

call on the widget's window.

If the new width or height is different from the old valugsResizeWidgetcalls the object’s
resize procedure to notify it of the size change.

To moveand resize the sibling widget of the child making the geometry request, the parent uses
XtConfigureWidget.

void XtConfigureWidgety, x, y, width, height border_width)
Widgetw;
Positionx;
Positiony;
Dimensionwidth;
Dimensionheight
Dimensionborder_width

w Specifies the widget. Must be of class RectObj or any subclass thereof.
X

y Specify the new widget x and y coordinates.

width

height

border_width Specify the new widget size.

The XtConfigureWidget function returns immediately if the specified new geometry fields are
all equal to the current values. OtherwixgConfigureWidget writes the newx, y, width,

height andborder_widthvalues into the object and, if the object is a widget and is realized,
makes an XlibXConfigureWindow call on the widget’'s window.

If the new width or height is different from its old valu&ConfigureWidget calls the object’s
resize procedure to notify it of the size change; otherwise, it simply returns.

To resize a child widget that already has the new values of its width, height, and border width, the
parent useXtResizeWindow.

void XtResizeWindow)
Widgetw;
w Specifies the widget. Must be of class Core or any subclass thereof.

The XtResizeWindow function calls theXConfigureWindow Xlib function to make the win-
dow of the specified widget match its width, height, and border width. This request is done

101

X Toolkit Intrinsics X11 Release 6

unconditionally because there is no inexpensive way to tell if these values match the current val-
ues. Note that the widget's resize procedure is not called.

There are very few times to u¥¢ResizeWindow; instead, the parent should use
XtResizeWidget

6.7. Preferred Geometry

Some parents may be willing to adjust their layouts to accommodate the preferred geometries of
their children. They can us¢tQueryGeometry to obtain the preferred geometry and, as they
see fit, can use or ignore any portion of the response.

To query a child widget’s preferred geometry, 6&®ueryGeometry.
XtGeometryResult XtQueryGeometw,(intended preferred_returi
Widgetw;
XtWidgetGeometry intended * preferred_return

w Specifies the widget. Must be of class RectObj or any subclass thereof.
intended Specifies the new geometry the parent plans to give to the child, or NULL.
preferred_returnReturns the child widget's preferred geometry.

To discover a child’s preferred geometry, the child’s parent stores the new geometry in the corre-
sponding fields of the intended structure, sets the correspondingibisnded.request mode

and callsXtQueryGeometry. The parent should set only those fields that are important to it so
that the child can determine whether it may be able to attempt changes to other fields.

XtQueryGeometry clears all bits in thereferred_return->request._modield and checks the
guery_geometriield of the specified widget’s class recordqlfery_geometris not NULL,
XtQueryGeometry calls the query_geometry procedure and passes as arguments the specified
widget,intended andpreferred_returrstructures. If théentendedargument is NULL XtQuery-
Geometry replaces it with a pointer to &XtWidgetGeometry structure withrequest_mode

equal to zero before calling the query_geometry procedure.

Note

If XtQueryGeometry is called from within a geometry_manager procedure for the
widget that issue&XtMakeGeometryRequestor XtMakeResizeRequestthe

results are not guaranteed to be consistent with the requested changes. The change
request passed to the geometry manager takes precedence over the preferred geome-

try.

The query_geometry procedure pointer is of ty{p&eometryHandler.

typedef XtGeometryResult (*XtGeometryHandler)(Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetw;
XtWidgetGeometry fequest
XtWidgetGeometry preferred_return

w Passes the child widget whose preferred geometry is required.

request Passes the geometry changes which the parent plans to make.

preferred_return Passes a structure in which the child returns its preferred geometry.

102

X Toolkit Intrinsics X11 Release 6

The query_geometry procedure is expected to examine the bitsega@st->request_mogde

evaluate the preferred geometry of the widget, and store the regrdteénred_return(setting the

bits in preferred_return->request._moderresponding to those geometry fields that it cares

about). If the proposed geometry change is acceptable without modification, the query_geometry
procedure should retuidtGeometryYes. If at least one field ipreferred_returnwith a bit set

in preferred_return->request_mode different from the corresponding fieldriequestor if a bit

was set irpreferred_return->request_modkeat was not set in the request, the query_geometry
procedure should retunitGeometryAlmost. If the preferred geometry is identical to the cur-

rent geometry, the query_geometry procedure should réti@aometryNo.

Note

The query_geometry procedure may assume thXithMakeResizeRequesbr
XtMakeGeometryRequestis in progress for the specified widget; that is, it is not
required to construct a reply consistent with the requested geometry if such a request
were actually outstanding.

After calling the query_geometry procedure or if guery _geometriield is NULL, XtQuery-
Geometry examines all the unset bitspneferred_return->request_modand sets the corre-
sponding fields ipreferred_returrto the current values from the widget instanceC\W/Stack-
Mode is not set, thetack_moddield is set toXtSMDontChange. XtQueryGeometry returns
the value returned by the query_geometry proceduk®eometryYes if the query _geometry
field is NULL.

Therefore, the caller can interpret a returrXtGeometryYes as not needing to evaluate the con-
tents of the reply and, more important, not needing to modify its layout plans. A reiitGef
ometryAlmost means either that both the parent and the child expressed interest in at least one
common field and the child’s preference does not match the parent’s intentions or that the child
expressed interest in a field that the parent might need to consider. A return vélGeoime-

tryNo means that both the parent and the child expressed interest in a field and that the child sug-
gests that the field's current value in the widget instance is its preferred value. In addition,
whether or not the caller ignores the return value or the reply mask, it is guaranteedgieat the
ferred_returnstructure contains complete geometry information for the child.

Parents are expected to cAtQueryGeometry in their layout routine and wherever else the
information is significant after change_managed has been called. The first time it is invoked, the
changed_managed procedure may assume that the child’s current geometry is its preferred geom-
etry. Thus, the child is still responsible for storing values into its own geometry during its initial-

ize procedure.

6.8. Size Change Management: the resize Procedure

A child can be resized by its parent at any time. Widgets usually need to know when they have
changed size so that they can lay out their displayed data again to match the new size. When a
parent resizes a child, it caldResizeWidget, which updates the geometry fields in the widget,
configures the window if the widget is realized, and calls the child’s resize procedure to notify the
child. The resize procedure pointer is of tyfiVidgetProc.

If a class need not recalculate anything when a widget is resized, it can specify NULL for the
resizefield in its class record. This is an unusual case and should occur only for widgets with

very trivial display semantics. The resize procedure takes a widget as its only argumenqt. The

y, width, height andborder_widthfields of the widget contain the new values. The resize proce-
dure should recalculate the layout of internal data as needed. (For example, a centered Label in a

103

X Toolkit Intrinsics X11 Release 6

window that changes size should recalculate the starting position of the text.) The widget must
obey resize as a command and must not treat it as a request. A widget must not issue an
XtMakeGeometryRequestor XtMakeResizeRequestall from its resize procedure.

104

X Toolkit Intrinsics X11 Release 6

Chapter 7

Event Management

While Xlib allows the reading and processing of events anywhere in an application, widgets in the
X Toolkit neither directly read events nor grab the server or pointer. Widgets register procedures
that are to be called when an event or class of events occurs in that widget.

A typical application consists of startup code followed by an event loop that reads events and dis-
patches them by calling the procedures that widgets have registered. The default event loop pro-
vided by the Intrinsics iXtAppMainLoop .

The event manager is a collection of functions to perform the following tasks:

. Add or renove eent sources other than X server events (in particular, timer interrupts, file
input, or POSIX signals).

. Query the status of event sources.
. Add or renove procedures to be called when an event occurs for a particular widget.

. Enable and disable the dispatching of user-initiated events (keyboard and pointer events)
for a particular widget.

. Constrain the dispatching of events to a cascade of pop-up widgets.
. Register procedures to be called when specific events arrive.

. Register procedures to be called when the Intrinsics will block.

. Enable safe operation in a multi-threaded environment.

Most widgets do not need to call any of the event handler functions explicitly. The normal inter-
face to X events is through the higher-level translation manager, which maps sequences of X
events, with modifiers, into procedure calls. Applications rarely use any of the event manager
routines besideXtAppMainLoop .

7.1. Adding and Deleting Additional Event Sources

While most applications are driven only by X events, some applications need to incorporate other
sources of input into the Intrinsics event-handling mechanism. The event manager provides rou-
tines to integrate notification of timer events and file data pending into this mechanism.

The next section describes functions that provide input gathering from files. The application reg-
isters the files with the Intrinsics read routine. When input is pending on one of the files, the reg-
istered callback procedures are invoked.

7.1.1. Adding and Removing Input Sources
To register a new file as an input source for a given application contex{tAgpAddinput .

105

X Toolkit Intrinsics X11 Release 6

Xtinputld XtAppAddinput@épp_contextsource condition proc, client_datg
XtAppContextapp_context
int source
XtPointercondition
XtinputCallbackProgroc;
XtPointerclient_data

app_context Specifies the application context that identifies the application.

source Specifies the source file descriptor on a POSIX-based system or other operating-
system-dependent device specification.

condition Specifies the mask that indicates a read, write, or exception condition or some
other operating-system-dependent condition.

proc Specifies the procedure to be called when the condition is found.

client data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddIinput function registers with the Intrinsics read routine a new source of events,
which is usually file input but can also be file output. Notefileashould be loosely interpreted

to mean any sink or source of datétAppAddinput also specifies the conditions under which

the source can generate events. When an event is pending on this source, the callback procedure
is called.

The legal values for theonditionargument are operating-system-dependent. On a POSIX-based
systemsourceis a file number and the condition is some union of the following:

XtinputReadMask Specifies thaprocis to be called whesourcehas data to be read.
XtinputWriteMask Specifies thaprocis to be called whesourceis ready for writing.
XtinputExceptMask Specifies thaprocis to be called whesourcehas exception data.
Callback procedure pointers used to handle file events are oKtypgautCallbackProc .

typedef void (*XtInputCallbackProc)(XtPointer, int*, Xtinputld*);
XtPointerclient_data
int *source
Xtinputld *id;

client data Passes the client data argument that was registered for this proceXtAppn
AddInput .

source Passes the source file descriptor generating the event.

id Passes the id returned from the corresponiidgppAddinput call.

See Section 7.12 for information regarding the usétappAddinput in multiple threads.

To discontinue a source of input, us&Removelnput.
void XtRemovelnpuil)
Xtinputld id;
id Specifies the id returned from the correspondtgppAddinput call.

The XtRemovelnput function causes the Intrinsics read routine to stop watching for events from
the file source specified liy.

See Section 7.12 for information regarding the us€tBemovelnput in multiple threads.

106

X Toolkit Intrinsics X11 Release 6

7.1.2. Adding and Removing Blocking Notifications

Occasionally it is desirable for an application to receive notification when the Intrinsics event
manager detects no pending input from file sources and no pending input from X server event
sources, and is about to block in an operating system call.

To register a hook that is called immediately prior to event blockingXtigepAddBlockHook .
XtBlockHookld XtAppAddBlockHooképp_contextproc, client_datg
XtAppContextapp_context
XtBlockHookProcproc;
XtPointerclient_data
app_context Specifies the application context that identifies the application.
proc Specifies the procedure to be called before blocking.
client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddBlockHook function registers the specified procedure and returns an identifier
for it. The hook procedurgrocis called at any time in the future when the Intrinsics are about to
block pending some input.

The procedure pointers used to provide notification of event blocking are of type
XtBlockHookProc.

typedef void (*XtBlockHookProc)(XtPointer);
XtPointerclient_data

client data Passes the client data argument that was registered for this proceXtAppn
AddBlockHook.

To discontinue the use of a procedure for blocking notificationXtRemoveBlockHook.
void XtRemoveBlockHook()
XtBlockHookld id;
id Specifies the identifier returned from the corresponding call to
XtAppAddBlockHook .

The XtRemoveBlockHook function removes the specified procedure from the list of procedures
which are called by the Intrinsics read routine before blocking on event sources.

7.1.3. Adding and Removing Timeouts

The timeout facility notifies the application or the widget through a callback procedure that a
specified time interval has elapsed. Timeout values are uniquely identified by an interval id.

To register a timeout callback, uX€AppAddTimeOut .

Xtintervalld XtAppAddTimeOutépp_contextinterval, proc, client_datg
XtAppContextapp_context
unsigned longnterval,
XtTimerCallbackProgroc;
XtPointerclient_data

app_context Specifies the application context for which the timer is to be set.

107

X Toolkit Intrinsics X11 Release 6

interval Specifies the time interval in milliseconds.
proc Specifies the procedure to be called when the time expires.
client_data Specifies an argument passed to the specified procedure when it is called.

The XtAppAddTimeOut function creates a timeout and returns an identifier for it. The timeout
value is set tinterval. The callback procedugocis called whernXtAppNextEvent or
XtAppProcessEventis next called after the time interval elapses, and then the timeout is
removed.

Callback procedure pointers used with timeouts are of XtpenerCallbackProc .

typedef void (*XtTimerCallbackProc)(XtPointer, Xtintervalld*);
XtPointerclient_data
Xtintervalld *timer;

client_ data Passes the client data argument that was registered for this proceXtAppn
AddTimeOut .

timer Passes the id returned from the corresponditAgopAddTimeOut call.

See Section 7.12 for information regarding the usétAppAddTimeOut in multiple threads.

To clear a timeout value, ud¢RemoveTimeOut.
void XtRemoveTimeOutimer)
XtIntervalld timer;
timer Specifies the id for the timeout request to be cleared.

The XtRemoveTimeOut function removes the pending timeout. Note that timeouts are automat-
ically removed once they trigger.

Please refer to Section 7.12 for information regarding the uxXeéR&#moveTimeOut in multiple
threads.

7.1.4. Adding and Removing Signal Callbacks

The signal facility notifies the application or the widget through a callback procedure that a signal
or other external asynchronous event has occurred. The registered callback procedures are
uniquely identified by a signal id.

Prior to establishing a signal handler, the application or widget shouldtégdpAddSignal ,

and store the resulting identifier in a place accessible to the signal handler. When a signal arrives,
the signal handler should ca{tNoticeSignal to notify the Intrinsics that a signal has occured.

To register a signal callback ux@¢AppAddSignal .

XtSignalld XtAppAddSignakipp_contextproc, client_datg
XtAppContextapp_context
XtSignalCallbackProgroc;
XtPointerclient_data
app_context Specifies the application context that identifies the application.
proc Specifies the procedure to be called when the signal is noticed.

client_ data Specifies an argument passed to the specified procedure when it is called.

108

X Toolkit Intrinsics X11 Release 6

The callback procedure pointers used to handle signal events are #t8jgealCallbackProc

typedef void (*XtSignalCallbackProc)(XtPointer, XtSignalld*);
XtPointerclient_data

XtSignalld *id;
client data Passes the client data argument that was registered for this procedure in
XtAppAddSignal .
id Passes the id returned from the corresponiidgopAddSignal call.

To notify the Intrinsics that a signal has occured, XibéoticeSignal.

void XtNoticeSignalid)
XtSignalldid;

id Specifies the id returned from the corresponiWyppAddSignal call.

On a POSIX-based systenitNoticeSignal is the only Intrinsics function that can safely be

called from a signal handler. XtNoticeSignal is invoked multiple times before the Intrinsics

are able to invoke the registered callback, the callback is only called once. Logically, the Intrin-
sics maintain “pending” flag for each registered callback. This flag is initidige and is set to
True by XtNoticeSignal. When XtAppNextEvent or XtAppProcessEvent(with a mask

including XtIMSignal) is called, all registered callbacks with “pending@fue are invoked and

the flags are reset tealse.

If the signal handler wants to track how many times the signal has been raised, it can keep its own
private counter. Typically the handler would not do any other work; the callback does the actual
processing for the signal. The Intrinsics never block signals from being raised, so if a given signal
can be raised multiple times before the Intrinsics can invoke the callback for that signal, the call-
back must be designed to deal with this. In another case, a signal might be raised just after the
Intrinsics sets the pending flag False but before the callback can get control, in which case the
pending flag will still beTrue after the callback returns, and the Intrinsics will invoke the call-

back again, even though all of the signal raises have been handled. The callback must also be
prepared to handle this case.

To remove a mgistered signal callback, catltRemoveSignal
XtRemoveSignal()
XtSignalldid;
id Specifies the id returned by the corresponding cafltéppAddSignal .

The client should typically disable the source of the signal before caltRgmoveSignal If

the signal could have been raised again before the source was disabled and the client wants to
process it, then after disabling the source but before calliRgmoveSignalthe client can test

for signals withXtAppPending and process them by callinggAppProcessEventwith the mask
XtIMSignal .

7.2. Constraining Events to a Cascade of Widgets

Modal widgets are widgets that, except for the input directed to them, lock out user input to the
application.

When a modal menu or modal dialog box is popped up d&iRgpup, user events (keyboard
and pointer events) that occur outside the modal widget should be delivered to the modal widget
or ignored. In no case will user events be delivered to a widget outside the modal widget.

109

X Toolkit Intrinsics X11 Release 6

Menus can pop up submenus, and dialog boxes can pop up further dialog boxes, to create a pop-
up cascade. In this case, user events may be delivered to one of several modal widgets in the cas-
cade.

Display-related events should be delivered outside the modal cascade so that exposure events and
the like keep the application’s display up-to-date. Any event that occurs within the cascade is
delivered as usual. The user events delivered to the most recent spring-loaded shell in the cascade
when they occur outside the cascade are called remap events &eyRress KeyRelease

ButtonPress, andButtonRelease The user events ignored when they occur outside the cascade

are MotionNotify andEnterNotify . All other events are delivered normally. In particular, note

that this is one way in which widgets can recdieaveNotify events without first receiving

EnterNotify events; they should be prepared to deal with this, typically by ignoring any
unmatched_eaveNotify events.

XtPopup uses theXtAddGrab and XtRemoveGrab functions to constrain user events to a
modal cascade and subsequently toovragrab when the modal widget is popped down.

To constrain or redirect user input to a modal widget XideldGrab .

void XtAddGrabyv, exclusivespring_loaded
Widgetw;
Booleanexclusive
Booleanspring_loaded

w Specifies the widget to add to the modal cascade. Must be of class Core or any
subclass thereof.
exclusive Specifies whether user events should be dispatched exclusively to this widget or

also to previous widgets in the cascade.

spring_loaded Specifies whether this widget was popped up because the user pressed a pointer
button.

The XtAddGrab function appends the widget to the modal cascade and checkscdhatives
True if spring_loadeds True. If this condition is not metXtAddGrab generates a warning
message.

The modal cascade is used XgDispatchEvent when it tries to dispatch a user event. When at
least one modal widget is in the widget cascadBjspatchEvent first determines if the event

should be delivered. It starts at the most recent cascade entry and follows the cascade up to and
including the most recent cascade entry added witbxtlesiveparameteirue .

This subset of the modal cascade along with all descendants of these widgets comprise the active
subset. User events that occur outside the widgets in this subset are ignored or remapped. Modal
menus with submenus generally add a submenu widget to the cascaebechisiveFalse.

Modal dialog boxes that need to restrict user input to the most deeply nested dialog box add a
subdialog widget to the cascade watttlusiveTrue. User events that occur within the active

subset are delivered to the appropriate widget, which is usually a child or further descendant of
the modal widget.

Regardless of where in the application they occur, remap events are always delivered to the most
recent widget in the active subset of the cascade registeresgpuniitly_loadedTrue, if any such

widget exists. If the event occurred in the active subset of the cascade but outside the spring-
loaded widget, it is delivered normally before being delivered also to the spring-loaded widget.
Regardless of where it is dispatched, the Intrinsics do not modify the contents of the event.

110

X Toolkit Intrinsics X11 Release 6

To removethe redirection of user input to a modal widget, ¥deemoveGrab.

void XtRemoveGraly()
Widgetw;

w Specifies the widget to reamefrom the modal cascade.

The XtRemoveGrab function removes widgets from the modal cascade starting at the most
recent widget up to and including the specified widget. It issues a warning if the specified widget
is not on the modal cascade.

7.2.1. Requesting Key and Button Grabs

The Intrinsics provide a set of key and button grab interfaces that are parallel to those provided by
Xlib and that allow the Intrinsics to modify event dispatching when necessary. X Toolkit applica-
tions and widgets that need to passively grab keys or buttons or actively grab the keyboard or
pointer should use the following Intrinsics routines rather than the corresponding Xlib routines.

To passively grab a single key of the keyboard, Xi§erabKey .

void XtGrabKeyidget keycodemaodifiers owner_eventgointer_modgkeyboard_mode
Widgetwidget
KeyCodekeycode
Modifiersmodifiers
Booleanowner_events
int pointer_modekeyboard_mode

widget Specifies the widget in whose window the key is to be grabbed. Must be of class
Core or any subclass thereof.

keycode

modifiers

owner_events

pointer_mode

keyboard_mode
Specify arguments t¥GrabKey ; see Section 12.2 Mlib — C Language X
Interface

XtGrabKey calls XGrabKey specifying the widget’'s window as the grab window if the widget
is realized. The remaining arguments are exactly ax@mabKey . If the widget is not realized,
or is later unrealized, the call XGrabKey is performed (again) when the widget is realized and
its window becomes mapped. In the futureXiDispatchEvent is called with aKeyPressevent
matching the specified keycode and modifiers (which majmy&ey or AnyModifier , respec-
tively) for the widget's window, the Intrinsics will caltUngrabKeyboard with the timestamp
from theKeyPressevent if either of the following conditions is true:

» There is a modal cascade and the widget is not in the active subset of the cascade and the
keyboard was not previously grabbed, or

+ XFilterEvent returnsTrue.

To cancel a passive key grab, ug&ngrabKey .

111

X Toolkit Intrinsics X11 Release 6

void XtUngrabKeywidget keycode, modifie)s
Widgetwidget
KeyCodekeycode
Modifiersmodifiers

widget Specifies the widget in whose window the key was grabbed.

keycode
modifiers Specify arguments tdUngrabKey ; see Section 12.2 Mlib — C Language X
Interface

The XtUngrabKey procedure callXUngrabKey specifying the widget's window as the ungrab
window if the widget is realized. The remaining arguments are exactly &dJiograbKey. If

the widget is not realizeXtUngrabKey removes a deferredtGrabKey request, if any, for the
specified widget, keycode, and modifiers.

To actively grab the keyboard, uX¢GrabKeyboard .

int XtGrabKeyboard{idget owner_eventpointer_modekeyboard_moddime)
Widgetwidget
Booleanowner_events
int pointer_modekeyboard_mode
Timetime

widget Specifies the widget for whose window the keyboard is to be grabbed. Must be
of class Core or any subclass thereof.

owner_events

pointer_mode

keyboard_mode

time Specify arguments t¥GrabKeyboard ; see Section 12.2 Mlib — C Language
X Interface

If the specified widget is realizextGrabKeyboard calls XGrabKeyboard specifying the wid-

get’s window as the grab window. The remaining arguments and return value are exactly as for
XGrabKeyboard . If the widget is not realizedXtGrabKeyboard immediately returns
GrabNotViewable. No future automatic ungrab is implied ByGrabKeyboard .

To cancel an active keyboard grab, Xs&ngrabKeyboard .

void XtUngrabKeyboardgidget time)
Widgetwidget
Timetime

widget Specifies the widget that has the active keyboard grab.

time Specifies the additional argumentXd/ngrabKeyboard ; see Section 12.2 in
Xlib — C Language X Interface

XtUngrabKeyboard calls XUngrabKeyboard with the specified time.

To passively grab a single pointer button, X¢&rabButton .

112

X Toolkit Intrinsics X11 Release 6

void XtGrabButtongidget button modifiers owner_eventevent_maskpointer_mode
keyboard_modeonfine_tocursor)
Widgetwidget
int button
Modifiersmodifiers
Booleanowner_events
unsigned inevent_mask
int pointer_modekeyboard_mode
Window confine_to
Cursorcursor,

widget Specifies the widget in whose window the button is to be grabbed. Must be of
class Core or any subclass thereof.

button

modifiers

owner_events

event_mask

pointer_mode

keyboard _mode

confine_to

cursor Specify arguments t¥GrabButton ; see Section 12.1 Klib — C Language X
Interface

XtGrabButton calls XGrabButton specifying the widget's window as the grab window if the
widget is realized. The remaining arguments are exactly asGoabButton . If the widget is
not realized, or is later unrealized, the calKi@rabButton is performed (again) when the wid-
get is realized and its window becomes mapped. In the futuxéDiEpatchEvent is called with
a ButtonPress event matching the specified button and modifiers (which ma&nButton or
AnyModifier , respectively) for the widget’s window, the Intrinsics will catUngrabPointer
with the timestamp from thButtonPressevent if either of the following conditions is true:

» There is a modal cascade and the widget is not in the active subset of the cascade and the
pointer was not previously grabbed, or

« XFilterEvent returnsTrue.

To cancel a passive button grab, ¥X$&ngrabButton .

void XtUngrabButtonfiidget button modifierg
Widgetwidget
unsigned inbutton
Modifiersmodifiers

widget Specifies the widget in whose window the button was grabbed.

button

modifiers Specify arguments t¥UngrabButton ; see Section 12.1 lib — C Language
X Interface

The XtUngrabButton procedure callXUngrabButton specifying the widget’s window as the
ungrab window if the widget is realized. The remaining arguments are exactly as for
XUngrabButton . If the widget is not realizedXtUngrabButton removes a deferredtGrab-
Button request, if any, for the specified widget, button, and modifiers.

113

X Toolkit Intrinsics X11 Release 6

To actively grab the pointer, us@GrabPointer .

int XtGrabPointenidget owner_eventevent_maskpointer _modgekeyboard_mode
confine_tocursor, time)
Widgetwidget
Booleanowner_events
unsigned inevent_mask
int pointer_modekeyboard_mode
Window confine_to
Cursorcursor,
Timetime

widget Specifies the widget for whose window the pointer is to be grabbed. Must be of
class Core or any subclass thereof.

owner_events

event_mask

pointer_mode

keyboard_mode

confine_to

cursor

time Specify arguments t¥GrabPointer ; see Section 12.1 Xlib — C Language X
Interface

If the specified widget is realizedtGrabPointer calls XGrabPointer, specifying the widget's
window as the grab window. The remaining arguments and return value are exactly as for
XGrabPointer . If the widget is not realizedtGrabPointer immediately returns
GrabNotViewable. No future automatic ungrab is implied BgGrabPointer .

To cancel an active pointer grab, d&&ngrabPointer .
void XtUngrabPointeridget time)
Widgetwidget
Timetime
widget Specifies the widget that has the active pointer grab.

time Specifies the time argumentXd&JngrabPointer; see Section 12.1 Mlib - C
Language X Interface

XtUngrabPointer calls XUngrabPointer with the specified time.

7.3. Focusing Events on a Child

To redirect keyboard input to a normal descendant of a widget without cdfiainputFocus,
useXtSetKeyboardFocus

void XtSetKeyboardFocus(btree descendgnt
Widgetsubtree descendant

subtree Specifies the subtree of the hierarchy for which the keyboard focus is to be set.
Must be of class Core or any subclass thereof.

descendant Specifies either the normal (non-pop-up) descendasulzfeeto which
keyboard events are logically directed Nwne. It is not an error to specify
None when no input focus was previously set. Must be of class Object or any

114

X Toolkit Intrinsics X11 Release 6

subclass thereof.

XtSetKeyboardFocuscausesXtDispatchEvent to remap keyboard events occurring within the
specified subtree and dispatch them to the specified descendant widget or to an ancestor. If the
descendant’s class is not a subclass of Core, the descendant is replaced by its closest windowed
ancestor.

When there is no modal cascade, keyboard events can be dispatched to a widget in one of five
ways. Assume the server delivered the event to the window for widget E (because of X input
focus, key or keyboard grabs, or pointer position).

» If neither E nor any of E’s ancestors have redirected the keyboard focus, or if the event acti-
vated a grab for E as specified by a caktGrabKey with any value obwner_eventsr if
the keyboard is actively grabbed by E withiner_eventsalse via XtGrabKeyboard or
XtGrabKey on a previous key press, the event is dispatched to E.

» Beginning with the ancestor of E closest to the root that has redirected the keyboard focus or
E if no such ancestor exists, if the target of that focus redirection has in turn redirected the
keyboard focus, recursively follow this focus chain to find a widget F that has not redirected
focus.

- If Eis the final focus target widget F or a descendant of F, the event is dispatched to E.

- If Eis not F, an ancestor of F, or a descendant of F, and the event activated a grab for E as
specified by a call t&XtGrabKey for E, XtUngrabKeyboard is called.

- If Eis an ancestor of F, and the event is a key press, and either
+ E has grabbed the key wi¥tGrabKey andowner_event$alse, or

+ E has grabbed the key witGrabKey andowner_eventJrue, and the coordinates
of the event are outside the rectangle specified by E's geometry,
then the event is dispatched to E.

— Otherwise, define A as the closest common ancestor of E and F:

+ If there is an active keyboard grab for any widget via eift&@rabKeyboard or
XtGrabKey on a previous key press, or if no widget between F and A (noninclusive)
has grabbed the key and modifier combination WiiGrabKey and any value of
owner_eventghe event is dispatched to F.

+ Else, the event is dispatched to the ancestor of F closest to A that has grabbed the key
and modifier combination witKtGrabKey .

When there is a modal cascade, if the final destination widget as identdieglialinthe active

subset of the cascade, the event is dispatched; otherwise the event is remapped to a spring-loaded
shell or discarded. Regardless of where it is dispatched, the Intrinsics do not modify the contents
of the event.

Whensubtreeor one of its descendants acquires the X input focus or the pointer moves into the
subtree such that keyboard events would now be delivered to the sulfioeeisén event is gen-
erated for the descendanfbcusChangeevents have been selected by the descendant. Simi-
larly, whensubtredloses the X input focus or the keyboard focus for one of its ancesteosua
sOut event is generated for descendariatusChangeevents have been selected by the descen-
dant.

A widget tree may also actively manage the X server input focus. To do so, a widget class speci-

fies an accept_focus procedure.
The accept_focus procedure pointer is of tifp&cceptFocusProc

115

X Toolkit Intrinsics X11 Release 6

typedef Boolean (*XtAcceptFocusProc)(Widget, Time?*);

Widgetw;
Time *time
w Specifies the widget.
time Specifies the X time of the event causing the accept focus.

Widgets that need the input focus can e&letinputFocus explicitly, pursuant to the restrictions

of thelnter-Client Communication Conventions Manu@b allow outside agents, such as the

parent, to cause a widget to take the input focus, every widget exports an accept_focus procedure.
The widget returns a value indicating whether it actually took the focus or not, so that the parent
can give the focus to another widget. Widgets that need to know when they lose the input focus
must use the Xlib focus notification mechanism explicitly (typically by specifying translations for
Focusln and FocusOut events). Widgets classes that never want the input focus should set the
accept_focusield to NULL.

To call a widget's accept_focus procedure, ¥t€allAcceptFocus.

Boolean XtCallAcceptFocug(time)
Widgetw;
Time *time

w Specifies the widget. Must be of class Core or any subclass thereof.

time Specifies the X time of the event that is causing the focus change.

The XtCallAcceptFocus function calls the specified widget’s accept_focus procedure, passing it
the specified widget and time, and returns what the accept_focus procedure returns. If
accept_focuss NULL, XtCallAcceptFocus returnsFalse.

7.3.1. Events for Drawables which are not a Widget's Window

Sometimes an application must handle events for drawables that are not associated with widgets
in its widget tree. Examples include handli@gaphicsExposeand NOExposeevents on
Pixmaps, and handlinBropertyNotify events on the root window.

To register a drawable with the Intrinsics event dispatchingXtRegisterDrawable.

void XtRegisterDrawabléisplay, drawable widge)
Display *display;
Drawabledrawable
Widgetwidget

display Specifies the drawable’s display.
drawable Specifies the drawable to register.
widget Specifies the widget to register the drawable for.

XtRegisterDrawable associates the specified drawable with the specified widget so that future
calls toXtwindowToWidget with the drawable will return the widget. The default event dis-
patcher will dispatch future events that arrive for the drawable to the widget as though the event
contained the widget’'s window, but the event itself will not be changed in any way when being
passed to event handler or action procedures.

If the drawable is already registered with another widget, or if the drawable is the window of a
widget in the client’s widget tree, the results of callkdRegisterDrawable are undefined.

116

X Toolkit Intrinsics X11 Release 6

To unregister a drawable with the Intrinsics event dispatchingXtuseregisterDrawable.

void XtUnregisterDrawablelfsplay, drawable
Display *display,
Drawabledrawable

display Specifies the drawable’s display.
drawable Specifies the drawable to unregister.

XtUnregisterDrawable removes an association created wittiRegisterDrawable. If the draw-
able is the window of a widget in the client’'s widget tree the results of caflibgregister-
Drawable are undefined.

7.4. Querying Event Sources

The event manager provides several functions to examine and read events (including file and
timer events) that are in the queue. The next three functions are Intrinsics equivalents of the
XPending, XPeekEvent, and XNextEvent Xlib calls.

To determine if there are any events on the input queue for a given application, use
XtAppPending.

XtinputMask XtAppPending(pp_context
XtAppContextapp_context

app_context Specifies the application context that identifies the application to check.

The XtAppPending function returns a nonzero value if there are events pending from the X

server, timer pending, other input sources pending, or signal sources pending. The value returned
is a bit mask that is the OR #tIMXEvent , XtIMTimer , XtIMAlternatelnput , and XtIM-

Signal (seeXtAppProcessEven). If there are no events pendingAppPending flushes the

output buffers of each Display in the application context and returns zero.

To return the event from the head of a given application’s input queue without removing input
from the queue, us¥tAppPeekEvent.

Boolean XtAppPeekEvergpp_contextevent_returi
XtAppContextapp_context
XEvent *event_return

app_context Specifies the application context that identifies the application.
event_return Returns the event information to the specified event structure.

If there is an X event in the queu&AppPeekEvent copies it intoevent_returrand returns

True. If no Xinput is on the queuetAppPeekEvent flushes the output buffers of each Dis-
play in the application context and blocks until some input is available (possibly calling some
timeout callbacks in the interim). If the next available input is an X ev@AppPeekEvent fills

in event_returrand returnslrue . Otherwise, the input is for an input source registered with
XtAppAddinput , and XtAppPeekEvent returnsFalse.

To removeand return the event from the head of a given application’s X event queue, use
XtAppNextEvent.

117

X Toolkit Intrinsics X11 Release 6

void XtAppNextEventdpp_contextevent_returi
XtAppContextapp_context
XEvent *event_return

app_context Specifies the application context that identifies the application.
event_return Returns the event information to the specified event structure.

If the X event queue is empdftAppNextEvent flushes the X output buffers of each Display in

the application context and waits for an X event while looking at the other input sources and time-
out values and calling any callback procedures triggered by them. This wait time can be used for
background processing; see Section 7.8.

7.5. Dispatching Events

The Intrinsics provide functions that dispatch events to widgets or other application code. Every
client interested in X events on a widget uggdddEventHandler to register which events it is
interested in and a procedure (event handler) to be called when the event happens in that window.
The translation manager automatically registers event handlers for widgets that use translation
tables; see Chapter 10.

Applications that need direct control of the processing of different types of input should use
XtAppProcessEvent

void XtAppProcessEverdpp_contextmash
XtAppContextapp_context
XtinputMaskmask

app_context Specifies the application context that identifies the application for which to pro-
cess input.

mask Specifies what types of events to process. The mask is the bitwise inclusive OR
of any combination oXtIMXEvent , XtIMTimer , XtIMAlternatelnput , and
XtIMSignal . As a conveniencdntrinsic.h defines the symbolic naml-
MAIl to be the bitwise inclusive OR of these four event types.

The XtAppProcessEventfunction processes one timer, input source, signal source, or X event.

If there is no event or input of the appropriate type to processXiAgpProcessEventblocks

until there is. If there is more than one type of input available to process, it is undefined which
will get processed. Usually, this procedure is not called by client applications; see
XtAppMainLoop . XtAppProcessEventprocesses timer events by calling any appropriate

timer callbacks, input sources by calling any appropriate input callbacks, signal source by calling
any appropriate signal callbacks, and X events by caXitijspatchEvent.

When an X event is received, it is passeXtDispatchEvent, which calls the appropriate event
handlers and passes them the widget, the event, and client-specific data registered with each pro-
cedure. If no handlers for that event are registered, the event is ignored and the dispatcher simply
returns.

To dispatch an event returned KYAppNextEvent, retrieved directly from the Xlib queue, or
synthetically constructed, to any registered event filters or event handlexsizialpatchEvent.

118

X Toolkit Intrinsics X11 Release 6

Boolean XtDispatchEvergyenj
XEvent *event

event Specifies a pointer to the event structure to be dispatched to the appropriate event
handlers.

The XtDispatchEvent function first callsXFilterEvent with theeventand the window of the
widget to which the Intrinsics intend to dispatch the event, or the event window if the Intrinsics
would not dispatch the event to any handlersXHflterEvent returnsTrue and the event acti-
vated a server grab as identified by a previous cat@abKey or XtGrabButton ,
XtDispatchEventcalls XtUngrabKeyboard or XtUngrabPointer with the timestamp from the
event and immediately returfisue . If XFilterEvent returnsTrue and a grab was not activated,
XtDispatchEvent just immediately return3rue. Otherwise XtDispatchEvent sends the event
to the event handler functions that have been previously registered with the dispatch routine.
XtDispatchEvent returnsTrue if XFilterEvent returnedTrue, or if the event was dispatched
to some handler analseif it found no handler to which to dispatch the eveXtDis-

patchEvent records the last timestamp in any event that contains a timestamp (see
XtLastTimestampProcessed, regardless of whether it was filtered or dispatched. If a modal
cascade is active witpring_loadedTrue, and if the event is a remap event as defined by
XtAddGrab , XtDispatchEvent may dispatch the event a second time. If it doestis-
patchEvent will call XFilterEvent again with the window of the spring-loaded widget prior to
the second dispatch andAFilterEvent returnsTrue, the second dispatch will not be per-
formed.

7.6. The Application Input Loop

To process all input from a given application in a continuous loop, use the convenience procedure
XtAppMainLoop .

void XtAppMainLoop@pp_context
XtAppContextapp_context

app_context Specifies the application context that identifies the application.

The XtAppMainLoop function first reads the next incoming X event by calli&ppNex-

tEvent and then dispatches the event to the appropriate registered procedure by calling
XtDispatchEvent. This constitutes the main loop of X Toolkit applications. There is nothing
special abouXtAppMainLoop ; it simply calls XtAppNextEvent and thenXtDispatchEvent

in a conditional loop. At the bottom of the loop, it checks to see if the specified application con-
text’'s destroy flag is set. If the flag is set, the loop breaks. The whole loop is enclosed between a
matchingXtAppLock andXtAppUnlock .

Applications can provide their own version of this loop, which tests some global termination flag
or tests that the number of top-level widgets is larger than zero before circling back to the call to
XtAppNextEvent.

7.7. Setting and Checking the Sensitivity State of a Widget

Many widgets have a mode in which they assume a different appearance (for example, are grayed
out or stippled), do not respond to user events, and become dormant.

When dormant, a widget is considered to be insensitive. If a widget is insensitive, the event man-
ager does not dispatch any events to the widget with an event tieyBfess KeyRelease
ButtonPress, ButtonRelease MotionNotify , EnterNotify , LeaveNotify, Focusin, or

119

X Toolkit Intrinsics X11 Release 6

FocusOut.

A widget can be insensitive becausesitgisitivefield is False or because one of its ancestors is
insensitive and thus the widge#iacestor_sensitiviéeld also isFalse. A widget can but does not
need to distinguish these two cases visually.

Note

Pop-up shells will havancestor_sensitivealseif the parent was insensitive when

the shell was created. SinZ¢SetSensitiveon the parent will not modify the

resource of the pop-up child, clients are advised to include a resource specification of
the form “*TransientShell.ancestorSensitive: True” in the application defaults
resource file or to otherwise ensure that the parent is sensitive when creating pop-up
shells.

To set the sensitivity state of a widget, dXdSetSensitive

void XtSetSensitivay, sensitivg
Widgetw;
Booleansensitive

w Specifies the widget. Must be of class RectObj or any subclass thereof.
sensitive Specifies whether the widget should receive keyboard, pointer, and focus events.

The XtSetSensitivefunction first callsXtSetValueson the current widget with an argument list
specifying the XtNsensitive resource and the new valusensitiveis False and the widget’s
class is a subclass of Compos¢SetSensitiverecursively propagates the new value down the
child tree by callingXtSetValueson each child to sencestor_sensitivio False. If sensitives
True and the widget's class is a subclass of Composite and the widge€stor_sensitivield

is True, XtSetSensitivesets theancestor_sensitivef each child tolrue and then recursively
calls XtSetValueson each normal descendant that is now sensitive emsefstor_sensitivio
True.

XtSetSensitivecalls XtSetValuesto change theensitiveandancestor_sensitivields of each
affected widget. Therefore, when one of these changes, the widget’s set_values procedure should
take whatever display actions are needed (for example, graying out or stippling the widget).

XtSetSensitivemaintains the invariant that if the parent has eitleasitiveor ancestor_sensitive
False, then all children havancestor_sensitivEalse.

To check the current sensitivity state of a widget, XigsSensitive.
Boolean XtlsSensitive()
Widgetw;
w Specifies the object. Must be of class Object or any subclass thereof.

The XtIsSensitive function returnsTrue or Falseto indicate whether user input events are being
dispatched. If object’s class is a subclass of RectObj andskatitiveandancestor_sensitive
areTrue, XtlsSensitive returnsTrue ; otherwise, it returngalse.

7.8. Adding Background Work Procedures

The Intrinsics have some limited support for background processing. Because most applications
spend most of their time waiting for input, you can register an idle-time work procedure that is

120

X Toolkit Intrinsics X11 Release 6

called when the toolkit would otherwise blockXmAppNextEvent or XtAppProcessEvent
Work procedure pointers are of typ&WorkProc .

typedef Boolean (*XtWorkProc)(XtPointer);
XtPointerclient_data

client_ data Passes the client data specified when the work procedure was registered.

This procedure should retufiiue when it is done to indicate that it should be removed. If the
procedure returnBalse, it will remain registered and called again when the application is next
idle. Work procedures should be very judicious about how much they do. If they run for more
than a small part of a second, interactive feel is likely to suffer.

To register a work procedure for a given application, Xi#e@pAddWorkProc .

XtWorkProcld XtAppAddWorkPro@pp_contextproc, client_datg
XtAppContextapp_context
XtWorkProcproc,
XtPointerclient_data

app_context Specifies the application context that identifies the application.
proc Specifies the procedure to be called when the application is idle.

client data Specifies the argument passed to the specified procedure when it is called.

The XtAppAddWorkProc function adds the specified work procedure for the application identi-
fied byapp_contexand returns an opaque unique identifier for this work procedure. Multiple
work procedures can be registered, and the most recently added one is always the one that is
called. However, if a work procedure adds another work procedure, the newly added one has
lower priority than the current one.

To remove a wrk procedure, either retuifrue from the procedure when it is called or use
XtRemoveWorkProcoutside

void XtRemoveWorkProdag)
XtWorkProcldid;
id Specifies which work procedure to remove.
The XtRemoveWorkProc function explicitly removes the specified background work procedure.

7.9. X Event Filters

The event manager provides filters that can be applied to specific X events. The filters, which
screen out events that are redundant or are temporarily unwanted, handle pointer motion compres-
sion, enter/leave compression, and exposure compression.

7.9.1. Pointer Motion Compression

Widgets can have a hard time keeping up with a rapid stream of pointer motion events. Further,
they usually do not care about every motion event. To throw out redundant motion events, the
widget class fieldompress_motioshould beTrue. When a request for an event would return a
motion event, the Intrinsics check if there are any other motion events for the same widget imme-
diately following the current one and, if so, skip all but the last of them.

121

X Toolkit Intrinsics X11 Release 6

7.9.2. Enter/Leave Compression

To throw out pairs of enter and leave events that have no intervening events, as can happen when
the user moves the pointer across a widget without stopping in it, the widget classrfield
press_enterleavghould beTrue. These enter and leave events are not delivered to the client if
they are found together in the input queue.

7.9.3. Exposure Compression

Many widgets prefer to process a series of exposure events as a single expose region rather than
as individual rectangles. Widgets with complex displays might use the expose region as a clip list
in a graphics context, and widgets with simple displays might ignore the region entirely and redis-
play their whole window or might get the bounding box from the region and redisplay only that
rectangle.

In either case, these widgets do not care about getting partial exposure eversn-The
press_exposurield in the widget class structure specifies the type and number of exposure
events that are dispatched to the widget's expose procedure. This field must be initialized to one
of the following values,

#define XtExposeNoCompress ((XtEnum)False)
#define XtExposeCompressSeries ((XtEnum)True)
#define XtExposeCompressMultiple <implementation-defined>
#define XtExposeCompressMaximal <implementation-defined>

optionally ORed with any combination of the following flags (all with implementation-defined
values):

XtExposeGraphicsExpose XtExposeGraphicsExposeMerged XtExposeNoExposeand
XtExposeNoRegion

If the compress_exposufield in the widget class structure does not specify
XtExposeNoCompressthe event manager calls the widget's expose procedure only once for a
series of exposure events. In this casezafloseor GraphicsExposeevents are accumulated

into a region. When the final event is received, the event manager replaces the rectangle in the
event with the bounding box for the region and calls the widget’s expose procedure, passing the
modified exposure event and (unléggxposeNoRegionis specified) the region. For more
information on regions, see Section 16.XIib — C Language X Interface

The values have the following interpretation:

XtExposeNoCompress

No exposure compression is performed; every selected event is individually dispatched to
the expose procedure witlregionargument of NULL.

XtExposeCompressSeries

Each series of exposure events is coalesced into a single event, which is dispatched when
an exposure event with count equal to zero is reached.

122

X Toolkit Intrinsics X11 Release 6

XtExposeCompressMultiple

Consecutive series of exposure events are coalesced into a single event, which is dispatched
when an exposure event with count equal to zero is reached and either the event queue is
empty or the next event is not an exposure event for the same widget.

XtExposeCompressMaximal

All expose series currently in the queue for the widget are coalesced into a single event
without regard to intervening nonexposure events. If a partial series is in the end of the
queue, the Intrinsics will block until the end of the series is received.

The additional flags have the following meaning:

XtExposeGraphicsExpose

Specifies thaGraphicsExposeevents are also to be dispatched to the expose procedure.
GraphicsExposeevents are compressed, if specified, in the same mankepase
events.

XtExposeGraphicsExposeMerged

Specifies in the case stExposeCompressMultiple and XtExposeCompressMaximal

that series ofsraphicsExposeand Exposeevents are to be compressed together, with the
final event type determining the type of the event passed to the expose procedure. If this
flag is not set, then only series of the same event type as the event at the head of the queue
are coalesced. This flag also implétExposeGraphicsExpose

XtExposeNoExpose

Specifies thaNoExposeevents are also to be dispatched to the expose procedok-
poseevents are never coalesced with other exposure events or with each other.

XtExposeNoRegion

Specifies that the final region argument passed to the expose procedure is NULL. The rect-
angle in the event will still contain bounding box information for the entire series of com-
pressed exposure events. This option saves processing time when the region is not needed
by the widget.

7.10. Widget Exposure and Visibility

Every primitive widget and some composite widgets display data on the screen by means of direct
Xlib calls. Widgets cannot simply write to the screen and forget what they have done. They must
keep enough state to redisplay the window or parts of it if a portion is obscured and then reex-
posed.

7.10.1. Redisplay of a Widget: the expose Procedure
The expose procedure pointer in a widget class is of XyagposeProc.

123

X Toolkit Intrinsics X11 Release 6

typedef void (*XtExposeProc)(Widget, XEvent*, Region);
Widgetw;
XEvent *event
Regionregion

w Specifies the widget instance requiring redisplay.
event Specifies the exposure event giving the rectangle requiring redisplay.
region Specifies the union of all rectangles in this exposure sequence.

The redisplay of a widget upon exposure is the responsibility of the expose procedure in the wid-
get’s class record. If a widget has no display semantics, it can specify NULL faxpbsdield.

Many composite widgets serve only as containers for their children and have no expose proce-
dure.

Note

If the exposegorocedure is NULL XtRealizeWidget fills in a default bit gravity of
NorthWestGravity before it calls the widget's realize procedure.

If the widget'scompress_exposundass field specifieXtExposeNoCompressor

XtExposeNoRegion or if the event type ilNOExpose(see Section 7.9.3)gionis NULL. If
XtExposeNoCompresds not specified and the event type is NOExpose the event is the final
event in the compressed series)hyt width, andheightcontain the bounding box for all the
compressed events. The region is created and destroyed by the Intrinsics, but the widget is per-
mitted to modify the region contents.

A small simple widget (for example, Label) can ignore the bounding box information in the event
and redisplay the entire window. A more complicated widget (for example, Text) can use the
bounding box information to minimize the amount of calculation and redisplay it does. A very
complex widget uses the region as a clip list in a GC and ignores the event information. The
expose procedure is not chained and is therefore responsible for exposure of all superclass data as
well as its own.

However, it often is possible to anticipate the display needs of several levels of subclassing. For
example, rather than implement separate display procedures for the widgets Label, Pushbutton,
and Toggle, you could write a single display routine in Label that uses display state fields like

Boolean invert;
Boolean highlight;
Dimension highlight_width;

Label would havénvertandhighlightalwaysFalse andhighlight_widthzero. Pushbutton would
dynamically sehighlightandhighlight_width but it would leaveénvert alwaysFalse. Finally,

Toggle would dynamically set all three. In this case, the expose procedures for Pushbutton and
Toggle inherit their superclass’s expose procedure; see Section 1.6.10.

7.10.2. Widget Visibility

Some widgets may use substantial computing resources to produce the data they will display.
However, this effort is wasted if the widget is not actually visible on the screen, that is, if the wid-
get is obscured by another application or is iconified.

Thevisiblefield in the core widget structure provides a hint to the widget that it need not compute
display data. This field is guaranteed toTibee by the time an exposure event is processed if

124

X Toolkit Intrinsics X11 Release 6

any part of the widget is visible but Falseif the widget is fully obscured.

Widgets can use or ignore thisible hint. If they ignore it, they should hawisible _interestn
their widget class record sEalse. In such cases, thasiblefield is initialized True and never
changes. I¥isible_interests True, the event manager asks MisibilityNotify events for the
widget and setsisibleto True on VisibilityUnobscured or VisibilityPartiallyObscured events
and False on VisibilityFullyObscured events.

7.11. X Event Handlers

Event handlers are procedures called when specified events occur in a widget. Most widgets need
not use event handlers explicitly. Instead, they use the Intrinsics translation manager. Event han-
dler procedure pointers are of the tygEventHandler .

typedef void (*XtEventHandler)(Widget, XtPointer, XEvent*, Boolean*);
Widgetw;
XtPointerclient_data
XEvent *event
Boolean tontinue_to_dispatch

w Specifies the widget for which the event arrived.
client data Specifies any client-specific information registered with the event handler.
event Specifies the triggering event.

continue_to_dispatch
Specifies whether the remaining event handlers registered for the current event
should be called.

After receiving an event and before calling any event handlers, the Boolean pointembto by
tinue_to_dispatcls initialized toTrue. When an event handler is called, it may decide that fur-
ther processing of the event is not desirable and may Batse in this Boolean, in which case
any handlers remaining to be called for the event are ignored.

The circumstances under which the Intrinsics may add event handlers to a widget are currently
implementation-dependent. Clients must therefore be aware that ftalsgjnto thecon-
tinue_to_dispatclargument can lead to portability problems.

7.11.1. Event Handlers that Select Events
To register an event handler procedure with the dispatch mechanisKtAdsi=ventHandler .

void XtAddEventHandlerf, event_maskonmaskableproc, client_datd
Widgetw;
EventMaskevent _mask
Booleannonmaskable
XtEventHandleproc;
XtPointerclient_data

w Specifies the widget for which this event handler is being registered. Must be of
class Core or any subclass thereof.
event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose NoExpose SelectionClear, SelectionRequest
SelectionNotify, ClientMessage and MappingNotify).

125

X Toolkit Intrinsics X11 Release 6

proc Specifies the procedure to be called.
client_ data Specifies additional data to be passed to the event handler.

The XtAddEventHandler function registers a procedure with the dispatch mechanism that is to

be called when an event that matches the mask occurs on the specified widget. Each widget has a
single registered event handler list, which will contain any procedure--client_data pair exactly

once regardless of the manner in which it is registered. If the procedure is already registered with
the samelient_datavalue, the specified mask augments the existing mask. If the widget is real-
ized, XtAddEventHandler calls XSelectlnput, if necessary. The order in which this procedure

is called relative to other handlers registered for the same event is not defined.

To remove a pragously registered event handler, usRemoveEventHandler.

void XtRemoveEventHandlex{ event_maskionmaskablgproc, client_datg
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandleproc;
XtPointerclient_data

w Specifies the widget for which this procedure is registered. Must be of class Core
or any subclass thereof.

event_mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be removed on the nonmaskable events
(GraphicsExpose NoExpose SelectionClear, SelectionRequest
SelectionNotify, ClientMessage and MappingNotify).

proc Specifies the procedure to be removed.
client data Specifies the registered client data.

The XtRemoveEventHandler function unregisters an event handler registered MifddE-
ventHandler or XtinsertEventHandler for the specified events. The request is ignored if
client_datadoes not match the value given when the handler was registered. If the widget is real-
ized and no other event handler requires the e¥¢RgemoveEventHandler calls

XSelectlnput. If the specified procedure has not been registered or if it has been registered with
a different value otlient_data XtRemoveEventHandler returns without reporting an error.

To stop a procedure registered wtAddEventHandler or XtinsertEventHandler from

receiving all selected events, cXiRemoveEventHandler with anevent_maskf XtAllEvents
andnonmaskabl@rue. The procedure will continue to receive any events that have been speci-
fied in calls toXtAddRawEventHandler or XtinsertRawEventHandler .

To register an event handler procedure that receives events before or after all previously registered
event handlers, usétinsertEventHandler .

typedef enum {XtListHead, XtListTail} XtListPosition;

126

X Toolkit Intrinsics X11 Release 6

void XtInsertEventHandlew, event_maskionmaskablgproc, client_data positior)
Widgetw;
EventMaskevent_mask
Booleannonmaskable
XtEventHandleproc;
XtPointerclient_data
XtListPositionpositior

w Specifies the widget for which this event handler is being registered. Must be of
class Core or any subclass thereof.
event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose NoExpose SelectionClear, SelectionRequest
SelectionNotify, ClientMessage and MappingNotify).

proc Specifies the procedure to be called.
client_data Specifies additional data to be passed to the client’s event handler.
position Specifies when the event handler is to be called relative to other previously regis-

tered handlers.

XtinsertEventHandler is identical toXtAddEventHandler with the additionapositionargu-

ment. Ifpositionis XtListHead , the event handler is registered so that it is called before any
event handlers that were previously registered for the same widgeisitibnis XtListTail , the

event handler is registered to be called after any previously registered event handlers. If the pro-
cedure is already registered with the saffent_datavalue, the specified mask augments the
existing mask and the procedure is repositioned in the list.

7.11.2. Event Handlers that Do Not Select Events

On occasion, clients need to register an event handler procedure with the dispatch mechanism
without explicitly causing the X server to select for that event. To do this, use
XtAddRawEventHandler .
void XtAddRawEventHandlew event_maskionmaskablgproc, client_datg

Widgetw;

EventMaskevent _mask

Booleannonmaskable

XtEventHandleproc;

XtPointerclient_data

w Specifies the widget for which this event handler is being registered. Must be of
class Core or any subclass thereof.
event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose NoExpose SelectionClear, SelectionRequest
SelectionNotify, ClientMessage and MappingNotify).

proc Specifies the procedure to be called.
client_data Specifies additional data to be passed to the client’s event handler.

The XtAddRawEventHandler function is similar toXtAddEventHandler except that it does
not affect the widget's event mask and never cause&Sahectinput for its events. Note that the

127

X Toolkit Intrinsics X11 Release 6

widget might already have those mask bits set because of other nonraw event handlers registered
on it. If the procedure is already registered with the seliapt_data the specified mask aug-

ments the existing mask. The order in which this procedure is called relative to other handlers
registered for the same event is not defined.

To remove a prgously registered raw event handler, d&&RemoveRawEventHandler.

void XtRemoveRawEventHandler(event _maskonmaskablgproc, client_datd
Widgetw;
EventMaskevent _mask
Booleannonmaskable
XtEventHandleproc;
XtPointerclient_data

w Specifies the widget for which this procedure is registered. Must be of class Core
or any subclass thereof.

event_mask Specifies the event mask for which to unregister this procedure.

nonmaskable Specifies whether this procedure should be removed on the nonmaskable events
(GraphicsExpose NoExpose SelectionClear, SelectionRequest
SelectionNotify, ClientMessage and MappingNotify).

proc Specifies the procedure to be registered.
client_data Specifies the registered client data.

The XtRemoveRawEventHandlerfunction unregisters an event handler registered »tfd-
dRawEventHandler or XtinsertRawEventHandler for the specified events without changing

the window event mask. The request is ignoretiéint_datadoes not match the value given

when the handler was registered. If the specified procedure has not been registered or if it has
been registered with a different valuectiént_data XtRemoveRawEventHandlerreturns with-

out reporting an error.

To stop a procedure registered wtAddRawEventHandler or XtinsertRawEventHandler
from receiving all nonselected events, célRemoveRawEventHandlerwith anevent_mashkf
XtAllEvents andnonmaskablérue. The procedure will continue to receive any events that
have been specified in calls XtAddEventHandler or XtinsertEventHandler .

To register an event handler procedure that receives events before or after all previously registered
event handlers without selecting for the events XifesertRawEventHandler .

void XtinsertRawEventHandles(event_maskonmaskablgproc, client_data position
Widgetw;
EventMaskevent _mask
Booleannonmaskable
XtEventHandleproc;
XtPointerclient_data
XtListPositionposition

w Specifies the widget for which this event handler is being registered. Must be of
class Core or any subclass thereof.
event_mask Specifies the event mask for which to call this procedure.

nonmaskable Specifies whether this procedure should be called on the nonmaskable events
(GraphicsExpose NoExpose SelectionClear, SelectionRequest
SelectionNotify, ClientMessage and MappingNotify).

128

X Toolkit Intrinsics X11 Release 6

proc Specifies the procedure to be registered.
client data Specifies additional data to be passed to the client’s event handler.

position Specifies when the event handler is to be called relative to other previously regis-
tered handlers.

The XtinsertRawEventHandler function is similar toXtinsertEventHandler except that it
does not modify the widget’s event mask and never caus¥Salectinput for the specified
events. If the procedure is already registered with the sheme_datavalue, the specified mask
augments the existing mask and the procedure is repositioned in the list.

7.11.3. Current Event Mask
To retrieve the event mask for a given widget, ¥#uildEventMask .

EventMask XtBuildEventMask()
Widgetw;

w Specifies the widget. Must be of class Core or any subclass thereof.

The XtBuildEventMask function returns the event mask representing the logical OR of all event
masks for event handlers registered on the widget XitddEventHandler and Xtin-
sertEventHandler and all event translations, including accelerators, installed on the widget.
This is the same event mask stored intoXBetWindowAttributes structure byXtRealizeWid-

get and sent to the server when event handlers and translations are installed or removed on the
realized widget.

7.11.4. Event Handlers for X11 Protocol Extensions

To register an event handler procedure with the Intrinsics dispatch mechanism according to an
event type, us&XtinsertEventTypeHandler .
void XtinsertEventTypeHandlexfdget event_typeselect_dataproc, client_data position)
Widgetwidget
int event_type
XtPointerselect_data
XtEventHandleproc;
XtPointerclient_data
XtListPositionpositior

widget Specifies the widget for which this event handler is being registered. Must be of
class Core or any subclass thereof.
event_type Specifies the event type for which to call this event handler.

select data Specifies data used to request events of the specified type from the server, or
NULL.

proc Specifies the event handler to be called.
client data Specifies additional data to be passed to the event handler.

position Specifies when the event handler is to be called relative to other previously regis-
tered handlers.

XtinsertEventTypeHandler registers a procedure with the dispatch mechanism that is to be
called when an event that matches the speafiedt_typés dispatched to the specifiaddget

129

X Toolkit Intrinsics X11 Release 6

If event_typepecifies one of the core X protocol events tedact_datanust be a pointer to a
value of typeEventMask, indicating the event mask to be used to select for the desired event.
This event mask is included in the value returneXtBuildEventMask . If the widget is real-

ized XtinsertEventTypeHandler calls XSelectinput if necessary. Specifying NULL for
select_datas equivalent to specifying a pointer to an event mask containing 0. This is similar to
the XtinsertRawEventHandler function.

If event_typeapecifies an extension event type then the semantics of the data pointed to by
select_datare defined by the extension selector registered for the specified event type.

In either case the Intrinsics are not required to copy the data pointedeteby dataso the
caller must ensure that it remains valid as long as the event handler remains registered with this
value ofselect_data

Thepositionargument allows the client to control the order of invocation of event handlers regis-
tered for the same event type. If the client does not care about the order, it should normally spec-
ify XtListTail , which registers this event handler after any previously registered handlers for this
event type.

Each widget has a single registered event handler list, which will contain any procedure/client
data pair exactly once if it is registered wXhnsertEventTypeHandler , regardless of the man-
ner in which it is which it is registered, and regardless of the valuegs)euft_data If the proce-
dure is already registered with the sastient_datavalue, the specified mask augments the exist-
ing mask and the procedure is repositioned in the list.

To remove an eent handler registered witktinsertEventTypeHandler, use
XtRemoveEventTypeHandler.

void XtRemoveEventTypeHandleridget event_typgselect_dataproc, client_datg
Widgetwidget
int event_type
XtPointerselect_data
XtEventHandleproc;
XtPointerclient_data

widget Specifies the widget for which the event handler was registered. Must be of class
Core or any subclass thereof.
event_type Specifies the event type for which the handler was registered.

select_data Specifies data used to deselect events of the specified type from the server, or
NULL.

proc Specifies the event handler to be removed.
client_data Specifies the additional client data with which the procedure was registered.

The XtRemoveEventTypeHandlerfunction unregisters an event handler registered Mfith-
sertEventTypeHandler for the specified event type. The request is ignorelieit_datadoes
not match the value given when the handler was registered.

If event_typepecifies one of the core X protocol evestdect_datanust be a pointer to a value

of type EventMask,indicating mask to be used to deselect for the appropriate event. If the wid-
get is realizedXtRemoveEventTypeHandler calls XSelectinput if necessary. Specifying

NULL for select_datas equivalent to specifying a pointer to an event mask containing 0. This is
similar to theXtRemoveRawEventHandlerfunction.

If event_typepecifies an extension event type then the semantics of the data pointed to by
select_datare defined by the extension selector registered for the specified event type.

130

X Toolkit Intrinsics X11 Release 6

To register a procedure to select extension events for a widget, use
XtRegisterExtensionSelector

void XtRegisterExtensionSelectdigplay, min_event_typenax_event_typ@roc,
client_datg
Display*display;
int min_event_type
int max_event_type
XtExtensionSelectProgroc;
XtPointerclient_data

display Specifies the display for which the extension selector is to be registered.
min_event_type

max_event_type Specifies the range of event types for the extension.

proc Specifies the extension selector procedure.

client_data Specifies additional data to be passed to the extension selector.

The XtRegisterExtensionSelectorfunction registers a procedure to arrange for the delivery of
extension events to widgets.

If min_event_typandmax_event_typmatch the parameters to a previous caKtBegisterEx-
tensionSelectorfor the samalisplay, thenproc andclient_datareplace the previously registered
values. If the range specified hin_event_typandmax_event_typeverlaps the range of the
parameters to a previous call for the same display in any other way, an error results.

When a widget is realized, after tbere.realizemethod is called, the Intrinsics check to see if

any event handler specifies an event type within the range of a registered extension selector. If so,
the Intrinsics call each such selector. If an event type handler is added or removed, the Intrinsics
check to see if the event type falls within the range of a registered extension selector and if it does
calls the selector. In either case the Intrinsics pass a list of all the widget's event types that are
within the selector’s range. The corresponding select data are also passed. The selector is
responsible for enabling the delivery of extension events required by the widget.

An extension selector is of typ&@ExtensionSelectProc

typedef void (*XtExtensionSelectProc)(Widget, int *, XtPointer *, int, XtPointer);
Widgetwidget
int *event_types
XtPointer *select_data
int count
XtPointerclient_data

widget Specifies the widget that is being realized or is having an event handler added or
removed.
event_types Specifies a list of event types that the widget has registered event handlers for.

select data Specifies a list of the select_data parameters specified in
XtinsertEventTypeHandler .

count Specifies the number of entries in theent_typeandselect_datdists.
client data Specifies the additional client data with which the procedure was registered.

Theevent_typeandselect_datdists will always have the same number of elements, specified by
count Each event type/select data pair represents one célirteertEventTypeHandler .

131

X Toolkit Intrinsics X11 Release 6

To register a procedure to dispatch events of a specific type WithispatchEvent, use
XtSetEventDispatcher.

XtEventDispatchProc XtSetEventDispatchisplay, event_typgproc)
Display *display,
int event_type
XtEventDispatchProproc;

display Specifies the display for which the event dispatcher is to be registered.
event_type Specifies the event type for which the dispatcher should be invoked.
proc Specifies the event dispatcher procedure.

The XtSetEventDispatcherfunction registers the event dispatcher procedure specifiptbby

for events with the typevent_type The previously registered dispatcher (or the default dis-

patcher if there was no previously registered dispatcher) is returngahc 16 NULL, the default
procedure is restored for the specified type.

In the future, wherXtDispatchEvent is called with an event type effent_typgthe specified
proc (or the default dispatcher) is invoked to determine a widget to which to dispatch the event.

The default dispatcher handles the Intrinsics modal cascade and keyboard focus mechanisms,
handles the semantics@impress_enterleawandcompress_motiqrand discards all extension
events.

An event dispatcher procedure pointer is of t)pEventDispatchProc.

typedef Boolean (*XtEventDispatchProc)(XEvent*)
XEvent *event

event Passes the event to be dispatched.

The event dispatcher procedure should determine whether this event is of a type that should be
dispatched to a widget.

If the event should be dispatched to a widget, the event dispatcher procedure should determine the
appropriate widget to receive the event, édilterEvent with the window of this widget, or

None if the event is to be discarded, anXFilterEvent returnsFalse, dispatch the event to the

widget usingXtDispatchEventToWidget. The procedure should retufinue if either XFil-

terEvent or XtDispatchEventToWidget returnedTrue andFalse otherwise.

If the event should not be dispatched to a widget, the event dispatcher procedure should attempt
to dispatch the event elsewhere as appropriate and feuenif it successfully dispatched the
event andralse otherwise.

Some dispatchers for extension events may wish to forward events according to the Intrinsics’
keyboard focus mechanism. To determine which widget is the end result of keyboard event for-
warding, useXtGetKeyboardFocusWidget

Widget XtGetKeyboardFocusWidgetidge)
Widgetwidget
widget Specifies the widget to get forwarding information for.

The XtGetKeyboardFocusWidget function returns the widget that would be the end result of
keyboard event forwarding for a keyboard event for the specified widget.

132

X Toolkit Intrinsics X11 Release 6

To dispatch an event to a specified widget, XtfispatchEventToWidget.

Boolean XtDispatchEventToWidgetidget even}
Widgetwidget
XEvent *event

widget Specifies the widget to which to dispatch the event.
event Specifies a pointer to the event to be dispatched.

The XtDispatchEventToWidget function scans the list of registered event handlers for the speci-
fied widget and calls each handler that has been registered for the specified event type, subject to
thecontinue_to_dispatchalue returned by each handler. The Intrinsics behave as if event han-
dlers were registered at the head of the lisExypose NoExpose GraphicsExpose and Visi-
bilityNotify events to invoke the widget’s expose procedure according to the exposure compres-
sion rules and to update the widgefisiblefield if visible_interests True. These internal event
handlers never sebntinue_to_dispatcto False.

XtDispatchEventToWidget returnsTrue if any event handler was called aRdlse otherwise.

7.12. Using the Intrinsics in a Multi-threaded Environment

The Intrinsics may be used in environments which offer multiple threads of execution within the
context of a single process. A multi-threaded application using the Intrinsics must explicitly ini-
tialize the toolkit for mutually exclusive access by callXtoolkitThreadlnitialize .

7.12.1. Initializing a Multithreaded Intrinsics Application

To test and initialize Intrinsics support for mutually exclusive thread access, call
XtToolkitThreadinitialize .

Boolean XtToolkitThreadlnitialize()

XtToolkitThreadlnitialize returnsTrue if the Intrinsics support mutually exclusive thread
access, otherwise it returRalse XtToolkitThreadlnitialize must be called before
XtCreateApplicationContext, XtApplnitialize , XtOpenApplication , or XtSetLanguageProc
is called XtToolkitThreadlnitialize may be called more than once; however the application
writer must ensure that it is not called simultaneously by two or more threads.

7.12.2. Locking X Toolkit Data Structures

The Intrinsics employs two levels of locking: application context and process. Locking an appli-
cation context ensures mutually exclusive access by a thread to the state associated with the appli-
cation context, including all displays and widgets associated with it. Locking a process ensures
mutually exclusive access by a thread to Intrinsics process global data.

A client may acquire a lock multiple times--the effect is cumulative--the client must ensure that
the lock is released an equal number of times in order for the lock to be acquired by another
thread.

Most application writers will have little need to use locking as the Intrinsics performs the neces-
sary locking internally. An exception is resource type converters, which require that the applica-
tion context be locked before calling them directly, e.g.:

133

X Toolkit Intrinsics X11 Release 6

XtAppLock(app_context);
XtCvtStringToPixel(dpy, args, num_args, fromVal, toVal, closure_ret);
XtAppUnlock(app_context);

Application writers who write their own utility functions, e.g. retrieving the being_destroyed field
from a widget instance, must lock the application context before accessing widget internal data,

e.g.:

#include <X11/CoreP.h>

Boolean BeingDestroyed (widget)
Widget widget;

{

Boolean ret;
XtAppLock(XtWidgetToApplicationContext(widget));
ret = widget->core.being_destroyed;
XtAppUnlock(XtWidgetToApplicationContext(widget));
return ret;

}

A client that wishes to atomically call two or more Intrinsics functions must lock the application
context, e.g.:

XtAppLock(XtWidgetToApplicationContext(widget));
XtUnmanageChild (widgetl);

XtManageChild (widget2);
XtAppUnlock(XtWidgetToApplicationContext(widget));

7.12.2.1. Locking the Application Context

To ensure mutual exclusion of application context, display, or widget internal stad&Ause
pLock.

void XtAppLock(@pp_context
XtAppContextapp_context
app_context Specifies the application context to lock.

XtAppLock blocks until it is able to acquire the lock. Locking the application context also
ensures that only the thread holding the lock makes Xlib calls from within Xt. An application
which makes its own direct Xlib calls must either lock the application context around every call,
or enable thread locking in Xlib.

To unlock a locked application context, us\ppUnlock.

void XtAppUnlock@pp_context
XtAppContextapp_context

app_context Specifies the application context which was previously locked.

134

X Toolkit Intrinsics X11 Release 6

7.12.2.2. Locking the Process

To ensure mutual exclusion of X Toolkit process global data, a widget writer mustRrse
cessLock.

void XtProcessLock()

XtProcessLockblocks until it is able to acquire the lock. Widget writers may use XtProcessLock
to guarantee mutually exclusive access to widget static data.

To unlock a locked process, uxeProcessUnlock

void XtProcessUnlock()

To lock both an application context and the process at the same timé&tAggllock first and

then XtProcessLock To release both locks, caftProcessUnlockfirst and then
XtAppUnlock . The order is important to avoid deadlock.

7.12.3. Event Management in a Multi-Threaded Environment

In a non-threaded environment an application writer could reasonably assume that it is safe to exit
the application from a quit callback. This assumption may no longer hold true in a multi-threaded
environment; therefore it's desirable to provide a mechanism to terminate an event processing
loop without necessarily terminating its thread.

To indicate that the event loop should terminate after the current event dispatch has completed,
use XtAppSetExitFlag.

void XtAppSetExitFlagdpp_context
XtAppContextapp_context

app_context Specifies the application context.
XtAppMainLoop tests the value of the flag and will return if the flagrise.

Application writers who implement their own main loop may test the value of the exit flag with
XtAppGetExitFlag .

Boolean XtAppGetExitFlagpp_context
XtAppContextapp_context

app_context Specifies the application context.

XtAppGetExitFlag will normally returnFalse indicating that event processing may continue.
When XtAppGetExitFlag returnsTrue, the loop must terminate and return to the caller, which
might then destroy the application context.

Application writers should be aware that if a thread is blockettAppNextEvent,
XtAppPeekEvent, or XtAppProcessEventand another thread in the same application context
opens a new display, adds an alternate input, or a timeout, that any new source(s) will not nor-
mally be "noticed" by the blocked thread. Any new sources are "noticed" the next time one of
these functions is called.

The Intrinsics manage access to events on a last in, first out basis. If multiple threads in the same
application context block iXXtAppNextEvent, XtAppPeekEvent, or XtAppProcessEvent the
last thread to call one of these functions is the first thread to return.

135

X Toolkit Intrinsics X11 Release 6

Chapter 8

Callbacks

Applications and other widgets often need to register a procedure with a widget that gets called
under certain prespecified conditions. For example, when a widget is destroyed, every procedure
on the widget'slestroy_callbacksst is called to notify clients of the widget’'s impending doom.

Every widget has an XtNdestroyCallbacks callback list resource. Widgets can define additional
callback lists as they see fit. For example, the Pushbutton widget has a callback list to notify
clients when the button has been activated.

Except where otherwise noted, it is the intent that all Intrinsics functions may be called at any
time, including from within callback procedures, action routines, and event handlers.

8.1. Using Callback Procedure and Callback List Definitions
Callback procedure pointers for use in callback lists are of X¢@allbackProc.
typedef void (*XtCallbackProc)(Widget, XtPointer, XtPointer);

Widgetw;

XtPointerclient_data

XtPointercall_datg

w Specifies the widget owning the list in which the callback is registered.

client_data Specifies additional data supplied by the client when the procedure was regis-
tered.

call_data Specifies any callback-specific data the widget wants to pass to the client. For

example, when Scrollbar executes its XtNthumbChanged callback list, it passes
the new position of the thumb.

Theclient_dataargument provides a way for the client registering the callback procedure also to
register client-specific data, for example, a pointer to additional information about the widget, a
reason for invoking the callback, and so on. CTlent_datavalue may be NULL if all necessary
information is in the widget. Theall_dataargument is a convenience to avoid having simple
cases where the client could otherwise alwaysXi@letValues or a widget-specific function to
retrieve data from the widget. Widgets should generally avoid putting complex state information
in call_data The client can use the more general data retrieval methods, if necessary.

Whenever a client wants to pass a callback list as an argumenkiCezateWidget,
XtSetValues, or XtGetValues call, it should specify the address of a NULL-terminated array of
type XtCallbackList .

typedef struct {
XtCallbackProc callback;
XtPointer closure;

} XtCallbackRec, *XtCallbackList;

For example, the callback list for procedures A and B with client data clientDataA and client-
DataB, respectively, is

136

X Toolkit Intrinsics X11 Release 6

static XtCallbackRec callbacks[] = {
{A, (XtPointer) clientDataA},
{B, (XtPointer) clientDataB},
{(XtCallbackProc) NULL, (XtPointer) NULL}

3

Although callback lists are passed by address in arglists and varargs lists, the Intrinsics recognize
callback lists through the widget resource list and will copy the contents when necessary. Widget
initialize and set_values procedures should not allocate memory for the callback list contents.
The Intrinsics automatically do this, potentially using a different structure for their internal repre-
sentation.

8.2. Identifying Callback Lists

Whenever a widget contains a callback list for use by clients, it also exports in its public .h file the
resource name of the callback list. Applications and client widgets never access callback list
fields directly. Instead, they always identify the desired callback list by using the exported
resource name. All the callback manipulation functions described in this chapter ¥tCalht
CallbackList check to see that the requested callback list is indeed implemented by the widget.

For the Intrinsics to find and correctly handle callback lists, they must be declared with a resource
type of XtRCallback . The internal representation of a callback list is implementation-

dependent; widgets may make no assumptions about the value stored in this resource if it is non-
NULL. Exceptto compare the value to NULL (which is equivalenXtGallbackStatus
XtCallbackHasNone), access to callback list resources must be made through other Intrinsics
procedures.

8.3. Adding Callback Procedures
To add a callback procedure to a widget's callback list XiseldCallback .
void XtAddCallbacky, callback_name, callbagklient_datg

Widgetw;

Stringcallback_namg

XtCallbackProacallback
XtPointerclient_data

w Specifies the widget. Must be of class Object or any subclass thereof.
callback_nameSpecifies the callback list to which the procedure is to be appended.
callback Specifies the callback procedure.

client data Specifies additional data to be passed to the specified procedure when it is
invoked, or NULL.

A callback will be invoked as many times as it occurs in the callback list.

To add a list of callback procedures to a given widget'’s callback lisiXifs#gdCallbacks.
void XtAddCallbacksf, callback_name, callbacks

Widgetw;

Stringcallback_namg

XtCallbackListcallbacks

137

X Toolkit Intrinsics X11 Release 6

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list to which the procedures are to be appended.

callbacks Specifies the null-terminated list of callback procedures and corresponding client
data.

8.4. Removing Callback Procedures
To delete a callback procedure from a widget's callback listXtRemoveCallback.

void XtRemoveCallbacky, callback_namgcallback client_datg
Widgetw;
Stringcallback_namg
XtCallbackProacallback
XtPointerclient_data

w Specifies the widget. Must be of class Object or any subclass thereof.
callback_nameSpecifies the callback list from which the procedure is to be deleted.
callback Specifies the callback procedure.

client_data Specifies the client data to match with the registered callback entry.

The XtRemoveCallback function removes a callback only if both the procedure and the client
data match.

To delete a list of callback procedures from a given widget’s callback list, use
XtRemoveCallbacks

void XtRemoveCallbacksy, callback namgcallbackg
Widgetw;
Stringcallback_namg
XtCallbackListcallbacks

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list from which the procedures are to be deleted.

callbacks Specifies the null-terminated list of callback procedures and corresponding client
data.

To delete all callback procedures from a given widget'’s callback list and free all storage associ-
ated with the callback list, usééRemoveAllCallbacks.

void XtRemoveAllCallbacksy, callback_namg
Widgetw;
Stringcallback_namg
w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list to be cleared.

8.5. Executing Callback Procedures

To execute the procedures in a given widget'’s callback list, specifying the callback list by
resource name, usé&CallCallbacks.

138

X Toolkit Intrinsics X11 Release 6

void XtCallCallbacksg, callback_namecall_datg
Widgetw;
Stringcallback_namg
XtPointercall_datg

w Specifies the widget. Must be of class Object or any subclass thereof.
callback_nameSpecifies the callback list to be executed.
call_data Specifies a callback-list-specific data value to pass to each of the callback proce-

dure in the list, or NULL.

XtCallCallbacks calls each of the callback procedures in the list nameshliyack _namén the
specified widget, passing the client data registered with the proceduelbdata

To execute the procedures in a callback list, specifying the callback list by address, use
XtCallCallbackList .

void XtCallCallbackListyvidget callbacks call_datg
Widgetwidget
XtCallbackListcallbacks
XtPointercall_datg

widget Specifies the widget instance that contains the callback list. Must be of class
Object or any subclass thereof.

callbacks Specifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to pass to each of the callback proce-

dures in the list, or NULL.

Thecallbacksparameter must specify the contents of a widget or object resource declared with
representation typ¥tRCallback . If callbacksis NULL, XtCallCallbackList returns immedi-
ately; otherwise it calls each of the callback procedures in the list, passing the client data and
call_data

8.6. Checking the Status of a Callback List
To find out the status of a given widget’s callback list, Xig¢asCallbacks.

typedef enum {XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome} XtCallbackStatus;

XtCallbackStatus XtHasCallbackg(callback_namg
Widgetw;
Stringcallback_namg

w Specifies the widget. Must be of class Object or any subclass thereof.

callback_nameSpecifies the callback list to be checked.

The XtHasCallbacks function first checks to see if the widget has a callback list identified by
callback_name If the callback list does not existtHasCallbacks returnsXtCallbackNoList .

If the callback list exists but is empty, it returigCallbackHasNone. If the callback list exists
and has at least one callback registered, it retdt@allbackHasSome

139

X Toolkit Intrinsics X11 Release 6

Chapter 9

Resource Management

A resource is a field in the widget record with a corresponding resource entryeésdbecedist

of the widget or any of its superclasses. This means that the field is settatiferbgsiteWidget

(by naming the field in the argument list), by an entry in a resource file (by using either the name
or class), and bXtSetValues. In addition, it is readable b}tGetValues. Not all fields in a

widget record are resources. Some are for bookkeeping use by the generic routineandike
agedandbeing_destroyed Others can be for local bookkeeping, and still others are derived

from resources (many graphics contexts and pixmaps).

Widgets typically need to obtain a large set of resources at widget creation time. Some of the
resources come from the argument list supplied in the cxliGoeateWidget, some from the
resource database, and some from the internal defaults specified by the widget. Resources are
obtained first from the argument list, then from the resource database for all resources not speci-
fied in the argument list, and last, from the internal default, if needed.

9.1. Resource Lists

A resource entry specifies a field in the widget, the textual name and class of the field that argu-
ment lists and external resource files use to refer to the field, and a default value that the field
should get if no value is specified. The declaration fobdtiesource structure is

typedef struct {
String resource_name;
String resource_class;
String resource_type;
Cardinal resource_size;
Cardinal resource_offset;
String default_type;
XtPointer default_addr;

} XtResource, *XtResourcelist;

When the resource list is specified as @wreClassPart, ObjectClassPart,

RectObjClassPart, or ConstraintClassPart resourcedield the strings pointed to by
resource_nameaesource_clasgesource_typeanddefault typanmust be permanently allocated

prior to or during the execution of the class initialization procedure and must not be subsequently
deallocated.

Theresource_naméeld contains the name used by clients to access the field in the widget. By
convention, it starts with a lower-case letter and is spelled exactly like the field name, except all
underscores (_) are deleted and the next letter is replaced by its upper-case counterpart. For
example, the resource name for background_pixel becomes backgroundPixel. Resource names
beginning with the two-character sequence “xt” and resource classes beginning with the two-
character sequence “Xt" are reserved to the Intrinsics for future standard and implementation-
dependent uses. Widget header files typically contain a symbolic name for each resource name.

140

X Toolkit Intrinsics X11 Release 6

All resource names, classes, and types used by the Intrinsics are naféd/8tkingDefs.h>.
The Intrinsics’s symbolic resource names begin with “XtN” and are followed by the string name
(for example, XtNbackgroundPixel for backgroundPixel).

Theresource_clas$ield contains the class string used in resource specification files to identify
the field. A resource class provides two functions:

. It isolates an application from different representations that widgets can use for a similar
resource.
. It lets you specify values for several actual resources with a single name. A resource class

should be chosen to span a group of closely related fields.

For example, a widget can have several pixel resources: background, foreground, border, block
cursor, pointer cursor, and so on. Typically, the background defaults to white and everything else
to black. The resource class for each of these resources in the resource list should be chosen so
that it takes the minimal number of entries in the resource database to make the background
offwhite and everything else darkblue.

In this case, the background pixel should have a resource class of “Background” and all the other
pixel entries a resource class of “Foreground”. Then, the resource file needs only two lines to
change all pixels to offwhite or darkblue:

*Background: offwhite
*Foreground: darkblue

Similarly, a widget may have several font resources (such as normal and bold), but all fonts
should have the class Font. Thus, changing all fonts simply requires only a single line in the
default resource file:

*Font: 6x13

By convention, resource classes are always spelled starting with a capital letter to distinguish
them from resource names. Their symbolic names are preceded with “XtC” (for example,
XtCBackground).

Theresource_typéield gives the physical representation type of the resource and also encodes
information about the specific usage of the field. By convention, it starts with an upper-case letter
and is spelled identically to the type name of the field. The resource type is used when resources
are fetched to convert from the resource database format (uStiatlg) or the format of the

resource default value (almost anything, but ofséting) to the desired physical representation

(see Section 9.6). The Intrinsics define the following resource types:

Resource Type Structure or Field Type
XtRAcceleratorTable XtAccelerators

XtRAtom Atom

XtRBitmap Pixmap, depth=1
XtRBoolean Boolean

XtRBool Bool

XtRCallback XtCallbackList
XtRCardinal Cardinal

XtRColor XColor

141

X Toolkit Intrinsics

X11 Release 6

Resource Type

Structure or Field Type

XtRColormap
XtRCommandArgArray
XtRCursor
XtRDimension
XtRDirectoryString
XtRDisplay

XtREnum
XtREnvironmentArray
XtRFile

XtRFloat

XtRFont

XtRFontSet
XtRFontStruct
XtRFunction
XtRGeometry

XtRGravity
XtRInitialState
XtRInt
XtRLongBoolean
XtRObject
XtRPixel
XtRPixmap
XtRPointer
XtRPosition
XtRRestartStyle
XtRScreen
XtRShort
XtRSmcConn
XtRString
XtRStringArray
XtRStringTable
XtRTranslationTable
XtRUnsignedChar
XtRVisual
XtRWidget
XtRWidgetClass
XtRWidgetList
XtRwindow

Colormap
String*
Cursor
Dimension
String
Display*
XtEnum
String*

FILE*

float

Font
XFontSet
XFontStruct*
*)0

char*, format as defined byParseGeome-
try

int

int

int

long

Object

Pixel

Pixmap
XtPointer
Position
unsigned char
Screen*

short
XtPointer
String

String*
String*
XtTranslations
unsigned char
Visual*
Widget
WidgetClass
WidgetList
Window

<X11/stringDefs.h> also defines the following resource types as a convenience for widgets,
although they do not have any corresponding data type assititdditMode , XtRJustify ,

and XtROrientation .

Theresource_sizéeld is the size of the physical representation in bytes; you should specify it as

sizeof(type so that the compiler fills in the value. Tiesource_offsdield is the offset in bytes
of the field within the widget. You should use tKgDffsetOf macro to retrieve this value. The

142

X Toolkit Intrinsics X11 Release 6

default_typdield is the representation type of the default resource valukefdtilt_typds differ-

ent fromresource_typand the default value is needed, the resource manager invokes a conver-
sion procedure frordefault_typeo resource_type Whenever possible, the default type should

be identical to the resource type in order to minimize widget creation time. However, there are
sometimes no values of the type that the program can easily specify. In this case, it should be a
value for which the converter is guaranteed to work (for exarXp@efaultForeground for a

pixel resource). Thdefault_addifield specifies the address of the default resource value. As a
special case, ilefault_typds XtRString , then the value in theefault_addffield is the pointer

to the string rather than a pointer to the pointer. The default is used if a resource is not specified
in the argument list or in the resource database, or if the conversion from the representation type
stored in the resource database fails, which can happen for various reasons (for example, a mis-
spelled entry in a resource file).

Two special representation types (XtRImmediate and XtRCallProc) are usable only as default
resource types. XtRImmediate indicates that the value iddfailt_addfield is the actual value

of the resource rather than the address of the value. The value must be in the correct representa-
tion type for the resource, coerced toX&Rointer. No conversion is possible, since there is no
source representation type. XtRCallProc indicates that the valuedeftndt _addrfield is a

procedure pointer. This procedure is automatically invoked with the widget rce_offseand

a pointer to arlXrmValue in which to store the result. XtRCallProc procedure pointers are of

type XtResourceDefaultProc

typedef void (*XtResourceDefaultProc)(Widget, int, XrmValue?*);

Widgetw;

int offset

XrmValue *value
w Specifies the widget whose resource value is to be obtained.
offset Specifies the offset of the field in the widget record.
value Specifies the resource value descriptor to return.

The XtResourceDefaultProcprocedure should fill in thealue->addrfield with a pointer to the
resource value in its correct representation type.

To get the resource list structure for a particular classXtSetResourcelList

void XtGetResourcelList{ass resources_returnum_resources_retuyn
WidgetClasglass
XtResourceList fesources_retum
Cardinal num_resources_return

class Specifies the object class to be queried. It musidjectClassor any
subclass thereof.

resources_return Returns the resource list.

num_resources_returnReturns the number of entries in the resource list.

If XtGetResourcelListis called before the class is initialized, it returns the resource list as speci-
fied in the class record. If it is called after the class has been initiaktédtResourcel.ist

returns a merged resource list that includes the resources for all superclasses. The list returned by
XtGetResourceList should be freed usingtFree when it is no longer needed.

To get the constraint resource list structure for a particular widget class, use
XtGetConstraintResourceList.

143

X Toolkit Intrinsics X11 Release 6

void XtGetConstraintResourceLisldss resources_returmum_resources_retuyn
WidgetClas<glass
XtResourcelList tesources_retum
Cardinal num_resources_return

class Specifies the object class to be queried. It musidpectClassor any
subclass thereof.
resources_return Returns the constraint resource list.

num_resources_returnReturns the number of entries in the constraint resource list.

If XtGetConstraintResourcelListis called before the widget class is initialized, the resource list
as specified in the widget class Constraint part is returnedGétConstraintResourceList is
called after the widget class has been initialized, the merged resource list for the class and all
Constraint superclasses is returned. If the specified class is not a subclass of
constraintWidgetClass, *resources_returtis set to NULL and fum_resources_retutis set to
zero. The list returned b)tGetConstraintResourceList should be freed usingtFree when it

is no longer needed.

The routinesXtSetValues and XtGetValues also use the resource list to set and get widget state;
see Sections 9.7.1 and 9.7.2.

Here is an abbreviated version of a possible resource list for a Label widget:

/* Resources specific to Label */

static XtResource resources[] = {

{XtNforeground, XtCForeground, XtRPixel, sizeof(Pixel),
XtOffsetOf(LabelRec, label.foreground), XtRString, XtDefaultForeground},

{XtNfont, XtCFont, XtRFontStruct, sizeof(XFontStruct*),
XtOffsetOf(LabelRec, label.font), XtRString, XtDefaultFont},

{XtNlabel, XtCLabel, XtRString, sizeof(String),
XtOffsetOf(LabelRec, label.label), XtRString, NULL},

}

The complete resource name for a field of a widget instance is the concatenation of the applica-
tion shell name (fronXtAppCreateShell), the instance names of all the widget's parents up to

the top of the widget tree, the instance name of the widget itself, and the resource name of the
specified field of the widget. Similarly, the full resource class of a field of a widget instance is the
concatenation of the application class (frtppCreateShell), the widget class names of all

the widget's parents up to the top of the widget tree, the widget class hame of the widget itself,
and the resource class of the specified field of the widget.

9.2. Byte Offset Calculations
To determine the byte offset of a field within a structure type XtQésetOf .

Cardinal XtOffsetOfgtructure_typefield_namég
Type structure_type
Field field_namg

144

X Toolkit Intrinsics X11 Release 6

structure_type Specifies a type that is declared as a structure.
field_name Specifies the name of a member within the structure.

The XtOffsetOf macro expands to a constant expression that gives the offset in bytes to the spec-
ified structure member from the beginning of the structure. Itis normally used to statically ini-
tialize resource lists and is more portable tKaDffset, which serves the same function.

To determine the byte offset of a field within a structure pointer typeXiGset .

Cardinal XtOffsetpointer_typefield_namég
Type pointer_type
Field field_namg

pointer_type Specifies a type that is declared as a pointer to a structure.
field_name Specifies the name of a member within the structure.

The XtOffset macro expands to a constant expression that gives the offset in bytes to the speci-
fied structure member from the beginning of the structure. It may be used to statically initialize
resource lists XtOffset is less portable thaKtOffsetOf .

9.3. Superclass-to-Subclass Chaining of Resource Lists

The XtCreateWidget function gets resources as a superclass-to-subclass chained operation.
That is, the resources specified in tigectClassresource list are fetched, then those in
rectObjClass, and so on down to the resources specified for this widget's class. Within a class,
resources are fetched in the order they are declared.

In general, if a widget resource field is declared in a superclass, that field is included in the super-
class’s resource list and need not be included in the subclass’s resource list. For example, the
Core class contains a resource entnbfimkground_pixel Consequently, the implementation of
Label need not also have a resource entrpdakground_pixel However, a subclass, by specify-
ing a resource entry for that field in its own resource list, can override the resource entry for any
field declared in a superclass. This is most often done to override the defaults provided in the
superclass with new ones. At class initialization time, resource lists for that class are scanned
from the superclass down to the class to look for resources with the same offset. A matching
resource in a subclass will be reordered to override the superclass entry. If reordering is neces-
sary, a copy of the superclass resource list is made to avoid affecting other subclasses of the
superclass.

Also at class initialization time, the Intrinsics produce an internal representation of the resource
list to optimize access time when creating widgets. In order to save memory, the Intrinsics may
overwrite the storage allocated for the resource list in the class record; therefore, widgets must
allocate resource lists in writable storage and must not access the list contents directly after the
class_initialize procedure has returned.

9.4. Subresources

A widget does not do anything to retrieve its own resources; ins¢@deateWidget does this
automatically before calling the class initialize procedure.

Some widgets have subparts that are not widgets but for which the widget would like to fetch
resources. Such widgets cXliGetSubresourcesto accomplish this.

145

X Toolkit Intrinsics X11 Release 6

void XtGetSubresources(base name class resourcesnum_resourcesirgs, num_arg$
Widgetw;
XtPointerbase
Stringname
Stringclass
XtResourcelListesources
Cardinalnum_resources
ArglList args
Cardinalnum_args

w Specifies the object used to qualify the subpart resource name and class. Must be
of class Object or any subclass thereof.

base Specifies the base address of the subpart data structure into which the resources
will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifies the resource list for the subpart.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list to override any other resource specifications.
num_args Specifies the number of entries in the argument list.

The XtGetSubresourcesfunction constructs a name and class list from the application name and
class, the names and classes of all the object’s ancestors, and the object itself. Then it appends to
this list thenameandclasspair passed in. The resources are fetched from the argument list, the
resource database, or the default values in the resource list. Then they are copied into the subpart
record. Ifargsis NULL, num_argsnust be zero. However, ifum_argds zero, the argument

list is not referenced.

XtGetSubresourcesmay overwrite the specified resource list with an equivalent representation

in an internal format, which optimizes access time if the list is used repeatedly. The resource list
must be allocated in writable storage, and the caller must not modify the list contents after the call
if the same list is to be used again. Resources fetchad®stSubresourcesare reference-

counted as if they were referenced by the specified object. Subresources might therefore be freed
from the conversion cache and destroyed when the object is destroyed, but not before then.

To fetch resources for widget subparts using varargs lists{ts&setSubresources

void XtVaGetSubresources(base name class resourcesnum_resources..)
Widgetw;
XtPointerbase
Stringname
Stringclass
XtResourcelListesources
Cardinalnum_resources

w Specifies the object used to qualify the subpart resource name and class. Must be
of class Object or any subclass thereof.
base Specifies the base address of the subpart data structure into which the resources

will be written.

146

X Toolkit Intrinsics X11 Release 6

name Specifies the name of the subpart.
class Specifies the class of the subpart.
resources Specifies the resource list for the subpart.

num_resourcesSpecifies the number of entries in the resource list.
Specifies the variable argument list to override any other resource specifications.

XtVaGetSubresourcesis identical in function toXtGetSubresourceswith theargsand
num_arggarameters replaced by a varargs list, as described in Section 2.5.1.

9.5. Obtaining Application Resources

To retrieve resources that are not specific to a widget but apply to the overall application, use
XtGetApplicationResources

void XtGetApplicationResources(base resourcesnum_resourcesrgs, num_args
Widgetw;
XtPointerbase
XtResourcelListesources
Cardinalnum_resources
ArglList args
Cardinalnum_args

w Specifies the object that identifies the resource database to search (the database is
that associated with the display for this object). Must be of class Object or any
subclass thereof.

base Specifies the base address into which the resource values will be written.
resources Specifies the resource list.

num_resourcesSpecifies the number of entries in the resource list.

args Specifies the argument list to override any other resource specifications.

num_args Specifies the number of entries in the argument list.

The XtGetApplicationResourcesfunction first uses the passed object, which is usually an appli-
cation shell widget, to construct a resource name and class list. The full name and class of the
specified object (that is, including its ancestors, if any) is logically added to the front of each
resource name and class. Then it retrieves the resources from the argument list, the resource
database, or the resource list default values. After adding base to each atiesyyplica-
tionResourcescopies the resources into the addresses obtained by dddietg eachoffsetin

the resource list. l&rgsis NULL, num_argamust be zero. However, ifum_argds zero, the
argument list is not referenced. The portable way to specify application resources is to declare
them as members of a structure and pass the address of the structubmseattygiment.

XtGetApplicationResourcesmay overwrite the specified resource list with an equivalent repre-
sentation in an internal format, which optimizes access time if the list is used repeatedly. The
resource list must be allocated in writable storage, and the caller must not modify the list contents
after the call if the same list is to be used again. Any per-display resources fetcKisskbip-
plicationResourceswill not be freed from the resource cache until the display is closed.

To retrieve resources for the overall application using varargs lists, use
XtVaGetApplicationResources

147

X Toolkit Intrinsics X11 Release 6

void XtVaGetApplicationResources(base resourcesnum_resources..)
Widgetw;
XtPointerbase
XtResourcelistesources
Cardinalnum_resources

w Specifies the object that identifies the resource database to search (the database is
that associated with the display for this object). Must be of class Object or any
subclass thereof.

base Specifies the base address into which the resource values will be written.
resources Specifies the resource list for the subpart.
num_resourcesSpecifies the number of entries in the resource list.

Specifies the variable argument list to override any other resource specifications.

XtVaGetApplicationResourcesis identical in function toXtGetApplicationResourceswith the
argsandnum_arggparameters replaced by a varargs list, as described in Section 2.5.1.

9.6. Resource Conversions

The Intrinsics provide a mechanism for registering representation converters that are automati-
cally invoked by the resource-fetching routines. The Intrinsics additionally provide and register
several commonly used converters. This resource conversion mechanism serves several purposes:

. It permits user and application resource files to contain textual representations of nontextual
values.

. It allows textual or other representations of default resource values that are dependent on
the display, screen, or colormap, and thus must be computed at runtime.

. It caches conversion source and result data. Conversions that require much computation or

space (for example, string-to-translation-table) or that require round-trips to the server (for
example, string-to-font or string-to-color) are performed only once.

9.6.1. Predefined Resource Converters

The Intrinsics define all the representations used in the Object, RectObj, Core, Composite, Con-
straint, and Shell widget classes. The Intrinsics register the following resource converters that
accept input values of representation tyfiRString .

Target Representation Converter Name Additional Args
XtRAcceleratorTable XtCvtStringToAcceleratorTable
XtRAtom XtCvtStringToAtom Display*
XtRBoolean XtCvtStringToBoolean
XtRBool XtCvtStringToBool
XtRCommandArgArray XtCvtStringToCommandArgAr-

ray
XtRCursor XtCvtStringToCursor Display*
XtRDimension XtCvtStringToDimension
XtRDirectoryString XtCvtStringToDirectoryString

148

X Toolkit Intrinsics

X11 Release 6

XtRDisplay XtCvtStringToDisplay

XtRFile XtCvtStringToFile

XtRFloat XtCvtStringToFloat

XtRFont XtCvtStringToFont Display*

XtRFontSet XtCvtStringToFontSet Display*, Stringlocale
XtRFontStruct XtCvtStringToFontStruct Display*

XtRGravity XtCvtStringToGravity

XtRInitialState XtCvtStringTolnitialState

XtRInt XtCvtStringTolnt

XtRPixel XtCvtStringToPixel colorConvertArgs
XtRPosition XtCvtStringToPosition

XtRRestartStyle XtCvtStringToRestartStyle

XtRShort XtCvtStringToShort

XtRTranslationTable XtCvtStringToTranslationTable

XtRUnsignedChar XtCvtStringToUnsignedChar

XtRVisual XtCvtStringToVisual Screen*, Cardinalepth

The String-to-Pixel conversion has two predefined constants that are guaranteed to work and con-
trast with each otheXtDefaultForeground and XtDefaultBackground. They evaluate to the

black and white pixel values of the widget’s screen, respectively. If the application resource
reverseVideo idrue, they evaluate to the white and black pixel values of the widget's screen,
respectively. Similarly, the String-to-Font and String-to-FontStruct converters recognize the con-
stantXtDefaultFont and evaluate this in the following manner:

. Query the resource database for the resource whose full name is “xtDefaultFont”, class
“XtDefaultFont” (that is, no widget name/class prefixes) and use aX{p&tring value
returned as the font name, or a tyfiRFont or XtRFontStruct value directly as the
resource value.

. If the resource database does not contain a value for xtDefaultFont, class XtDefaultFont, or
if the returned font name cannot be successfully opened, an implementation-defined font in
ISO8859-1 character set encoding is opened. (One possible algorithm is to perform an
XListFonts using a wildcard font name and use the first font in the list. This wildcard font
name should be as broad as possible to maximize the probability of locating a useable font;
for example, "-*-*-*.R-*-*.*.120-*-*-**_.|SO8859-1".)

. If no suitable 1ISO8859-1 font can be found, issue a warning message and-adten

The String-to-FontSet converter recognizes the condtdirefaultFontSet and evaluate this in
the following manner:

. Query the resource database for the resource whose full name is “xtDefaultFontSet”, class
“XtDefaultFontSet” (that is, no widget name/class prefixes) and use aXiRstring
value returned as the base font name list, or aXyR&ontSet value directly as the
resource value.

. If the resource database does not contain a value for xtDefaultFontSet, class XtDefault-
FontSet, or if a font set cannot be successfully created from this resource, an implementa-
tion-defined font set is created. (One possible algorithm is to perfodXXdCerateFontSet
using a wildcard base font name. This wildcard base font name should be as broad as pos-
sible to maximize the probability of locating a useable font; for example,
"_*_*_*_R_*_*_*_120_*_*_*_*".)

149

X Toolkit Intrinsics X11 Release 6

. If no suitable font set can be created, issue a warning message andratsern

If a font set is created butissing_charset_ligs not empty, a warning is issued and the partial

font set is returned. The Intrinsics register the String-to-FontSet converter with a conversion
argument list that extracts the current process locale at the time the converter is invoked. This
ensures that the converter is invoked again if the same conversion is required in a different locale.

The String-to-Gravity conversion accepts string values which are the names of window and bit
gravities and their numerical equivalents, as definediin— C Language X Interface
ForgetGravity , UnmapGravity , NorthWestGravity , NorthGravity , NorthEastGravity ,
WestGravity, CenterGravity , EastGravity, SouthWestGravity, SouthGravity,
SouthEastGravity, and StaticGravity . Alphabetic case is not significant in the conversion.

The String-to-CommandArgArray conversion parses a String into an array of strings. White

space characters separate elements of the command line. The converter recognizes the backslash
character '\’ as an escape character to allow the following white space character to be part of the
array element.

The String-to-DirectoryString conversion recognizes the string "XtCurrentDirectory" and returns
the result of a call to the operating system to get the current directory.

The String-to-RestartStyle conversion accepts the v&essartifRunning , RestartAnyway,
Restartimmediately, and RestartNever as defined by th¥ Session Management Protacol

The String-to-InitialState conversion accepts the vaN@snalState or IconicState as defined
by thelnter-Client Communication Conventions Manual

The String-to-Visual conversion callMatchVisuallnfo using thescreenanddepthfields from

the core part and returns the first matching Visual on the list. The widget resource list must be
certain to specify any resource of tygtRVisual after the depth resource. The allowed string
values are the visual class names defined\Wfindow System Proto¢@ection 8;StaticGray,
StaticColor, TrueColor, GrayScale, PseudoColor, andDirectColor .

The Intrinsics register the following resource converter that accepts an input value of representa-
tion type XtRColor .

Target Representation Converter Name Additional Args

XtRPixel XtCvtColorToPixel

The Intrinsics register the following resource converters that accept input values of representation
type XtRInt .

Target Representation Converter Name Additional Args
XtRBoolean XtCvtIntToBoolean

XtRBool XtCvtIintToBool

XtRColor XtCvtIntToColor colorConvertArgs
XtRDimension XtCvtIntToDimension

XtRFloat XtCvtintToFloat

XtRFont XtCvtIintToFont

XtRPixel XtCvtIntToPixel

150

X Toolkit Intrinsics X11 Release 6

XtRPixmap XtCvtIntToPixmap
XtRPosition XtCvtIintToPosition
XtRShort XtCvtintToShort
XtRUnsignedChar XtCvtIntToUnsignedChar

The Intrinsics register the following resource converter that accepts an input value of representa-
tion type XtRPixel.

Target Representation Converter Name Additional Args

XtRColor XtCvtPixelToColor

9.6.2. New Resource Converters

Type converters use pointersXomValue structures (defined inXl11/Xresource.h>; see Sec-
tion 15.4 inXlib — C Language X Interfagdor input and output values.

typedef struct {
unsigned int size;
XPointer addr;

} XrmValue, *XrmValuePtr;

Theaddrfield specifies the address of the data andittedield gives the total number of signifi-
cant bytes in the data. For values of tyjteing, addris the address of the first character size
includes the NUL terminating byte.

A resource converter procedure pointer is of tygp&ypeConverter.

typedef Boolean (*XtTypeConverter)(Display*, XrmValue*, Cardinal*,
XrmValue*, XrmValue*, XtPointer*);
Display *display,
XrmValue *args,
Cardinal num_args
XrmValue *from;
XrmValue *o;
XtPointer *converter_data

display Specifies the display connection with which this conversion is associated.

args Specifies a list of additionadrmValue arguments to the converter if additional
context is needed to perform the conversion, or NULL. For example, the String-
to-Font converter needs the widgeatisplay, and the String-to-Pixel converter
needs the widget'screenandcolormap

num_args Specifies the number of entriesamgs
from Specifies the value to convert.
to Specifies a descriptor for a location into which to store the converted value.

converter_data
Specifies a location into which the converter may store converter-specific data
associated with this conversion.

151

X Toolkit Intrinsics X11 Release 6

Thedisplayargument is normally used only when generating error messages, to identify the
application context (with the functioxtDisplayToApplicationContext).

Theto argument specifies the size and location into which the converter should store the con-
verted value. If theddrfield is NULL, the converter should allocate appropriate storage and
store the size and location into tleedescriptor. If the type converter allocates the storage, it
remains under the ownership of the converter and must not be modified by the caller. The type
converter is permitted to use static storage for this purpose, and therefore the caller must immedi-
ately copy the data upon return from the converter. ladhdrfield is not NULL, the converter

must check thsizefield to ensure that sufficient space has been allocated before storing the con-
verted value. If insufficient space is specified, the converter should updatedfield with the
number of bytes required and returalse without modifying the data at the specified location.

If sufficient space was allocated by the caller, the converter should updaieefiedd with the

number of bytes actually occupied by the converted value. For converted values of type
XtRString , the size should include the NULL terminating byte, if any. The converter may store
any value in the location specifieddanverter_datathis data will be passed to the destructor, if
any, when the resource is freed by the Intrinsics.

The converter must retuffrue if the conversion was successful dralse otherwise. If the con-
version cannot be performed because of an improper source value, a warning message should also
be issued wittKtAppWarningMsg .

Most type converters just take the data described by the spdifiedrgument and return data

by writing into the location specified in the@argument. A few need other information, which is
available inargs A type converter can invoke another type converter, which allows differing
sources that may convert into a common intermediate result to make maximum use of the type
converter cache.

Note that if an address is written irtte>addr, it cannot be that of a local variable of the con-

verter because the data will not be valid after the converter returns. Static variables may be used,
as in the following example. If the converter modifies the resource database, the changes affect
any in-progress widget creatiodiGetApplicationResources or XtGetSubresourcesin an
implementation-defined manner; however, insertion of new entries or changes to existing entries
is allowed and will not directly cause an error.

The following is an example of a converter that takefriag and converts it to ®ixel. Note

that thedisplayparameter is only used to generate error messageSctaenconversion argu-

ment is still required to inform the Intrinsics that the converted value is a function of the particu-
lar display (and colormap).

#define done(type, value) \

{ \

if (toVal->addr != NULL) { \
if (toVal->size < sizeof(type)) { \
toVal->size = sizeof(type); \
return False; \

} \
(type)(toVal->addr) = (value); \

} \

else { \
static type static_val; \

152

X Toolkit Intrinsics X11 Release 6

static_val = (value); \
toVal->addr = (XPointer)&static_val, \
} \
toVal->size = sizeof(type); \
return True; \
}
static Boolean CvtStringToPixel(dpy, args, num_args, fromVal, toVal, converter_data)
Display *dpy;

XrmValue *args;

Cardinal *num_args;
XrmValue *fromVal;
XrmValue *toVal;
XtPointer *converter_data;

{
static XColor screenColor;
XColor exactColor;
Screen *screen;
Colormap colormap;
Status status;

if (*num_args != 2)
XtAppWarningMsg(XtDisplayToApplicationContext(dpy),
"wrongParameters", "cvtStringToPixel", "XtToolkitError",
"String to pixel conversion needs screen and colormap arguments”,
(String *)NULL, (Cardinal *)NULL);

screen = *((Screen**) args[0].addr);
colormap = *((Colormap *) args[1].addr);

if (ComparelSOLatin1(str, XtDefaultBackground) == 0) {
*closure_ret = False;
done(Pixel, WhitePixelOfScreen(screen));

}

if (ComparelSOLatin1(str, XtDefaultForeground) == 0) {
*closure_ret = False;
done(Pixel, BlackPixelOfScreen(screen));

status = XAllocNamedColor(DisplayOfScreen(screen), colormap, (char*)fromVal->addr,
&screenColor, &exactColor);

if (status == 0) {
String params|[1];
Cardinal num_params = 1;
params[0] = (String)fromVal->addr;
XtAppWarningMsg(XtDisplayToApplicationContext(dpy),
"noColormap", "cvtStringToPixel", "XtToolkitError",
"Cannot allocate colormap entry for \"%s\"", params, &num_params);

153

X Toolkit Intrinsics X11 Release 6

*converter_data = (char *) False;
return False;
}else {
*converter_data = (char *) True;
done(Pixel, &screenColor.pixel);

}

All type converters should define some set of conversion values for which they are guaranteed to
succeed so these can be used in the resource defaults. This issue arises only with conversions,

such as fonts and colors, where there is no string representation that all server implementations

will necessarily recognize. For resources like these, the converter should define a symbolic con-
stant in the same mannerXéefaultForeground, XtDefaultBackground, and

XtDefaultFont .

To allow the Intrinsics to deallocate resources produced by type converters, a resource destructor
procedure may also be provided.

A resource destructor procedure pointer is of tffieestructor .

typedef void (*XtDestructor) (XtAppContext, XrmValue*, XtPointer, XrmValue*, Cardinal*);
XtAppContextapp
XrmValue *o;
XtPointerconverter_data
XrmValue *args
Cardinal num_args

app Specifies an application context in which the resource is being freed.

to Specifies a descriptor for the resource produced by the type converter.

converter_data
Specifies the converter-specific data returned by the type converter.

args Specifies the additional converter arguments as passed to the type converter when
the conversion was performed.

num_args Specifies the number of entriesamgs

The destructor procedure is responsible for freeing the resource specifieddogrthenent,
including any auxiliary storage associated with that resource, but not the memory directly
addressed by the size and location intth@rgument nor the memaory specifiedadrgs

9.6.3. Issuing Conversion Warnings

The XtDisplayStringConversionWarning procedure is a convenience routine for resource type
converters that convert from string values.

void XtDisplayStringConversionWarningiéplay, from_valugeto_typég
Display *display;
Stringfrom_valueto_type

display Specifies the display connection with which the conversion is associated.
from_value Specifies the string that could not be converted.
to_type Specifies the target representation type requested.

154

X Toolkit Intrinsics X11 Release 6

The XtDisplayStringConversionWarning procedure issues a warning message ustégp-
WarningMsg with name*conversionError”, type“string”, class“XtToolkitError”, and the
default message “Cannot conveftom_valué to typeto_typé€.

To issue other types of warning or error messages, the type converter shoxiédpmsé/arn-
ingMsg or XtAppErrorMsg .

To retrieve the application context associated with a given display connection, use
XtDisplayToApplicationContext .

XtAppContext XtDisplayToApplicationContextlisplay)
Display *display,

display Specifies an open and initialized display connection.

The XtDisplayToApplicationContext function returns the application context in which the spec-
ified displaywas initialized. If the display is not known to the Intrinsics, an error message is
issued.

9.6.4. Registering a New Resource Converter

When registering a resource converter, the client must specify the manner in which the conversion
cache is to be used when there are multiple calls to the converter. Conversion cache control is
specified via arXtCacheType argument.

typedef int XtCacheType;

An XtCacheType field may contain one of the following values:

XtCacheNone

Specifies that the results of a previous conversion may not be reused to satisfy any other
resource requests; the specified converter will be called each time the converted value is
required.

XtCacheAll

Specifies that the results of a previous conversion should be reused for any resource request
that depends upon the same source value and conversion arguments.

XtCacheByDisplay

Specifies that the results of a previous conversion should be usedXéSdicheAll but

the destructor will be called, if specified XfCloseDisplay is called for the display con-

nection associated with the converted value, and the value will be removed from the conver-
sion cache.

The qualifierXtCacheRefCount may be ORed with any of the @ \alues. IfXtCacheRef-

Count is specified, calls tXtCreateWidget, XtCreateManagedWidget, XtGetApplication-
Resourcesand XtGetSubresourcesthat use the converted value will be counted. When a wid-
get using the converted value is destroyed, the count is decremented, and if the count reaches
zero, the destructor procedure will be called and the converted value will be removed from the
conversion cache.

155

X Toolkit Intrinsics X11 Release 6

To register a type converter for all application contexts in a procesXtBeelypeConverter
and to register a type converter in a single application contexXtdggpSetTypeConverter.

void XtSetTypeConvertefifom_typeto type converter convert_argsnum_args

cache_typedestructo)

Stringfrom_type
Stringto_type
XtTypeConverteconverter
XtConvertArgListconvert_args
Cardinalnum_args
XtCacheTypecache_type
XtDestructordestructor

from_type
to_type
converter
convert_args
num_args
cache_type

destructor

Specifies the source type.

Specifies the destination type.

Specifies the resource type converter procedure.
Specifies additional conversion arguments, or NULL.
Specifies the number of entriescionvert_args

Specifies whether or not resources produced by this converter are sharable or dis-
play-specific and when they should be freed.

Specifies a destroy procedure for resources produced by this conversion, or
NULL if no additional action is required to deallocate resources produced by the
converter.

void XtAppSetTypeConverteapp contextfrom_typeto_type converter convert_args

num_argscache_typgedestructo)

XtAppContextapp_context
Stringfrom_type
Stringto_type
XtTypeConverteconverter
XtConvertArgListconvert_args
Cardinalnum_args
XtCacheTypecache_type
XtDestructordestructor

app_context
from_type
to_type
converter
convert_args
num_args
cache_type

destructor

Specifies the application context.

Specifies the source type.

Specifies the destination type.

Specifies the resource type converter procedure.
Specifies additional conversion arguments, or NULL.
Specifies the number of entriesconvert_args

Specifies whether or not resources produced by this converter are sharable or dis-
play-specific and when they should be freed.

Specifies a destroy procedure for resources produced by this conversion, or
NULL if no additional action is required to deallocate resources produced by the
converter.

156

X Toolkit Intrinsics X11 Release 6

XtSetTypeConverter registers the specified type converter and destructor in all application con-
texts created by the calling process, including any future application contexts that may be created.
XtAppSetTypeConverter registers the specified type converter in the single application context
specified. If the samigom_typeandto_typeare specified in multiple calls to either function, the

most recent overrides the previous ones.

For the few type converters that need additional arguments, the Intrinsics conversion mechanism
provides a method of specifying how these arguments should be computed. The enumerated type
XtAddressMode and the structur&XtConvertArgRec specify how each argument is derived.

These are defined i 1/Intrinsic.h >.

typedef enum {

/* address mode parameter representation */

XtAddress, /* address */
XtBaseOffset, /* offset */
Xtimmediate, [* constant */
XtResourceString, [* resource name string */
XtResourceQuark, [* resource name quark */
XtWidgetBaseOffset, [* offset */
XtProcedureArg /* procedure to call */

} XtAddressMode;

typedef struct {

XtAddressMode address_mode;
XtPointer address_id;
Cardinal size;

} XtConvertArgRec, *XtConvertArgList;

Thesizefield specifies the length of the data in bytes. dthdress_modgeld specifies how the
address_idield should be interpreted{tAddress causesddress_ido be interpreted as the

address of the dataXtBaseOffsetcausesaddress_ido be interpreted as the offset from the wid-

get base. Xtimmediate causesddress_ido be interpreted as a constamtResourceString
causesddress_ido be interpreted as the name of a resource that is to be converted into an offset
from the widget baseXtResourceQuark causesaddress_ido be interpreted as the result of an
XrmStringToQuark conversion on the name of a resource, which is to be converted into an off-
set from the widget baseXtWidgetBaseOffsetis similar to XtBaseOffsetexcept that it

searches for the closest windowed ancestor if the object is not of a subclass of Core (See Chapter
12). XtProcedureArg specifies thaaddress_ids a pointer to a procedure to be invoked to

return the conversion argument. XtProcedureArg is specifiedaddress_idnust contain the

address of a function of typ&ConvertArgProc .

typedef void (*XtConvertArgProc)(Widget, Cardinal*, XrmValue*);

Widgetobject
Cardinal size
XrmValue *value
object Passes the object for which the resource is being converted, or NULL if the con-
verter was invoked bXtCallConverter or XtDirectConvert .
size Passes a pointer to thizefield from theXtConvertArgRec.
value Passes a pointer to a descriptor into which the procedure must store the conver-

sion argument.

157

X Toolkit Intrinsics X11 Release 6

When invoked, theXtConvertArgProc procedure must derive a conversion argument and store
the address and size of the argument in the location pointedvadusy

In order to permit reentrancy, thd@ConvertArgProc should return the address of storage whose
lifetime is no shorter than the lifetime albject If objectis NULL, the lifetime of the conversion
argument must be no shorter than the lifetime of the resource with which the conversion argument
is associated. The Intrinsics do not guarantee to copy this storage but do guarantee not to refer-
ence it if the resource is removed from the conversion cache.

The following example illustrates how to register the CvtStringToPixel routine given earlier:

static XtConvertArgRec colorConvertArgs|] = {
{XtWidgetBaseOffset, (XtPointer)XtOffset(Widget, core.screen), sizeof(Screen*)},
{XtWidgetBaseOffset, (XtPointer)XtOffset(Widget, core.colormap),sizeof(Colormap)}

g

XtSetTypeConverter(XtRString, XtRPixel, CvtStringToPixel,
colorConvertArgs, XtNumber(colorConvertArgs), XtCacheByDisplay, NULL);

The conversion argument descriptomdorConvertArgs and screenConvertArg are predefined

by the Intrinsics. Both take the values from the closest windowed ancestor if the object is not of a
subclass of Core. ThecreenConvertArg descriptor puts the widget&reerfield intoargg0].

The colorConvertArgs descriptor puts the widgetsreerfield intoargq0], and the widget’s
colormapfield intoargq1].

Conversion routines should not just put a descriptor for the address of the base of the widget into
argq0] and use that in the routine. They should pass in the actual values on which the conversion
depends on. By keeping the dependencies of the conversion procedure specific, it is more likely
that subsequent conversions will find what they need in the conversion cache. This way the cache
is smaller and has fewer and more widely applicable entries.

If any conversion arguments of typ@BaseOffset XtResourceString, XtResourceQuark, and
XtWidgetBaseOffsetare specified for conversions performeddigetApplicationResources
XtGetSubresources XtVaGetApplicationResourcesor XtVaGetSubresources the arguments

are computed with respect to the specified widget, not the base address or resource list specified
in the call.

If the XtConvertArgProc modifies the resource database, the changes affect any in-progress
widget creationXtGetApplicationResources or XtGetSubresourcesin an implementation-
defined manner; however, insertion of new entries or changes to existing entries is allowed and
will not directly cause an error.

9.6.5. Resource Converter Invocation

All resource-fetching routines (for exampl&tGetSubresources XtGetApplicationResources

and so on) call resource converters if the resource database or varargs list specifies a value that
has a different representation from the desired representation or if the widget’s default resource
value representation is different from the desired representation.

To invoke explicit resource conversions, d@€onvertAndStore or XtCallConverter .

typedef XtPointer XtCacheRef;

158

X Toolkit Intrinsics X11 Release 6

Boolean XtCallConverterisplay, converter conversion_argsium_argsfrom, to_in_oug
cache_ref_return)
Display* display,
XtTypeConverteconverter
XrmValuePtrconversion_args
Cardinalnum_args
XrmValuePtrfrom;
XrmValuePtrto_in_out
XtCacheRef tache_ref return

display Specifies the display with which the conversion is to be associated.

converter Specifies the conversion procedure to be called.

conversion_args Specifies the additional conversion arguments needed to perform the con-
version, or NULL.

num_args Specifies the number of entriescionversion_args

from Specifies a descriptor for the source value.

to_in_out Returns the converted value.

cache_ref _return Returns a conversion cache id.

The XtCallConverter function looks up the specified type converter in the application context
associated with the display and, if the converter was not registered or was registered with cache
type XtCacheAll or XtCacheByDisplay looks in the conversion cache to see if this conversion
procedure has been called with the specified conversion arguments. If so, it checks the success
status of the prior call, and if the conversion failéti;allConverter returnsFalseimmediately;
otherwise it checks the size specified intthargument and, if it is greater than or equal to the

size stored in the cache, copies the information stored in the cache into the location specified by
to->addr, stores the cache size irite>size and returnslrue. If the size specified in the

argument is smaller than the size stored in the cati@gliConverter copies the cache size into
to->sizeand returnd-alse. If the converter was registered with cache ty{p€acheNoneor no

value was found in the conversion cack&CallConverter calls the converter and, if it was not
registered with cache typ&CacheNoneg enters the result in the cach¥tCallConverter then

returns what the converter returned.

Thecache_ref_returffield specifies storage allocated by the caller in which an opaque value will
be stored. If the type converter has been registered witkt@acheRefCount modifier and if

the value returned ibache_ref returtis non-NULL, then the caller should store the

cache_ref returwalue in order to decrement the reference count when the converted value is no
longer required. Theache_ref_returmrgument should be NULL if the caller is unwilling or
unable to store the value.

To explicitly decrement the reference counts for resources obtaineXt@atiConverter , use
XtAppReleaseCacheRefs

void XtAppReleaseCacheRedg(p contextrefs)
XtAppContextapp_context
XtCacheRef tefs

app_context Specifies the application context.

refs Specifies the list of cache references to be released.

XtAppReleaseCacheRefslecrements the reference count for the conversion entries identified by
therefsargument. This argument is a pointer to a NULL-terminated lixtGacheRefvalues.

159

X Toolkit Intrinsics X11 Release 6

If any reference count reaches zero, the destructor, if any, will be called and the resource removed
from the conversion cache.

As a convenience to clients needing to explicitly decrement reference counts via a callback func-
tion, the Intrinsics define two callback procedubétCallbackReleaseCacheReand
XtCallbackReleaseCacheRefList

void XtCallbackReleaseCacheRdf{ect client_datacall_datg
Widgetobject
XtPointerclient_data
XtPointercall_datg

object Specifies the object with which the resource is associated.
client_data Specifies the conversion cache entry to be released.
call_data Is ignored.

This callback procedure may be added to a callback list to release a previously returned
XtCacheRefvalue. When adding the callback, the callbeliént_dataargument must be speci-
fied as the value of th&tCacheRefdata cast to typ&tPointer .

void XtCallbackReleaseCacheRefL@t{ect client_data call_datg
Widgetobject
XtPointerclient_data
XtPointercall_datg

object Specifies the object with which the resources are associated.
client_ data Specifies the conversion cache entries to be released.
call_data Is ignored.

This callback procedure may be added to a callback list to release a list of previously returned
XtCacheRefvalues. When adding the callback, the callbel@nt_dataargument must be spec-
ified as a pointer to a NULL-terminated list ¥fCacheRefvalues.

To lookup and call a resource converter, copy the resulting value, and free a cached resource
when a widget is destroyed, useConvertAndStore .

Boolean XtConvertAndStorebject from_typefrom, to_typeto_in_ou)}
Widgetobject
Stringfrom_type
XrmValuePtrfrom;
Stringto_type
XrmValuePtrto_in_out

object Specifies the object to use for additional arguments, if any are needed, and the
destroy callback list. Must be of class Object or any subclass thereof.

from_type Specifies the source type.

from Specifies the value to be converted.
to_type Specifies the destination type.
to_in_out Specifies a descriptor for storage into which the converted value will be returned.

The XtConvertAndStore function looks up the type converter registered to coffis@rt_typeto
to_type computes any additional arguments needed, and thenxXt@ldlConverter (or

160

X Toolkit Intrinsics X11 Release 6

XtDirectConvert if an old-style converter was registered witAddConverter or
XtAppAddConverter ; see Appendix C) with thiEom andto_in_outarguments. The&_in_out
argument specifies the size and location into which the converted value will be stored and is
passed directly to the converter. If the location is specified as NULL, it will be replaced with a
pointer to private storage and the size will be returned in the descriptor. The caller is expected to
copy this private storage immediately and must not modify it in any way. If a non-NULL location
is specified, the caller must allocate sufficient storage to hold the converted value and must also
specify the size of that storage in the descriptor. sitefield will be modified on return to indi-

cate the actual size of the converted data. If the conversion suck#edeyertAndStore

returnsTrue ; otherwise, it return§alse.

XtConvertAndStore addsXtCallbackReleaseCacheReto the destroyCallback list of the spec-
ified object if the conversion returns XtCacheRefvalue. The resulting resource should not be
referenced after the object has been destroyed.

XtCreateWidget performs processing equivalentxéConvertAndStore when initializing the

object instance. Because there is extra memory overhead required to implement reference count-
ing, clients may distinguish those objects that are never destroyed before the application exits
from those that may be destroyed and whose resources should be deallocated.

To specify whether reference counting is to be enabled for the resources of a particular object
when the object is created, the client can specify a value f@dbkeanresource XtNinitialRe-
sourcesPersistent, class XtClnitialResourcesPersistent.

When XtCreateWidget is called, if this resource is not specifiedratse in either the arglist or

the resource database, then the resources referenced by this object are not reference-counted,
regardless of how the type converter may have been registered. The effective default value is
True; thus clients that expect to destroy one or more objects and want resources deallocated must
explicitly specify Falsefor XtNinitialResourcesPersistent.

The resources are still freed and destructors called WheloseDisplay is called if the conver-
sion was registered agCacheByDisplay.

9.7. Reading and Writing Widget State

Any resource field in a widget can be read or written by a client. On a write operation, the widget
decides what changes it will actually allow and updates all derived fields appropriately.

9.7.1. Obtaining Widget State
To retrieve the current values of resources associated with a widget instan€es ed@lues.

void XtGetValuesgbject args num_arg}
Widgetobject
ArglList args
Cardinalnum_args

object Specifies the object whose resource values are to be returned. Must be of class
Object or any subclass thereof.

args Specifies the argument list of name/address pairs that contain the resource names
and the addresses into which the resource values are to be stored. The resource
names are widget-dependent.

num_args Specifies the number of entries in the argument list.

161

X Toolkit Intrinsics X11 Release 6

The XtGetValues function starts with the resources specified for the Object class and proceeds
down the subclass chain to the class of the object.valuefield of a passed argument list must
contain the address into which to copy the contents of the corresponding object instance field. If
the field is a pointer type, the lifetime of the pointed-to data is defined by the object class. For the
Intrinsics-defined resources, the following lifetimes apply

* Not valid following any operation that modifies the resource:
— XtNchildren resource of composite widgets.
— All resources of representation type XtRCallback.
* Remain valid at least until the widget is destroyed:
— XtNaccelerators, XtNtranslations.
* Remain valid until the Display is closed:
— XtNscreen.

It is the caller’s responsibility to allocate and deallocate storage for the copied data according to
the size of the resource representation type used within the object.

If the class of the object’s parent is a subclassoofstraintWidgetClass, XtGetValues then

fetches the values for any constraint resources requested. It starts with the constraint resources
specified forconstraintWidgetClassand proceeds down the subclass chain to the parent's con-
straint resources. If the argument list contains a resource name that is not found in any of the
resource lists searched, the value at the corresponding address is not modified. If any
get_values_hook procedures in the object’s class or superclass records are non-NULL, they are
called in superclass-to-subclass order after all the resource values have been fetched by
XtGetValues. Finally, if the object’s parent is a subclasscohstraintWidgetClass, and if any

of the parent’s class or superclass records have decamstraintClassExtensionrecords in

the Constraint class paxtensiorfield with a record type dNULLQUARK and if the
get_values_hoatkeld in the extension record is non-NULKtGetValues calls the

get_values_hook procedures in superclass-to-subclass order. This permits a Constraint parent to
provide nonresource data vidGetValues.

Get_values_hook procedures may modify the data stored at the location addressedlng the
field, including (but not limited to) making a copy of data whose resource representation is a
pointer. None of the Intrinsics-defined object classes copy data in this manner. Any operation
that modifies the queried object resource may invalidate the pointed-to data.

To retrieve the current values of resources associated with a widget instance using varargs lists,
use XtVaGetValues.

void XtVaGetValueggbject ...)
Widgetobject

object Specifies the object whose resource values are to be returned. Must be of class
Object or any subclass thereof.

Specifies the variable argument list for the resources to be returned.

XtVaGetValues is identical in function toXtGetValues with theargsandnum_arggparameters
replaced by a varargs list, as described in Section 2.5.1. All value entries in the list must specify
pointers to storage allocated by the caller to which the resource value will be copied. Itis the
caller’s responsibility to ensure that sufficient storage is allocatetVETypedArg is speci-

fied, thetypeargument specifies the representation desired by the calléreside argument
specifies the number of bytes allocated to store the result of the conversion. If the size is

162

X Toolkit Intrinsics X11 Release 6

insufficient, a warning message is issued and the list entry is skipped.

9.7.1.1. Widget Subpart Resource Data: the get_values_hook Procedure

Widgets that have subparts can return resource values from them thitGigivalues by sup-
plying a get_values_hook procedure. The get_values_hook procedure pointer is of type
XtArgsProc.

typedef void (*XtArgsProc)(Widget, ArgList, Cardinal*);
Widgetw;
ArglList args
Cardinal hum_args

w Specifies the widget whose subpart resource values are to be retrieved.

args Specifies the argument list that was passest@etValues or the transformed
varargs list passed tVaGetValues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources should ¥betSubvaluesin the get_values_hook proce-
dure and pass in its subresource list ancitggandnum_argparameters.

9.7.1.2. Widget Subpart State

To retrieve the current values of subpart resource data associated with a widget instance, use
XtGetSubvalues For a discussion of subpart resources, see Section 9.4.

void XtGetSubvalueb@se resourcesnum_resourcesirgs, num_arg$
XtPointerbase
XtResourcelListesources
Cardinalnum_resources
ArglList args
Cardinalnum_args

base Specifies the base address of the subpart data structure for which the resources
should be retrieved.

resources Specifies the subpart resource list.

num_resourcesspecifies the number of entries in the resource list.

args Specifies the argument list of name/address pairs that contain the resource names

and the addresses into which the resource values are to be stored.
num_args Specifies the number of entries in the argument list.

The XtGetSubvaluesfunction obtains resource values from the structure identifidhbgy The
valuefield in each argument entry must contain the address into which to store the corresponding
resource value. Itis the caller’s responsibility to allocate and deallocate this storage according to
the size of the resource representation type used within the subpart. If the argument list contains

a resource name that is not found in the resource list, the value at the corresponding address is not
modified.

To retrieve the current values of subpart resources associated with a widget instance using varargs
lists, useXtVaGetSubvalues

163

X Toolkit Intrinsics X11 Release 6

void XtVaGetSubvaluebg@se resourcesnum_resources..)
XtPointerbase
XtResourcelistesources
Cardinalnum_resources

base Specifies the base address of the subpart data structure for which the resources
should be retrieved.
resources Specifies the subpart resource list.

num_resourcesSpecifies the number of entries in the resource list.

Specifies a variable argument list of name/address pairs that contain the resource
names and the addresses into which the resource values are to be stored.

XtVaGetSubvaluesis identical in function toXtGetSubvalueswith theargsandnum_args
parameters replaced by a varargs list, as described in Section2t8allypedArg is not sup-
ported forXtVaGetSubvalues If XtVaTypedArg is specified in the list, a warning message is
issued and the entry is then ignored.

9.7.2. Setting Widget State
To modify the current values of resources associated with a widget instan¢Satéalues.

void XtSetValueggbject args num_arg}
Widgetobject
ArglList args
Cardinalnum_args

object Specifies the object whose resources are to be modified. Must be of class Object
or any subclass thereof.

args Specifies the argument list of name/value pairs that contain the resources to be
modified and their new values.

num_args Specifies the number of entries in the argument list.

The XtSetValuesfunction starts with the resources specified for the Object class fields and pro-
ceeds down the subclass chain to the object. At each stage, it replaaigethesource fields

with any values specified in the argument liXtSetValuesthen calls the set_values procedures

for the object in superclass-to-subclass order. If the object has any non-$#t/lMalues_hook

fields, these are called immediately after the corresponding set_values procedure. This procedure
permits subclasses to set subpart datXv&etValues.

If the class of the object’s parent is a subclassoofstraintWidgetClass, XtSetValuesalso

updates the object’s constraints. It starts with the constraint resources specifieaistoain-
tWidgetClass and proceeds down the subclass chain to the parent’s class. At each stage, it
replaces the constraint resource fields with any values specified in the argument list. It then calls
the constraint set_values procedures fiammstraintWidgetClass down to the parent’s class.

The constraint set_values procedures are called with widget arguments, as for all set_values pro-
cedures, not just the constraint records, so that they can make adjustments to the desired values
based on full information about the widget. Any arguments specified that do not match a resource
list entry are silently ignored.

If the object is of a subclass of RectOKjSetValuesdetermines if a geometry request is needed

by comparing the old object to the new object. If any geometry changes are rejt@etVal-
uesrestores the original geometry and makes the request on behalf of the widget. If the geometry
manager return¥tGeometryYes, XtSetValuescalls the object’s resize procedure. If the

164

X Toolkit Intrinsics X11 Release 6

geometry manager returd@GeometryDone, XtSetValuescontinues, as the object’s resize pro-
cedure should have been called by the geometry manager. If the geometry manager returns
XtGeometryNo, XtSetValuesignores the geometry request and continues. If the geometry
manager return¥tGeometryAlmost, XtSetValuescalls the set_values_almost procedure,
which determines what should be dongSetValuesthen repeats this process, deciding once
more whether the geometry manager should be called.

Finally, if any of the set_values procedures returiiree, and the widget is realizeXtSetVal-
uescauses the widget's expose procedure to be invoked by cxltgarArea on the widget's
window.

To modify the current values of resources associated with a widget instance using varargs lists,
use XtVaSetValues.

void XtVaSetValuestbject ...)
Widgetobject
object Specifies the object whose resources are to be modified. Must be of class Object
or any subclass thereof.

Specifies the variable argument list of name/value pairs that contain the resources
to be modified and their new values.

XtVaSetValuesis identical in function toXtSetValueswith theargsandnum_arggparameters
replaced by a varargs list, as described in Section 2.5.1.

9.7.2.1. Widget State: the set_values Procedure
The set_values procedure pointer in a widget class is oiXipetValuesFunc
typedef Boolean (*XtSetValuesFunc)(Widget, Widget, Widget, ArgList, Cardinal*);

Widgetcurrent
Widgetrequest
Widgetnew,
ArgList args
Cardinal num_args
current Specifies a copy of the widget as it was beforexttgetValuescall.
request Specifies a copy of the widget with all values changed as asked for Ky3be
Values call before any class set_values procedures have been called.
new Specifies the widget with the new values that are actually allowed.
args Specifies the argument list passet&etValuesor the transformed argument

list passed tXtVaSetValues.
num_args Specifies the number of entries in the argument list.

The set_values procedure should recompute any field derived from resources that are changed (for
example, many GCs depend on foreground and background pixels). If no recomputation is neces-

sary and if none of the resources specific to a subclass require the window to be redisplayed when

their values are changed, you can specify NULL forstite valuesield in the class record.

Like the initialize procedure, set_values mostly deals only with the fields defined in the subclass,
but it has to resolve conflicts with its superclass, especially conflicts over width and height.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass are often incorrect for a subclass and, in this case, the subclass must

165

X Toolkit Intrinsics X11 Release 6

modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and
height calculated by the superclass set_values procedure are too small and need to be incremented
by the size of the surround. The subclass needs to know if its superclass’s size was calculated by
the superclass or was specified explicitly. All widgets must place themselves into whatever size is
explicitly given, but they should compute a reasonable size if no size is requested. How does a
subclass know the difference between a specified size and a size computed by a superclass?

Therequestandnewparameters provide the necessary information. régeestwidget is a copy

of the widget, updated as originally requested. fidwwidget starts with the values in the

request, but it has additionally been updated by all superclass set_values procedures called so far.
A subclass set_values procedure can compare these two to resolve any potential conflicts. The
set_values procedure need not refer taelj@estwidget unless it must resolve conflicts between
thecurrentandnewwidgets. Any changes the widget needs to make, including geometry

changes, should be made in tesvwidget.

In the alove xample, the subclass with the visual surround can seewithie andheightin the
requestwidget are zero. If so, it adds its surround size tontidéh andheightfields in thenew
widget. If not, it must make do with the size originally specified. In this case, zero is a special
value defined by the class to permit the application to invoke this behavior.

Thenewwidget is the actual widget instance record. Therefore, the set_values procedure should
do all its work on th@ewwidget; therequestwidget should never be maodified. If the set_values
procedure needs to call any routines that operate on a widget, it should specfythe widget
instance.

Before calling the set_values procedures, the Intrinsics modify the resourceseojuibsiwidget
according to the contents of the arglist; if the widget names all its resources in the class resource
list, it is never necessary to examine the contendsgsf

Finally, the set_values procedure must return a Boolean that indicates whether the widget needs to
be redisplayed. Note that a change in the geometry fields alone does not require the set_values
procedure to returiirue ; the X server will eventually generate Brposeevent, if necessary.

After calling all the set_values procedursSetValuesforces a redisplay by callingClear-

Area if any of the set_values procedures returilage . Therefore, a set_values procedure

should not try to do its own redisplaying.

Set_values procedures should not do any work in response to changes in geometry because
XtSetValueseventually will perform a geometry request, and that request might be denied. If
the widget actually changes size in response to a cAliSetValues, its resize procedure is
called. Widgets should do any geometry-related work in their resize procedure.

Note that it is permissible to catltSetValuesbefore a widget is realized. Therefore, the
set_values procedure must not assume that the widget is realized.

9.7.2.2. Widget State: the set_values_almost Procedure
The set_values_almost procedure pointer in the widget class record is stAfp®stProc.
typedef void (*XtAlmostProc)(Widget, Widget, XtWidgetGeometry*, XtWidgetGeometry*);
Widgetold;
Widgetnew,
XtwidgetGeometry fequest
XtwidgetGeometry teply;

166

X Toolkit Intrinsics X11 Release 6

old Specifies a copy of the object as it was beforext&etValuescall.

new Specifies the object instance record.

request Specifies the original geometry request that was sent to the geometry manager
that causeXtGeometryAlmost to be returned.

reply Specifies the compromise geometry that was returned by the geometry manager

with XtGeometryAlmost.

Most classes inherit the set_values_almost procedure from their superclass by sp¥tifiying
heritSetValuesAlmostin the class initialization. The set_values_almost procedureci®bj-
Classaccepts the compromise suggested.

The set_values_almost procedure is called when a client tries to set a widget's geometry by
means of a call tXtSetValues, and the geometry manager cannot satisfy the request but instead
returnsXtGeometryNo or XtGeometryAlmost and a compromise geometry. Ti@wobject is

the actual instance record. Tk, width, height andborder_widthfields contain the original

values as they were before tKeSetValuescall and all other fields contain the new values. The
requestparameter contains the new geometry request that was made to the pareaplyThe
parameter containeply->request_modequal to zero if the parent return&tGeometryNo and
contains the parent’s compromise geometry otherwise. The set_values_almost procedure takes
the original geometry and the compromise geometry and determines if the compromise is accept-
able or whether to try a different compromise. It returns its results inedqestparameter,

which is then sent back to the geometry manager for another try. To accept the compromise, the
procedure must copy the contents of ify@ly geometry into theequestgeometry; to attempt an
alternative geometry, the procedure may modify any part aktipgestargument; to terminate the
geometry negotiation and retain the original geometry, the procedure must set
request->request_mode zero. The geometry fields of thil andnewinstances must not be
modified directly.

9.7.2.3. Widget State: the ConstraintClassPart set_values Procedure

The constraint set_values procedure pointer is of Ki@etValuesFunc The values passed to

the parent’s constraint set_values procedure are the same as those passed to the child’s class
set_values procedure. A class can specify NULL foisttevaluegield of theConstraintPart

if it need not compute anything.

The constraint set_values procedure should recompute any constraint fields derived from con-
straint resources that are changed. Further, it may modify other widget fields as appropriate. For
example, if a constraint for the maximum height of a widget is changed to a value smaller than
the widget's current height, the constraint set_values procedure may reseigtitéield in the

widget.

9.7.2.4. Widget Subpart State

To set the current values of subpart resources associated with a widget instance, use
XtSetSubvalues For a discussion of subpart resources, see Section 9.4.

167

X Toolkit Intrinsics X11 Release 6

void XtSetSubvalueb@se resourcesnum_resourcesirgs num_arg$
XtPointerbase
XtResourcelistesources
Cardinalnum_resources
ArgList args
Cardinalnum_args

base Specifies the base address of the subpart data structure into which the resources
should be written.

resources Specifies the subpart resource list.

num_resourcesspecifies the number of entries in the resource list.

args Specifies the argument list of name/value pairs that contain the resources to be

modified and their new values.
num_args Specifies the number of entries in the argument list.

The XtSetSubvaluesfunction updates the resource fields of the structure identifiedss Any
specified arguments that do not match an entry in the resource list are silently ignored.

To set the current values of subpart resources associated with a widget instance using varargs
lists, useXtVaSetSubvalues

void XtVaSetSubvaluebfse resourcesnum_resources..)
XtPointerbase
XtResourcelListesources
Cardinalnum_resources

base Specifies the base address of the subpart data structure into which the resources
should be written.

resources Specifies the subpart resource list.

num_resourcesspecifies the number of entries in the resource list.

Specifies the variable argument list of name/value pairs that contain the resources
to be modified and their new values.

XtVaSetSubvaluesis identical in function toXtSetSubvalueswith theargsandnum_args
parameters replaced by a varargs list, as described in Section2t¥allypedArg is not sup-
ported forXtVaSetSubvalues If an entry containingtvVaTypedArg is specified in the list, a
warning message is issued and the entry is ignored.

9.7.2.5. Widget Subpart Resource Data: the set_values_hook Procedure

Note

The set_values_hook procedure is obsolete, as the same information is now available
to the set_values procedure. The procedure has been retained for those widgets that
used it in versions prior to Release 4.

Widgets that have a subpart can set the subpart resource values itSetifaluesby supply-

ing a set_values_hook procedure. The set_values_hook procedure pointer in a widget class is of
type XtArgsFunc.

168

X Toolkit Intrinsics X11 Release 6

typedef Boolean (*XtArgsFunc)(Widget, Arglist, Cardinal*);
Widgetw;
Arglist args
Cardinal num_args
w Specifies the widget whose subpart resource values are to be changed.

args Specifies the argument list that was passedt&etValuesor the transformed
varargs list passed ¥tVaSetValues.

num_args Specifies the number of entries in the argument list.

The widget with subpart resources may ¢dbetValuesfrom the set_values_hook procedure
and pass in its subresource list andaigsandnum_arggparameters.

169

X Toolkit Intrinsics X11 Release 6

Chapter 10

Translation Management

Except under unusual circumstances, widgets do not hardwire the mapping of user events into
widget behavior by using the event manager. Instead, they provide a default mapping of events
into behavior that you can override.

The translation manager provides an interface to specify and manage the mapping of X event
sequences into widget-supplied functionality, for example, calling procédaehen they key
is pressed.

The translation manager uses two kinds of tables to perform translations:

. The action tables, which are in the widget class structure, specify the mapping of externally
available procedure name strings to the corresponding procedure implemented by the wid-
get class.

. A translation table, which is in the widget class structure, specifies the mapping of event
sequences to procedure name strings.

You can override the translation table in the class structure for a specific widget instance by sup-
plying a different translation table for the widget instance. The resources XtNtranslations and
XtNbaseTranslations are used to modify the class default translation table; see Section 10.3.

10.1. Action Tables

All widget class records contain an action table, an arra§tAftionsRec entries. In addition,

an application can register its own action tables with the translation manager so that the transla-
tion tables it provides to widget instances can access application functionality directly. The trans-
lation action procedure pointer is of tyg#ActionProc .

typedef void (*XtActionProc)(Widget, XEvent*, String*, Cardinal*);
Widgetw;
XEvent *event
String *params
Cardinal num_params

w Specifies the widget that caused the action to be called.

event Specifies the event that caused the action to be called. If the action is called after
a sequence of events, then the last event in the sequence is used.

params Specifies a pointer to the list of strings that were specified in the translation table

as arguments to the action, or NULL.
num_params Specifies the number of entriesparams

typedef struct _XtActionsRec {
String string;
XtActionProc proc;

} XtActionsRec, *XtActionList;

Thestringfield is the name used in translation tables to access the procedungrodfield is a

170

X Toolkit Intrinsics X11 Release 6

pointer to a procedure that implements the functionality.

When the action list is specified as thereClassPartactionsfield the string pointed to bstring
must be permanently allocated prior to or during the execution of the class initialization proce-
dure and must not be subsequently deallocated.

Action procedures should not assume that the widget in which they are invoked is realized; an
accelerator specification can cause an action procedure to be called for a widget that does not yet
have a window. Widget writers should also note which of a widget's callback lists are invoked
from action procedures and warn clients not to assume the widget is realized in those callbacks.

For example, a Pushbutton widget has procedures to take the following actions:
. Set the button to indicate it is activated.

. Unset the button back to its normal mode.

. Highlight the button borders.

. Unhighlight the button borders.

. Notify any callbacks that the button has been activated.

The action table for the Pushbutton widget class makes these functions available to translation
tables written for Pushbutton or any subclass. The string entry is the name used in translation
tables. The procedure entry (usually spelled identically to the string) is the name of the C proce-
dure that implements that function:

XtActionsRec actionTable[] = {
{"Set", Set},
{"Unset", Unset},
{"Highlight", Highlight},
{"Unhighlight", Unhighlight}
{"Notify", Notify},

2

The Intrinsics reserve all action names and parameters starting with the characters “Xt” for future
standard enhancements. Users, applications, and widgets should not declare action names or pass
parameters starting with these characters except to invoke specified built-in Intrinsics functions.

10.1.1. Action Table Registration

Theactionsandnum_actiondields of CoreClassPartspecify the actions implemented by a wid-

get class. These are automatically registered with the Intrinsics when the class is initialized and
must be allocated in writable storage prior to Core class_part initialization, and never deallocated.
To save memory and optimize access, the Intrinsics may overwrite the storage in order to compile
the list into an internal representation.

To declare an action table within an application and register it with the translation manager, use
XtAppAddActions .

171

X Toolkit Intrinsics X11 Release 6

void XtAppAddActions@pp_contextactions num_actionp
XtAppContextapp_context
XtActionList actions
Cardinalnum_actions

app_context Specifies the application context.
actions Specifies the action table to register.
num_actions Specifies the number of entries in this action table.

If more than one action is registered with the same name, the most recently registered action is
used. If duplicate actions exist in an action table, the first is used. The Intrinsics register an
action table containingtMenuPopup and XtMenuPopdown as part of
XtCreateApplicationContext .

10.1.2. Action Names to Procedure Translations

The translation manager uses a simple algorithm to resolve the name of a procedure specified in a
translation table into the actual procedure specified in an action table. When the widget is real-
ized, the translation manager performs a search for the name in the following tables, in order:

. The widget's class and all superclass action tables, in subclass-to-superclass order.

. The parent’s class and all superclass action tables, in subclass-to-superclass order, then on
up the ancestor tree.

. The action tables registered wi¥tAppAddActions and XtAddActions from the most
recently added table to the oldest table.

As soon as it finds a name, the translation manager stops the search. If it cannot find a name, the
translation manager generates a warning message.

10.1.3. Action Hook Registration

An application can specify a procedure that will be called just before every action routine is dis-
patched by the translation manager. To do so, the application supplies a procedure pointer of type
XtActionHookProc .

typedef void (*XtActionHookProc)(Widget, XtPointer, String, XEvent*, String*, Cardinal*);
Widgetw;
XtPointerclient_data
Stringaction_name

XEvent* event

String* params

Cardinal*num_params
w Specifies the widget whose action is about to be dispatched.
client_data Specifies the application-specific closure that was passéthppAddAction-

Hook.

action_name Specifies the name of the action to be dispatched.
event Specifies the event argument that will be passed to the action routine.
params Specifies the action parameters that will be passed to the action routine.

num_params Specifies the number of entriesparams

172

X Toolkit Intrinsics X11 Release 6

Action hooks should not modify any of the data pointed to by the arguments other than the
client_dataargument.

To add an action hook, us@AppAddActionHook .
XtActionHookld XtAppAddActionHooképp, proc, client_datg
XtAppContextapp
XtActionHookProcproc,
XtPointerclient_data
app Specifies the application context.
proc Specifies the action hook procedure.
client_data Specifies application-specific data to be passed to the action hook.

XtAppAddActionHook adds the specified procedure to the front of a list maintained in the
application context. In the future, when an action routine is about to be invoked for any widget in
this application context, either through the translation manager oit@allActionProc , the

action hook procedures will be called in reverse order of registration just prior to invoking the
action routine.

Action hook procedures are removed automatically anthetionHookld s destroyed when
the application context in which they were added is destroyed.

To remove araction hook procedure without destroying the application context, use
XtRemoveActionHook.

void XtRemoveActionHook¢l)
XtActionHookldid;
id Specifies the action hook id returned XtAppAddActionHook .

XtRemoveActionHook removes the specified action hook procedure from the list in which it
was registered.

10.2. Translation Tables

All widget instance records contain a translation table, which is a resource with a default value
specified elsewhere in the class record. A translation table specifies what action procedures are
invoked for an event or a sequence of events. A translation table is a string containing a list of
translations from an event sequence into one or more action procedure calls. The translations are
separated from one another by newline characters (ASCII LF). The complete syntax of transla-
tion tables is specified in Appendix B.

As an example, the default behavior of Pushbutton is

. Highlight on enter window.

. Unhighlight on exit window.

. Invert on left button down.

. Call callbacks and reinvert on left button up.

The following illustrates Pushbutton’s default translation table:

static String defaultTranslations =
"<EnterWindow>:Highlight()\n\
<LeaveWindow=>:Unhighlight()\n\

173

X Toolkit Intrinsics X11 Release 6

<Btn1Down>: Set()\n\
<BtnlUp>: Notify() Unset()";

Thetm_tablefield of theCoreClassPartshould be filled in at class initialization time with the

string containing the class’s default translations. If a class wants to inherit its superclass’s transla-
tions, it can store the special valddnheritTranslations into tm_table In Core’s class part ini-
tialization procedure, the Intrinsics compile this translation table into an efficient internal form.
Then, at widget creation time, this default translation table is combined with the XtNtranslations
and XtNbaseTranslations resources; see Section 10.3.

The resource conversion mechanism automatically compiles string translation tables that are
specified in the resource database. If a client uses translation tables that are not retrieved via a
resource conversion, it must compile them itself us{tigarseTranslationTable.

The Intrinsics use the compiled form of the translation table to register the necessary events with
the event manager. Widgets need do nothing other than specify the action and translation tables
for events to be processed by the translation manager.

10.2.1. Event Sequences

An event sequence is a comma-separated list of X event descriptions that describes a specific
sequence of X events to map to a set of program actions. Each X event description consists of
three parts: The X event type, a prefix consisting of the X modifier bits, and an event-specific suf-
fix.

Various abbreviations are supported to make translation tables easier to read. The events must
match incoming events in left-to-right order to trigger the action sequence.

10.2.2. Action Sequences

Action sequences specify what program or widget actions to take in response to incoming X
events. An action sequence consists of space-separated action procedure call specifications. Each
action procedure call consists of the name of an action procedure and a parenthesized list of zero
or more comma-separated string parameters to pass to that procedure. The actions are invoked in
left-to-right order as specified in the action sequence.

10.2.3. Multi-click Time

Translation table entries may specify actions that are taken when two or more identical events
occur consecutively within a short time interval, called the multi-click time. The multi-click time
value may be specified as an application resource with name “multiClickTime” and class “Mul-
tiClickTime” and may also be modified dynamically by the application. The multi-click time is
unique for each Display value and is retrieved from the resource database by
XtDisplaylnitialize . If no value is specified, the initial value is 200 milliseconds.

To set the multi-click time dynamically, us@&SetMultiClickTime .
void XtSetMultiClickTimegisplay, time)

Display *display;
int time
display Specifies the display connection.

174

X Toolkit Intrinsics X11 Release 6

time Specifies the multi-click time in milliseconds.

XtSetMultiClickTime sets the time interval used by the translation manager to determine when
multiple events are interpreted as a repeated event. When a repeat count is specified in a transla-
tion entry, the interval between the timestamps in each pair of repeated events (e.g., between two
ButtonPressevents) must be less than the multi-click time in order for the translation actions to

be taken.

To read the multi-click time, usétGetMultiClickTime .

int XtGetMultiClickTime(display)
Display *display,

display Specifies the display connection.

XtGetMultiClickTime returns the time in milliseconds that the translation manager uses to
determine if multiple events are to be interpreted as a repeated event for purposes of matching a
translation entry containing a repeat count.

10.3. Translation Table Management

Sometimes an application needs to merge its own translations with a widget'’s translations. For
example, a window manager provides functions twerawindow. The window manager wishes

to bind this operation to a specific pointer button in the title bar without the possibility of user
override and bind it to other buttons that may be overridden by the user.

To accomplish this, the window manager should first create the title bar and then should merge
the two translation tables into the title bar’s translations. One translation table contains the trans-
lations that the window manager wants only if the user has not specified a translation for a partic-
ular event or event sequence (i.e., those that may be overridden). The other translation table con-
tains the translations that the window manager wants regardless of what the user has specified.

Three Intrinsics functions support this merging:

XtParseTranslationTable Compiles a translation table.

XtAugmentTranslations Merges a compiled translation table into a widget’s compiled
translation table, ignoring any new translations that conflict
with existing translations.

XtOverrideTranslations Merges a compiled translation table into a widget's compiled
translation table, replacing any existing translations that con-
flict with new translations.

To compile a translation table, uxéParseTranslationTable.
XtTranslations XtParseTranslationTalbdd]e)

Stringtable
table Specifies the translation table to compile.

The XtParseTranslationTable function compiles the translation table, provided in the format
given in Appendix B, into an opaque internal representation of X§peanslations. Note that if
an empty translation table is required for any purpose, one can be obtained byXt&léirse-
TranslationTable and passing an empty string.

175

X Toolkit Intrinsics X11 Release 6

To merge additional translations into an existing translation tablestdegymentTranslations.

void XtAugmentTranslationg(, translation3
Widgetw;
XtTranslationdranslations

w Specifies the widget into which the new translations are to be merged. Must be
of class Core or any subclass thereof.

translations Specifies the compiled translation table to merge in.

The XtAugmentTranslations function merges the new translations into the existing widget
translations, ignoring angreplace, #augment, or #override directive that may have been speci-

fied in the translation string. The translation table specifiddamglationsis not altered by this
process. XtAugmentTranslations logically appends the string representation of the new transla-
tions to the string representation of the widget's current translations and reparses the result with
no warning messages about duplicate left-hand sides, then stores the result back into the widget
instance; i.e., if the new translations contain an event or event sequence that already exists in the
widget's translations, the new translation is ignored.

To overwrite existing translations with new translations, Xig@verrideTranslations .

void XtOverrideTranslations(, translationg
Widgetw;
XtTranslationdranslations

w Specifies the widget into which the new translations are to be merged. Must be of
class Core or any subclass thereof.

translations Specifies the compiled translation table to merge in.

The XtOverrideTranslations function merges the new translations into the existing widget
translations, ignoring ar#replace, #augment, or #override directive that may have been speci-

fied in the translation string. The translation table specificddmglationsis not altered by this

process. XtOverrideTranslations logically appends the string representation of the widget’s

current translations to the string representation of the new translations and reparses the result with
no warning messages about duplicate left-hand sides, then stores the result back into the widget
instance; i.e., if the new translations contain an event or event sequence that already exists in the
widget’s translations, the new translation overrides the widget's translation.

To replace a widget's translations completely, ¥$8etValueson the XtNtranslations resource
and specify a compiled translation table as the value.

To make it possible for users to easily modify translation tables in their resource files, the string-
to-translation-table resource type converter allows the string to specify whether the table should
replace, augment, or override any existing translation table in the widget. To specify this, a sharp
sign (#) is given as the first character of the table followed by one of the keywords “replace”,
“augment”, or “override” to indicate whether to replace, augment, or override the existing table.
The replace or merge operation is performed during the Core instance initialization. Each merge
operation produces a new translation resource value; if the original tables were shared by other
widgets, they are unaffected. If no directive is specified, “#replace” is assumed.

At instance initialization the XtNtranslations resource is first fetched. Then, if it was not speci-

fied or did not contain “#replace”, the resource database is searched for the resource XtNbase-
Translations. If XtNbaseTranslations is found it is merged into the widget class translation table.

176

X Toolkit Intrinsics X11 Release 6

Then the widgetranslationsfield is merged into the result, or into the class translation table if
XtNbaseTranslations was not found. This final table is then stored into the twidgsations

field. If the XtNtranslations resource specified “#replace” no merge is done. If neither XtNbase-
Translations or XtNtranslations are specified, the class translation table is copied into the widget
instance.

To completely remve «isting translations, us¥tUninstallTranslations .

void XtUninstallTranslations()
Widgetw;

w Specifies the widget from which the translations are to be removed. Must be of
class Core or any subclass thereof.

The XtUninstallTranslations function causes the entire translation table for the widget to be
removed.

10.4. Using Accelerators

It is often desirable to be able to bind events in one widget to actions in another. In particular, it
is often useful to be able to invoke menu actions from the keyboard. The Intrinsics provide a
facility, called accelerators, that lets you accomplish this. An accelerator table is a translation
table that is bound with its actions in the context of a particular widgedotireewidget. The
accelerator table can then be installed on one or destnationwidgets. When an event

sequence in the destination widget would cause an accelerator action to be taken, and if the
source widget is sensitive, the actions are executed as though triggered by the same event
sequence in the accelerator source widget. The event is passed to the action procedure without
modification. The action procedures used within accelerators must not assume that the source
widget is realized nor that any fields of the event are in reference to the source widget's window if
the widget is realized.

Each widget instance contains that widget's exported accelerator table as a resource. Each class
of widget exports a method that takes a displayable string representation of the accelerators so
that widgets can display their current accelerators. The representation is the accelerator table in
canonical translation table form (see Appendix B). The display_accelerator procedure pointer is
of type XtStringProc .

typedef void (*XtStringProc)(Widget, String);

Widgetw;
Stringstring;
w Specifies the source widget that supplied the accelerators.
string Specifies the string representation of the accelerators for this widget.

Accelerators can be specified in resource files, and the string representation is the same as for a
translation table. However, the interpretation of laeigmentand#override directives applies

to what will happen when the accelerator is installed; that is, whether or not the accelerator trans-
lations will override the translations in the destination widget. The defaidtligment, which

means that the accelerator translations have lower priority than the destination translations. The

#replacedirective is ignored for accelerator tables.

177

X Toolkit Intrinsics X11 Release 6

To parse an accelerator table, d&ParseAcceleratorTable.

XtAccelerators XtParseAcceleratorTalsle(rce
Stringsource

source Specifies the accelerator table to compile.

The XtParseAcceleratorTablefunction compiles the accelerator table into an opaque internal
representation. The client should set the XtNaccelerators resource of each widget that is to be
activated by these translations to the returned value.

To install accelerators from a widget on another widget XibestallAccelerators.

void XtInstallAcceleratorg{estination sourcg
Widgetdestination
Widgetsource

destination Specifies the widget on which the accelerators are to be installed. Must be of
class Core or any subclass thereof.

source Specifies the widget from which the accelerators are to come. Must be of class
Core or any subclass thereof.

The XtinstallAccelerators function installs thecceleratorgesource value frorourceonto
destinationby merging the the source accelerators into the destination translations. If the source
display_acceleratofield is non-NULL, XtInstallAccelerators calls it with the source widget

and a string representation of the accelerator table, which indicates that its accelerators have been
installed and that it should display them appropriately. The string representation of the accelera-
tor table is its canonical translation table representation.

As a convenience for installing all accelerators from a widget and all its descendants onto one
destination, us&tinstallAllAccelerators .

void XtInstallAllAcceleratorsgestination source
Widgetdestination
Widgetsource

destination Specifies the widget on which the accelerators are to be installed. Must be of
class Core or any subclass thereof.

source Specifies the root widget of the widget tree from which the accelerators are to
come. Must be of class Core or any subclass thereof.

The XtinstallAllAccelerators function recursively descends the widget tree rootsg@aiceand
installs the accelerators resource value of each widget encounteretkstmation A common
use is to callXtinstallAllAccelerators and pass the application main window as the source.

10.5. KeyCode-to-KeySym Conversions

The translation manager provides support for automatically translating KeyCodes in incoming
key events into KeySyms. KeyCode-to-KeySym translator procedure pointers are of type
XtKeyProc.

178

X Toolkit Intrinsics X11 Release 6

typedef void (*XtKeyProc)(Display*, KeyCode, Modifiers, Modifiers*, KeySym®*);
Display *display,
KeyCodekeycode
Modifiersmodifiers
Modifiers *modifiers_return
KeySym *keysym_retum

display Specifies the display that the KeyCode is from.
keycode Specifies the KeyCode to translate.
modifiers Specifies the modifiers to the KeyCode.

modifiers_returnSpecifies a location in which to store a mask that indicates the subset of all
modifiers that are examined by the key translator for the specified keycode.

keysym_return Specifies a location in which to store the resulting KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym. For any given key trans-
lator function and keyboard encodimgodifiers_returrwill be a constant per KeyCode that indi-
cates the subset of all modifiers that are examined by the key translator for that KeyCode.

The KeyCode-to-KeySym translator procedure must be implemented such that multiple calls with
the samalisplay, keycodeandmodifiersreturn the same result until either a new case converter (
XtCaseProg) is installed or aviappingNotify event is received.

The Intrinsics maintain tables internally to map KeyCodes to KeySyms for each open display.
Translator procedures and other clients may share a single copy of this table to perform the same
mapping.

To return a pointer to the KeySym-to-KeyCode mapping table for a particular display, use
XtGetKeysymTable.

KeySym *XtGetKeysymTableljsplay, min_keycode_returkeysyms_per_keycode_return
Display *display,
KeyCode tin_keycode_return
int *keysyms_per_keycode_return

display Specifies the display whose table is required.

min_keycode_return
Returns the minimum KeyCode valid for the display.

keysyms_per_keycode_return
Returns the number of KeySyms stored for each KeyCode.

XtGetKeysymTable returns a pointer to the Intrinsics’ copy of the server’'s KeyCode-to-KeySym
table. This table must not be modified. Therekaesyms_per_keycode_retitaySyms associ-
ated with each KeyCode, located in the table with indices starting at index

(test_keycode - min_keycode_return) * keysyms_per_keycode_return

for KeyCodetest_keycodeAny entries that have no KeySyms associated with them contain the
valueNoSymbol. Clients should not cache the KeySym table but should call
XtGetKeysymTable each time the value is needed, as the table may change prior to dispatching
each event.

For more information on this table, see Section 12Xlim— C Language X Interface

179

X Toolkit Intrinsics X11 Release 6

To register a key translator, u¥¢SetKeyTranslator .

void XtSetKeyTranslatodjsplay, proc)
Display *display,
XtKeyProcproc;

display Specifies the display from which to translate the events.
proc Specifies the procedure to perform key translations.

The XtSetKeyTranslator function sets the specified procedure as the current key translator. The
default translator iXtTranslateKey, an XtKeyProc that uses the Shift, Lock, numlock, and

group modifiers with the interpretations defineXidWindow System Proto¢c@ection 5. Itis

provided so that new translators can call it to get default KeyCode-to-KeySym translations and so
that the default translator can be reinstalled.

To invoke the currently registered KeyCode-to-KeySym translatoiXtiBanslateKeycode.

void XtTranslateKeycodé(splay, keycodemodifiers modifiers_returnkeysym_retum
Display *display,
KeyCodekeycode
Modifiersmodifiers
Modifiers *modifiers_return
KeySym *keysym_retum

display Specifies the display that the KeyCode is from.

keycode Specifies the KeyCode to translate.

modifiers Specifies the modifiers to the KeyCode.

modifiers_returnReturns a mask that indicates the modifiers actually used to generate the
KeySym.

keysym_return Returns the resulting KeySym.

The XtTranslateKeycode function passes the specified arguments directly to the currently regis-
tered KeyCode-to-KeySym translator.

To handle capitalization of nonstandard KeySyms, the Intrinsics allow clients to register case con-
version routines. Case converter procedure pointers are oKt@aseProc.

typedef void (*XtCaseProc)(Display*, KeySym, KeySym*, KeySym®*);
Display *display,
KeySymkeysym
KeySym HJower_return
KeySym *upper_return
display Specifies the display connection for which the conversion is required.
keysym Specifies the KeySym to convert.
lower_return Specifies a location into which to store the lower-case equivalent for the KeySym.

upper_return Specifies a location into which to store the upper-case equivalent for the
KeySym.

If there is no case distinction, this procedure should store the KeySym into both return values.

180

X Toolkit Intrinsics X11 Release 6

To register a case converter, J&RegisterCaseConverter

void XtRegisterCaseConvertdigplay, proc, start, stop
Display *display,
XtCasePro@roc,
KeySymstart,
KeySymstop

display Specifies the display from which the key events are to come.
proc Specifies thextCaseProcto do the conversions.

start Specifies the first KeySym for which this converter is valid.
stop Specifies the last KeySym for which this converter is valid.

The XtRegisterCaseConverterregisters the specified case converter. §taet andstopargu-

ments provide the inclusive range of KeySyms for which this converter is to be called. The new
converter overrides any previous converters for KeySyms in that range. No interface exists to
remove congrters; you need to register an identity converter. When a new converter is registered,
the Intrinsics refresh the keyboard state if necessary. The default converter understands case con-
version for all Latin KeySyms defined ¥aWindow System Protoc@#ppendix A.

To determine upper- and lower-case equivalents for a KeySynxtGsmvertCase.

void XtConvertCaselisplay, keysymlower_return upper_return
Display *display,
KeySymkeysym
KeySym Aower_return
KeySym *upper_return

display Specifies the display that the KeySym came from.
keysym Specifies the KeySym to convert.

lower_return Returns the lower-case equivalent of the KeySym.
upper_return Returns the upper-case equivalent of the KeySym.

The XtConvertCase function calls the appropriate converter and returns the results. A user-
suppliedXtKeyProc may need to use this function.

10.6. Obtaining a KeySym in an Action Procedure

When an action procedure is invoked odeyPressor KeyReleaseevent, it often has a need to
retrieve the KeySym and modifiers corresponding to the event that caused it to be invoked. In
order to avoid repeating the processing that was just performed by the Intrinsics to match the
translation entry, the KeySym and modifiers are stored for the duration of the action procedure
and are made available to the client.

To retrieve the KeySym and modifiers that matched the final event specification in the translation
table entry, usXtGetActionKeysym.

KeySym XtGetActionKeysyngvent modifiers_returi
XEvent *event
Modifiers *modifiers_return

event Specifies the event pointer passed to the action procedure by the Intrinsics.

181

X Toolkit Intrinsics X11 Release 6

modifiers_return Returns the modifiers that caused the match, if non-NULL.

If XtGetActionKeysym is called after an action procedure has been invoked by the Intrinsics and
before that action procedure returns, and if the event pointer has the same value as the event
pointer passed to that action routine, and if the evenKsy®ressor KeyReleaseevent, then
XtGetActionKeysym returns the KeySym that matched the final event specification in the trans-
lation table and, imodifiers_returris non-NULL, the modifier state actually used to generate this
KeySym; otherwise, if the event ika@yPressor KeyReleaseevent, therXtGetActionKeysym

calls XtTranslateKeycode and returns the results; else it retuN®Symbol and does not exam-

ine modifiers_return

Note that if an action procedure invoked by the Intrinsics invokes a subsequent action procedure
(and so on) viaxtCallActionProc , the nested action procedure may also Xt&BetAction-
Keysym to retrieve the Intrinsics’ KeySym and modifiers.

10.7. KeySym-to-KeyCode Conversions

To return the list of KeyCodes that map to a particular KeySym in the keyboard mapping table
maintained by the Intrinsics, ud@KeysymToKeycodeList.

void XtKeysymToKeycodeList{isplay, keysymkeycodes_returrkeycount_returh
Display *display,
KeySymkeysym
KeyCode *keycodes_return
Cardinal keycount_retumn

display Specifies the display whose table is required.
keysym Specifies the KeySym for which to search.

keycodes_return Returns a list of KeyCodes that h&eysymassociated with them, or NULL
if keycount_returris 0.

keycount_return Returns the number of KeyCodes in the keycode list.

The XtKeysymToKeycodelList procedure returns all the KeyCodes that Haesyrin their

entry for the keyboard mapping table associated aviplay. For each entry in the table, the first
four KeySyms (groups 1 and 2) are interpreted as specifiZgtiypdow System Protoc@ec-

tion 5. If no KeyCodes map to the specified KeySkaycount_returis zero and
*keycodes_returis NULL.

The caller should free the storage pointed t&dycodes_returnsing XtFree when it is no
longer useful. If the caller needs to examine the KeyCode-to-KeySym table for a particular
KeyCode, it should caKtGetKeysymTable.

10.8. Registering Button and Key Grabs For Actions

To register button and key grabs for a widget's window according to the event bindings in the
widget’s translation table, us&RegisterGrabAction.

void XtRegisterGrabActiorction_pro¢ owner_eventevent_maskpointer_modgkeyboard_mode
XtActionProcaction_pro¢
Booleanowner_events
unsigned inevent_mask
int pointer_modekeyboard_mode

182

X Toolkit Intrinsics X11 Release 6

action_proc Specifies the action procedure to search for in translation tables.

owner_events
event_mask
pointer_mode
keyboard_mode
Specify arguments t¥tGrabButton or XtGrabKey .

XtRegisterGrabAction adds the specifieaction_procto a list known to the translation man-

ager. When a widget is realized, or when the translations of a realized widget or the accelerators
installed on a realized widget are modified, its translation table and any installed accelerators are
scanned for action procedures on this list. If any are invokdsluttonPress or KeyPress

events as the only or final event in a sequence, the Intrinsics wiktGiabButton or

XtGrabKey for the widget with every button or KeyCode which maps to the event detail field,
passing the specifiamlvner_eventevent maskointer_ modeandkeyboard _modeFor But-
tonPressevents, the modifiers specified in the grab are determined directly from the translation
specification andonfine_taandcursorare specified aklone. For KeyPressevents, if the trans-

lation table entry specifies colon (:) in the modifier list, the modifiers are determined by calling
the key translator procedure registered for the display and clitBcabKey for every combi-

nation of standard modifiers which map the KeyCode to the specified event detail KeySym, and
ORing any modifiers specified in the translation table entryeaadt _masls ignored. If the
translation table entry does not specify colon in the modifier list, the modifiers specified in the
grab are those specified in the translation table entry only. FoButhnPressandKeyPress

events, don’t-care modifiers are ignored unless the translation entry explicitly specifies “Any” in
themodifiersfield.

If the specifiedaction_procis already registered for the calling process, the new values will
replace the previously specified values for any widgets that become realized following the call,
but existing grabs are not altered on currently-realized widgets.

When translations or installed accelerators are modified for a realized widget, any previous key or
button grabs registered as a result of the old bindings are released if they do not appear in the new
bindings and are not explicitly grabbed by the client WitrabKey or XtGrabButton .

10.9. Invoking Actions Directly

Normally action procedures are invoked by the Intrinsics when an event or event sequence arrives
for a widget. To invoke an action procedure directly, without generating (or synthesizing) events,
useXtCallActionProc .

void XtCallActionProcyidget action event params num_parampg
Widgetwidget
Stringactior
XEvent *event
String *params
Cardinalnum_params

widget Specifies the widget in which the action is to be invoked. Must be of class Core
or any subclass thereof.

action Specifies the name of the action routine.

event Specifies the contents of teeentpassed to the action routine.

183

X Toolkit Intrinsics X11 Release 6

params Specifies the contents of tharamspassed to the action routine.
num_params Specifies the number of entriesparams

XtCallActionProc searches for the named action routine in the same manner and order as trans-
lation tables are bound, as described in Section 10.1.2, except that application action tables are
searched, if necessary, as of the time of the cafit@allActionProc . If found, the action rou-

tine is invoked with the specified widget, event pointer, and parameters. It is the responsibility of
the caller to ensure that the contents ofethent params andnum_paramsrguments are appro-

priate for the specified action routine and, if necessary, that the specified widget is realized or sen-
sitive. If the named action routine cannot be fouxtf;allActionProc generates a warning mes-

sage and returns.

10.10. Obtaining a Widget's Action List

Occasionally a subclass will require the pointers to one or more of its superclass’s action proce-
dures. This would be needed, for example, in order to envelope the superclass’s action. To
retrieve the list of action procedures registered in the superdasisasfield, use

XtGetActionList .

void XtGetActionListfvidget_classactions_returnnum_actions_retumn
WidgetClassvidget_class
XtActionList *actions_return
Cardinal "num_actions_return

widget_class Specifies the widget class whose actions are to be returned.

actions_return Returns the action list.

num_actions_return
Returns the number of action procedures declared by the class.

XtGetActionList returns the action table defined by the specified widget class. This table does
not include actions defined by the superclassesidifet classs not initialized, or is not
coreWidgetClassor a subclass thereof, or if the class does not define any actions,
*actions_returrwill be NULL and *num_actions_returwill be zero. If *actions_returris non-
NULL the client is responsible for freeing the table uskigree when it is no longer needed.

184

X Toolkit Intrinsics X11 Release 6

Chapter 11

Utility Functions

The Intrinsics provide a number of utility functions that you can use to
. Determine the number of elements in an array.
. Translate strings to widget instances.

. Manage memory usage.

. Share graphics contexts.

. Manipulate selections.

. Merge exposure events into a region.

. Translate widget coordinates.

. Locate a widget given a window id.

. Handle errors.

. Set the WM_COLORMAP_WINDOWS property.
. Locate files by name with string substitutions.

. Register callback functions for external agents.
. Locate all the displays of an application context.

11.1. Determining the Number of Elements in an Array
To determine the number of elements in a fixed-size arraySihdember .
Cardinal XtNumbeirray)
ArrayType array
array Specifies a fixed-size array of arbitrary type.
The XtNumber macro returns the number of elements allocated to the array.

11.2. Translating Strings to Widget Instances
To translate a widget name to a widget instance XtileameToWidget.

Widget XtNameToWidgetéferencename}
Widgetreference
Stringnames

reference Specifies the widget from which the search is to start. Must be of class Core or
any subclass thereof.
names Specifies the partially qualified name of the desired widget.

The XtNameToWidget function searches for a descendant ofrétierencewidget whose name
matches the specified names. Tlaenegarameter specifies a simple object name or a series of
simple object name components separated by periods or astéfidlameToWidget returns the
descendant with the shortest name matching the specification according to the following rules,

185

X Toolkit Intrinsics X11 Release 6

where child is either a pop-up child or a normal child if the widget’s class is a subclass of Com-
posite :

. Enumerate the object subtree rooted at the reference widget in breadth-first order, qualify-
ing the name of each object with the names of all its ancestors up to but not including the
reference widget. The ordering between children of a common parent is not defined.

. Return the first object in the enumeration that matches the specified name, where each com-
ponent ofnamesmatches exactly the corresponding component of the qualified object
name, and asterisk matches any series of components, including none.

. If no match is found, return NULL.

Since breadth-first traversal is specified, the descendant with the shortest matching name (i.e., the
fewest number of components), if any, will always be returned. However, since the order of enu-
meration of children is undefined and since the Intrinsics do not require that all children of a wid-
get have unique namestfNameToWidget may return any child that matches if there are multi-

ple objects in the subtree with the same name. Consecutive separators (periods or asterisks)
including at least one asterisk are treated as a single asterisk. Consecutive periods are treated as a
single period.

11.3. Managing Memory Usage

The Intrinsics’ memory management functions provide uniform checking for null pointers and
error reporting on memory allocation errors. These functions are completely compatible with
their standard C language runtime counterpawdioc, calloc, realloc, andfree with the fol-
lowing added functionality:

. XtMalloc , XtCalloc, and XtRealloc give an error if there is not enough memory.
. XtFree simply returns if passed a NULL pointer.
. XtRealloc simply allocates new storage if passed a NULL pointer.

See the standard C library documentationm@lloc, calloc, realloc, andfree for more informa-
tion.

To allocate storage, uséMalloc .
char *XtMalloc(size
Cardinalsize
size Specifies the number of bytes desired.

The XtMalloc function returns a pointer to a block of storage of at least the spexifedaytes.
If there is insufficient memory to allocate the new blo¢ilalloc calls XtErrorMsg .

To allocate and initialize an array, us&Calloc.
char *XtCallocfium size
Cardinalnum
Cardinalsize
num Specifies the number of array elements to allocate.
size Specifies the size of each array element in bytes.

The XtCalloc function allocates space for the specified number of array elements of the specified
size and initializes the space to zero. If there is insufficient memory to allocate the new block,

186

X Toolkit Intrinsics X11 Release 6

XtCalloc calls XtErrorMsg . XtCalloc returns the address of the allocated storage.

To change the size of an allocated block of storageXtRealloc.
char *XtReallocptr, num

char *ptr;
Cardinalnum
ptr Specifies a pointer to the old storage allocated Xittalloc , XtCalloc, or
XtRealloc, or NULL.
num Specifies number of bytes desired in new storage.

The XtRealloc function changes the size of a block of storage, possibly moving it. Then it

copies the old contents (or as much as will fit) into the new block and frees the old block. If there
is insufficient memory to allocate the new blo&itRealloc calls XtErrorMsg . If ptris NULL,
XtRealloc simply callsXtMalloc . XtRealloc then returns the address of the new block.

To free an allocated block of storage, XdEree.
void XtFreeptr)
char *ptr;
ptr Specifies a pointer to a block of storage allocated ¥iMalloc , XtCalloc, or
XtRealloc, or NULL.

The XtFree function returns storage, allowing it to be reusedtiis NULL, XtFree returns
immediately.

To allocate storage for a new instance of a type Xikskew.

type*XtNew(type
type t
type Specifies a previously declared type.

XtNew returns a pointer to the allocated storage. If there is insufficient memory to allocate the
new block,XtNew calls XtErrorMsg . XtNew is a convenience macro that caflvalloc
with the following arguments specified:

((type *) XtMalloc((unsigned) sizeof(type)))

The storage allocated tNew should be freed usingtFree.

To copy an instance of a string, ustNewString .
String XtNewStringstring)
Stringstring;
string Specifies a previously declared string.

XtNewString returns a pointer to the allocated storage. If there is insufficient memory to allo-
cate the new blockXtNewString calls XtErrorMsg . XtNewString is a convenience macro
that callsXtMalloc with the following arguments specified:

(strepy(XtMalloc((unsigned)strlen(str) + 1), str))

187

X Toolkit Intrinsics X11 Release 6

The storage allocated ¥tNewString should be freed usingtFree.

11.4. Sharing Graphics Contexts

The Intrinsics provide a mechanism whereby cooperating objects can share a graphics context
(GC), thereby reducing both the number of GCs created and the total number of server calls in
any given application. The mechanism is a simple caching scheme and allows for clients to
declare both modifiable and nonmodifiable fields of the shared GCs.

To obtain a shareable GC with modifiable fields, Xig&locateGC.

GC XtAllocateGCyidget depth value_maskvalues dynamic_maskinused_magk
Widgetobject
Cardinaldepth
XtGCMaskvalue _mask
XGCValues Values
XtGCMaskdynamic_mask
XtGCMaskunused_mask

object Specifies an object, giving the screen for which the returned GC is valid. Must
be of class Object or any subclass thereof.

depth Specifies the depth for which the returned GC is valid, or 0.

value_mask Specifies fields of the GC that are initialized freatues

values Specifies the values for the initialized fields.

dynamic_maskSpecifies fields of the GC that may be modified by the caller.
unused_mask Specifies fields of the GC that will not be used by the caller.

The XtAllocateGC function returns a shareable GC that may be modified by the client. The
screerfield of the specified widget or of the nearest widget ancestor of the specified object and
the specifiedlepthargument supply the root and drawable depths for which the GC is to be valid.
If depthis zero the depth is taken from tthepthfield of the specified widget or of the nearest
widget ancestor of the specified object.

Thevalue_maslargument specifies fields of the GC that are initialized with the respective mem-
ber of thevaluesstructure. Thelynamic_maskrgument specifies fields that the caller intends to
modify during program execution. The caller must insure that the corresponding GC field is set
prior to each use of the GC. Thaused_masirgument specifies fields of the GC that are of no
interest to the caller. The caller may make no assumptions about the contents of any fields speci-
fied inunused_maskThe caller may assume that at all times all fields not specified in either
dynamic_maskr unused_maskave their default value if not specifiedvimlue_maskr the

value specified byalues If a field is specified in botlialue_maslknddynamic_maskhe effect

is as if it were specified only olynamic_masknd then immediately set to the valuevatues If

a field is set iunused_masénd also in eitheralue_maslor dynamic_maskhe specification in
unused_masis ignored.

XtAllocateGC tries to minimize the number of unique GCs created by comparing the arguments

with those of previous calls and returning an existing GC when there are no coiitisiie-
cateGC may modify and return an existing GC if it was allocated with a nonzarsed_mask

188

X Toolkit Intrinsics X11 Release 6

To obtain a shareable GC with no modifiable fields,Xi€eetGC .

GC XtGetGCébject value_maskvalueg
Widgetobject
XtGCMaskvalue _mask
XGCValues walues

object Specifies an object, giving the screen and depth for which the returned GC is
valid. Must be of class Object or any subclass thereof.

value_mask Specifies which fields of thealuesstructure are specified.

values Specifies the actual values for this GC.

The XtGetGC function returns a shareable, read-only GC. The parameters to this function are
the same as those fiiICreateGC except that an Object is passed instead of a Display.
XtGetGC is equivalent toXtAllocateGC with depth dynamic_maskandunused_maséll zero.

XtGetGC shares only GCs in which all values in the GC returned®seateGC are the same.

In particular, it does not use talue_maslprovided to determine which fields of the GC a wid-
get considers relevant. Thalue_masks used only to tell the server which fields should be filled
in from valuesand which it should fill in with default values.

To deallocate a shared GC when it is no longer needeXtRsteaseGC
void XtReleaseG@iject gc)

Widgetobject
GCggc;
object Specifies any object on the Display for which the GC was created. Must be of
class Object or any subclass thereof.
gc Specifies the shared GC obtained with eitkillocateGC or XtGetGC.

References to shareable GCs are counted and a free request is generated to the server when the
last user of a given GC releases it.

11.5. Managing Selections

Arbitrary widgets in multiple applications can communicate with each other by means of the
Intrinsics global selection mechanism, which conforms to the specificationsimah€lient
Communication Conventions Manudlhe Intrinsics supply functions for providing and receiv-

ing selection data in one logical piece (atomic transfers) or in smaller logical segments (incremen-
tal transfers).

The incremental interface is provided for a selection owner or selection requestor that cannot or
prefers not to pass the selection value to and from the Intrinsics in a single call. For instance,
either an application that is running on a machine with limited memory may not be able to store
the entire selection value in memory, or a selection owner may already have the selection value
available in discrete chunks, and it would be more efficient not to have to allocate additional stor-
age to copy the pieces contiguously. Any owner or requestor that prefers to deal with the selec-
tion value in segments can use the incremental interfaces to do so. The transfer between the
selection owner or requestor and the Intrinsics is not required to match the underlying transport
protocol between the application and the X server; the Intrinsics will break a too large selection
into smaller pieces for transport if necessary and will coalesce a selection transmitted

189

X Toolkit Intrinsics X11 Release 6

incrementally if the value was requested atomically.

11.5.1. Setting and Getting the Selection Timeout Value
To set the Intrinsics selection timeout, dX@&ppSetSelectionTimeout

void XtAppSetSelectionTimeowtpp_contexttimeou)
XtAppContextapp_context
unsigned londgimeout

app_context Specifies the application context.
timeout Specifies the selection timeout in milliseconds.

To get the current selection timeout value, ¥s&ppGetSelectionTimeout.

unsigned long XtAppGetSelectionTimeapp_context
XtAppContextapp_context

app_context Specifies the application context.

The XtAppGetSelectionTimeout function returns the current selection timeout value, in mil-
liseconds. The selection timeout is the time within which the two communicating applications
must respond to one another. The initial timeout value is set by the selectionTimeout application
resource as retrieved IXtDisplaylnitialize . If selectionTimeout is not specified, the default is

five seconds.

11.5.2. Using Atomic Transfers

When using atomic transfers, the owner will completely process one selection request at a time.
The owner may consider each request individually, since there is no possibility for overlap
between evaluation of two requests.

11.5.2.1. Atomic Transfer Procedures

The following procedures are used by the selection owner when providing selection data in a sin-
gle unit.

The procedure pointer specified by the owner to supply the selection data to the Intrinsics is of
type XtConvertSelectionProc.

typedef Boolean (*XtConvertSelectionProc)(Widget, Atom*, Atom*, Atom*,
XtPointer*, unsigned long*, int*);
Widgetw;
Atom *selection
Atom *target
Atom *type_return
XtPointer *value_return
unsigned long tength_return
int *format_return

w Specifies the widget that currently owns this selection.

selection Specifies the atom naming the selection requested (for exaX#pl®RIMARY
or XA_SECONDARY).

190

X Toolkit Intrinsics X11 Release 6

target Specifies the target type of the selection that has been requested, which indicates
the desired information about the selection (for example, File Name, Text, Win-
dow).

type return Specifies a pointer to an atom into which the property type of the converted value
of the selection is to be stored. For instance, either File Name or Text might have
property typeXA_STRING.

value_return Specifies a pointer into which a pointer to the converted value of the selection is
to be stored. The selection owner is responsible for allocating this storage. If the
selection owner has provided AitSelectionDoneProcfor the selection, this
storage is owned by the selection owner; otherwise, it is owned by the Intrinsics
selection mechanism, which frees it by callXtdrree when it is done with it.

length_return Specifies a pointer into which the number of elementslime_return each of
size indicated byormat_return is to be stored.

format_return Specifies a pointer into which the size in bits of the data elements of the selection
value is to be stored.

This procedure is called by the Intrinsics selection mechanism to get the value of a selection as a
given type from the current selection owner. It retufnge if the owner successfully converted

the selection to the target typefealse otherwise. If the procedure returkalse, the values of

the return arguments are undefined. EdtBonvertSelectionProcshould respond to target

value TARGETS by returning a value containing the list of the targets into which it is prepared

to convert the selection. The value returnetbimat_returnmust be one of 8, 16, or 32 to allow

the server to byte-swap the data if necessary.

This procedure does not need to worry about responding to the MULTIPLE or the TIMESTAMP
target values (see Section 2.6.2 inltter-Client Communication Conventions Manuah

selection request with the MULTIPLE target type is transparently transformed into a series of
calls to this procedure, one for each target type, and a selection request with the TIMESTAMP
target value is answered automatically by the Intrinsics using the time specified in the call to
XtOwnSelection or XtOwnSelectionIincremental.

To retrieve theSelectionRequeskvent that triggered thétConvertSelectionProc procedure,
use XtGetSelectionRequest

XSelectionRequestEvent *XtGetSelectionRequwestélectionrequest_id
Widgetw;
Atom selection
XtRequestldequest _id

w Specifies the widget that currently owns this selection. Must be of class Core or
any subclass thereof.
selection Specifies the selection being processed.

request id Specifies the requestor id in the case of incremental selections, or NULL in the
case of atomic transfers.

XtGetSelectionRequesimay only be called from within a¥tConvertSelectionProc procedure
and returns a pointer to ttfgelectionRequestvent that caused the conversion procedure to be
invoked. Request_idpecifies a unique id for the individual request in the case that multiple
incremental transfers are outstanding. For atomic transégpsest_idnust be specified as
NULL. If no SelectionRequesevent is being processed for the specifisdet selection and
request_id XtGetSelectionRequesteturns NULL.

191

X Toolkit Intrinsics X11 Release 6

The procedure pointer specified by the owner when it desires notification upon losing ownership
is of typeXtLoseSelectionProc

typedef void (*XtLoseSelectionProc)(Widget, Atom®*);
Widgetw;
Atom *selection

w Specifies the widget that has lost selection ownership.
selection Specifies the atom naming the selection.

This procedure is called by the Intrinsics selection mechanism to inform the specified widget that
it has lost the given selection. Note that this procedure does not ask the widget to relinquish the
selection ownership; it is merely informative.

The procedure pointer specified by the owner when it desires notification of receipt of the data or
when it manages the storage containing the data is odgeectionDoneProc

typedef void (*XtSelectionDoneProc)(Widget, Atom*, Atom*);
Widgetw;
Atom *selection
Atom *target

w Specifies the widget that owns the converted selection.
selection Specifies the atom naming the selection that was converted.
target Specifies the target type to which the conversion was done.

This procedure is called by the Intrinsics selection mechanism to inform the selection owner that

a selection requestor has successfully retrieved a selection value. If the selection owner has regis-
tered anXtSelectionDoneProg it should expect it to be called once for each conversion that it
performs, after the converted value has been successfully transferred to the requestor. If the selec-
tion owner has registered afSelectionDoneProg it also owns the storage containing the con-

verted selection value.

11.5.2.2. Getting the Selection Value

The procedure pointer specified by the requestor to receive the selection data from the Intrinsics is
of type XtSelectionCallbackProc.

typedef void (*XtSelectionCallbackProc)(Widget, XtPointer, Atom*, Atom*, XtPointer, unsigned long?*, int*);
Widgetw;
XtPointerclient_data
Atom *selection
Atom *type
XtPointervalue
unsigned long tength

int *format
w Specifies the widget that requested the selection value.
client_data Specifies a value passed in by the widget when it requested the selection.
selection Specifies the name of the selection that was requested.
type Specifies the representation type of the selection value (for example,

XA _STRING). Note that it is not the target that was requested (which the client

192

X Toolkit Intrinsics X11 Release 6

must remember for itself) but the type that is used to represent the target. The
special symbolic constatT_CONVERT_FAIL is used to indicate that the
selection conversion failed because the selection owner did not respond within
the Intrinsics selection timeout interval.

value Specifies a pointer to the selection value. The requesting client owns this storage
and is responsible for freeing it by calliXgFree when it is done with it.

length Specifies the number of elementvalue

format Specifies the size in bits of the data in each elemersdloé

This procedure is called by the Intrinsics selection mechanism to deliver the requested selection
to the requestor.

If the SelectionNotify event returns a property dione, meaning the conversion has been

refused because there is no owner for the specified selection or the owner cannot convert the
selection to the requested target for any reason, the procedure is called with a value of NULL and
a length of zero.

To obtain the selection value in a single logical unit, XiKeetSelectionValueor
XtGetSelectionValues

void XtGetSelectionValue(, selectiontarget callback client_datatime)
Widgetw;
Atom selection
Atom target
XtSelectionCallbackProcallback
XtPointerclient_data

Timetime
w Specifies the widget making the request. Must be of class Core or any subclass
thereof.
selection Specifies the particular selection desired; for examfte,PRIMARY .
target Specifies the type of information needed about the selection.
callback Specifies the procedure to be called when the selection value has been obtained.

Note that this is how the selection value is communicated back to the client.
client_data Specifies additional data to be passed to the specified procedure when it is called.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuefunction requests the value of the selection converted to the target
type. The specified callback is called at some time Xft€etSelectionValueis called, when

the selection data is received from the X server. It may be called before oXt@&tSelection-
Value returns. For more information abaelectiontarget andtime, see Section 2.6 in the
Inter-Client Communication Conventions Manual

193

X Toolkit Intrinsics X11 Release 6

void XtGetSelectionValueg, selectiontargets count callback client_data time)
Widgetw;
Atom selection
Atom *targets
int count
XtSelectionCallbackProcallback
XtPointer *client_data

Timetime
w Specifies the widget making the request. Must be of class Core or any subclass
thereof.
selection Specifies the particular selection desired (that is, primary or secondary).
targets Specifies the types of information needed about the selection.
count Specifies the length of thargetsandclient_datalists.
callback Specifies the callback procedure to be called with each selection value obtained.

Note that this is how the selection values are communicated back to the client.

client_ data Specifies a list of additional data values, one for each target type, that are passed
to the callback procedure when it is called for that target.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuesfunction is similar to multiple calls t¥tGetSelectionValueexcept

that it guarantees that no other client can assert ownership between requests and therefore that all
the conversions will refer to the same selection value. The callback is invoked once for each tar-
get value with the corresponding client data. For more information abtadtiontarget and

timesee Section 2.6 in tHater-Client Communication Conventions Manual

11.5.2.3. Setting the Selection Owner

To set the selection owner and indicate that the selection value will be provided in one piece, use
XtOwnSelection.

Boolean XtOwnSelectiom{, selectiontime, convert_proclose_selectiordone_prog
Widgetw;
Atom selection
Timetime
XtConvertSelectionProconvert_pro¢
XtLoseSelectionProlmse_selection
XtSelectionDoneProdone_pro¢

w Specifies the widget that wishes to become the owner. Must be of class Core or
any subclass thereof.

selection Specifies the name of the selection (for examyke, PRIMARY).

time Specifies the timestamp that indicates when the ownership request was initiated.

This should be the timestamp of the event that triggered ownership; the value
CurrentTime is not acceptable.

convert_proc Specifies the procedure to be called whenever a client requests the current value
of the selection.

194

X Toolkit Intrinsics X11 Release 6

lose_selection Specifies the procedure to be called whenever the widget has lost selection own-
ership, or NULL if the owner is not interested in being called back.

done_proc Specifies the procedure called after the requestor has received the selection value,
or NULL if the owner is not interested in being called back.

The XtOwnSelection function informs the Intrinsics selection mechanism that a widget wishes

to own a selection. It returnBue if the widget successfully becomes the owner Balde oth-

erwise. The widget may fail to become the owner if some other widget has asserted ownership at
a time later than this widget. The widget can lose selection ownership either because some other
widget asserted later ownership of the selection or because the widget voluntarily gave up owner-
ship of the selection. The lose_selection procedure is not called if the widget fails to obtain selec-
tion ownership in the first place.

If a done_proc is specified, the client owns the storage allocated for passing the value to the
Intrinsics. Ifdone_prods NULL, the convert_proc must allocate storage u3itigalloc ,
XtRealloc, or XtCalloc, and the value specified is freed by the Intrinsics when the transfer is
complete.

Usually, a selection owner maintains ownership indefinitely until some other widget requests
ownership, at which time the Intrinsics selection mechanism informs the previous owner that it
has lost ownership of the selection. However, in response to some user actions (for example,
when a user deletes the information selected), the application may wish to explicitly inform the
Intrinsics that it no longer is to be the selection owner by ust@jsownSelection

void XtDisownSelectionf, selectiontime)
Widgetw;
Atom selection
Timetime

w Specifies the widget that wishes to relinquish ownership.
selection Specifies the atom naming the selection being given up.

time Specifies the timestamp that indicates when the request to relinquish selection
ownership was initiated.

The XtDisownSelectionfunction informs the Intrinsics selection mechanism that the specified
widget is to lose ownership of the selection. If the widget does not currently own the selection,
either because it lost the selection or because it never had the selection to begitDigth,
ownSelectiondoes nothing.

After a widget has calle¥tDisownSelection its convert procedure is not called even if a request
arrives later with a timestamp during the period that this widget owned the selection. However,
its done procedure is called if a conversion that started before the X#ismwnSelectionfin-

ishes after the call tXtDisownSelection

11.5.3. Using Incremental Transfers

When using the incremental interface, an owner may have to process more than one selection
request for the same selection, converted to the same target, at the same time. The incremental
functions take aequest_idargument, which is an identifier that is guaranteed to be unique among
all incremental requests that are active concurrently.

For example, consider the following:

195

X Toolkit Intrinsics X11 Release 6

. Upon receiving a request for the selection value, the owner sends the first segment.

. While waiting to be called to provide the next segment value but before sending it, the
owner receives another request from a different requestor for the same selection value.

. To distinguish between the requests, the owner uses the request_id value. This allows the
owner to distinguish between the first requestor, which is asking for the second segment,
and the second requestor, which is asking for the first segment.

11.5.3.1. Incremental Transfer Procedures

The following procedures are used by selection owners who wish to provide the selection data in
multiple segments.

The procedure pointer specified by the incremental owner to supply the selection data to the
Intrinsics is of typeXtConvertSelectionincrProc.

typedef XtPointer XtRequestld;

typedef Boolean (*XtConvertSelectionincrProc)(Widget, Atom*, Atom*, Atom*, XtPointer*,

Widgetw;

unsigned long*, int*, unsigned long*, XtPointer, XtRequestld*);

Atom *selection

Atom *target

Atom *type_return
XtPointer *value_return
unsigned long tength_return
int *format_return

unsigned long fax_length
XtPointerclient_data
XtRequestld request_igl

w
selection
target
type_return

value_return
length_return
format_return
max_length
client_data

request id

Specifies the widget that currently owns this selection.
Specifies the atom that names the selection requested.
Specifies the type of information required about the selection.

Specifies a pointer to an atom into which the property type of the converted value
of the selection is to be stored.

Specifies a pointer into which a pointer to the converted value of the selection is
to be stored. The selection owner is responsible for allocating this storage.

Specifies a pointer into which the number of elementsiline_return each of
size indicated bjormat_return is to be stored.

Specifies a pointer into which the size in bits of the data elements of the selection
value is to be stored so that the server may byte-swap the data if necessary.

Specifies the maximum number of bytes which may be transferred at any one
time.

Specifies the value passed in by the widget when it took ownership of the selec-
tion.

Specifies an opaque identification for a specific request.

196

X Toolkit Intrinsics X11 Release 6

This procedure is called repeatedly by the Intrinsics selection mechanism to get the next incre-
mental chunk of data from a selection owner who has cali@®dvnSelectionincremental. It

must returnTrue if the procedure has succeeded in converting the selection daadsether-

wise. On the first call with a particular request id, the owner must begin a new incremental trans-
fer for the requested selection and target. On subsequent calls with the same request id, the owner
may assume that the previously supplied value is no longer needed by the Intrinsics; that is, a

fixed transfer area may be allocated and returnedlue_returnfor each segment to be trans-

ferred. This procedure should store a non-NULL valueaine_returnand zero ifength_return

to indicate that the entire selection has been delivered. After returning this final segment, the
request id may be reused by the Intrinsics to begin a new transfer.

To retrieve theSelectionRequeskvent that triggered the selection conversion procedure, use
XtGetSelectionRequestdescribed in Section 11.5.2.1.

The procedure pointer specified by the incremental selection owner when it desires notification
upon no longer having ownership is of ty)i# oseSelectionincrProc.

typedef void (*XtLoseSelectionincrProc)(Widget, Atom*, XtPointer);
Widgetw;
Atom *selection
XtPointerclient_data

w Specifies the widget that has lost the selection ownership.
selection Specifies the atom that names the selection.

client_data Specifies the value passed in by the widget when it took ownership of the selec-
tion.

This procedure, which is optional, is called by the Intrinsics to inform the selection owner that it
no longer owns the selection.

The procedure pointer specified by the incremental selection owner when it desires notification of
receipt of the data or when it manages the storage containing the data is of type
XtSelectionDonelncrProc.

typedef void (*XtSelectionDonelncrProc)(Widget, Atom*, Atom*, XtRequestld*, XtPointer);
Widgetw;
Atom *selection
Atom *target
XtRequestld request_igl
XtPointerclient_data

w Specifies the widget that owns the selection.
selection Specifies the atom that names the selection being transferred.
target Specifies the target type to which the conversion was done.

request_id Specifies an opaque identification for a specific request.

client data Specified the value passed in by the widget when it took ownership of the selec-
tion.

This procedure, which is optional, is called by the Intrinsics after the requestor has retrieved the
final (zero-length) segment of the incremental transfer to indicate that the entire transfer is com-
plete. If this procedure is not specified, the Intrinsics will free only the final value returned by the
selection owner usinitFree.

197

X Toolkit Intrinsics X11 Release 6

The procedure pointer specified by the incremental selection owner to notify it if a transfer should
be terminated prematurely is of typgCancelConvertSelectionProc

typedef void (*XtCancelConvertSelectionProc)(Widget, Atom*, Atom*, XtRequestld*, XtPointer);
Widgetw;
Atom *selection
Atom *target
XtRequestld request_igl
XtPointerclient_data

w Specifies the widget that owns the selection.
selection Specifies the atom that names the selection being transferred.
target Specifies the target type to which the conversion was done.

request id Specifies an opaque identification for a specific request.

client_data Specifies the value passed in by the widget when it took ownership of the selec-
tion.

This procedure is called by the Intrinsics when it has been determined by means of a timeout or
other mechanism that any remaining segments of the selection no longer need to be transferred.
Upon receiving this callback, the selection request is considered complete and the owner can free
the memory and any other resources that have been allocated for the transfer.

11.5.3.2. Getting the Selection Value Incrementally

To obtain the value of the selection using incremental transferXtGstSelectionValuelncre-
mental or XtGetSelectionValuesincremental

void XtGetSelectionValuelncrementai(selectiontarget, selection_callbackclient_datatime)
Widgetw;
Atom selection
Atom target
XtSelectionCallbackProselection_callback
XtPointerclient_data

Timetime
w Specifies the widget making the request. Must be of class Core or any subclass
thereof.
selection Specifies the particular selection desired.
target Specifies the type of information needed about the selection.

selection_callback
Specifies the callback procedure to be called to receive each data segment.

client_data Specifies client-specific data to be passed to the specified callback procedure
when it is invoked.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuelncrementalfunction is similar toXtGetSelectionValueexcept that

the selection_callback procedure will be called repeatedly upon delivery of multiple segments of
the selection value. The end of the selection value is indicatedsglemrtion_callbacks called

with a non-NULL value of length zero, which must still be freed by the client. If the transfer of

198

X Toolkit Intrinsics X11 Release 6

the selection is aborted in the middle of a transfer (for example, because to timeout), the selec-
tion_callback procedure is called with a type value equal to the symbolic constant
XT_CONVERT_FAIL so that the requestor can dispose of the partial selection value it has col-
lected up until that point. Upon receivingl CONVERT_FAIL , the requesting client must
determine for itself whether or not a partially completed data transfer is meaningful. For more
information abouselectiontarget, andtime see Section 2.6 in theter-Client Communication
Conventions Manual

void XtGetSelectionValuesincremental(selectiontargets count selection_callbackclient_datatime)
Widgetw;
Atom selection
Atom *targets
int count
XtSelectionCallbackProselection_callback
XtPointer *client_data

Timetime
w Specifies the widget making the request. Must be of class Core or any subclass
thereof.
selection Specifies the particular selection desired.
targets Specifies the types of information needed about the selection.
count Specifies the length of thargetsandclient_datalists.

selection_callback
Specifies the callback procedure to be called to receive each selection value.

client_data Specifies a list of client data (one for each target type) values that are passed to
the callback procedure when it is invoked for the corresponding target.

time Specifies the timestamp that indicates when the selection request was initiated.
This should be the timestamp of the event that triggered this request; the value
CurrentTime is not acceptable.

The XtGetSelectionValuesincrementalfunction is similar toXtGetSelectionValuelncremen-

tal except that it takes a list of targets and client datisetSelectionValuesincrementalis

equivalent to calling{tGetSelectionValuelncrementalsuccessively for eadiarget/client_data

pair except thaktGetSelectionValuesincrementaldoes guarantee that all the conversions will

use the same selection value because the ownership of the selection cannot change in the middle
of the list, as would be possible when calliXigsetSelectionValuelncrementalrepeatedly. For

more information aboidelectiontarget andtime, see Section 2.6 in theter-Client Communi-

cation Conventions Manual

11.5.3.3. Setting the Selection Owner for Incremental Transfers
To set the selection owner when using incremental transferXtOsenSelectionincremental.

199

X Toolkit Intrinsics X11 Release 6

Boolean XtOwnSelectionincremental(selectiontime, convert_callbacklose_callback
done_callbackcancel_callbackclient_datg
Widgetw;
Atom selection
Timetime
XtConvertSelectionincrProconvert_callback
XtLoseSelectionincrProose _callback
XtSelectionDonelncrProdone _callback
XtCancelConvertSelectionPraancel_callback
XtPointerclient_data

w Specifies the widget that wishes to become the owner. Must be of class Core
or any subclass thereof.

selection Specifies the atom that names the selection.

time Specifies the timestamp that indicates when the selection ownership request

was initiated. This should be the timestamp of the event that triggered own-
ership; the valu€urrentTime is not acceptable.

convert_callback Specifies the procedure to be called whenever the current value of the selec-
tion is requested.

lose_callback Specifies the procedure to be called whenever the widget has lost selection
ownership, or NULL if the owner is not interested in being notified.

done_callback Specifies the procedure called after the requestor has received the entire
selection, or NULL if the owner is not interested in being notified.

cancel_callback Specifies the callback procedure to be called when a selection request aborts
because a timeout expires, or NULL if the owner is not interested in being
notified.

client_data Specifies the argument to be passed to each of the callback procedures when
they are called.

The XtOwnSelectionIncremental procedure informs the Intrinsics incremental selection mecha-
nism that the specified widget wishes to own the selection. It refouesif the specified widget
successfully becomes the selection owndralse otherwise. For more information abadlec-

tion, target, andtime, see Section 2.6 in theter-Client Communication Conventions Manual

If a done_callback procedure is specified, the client owns the storage allocated for passing the
value to the Intrinsics. ione_callbacks NULL, the convert_callback procedure must allocate
storage usinXtMalloc , XtRealloc, or XtCalloc, and the final value specified is freed by the
Intrinsics when the transfer is complete. After a selection transfer has started, only one of the
done_callback or cancel_callback procedures is invoked to indicate completion of the transfer.

The lose_callback procedure does not indicate completion of any in-progress transfers; it is
invoked at the time &electionClearevent is dispatched regardless of any active transfers, which
are still expected to continue.

A widget that becomes the selection owner us{t@wnSelectionincremental may useXtDis-
ownSelectionto relinquish selection ownership.

11.5.4. Setting and Retrieving Selection Target Parameters

To specify target parameters for a selection request with a single target, use
XtSetSelectionParameters

200

X Toolkit Intrinsics X11 Release 6

void XtSetSelectionParametaesjuestor selectiontype value length formaf
Widgetrequestor
Atom selection
Atom type
XtPointervalue
unsigned londength

int format

requestor Specifies the widget making the request. Must be of class Core or any subclass
thereof.

selection Specifies the atom that names the selection.

type Specifies the type of the property in which the parameters are passed.

value Specifies a pointer to the parameters.

length Specifies the number of elements containing dataling each element of a size
indicated byformat

format Specifies the size in bits of the data in the elementaloé

The specified parameters are copied and stored in a new property of the specified type and format
on the requestor’s window. To initiate a selection request with a target and these parameters, a
subsequent call tXtGetSelectionValueor to XtGetSelectionValuelncrementalspecifying the

same requestor widget and selection atom will gener@enaertSelectionrequest referring to

the property containing the parametersXifetSelectionParameterds called more than once

with the same widget and selection without a call to specify a request, the most recently specified
parameters are used in the subsequent request.

The possible values édrmatare 8, 16, or 32. If the format is 8, the elementgatdieare
assumed to be sizeof(char); if 16, sizeof(short); if 32, sizeof(long).

To generate a MULTIPLE target request with parameters for any of the multiple targets of the
selection request, precede individual callXtGetSelectionValueand XtGetSelectionValueln-
cremental with corresponding individual calls ¥tSetSelectionParametersand enclose these

all within XtCreateSelectionRequestind XtSendSelectionRequest. XtGetSelectionValues

and XtGetSelectionValuesincrementalcannot be used to make selection requests with parame-
terized targets.

To retrieve any target parameters needed to perform a selection conversion, the selection owner
calls XtGetSelectionParameters

void XtGetSelectionParametens{ner, selectionrequest_idtype_returnvalue_return
length_returnformat_returr)
Widgetowner,
Atom selection
XtRequestldequest_id
Atom *type_return
XtPointer *value_return
unsigned long fength_return
int *format_return

owner Specifies the widget that owns the specified selection.
selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of incremental selections, or NULL in the
case of atomic transfers.

201

X Toolkit Intrinsics X11 Release 6

type_return Specifies a pointer to an atom in which the property type of the parameters are
stored.

value_return Specifies a pointer into which a pointer to the parameters are to be stored. A
NULL is stored if no parameters accompany the request.

length_return Specifies a pointer into which the number of data elementdule_returnof
size indicated bjormat_returnare stored.

format_return Specifies a pointer into which the size in bits of the parameter data in the ele-
ments ofvalueis stored.

XtGetSelectionParametermay only be called from within aktConvertSelectionProcor from
within the first call to arKtConvertSelectionincrProc with a new request _id.

11.5.5. Generating MULTIPLE Requests

To have the Intrinsics bundle multiple calls to make selection requests into a single request using
a MULTIPLE target, useXtCreateSelectionRequesand XtSendSelectionRequest

void XtCreateSelectionRequestjuestor selection
Widgetrequestor
Atom selection

requestor Specifies the widget making the request. Must be of class Core or any subclass
thereof.
selection Specifies the particular selection desired.

When XtCreateSelectionRequests called, subsequent calls X6GetSelectionValue
XtGetSelectionValuelncremental XtGetSelectionValuesand

XtGetSelectionValuesincrementa) with the requestor and selection as specifiedt@reateS-
electionRequestare bundled into a single selection request with multiple targets. The request is
made by callingXtSendSelectionRequest

void XtSendSelectionRequestfuestory selectiontime)
Widgetrequestor
Atom selection
Timetime

requestor Specifies the widget making the request. Must be of class Core or any subclass
thereof.

selection Specifies the particular selection desired.

time Specifies the timestamp that indicates when the selection request was initiated.
The valueCurrentTime is not acceptable.

When XtSendSelectionRequesis called with a value akquestorandselectionmatching a pre-

vious call toXtCreateSelectionRequesta selection request is sent to the selection owner. If a
single target request is queued, that request is made. If multiple targets are queued, they are bun-
dled into a single request with a target of MULTIPLE using the specified timestamp. As the val-
ues are returned, the callbacks specifiedti@etSelectionValue

XtGetSelectionValuelncremental XtGetSelectionValuesand XtGetSelectionValuelncre-

mental are invoked.

Multi-threaded applications should lock the application context before cXtibppateSelec-
tionRequestand release the lock after callidXgSendSelectionRequesto ensure that the thread

202

X Toolkit Intrinsics X11 Release 6

assembling the request is safe from interference by another thread assembling a different request
naming the same widget and selection.

To relinquish the composition of a MULTIPLE request without sending it, use
XtCancelSelectionRequest

void XtCancelSelectionRequestfuestor selection
Widgetrequestor
Atom selection

requestor Specifies the widget making the request. Must be of class Core or any subclass
thereof.
selection Specifies the particular selection desired.

When XtCancelSelectionRequests called, any requests queued since the last cxliGoeate-
SelectionRequesfor the same widget and selection are discarded and any resources reserved are
released. A subsequent callX¢SendSelectionRequestvill not result in any request being

made. Subsequent callsXtGetSelectionValue XtGetSelectionValues XtGetSelectionVal-
uelncremental or XtGetSelectionValuesincrementalwill not be deferred.

11.5.6. Auxiliary Selection Properties

Certain uses of parameterized selections require clients to name other window properties within a
selection parameter. To permit reuse of temporary property names in these circumstances and
thereby reduce the number of unique atoms created in the server, the Intrinsics provides two inter-
faces for acquiring temporary property names.

To acquire a temporary property name atom for use in a selection request, the client may call
XtReservePropertyAtom.

Atom XtReservePropertyAtomy
Widgetw;
w Specifies the widget making a selection request.

XtReservePropertyAtom returns an atom that may be used as a property name during selection
requests involving the specified widget. As long as the atom remains reserved, it is unique with
respect to all other reserved atoms for the widget.

To return a temporary property name atom for reuse and to delete the property named by that
atom, useXtReleasePropertyAtom

void XtReleasePropertyAtomy(atom

Widgetw;
Atom atom
w Specifies the widget used to reserve the property name atom.
atom Specifies the property name atom returnectiyeservePropertyAtom that is

to be released for reuse.

XtReleasePropertyAtommarks the specified property name atom as no longer in use and
insures that any property having that name on the specified widget’s window is deletimn If
does not specify a value returnedXwRreservePropertyAtom for the specified widget, the

203

X Toolkit Intrinsics X11 Release 6

results are undefined.

11.5.7. Retrieving the Most Recent Timestamp

To retrieve the timestamp from the most recent calltidispatchEvent that contained a times-
tamp, useXtLastTimestampProcessed

Time XtLastTimestampProcessdiiplay)
Display *display;
display Specifies an open display connection.

If no KeyPress KeyRelease ButtonPress, ButtonRelease MotionNotify , EnterNotify ,
LeaveNotify, PropertyNotify , or SelectionClearevent has yet been passeXt®is-
patchEvent for the specified displaytLastTimestampProcessedeturns zero.

11.5.8. Retrieving the Most Recent Event

To retrieve the event from the most recent caKtDispatchEvent for a specific display, use
XtLastEventProcessed

XEvent *XtLastEventProcessati§play)
Display *display,
display Specifies the display connection from which to retrieve the event.

Returns the last event passeXt®ispatchEvent for the specified display. Returns NULL if
there is no such event. The client must not modify the contents of the returned event.

11.6. Merging Exposure Events into a Region

The Intrinsics provide aXtAddExposureToRegion utility function that merge&xposeand
GraphicsExposeevents into a region for clients to process at once rather than processing indi-
vidual rectangles. For further information about regions, see Section 26ib in C Language

X Interface

To mergeExposeand GraphicsExposeevents into a region, usdAddExposureToRegion.

void XtAddExposureToRegionyent region)
XEvent *event

Regionregion
event Specifies a pointer to tHexposeor GraphicsExposeevent.
region Specifies the region object (as defined XiL&/Xutil.h >).

The XtAddExposureToRegion function computes the union of the rectangle defined by the
exposure event and the specified region. Then it stores the results bEgknin If the event
argument is not akxposeor GraphicsExposeevent, XtAddExposureToRegion returns with-
out an error and without modifyirmggion

This function is used by the exposure compression mechanism; see Section 7.9.3.

204

X Toolkit Intrinsics X11 Release 6

11.7. Translating Widget Coordinates

To translate an x-y coordinate pair from widget coordinates to root window absolute coordinates,
useXtTranslateCoords.

void XtTranslateCoordg(, X, y, rootx_return rooty_return
Widgetw;
Positionx, y;
Position *rootx_return *rooty_return

w Specifies the widget. Must be of class RectObj or any subclass thereof.

X
y Specify the widget-relative x and y coordinates.

rootx_return
rooty return Return the root-relative x and y coordinates.

While XtTranslateCoords is similar to the XlibXTranslateCoordinates function, it does not
generate a server request because all the required information already is in the widget’s data
structures.

11.8. Translating a Window to a Widget

To translate a given window and display pointer into a widget instance, use
XtWindowToWidget .

Widget XtWindowToWidgetdisplay, window)

Display *display,

Window window
display Specifies the display on which the window is defined.
window Specifies the drawable for which you want the widget.

If there is a realized widget whose window is the specified drawable on the spdisifiag
XtWindowToWidget returns that widget. If not and if the drawable has been associated with a
widget throughXtRegisterDrawable, XtWindowToWidget returns the widget associated with
the drawable. In other cases it returns NULL.

11.9. Handling Errors

The Intrinsics allow a client to register procedures that is called whenever a fatal or nonfatal error
occurs. These facilities are intended for both error reporting and logging and for error correction
or recovery.

Two levels of interface are provided:

. A high-level interface that takes an error name and class and retrieves the error message
text from an error resource database.

. A low-level interface that takes a simple string to display.

The high-level functions construct a string to pass to the lower-level interface. The strings may
be specified in application code and are overridden by the contents of an external system-wide
file, the “error database file”. The location and name of this file is implementation dependent.

205

X Toolkit Intrinsics X11 Release 6

Note

The application-context-specific error handling is not implemented on many systems,
although the interfaces are always present. Most implementations will have just one
set of error handlers for all application contexts within a process. If they are set for
different application contexts, the ones registered last will prevail.

To obtain the error database (for example, to merge with an application- or widget-specific
database), usEtAppGetErrorDatabase .

XrmDatabase *XtAppGetErrorDatabaspp context
XtAppContextapp_context

app_context Specifies the application context.

The XtAppGetErrorDatabase function returns the address of the error database. The Intrinsics
do a lazy binding of the error database and do not merge in the database file until the first call to
XtAppGetErrorDatabaseText.

For a complete listing of all errors and warnings that can be generated by the Intrinsics, see
Appendix D.

The high-level error and warning handler procedure pointers are oKtfgyeorMsgHandler .

typedef void (*XtErrorMsgHandler)(String, String, String, String, String*, Cardinal*);
Stringname
Stringtype
Stringclass
Stringdefaultp
String *params
Cardinal 'num_params

name Specifies the name to be concatenated with the specified type to form the
resource name of the error message.

type Specifies the type to be concatenated with the name to form the resource hame of
the error message.

class Specifies the resource class of the error message.

defaultp Specifies the default message to use if no error database entry is found.

params Specifies a pointer to a list of parameters to be substituted in the message.

num_params Specifies the number of entriesparams

The specified name can be a general kind of error, like “invalidParameters” or “invalidwWindow”,
and the specified type gives extra information such as the name of the routine in which the error
was detected. Standapdintf notation is used to substitute the parameters into the message.

An error message handler can obtain the error database text for an error or a warning by calling
XtAppGetErrorDatabaseText.

206

X Toolkit Intrinsics X11 Release 6

void XtAppGetErrorDatabaseTezatfp_contextname type class default buffer_return nbytes databasg
XtAppContextapp_context
Stringname type class
Stringdefault
Stringbuffer_return
int nbytes
XrmDatabaselatabase

app_context Specifies the application context.

name

type Specify the name and type concatenated to form the resource name of the error
message.

class Specifies the resource class of the error message.

default Specifies the default message to use if an error database entry is not found.

buffer_return Specifies the buffer into which the error message is to be returned.

nbytes Specifies the size of the buffer in bytes.

database Specifies the name of the alternative database to be used, or NULL if the applica-

tion context’s error database is to be used.

The XtAppGetErrorDatabaseText returns the appropriate message from the error database or
returns the specified default message if one is not found in the error database. To form the full
resource name and class when querying the databasentieandtypeare concatenated with a
single “.” between them and thelassis concatenated with itself with a single “.” if it does not
already contain a “.".

To return the application name and class as passétDisplaylnitialize for a particular Dis-
play, useXtGetApplicationNameAndClass.

void XtGetApplicationNameAndClagdiplay, name_returnclass_returi
Display* display,
String* name_return
String* class_return

display Specifies an open display connection that has been initialized with
XtDisplaylnitialize .

name_return Returns the application name.

class_return Returns the application class.

XtGetApplicationNameAndClass returns the application name and class pass&tis-

playlnitialize for the specified display. If the display was never initialized or has been closed,

the result is undefined. The returned strings are owned by the Intrinsics and must not be modified
or freed by the caller.

To register a procedure to be called on fatal error conditions{tégm SetErrorMsgHandler .

XtErrorMsgHandler XtAppSetErrorMsgHandlafp_contextmsg_handler
XtAppContextapp_context
XtErrorMsgHandlemsg_handler

207

X Toolkit Intrinsics X11 Release 6

app_context Specifies the application context.
msg_handler Specifies the new fatal error procedure, which should not return.

XtAppSetErrorMsgHandler returns a pointer to the previously installed high-level fatal error
handler. The default high-level fatal error handler provided by the Intrinsics is naxted-
faultErrorMsg and constructs a string from the error resource database andt€atisr . Fatal

error message handlers should not return. If one does, subsequent Intrinsics behavior is unde-
fined.

To call the high-level error handler, us¢AppErrorMsg .

void XtAppErrorMsgapp_contextname type class default params num_paramp
XtAppContextapp_context
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal 'num_params

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
The Intrinsics internal errors all have class “XtToolkitError”.

To register a procedure to be called on nonfatal error conditions, use
XtAppSetWarningMsgHandler .

XtErrorMsgHandler XtAppSetWarningMsgHandlepp contextmsg_handlér
XtAppContextapp_context
XtErrorMsgHandlemsg_handler

app_context Specifies the application context.

msg_handler Specifies the new nonfatal error procedure, which usually returns.

XtAppSetWarningMsgHandler returns a pointer to the previously installed high-level warning
handler. The default high-level warning handler provided by the Intrinsics is naxiBéfault-
WarningMsg and constructs a string from the error resource database an¥tigiming .

To call the installed high-level warning handler, c&&ppWarningMsg .

208

X Toolkit Intrinsics X11 Release 6

void XtAppWarningMsgépp_contextname type class default params num_paramk
XtAppContextapp_context
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
The Intrinsics internal warnings all have class “XtToolkitError”.

The low-level error and warning handler procedure pointers are oftfreorHandler .
typedef void (*XtErrorHandler)(String);
Stringmessage
message Specifies the error message.
The error handler should display the message string in some appropriate fashion.

To register a procedure to be called on fatal error conditions{téggpSetErrorHandler .
XtErrorHandler XtAppSetErrorHandlenpp_contexthandlei)
XtAppContextapp_context
XtErrorHandlerhandler,
app_context Specifies the application context.
handler Specifies the new fatal error procedure, which should not return.

XtAppSetErrorHandler returns a pointer to the previously installed low-level fatal error han-
dler. The default low-level error handler provided by the Intrinsicsx®efaultError . On
POSIX-based systems, it prints the message to standard error and terminates the application.
Fatal error message handlers should not return. If one does, subsequent Intrinsics behavior is
undefined.

To call the installed fatal error procedure, X¢AppError .
void XtAppError@pp_contextmessage
XtAppContextapp_context
Stringmessage
app_context Specifies the application context.
message Specifies the message to be reported.

Most programs should us&AppErrorMsg , not XtAppError , to provide for customization and
internationalization of error messages.

209

X Toolkit Intrinsics X11 Release 6

To register a procedure to be called on nonfatal error conditions, use
XtAppSetWarningHandler .

XtErrorHandler XtAppSetWarningHandlagfp_contexthandlei)
XtAppContextapp_context
XtErrorHandlerhandler,

app_context Specifies the application context.

handler Specifies the new nonfatal error procedure, which usually returns.

XtAppSetWarningHandler returns a pointer to the previously installed low-level warning han-
dler. The default low-level warning handler provided by the IntrinsicXi®efaultWarning .
On POSIX-based systems, it prints the message to standard error and returns to the caller.

To call the installed nonfatal error procedure, ¥s&ppWarning .

void XtAppWarningapp_contextmessage
XtAppContextapp_context
Stringmessage

app_context Specifies the application context.

message Specifies the nonfatal error message to be reported.

Most programs should usé&AppWarningMsg , not XtAppWarning , to provide for customiza-
tion and internationalization of warning messages.

11.10. Setting WM_COLORMAP_WINDOWS

A client may set the value of thgM_COLORMAP_WINDOWSproperty on a widget’s window by
calling XtSetwMColormapWindows .

void XtSetWMColormapWindows(idget list, coun)

Widgetwidget
Widget* list;
Cardinalcount
widget Specifies the widget on whose window th®_COLORMAP_WINDOWSprop-
erty is stored. Must be of class Core or any subclass thereof.
list Specifies a list of widgets whose windows are potentially to be listed in the
WM_COLORMAP_WINDOWSproperty.
count Specifies the number of widgetslist.

XtSetWMColormapWindows returns immediately ividgetis not realized or i€ountis 0.
Otherwise XtSetWMColormapWindows constructs an ordered list of windows by examining
each widget idist in turn and ignoring the widget if it is not realized, or adding the widget's win-
dow to the window list if the widget is realized and if its colormap resource is different from the
colormap resources of all widgets whose windows are already on the window list.

Finally, XtSetWMColormapWindows stores the resulting window list in the
WM_COLORMAP_WINDOWSproperty on the specified widget’s window. Refer to Section 4.1.8
in thelnter-Client Communication Conventions Maniml details of the semantics of the
WM_COLORMAP_WINDOWSproperty.

210

X Toolkit Intrinsics X11 Release 6

11.11. Finding File Names

The Intrinsics provide procedures to look for a file by name, allowing string substitutions in a list
of file specifications. Two routines are provided for tiit=indFile and XtResolvePathname
XtFindFile uses an arbitrary set of client-specified substitutions XdRésolvePathnameuses

a set of standard substitutions corresponding tXtgen Portability Guidéanguage localiza-

tion conventions. Most applications should dXd¢&esolvePathname

A string substitution is defined by a list 8fibstitution entries.

typedef struct {
char match;
String substitution;
} SubstitutionRec, *Substitution;

File name evaluation is handled in an operating-system-dependent fashioXtbjl@Rredicate
procedure.

typedef Boolean (*XtFilePredicate)(String);
Stringfilename

filename Specifies a potential filename.

A file predicate procedure is called with a string that is potentially a file name. It should return
True if this string specifies a file that is appropriate for the intended usEaselotherwise.

To search for a file using substitutions in a path list XtgéndFile .

String XtFindFilepath substitutionsnum_substitutiongredicatg
String path
Substitutionsubstitutions
Cardinalnum_substitutions
XtFilePredicatepredicate

path Specifies a path of file names, including substitution characters.
substitutions Specifies a list of substitutions to make into the path.
num_substitutionsSpecifies the number of substitutions passed in.

predicate Specifies a procedure called to judge each potential file name, or NULL.

Thepathparameter specifies a string that consists of a series of potential file names delimited by
colons. Within each name, the percent character specifies a string substitution selected by the fol-
lowing character. The character sequence “%:” specifies an embedded colon that is not a delim-
iter; the sequence is replaced by a single colon. The character sequence “%%" specifies a per-
cent character that does not introduce a substitution; the sequence is replaced by a single percent
character. If a percent character is followed by any other charXtkéndFile looks through the
specifiedsubstitutiondor that character in th@atchfield and if found replaces the percent and

match characters with the string in the corresponslifigptitutionfield. A substitutiorfield entry

of NULL is equivalent to a pointer to an empty string. If the operating system does not interpret
multiple embedded name separators in the path (i.e., “/” in POSIX) the same way as a single sep-
arator,XtFindFile will collapse multiple separators into a single one after performing all string
substitutions. Except for collapsing embedded separators, the contents of the string substitutions
are not interpreted b}tFindFile and may therefore contain any operating-system-dependent
characters, including additional name separators. Each resulting string is passed to the predicate
procedure until a string is found for which the procedure reftimns; this string is the return

211

X Toolkit Intrinsics X11 Release 6

value forXtFindFile . If no string yields alrue return from the predicat&tFindFile returns
NULL.

If the predicateparameter is NULL, an internal procedure that checks if the file exists, is read-
able, and is not a directory is used.

It is the responsibility of the caller to free the returned string ustigee when it is no longer
needed.

To search for a file using standard substitutions in a path lisKtissolvePathname

String XtResolvePathnamdigplay, type filename suffix path substitutionsnum_substitutiongpredicatg
Display *display;
Stringtype filename suffix path
Substitutionsubstitutions
Cardinalnum_substitutions
XtFilePredicatepredicate

display Specifies the display to use to find the language for language substitutions.
type

filename

suffix Specify values to substitute into the path.

path Specifies the list of file specifications, or NULL.

substitutions Specifies a list of additional substitutions to make into the path, or NULL.
num_substitutionsSpecifies the number of entriessmbstitutions

predicate Specifies a procedure called to judge each potential file name, or NULL.

The substitutions specified §tResolvePathnameare determined from the value of the lan-

guage string retrieved bytDisplaylnitialize for the specified display. To set the language for

all applications specify “*xnlLanguagéang” in the resource database. The format and content

of the language string are implementation-defined. One suggested syntax is to compose the lan-
guage string of three parts; a “language part”, a “territory part” and a “codeset part”. The
manner in which this composition is accomplished is implementation-defined and the Intrinsics
make no interpretation of the parts other than to use them in substitutions as described below.

XtResolvePathnamecalls XtFindFile with the following substitutions in addition to any passed
by the caller and returns the value returnebyindFile :

%N The value of thélenameparameter, or the application’s class nam#ahames NULL.
%T The value of théypeparameter.

%S The value of theuffixparameter.

%L The language string associated with the specified display.

%l The language part of the display’s language string.

%t The territory part of the display’s language string.

%c The codeset part of the display’s language string.

%C The customization string retrieved from the resource database associaidpidin
%D The value of the implementation-specific default path.

If a path is passed t&§tResolvePathname it is passed along t&tFindFile . If the pathargu-
ment is NULL, the value of thEFILESEARCHPATH environment variable is passed to
XtFindFile . If XFILESEARCHPATH is not defined, an implementation-specific default path is

212

X Toolkit Intrinsics X11 Release 6

used which contains at least 6 entries. These entries must contain the following substitutions:

%C, %N, %S, %T, %L or %C, %N, %S, %T, %I, %t, %c
%C, %N, %S, %T, %l

%C, %N, %S, %T

%N, %S, %T, %L or %N, %S, %T, %l, %t, %c

%N, %S, %T, %l

%N, %S, %T

oukwnpE

The order of these six entries within the path must be as given above. The order and use of sub-
stitutions within a given entry is implementation dependent. If the path begins with a colon, it is
preceded by %N%S. If the path includes two adjacent co¥doN84S is inserted between them.

Thetypeparameter is intended to be a category of files, usually being translated into a directory

in the pathname. Possible values might include “app-defaults”, “help”, and “bitmap”.

Thesuffixparameter is intended to be appended to the file name. Possible values might include
“.txt”, “.dat”, and “.bm”.

A suggested value for the default path on POSIX-based systems is

lusr/lib/X11/%L/%T/%N%C%S:/usr/lib/X11/%I/%T/%N%C%S:\
lusr/lib/X11/%T/%N%C%S:/usr/lib/X11/%L/%T/%N%S:\
lusr/lib/X11/%l/%T/%N%S:/usr/lib/X11/%T/%N%S

Using this example, if the user has specified a language, it is used as a subdirectory of
lusr/lib/X11 that is searched for other files. If the desired file is not found there, the lookup is
tried again using just the language part of the specification. If the file is not there, it is looked for
in /usr/lib/X11. Thetypeparameter is used as a subdirectory of the language directory or of
lusr/lib/X11, andsuffixis appended to the file name.

The %D substitution allows the addition of path elements to the implementation-specific default

path, typically to allow additional directories to be searched without preventing resources in the

system directories from being found. For example, a user installing resource files under a direc-
tory called “ourdir” might setXFILESEARCHPATH to

%D:ourdir/%T/%N%C:ourdir/%T/%N

The customization string is obtained by querying the resource database currently associated with
the display (the database returneddmnGetDatabase) for the resourcapplica-
tion_namecustomization, classpplication_clas€Customization wherapplication_namend
application_classre the values returned bGetApplicationNameAndClass. If no value is

specified in the database, the empty string is used.

It is the responsibility of the caller to free the returned string ustRgee when it is no longer
needed.

11.12. Hooks for External Agents

Applications may register functions which are called at a particular control points in the Intrin-
sics. These functions are intended to be used to provide notification of an “X Toolkit event”, e.g.
widget creation, to an external agent, e.g. an interactive resource editor, drag-and-drop server, or
an aid for physically challenged users. The control points containing such registration hooks are
identified in a “hook registration” object.

213

X Toolkit Intrinsics X11 Release 6

To retrieve the hook registration widget, usiooksOfDisplay.
Widget XtHooksOfDisplaydisplay)

Display *display,
display Specifies the desired display.

The class of this object is a private, implementation-dependent, subcfabgeof. The hook

object has no parent. The resources of this object are the callback lists for hooks, and the read-
only resources for getting a list of parentless shells. All of the callback lists are initially empty.
When a display is closed the hook object associated with it is destroyed.

The following procedures can be called with the hook registration object as an argument:

XtAddCallback , XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks
XtRemoveAllCallbacks, XtCallCallbacks, XtHasCallbacks, XtCallCallbackList

XtClass, XtSuperclass XtlsSubclass XtCheckSubclass XtlsObject, XtlsRectObj,
XtlsWidget, XtisCompaosite, XtlsConstraint , XtlsShell, XtlsOverrideShell,
XtlswWMShell , XtlIsVendorShell, XtisTransientShell, XtisToplevelShell,
XtlsApplicationShell , XtlsSessionShell

XtWidgetToApplicationContext
XtName, XtParent, XtDisplayOfObject, XtScreenOfObject
XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues

11.12.1. Hook Object Resources

The resource names, classes, and representation types that are specified in the hook object
resource list are

Name Class Representation
XtNcreateHook XtCCallback XtRCallback
XtNchangeHook XtCCallback XtRCallback
XtNconfigureHook XtCCallback XtRCallback
XtNgeometryHook XtCCallback XtRCallback
XtNdestroyHook XtCCallback XtRCallback
XtNshells XtCReadOnly XtRWidgetList
XtNnumShells XtCReadOnly XtRCardinal

Descriptions of each of these resources:

The XtNcreateHook callback list is called froXtCreateWidget, XtCreateManagedWidget,
XtCreatePopupShell, XtAppCreateShell, and their corresponding varargs versions.

Thecall_dataparameter in a createHook callback may be cast toXypeeateHookData.

typedef struct {
String type;
Widget widget;
ArglList args;

214

X Toolkit Intrinsics X11 Release 6

Cardinal num_args;
} XtCreateHookDataRec, *XtCreateHookData;

Thetypeis set toXtHcreate, widgetis the newly created widgetrgsandnum_argsare the
arguments passed to the create function. The callbacks are called before returning from the the
create function.

The XtNchangeHook callback list is called from:
XtSetValues, XtVaSetValues
XtManageChild, XtManageChildren, XtUnmanageChild, XtUnmanageChildren
XtRealizeWidget, XtUnrealizeWidget

XtAddCallback , XtRemoveCallback, XtAddCallbacks, XtRemoveCallbacks
XtRemoveAllCallbacks

XtAugmentTranslations, XtOverrideTranslations, XtUninstallTranslations
XtSetKeyboardFocus XtSetWMColormapWindows
XtSetMappedWhenManaged XtMapWidget , XtUnmapWidget

XtPopup, XtPopupSpringLoaded, XtPopdown

Thecall_dataparameter in a changeHook callback may be cast toXy@kangeHookData.

typedef struct {
String type;
Widget widget;
XtPointer event_data;
Cardinal num_event_data;
} XtChangeHookDataRec, *XtChangeHookData;

When the changeHook callbacks are called as a result of a ¥a$éd\Valuesor
XtVaSetValues, typeis set toXtHsetValues, widgetis the new widget passed to the set_values
procedure, andvent_datanay be cast to typEtChangeHookSetValuesData

typedef struct {
Widget old, req;
ArgList args;
Cardinal num_args;
} XtChangeHookSetValuesDataRec, *XtChangeHookSetValuesData;

Theold, req, args andnum_argsare the parameters passed to the set_values procedure. The call-
backs are called after the set_values and constraint set_values procedures have been called.

When the changeHook callbacks are called as a result of a ¥aMemageChild or
XtManageChildren, typeis set toXtHmanageChildren, widgetis the parentevent_datanay
be cast to type WidgetList and is the list of children being manageduamdevent dati the
length of the widget list. The callbacks are called after the children have been managed.

When the changeHook callbacks are called as a result of a &altmanageChild or
XtUnmanageChildren, typeis set toXtHunmanageChildren, widgetis the parentevent_data
may be cast to type WidgetList and is a list of the children being unmanaged, and
num_event_dats the length of the widget list. The callbacks are called after the children have

215

X Toolkit Intrinsics X11 Release 6

been unmanaged.

The changeHook callbacks are called twice as a result of a ¢&lCttangeManagedSetonce

after unmanaging and again after managing. When the callbacks are called the fiygidime

set toXtHunmanageSet widgetis the parentevent_datanay be cast to type WidgetList and is

a list of the children being unmanaged, andn_event_dats the length of the widget list.

When the callbacks are called the second timeyghess set toXtHmanageSet widgetis the
parentevent_datanay be cast to type WidgetList and is a list of the children being managed, and
num_event_dats the length of the widget list.

When the changeHook callbacks are called as a result of a ¥daRéalizeWidget Thetypeis
set toXtHrealizeWidget andwidgetis the widget being realized. The callbacks are called after
the widget has been realized.

When the changeHook callbacks are called as a result of a ¥dlltwealizeWidget thetypeis
set toXtHunrealizeWidget andwidgetis the widget being unrealized. The callbacks are called
after the widget has been unrealized.

When the changeHook callbacks are called as a result of a &aldaCallback , typeis set to
XtHaddCallback , widgetis the widget to which the callback is being added,emsaht_data

may be cast to type String and is the name of the callback being added. The callbacks are called
after the callback has been added to the widget.

When the changeHook callbacks are called as a result of a ¥aidalCallbacks thetypeis set

to XtHaddCallbacks, widgetis the widget to which the callbacks are being added, and
event_datanay be cast to type String and is the name of the callbacks being added. The call-
backs are called after the callbacks have been added to the widget.

When the changeHook callbacks are called as a result of a ¥dRé&moveCallback thetypeis

set toXtHremoveCallback, widgetis the widget from which the callback is being removed, and
event_datanay be cast to type String and is the name of the callback being removed. The call-
backs are called after the callback has been removed from the widget.

When the changeHook callbacks are called as a result of a ZdRémoveCallbacks thetype

is set toXtHremoveCallbacks, widgetis the widget from which the callbacks are being
removed, anévent_datamay be cast to type String and is the name of the callbacks being
removed. The callbacks are called after the callbacks have been removed from the widget.

When the changeHook callbacks are called as a result of a d@aRé&moveAllCallbacks the
typeis set toXtHremoveAllCallbacks andwidgetis the widget from which the callbacks are
being removed. The callbacks are called after the callbacks have been removed from the widget.

When the changeHook callbacks are called as a result of a daltgmentTranslations the
typeis set toXtHaugmentTranslations andwidgetis the widget whose translations are being
modified. The callbacks are called after the widget’s translations have been modified.

When the changeHook callbacks are called as a result of a ¥at@rrideTranslations the
typeis set toXtHoverrideTranslations andwidgetis the widget whose translations are being
modified. The callbacks are called after the widget’s translations have been modified.

When the changeHook callbacks are called as a result of a éalinstallTranslations The
typeis XtHuninstallTranslations andwidgetis the widget whose translations are being unin-
stalled. The callbacks are called after the widget’s translations have been uninstalled.

When the changeHook callbacks are called as a result of a #aB¢tkeyboardFocusthetype

is set toXtHsetKeyboardFocusandevent_datanay be cast to type Widget and is the value of
the descendant argument passedt®etkKeyboardFocus The callbacks are called before return-
ing from XtSetKeyboardFocus

216

X Toolkit Intrinsics X11 Release 6

When the changeHook callbacks are called as a result of a call to
XtSetWMColormapWindows, typeis set toXtHsetWMColormapWindows , event_datanay

be cast to type WidgetList and is the value of the list argument pasitsetyVMColormap-
Windows, andnum_event_dats the length of the list. The callbacks are called before returning
from XtSetWMColormapWindows.

When the changeHook callbacks are called as a result of a Za$¢dtMappedWhenManaged

typeis set toXtHsetMappedWhenManagedandevent_datanay be cast to type Boolean and is

the value of the mapped_when_managed argument passtgetdappedWhenManaged

The callbacks are called after setting the widget's mapped_when_managed field and before realiz-
ing or unrealizing the widget.

When the changeHook callbacks are called as a result of a ¥aNispWidget type is set to
XtHmapWidget andwidgetis the widget being mapped. The callbacks are called after mapping
the widget.

When the changeHook callbacks are called as a result of a ZallkonapWidget type is set to
XtHunmapWidget andwidgetis the widget being unmapped. The callbacks are called after
unmapping the widget.

When the changeHook callbacks are called as a result of a dé@RPopup, typeis set to
XtHpopup , widgetis the widget being popped up, aakent_datanay be cast to type
XtGrabKind and is the value of the grab_kind argument pass¢tPapup. The callbacks are
called before returning frondtPopup.

When the changeHook callbacks are called as a result of a ¥aPopupSpringLoaded, type
is set toXtHpopupSpringLoaded andwidgetis the widget being popped up. The callbacks are
called before returning frondtPopupSpringLoaded.

When the changeHook callbacks are called as a result of a &aRPépdown, typeis set to
XtHpopdown andwidgetis the widget being popped down. The callbacks are called before
returning fromXtPopdown.

A widget set which exports interfaces which change application state without employing the
Intrinsics library should invoke the change hook itself. This is done by:

XtCallCallbacks(XtHooksOfDisplay(dpy), XtNchangeHook, call_data);

The XtNconfigureHook callback list is called any time the Intrinsics move, resize, or configure a
widget, and wherXtResizeWindow is called.

Thecall_dataparameter may be cast to tyeConfigureHookData.

typedef struct {
String type;
Widget widget;
XtGeometryMask changeMask;
XWindowChanges changes;
} XtConfigureHookDataRec, *XtConfigureHookData;

When the configureHook callbacks are calledtyfpeis XtHconfigure, widgetis the widget
being configuredzchangeMaslandchangegseflect the changes made to the widget. The callbacks
are called after changes have been made to the widget.

217

X Toolkit Intrinsics X11 Release 6

The XtNgeometryHook callback list is called frottMakeGeometryRequestand XtMakeRe-
sizeRequesbnce before and once after geometry negotiation occurs.

Thecall _dataparameter may be cast to tyggGeometryHookData.

typedef struct {
String type;
Widget widget;
XtWidgetGeometry* request;
XtWidgetGeometry* reply;
XtGeometryResult result;

} XtGeometryHookDataRec, *XtGeometryHookData;

When the geometryHook callbacks are called prior to geometry negotigipers

XtHpreGeometry, widgetis the widget for which the request is being made raqdests the
requested geometry. When the geometryHook callbacks are called after geometry negotiation,
typeis XtHpostGeometry, widgetis the widget for which the request was madquests the
requested geometmeplyis the resulting geometry granted, aadultis the value returned from

the geometry negotiation.

The XtNdestroyHook callback list is called when a widget is destroyed calhelata parameter
may be cast to typgtDestroyHookData.

typedef struct {
String type;
Widget widget;
} XtDestroyHookDataRec, *XtDestroyHookData;

When the destroyHook callbacks are called as a result of a ¢éD&EstroyWidget, typeis
XtHdestroy andwidgetis the widget being destroyed. The callbacks are called upon completion
of phase one destroy for a widget.

The XtNshells and XtnumShells are read-only resources which report a list of all parentless shell
widgets associated with a display.

Clients who use these hooks must exercise caution in calling Intrinsics functions in order to avoid
recursion.

11.12.2. Querying Open Displays
To retrieve a list of the Displays associated with an application contexXXtGstDisplays.

void XtGetDisplaysdpp_contextdpy_return num_dpy_returh
XtAppContextapp_context
Display ***dpy_return
Cardinal "num_dpy_return

app_context Specifies the application context.
dpy_return Returns a list of open Display connections in the specified application
context.

218

X Toolkit Intrinsics X11 Release 6

num_dpy_return Returns the count of open Display connectiordpy_return

XtGetDisplays may be used by an external agent to query the list of open displays that belong to
an application context. To free the list of displays, Xi#eree.

219

X Toolkit Intrinsics X11 Release 6

Chapter 12

Nonwidget Objects

Although widget writers are free to treat Core as the base class of the widget hierarchy, there are
actually three classes@leit. These classes are Object, RectObj, (Rectangle Object) and
(unnamedland members of these classes are referred to genericaltjeats By convention,

the termwidgetrefers only to objects that are a subclass of Core, and thatennidgetrefers to

objects that are not a subclass of Core. In the preceding portion of this specification, the interface
descriptions indicate explicitly whether the genendgetargument is restricted to particular
subclasses of Object. Sections 12.2.5, 12.3.5, and 12.5 summarize the permissible classes of the
arguments to, and return values from, each of the Intrinsics routines.

12.1. Data Structures

In order not to conflict with previous widget code, the data structures used by nonwidget objects
do not follow all the same conventions as those for widgets. In particular, the class records are
not composed of parts but instead are complete data structures with filler for the widget fields
they do not use. This allows the static class initializers for existing widgets to remain unchanged.

12.2. Object Objects

The Object object contains the definitions of fields common to all objects. It encapsulates the
mechanisms for resource management. All objects and widgets are members of subclasses of
Object, which is defined by thHebjectClassPart and ObjectPart structures.

12.2.1. ObjectClassPart Structure

The common fields for all object classes are defined i®thjectClassPart structure. All fields
have the same purpose, function, and restrictions as the corresponding f&ids@tassPart,
fields whose names are olipr some integen are not used for Object, but exist to pad the data
structure so that it matches Core’s class record. The class record initialization must fitl all obj
fields with NULL or zero as appropriate to the type.

typedef struct _ObjectClassPart {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part_initialize;
XtEnum class_inited;
XtInitProc initialize;
XtArgsProc initialize_hook;
XtProc obj1;

220

X Toolkit Intrinsics

XtPointer obj2;
Cardinal obj3;
XtResourcelist resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean obj4;
XtEnum obj5;
Boolean obj6;
Boolean obj7;
XtWidgetProc destroy;
XtProc obj8;
XtProc obj9;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtProc obj10;
XtArgsProc get_values_hook;
XtProc objl11;
XtVersionType version;
XtPointer callback_private;
String obj12;
XtProc obj13;
XtProc objl14;
XtPointer extension;

} ObjectClassPart;

X11 Release 6

The extension record defined fObjectClassPart with arecord_typesqual toNULLQUARK is

ObjectClassExtensionRec

typedef struct {
XtPointer next_extension; See Section 1.6.12
XrmQuark record_type; See Section 1.6.12
long version; See Section 1.6.12
Cardinal record_size; See Section 1.6.12
XtAllocateProc allocate; See Section 2.5.5.
XtDeallocateProc deallocate; See Section 2.8.4.

} ObjectClassExtensionRec, *ObjectClassExtension;

The prototypicalObjectClass consists of just th®bjectClassPart

typedef struct _ObjectClassRec {
ObjectClassPart object_class;
} ObjectClassRec, *ObjectClass;

The predefined class record and pointerQ@bjectClassRecare
In IntrinsicP.h :

extern ObjectClassRec objectClassRec;

In Intrinsic.h :

221

X Toolkit Intrinsics X11 Release 6

extern WidgetClass objectClass;

The opaque type®bject and ObjectClassand the opaque variabtibjectClassare defined for
generic actions on objects. The symbolic constant foOihjectClassExtensionversion identi-
fier is XtObjectExtensionVersion (see Section 1.6.12)ntrinsic.h uses an incomplete structure
definition to ensure that the compiler catches attempts to access private data:

typedef struct _ObjectClassRec* ObjectClass;

12.2.2. ObjectPart Structure

The common fields for all object instances are defined i®thectPart structure. All fields
have the same meaning as the corresponding fieldenePart.

typedef struct _ObjectPart {
Widget self;
WidgetClass widget_class;
Widget parent;
Boolean being_destroyed;
XtCallbackList destroy_callbacks;
XtPointer constraints;

} ObjectPart;

All object instances have the Obiject fields as their first component. The prototypicaldjgut
is defined with only this set of fields. Various routines can cast object pointers, as needed, to spe-
cific object types.

In IntrinsicP.h :

typedef struct _ObjectRec {
ObjectPart object;

} ObjectRec, *Obiject;

In Intrinsic.h :

typedef struct _ObjectRec *Object;

12.2.3. Object Resources

The resource names, classes, and representation types specifienbije¢t@lassRecresource
list are

Name Class Representation

XtNdestroyCallback XtCCallback XtRCallback

222

X Toolkit Intrinsics X11 Release 6

12.2.4. ObjectPart Default Values
All fields in ObjectPart have the same default values as the corresponding fieQsré@Part.

12.2.5. Object Arguments To Intrinsics Routines
The WidgetClass arguments to the following procedures mapjeetClassor any subclass:

XtInitializeWidgetClass, XtCreateWidget, XtVaCreateWidget
XtlsSubclass XtCheckSubclass
XtGetResourcelList, XtGetConstraintResourceList

The Widget arguments to the following procedures may be of class Object or any subclass:

XtCreateWidget, XtVaCreateWidget

XtAddCallback , XtAddCallbacks, XtRemoveCallback, XtRemoveCallbacks
XtRemoveAllCallbacks, XtCallCallbacks, XtHasCallbacks, XtCallCallbackList

XtClass, XtSuperclass XtlsSubclass XtCheckSubclass XtlsObject, XtlsRectObj,
XtlsWidget, XtisCompaosite, XtlsConstraint , XtisShell, XtlsOverrideShell,
XtiswWMShell , XtlIsVendorShell, XtisTransientShell, XtisToplevelShell,
XtlsApplicationShell , XtlsSessionShell

XtlsManaged, XtlsSensitive
(both will returnFalseif argument is not a subclass of RectObj)

XtlsRealized
(returns the state of the nearest windowed ancestor if class of argument is not a subclass of
Core)

XtwWidgetToApplicationContext

XtDestroyWidget

XtParent, XtDisplayOfObject, XtScreenOfObject, XtWindowOfObject
XtSetKeyboardFocus(descendant)

XtGetGC, XtReleaseGC

XtName

XtSetValues, XtGetValues, XtVaSetValues, XtVaGetValues

XtGetSubresources XtGetApplicationResources XtVaGetSubresources XtVaGe-
tApplicationResources

XtConvert, XtConvertAndStore

The return value of the following procedures will be of class Object or a subclass:

XtCreateWidget, XtVaCreateWidget
XtParent
XtNameToWidget

223

X Toolkit Intrinsics X11 Release 6

The return value of the following procedures willdigectClassor a subclass:

XtClass, XtSuperclass

12.2.6. Use of Objects

The Object class exists to enable programmers to use the Intrinsics’ classing and resource-
handling mechanisms for things smaller and simpler than widgets. Objects make obsolete many
common uses of subresources as described in sections 9.4, 9.7.2.4, and 9.7.2.5.

Composite widget classes that wish to accept nonwidget children must aeteépes _objects
field in theCompositeClassExtensiorstructure toTrue. XtCreateWidget will otherwise gen-
erate an error message on an attempt to create a nonwidget child.

Of the classes defined by the Intrinsics, ApplicationShell and SessionShell accept nonwidget chil-
dren, and the class of any nonwidget child must naebtObjClass or any subclass. The intent

of allowing Obiject children of ApplicationShell and SessionShell is to provide clients a simple
mechanism for establishing the resource-naming root of an object hierarchy.

12.3. Rectangle Objects

The class of rectangle objects is a subclass of Object that represents rectangular areas. It encap-
sulates the mechanisms for geometry management, and is called RectObj to avoid conflict with
the Xlib Rectangledata type.

12.3.1. RectObjClassPart Structure

As with theObjectClassPart structure, all fields in thRectObjClassPart structure have the
same purpose and function as the corresponding fieldsreClassPart, fields whose names are
recin for some integen are not used for RectObj but exist to pad the data structure so that it
matches Core’s class record. The class record initialization must fill adlfrelcks with NULL

or zero as appropriate to the type.

typedef struct _RectObjClassPart {
WidgetClass superclass;
String class_name;
Cardinal widget_size;
XtProc class_initialize;
XtWidgetClassProc class_part_initialize;
XtEnum class_inited;
XtlnitProc initialize;
XtArgsProc initialize_hook;
XtProc rectl,;
XtPointer rect2;
Cardinal rect3;
XtResourcelList resources;
Cardinal num_resources;
XrmClass xrm_class;
Boolean rect4;
XtEnum rect5;
Boolean rect6;

224

X Toolkit Intrinsics X11 Release 6

Boolean rect7;
XtWidgetProc destroy;
XtWidgetProc resize;
XtExposeProc expose;
XtSetValuesFunc set_values;
XtArgsFunc set_values_hook;
XtAlmostProc set_values_almost;
XtArgsProc get_values_hook;
XtProc rect9;
XtVersionType version;
XtPointer callback_private;
String rect10;
XtGeometryHandler query_geometry;
XtProc rectl1;
XtPointer extension ;

} RectObjClassPart;

The RectObj class record consists of justReetObjClassPart.

typedef struct _RectObjClassRec {
RectObjClassPart rect_class;
} RectObjClassRec, *RectObjClass;

The predefined class record and pointerectObjClassRecare
In Intrinsic.h :

extern RectObjClassRec rectObjClassRec;

In Intrinsic.h :

extern WidgetClass rectObjClass;

The opaque typeRectObj and RectObjClassand the opaque variabfectObjClass are

defined for generic actions on objects whose class is RectObj or a subclass of Rettidbj.

sic.h uses an incomplete structure definition to ensure that the compiler catches attempts to access
private data:

typedef struct _RectObjClassRec* RectObjClass;

12.3.2. RectObjPart Structure

In addition to theDbjectPart fields, RectObj objects have the following fields defined in the
RectObjPart structure. All fields have the same meaning as the corresponding field in
CorePart.

typedef struct _RectObjPart {
Position x, y;
Dimension width, height;
Dimension border_width;
Boolean managed,;
Boolean sensitive;
Boolean ancestor_sensitive;

225

X Toolkit Intrinsics X11 Release 6

} RectObjPart;
RectObj objects have the RectObj fields immediately following the Obiject fields.

typedef struct _RectObjRec {
ObjectPart object;
RectObjPart rectangle;
} RectObjRec, *RectObj;

In Intrinsic.h :

typedef struct _RectObjRec* RectObj;

12.3.3. RectObj Resources

The resource names, classes, and representation types that are specifiesti@tjelassRec
resource list are

Name Class Representation
XtNancestorSensitive XtCSensitive XtRBoolean
XtNborderWidth XtCBorderWidth XtRDimension
XtNheight XtCHeight XtRDimension
XtNsensitive XtCSensitive XtRBoolean
XtNwidth XtCWidth XtRDimension
XtNx XtCPosition XtRPosition
XtNy XtCPosition XtRPosition

12.3.4. RectObjPart Default Values
All fields in RectObjPart have the same default values as the corresponding fieGCtzr@Part.

12.3.5. Widget Arguments To Intrinsics Routines
The WidgetClass arguments to the following procedures magdb®bjClass or any subclass:

XtCreateManagedWidget, XtVaCreateManagedWidget
The Widget arguments to the following procedures may be of class RectObj or any subclass:

XtConfigureWidget, XtMoveWidget, XtResizeWidget
XtMakeGeometryRequest XtMakeResizeRequest

XtManageChildren, XtManageChild, XtUnmanageChildren, XtUnmanageChild,
XtChangeManagedSet

XtQueryGeometry
XtSetSensitive

226

X Toolkit Intrinsics X11 Release 6

XtTranslateCoords
The return value of the following procedures will be of class RectObj or a subclass:

XtCreateManagedWidget, XtVaCreateManagedWidget

12.3.6. Use of Rectangle Obijects

RectObj can be subclassed to provide widgetlike objects (sometimes called gadgets) that do not
use windows and do not have features often unused in simple widgets. This can save memory
resources both in the server and in applications but requires additional support code in the parent.
In the following discussiongectobjrefers only to objects whose class is RectObj or a subclass of
RectObj but not Core or a subclass of Core.

Composite widget classes that wish to accept rectobj children must aetémts_objecteld

in the CompositeClassExtensiorextension structure tdrue. XtCreateWidget or XtCreate-
ManagedWidget will otherwise generate an error if called to create a nonwidget child. If the
composite widget supports only children of class RectObj or a subclass (i.e., not of the general
Object class), it must declare an insert_child procedure and check the subclass of each new child
in that procedure. None of the classes defined by the Intrinsics accept rectobj children.

If gadgets are defined in an object set, the parent is responsible for much more than the parent of a
widget. The parent must request and handle input events that occur for the gadget and is respon-
sible for making sure that when it receives an exposure event the gadget children get drawn cor-
rectly. Rectobj children may have expose procedures specified in their class records, but the par-
ent is free to ignore them, instead drawing the contents of the child itself. This can potentially

save graphics context switching. The precise contents of the exposure event and region argu-
ments to the RectObj expose procedure are not specified by the Intrinsics; a particular rectangle
object is free to define the coordinate system origin (self-relative or parent-relative) and whether

or not the rectangle or region is assumed to have been intersected with the visible region of the
object.

In general, it is expected that a composite widget that accepts nonwidget children will document
those children it is able to handle, since a gadget cannot be viewed as a completely self-contained
entity, as can a widget. Since a particular composite widget class is usually designed to handle
nonwidget children of only a limited set of classes, it should check the classes of newly added
children in its insert_child procedure to make sure that it can deal with them.

The Intrinsics will clear areas of a parent window obscured by rectobj children, causing exposure
events, under the following circumstances:

. A rectobj child is managed or unmanaged.

. In a call to XtSetValueson a rectobj child, one or more of the set_values procedures
returnsTrue.

. In a call to XtConfigureWidget on a rectobj child, areas will be cleared corresponding to
both the old and the new child geometries, including the border, if the geometry changes.

. In a call toXtMoveWidget on a rectobj child, areas will be cleared corresponding to both

the old and the new child geometries, including the border, if the geometry changes.

. In a call to XtResizeWidgeton a rectobj child, an single rectangle will be cleared corre-
sponding to the larger of the old and the new child geometries if they are different.

227

X Toolkit Intrinsics X11 Release 6

. In a call to XtMakeGeometryRequest(or XtMakeResizeRequeston a rectobj child
with XtQueryOnly not set, if the manager returk$GeometryYes, two rectangles will be
cleared corresponding to both the old and the new child geometries.

Stacking order is not supported for rectobj children. Composite widgets with rectobj children are
free to define any semantics desired if the child geometries overlap, including making this an
error.

When a rectobj is playing the role of a widget, developers must be reminded to avoid making
assumptions about the object passed in the Widget argument to a callback procedure.

12.4. Undeclared Class

The Intrinsics define an unnamed class between RectObj and Core for possible future use by the
X Consortium. The only assumptions that may be made about the unnamed class are

. thecore_class.superclagield of coreWidgetClassReacontains a pointer to the unnamed
class record.

. a pointer to the unnamed class record when dereferencedigjentClasswill contain a
pointer torectObjClassRecin its object_class.superclasigld.

Except for the above, the contents of the class record for this class and the result of an attempt to
subclass or to create a widget of this unnamed class are undefined.

12.5. Widget Arguments To Intrinsics Routines
The WidgetClass arguments to the following procedures must be of class Shell or a subclass:

XtCreatePopupShell, XtVaCreatePopupShell, XtAppCreateShell,
XtVaAppCreateShell, XtOpenApplication , XtVaOpenApplication

The Widget arguments to the following procedures must be of class Core or any subclass:

XtCreatePopupShell, XtVaCreatePopupShell

XtAddEventHandler , XtAddRawEventHandler , XtRemoveEventHandler,
XtRemoveRawEventHandler, XtinsertEventHandler , XtinsertRawEventHandler
XtinsertEventTypeHandler , XtRemoveEventTypeHandler,

XtRegisterDrawable XtDispatchEventToWidget

XtAddGrab , XtRemoveGrab, XtGrabKey , XtGrabKeyboard , XtUngrabKey,
XtUngrabKeyboard , XtGrabButton , XtGrabPointer , XtUngrabButton ,
XtUngrabPointer

XtBuildEventMask
XtCreateWindow, XtDisplay, XtScreen, XtWindow
XtNameToWidget

XtGetSelectionValug XtGetSelectionValues XtOwnSelection, XtDisownSelection
XtOwnSelectionincremental, XtGetSelectionValuelncremental
XtGetSelectionValuesincremental

XtGetSelectionRequest

228

X Toolkit Intrinsics X11 Release 6

XtinstallAccelerators, XtinstallAllAccelerators (both destination and source)

XtAugmentTranslations, XtOverrideTranslations, XtUninstallTranslations,
XtCallActionProc

XtMapWidget , XtUnmapWidget

XtRealizeWidget, XtUnrealizeWidget
XtSetMappedWhenManaged

XtCallAcceptFocus, XtSetKeyboardFocus(subtree)
XtResizeWindow

XtSetWMColormapWindows

The Widget arguments to the following procedures must be of class Composite or any subclass:
XtCreateManagedWidget, XtVaCreateManagedWidget
The Widget arguments to the following procedures must be of a subclass of Shell:

XtPopdown, XtCallbackPopdown, XtPopup, XtCallbackNone,
XtCallbackNonexclusive, XtCallbackExclusive, XtPopupSpringLoaded

The return value of the following procedure will be of class Core or a subclass:
XtWindowToWidget
The return value of the following procedures will be of a subclass of Shell :

XtAppCreateShell, XtVaAppCreateShell, XtApplnitialize , XtVaApplnitialize ,
XtCreatePopupShell, XtVaCreatePopupShell

229

X Toolkit Intrinsics X11 Release 6

Chapter 13

Evolution of The Intrinsics

The interfaces described by this specification have undergone several sets of revisions in the
course of adoption as an X Consortium standard specification. Having now been adopted by the
Consortium as a standard part of the X Window System, it is expected that this and future revi-
sions will retain backward compatibility in the sense that fully conforming implementations of
these specifications may be produced that provide source compatibility with widgets and applica-
tions written to previous Consortium standard revisions.

The Intrinsics do not place any special requirement on widget programmers to retain source or
binary compatibility for their widgets as they evolve, but several conventions have been estab-
lished to assist those developers who want to provide such compatibility.

In particular, widget programmers may wish to conform to the convention described in Section
1.6.12 when defining class extension records.

13.1. Determining Specification Revision Level

Widget and application developers who wish to maintain a common source pool that will build
properly with implementations of the Intrinsics at different revision levels of these specifications
but that take advantage of newer features added in later revisions may use the symbolic macro
XtSpecificationRelease

#define XtSpecificationRelease 6

As the symbolXtSpecificationReleasevas new to Release 4, widgets and applications desiring
to build against earlier implementations should test for the presence of this symbol and assume
only Release 3 interfaces if the definition is not present.

13.2. Release 3 to Release 4 Compatibility

At the data structure level, Release 4 retains binary compatibility with Release 3 (the first X Con-
sortium standard release) for all data structures extdp$hellPart, TopLevelShellPart, and
TransientShellPart. Release 4 changed the argument type to most procedures that now take
arguments of typ&tPointer and structure members that are now of tygRointer in order to

avoid potential ANSI C conformance problems. It is expected that most implementations will be
binary compatible with the previous definition.

Two fields inCoreClassPartwere changed frorBooleanto XtEnum to allow implementations
additional freedom in specifying the representations of each. This change should require no
source modification.

13.2.1. Additional Arguments

Arguments were added to the procedure definitionXftmitProc , XtSetValuesFung and
XtEventHandler to provide more information and to allow event handlers to abort further

230

X Toolkit Intrinsics X11 Release 6

dispatching of the current event (caution is advised!). The added argum#tiisiteroc and
XtSetValuesFuncmake the initialize_hook and set_values_hook methods obsolete, but the
hooks have been retained for those widgets that used them in Release 3.

13.2.2. set values_almost Procedures

The use of the arguments by a set_values_almost procedure was poorly described in Release 3
and was inconsistent with other conventions.

The current specification for the manner in which a set_values_almost procedure returns informa-
tion to the Intrinsics is not compatible with the Release 3 specification, and all widget implemen-
tations should verify that any set_values_almost procedures conform to the current interface.

No known implementation of the Intrinsics correctly implemented the Release 3 interface, so it is
expected that the impact of this specification change is small.

13.2.3. Query Geometry

A composite widget layout routine that cal$QueryGeometry is now expected to store the
complete new geometry in the intended structure; previously the specification said “store the
changes it intends to make”. Only by storing the complete geometry does the child have any way
to know what other parts of the geometry may still be flexible. Existing widgets should not be
affected by this, except to take advantage of the new information.

13.2.4. unrealizeCallback Callback List

In order to provide a mechanism for widgets to be notified when they become unrealized through
a call toXtUnrealizeWidget, the callback list name “unrealizeCallback” has been defined by

the Intrinsics. A widget class that requires notification on unrealize may declare a callback list
resource by this name. No class is required to declare this resource, but any class that did so in a
prior revision may find it necessary to modify the resource name if it does not wish to use the new
semantics.

13.2.5. Subclasses of WMShell

The formal adoption of thimter-Client Communication Conventions Manaalan X Consortium
standard has meant the addition of four fieldg/fidShellPart and one field to

TopLevelShellPart. In deference to some widget libraries that had developed their own addi-
tional conventions to provide binary compatibility, these five new fields were added at the end of
the respective data structures.

To provide more convenience for TransientShells, a field was added to the previously empty
TransientShellPart. On some architectures the size of the part structure will not have changed
as a result of this.

Any widget implementation whose class is a subclass of TopLevelShell or TransientShell must at
minimum be recompiled with the new data structure declarations. Be@adShellPart no

longer contains a contiguod&SizeHints data structure, a subclass that expected to do a single
structure assignment of atSizeHints structure to thaize_hintdield of WMShellPart must be
revised, though the old fields remain at the same positions WitM&hellPart .

231

X Toolkit Intrinsics X11 Release 6

13.2.6. Resource Type Converters

A new interface declaration for resource type converters was defined to provide more information
to converters, to support conversion cache cleanup with resource reference counting, and to allow
additional procedures to be declared to free resources. The old interfaces remain (in the compati-
bility section) and a new set of procedures was defined that work only with the new type con-
verter interface.

In the now obsolete old type converter interface, converters are reminded that they must return the
size of the converted value as well as its address. The example indicated this, but the description
of XtConverter was incomplete.

13.2.7. KeySym Case Conversion Procedure

The specification for th&tCaseProcfunction type has been changed to match the Release 3
implementation, which included necessary additional information required by the function (a
pointer to the display connection), and corrects the argument type of the source KeySym parame-
ter. No known implementation of the Intrinsics implemented the previously documented inter-
face.

13.2.8. Nonwidget Objects

Formal support for nonwidget objects is new to Release 4. A prototype implementation was

latent in at least one Release 3 implementation of the Intrinsics, but the specification has changed
somewhat. The most significant change is the requirement for a composite widget to declare the
CompositeClassExtensiomecord with theaccepts_objecteld set toTrue in order to permit a

client to create a nonwidget child.

The addition of this extension field ensures that composite widgets written under Release 3 will
not encounter unexpected errors if an application attempts to create a nonwidget child. In Release
4 there is no requirement that all composite widgets implement the extra functionality required to
manage windowless children, so Herept_objectfield allows a composite widget to declare

that it is not prepared to do so.

13.3. Release 4 to Release 5 Compatibility

At the data structure level, Release 5 retains complete binary compatibility with release 4. The
specification of thé@bjectPart, RectObjPart, CorePart, CompositePart, ShellPart,
WMShellPart, TopLevelShellPart, and ApplicationShellPart instance records was made less
strict to permit implementations to add internal fields to these structures. Any implementation
that chooses to do so would, of course, force a recompilation. The Xlib specificatinmfor

Value and XrmOptionDescRecwas updated to use a new typdointer, for theaddrand
valuefields respectively, to avoid ANSI C conformance problems. The definitidgiiPofnter is
binary compatible with the previous implementation.

13.3.1. baseTranslations Resource

A new pseudo-resource, XtNbaseTranslations, was defined to permit application developers to
specify translation tables in application defaults files while still giving end users the ability to
augment or override individual event sequences. This change will affect only those applications

232

X Toolkit Intrinsics X11 Release 6

that wish to take advantage of the new functionality, or those widgets that may have previously
defined a resource named “baseTranslations”.

Applications wishing to take advantage of the new functionality would change their application
defaults file, e.g., from

app.widget.translationsalue
to
app.widget.baseTranslationslue

If it is important to the application to preserve complete compatibility of the defaults file between
different versions of the application running under Release 4 and Release 5, the full translations
can be replicated in both the “translations” and the “baseTranslations” resource.

13.3.2. Resource File Search Path

The current specification allows implementations greater flexibility in defining the directory struc-
ture used to hold the application class and per-user application defaults files. Previous specifica-
tions required the substitution strings to appear in the default path in a certain order, preventing
sites from collecting all the files for a specific application together in one directory. The Release
5 specification allows the default path to specify the substitution strings in any order within a sin-
gle path entry. Users will need to pay close attention to the documentation for the specific imple-
mentation to know where to find these files and how to specify theidditESEARCH-

PATH and XUSERFILESEARCHPATH values when overriding the system defaults.

13.3.3. Customization Resource

XtResolvePathnamesupports a new substitution string, %C, for specifying separate application
class resource files according to arbitrary user-specified categories. The primary motivation for
this addition was separate monochrome and color application class defaults files. The substitution
value is obtained by querying the current resource database for the application resource name
“customization”, class “Customization”. Any application that previously used this resource

name and class will need to be aware of the possibly conflicting semantics.

13.3.4. Per-Screen Resource Database

To allow a user to specify separate preferences for each screen of a display, a per-screen resource
specification string has been added and multiple resource databases are created; one for each
screen. This will affect any application that modified the (formerly unique) resource database
associated with the display subsequent to the Intrinsics database initialization. Such applications
will need to be aware of the particular screen on which each shell widget is to be created.

Although the wording of the specification changed substantially in the description of the process
by which the resource database(s) is initialized, the net effect is the same as in prior releases with
the exception of the added per-screen resource specification and the new customization substitu-
tion string inXtResolvePathname

233

X Toolkit Intrinsics X11 Release 6

13.3.5. Internationalization of Applications

Internationalization as defined by ANSI is a technology that allows support of an application in a
single locale. In adding support for internationalization to the Intrinsics the restrictions of this
model have been followed. In particular, the new Intrinsics interfaces are designed to not pre-
clude an application from using other alternatives. For this reason, no Intrinsics routine makes a
call to establish the locale. However, a convenience routine to establish the locale at initialize
time has been provided, in the form of a default procedure that must be explicitly installed if the
application desires ANSI C locale behavior.

As many objects in X, particularly resource databases, now inherit the global locale when they are
created, applications wishing to use the ANSI C locale model should use the new fXu8gon
LanguageProcto do so.

The internationalization additions also define event filters as a part of the Xlib Input Method spec-
ifications. The Intrinsics enable the use of event filters through additiott®ispatchEvent.
Applications that may not be dispatching all events throdifispatchEvent should be

reviewed in the context of this new input method mechanism.

In order to permit internationalization of error messages the name and path of the error database
file is now allowed to be implementation dependent. No adequate standard mechanism has yet
been suggested to allow the Intrinsics to locate the database from localization information sup-
plied by the client.

The previous specification for the syntax of the language string specifiadlianguage has
been dropped to avoid potential conflicts with other standards. The language string syntax is now
implementation-defined. The example syntax cited is consistent with the previous specification.

13.3.6. Permanently Allocated Strings

In order to permit additional memory savings, an Xlib interface was added to allow the resource
manager to avoid copying certain string constants. The Intrinsics specification was updated to
explicitly require the Objeatlass_namgesource_nameesource_clasgesource_type

default_typen resource tables, Coaetions strindfield, and Constrainesource_name
resource_clasgesource_typeanddefault_typeesource fields to be permanently allocated. This
explicit requirement is expected to affect only applications that may create and destroy classes on
the fly.

13.3.7. Arguments to Existing Functions

Theargsargument toXtApplnitialize , XtVaApplnitialize , XtOpenDisplay,
XtDisplaylnitialize , and Xtlnitialize were changed frorCardinal * to int* to conform to pre-
existing convention and avoid otherwise annoying typecasting in ANSI C environments.

13.4. Release 5 to Release 6 Compatibility

At the data structure level, Release 6 retains binary compatibility with Release 5 for all data struc-
tures excepWWMShellPart. Three resources were added to the specification. The known imple-
mentations had unused space in the data structure, therefore on some architectures and implemen-
tations, the size of the part structure will not have changed as a result of this.

234

X Toolkit Intrinsics X11 Release 6

13.4.1. Widget Internals

Two new widget methods for instance allocation and deallocation were added to the Object class.
These new methods allow widgets to be treated as C++ objects in the C++ environment, when an
appropriate allocation method is specified or inherited by the widget class.

The textual descriptions of the processes of widget creation and widget destruction have been
edited to provide clarification to widget writers. Widgets writers may have reason to rely on the
specific order of the stages of widget creation and destruction; with that motivation, the specifica-
tion now more exactly describes the process.

As a convenience, an interface to locate a widget class extension record on a linked list,
XtGetClassExtension has been added.

A new option to allow bundled changes to the managed set of a Composite widget is introduced
in the Composite class extension record. Widgets which define a change_managed procedure
which can accomodate additions and deletions to the managed set of children in a single invoca-
tion should set allows_change_managed_séiue in the extension record.

The wording of the process followed ByUnmanageChildren has changed slightly to better
handle changes to the managed set during phase 2 destroy processing.

A new exposure event compression flAtExposeNoRegion was added. Many widgets specify
exposure compression, but either ignore the actual damage region passed to the core expose pro-
cedure or use only the cumulative bounding box data available in the event. Widgets with expose
procedures which do not make use of exact exposure region information can indicate that the
Intrinsics need not compute the region.

13.4.2. General Application Development

XtOpenApplication is a new convenience procedure to initialize the toolkit, create an applica-
tion context, open an X display connection, and create the root of the widget instance tree. Itis
identical to the interface it replace§tApplnitialize , in all respects except that it takes an addi-
tional argument specifying the widget class of the root shell to create. This interface is now the
recommended one so that clients may easily become session patrticipants. The old convenience
procedures appear in the compatibility section.

The toolkit initialization functionXtToolkitInitialize may be called multiple times without
penalty.

In order to optimize changes in geometry to a set of geometry-managed children, a new interface
XtChangeManagedSet has been added.

13.4.3. Communication with Window and Session Managers

The revision of thénter-Client Communication Conventions Manaalan X Consortium stan-
dard has resulted in the addition of three fields to the specificatMiMBhellPart. These are
urgency client_leaderandwindow_role

The adoption of thX Session Management Protoegl an X Consortium standard has resulted in

the addition of a new shell widgesessionSheland an accompanying subclass verification inter-
face XtisSessionShell This widget provides support for communication between an application
and a session manager, as well as a window manager. In order to preserve compatibility with
existing subclasses @fpplicationShell, the ApplicationShell was subclassed to create the new
widget class. The session protocol requires a modal response to certain checkpointing operations
by participating applications. Th&essionShelktructures the application’s notification of and

235

X Toolkit Intrinsics X11 Release 6

responses to messages from the session manager by use of various callback lists and by use of the
new interfacesXtSessionGetTokenand XtSessionReturnToken There is also a new command

line argument, -xtsessionID, which facilitates the session manager in restarting applications based
on the Intrinsics.

The resource name and class strings defined by the Intrinsics shell widg¥tslitSkell.h> are

now listed in appendix E. The addition of a new symbol folHdShell wait_for_wmresource
was made to bring the external symbol and the string it represents into agreement. The actual
resource name string WMShell has not changed. The resource representation type of the
XtNwinGravity resource of th&/MShell was changed to XtRGravity in order to register a type
converter so that window gravity resource values could be specified by name.

13.4.4. Geometry Management

A clarification to the specification was made to indicate that geometry requests may include cur-
rent values along with the requested changes.

13.4.5. Event Management

In R6, support is provided for registering selectors and event handlers for events generated by X
protocol extensions, and for dispatching those events to the appropriate widget. The new event
handler registration interfaces aXéinsertEventTypeHandler and

XtRemoveEventTypeHandler. Since the mechanism to indicate selection of extension events is
specific to the extension being used, the Intrinsics introddtiRegisterExtensionSelector

which allows the application to select for the events of interest. In order to change the dispatch-
ing algorithm to accommodate extension events as well as core X protocol events, the Intrinsics
event dispatcher may now be replaced or enveloped by the application with
XtSetEventDispatcher. The dispatcher may wish to catGetKeyboardFocusWidgetto

determine the widget with the current Intrinsics keyboard focus. A dispatcher, after determining
the destination widget, may ux¢DispatchEventToWidget to cause the event to be dispatched

to the event handlers registered by a specific widget.

To permit the dispatching of events for non-widget drawables, such as pixmaps which are not
associated with a widget's windowtRegisterDrawable and XtUnregisterDrawable have
been added to the library. A related update was made to the descripftiotiowToWidget .

The library is now thread-safe, allowing one thread at a time to enter the library and protecting
global data as necessary from concurrent use. Threaded toolkit applications are supported by the
new interfacesXtToolkitThreadlnitialize , XtAppLock , XtAppUnlock , XtAppSetExitFlag,

and XtAppGetExitFlag . Widget writers may also usé&ProcessLockand XtProcessUnlock

Safe handling of POSIX signals and other asynchronous notifications is now provided by use of
XtAppAddSignal , XtNoticeSignal, and XtRemoveSignal

The application can receive natification of an impending block in the Intrinsics event manager by
registering interest througktAppAddBlockHook and XtRemoveBlockHook.

XtLastEventProcessedreturns the most recent event passedtidispatchEvent for a specified
display.

13.4.6. Resource Management

Resource converters are registered by the Intrinsics for window gravity, and for three new
resource types associated with session participation: RestartStyle, CommandArgArray and

236

X Toolkit Intrinsics X11 Release 6

DirectoryString.

The file search path syntax has been extended to make it easier to prepend and append to the
default search path, which controls resource database construction, by using the new substitution
string, %D.

13.4.7. Translation Management

The default key translator now recognizes the NumLock modifier. If NumLock is on and the sec-
ond keysym is a keypad keysym (a standard keysym named with a “KP” prefix or a vendor-
specific keysym in the hexadecimal range 0x11000000 to 0x1100FFFF), then the default key
translator will use the first keysym if Shift and/or ShiftLock is on, and will use the second keysym
if neither is on. Otherwise, it will ignore NumLock and apply the normal protocol semantics.

13.4.8. Selections

The targets of selection requests may be parameterized, as described by thintevi€diént
Communication Conventions Manuahen such requests are magtSetSelectionParame-

ters is used by the requestor to specify the target parameterXt@etSelectionParametersis

used by the selection owner to retrieve the parameters. When a parameterized target is specified
in the context of a bundled request for multiple targét€reateSelectionRequest XtCancelS-
electionRequestand XtSendSelectionRequesare used to envelope the assembly of the request.
When the parameters themselves are the names of properties, the Intrinsics provides support for
the economical use of property atom names)d8eservePropertyAtom and
XtReleasePropertyAtom

13.4.9. External Agent Hooks

External agent hooks were added for the benefit of applications which instrument other applica-
tions for purposes of accessibility, testing, and customization. The external agent and the applica-
tion communicate by a shared protocol which is transparent to the application. Development of
one such protocol is occurring in the Consortiuxaagentworking group for eventual review as

a Consortium standard. The hook callbacks permit the external agent to register interest in groups
or classes of toolkit activity, and to be notified of the type and details of the activity as it occurs.
The new interfaces related to this effort AittlooksOfDisplay, which returns the hook registra-

tion widget, andXtGetDisplays, which returns a list of the X displays associated with an appli-
cation context.

237

X Toolkit Intrinsics X11 Release 6

Appendix A

Resource File Format

A resource file contains text representing the default resource values for an application or set of
applications.

The format of resource files is definedXlib — C Language X Interfacand is reproduced here
for convenience only.

The format of a resource specification is

ResourceLine = Comment | IncludeFile | ResourceSpec | <empty line>
Comment “I” {<any character except null or newline>}

IncludeFile “#” WhiteSpace “include” WhiteSpace FileName WhiteSpace
FileName = <valid filename for operating system>

ResourceSpec = WhiteSpace ResourceName WhiteSpace “:" WhiteSpace Value
ResourceName = [Binding] {Component Binding} ComponentName

Binding =4 e

WhiteSpace = {<space> | <horizontal tab>}

Component = “?” | ComponentName

ComponentName = NameChar {NameChar}

NameChar ="ar-z" | A2 | 0= | T -

Value = {<any character except null or unescaped newline>}

Elements separated by vertical bar (]) are alternatives. Curly braces ({...}) indicate zero or more
repetitions of the enclosed elements. Square brackets ([...]) indicate that the enclosed element is
optional. Quotes (“...") are used around literal characters.

If the last character on a line is a backslash (\), that line is assumed to continue on the next line.

To allow a Value to begin with whitespace, the two-character sequesgact (backslash fol-

lowed by space) is recognized and replaced by a space character, and the two-character sequence
“\ tab” (backslash followed by horizontal tab) is recognized and replaced by a horizontal tab
character.

To allow a Value to contain embedded newline characters, the two-character sequence “\n” is
recognized and replaced by a newline character. To allow a Value to be broken across multiple
lines in a text file, the two-character sequenceivlin€ (backslash followed by newline) is rec-
ognized and removed from the value.

To allow a Value to contain arbitrary character codes, the four-character sequamdevhere
eachnis a digit character in the range of “0"-"7", is recognized and replaced with a single byte
that contains the octal value specified by the sequence. Finally, the two-character sequence “\\”
is recognized and replaced with a single backslash.

238

X Toolkit Intrinsics X11 Release 6

Appendix B

Translation Table Syntax

Notation
Syntax is specified in EBNF notation with the following conventions:

[a] Means either nothing or “a”

{a} Means zero or more occurrences of “a”
(a|b) Means either “a” or “b”

\\n Is the newline character

All terminals are enclosed in double quotation marks (“ ”). Informal descriptions are enclosed in
angle brackets (< >).

Syntax

The syntax of a translation table is

translationTable = directive] { production }

directive = (“#replace” | “#override” | “#augment”) “\\n”
production =1lhs “:" rhs “\\n”

Ihs = (event | keyseq) {“,” (event | keyseq) }

keyseq = """ keychar {keychar} “*”

keychar =[*“"|“$" | “\"] <ISO Latin 1 character>

event = [modifier_list] “<”event_type“>" [“(" count[“+"] “)"] {detail}
modifier_list = (""" [*:"] {modifier}) | “None”

modifier =[*""] modifier_name

count =(“1"|"2"|“3"|“4" | ...)

modifier_name ="@" <keysym> | <see ModifierNames table below>
event_type = <see Event Types table below>

detalil = <event specific details>

rhs ={ name “(" [params] “)" }

name = namechar { namechar }

namechar ={“a"-"“z" | "A’-“Z2" | “0"-"9" | “_" | “-" }

params = string {*,” string}

string = quoted_string | unquoted_string

guoted_string = """ {<Latin 1 character> | escape_char} ["\W"] “""
escape_char = “\"”

unquoted_string = {<Latin 1 character except space, tab, “,”, “\\n”, “)">}

Theparamsfield is parsed into a list @&tring values that will be passed to the named action pro-
cedure. Aguoted stringnay contain an embedded quotation mark if the quotation mark is pre-
ceded by a single backslash (\). The three-character sequence “\"” is interpreted as “single
backslash followed by end-of-string”.

239

X Toolkit Intrinsics X11 Release 6

Modifier Names

The madifier field is used to specify standard X keyboard and button modifier mask bits. Modi-
fiers are legal on event typ&eyPress KeyRelease ButtonPress, ButtonRelease

MotionNotify , EnterNotify , LeaveNotify, and their abbreviations. An error is generated when
a translation table that contains modifiers for any other events is parsed.

. If the modifier list has no entries and is not “None”, it means “don’t care” on all modi-
fiers.

. If an exclamation point (!) is specified at the beginning of the modifier list, it means that the
listed modifiers must be in the correct state and no other modifiers can be asserted.

. If any modifiers are specified and an exclamation point (!) is not specified, it means that the
listed modifiers must be in the correct state and “don’t care” about any other modifiers.

. If a modifier is preceded by a tilde (7), it means that that modifier must not be asserted.

. If “None” is specified, it means no modifiers can be asserted.

. If a colon (©) is specified at the beginning of the modifier list, it directs the Intrinsics to

apply any standard modifiers in the event to map the event keycode into a KeySym. The
default standard modifiers are Shift and Lock, with the interpretation as defidatlim

dow System Protocdbection 5. The resulting KeySym must exactly match the specified
KeySym, and the nonstandard modifiers in the event must match the modifier list. For
example, “:<Key>a” is distinct from “:<Key>A", and “:Shift<Key>A" is distinct from
“<Key>A’.

. If both an exclamation point (!) and a colon (:) are specified at the beginning of the modifier
list, it means that the listed modifiers must be in the correct state and that no other modi-
fiers except the standard modifiers can be asserted. Any standard modifiers in the event are
applied as for colon () above.

. If a colon (:) is not specified, no standard modifiers are applied. Then, for example,
“<Key>A" and “<Key>a" are equivalent.

In key sequences, a circumflex (") is an abbreviation for the Control modifier, a dollar sign ($) is
an abbreviation for Meta, and a backslash (\) can be used to quote any character, in particular a
double quote ("), a circumflex (7), a dollar sign ($), and another backslash (\). Briefly:

No Modifiers: None <event> detail

Any Modifiers: <event> detail

Only these Modifiers: I mod1l mod2 <event> detail
These modifiers and any others: mod1l mod2 <event> detalil

The use of “None” for a maodifier list is identical to the use of an exclamation point with no mod-
ifers.

Modifier Abbreviation Meaning

Ctrl c Control modifier bit
Shift S Shift modifier bit
Lock I Lock modifier bit
Meta m Meta key modifier
Hyper h Hyper key modifier
Super Su Super key modifier

240

X Toolkit Intrinsics X11 Release 6

Modifier Abbreviation Meaning

Alt a Alt key modifier
Mod1 Mod1 modifier bit
Mod2 Mod2 modifier bit
Mod3 Mod3 modifier bit
Mod4 Mod4 modifier bit
Mod5 Mod5 modifier bit
Buttonl Button1l modifier bit
Button2 Button2 modifier bit
Button3 Button3 modifier bit
Button4 Button4 modifier bit
Button5 Button5 modifier bit
None No modifiers

Any Any modifier combination

A key modifier is any modifier bit one of whose corresponding KeyCodes contains the corre-
sponding left or right KeySym. For example, “m” or “Meta” means any modifier bit mapping to
a KeyCode whose KeySym list contains XK_Meta_L or XK_Meta_R. Note that this interpreta-
tion is for each display, not global or even for each application context. The Control, Shift, and
Lock modifier names refer explicitly to the corresponding modifier bits; there is no additional
interpretation of KeySyms for these modifiers.

Because it is possible to associate arbitrary KeySyms with modifiers, the set of key modifiers is
extensible. The “@” <keysym> syntax means any modifier bit whose corresponding KeyCode
contains the specified KeySym name.

A modifier_list/KeySym combination in a translation matches a modifiers/KeyCode combination
in an event in the following ways:

1. If a colon (©) is used, the Intrinsics call the displayt&eyProc with the KeyCode and
modifiers. To matchnfodifiers& ~“maodifiers_returhmust equamodifier_list and
keysym_returmust equal the given KeySym.

2. If () is not used, the Intrinsics mask off all don’t-care bits from the modifiers. This value
must be equal tmodifier_list Then, for each possible combination of don't-care modifiers
in the madifier list, the Intrinsics call the displaxXé&KeyProc with the KeyCode and that
combination ORed with the cared-about modifier bits from the e¥atsym_returmust
match the KeySym in the translation.

Event Types

The event-type field describes XEvent types. In addition to the standard Xlib symbolic event type
names, the following event type synonyms are defined:

Type Meaning

Key KeyPress
KeyDown KeyPress
KeyUp KeyRelease
BtnDown ButtonPress
BtnUp ButtonRelease

241

X Toolkit Intrinsics

Type Meaning

Motion MotionNotify
PtrMoved MotionNotify
MouseMoved MotionNotify
Enter EnterNotify
EnterWindow EnterNotify
Leave LeaveNotify
LeaveWindow LeaveNotify
Focusin Focusin
FocusOut FocusOut
Keymap KeymapNotify
Expose Expose

GrExp GraphicsExpose
NoExp NoExpose
Visible VisibilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNotify
Map MapNotify
MapReq MapRequest
Reparent ReparentNotify
Configure ConfigureNotify
ConfigureReq ConfigureRequest
Grav GravityNotify
ResReq ResizeRequest
Circ CirculateNotify
CircReq CirculateRequest
Prop PropertyNotify
SelClr SelectionClear
SelReq SelectionRequest
Select SelectionNotify
Clrmap ColormapNotify
Message ClientMessage
Mapping MappingNotify

The supported abbreviations are:

Abbreviation Event Type Including

Ctrl KeyPress with Control modifier
Meta KeyPress with Meta modifier
Shift KeyPress with Shift modifier
Btn1Down ButtonPress with Buttonl detail
Btn1lUp ButtonRelease with Buttonl detail
Btn2Down ButtonPress with Button2 detail
Btn2Up ButtonRelease with Button2 detail
Btn3Down ButtonPress with Button3 detail

242

X11 Release 6

X Toolkit Intrinsics

X11 Release 6

Abbreviation Event Type Including

Btn3Up ButtonRelease with Button3 detail
Btn4Down ButtonPress with Button4 detail
Btn4Up ButtonRelease with Button4 detail
Btn5Down ButtonPress with Button5 detail
Btn5Up ButtonRelease with Button5 detail
BtnMotion MotionNotify with any button modifier
Btn1Motion MotionNotify with Buttonl modifier
Btn2Motion MotionNotify with Button2 modifier
Btn3Motion MotionNotify with Button3 modifier
Btn4Motion MotionNotify with Button4 modifier
Btn5Motion MotionNotify with Button5 modifier

The detail field is event-specific and normally corresponds to the detail field of the corresponding
event as described ByWindow System Protoc@ection 11. The detail field is supported for the

following event types:

Event Event Field

KeyPress KeySym from evedetail (keycode)
KeyRelease KeySym from eveietail (keycode)
ButtonPress button from evedtail
ButtonRelease button from eveidtail
MotionNotify eventdetail

EnterNotify evenmode

LeaveNotify eventnode

Focusin evenmode

FocusOut evernmnode

PropertyNotify atom
SelectionClear selection
SelectionRequest selection
SelectionNotify selection
ClientMessage type
MappingNotify request

If the event type iKeyPressor KeyRelease the detail field specifies a KeySym name in stan-
dard format which is matched against the event as described above, for example, <Key>A.

For thePropertyNotify , SelectionClear, SelectionRequestSelectionNotify and ClientMes-
sageevents the detail field is specified as an atom name; for example, <Mes-
sage>WM_ROTOCOLS. For theMotionNotify , EnterNotify , LeaveNotify, Focusin, Focu-
sOut and MappingNotify events, either the symbolic constants as defineXiWjndow System
Protocol Section 11, or the numeric values may be specified.

If no detail field is specified, then any value in the event detail is accepted as a match.

A KeySym can be specified as any of the standard KeySym names, a hexadecimal number pre-
fixed with “0x” or “0X”, an octal number prefixed with “0” or a decimal number. A KeySym

243

X Toolkit Intrinsics X11 Release 6

expressed as a single digit is interpreted as the corresponding Latin 1 KeySym, for example, “0”
is the KeySym XK_0. Other single character KeySyms are treated as literal constants from Latin
1, for example, “!" is treated as 0x21. Standard KeySym names are as defined in
<X11/keysymdef.l+> with the “XK_" prefix removed.

Canonical Representation

Every translation table has a unique, canonical text representation. This representation is passed
to a widget'sdisplay_acceleratorprocedure to describe the accelerators installed on that widget.
The canonical representation of a translation table is (see also “Syntax”)

translationTable = { production }

production =lhs “:" rhs “\n”

Ihs =event{"“,” event }

event = [modifier_list] “<”event_type“>" [“(" count[“+"] “)"] {detail}
modifier_list =" [*:"] {modifier}

modifier = [*"] modifier_name

count =("1" 2" “3"|“4"|..)

modifier_name = “@" <keysym> | <see canonical modifier names below>
event_type = <see canonical event types below>

detalil = <event specific details>

rhs ={ name “(" [params] “)" }

name = namechar { namechar }

namechar ={“a"-"“z" | “A-“Z2" | “0"-“9" | “_" | “-" }

params = string {*,” string}

string = quoted_string

guoted_string =“" {<Latin 1 character> | escape_char} [“\\W\"] “*”
escape_char ="“\""

The canonical modifier names are

Citrl Mod1 Buttonl
Shift Mod2 Button2
Lock Mod3 Button3
Mod4 Button4
Mod5 Button5

The canonical event types are

KeyPress KeyRelease
ButtonPress ButtonRelease
MotionNotify EnterNotify
LeaveNotify Focusin
FocusOut KeymapNotify
Expose GraphicsExpose,
NoExpose VisibilityNotify
CreateNotify DestroyNotify
UnmapNotify MapNotify
MapRequest ReparentNotify
ConfigureNotify ConfigureRequest
GravityNotify ResizeRequest

244

X Toolkit Intrinsics X11 Release 6

CirculateNotify CirculateRequest
PropertyNotify SelectionClear
SelectionRequest SelectionNotify
ColormapNotify ClientMessage

Examples

. Always put more specific events in the table before more general ones:

Shift <Btn1Down> : twas()\n\
<Btn1Down> : brillig()

. For double-click on Buttonl Up with Shift, use this specification:
Shift<Btn1Up>(2) : and()
This is equivalent to the following line with appropriate timers set between events:
Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down>,Shift<Btn1Up> : and()
. For double-click on Button1l Down with Shift, use this specification:
Shift<Btn1Down>(2) : the()
This is equivalent to the following line with appropriate timers set between events:
Shift<Btn1Down>,Shift<Btn1Up>,Shift<Btn1Down> : the()

. Mouse motion is always discarded when it occurs between events in a table where no
motion event is specified:

<Btn1Down>,<Btn1Up> : slithy()

This is taken, even if the pointer moves a bit between the down and up events. Similarly,
any motion event specified in a translation matches any number of motion events. If the
motion event causes an action procedure to be invoked, the procedure is invoked after each
motion event.

. If an event sequence consists of a sequence of events that is also a noninitial subsequence
of another translation, it is not taken if it occurs in the context of the longer sequence. This
occurs mostly in sequences like the following:

<Btn1Down>,<Btn1Up> : toves()\n\
<BtnlUp>: did()

The second translation is taken only if the button release is not preceded by a button press
or if there are intervening events between the press and the release. Be particularly aware
of this when using the repeat notation, above, with buttons and keys, because their expan-
sion includes additional events; and when specifying motion events, because they are
implicitly included between any two other events. In particular, pointer motion and double-
click translations cannot coexist in the same translation table.

245

X Toolkit Intrinsics X11 Release 6

. For single click on Button1 Up with Shift and Meta, use this specification:
Shift Meta <Btn1Down>, Shift Meta<Btn1Up>: gyre()

. For multiple clicks greater or equal to a minimum number, a plus sign (+) may be appended
to the final (rightmost) count in an event sequence. The actions will be invoked on the
countth click and each subsequent one arriving within the multi-click time interval. For
example:

Shift <Btn1Up>(2+) : and()

. To indicateEnterNotify with any modifiers, use this specification:
<Enter> : gimble()

. To indicateEnterNotify with no modifiers, use this specification:
None <Enter> : in()

. To indicateEnterNotify with Button1l Down and Button2 Up and “don’t care” about the
other modifiers, use this specification:

Buttonl "Button2 <Enter> : the()

. To indicateEnterNotify with Buttonl down and Button2 down exclusively, use this speci-
fication:

I Buttonl Button2 <Enter> : wabe()

You do not need to use a tilde () with an exclamation point (!).

246

X Toolkit Intrinsics X11 Release 6

Appendix C

Compatibility Functions

In prototype versions of the X Toolkit each widget class implemented awidget-Create (for
example XtLabelCreate) function, in which most of the code was identical from widget to wid-
get. Inthe Intrinsics, a single geneKtCreateWidget performs most of the common work and
then calls the initialize procedure implemented for the particular widget class.

Each Composite class also implemented the proceduré¥idgret-Add and an

Xt<Widget-Delete (for exampleXtButtonBoxAddButton and XtButtonBoxDeleteButton).

In the Intrinsics, the Composite generic proceditdanageChildren and XtUnmanageChil-

dren perform error checking and screening out of certain children. Then they call the
change_managed procedure implemented for the widget's Composite class. If the widget's parent
has not yet been realized, the call to the change_managed procedure is delayed until realization
time.

Old style calls can be implemented in the X Toolkit by defining one-line procedures or macros
that invoke a generic routine. For example, you could define the mfélcabelCreate as:

#define XtLabelCreata@me parent args num_arg$\
((LabelWidget) XtCreateWidgatame labelWidgetClass parent args, num_arg$)

Pop-up shells in some of the prototypes automatically performédManageChild on their
child within their insert_child procedure. Creators of pop-up children need t¥tbédin-
ageChild themselves.

XtApplnitialize andXtVaApplnitialize have been replaced b§tOpenApplication and
XtVaOpenApplication .

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial application shell instance, an application maxtApelnitialize or
XtVaApplnitialize .

Widget XtApplnitialize@pp_context_returrapplication_classoptions num_options
argc_in_outargv_in_ouffallback_resourcesargs num_arg3
XtAppContext "app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_ouf
String *argv_in_ouf
String *fallback_resources
ArgList args
Cardinalnum_args

app_context_return Returns the application context, if non-NULL.
application_class Specifies the class name of the application.

247

X Toolkit Intrinsics X11 Release 6

options Specifies the command line options table.

num_options Specifies the number of entriesoptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies a pointer to the command line arguments.

fallback resources Specifies resource values to be used if the application class resource file
cannot be opened or read, or NULL.

args Specifies the argument list to override any other resource specifications
for the created shell widget.
num_args Specifies the number of entries in the argument list.

The XtApplnitialize function callsXtToolkitInitialize followed by

XtCreateApplicationContext, then callsXtOpenDisplay with display_stringNULL and appli-
cation_nameNULL, and finally callsXtAppCreateShell with application_naméULL, wid-
get_classapplicationShellWidgetClass and the specifiedrgsandnum_argsand returns the

created shell. The modifiedgc andargvreturned byXtDisplaylInitialize are returned in
argc_in_outandargv_in_out If app_context_returis not NULL, the created application context

is also returned. If the display specified by the command line cannot be opened, an error message
is issued anctApplnitialize terminates the application. fillback resourcess non-NULL,
XtAppSetFallbackResourcesis called with the value prior to callingtOpenDisplay.

Widget XtVaApplnitialize@pp_context_returrapplication_classoptions num_options
argc_in_outargv_in_outfallback resources..)
XtAppContext *app_context_return
Stringapplication_class
XrmOptionDescLisbptions
Cardinalnum_options
int *argc_in_out
String *argv_in_out
String *fallback_resources

app_context_return Returns the application context, if non-NULL.

application_class Specifies the class name of the application.

options Specifies the command line options table.

num_options Specifies the number of entriesaptions

argc_in_out Specifies a pointer to the number of command line arguments.
argv_in_out Specifies the command line arguments array.

fallback_resources Specifies resource values to be used if the application class resource file
cannot be opened, or NULL.

Specifies the variable argument list to override any other resource specifi-
cations for the created shell.

The XtVaApplnitialize procedure is identical in function XtApplnitialize with theargsand
num_arggarameters replaced by a varargs list, as described in Section 2.5.1.

As a convenience to people converting from earlier versions of the toolkit without application
contexts, the following routines existtInitialize , XtMainLoop , XtNextEvent,
XtProcessEvent XtPeekEvent, XtPending, XtAddInput , XtAddTimeOut ,

248

X Toolkit Intrinsics X11 Release 6

XtAddWorkProc , XtCreateApplicationShell, XtAddActions, XtSetSelectionTimeout and
XtGetSelectionTimeout

Widget XtinitializeGhell_nameapplication_classoptions num_optionsargc, argv)
Stringshell_nameg
Stringapplication_class
XrmOptionDescReoptiong];
Cardinalnum_options
int *argc;
Stringarg\];

shell_name This parameter is ignored; therefore, you can specify NULL.

application_class
Specifies the class name of this application.

options Specifies how to parse the command line for any application-specific resources.
Theoptionsargument is passed as a paramete{rtnParseCommand.

num_options Specifies the number of entries in the options list.

argc Specifies a pointer to the number of command line parameters.

argv Specifies the command line parameters.

XtInitialize calls XtToolkitInitialize to initialize the toolkit internals, creates a default applica-
tion context for use by the other convenience routines, XtpenDisplay with display_string
NULL andapplication_naméNULL, and finally callsXtAppCreateShell with applica-
tion_nameNULL and returns the created shell. The semantics of caltihgjtialize more than
once are undefined. This routine has been replaced®@yenApplication .

void XtMainLoop(void)

XtMainLoop first reads the next alternate input, timer, or X event by calitiextEvent.
Then it dispatches this to the appropriate registered procedure by édigpatchEvent. This
routine has been replaced KyAppMainLoop .

void XtNextEventévent_returi
XEvent *event_return

event_return Returns the event information to the specified event structure.

If no input is on the X input queue for the default application conkéitextEvent flushes the X
output buffer and waits for an event while looking at the alternate input sources and timeout val-
ues and calling any callback procedures triggered by them. This routine has been replaced by
XtAppNextEvent. Xtlnitialize must be called before using this routine.

void XtProcessEventfash
XtinputMaskmask
mask Specifies the type of input to process.

XtProcessEventprocesses one X event, timeout, or alternate input source (depending on the
value ofmash, blocking if necessary. It has been replacedbyppProcessEvent Xtlnitial-
ize must be called before using this function.

249

X Toolkit Intrinsics X11 Release 6

Boolean XtPeekEvergyent_returi
XEvent *event_return

event_return Returns the event information to the specified event structure.

If there is an event in the queue for the default application coxeekEventfills in the event

and returns a nonzero value. If no X input is on the quétReekEvent flushes the output

buffer and blocks until input is available, possibly calling some timeout callbacks in the process.
If the input is an eveniXtPeekEventfills in the event and returns a nonzero value. Otherwise,
the input is for an alternate input source, XteekEventreturns zero. This routine has been
replaced byXtAppPeekEvent. Xtlnitialize must be called before using this routine.

Boolean XtPending()

XtPending returns a nonzero value if there are events pending from the X server or alternate
input sources in the default application context. If there are no events pending, it flushes the out-
put buffer and returns a zero value. It has been replacédAppPending. Xtlnitialize must

be called before using this routine.

Xtinputld XtAddInput&ource condition proc, client_datg
int source
XtPointercondition
XtinputCallbackProgroc;
XtPointerclient_data

source Specifies the source file descriptor on a POSIX-based system or other operating-
system-dependent device specification.
condition Specifies the mask that indicates either a read, write, or exception condition or

some operating-system-dependent condition.
proc Specifies the procedure called when input is available.
client_data Specifies the parameter to be passqudowhen input is available.

The XtAddInput function registers in the default application context a new source of events,
which is usually file input but can also be file output. (The viitedhould be loosely interpreted

to mean any sink or source of data)AddInput also specifies the conditions under which the
source can generate events. When input is pending on this source in the default application con-
text, the callback procedure is called. This routine has been replacédmyAddinput .

Xtlnitialize must be called before using this routine.

Xtintervalld XtAddTimeOutinterval, proc, client_datg
unsigned longnterval,
XtTimerCallbackProroc;
XtPointerclient_data

interval Specifies the time interval in milliseconds.
proc Specifies the procedure to be called when time expires.
client_data Specifies the parameter to be passqudowhen it is called.

The XtAddTimeOut function creates a timeout in the default application context and returns an
identifier for it. The timeout value is setitderval. The callback procedure will be called after

the time interval elapses, after which the timeout is removed. This routine has been replaced by
XtAppAddTimeOut . Xtlnitialize must be called before using this routine.

250

X Toolkit Intrinsics X11 Release 6

XtWorkProcld XtAddWorkProggroc, client_datg
XtWorkProcproc;
XtPointerclient_data

proc Procedure to call to do the work.

client data Client data to pass fmoc when it is called.

This routine registers a work procedure in the default application context. It has been replaced by
XtAppAddWorkProc . Xtlnitialize must be called before using this routine.

Widget XtCreateApplicationShellame widget_classargs num_arg$
Stringhame
WidgetClassvidget_class
ArglList args
Cardinalnum_args
name This parameter is ignored; therefore, you can specify NULL.

widget_class Specifies the widget class pointer for the created application shell widget. This
will usually betopLevelShellWidgetClassor a subclass thereof.

args Specifies the argument list to override any other resource specifications.
num_args Specifies the number of entriesags

The procedureXtCreateApplicationShell calls XtAppCreateShell with application_name
NULL, the application class passedXdnitialize , and the default application context created by
Xtlnitialize . This routine has been replaced XwAppCreateShell.

An old-format resource type converter procedure pointer is ofXyfenverter .

typedef void (*XtConverter)(XrmValue*, Cardinal*, XrmValue*, XrmValue*);
XrmValue *args
Cardinal num_args
XrmValue *from;
XrmValue *o;

args Specifies a list of additiona{rmValue arguments to the converter if additional
context is needed to perform the conversion, or NULL.

num_args Specifies the number of entriesargs.

from Specifies the value to convert.

to Specifies the descriptor to use to return the converted value.

Type converters should perform the following actions:

. Check to see that the number of arguments passed is correct.

. Attempt the type conversion.

. If successful, return the size and pointer to the data itotagument; otherwise, call
XtWarningMsg and return without modifying th® argument.

Most type converters just take the data described by the spdifiedrgument and return data

by writing into the specifietb argument. A few need other information, which is available in the
specified argument list. A type converter can invoke another type converter, which allows differ-
ing sources that may convert into a common intermediate result to make maximum use of the type

251

X Toolkit Intrinsics X11 Release 6

converter cache.

Note that the address returnedar>addr cannot be that of a local variable of the converter
because this is not valid after the converter returns. It should be a pointer to a static variable.

The procedure typ&tConverter has been replaced b§tTypeConverter .

The XtStringConversionWarning function is a convenience routine for old-format resource
converters that convert from strings.

void XtStringConversionWarning(c, dst_typé
Stringsrc, dst_type
src Specifies the string that could not be converted.
dst_type Specifies the name of the type to which the string could not be converted.

The XtStringConversionWarning function issues a warning message with name “conversion-
Error”, type “string”, class “XtToolkitError, and the default message string “Cannot convert
"src' to typedst_typé&. This routine has been superseded by
XtDisplayStringConversionWarning .

To register an old-format converter, useAddConverter or XtAppAddConverter .
void XtAddConverterffom_typeto_type converter convert_argsnum_arg$
Stringfrom_type
Stringto_type
XtConverterconverter
XtConvertArgListconvert_args
Cardinalnum_args

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments to the converter, or NULL.
num_args Specifies the number of entriescionvert_args

XtAddConverter is equivalent in function t&XtSetTypeConverter with cache_typequal to
XtCacheAll for old-format type converters. It has been supersedett®gtTypeConverter.

void XtAppAddConvertedpp_contextfrom_typeto_type converter convert_argsnum_arg}
XtAppContextapp_context
Stringfrom_type
Stringto_type
XtConverterconverter
XtConvertArgListconvert_args
Cardinalnum_args

app_context Specifies the application context.
from_type Specifies the source type.

252

X Toolkit Intrinsics X11 Release 6

to_type Specifies the destination type.

converter Specifies the type converter procedure.

convert_args Specifies how to compute the additional arguments to the converter, or NULL.
num_args Specifies the number of entriesconvert_args

XtAppAddConverter is equivalent in function tXtAppSetTypeConverter with cache_type
equal toXtCacheAll for old-format type converters. It has been superseded by
XtAppSetTypeConverter.

To invoke resource conversions, a client mayXit&&onvert or, for old-format converters only,
XtDirectConvert .

void XtConvert{v, from_typefrom, to_typeto_return
Widgetw;
Stringfrom_type
XrmValuePtrfrom;
Stringto_type
XrmValuePtrto_return

w Specifies the widget to use for additional arguments, if any are needed.
from_type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

to_return Returns the converted value.

void XtDirectConvert¢onverter args num_argsfrom, to_return
XtConverterconverter
XrmValuePtrargs,
Cardinalnum_args
XrmValuePtrfrom;
XrmValuePtrto_return

converter Specifies the conversion procedure to be called.

args Specifies the argument list that contains the additional arguments needed to per-
form the conversion (often NULL).

num_args Specifies the number of entriesargs.
from Specifies the value to be converted.
to_return Returns the converted value.

The XtConvert function looks up the type converter registered to coffisart_typetoto_type
computes any additional arguments needed, and thenxtBlikectConvert or

XtCallConverter . The XtDirectConvert function looks in the converter cache to see if this
conversion procedure has been called with the specified arguments. If so, it returns a descriptor
for information stored in the cache; otherwise, it calls the converter and enters the result in the
cache.

Before calling the specified convert&tDirectConvert sets the return value size to zero and the
return value address to NULL. To determine if the conversion was successful, the client should

253

X Toolkit Intrinsics X11 Release 6

checkto_return.addrfor non-NULL. The data returned bytConvert must be copied immedi-
ately by the caller, as it may point to static data in the type converter.

XtConvert has been replaced I§tConvertAndStore, and XtDirectConvert has been super-
seded byXtCallConverter .

To deallocate a shared GC when it is no longer needeXtDsstroyGC.
void XtDestroyGC, go)

Widgetw;
GCgc;
w Specifies any object on the display for which the shared GC was created. Must
be of class Object or any subclass thereof.
gc Specifies the shared GC to be deallocated.

References to sharable GCs are counted and a free request is generated to the server when the last
user of a given GC destroys it. Note that some earlier versiodtDastroyGC had only agc

argument. Therefore, this function is not very portable, and you are encourageXtRese
leaseGCinstead.

To declare an action table in the default application context and register it with the translation
manager, usXtAddActions .

void XtAddActions@ctions num_actionp
XtActionList actions
Cardinalnum_actions

actions Specifies the action table to register.

num_actions Specifies the number of entriesactions

If more than one action is registered with the same name, the most recently registered action is
used. If duplicate actions exist in an action table, the first is used. The Intrinsics register an
action table foiXtMenuPopup and XtMenuPopdown as part of X Toolkit initialization. This
routine has been replaced KyAppAddActions . Xtlnitialize must be called before using this
routine.

To set the Intrinsics selection timeout in the default application context, use
XtSetSelectionTimeout

void XtSetSelectionTimeout(neou)
unsigned longimeout

timeout Specifies the selection timeout in milliseconds. This routine has been replaced
by XtAppSetSelectionTimeout Xtinitialize must be called before using this
routine.

To get the current selection timeout value in the default application context, use
XtGetSelectionTimeout

unsigned long XtGetSelectionTimeout()

The selection timeout is the time within which the two communicating applications must respond
to one another. If one of them does not respond within this interval, the Intrinsics abort the

254

X Toolkit Intrinsics X11 Release 6

selection request.

This routine has been replaced XtAppGetSelectionTimeout. Xtinitialize must be called
before using this routine.

To obtain the global error database (for example, to merge with an application- or widget-specific
database), usktGetErrorDatabase.

XrmDatabase *XtGetErrorDatabase()
The XtGetErrorDatabase function returns the address of the error database. The Intrinsics do a

lazy binding of the error database and do not merge in the database file until the first call to
XtGetErrorDatbaseText. This routine has been replaced XtAppGetErrorDatabase.

An error message handler can obtain the error database text for an error or a warning by calling
XtGetErrorDatabaseText.

void XtGetErrorDatabaseTexi@me type class default buffer_return nbyte3
Stringname type class

Stringdefault
Stringbuffer_return
int nbytes
name
type Specify the name and type that are concatenated to form the resource nhame of the
error message.
class Specifies the resource class of the error message.
default Specifies the default message to use if an error database entry is not found.
buffer_return Specifies the buffer into which the error message is to be returned.
nbytes Specifies the size of the buffer in bytes.

The XtGetErrorDatabaseText returns the appropriate message from the error database associ-
ated with the default application context or returns the specified default message if one is not
found in the error database. To form the full resource name and class when querying the

database, theameandtypeare concatenated with a single “.” between them anclid&sis

concatenated with itself with a single “.” if it does not already contain a “.”. This routine has
been superseded B§tAppGetErrorDatabaseText.

To register a procedure to be called on fatal error conditions{t$sgErrorMsgHandler .
void XtSetErrorMsgHandlenisg_handler

XtErrorMsgHandlemsg_handler
msg_handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the Intrinsics constructs a string from the error resource
database and calltError . Fatal error message handlers should not return. If one does, subse-
guent Intrinsics behavior is undefined. This routine has been superseded by
XtAppSetErrorMsgHandler .

To call the high-level error handler, u¥¢ErrorMsg .

255

X Toolkit Intrinsics X11 Release 6

void XtErrorMsgfame type class default params num_params
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

name Specifies the general kind of error.

type Specifies the detailed nhame of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
This routine has been supersededppErrorMsg .

To register a procedure to be called on nonfatal error conditions, use
XtSetWarningMsgHandler .

void XtSetWarningMsgHandlar{sg_handler
XtErrorMsgHandlemsg_handler

msg_handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the Intrinsics constructs a string from the error resource
database and calltWarning . This routine has been superseded by
XtAppSetWarningMsgHandler .

To call the installed high-level warning handler, x@&g/arningMsg .

void XtWarningMsgfame type class default params num_paramp
Stringname
Stringtype
Stringclass
Stringdefault
String *params
Cardinal num_params

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifies the default message to use if an error database entry is not found.
params Specifies a pointer to a list of values to be stored in the message.

num_params Specifies the number of entriesparams
This routine has been supersededdppWarningMsg .

To register a procedure to be called on fatal error conditions{t$stErrorHandler .

256

X Toolkit Intrinsics X11 Release 6

void XtSetErrorHandleRandle))
XtErrorHandlerhandler,
handler Specifies the new fatal error procedure, which should not return.

The default error handler provided by the IntrinsicsXsError . On POSIX-based systems, it

prints the message to standard error and terminates the application. Fatal error message handlers
should not return. If one does, subsequent X Toolkit behavior is undefined. This routine has been
superseded bXtAppSetErrorHandler .

To call the installed fatal error procedure, XError .
void XtError(message

Stringmessage
message Specifies the message to be reported.

Most programs should usé&AppErrorMsg , not XtError , to provide for customization and
internationalization of error messages. This routine has been supersedgppigrror .

To register a procedure to be called on nonfatal error conditionXt8s8/arningHandler .
void XtSetWarningHandleh@ndle)

XtErrorHandlerhandler,
handler Specifies the new nonfatal error procedure, which usually returns.

The default warning handler provided by the IntrinsicsX$Warning . On POSIX-based sys-
tems, it prints the message to standard error and returns to the caller. This routine has been super-
seded byXtAppSetWarningHandler .

To call the installed nonfatal error procedure, ¥8é&/arning .
void XtWarningfnessage
Stringmessage
message Specifies the nonfatal error message to be reported.

Most programs should usé&AppWarningMsg , not XtWarning , to provide for customization
and internationalization of warning messages. This routine has been superseded by
XtAppWarning .

257

X Toolkit Intrinsics

X11 Release 6

Appendix D

Intrinsics Error Messages

All Intrinsics errors and warnings have class “XtToolkitError”. The following two tables sum-
marize the common errors and warnings that can be generated by the Intrinsics. Additional
implementation-dependent messages are permitted.

Error Messages

Name Type Default Message

allocError calloc Cannot perform calloc

allocError malloc Cannot perform malloc

allocError realloc Cannot perform realloc

communicationError select Select failed

internalError shell Shell's window manager interaction is broken

invalidArgCount

invalidArgCount

invalidClass

invalidClass

invalidClass

invalidClass

invalidClass

invalidClass
invalidDimension
invalidDimension
invalidDisplay
invalidGeometryManager

invalidParameter
invalidParameter
invalidParameters
invalidParent
invalidParent
invalidParent
invalidParent

invalidParent
invalidParent
invalidParent

xtGetValues

xtSetValues

constraintSetValue

xtAppCreateShell

xtCreatePopupShell

xtCreateWidget

xtPopdown

xtPopup

xtCreateWindow

shellRealize

xtInitialize
xtMakeGeometryRequest

removePopupFromParent
xtAddInput
xtMenuPopupAction
realize
xtCreatePopupShell
xtCreateWidget
xtMakeGeometryRequest

xtMakeGeometryRequest

xtManageChildren
xtUnmanageChildren

258

Argument count > 0 on NULL argument list in XtGetVal-
ues
Argument count > 0 on NULL argument list in XtSetVal-
ues
Subclass of Constraint required in CallConstraintSetVal-
ues
XtAppCreateShell requires non-NULL widget class
XtCreatePopupShell requires non-NULL widget class
XtCreateWidget requires non-NULL widget class
XtPopdown requires a subclass of shellWidgetClass
XtPopup requires a subclass of shellWidgetClass
Widget %s has zero width and/or height
Shell widget %s has zero width and/or height
Can’t Open display
XtMakeGeometryRequest - parent has no geometry
manger
RemovePopupFromParent requires non-NULL popuplist
invalid condition passed to XtAddInput
MenuPopup wants exactly one argument
Application shell is not a windowed widget?
XtCreatePopupShell requires non-NULL parent
XtCreateWidget requires non-NULL parent
XtMakeGeometryRequest - NULL parent. Use SetValues
instead
XtMakeGeometryRequest - parent not composite
Attempt to manage a child when parent is not Composite
Attempt to unmanage a child when parent is not Compos-
ite

X Toolkit Intrinsics

invalidProcedure
invalidProcedure
invalidwWindow
missingEvent
noAppContext
noPerDisplay
noPerDisplay
noSelectionProperties
nullProc
subclassMismatch

translationError

inheritanceProc
realizeProc

eventHandler
shell

widgetToApplicationContext

closeDisplay
getPerDisplay

freeSelectionProperty

insertChild
xtCheckSubclass

mergingTablesWithCycles

X11 Release 6

Unresolved inheritance operation
No realize class procedure defined
Event with wrong window
Events are disappearing from under Shell
Couldn’t find ancestor with display information
Couldn't find per display information
Couldn't find per display information
internal error: no selection property context for display
NULL insert_child procedure
Widget class %s found when subclass of %s expected:
%s
Trying to merge translation tables with cycles, and can’t
resolve this cycle.

Warning Messages

Name

Type

Default Message

ambiguousParent
ambiguousParent

communicationError
conversionError
displayError
grabError

grabError

grabError

initializationError
invalidArgCount
invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidCallbackList
invalidChild
invalidChild
invalidDepth
invalidGeometry

invalidParameters
invalidParameters
invalidParameters
invalidParameters
invalidParent
invalidPopup

xtManageChildren
xtUnmanageChildren

windowManager
string
invalidDisplay
xtAddGrab

grabDestroyCallback

xtRemoveGrab

xtlnitialize
getResources
xtAddCallbacks
xtCallCallback
xtOverrideCallback
xtRemoveAllCallback
xtRemoveCallbacks
xtManageChildren
xtUnmanageChildren
setValues

xtMakeGeometryRequest

compileAccelerators
compileTranslations
mergeTranslations
xtMenuPopdown
xtCopyFromParent
xtMenuPopup

Not all children have same parent in XtManageChildren
Not all children have same parent in XtUnmanageChil-
dren
Window Manager is confused
Cannot convert string "%s" to type %s
Can't find display structure
XtAddGrab requires exclusive grab if spring_loaded is
TRUE
XtAddGrab requires exclusive grab if spring_loaded is
TRUE
XtRemoveGrab asked taokenawidget not on the grab
list
Initializing Resource Lists twice
argument count > 0 on NULL argument list
Cannot find callback list in XtAddCallbacks
Cannot find callback list in XtCallCallbacks
Cannot find callback list in XtOverrideCallbacks
Cannot find callback list in XtRemoveAllCallbacks
Cannot find callback list in XtRemoveCallbacks
null child passed to XtManageChildren
Null child passed to XtUnmanageChildren
Can't change widget depth
Shell subclass did not take care of geometry in XtSetVal-
ues
String to AcceleratorTable needs no extra arguments
String to TranslationTable needs no extra arguments
MergeTM to TranslationTable needs no extra arguments
XtMenuPopdown called with num_params !'= 0 or 1
CopyFromParent must have non-NULL parent
Can't find popup in _XtMenuPopup

259

X Toolkit Intrinsics

invalidPopup
invalidPopup

invalidPopup
invalidProcedure

invalidProcedure
invalidProcedure

invalidResourceCount
invalidResourceName

invalidShell
invalidSizeOverride

invalidTypeOverride

invalidWidget
missingCharsetList
noColormap
registerWindowError
registerWindowError
translation error
translation error
translationError
translationError
translationError
translationError
translationError
translationParseError
translationParseError
translationParseError
typeConversionError
versionMismatch

wrongParameters

wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters

xtMenuPopdown
unsupportedOperation

unsupportedOperation

deleteChild
inputHandler
set_values_almost
getResources
computeArgs
xtTranslateCoords
xtDependencies

xtDependencies

removePopupFromParent
cvtStringToFontSet
cvtStringToPixel
xtRegisterWindow
xtUnregisterWindow
nullTable
nullTable
ambiguousActions
mergingNullTable
nullTable
unboundActions
xtTranslatelnitialize
showLine
parseError
parseString
noConverter
widget

cvtintOrPixelToXColor

cvtintToBool
cvtintToBoolean
cvtintToFont
cvtintToPixel
cvtintToPixmap
cvtintToShort
cvtStringToBool
cvtStringToBoolean
cvtStringToCursor
cvtStringToDisplay
cvtStringToFile
cvtStringToFont

X11 Release 6

Can't find popup in _XtMenuPopdown
Pop-up menu creation is only supported on ButtonPress
or EnterNotify events.
Pop-up menu creation is only supported on ButtonPress
or EnterNotify events.
null delete_child procedure in XtDestroy
XtRemovelnput: Input handler not found
set_values_almost procedure shouldn’t be NULL
resource count > 0 on NULL resource list
Cannot find resource name %s as argument to conversion
Widget has no shell ancestor
Representation size %d must match superclass’s to over-
ride %s
Representation type %s must match superclass’s to over-
ride %s
RemovePopupFromParent,widget not on parent list
Missing charsets in String to FontSet conversion
Cannot allocate colormap entry for "%s"
Attempt to change already registered window.
Attempt to unregister invalid window.
Can't remaeaccelerators from NULL table
Tried to r@venon-existant accelerators
Overriding earlier translation manager actions.
Old translation table was null, cannot modify.
Can't translate event through NULL table
Actions not found: %s
Initializing Translation manager twice.
... found while parsing '%s’
translation table syntax error: %s
Missing '\
No type converter registered for '%s’ to '%s’ conversion.
Widget class %s version mismatch:\n widget %d vs.
intrinsics %d.

Pixel to color conversion needs screen and colormap
arguments
Integer to Bool conversion needs no extra arguments
Integer to Boolean conversion needs no extra arguments
Integer to Font conversion needs no extra arguments
Integer to Pixel conversion needs no extra arguments
Integer to Pixmap conversion needs no extra arguments
Integer to Short conversion needs no extra arguments
String to Bool conversion needs no extra arguments
String to Boolean conversion needs no extra arguments
String to cursor conversion needs screen argument
String to Display conversion needs no extra arguments
String to File conversion needs no extra arguments
String to font conversion needs screen argument

260

X Toolkit Intrinsics

wrongParameters

wrongParameters
wrongParameters
wrongParameters

wrongParameters
wrongParameters
wrongParameters

X11 Release 6

cvtStringToFontSet String to FontSet conversion needs display and locale
arguments

cvtStringToFontStruct String to cursor conversion needs screen argument

cvtStringTolnt String to Integer conversion needs no extra arguments

cvtStringToPixel String to pixel conversion needs screen and colormap
arguments

cvtStringToShort String to Integer conversion needs no extra arguments

cvtStringToUnsignedChar String to Integer conversion needs no extra arguments

cvtXColorToPixel Color to Pixel conversion needs no extra arguments

261

X Toolkit Intrinsics X11 Release 6

Appendix E

Defined Strings

The StringDefs.h header file contains definitions for the following resource name, class, and rep-
resentation type symbolic constants.

Resource names:

Symbol Definition
XtNaccelerators "accelerators"
XtNallowHoriz "allowHoriz"
XtNallowVert "allowVert"
XtNancestorSensitive "ancestorSensitive"
XtNbackground "background”
XtNbackgroundPixmap "backgroundPixmap"
XtNbitmap "bitmap"
XtNborderColor "borderColor"
XtNborder "borderColor"
XtNborderPixmap "borderPixmap"
XtNborderWidth "borderWidth"
XtNcallback "callback"
XtNchangeHook "changeHook"
XtNchildren “children”
XtNcolormap "colormap”
XtNconfigureHook "configureHook"
XtNcreateHook "createHook"
XtNdepth "depth"
XtNdestroyCallback "destroyCallback"
XtNdestroyHook "destroyHook"
XtNeditType "editType"

XtNfile "file"

XtNfont "font"

XtNfontSet "fontSet"
XtNforceBars "forceBars"
XtNforeground "foreground"
XtNfunction "function”
XtNgeometryHook "geometryHook"
XtNheight "height"
XtNhighlight "highlight"
XtNhSpace "hSpace"
XtNindex "index"
XtNinitialResourcesPersistent "InitialResourcesPersistent"
XtNinnerHeight "innerHeight"
XtNinnerWidth "innerwidth"

262

X Toolkit Intrinsics

XtNinnerWindow
XtNinsertPosition
XtNinternalHeight
XtNinternalWidth
XtNjumpProc
XtNjustify
XtNknobHeight
XtNknoblIndent
XtNknobPixel
XtNknobWidth
XtNlabel
XtNlength
XtNlowerRight

XtNmappedWhenManaged

XtNmenuEntry
XtNname
XtNnotify
XtNnumChildren
XtNnumShells
XtNorientation
XtNparameter
XtNpixmap
XtNpopupCallback

XtNpopdownCallback

XtNresize
XtNreverseVideo
XtNscreen
XtNscrollProc
XtNscrolIDCursor
XtNscroll[HCursor
XtNscrollLCursor
XtNscrollRCursor
XtNscrollUCursor
XtNscrollVCursor
XtNselection
XtNselectionArray
XtNsensitive
XtNsession
XtNshells
XtNshown
XtNspace
XtNstring
XtNtextOptions
XtNtextSink
XtNtextSource
XtNthickness
XtNthumb
XtNthumbProc
XtNtop

"innerWindow"
"insertPosition"
"internalHeight"
"internalWidth"
"jJumpProc”
"justify"
"knobHeight"
"knoblndent"
"knobPixel"
"knobWidth"
"label"
"length”
"lowerRight"

"mappedWhenManaged"”

"menuEntry"
"name"

"notify"
"numChildren”
"numShells"
"orientation”
"parameter”
"pixmap"
"popupCallback"

"popdownCallback
"resize"
"reverseVideo"
"screen”
“scrollProc"
"scrollIDCursor"
"scroll[HCursor"
"scrollLCursor"
"scrollRCursor
"scrollUCursor"
“scrollVCursor"
"selection"
"selectionArray"
"sensitive"
"session"
"shells"

"shown"

"space"

"string"
"textOptions”
"textSink"
"textSource"
"thickness"
"thumb"
"thumbProc"
"top”

263

X11 Release 6

X Toolkit Intrinsics

XtNtranslations "translations”
XtNunrealizeCallback "unrealizeCallback"
XtNupdate "update"
XtNuseBottom "useBottom"
XtNuseRight "useRight"
XtNvalue "value"
XtNvSpace "vSpace"
XtNwidth "width"
XtNwindow "window"

XtNx X"

XtNy "y"

Resource classes:

Symbol Definition
XtCAccelerators "Accelerators"
XtCBackground "Background"
XtCBitmap "Bitmap"
XtCBoolean "Boolean”
XtCBorderColor "BorderColor"
XtCBorderWidth "BorderWidth"
XtCCallback "Callback"
XtCColormap "Colormap"
XtCColor "Color"
XtCCursor "Cursor"
XtCDepth "Depth"
XtCEditType "EditType"
XtCEventBindings "EventBindings"
XtCFile "File"

XtCFont "Font"
XtCFontSet "FontSet"
XtCForeground "Foreground”
XtCFraction "Fraction"
XtCFunction "Function"
XtCHeight "Height"
XtCHSpace "HSpace"
XtClndex "Index"

XtClnitialResourcesPersistent
XtClnsertPosition

XtClnterval

XtCJustify

XtCKnobIndent

XtCKnobPixel

XtCLabel

XtCLength
XtCMappedWhenManaged
XtCMargin

"InitialResourcesPersistent"
"InsertPosition"

“Interval”
"Justify"

"Knoblndent"

"KnobPix
"Label"
"Length"

"MappedWhenManaged"

"Margin”

elu

264

X11 Release 6

X Toolkit Intrinsics

XtCMenuEntry
XtCNotify
XtCOrientation
XtCParameter
XtCPixmap
XtCPosition
XtCReadOnly
XtCResize
XtCReverseVideo
XtCScreen
XtCScrollProc
XtCScrollDCursor
XtCScroll[HCursor
XtCScrollLCursor
XtCScrollRCursor
XtCScrollUCursor
XtCScrollVCursor

"MenuEntry"
"Notify"
"Orientation"
"Parameter"
"Pixmap"
"Position"
"ReadOnly"
"Resize"
"ReverseVideo"
"Screen”
"ScrollProc"
"ScrollDCursor"
"Scroll[HCursor"
"ScrollLCursor"
"ScrollRCursor"
"ScrollUCursor"
"ScrollVCursor"

XtCSelection "Selection”
XtCSensitive "Sensitive"
XtCSelectionArray "SelectionArray"
XtCSession "Session"
XtCSpace "Space"
XtCString "String"
XtCTextOptions "TextOptions"
XtCTextPosition "TextPosition"
XtCTextSink "TextSink"
XtCTextSource "TextSource"
XtCThickness "Thickness"
XtCThumb "Thumb"
XtCTranslations "Translations"
XtCValue "Value"
XtCVSpace "VSpace"
XtCWidth "Width"
XtCWindow "Window"
XtCX "X

XtCY "y

Resource representation types:

Symbol Definition
XtRAcceleratorTable "AcceleratorTable"
XtRAtom "Atom"
XtRBitmap "Bitmap"
XtRBool "Bool"
XtRBoolean "Boolean”
XtRCallback "Callback"
XtRCallProc "CallProc"

265

X11 Release 6

X Toolkit Intrinsics

XtRCardinal

XtRColor
XtRColormap
XtRCommandArgArray
XtRCursor
XtRDimension
XtRDirectoryString
XtRDisplay
XtREditMode
XtREnum
XtREnvironmentArray
XtRFile

"Cardinal”
"Color"
"Colormap"
"CommandArgArray"
"Cursor"
"Dimension”
"DirectoryString"
"Display”
"EditMode"
"Enum"
"EnvironmentArray"
"File"

XtRFloat "Float"
XtRFont "Font"
XtRFontSet "FontSet"
XtRFontStruct "FontStruct"
XtRFunction "Function”
XtRGeometry "Geometry"
XtRGravity "Gravity"
XtRImmediate "Immediate”
XtRInitialState "InitialState"
XtRInt "Int"

XtRJustify "Justify"
XtRLongBoolean XtRBool
XtRObject "Object”
XtROrientation "Orientation"
XtRPixel "Pixel"
XtRPixmap "Pixmap"
XtRPointer "Pointer"
XtRPosition "Position"
XtRRestartStyle "RestartStyle"
XtRScreen "Screen"
XtRShort "Short"
XtRSmcConn "SmcConn"
XtRString "String"
XtRStringArray "StringArray"
XtRStringTable "StringTable"
XtRUnsignedChar "UnsignedChar"
XtRTranslationTable "TranslationTable"
XtRVisual "Visual"
XtRwidget "Widget"
XtRwWidgetClass "WidgetClass"
XtRWidgetList "WidgetList"
XtRWindow "Window"
Boolean enumeration constants:

Symbol Definition

266

X11 Release 6

X Toolkit Intrinsics

XtEoff
XtEfalse
XtEno
XtEon
XtEtrue
XtEyes

Iloffll
"false"
"no
Ilonll
"true"
"yes

n

Orientation enumeration constants:

Symbol Definition
XtEvertical "vertical"
XtEhorizontal "horizontal"
Text edit enumeration constants:

Symbol Definition
XtEtextRead "read"
XtEtextAppend "append"
XtEtextEdit "edit"

Color enumeration constants:

Symbol Definition

XtExtdefaultbackground
XtExtdefaultforeground

"xtdefaultbackground"
"xtdefaultforeground"

Font constant:

Symbol

Definition

XtExtdefaultfont

"xtdefaultfont"

Hooks for External Agents constants:

Symbol Definition
XtHcreate "Xtcreate"
XtHsetValues "Xtsetvalues"

XtHmanageChildren
XtHunmanageChildren

"XtmanageChildren"
"XtunmanageChildren”

267

X11 Release 6

X Toolkit Intrinsics

XtHmanageSet
XtHunmanageSet
XtHrealizeWidget
XtHunrealizeWidget
XtHaddCallback
XtHaddCallbacks
XtHremoveCallback
XtHremoveCallbacks
XtHremoveAllCallbacks
XtHaugmentTranslations
XtHoverrideTranslations
XtHuninstallTranslations
XtHsetKeyboardFocus
XtHsetWMColormapWindows
XtHmapWidget
XtHunmapWidget
XtHpopup
XtHpopupSpringLoaded
XtHpopdown
XtHconfigure
XtHpreGeometry
XtHpostGeometry
XtHdestroy

X11 Release 6

"XtmanageSet"
"XtunmanageSet"
"XtrealizeWidget"
"XtunrealizeWidget"
"XtaddCallback"
"XtaddCallbacks"
"XtremoveCallback"
"XtremoveCallbacks"
"XtremoveAllCallbacks"
"XtaugmentTranslations"
"XtoverrideTranslations"
"XtuninstallTranslations"
"XtsetKeyboardFocus"
"XtsetWMColormapWindows"
"XtmapWidget"
"XtunmapWidget"
"Xtpopup"
"XtpopupSpringLoaded"
"Xtpopdown"
"Xtconfigure"
"XtpreGeometry"
"XtpostGeometry"
"Xtdestroy"

The Shell.h header file contains definitions for the following resource name, class, and represen-

tation type symbolic constants.
Resource names:

Symbol

Definition

XtNallowShellResize
XtNargc

XtNargv
XtNbaseHeight
XtNbaseWidth
XtNcancelCallback
XtNclientLeader
XtNcloneCommand
XtNconnection
XtNcreatePopupChildProc
XtNcurrentDirectory
XtNdieCallback
XtNdiscardCommand
XtNenvironment
XtNerrorCallback
XtNgeometry
XtNheightlnc
XtNiconMask

"allowShellResize"
"argc"
"argv"
"baseHeight"
"baseWidth"
"cancelCallback"
"clientLeader"
"cloneCommand"
"connection”
"createPopupChildProc
"currentDirectory"”
"dieCallback"
"discardCommand"
"environment"
"errorCallback"
"geometry"
"heightinc"
"iconMask"

n

268

X Toolkit Intrinsics

XtNiconName
XtNiconNameEncoding
XtNiconPixmap
XtNiconWindow
XtNiconX

XtNiconY

XtNiconic
XtNinitialState
XtNinput
XtNinteractCallback
XtNjoinSession
XtNmaxAspectX
XtNmaxAspectY
XtNmaxHeight
XtNmaxWwidth
XtNminAspectX
XtNminAspectY
XtNminHeight
XtNminWidth
XtNoverrideRedirect
XtNprogramPath
XtNresignCommand
XtNrestartCommand
XtNrestartStyle
XtNsaveCallback
XtNsaveCompleteCallback

"iconName”
"iconNameEncoding"
"iconPixmap"

“iconWindow"

"iconX"

"iconY"

“iconic"

"initialState"

"input"
"interactCallback"
"joinSession”
"maxAspectX"
"maxAspectY"
"maxHeight"
"maxWwidth"
"minAspectX"
"minAspectY"
"minHeight"

"minWidth"
"overrideRedirect"
"programPath"

"resignCommand"
"restartCommand"
"restartStyle"
"saveCallback"
"saveCompleteCallback

XtNsaveUnder "saveUnder"
XtNsessionID "session|D"
XtNshutdownCommand "shutdownCommand"
XtNtitle "title"
XtNtitleEncoding "titteEncoding"
XtNtransient "transient"
XtNtransientFor "transientFor"
XtNurgency "urgency"
XtNvisual "visual"
XtNwaitForWwm "waitforwm"
XtNwaitforwm "waitforwm"
XtNwidthInc "widthInc"
XtNwindowGroup "windowGroup"
XtNwindowRole "windowRole"
XtNwinGravity "winGravity"
XtNwmTimeout "wmTimeout"
Resource classes:

Symbol Definition

XtCAllowShellResize

"allowShellResize"

269

X11 Release 6

X Toolkit Intrinsics

XtCArgc

XtCArgv
XtCBaseHeight
XtCBaseWidth
XtCClientLeader
XtCCloneCommand
XtCConnection
XtCCreatePopupChildProc
XtCCurrentDirectory
XtCDiscardCommand
XtCEnvironment
XtCGeometry
XtCHeightlnc
XtClconMask
XtClconName
XtClconNameEncoding
XtClconPixmap
XtClconWindow
XtClconX

XtClconY

XtClconic
XtClnitialState
XtClnput
XtCJoinSession
XtCMaxAspectX
XtCMaxAspectY
XtCMaxHeight
XtCMaxWidth
XtCMinAspectX
XtCMinAspectY
XtCMinHeight
XtCMinWidth
XtCOverrideRedirect
XtCProgramPath
XtCResignCommand
XtCRestartCommand
XtCRestartStyle
XtCSaveUnder
XtCSessionlD
XtCShutdownCommand
XtCTitle
XtCTitleEncoding
XtCTransient
XtCTransientFor
XtCUrgency
XtCVisual
XtCWaitForwm
XtCWaitforwm
XtCWidthinc

"Argc"

"Argv"

"BaseHeight"
"BaseWidth"
"ClientLeader"
"CloneCommand"
"Connection"

"CreatePopupChildProc

"CurrentDirectory"
"DiscardCommand”
"Environment"
"Geometry"

"HeightInc"

"lconMask"

"lconName"
"lconNameEncoding"
"lconPixmap”

"lconWindow"

"lconX"

"lconY"

"lconic"

“InitialState"

"Input"”

"JoinSession
"MaxAspectX"
"MaxAspectY"

"MaxHeight"

"MaxWidth"

"MinAspectX"

"MinAspectY"

"MinHeight"

"MinWidth"
"OverrideRedirect"
"ProgramPath"
"ResignCommand"”
"RestartCommand”
"RestartStyle"
"SaveUnder"

"Session|D"
"ShutdownCommand"

"Title"

"TitleEncoding"
"Transient"
"TransientFor"
"Urgency"

"Visual"

"Waitforwm"

"Waitforwm"

"Widthinc"

"

270

X11 Release 6

X Toolkit Intrinsics

XtCWindowGroup "WindowGroup"
XtCWindowRole "WindowRole"
XtCWinGravity "WinGravity"
XtCWmTimeout "WmTimeout"
Resource representation types:

Symbol Definition
XtRAtom "Atom"

271

X11 Release 6

272

X Toolkit Intrinsics

#

#augment, 176, 177
#override, 176, 177
#replace, 176, 177

$

$HOME, 33

A

Above, 97

Accelerator177

accept_focus procedure, 115
Action Table, 171

actions, 171

action_proc procedurd,70
allocate procedurel4
allowShellResize78

AnyButton, 113

AnyKey, 111

AnyModifier, 111, 113
application contex27
ApplicationShell 67, 235
ApplicationShellPart, 11, 232
ApplicationShellWidget, 7074
applicationShellwidgetClass, 41, 42
ApplicationShellwidgetClass, 70
applicationShellwidgetClass, 70
applicationShellClassRec, 76
applicationShellwidgetClass, 41, 248
Arg, 37

ArglList, 11,37, 38, 46, 48

B
Below, 97

Boolean,10, 161, 230
Bottomlf, 97

X11 Release 6

Index

ButtonReleaseMask, 92
C

calloc, 186
Cardinal,10, 38, 234
CenterGravity, 50, 150
Chaining, 46, 47, 145

Subclass, 19

superclass, 19
change_managed procedure, 59
CirculateNotify, 241, 244
CirculateRequest, 241, 244
Class Initialization, 21
class_initialize procedur@l, 145
class_namel6
ClientMessage, 125, 126, 127, 128, 241, 243, 244
colorConvertArgs, 148, 150, 158
ColormapNotify, 241, 244
Composite widgets, 57
Compositep
CompositeClassExtensioh, 58, 63, 224, 227, 232
CompositeClassExtensionRét,
CompositeClassPaf, 7, 25
compositeClassRec, 8
CompositeP.h, 22
CompositePart, 6/, 11, 49, 232
CompositeWidget, 78

Resources, 8
CompositeWidgetClasg,
compositeWidgetClass, 7, 26, 40, 48, 50, 55, 57
CompositeWidgetClass, 58
compositeWidgetClass, 60, 61, 62, 63, 65, 67, 96
compositeWidgetClass, 53
compress_enterleave field, 122
compress_expose field, 122
compress_motion field, 121
Configure Window, 95
ConfigureNotify, 52, 58, 241, 244
ConfigureRequest, 241, 244
ConnectionClosed, 83, 86
ConstrainP.h, 15

ButtonPress, 92, 110, 113, 119, 175, 183, 204, 240Constraint.h, 13

241, 242, 244
ButtonPressMask, 92

Constraint8
get_values_hook, 66

ButtonRelease, 110, 119, 204, 240, 241, 242, 244 ConstraintClassExtensiof, 66, 162

ConstraintClassExtensionRé&;,20
ConstraintClassPart, 8, 20, 21, 25, 40, 47, 54,
55, 66, 140

X Toolkit Intrinsics

constraintClassRec, 10
ConstraintPart, 8.0, 167
ConstraintWidget, 910
ConstraintWidgetClas$
constraintWidgetClass, 9, 40, 50, 54, 55, 65, 144
162, 164
constraintWidgetClass, 54, 55
ConvertSelection, 201
CopyFromParent, 50, 77, 78
Core, 13
CoreClassPart3, 40, 41, 54, 89, 140, 171, 174,
220, 224, 230
coreClassRec, 5
CorePart, 34, 11, 88, 222, 223, 225, 226, 232
CoreRec, 11
CoreWidgets

Resources, 5
CoreWidgetClass3
coreWidgetClass, 40, 50, 184
coreWidgetClassRec, 228
CreateNotify, 241, 244
create_popup_child_proc, 91
CurrentTime, 193, 194, 198, 199, 200, 202
CWBorderWidth, 97
CWHeight, 97, 98
CWSibling, 97
CWStackMode, 97, 103
CWWidth, 97, 98
CwX, 97
CWY, 97

D

deallocate procedurd5
DeleteProperties, 83
delete_child procedure, 59
Destroy Callbacks, 54, 136
destroy procedur&4
destroyCallback, 161
DestroyNotify, 241, 244
Die, 83, 85, 86
Dimension,10

DirectColor, 150

Display, 27, 34
display_accelerator procedude/ 7
display_accelerator, 244

E

EastGravity, 50, 150

EnterNotify, 110, 119, 204, 240, 241, 243, 244,
246

EnterWindow, 92

273

X11 Release 6

EventMask,, 130
EventMask, 130
Events, 117
exit, 56

expose procedure, 123

Expose, 122, 123, 133, 166, 204, 241, 244
F

False, 5, 10, 21, 40, 48, 57, 58, 63, 64, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 91, 93, 109, 110, 115,
116, 117, 119, 120, 121, 124, 125, 132, 133, 149,
150, 152, 159, 161, 191, 195, 197, 200, 211, 223
FocusChange, 115

Focuslin, 115, 116, 119, 241, 243, 244

FocusOut, 115, 116, 119, 241, 243, 244

font, 13

ForgetGravity, 150

free, 186

G

Geometry Management, 95
geometry_manager procedure, 95
get_values_hook procedure, 66, 1683
Grabbing Input, 109
GrabModeAsync, 92
GrabNotViewable, 112, 114
GraphicsExpose,, 244
GraphicsExpose, 116, 122, 123, 125, 126, 127,
128, 133, 204, 241

GravityNotify, 241, 244

GrayScale, 150

IconicState, 80, 150

Inheritance, 19, 46, 47, 50, 145
Initialization, 21, 46, 47

initialize procedure46, 47
initialize_hook procedure}7

Input Grabbing, 109

InputOnly, 50

InputOutput, 50

insert_child procedure, 2588, 89, 247
Interact, 83, 85

InteractDone, 83, 85, 86
InteractRequest, 83, 85

Intrinsic.h, 4, 5,7, 8, 9, 10, 118, 221, 222, 225, 226

X Toolkit Intrinsics X11 Release 6

IntrinsicP.h, 4, 7, 9, 221, 222 objectClassRec, 5
ObjectClassRe@21
K objectClassRec, 222
ObjectPart, 11, 22®22, 223, 225, 232
key modifier, 241 ObjectRec, 11222
KeymapNotify, 241, 244 Opposite, 97
KeyPress, 92, 110, 111, 119, 181, 182, 183, 2040verrideShell, 67
240, 241, 242, 243, 244 OverrideShellWidget, 70
KeyRelease, 110, 119, 181, 182, 204, 240, 241QverrideShellwidgetClass, 70
243, 244 overrideShellWidgetClass, 70
L P
language procedur80 ParentRelative, 6
LC_ALL, 31 Pixel, 152
LeaveNotify, 110, 119, 204, 240, 241, 243, 244 pop-up,88
libXt.a, 2 child, 88, 89
list, 88
M shell, 89
Position,10
malloc, 186 PPosition, 78
MapNotify, 241, 244 printf, 206
MappingNotify, 125, 126, 127, 128, 179, 241, 243 PropertyNotify, 116, 204, 241, 243, 244
MapRequest, 241, 244 PseudoColor, 150
MenuPopdown94 PSize, 78
MenuPopup92
MotionNotify, 110, 119, 204, 240, 241, 242, 243, Q
244
multiClickTime, 174 query_geometry procedurk)2 103
N R
NoExpose, 116, 123, 124, 125, 126, 127, 128, 133realize procedure, 50
241, 244 realloc, 186
None, 6, 79, 80, 114, 132, 183, 193 Rectangle, 224
NormalState, 150 RectObj,224, 225
NorthEastGravity, 150 rectObjClass, 145, 167, 224
NorthGravity, 150 RectObjClass225
NorthWestGravity, 49, 124, 150 rectObjClass, 225, 226
NoSymbol, 179, 182 RectObjClassPart, 54, 14024, 225
rectObjClassRec, 5
@) RectObjClassRe&25
rectObjClassRec, 226, 228
Object, 1, 214220 222 RectObjPart, 11225 226, 232
objectClass, 22, 143, 144, 145 RectObjRec, 11226
ObjectClass221 ReparentNotify, 241, 244
objectClass221 resize procedurd,03
ObjectClass, 222 ResizeRequest, 241, 244
objectClass, 222, 223, 224 Resource Management, 140
ObjectClass, 228 Resources:
ObjectClassExtension, 44, 54, 55, 222 multiClickTime, 174
ObjectClassExtensionRe221 reverseVideo, 149
ObjectClassPart, 54, 14P20 221, 224 selectionTimeout, 36

274

X Toolkit Intrinsics

synchronous, 36

xnlLanguage, 32

xtDefaultFont, 149

xtDefaultFontSet, 149
RestartAnyway, 150
RestartlfRunning, 150
Restartimmediately, 150
RestartNever, 150
root_geometry _manager procedure, 71

S

SaveComplete, 83, 85, 86
SaveYourself, 83, 85
SaveYourselfDone, 83, 86
SaveYourselfPhase?2, 83, 84
SaveYourselfPhase2Request, 83, 84
Screen, 152

screenConvertArg, 158

X11 Release 6

ShellWidget, 7073
Resources, 75
ShellwidgetClass, 70
shellwidgetClass, 70, 91, 93
ShutdownCancelled, 83, 85
sizeof, 25, 142
SmbDialogError, 85
SmbDialogNormal, 83, 85
SminteractStyleAny, 83
SminteractStyleErrors, 83
SminteractStyleNone, 83, 86
SmRestartAnyway, 82
SmRestartlfRunning, 81, 82
SmRestartimmediately, 82
SmRestartNever, 82
SmSaveBoth, 83
SmSaveGlobal, 83
SmSavelocal, 83
SouthEastGravity, 150

SelectionClear, 125, 126, 127, 128, 200, 204, 241 SouthGravity, 150

243, 244

SouthWestGravity, 150

SelectionNotify, 125, 126, 127, 128, 193, 241, 243, special, 13

244

StaticColor, 150

SelectionRequest, 125, 126, 127, 128, 191, 197 StaticGravity, 150

241, 243, 244
Selections:
atomic, 190
incremental, 196
MULTIPLE, 191
TIMESTAMP, 191
selectionTimeout36, 190
SessionShelk7, 235
sessionShellClassRec, 76
SessionShellWidget, 7G4
sessionShellWidgetClass, 43
SessionShellWidgetClass, 70
sessionShellWidgetClass, 70, 82
setlocale, 31
SetProperties, 83
set_values procedurt65, 167
set_values_almost procedul&6
set_values_hook procedure, 1668
Shell.h, 71, 268
Shell,67
create_popup_child_proc, 91
root_geometry_manager, 71
wm_timeout,71
ShellClassExtensios8, 71
ShellClassExtensionRe68
ShellClassPart, 25, 71
shellClassRec, 75
ShellP.h, 71
ShellPart, 1172, 232

275

StaticGray, 150

String Constants:
representation types, 265, 271
resource classes, 264, 269
resource names, 262, 268

String, 12, 38, 46, 141, 151

string, 152

String, 239

StringDefs.h, 262

Subclass Chainind,9

Substitution211

SubstructureNotify, 52

Superclass Chainind9, 46, 47, 145

superclass]5

synchronous36
T

TARGETS, 191
this, 13

Toplf, 97
TopLevel, 80

TopLevelShell, 67
resources, 76
topLevelShellClassRec, 76
TopLevelShellPart, 11, 230, 231, 232
TopLevelShellwidget, 70
TopLevelShellwidgetClass, 70
topLevelShellWidgetClass, 70, 251

X Toolkit Intrinsics

TransientShell, 67

resources, 76
TransientShellPart, 230, 231
TransientShellWidget, 70
TransientShellWidgetClass, 70
transientShellwidgetClass, 70
transientShellClassRec, 76
Translation tables, 173, 239

X11 Release 6

resources, 75
wmsShellClassRec, 75
WMShellPart,, 230
WMShellPart, 11, 231, 232, 234, 235
WMShellWidget, 70
WMShellWidgetClass, 70
wmShellWidgetClass, 70
WM_CLASS, 41

True, 5, 10, 18, 28, 36, 48, 49, 53, 57, 58, 60, 61WM_COLORMAP_WINDOWS 210
63, 64, 77, 78, 79, 80, 81, 82, 83, 84, 85, 91, 92WM_COMMAND, 41

93, 96, 109, 110, 111, 113, 115, 117, 119, 120wm_timeout,71

121, 122, 124, 125, 126, 128, 132, 133, 149, 152,

159, 161, 165, 166, 191, 195, 197, 200, 211, 212X

224,227, 232
TrueColor, 150

U

UnmapGravity, 150
UnmapNotify, 93, 241, 244
unrealizeCallback3
USPosition, 78

USSize, 78

Vv

varargs38

VendorShell, 67
VendorShellWidget, 70
VendorShellWidgetClass, 70
vendorShellwidgetClass, 70
version,16

Visibility, 124
VisibilityFullyObscured, 125
VisibilityNotify, 125, 133, 241, 244
VisibilityPartiallyObscured, 125
VisibilityUnobscured, 125

W

WestGravity, 50, 150
Widget Allocation, 44
Widget, 4,5
class extension records, 24
class initialization, 22, 145
WidgetClass3, 4
widgetClass, 4
widgetClassRec, 15
WidgetList, 60
WidgetRec, 11
widget_class]11
widget_size 16
WMShell, 67, 236

X11/Intrinsic.h, 1, 157
X11/IntrinsicP.h, 1, 19
X11/keysymdef.h, 244
X11/Shell.h, 1, 236
X11/stringDefs.h, 1, 11, 12, 141, 142
X11/X.h, 97

X11/Xatoms.h, 1
X11/Xaw/Label.h, 2
X11/Xaw/Scrollbar.h, 2
X11/Xresource.h, 151
X11/Xutil.h, 204
XAPPLRESDIR,33

XA PRIMARY, 190, 193, 194
XA _SECONDARY, 190

XA _STRING, 191, 192
XClearArea, 165, 166
XCloseDisplay, 29
XConfigureWindow, 52, 60, 97, 101
XCreateFontSet, 149
XCreateGC, 189
XCreateWindow, 49, 50
XDestroyWindow, 53, 54
XFILESEARCHPATH,212 233
XFilterEvent, 111, 113, 119, 132
XFreeGC, 55

XFreePixmap, 55
XGetWindowAttributes, 78
XGrabButton, 113

XGrabKey, 111
XGrabKeyboard, 112
XGrabPointer, 114
XListFonts, 149

XMapRaised, 91
XMatchVisuallnfo, 150

xmh, 36

XMoveWindow, 60, 100
XNextEvent, 117
xnlLanguage32, 212, 234
XOpenDisplay, 29, 34

X Toolkit Intrinsics

XParseGeometry, 141

XPeekEvent, 117

XPending, 117

XPointer, 232
XResourceManagerString, 31
XrmGetDatabase, 34, 213
XrmOptionDescRec35, 232
XrmParseCommand, 28, 35, 36, 249
XrmPutLineResource, 34
XrmSetDatabase, 28, 32
XrmStringToQuark, 24, 157
XrmValue, 143, 151, 232, 251
XScreenResourceString, 32
XSelectinput, 126, 127, 129, 130
XSetlnputFocus, 114, 116
XSetLocaleModifiers, 31
XSetWindowAttributes, 48, 49, 50, 129
XSizeHints, 231

XStdICCTextStyle, 79, 80
XSupportsLocale, 31

XSynchronize, 28, 36
XtAcceptFocusProd 15
XtActionHookld, 173
XtActionHookProc,172

XtActionList, 170

XtActionProc,170

XtActionsRec, 170

XtAddActions, 172, 249254
XtAddCallback, 54137, 214, 215, 216, 223
XtAddCallbacks,, 215
XtAddCallbacks 137, 214, 216, 223
XtAddConverter, 161252
XtAddEventHandler, 118,125 126, 127, 128,
129, 228
XtAddExposureToRegior204
XtAddGrab, 91110 119, 228
XtAddInput, 248,250
XtAddRawEventHandler, 124,27, 128, 228
XtAddress 157

XtAddressMode, 157
XtAddTimeOut, 248250
XtAddWorkProc, 248251
XtAllEvents, 126, 128
XtAllocateGC,188 189
XtAllocateProc 44, 45
XtAlmostProc,166
XtAppAddActionHook., 172
XtAppAddActionHook,173
XtAppAddActions,171, 172, 254
XtAppAddBlockHook,107, 236
XtAppAddConverter, 161252 253
XtAppAddinput, 82,105 106, 117, 250
XtAppAddSignal, 108 109, 236

277

X11 Release 6

XtAppAddTimeOut, 55,107, 108, 250
XtAppAddWorkProc,121, 251
XtAppContext,27

XtAppCreateShell, 26, 2741, 42, 43, 144, 214,
228, 229, 248, 249, 251

XtAppError, 209, 257

XtAppErrorMsg, 155208 209, 256, 257
XtAppGetErrorDatabas@06, 255
XtAppGetErrorDatabaseTex206, 207, 255
XtAppGetExitFlag,135 236
XtAppGetSelectionTimeoufl,90, 255
XtApplnitialize, 27, 133, 229, 234, 23847, 248
XtAppLock., 134

XtAppLock, 119,134, 135, 236
XtAppMainLoop, 105, 118119, 135, 249
XtAppNextEvent, 108, 109117, 118, 119, 121,
135, 249

XtAppPeekEventl17, 135, 250
XtAppPending, 109117, 250
XtAppProcessEvent, 108, 109, 117,8 121, 135,
249

XtAppReleaseCacheReft59
XtAppSetErrorHandler209, 257
XtAppSetErrorMsgHandle207, 208, 255
XtAppSetExitFlag,135 236
XtAppSetFallbackResources, 334, 43, 248
XtAppSetSelectionTimeoud,90 254
XtAppSetTypeConvertei, 56, 157, 253
XtAppSetWarningHandle210, 257
XtAppSetWarningMsgHandle208 256
XtAppUnlock., 134

XtAppUnlock, 119,134, 135, 236
XtAppWarning,210, 257

XtAppWarningMsg, 152, 158208 210, 256, 257
XtAppAddBlockHook, 107

XtAppAddinput, 106

XtAppAddTimeOut, 108

XtArgsFunc,168

XtArgsProc,47, 163

XtArgVal, 10, 37, 38, 39
XtAugmentTranslations, 179,76, 215, 216, 229
XtBaseOffset157, 158

XtBlockHookProc,107
XtBuildEventMask,129 130, 228
XtButtonBoxAddButton, 247
XtButtonBoxDeleteButton, 247
XtCacheAll, 155 159, 252, 253
XtCacheByDisplayl55, 159, 161
XtCacheNonel55 159

XtCacheRef, 159, 160, 161
XtCacheRefCount] 55 159

XtCacheTypel55

XtCallAcceptFocus116 229

X Toolkit Intrinsics X11 Release 6

XtCallActionProc, 173, 182183 184, 229 XtCreateWindowb0, 52, 228
XtCallbackExclusive, 90, 992, 229 XtCurrentDirectory, 150
XtCallbackHasNone, 137, 139 XtCvtColorToPixel, 150
XtCallbackHasSome, 139 XtCvtintToBool, 150
XtCallbackList,136 XtCvtIntToBoolean, 150
XtCallbackNoList, 139 XtCvtIintToColor, 150
XtCallbackNone, 9091, 92, 229 XtCvtIntToDimension, 150
XtCallbackNonexclusive, 90, 992, 229 XtCvtIntToFloat, 150
XtCallbackPopdown93, 94, 229 XtCvtIntToFont, 150
XtCallbackProc, 54136 XtCvtIntToPixel, 150

XtCallbackRec 136 XtCvtIntToPixmap, 150
XtCallbackReleaseCacheRé&60, 161 XtCvtIntToPosition, 150
XtCallbackReleaseCacheRefLid60 XtCvtIntToShort, 150
XtCallbackStatus, 137 XtCvtIintToUnsignedChar, 150
XtCallCallbackList, 137139, 214, 223 XtCvtPixelToColor, 151
XtCallCallbacks,138 139, 214, 223 XtCvtStringToAcceleratorTable, 148
XtCallConverter, 157158 159, 160, 253, 254 XtCvtStringToAtom, 148

XtCalloc, 55,186 187, 195, 200 XtCvtStringToBool, 148
XtCancelConvertSelectionPrat98 XtCvtStringToBoolean, 148
XtCancelSelectionReque&03 237 XtCvtStringToCommandArgArray, 148
XtCaseProc, 179,80 181, 232 XtCvtStringToCursor, 148
XtChangeHookData, 215 XtCvtStringToDimension, 148
XtChangeHookSetValuesDafa]15 XtCvtStringToDirectoryString, 148
XtChangeManagedSet, 552, 63, 216, 226, 235 XtCvtStringToDisplay, 148
XtCheckpointToken83 XtCvtStringToFile, 148
XtCheckpointTokenRe&3 XtCvtStringToFloat, 148
XtCheckSubclass, 4,9, 91, 93, 214, 223 XtCvtStringToFont, 148

XtClass,18, 214, 223, 224 XtCvtStringToFontSet, 148
XtCloseDisplay29, 30, 155, 161 XtCvtStringToFontStruct, 148
XtCompositeExtensionVersion, 7 XtCvtStringToGravity, 148
XtConfigureHookData., 217 XtCvtStringTolnitialState, 148
XtConfigureHookData217 XtCvtStringTolnt, 148
XtConfigureWidget, 60, 95, 99, 10001, 226, 227 XtCvtStringToPixel, 148
XtConstraintExtensionVersion, 9 XtCvtStringToPosition, 148
XtConvert, 223253 254 XtCvtStringToRestartStyle, 148
XtConvertAndStore, 158,60 161, 223, 254 XtCvtStringToShort, 148
XtConvertArgProc157, 158 XtCvtStringToTranslationTable, 148
XtConvertArgRec, 157 XtCvtStringToUnsignedChar, 148
XtConvertCasel81 XtCvtStringToVisual, 148
XtConverter, 232251, 252 XtCWQueryOnly, 96, 97, 98, 99, 100
XtConvertSelectionincrProd, 96, 202 XtDatabase34
XtConvertSelectionProd,90, 191, 202 XtDeallocateProch5, 56
XtCreateApplicationContexf7, 43, 133, 172, 248 XtDefaultBackground, 5, 36,49, 154
XtCreateApplicationShell, 24251 XtDefaultFont,149 154
XtCreateHookData214 XtDefaultFontSet149
XtCreateManagedWidget, 580, 61, 155, 214, XtDefaultForeground, 5, 36, 14349, 154
226, 227, 229 XtDestroyApplicationContex7, 30, 56
XtCreatePopupChildPro81 XtDestroyGC 254
XtCreatePopupShell, 489, 90, 214, 228, 229 XtDestroyHookData, 218

XtCreateSelectionRequest, 201, 202, 203, 237 XtDestroyWidget, 2653, 54, 55, 56, 57, 59, 61,
XtCreateWidget, 5, 21, 3&9, 40, 41, 48, 57, 58, 66, 88, 218, 223

61, 66, 136, 140, 145, 155, 161, 214, 223, 224 XtDestroyWidget, 48

227,247 XtDestructor,154

278

X Toolkit Intrinsics

XtDirectConvert, 157, 16@53 254
XtDisownSelection195 200, 228
XtDispatchEvent, 53, 110, 111, 113, 11518
119, 132, 204, 234, 236, 249
XtDispatchEventToWidget, 131,33 228, 236
XtDisplay, 51, 228

XtDisplaylnitialize, 27,28, 29, 30, 31, 32, 34, 35,
36, 41, 42, 43, 174, 190, 207, 212, 234, 248
XtDisplayOfObject51, 214, 223
XtDisplayStringConversionWarning, 154, 155,
252

XtDisplayToApplicationContext, 154,55
XtDoChangeProc, 63

XtEnum, 10, 230

XtError, 208, 255257

XtErrorHandler,209

XtErrorMsg, 19, 186, 1872255
XtErrorMsgHandler206
XtEventDispatchProcl 32

XtEventHandler125 230
XtExposeCompressMaximal, 123
XtExposeCompressMultipld,23
XtExposeCompressSeriek??2
XtExposeGraphicsExpose, 12123
XtExposeGraphicsExposeMerged, 1223
XtExposeNoCompresd 22 124
XtExposeNoExpose, 12223
XtExposeNoRegion, 122, 123, 124, 235
XtExposeProcl123

XtExtensionSelectProc, 131
XtFilePredicate211

XtFindFile,211, 212

XtFree, 38, 39, 55, 143, 144, 182, 184, 1887,
188, 191, 193, 197, 212, 213, 219

XtGeometryAlmost, 71, 96, 98, 99, 100, 103, 165,

167

XtGeometryDone, 97, 99, 165
XtGeometryHandler99, 102
XtGeometryHookData, 218
XtGeometryMask, 96

XtGeometryNo, 71, 78, 96, 99, 103, 165, 167
XtGeometryResult, 97

X11 Release 6

XtGetErrorDatbaseText, 255

XtGetGC, 55189 223
XtGetKeyboardFocusWidget,32 236
XtGetKeysymTable179, 182
XtGetMultiClickTime, 175
XtGetResourcelist] 43 223
XtGetSelectionParameter, 202
XtGetSelectionParamete®&)1, 237
XtGetSelectionRequest91, 197, 228
XtGetSelectionTimeout, 24254
XtGetSelectionValue, 193 194, 198, 201, 202,
203, 228

XtGetSelectionValuelncremental,98 199, 201,
202, 203, 228

XtGetSelectionValues193 194, 201, 202, 203,
228

XtGetSelectionValuesincremental, 19899, 201,
202, 203, 228

XtGetSubresourced,45 146, 147, 152, 155, 158,
223

XtGetSubvalues] 63 164

XtGetValues, 66, 78, 136, 140, 14461, 162, 163,
214, 223

XtGrabButton,112 113, 119, 183, 228
XtGrabExclusive, 91, 92, 93

XtGrabKey,111, 112, 115, 119, 183, 228
XtGrabKeyboard112, 115, 228

XtGrabKind, 90

XtGrabNone, 80, 92

XtGrabNonexclusive, 91, 92, 93
XtGrabPointer114, 228

XtHaddCallback, 216

XtHaddCallbacks, 216

XtHasCallbacks139 214, 223
XtHaugmentTranslations, 216

XtHconfigure, 217

XtHcreate, 215

XtHdestroy, 218

XtHmanageChildren, 215

XtHmanageSet, 216

XtHmapWidget, 217

XtHooksOfDisplay,214, 237

XtGeometryYes, 71, 96, 97, 99, 100, 103, 164, 228XtHoverrideTranslations, 216

XtGetActionKeysym, 181, 182

XtGetActionList, 184
XtGetApplicationNameAndClas207, 213
XtGetApplicationResourcesl47, 148, 152, 155,
158, 223

XtGetClassExtensior25, 235
XtGetConstraintResourceList43 144, 223
XtGetDisplays218 237

XtGetErrorDatabas&55
XtGetErrorDatabaseTex255

279

XtHpopdown, 217
XtHpopup, 217
XtHpopupSpringLoaded, 217
XtHpostGeometry, 218
XtHpreGeometry, 218
XtHrealizeWidget, 216
XtHremoveAllCallbacks, 216
XtHremoveCallback, 216
XtHremoveCallbacks, 216
XtHsetKeyboardFocus, 216

X Toolkit Intrinsics

XtHsetMappedWhenManaged, 217
XtHsetValues, 215
XtHsetWMColormapWindows, 217
XtHuninstallTranslations, 216
XtHunmanageChildren, 215
XtHunmanageSet, 216
XtHunmapWidget, 217
XtHunrealizeWidget, 216

XtIMAII, 118

XtIMAlternatelnput, 117, 118
Xtimmediate 157

XtIMSignal, 109, 117, 118
XtIMTimer, 117, 118

XtIMXEvent, 117, 118

Xtinherit, 22

XtInheritAcceptFocus, 23
XtinheritAllocate, 23, 45, 55
XtInheritChangeManaged, 23, 63
XtinheritDeallocate, 23, 45, 55
XtinheritDeleteChild, 23
XtinheritDisplayAccelerator, 23
XtInheritExpose, 23
XtInheritGeometryManager, 23
XtinheritinsertChild, 23
XtInheritQueryGeometry, 23
XtinheritRealize, 23
XtinheritResize, 23
XtInheritRootGeometryManager, 23, 71
XtinheritSetValuesAlmost, 23, 167
XtinheritTranslations, 23, 174
Xtlnitialize, 234, 248249 250, 251, 254, 255
XtlnitializeWidgetClass22, 223
XtInitProc, 46, 47, 230, 231
XtinputCallbackProc106
XtinputExceptMask]106
XtinputReadMask106
XtinputWriteMask,106
XtlnsertEventHandlerl 26 127, 128, 129, 228

XtinsertEventTypeHandler, 129, 130, 131, 228,

236

XtInsertRawEventHandler, 126128 129, 130,
228

XtinstallAccelerators178 229
XtinstallAllAccelerators 178 229
XtlsApplicationShell 19, 214, 223
XtlsComposite 19, 214, 223
XtlsConstraint,19, 214, 223
XtlsManaged©64, 223
XtlsObject,19, 214, 223
XtlsOverrideShell 19, 214, 223
XtlsRealized49, 223
XtlsRectObj,19, 214, 223
XtlsSensitive 120, 223

280

X11 Release 6

XtlsSessionShelll 9, 214, 223, 235
XtlsShell, 19, 214, 223

XtlsSubclass18, 19, 214, 223
XtlsTopLevelShell 19

XtlsToplevelShell, 214, 223
XtlsTransientShell19, 214, 223
XtlsVendorShell 19, 214, 223

XtlsWidget, 19, 214, 223

XtlsWMShell, 19, 214, 223
XtKeyProc,178 180, 181, 241
XtKeysymToKeycodeList]1 82
XtLabelCreate, 247

XtLanguageProc30
XtLastEventProcessed04, 236
XtLastTimestampProcessed, 1284
XtListHead, 127

XtListPosition,126

XtListTail, 127, 130
XtLoseSelectionIncrProd,97
XtLoseSelectionProd, 92

XtMainLoop, 248,249
XtMakeGeometryRequest, 26, 71, ¥%, 97, 98,
99, 100, 102, 103, 104, 218, 226, 228
XtMakeResizeRequest, 71, 983, 102, 103, 104,
218, 226, 228

XtMalloc, 55,186 187, 195, 200
XtManageChild, 24, 36, 580, 61, 215, 226, 247
XtManageChildren, 48, 5”9, 60, 63, 215, 226,
247

XtMapWidget,64, 215, 217, 229
XtMenuPopdown, 78, 984, 172, 254
XtMenuPopup, 78, 89, 992, 93, 172, 254
XtMenuPopupAction, 92
XtMergeArgLists,38

XtMoveWidget, 60, 95100, 226, 227
XtMoveWidget, 95

XtName,52, 214, 223
XtNameToWidget 185 186, 223, 228
XtNchildren, 8

XtNew, 2,187

XtNewString,187, 188

XtNextEvent, 248249
XtNinitialResourcesPersisteritb 1
XtNinsertPosition, 8, 58
XtNnumcChildren, 8

XtNoticeSignal, 108109 236

XtNumber, 2, 38185
XtNunrealizeCallback, 53
XtObjectExtensionVersion, 222

XtOffset, 2,145

XtOffsetOf, 2, 142144, 145
XtOpenApplication, 2742, 43, 44, 133, 228, 235,
247, 249

X Toolkit Intrinsics X11 Release 6

XtOpenDisplay, 2728, 29, 34, 43, 234, 248, 249 XtRemoveBlockHook107, 236

XtOrderProc58 XtRemoveCallback, 54138 214, 215, 216, 223
XtOverrideTranslations, 179,76, 215, 216, 229 XtRemoveCallbacksl 38 214, 215, 216, 223
XtOwnSelection, 191194, 195, 228 XtRemoveEventHandler, 5326 228
XtOwnSelectionincremental, 191, 1999 200, XtRemoveEventTypeHandler, 130, 228, 236
228 XtRemoveGrab, 93, 110,11, 228
XtParent51, 214, 223 XtRemovelnput106
XtParseAcceleratorTablé,78 XtRemoveRawEventHandlet28 130, 228
XtParseTranslationTable, 17475 XtRemoveSignall09 236
XtPeekEvent, 24849 250 XtRemoveTimeOut, 55108

XtPending, 248250 XtRemoveWorkProcl21

XtPointer,10, 143, 160, 230 XtREnum, 141

XtPopdown, 7893, 94, 215, 217, 229 XtREnvironmentArray, 141
XtPopdownlID, 93 XtRequestld 196

XtPopup, 78, 80, 9091, 92, 109, 110, 215, 217, XtReservePropertyAtom, 203, 237

229 XtResizeWidget, 60, 95, 99,00, 101, 102, 103,
XtPopupSpringLoaded, 90, 91, 92, 215, 217, 229 226, 227

XtProc,21 XtResizeWindow]101, 102, 217, 229
XtProcedureArgl157 XtResolvePathname, 32, 33, 2212 233
XtProcessEvent, 24249 XtResource, 140

XtProcessLock., 135 XtResourceDefaultProc, 143
XtProcessLockl135 236 XtResourcelist, 11, 140
XtProcessUnlock]l 35, 236 XtResourceQuarkl 57, 158
XtQueryGeometryl02 103, 226, 231 XtResourceStringl 57, 158
XtQueryOnly, 228 XtRFile, 141, 148
XtRAcceleratorTable, 141, 148 XtRFloat, 141, 148, 150
XTranslateCoordinates, 205 XtRFont, 141, 148, 149, 150

XtRAtom, 141, 148 XtRFontSet, 141, 148, 149

XtRBitmap, 141 XtRFontStruct, 141, 148, 149

XtRBool, 141, 148, 150 XtRFunction, 141

XtRBoolean, 141, 148, 150 XtRGeometry, 141

XtRCallback, 137, 139, 141 XtRGravity, 141, 148

XtRCardinal, 141 XtRInitialState, 141, 148

XtRColor, 141, 150, 151 XtRInt, 141, 148, 150

XtRColormap, 141 XtRJustify, 142

XtRCommandArgArray, 141, 148 XtRLongBoolean, 141

XtRCursor, 141, 148 XtRObject, 141

XtRDimension, 141, 148, 150 XtROrientation, 142
XtRDirectoryString, 141, 148 XtRPixel, 141, 148, 150, 151
XtRDisplay, 141, 148 XtRPixmap, 141, 150

XtRealizeProc49 XtRPointer, 141

XtRealizeWidget, 26, 36, 348, 49, 50, 60, 63, XtRPosition, 141, 148, 150

90, 91, 124, 129, 215, 216, 229 XtRRestartStyle, 141, 148

XtRealloc, 186187, 195, 200 XtRScreen, 141

XtREditMode, 142 XtRShort, 141, 148, 150
XtRegisterCaseConvertel81 XtRSmcConn, 141
XtRegisterDrawablel 16 117, 205, 228, 236 XtRString, 141, 143, 148, 149, 152
XtRegisterExtensionSelectdr31, 236 XtRStringArray, 141
XtRegisterGrabAction, 92,82 183 XtRStringTable, 141

XtReleaseGC, 55189, 223, 254 XtRTranslationTable, 141, 148
XtReleasePropertyAtom, 203, 237 XtRUnsignedChar, 141, 148, 150
XtRemoveActionHook173 XtRVisual, 141, 148, 150

XtRemoveAllCallbacks138 214, 215, 216, 223 XtRWidget, 141

281

X Toolkit Intrinsics

XtRWidgetClass, 141

XtRWidgetList, 141

XtRWindow, 141

XtScreenbl, 52, 228

XtScreenDatabase, 333, 34
XtScreenOfObjecth 1, 52, 214, 223
XtSelectionCallbackProd,92
XtSelectionDonelncrProd, 97
XtSelectionDoneProc, 19192
XtSendSelectionRequest., 201
XtSendSelectionRequest, 202, 203, 237
XtSessionGetToker84, 85, 86, 236
XtSessionReturnToke®4, 85, 86, 236
XtSetArg, 2,37, 38

XtSetErrorHandler256
XtSetErrorMsgHandlei255
XtSetEventDispatchei, 32 236
XtSetKeyboardFocus114, 115, 215, 216, 223,
229

XtSetKeyTranslator] 80
XtSetLanguageProc, 26, 230, 31, 133, 234
XtSetMappedWhenManaged, 48, B4, 215, 217,
229

XtSetMultiClickTime, 174, 175
XtSetSelectionParamete&)0, 201, 237
XtSetSelectionTimeout, 24254
XtSetSensitive, 90, 92, 9420, 226
XtSetSubvaluesl 67, 168
XtSetTypeConverted 56, 157, 252

X11 Release 6

XtUngrabKey, 111, 112, 228

XtUngrabKeyboard, 111112 115, 119, 228
XtUngrabPointer, 113114, 119, 228
XtUninstallTranslations177, 215, 216, 229
XtUnmanageChild, 53, 582, 215, 226
XtUnmanageChildren, 5761, 62, 63, 215, 226,
235, 247

XtUnmanageChildren, 48

XtUnmapWidget, 5664, 215, 217, 229
XtUnrealizeWidget, 4852, 53, 215, 216, 229, 231
XtUnregisterDrawablel 17, 236
XtUnspecifiedPixmap, 5, 49
XtUnspecifiedShellint/8, 79
XtUnspecifiedWindow, 7830
XtUnspecifiedWindowGrouB0
XtVaAppCreateShel42, 228, 229
XtVaApplnitialize, 229, 234, 247248
XtVaCreateArgsList39
XtVaCreateManagedWidget, 661, 226, 227, 229
XtVaCreatePopupSheRB9, 90, 228, 229
XtVaCreateWidget, 3840, 41, 48, 223
XtVaGetApplicationResourced 47, 148, 158, 223
XtVaGetSubresourced46 147, 158, 223
XtVaGetSubvaluesl 63 164

XtVaGetValues162 163, 214, 223
XtVaNestedList, 3839

XtVaOpenApplication, 4243, 44, 228, 247
XtVarArgsList, 39

XtVaSetSubvalues] 68

XtSetValues, 11, 52, 64, 66, 86, 90, 95, 96, 120,XtVaSetValues165 169, 214, 215, 223
136, 140, 144164 165, 166, 167, 168, 169, 176, XtVaTypedArg,38, 39, 44, 46, 48, 162, 164, 168

214, 215, 223, 227
XtSetValuesFuncl65 167, 230, 231
XtSetWarningHandle257
XtSetWarningMsgHandle256
XtSetWMColormapWindows210 215, 217, 229
XtShellExtensionVersion/ 1
XtSignalCallbackProcl09
XtSMDontChange, 97, 103
XtSpecificationRelease, 1830
XtStringConversionWarning252
XtStringProc, 177

XtSuperclassl8, 24, 214, 223, 224
XtTimerCallbackProc108
XtToolkitInitialize, 26,27, 43, 235, 248, 249
XtToolkitThreadlnitialize, 26, 27133 236
XtTranslateCoords205 227
XtTranslateKey, 180
XtTranslateKeycodel 80, 182
XtTranslations, 175
XtTypeConverterl51, 252
XtTypedArgList,44
XtUngrabButton,113 228

282

XtVersion, 16

XtVersionDontCheck, 16

XtWarning, 31, 208, 25&57
XtWarningMsg, 251256
XtWidgetBaseOffset] 57, 158
XtWidgetClassProc21
XtWidgetGeometry, 96, 97, 98, 102
XtWidgetProc,54, 55, 58, 59, 103
XtWidgetToApplicationContext27, 28, 214, 223
XtWindow, 51, 52, 228
XtWindowOfObject, 5152, 223
XtWindowToWidget, 116205 229, 236
XtWorkProc,121
XT_CONVERT_FAIL, 193, 199
XUngrabButton, 113

XUngrabKey, 112

XUngrabKeyboard, 112
XUngrabPointer, 114
XUSERFILESEARCHPATH33, 233

X Toolkit Intrinsics X11 Release 6

XWMGeometry, 77, 79, 80

DISPLAY, 29

FALSE, 10

LANG, 32

NULLQUARK, 7, 9, 24, 40, 45, 54, 55, 63, 66, 71,
162, 221

RESOURCE_NAME 29
SESSION_MANAGER 82
SM_CLIENT _ID, 81

TRUE, 10

WM_CHANGE_STATE 80
WM_CLIENT_LEADER, 79
WM_COMMAND, 81
WM_ICON_NAME, 80
WM_NAME, 79
WM_TRANSIENT_FOR 67, 79, 80
WM_WINDOW_ROLE, 79
XAPPLRESDIR 33
XENVIRONMENT, 32
XFILESEARCHPATH 212, 213
XUSERFILESEARCHPATH 32, 33

_ XtDefaultError,209
_XtDefaultErrorMsg, 208
_XtDefaultWarning210
_XtDefaultWarningMsg208
_XtError, 257

_ Xtlnherit, 22

_XtWarning, 257

283

